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Abstract

Healthcare Machine Learning (HML) models are revolutionizing the healthcare indus-
try, promising improved patient outcomes and enhanced public health. However, it is
essential to ensure fairness, i.e., models delivering equitable performance to all individ-
uals, irrespective of their inherent or acquired characteristics. This requires a thorough
examination of the data used and the specific applications of these models.

This study conducted a six-year systematic survey of models trained on the Medical
Information Mart for Intensive Care (MIMIC) clinical research database (CRD) — one of
the most popular and widely used HML databases to explore the link between data and
fairness in HML.

The results were striking: for the popular MIMIC IV — ICU mortality task, a naive base-
line outperformed the state-of-the-art (SOTA) model in prediction performance, demon-
strating greater fairness across subgroups (while still somewhat unfair). These findings
demonstrate the urgent need to integrate fairness into healthcare machine learning models
and a greater need to include practitioners in HML modeling.

To achieve this, we propose a data-centric approach to fairness through our ‘Datasheet
for MIMIC IV v2.0 CRD’, modeled after the recent works recommending datasheets for
datasets. Given that MIMIC is large and complex, this datasheet will assist practitioners in
identifying data anomalies and task-specific feature-target relationships during modeling,
thereby fostering the development of equitable HML models.

111



Acknowledgments

The work presented in this thesis would not have been possible without the invaluable
assistance of my advisors, Professor. Alexander Wong and Professor. Sirisha Rambhatla.
Their unwavering support and mentorship over the past two years have been instrumental.
They allowed me to explore diverse ideas, significantly contributing to my growth as a
researcher.

This work was supported by the J.W. Graham Trust at the University of Waterloo. I
am thankful for their generous support.

v



Dedication

This is sincerely dedicated to my family and friends, who are the rock-solid foundation
of my life and the silent force that propels me forward.

To my Mom, Dad, and Sister: your unwavering support and love have been my beacon
of hope. You were there to lend a helping hand whenever I stumbled. Despite the vast seas
and countries separating us, your kindness and compassion found their way to me. Your
faith in me has greatly influenced my journey at the University of Waterloo; every step I
took was encouraged by the assurance of your steadfast support. This accomplishment is
not just mine; it is evidence of our family’s unwavering love and strength. Thank you!!



Table of Contents

Author’s Declaration ii
Abstract iii
Acknowledgments iv
Dedication \%
List of Figures viii
List of Tables ix
1 Introduction 1

2 Healthcare ML data source - MIMIC Clinical Research Database 5
2.1 Systematic Survey . . . . ... 6
2.1.1 Survey Method . . . . . .. ... ... 6

2.1.2 Healthcare Risk Prediction Task . . . . . .. ... .. ... .. ... 8

3 Fairness in Healthcare ML 10
3.1 Problem Formulation . . . . . . . ... ... .. ... ... ... .... 10
3.2 Healthcare ML Fairness Measurements . . . . . ... .. ... ... .... 11
3.3 Fairness Metrics . . . . . . . . . .. 12

vi



4 Datasheet for Clinical Research Database 14

4.1 Datasheet for complex Clinical Research Database - MIMIC IV v2.0 . . . . 15
4.1.1 Motivation . . . . . . . ... 15
4.1.2  Composition . . . . . .. ..o 17
4.1.3 Collection Process . . . . . . . . . ... ... 29
4.1.4 Preprocessing/cleaning/labeling . . . . . . . ... ... ... 30
415 Uses . . o oo e 31
4.1.6 Distribution . . . . . ... 33
4.1.7 Maintenance . . . . . ... Lo 34

4.2 How Datasheet can be used for HML Modelling . . . . . .. ... ... .. 36

5 Role of Datasheet for Database in modeling - ICU Mortality prediction

task 37
5.1 MIMIC Database . . . . . . . . . . . . . . . 37
5.2  Experimental setup . . . . . ... 38
5.3 Experimental Results . . . . . . . . . .. ... ... . 38
5.3.1 Model Performance Evaluation . . . .. ... .. ... ....... 39

5.3.2 Model Fairness Assessment . . . . . . .. .. ... ... ... .. .. 39

6 Discussions and Conclusion 44
6.1 Discussion . . . . . . . L 44
6.2 Conclusion . . . . . . . . .. 45
References 47
APPENDICES 63
A Datasheet for MIMIC 1V v2.0 64
A.1 Sensitive attribute correlation analysis with risk prediction outcomes . . . 64
A.1.1 In-Hospital Mortality Prediction . . . . . . .. ... ... ... ... 65

A.1.2 30-day ICU Readmission Analysis . . . . . .. ... ... ... ... 69

A.1.3 ICU Length of Stay Prediction. . . . . . . .. ... ... ... ... 70

vii



List of Figures

1.1

2.1

4.1

5.1
0.2
2.3

Al
A2
A3
A4

Distribution of healthcare prediction models using MIMIC . . . . . .. ..
MIMIC IV Sensitive attributes statistics . . . . . . . . . . . .. ... ...

Snapshot of the Datasheet for MIMIC IV v2.0 . . . ... ... ... ....

Analysis of prediction performance (ROC-AUC and PR-AUC) across models 39

Fairness metrics analysis by ethnic subgroups . . . . . ... ... ... ..

Heatmaps showing model impact disparities across ethnic subgroups . . . .

Sepsis Mortality in Relation to Ethnicity /Insurance . . . . . . . . ... ..
Insurance Utilization among Heart Failure Cohorts based on Ethnicity
% CKD mortality rate with respect to their Ethnicity/Insurance . . . . . .

Relationship between Readmission rates and patient’s Ethnicity /Insurance

viil

40
42

66
67
68
69



List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
0.2
2.3

Al

Inclusion and Exclusion Criteria of MIMIC trained Healthcare ML Studies 7

Description of Hosp module Tables . . . . . ... ... .. ... .. .... 18
Description of ICU module Tables . . . . . . .. ... ... ... .. .... 21
Description of ED module Tables . . . . .. .. .. ... ... ....... 22
Description of CXR module Tables . . . . . . ... ... ... ....... 24
Description of Note module Tables . . . . . . ... ... ... ....... 24
Admission distribution statistics . . . . . .. ... oo 28
Patient distribution statistics . . . . . . . .. ... o oL 28
ED table distribution statistics . . . . . . ... o000 28
Data Acquisition . . . . . . . . ... 35

Breakdown of sensitive attributes in MIMIC IV v2.0 ICU Mortality dataset 38
Prediction performance analysis of ICU Mortality models . . . . . . . . .. 40

Fairness metrics evaluation . . . . . . . . . .. L 41

ICU LOS (</> 7 days) analysis of different demographic groups based on
Insurance . . . . . . 70

X



Chapter 1

Introduction

In the rapidly evolving landscape of Canadian healthcare, the system faces critical chal-
lenges: an aging population [I]|, the impacts of climate change [2], and the repercussions
of the COVID-19 pandemic [3]. CIHI report forecasts a 68% increase in the population
aged 65 and over in the next two decades, a shift to significantly strain healthcare services
and escalate care demands for older adults [1]. Concurrently, climate change exacerbates
healthcare burdens, with more frequent extreme weather events—heatwaves, flooding, and
wildfires—increasing healthcare demand. The COVID-19 pandemic further revealed and
deepened the healthcare system’s vulnerabilities, emphasizing the gap in providing timely
and equitable care [5]. Together, these issues underscore the pressing need to build up the

healthcare workforce and develop tools to assist them in delivering quality healthcare for
all.

Artificial Intelligence (AI)/Machine Learning (ML) models can help achieve this goal. It
has emerged as a powerful tool in the healthcare industry, enabling the creation of accurate
prediction models that can significantly improve public health outcomes [, 7]. However,
in the high-stakes context of healthcare, it is critical to ensure unbiased predictive out-
comes [8]. Despite significant progress in healthcare machine learning (HML), unfairness
persists due to biases in both data and algorithms. Data biases include minority bias,
where certain demographic groups are underrepresented; missing data bias, where data are
randomly missing, impacting model reliability; and label bias, where inaccuracies in labels
can misguide learning algorithms [9]. Algorithmic biases occur when the models themselves
systematically generate unfair outcomes for certain groups, often due to inherent flaws in
their design choices, such as the use of certain optimization functions, regularizations, etc,
or training processes. [10-12]. Addressing these biases in Canada’s diverse healthcare land-
scape is crucial to ensure that HML benefits everyone, regardless of age, race, gender, or



socio-economic status.

FairML refers to the process of designing, developing, and deploying machine learning
models that ensure equitable treatment for all individuals, regardless of their inherent
characteristics [9]. It is an active area of research studying how models can perpetuate
inequalities and develop methods to mitigate these issues. A common strategy in ML
fairness involves implementing fairness constraints during model training [13-20]. These
constraints, such as decision boundary covariance [21], are algorithmic modifications made
during the training process to ensure fair outcomes across different groups, distinguished
by sensitive attributes like ethnicity or gender [22-25|. However, a significant challenge
in this model-centric approach is the data itself, which may encode real-world biases and
inconsistencies, thus complicating the achievement of fairness in healthcare settings [20].
This insight can be traced back to 2018, when Chen et al. [15] proposed that the predictive
fairness evaluation must consider model training in the context of the input data.

To investigate the progress towards fairness in HML, we analyze the state of fair HML
research through the lens of Medical Information Mart for Intensive Care (MIMIC) [27,

| database, one of the most popular clinical research databases (CRD) [18]; see Figure
1.1 for its popularity across the world. Our survey identified ICU mortality prediction as
the most widely researched task in MIMIC III/TV. To analyze the ICU mortality task, we
compared the performance and fairness properties (across ethnicity) of the current SOTA:
STraTS ! [29] with simple baseline models (such as XGBoost) on MIMIC IV. Surprisingly,
we find that the SOTA model is outperformed by XGBoost in performance and group
fairness metrics, with disparate impact (DI) metrics revealing substantial inequalities across
ethnic subgroups 2. This demonstrates that despite more than half a decade since [15],
it has been challenging to incorporate fairness in HML modeling, highlighting a need to
reconsider fairness in the context of (i) the task and (ii) the data driving the model, and
ways to make it a central part of any HML analysis.

