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Abstract 

In recent years, the Great Lakes have faced a resurgence of cyanobacterial harmful algae blooms 

(cHAB), primarily attributed to non-point sources, notably agricultural activities. While significant 

efforts have been directed toward implementing conservation practices to mitigate nutrient losses, 

existing literature often examines the efficacy of best management practices (BMPs) and 

spatiotemporal drivers of nutrient loss separately, neglecting their interconnectedness. Recent studies 

suggest that conservation practices' effectiveness may vary spatially, necessitating targeted 

interventions to avoid trade-offs. This study aims to delineate distinct ecoregions based on known 

spatiotemporal drivers of nutrient loss and analyze their implications for water quality across different 

land use-land cover (LULC) types. Using Google Earth Engine (GEE), two Cascade K-means 

clustering analyses were conducted separately on climate and geophysical variables, resulting in three 

distinct ecoregions for each domain. These findings were integrated with data from the Provincial 

Water Quality Monitoring Network (PWQMN) and HYDAT stations to assess patterns in water 

quality degradation and nutrient loss mechanisms across ecoregions. Additionally, statistically 

downscaled climate change datasets from Environment and Climate Change Canada (ECCC) were 

utilized to determine shifts in climate conditions across established climate ecoregions. Furthermore, 

climatic ecoregions displayed a latitude-dependent pattern in water quality degradation. Under 

projected climate changes, the coolest regions are anticipated to resemble current conditions in the 

warmest regions, leading to a northward shift in agricultural suitability. These findings underscore the 

necessity of adopting a context-dependent approach to agricultural management practices, especially 

in light of projected climate shifts. A one-size-fits-all approach to BMP recommendations and 

implementation falls short, highlighting the importance of tailored strategies to address the unique 

challenges posed by each ecoregion. 
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Chapter 1 

Problem Statement 

The Laurentian Great Lakes, also known as the Great Lakes of North America, comprise a network of 

five lakes: Lakes Superior, Michigan, Huron, Erie, and Ontario; the Great Lakes outflow eastward 

into the St. Lawrence River, which empties into the Atlantic Ocean. These lakes hold approximately 

20 percent of the Earth’s freshwater, rendering them highly vital to the survival of the surrounding 

communities (Steffen et al., 2014). Since the beginning of the British and French colonies and 

throughout the industrial age, the water quality of the Great Lakes has steadily declined due to 

pollution from both urban and rural regions (Choquette et al., 2019). Due to the unique geographical 

positioning of the Great Lakes, which crosses the border between Canada and the United States, both 

countries have embarked on collaborative initiatives to improve and restore the water quality of the 

lakes (GLWQA NAS, 2019; Bunch, 2022). 

The Great Lakes have encountered new challenges over the course of several decades, including a 

re-eutrophication of Lake Erie (Watson et al., 2016), prompting the establishment of research, 

proposals, and initiatives aimed at mitigating water quality concerns (Steffen et al., 2014; Choquette 

et al., 2019; Macrae et al., 2021). In the 1910s, the improper disposal of untreated sewage was 

identified as the primary cause of water quality degradation, which led to typhoid epidemics in 

communities dependent on the Lakes for drinking water (Bunch, 2022). In the 1940s and 50s, a 

transboundary study found that sewage, chemical, and industrial sources of pollution, coupled with 

ship waste and channel bed excavation, were the primary contributors to contamination in the Great 

Lakes (Bunch, 2022). Finally, in the 1960s, the primary sources of pollution ranged from chemical 

inputs to nutrient contamination, but by the following decade, industrial and ship waste exhibited a 

decline (Bunch, 2022) in response to the identification of phosphorus (P) as the limiting nutrient by 

Schindler (1977). 

Currently, governing bodies have taken extensive measures to repair past damage and have made 

great strides in restoring the overall health of the Great Lakes (Choquette et al., 2019). Past efforts 

were directed toward managing point sources of pollution in the form of wastewater and industrial 

contamination from specific locations along the shores of the Lakes (Dolan and Chapra, 2012; 

Maccoux et al., 2016). By regulating these specific sources throughout the 20th century, harmful 

algae blooms were drastically reduced, and water health was vastly enhanced (Steffen et al., 2014). 

However, since the 90s, the Great Lakes have experienced a reemergence of algae blooms and a 
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deterioration in water quality, and experts have denoted non-point sources, mainly agricultural 

sources, as the primary source of this resurgence (Dolan and Chapra, 2012; Maccoux et al., 2016; 

Choquette et al., 2019; Macrae et al., 2021). Managing non-point sources is significantly more 

complex than controlling point sources, and researchers have been tasked with understanding the 

various driving mechanisms of these sources and recommending solutions to governing bodies 

(Kleinman et al., 2011).  

Although substantial work has been done on conservation practices in agricultural settings, recent 

work (Kast et al., 2021; Macrae et al., 2021) has suggested that the efficacy of conservation practices 

may vary spatially and that targeted conservation practices are needed to avoid trade-offs (Kleinman 

et al., 2022). Jarvis et al. (2017) found that despite largescale conversation practice implementations 

within Lake Erie watersheds to mitigate P loss through a specific mode, they inadvertently led to 

higher rates of P entering waterways through other pathways. Since Lake Erie has been the most 

heavily impacted of the Great Lakes, much of the focus has been on the Lake Erie watershed, 

particularly the Maumee and Sandusky watersheds, which dominate P loads to the lake. However, 

recent work suggests that pollution from other areas, such as Muskegon Lake, Michigan, may be 

relevant (Mancuso et al., 2021).  Moreover, in accordance with the State of Great Lakes report (2022) 

conducted in collaboration with the Governments of Canada and the United States of America, other 

Great Lakes, such as Lake Huron and Lake Ontario, are also showing signs of eutrophication. Thus, 

guidance on conservation practice efficacy throughout the Great Lakes region is needed. Moreover, 

given the anticipated effects of climate change on the Great Lakes region (Byun et al., 2019; Demaria 

et al., 2016), which may change agricultural practices and streamflow, insight is needed on suitable 

conservation practices for regions in the future. 

In light of the ambiguity surrounding the context-dependency of conservation practice 

recommendations, watershed classification emerges as a valuable tool to synthesize and contextualize 

our understanding of spatial phenomena, particularly regarding P loss dynamics (Macrae et al., 2021; 

Kleinman et al., 2022; Reid et al., 2018). By integrating spatial analysis techniques with a 

comprehensive understanding of P loss dynamics, watershed classification can inform the 

optimization of conservation practices and the development of tailored recommendations that account 

for both current conditions and anticipated future shifts (Hastie et al., 2001; McDonnell & Woods, 

2004). This thesis aims to address this need by fulfilling three objectives: (1) defining broad zones in 

agricultural landscapes across the Great Lakes Basin based on climate and landscape drivers of P loss 
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under contemporary climate conditions, (2) determining whether water quality differs for various land 

uses across these zones, and (3) assessing implications of changing climate on the regional 

classifications developed in (1) and infer water quality trajectories in the future. Through these 

objectives, this research aims to enhance our understanding of the complex interactions between P 

loss drivers, encompassing landscape dynamics and climate variability, and their impact on water 

quality within agricultural landscapes across the Great Lakes Basin amid shifting climatic conditions. 
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Chapter 2 

Literature Review 

2.1 Phosphorus Dynamics in Ecosystems 

2.1.1 Brief Overview of Phosphorus in Soil and Water 

P is a naturally occurring element that limits the growth of both terrestrial and aquatic plants and 

animals (Schindler, 1977). Excess P loss, predominantly from agricultural landscapes, can and has 

caused downstream freshwater systems to become increasingly eutrophic as aquatic plants continue to 

feed on the abundance of P (Jarvie et al., 2013). Schindler et al. (2008) completed a 37-year study of 

eutrophic lakes and found that P is the main nutrient of concern in terms of improving water quality. 

Understanding how P cycles through various forms in terrestrial ecosystems and aquatic 

environments are vital in effectively managing P loss vulnerability (Schindler et al., 2008). In contrast 

to other biogeochemical processes (e.g., carbon and nitrogen), P cycles are considerably slower and 

can last for days, months, years, or even decades, and fluxes between pools do not include a gaseous 

form (Holtan et al., 1988). The rates, fluxes, and pools within P cycles are sensitive to human activity 

and can vary substantially across ecosystems (i.e., terrestrial vs. aquatic) and scales (i.e., watershed 

vs. local) (Schipanski & Bennett, 2021). 

Within the P cycle, P is transformed into various forms or pools that affect its access to living 

organisms and can influence water quality (Sharpley et al., 1991). Total P (TP), including organic and 

inorganic forms of P, is present in aquatic and terrestrial ecosystems (Holtan et al., 1988). Organic P 

refers to P bound to tissues and molecules of living and nonliving organisms, whereas inorganic P 

denotes P that does not exist in organic matter (Holtan et al., 1988). All organic and inorganic forms 

of TP are divided into two main fractions: dissolved P and particulate P (PP) (Holtan et al., 1988). 

Dissolved or soluble P (SP) is the form of P that passes through a 0.45μm filter, and this pool can be 

further subdivided into two groups, soluble reactive P (SRP) and soluble unreactive P (SUP), based 

on whether they react (or do not react) to particular reagents (Sharpley et al., 1991). SRP is associated 

with P found present in inorganic matter, with the predominant component being orthophosphate, 

which is the most accessible form of P for absorption by plants (Holtan et al., 1988). In contrast, SUP, 

which consists of primarily organic P, tends to have longer residence periods in aquatic environments 

than SRP, thereby increasing the likelihood of affecting nutrient levels in vulnerable waterbodies 
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(Holtan et al., 1988). The sum of SRP and SUP is termed total dissolved P (TDP) (Holtan et al., 

1988). 

PP can be determined as the difference between TP and TDP (Holtan et al., 1988). Unlike SP, PP 

exhibits limited accessibility for absorption by terrestrial and aquatic plants (Condron & Newman, 

2011). PP is a solid form bonded to sediment particles, constituting between 70 and 90 percent of 

agricultural runoff during high-flow events (Sharpley et al., 1991). As mentioned, PP may exist in an 

organic form held in microbial, plant residuals, or humus that can become bioavailable upon 

decomposition (Cavalcante et al., 2018). On the other hand, inorganic forms of PP are either 

adsorbed/surface bonded to mineral surfaces (e.g., iron and aluminum oxides, clays, etc.) or 

absorbed/chemically bonded to secondary compounds (e.g., calcium, magnesium, etc.) within 

sediments (Dittrich et al., 2013). Depending on the fraction of PP, these composites can break down, 

and the P released can become bioavailable under varying conditions within the water column, 

contributing to internal P loading (Condron & Newman, 2011). 

Detection limits in lab analysis arbitrarily define P forms and their associated pools, and they are 

typically associated with specific chemical and filtration methods developed by prior research 

(Condron & Newman, 2011). As stated earlier, SP encompasses all P elements that pass through a 

0.45 μm filter; however, PP, in the form of P-bound nanoparticles, can pass through the filter to pass 

through (River & Richardson, 2019). The risks of overestimating the SP pools can misrepresent the 

bioavailability of P within aquatic ecosystems (River and Richardson, 2019). Research has 

established that colloidal P is responsible for the largest percentage of P loss from agricultural 

landscapes, linked to increased internal P loading levels (Liu et al., 2014). 

2.1.2 Sources and Pathways of Phosphorus from Terrestrial Landscapes to Water 

Bodies 

P loads are introduced into aquatic systems through a multitude of transport pathways originating 

from diverse sources (McDowell et al., 2001; Dinnes, 2004). The source and transport pathways that 

dictate the composition of P forms in these water bodies have a major influence on the overall impact 

of P on these ecosystems (Pasek et al., 2014). P sources entering waterways are derived from 

terrestrial landscapes, including cropland, pastures, urban settlements, and natural environments (e.g., 

forests and upstream waterbodies) (Dines, 2004). P transported via biogeochemical pathways from its 

source to its sink (i.e., streams, rivers, and lakes) can undergo transformations or be mobilized within 
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and between terrestrial and aquatic ecosystems (McDowell et al., 2001). Physical, chemical, or 

biological transport to aquatic ecosystems is contingent upon the P form (Pasek et al., 2014). 

P sources originating from terrestrial landscapes are categorized as either point or non-point 

sources (Sharpley et al., 2001). Point sources of P loss are traceable inputs from areas such as sewage 

treatment facilities or industrial plants (Bennett et al., 2001). Because it is easily identifiable, P inputs 

from various point sources have been significantly reduced through targeted efforts by government 

bodies and other organizations (Bennett et al., 2001). For instance, waste treatment plants have 

removed as much as 95% of P from wastewater in urban regions entering nearby waterbodies 

(Bennett et al., 2001). In contrast, non-point sources are more challenging to identify due to their 

inability to be traced back to a specific location and their limited recognition as upstream sources, 

such as agricultural fields or residential areas (Kleinman et al., 2015). Consequently, managing P 

inputs from these regions is considerably more complex and requires more effort to mitigate P loss 

risks (Reid et al., 2018). Most non-point or diffused sources of P originate from agricultural 

landscapes and are then transported to adjacent water bodies at a rate of approximately 15 million 

tons annually (Kleinman et al., 2011). As a consequence, P concentrations in these aquatic 

environments remain excessively high, having tripled in waterways since preindustrial levels (Bennett 

et al., 2001). 

The supply of P is either applied, acting as a transient source or accumulates as legacy P, which 

consists of long-term reserves (McDowell et al., 2001). However, legacy soil P refers to the surplus 

nutrients that endure in the soil profile without being assimilated by plants or depleted through 

erosion (Kleinman et al., 2011). The accumulation of legacy soil P in the soil profile over extended 

periods of time due to excessive P application in arable lands presents a significant threat of P loss via 

transport pathways (Keatley et al., 2011). Johnston and Poulton (1976) discovered that it took 73 

years for excess soil P levels to decrease by more than 50 mg kg-1 after manure-based P application 

was discontinued (Mcdowell et al., 2001). In aquatic ecosystems, legacy soil P, which is present 

along water bodies' beds, contributes to internal P loading through resuspension (Baker et al., 2019; 

Da-Peng & Yong, 2010). As an illustration, P-bound bed sediment accounts for 20 to 42 percent of 

the persistent quantities of SRP within Lake Erie's western basin (Baker et al., 2019). 

Water movement within and across terrestrial and aquatic ecosystems regulates the transport of P 

(Dinnes, 2004). Locally, soil P moves vertically and horizontally within the soil profile; however, at 
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the regional scale, soil P traverses landscapes via two main pathways: overland flow and subsurface 

flow both above and below the water table (Sharpley et al., 2001). Overland flow, also known as 

surface runoff, is the most important P pathway and occurs when water fails to infiltrate the ground 

and flows across the surface, eroding applied P into adjacent waterways (Pärn et al., 2012; Reid et al., 

2018). Consequently, non-point sources of PP account for 70 to 90 percent of agricultural runoff 

during high-flow events (Sharpley et al., 1991). Several studies have highlighted the importance of 

accounting for P loss through surface runoff because of the tendency of applied P to remain 

concentrated in topsoil layers and to be tightly bound to soil elements (Wang et al., 2010; Jarvie et al., 

2017; Watson et al., 2016). 

Conversely, subsurface flow occurs when soil layers reach a specific saturation level, allowing 

water to flow horizontally and empty into adjacent waterways (Dinnes, 2004). When applied, P 

occupies lower soil layers (also known as leaching) in agricultural regions and can contribute to P 

loss through subsurface flow (Sloan et al., 2016). Among the most significant contributors to 

subsurface flow is the installation of tile drains by farmers to lower the water table artificially (Smith 

et al., 2015). Tile drainage is primarily used in regions with poor drainage, where the root zones of 

crops remain exceedingly saturated with no air pockets (Smith et al., 2015). Waterlogging hinders the 

ability of crops to extract water and nutrients from the soil; therefore, farmers install pipes under the 

surface to drain excess water from their fields (Sloan et al., 2016). Consequently, tile drains in these 

drained arable regions significantly contribute to P loss through subsurface flow (King et al., 2015). 

Researchers have observed that in regions with hydrologically connective tile drainage systems, P 

loss through overland flow is significantly diminished, and subsurface flow emerges as the 

predominant mode of P transportation (King et al., 2015). Introducing tile drains in areas with 

insufficient drainage systems enables more P sources to infiltrate aquatic ecosystems, exacerbating 

the difficulty of preventing P loss (Reid et al., 2018). 

