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Abstract

Satellite-based Quantum Key Distribution (QKD) leverages quantum principles to offer
unparalleled security and scalability for global quantum networks, making it a promising
solution for next-generation secure communication systems. However, many technical chal-
lenges need to be overcome. This thesis focuses on theoretical modeling and experimental
validation for long-distance QKD, as well as the development and testing of the quantum
source necessary for its implementation, to take strides towards realization. While vari-
ous approaches exist for demonstrating long-distance QKD, here we focus on discussing
the approach of sending entangled photon pairs from an optical quantum ground station
(OQGS), one through free-space on one end (uplink), and the other one through ground
on the other end.

In the thesis, we first discuss the considerations relevant to establishing a long-distance
quantum link. Since a substantial amount of research has already been conducted on opti-
cal fiber communication through ground-based methods, our focus is specifically directed
towards ground-to-space (i.e., free space) quantum links. One of the most concerning as-
pects in free-space quantum communication is signal attenuation caused by environmental
factors. We particularly examine pointing errors that arise from satellite tracking systems.
To investigate this further, we designed a tracking system employing a specific tracking
algorithm and conducted tracking tests to validate its accuracy, using the International
Space Station (ISS) as a test subject. Our findings illustrate the potentially significant
impact of inaccurate ground station-to-satellite alignment on link attenuation, according
to our theoretical model. Given that photons serve as the signals for the QKD, we also
investigate the background light noise resulting from light pollution around our Optical
Quantum Ground Station (OQGS), which is another concerning aspect, as it could worsen
the link attenuation. Consequently, we estimate the minimum photon pair rate required
for successful QKD, taking into account both the obtained values from these measurements
and the expected level of link loss.

Having determined the minimum photon pair rate and other requirements for the long-
distance QKD, we proceed to fully elaborate on the development process of the Entangled
Photon Source (EPS), which is one of the crucial devices for demonstrating entanglement-
based QKD. Here, the thesis includes a detailed explanation for the customization of a
crystal oven. It also explains the implementations of a beam displacer scheme and a
Sagnac scheme to create a robust interferometer, responsible for creating quantum entan-
glement. In addition, we demonstrate a novel approach to effectively compensate for the
major weaknesses of the interferometer, namely spatial and temporal walk-offs. Finally, we
conduct the entanglement test and demonstrate its suitability for long-distance QKD. As a
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side project, we investigate the performance degradation of nonlinear crystals in response
to proton radiation, exploring the potential of deploying the EPS in space for downlink
QKD in the future. This thesis provides a comprehensive analysis and testing of elements
required for long-distance QKD, contributing to the advancement of future global quantum
networks.
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Chapter 1

Introduction

1.1 The timeline at University of Waterloo

After obtaining a master’s degree in Physics and serving in the military in South Korea,
where I developed a strong appreciation for the importance of national and corporate
communication security, I found myself intrigued by the field of quantum security networks.
The satellite-based Quantum Key Distribution (QKD) project undertaken by the Canadian
government in collaboration with the University of Waterloo caught my attention, leading
me to join the Quantum Photonics Laboratory (QPL) in Institute for Quantum Computing
(IQC) as an intern in June 2019. Under the leadership of Dr. Thomas Jennewein, the
QPL was actively involved in the Quantum Encryption and Science Satellite (QEYSSat)
mission, funded by Canadian Space Agency (CSA). During the three months of internship,
I discovered that satellite-based QKD resonated deeply with my background knowledge, as
I studied in Cosmology for my master’s degree. This realization provided an ideal avenue
for me, ultimately leading to my decision to pursue a Ph.D., starting in September 2019.

From June 2019 to December 2019, I was tasked with validating the satellite orbit
tracking system necessary for the QEYSSat mission. The task had previously been under-
taken by Simon Friesen, Younseok Lee and Brendon Higgins, who had been considering the
Simplified General Perturbation (SGP) models, algorithms used for tracking satellites. I
studied mathematical details of the SGP4 model, specifically designed for Low-Earth Orbit
(LEO) satellites, and programmed the algorithm using Matlab software for automation.
Subsequently, I dedicated several nights to tracking multiple LEO satellites currently in
orbit and validating the algorithm’s accuracy.
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From September 2019 to September 2020, I conducted a light pollution analysis with
the aim of estimating the level of background light noise hindering satellite-based QKD.
Inititally, the project involved theoretical modelling with co-op student Veronica Chatrath
from September to December 2019. Subsequently, I conducted night-time observations to
validate the theoretical model for the noise that QEYSSat would encounter. Although
the observations were conducted multiple times and we realized midway through that our
approach was not robust enough to validate the model as initially intended, fortunately, the
results obtained amidst the setbacks, while less significant, contributed to the validation of
the light pollution analysis through alternative means. The project was later revisited by
my colleague Paul Godin, co-op student Nouralhoda Bayat, and myself, with new methods
implemented in September 2022. Observations and data collections were completed by
February 2023.

From September 2020 to April 2021, I conducted a radiation test on nonlinear crystals.
To conduct the test, I constructed a compact experimental setup capable of subjecting the
crystals to radiation exposure while simultaneously measuring their optical transmittivity.
In December 2020, my colleagues Joanna Krynski, Paul Godin and I visited TRIUMF, a
particle accelerator centre in Vancouver, to evaluate the radiation damage to the nonlinear
crystals, optical fibers(tested by Paul Godin) and photodetector (tested by Joanna Kryn-
ski). The data obtained from the test at TRIUMF was successfully brought back to our
lab for analysis in the spring of 2021.

My main project during my PhD program was building an Entangled Photon Source
(EPS). The project spanned from May 2020 to January 2024. Update reports were submit-
ted to the CSA regularly to keep the pace on track. Most of the work in the first project
year consisted of theoretical studies and research due to the COVID pandemic. Around
March 2021, I began custom designing a crystal oven, one of the key components of the
EPS. With assistance from Hiruy Haile who is an engineer at the Science Machine Shop at
the University of Waterloo, I successfully constructed the oven after making several mod-
ifications and conducting performance tests. The customization was finished by January
2022. As COVID restrictions gradually eased, I initiated experimental preparations, and
by January 2022, commenced full-scale experimentation and construction. In early 2022,
during the peak of experimentation, frequent breakdowns occured in a photodetector, re-
sulting in noticeable delays. Given my primary responsibility for its use, I had to take the
lead in analyzing the causes of breakdowns and carrying out repairs, requiring a significant
amount of time. However, with the occasional assistance of my dear colleagues Stephane
Vinet, Rammy Tannous, Paul Godin and Garen Simpson, along with the proactive sup-
port of my supervisor Dr. Thomas Jennewein, the issues were successfully resolved. By
incorporating my idea of simultaneously compensating for temporal and spatial walk-off
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effects into our original EPS design, I was able to build our first EPS for the QEYSSat
mission. In my opinion, it was a great accomplishment during my PhD research, as it
required countless days and nights in the lab without giving up halfway!

I will now use ”we” rather than ”I” to follow scientific writing conventions. Each chapter
is prefaced with a statement of contribution to give credit to those that were involved.

Figure 1.1: The timeline at University of Waterloo
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1.2 Quantum Entanglement and Secure Network

Quantum mechanics brought about a revolutionary shift in technology of network, par-
ticularly by introducing the concept of a quantum security network. Cyber hacking is
becoming more prevalent as increased connectivity provides a broader attack surface for
cybercriminals. With sophisticated attack techniques, hackers can exploit vulnerabilities in
various devices and systems. Cyberattacks render both the economy and national security
more susceptible to threats. The persistance of hacking is largely attributed to the fact
that conventional encryption keys are not truly random, but predictable [75]. The reason
why particles from nature can be a powerful tool to generate random keys for a secure
network is because of their probabilistic characteristics. The inherent quantum random-
ness exhibited by particles in nature makes them an ideal candidate for generating truly
random keys, offering a promising solution to fortify network security.

While the majority of the physics community agrees that quantum communication
is the next generation technology, we are confronted with a challenging reality. While
the theoretical feasibility may seem plausible, validating it through experimentation and
demonstrating its practical viability will demand significantly greater effort.

1.2.1 Formalism of Quantum States

J. Maxwell derived the famous Maxwell’s equations which indicate that light is a wave.
This is because the expression for the vector potential (from C.5) resembles the Laplace’s
wave equation.

Vector potential : ∇2A⃗ =
1

c2
∂2A⃗

∂t2

Laplace’s wave equation : ∇2ψ = α2∂
2ψ

∂t2

(1.1)

However, the fact that light is a wave could not solve the problem of ultraviolet catastro-
phe. The concept of quantization of energy of a particle was first suggested by M. Planck
through solving the problem mathematically[83]. It then became recognized after A. Ein-
stein observed the photoelectric effect through his experiment[39]. The fact that energy
can be quantized is now widely accepted by many physicists. The fundamental energy can
be expressed in many different ways, but the most popular expression contains the planck
constant h ≈ 6.626× 10−34J · s and the frequency ν.

E = 0, hν, 2hν, 3hν · · · (1.2)
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The idea of particle-wave duality rose after A. Compton observed the Compton ef-
fect through X-ray and γ-ray scattering experiments[33]. He realized that the change in
wavelength very much resembles the change in momentum through a particle collision.

(Compton) Ray Scattering : λf − λi = λc(1− cos (θ)

Particle Scattering :
1

pf
− 1

pi
=

1

mec
(1− cos (θ)

(1.3)

This showed that the Compton effect can be explained by assuming that the rays act as
particles with discrete energy E = hν and momentum p = h/λ. After all these mathemat-
ical realizations, E. Schrödinger derived a particle-version of the wave equation [92].

iℏ
∂

∂t
ψ(r⃗, t) = Hψ(r⃗, t) (1.4)

A simple solution to this equation is a plane wave. In order to determine the value that
describes a physical quantity, the value must be a real number. However, every possible
solution to the equation 1.4 has a complex term which does not allow us to study any
physical quantities. The sense of frustration was soon alleviated by M. Born, who is
famous for Born interpretation[18]. A convenient way to eliminate the complex term of
a complex function is by taking the absolute square of it (ψψ∗). However, squaring a
function has some mathematical meanings in the Hilbert space. In Hilbert space, every
function represents an information (or an event, or a physical state) axis, and a collection
of such states would describe all possible event. Using the Dirac’s braket notation, the
overall state can be expressed as

|ψ⟩ = α |ψ1⟩+ β |ψ2⟩+ γ |ψ3⟩ (1.5)

where α, β, γ ∈ C are the amount of information. Also, a complex conjugate of ψ can be
written as ψ∗ = ⟨ψ|. Each information can be extracted by taking the inner product of its
state and the overall state. For instance,

⟨ψ1|ψ⟩ = α ⟨ψ1|ψ1⟩+ β ⟨ψ1|ψ2⟩+ γ ⟨ψ1|ψ3⟩ (1.6)

Suppose all information is independent of each other (i.e, orthogonal to each other) such
that we can write ⟨ψm|ψn⟩ = δmn. In Figure 1.2, we have a graphical representation of the
overall state ψ that is decomposed into other three orthogonal states using equation 1.5
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Figure 1.2: Graphical illustration of Hilbert space.

as an example. Note that Hilbert space does not restrict the number of states, and we are
just showing the three dimensional case for convenience.

⟨ψ1|ψ⟩ = α ⟨ψ1|ψ1⟩+ α�����: 0⟨ψ1|ψ2⟩ + α�����: 0⟨ψ1|ψ3⟩ = α (1.7)

Notice that the relationships between the states and the overall state look equivalent to
the Pythagorean theorem, indicating that the absolute square of the information extracted
from the inner product contributes additively to the overall state. This indicates that if
we normalize the overall state by setting its length as 1, the absolute square of the inner
product of the overall state can be written as follows.

|⟨ψ|ψ⟩|2 = |α|2 |⟨ψ1|ψ1⟩|2 + |β|2 |⟨ψ2|ψ2⟩|2 + |γ|2 |⟨ψ3|ψ3⟩|2 (1.8)

As ψ1, ψ2 and ψ3 are orthogonal to each other, all the cross terms disappear, leaving us
with three terms as shown. For instance, the probability of a particle being in the state ψ1

is |α|2.

1.2.2 Quantum Key Distribution

Born gave one of the most important interpretations in the study of quantum mechanics,
the probabilistic nature of waves, with the mathematical formalism of a probability dis-
tribution p = | ⟨ψ|ψ⟩ |2. Despite being a highly intriguing discovery, physicists struggled
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with implementing the probabilistic characteristics of quantum mechanics until C. Ben-
nett and G. Brassard made use of it by developing the idea of Quantum Key Distribution
(QKD) in 1984 [15]. The fact that nature forbid any exact predictions on the quantum
properties of a particle means that whichever particle state we obtain from the probabil-
ity density is genuinely random. This already makes quantum computing distinct from
classical computing.

Classical bits : 0 or 1

Quantum bits (qubits) : |0⟩ or |1⟩ or
1√
2
(|0⟩+ |1⟩) or

1√
2
(|0⟩ − |1⟩)

While classical bits can exist in either 0 or 1 state, qubits can exist in not only the 0 and 1,
but also in superpositions of 0 and 1 states. Note that classical bits are fixed states, so we
didn’t use the Dirac’s braket notation. Furthermore, particles can be entangled such that
their states become correlated, regardless of the distance separating them. An example of
a maximally entangled state of two particles (a and b) is

|ψ⟩ = 1√
2
(|0a0b⟩+ |1a1b⟩) (1.9)

For instance, if particle a is observed to be in the 0 state, particle b is inevitably in the 0
state as well. This conveys a profound meaning to us. No-cloning theorem states that it
is impossible to create an identical copy of an arbitrary unknown quantum state [77, 57, 26].
Imagine that someone secretly tries to copy (i.e, hacking) a state |ψ1⟩ → |ψ1⟩ |ψ2⟩, where
|ψ1⟩ = |ψ2⟩ = α |0⟩+ β |1⟩. This is mathematically expressed as

L̂ (|ψ1⟩ |02⟩) = |ψ1⟩ |ψ2⟩ (1.10)

where 0 state is regarded as a vacuum state, and there is a linear operator L̂ that copies
the information of the first state into the second state.

LHS : L̂ (|ψ1⟩ |02⟩) = L̂α |0102⟩+ L̂β |1102⟩

= α |0102⟩+ L̂β |1112⟩

RHS : |ψ1⟩ |ψ2⟩ = α2 |0102⟩+ αβ |0112⟩+ βα |1102⟩+ β2 |1112⟩

(1.11)

By investigating the left and the right hand sides separately, we can see that the only
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condition that satisfies the equation is when α = β = 0. This ensures that quantum
information is absolutely unreplicable. Because of all these facts, quantum keys are very
promising candidates for the robust security network.