The aforementioned example is not to undermine the work by SOTA; it is to highlight
the complexities involved in accomplishing healthcare fairness. For instance, MIMIC IV
is a large database, which makes it especially challenging for practitioners to focus on
modeling and fairness concurrently since they may only be interested in small parts of
the database. With recent calls in the community to develop “Datasheets for Dataset”,
spearheaded by Gebru et al. [30], we develop a blueprint to enable the next generation
of HML by introducing the ‘Datasheet for CRD (MIMIC IV v2.0)” in Chapter 4. It is a

1STraTS reported SOTA performance on MIMIC III, and MIMIC IV is an augmented version of MIMIC
ITI. No fairness metrics were reported by the paper.

2Moreover, note that MIMIC IV originates from Boston, and its use world-wide further underscores a
need to understand its characteristics for downstream applications.
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Figure 1.1: Distribution of healthcare prediction models using MIMIC data across the world from 2018 to
2024. The country list represents the widespread usage of MIMIC data for healthcare predictions across
the globe, and the % value indicates the Healthcare ML prediction model researched by the respective
country.

comprehensive resource tailored for complex clinical databases. Here, we call for data and
tasks to take center stage in any HML modeling to accomplish fairness. To this end, our
datasheet is designed to support HML practitioners in identifying data biases like data
quality issues, representation bias, etc, across the database and analyzing task-specific
associations between features and the target, enabling fair predictions for all individuals
irrespective of their sensitive attributes.

To build a fair HML model that does not perpetuate societal biases, we advocate for
a comprehensive examination of the data, the context of its use, and algorithmic biases
together. This approach is especially significant in the light of recent works in fairness
theory, which establish that it is not feasible to satisfy all fairness criteria at once [31].
There have also been calls to include end-users in determining key fairness goals [32]. Yet,
the lack of fairness in the analysis (by SOTA) is alarming, and our work aims to make it
easier for practitioners to incorporate these metrics.

The contributions highlighted in this thesis are detailed below:

1. In chapter 2, we discuss how important the data is for modeling, particularly the EHR
data, considering HML predictive tools. In section 2.1, we detail the methods and
techniques we used in the systematic survey of MIMIC III/TV trained HML models
from 2018 to 2024. Survey results highlighted the predominant Healthcare ML risk



predictive tasks, with ICU Mortality prediction being the most widely researched
(67%) globally.

. Chapter 3 provides an overview of fairness in ML, specifically focusing on the Health-
care setting. It highlights the importance of fairness in high-stakes healthcare appli-
cations in addition to the model performance, while section 3.3 details how we can
evaluate it.

. Chapter 4 explains the role of Clinical Research database in HML modeling and
provides an in-depth look at MIMIC IV v2.0. This chapter introduces the ‘Datasheet
for MIMIC IV v2.0’. It highlights the data inconsistencies across MIMIC IV and
includes task-specific feature-target analysis to streamline fairness evaluations for
equitable and trustworthy HML predictive models.

. In chapter 5, we show how researchers can use the ‘Datasheet for Database’ for
their modeling task by implementing an ICU Mortality prediction task utilizing the
‘Datasheet for MIMIC IV v2.0’. Section 5.3 analyses the SOTA and several baseline
model’s performance, and section 5.3.2 highlights how fair the model’s prediction is
across the demographics. Analysis results underscore the immediate need to incor-
porate fairness during HML modeling.

. Chapter 6 highlights how the ‘Datasheet for Database’ can help build equitable and
trustworthy HML models and discusses its potential in aiding synthetic data gener-
ation and Healthcare Gen Al.



Chapter 2

Healthcare ML data source - MIMIC
Clinical Research Database

Data is the foundation of machine learning, and it is essential for models to learn, pre-
dict, and make informed decisions. Within the Healthcare Machine Learning (HML), the
accuracy and efficacy of models are determined by the quality and relevance of Electronic
Health Records (EHR). The Medical Information Mart for Intensive Care (MIMIC), a
comprehensive repository for HML model development, is the leading Clinical Research
Database (CRD).

MIMIC encompasses de-identified health data from patients admitted to Beth Israel Dea-
coness Medical Center’s critical care units, with its latest iteration, MIMIC-IV, capturing
records from 2008 to 2019. This database is meticulously organized into four modules:
‘hosp’ and ‘icu’ for hospital and intensive care data, ‘ed’ for emergency department in-
sights, ‘note’ for clinician’s notes, and ‘cxr’ for chest X-ray information [33]. Each mod-
ule caters to specific research needs, making MIMIC an invaluable asset for advancing
healthcare through machine learning. A comprehensive overview of the MIMIC IV CRD
is provided in the Datasheet section, and Figure 2.1 shows the demographic attributes
statistics of the entire MIMIC IV CRD where only age, marital status, ethnicity, insur-
ance, gender, and language were recorded. There are 33 ethnic values recorded, which are
grouped into White, Asian, Hispanic/Latino, Other, and Black following [20]. There are
several representation issues, such as only males and females being recorded as part of the
gender demographic and only English for language attributes while others are marked as
‘7’ HML practitioners need to be wary of these inconsistencies, and the Datasheet for
Database captures these kinds of information in section 4.1.2 specifically in question C12.
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Figure 2.1: MIMIC IV Sensitive attributes statistics.

2.1 Systematic Survey

We conducted a six-year systematic survey from 2018 to 2024 to examine MIMIC-trained
HML models to identify common prediction tasks, monitor progress, and assess the field’s
current state.

2.1.1 Survey Method

PubMed and Google Scholar databases were extensively searched because of their med-
ical focus, broad coverage, and potential to uncover emerging trends beyond specialized



Table 2.1: Inclusion and Exclusion Criteria of MIMIC trained Healthcare ML Studies.

Criterion Included Excluded
Study Design Study that develops a prediction Review articles,
model database innovation

studies, medical data
mining studies, etc

MIMIC I1/1v Other older versions

Outcome Mortality, Readmission, LOS, Other outcomes
Phenotype labeling/ICD code
grouping

Performance AUC, sensitivity, specificity, ac- No reported perfor-
curacy, etc mance

databases. We adopted a broad search term approach following [31] to capture extensive
research on MIMIC-trained HML models. PubMed is searched using (‘Medical information
mart for intensive care AND MIMIC AND MIMIC-IV’) AND (‘machine learning’ OR ‘ar-
tificial intelligence” OR ‘deep learning’ OR ‘neural network’ OR ‘prediction model’) search
terms yielding 819 works whereas, Google Scholar yielded 1000 records with the search term
‘machine learning’/‘prediction model’|‘artificial intelligence’|‘deep learning’” AND ‘MIMIC
IV’[‘the medical information mart for intensive care’| MIMIC III'. Only 220 studies were
included after the initial abstract and title screening, as listed in Table 2.1.

Following PRISMA guideline [35], studies were screened to exclusively consider those utiliz-
ing MIMIC III/TV—the recent publicly available database versions—as the primary data
source. A total of 140 papers from both databases, including recent research up until
February 2024, were selected after analyzing the citation count, methodologies used, and
clarity of the work. The selected scientific works span conferences like NeurIPS, TJCAI,
ICML, ICLR, AAAI, ACM FAccT, and journals like Nature, JAMA, JAMIA, BMC, PLoS
One, etc.

We meticulously adhered to the TRIPOD guidelines, as outlined by Moons et al. in [30].
This adherence was pivotal in guiding our data abstraction, evaluation, and synthesis
methodology, specifically focusing on identifying and addressing data bias. The TRIPOD
guidelines provided a comprehensive framework that ensured our approach was systematic,
methodical, and transparent, facilitating the development of robust and reliable HML risk
prediction models that deliver equitable performance to all individuals, irrespective of their
inherent or acquired characteristics.



We abstracted information on:

1. The CRD recorded demographic variables like Age, Gender, Ethnicity, Insurance,
Marital status and Language,

2. Consideration of demographic variables in the dataset and its selection/rejection
criterion based on feature engineering and

3. Algorithm used for the model and its final prediction outcome.

2.1.2 Healthcare Risk Prediction Task

We grouped the selected research works based on the predicted task and observed that
ICU mortality is the most extensively studied HML prediction task worldwide ( 70%). It
is closely followed by ICU readmission and ICU length of stay (LOS). The following is a
comprehensive list of the everyday HML prediction tasks.

1. Mortality Prediction [37-109] - Predict the likelihood of a patient dying.

(a) In-hospital and ICU |76, | - Estimating the risk of a patient dying during
their hospital stay and in ICU.

(b) Short-term [105, 111] - Assessing the risk of death shortly after ICU admission,
typically within 2-3 days.

(¢) Long-term [39, 112] - Evaluating the likelihood of death over a longer period,
typically from 30 days up to a year after hospital discharge.

2. Length of Stay (LOS) [77, 95, 113-121]

(a) Predicting the duration of hospital stays for admissions, focusing on stays longer
than 3 and 7 days. A custom number of days is also a topic of research interest.

3. Readmission [122, |

(a) Identifying patients at risk of returning to the hospital within 30, 60, 90, 120
days, or custom time frames after discharge.

4. Phenotype Labeling and ICD-9/10 Code Grouping

(a) Phenotype Labeling [124, | - Classifying patients into specific groups based
on clinical data for disease prediction and treatment customization.

8



(b)

ICD Code Grouping [126, | - Categorizing diseases based on diagnosis codes
to streamline classification.

5. Specific Health Conditions

(a)

Heart failure [13, 83| - Predicting the occurrence, progression, and prognosis of
heart failure in patients, using historical and real-time health data.

Chronic Kidney Disease (CKD) [128, 129] - Assessing the risk and progression
of CKD to inform treatment plans and manage patient health outcomes.

Chronic obstructive pulmonary disease (COPD) |130] - Forecasting COPD ex-
acerbations and identifying patients at higher risk for hospitalization or severe
outcomes.

Coronary artery disease (CAD) [76, 79] - Utilizing clinical data to predict the
development or worsening of CAD for early intervention.

Sepsis |128, | - Early detection and prediction of sepsis in hospitalized pa-
tients to improve treatment response and survival rates.

Cancer |132] - Leveraging patient data to predict cancer risks, progression, and
treatment responses.

Ventilation failure |133] - Predicting the risk of ventilation failure in critically
ill patients to guide intervention strategies.

Our survey found that about 67% of HML models trained on the MIMIC CRD came from
China !, with significant contributions from the USA, Brazil, Pakistan, Australia, and
India, as shown in Figure 1.1. These findings highlight that ICU mortality prediction is a
key area within HML models, making it the main focus of this thesis.