2.1.3 Influences of the Nitrogen Cycle on Phosphorus Dynamics 

Across the many biogeochemical processes that occur within the soil matrix and water columns, the 

nitrogen (N) cycle has one of the largest impacts on P dynamics within these ecosystems and along 

transport pathways (Dodds & Whiles, 2020). N cycling can impact the availability, mobility, and 

transformations of P within these systems (Zheng et al., 2020). For instance, both P and N act as 

limiting factors in plant growth, and an imbalance in the availability of these nutrients can pose a risk 
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of P loss (Li et al., 2023). Moreover, the extent to which these elements impact the P cycle varies 

based on the particular nutrient processes and the configurations of these nutrients within the 

ecosystem (Zheng et al., 2020). This knowledge will facilitate the establishment of more precise 

management targets for mitigating P loss from agricultural landscapes (Zheng et al., 2020). 

The interactions between N and P add to the complexity of nutrient dynamics in terrestrial and 

aquatic environments since macronutrients are essential to plant growth and development (Dodds & 

Whiles, 2020). Within the N cycles, the presence and transformation of N can influence the 

availability and mobility of P (Zheng et al., 2020). For instance, multiple soluble nutrients are 

released into the systems during the mineralization of organic matter (Gao et al., 2014). Microbes can 

mineralize organic N compounds, which results in the availability of SP for plant uptake or 

transportation to adjacent water bodies (Gao et al., 2014). Organic N compounds can potentially 

enhance the solubility and mobility of P by either competing for sorption sites or forming complex 

compounds with P (Grunes, 1959). Likewise, ammonium released via mineralization can also 

increase the bioavailability of P by sorbing to accessible sites on soil colloids or being abundantly 

present, leading to a surge in P desorption (Grunes, 1959). Furthermore, nitrification processes, which 

involve the conversion of ammonium into nitrates, reduce pH levels and facilitate the desorption of P 

from calcium compounds (Li et al., 2023). Conversely, at elevated pH levels, ammonium can reduce 

the bioavailability of P through the formation of complex compounds (Li et al., 2023). 

2.2 Spatiotemporal Factors Impacting Phosphorus Availability and Mobility 

2.2.1 Seasonal Variability in Phosphorus Loss Pathways 

Climatic conditions play a pivotal role in shaping P dynamics within and across ecosystems by 

governing the horizontal and vertical movement of water (Rattan et al., 2019). The dynamics of P are 

influenced by the complex interaction between temperature fluctuations and precipitation rates, 

including factors such as amount, form/changes, and timing (Reid et al., 2018; Macrae et al., 2021). 

However, the seasonal variability dictates the timing, magnitude, and pathways of P loss from source 

to sink (Reid, 2011). This becomes particularly crucial in regions with cold climates, where annual 

precipitation and temperature fluctuations determine critical runoff periods (Plach et al., 2019). 

Precipitation is pivotal in governing hydrological processes that influence P transport within and 

across ecosystems (Plach et al., 2019). In conjunction with geomorphological and topographic 
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variables, climate drivers regulate runoff movement and distribution, with climatic conditions directly 

amplifying their impact on P loss (Reid et al., 2018). In light of the diverse forms of precipitation, 

such as rainfall, snowfall, hail, and sleet, it becomes crucial to recognize their distinct effects on P 

dynamics (Liu et al., 2013). Precipitation patterns exhibit seasonal and regional variation, with 

rainfall and snowfall typically predominating (Liu et al., 2013). Rainfall is the predominant mode of 

transport for P in warmer climates, whereas snowmelt assumes this role in colder temperatures (Reid 

et al., 2018). These precipitation forms influence the speed and mode of P transport and are intricately 

linked to timing and intensity (Liu et al., 2013). 

Precipitation directly impacts soil moisture, which dictates the mode of the P transport pathway 

(i.e., surface runoff vs. subsurface discharge, including tile drain rates) (Reid et al., 2018). Due to the 

rapid saturation of surface soils, infiltration rates are greatly reduced when precipitation intensity 

peaks, particularly during storm events; runoff volumes entering adjacent waterways are exacerbated 

by excess precipitation inputs (Reid et al., 2018; Rittenburg et al., 2015). In contrast to infiltration 

rates imposed by soil type, changes to crop type or soil management practices have no impact on the 

consequences of excess runoff resulting from saturated environments (Reid et al., 2018). Increased 

water flow across agricultural landscapes causes erosion of topsoil layers, typically P-enriched soils 

and aids the delivery of soluble and PP (Fouli et al., 2013). Moreover, an increase in precipitation 

inputs is associated with a corresponding surge in discharge in areas equipped with artificial drainage 

systems (King et al., 2015). Smith et al. (2015) found that tile discharge peaks coincided with surface 

runoff peak flows due to preferential flows facilitating the hydrological connectivity between surface 

and subsurface soils. Research has indicated that elevated flow events, which are caused by increased 

precipitation amounts, lead to the greatest P loss through subsurface discharge (King et al., 2015; 

Smith et al., 2015). 

In addition to precipitation form and intensity, the timing of storm events emerges as the most 

influential factor in P transport (Reid, 2011). The greatest risk of P loss occurs when storm events 

follow P applications, such as fertilizer or manure (Kleinman et al., 2011). P application to the surface 

during fall and winter seasons significantly contributes to P loss during snowmelt events (King et al., 

2017). Conversely, freshly applied P may be transported via tile drains during the growing season 

(May to September) as a result of low soil moisture, displaced as runoff or rapidly leached into 

subsurface soils during summer rain events (Smith et al., 2015). While summer runoff poses a risk, it 
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is generally lower than winter runoff because soil moisture capacity is reduced during the cooler 

months (Reid et al., 2018; Macrae et al., 2021). 

In regions with a cold climate, snowfall and snow cover are crucial factors in P mobilization and 

transport (Liu et al., 2013). Regions with increased snowpack development have greater spring 

snowmelt contributions in the form of P-enriched surface (i.e., frozen or saturated ground) and 

subsurface (i.e., unfrozen ground) discharge (Reid et al., 2018; Macrae et al., 2021). In areas with 

prolonged snow cover, the ground is insulated from the harsh surface winter conditions, and the soil 

temperature remains moderately higher, preventing the ground from freezing and allowing moisture 

to permeate the soil layers (Liu et al., 2013). Conversely, researchers have discovered that 

intermittent or brief snow cover causes the frozen ground to impede infiltration rates, and P-enriched 

topsoil can be eroded once the temperature rises (Reid et al., 2018; Macrae et al., 2021). Additionally, 

precipitation-induced runoff further amplifies the risk of P loss in these soils by decreasing P uptake 

(Reid et al., 2018). Rain events that coincide with snowmelt further induce P transport from 

agricultural surfaces, particularly if they occur earlier in the season (Reid et al., 2018; Liu et al., 

2013). 

The seasonal variation in cold climates introduces unique temporal patterns in P loss not commonly 

observed in other global regions (Rattan et al., 2019). Temperature fluctuations influence P 

mineralization rates and the fluxes of P between different pools (Pasek et al., 2014). Higher soil 

temperatures enhance plant P uptake, depleting P from soil layers. However, warmer temperatures 

also accelerate decomposition, increasing P availability (Reid, 2011). During the growing season, 

evapotranspiration reduces surface soil moisture, leading to increased infiltration rates during summer 

storm events (Reid, 2011). Warmer temperatures contribute to decreased runoff rates, with overland 

flow typically confined to edge-of-field regions (Reid, 2011). Concurrently, during the summer, low 

soil moisture increases the likelihood of P transport through preferential flow paths to tile drains (Pärn 

et al., 2012). This contributes to base tile drain flow carrying legacy P when plant uptake is equivalent 

to or lower than the applied P rates (Smith et al., 2015). 

Temperature fluctuations within and between seasons drive freeze and thaw cycles, impacting both 

hydrological responses and soil processes associated with P loss (Kværnø & Øygarden, 2006). The 

transition between freezing and thawing alters soil particle size and influences P bonding forms (Fan 

et al., 2014). Decreased particle size enhances surface area, leading to higher rates and capacities of P 
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sorption within the soil profile (Kværnø & Øygarden, 2006). However, Fan et al. (2014) note that the 

breakdown of soil particles can release surface-bound P, thereby becoming accessible for plant 

uptake. Mid-season snowmelts can rapidly transport bioavailable P to aquatic environments (Reid, 

2011). As winter months experience temperature fluctuations, climate change-induced weather 

variability can exacerbate and increase this form of P delivery (Rattan et al., 2019). Additionally, 

freeze-thaw cycles create preferential flow pathways and macropores within the soil profile (Karahan 

& Erşahin, 2017). During cooler months, water molecules expand due to freezing (Kværnø & 

Øygarden, 2006), and as temperatures rise, the soil structure contracts, forming flow pathways 

(Kværnø & Øygarden, 2006). These preferential flow pathways govern the volume and velocity of 

downward P movement, redirecting runoff from the surface to subsurface lateral flows (Pärn et al., 

2012). 

Temperature serves as a crucial determinant for both the duration of growing and non-growing 

seasons, and the index used to measure this duration is called Growing Degree Days (GDD) (Reid, 

2011; AAFC, 2015). Developed as a tool for farmers and experts, GDD accounts for the number of 

days per year when temperatures are optimal for plant growth (AAFC, 2015). GDD serves as an 

indicator for planning P application on fields and determining harvest windows for various crops 

(AAFC, 2015). A longer GDD signifies an extended growing season, providing more time for plant 

growth, increased P uptake, and potentially reducing the risk of P loss (Macrae et al., 2021). 

Furthermore, GDD, much like temperature, is latitude-dependent, and with ongoing climate change, 

higher latitudes are anticipated to experience longer GDD, with cold climate regions particularly 

affected (Macrae et al., 2021). 

2.2.2 Landscape Drivers Affecting Phosphorus Movement and Mobilization 

As discussed earlier, climatic conditions primarily impact the overall volume of water entering and 

moving through landscapes. Nevertheless, the local geophysical characteristics determine the mode of 

P transport (Rittenburg et al., 2015; Sharpley et al., 2015). Variability in the topography and 

geomorphology of the region, along with existing land use types and farming systems, significantly 

influences P loss from agricultural landscapes (Habibiandehkordi et al., 2020). Additionally, the 

hydrological connectivity of the landscape is a crucial factor to consider when assessing the risk of P 

loss (Sharpley et al., 2015). The interdependence of land use, hydrological processes, and nutrient 
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loading underscores the need to implement targeted management strategies in these areas (Macrae et 

al., 2021). 

The topographical features of the landscape have a direct influence on the trajectory and speed of 

water flow (Pärn et al., 2012). In addition to elevation and slope, surface landforms dictate the 

proportion of precipitation that flows off the surface of agricultural fields. Due to the limited 

subsurface percolation rates, regions with lower elevations experience shallow water tables, which 

subsequently impact the rate and capacity of infiltration (Reid et al., 2018). There is typically a 

noticeable increase in the implementation of tile drains in these areas to address insufficient drainage 

rates (King et al., 2015). On the other hand, they exhibit cooler climates and higher rates of snowfall, 

both of which can substantially influence the increased release of P into adjacent downstream 

waterways during the spring as a result of snowmelt. (Habibiandehkordi et al., 2020). Additionally, 

regions with higher elevation changes are more prone to experience increased runoff flows because 

steeper slopes reduce infiltration, leading to the erosion of P-enriched surface soils (Fouli et al., 

2013). The predominant form of P loss caused by erosion is PP. In Ontario watersheds, the proportion 

of this fraction accessible to algae can range from approximately 6 to 35 percent (DePinto et al., 

1981).  

Different surface landforms determine the configuration of the landscape, which, by extension, 

influences the topography (i.e., elevation and slope) and their impact on P loss rates (Wolfe et al., 

2019). For instance, hummocky terrains are covered in a complex series of irregularly sized and 

shaped knolls and depressions with widely varying slopes (9-70%), creating micro-topographic 

features (Soil Landscapes of Canada Working Group, 2011). Depressions across the landscape can 

retain water and impede its passage across the surface to form wetlands or detention ponds (Wolfe et 

al., 2019). Inundation of soils along hydrological pathways linked to regions that are temporarily or 

permanently flooded has a multiplicative effect on P transport and redox conditions, which in turn 

alter forms of P bonding (Pärn et al., 2012). Temporarily flooded soils have the potential to provide 

sources of P by means of rewetting sediments (Pärn et al., 2012). This process alters redox conditions 

and induces an anaerobic state, re-releasing sorbed P (King et al., 2015; Pärn et al., 2012; Vymazal, 

2007). 

Additional landforms with flatter surfaces, such as undulating landscapes, create a wavelike pattern 

of gentle slopes (2-5%) (Soil Landscapes of Canada Working Group, 2011). Notwithstanding its 



 

 13 

reduced gradient, this terrain introduces surface roughness into the landscapes, impacting the speed, 

direction, and rate of water movement (Soil Landscapes of Canada Working Group, 2011). Römkens 

et al. (2002) found that surface roughness was correlated with greater soil losses due to the 

concentrated flow paths transporting large volumes of runoff over a small area. The positive 

relationship between runoff and erosion rates is the key factor in determining the erodibility of 

surface soils because runoff volumes increase, so does velocity (Rittenburg et al., 2015). In addition, 

surface roughness also determines drainage network development within the landscape, where 

smoother terrain increases stream density but reduces overall stream order within the catchment 

(Römkens et al., 2002). 

The variability in soil characteristics is another key landscape driver that affects both the P 

dynamics within agricultural landscapes and the risk of P transport to aquatic ecosystems (Plach et al. 

2018b). A landscape’s geological diversity (i.e., the parent material) of soils determines its physical 

and chemical properties, including their texture/type and composition (McDowell et al., 2001). This 

further affects the hydrological responses primarily associated with P transport and can potentially 

disrupt the prevailing redox conditions in the region (Pärn et al., 2012). For instance, regions 

characterized by fine-textured soils experience inadequate drainage, leading to a higher prevalence of 

tile drain installation, which is usually higher in these regions (Smith et al., 2015). Consequently, the 

predominant mode of P transport in these soils is through tile drains, where it is generally present as 

PP (Smith et al., 2015). 

The soil type present in surface and subsurface sediments substantially impacts the movement and 

quantity of bioavailable P leaching into adjacent aquatic ecosystems (Smith et al., 2015). Soil type is 

one factor controlling both the vertical and horizontal movement of water above and below the 

surface (Pärn et al., 2012). As mentioned previously, overland flow occurs when input precipitation 

and snowmelt fail to percolate at the surface, and runoff erodes applied P into waterways (Sharpley et 

al., 2001). Nonetheless, the infiltration rate can vary significantly depending on the particulate size of 

the soil profile (Sloan et al., 2016). As an illustration, sands possess the highest drainage capacity, 

which facilitates the downward movement of P from the surface and is dominated by subsurface 

flows either through pre-existing tile drains or the lateral movement of subsurface flows (Smith et al., 

2015). 
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Sandy soils have coarser particle sizes, facilitating preferential flow pathways for the movement of 

P both vertically and horizontally through the soil profile (Reid et al., 2018). On the other hand, soil 

profiles with substantial clay contents experience higher levels of runoff as the presence of finer 

sediment reduces surface infiltration rates (Eastman et al., 2010). Conversely, other studies have 

found that macropores in subsurface sediments can increase P leaching to subsurface tile drains 

controlled by clay content (Eastman et al., 2010; Karahan & Erşahin, 2017). Karahan and Erşahin 

(2017) observed a statistically significant and negative correlation between clay content and the 

hydrological conductivity of soils. These findings indicate that macropore size increases in tandem 

with the size of soil particles, thereby increasing the likelihood of P leaching in these landscapes 

(Karahan & Erşetsin, 2017). 

Similarly, soil composition can influence the retention and transport of P throughout terrestrial 

ecosystems (McDowell et al., 2001). Once P is introduced into terrestrial soils, whether through 

weathering or intentional application in the case of croplands (i.e., fertilizer P or animal manure), it 

has the propensity to rapidly bind to soil particles and convert from a bioavailable state to PP 

(Schipanski & Bennett, 2021). Depending on the soil characteristics, the chemical process of 

adsorption or absorption rates are regulated by the number of positively charged slots that permit the 

P ions to occupy (Pasek et al., 2014). Thus, the soil composition regulates the bioavailability of PP 

and its impact on algae growth within aquatic ecosystems (McDowell et al., 2001).  

Soils rich in iron and aluminum are more likely to absorb P that travels through them, which can 

then be mobilized once the particulate forms enter aquatic environments (Cavalcante et al., 2018). 