1.2.3 Polarization Encoding

Physicists have devised various methods to encode quantum information. For quantum
communication, we consider sending and receiving qubits, which becomes a compelling
reason to utilize photons. There exist many different degrees of freedom in a photon
where quantum information can be encoded. One option is the polarization of a photon
describes the oscillation direction of the electric field (Also used for our entangled photon
source that is going to be introduced in Chapter 3). We conveniently choose two linear
polarization states, horizontal (H) and vertical (V) to be |0⟩ and |1⟩, respectively. The two
transverse (i.e., on the H/V plane) polarizations are perpendicular to each other such that
for any transverse polarization state we can use the following general expression.

|ψ⟩ = cos θ |H⟩+ sin θ |V ⟩ (1.12)

where θ is the angle from the horizontal polarization axis shown in Figure 1.3. Thus, the
state |ψ⟩ can become either horizontal or vertical polarization state by inserting θ = 0 and
θ = π/2, respectively.

|ϕ (θ = 0)⟩ = |H⟩ |ϕ (θ = π/2)⟩ = |V ⟩ (1.13)

We can also have diagonal (D) and anti-diagonal (A) states, which are simply the V/H
states that are rotated by 45◦.

|D⟩ = 1√
2
(|H⟩+ |V ⟩) |A⟩ = 1√

2
(|H⟩ − |V ⟩) (1.14)

They are also orthogonal to each other. Hence, we have two orthonormal polarization
basis sets, H/V and D/A. Quantum states are probabilistic but we could still have an idea
about what physical quantities we could expect from a certain state. Suppose we want
to measure a physical quantity O that would tell us about the state of the photon. The
expectation value of the physical quantity would be

⟨Ô⟩ =
∫
ψ∗Ôψ d3r⃗ (1.15)
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Figure 1.3: Graphical representations of different transverse polarizations of electromag-
netic waves (light).
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where the integral is taken over all IR3. This is analogous to the general expression for the
expectation value in statistics (⟨x⟩ =

∫
p(x)x dx), except we have an operator in between

the two wave functions such that the operator is applied to the wave function to the right.
This way, the operator is able to extract the information from the wave function. In Dirac
notation, the equation 1.15 could be written as ⟨ψ| Ô |ψ⟩. We want the state to be an
eigenstate of the operator (i.e, Ô |ψ⟩ =O |ψ⟩) such that eigenvalues are generated without

affecting the state. For simplicity, we consider a plane wave ψ ∝ exp(i⃗k · r⃗ − iωt). One
applicable operator is an energy operator Ê = iℏ∂/∂t.

⟨Ê⟩ =
∫
ψ∗Êψ d3r⃗ = ℏω

∫
ψ∗ψ d3r⃗ = E (1.16)

As previously mentioned, energy can be quantized, which means it is treated as if it
were countable objects, like the number of photons. In order to distinguish different
polarizations, we could instead do a discrete summation Ê =

∑
i |ψi⟩ iℏ∂/∂t ⟨ψi| where

|ψi⟩ ⟨ψi| = 1. This way, probability of a single photon (E is normalized to 1) having
certain polarizations can be calculated by applying projection operators.

ÔH = |H⟩ ⟨H| ÔV = |V ⟩ ⟨V | ÔD = |D⟩ ⟨D| ÔA = |A⟩ ⟨A| (1.17)

1.2.4 The E91 Protocol

While Bennett and Brassard’s invention of the BB84 protocol [15] was pioneering, we will
turn our attention to a similar protocol called the E91 protocol [40], conceived by A. Ekert
in 1991 (The reasons for choosing the E91 protocol are mentioned in Section 1.2.5). This
protocol will be explained assuming the use of polarization encoding method. We consider
an entangled photon source that produces pairs of photons entangled in polarization (Figure
1.4). The entangled photon pairs are sent to two receivers, Alice and Bob. Each receiver is
given the two measurement bases (H/V and D/A) as tools to measure photon polarizations.
Since they can choose their bases freely each time they measure a photon, it remains
unknown whether they measured in the same basis unless they share the information with
each other. After the two receivers have completed the polarization measurements, they
communicate over a classical channel (i.e, regular communication channel) to reveal to
each other only their sequences of bases used, not the measurement results. Statistically
speaking, we can expect that roughly half of their sequences will match. Here, the receivers
discard the mismatching bases because the results obtained in those bases would contain no
information. For instance, Alice chose (+) basis and found that the photon has horizontal
polarization, corresponding to the classical bit of 0. This means the photon on Bob’s
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Figure 1.4: The E91 protocol. The entangled photon source sends out signal/idler photon
pairs, and Alice and Bob measure them in the basis of their choice. The polarizations
determined by the basis they used are interpreted as classical bits, either 0 or 1.

side should also have a horizontal polarization as it is entangled with the Alice’s photon.
However, if Bob used (×) basis and obtained the same classical bit, that classical bit
contains no information. Calculating the probability of each outcome would allow us to
understand the reason. As shown in Figure 1.5, when H/V basis (+) set is used, we could
use the operators ÔH and ÔV to calculate the probability of obtaining the classical bit
(0 or 1) when the other person’s bit is determined. According to definition 1.17, each

Figure 1.5: Each projection operator is responsible for one of the two polarizations that
the basis can measure. D/A basis : ÔD,ÔA and H/V basis : ÔH ,ÔV
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probability of Bob receiving the classical bit 0 or 1 when Alice’s bit was 0 would be

Probability of Bob receiving 0 : ⟨H| ÔD |H⟩ = ⟨H|D⟩ ⟨D|H⟩ = 1

2
= 50%

Probability of Bob receiving 1 : ⟨H| ÔA |H⟩ = ⟨H|A⟩ ⟨A|H⟩ = 1

2
= 50%

(1.18)

This implies that even if Bob obtains the same classical bit as Alice, it is a random outcome,
not one obtained through entanglement. Therefore, only the bits obtained through the
same bases are going to be valid as quantum keys. Some may wonder why we are
using two basis sets in the first place if we are discarding half of the number of photons.
If the choice of which basis set to use was predetermined and shared through classical
communication, it would not only provide an opportunity for hackers to secretly steal the
keys, but the receiver would also be unable to detect such an attack, as the number of keys
received on both sides (0 and 1) would be equal. The ultimate intention of this random
basis set selection is for the receiver to notice any attacks or interventions. Even if Alice and
Bob use sequences of random basis sets, a hacker might steal some portion of the photons
from one of the channels to extract the keys and send other photons as replacements to the
receiver. However, this cannot be pretended that nothing has happened, as the receiver
will notice a change. The photons replaced by the hacker are untangled such that the
polarization states are random. This will affect half of the result that the receiver gets,
which means half of the keys from the correct bases are also affected. If Alice and Bob
decide to compare some portions of each other’s final keys, they will observe roughly a 50%
of error rate in their results. In the absence of any attacks, they would ideally have a 100%
of matching result from the correct bases selections. Once they confirm that the entangled
photons are delivered safely, they can use the obtained classical bits as their secretly shared
keys. One could encrypt a binary file by overlapping with the secret keys, and send it to
the other one who has the same key to decrypt the file. Of course, there exist various other
challenges such as loss of information by the influence of external environmental factors,
but these are areas that can be complemented through technological improvements. QKD
itself has been proven in its potential.

1.2.5 Quantum Entanglement

Despite the random determination of polarization states for the photons received by Alice
and Bob during measurement, it remains imperative that their photons stay correlated,
thereby ensuring the meaningfulness of the measurements. In other words, although it is
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purely random whether Alice and Bob measure |0a0b⟩ or |1a1b⟩ from an entangled state
1.9, it must still be the case that if Alice measures 0, then Bob must obtain 0, and if
Alice measures 1, Bob must obtain 1. Meanwhile, it is possible for Alice and Bob to
measure the same state simply by accident. To verify whether the photons measured by
Alice and Bob are indeed entangled, one could use Clauser-Home-Shimony-Holt (CHSH)
inequality, formulated in 1969 by Clauser, Horne, Shimony, and Holt. This inequality is a
refinement of Bell’s inequality, proposed in 1964 by John S. Bell [14]. The mathematical
derivation begins by questioning whether there exists an unknown variable that influences
the measurement results of Alice and Bob in such a way that understanding this variable
could potentially allow us to predict the outcomes instead of merely accepting them as
random determinations. Suppose Alice uses a basis α and Bob uses a basis β to measure
the polarization of their photons. The measurement outcomes of Alice and Bob, somehow
influenced by an unknown variable λ, can be written as A (α, λ) and B (β, λ), respectively.
If there were no such unknown variable, then, using bra-ket notation, the outcomes could
have been written as A (α, λ) = ⟨α|ψAlice⟩ and B (β, λ) = ⟨β|ψBob⟩. The correlation be-
tween Alice’s and Bob’s measurement outcomes, considering the influence of the unknown
variable, can be expressed as

E (α, β) =

∫
A (α, λ)B (β, λ) ρ(λ)dλ (1.19)

Here, we have a density function denoted as ρ(λ), which satisfies
∫
ρ(λ)dλ = 1 and ρ(λ) ≥

0. Whether the two outcomes are correlated can be identified by comparing one correlation
case E (α, β) with another E (α, δ).

E (α, β)− E (α, δ) =

∫
[A (α, λ)B (β, λ)− A (α, λ)B (δ, λ)] ρ(λ)dλ

=

∫
A (α, λ)B (β, λ)− A (α, λ)B (δ, λ)

−A (α, λ)B (β, λ)A (γ, λ)B (δ, λ) + A (α, λ)B (β, λ)A (γ, λ)B (δ, λ)︸ ︷︷ ︸
0

ρ(λ)dλ

=

∫
A (α, λ)B (β, λ) [1− A (γ, λ)B (δ, λ)] ρ(λ)dλ−

∫
A (α, λ)B (δ, λ) [1− A (γ, λ)B (β, λ)] ρ(λ)dλ

(1.20)
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Note that here, we deliberately introduced other correlation cases E (γ, δ) and E (γ, β).

According to the triangle’s inequality (|⃗a+ b⃗| ≤ |⃗a|+ |⃗b|), we can write

|E (α, β)− E (α, δ)| ≤
∣∣∣∣∫ [1− A (γ, λ)B (δ, λ)] ρ(λ)dλ

∣∣∣∣+ ∣∣∣∣∫ [1− A (γ, λ)B (β, λ)] ρ(λ)dλ

∣∣∣∣
(1.21)

where the front factors A (α, λ)B (β, λ) and A (α, λ)B (δ, λ) are considered to be 1 (upper
bound), as |A| ≤ 1 and |B| ≤ 1 according to equation 1.12. Since both terms on the
right-hand side are guaranteed to be positive, we do not need the absolute-value brackets.
Then equation 1.21 can be written as

|E (α, β)− E (α, δ)| ≤ 2− E (γ, δ)− E (γ, β) = 2− [E (γ, δ) + E (γ, β)] (1.22)

Therefore, the CHSH inequality is

S = |E (α, β)− E (α, δ)|+ [E (γ, δ) + E (γ, β)] ≤ 2 (1.23)

If this inequality is violated, it would indicate the absence of local hidden variables, and
the presence of quantum entanglement. To understand how the CHSH inequality test
is performed experimentally, we further examine the correlations of Alice’s and Bob’s
measurement with equation 1.12 [29]. As discussed in section 1.2.4, we need at least two
orthogonal bases (H/V and D/A) to demonstrate QKD. However, the CHSH inequality
test requires at least four different bases (α, β, γ, and δ) to verify quantum entanglement.
Each of the four bases correspond to a different polarization angle, since we are utilizing
polarization states of photons. Each basis measures two different cases : detection and
non-detection. Suppose Alice and Bob receive a maximally entangled photon pair which
their state is expressed as follows.

|ψ⟩ = 1√
2
(|HH⟩+ |V V ⟩) (1.24)

Alice uses basis α and Bob uses basis β, each consisting of two orthogonal measurement
axes (illustrated in Figure 1.6). The outcomes from these axes can be mathematically
described using eigenvectors ∣∣α+

〉
= cosα |H⟩+ sinα |V ⟩∣∣α−〉 = − sinα |H⟩+ cosα |V ⟩∣∣β+
〉
= cos β |H⟩+ sin β |V ⟩∣∣β−〉 = − sin β |H⟩+ cos β |V ⟩

(1.25)

14



Figure 1.6: Two different bases chosen by Alice and Bob. The name of each basis corre-
sponds to the rotation angle of its measurement axes.

with eigenvalues α = ±1 and β = ±1. With these, we can define the following projection
operators (which describe ”measurements”).

Ôα = (+1)
∣∣α+
〉 〈
α+
∣∣+ (−1)

∣∣α−〉 〈α−∣∣
Ôβ = (+1)

∣∣β+
〉 〈
β+
∣∣+ (−1)

∣∣β−〉 〈β−∣∣ (1.26)

If Alice and Bob attempt to measure the polarizations of the photon pair simultaneously,
then the correlation (expectation value) from bases α and β is

E (α, β) = ⟨ψ| ÔαÔβ |ψ⟩

=
∣∣〈α+, β+

∣∣ψ〉∣∣2 − ∣∣〈α+, β−∣∣ψ〉∣∣2 − ∣∣〈α−, β+
∣∣ψ〉∣∣2 + ∣∣〈α−, β−∣∣ψ〉∣∣2

= P++ (α, β)− P+− (α, β)− P−+ (α, β) + P−− (α, β)

(1.27)

where each term corresponds to the probability of a simultaneous detection (coincidence
event).

P++ (α, β) = P−− (α, β) =
1

2
cos2 (α− β)

P+− (α, β) = P−+ (α, β) =
1

2
sin2 (α− β)

(1.28)

The number of coincidence events for each case is then Nc (α, β) = N0P (α, β), where
N0 = N++ +N+− +N−+ +N−− is the number of coincidence events without any measure-
ment bases (polarizers). Using equation 1.28 into equation 1.27, we obtain the following
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expression for the photon correlation.