LOver 90% of the research is focused on predicting mortality



Chapter 3

Fairness in Healthcare ML

In high-stakes healthcare settings, fairness becomes paramount to ensure that predictive
models do not inadvertently perpetuate health disparities or unequal resource distribution
among different demographic groups. As such, ensuring fairness in healthcare machine
learning is garnering heightened interest, particularly as it stands at the critical juncture
of advanced analytics and patient care. Despite its importance, the convergence of fairness-
integrated HML modeling remains an area in need of deeper exploration and understanding.
Addressing fairness concerns is essential for ethical imperatives, improving health outcomes,
and fostering trust in HML applications across diverse populations.

3.1 Problem Formulation

Without losing generality, we only consider the Intensive Care Unit (ICU) mortality pre-
diction task, formulated as a binary classification task in this study. Let the binary label
y; € {0,1} for the i-th patient; where y; = 1 denotes mortality and y; = 0 survival. We
define the sparse irregular time series dataset D = {(s;, X;, v;)}X, of N observations.

For each patient i, s; € R is a sensitive attribute vector like age, gender, insurance, etc.
But, based on our analysis results in this study, ethnicity is used. X, is the multivariate
time-series data represented by X, = {(tj,xj,vj)}j]‘il for M observations. It is a tuple
containing time ¢;, event feature x; € X representing the physiological/clinical indicator,
and its corresponding value v; € R. So, in this study, the model f(-) is trained with the
data D to predict 7, given by

y=/f(D) (3.1)

10



STraTs is modeled to predict ICU Mortality using the data D; however, for the time-series
LSTM model, we use the same data, but the dataset is formatted as D' = {(X!, y;)} | with
the sensitive attribute being a part of the features x;. In the case of non-time-series/static
models, the mean values of the time-series feature over the time t; are calculated to con-
struct X5 = {(z5,v5)}}L, of the dataset D* = {(X{,y;) }i,.

Given these predictions, we then use the fairness metrics defined in section 3.3 to
evaluate the models.

3.2 Healthcare ML Fairness Measurements

Before going further, defining some key terminology in fairness research is important.
A ‘sensitive attribute’ is an individual characteristic deemed potentially discriminatory,
such as ethnicity, gender, or age. ‘Protected groups’ are demographics that could face
unfair treatment based on these attributes, whereas ‘privileged groups’ are typically exempt
from such bias. Fairness metrics quantitatively evaluate an AI model’s impartiality, and
bias mitigation strategies are the methods employed to reduce discrimination within these
models [131].

Fairness in HML ensures equitable model performance and decision-making across diverse
patient groups, avoiding bias based on sensitive attributes like ethnicity, gender, or age *.
The fairness problem of machine learning methods in healthcare can be grouped into two
categories based on differences in the resources allocated [3].

1. Equal allocation - Resources should be distributed proportionally to patients in pro-
tected groups.

2. Equal performance - The model is guaranteed to be equally accurate for patients in
protected and non-protected groups.

As mentioned above, for each patient i, s; € R is a sensitive attribute vector. To identify
which sensitive attribute is most closely associated with the target variable, we performed
a comprehensive statistical analysis as documented in our datasheet. Chi-square analysis
revealed a significant association between ethnicity and ICU mortality, identifying ethnicity
s as the sensitive attribute. This informed our selection of fairness group metrics [9] to

!Fairness metrics are evaluated on any available sensitive attributes. However, unfairness might exist
because of unrecorded sensitive attributes as well

11



evaluate disparities across ethnic groups. In the subsequent sections, we omit patient index
i for notational simplicity.

Fairness metrics can be evaluated on sensitive attributes like gender, insurance, etc. But,
this study uses ethnicity based on our correlation analysis results. The ethnic attribute
s°h is categorized into five groups: Asian, Black, Hispanic/Latino, White, and Other. For
fairness assessments, we compare pairs of these groups, and the function priv(-) assigns
status for the sub-groups, a for ‘privileged’ and b for ‘protected’ based on the ethnic
groups being compared. The ground truth is denoted by y, and the model f(-) prediction
is .

3.3 Fairness Metrics

Fairness metrics in machine learning serve as quantitative benchmarks to evaluate and
ensure that algorithms perform equitably across all user groups, particularly when decisions
impact individual’s lives. In healthcare, these metrics are vital as they directly influence
the quality of patient care and resource allocation. Various fairness metrics exist, each
with different implications for model assessment, and based on our analysis results, group
fairness metrics are used in this study.

Demographic Parity, which advocates for equal opportunity allocation, stipulates that
the probability of a favorable outcome should be independent of the sensitive attribute
[135], i.e. the probability of a positive prediction should be equal across different ethnic
groups.

P(y = 1|priv(s™") = a)) = P(y = 1|priv(s™") = b)) (3.2)
Equalized Odds, a metric that promotes equal performance, requires equal decision rates

for privileged and unprivileged groups and is defined as [130], i.e. the model’s decision rates
for predicting an outcome should be the same across different demographic groups, given
the actual outcome.

P(7 = ylpriv(s™™) = a,y) = P(y = y|priv(s®") = b,y), Vy <€ {0,1} (3.3)

Equal Opportunity advocates equal true positive rates across different ethnic groups
[21], aiming for fairness in model sensitivity.

P(y = 1|priv(s™") = a,y = 1) = P(y = 1|priv(s*") = b,y = 1) (3.4)

12
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Disparate Impact, a group metric that assesses the ratio of favorable outcomes for un-
privileged to privileged groups. It evaluates the ratio of positive predictions from one ethnic
group to another, with a value of 1 indicating perfect fairness.

> (priv(s™) = a
>_(priv(se") = b,

(3.5)

In addition to evaluating their predictive accuracy, we assess the fairness of HML models
to measure their trustworthiness. This assessment is crucial because these models are
trained on the data sourced from CRD that may contain societal biases. Without fair
data assessment, there’s a risk that these models could unintentionally perpetuate existing
biases.

13



Chapter 4

Datasheet for Clinical Research
Database

Understanding the inherent data and being aware of its inconsistencies during modeling are
essential to achieve data-centric fairness. Practitioners may find it challenging to navigate
the documentation while concentrating on modeling and fairness due to the breadth of the
database [28], as they might only be interested in datasets relevant to their task. So, we
present the ‘Datasheet for CRD’ for MIMIC 1V v2.0 as shown in Figure 4.1.

This resource will aid researchers in identifying and addressing data inconsistencies, guide
the selection of sensitive attributes essential for fairness assessments, and facilitate the
creation of robust, just, and data-conscious fair HML models. More than a mere inventory,
the datasheet provides comprehensive insights into the entire database structure, data
collection methodologies, management practices, and potential biases.

The datasheet for the MIMIC IV v2.0 provides the following.

1. A thorough overview of the MIMIC IV database, developed by expanding the [30)]
template to accommodate the intricacies of a complete CRD.

2. A detailed insight into the unique structure of the CRD. We extended the [30] tem-
plate to incorporate all of the MIMIC IV modules, such as ‘Hosp’ and ‘ICU’, MIMIC
IV-ED (entire emergency department data), MIMIC IV Notes (physician’s notes on
patients), and MIMIC-CXR (chest X-ray).

3. Custom queries unique to the CRD. These queries are formulated to provide an in-
depth understanding of the data collection, composition, arrangement, task-specific

14
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Figure 4.1: Snapshot of our comprehensive datasheet webpage, tailored for the MIMIC IV v2.0 database.
usage, and restrictions unique to the MIMIC IV database and prefixed with ‘+’ in the
datasheet. For example, Can/How the dataset be/are constructed from the MIMIC

database?’ is used in place of questions that are unique to the dataset, such as What
is the composition of the dataset?”’.

4. Tt also features task-specific association analysis between features and the target
for a variety of HML prediction tasks such as ICU Mortality, Length of Stay, and
Readmission, thus facilitating a deeper fairness evaluation of the models.

4.1 Datasheet for complex Clinical Research Database
- MIMIC 1V v2.0

4.1.1 Motivation

The questions in this section are primarily intended to clearly articulate the reasons for
creating the database and to promote transparency about funding interests.

M1. For what purpose was the database created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.
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The creation of the MIMIC-IV CRD aimed to improve patient care through knowledge
discovery and algorithm development using a historically collected medical dataset. It was
developed with an approach that allows permissive access, enabling extensive utilization
of the MIMIC-IV database. Consequently, the database has been widely utilized in vari-
ous healthcare applications, including assessing treatment effectiveness in specific patient
groups and predicting critical outcomes such as mortality, readmission, and length of stay

[25]-
M2. Who created the database (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

The MIMIC-IV database [25|, developed by Alistair Johnson, Lucas Bulgarelli, Tom Pol-
lard, Steven Horng, Leo Anthony Celi, and Roger Mark from the Massachusetts Institute
of Technology at the MIT Laboratory for Computational Physiology, is a collaborative
effort involving various research groups.

M3. Who funded the creation of the database?

The work was supported by grants from the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) of the National Institutes of Health (NIH) under award numbers
RO1-EB001659 (2003-2013) and R0O1-EB017205 (2014-2018) *.

M4. Any other comments?

MIMIC is a large and freely available database that contains deidentified health-related
data from patients admitted to the critical care units of the Beth Israel Deaconess Medical
Center. There are multiple versions of MIMIC that have been released:

1. MIMIC-IV encompasses data collected from 2008 to 2019, obtained from Metavi-
sion bedside monitors [28].

2. MIMIC-III comprises data collected from 2001 to 2012, obtained from both Metavi-
sion and CareVue bedside monitors [25].

3. MIMIC-II includes data collected from 2001 to 2008, obtained exclusively from
CareVue bedside monitors. While MIMIC-IT is no longer publicly available, its data
can still be obtained from MIMIC-III by selectively including the data from the
CareVue monitors [25].

MIMIC IIT and MIMIC IV have been extensively utilized throughout the surveyed timeline
for healthcare machine learning (HML) prediction models. The datasheet provided is
specifically for MIMIC IV v2.0, the latest available version of the database.

https://mimic.mit.edu/
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License - The licensing for the MIMIC files can be found in the PhysioNet Credentialed
Health Data License 1.5.0 (MIT-LCP)*.

4.1.2

Composition

The questions in this section will highlight the composition of the database intended to
provide ML practitioners with the information needed to curate their custom task-specific
MIMIC dataset.

C1. What is the composition of the database?

MIMIC IV database is grouped into four modules: MIMIC IV (hosp, and icu), MIMIC
IV-ED (ed), MIMIC IV-Note (note), and MIMIC-CXR (cxr)*.