These P bonds can be released under anoxic conditions, making them bioavailable to algae within 

aquatic systems (Cavalcante et al., 2018). In contrast, soils rich in calcium and magnesium form 

chemical bonds with available P under more stringent conditions (Dittrich et al., 2013). Calcium 

fractions of PP dissolve in acidic environments and become available for plant uptake (Dittrich et al., 

2013). Moreover, it is noteworthy that the organic matter in soil profiles derived from frozen plant 

residue is a significant source of dissolved P released when temperatures rise (Reid et al., 2018). For 

this reason, the soil characteristics of the extant surface and subsurface sediments substantially affect 

the movement and quantity of bioavailable P leaching into neighbouring aquatic ecosystems (Reid et 

al., 2018). 
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The capacity of tile drainage to transport both SP and PP depends on the soil type and composition 

(King et al., 2015). Tile drains provide hydrological connectivity in these regions and affect 

hydrological response rates of P loss (King et al., 2015). Transport limitations or lack of connectivity 

to a transport pathway render the risk of P loss minimal or negligible in regions with abundant 

sources of P (Plach et al., 2018a). However, transport limitations do not preclude the possibility that 

available P in a region could eventually become hydrologically connective (via the installation of a 

tile drain, for instance) (Plach et al., 2018a). The hydrological connectivity of the landscape, 

geophysical properties, and the flow of water from the source area to surface water bodies largely 

determines the effect of hydrological responses on P loss (Reid et al., 2018; Habibiandehkordi et al., 

2020). The hydrological responses within watersheds and the existing soil and vegetation 

characteristics can considerably induce P loss from agricultural landscapes (Habibiandehkordi et al., 

2020). 

Additionally, prior investigations have estimated P loss based on proximity to surface water to 

determine the hydrological connectivity of a region (Habibiandehkordi et al., 2020). The assumption 

was that P loss occurs predominantly through overland flow from the edge-of-fields to adjacent edge-

of-water (Reid et al., 2018). Reid (2011), however, argued that this reasoning is flawed because P 

transport associated with hydrological response is not restricted to surface runoff. As mentioned 

previously, in drained landscapes, tile drainage modifies P transport pathways, which not only 

reduces the volume of surface runoff but also alters the timing of peak runoff flows reaching water 

bodies (King et al., 2015; Reid et al., 2018; Sloan et al., 2016). 

Land use plays a pivotal role in shaping the hydrological connectivity of a region, influencing both 

P sources and transport pathways, and the interaction of these factors increases the risk of P loss 

(Reid, 2011). Anthropogenic activities further exacerbate the P cycling rate, introducing mined P into 

regional and local cycles via fertilizers, animal feed, and detergents (Bennett et al., 2001). Notably, 

agricultural and urban areas emerge as the primary contributors to both point and non-point P sources 

(Kleinman et al., 2011). Scavia et al. (2016) found that despite constituting only 4 percent of the 

average flow to Lake Erie, the Maumee River basin delivers a striking 48 percent of TP, with 31 

percent being SRP. Remarkably, 70 percent of this basin consists of agricultural landscapes, 

emphasizing the disproportionate impact of these regions on P loading (Wilson et al., 2019). 
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During the growing season, all landscapes adjacent to water bodies are more susceptible to 

receiving elevated P loads (Reid, 2011). However, preliminary observations conducted by 

Habibiandehkordi et al. (2020) indicated that using a standardized distance of a 150-meter radius 

from nearby waterways does not account for the natural variability present at the farm scale within 

Ontario and Manitoba tributaries. Due to the variability of P transport pathways, proximity to surface 

water is insufficient as a sole indicator of P loss (Reid et al., 2018; Macrae et al., 2021). Some 

agricultural regions have natural barriers that separate fields from surface waters (e.g., riparian zones) 

and effectively filter out P from contaminated sources (Reid et al., 2018). Vegetation eliminates P 

from surface runoff entering the system via the adsorption of SP or infiltration processes that induce P 

leaching into subsurface soil layers (Li et al., 2011). Vymazal (2007) found that inflow P 

concentrations entering these ecosystems were 40 to 60 percent higher than the outflow 

concentrations of P leaving these ecosystems. 

2.2.3 Combined Influence of Land-Climate Drivers on Phosphorus Loss in the Great 

Lakes Watershed 

Sources and transport of P within the Great Lakes can vary considerably between and within sub-

basins. For instance, Lake Erie has been suffering from a recurrence of cyanobacterial harmful algae 

blooms (cHAB) since the 1990s, which has caused the lake to turn bright blue-green during the 

warmer months (Steffen et al., 2014). The primary source of excess P loss causing eutrophic 

conditions in Lake Erie is non-point sources from agricultural regions (Choquette et al., 2019; Macrae 

et al., 2021). Due to the abundance of favourable conditions for plant growth, the Lake Erie 

watershed is dominated by agricultural activity, and understanding and accounting for nutrient 

pollution leaving these regions and entering upstream waterways has proven to be a challenge for 

researchers attempting to recommend mitigation measures (Macrae et al., 2021). On the other hand, 

Lake Superior and Huron have the best water quality among the five lakes due to the absence of non-

point sources (Bunch, 2022). Certain areas characterized by significant shoreline activity—such as 

Saginaw Bay, Michigan, and Silver Bay, Minnesota—have been subject to pollution restrictions since 

the 1960s (Bunch, 2022). 

The five watersheds of the Great Lakes have diverse climatic conditions, which are dependent on 

latitude in certain regions (LaZerte & Albers, 2018; Macrae et al., 2021). Lake Superior basin is the 

coldest (highest latitude), Lake Erie is the warmest (lowest latitude), Lake Huron is the wettest (due 
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to lake effect), and the regions with the lowest annual average precipitation rates are the Lake Erie, 

Ontario and Superior (at lower elevation and in the absence of lake effect) (LaZerte & Albers, 2018). 

As stated previously, the fluctuations in precipitation and temperature rates have distinct effects on P 

loss (Reid, 2011). For instance, in Lake Huron, the lake effect induces high precipitation rates, 

causing the regions to have more snowfall and extended periods of snow cover (LaZerte & Albers, 

2018). This suggests that snow cover preventing frozen ground and decreasing runoff rates may 

increase infiltration rates or contribute significantly to snowmelt runoff as a risk factor for P loss 

(Reid et al., 2018). 

It is anticipated that future climate change consequences will further exacerbate the established 

climate conditions on P loss from agricultural regions within the Great Lakes Basin (Eimers et al., 

2020). For instance, Wang et al. (2018) found a 25 to 108 percent increase in TP loss from two small 

catchments within the Great Lakes Basin due to intensification of extreme precipitation and 

temperature. In addition, future scenarios have projected that climate change effects may not impact 

the entire region of the Great Lakes Basin equally (Eimers et al., 2020). The Intergovernmental Panel 

on Climate Change (IPCC) has reported that the region will likely experience an increase in both the 

mean and extreme precipitation levels in the coming years (IPCC, 2023). However, the Lake Superior 

sub-basin is projected to have greater snowfall accumulation compared to the other watersheds 

(IPCC, 2023). Lucas et al. (2023) highlighted that future surges in extreme precipitation have the 

greatest influence on P loss from agricultural landscapes to waterbodies globally. Specifically, Ross et 

al. (2022) found that after analyzing water quality data from 11 sub-watersheds that drain into the 

lower Great Lake Basin. Ross et al. (2022) discovered that between 55 and 100 percent of storm 

events exhibit a positive correlation between TP levels and streamflow. 

In a similar vein, climate models forecast with exceptional accuracy that regional temperatures will 

surpass the global average (IPCC, 2023). Annual temperatures increase, and days with extreme 

temperatures are more probable, particularly in the winter months (IPCC, 2023). These impacts are 

projected to affect the sub-watersheds differentially (IPCC, 2023). For instance, future rising 

temperatures in the Western Lake Erie basin are expected to offset the impacts of extreme 

precipitation on P loss within the region (Kalcic et al., 2019). Increases in evapotranspiration and 

decreased snowfall will lead to a decline in soil moisture levels, and P-enriched runoff is more likely 

to infiltrate deeper into the soil matrix (Lucas et al., 2023). On the other hand, rising temperatures in 

cooler sub-basins (i.e., Lake Huron) have a greater probability of generating sporadic snow cover, 
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which impedes infiltration rates and causes a reduction in soil temperature (frozen ground) (Eimers et 

al., 2020). Furthermore, freeze-thaw cycles are anticipated to intensify in duration and frequency, 

leading to various impacts on P loss dynamics, including a rise in tile drainage runoff (Lucas et al., 

2023; Eimers et al., 2020). 

P loss across the Great Lakes is influenced by various geophysical factors (MNRF, 2019b & 2019c; 

AAFC, 2018a & 2018b). Depending on the targeted region, soil texture, elevation, and land use type 

may all play a significant role in the risk of P loss (Rittenburg et al., 2015). For example, the soil 

texture in the southern areas of the Lake Ontario watershed bordering the United States is 

predominately fine, while it is mainly coarse in the northeastern region of the watershed (Soil 

Landscapes of Canada Working Group, 2011). This implies that P transport pathways may vary based 

on the location of P loss within the watershed (e.g., runoff vs subsurface flow or SP vs PP) (Reid et 

al., 2018). Another distinction among the sub-basins pertains to land use types, briefly mentioned in 

the preceding section (AAFC, 2018a). For instance, agricultural regions predominate in Lake Erie, 

where the Lake Superior watershed lacks the conditions necessary for farming systems to thrive 

(AAFC, 2018a). This distinction will lead to variable concentrations of P sources, which in turn will 

cause P loss from these sub-basins (Macrae et al., 2021). Climate and geomorphology continue to 

influence the prevalence of tile drainage in regions with high agricultural activity (Lake Erie vs. Lake 

Ontario), highlighting once more the disparity in P loss risk between the two regions (Reid et al., 

2018; Macrae et al., 2021). 

2.3 Conservation Practices for Reducing Phosphorus Loss 

Best management practices (BMPs) are mechanisms implemented to mitigate the detrimental effects 

of pollution entering nearby surface waters (Li et al., 2011). In the case of agriculture, BMPs reduce 

overall nutrient loss by targeting both nutrient sources and transport pathways (Li et al., 2011). These 

BMPs may be structural or non-structural systems installed either in source areas (e.g., fields), along 

conveyance pathways (e.g., tile drains), or at edge-of-field regions before entering surface waters 

(e.g., stream banks) (King et al., 2015; Rittenburg et al., 2015). BMPs that are customized to target 

the field-specific factors contributing to P loss may be implemented (Macrae et al., 2021; Kleinman et 

al., 2022). For this reason, diverse BMPs have been developed and set up across various agricultural 

regions over the years (Macrae et al., 2021; Kleinman et al., 2022). 
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Despite the considerable rise in the number of watersheds implementing BMPs globally in recent 

decades, there remains a substantial lack of knowledge regarding their efficacy (Rittenburg et al., 

2015). Natural and anthropogenic spatiotemporal variations within tributaries pose the greatest 

obstacle to assessing the efficacy of BMPs (Li et al., 2011). Decreased efficacy has also been 

associated with discrepancies between BMPs and established geophysical processes and installation 

in a region where source and transport variability fails to restrict P loss (Rittenburg et al., 2015; 

Kleinman et al., 2022). Macrae et al. (2021) identified three P management regions in the Lake Erie 

watershed that necessitated three distinct BMP approaches to prevent P loss. Negligible progress in P 

loss beyond initial levels and exacerbation of P loss beyond baseline levels would result from the 

implementation of the incorrect BMP in one or more of these distinct P management regions (Macrae 

et al., 2021; Kleinman et al., 2022). In order to optimize the placement of BMP, it is imperative to 

consider both geophysical and climate drivers (Li et al., 2011; Sharpley et al., 2009, 2015; Macrae et 

al., 2021). 

The optimization of BMP is highly dependent on the primary P loss drivers and should concentrate 

on reducing P loss via P sources and transport pathways (Wilson et al., 2018). On the other hand, 

BMP adoption is linked to farmer behaviour, which can only be altered by adjusting the perception of 

BMP efficacy (Wilson et al., 2018). For instance, Macrae et al. (2021) identify a specific point of 

contention concerning the extent to which tilling fields decreased P loss risk in the Lake Erie 

watershed. The recommendation for non-till was first endorsed to limit soil erosion and the transport 

of PP (Macrae et al., 2021). However, as knowledge surrounding conservation practices advanced, it 

became evident that no-till fields increased SP loss to surface waters (Macrae et al., 2021). 

Consequently, the till versus non-till debate has raised more questions in the minds of farmers and 

obscured their understanding of the effectiveness of conservation practices in reducing P loss (Macrae 

et al., 2021). This, subsequently, leads to a decline in perceived efficacy among farmers and lowers 

adoption rates (Wilson et al., 2018). 

The existing literature has primarily examined the efficacy of BMP and spatiotemporal drivers of P 

loss in isolation, with little emphasis on the connections between the two (Macrae et al., 2021; 

Habibiandehkordi et al., 2020; Wilson et al., 2018). Merely investigating the interplay between these 

variables is inadequate; a more substantial focus should be directed toward determining the specific 

factors that govern P loss across different landscapes and in different climatic conditions (Rittenburg 

et al., 2015). Distinctions of this nature may manifest across regions (e.g., Canadian Prairies, the 
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Northern Great Plains, and the Great Lakes region) and within a given region (e.g., across Ontario). In 

order to maximize the efficacy of BMP placement and optimization, all landscape processes, climate 

drivers, and land management practices must be considered (Rittenburg et al., 2015). 

Subsequently, a watershed classification will help reduce ambiguity concerning the context-

dependent benefits of BMPs (Macrae et al., 2021; Kleinman et al., 2022; Reid et al., 2018). Several 

studies have devoted their efforts to monitoring and analyzing the extent and scope of the contribution 

of P (Wilson et al., 2019). The watershed classification approaches are valuable in synthesizing the 

most current and up-to-date understanding of P loss (Wolfe et al., 2019). Furthermore, 

recommendations regarding the most effective BMP approaches can be made based on the emerging 

P management zones (Macrae et al., 2021; Wolfe et al., 2019). The evaluation of BMP optimization 

can be facilitated by a classification approach that considers P loss drivers and current source areas of 

P (Macrae et al., 2021). The patterns can then be used to target motivated BMP adopters with 

outreach and educational initiatives in an effort to boost their perception of the program's efficacy 

and, subsequently, its adoption rates (Wilson et al., 2018). 

2.4 Classification Approaches Employed in Watershed Analysis 

Spatial analysis experts leverage machine learning algorithms, including clustering and modelling 

techniques, to understand spatial patterns and relationships within geographic datasets. Machine 

learning algorithms are powerful tools for making human-like predictions and decisions based on 

large-scale geographic datasets (Hastie et al., 2001). Depending on the objectives, methodologies, and 

outputs, experts may employ either clustering or modelling approaches to classify complexities within 

and across watersheds. Clustering identifies spatial groupings to facilitate exploratory analysis by 

analyzing attributes (Lee, 1981). Meanwhile, modeling predicts and explains spatial phenomena by 

capturing the irrelationships between variables (Dinov, 2018). Such approaches empower analysts 

through supervised learning, where models are trained on labelled data, and unsupervised learning, 

which explores patterns within unlabeled data (Hastie et al., 2001).  

For the purposes of exploring and classifying spatial distributions and phenomena, watershed 

analysis studies employ clustering analysis methods (Wolfe et al., 2019; Macrae et al., 2021; Knoben 

et al., 2018). Clustering analysis, which falls under the unsupervised learning umbrella, divides the 

data points into groups (or clusters) based on their degree of similarity (Lee, 1981). However, due to 

the availability of multiple clustering methods, studies have utilized hierarchical or partitioning 
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clustering techniques. Hierarchical clustering focuses on either a top-down approach (divisive 

clustering) or a bottom-down approach (agglomerative clustering) to produce a tree-like structure 

(dendrogram) that shows the relationships between clusters at different levels of granularity (Serra-

Burriel & Ames, 2021). Alternatively, partitioning clustering divides the dataset into non-overlapping 

clusters based on a predefined number of partitions (K) (Lee, 1981).  

Wolfe et al. (2019) used an agglomerative hierarchical clustering approach to establish watershed 

classifications, delineating sub-watershed boundaries based on varying hydrological attributes. The 

hierarchical clustering method provided flexibility, allowing the exploration of clusters at different 

levels of granularity through hierarchical links between each sub-watershed (Wolfe et al., 2019). 