E (α, β) = cos [2 (β − α)] (1.29)

Interestingly, if the correlation terms on the left-hand side of the inequality 1.23 are ex-
pressed as in the expression 1.29, it can lead to situations where the CHSH inequality is
violated. Furthermore, if the difference between the basis angles of each correlation term
is π/8, one observes a maximal violation.

cos [2 (β − α)] = − cos [2 (δ − α)] = cos [2 (δ − γ)] = cos [2 (β − γ)] =
1√
2

(1.30)

This means that the CHSH inequality can be violated by quantum mechanics with a
maximum value of SQM = 2

√
2. Therefore, if we obtain a value between 2 ≤ Sexp ≤ 2

√
2 in

actual experiments, we can be confident that the two photons are quantum mechanically
correlated regardless of the disitance between them, without the assistance of any local
hidden variables. This CHSH test will be very useful in both Chapter 2 and Chapter 3.
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1.3 Considerations For A Long-Distance Quantum Link

It is undeniable that QKD introduces a new wave in the future security network industry.
To establish a long-distance quantum link, there exist numerous technological challenges
that needs to be overcome. Developing quantum channels for long-distance quantum com-
munication is one of the major challenges that requires an extensive research. When
photons are transmitted over long distances, maintaining quantum information becomes
challenging due to various environmental factors. We must clearly determine the most
efficient pathways for transmitting quantum information and understand the factors to
consider along those pathways. Subsequently, it is essential to establish a theoretical model
outlining the minimum conditions required for achieving quantum communication. Once
the requirements for the quantum channels are well understood, we look through selection
processes of a quantum source capable of generating entangled photon pairs, and detection
systems that can analyze the distributed quantum keys, considering the requirements.

1.3.1 Quantum Channels

There are currently two known media of transmitting photons over large distances : through
optical fiber and free-space. Fiber-optic cables have been used globally to establish the
worldwide internet infrastructure with the support of classical optical amplifiers and re-
peaters. However, optical fibers exhibit high attenuation due to absorption and scattering
effects, posing significant challenges for quantum communication, especially over longer
distances exceeding a few hundred kilometers [59, 52]. Quantum states of the quantum
signals must not have any direct interactions with external environments, making the clas-
sical amplifiers or repeaters not feasible for quantum transmissions. Although technologies
like quantum repeaters [25, 88] are currently being researched and developed, they have
not yet advanced enough for commercial use. Thus, maintaining quantumness in long dis-
tances through optical fibers is very challenging at this stage. Moreover, if the polarization
encoding method is used, one has to use a Polarization Maintaining (PM) optical fiber in-
stead of the regular optical fiber. The PM fiber separates two polarizations into slow and
fast modes to maintain them, but it also introduces a phase shift between the two. Extra
efforts must be made to maintain the phase of the two overlapping polarization states.
On the other hand, the free-space channel not only makes it easier to maintain polarizations
but also allows for longer-distance quantum communication compared to optical fiber, in
terms of link attenuation. Note that polarization-encoded photons are even robust against
atmospheric turbulence [48], unlike time-bin encoded photons which are highly vulnera-
ble to atmospheric distortion, thereby potentially causing path distinguishabilities [43].
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Free-space channels still face challenges posed by various atmospheric effects and equip-
ment errors, but it is definitely more favorable than the optical fibers. The theoretical
frameworks, experimental tests, and analytical insights pertaining to these challenges are
detailed in Chapter 2.

Quantum Encryption and Science Satellite (QEYSSat)

Figure 1.7: An illustration depicting the structure of the QKD system for the QEYSSat
mission. The EPS rack which contains the EPS sends out signal/idler photons pairs. The
signal photons are transmitted to the satellite (Alice) via OQGS. The idler photons are
transmitted to the detection rack (Bob) through the ground.

The fact that signals transported through free-space would experience less attenuation
than through the optical fiber, it may be deemed more efficient. However, it may not be
suitable in urban areas where there exists physical obstacles and intense light pollution. In
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such cases, transmission through optical fiber can be much more effective. We must also not
forget that since signal transport through optical fiber can be more reliable than free-space
transmission, using optical fiber transmission is sometimes essential. We are anticipating
the need for a bridge connecting free-space and ground transmissions for quantum commu-
nication in the future. Quantum Encryption and Science Satellite (QEYSSat) is a mission
funded by Canadian Space Agency (Canadian Space Agency (CSA)) led by Dr. Thomas
Jennewein. The main goal is to demonstrate a long-distance QKD through ground-to-space
quantum link, and prove the potential of establishing robust global quantum security net-
works [84, 4]. The design scheme for our ground-to-space QKD system is shown in Figure
1.7. In broad classification, the system consists of an EPS rack which contains the EPS
that will provide entangled photon pairs (signal and idler photon make one entangled pair
of photons), OQGS where signal photons will be sent to the satellite (Alice) through an
optical telescope, and a detection rack that will receive and analyze the idler photons
(Bob).

1.3.2 Quantum Source

Since the proposal of protocols like BB84 and E91, QKD has been extensively studied both
theoretically and experimentally, resulting in the development of various demonstrational
methods. The QKD protocol can be broadly divided into two schemes : the prepare-
and-measure scheme and the entanglement-based scheme. These two schemes each
have their own advantages and disadvantages.

The most crucial aspect in the prepare-and-measure scheme is the necessity of a single
photon source. This is because the no-cloning theorem is effective only when the entities
we encode are truly single photons. However, generating truly single photons is still in the
development stage, and despite innovative ideas such as using quantum dots [95, 99, 103],
achieving this state with a high efficiency remains quite challenging to date. A more
practical source that has been widely explored involves using a weak coherent pulse [54],
which faces an intrinsic limitation: it is not a single photon source but rather a source of
single pulses. Suppose Alice, the sender, encodes information on each pulse in a coherent
state

∣∣√µeiθ〉 with typically µ ≪ 1 photons. Since Bob (the receiver) or Eve (the hacker)
has no information on the phase θ, they will observe a mixed state which its distribution
follows Poissonian statistics with P (n, µ) = e−µµn/n! for n number of photons. In other
words, this implies that Eve is no longer constrained by the no-cloning theorem [89], and can
perform photon number splitting (PNS) attacks [71, 24]. Fortunately, this issue of potential
hacking has theoretically been resolved by employing decoy state techniques [51, 68]. One
drawback is, it introduces significant complexity, requiring the provision of additional states
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and the emergence of lower bound conditions on the key rate [74]. Nevertheless, the decoy-
state QKD has been demonstrated over almost a hundred kilometers through both optical
fibers [104, 79] and free-space channels [91].

In this thesis, we choose the entanglement-based scheme that eliminates the need for us
to rely on a true single photon source or a decoy state mechanism [94].1 This is because the
outcomes of the measurements did not exist before the measurements (basis-independent)
[90], rendering the presence of multi-photon pairs insignificant for Eve. In summary, we
plan to demonstrate long-distance entanglement-based QKD using the polarization encod-
ing method for the E91 protocol. To achieve this goal, we need a quantum source capable
of generating a sufficient amount of polarization-entangled photon pairs, essential for the
successful long-distance QKD. The wavelength of photon pairs is determined by the results
of studying the quantum channel, and once determined, it will dictate the wavelength of
the pump laser capable of generating photon pairs at that wavelength. Also, the pair
generation rate of the quantum source must be higher than the minimum required for the
ground and free-space quantum link while maitaining Quantum Bit Error Rate (QBER)
below the requirement for a secured QKD. We further discuss about the QBER in section
2.3.2.

1.3.3 Photon Detectors

Photon detectors are used to receive both signal and idler photons through optical fibers.
Note that the photons are already in a polarization-measured state when they enter the
optical fibers. The decision made later in Section 2.2.1, as a preview, is that we detect
signal photons at 790 nm wavelength transmitted through free-space using Silicon Photo-
diode Avalanche Detector (SPAD) mounted on the satellite, and idler photons at 1550 nm
wavelength transmitted through optical fiber using Superconducting Nanowire Single Pho-
ton Detector (SNSPD). SPAD utilizes a mechanism where the energy of incoming photons
is amplified through a phenomenom called photo avalanche. When the amplified energy
exceeds a certain bias voltage threshold, it is considered as a detection of one photon.
For each photodetection event, the detectors employ ’gating’, temporarily inducing a re-
sistive state in the detection area, analogous to the motion of opening and closing a door
(graphically described in Figure 1.8). Due to the photo avalanche mechanism, we must
be cautious of residual photon remnants, referred to as ’after-pulses’, whenever the next
gating begins. These do not actually correspond to new photodetections, so it is essential

1While this thesis focuses on the entanglement-based scheme, QEYSSat considers both prepare-and-
measure and entanglement-based schemes.
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for SPAD to apply sufficient dead time (denoted as τj) to avoid multi-counting between
incoming photons. SNSPD can efficiently detects photons in a superconducting state.
However, it would require a recovery time from a normal conducting state every time it
is hit by a photon. Deadtime of the SPAD (Excelitas Technologies, US) and the SNSPD
(Quantum Opus, US) we use are 32 ns and 20 ns, respectively (information provided from
the manufacturers [7, 6]). The numbers of signal and idler photodetections recorded by
the detectors are going to be the raw single counts, N ′

s and N
′
i .

Ns =
N ′

s

1−N ′
sτs

− Ds

1−Dsτs
, Ni =

N ′
i

1−N ′
iτi

− Di

1−Diτi
, (1.31)

When we obtain the single count rates and, we need to also account for dark counts Dj

that come from any electrical or quantum noises by subtracting them.

Figure 1.8: A graphical description of the after-pulsing effect with a short deadtime (left)
is shown. The green stars are the clicks that indicate a photon detection within the pulse
gate. When a photon is detected, the gate remains closed for the duration of the detector’s
deadtime. If the deadtime is not long enough, one photon will cause multiple clicks due to
the avalanche effect, resulting in false single counts. In order to prevent the multi-counting
from the after-pulsing effect, we need a dead time at least longer than the temporal width
of the photons (right).

When two detectors capture photons, each sends a classical electrical signal to the
time-tagging unit (either through Bayonet Neill-Concelman (BNC) cables or through free-
space). If the two detectors transmit electrical signals simultaneously, the time-tagging
unit considers it as a coincidence event2. The time-tagging unit obtains a coincidence

2Of course, any phyiscal time difference between the two detections should be initially compensated by
introducing a delay time to one of the detectors.
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rate, which refers to the number of coincidence events within a detection window, ∆t.
Figure 1.9 shows a histogram of the coincidence rates. Here, we need to also account
for accidental coincidences NsNi∆t. Hence, the true coincidence rate is estimated by the
following expressions

Nc ≈ N ′
c −NsNi∆t (1.32)

Figure 1.9: Histogram showing the coincidence events triggered by the signal and the idler
photon. The arrival time difference (≈ 12 ns was adjusted by delaying one of the receiving
channels. The horizontal and the vertical axes of the histogram represents the time delay
and the number of the coincidence events, respectively.
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Chapter 2

Ground-To-Space Quantum Link

QEYSSat mission plans to deploy quantum communication devices on a Low-Earth Orbit
(LEO) satellite that is going to be launched in early 2025 (tentatively). The satellite is
currenly under construction by Honeywell Aerospace. Our Quantum Photonics Laboratory
(QPL) group is commissioned by CSA for building a ground station where our quantum
source will be loaded to perform QKD. As the quantum source will be operating from the
ground station, this is going to be anUplink QKD [55]. Some of the required experimental
conditions for a successful entanglement-based QKD demonstration have already been
studied by our team [19, 20, 21]. In this chapter, we simulate a LEO satellite pass, then
discuss about the environmental factors that need to be considered by making theoretical
approaches in order to make the best decisions for the following conditions.

� Wavelengths of the signal and the idler photons

� Aperture sizes of the transmitter and the receiver telescopes

� Minimum production rate of the entangled photon pairs

We first model a typical LEO satellite pass to confirm whether it is possible to establish a
quantum link, as well as to have a rough idea about the link duration. We test the model
by tracking ISS which is a well-known LEO satellite. Once we confirm the feasibility of the
quantum link, we also theoretically model the link attenuation and detrmine an optimal
wavelength for the quantum signal. The link attenuation model will also give us an idea
about the optimal aperture sizes for the transmitter and the receiver telescopes. Lastly,
we investigate the background light pollution to estimate the amount of unwanted photons
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that will be present at our desired wavelength, and obtain the lower bound for the minimum
pair production rate of entangled photons required for the satellite QKD demonstration.

Statement of contribution

1. Satellite Tracking Test : Brendon Higgins conceived the idea of implementing
SGP model. The coding task for simulating the model had previously been under-
taken by Simon Friesen, Younseok Lee and Brendon Higgins. I completed the codes
for path simulations, along with motorization of the telescope and tracking system.
Additionally, I conducted satellite tracking and confirmed the tracking system.

2. Link Attenuation Modelling : Jean-Phillippe Bourgoin, Brendon Higgins and
Prof. Thomas Jennewein initiated and established the modelling. I supplemented
their approach and implemented for the photon pair rate estimation.

3. Light Pollution Analysis : Prof. Thomas Jennewein conceived the idea of con-
ducting light pollution analysis by recognizing the significance of understanding the
level of background noise. Veronica Chatrath and I initially conducted a theoretical
study on light pollution and made preparations for its measurement. I conducted
starlight measurements through astronomical observations. Nouralhoda Bayat, Paul
Godin and I conducted the light pollution measurement. Katanya Kuntz participated
in the analysis discussion.

2.1 LEO Satellite Pass Modelling

We explore the satellite path of the QEYSSat satellite orbiting in LEO when observed from
the OQGS. Our focus is on the feasibility, the duration of the quantum link, the actual
link distance and the potential error in the pointing capability of the transmitter telescope
associated with it. This will also provide us with a better understanding of the level of link
attenuation. We adopt the path calculation methods used by North American Aerospace
Defense Command (NORAD) for LEO satellites [100, 13, 50, 35].

Two Line Elements

NORAD supplies satellite’s Global Positioning System (GPS) information for thousands
of satellites in a data format known as TLE set [8]. TLE consists of two lines and include
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Figure 2.1: A flowchart of coordinate transformations for the satellite tracking test. The
TLE are converted into ECI coordinates by applying the SGP4 model. Then the ECI
coordinates are converted into the local coordinates; Azimuth, Altitude and Range, for
maneuvering our Azi/Alt telescope.

Figure 2.2: Compositions of TLE. The TLE can be collected from NORAD [8].
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various physical quantities describing satellite orbits. Our orbital predictions require the
following elements from TLE : Epoch t, eccentricity e, mean motion n, inclination i,
longitude of the ascending node Ω, argument of periapsis ω, mean anomaly M and drag
term B∗. Mean motion is simply one revolution divided by the satellite’s orbital period.

n0 =
2π

T
(2.1)

SGP4 and Pointing algorithm

This algorithm controls the transmitter telescope integrated into OQGS. If the orbital pe-
riod is less than 225 minutes, we use SGP4 algorithm [100, 13, 50, 35]. Otherwise, we
use Simplified Deep Space Perturbations (SDP)4. SGP4 algorithm incorporates numerical
analysis, including the utilization of the Jacobian matrix, and takes into account external
factors such as atmospheric drag and gravity which is exceedingly challenging. Conse-
quently, this complexity greatly complicates the derivation process. Hence, we endeavor to
present the derivation with a focus on only essential aspects. We first obtain the original
(at epoch) semimajor axis a′′0 and mean motion n′′

0, using the given information from TLE.