1. MIMIC IV|2g]

(a)

The Hosp module grants access to diverse data extracted from the hospi-
tal’s electronic health record system, including patient and admission details,
laboratory measurements, microbiology information, medication administration
records, and billed diagnoses. These data are organized in the form of tables,
including patient and admission-related tables (patients, admissions, transfers),
laboratory measurement tables (labevents, d labitems), microbiology culture
table (microbiologyevents), provider order tables (poe, poe detail), medication
administration tables (emar, emar detail), medication prescription tables (pre-
scriptions, pharmacy), and hospital billing information tables (diagnoses icd,
d_icd diagnoses, procedures icd, d icd procedures, services).

The ICU module contains information collected from the clinical information
system (BIDMC: MetaVision (iMDSoft)) used within the ICU. Documented
data includes intravenous administrations, ventilator settings, and other charted
items. Data documented in the icu module includes intravenous and fluid in-
puts (inputevents), ingredients of the aforementioned inputs (ingredientevents),
patient outputs (outputevents), procedures (procedureevents), information doc-
umented as a date or time (datetimeevents), and other charted information
(chartevents).

2. MIMIC IV-ED|28] - The ED module of MIMIC IV-ED focuses on emergency
department patients and encompasses information regarding reasons for admission,
triage assessments, vital signs, and medication reconciliation. The subject id and
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hadm id identifiers within MIMIC-IV-ED allow linkage with other MIMIC-IV mod-
ules.

3. MIMIC IV-Note [28] - The Note module contains deidentified free-text clinical
notes for hospitalized patients.

4. MIMIC IV-CXR [28] - The CXR module of MIMIC IV-CXR provides lookup tables
that establish connections between patient identifiers and MIMIC-CXR study id and
dicom _id, facilitating the analysis of patient chest x-rays in conjunction with clinical
data from other MIMIC-IV modules.

+ C2. How is the data arranged within each module, and for what purpose?

The data within each module is structured in tables, as MIMIC is a well-organized relational
database. Each table within a module represents a specific type of data. Within each table,
the data is organized into rows and columns. Each row corresponds to a particular patient
or event, while each column represents a specific variable or attribute corresponding to that
row. This organized structure allows researchers to extract customized datasets tailored
to their research inquiries efficiently and facilitates the construction of machine learning
models.

+ C3. Can the modules be linked to create a specific task dataset?

Yes. The tables within a module can be connected to others within the same module or
across different modules using unique identifiers.

+ C4. Explain in detail the tables presented in each module.
MIMIC 1V

Hosp Module

Table 4.1: Description of Hosp module Tables with detailed information about the features.

Table Description Features

omr The Online Medical Record (OMR) subject id,  chartdate, seq num, re-
table contains miscellaneous infor- sult name, result value
mation from the EHR
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provider

admission

diagnoses icd
drgcodes

emar

emar_detail

The provider table lists deidenti-
fied provider identifiers used in the
database

Detailed information about hospital
stays

Billed ICD-9/ICD-10 diagnoses for
hospitalizations

Billed  diagnosis-related  group
(DRG) codes for hospitalizations
The Electronic Medicine Adminis-
tration Record (eMAR); barcode
scanning of medications at the time
of administration

Supplementary information for elec-
tronic administrations recorded in

eMAR

19

provider id

subject id, hadm id, admittime, dis-
chtime, deathtime, admission type, ad-
mit_provider id, admission_location,
discharge location, insurance, language,
marital _status, race, edregtime, edouttime,
hospital expire flag

subject id, hadm id, seq num, icd code,
icd version

subject id, hadm id, drg type, drg code,
description, drg_severity, drg_mortality
subject id, hadm id, emar id, emar seq,
poe id, pharmacy id, enter provider id,
charttime, medication, event txt, schedule-
time, storetime

subject _id, emar_id, emar_seq,
parent field ordinal, administra-
tion type, pharmacy id, bar-
code type, reason_for no_barcode,
complete dose not_given,

dose due, dose _due_unit,
dose given, dose given unit,
will remainder of dose be given, prod-
uct _amount given, product unit, prod-
uct_code, product _description, prod-

uct _description other, prior _infusi, n_rate,
infusion _rate, infusion _rate adjustment,
infusion rate adjustment amount, infu-
sion_rate unit, route, infusion complete,
completion interval, new iv_bag hung,
contin, ed infusion in other location,
restart _interval, side, site,
non formulary visual verification



hpcsevents

labevents

microbiology

events

patients

pharmacy

poe

poe_detail

prescriptions

Billed events occurring during the
hospitalization. Includes CPT codes

Laboratory measurements sourced
from patient-derived specimens

Microbiology cultures

Patients’ gender, age, and date of
death if information exists

Formulary, dosing, and other infor-
mation for prescribed medications

Orders made by providers relating
to patient care

Supplementary information for or-
ders made by providers in the hos-
pital

Prescribed medications

20

subject id, hadm id, chartdate, hcpes cd,
seq num, short description

labevent id, subject id, hadm id, speci-
men_id, itemid, order provider id, chart-
time, storetime, value, valuenum, valueuom,
ref range lower, ref range upper, flag, pri-
ority, comments

microevent id,subject id, hadm id, mi-
cro_specimen _id, order provider_id,

chartdate, charttime, spec_itemid,
spec__type desc, test seq, storedate,
storetime, test _itemid, test n, me,

org itemid, org name, isolate num, quan-
tity, ab_itemid, ab name, dilution text,
dilution comparison, dilution value, inter-
pretation, comments

subject _id,  gender, anchor age, an-
chor year, anchor year group, dod

subject id, hadm id, pharmacy id, poe_id,
starttime, stoptime, medication, proc_type,
status, entertime, verifiedtime, route, fre-
quency, disp sched, infusion type, slid-
ing scale, lockout interval, basal rate,
one hr max, doses per 24 hrs, duration,
duration interval, expiration value, expi-
ration unit, expirationdate, dispensation,
fill quantity

poe_id, poe_seq, subject id, hadm _id, or-
dertime, order type, order subtype, trans-
action_type, discontinue of poe_ id, discon-
tinued by poe id, order provider id, or-
der _status

poe_id, poe_ seq, subject id, field name,
field value

subject id, hadm _id, pharmacy id, poe_id,
poe_seq, order provider_ id, starttime, stop-
time, drug_type, drug, formulary drug cd,
gsn, ndc, prod _strength, form rx,
dose val rx, dose unit rx, form val disp,
form unit disp, doses _per 24 hrs, route



procedures_icd

services

transfers
d_hcpes

d_icd diagnoses

d_icd procedures Dimension

d_labitems

Billed procedures for patients during
their hospital stay

The hospital service(s) that cared
for the patient during their hospi-
talization

Detailed information about pa-
tients’ unit transfers

Dimension table for hpcsevents; pro-
vides a description of CPT codes

Dimension table for diagnoses icd;
provides a description of ICD-
9/ICD-10 billed diagnoses

table  for  proce-
dures_icd; provides a description of
ICD-9/ICD-10 billed procedures

Dimension table for labevents pro-
vides a description of all lab items

subject id, hadm id, seq num, chartdate,
icd_code, icd _version

subject _id, hadm _id,
prev_service, curr_service

transfertime,

subject id, hadm_id, transfer id, eventtype,
careunit, intime, outtime

code, category,
short _description

long description,

icd_code, icd version, long title

icd_code, icd _version, long _title

itemid, label, fluid, category

ICU module

Table 4.2: Description of ICU module Tables with detailed information about the features.

Table Description Features

caregiver The caregiver table lists deidentified caregiver id
provider identifiers used in the ICU
module

d_items Dimension table describing itemid. itemid, label, abbreviation, linksto, cate-
Defines concepts recorded in the gory, unitname, param type, lownormal-
events table in the ICU module value, highnormalvalue

chartevents Charted items occurring during the subject id, hadm id, stay id, caregiver id,
ICU stay. Contains the majority of charttime, storetime, itemid, value, valuenum,
information documented in the ICU  valueuom, warning

datetimeevents = Documented information which isin  subject id, hadm id, stay id, caregiver id,
a date format (e.g., date of last dial-  charttime, storetime, itemid, value, valueuom,
ysis) warning

icustays Tracking information for ICU stays subject id, hadm _id, stay _id,
including admission and discharge first careunit, last careunit, intime, out-
times time, los
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Ingredientevents

inputevents

outputevents

procedureevent

Ingredients of continuous or inter-
mittent administrations including
nutritional and water content

Information documented regarding
continuous infusions or intermittent
administrations

Information regarding patient out-
puts including urine, drainage, and
S0 on

Procedures documented during the
ICU stay (e.g., ventilation), though
not necessarily conducted within the
ICU (e.g., x-ray imaging)

subject id, hadm _id, stay id, caregiver id,

starttime, endtime, storetime, itemid,
amount, amountuom, rate, rateuom, orderid,
linkorderid, statusdescription, originalam-

ount, originalrate

subject id, hadm _id, stay id, caregiver id,
starttime, endtime, storetime, itemid,
amount, amountuom, rate, rateuom, orderid,

linkorderid, ordercategoryname, secondary-
ordercategoryname, ordercomponenttype-
description, ordercategorydescription, pa-
tientweight, totalamount, totalamountuom,

isopenbag, statusdescription, originalamount,
originalrate

subject id, hadm _id, stay_id, caregiver id,
charttime, storetime, itemid, value, valueuom

subject id, hadm_id, stay_id, caregiver id,
starttime, endtime, storetime, itemid, value,
valueuom, location, locationcategory, or-
derid, linkorderid, ordercategoryname, or-
dercategorydescription, patientweight, isopen-
bag, continueinnextdept, statusdescription,
originalamount, originalrate

MIMIC IV-ED

Table 4.3: Description of ED module Tables with detailed information about the features.

Table Description Features

diagnosis The diagnosis table provides billed diag- subject id, stay _id, seq num,
noses for patients. Diagnoses are deter- icd code, icd version, icd _title
mined after discharge from the emergency
department

edstays The edstays table is the primary tracking subject id, hadm id, stay id, in-
table for emergency department visits. It time, outtime, gender, race, ar-

provides the time the patient entered the

rival _transport, disposition

emergency department and the time they

left the emergency department
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medrecon

pyxis

triage

vitalsign

On admission to the emergency depart-
ments, staff will ask the patient what cur-
rent medications they are taking. This pro-
cess is called medicine reconciliation, and
the medrecon table stores the findings of
the care providers

The pyxis table provides information for
medicine dispensations made via the Pyxis
system

The triage table contains information
about the patient when they were first
triaged in the emergency department

Patients admitted to the emergency de-
partment have routine vital signs taken ev-
ery 1-4 hours. These vital signs are stored
in the vitalsign table

subject id, stay id, charttime, name,
gsn, ndc, etc_rn, etccode, etcdescrip-
tion

subject_id, stay _id, charttime,
med _rn, name, gsn_rn, gsn
subject id, stay id, temperature,

heartrate, resprate, o2sat, sbp, dbp,
pain, acuity, chiefcomplaint

subject id, stay id, charttime, tem-
perature, heartrate, resprate, o2sat,
sbp, dbp, rhythm, pain
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MIMIC IV-CXR

Table 4.4: Description of CXR module Tables with detailed information about the features.