However, the formation of hierarchical links imposed constraints on modifying cluster numbers or 

reassigning data points without reconstructing the entire hierarchy (Lee, 1981). Additionally, 

interpretation challenges arise when determining the final number of clusters, as it can be subjective 

and reliant on domain knowledge (Hastie et al., 2001). Hierarchical clustering algorithms can also be 

computationally demanding, especially in facilitating the identification of prominent patterns across 

sub-regions within the Canadian Prairie region, as they need to consider all pairwise distances 

between data points (Serra-Burriel & Ames, 2021). As a preprocessing step, a principal component 

analysis was applied to all the variables in the study to reduce dimensionality while preserving 

inherent variability (Serra-Burriel & Ames, 2021).  

In contrast, Macrae et al. (2021) utilized a K-means clustering approach to delineate broad regions 

within the Lake Erie watershed based on shared conservation practice recommendations from similar 

P loss risks. In a K-means analysis, K is the value of the user-specified number of clusters and 

clusters are formed based on the distance (e.g., Euclidean distance) from the cluster mean (centre or 

centroid) (Dinov, 2018). If the actual number of clusters is unknown or ambiguous, it poses a 

challenge for the experts to perform the analysis (Dinov, 2018). To circumvent this limitation of 

partitioning clustering, the researchers utilized a variant of K-means clustering, called Cascade K-

means, that iteratively applies the K-means algorithm at different levels of granularity (Macrae et al., 

2021). Instead of producing a dendrogram, the Cascade K-mean results in a flat set of clusters at each 

level of detail, where each cluster may contain subclusters from lower levels. Similarly, Knoben et al. 

(2018) produced a quantitative hydrological climate classification with fuzzy C-means, another 

variant of K-means clustering. Unlike the K-means approach, fuzzy C-means create clusters with 

fuzzy boundaries, allowing data points to belong to more than one cluster (Bezdek et al., 1984). This 
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nonprescriptive approach accounts for the limitations imposed by the algorithm and introduces some 

flexibility in cluster formation (Bezdek et al., 1984).  

In considering future directions, innovative clustering techniques, such as agglomerative 

hierarchical clustering of principal components and Cascade K-means, offer promising avenues for 

exploratory studies in watershed analysis (Hastie et al., 2001; McDonnell & Woods, 2004). 

Exploratory studies, conducted without predefined hypotheses, aim to uncover hidden patterns and 

relationships within complex geographic spatial data (McDonnell & Woods, 2004). On the one hand, 

hierarchical clustering produces visual dendrograms, highlighting natural groupings and hierarchical 

links within watershed datasets (Serra-Burriel & Ames, 2021). However, Cascade K-mean clustering 

enhances interpretability by efficiently handling large-scale datasets and, through iterative refinement, 

enables exploration of watershed data at various levels of detail (Serra-Burriel & Ames, 2021). 

Depending on the objectives of watershed studies, either methodological approach can be utilized to 

elucidate nuanced watershed characteristics and inform adaptive management strategies.  
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Chapter 3  

Materials and Methods 

3.1 Site Description 

The scope of the current study is the province of Ontario and encompasses all the individual 

catchments of the Laurentian Great Lakes – St. Lawrence basin, except for the Lake Superior sub-

watershed (Figure 3.1). A second, smaller study area was developed within the original study area to 

emphasize regions with active agricultural activity (Figure 3.1B). Due to the climate conditions in 

Northern Ontario, the Lake Superior sub-basin is not susceptible to P loss induced by farming 

activity. Therefore, this sub-basin was excluded as it does not adequately meet the objectives of the 

current study. The remaining Great Lakes, Lake Huron, Erie, and Ontario all have sub-basin 

boundaries that overlap with the study area (Figure 3.1). Furthermore, the Upper St. Lawrence River 

sub-basin was also included in the scope of the current study as it depicts the outflow dynamics of the 

Great Lakes draining into the Atlantic Ocean (Figure 3.1). 

Figure 3.1. Map illustrating the Great Lakes – St. Lawrence basin extent in the province of Ontario, 

excluding the Lake Superior sub-basin: (A) original study area, the full extent of the sub-basins, and 
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(B) agricultural study area, the agricultural extent of the sub-basins (Data sources: Ontario Ministry of 

Natural Resources and Forestry & ESRI) 

3.2 Data Inputs 

The selected data inputs related to P loss dynamics for the current study include physiographic 

variables that account for region-specific features split into cause and effect. Of the P loss causes, two 

main categories represent the relationship between the physiographic parameters and their 

corresponding drivers: (1) climate drivers and (2) land drivers (Figure 3.2). A list of variables for 

each of these groups was selected based on established knowledge included in the literature review 

section of this paper. The climate driver category contains a major input group related to climate 

change impacts under various emission scenarios. Some of these parameters are similar to climate 

drivers and differ in terms of the time range. P loss effects are captured through data inputs that 

highlight macronutrient factors associated with water quality from various land use and land cover 

(LULC) types throughout the region. All the data inputs were restricted or modified to align with the 

scope of this study. For instance, detailed data were consolidated into broader categories or omitted 

entirely if they were not pertinent to a large geographical study area (see section 3.3 for further 

details). In addition, specific data inputs included in the clustering analysis (section 3.3.1) were 

highlighted in Figure 3.2. All data inputs are shown in the North American Datum 1983 (NAD83) / 

Ontario MNR Lambert projection, and the World Light Gray Base layer provided by Esri was used as 

the basemap. 
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Figure 3.2. Conceptual diagram of the linkages between and groupings of different physiographic 

variables, including climate drivers, land drivers, nutrient factors, and future climate impacts. 

3.2.1 Climate Drivers 

Data inputs associated with climate drivers focus on the facets of P loss influenced by the two main 

aspects of climate conditions: precipitation and temperature (Figure 3.2). Principal precipitation 

parameters include total annual precipitation, rainfall, and snowfall (Figure 3.4). The Climate 

Normals dataset specifies total yearly precipitation as the sum of total annual rainfall and total annual 
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snowfall (LaZerte & Albers, 2018). The second group of climate driver indicators relates to 

temperature and consists of annual average temperature, annual maximum and minimum temperature, 

the number of growing degrees per day, and potential evapotranspiration (PET) (Figure 3.5). These 

values were computed using base temperatures for GDD, representing the minimum temperature 

required for plant growth in different species (AAFC, 2015). To exclude the minimum temperature 

required for bean growth, a base temperature of 10 degrees Celsius was selected (Macrae et al., 

2021). In addition, the PET for each climate station was calculated using the Thornthwaite equation 

through the R package, SPEI (Beguería & Vicente-Serrano, 2023). The Thornthwaite equation uses 

air temperature and the latitude of each station to estimate PET. As highlighted in Figure 3.2, the total 

precipitation and average temperature datasets were omitted from the cluster analysis (see section 3.3 

for additional discussion). 

 

Figure 3.3. Map showing climate stations used to derive contemporary climate driver indicators from 

1981 to 2010 within the current study area using Climate Normals (Data source: WeatherCAN). 

The climate data inputs contained Canadian Climate Normals ranging from 1981 to 2010 and were 

extracted from an R package, WeatherCAN, initially compiled by the Ministry of Environment and 

Climate Change Canada (ECCC) (LaZerte & Albers, 2018). Climate Normals encapsulate a 30-year 
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window to eliminate short-term weather variability and provide representative averages and patterns 

by highlighting long-term climatic trends within a specific region. Both precipitation and temperature 

parameters were derived from various weather stations across the original study area, and regions 

with higher station concentrations overlapped with higher urban densities (Figure 3.3). The average 

climate parameters underscore the potential influences on P loss in general. However, components of 

the totals (i.e., minimum and maximum temperatures, rainfall and snowfall) were included to capture 

seasonal variation within the study (Figures 3.4 and 3.5). 

Figure 3.4. Map of contemporary climate conditions from 1981 to 2010 showing three precipitation-

related climate driver indicators: (A) total annual precipitation, (B) total annual rainfall, and (C) total 

annual snowfall (Data source: WeatherCAN). 
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Figure 3.5. Map of contemporary climate conditions from 1981 to 2010 showing four temperature-

related climate driver indicators: (A) total average annual mean temperature, (B) growing degree 

days, (C) total average annual maximum temperature, and (D) total average annual minimum 

temperature (Data source: WeatherCAN). 

Figure 3.2 lists future climate conditions as a data input under climate drivers. While contemporary 

precipitation and temperature rates adequately capture the dynamic relationship between climate 

variables and P loss, future forecasts suggest that these dynamics are expected to change as global 

temperatures rise (IPCC, 2023). Future climate data, an ensemble of multi-model datasets from 

Coupled Model Intercomparison Project Phase 5 (CMIP5), were obtained directly from ECCC 

(2023). The dataset has been statistically downscaled to facilitate regional analysis from 1-degree 

(~116 km) grid resolution to 0.086 degrees (10 km). In addition, ECCC provides the user with two 

time periods, historical simulations spanning from 1951 to 2005 and future predictions from 2006 to 

the end of the century (2100) under three distinct emission scenarios (RCP 2.6, RCP 4.5, and RCP 

8.5). Representative concentration pathway or RCP is used by climate scientists to predict future 

climate scenarios based on greenhouse gas concentrations in the atmosphere labelled by a radio 
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forcing value (i.e., 2.6 = 2.6 W/m2) (ECCC, 2023). The IPCC uses these three emission scenarios to 

measure how greenhouse emissions are expected to impact climatic conditions (ECCC, 2023). For 

instance, RCP 2.6 is considered a low-emission scenario where global temperatures are predicted to 

remain below 2℃. In contrast, RCP 8.5, a high emission scenario, is considered a worse-case 

situation where temperatures are expected to soar past 2℃ (ECCC, 2023). The historical time range 

can be used to gain a more comprehensive understanding of how contemporary levels compare with 

future conditions and the potential influence these changes may have on P loss.  

3.2.2 Land Drivers 

The land data inputs were categorized into three main groups highlighting geophysical features that 

drive P loss: land surfaces, drainage patterns, and landscape types (Figure 3.3). The land surface 

variables describe the topographic features of the study area and include surface landforms, elevation, 

and slope (Figure 3.6). The data input for surface landforms was obtained from Soil Landscapes of 

Canada, published by Agriculture and Agri-Food Canada (AAFC) (Soil Landscapes of Canada 

Working Group, 2010). The local surface forms dataset categorizes mineral surface forms into eight 

distinct landform classes that characterize the physical surface terrain formed during the Late 

Pleistocene era (Soil Landscapes of Canada Working Group, 2010). Both elevation and slope data 

were derived from the Provincial Digital Elevation Model (PDEM), a three-dimensional model that 

extends across the entire province of Ontario at a 30-meter resolution (Figure 3.6) (Ministry of 

Natural Resources and Forestry [MNFR], 2019c). The Ministry of Natural Resources and Forestry 

(MNRF) developed PDEM using various data acquired from NASA’s Shuttle Radar Topographic 

Mission (SRTM), Ontario Radar Digital Surface Model (ORDSM) and other LiDAR measurements, 

among others (MNFR, 2019c). The slope variable was calculated from the PDEM using the slope 

function in ESRI’s ArcGIS software, which measures the percentage of change in each raster cell. 
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Figure 3.6. Map of geophysical drivers related to land surfaces, including: (A) surface landforms, (B) 

elevation, and (C) slope (Data sources: AAFC & MNRF). 

The second group of data inputs are geophysical factors related to regional drainage patterns and 

play a key role in determining P loss transport pathways (Figure 3.3). These land drivers include 

geomorphological variables, surficial geology and parent soil texture material, and hydrological 

features such as stream density, tile drainage densities, and stream discharge (Figure 3.7). The 

surficial geology dataset was compiled from the Geological Survey of Canada's (2015) surficial 

geology map collection disseminated by Natural Resources Canada (NRC). Figure 3.7 depicts the 

primary material of the unconsolidated deposits within the soil profile, ranging from surface to 

bedrock, derived from the surficial geology data input (Geological Survey of Canada, 2015). The 

parent soil texture material dataset was obtained from Soil Landscapes of Canada, the same source as 

the surface landform (Soil Landscapes of Canada Working Group, 2010). The soil texture dataset in 

Figure 3.7 classifies the parent material into 18 distinct texture classes and is compatible with the 

USDA Texture Classes (Soil Landscapes of Canada Working Group, 2010). The soil texture indicator 
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defines the soil particle size classes based on the A Horizon in the soil profile (Soil Landscapes of 

Canada Working Group, 2010). 

 

Figure 3.7. Map of geophysical drivers related to drainage patterns, including: (A) surficial geology, 

(B) parent soil texture material, (C) stream density, and (D) tile drains (Data sources: AAFC, MNFR 

& OMAFRA). 

The datasets linked to hydrological processes and responses in the region were extracted from Land 

Information Ontario (LIO; https://geohub.lio.gov.on.ca/), a geospatial hub for public and private 

sectors to access Ontario-specific geographic data (Figure 3.7). More specifically, the data required to 

calculate stream density was extracted from the Ontario Integrated Hydrology (OIH) dataset since 

these parameters are linked to hydrological responses (MNFR, 2019b). The OIH package developed 

by MNRF contains a collection of mapped hydrological features that can be used for watershed 

delineation and generating other water cycle-related parameters (MNFR, 2019b). The tile drain 

parameter was collected from the Ontario Ministry of Agriculture, Food, and Rural Affairs 

(OMAFRA). The dataset illustrates the locations of agricultural field tile drains, the type of 

installation, and the system that receives the tile drain runoff (MNRF, 2019a). For stream discharge, 
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the data was obtained from the HYDAT database established by the Water Survey of Canada (WSC), 

a Canada-wide organization responsible for standardizing water resource data across Canada (WSC, 

2021). The HYDAT database includes monthly streamflow data for stations across the study area, as 

shown in Figure 3.8. 

 

Figure 3.8. Map showing HYDAT monitoring stations collected from 2000 to 2020 within the 

agricultural study area (Data source: WSC). 

The third and final category of parameters consisted of land management factors, including LULC 

and agricultural farming systems (Figure 3.9). The Annual Crop Inventory (ACI) dataset provided by 

AAFC was used for the farming systems, which classifies the agricultural landscape into more than 

50 categories based on crop type and/or farming system (AAFC, 2018b). To represent agricultural 

production systems, the crop type classes in the ACI dataset were clustered into broader categories 

based on analogous P loss effects (Macrae et al., 2021). Lastly, the LULC data input was acquired 

from the AAFC Land Use Time Series dataset, also provided by AAFC (AAFC, 2018a). The LULC 

data input represents the surface cover of the earth and includes classes such as settlement, forest, 

water, grassland, and cropland (AAFC, 2018a). The dataset classified land cover and land use types 
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into a 30m resolution raster grid based on a meta-analysis of three decades of exceptional spatial 

datasets from 1990 to 2021 (AAFC, 2018a). 

 

Figure 3.9. Map of geophysical drivers related to land management factors, including: (A) LULC and 

(B) agricultural production systems (Data source: AAFC). 

3.2.3 Water Quality Parameters 

The datasets pertaining to water quality parameters include two macronutrients and their respective 

form, which are associated with the impact of P loss across the region (Figure 3.3). The nutrient 

factors consist of total and dissolved nutrient parameters, including SRP, TP, and nitrates (NO3-). In 

addition, turbidity was selected as the fourth parameter to indicate the presence of suspended 

sediments in the water column. The nutrient data for all four parameters were obtained from the 

Provincial (Stream) Water Quality Monitoring Network (PWQMN) dataset provided by the Ministry 

of Environment, Conservation, and Parks (MECP) (Kaltenecker, 2020). The PWQMN dataset 

consists of stream and river water quality from Ontario spanning two decades (2000 to 2020) 
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(Kaltenecker, 2020). Within the limits of the agricultural study area, there are over 200 sampling 

points, as shown in Figure 3.10. 

 

Figure 3.10. Map showing PWQMN monitoring stations collected from 2000 to 2020 within the 

agricultural study area (Data source: MECP). 