{Z1 : e0, n0, i0} −→ {Z2 : Z1, a
′′
0, n

′′
0} (2.2)

Using Kepler’s third law, the semimajor axis a1 of an elliptical orbit can be expressed in
terms of the mean motion.

a1 =

(
k2E

T 2

4π2

)1/3

=

(
kE
no

)2/3

(2.3)

where we have the constant parameter, kE =
√
GM = 7.43669161 × 10−2(er/min)3/2.

Given that Earth is not a perfect sphere due to its rotation, the gravitational potential
is not uniform across the its surface. Furthermore, the gravitational potential experiences
continuous perturbation from the orbiting moon. As a result, precise orbital calculations
for LEO satellites, whose its orbits are typically significantly affected by gravitational
variations, must meticulously consider these changes in gravity. One can account for
gravitational perturbation by using zonal harmonics, denoted as Ji. The perturbation
component δ1 is computed as follows.

δ1 =
3

2

(
RE

a21

)2

J2
P2(cos i0)

(1− e20)
3/2

=
3

2

k2
a21

(3 cos2 i0 − 1)

(1− e20)
3/2

(2.4)
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where we have another constant parameter, k2 =
1
2
J2R

2
E = 5.413080×10−4. Using equation

2.3 and 2.4, we obtain the corrected expressions as follow.

a0 = a1

(
1− 1

3
δ1 − δ21 −

134

81
δ31

)

δ0 =
3

2

k2
a20

(3 cos2 i0 − 1)

(1− e20)
3/2

(2.5)

The original (at epoch) mean motion n′′
0 = n0/(1+δ0) and semimajor axis a′′0 = a0/(1−δ0)

can be recovered this way. Although the air density is much lower than near the Earth’s
surface, the atmospheric layers in which LEO satellites travel still exert strong enough air
resistance to generate drag [5]. We will now predict the future parameters at time t, with
consideration of the long-term influences of atmospheric drag and gravitation.

Figure 2.3: A diagram illustrating the satellite orbit in the ECI frame. t0 is the Epoch
time provided by TLE. We transform this frame into the local frame by applying the LLA
coordinates of our OQGS.

{Z3 : Z2, B
∗,M0, ω0,Ω0} −→ {Z4 : Z3,M, ω,Ω, a, e, n, L} (2.6)
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We first define the following parameters.

θ = cos i0 , ξ =
1

a′′0 − s
, p0 =

(
1− e20

) 1
2 , η = a′′0e0ξ (2.7)

Then the drag terms are

Mdrag =M0 +

[
1 +

3k2 (−1 + 3θ2)

2a′′20 p
3
0

+
3k22 (13− 78θ2 + 137θ4)

16a′′40 p
7
0

]
n′′
0 (t− t0)

ωdrag = ω0 +

[
−3k2 (1− 5θ2)

2a′′20 p
4
0

+
3k22 (7− 114θ2 + 395θ4)

16a′′40 p
8
0

+
5k4 (3− 36θ2 + 49θ4)

4a′′40 p
8
0

]
n′′
0 (t− t0)

Ωdrag = Ω0 +

[
− 3k2θ

a′′20 p
4
0

+
3k22 (4θ − 19θ3)

2a′′40 p
8
0

+
5k4θ (3− 7θ2)

2a′′40 θ
8
0

]
n′′
0 (t− t0)

δM = −2

3
(q0 − s)4B∗ξ4

RE

e0η

[
(1 + η cosMdrag)

3 − (1 + η cosM0)
3]

(2.8)
where k4 = −3

8
J4R

4
E = 6.2098875×10−7, and s = 1.01222928(er) (q0− s)4 = 1.88027916×

10−9(er)4. Also, (t− t0) is the time since epoch. We introduce the following constants

C1 = (q0 − s)4 ξ4n′′
0

(
1− η2

)− 7
2

[
a′′0

(
1 +

3

2
η2 + 4e0η + e0η

3

)

+
3

2

k2ξ

(1− η2)

(
−1

2
+

3

2
θ2
)(

8 + 24η2 + 3η4
)]

C2 = B∗C1

C3 =
(q0 − s)4 ξ5A3,0n

′′
0RE sin i0

k2e0

(2.9)

where A3,0 = −J3R3
E, and J3 = −2.53881 × 10−6. These constants are used to calculate

for the future angular parameters after (t− t0).

M =Mdrag + δM + δω

ω = ωdrag − δM − δω

Ω = Ωdrag −
21

2

n′′
0k2θ

a′′20 p
2
0

C2 (t− t0)
2

(2.10)
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with δω = B∗C3 cosω0 (t− t0). We further define the following constants.

C4 = 2n′′
0 (q0 − s)4 ξ4a′′0p

2
0

(
1− η2

)− 7
2

([
2η (1 + e0η) +

e0
2
+
η3

2

]
− 2k2ξ

a′′0 (1− η2)

[
3
(
1− 3θ2

)
×
(
1 +

3

2
η2 − 2e0η −

1

2
e0η

3

)
+

3

4

(
1− θ2

) (
2η2 − e0η − e0η

3
)
cos 2ω0

])

C5 = 2 (q0 − s)4 ξ4a′′0p
2
0

(
1− η2

)− 7
2

[
1 +

11

4
η (η + e0) + e0η

3

]
C6 = 4a′′0ξC

2
2

C7 =
4

3
a′′0ξ

2 (17a′′0 + s)C3
2

C8 =
2

3
a′′0ξ

3 (221a′′0 + 31s)C4
2

(2.11)
The future parameters a, e and n after (t− t0) are then

a = a′′0
[
1− C2 (t− t0)− C6 (t− t0)

2 − C7 (t− t0)
3 − C8 (t− t0)

4]2
e = e0 −B∗C4 (t− t0)−B∗C5 (sinM − sinM0)

n = kEa
− 3

2

(2.12)

Also, the overall rotation angle after (t− t0) is

L =M + ω + Ω+ n′′
0

[
3

2
C2 (t− t0)

2 +
(
C6 + 2C2

2

)
(t− t0)

3 +
1

4

(
3C7 + 12C2C6 + 10C3

2

)
(t− t0)

4

+
1

5

(
3C8 + 12C2C7 + 6C2

6 + 30C2
2C6 + 15C4

2

)
(t− t0)

5

]
(2.13)

We also need to consider perturbations in the orbital period. This is essential because the
satellite will progressively increase over time due to these perturbations. The perturbations
are speculated to arise from potential influences attributed to higher-order perturbation
terms. Perturbations in the orbital period will be calculated, segmented into long-period
and short-period perturbations. Long-period perturbations have a period longer than the
orbital period, while short-period perturbations have a period shorter than the orbital
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period. We first incorporate long-period perturbations.

{Z4} −→ {Z5 : Z4, (E + ω)} (2.14)

First, the following parameters are defined.

ax = e cosω

ay = e sinω +
A3,0 sin i0
4k2ap2

Ltotal = Ls +
A3,0 sin i0
8k2ap2

(
3 + 5θ

1 + θ

)
ax

(2.15)

where p = (1− e2)
1
2 . Then we solve Kepler’s equation by iterating for the rotation angle

from the epoch. The initial iteration value is set as (E + ω1)1 = Ltotal − Ω.

(E + ω)i+1 = (E + ω)i +
Ltota − Ω− ay cos (E + ω)i + ax sin (E + ω)i − (E + ω)i

1− ay sin (E + ω)i − ax cos (E + ω)i
(2.16)

Depending on the desired level of accuracy, we can perform iterations accordingly. Once
we have the rotation angle from the epoch (E + ω)N after N iterations, we consider the
short-period perturbations.

{Z5} −→ {Z6 : Z5, r, u,∆r,∆u,∆Ω,∆i,∆ṙ,∆ḟ} (2.17)

We rewrite equation 2.15 using the iterated value from equation 2.16.

e cosE = ax cos (E + ω)N + ay sin (E + ω)N

e sinE = ax sin (E + ω)N − ay cos (E + ω)N

eN =
(
a2x + a2y

) 1
2

pN = a
(
1− e2N

)
(2.18)
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Using these, we first calculate for the following parameters.

r = a (1− e cosE)

ṙ = kE

√
a

r
e sinE

ḟ = kE
p

1
2
N

r

cosu =
a

r

[
cos (E + ω)− ax −

aye sinE

1 +
√

1− e2N

]

sinu =
a

r

[
sin (E + ω)− ay −

axe sinE

1 +
√
1− e2N

]

u = tan−1

(
sinu

cosu

)

(2.19)

The inclusion of both sinu and cosu makes it necessary to determine the paratemer u from
numerical analysis. The variables that represent short-period perturbations incorporate ∆
into their names, as follows.

∆r =
k2
2pN

(
1− θ2

)
cos 2u

∆u = − k2
4pN

(
7θ2 − 1

)
sin 2u

∆Ω =
3k2θ

2p2N
sin 2u

∆i =
3k2θ

2p2N
sin i0 cos 2u

∆ṙ = −k2n
pN

(
1− θ2

)
sin 2u

∆ḟ =
k2n

pN

[(
1− θ2

)
cos 2u− 3

2

(
1− 3θ2

)]

(2.20)
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We finally arrive at the final expressions for the orbit parameters at time tk.

rk = r

[
1− 3

2
k2

√
1− e2N
p2N

(
3θ2 − 1

)]
+∆r

uk = u+∆u

Ωk = Ω+∆Ω

ik = i+∆i

ṙk = ṙ +∆ṙ

ḟk = ḟ +∆ḟ

(2.21)

We further simplify by defining position and velocity vectors.

{Z7 : Z6, rk, uk,Ωk, ik, ṙk, ḟk} −→ {r⃗, ˙⃗r} (2.22)

First, we use the angle parameters to create unit orientation vectors.

M = µ⃗ sinuk + ν⃗ cosuk

N = µ⃗ cosuk − ν⃗ sinuk
(2.23)

where

µ⃗ =


µx = − sinΩk cos ik

µy = cosΩk cos ik

µz = sin ik

 , ν⃗ =


νx = cosΩk

νy = sinΩk

νz = 0

 (2.24)

This allows us to predict the satellite’s path in Cartesian coordinates.

r⃗ = rkM , ˙⃗r = ṙkM + ḟkN

If predictions are continually made from the previous iterated value, errors will accumulate
over time. Therefore, as illustrated in Figure 2.3, the iteration at time tk is always computed
from the Epoch (t0).
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Figure 2.4: Three graphs predicting the path of the ISS in local coordinates using SGP4
algorithm. According to the calculations, the ISS is expected to be closest around 7:15pm,
at which time it will be visible from the south, and its altitude will reach its peak.
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2.1.1 Tracking Tests and Results

Figure 2.5: a) Picture taken by an amateur photographer (Image credit : O. Stiehler) just
to compare with b) ISS taken by Sungeun (Paul) Oh during tracking. c) A timelapse photo
showing the trail of ISS taken by Sungeun (Paul) Oh during tracking.

To confirm the precision of our use of the SGP4 algorithm, we attempted tracking the
ISS, one of the most prominent and easily visible LEO satellites. The choice of select-
ing the ISS is based on its apparent magnitude, which can reach as low as -4, making
it brighter than most satellites and even most stars. Its substantial size makes it easily
observable when passing through the sky. Additionally, it is known to have an altitude
of approximately 400 km, further contributing to its visibility. While Figure 2.5a is the
image sourced online, Figure 2.5b is the sharpest image captured while tracking the ISS
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on September 22nd, 2019. The photo was obtained using the Sharpcap software. Figure
2.5c is a photo taken in timelapse, capturing the path of the ISS as it moved, creating the
appearance of a lingering trace in the sky. As we can see in the photo, other stars in the
sky appear much dimmer compared to the ISS.
The ISS was tracked from University of Waterloo (Latitude : 43.4712o, Longitude : -
80.5442o, Altitude (sea level) : 336m). We used an Orion Goscope 80mm refractor tele-
scope (Orion Telescope, US) mounted on NexStar GT mount (Celestron, Taiwan) to track
the ISS. QHY-5-II-M camera (QHYCCD, China) was used for monitoring the tracking,
and also for capturing some nice photos of the ISS. Figure2.6 shows the tracking result

Figure 2.6: The result of the ISS tracking test done in October 2019, represented in 3-D
graph. The ISS flew from North to South, circling around the West. The blue dashed line
indicates the predicted path by SGP4. The red solid line represents the actual position
of the ISS captured by our telescope as it was observed. As evident in the graph, manual
adjustments were applied during the initial tracking phase.

obtained from a successful ISS tracking test performed in October 28th, 2019. Here, it is
worth noting that the GPS values obtained from online sources for the tracking site may
lack the desired accuracy. Additionally, we acknowledge the imperfect alignment of the
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telescope with the initial position where the satellite appears. Consequently, the predic-
tions derived from the SGP4 algorithm for the initial position and time are not considered
crucial. Instead, we priortize monitoring changes in the satellite’s position vector. Hence,
the position offset present at the initiation of the tracking was manually adjusted. Fol-
lowing this adjustment, the ISS tracking proceeded reasonably well in accordance with
our predictions. The raw data of the telescope’s coordinate is shown in Appendix M. The
pointing error σp was estimated based on the differences in the rates of change of azimuth
and altitude between the SGP4 model predictions and the experimentally obtained values.

σp ≈
1

2
(σp,azi + σp,alt) =

1

2

[∣∣∣∣∂θazi,SGP4

∂t
− ∂θazi,exp

∂t

∣∣∣∣+ ∣∣∣∣∂θalt,SGP4

∂t
− ∂θalt,exp

∂t

∣∣∣∣]∆t (2.25)

Figure 2.7: Graph showing pointing errors in azimuth (red) and altitude (blue). The
periodic peaks are indicative of periodic adjustments to compensate for drift caused by the
high slew rate of the motor mount.

The pointing error calculated from the tracking test was approximately σp ≈ 5.96×10−4

rads.1 With the validation of our satellite pass model, the ISS was within a distance of
1000 km (from the tracking site) for only about 2 minutes. Furthermore, through multiple
tests, it has been observed that the ISS consistently becomes visible within altitude angles
ranging from 30 to 50 degrees. We anticipate that QEYSSat will have a comparable pass
duration.

1We expect to have a much lower pointing error from the actual tracking system for the QEYSSat [84].

36



Lastly to mention, we have developed a GUI (see Figure 2.8) that generates the satellite
path in LLA coordinates using the SGP4 model. This is particularly useful as our ground
station will be equipped with an Acquisition, Pointing and Tracking unit (APT) unit,
which requires coordinates in this format.