Table Description

Features

cxr_record list Lists all records in the MIMIC-CXR database

subject _id, study id, di-
com_id

MIMIC IV-Note

Table 4.5: Description of Note module Tables with detailed information about the features.

Table Description Features

discharge Discharge summaries for hospitalizations note_id, subject _id,
hadm_id, note_type,
note seq, charttime, store-
time, text

discharge detail Auxiliary information for discharge summaries note id, subject id,
field name, field value,
field ordinal

radiology Radiology report note_id, subject id,
hadm _id, note type,
note seq, charttime, store-
time, text

radiology detail Auxiliary information for radiology notes note_id, subject _id,
field name, field value,
field ordinal

cxr_record list Lists all records in the MIMIC-CXR database subject _id, study id, di-

com_id

+ C5. Can/How can the dataset be/are created from the MIMIC database?

The MIMIC database is a comprehensive clinical research database that encompasses var-
ious types of data, such as patient admissions, ICU records, triage information, bedside
health records, X-rays, and clinician medical notes. It offers researchers the flexibility to

create custom datasets tailored to their specific research tasks.

For example, if the objective is to predict heart failure, relevant cohorts related to
heart failure can be extracted from tables like admission, patient, diagnoses icd, and
d_icd diagnoses in the hosp module. Additional features associated with heart failure
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can be obtained by linking tables from the ICU module and ED module. Once the cohort
and their corresponding heart-related features are extracted, they undergo pre-processing
and cleaning before being represented in either a time series or non-time series format,
depending on the prediction task. This allows for the creation of suitable datasets for pre-
dictive modeling. Similarly, researchers can curate a wide range of task-specific datasets
based on their needs.

C6. What do the dataset’s instances represent (e.g., documents, photos, people, coun-
tries)?

A dataset derived from the MIMIC contains patient health data. The data can be patient
demography (Age, gender, ethnicity, language, etc.), ICU details, X-ray images, or even
Clinician notes. It differs depending on the intended prediction task.

C7. How many instances are there in total (of each type, if appropriate)?

Dataset is extracted from the MIMIC database based on the intended task, and the count
of instances depends on the dataset extracted.

For instance, If we intend to create a MIMIC IV ED dataset by linking ED, hosp, and
ICU modules, then the dataset will have 425087 instances. Similarly, several complex
datasets can be created, and the instance of the dataset varies depending on the prediction
task /requirements.

C8. Does the dataset/database contain all possible instances, or is it a sample (not nec-
essarily random) of instances from a larger set? If the dataset is a sample, then what is
the larger set? Is the sample representative of the larger set (e.g., geographic coverage)?
If so, please describe how this representativeness was validated /verified. If it is not repre-
sentative of the larger set, please describe why not (e.g., to cover a more diverse range of
instances because instances were withheld or unavailable).

The MIMIC-IV database is a subset of deidentified electronic health records (EHRs) ob-
tained from patients admitted to BIDMC between 2008 and 2019. This curated collection
has undergone validation and quality assurance by a team of interdisciplinary experts. The
database includes diverse patients and diagnoses, making it suitable for various research
purposes. However, it is important to acknowledge that the dataset is not comprehensive,
as it represents a subset of the overall patient population. Researchers should be mindful of
potential biases inherent in the dataset and employ appropriate methods to address them
when conducting analyses or studies!.

C9. What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

25



MIMIC IV (hosp and ICU module) and MIMIC-IV-ED (ED module) consist of raw unpro-
cessed text, Date time, and number data in the comma-separated format of the patients
admitted to the hospital, ICU, and ED. MIMIC-CXR and MIMIC-Note contain images of
chest X-rays and free-text clinical notes for hospitalized patients, respectively. Table 77
provides detailed feature information of the data.

C10. Is there a label or target associated with each instance? If so, please provide a
description.

The choice of target variable in the MIMIC dataset depends on the specific prediction task.
For example, if the goal is to predict the length of stay in the ICU, the los attribute in
the icustay table can serve as the target variable. On the other hand, if the objective is
to predict in-hospital mortality, the hospital expire flag in the admissions table can be
used as the target variable. The target variable selection is contingent upon the
specific prediction task being undertaken.

C11. Are there recommended data splits (e.g., training, development /validation, testing)?
No

C12. Are there any errors, sources of noise, or redundancies in the database? If so, please
provide a description.

Our analysis of the MIMIC IV dataset has revealed several biases and inconsistencies that
researchers should be aware of,

1. Inconsistencies in patient details:Patient language is inconsistently recorded,
with only English being specified while other languages are marked as ’?’ or unknown.

2. Inconsistencies in in-hospital expiry information: The admission table con-
tains multiple reports of the same patient’s death, leading to inconsistencies.

3. Vagueness in insurance coverage information: The dataset lacks definitive in-
formation about insurance coverage, limiting researchers’ ability to draw conclusions
on insurance choices.

4. Inconsistencies in hospital admit and discharge timestamps: The admission
table exhibits inconsistencies in the recorded timestamps and missing values for death
time. These might be data entry errors since there are instances where the ICU in
time occurs before the hospital admission and ICU out time occurs after the hospital
discharge time.
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5. Potential representation bias in the dataset: Gender attribute has only Male
and Female data recorded, and the Language attribute only has English-speaking pa-
tient’s details. The database owners acknowledge the potential for bias, particularly
since the data is derived from a single hospital system and may not berepresentative
of the entire population.

The data [28] in the database is collected during routine clinical practice, reflecting the
specific practices of the hospital. It is important to note that the database may have
implausible values due to the archival process'. Therefore, caution should be exercised
when using the data, and researchers should be mindful of the dataset limitations and
potential biases.

We strongly recommend that researchers adhere to best practice guidelines [137] when
analyzing the data.

C13. Does the database contain data that might be considered confidential (e.g., data
protected by legal privilege or doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)?

Yes, the MIMIC IV dataset includes medical records of patients, encompassing confidential
personal and health-related information. However, the dataset is constructed with patient
privacy as a priority, and all data within the database undergoes de-identification processes
to comply with Health Insurance Portability and Accountability Act (HIPAA) regulations.

C14. Does the database identify subpopulations (e.g., by age or gender)?

Yes. Databases (specifically admission and patient tables) have patient demographic data
such as age, gender, ethnicity, language, insurance, and marital status.

MIMIC 1V Distribution statistics

C15. Isit possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the database? If so, please describe
how.

No, all data in the database is de-identified by HIPAA regulations.

C16. Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political opin-
ions or union memberships, or locations; financial or health data; biometric or genetic data;
forms of government identification, such as social security numbers; criminal history)?
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Table 4.6: Admission distribution statistics.

Description Value
Total records 180,733
Male 47%
Female 53%
Min Age 18

Max Age 91

Predominant Ethnicity

White (67.2%)

Table 4.7: Patient distribution statistics.

Description ~ Value
Total records 299,712
Male 47%
Female 53%
Min Age 18
Max Age 91

Table 4.8: ED table distribution statistics.

Description Value
Total records 299712
Male 46%
Female 54%

Predominant Ethnicity

White (58%)

Predominant Disposition Home




Yes, the database recorded demographic information like ethnicity, gender, age, marital
status, language, and insurance.

+ C17. Do researchers have to take any important measures to handle the
data with care?

To ensure patient privacy, researchers are required to comply with data usage agreements
mandated in [28, | and obtain the necessary approvals and certifications before ac-
cessing the dataset. Researchers working with healthcare-related data are responsible for
handling the data carefully and ethically, taking measures to prevent any potential harm
or dissatisfaction. While the data is de-identified by HIPAA regulations, it is crucial to
treat the data with respect and caution, following best practices. Additionally, the Institu-
tional Review Board of the Beth Israel Deaconess Medical Center approved the collection
of patient information and the creation of the research resource.

4.1.3 Collection Process

The question in this section provides a clear perspective of how the data is collected in
MIMIC IV. This highlights potential data collection bias the researchers can be wary of
while modeling.

CP1. How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If subjects reported the data or indirectly inferred/derived from
other data, was the data validated /verified? If so, please describe how.

The data was extracted from the hospital databases of the Beth Israel Deaconess Medical
Center (BIDMC) specifically for patients admitted to the intensive care units. A compre-
hensive patient list was compiled, including all medical record numbers associated with
ICU or emergency department admissions from 2008 to 2019. To ensure the reliability
of the database, a multidisciplinary team of scientists and clinicians thoroughly evalu-
ated MIMIC-IV during its development, conducting code reviews and documenting any
identified issues using a ticket system [23].

CP2. What mechanisms or procedures were used to collect the data (e.g., hardware
apparatuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated?

MIMIC-IV is derived from two distinct database systems within the hospital setting: a
customized electronic health record (EHR) used across the entire hospital and a special-
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ized clinical information system called Meta Vision (iMDSoft) specifically designed for the
intensive care units at the Beth Israel Deaconess Medical Center (BIDMC).

To ensure the accuracy and reliability of the MIMIC-IV dataset, a diverse team of scien-
tists and clinicians conducted a comprehensive evaluation during its development, which
included code reviews and the systematic documentation of identified issues using a ticket
system [285].

CP3. Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., the recent crawl of old
news articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

Over 11 years, from 2008 - 2019.
CP4. Were any ethical review processes conducted (e.g., by an institutional review board)?

Yes, the Institutional Review Board reviewed the collection of patient information and the
creation of the research resource at the Beth Israel Deaconess Medical Center.

CP5. Did you collect the data directly from the individuals in question or obtain it via
third parties or other sources (e.g., websites)?

Data is collected from hospital EHR and ICU-specific clinical information systems at the
BIDMC called CareVue and MetaVision (iMDSoft).

CP6. Has an analysis of the potential impact of the dataset and its use on data sub-
jects (e.g., a data protection impact analysis) been conducted? If so, please describe this
analysis, including the outcomes and a link or other access point to any supporting docu-
mentation.