3.3 Data Analyses 

3.3.1 Clustering Analysis 

Before beginning the cluster analysis, preprocessing steps were taken to ensure all the datasets were 

uniform in resolution and extent. The agricultural study area (Figure 3.1B) was established to ensure 

that all datasets were restricted to the agriculturally productive regions of the Great Lakes-St 

Lawrence Basin (Figure 3.1A). The soil texture dataset (Figure 3.7B) was used to clip all other 

datasets to this new extent in the latest version of ArcMap 10.8. Additionally, all datasets in vector 

format were converted to raster (Figure 3.12) and, if they were not already at a 30 m spatial 

resolution, were transformed to the exact grid resolution of 30 m x 30 m in the NAD83 / Ontario 

MNR Lambert projection. More specifically, for the climate datasets, as shown in Figure 3.11, the 
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weather station shapefile was interpolated using the Simple Kriging tool in ArcMap. The output pixel 

size was determined using the inspection density equation documented in Hengl (2006). The 

inspection density equation takes into account the total area (A) and the number of points (N). The 

resulting climate raster datasets were resampled from 2370 m spatial resolution to 30 m to match the 

pixel size of the elevation dataset (included in the climate cluster analysis). 

 

Figure 3.11. The flow diagram depicts the step-by-step data analysis process for generating climate 

zones, encompassing three methodological stages: preprocessing, cluster analysis, and 

postprocessing. 

Following the preprocessing steps, the clustering analysis was performed using Google Earth 

Engine (GEE). The clustering analysis was executed separately on climate and land datasets, and the 

function was run iteratively with varying combinations of inputs to determine the level of influence 

each factor had on the overall outcome. The cascade K-means function, which selects the best K 

value (number of clusters) based on the inputs, was run several times for the climate cluster analysis 

(Figure 3.11). The selected version resulted in four distinct climate zones, and the final inputs 

included rainfall, snowfall, maximum temperature, minimum temperature, GDD, and elevation. In 

order to account for seasonal variability, this version was chosen as it eliminated the redundancy 
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associated with using averages (i.e., total precipitation and average temperatures) and opted to include 

the components of the whole (i.e., rainfall, snowfall, maximum temperature, and minimum 

temperature). Further inspection of the different clusters revealed that climate values for clusters 2 

and 3, which spanned the middle portion of the study area, were more comparable across all data 

inputs. The analysis was rerun using the same data inputs, but the K value was limited to three using 

the Weka K-means function, and the resulting cluster zones merged the former cluster zones 2 and 3 

into 1, now considered cluster zone 2 and cluster 4 is now cluster 3 (Figure 4.1). 

Similarly, the land cluster analysis was also executed iteratively, albeit with fewer systematic steps. 

In contrast to the climate datasets, most of the geophysical data were non-continuous (vector format), 

which increased fragmentation in the results. To circumvent this, some data were excluded from the 

analysis and used to support the nutrient data analysis (see subsection 3.3.2), while others were used 

to provide context for the emerging geophysical zones (see chapters 4 and 5). The categories of the 

vector inputs in the soil texture datasets were reduced from 12 classes to 5 to further reduce 

fragmentation and noise (Figure 3.13). The final inputs consist of surface landforms, elevation, slope, 

and soil texture (broadened version) (Figure 3.12). Additionally, to minimize noise in the results, the 

Weka K-means function was used, and the K-value was restricted to three clusters because higher 

values resulted in more speckle noise in the raster. 
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Figure 3.12. The flow diagram depicts the step-by-step data analysis process for generating land 

zones, encompassing three methodological stages: preprocessing, cluster analysis, and 

postprocessing. 

 

Figure 3.13. Map showing broad categories of parent soil texture material compared to the original 

classification. 

To further reduce both speckle noise and fragmentation, the cluster outputs were post-processed 

using a combination of three steps in the ArcGIS Spatial Analyst tool from the Generalization toolset. 

The climate cluster results required fewer postprocessing steps than the land cluster results, as shown 

in Figures 3.10 and 3.11. The first step filtered the cluster output using the Majority Filter tool to 

remove outliers and noise in both raster datasets. The second step uses the Boundary Clean tool to 

remove jagged polygons from both cluster results. The final step was only applied to the land zone 

results, where the cluster zones were generalized using three tools, Region Group, Set Null and 

Nibble tools, to eliminate isolated areas less than 270 km2 from the output (Figure 3.11). The 270 

km2 is smaller than the fourth level of the watershed subdivision used by the OIH package, as 

described in the previous section. 
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Finally, the climate and geophysical cluster analysis results were combined to create the merged 

zones. The intersect tool in ArcGIS was used to create the merged zones. This resulted in 12 distinct 

zones, with three geophysical zones for each of the four climate zones. The merged zone is the final 

product of the cluster analysis steps. 

3.3.2 Water Quality Data Analysis 

All the preprocessing steps for the water quality data analysis were completed in R (3.6.1). The 

PWQMN datasets included 20 merged CSV files, and all essential spatial information (i.e., latitude 

and longitude values) was attached to each PWQMN station. Additionally, further procedures were 

required to ensure that the data could be displayed in ArcGIS Pro software. The data was originally 

stored in a one-to-many relationship table to generate plots in R, meaning that one station had 

multiple parameter values. However, the data was converted to a one-to-one relationship to export the 

CSV files to ArcGIS Pro so that each unique station number occupied one row. 

3.3.3 Future Climate Data Analysis 

All the preprocessing steps for the future climate datasets were performed in ArcGIS Pro. The annual 

and seasonal data were converted from netCDF files to single raster datasets for each climate factor. 

NetCDF or Network Common Data Form files store multidimensional data, and many climate change 

datasets are typically available in this format. Each of the netCDF files included four variables: 

latitude, longitude, standard time (ranging from the year 1950 to 2100), and the climate variable (e.g., 

annual precipitation). For seasonal datasets, each standard time slice represented the average values 

across three months (e.g., Winter = December + January + February) for each year. 

First, a subset slice was extracted from each netCDF file using the Subset Multidimensional Raster 

tool in ArcGIS Pro for each time range: (1) contemporary range: 1981 to 2005, (2) future range 1: 

2040 to 2069, and (3) future range 2: 2070 to 2099. There is a discrepancy between the contemporary 

time range in the future climate dataset and the original climate normal data (1981 to 2010). Apart 

from the evident advantage of ensuring consistency in data analysis, the primary motivation factor in 

utilizing the same dataset was that the extreme climate indices (such as extreme precipitation and 

temperature days) were unavailable in the climate normal dataset. Moreover, for each climate factor, 

three emission scenarios were stored in separate netCDF files, and so they were extracted separately 
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as well. Second, the Aggregate Multidimensional Raster tool was then used to generate a single raster 

file for each climate variable and time range under each emission scenario. 

3.4 Statistical Analyses 

Similar preprocessing steps were taken before performing statistical analytical techniques on each of 

the results from the data analysis steps discussed in Section 3.3. First, the Tessellation tool was used 

to create a 100 km2 hexagon grid and clipped to extend across the agricultural study area. Then, using 

the Feature to Point tool, a representative distribution of sampling points was generated from the 

centroid of each hexagon grid. These sampling points were used to identify dominant data inputs 

within each climate and land zone result. The Select by Location tool was used for each sampling 

point to assign a climate, land and merged zone value. Then, for each climate and land data input 

listed in Figure 3.2, the Zonal Statistic tool was used to generate mean values for continuous datasets 

and majority values for categorical datasets. The same steps were taken for future climate datasets. 

In addition to assigning a specific zone code for climate and land and consolidated results to each 

water quality monitoring station, a new LULC class was developed. The water quality dataset in wide 

format was imported into ArcGIS, and the Select by Location tool was used to determine and 

designate climate zone, land zone, merged zone, and LULC values for each nutrient station. For the 

LULC, the original 13 classes were broadened to 4 categories, and the fifth category, pastures, was 

assigned using the classes from the agricultural production dataset, pasture/forages and fallows 

(Figure 3.9). A radius of 20 m was used in the Select by Location tool to avoid assigning small, 

isolated regions as the primary land type for each water quality station. Subsequently, the agricultural 

production system shapefile was used to assign the pasture class to the water quality dataset. 

Moreover, the farming system dataset was also used to assign LULC categories to ensure that the 

cropland values were accurately represented.  
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Chapter 4 

Results 

4.1 Clustering Analysis of Climate and Land Zones 

Three climate zones were identified in the analysis. These climate zones, defined by the cluster 

analysis (Figure 4.1), largely reflect latitude, with climate zone 1 (C1) being the furthest north, 

climate zone 3 (C3) being the furthest south, and climate zone 2 (C2) extending across the middle 

part of the agricultural study area. Of the three zones, C1 has the lowest area percentage and mainly 

overlaps with Lake Huron’s watershed, as well as Georgian Bay. Conversely, C2 encompasses the 

largest proportion of the research site (over 50%) and intersects with each of the principal sub-basins 

of the Great Lakes. C3 is 8.39% larger than C1 and extends over some portions of Lake Huron, 

Ontario, and all of Lake Erie watersheds. The extent of the agricultural study area falls within the 

humid continental temperate Köppen climate classification (Df). In contrast to the other two zones, 

C3 is within two Köppen climate classifications, the hot-summer (Dfa) and warm-summer (Dfb) sub-

types. Most of the zone falls within Dfb like the other two zones but extends marginally into Dfa near 

Windsor, Ontario. In addition, the study area extends within two Canadian Ecozones. All three zones 

are within the Mixedwood Plains Ecozones, but the northeastern portions of C1 and C2 extend into 

the Boreal Plains zone. 
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Figure 4.1. Map illustrating the cluster analysis results based on climate inputs produced in three 

climate zones across the agricultural extent within the study area. The percentage area coverage is 

overlaid for each zone. 

While the climate zones primarily reflected latitudinal differences, precipitation and air temperature 

patterns were analyzed to determine the climate variables responsible for the cluster patterns. 

Compared to C2 and C3, total annual precipitation is greatest in C1, with C2 having the lowest 

average overall (Figure 4.2A). Although rainfall accounts for the majority of precipitation across all 

three zones, there are distinct differences in precipitation characteristics across the three climate 

zones. The greater precipitation totals received in C1 are a result of substantially greater snowfall 

amounts (~ 300 mm, Figure 4.2A) relative to the other two zones (~150 mm, Figure 4.2A). Although 

C2 and C3 receive similar amounts of snowfall (~750 mm, Figure 4.2B), C3 receives more rainfall 

(~800 mm, Figure 4.2B) than either C2 or C1. Overall, rainfall proportions increase from C1 to C3 

(with the most rainfall at the southern location, closest to the southern Great Lakes), while snowfall 

contributions are greatest in the northernmost class (C1), which is adjacent to Lake Huron and 

Georgian Bay, and decrease from C1 to C3.  
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As shown in Figure 4.2B, all three temperature dataset results increase in the same direction as 

rainfall, where C1 is the coolest and C3 is the warmest. C1 has the lowest annual average growing 

degree units (GDU), which is equivalent to the lowest maximum and minimum temperatures. 

Furthermore, C2 is approximately 2 degrees warmer and 150 GDU higher than C1. Finally, in every 

dataset, the distance between C3 and C2 is greater than between C2 and C1. As a result, the 

maximum and minimum temperatures of C3 are substantially higher than those of C1, and the GDU 

average exhibits a comparable pattern. 

 

Figure 4.2. Boxplot comparisons between annual averages of 30-year climate normal variables for 

the three climate zones from 1981-2010: (A) precipitation plot, which includes total precipitation 

(mm), total rainfall (mm), and total snowfall (cm), and (B) temperature plot, which includes growing 

degree days (GDU), maximum temperature (°C), and minimum temperature (°C). 

Figure 4.3A illustrates that all climate zones maintain a moisture surplus (precipitation – potential 

evapotranspiration) for the majority of the year except in the summer months of June, July, and 

August, when there is a moisture deficit. The moisture deficit is especially apparent at C3, the most 

southern climate class and least apparent at C1 (the northernmost group). Streamflow patterns reflect 

the moisture surplus and deficit patterns, with the smallest streamflow amounts in the summer 

months. It is noteworthy that the northernmost region experiences a moisture surplus throughout the 
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winter months but experiences streamflow peaks in April when stream discharge is significantly 

higher than at any other time of year across all climate zones. In contrast, C2 and C3 have less 

seasonality in their atmospheric moisture budgets (Figure 4.3A). Similar to C1, C2 experiences higher 

peak flow in spring (April), whereas C3 experiences greater flow throughout the winter months and 

does not exhibit the same peak flow in springtime. 

 

Figure 4.3. Boxplot comparisons between monthly averages of 20-year ranges for the three climate 

zones: (A) climate balance plot, based on climate normal data from Figure 4.2, and (B) normalized 

stream discharge plot, based on monthly average flow relative to the median from HYDAT datasets 

ranging from 2000 to 2022. 

In contrast to the cluster analysis results for climate variables, the clustering of land zones (n = 

three) exhibits a greater degree of fragmentation, with several isolated regions within each zone 

across the study area (Figure 4.4). Furthermore, the areas of the three land zones are more similar in 

size compared to climate zones. Land zone A (LA), the most expansive of the three zones 

(encompassing over 40 percent of the total area), extends latitudinally to the two farthest points 

within the agricultural study area. The LA area shares boundaries with most of Lake Erie, a portion of 

the St. Lawrence River, and the coastline of the Lake Huron watershed. On the other hand, land zone 
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B (LB) has the smallest percentage area. The central portion of the LB zone extends from the 

Haliburton Highlands to the Ottawa Valley. Other isolated regions that fall within the LB class 

include the Norfolk sand plain (Western edge of Lake Ontario) and the Bruce Peninsula (between 

Lake Huron and Georgian Bay). There are also small pockets in areas surrounding the Sault Ste. 

Marie Island and Lake Nipissing in northern Ontario. Lastly, land zone C (LC) covers a substantial 

region in the middle of the Southwestern part of Ontario, extending across most of the Lake Huron 

watershed but outside of the areas immediately adjacent to the lake. In addition to encompassing 

areas north of LB’s central region, the LC zone borders Haldimand County. 

 

Figure 4.4. Map illustrating cluster analysis results based on geophysical inputs produced in three 

land zones across the agricultural extent within the study area. The percentage area coverage is 

overlaid for each zone.  

Land surfaces in the three land zones are distinctly differentiated by means of surface landforms, 

slope, and elevation. Figure 4.5 illustrates that increases in surface variability coincide with increases 

in surface steepness and higher elevations. As depicted in Figure 4.5A, there is a concurrent increase 

in both elevation and slope from LA to LC. Specifically, the vertical distance separating LC from the 
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remaining zones surpasses that of the slope. Similarly, Figure 4.5B follows the pattern where surface 

variability increases from LA to LC as the dominant landform shifts from undulating and level 

surfaces to hummocky and rolling surfaces. These findings indicate that LA is flat and low-lying with 

non-variable surfaces, while LC is a steep upland with variable surfaces. Compared to LA, LB is a 

steeper transition zone at higher elevations, with a mix of non-variable and variable surfaces (i.e. 

intermediate between LA and LC). 

 

Figure 4.5. Comparison of land surfaces across three land zones: (A) topography plot, boxplot 

comparison of mean elevation (m) and mean slope (degrees), and (B) surface landform plot, bar chart 

including four landform classes. 

A combination of findings linked to geological processes and hydrological variables aid in 

understanding dominant drainage patterns across land zones. For geological processes, Figure 4.6A 

shows the surficial geology related to the soil texture in each land zone depicted in Figure 4.6B. LA is 

dominated by fine soils, mainly sourced from similar portions of till and littoral sediments and some 

alluvial deposits. On the other hand, both LB and LC have high proportions of coarse-textured soils 
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derived from till material, some littoral deposits, and exposed bedrock. However, LB exhibits a 

higher percentage of rock fragments within the coarse soils, while LC primarily comprises soils with 

medium and fine textures. Stream density remains relatively constant within the land zones with 

minor variations (Figure 4.6C). LC has a slightly higher stream density than LB, while LA has the 

lowest density. Tile drainage densities throughout the study area are consistent with findings shown in 

Figures 4.5 and 4.6 A and B (Figure 4.5C). Higher tile drainage usage is found in LA because the 

land surface and geological processes suggest poor drainage patterns and a higher water table. In 

contrast, LB is characterized by well-drained soils and steep, sloping, variable surfaces, which are 

different from LA; this corresponds to the zone’s lower tile drainage installations. Finally, LC has the 

highest slopes and elevations compared to LB but has a greater portion of medium and fine-textured 

soils, which indicates poorer drainage patterns and results in a higher tile drainage density than LB 

but a lower one than LA. 

Figure 4.6. Comparison of drainage patterns across three land zones: (A) surficial geology plot, bar 
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chart including five broad geology classes, (B) soil texture plot, bar chart including five broad soil 

classes, and (C) hydrology plot, boxplot comparison of stream density (m2) and tile drainage density 

(%). 