Figure 2.8: A GUI developed in C# coding that allows users to upload TLE data, convert
it into LLA coordinates, and automatically feed it into the pointing system.
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2.2 Link Attenuation Modelling

In this section, we show modelling of link attenuation [19, 20, 21], which will ultimately
contribute to determining the minimum pair rate discussed later. In the ground-to-space
quantum link, there are several types of errors that contribute to the overall link loss L (in
decibels); geometric, atmospheric and mechanical system errors.

L = Lgeo + Latm + Lmech (2.26)

Figure 2.9: An illustration of how geometric attenuation is calculated using the ratio
between the diffracted area (in light grey) and the area of the receiver telescope (in dark
grey). The geometric attenuation of a quantum link can be computed in a manner similar
to the method for determining fiber coupling efficiency.
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The losses are additive, since each loss is a logarithm of the attenuation factor A =
Pi/Pf .

L = 10 log10

(
Pi

Pf

)
(2.27)

where Pi and Pf are initial and final optical power, respectively. A high attenuation factor
means a high link loss.

Geometric Attenuation

We derive the link loss caused by geometric attenuation using equation 2.27. We consider
a ground-to-space quantum uplink, with an atmosphere present (Figure 2.9). When a
beam encounters an obstacle or passes through an aperture, diffraction occurs, causing
the beam to disperse and change its direction. In this case, the transmitter telescope with
an aperture size (diameter) of Dt would cause diffractions. As we are using a laser beam
as the quantum signal, we could assume gaussian wave propagating along the distance L.
Pi is then the total incoming power from our quantum source. For now, we shall make
an assumption that the power is not reduced by any attenuation factors throughout the
transmission, such that the power right before the receiving telescope is still Pi. This way,
the attenuation factor can be computed in a manner similar to the method for determining
fiber coupling efficiency shown in the Appendix D.15. The fact that it is not the power
but the intensity that is reduced by the diffraction, a perfect transmission (i.e, A = 1) is
achieved only if the receiver telescope’s aperture is large enough to collect all the power.
We consider a realistic case where the receiver telescope captures only an optical power
of Pf due to its limited aperture size. Dividing the full amount of power by the actually
received amount of power will indeed yield the attenuation factor. Let us consider a LEO
based satellite passing by the optical ground station located at r⃗t, where quantum signals
are transmitted through a transmitter telescope. A satellite carries a receiver telescope,
and tries to receive signals at the location r⃗r. The subscript t refers to the tramsmitter and
r refers to the receiver. Also note that r⃗t and r⃗r are 2-D matrices that contain discretized
points of each telescope aperture. The initial optical power Pi at the transmitter telescope
can be calculated by integrating the initial intensity It,0(r⃗t) at the transmitter telescope
over its area.

Pi =

∫
dρIt,0(r⃗t)dxdy = πR2

t It,0(r⃗t) (2.28)

where Rt is the receiver telescope’s aperture radius. However, we would like to have the
expression in terms of the initial intensity at the receiver telescope It,0(r⃗r). The intensity
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received at the receiver telescope (with an aperture radius of Rr) can be calculated using
Rayleigh-Sommerfield diffraction [70].

It,1(r⃗r) =
L2

λ2

∣∣∣∣∣
∫ ∫ √

It,0(r⃗t)

|r⃗r − r⃗t|2
exp

(
2πi |r⃗r − r⃗t|

λ

)
ρdρdθ

∣∣∣∣∣
2

(2.29)

and λ is the photon wavelength. The fact that the beam’s profile is circularly symmetric,
and the aperture sizes are small compared to the link distance (L ≫ Dt, Dr) such that
L = |r⃗r − r⃗t|, the expression can be greatly simplified.

It,0(r⃗r) ≈
πR2

t

L2λ2
It,0(r⃗t) =

1

πL2α2
It,0(r⃗t) (2.30)

Here, we have a diffraction angle α = λ/(πDt) by small angle approximation. This indicates
that the intensity is reduced by the factor of the expanded area with a radius of R ∼ Lα.
Using this relation, the initial power at the receiver telescope is

Pi ≈ πL2α2It,0(r⃗r) (2.31)

Atmophseric turbulence has a greater impact on the beam propagation the closer it is
to the Earth. Although the satellite is in LEO [53], it is much higher in altitude compared
to the atmosphere. This implies that the impact could be particularly significant in the
context of an uplink transmission. As the beam travels through the atmosphere, it will
suffer from the atmospheric turbulence which will result in extra diffractions with an angle
of β. By averaging over a longer time period than the turbulence period, we could have a
two-dimensional Gaussian distribution of the turbulence (also see Figure 2.10).

gturb(ρ) =
1

2πσ2
turb

e−ρ2/2σ2
turb (2.32)

Using the Hufnagel-Valley model of atmospheric turbulence [96], the standard deviation
σturb (which is equivalent to the half of the beam width) of the distribution at the receiver
telescope is

σturb =
Lλ

πr0
(2.33)

where r0 is the Fried parameter (amount of turbulence in length) expressed as

r0 =

0.424 csc (δ)(2π

λ

)2
h∫

0

C2
n(z)

(
h− z

h

) 5
3

dz

− 3
5

(2.34)
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which is widely used in the research field of atmospheric turbulence. h and δ are the
altitude and the elevation angle of the satellite, respectively. We also have the turbulence
strength constant C2

n(z) (for a typical nighttime at sea level)[17], given by

C2
n(z) = 1.7 · 10−14e−

z
100 + 0.00359

(
z · 10−5

)10
e−

z
1000 + 2.7 · 10−16e−

z
1500 (2.35)

The distribution of the turbulence can be convoluted on the transverse plane with the

Figure 2.10: A figure describing how atmospheric turbulence effects are translated into
the expansion of the transmission area. The atmosphere is described by the extinction
coefficient ϵatm and the Fried parameter r0. By averaging over a longer time period than
the duration of the turbulence, we see an area resembling the diffracted area illustrated in
Figure 2.9.

diffracted intensity to consider both the atmospheric turbulence and the diffraction.

It,2(r⃗r) = (It,1 ⋆ gturb)(ρ, θ) =

2π∫
0

dθ′
∞∫
0

It,1(ρ
′)gturb(ρ− ρ′)dρ′ (2.36)

However, if we roughly assume that the turbulences distribute the intensity equally around
the expanded area, the amount of contribution to the beam expansion is∫

It,1dxdy ≈ πσ2
turbIt,1 ≈ πL2β2It,1 (2.37)
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where σtrub ∼ Lβ. β = λ/(πr0) is the angular expansion (see Figure 2.10. Instead of the
convolution, we could simply add this term into equation 2.31.

Pi ≈ πL2
(
α2 + β2

)
It,0(r⃗r) (2.38)

Lastly, we consider an intensity loss from pointing errors. This is an amount of error
from inaccuracy in pointing the satellite. Similar to the distribution of the turbulence, we
could have another two-dimensional Gaussian distribution for the pointing error.

gp(ρ) =
1

2πσ2
p

e−ρ2/2σ2
p (2.39)

where σp is one standard deviation of the pointing error. By convoluting it with It,2(r⃗r),
we have the final intensity at the receiver telescope.

It,3(r⃗r) = (It,2 ⋆ gp)(ρ, θ) (2.40)

Similar to the atmospheric turbulence, by roughly assuming that the error in the pointing
motion distribute the intensity equally around the expanded area, the expansion can also
be added into equation 2.31 in the similar manner.

Pi ≈ πL2
(
α2 + β2 + γ2

)
It,0(r⃗r) (2.41)

where we have the pointing error angle γ. The angle from the pointing error depends on
the performance of the satellite tracking system, which can be obtained experimentally.
One would agree that the factor πL2 (α2 + β2 + γ2) represents the diverged area at the
receiver telescope by the diffraction, the atmospheric turbulence and the pointing error.
The final optical power received by the receiver telescope is simply the intensity at the
receiver telescope integrated over its area Pf = πR2

rIt,0(r⃗r). By applying equation 2.27 we
obtain the expression of the overall geometric loss.

Lgeo ≈ 10 log10

(
L2 (α2 + β2 + γ2)

R2
r

)
(2.42)

Atmospheric Attenuation

In the absence of the atmosphere (ideally, vacuum), the optical power for a perfect trans-
mission should remain unchanged Pi,t = Pi,r as previously mentioned. Since there is air,we
have to take atmospheric absorption and scattering effect into consideration. The
power is attenuated by a factor of ϵatm (in decibels). We have already considered the area of
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Figure 2.11: (a) Atmospheric transmittance at a typical rural area assuming measured
towards zenith. This prediction was generated by a commercial program MODTRAN [20].
The dips are where light is observed by the molecules in the atmosphere. (b) Transmittance
at 790.8 nm of wavelength for different elevation angle δ. The reason that we are interested
in this wavelength is explained in section 2.2.1.

the optical power, so the area Sr is kept fixed. The loss from the atmospheric attenuation
is then

Latm = 10 log10

(
It,0(r⃗t)Sr

It,0(r⃗r)Sr

)

= 10 log10

(
It,0(r⃗t)Sr

It,0(r⃗t)Sr · 10−
ϵatm
10

)
= ϵatm

Based on the satellite tracking result, we anticipated the minimum elevation angle (worst
case scenario) to be approximately δ ≈ 30o. The atmospheric transmittance at λs =
790.8 nm for this angle is estimated to be reduced by ϵ ≈ 6.6dB.

Mechanical System Attenuation

We also consider the optical losses from the transmitter system µt and the receiver system
µr. The final power is simply Pf = µtµrPi such that

Lmech = 10 log10

(
1

µtµr

)
(2.43)
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At present, it is difficult to precisely estimate the optical losses of both systems. Therefore,
we will make positive assumptions by adopting µt = 1 (ideal) and µr = 0.55 (the detection
efficiency of SPAD at λs = 790.8 nm) [7], as these factors can improve in the future.

2.2.1 Wavelength Selections For The EPS

Figure 2.12: (Top) Spectral data of different street lamps retrieved from National Oceanic
and Atmospheric Administration (NOAA) website [1]. (Bottom) Spectral data obtained
using a mini portable spectrometer (OceanOptics, US) at the RAC1 parking lot. The
spectrum is also used in section 2.3.1 (Figure 2.23) for estimating light pollution.

To select a wavelength suitable for the free-space quantum link, we need to take into
account various considerations. As defined earlier, the divergence angles α, β and γ in
equation 2.42 are inversely proportional to the wavelength. Therefore, it can be inferred
that as the wavelength increases, the attenuation increases quadratically. Just considering
this aspect, one might think it is preferable to choose a lower wavelength. Yet, as seen
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in Figure 2.11, a decrease in wavelength corresponds to an almost quadratic reduction in
atmospheric transmittance. Next, we consider technical limitations. The currently widely
used detectors include SPAD and SNSPD. Typically, SPAD efficiently detects photons in
the near-Infrared (IR) range 750−1500 nm, and SNSPD detects photons in a wider near-IR
range2. While SNSPD is significantly more efficient than SPAD in terms of performance,
the drawbacks is that it needs to be cooled down to extremely low temperatures. The
associated increased complexity renders it unsuitable for satellite integration, highlight-
ing a limitation. Therefore, the wavelength selected for the free-space quantum link is
ideally in the acceptable wavelength range for the SPAD. We need to also consider light
pollution. In the context of QKD, the most crucial consideration is the Quantum Bit Er-
ror Rate (QBER). If light generated from an external source arrives at the detector with
the same wavelength as the signal photon, it can have a significantly adverse impact on
the QBER. The spectral graphs in Figure 2.12 (top) shows that typical street lamps are
predominantly concentrated within the wavelength spectrum ranging from 400 to 700 nm.
This is also evident in the (bottom) graph in Figure 2.12, showing the spectrum taken in
the nearby parking lot next to the future OQGS construction site. Having considered all
these factors, 790.8 nm was chosen as the wavelength for the signal photons. For the idler
photons transmitted through the ground, we can consider wavelengths that can leverage
the already-present and widely-used telecom infrastructure. The wavelength of 1550 nm
not only satisfies the requirements but also represents a suitable wavelength that can be
efficiently detected by SNSPD. In fact, these signal/idler wavelengths choices are not sig-
nificantly different from those already chosen by our QPL team for the airborne experiment
in 2016 [84].

2.2.2 Aperture Size Selections

By combining all equations 2.42, 2.43 and 2.43, we obtain an expression for the overall
attenuation factor.

Overall Attenuation : A ≈ L2 (α2 + β2 + γ2) 10
ϵatm
10

µtµrR2
r

(2.44)

Equation 2.44 also gives us a sense of the aperture sizes (diameters) of the transmitter
and receiver telescopes. As the beam travels through free space towards the satellite, it
continues to diverge as discussed earlier. Therefore, a larger aperture size for the receiver

2Definitions of those ranges could slightly differ by manufacturers.
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telescope is preferable. However, since the feasibility of this is entirely contingent upon
whether the satellite can accommodate such dimensions, we focus more on the transmitter
telescope’s aperture size. Figure 2.13 illustrates the attenuation factor values based on the

Figure 2.13: A color plot illustrating the variation in attenuation (calculated in dB) relative
to changes in both the diameters of the transmitter Dt and the receiver Dr telescopes. The
values on the curves represent the amount of attenuation (in decibel).

aperture sizes of the transmitter and receiver telescopes, using the following values.

� λs = 790.8 nm (from section 2.2.1)

� L = 1000 km (from section 2.1.1)

� γ = 2µrad (from J-P. Bourgoin (2013) [20])3

� r0 = 6.7 cm (from equation 2.34)

� ϵatm = 6.6dB (from section 2.2)

� δ = 30o (from section 2.1.1)

� Tt = 1 and Tr = 0.55 (from section 2.2)

3Since the pointing error calculated from the tracking test (section 2.1.1) was overestimated due to
experimentation with a cheap motor mount that has a poor performance, here we adopt the γ = 2µrad
that was considered in this paper. It is reasonable to use this value, as this paper also relates to the
QEYSSat mission.
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It is observed that once the transmitter aperture size exceeds 20 cm, the attenuation factor
is no longer influenced. Hence, we choose the aperture size of 20 cm for our transmitter
telescope.

2.2.3 Link Attenuation

We anticipate that the size of the receiver telescope to be installed on the QEYSSat will
be around Dr = 30 cm [20]. By using the same values from Figure 2.13, we can obtain the
overall link loss of L ≈ 37.7 dB. This loss is equivalent to roughly 8 km of a typical optical
fiber channel for the 790 nm of wavelength [3]. If we use the pointing error obtained from
the tracking test with the cheap motor mount (σp = 5.96×10−4rads), the link loss becomes
L ≈ 71.4 dB which is significantly larger. From this, we can infer that the precision in
the tracking system has a significant impact on the quantum link. Furthermore, as these
values are calculated assuming the satellite is at zenith, the link loss could potentially
worsen even further.