Unknown, however, the MIMIC data is deidentified!, and patient identifiers were removed
according to the Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor
provision [28].

4.1.4 Preprocessing/cleaning/labeling

Questions under this section detail the preprocessing steps the CRD owners took. Clear
information about the data preprocessing steps will aid the HML practitioner during the
duration of their task-specific, custom dataset.

P1. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIF'T feature extraction, removal of instances,
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processing of missing values)? If so, please provide a description. If not, you may skip the
remaining questions in this section.

The data within the MIMIC-IV database underwent a reorganization to enhance its suit-
ability for retrospective data analysis [28]. This involved denormalizing tables, eliminating
audit trails, and consolidating the data into smaller tables. The primary objective of this
process was to simplify the retrospective analysis of the database. Notably, no data clean-
ing procedures were applied to ensure that the dataset accurately represents real-world
clinical datal.

To protect patient privacy, patient identifiers were removed in compliance with HIPAA reg-
ulations. Random ciphers were used to replace patient identifiers, resulting in deidentified
integer values for patients, hospitalizations, and ICU stays. Structured data underwent
filtering using look-up tables and allow lists. Additionally, dates and times were randomly
shifted into the future by specific days. Consequently, the data for each patient remains
internally consistent [25].

P2. Is the software used to preprocess/clean/label the data available? If so, please provide
a link or other access point.

Unknown. However, authors have stated that a free-text deidentification algorithm was
used to remove personally identifiable information (PHI) from the free-text data if needed.

4.1.5 Uses

This section highlights the use case scenario of the database. By explicitly knowing the
use case of the data, the researchers can make informed decisions, thereby avoiding any
potential risks.

Ul. Has the database/dataset been used for any tasks already? If so, please provide a
description.

Yes, the MIMIC database is one of the most widely used CRD. It has been widely used
for the below types of works,

1. Prediction tasks like,

(a) Readmission [122, , —110] (30, 60, 90, 120 and custom days) - Predict
patients at risk of readmission early in the health care process(helps to prioritize
care towards such patients preventing mortality and readmission).

(b) Mortality [37-39, 11, 13] - Predict the likelihood of patients dying.
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i. In-hospital |70, , , | - Predict the likelihood of a patient dying
in hospital while they are admitted (helpful to identify high-risk patients
early on to provide medical interventions).

ii. Short term |12, , , , | - Predict short-term mortality (typi-
cally within 2-3 days) after ICU admission.
iii. Long term [37-39, 112] - Predict long-term mortality (typically within 30
days to 1 year) after hospital discharge.
(c) Length of stay (LOS) |77, 95, , | - Predict the length of stay of each
admission( typically predicting > 3 and 7 days stay. Custom days is also being
predicted).

(d) Phenotype label and ICD-9/10 code grouping - Helpful in tasks like dis-
ease prediction, outcome analysis, treatment recommendation, and customized

treatments.

i. Phenotype labeling [124, , , |classify patients into specific
groups based on their diagnoses, procedures, medications, and other clinical
variables.

ii. Grouping ICD 9/10 codes |20, , |into different categories based

on patient diagnosis to classify the disease.

2. Prediction for specific health ailments like,

(a
(b
(c
(

) Heart failure [18, 83|
)
)
d) Coronary artery disease (CAD) [76, 79]
)
)
)

Chronic Kidney Disease (CKD) [128, 129]
Chronic obstructive pulmonary disease (COPD) [130, 135]

e) Sepsis [128, 131]

(
(f
(g

Cancer [132, 148]

Ventilation failure [133, |

U2. Is there a repository that links to any or all papers or systems that use the database/dataset?
If so, please provide a link or other access point.

No, however, the owners [28] have provided the repository, where the code and other
discussions related to the database are hosted.

U3. Is there anything about the composition of the dataset or the way it was collected
and preprocessed /cleaned /labeled that might impact future uses? For example, is there
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anything that a dataset consumer might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or
other risks or harms (e.g., legal risks, financial harms)? If so, please provide a description.
Is there anything a dataset consumer could do to mitigate these risks or harms?

The data available in the database reflects the idiosyncrasies of routine clinical practice,
as stated by the owners. The archival process may have introduced implausible values and
potential bias into the data. Therefore, researchers need to follow best practice guidelines
when using the data for analysis or other purposes [25].

U4. Are there tasks for which the dataset should not be used? If so, please provide a
description.

Unknown, the owners of the database did not provide clear information in the documen-
tation.

4.1.6 Distribution

This section provides an overview of how data is distributed within the database and how
it can be distributed to the public.

+ D1. Is the data publicly available? How and where can it be accessed (e.g.,
website, GitHub)?

Yes. The MIMIC-IV data is accessible to the public through the PhysioNet?. To gain
access, individuals need to become PhysioNet-certified users and agree to the data use
agreement. Once granted access, users can download the complete set of files or select
specific subsets that align with their requirements.

D2. Will the dataset be distributed under a copyright or other intellectual property (IP)
license and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU and provide a link or access point to, or otherwise reproduce, any relevant
licensing terms or ToU and any fees associated with these restrictions.

Access to the MIMIC-IV data is granted through a license agreement called the Data
Use Agreement (DUA ), which outlines the terms and conditions for data usage. To obtain
access, users are required to complete an online course on the ethical use of human subject’s
research data and obtain a certificate of completion. Users can apply for dataset access
through the PhysioNet 2 with the certificate. The application process involves agreeing to
the DUA terms and providing details about the intended use of the data.

?https://physionet.org/content/mimiciv/2.2/
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4.1.7 Maintenance

This section highlights how the database is maintained and how frequently it’s being up-
dated. This gives users a clear picture of how to keep up with the different versions of the
data.

MA1. Is the database maintained? Who will be supporting/hosting/maintaining the
database?

Yes, MIMIC-IV is maintained by the Laboratory for Computational Physiology at the
Massachusetts Institute of Technology (MIT) and BIDMC. They provide ongoing support
and maintenance for the database.

MAZ2. How can the database’s owner/curator /manager be contacted (e.g., email address)?

For private issues, they can be contacted at mimic-support@physionet.org, and for issues
related to patient health information (PHI), phi-report@physionet.org is being used!.

MA3 Will the database be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often by whom, and how updates will be
communicated to dataset consumers (e.g., mailing list, GitHub)?

Yes, the MIT Laboratory regularly updates the MIMIC-IV database for the Computational
Physiology team. The latest version, v2.2, has been released, which includes updates
from the previous version, v1.0. The frequency of future updates is unknown, but any
information regarding updates can be found on the official website and GitHub.

MAA4. Will older versions of the database continue to be supported /hosted /maintained? If
so, please describe how. If not, please describe how its obsolescence will be communicated
to dataset consumers.

Previous versions of the database will continue to be supported and maintained. However,
it is not explicitly stated whether they might have any further updates by the owners.

MAS5. If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description.

Content for the MIMIC website and documentation is hosted publicly on GitHub. To raise
a problem or to suggest an improvement, a new issue can be created. Users can also take
part in the discussion channel.

+ M6. What is the Data life cycle of the MIMIC database?
1. Data Acquisition
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2. Data Archive
3. Data Preparation

4. Data loading

constitutes the life cycle of MIMIC CRD.
Data Acquisition.

Data is collected from the source, which may be internal, external, or both.

Table 4.9: Data Acquisition

Internal (In-hospital) data External data source

ICU/MICU/SICU/CCU
/JCVICU/NICU data (vitals, Social Security Death Index, etc.
trends, anomalies)

Chart details (Fluids, medica-
tions, etc.)

Demographics (age, gender, eth-
nicity, language, marital status,
religion, insurance, etc.)

Lab reports

Billing details

Physician notes

Provider order entries, etc.

Data Archive Data collected from the source is Archived before proceeding with data
preparation for later use.

Data Preparation

To ensure compliance with HIPAA regulations, deidentification, date shifts, and format
conversions are applied to the archival data. The data is then reorganized into a more
suitable format for retrospective analysis, which involves consolidating tables, denormaliz-
ing data, and removing audit trails. It’s important to note that no data cleaning procedures
were performed to maintain the authenticity of the real-world clinical dataset. Feedback
from users will be considered for further iterations, and the final version of the data will
be loaded into the database.
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Data loading to database

The final version of the data is then loaded to the database built on a PostgreSQL relational
database management system and hosted on a secure server infrastructure. The data can
be downloaded locally or accessed on the cloud via BigQuery, AWS, or GCS.

4.2 How Datasheet can be used for HML Modelling

For any machine learning (ML) model, especially in healthcare, the integrity and bias-
free nature of the data are critical. The composition section of the Datasheet meticu-
lously documents the MIMIC IV Clinical Research Database (CRD) and identifies po-
tential biases present. It guides ML practitioners in refining their datasets for specific
healthcare tasks—emergency department readmission, ICU mortality, or length of hospital
stay—while being mindful of existing data inconsistencies.

Following dataset preparation, the next step involves training the model for the chosen
task. Post-training, rigorous evaluation using relevant metrics is necessary to assess the
model’s efficacy. In Healthcare Machine Learning (HML), scrutinizing fairness alongside
performance is imperative. The analysis section of the Datasheet offers insights into select-
ing sensitive attributes for the analysis and aids in choosing appropriate fairness metrics.
This Datasheet will be a comprehensive resource for practitioners working with MIMIC
data and will foster the development of equitable HML models.
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Chapter 5

Role of Datasheet for Database in
modeling - ICU Mortality prediction
task

To explore the intricate link between clinical data and fairness in healthcare prediction
tasks, we benchmarked static baseline models such as Logistic Regression (LR) and XG
Boost, as well as the time-series LSTM model, against the SOTA model for ICU mortality.

5.1 MIMIC Database

The datasheet provides detailed information on the motivation, collection, composition,
and usage of MIMIC CRD, while Table 5.1 summarizes its general demographic character-
istics for ICU Mortality. This study analyzes the latest publicly available MIMIC-IV v2.0
for its up-to-date and comprehensive information, despite both MIMIC-IIT and MIMIC-IV
being popular in HML research.

Sensitive attribute statistics of MIMIC IV ICU Mortality data: We followed
the work of Meng et al. [20] and grouped Ethnic demography into 5 categories based on
the geographic origin. Data contains 68% of the White population followed by the Other
(13.8%) subgroup. Age is categorized into 6 buckets 5.1 following the work of Ro6sli et al.
[18]. 24% are of 30 to 49 and 50 to 69 age bins followed by 70 to 80 (23.6%). Children
below 17 are not part of this CRD. Gender-wise, only Males and Females are recorded,
while 56% of the patients are Males. Medicaid, Medicare, and Other were the 3 types of
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Table 5.1: Breakdown of Sensitive Attributes in MIMIC IV v2.0 ICU Mortality dataset: Distribution of
patient demographics across gender, age, ethnicity, language, and insurance type, highlighting the diversity
and potential biases inherent in the database.