The dominant LULC types, shown in Table 4.1, highlight the broad categories across the land 

zones. However, the farming production systems, illustrated in Table 4.2, are a subset of two LULC 

types—pastures and croplands— precisely the broad farming system types practiced within 

croplands. Croplands predominate in LA, with grains and oilseeds constituting the principal 

production systems, respectively. This provides additional justification for this zone’s high tile 

drainage installation (Figure 4.6C) to prevent field waterlogging risks. Conversely, LB has a higher 

proportion of natural areas and slightly more pastures than croplands. Once more, this aligns with the 

results presented in Figure 4.6C, which indicate that the average tile drainage usage is close to 0%. 

Grains and oilseeds equally dominate the farming systems in LB, but since there are more pastures 

than croplands in this zone, pastures are shown to occupy a greater area of the land. Lastly, LC has a 

mixture of croplands, pastures, and natural regions, with the latter comprising a greater extent than 

the rest. LC exhibits a comparable pattern to LA, wherein oilseeds and grains are the prevailing crop 

types. However, unlike LA, LC comprises a greater proportion of pastures, surpassing the area 

occupied by grain systems. These findings also match tile drain densities where LC has a higher 

density and more cropland than LB but smaller proportions than LA. 

Table 4.1. Comparison of proportions of LULC types (%) across three land zones, including four 

broad LULC classes. 

Land Zones Cropland (%) Pasture (%) Urban (%) Natural (%) 

A 45.44 11.84 21.75 20.97 

B 10.20 20.39 12.17 57.24 

C 21.93 18.80 9.14 50.13 

 

Table 4.2. Comparison of proportions of farming production system types (%) across three land 

zones. Four of the farming production systems are sub-classes of the cropland LULC type shown in 

Table 4.1, where the sub-classes add up to 100 percent of the croplands within Table 4.1. The pasture 

class is equivalent to the proportions of pastures shown in Table 4.1 but is demonstrated in 

comparison with other farming production system types in this Table. 
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Land Zones 
Cropland (Sub-Types) 

Grain (%) Oilseed (%) Pulse (%) Pasture (%) 

A 42.14 35.36 0.71 21.79 

B 16.31 16.30 0.00 67.39 

C 29.41 21.57 1.96 47.06 

 

4.1.1 Analysis of Merged Zones 

The combination of climate and land zones yields merged zones that illustrate the extent of overlap 

between the two across the agricultural study area, with a specific focus on the three land zones 

contained within each climate zone. Hence, Figure 4.7 depicts that land zones occupy varying 

percentages within the three climate zones. The combined coverage of LA and LB (9.48%) in C1 is 

nearly equivalent to that of LC (10.41%). In contrast, the percentage areas of all three land zones 

within C2 are comparable. Among the climate zones, C3 has the highest variation between the land 

zones, where LA (21.92%) is five times the size of LB (4.08%) and nine times the size of LC 

(2.28%).
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Figure 4.7. Map illustrating the intersection between the climate and land zones resulted in 9 distinct 

zones grouped by climate zones across the agricultural extent within the study area. 

The findings in Figure 4.8 are identical to the stream discharge data presented in Figure 4.3B, 

except this plot separates the climate zones by land zones for each month. With minimal variations, 

the land zones in climate zones C2 and C3 adhere to an equivalent overall annual discharge pattern. 

For instance, while LA and LC consistently exceed LB most of the year, C3 peaks earlier than C2. 

Conversely, in C1, the land zones deviate from the pattern. In particular, C1-B deviates from the 

general seasonal pattern by reaching its maximum in July, as opposed to April, during the spring. 

Furthermore, LA and LB mainly drive the peaks observed in C1. Both land zones are consistently 

higher than LC most of the year. In addition, LB experiences a substantially greater discharge during 

the winter months than the other two zones. 
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Figure 4.8. Stream discharge boxplot comparisons between monthly averages of 20-year ranges for 

the nine merged zones grouped by climate zones based on monthly averages from HYDAT datasets 

ranging from 2000 to 2022. 

Figure 4.9A provides insight into the timing of annual flow. The greatest flow occurs in April 

across all zones, which coincides with snowmelt and the onset of the growing season. The degree of 

variability between land zones is greater in climate zones C1 and C2 than in C3. Overall, Figure 4.9B 

shows that both the growing and non-growing seasons contribute relatively equally to the average 

streamflow across all nine zones. However, the non-growing season provides more flow in the 

northern zones and zones LB and LC than in LA. 

 

Figure 4.9. Stream discharge comparisons between growing and non-growing seasons for the nine 

merged zones based on HYDAT datasets, which range from 2000 to 2022: (A) Normalized Monthly 

Flow plot, bar chart of annual, monthly average flow relative to the median, and (B) Percentage of 

Flow Per Season, bar chart of the percentage of stream discharge per growing/non-growing season. 

Figure 4.10 displays the same dataset found in Table 4.1; however, the proportions of LULC types 

were split between climate zones within each land zone. Similar to the findings shown in Table 4.1, 
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LA has the highest proportion of croplands and the lowest number of natural landscapes, while LB 

has the opposite proportions of LULC types. On the other hand, LC has similar proportions of 

croplands and natural landscapes. Figure 4.10 illustrates that croplands, pastures, and urban regions 

across all land zones increase while natural landscapes decrease from C1 to C3. These patterns are 

especially apparent in the differences between natural land and croplands. For instance, C3-C 

accounts for 60 percent of croplands while C1-C is less than 20 percent, but, on the other hand, C3-C 

only accounts for 10 percent of natural landscapes while C1-C is more than 50 percent. In addition, 

C1-A has similar proportions of croplands and natural landscapes, but C3-A accounts for more than 

60 percent of croplands and less than 10 percent of natural land. 

 

Figure 4.10. Comparison of proportion of land cover – land use (LULC) types across climate zones 

within each land zone. 
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4.2 Differences in Water Quality Parameters Across Clustered Zones 

Figure 4.11 highlights the sources of both SRP and TP within broad LULC types across climate and 

land zones. Across both plots, sources of P within climate zones are increasing from C1 to C3, which 

matches the direction of temperature rise, growing degree day increase and transition to rainfall-

dominance. Furthermore, C3, the warmest, rainfall-dominant zone, has consistently elevated P 

concentrations irrespective of LULC type and across land zones. More specifically, croplands in C3 

exhibit the highest P levels across all land zones. The highest P source among all LULC varieties is 

located in LA, a flat, low-lying region with non-variable surfaces, which overlaps with high tile 

drainage installations within C3. With the exception of croplands for both plots, LB has the lowest P 

levels among the three land zones across all LULC types. 
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Figure 4.11. Boxplot comparisons between fractions of P nutrients within all nine zones grouped by 

land zones across landscape types: (A) SRP plot and (B) TP plot. 

Figures 4.12 and 4.13 illustrate the spatial distribution of the data presented in Figure 4.11, 

explicitly highlighting the locations of all PWQMN monitoring stations within the agricultural study 

area and the stations with elevated nutrient concentrations. Figures 4.12A and 4.13B demonstrate that 

the stations above the acceptable limits for streams with Ontario are concentrated across the 

southwestern portion of the study area. The presence of SRP and TP elevated stations (i.e., above 0.03 

mg/L for SRP and 0.1 mg/L for TP) is greatest in the LA and LC zones, especially when they overlap 

with climate zones C2 and C3. Even though LB has the smallest occurrence of elevated SRP and TP 

stations, the few stations in this zone overlap with C3 and border zones C3-A and C3-C.  

 

Figure 4.12. Spatial distribution of PWQMN monitoring stations showing SRP concentrations across 

the agricultural study area. Map A includes all PWQMN stations with SRP values within the study 
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area, while maps B, C and D include PWQMN stations within each land zone with SRP values above 

0.03 mg/L across the three climate zones. 

 

Figure 4.13. Spatial distribution of PWQMN monitoring stations showing TP concentrations across 

the agricultural study area. Map A includes all PWQMN stations with TP values within the study 

area, while maps B, C and D include PWQMN stations within each land zone with TP values above 

0.1 mg/L across the three climate zones. 

With the exception of climate zones C3-C, all plots in Figure 4.14 illustrate a positive linear 

relationship between stream discharge and P loads across all land and climate zones, which is to be 

expected. Figure 4.14B demonstrates a robust positive correlation between TP and discharge, where 

R2adj exceeds 0.7 for almost all climate and land zones. In contrast, relationships between SRP and 

flow were weaker (Figure 4.14A). 
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Figure 4.14. Logarithmic transformed (log10) scatterplot comparisons between stream discharge of P 

loads within all nine zones grouped by land zones: (A) Stream Discharge Load of SRP plot and (B) 

Stream Discharge Load of TP plot. 

Figure 4.15 captures the seasonal variability in SRP and TP concentrations across all land zones 

within each climate zone. Across all climate zones, LA and LC have higher SRP and TP 

concentrations than LB and P concentrations, which generally increase from C1 to C3. There are 

notable seasonal differences. For example, P concentrations are smallest in winter in C1 but greatest 

in winter in C3. Differences across the other seasons are less apparent.  
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Figure 4.15. Boxplot comparisons between fractions of P nutrients within all nine zones grouped by 

climate zones across seasons (i.e., Winter (Dec-Jan-Feb), Spring (Mar-Apr-May), Summer (Jun-Jul-

Aug), and Fall (Sep-Oct-Nov)): (A) SRP plot and (B) TP plot. 

Figure 4.16 follows a similar pattern to Figure 4.11, where C3 is a consistent source of a substantial 

amount of nitrate and suspended sediment (i.e., turbidity), and this is apparent in both LA and LC but 

is less evident in LB. Although fewer stations collect turbidity observations, Figure 4.16B shows that 

suspended sediment is elevated in LA in C3, irrespective of land use, but this is not observed in C1 or 

C2. There is less data for zones B and C, but no clear patterns are observed.  
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Figure 4.16. Boxplot comparisons between supporting nutrient factors within all nine zones grouped 

by land zones across landscape types: (A) Nitrate (NO3) plot and (B) Turbidity plot. 

Similar to Figures 4.12 and 4.13, Figures 4.17 and 4.18 illustrate the spatial distribution of the data 

presented in Figure 4.16, explicitly highlighting the locations of all PWQMN monitoring stations 

within the agricultural study area and highlighting elevated stations. Analogously, Figures 4.17A and 

4.18B demonstrate that the stations above the acceptable limits for streams with Ontario are 

concentrated across the southwestern portion of the study area. Compared to the abundance of SRP 

and TP elevated stations, elevated nitrate locations (i.e., above 10 mg/L) only exist in limited numbers 

within LA and LC. On the other hand, in Figure 4.18, turbidity hotspots (i.e., 10% above natural 

levels, which is 10 NTU) are found in high quantities across all land zones. Both nitrate and turbidity 

hotspots within LA and LC overlap with C3 and C2. 
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Figure 4.17. Spatial distribution of PWQMN monitoring stations showing NO3 concentrations across 

the agricultural study area. Map A includes all PWQMN stations with NO3 values within the study 

area, while maps B, C and D include PWQMN stations within each land zone with NO3 values above 

10 mg/L across the three climate zones. 
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Figure 4.18. Spatial distribution of PWQMN monitoring stations showing turbidity levels across the 

agricultural study area. Map A includes all PWQMN stations with turbidity values within the study 

area, while maps B, C and D include PWQMN stations within each land zone with turbidity values 

above 10 NTU across the three climate zones. 

Similar to Figure 4.14, all plots in Figure 4.19 illustrate a positive linear relationship between 

stream discharge and nitrate loads, except for C3-C. As shown in Figure 4.19, the climate zones have 

different slopes and R2adj across land zones. For instance, in LA, all the climate zones are strongly 

correlated, but in LB, the correlation is weak across climate zones. Moreover, climate zones in LA 

share similar slope values, but these values vary in LB. 
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Figure 4.19. Logarithmic transformed (log10) scatterplot comparisons between stream discharge of 

NO3 loads within all nine zones grouped by land zones. 

Similar to the findings shown in Figure 4.17, Figure 4.20 captures the seasonal variability in nitrate 

concentrations and suspended sediment prevalence across all land zones within each climate zone. 

Across all climate zones, LA and LC have higher levels of nitrates and turbidity than LB, and 

concentrations increase from C1 to C3. Similar to Figure 4.15, nitrates and turbidity concentrations 

are elevated within C3-A and C3-C but follow different seasonal patterns. Analogously, C3-A 

remains elevated year-round, while in C3-C, nitrates peak in winter, and turbidity is highest in fall. 
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Figure 4.20. Boxplot comparisons between supporting nutrient factors within all nine zones grouped 

by climate zones across seasons (i.e., Winter (Dec-Jan-Feb), Spring (Mar-Apr-May), Summer (Jun-

Jul-Aug), and Fall (Sep-Oct-Nov)): (A) Nitrate (NO3) plot and (B) Turbidity plot. 

4.3 Shifts in Climatic Variables Within the Clustered Climate and Land Zones 

Under a Changing Climate 

In Figure 4.21, precipitation levels in both future time ranges are higher than in the contemporary 

range. However, the disparity between the two future ranges widens as one progresses from low to 

high emission scenarios. Furthermore, in the high emission scenario (RCP 8.5), the zone with the 

lowest contemporary precipitation rates (C2) will have higher future rates than the average rates of 

C1’s contemporary rates. Additionally, while every zone experiences an equal impact, future 

precipitation levels are anticipated to increase drastically in C1 (by at least 50 mm/year), which 

already receives the most precipitation under contemporary conditions, and precipitation in C2 and 
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C3 has the potential to increase to what C1 currently received under RCP 8.5. The increases in 

precipitation appear to be predominantly in winter and, to a lesser extent, in spring and fall, but no 

changes will be observed in summer rainfall totals (Figure 4.22). The spatial patterns across the 

different climate zones are not projected to change. These patterns are also highlighted in Figure 4.23. 

 

Figure 4.21. Boxplot comparisons of average annual precipitation within climate zones across three 

time periods, including the contemporary period ranging from 1981 to 2006 and two future time 

ranges, and three emission scenarios. 
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Figure 4.22. Boxplot comparisons of seasonal precipitation within climate zones across three time 

periods, including the contemporary period ranging from 1981 to 2006 and two future time ranges, 

and three emission scenarios. 

The spatial precipitation pattern shown in Figure 4.23A is consistent with Figure 4.21, where the 

highest precipitation rates occur in C1 near Owen Sound, Ontario. Future emission scenarios predict 

that the average precipitation rates in this area will spread southwards along the Lake Huron coastline 

towards Lake Erie. More specifically, the 1100 mm contour polygon will spread from C1 to C3 even 

under the low-emission scenario. This finding once more aligns with Figure 4.21, which indicates that 

C3 will be most substantially affected by higher emission scenarios during the later time period. An 

additional area that will experience a heightened precipitation rate is along the Ontario-Quebec border 

in the east (C2). The impact rate mirrors the western portion of the agricultural extent, where C2-A 

and C3-C will account for similar precipitation rates in the future. 
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Figure 4.23. Map illustrating the spatial extent of average annual precipitation levels within three 

different climate emission scenarios and three-time period ranges across the agricultural extent within 

climate zones: (A) Contemporary conditions, (B) Low emission scenario (RCP 2.6), (C) Intermediate 

emission scenario (RCP 4.5), and (D) High emission scenario (RCP 8.5). 

As observed for precipitation, annual maximum temperatures are also projected to increase across 

all climate zones (Figure 4.24). Maximum temperatures, which are currently lowest in C1, will be as 

warm as C3 under all emission scenarios, whereas C2 and C3 will observe considerably warmer 

maximum temperatures than are currently experienced in Ontario. The maximum emission scenario 

yields the most dramatic results, with substantially warmer maximum temperatures by the end of the 

century (Figure 4.24). In contrast, seasonal patterns in maximum air temperature (Figure 4.25) are not 

anticipated to change in the same way that precipitation will (Figure 4.23). Where precipitation 

increases primarily occur during the winter and shoulder seasons, air temperatures will increase 

across all seasons. Notably, where mean maximum temperatures in winter are below the freezing 

mark in zones C1 and C2, mean maximum temperatures in winter will be at the freezing mark in 

these zones under the low and intermediate scenarios and above the freezing mark in the high 

emission scenario. 
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Figure 4.24. Boxplot comparisons of average annual maximum temperature within climate zones 

across three time periods, including the contemporary period ranging from 1981 to 2006 and two 

future time ranges, and three emission scenarios. 
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Figure 4.25. Boxplot comparisons of seasonal maximum temperature within climate zones across 

three time periods, including the contemporary period ranging from 1981 to 2006 and two future time 

ranges, and three emission scenarios. 