2.3 Background Noise Modelling

With the recent push for long-distance free-space QKD there has been a rising interest
for the installation of OQGS. While several factors must be taken into account when
establishing an OQGS, such as proximity to existing fiber optic infrastructure, a primary
determinant for QKD effectiveness is the minimization of QBER. The QBER represents
the fraction of incorrectly detected quantum bits in a sequence. Since our focus is on the
uplink QKD at night, where the satellite faces the Earth and receives quantum signals from
OQGS. When considering the sources of background light (noise) that would affect uplink
QKD at nighttime, two main sources can be identified : the reflected moonlight denoted
as NML (sunlight reflected off the Moon, being reflected again off the Earth’s atmosphere)
[20]; and the light pollution denoted as NLP [42, 85]. The total number of background
photon counts can be written as follows.

NBG = NML +NLP (2.45)

Of particular concern is the impact of the noises within targeted communication wavelength
ranges. Just by looking at Figure 2.14a, one can infer the significant impact of noise from
reflected moonlight. Also, recent reports have highlighted a noticeable increase in artificial
light at night [64]. Our aim is to establish an upper bound on the current challenges posed

47



by background noises at these OQGS sites, thereby laying the groundwork for enhanced
satellite quantum communication strategies.

Figure 2.14: a) Photo of Earth taken from ISS (image credit : ESA/NASA). We see moon-
light glowing on the ocean, along with artificial light from the land. b) Some cool pictures
taken by amateur photographers showing artificial light (image credit : D. Spase(left) A.
Benz(right)).

Moonlight

To estimate the amount of noise from moonlight, we initially calculate the number of
photons emitted by sunlight using the spectral blackbody radiation4 at a fixed temperature
[82, 63].

Bλ(λ, T⊙) =
2hc2

λ5
1

e

(
hc

λkT⊙

)
− 1

(2.46)

where effective surface temperature of T⊙ = 5772K of the sun is used [102]. We shall go
through the mathematical methodology while referring to Figure 2.15. As illustrated in
Figure 2.15b, the blackbody radiance Bλ(λ, T )dλ corresponds to the radiance of a stream of
light emitted from a source that reaches a target. One can define number radiant intensity
I⊙ (radiant intensity in terms of the number of photons instead of energy) of the Sun by
integrating equation 2.46 that is being divided by its energy Eλ = hc/λ over the filtered

4Spectral blackbody radiation : Blackbody radiation per unit wavelength.
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wavelength region (we used a bandpass filter that accepts (790 ± 5)nm), then over the
photon emitting area.

I⊙ =

∫
Bλ(λ, T⊙)

Eλ

dλdA = A⊙

(790+5)nm∫
(790−5)nm

2c

λ4
1

e

(
hc

λkT⊙

)
− 1

dλ (2.47)

The area is simply A⊙ = πR2
⊙ where R⊙ = 6.96 × 105km is the radius of the Sun [102].

In order to get the total number of photons per second NM that reach the Moon, we
must again integrate equation 2.47 over the solid angle of the Moon seen from the Sun (as
illustrated in Figure 2.15c ).

Figure 2.15: An illustration of the method for calculating the moonlight : a) Suppose
we want to calculate the number of photons, denoted as N , emitted from a source and
reaching a target. b) We first calculate a stream of light using spectral blackbody radiation
function. The number radiance is obtained by dividing the radiation function by its energy,
and integrating it over the wavelength range of interest. c) Next, we integrate the number
radiance over the area of the source to obtain the number radiant intensity, denoted as
I. d) Finally we integrate I over the solid angle of the target as seen from the source, to
obtain N .

NM = I⊙ΩM (2.48)
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The solid angle of the Moon is ΩM = πR2
M/d

2
MS where RM = 1.74 × 103km is the radius

of the Moon and dMS ≈ dES = 1.5 × 108km is the distance between the Sun and the
Moon which can be approximated as the distance between the Sun and the Earth [102].
When these photons undergo reflection on the Moon’s surface, we can assume Lambertian
diffusion [17]. This means that regardless of the direction from which light hits the Moon’s
surface and reflects, it diffuses in all directions. We obtain the number radiant intensity
from the Moon IM (Hz/sr) by normalizing it with π (because cos θ integrates to π over
the hemisphere), and also considering the the Moon’s albedo, denoted as aM .

IM =
aM
π
NM (2.49)

Note that the amount of light reflected off the Moon’s surface could highly depend on the
lunar phase. Here, we consider the Moon’s albedo as aM = 0.136 which was measured at
the lunar phase angle θ = 7o (almost a full moon case, corresponding to high background
noise) [72].

The satellite will not receive the full amount of photons due to the limited Field Of
View (FOV) of its receiver telescope. We must consider that we only receive photons from
the area on Earth (shown as Σ in Figure 2.15e ) that corresponds to the satellite’s FOV.

Σ ≈ π (FOV · drecE)2 (2.50)

We use FOV= 50µrad (which we expect our receiving telescope to have), allowing us small
angle approximation. We assume drecE = 500 km as the distance between the Earth’s
surface and the satellite. The number of photons per second NE that reach the Earth is
then

NE = IMΩE (2.51)

where we have ΩE = Σ/d2EM , and dEM = 3.545 × 105km [102] is the perigee distance
between surfaces of the Earth and the Moon (to consider the worst case scenario). Similarly
to what was done in equation 2.49, the number radiant intensity from the Earth can be
expressed also assuming Lambertian diffusion.

IE =
(
10−

ϵatm
10 csc (δ)

)2 aE
π
NE (2.52)

We consider a typical value of aE = 0.29 for the Earth’s albedo [32]. IE differs from
IM in that it includes an extinction coefficient of the atmosphere previously discussed in
2.2. The extinction term is squared to accounts for the entry and exit of light into the
atmosphere when being reflected. Finally, the number of photons per second NML that
reach the receiver telescope is

NML = IEΩrec (2.53)
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where we have Ωrec = πR2
rec/d

2
recE. Rrec = 5 cm is used as the radius of the receiver

telescope. Using all the values mentioned here, the dark counts resulting from moonlight
are calculated to be NML = 137 s−1. Considering that the weather on Earth can vary
the extinction coefficient, if we do not consider atmospheric extinction at all (worst case
scenario), the calculation results in NML = 863 s−1.

Light Pollution

Background noise from artificial light pollution can be calculated using a method similar
to the previous method (for Moonlight), but with a simpler process, since there are no
intermediate sources for bouncing.

NLP = 10−
ϵatm
10

(790+5)nm∫
(790−5)nm

Bλ;Sources

Eλ

dλdAdΩ (2.54)

The spectral radiation function, divided by its corresponding energy, is integrated over
the filtered wavelength region, the area of the sources, and the solid angle of the receiver
telescope as seen from Earth. Atmospheric extinction is also considered here, but since it
is the case of light passing through, the factor of 2 is not included in the formula. The
amount of light pollution can vary greatly depending on the region, as light sources may
differ from one city to another. However, to provide a rough estimate, some research papers
reporting on light pollution in urban areas through moonlight-free nighttime observation
have shown radiance in the DNB ranging between 40 ∼ 180nW/cm2/sr [27, 41].

2.3.1 Background Noise Measurements

Starlight analysis

While it was not possible to directly measure the quantity of photons received from Moon-
light through observation, we attempted to estimate the number of photons received from
a star using the blackbody radiation function as a means of validating the amount of light
received. We use equation 2.54, considering the photons to have passed through the atmo-
sphere once. Another reason we apply equation 2.54 for the downlink (the receiver being
on Earth) is that we assume normal incidence of light from the star. In this case, the
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Figure 2.16: (a,b) Photos of the experimental setup for the background noise outdoor
measurements. (c) Photo of a star (Arcturus), taken by Sungeun (Paul) Oh on a clear
night for starlight analysis.

integration over the area and the solid angle yields the same result regardless of whether
one is considered the source or the target.

AΩ = A1
A2

d212
=
A1

d212
A2 (2.55)

One can obtain the number radiant intensity of a star by performing numerical integration
of the number radiance function. If the filter bandwidth is narrow, as shown in Figure
2.17, the numerical integration could be simplified by calculating the trapezoidal area
underneath the function. Orion GoScope refractor telescope (Orion, US) with an aperture
size of 8 cm is used for star observation. The telescope is maneuvered automatically by
the Nexstar GT telescope mount (Celestron, US) to locate stars. The eyepiece of the
telescope is replaced with the electronic filter wheel (ZWO ASI, China) and a ASI183mm
Pro (ZWO ASI, China) camera which is a monochromatic complementary metal-Oxide
semiconductor (CMOS) camera [62]. The filter wheel consists of four different bandpass
filters. This configuration of the telescope is illustrated in Figure 2.18. The telescope mount
is programmed using Matlab software (MathWorks, US) to automatically point towards
the stars. We entered Python code into SharpCap software (SharpCap, UK) to control
camera settings and the filter wheel (illustrated in Figure 2.19. There have been several
observation attempts to measure the photon counts received from the stars. However, due
to unstable weather conditions, we only present data obtained by measuring Vega using
a (790 ± 10)nm bandpass filter (Thorlab, US). We conduct a technical analysis based on

52



Figure 2.17: A spectral number radiance plot as a function of the wavelength. The zoomed-
in section shows how one can approximate the area as a trapezoid when numerically inte-
grating the function.

Figure 2.18: A diagram illustrating the structure of the measurement device for the ob-
servation. Starting from the right, we attached them in the following sequence: Orion
GoScope refractor telescope (Orion, US), electronic filter wheel (ZWO ASI, China), and
ASI183mm Pro (ZWO ASI, China) camera.
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Figure 2.19: A schematic flowchart showing how the measurement device is controlled
during the experiment. We used two different software programs (without any particular
reasons) to control the telescope, electronic filter wheel, and camera.

the specifications of the camera provided on the website of the ZWO ASI company [62].
For the observation, a gain of 0 was set5, allowing for a full electron well capacity of 15000
electrons per pixel. The camera employs a 12-bit Analog-to-Digital Converter (ADC) value,
dividing the brightness level of each pixel into 212 = 4096 Analog-to-Digital Unit (ADU).
Consequently, the brightness level increases for every accumulation of approximately 3.66
electrons. Figure 2.20 shows the image of Vega taken with an exposure time of ∆t = 0.1 s.
The pixels that contain Vega display a total accumulated brightness value of 5944 ADU.
The pixel with the highest value is 909 ADU (as shown in Excel), which the value appears
as 56 in the DS9 software due to the MONO16 setting (909/16 ≈ 56). To retrieve the
actual number of photons, we use the following equation.

Nexp =

(
3.66

e−

ADU

)
# ADU

ηd∆t
(2.56)

By considering the camera’s detection efficiency of ηd = 0.38 at 790 nm, it was calculated
that Nexp = 5.7×105Hz of photons from Vega reached the telescope lens. The theoretically

5The gain value here simply represents a set level, and is unrelated to the actual physical concept of
gain.
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estimated value (including the atmospheric effect) is Ntheo = 9.7× 105Hz. Considering the
many approximations and assumptions made, the values being within the same order of
magnitude suggests a reasonable level of agreement between the experimental and theoret-
ical results. Another reason for not being able to compare the results with other stars is

Figure 2.20: The photo of Vega being analyzed using the SAOImageDS9 program [56]. We
see a pixel peaking at 909 ADU, which the value is displayed as 56 in the DS9 software.
This is because one of the settings (MONO16) divides the peak level by 16. To highlight
the cell that has the peak value, the middle section of the Excel sheet was taken out of the
screenshot.

that the majority of stars observable through our telescope are not single entities; rather,
they exist in binary or multiple systems, making them unsuitable for applying the black-
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body function6. As the photon count of Vega has been confirmed to some extent, it would
be beneficial to calculate the number of photons reaching a satellite when these photons
are reflected by the Earth’s atmosphere. The starlight calculation method is similar to the
method used for calculating moonlight, but excluding the intermediate source, the moon.
From what was observed through the telescope, we theoretically predict that the satellite’s
receiver telescope receives only about 1.4 × 10−4 photons per second from Vega. Vega is
one of the brightest stars in the night sky, so we can infer that the contributions of starlight
to the background noise will be extremely small.

Light pollution analysis

We also measure artificial light pollution in the area where the Waterloo OQGS (ON,
Canada) is located. Our OQGS is planned to be built in the near future on the rooftop
of RAC1, which is located near the University of Waterloo (Canada). The primary source

Figure 2.21: A satellite image (Image credit : Google Map) of where OQGS is located.
The highlighted grey area, denoted as Σ, within the zoomed-in section represents the area
of the parking lot as seen from the satellite. Each highlighted yellow region, denoted as
Ap, within this grey area is where light pollution measurements were done.

6This was only realized much later! It was a sad realization that not only several months of effort became
somewhat meaningless but also one needs a clear understanding before performing any experiments.
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from which light pollution is expected to emanate from is the parking lot of the RAC1
building (Figure 2.21). Investigating the exact number of street lamps or the amount of
light from buildings around the OQGS can be a complex task. Therefore, to validate our
results, we rely on data obtained from VIIRS satellite. VIIRS satellite collects visible and
infrared images and global observations of the land, atmosphere, cryosphere and oceans
[11]. We measured light pollution in the parking lot area using two different approahces.
Note that we need both approaches to validate our observation results. The measurements
were performed during a new moon phase on March 20, 2023, and during a near full moon
on February 28, 2023. One approach involves using an optical fiber and a photodetector

Figure 2.22: a) Light pollution measurement device for the dark detection method. A
multimode fiber, a bandpass filter (790 ± 5nm), a rotating clamp and a SPAD detector
are used to measure the background counts. b) Light pollution measurement device for
the spectroscopy method. A mini spectrometer and a rotating clamp are used to take the
spectra of light coming from the parking lot area. Both photos are taken by my colleague,
Paul Godin.

(see Figure 2.22a). We attached a bare multimode optical fiber to a rotation-capable clamp.
A bandpass filter (790± 5nm) is also mounted to collect photons only in that wavelength
range. The other end of the fiber is connected to a photodetector. For the detector, we
chose a simpler SPAD rather than the cryogenically cooled SNSPD for conducting outdoor
tests and measurements. The fiber is oriented vertically downward from the rooftop of the
RAC1 building to face the parking lot and collect photons emitted from it. Here, we can
assume that atmospheric effects are negligible at this short distance. The number radiance
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Bp (Hz/m2/sr) of the parking lot can be written as

Bp =
Nroof

ΩfAp
(2.57)

Ωf = πR2
f/d

2
p is the solid angle of the fiber as seen from the parking lot, where Rf is

the radius of the fiber core and dp is the distance between the fiber and the parking lot
(equivalent to the height of the rooftop. Ap = π (dp sinNA)

2 is the area of the parking lot as
seen from the rooftop by the fiber, where NA is the numerical aperture of the fiber. Hence,
we can estimate Bp once we obtain the photon counts Nroof collected from the rooftop,
through the fiber, and by the detector. In order to compare with the VIIRS data, we need
to calculate the number of photons reaching the VIIRS satellite. We first multiply Bp by
the solid angle Ωsat = π (Rsat/dsat)

2 of the receiver camera of the VIIRS satellite, where
Rsat = 9.5 cm and dsat = 830 km are the radius of the receiver camera and the distance
between the parking lot and the satellite, respectively [38]. Then we multiply again by the
area of the parking lot Σ = π (FOV · dsat)2 as seen from the satellite at zenith.