Gender Age Ethnicity Language Insurance
Patient Count % | Range Count % | Group Count % | Type Count % | Type Count %
Female 25671  44.3 | 0-17 0 0 | Asian 1701 2.9 | English 52077 89.8 | Other 27262 47
Male 32328 55.7 | 18-29 6315 10.9 | Black 6565 11.3 | ? 5922 10.2 | Medicare 26385 45.5

30-49 13868 23.9 | Hispanic/Latino 2228 3.8 Medicaid 4352 7.5
50-69 13702  23.6 | White 39522 68.1

70-89 11264 19.4 | Other 7983 13.8

90+ 12859 22.2

Insurance listed, with English being the only language recorded, whereas others are left as
¢ ?7.

There are several inconsistencies like in-hospital expiry information ! and hospital admit

and discharge timestamps. Without careful consideration, there might be a risk of inadver-
tently overlooking potential target-feature associations or data inconsistencies which can
result in models that perpetuate bias [15].

5.2 Experimental setup

To examine how fair the predictions of SOTA ICU mortality models are, we conducted
a series of experiments against several baselines on the MIMIC IV dataset. We adopted
an 80:20 split for the training and test sets. The models were trained for up to 1000
epochs until the validation loss stopped improving for 10 continuous epochs, applying
a 10-fold cross-validation for 3 different random seeds. The target of the model is to
predict the probability of mortality (Y') following ICU admission of the patient. The
experiments were conducted on NVIDIA GeForce RTX 2080 Ti GPU and the entire code

of the implementation are available on this GitHub page.

5.3 Experimental Results

In this study, we rigorously evaluated the performance and fairness of HML models, specif-
ically focusing on ICU mortality prediction. Our evaluation comprised widely recognized

IThe admission table contains multiple reports of the same patient’s death, leading to inconsistencies.
However, owners of MIMIC have mentioned the potential of bias within the CRD
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Figure 5.1: Prediction performance analysis across models. Panels (a) and (b) show the ROC-AUC and
PR-AUC of the models, respectively, and the operating points in (a).

baselines, including Logistic Regression (LR), XG Boost, LSTM, and the SOTA model
described by Tipirneni et al. in [29].

5.3.1 Model Performance Evaluation

We employed the Receiver Operating Characteristic Area Under the Curve (ROC-AUC)
and Precision-Recall Area Under the Curve (PR-AUC) metrics for a comprehensive com-
parison of model performance. These comparisons, derived from 3 Monte Carlo simulations
to ensure statistical robustness, are visually represented in Figure 5.1. Surprisingly, the
XG Boost model demonstrated a significant performance uplift, outperforming the SOTA
model by 6.44% in terms of ROC-AUC, as detailed in Table 5.2.

5.3.2 Model Fairness Assessment

Further, to scrutinize the ethical aspect of the model application, we analyzed each model
using established fairness metrics. This assessment aimed to identify any persistent biases
or disparities in prediction accuracy across different ethnic groups. The results, summa-
rized in Table 5.3, revealed notable variations in model fairness. Figures 5.2(b) and 5.2(c)
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Table 5.2: Comparative Analysis of ICU Mortality Prediction: Predictive performance of models trained
on MIMIC TV v2.0, contrasting static and time-series models as reflected by the ROC-AUC and PR-AUC
curves for 3 Monte Carlo runs.

Type Model ROC-AUC PR-AUC

Static LR 0.805+£0.012  0.276+0.005
XG Boost 0.926+0.006 0.55140.007

Time series LSTM 0.886+0.003  0.807+0.011

STraTS (SOTA) 0.870+£0.002  0.52040.006

elucidate how XG Boost consistently surpassed the SOTA model in both Equalized Oppor-
tunity (EOp) and Equalized Odds (EO) metrics, highlighting its superior fairness profile.
Additionally, Figure 5.3 illustrates the disparities in Demographic Parity (DP) across eth-
nic categories, notably where the SOTA model still manifests considerable bias despite
achieving higher DP scores than XG Boost.
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Figure 5.2: Analysis of fairness metrics for each model across ethnic subgroups. Panels (a), (b), and (c)
show the comparative analysis for demographic parity (DP), equalized odds for TPR (also known as EOp),
and FPR, respectively. Inconsistency drawn from these metrics reveals the extent of fairness exhibited by
each model, highlighting the interplay between algorithmic performance and demographic impact.

These findings underscore the intricate challenges of embedding fairness into HML models.
The observed discrepancies across models, especially in the context of fairness metrics,
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Table 5.3: Evaluation of Fairness Metrics (Demographic Parity (DP), Equalized Odds for True Positive
Rate (TPR)/Equalized Opportunity (EOp), and Equalized Odds for False Positive Rate (FPR)) Across
Model Types: This table presents a comparative analysis of fairness metrics for different models, stratified
by ethnic groups.

EO(TPR
Type Models Ethnicity DP §*30p )/ EO(FPR)
> =S
T+
White 0.230 0.624 0.202
Other 0.309 0.828 0.249
Logistic Regression Black 0.265 0.825 0.225
Hispanic/Latino 0.251 0.583 0.230
. Asian 0.285 0.785 0.240
Static
White 0.196 0.858 0.145
Other 0.267 0.936 0.171
XG Boost Black 0.192 0.866 0.145
Hispanic/Latino 0.139 0.923 0.112
Asian 0.225 0.903 0.149
White 0.460 0.709 0.215
Other 0.534 0.759 0.275
LSTM Black 0.421 0.716 0.236
Hispanic/Latino  0.426 0.868 0.159
. . Asian 0.545 0.739 0.333
Time Series
White 0.289 0.799 0.230
Other 0.352 0.876 0.241
STraTS (SOTA) Black 0.304 0.871 0.252
Hispanic/Latino  0.271 0.812 0.214
Asian 0.299 0.816 0.209

41



(b) XG Boost

White White - 0.87 | 0.73
o . . o . .
2.00
3 Hispanic/ 3 Hispanic/ 1479 1100 0.73 | 0.62 | 052
= Latino o Latino
It] It] 1.75
-] o
0 Black o Black 4 0.98 1.00 | 0.85 | 0.72 1.50
8 8 1.25
£ Asian £ Asian 1.00
o v}
0.75
Other Other
0.50
@ O X o @ O X o > 0.25
F & 20 g ¢ & o @
S SoO > S S o O 5> S
S-SR < S 59 < & 0.00
£ &
Reference Group Reference Group
(c) LSTM (d) STraTsS
White White
Q. . Q. .
S Hispanic/ S Hispanic/ 2.00
9  Latino © Latino
O C) 1.75
®  Black ®  Black 1.50
1 19
8 e 1.25
g Asian g Asian 1.00
o o
0.75
Other Other
0.50
@ A NS @ O X < ~ 0.25
& ¢ O ¥ ¥V O o g
NS o N IS @ > <
N S g% ¥ & 0.00
FE FE

Reference Group Reference Group

Figure 5.3: Heatmaps Illustrating disparate model impact across Ethnic subgroups Groups. Red < 1.0
indicates the disparity of the model against the compared group, Red > 1.0 reflects the model’s disparity
against the reference group and the value of 1.0 shows Parity against the comparison. Highlighted cells
represent the most disparate subgroup comparison.
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highlight the necessity of looking at model development from a fairness perspective. It is
imperative to focus closely on the data we use, how we use it, and the inherent biases/CRD
data inconsistencies while building models. The 'Datasheet for database’ resource will serve
as an essential tool for all the ML practitioners working with CRD to develop equitable
HML models. Doing this isn’t just about making models more accurate; it’s about making
sure everyone gets fair treatment from these HML systems.

In light of our results, we advocate for an integrated strategy that considers both the
technical and ethical aspects of HML modeling. This strategy should encompass rigorous
data analysis, conscious model selection, and continuous fairness evaluation to mitigate
bias and promote equity in healthcare analytics.
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Chapter 6

Discussions and Conclusion

6.1 Discussion

The field of fair HML actively explores ways to prevent model discrimination. Given that,
the data fed into models, particularly in healthcare, can reflect real-world biases, making it
vital to analyze fairness in consideration of the data while modeling [15]. So, it is essential to
understand the inherent biases in the data. MIMIC is the go-to data source for HML models
and is used across the globe. Meng et al. work [20] on MIMIC states the importance of
demographic features for model prediction and highlights fairness concerns. Given that, our
analysis reveals that SOTA HML models are currently not reporting fairness metrics. This
is concerning since downstream application of these models can significantly disadvantage
subpopulations. On the other hand, practitioners may find it difficult to navigate large
databases such as MIMIC [28], which makes it harder to effectively track a model’s fairness
properties.

To initiate a shift towards data-centric fairness, we introduce ‘Datasheet for CRD’ for
MIMIC TV v2.0, a comprehensive resource custom-designed for CRD. A resource crafted to
assist practitioners in identifying data anomalies and evaluating feature-target relationships
for fairness assessments thus facilitating the development of robust, data-informed, and
equitable HML models. It serves as a blueprint for researchers to analyze (i) real-world
data inconsistency and (ii) task-specific feature-target association essential for fairness
evaluations.

Synthetic Data Generation Enhanced by Datasheets:

As we advance toward synthetic data generation—a necessary step in light of the dif-
ficulties in gathering diverse and all-encompassing health data—the ‘Datasheet for CRD’
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becomes an indispensable instrument. It is imperative to recognize that synthetic data,
derived solely from CRDs like MIMIC, does not completely capture the global patient
population as addressed inl. Combining these synthetic datasets with real patient data
collected from diverse geographical locations is necessary to ensure global representation.
By using the datasheet to identify and address data gaps in addition to it, we facilitate
the creation of enriched synthetic datasets that more accurately mirror the global patient
population, advancing the scope and impact of HML research.

Enhancing Generative Al in Healthcare with Datasheets: Datasheets for Clinical
Research Databases like MIMIC IV are vital tools for enhancing Generative Al, particularly
Large Language Models (LLMs) used in healthcare. They offer a way to refine these models,
ensuring the medical knowledge they generate is free from the inherent data biases present
in their training datasets. This fusion of LLM’s capabilities with the bias-aware data from
datasheets helps develop fair and generalizable Al.