Figure 4.26 demonstrates the latitude-driven nature of temperature rates within the region. C3, 

which covers most of the Lake Erie watershed and has the lowest latitude, accounts for the highest 

maximum temperature. Across all future scenarios, all climate zones are expected to have an average 

annual maximum temperature increase of approximately 2 degrees (shift from 12-14 to 14-16 class). 

Moreover, when considering different emission scenarios and time periods, it is observed that the 

maximum temperature rises from the south-westernmost point in Windsor, Ontario, to the north-

easternmost point in Temiskaming Shores, Ontario. C3 is expected to be impacted the most when 

maximum temperatures shift from around 12-14 degrees to 18- 20 degrees under the high emission 

scenario during the latter time period. Although this increase is consistent latitudinally, the region 

with the highest precipitation rates in C1 (Figure 4.21) has a lower maximum temperature than other 

regions at comparable latitudes. In addition, this region overlaps with findings shown in Figure 4.5, 

where LC is a steep upland with variable surfaces. 
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Figure 4.26. Map illustrating the spatial extent of average annual maximum temperature levels within 

three different climate emission scenarios and three-time period ranges across the agricultural extent 

within climate zones: (A) Contemporary conditions, (B) Low emission scenario (RCP 2.6), (C) 

Intermediate emission scenario (RCP 4.5), and (D) High emission scenario (RCP 8.5). 

Annual minimum air temperatures are also anticipated to increase under all climate change 

scenarios (Figure 4.27). Additionally, the gap in future minimum temperatures between contemporary 

averages and time periods widens with the increase in emission scenarios. This is especially apparent 

under the high emission scenario where no region within the study area will be at or below 0 degrees. 

As was observed for annual maximum temperatures, annual minimum temperatures will increase 

across all seasons (Figure 4.28). Notably, minimum winter temperatures will approach the freezing 

mark and be considerably warmer in summer.  

 

Figure 4.27. Boxplot comparisons of average annual minimum temperature within climate zones 

across three time periods, including the contemporary period ranging from 1981 to 2006 and two 

future time ranges, and three emission scenarios. 
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Figure 4.28. Boxplot comparisons of seasonal minimum temperature within climate zones across 

three time periods, including the contemporary period ranging from 1981 to 2006 and two future time 

ranges, and three emission scenarios. 

Figure 4.29 and Figure 4.26 illustrate similar spatial patterns across the agricultural extent of the 

study area. Both plots demonstrate a latitude-driven increase from southwest to northeast. In 

particular, the freeze line is only present under contemporary, low-emission, and intermediate-

emission conditions in C1. However, for the latter, the freeze line disappears from 2070-to-2099 

under the high-emission scenario, which spans both periods. Once more, the LC bull’s eye remains 

unaffected by latitudinal changes and has a lower average annual minimum temperature than the 

surrounding region. In Figures 4.29C and D, regions with the lowest maximum temperature have a 

similar minimum temperature rate under these higher future emission conditions. This spatial pattern 

is especially evident in Figure 4.29D(2), where the 6-to-8-degree range covers the same area under 

contemporary regions that experience a maximum temperature range of 8-to-12 degrees. 
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Figure 4.29. Map illustrating the spatial extent of average annual minimum temperature levels within 

three different climate emission scenarios and three-time period ranges across the agricultural extent 

within climate zones: (A) Contemporary conditions, (B) Low emission scenario (RCP 2.6), (C) 

Intermediate emission scenario (RCP 4.5), and (D) High emission scenario (RCP 8.5). 

Figures 4.30, 4.31, and 4.32 include findings from three extreme climate indices; one is related to 

precipitation rates, while the other two are linked to temperature levels. In contrast to Figures 4.31 

and 4.32, Figure 4.30 does not indicate an increased frequency of days with precipitation exceeding 1 

mm will occur in climate zones across all emission scenarios. Nevertheless, the number of days will 

rise with time periods, and this remains consistent with findings in Figures 4.21 and 4.2, where C1 

represents the highest precipitation levels. On the other hand, Figures 4.31 and 4.32 demonstrate 

similar temporal patterns to those depicted in Figures 4.24 and 4.27. As the emission scenarios 

intensify, there is a concurrent increase in the growing days and the number of days with temperatures 

surpassing 30ºC. In addition, Figure 4.30 also illustrates a substantial surge in the number of days 

spanning from climate zone C1 to C3, despite contemporary conditions remaining consistent between 

climate zones. Even though all climate zones experience change, C3 is particularly affected, with the 

number of days increasing from a contemporary average below 20 days annually to more than 80 

days during the period 2070-to-2099. 
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Figure 4.30. Boxplot comparisons of extreme climate index, average number of days with more than 

1mm of precipitation within climate zones across three time periods, including the contemporary 

period ranging from 1981 to 2006 and two future time ranges, and three emission scenarios. 
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Figure 4.31. Boxplot comparisons of extreme climate index, average growing degree days above 

10ºC within climate zones across three time periods, including the contemporary period ranging from 

1981 to 2006 and two future time ranges, and three emission scenarios. 
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Figure 4.32. Boxplot comparisons of extreme climate index, average number of days above 30ºC 

within climate zones across three time periods, including the contemporary period ranging from 1981 

to 2006 and two future time ranges, and three emission scenarios. 
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Chapter 5 

Discussion 

The Lower Great Lakes region features distinct ecoregions with diverse spatiotemporal variables, 

encompassing variations in climatic conditions, such as precipitation patterns and temperature 

fluctuations, as well as geophysical characteristics like soil texture and landforms. This dynamic 

interplay can potentially influence water quality across the region differently. Additional factors, 

including land use practices and streamflow patterns, contribute to the intricate dynamics shaping the 

aquatic ecosystems. Recognizing and understanding these complexities is essential for preserving 

water quality and devising effective water management strategies in the Lower Great Lakes region. 

5.1 Characterizing Diverse Ecoregions Through Spatiotemporal Differences 

The Lower Great Lakes region comprises three distinct climate ecoregions labelled C1, C2, and C3, 

moving from north to south, each characterized by unique climatic conditions. These climate 

differences lead to differences in seasonal streamflow patterns. Moving from north to south, from C1 

to C3, there is a notable transition in precipitation dominance, shifting from snowfall to rainfall. This 

shift correlates with increasing temperatures and longer GDDs. For instance, ecoregion C1, situated 

in the northernmost region, encompasses areas such as the Lake Huron snowbelt and the Bruce 

Peninsula, experiencing substantial snowfall accumulation during winter months (Burnett et al., 

2003). Consequently, peak streamflow, driven by snowmelt, occurs in spring (April), with discharge 

rates reaching four times above the median. In contrast, in the more southern region, C3, stream 

discharge remains elevated throughout multiple cool months (December to March), indicative of 

rainfall-induced streamflow and intermittent snowmelt. The intermittent snow cover and higher 

temperatures foster prevalent freeze-thaw patterns within this ecoregion (Reid et al., 2018; Plach et 

al., 2019). Furthermore, an intersection exists between the identified climate ecoregions and Canada's 

NRC plant hardiness zones. For instance, zones 7a, 6b, and 6a align with ecoregion C3, while zones 

5b and 5a encompass both ecoregions C2 and C1 (NRC, 2014). However, unlike the plant hardiness 

zones, the climate ecoregions outlined in this study provide a more direct reflection of the lake-effect 

impact and effectively distinguish between C1's predominant snowfall and the climatic conditions 

prevalent in the other two zones. 



 

 77 

The Lower Great Lakes region encompasses three distinct landscape-based ecoregions labelled LA, 

LB, and LC, each characterized by varying geophysical features influencing agricultural suitability. 

Land suitability analysis relies on factors such as soil type and depth, slope, and elevation to assess 

suitability and potential environmental impacts, such as hydrological connectivity (Akpoti et al., 

2019). Moving from LA to LC, there is an increase in slope, elevation, and surface variability. Soil 

texture dominance transitions from fine to coarse-textured soils, with LB exhibiting a higher 

proportion of skeletal soils, including rock fragments. As LA features flat, low-lying surfaces, it 

boasts the highest percentage of croplands among the ecoregions. However, fine-textured soils, 

particularly those derived from littoral deposits, render fields susceptible to waterlogging, prompting 

a higher proportion of tile drainage installations in this region. In contrast, LC exhibits steep, upland 

terrain dominated by natural landscapes, typically less conducive to agricultural activity. Despite this, 

croplands cover over 20 percent of the region, correlating with higher tile drainage densities in those 

particular areas. Indeed, although LC features well-drained soils, areas with tile drainage installations 

often coincide with undulating surfaces and moderately fine-textured soils. The proximity to LA may 

contribute to the elevated tile drainage density in LC, highlighting the influence of neighbouring 

ecoregions on agricultural practices (Akpoti et al., 2019). Conversely, LB has the lowest proportion 

of croplands, reflected in its lower tile drainage density. The presence of rocks, stones, and pebbles in 

LB’s soil matrix renders it less suitable for commercial agriculture, posing challenges for tilling, 

planting, and harvesting (Hofmann et al., 2005). 

Both climate and geophysical variables exert distinct influences on the Lower Great Lakes region, 

contributing to the dynamic interplay that differentially shapes the mode and timing of stream 

discharge (Plach et al., 2019; Macrae et al., 2019), as well as land uses within the area which also 

impact streamflow, mainly as a result of tile drainage. Climate ecoregions are pivotal in determining 

streamflow timing, with variations observed within each region. LC stands out for the prevalence of 

peak flow conditions during this period, driven primarily by surface runoff due to its steep slopes and 

variable surfaces (e.g. Van Esbroeck et al., 2017). In warmer regions (C3), streamflow remains more 

consistent across the winter months as rainfall-induced runoff swiftly reaches waterways, and there is 

more tile drainage to facilitate water transfer. Responses are rapid to rainfall events or episodic 

snowmelt events in winter, and single snowmelt peaks within a season are uncommon (Plach et al., 

2019). Although streamflow is lower throughout the growing seasons across all regions, this is the 

least apparent in the LA zone, especially in region C3-A, possibly due to the large density of tile 
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drainage in these zones. This intricate interaction between climatic conditions and geophysical 

features underscores the region’s complexity of stream discharge dynamics.  

The collective impact of climate and geophysical variables significantly influences the distribution 

of land uses throughout the region and their suitability for agriculture (Figure 5.1). Croplands, 

pastures and urban areas all increase, and the natural regions decrease from C1 to C3 (north to south). 

However, some notable observations can be made. Aside from urban centres in C3-A, agricultural 

cropland predominates and expansive natural areas are absent. There is also very little pasture or 

forages, and cropped systems predominate. This reflects the longer GDDs and favourable geophysical 

conditions conducive to agriculture (Akpoti et al., 2019). Although examples of LA can be found in 

C2 and C1, these have a higher proportion of pasture in addition to cropped land within these climate 

zones, possibly owing to their reduced GDDs, particularly in C1. In contrast, LB, primarily situated 

within climate ecoregion C2, faces challenges for agricultural activity despite its warm conditions due 

to specific geophysical characteristics that act as barriers (Hofmann et al., 2005). This landscape zone 

tends to be dominated by natural or urban landscapes. Agricultural activity within LB is mainly 

concentrated in C3-B, the warmest region, but this is very small. Finally, LC spans all three climate 

ecoregions, but C3-C exhibits the highest agricultural activity, which overlaps with the warmest 

region. In contrast, LC in zones C1 and C2 is largely natural land cover. The agriculture in this zone 

has increasingly more pasture relative to crops in C1 than C2.  
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Figure 5.1. The synthesis figure combines both maps from Figures 4.7 and 3.9 to illustrate the 

overlap of (A) merged ecoregion results and land management factors, (B) LULC types, and (C) 

agricultural production systems. 

5.2 Impact of Ecoregional Disparities on Water Quality Variations 

The preceding section has highlighted the diversity among ecoregions, emphasizing their distinct 

impacts on water quality. These variations contribute to differing risks of nutrient loss, influenced not 

only by factors affecting nutrient supply and mode of transport but also by the timing of nutrient 

delivery to adjacent streams. Furthermore, these insights provide an opportunity to categorize 

ecoregions into source-limited or transport-limited regions, enabling a more nuanced understanding 

of nutrient dynamics. Peaks in nutrient concentration are expected to coincide with areas supporting 

agricultural activities, particularly those with longer growing seasons and flatter landscapes.  

Ecoregions exhibit notable variability in nutrient supply, with concentrations of SRP, TP, and NO3 

increasing from cooler (C1) to warmer (C3) regions, and this is mainly consistent across land uses. 

This pattern is particularly evident in areas characterized by intensive agricultural activities, such as 

LA and LC (in the warmer C3 region). Ecoregion C3 stands out for its extended growing season and 

hosts the largest proportion of LA, with over 70 percent of the area comprising croplands and 

pastures. Numerous studies have established a clear link between water quality degradation and land-

use type, corroborating technical documents that classify land use as a primary environmental stressor 

in the Great Lakes basin (State of the Great Lakes, 2022; Tang et al., 2011; Eimers et al., 2020; Ayele 

et al., 2023). As a result, ecoregion C3-A consistently exhibits the highest density of elevated sites for 

SRP and TP, particularly within croplands and pastures. Although elevated sites can also be found in 

ecoregion C3-C, this was not observed in other classified zones. Although P is elevated in LA in the 

other climate zones (C1, C2) relative to LB or LC in those zones, the contrast with C3-A is stark. 

Nitrate shows a slightly different pattern. It is highly elevated in the cropped and pastured landscapes 

in C3 (LA and LC) but not in other land uses. However, in C2-C, NO3 is elevated across this zone, 

irrespective of land use. This may reflect groundwater contamination and its movement throughout 

the extensive morainal till in this zone (Sharpe, 2022). In contrast, Dillon and Kirchner (1975) 

conducted a systemic review that found watersheds dominated by forested areas have lower P export 

levels than agriculture-dominant basins. Hence, ecoregions C1 and LB have the lowest supply of 

SRP, TP, and NO3 sources, reflecting their lower agricultural suitability compared to C3 and LA.  
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The established ecoregions also underscore variations in the timing and mode of nutrient transport 

across the Lower Great Lakes. Ecoregions C3-A and C3-C, characterized by high nutrient supply, 

contribute significantly to nutrient transport, albeit with differences in timing. In C3-A, 

concentrations of SRP and NO3 remain consistently high throughout the year, accompanied by 

elevated levels of suspended sediments across all seasons. This may reflect the more regular 

occurrence of hydrologic events throughout the seasons as described above but may also reflect 

significant legacy stores of nutrients in agricultural soils (Van Staden et al., 2022), as well as the fact 

that there is more tile drainage in the region which can enhance P mobilization in clay-rich 

agricultural soils (King et al., 2015).  

Conversely, in ecoregion C3-C, concentrations of SRP and NO3 peak notably during the spring and 

winter months, which coincides with peak flow conditions and the prevalence of overland flow at this 

time of year due to surplus from snowmelt (Macrae et al., 2010; Van Esbroeck et al., 2017; Macrae et 

al., 2019; Macrae et al., 2021). Additionally, elevated turbidity levels are observed in C3-C during the 

fall season, which coincides with rainfall on bare soils, and C3-C is at greater risk for erosion given 

its topography (Van Staden et al., 2022). The same patterns are not observed in C3-A in autumn, 

possibly due to drier autumn weather (Macrae et al., 2021) or the lack of slope, which lessens the 

potential for erosion. This contrasts with Zhu et al. (2012), who observed peak dissolved P 

concentrations during the growing season and highest NO3 levels during the non-growing season in a 

headwater watershed. 

5.3 Assessing Changes under Projected Future Climate Conditions Across 

Ecoregions 

Under the assumption of constant geophysical characteristics such as soil texture, elevation, and 

landforms, the projected changes in climate conditions are expected to drive shifts in the patterns of 

climate ecoregions across the Lower Great Lakes region. These shifts are anticipated to impact 

precipitation and temperature differentially, with varying degrees of influence on streamflow 

dynamics and agricultural suitability across ecoregions (Eimers et al., 2020). As shown in the 

previous section, this variability contributes to differing nutrient loss risks across the Lower Great 

Lakes region (Lucas et al., 2023).  