ND.method = 10
−
ϵatm
10 csc2 (δ) BpΩsatΣ

(2.58)

We consider atmospheric effect as well as the elevation of the satellite. The cosecant

Figure 2.23: The sensitivity spectrum of the DNB sensor that is used by VIIRS (plotted in
blue) [101]. The dark subtracted spectrum of the RAC1 parking lot taken from the rooftop
(plotted in purple).

term is multiplied twice : once for the atmospheric term and once for the area term. VI-
IRS satellite uses wide-band filters to capture data [9], while we use a narrow-band filter
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(790± 5)nm for our measurements, rendering the comparison of data inaccurate. There-
fore, we adopt another approach, which involves using a spectrometer (see Figure 2.22b).
We conduct RAC1 parking lot scans by attaching a mini spectrometer (Ocean Insight,
US) to a rotation-capable clamp. We obtain the spectrum by directing the spectrometer
towards the parking lot, again from the rooftop of the RAC1 building, with the fiber input
port of the spectrometer kept open to expose it to the scanning area. Figure 2.23 shows

Figure 2.24: Six graphs showing the analysis results using ’dark detection method’ and
’spectroscopy method’. We measured during the new moon and full moon phases using
bands of (780± 5)nm, (790± 5)nm, and (850± 5)nm. The graphs display an uncertainty
range of ±25%. The graphs are generated by my colleague, Paul Godin.

the dark subtracted spectrum of the parking lot (shown in purple) captured with an ex-
posure time of 10 seconds and averaged over 5 measurements. We multiply the spectrum
by the VIIRS DNB spectrum (shown in blue), obtained from the VIIRS website [10, 9].
After multiplying the two spectra, we select only the wavelength region corresponding to
the VIIRS DNB and determine the portion within the (790± 5)nm range. As a result, it
is expected that when the VIIRS satellite scans the parking lot using the DNB filter, the
number of photons received within our narrow-band region would account for 0.42% of the
total, which can be used as a calibration factor. Finally, by obtaining the brightless level of
the parking lot provided by the satellite on the date of our observation, and multiplying it
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by the calibration factor, we can compare it with the photon number values previously ob-
tained through the first approach. The calculation results shown in Figure 2.24 takes into
account an uncertainty range of ±25%. The uncertainty is considered because the number
radiance Bp is calculated from the experimentally measured Nroof that only corresponds
to the background noise in the yellow regions shown in Figure 2.21 rather than from the
entire region Σ. Nevertheless, Figure 2.24 shows that the photon counts obtained from
both approaches are within the same order of magnitude, indicating a reasonable level of
agreement between them. We can finally approximate the total background noise from
these experimental investigations.

NBG ≈ 863Hz(NML) + 2000Hz(NLP ) ≈ 3000Hz. (2.59)

2.3.2 Minimum Photon Pair Rate Estimation

In practical terms, it is not possible to send perfectly entangled photon pairs every single
time. Occasionally, photons may be transmitted without any correlation, which corre-
sponds to an error in QKD. However, the good news is that a certain degree error tolerance
is acceptable in QKD, and perfect photon correlation is not necessarily required. We use
CHSH inequality [30, 81] to mathematically determine the maximum acceptable error level
to ensure secure QKD. For a successful QKD demonstration, it is crucial that the signal
and idler photons exhibit strong correlation upon reaching Alice and Bob. The degree of
correlation preservation during their transport through the quantum link can be assessed
by the entanglement visibility.

V =
Nexpected −Nunexpected

Nexpected +Nunexpected
(2.60)

Nexpected is the number of expected coincidence detection event from Alice and Bob. The
Nunexpected unexpected coincidence events may originate from sources associated with back-
ground noise. The QBER can also be obtained from the entanglement visibility.

QBER =
Nunexpected

Nexpected +Nunexpected

=
1− V

2
(2.61)

If all the coincidence detections are as expected, we will have V = 1 (which means 100%)
and QBER = 0. The decrease in visibility can be interpreted as the depolarization of
the entangled photon states. Depolarization occurs when the entangled states transition
to completely mixed states. In terms of the projection operator, the depolarizing channel
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could be described as follows [66].

|ψ⟩ ⟨ψ| −→ (1− p) |ψ⟩ ⟨ψ|+ p

4
I (2.62)

where p = 1 − V is the probability of depolarization. We can address such scenarios by
adding the depolarization feature into equations 1.28.

N++ (α, β) = N−− (α, β) =
1− p

2
N0 cos

2 (α− β) +
p

4
N0

N+− (α, β) = N−+ (α, β) =
1− p

2
N0 sin

2 (α− β) +
p

4
N0

(2.63)

Referring to equations 1.23 and 1.27, the statistical value S can be experimentally obtained
by measuring the followinig coincidence counts.

Sexp =
Nα+β+ −Nα+β− −Nα−β+ +Nα−β−

Nα+β+ +Nα+β− +Nα−β+ +Nα−β−
− Nα+δ+ −Nα+δ− −Nα−δ+ +Nα−δ−

Nα+δ+ +Nα+δ− +Nα−δ+ +Nα−δ−

+
Nγ+δ+ −Nγ+δ− −Nγ−δ+ +Nγ−δ−

Nγ+δ+ +Nγ+δ− +Nγ−δ+ +Nγ−δ−
+
Nγ+β+ −Nγ+β− −Nγ−β+ +Nγ−β−

Nγ+β+ +Nγ+β− +Nγ−β+ +Nγ−β−

(2.64)

where we attempt to maximally violate the CHSH inequality by choosing α = 0o, β = 22.5o,
γ = 45o and δ = 67, 5o. As we previously discussed in section 1.2.5, the maximal violation of
CHSH is SQM = 2

√
2 whereas the classical upper bound is SCM = 2. In actual experiment,

we must consider statistical fluctuations. Let us claim that the CHSH inequality is violated
when Sexp deviates from SCM by a minimum of three standard deviations (i.e., ≈ 99.7%
confidence level).7

Sexp − 3∆Sexp > SCM (2.65)

We can use error propagation to derive the statistical fluctuations [76].

∆Sexp =

√√√√∑
i

∑
j

(
∂S

∂Ni,j

)2

Ni,j (2.66)

Note that we assume Poissionian statistics such that the uncertainty of the coincidence
count is ∆N =

√
N . For instance, the partial derivatives with respect to α and β are

∂S

∂Nα+β+

=
∂S

∂Nα−β−
=

2 (Nα+β− +Nα−β+)

(Nα+β+ +Nα+β− +Nα−β+ +Nα−β−)2

∂S

∂Nα+β−
= − ∂S

∂Nα−β+

=
2 (Nα+β+ +Nα−β−)

(Nα+β+ +Nα+β− +Nα−β+ +Nα−β−)2

(2.67)

7The choice of three standard deviations is purely arbitrary on our part.
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Hence, the fluctuation term with α, β is∑
α

∑
β

(
∂S

∂Nα,β

)2

Nα,β =
4 (Nα+β+ +Nα−β−) (Nα+β− +Nα−β+)

(Nα+β+ +Nα+β− +Nα−β+ +Nα−β−)2
(2.68)

By putting equations 2.63 into equation 2.68 and choosing the angles previously mentioned,
equation 2.66 becomes

∆Sexp = 2

√√√√ 1

2
− p2

2
+ p

N0

= 4

√√√√1− V 2

2
Ntotal

(2.69)

Here, we assumed that the coincidence events for each correlation measurement are the
same (N0 (α, β) = N0 (α, δ) = N0 (γ, δ) = N0 (γ, β) = N0 = Ntotal/4). The total coinci-
dence events include both the expected and the unexpected cases.

Ntotal = Nexpected +Nunexpected (2.70)

Finally, the violation inequality 2.65 can be written as follows.

2
√
2V − 12

√√√√1− V 2

2
Ntotal

> 2
(2.71)

As the visibility varies between 0 and 1, we can write Sexp = SCHSHV = 2
√
2V . This means

that if the visibility is 1, the statistical value becomes 2
√
2, indicating the violation of the

inequality. Given the assumption that the unexpected coincidence events predominantly
originate from background noise, we can utilize our experimental values obtained (equation
2.45) to approximate the minimum (or sufficient) number of expected counts (or number
of entangled photon pairs) necessary for establishing a long-distance quantum link. Also,
we utilize the link loss obtained from Section 2.2.3, as we are referring to the visibility after
traveling through free-space.

V =

(
Npair10

− L
10

)
−NBG(

Npair10
− L

10

)
+NBG

(2.72)

By plugging in the values NBG = 3000Hz and L = 37.7dB, the required photon pair rate
for the successful satellite-based QKD is Npair > 114MHz. For the sake of simplicity, let
us assume that our minimum pair rate for our EPS is 100MHz.
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Chapter 3

Polarization-Based Entangled Photon
Source

We first discuss the quantum source for creating photon pairs implemented according to
equation 1.9. Certain crucial components are necessary to construct a quantum source
capable of producing entangled photon pairs. First of all, to make use of the quantum
entanglement of photons (wave packets), they must be in a coherent state. Whatever
properties of the wave packets are chosen as the quantum state, they must be able to
overlap completely in order to become entangled. This requirement is met by a laser device.
Lasers not only confine photons to coherent states but also have the capability to emit a
substantially large amount of photons. Next, we need a system capable of creating photon

Figure 3.1: A schematic diagram showing the process of generating entangled states. We
utilize nonlinear materials that can perform SPDC. The entanglement of photon pairs is
achieved by building an interferometer.

pairs from the photons. While there are various ideas for the system, our approach involves
performing Spontaneous Parametric Down Conversion (SPDC) using nonlinear materials.
Given the availability of photon pairs, the final step would be to perfectly overlap them.
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In this chapter, we present the development and testing of a polarization-based entangled
photon source suitable for the long-distance QKD. All data analysis presented in this
chapter is conducted using the following devices : SPAD for single photon detections of
signal photons, SNSPD for single photon detections of idler photons, and a time-tagging
unit for coincidence detections.

Statement of contribution

1. Design of Entangled Photon Source : Younseok Lee and Prof. Thomas Jen-
newein conceived the idea of using two beam displacers and a Sagnac loop to create
an interferometer. I wrote Matlab codes for all necessary simulations presented in
this chapter. I constructed the entangled photon source, incorporating my novel com-
pensation method. Then I demonstrated the quantum entanglement experimentally.

2. Construction of crystal oven : I designed and constructed a crystal oven that
can hold two crystals perpendicular to each other. I confirmed its performance ex-
perimentally.

3.1 Photon Pair Generation

3.1.1 Spontaneous Parametric Down Conversion

A photon, as it passes through a nonlinear medium, often undergoes interactions, leading to
a process known as frequency conversion [23]. One example is when a photon subsequently
splits into two correlated photons, each designated as the signal (s) and idler (i) photons,
while conserving the total energy.

ωp = ωs + ωi (3.1)

The original photon is designated as the pump (p) photon. For this interaction to occur,
the phase of the atomic dipoles of the medium must match the phase of the pump field, such
that the field radiated by each the dipole adds constructively in the propagation direction
of the pump field [23]. However, in any material, refractive indices affect the wave vectors
(k = nω/c) of the fields, leading to a wave vector mismatch (∆k ̸= 0), which ultimately
results in a phase mismatch. This phase shift increases with the length of the medium L.

ϕ = ∆kL (3.2)
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Due to this reason, a phase-matching condition is necessary to enhance the nonlinear
optical processes. While encountering a phase shift is inevitable, we can exploit the fact
that a phase shift of 2π is equivalent to zero phase (refer to Figure 3.2). An additional

Figure 3.2: Figure illustrating the quasi-phase matching condition in the periodically poled
nonlinear crystal. The poling period Λ is determined to conserve the wave number, enabling
the production of signal and idler photons with wave numbers ks and ki from the pump
photon with wave number kp. Simultaneously, the energies must always be conserved (i.e,
ℏωp = ℏωs + ℏωi).

wave vector of k = 2π/Λ could complete the phase shift of 2π, thereby fixing the phase
mismatch. This technique, known as Quasi-Phase Matching (QPM), is widely used
in nonlinear optical experiments. In experiments, we address the issue by periodically
alternating the sign of the nonlinear susceptibility in the material, deliberately creating
the additional wave vector.

∆k = kp − ks − ki −
2π

Λ
(3.3)

The poling period, Λ, is the physical length as shown in Figure 3.2. With a correct phase
compensation, we could obtain ∆k = 0 that would allow constructive interference over
the propagation distance, effectively enabling nonlinear interactions. Using equation 3.1,
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equation 3.3 becomes

∆k =
npωp

c
− nsωs

c
− ni

c
(ωp − ωs)−

2π

Λ

=
(np − ni)

c
ωp +

(ni − ns)

c
ωs −

2π

Λ

(3.4)

We use this equation to identify the required poling period of the material. It is worth
noting that the refractive indices are wavelength and temperature dependent,

n→ n (λ, T ) (3.5)

which are usually described by Sellmeier equation which contains different coefficients for
different materials. The associated bandwidths can be estimated by the first-order Taylor
expansion of equation 3.3.

∆k ≈ ∂kp
∂ω

∣∣∣∣
ωp

∆ωp −
∂ks
∂ω

∣∣∣∣
ωs

∆ωs −
∂ki
∂ω

∣∣∣∣
ωi

∆ωs =
2π

L
(3.6)

we could also write it in terms of the propagation constant, β′ = ∂k/∂ω |ω. By using
equation A.2, equation 3.6 can be rearranged to express the wavelength bandwidths of the
signal and the idler photons.