Enhancing Trustworthy HML predictive modeling: The ‘Datasheet for CRD’ cou-
pled with a comprehensive Model Card [150] offers a robust framework for integrating
the expertise of healthcare professionals directly into the Al development process. Encap-
sulating clinician’s nuanced insights and observations within the datasheet and detailing
the operational aspects and performance/fairness metrics in the Model Card enhances the
ability to create models that resonate with the realities of clinical practice. This human-
in-the-loop methodology ensures patient and practitioner trust in evolving HML models,
making Al both cutting-edge and deeply trusted.

Future Work: Future work will include developing datasheets for other popular databases
such as eICU [151] and HiRID [152] as this study focuses solely on model fairness concerning
ethnic attributes. However, it does not explore other correlated variables, such as socio-
economic status, access to healthcare, pre-existing health conditions, and treatment quality,
which can also impact the prediction outcome. Future work could include obtaining and
analyzing these details from CRD and developing a datasheet for those to offer a more
comprehensive understanding of the factors influencing model fairness.

6.2 Conclusion

Our study highlights the critical need for a renewed focus on fairness in HML models. By
demonstrating how simple baselines outperform SOTA HML models on MIMIC, we reveal
the complexities involved in achieving fairness and the need for the community to move
towards reporting fairness metrics in HML by default. Moreover, for successful real-world
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use of HML, there is a need to adopt a data-centric approach to fairness, which entails a
thorough examination of the data, its contextual use, stakeholder discussions, and potential
model biases.
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Appendix A

Datasheet for MIMIC 1V v2.0

This webpage provides access to the entire datasheet. The section below provides a closer
look at the sensitive attribute correlation analysis of HML risk prediction tasks.

MIMIC-IIT and IV have been pivotal in healthcare machine learning (HML) prediction
tasks. This analysis zeroes in on MIMIC-IV version 2.0, the most recent release available

to the public. The table 5.1 provides a complete overview of the sensitive attributes of
MIMIC IV ICU data.

A.1 Sensitive attribute correlation analysis with risk pre-
diction outcomes

Our study employed the Chi-Square statistical test to discern the attribute most strongly
associated with prediction outcomes. The chi-square test results illuminate the relation-
ships between patient-sensitive characteristics and mortality, guiding the feature selection
for predictive modeling and fairness evaluation. Gender, with a chi-square statistic of 3.33
and a p-value of approximately 0.068, shows a marginal association with mortality; how-
ever, it falls just outside the conventional alpha level of 0.05 for statistical significance.
Despite a high chi-square statistic of 151.77, age yields a p-value of 0.467, suggesting that
the observed variations across different ages could be due to chance, thus making it less
reliable for predicting mortality in this context.

Language shows a similar pattern to gender, with a chi-square statistic of 3.37 and a p-value
of about 0.066, hovering near the boundary of significance but not conclusively so. This
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marginal association suggests that while there might be some relationship with mortality,
it is not as strong or as clear-cut as one would prefer for a predictive model.

In contrast, ethnicity, and insurance status demonstrate a much stronger association with
mortality outcomes. Ethnicity, in particular, stands out with a significant chi-square statis-
tic and a p-value of 2.704e15 that effectively rejects the null hypothesis of no association.
While insurance status also exhibits a significant p-value (2.630e™'7), the decision to focus
on ethnicity over insurance (potential ambiguity in Other Insurance information) is driven
by the detailed and consistent recording of ethnic data in the MIMIC dataset. This level
of detail in the ethnicity data provides a solid foundation for predictive analysis, ensuring
that the model’s outcomes are reliable and interpretable.

From the survey conducted in the chapter 2, we identified the below as the most widely

researched predictive modeling tasks. So we procured datasets for,

e In-hospital mortality concerning

— Heart failure,
— Chronic kidney disease (CKD),
— Sepsis.

e 30-day readmission, and

e Length of stay (LOS) for heart failure by adhering to the established pipeline except
for sepsis mortality.

For sepsis mortality, we directly extracted patient data affected by sepsis, omitting the use
of a specific pipeline, to validate and compare outcomes derived from both methodologies.

A.1.1 In-Hospital Mortality Prediction
Sepsis-Related Ailments

Cohort distribution insights - The cohort’s median age was 63, evenly distributed be-
tween male (53%) and female (47%) patients. The dataset primarily comprised the White
demographic (69%), with subsequent representation from Black, Other, Hispanic/Latino,
and Asian subgroups.

Cohort insurance utilization - Medicare emerged as the most utilized insurance across
all ethnicities (51%), with Other insurance closely behind at 41%. Medicaid saw the least
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Figure A.1: Sepsis Mortality in Relation to Ethnicity /Insurance: The Figure illustrates the % mortality
among sepsis patients by depicting the variations in mortality across different ethnic groups and insurance
categories, with Label 0 denoting the alive patients and Label 1 indicating the deceased.

utilization at 8%. Notably, White and Black patients had the highest Medicare utilization,
indicative of an older population within these communities. Conversely, minority groups
showed a preference for Other insurance, suggesting a relatively younger demographic or the
presence of private insurance coverage. Despite being the largest demographic, only 5.5%
of Caucasians utilized Medicaid, whereas Black patients had a higher Medicaid utilization,
highlighting socio-economic disparities.

Mortality rate analysis - Analysis starkly illustrates that individuals from other ethnic
groups and Asians had consistently higher death proportions, irrespective of their insurance
status. The Chi-square test (x> = 975.185, p < 0.001) validated a strong association be-
tween ethnicity and sepsis mortality, underlining the necessity of considering demographic
variables in predicting sepsis mortality.
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Figure A.2: Insurance Utilization among Heart Failure Cohorts based on Ethnicity: The figure showcases
the % insurance utilization among heart failure patients, categorized by their respective ethnicity.

Heart failure

Cohort distribution insights - The heart failure cohort consisted of patients with a
median age of 72, with a nearly equal distribution of males (55%) and females (45%).
Most patients (70%) belonged to the White demographic, followed by the Black, Other,
Hispanic/Latino, and Asian subgroups, reflecting the specific geographical location of data
collection.

Cohort insurance utilization - White and Black individuals had the highest patient
counts, followed by the Other subgroup. Medicare was the most commonly used insur-
ance among all the subgroups, except for Asians, as indicated by the figure. White pa-
tients exhibited the highest utilization of Medicare, followed by the Other-ethnic subgroup.
Medicaid utilization was lower across all subgroups except for Hispanic/Latino, Asian, and
Black patients.

Mortality rate analysis - Individuals from other ethnic groups consistently exhibited
higher mortality rates, irrespective of their insurance. Asians insured with Other and
Medicaid also demonstrated a relatively higher proportion of deaths. Caucasian death
rates were significantly lower in comparison to other subgroups. The chi-square test statis-
tic yielded a significant result of 105.107 (p < 0.001), providing robust evidence of an
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Figure A.3: % CKD mortality rate with respect to their Ethnicity/Insurance.

association between the variables.

Chronic Kidney Disease

Cohort distribution insights - The CKD cohort primarily consists of older male patients
with a median age of 71. White individuals represent the majority (64%), followed by
Black, Other, Hispanic/Latino, and Asian subgroups. White and Black patients have the
highest patient counts, along with the Other subgroup.

Cohort insurance utilization - Medicare insurance is widely utilized, with 60.5% of
patients across all ethnicities opting for it. Medicaid records the lowest utilization, with
only 4.7% of patients using it. Among the race subgroups, White and Black individuals
demonstrate the highest usage of Medicare insurance, while Asians show a preference
for other insurance types. 2.3% of Caucasians utilize Medicaid insurance, whereas Black
patients have a higher utilization of Medicaid insurance compared to different subgroups.

Mortality rate analysis - The figure shows individuals from other-ethnic groups consis-
tently exhibit higher proportions of deaths, regardless of their insurance type. Medicare-
insured Blacks experience the second-highest mortality rates, preceded by Caucasians.
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Figure A.4: Relationship between Readmission rates and patient’s Ethnicity/Insurance.

The chi-square (x* = 106.578, p < 0.001) statistical test shows a significant association,
suggesting a potential relationship between ethnicity and mortality outcomes.

A.1.2 30-day ICU Readmission Analysis

Cohort distribution insights - The median age for patients readmitted to the ICU within
30 days was 64, with a distribution of 56% male and 44% female. Predominantly, the White
demographic represented 69% of the cohort, followed by Black, Other, Hispanic/Latino,
and Asian subgroups, reflecting the geographical context of data collection.

Cohort insurance utilization - A significant portion of the cohort primarily relied on
Other insurance (48%), with Medicare following closely at 44%. The analysis indicates
that Other-subgroup and Hispanic/Latino patients predominantly utilized Other insurance,
with Black and Asian patients following suit. Medicaid utilization was notably lower
across all ethnic subgroups, at 8%. Interestingly, only a small fraction (5.4%) of Caucasian
patients utilized Medicaid, with Black and Other ethnic patients showing higher Medicaid
utilization, underscoring socio-economic disparities.
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Table A.1: Comparative Analysis of % Length of ICU stay (</> 7 days) of different demographic groups
based on their insurance status in the heart disease prediction task.

LOS %
Ethnicity Insurance <7 days >7 days
Asian Medicaid 75.926 24.074
Medicare  87.634 12.366
Other 82.511 17.489
Black Medicaid 88.938 11.062
Medicare 88.377 11.623
Other 87.197 12.803

Hispanic/Latino Medicaid  91.304 8.696
Medicare  85.185 14.815

Other 86.282 13.718
Other Medicaid  78.947 21.053
Medicare  82.698 17.302
Other 82.653 17.347
White Medicaid  83.898 16.102
Medicare  87.341 12.659
Other 85.873 14.127

Readmission Rates analysis - The analysis reveals that the Black subgroup, along
with Medicaid-insured Asian patients, displayed higher readmission rates across various
ailments. The chi-square ( x? = 141.89, p < 0.001) test further corroborates the significant
association between ethnicity concerning readmission rates.

A.1.3 1ICU Length of Stay Prediction

The ICU LOS > 7 days cohort had a median age of 72, balanced between males (55%) and
females (45%). The dataset predominantly consisted of Whites (69%), followed by other
demographic groups.

Furthermore, the Chi-square (p < 0.001) statistical test confirms an association between
LOS and ethnicity, reinforcing the influence of these demographic factors on ICU outcomes
for heart failure patients.
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This analysis underscores the importance of considering the feature association and data
quality in predictive modeling.
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