Future climate projections indicate that temperature rates will undergo significant changes, with the 

Great Lakes watershed experiencing average regional rates surpassing the global mean (IPCC, 2023). 
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Average minimum temperatures below freezing are predicted to vanish across all emission scenarios, 

including in the traditionally cooler region of C1 during winter and spring. Conversely, extreme 

temperatures exceeding 30 degrees Celsius are expected to rise exponentially across emission 

scenarios, with even low-emission scenarios projecting C1’s future average to match contemporary 

C3 averages.  

The IPCC (2023) projected an increase in future precipitation rates and extreme events across the 

Great Lakes basin. Despite variations across the three climate ecoregions, with C1 being the wettest 

and C2 the driest, all regions are expected to experience an overall increase in average yearly 

precipitation, ranging from over 50 mm/year in low-emission scenarios to more than 100 mm/year in 

high-emission scenarios. These changes are anticipated to be most pronounced during winter and 

spring, significantly impacting streamflow levels and nutrient loss from agricultural landscapes 

(Lucas et al., 2023).  

5.3.1 Effects of Agricultural Suitability Shifts on Water Quality Risk 

These temperature shifts will notably affect the duration of GDD across the study area, potentially 

transforming regions previously deemed unsuitable into viable agricultural areas. For example, while 

C1 and C2 historically have shorter GDD lengths than C3, future climate conditions may elevate their 

GDD levels to match or exceed contemporary C3 levels. This pattern could lead to forest-to-cropland 

conversions, mirroring findings by ECCC (2021), which documented over 800 km2 of forest 

converted to agricultural land between 2010 and 2015 in Ontario and Quebec. Historically, ecoregion 

C3 has exhibited the highest levels of water quality degradation. However, regions boasting 

favourable future climate conditions (C1 and C2) and geophysical characteristics for agriculture (LA 

and LC) may emerge as focal points for water quality concerns.  

Temperature fluctuations are pivotal in shaping precipitation patterns, potentially transitioning 

snowfall-dominant regions to rainfall dominance or leading to more sporadic snow cover during 

cooler months (Burnett et al., 2003; Reid et al., 2018). Spring snowmelts drive streamflow patterns in 

C1; however, with warmer winters, streamflow patterns may mirror those seen in C3, where stream 

discharge is elevated across multiple cool months. However, nutrient loss—whether through surface 

or sub-surface pathways—varies depending on the geophysical characteristics of the ecoregion (Plach 

et al., 2019; Macrae et al., 2021). In heavily tile-drained regions like LA, increased transport of SRP 

through tile drains following storm flow events is expected. It is unclear if and to what extent areas in 
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LB and LC will be affected. Currently, P losses in LC are associated with the surface overland flow 

(Van Esbroeck et al., 2017; Plach et al., 2019), which typically occurs during the peak snowmelt 

period (predominantly) each year (Jamieson et al., 2003; Macrae et al., 2007; Macrae et al., 2010; 

Van Esbroeck et al., 2017). The greater proportion of rainfall relative to snow melt anticipated under 

warmer climates will enhance the erosion of surface soils from bare fields in LC. Although this may 

also occur in LA, the lack of slope will prevent these areas from being at as great a risk as LC. 

However, the generally warmer winters and consequent lack of snow cover may reduce overland flow 

and lead to greater tile discharge and groundwater flow (Hanke, 2018), which will lessen erosion and 

the associated particulate losses and could instead lead to greater dissolved P losses (Singh et al., 

2023) caused by chronic leaching into tile drains as soil sorption sites become saturated. Given this 

potential, conservation practices such as no-till, nutrient management and cover crops will become 

more critical under future climates.  

The anticipated intermittent snow cover may lead to frozen ground conditions, hindering soil 

infiltration rates (Pittman et al., 2020) and increasing the likelihood of topsoil erosion into adjacent 

water bodies (Eimers et al., 2020). In light of this, cover crops will have to be used with caution and 

careful species selection to avoid winter P losses (Cober et al., 2018). Moreover, the intensification of 

freeze-thaw cycles, both in duration and frequency, is expected to have multifaceted impacts on P loss 

dynamics, including heightened runoff from tile drainage systems (Lucas et al., 2023; Eimers et al., 

2020). Elevated evapotranspiration rates and reduced snowfall are anticipated to lower soil moisture 

levels, potentially facilitating deeper infiltration of P-enriched runoff into the soil matrix (Lucas et al., 

2023), enhancing tile drainage losses over time. These processes will be most important in C1 relative 

to C2 or C3 in the short term but will likely not be a significant issue towards the end of the century 

as frosts will be minor. 

Extended periods of extreme temperatures above 30℃ elevate the risk of heat stress and drought, 

affecting crops and livestock in agricultural activities. Such conditions are anticipated to be most 

prevalent in the warmest ecoregion, C3; under a low-emission scenario, the number of days 

surpassing 30°C is projected to rise from 10 to 25, while under a high-emission scenario, it is 

expected to surge from 10 to 70. This, coupled with summer temperatures averaging 30°C, will 

hinder crop production in C3 by impacting plant growth at various stages and overall crop yields 

(Venkatesh et al., 2022; Porter & Gawith, 1999). For instance, wheat has an optimal temperature 

range of 17 to 23℃, but plant growth stops at and above 37°C (Porter & Gawith, 1999). Moreover, 
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summer precipitation is not expected to increase in this region, posing the risk of drought conditions 

in the warmer months. Consequently, the demand for irrigation systems will rise in the area and 

introduce new water quality risks beyond contemporary concerns. Without irrigation, it is unclear 

which crops will succeed in the C3 region, particularly C3-A, due to the high wilting points in clay 

soils, which may prevent the growth of many crops currently grown (i.e., soy, corn) due to moisture 

stress. However, if crop growth is sustained by irrigation, water quality issues may prevail due to the 

legacy nutrients in the region (Van Staden et al., 2022), coupled with the water inputs from irrigation. 

Indeed, Merchán et al. (2013) found that introducing irrigation systems increased output flow via 

drainage ditches by 23 percent and nitrate concentrations by 8 percent. As such, careful nutrient 

management will be essential in these regions. 

Similarly, extreme temperatures increase the likelihood of heat stress for animals in pastures within 

ecoregion C3. Chronic heat stress impacts the animal’s quality of life and the agricultural system’s 

economic success (Polsky & Von Keyserlingk, 2017). The livestock industry in the US has 

experienced a $1.69 to 2.36 billion economic loss due to heat stress (St-Pierre et al., 2003). For 

instance, the dairy industry has lost $900 million due to decreased milk production, a rise in mortality 

rates and impaired reproduction (Polsky & Von Keyserlingk, 2017; St-Pierre et al., 2003). Cattle 

experience heat stress when temperatures reach and exceed 25℃, as their ability to cool down 

through evaporation becomes compromised under high thermal loads (Kadzere et al., 2002). This 

results in elevated body temperatures, which can become fatal if conditions persist over an extended 

period (Kadzere et al., 2002). At present, there is little pastureland in C3, but it is mainly present in 

C2 and C1. The warmer temperatures and increased GDD anticipated in C1 and C2 will permit the 

migration of crops such as corn and soy into C2 and C1, mainly if these crops cannot succeed as 

effectively in C3, which will displace livestock from the current pasture lands. This can potentially 

increase water quality issues in C1-C and C2-C, as such problems are already seen in C3-C. The 

displacement of livestock and pastures to LB is a plausible solution, as, despite the anticipated 

increase in air temperatures, the geophysical characteristics in LB are unsuitable for cropping. The 

LB region, mainly in C2, can easily support livestock production as farmers face fewer adverse 

effects of temperature rises induced by climate change. However, this shift may result in water quality 

concerns spreading into this region as natural areas (which currently do not have water quality issues) 

are displaced by agricultural livestock production. Given that many of these regions flow outside of 
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Lake Erie and instead into Lake Huron/Georgian Bay, Lake Ontario, and the St. Lawrence River, an 

increase in water quality issues in these lakes may occur. 

5.4 Importance of Context-Dependent Agricultural Management Practice 

Recommendations 

The preceding sections underscore the significant variations in dominant spatiotemporal and 

geophysical factors across the Lower Great Lakes region, which result in distinct risks associated with 

nutrient loss and water quality. Implementing agricultural management practices across these diverse 

ecoregions is particularly challenging, especially given the changing climate. The implications of 

these regional differences and the anticipated shifts in water quality risks necessitate tailored 

approaches to agricultural management practices (Kleinman et al., 2022; Tomer & Locke, 2011). 

Adapting these practices to changing climate conditions is crucial for sustainable agricultural 

management and preserving water quality in the Lower Great Lakes region. 

Experts advocate for implementing BMPs in the Great Lakes region to mitigate nutrient loss from 

agricultural landscapes by focusing on managing nutrients, soils, and water (ECCC & MECP, 2018). 

Notably, ecoregions LA and LC harbour the highest farming activities and contribute the highest 

concentrations of nutrients to waterways. However, due to differences in geophysical characteristics, 

BMPs implemented within each region will vary to address unique nutrient loss mechanisms. For 

example, in ecoregion LA, which is characterized by flat, smooth surfaces with fine-textured soils, 

high adoption rates of tile drainage minimize soil compaction. Still, they can facilitate nutrient 

transport to subsurface pathways (OMFRA, 2008a). Consequently, preferential pathways that 

facilitate drainage also allow surface-applied nutrients to reach subsurface pathways. Initially, 

recommendations in 2002 to reduce soil erosion and PP loads in farms with tile drainage systems led 

to a 65% increase in SRP delivery (Jarvie et al., 2017). Consequently, experts have revised 

recommendations to include conservation tillage practices that disrupt macro pores and enhance 

nutrient sorption within the root zone, thereby preventing soluble nutrients from reaching subsurface 

pathways (OMFRA, 2011b). In contrast, ecoregion LC, characterized by steep, variable surfaces with 

coarse-textured soils, is highly susceptible to water erosion. Hence, no-till or minimum tillage 

practices are strongly encouraged to mitigate the risk of topsoil enrichment transported via surface 

runoff (OMFRA, 2011a). 
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The intersection with climate ecoregions further complicates BMP implementation across LA and 

LC. In ecoregion C1, where spring snowmelt intensifies runoff and nutrient transport, BMPs aimed at 

improving runoff water quality may prioritize snow management practices like snow fencing or snow 

capture structures to mitigate meltwater runoff volume and velocity (OMFRA, 2008b). Additionally, 

strategies must consider the potential for nutrient runoff during snowmelt events, necessitating 

adherence to the 4R principle—right source, right rate, right timing, and right placement of fertilizers 

and manure (GLWQA NAS, 2019). Research by Kast et al. (2021) suggests that focusing on 

subsurface placement reduces TP losses compared to green infrastructure like buffer strips. Adjusting 

nutrient application timing away from snowmelt periods, when soil saturation levels peak and runoff 

is likely, is crucial (GLWQA NAS, 2019). For example, within the Lake Erie watershed, subsurface 

application proves most effective in reducing TDP loads from March to July, whereas growing 

perennial cover crops and installing buffer strips efficiently reduces seasonal TP loads (Kalcic et al., 

2016). In ecoregion C3, characterized by rainfall-dominant precipitation, BMP recommendations for 

LA may emphasize enhancing green infrastructure like vegetated buffer strips and constructed 

wetlands to manage runoff from frequent rain events (OMFRA, 2008b). In LC, BMPs for improving 

runoff water quality would likely focus on erosion control measures such as terracing, contour 

farming, or soil stability techniques such as cover crops (OMFRA, 2011a). However, Lemke et al. 

(2011) found that vegetated strips, riparian buffers, and strip tillage had no significant reduction in 

nutrient loss compared to base values, suggesting that field knowledge alone may not consistently 

achieve maximal environmental benefits (Kast et al., 2021).  

Under a changing climate, agricultural management practices must adapt to shifts in hydrological 

cycles, including increased precipitation volumes and temperature surges (Muenich et al., 2016). For 

instance, projected drought conditions in C3 could worsen with the introduction of irrigation 

practices, exacerbating water management challenges (Van Staden et al., 2022). Intensified irrigation, 

coupled with extensive tile drainage systems, may increase soil moisture variability and runoff rates, 

necessitating careful planning of irrigation scheduling and drainage management to mitigate 

waterlogging and nutrient leaching risks (Van Staden et al., 2022; Lemke et al., 2011). As C1 

transitions to conditions akin to C3, BMPs should shift from snow management to resilience-building 

against more frequent or intense precipitation events, adjusting to changes in runoff characteristics. In 

LC, preserving soil fertility amid shifting precipitation patterns and moisture dynamics requires 

adaptive soil management techniques. Green infrastructure measures must accommodate larger runoff 
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volumes and flow rates, with LC-specific adaptations to effectively manage sedimentation and 

pollutant loads (OMFRA, 2011a). Legacy P loads may worsen with greater spring precipitation or 

snowmelt, necessitating ongoing watershed management efforts despite BMP implementation 

(Muenich et al., 2016; Tomer & Locke, 2011).  
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Chapter 6 

Conclusion 

This study aimed to delineate broad ecoregions based on spatiotemporal characteristics across 

agricultural landscapes within the Great Lakes Basin. These regional classifications were then utilized 

to assess water quality risks across various LULC types, explore potential shifts under a changing 

climate, and discuss implications for agricultural management practice recommendations. The 

research has revealed that the Lower Great Lakes region comprises three distinct climate and 

geophysical ecoregions. Furthermore, the study has highlighted how these diverse ecoregions exert 

varying impacts on water quality due to different nutrient drivers. Specifically, the climatic 

ecoregions have shown that water quality concerns exhibit a latitude-dependent pattern, with 

degradation decreasing from south to north. Additionally, two geophysical ecoregions (LA and LC) 

have emerged as particularly significant regions for water quality issues despite exhibiting opposing 

modes of nutrient transport (i.e., LA is characterized by subsurface-dominant runoff, while LC is 

characterized by surface-dominant runoff). 

Under a changing climate, all climatic ecoregions experienced increased precipitation and 

temperature, resulting in a northward shift in agricultural suitability. The coolest climate zone (C1) is 

projected to resemble contemporary conditions of the warmest zone (C3), as longer GDD will support 

farming activities, and rising winter temperatures will lead to a transition from snowfall to rainfall 

dominance. Conversely, conditions within C3 are anticipated to introduce drought conditions, 

necessitating the implementation of irrigation systems. Extreme temperatures are expected to rise to 

levels that can adversely affect the productivity of croplands and pastures. These shifting climate 

patterns underscore the need for context-dependent and adaptive agricultural management practices to 

address the anticipated changes in water quality risks. Moreover, the distinct characteristics of 

ecoregions LA and LC necessitate contrasting BMP recommendations. However, these 

recommendations may yield unintended consequences under a changing climate and depending on 

the overlap with climate ecoregions.  

This research builds upon the findings of Macrae et al. (2021), which focused on the Lake Erie 

watershed, by extending the analysis to encompass the entirety of the Lower Great Lakes basin. The 

implications of these expanded findings are significant, offering valuable insights into watershed 

analysis across the region and enhancing our understanding of the challenges associated with 
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preserving water quality and implementing agricultural management practices. This research has 

significantly advanced our understanding of the complex interactions between ecoregional disparities, 

climate variability, and agricultural management practices in the Lower Great Lakes basin. By 

delineating distinct ecoregions based on spatiotemporal characteristics and analyzing their 

implications for water quality, this study has provided crucial insights into the challenges and 

opportunities for sustainable land use management in the region. These findings resonate with 

concerns raised by Jarvie et al. (2017), highlighting the consequences of implementing BMPs without 

tailoring them to specific regional contexts, which can result in increased nutrient loss. Additionally, 

Wilson et al. (2018) emphasize the importance of addressing historical failures and providing clear, 

practical BMP recommendations to improve adoption rates among farmers.  

This study underscores the importance of adopting a context-dependent approach to agricultural 

management practices, particularly in light of projected shifts in climate patterns. Tailored strategies 

are essential to address the unique challenges posed by each ecoregion, which not only maximizes 

environmental benefits but also enhances BMP adoption rates. Furthermore, this research highlights 

the need for increased collaboration between researchers, policymakers, and stakeholders to develop 

and implement effective BMPs that consider local conditions and promote sustainable land 

management practices. Future research can further refine our understanding of complex dynamics and 

inform evidence-based policy decisions by integrating field-scale case studies and ongoing 

monitoring efforts. Ultimately, the success of efforts to preserve water quality and enhance 

agricultural sustainability in the Lower Great Lakes basin depends on our ability to adapt to changing 

environmental conditions. 
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