∆λs,i =
λ2s,i
c

∣∣∣∣∣ 1

L (β′
i − β′

s)
−
(
β′
p − β′

i,s

)
(β′

i − β′
s)

c∆λp
λ2p

∣∣∣∣∣ (3.7)

According to equation 3.7, the bandwidth decreases with increasing crystal length. When
signal travels through free-space, chromatic dispersion can decohere the phases of the signal
photons. To mitigate the dispersion, it is advantageous to have a narrow initial bandwidth.
We purchased two identical 5% MgO-doped PPLN bulk crystals (Covesion Ltd., UK) to
perform type-0 SPDC. Each is responsible for down-converting one polarization state. The
birefringence of a Lithium Niobate crystal is highly temperature-dependent, which allows
easy phase-matching by keeping it untilted while varying the temperature of the crystal
[47]. Because the separation between signal and idler wavelengths is large, we use MgO-
doped ones which allow a wider wavelength operation [2]. The detailed specifications
of the purchased crystal are shown in Appendix.B. By running simulations (shown in
Figure 3.3), we identified that the poling period of Λ = 7.10 µm that is provided by the
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manufacturer at a temperature of 107.6 ◦C satisfies the condition for a pump photon at
a wavelength of 523.64 nm and signal and idler photons at wavelengths of 790.8 nm and
1550 nm, respectively. When choosing the length of the crystals, we need to consider our
desired photon bandwidth for the signal photons. As the length of the crystal increases,

Figure 3.3: A Non-degenerate SPDC process in a periodically poled nonlinear crystal. a)
Photo of the purchased PPLN crystal with nine different gratings (zoomed-in photo on its
right). Only one (Λ = 7.10 µm) of the gratings is considered. b) shows different wavelength
outcomes from type-0 SPDC over different poling periods. c) shows the non-degenerate
SPDC wavelength outcomes over different pump wavelength. The poling period is fixed to
7.10 µm.

the photon bandwidths become narrower according to equation 3.7. We aim for the photon
bandwidth to be less than 1 nm to minimize chromatic dispersion effect for the free-space
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channel. Maintaining low dispersion is crucial, as a highly dispersive photon field is more
vulnerable to the atmospheric effects. Narrow bandwidths reduce the dispersion effects in
the channel, resulting in a longer coherence time.1 Another reason for desiring a narrow
photon bandwidth is that it allows us to use a narrow bandpass filter so that any unwanted
light (with a different wavelength) is easily blocked. To generate photons with such a
narrow bandwidth, the crystal length needs to be at least on the order of a centimeter.
The two PPLN crystals that we purchased both have a length (in the propagation direction
of pump field) of 10mm, which was a good compromise for the photon bandwidths, SPDC
efficiency and commercial availability.

3.1.2 Continuous Wave

Equation 3.7 indicates that the production of photon pairs with narrow bandwidths can
be achieved not only by using a long crystal length, but also by using pump photons
with narrow bandwidths. This leads us to favor a CW laser, typically emitting a near
single-frequency beam in commercial models (refer to Appendix A). CW lasers also offer
several advantages in long-distance QKD. While timing of the pulses may be important,
especially in methods like time-bin encoding, polarization encoding methods do not ne-
cessitate pulsed photons. Therefore, it is preferable to use a CW laser, since it has the

Table 3.1: List of CW lasers that sufficiently meet the majority of the requirements for the
EPS.

capability of continuously producing a lot higher number of photons compared to pulsed
lasers. Moreover, CW waves cause less damage to the optics than pulses, which is the

1A prolonged coherence time also provides the flexibility to anticipate potential temporal discrepancies
on the entanglement of photons.
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preferable since we need the minimum pair rate of 100MHz (calculated from section 2.3.2)
for QEYSSat mission. We searched for laser products capable of achieving near Transverse
Electromagnetic Mode (TEM)00 mode at 523 nm with a power output of up to 200mW.2

Table 3.1 displays a list of initially selected candidate CW lasers. While all these lasers
have great specifications, a CW laser from Frankfurt Laser (Germany) stood out notably
for its exceptional power stability and spectral bandwidth. For our EPS, we decided to
purchase this laser which produces single-frequency beam at 523.64 nm of wavelength.

3.1.3 Characterization Tests and Results

Figure 3.4 shows the spectrum of the CW laser where the actual values for the central wave-
lengths and the bandwidths of signal and idler photons were found to be λp = 523.64 nm
and ∆λp = 0.0077 nm, respectively. These values are used in the calculations presented in
the following sections. We also conducted a characterization test of the PPLN crystal we

Figure 3.4: Characterization of the CW laser beam. The spectrum of the beam was
analyzed using Gaussian fit. The central wavelength of the pump beam and its bandwidth
are identified to be λp = 523.64 nm and ∆λp = 0.0077 nm, respectively.

purchased by measuring the central wavelengths and bandwidths of the signal and idler
photons generated from SPDC while changing the temperature of the crystal by 2 ◦C. The
wavelengths and bandwidths are calculated by fitting Gaussian profiles to the spectra ob-
tained using a spectrometer (Teledyne Princeton Instruments, US). The results are plotted

2The reason for the desired power output is explained in section 3.3.7.
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in Figure 3.5 The experimental results agreed with the expected wavelengths and band-
widths of the signal and idler photons, calculated using equation 3.7. were generated from
the PPLN crystal.

Figure 3.5: The solid lines depicted in both plots represent theoretical values, while the
dots correspond to actual experimental data points. a) shows the non-degenerate SPDC
wavelength outcomes over different temperature. The error bars on this plot are too
small to be visible. b) shows the wavelength bandwidths that correspond to the central
wavelengths shown in plot a).3
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3.2 Photon Emission Rates

There have been many studies indicating that the photon pair rate and mode-coupling
(heralding) efficiency are influenced by the degree of focusing of the pump beam into the
crystal and the beam waists of the signal and the idler beams [67, 36]. We mathematically
derive the emission rate of the single photons and photon pairs produced through SPDC
process in a bulk crystal [16] for given beam waists. Then, we demonstrate how different
beam waist combinations affect the photon emission rate and the mode-coupling efficiency.

3.2.1 Theoretical Calculations

Periodic Poling

The significance of the crystal’s second-order nonlinear susceptibility, denoted as χ′′, lies
in its substantial impact on the rate of photon pair generation. This importance stems
from its dual role : not only does it establish the quasi-phase matching condition, as shown
earlier, but it also includes the nonlinear coefficient, denoted as deff , which dictates the
degree of interaction enhancement derived from this condition. To incorporate the nonlin-
ear susceptibility into the pair rate calculations, we shall express it mathematically. Note
that although nonlinear susceptibility is a frequency-dependent parameter, the frequency
bandwidths of the photons we are dealing with are small enough compared to their optical
frequencies to assume our susceptibility to be frequency-independent. To achieve contin-
uous enhancement in pair generation by making the quasi-phase matching condition, it
is necessary to periodically alternate the sign of the nonlinear susceptibility, as depicted
in Figure 3.2. Due to technical characteristics of the ferroelectrical poling process, the
grating engraved on the crystal will contribute to nonlinear interaction in the form of a
square wave. Thus, we apply Fourier series F (z) for the square wave to describe spatial
variation of the poling.

χ′′(r⃗) = 2deffF (z) = 2deff

(
∞∑

m=−∞

2

mπ
sin

(
mπLcoh

Λ

)
eikmz

)
(3.8)

The second-order nonlinear susceptibility χ′′(r⃗) depends on the nonlinear coefficient 2deff
4,

the crystal’s poling period Λ and the coherence length of the wave Lcoh. The wave number

4The factor of 2 comes from the fact that we are using equations D.1 as the expressions for the electric
fields, such that the nonlinear polarization is defined as Pn = 2n−1deff : E1E2 · · ·En. The nonlinear

coefficient should be just deff if one considers E⃗ = 1
2

[
E⃗(+) + E⃗(−)

]
instead of E⃗ = E⃗(+) + E⃗(−).
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km = 2πm/Λ takes the role of achieving the desired QPM condition. Assuming that the
crystal’s poling period exactly matches half of our desired coherence length (Lcoh = Λ/2),
the sine term becomes sin (πm/2) such that only the odd terms survive.

χ′′(r⃗) = 2deff

(
4

π

∞∑
m=0

(−1)m

(2m+ 1)
eikmz

)
(3.9)

Figure 3.6: The graph represents the result of summation over 10,000 iterations for the
nonlinear susceptibility. We use the following values provided by the company (Covesion
Ltd.) from which our PPLN crystals were purchased : Λ = 7.10 µm, deff = 25 pm/V .

Interaction Hamiltonian

We consider a coherent paraxial gaussian wave, as we use the pump beam at 523.64 nm
that is provided by a single frequency Diode-Pumped Solid-State (DPSS) laser. We assume
that it is propagating along the z axis, with its beam waist positioned at the origin. The
beam comes out of a single mode fiber (i.e, near TEM00 mode), and is focused at the PPLN
crystals by a focal lens. We also assume that the PPLN crystals are optically uniform media
as they are positioned in a way that the beam propagates along the extraordinary axis of
the crystals. We first simplify equation D.14 by defining a q parameter, q = 2i(z + zR)/k.
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The negative single frequency (creation) electric field can be written as

E
(−)
j (r⃗, t) = −i

√
ℏωj

2ϵ0n2
jLc

√
2

πW 2
j

W 2
j

q∗j
â†je

−
ρ2

q∗j
−ikjz+iωjt

êj j = s (signal), i (idler)

(3.10)
where ê is a linear polarization unit vector. Note that the constant factor 1/izR at the
front was taken out and absorbed by the volume constant for convenience, and the fresnel
factor, 1/n is included. We are interested in the parametric interaction inside the crystal,
so we use the crystal length as the normalization constant for the length term, 1/

√
Lc.

Lastly, we are considering an electric field for all values of ks and ki, in order to calculate
for the total single mode pair emission rates. This expression is going to be used for the
signal and the idler beam.
On the other side, the pump beam isn’t the outcome of the SPDC process, but rather
produced by the laser. Also, we are considering the case where the pump photons are
destroyed to produce signal and idler photons. Hence, we use the positive frequency version
of equation 3.10. We assume a strong pump field created by the laser which allows us to
treat it classically. Thus, E0 could be rewritten using the classical pump power expression
P = cnpϵ0 |E0|2A/2 with the cross-sectional area of the beam A = πW 2

p /2 and E
(+)
0 =

E0/2.

E(+)(r⃗, t) = i

√
P

2ϵ0npc

√
2

πW 2
p

W 2
p

qp
e
−
ρ2

qp
+ikz−iωpt

êp
(3.11)

The pump power can be expressed in terms of the pump photons

P =
∑
kp

NpℏωpJ
2(ωp)

c

npLc
(3.12)

where Np is simply the number of pump photons, and
∫
J2(ωp)dω = 1 is the spectral func-

tion. Note that
√
NpJ(ωp) would correspond to the annihilation operator â. In practical

scenarios, the pump field encompasses several frequency modes, necessitating the presence
of summation in the equation. However, the interaction length (crystal length) Lc greatly
exceeds the wavelength of the pump beam, allowing us to turn the discrete summations
into integrals. ∑

kp

≈ Lc

2π

∫
dkp =

npLc

2πc

∫
dωp (3.13)
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E(+)(r⃗, t) =

∫
dωpi

√
Npℏωp

4πϵ0npc

√
2

πW 2
p

W 2
p

qp
J(ωp)e

−
ρ2

qp
+ikz−iωpt

êp
(3.14)

The time dependent Hamiltonian operator, Ĥspdc(t), describes the parametric interaction
between the pump field (p) and the signal (s) and idler (s) fields.

Ĥspdc(t) =

∫
Ê(+)

p P̂
′′(−)
s,i d3r⃗ =

∫
2ϵ0χ

′′(r⃗)Ê(+)
p (r⃗, t)Ê(−)

s (r⃗, t)Ê
(−)
i (r⃗, t) d3r⃗ (3.15)

The factor of 2 is from the consideration of permutation symmetry of the second order
nonlinear term. By putting 3.10, 3.11 and 3.8 into 3.15, we obtain the following expression

Ĥspdc(t) = 2deff
4

π

∞∑
m=0

(−1)m

2m+ 1

∫
dωp

(
−i

√
2Npℏ3ωpωsωi

π4ϵ0npn2
sn

2
i cL

2
c

)
J(ωp)â

†
sâ

†
ie

−i∆ωtΦ(∆k) + h.c

(3.16)
which includes the spatial overlap function Φ(∆k),

Φ(∆k) =

∫ ∞

0

ρ dρ

∫ 2π

0

dθ

∫ Lc
2

−Lc
2

dz
WpWsWi

qpq∗sq
∗
i

e
−ρ2

 1

qp
+
1

q∗s
+
1

q∗i

+i∆kz
(3.17)

where ∆k = kp − ks − ki − 2π(2m+ 1)/Λ.

Spatial Overlap

By integrating equation 3.17 over the transverse (ρ, θ) plane, the spatial overlap function
becomes

Φ(∆k) =

∫ Lc
2

−Lc
2

dz
πWpWsWi

q∗sq
∗
i + qpq∗s + qpq∗i

ei∆kz (3.18)

The depth of focus is two times the Rayleigh length (2zR = kW 2) which is twice the
Rayleigh range, and the beam outside the Rayleigh range is said to be ”out of focus” [87].
We define two dimensionless parameters, l = 2z/Lc and 1/ξ = kW 2/Lc. In particular,
ξ is known as the focal parameter which indicates the strength of beam focusing. For
instance, ξ ≫ 1 means the beam is strongly focused, and ξ ≪ 1 means the beam is weakly
focused relative to the crystal length (co-linear beams). Then the q parameter becomes
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qj =
Lc

kj

(
1
ξj
+ il

)
. By replacing the q parameters, the denominator of the function may be

written as

qsqi + q∗pqs + q∗pqi =
L2
c

kpkski

[(
kp
ξsξi

+
ks
ξpξi

+
ki
ξpξs

)
− il

(
kp − δk

ξp
+
ks − δk

ξs
+
ki − δk

ξi

)
− l2δk

]
(3.19)

where δk = kp − ks − ki.
To further simplify the expression, we define

A± =1 +
ksξs
kpξp

± kiξi
kpξp

B± =

(
1− δk

kp

)(
1 +

(ks + δk)ξp
(kp − δk)ξs

± (ki + δk)ξp
(kp − δk)ξi

) (3.20)

such that
q∗sq

∗
i + qpq

∗
s + qpq

∗
i

WpWsWi

=

√
ξpξsξi
kpkski

Lc

[
kp
ξsξi

A+ − il
kp
ξp
B+ − l2δk

]
(3.21)

We now introduce an aggregate focal parameter, ξ± ≡ (ξsξi/ξp)B±/A±, that contains all
three focal parameters for the pump, signal and idler modes. Then the inverse of equation
3.21 can be written as follows.

WpWsWi

q∗sq
∗
i + qpq∗s + qpq∗i

=

√
kski
kp

1√
Lc

1√
A+B+

√
ξ+

(1− ilξ+ − C+ξ2+l
2)

(3.22)

where C± =
δkξ2pA±
kpξsξiB2

±
. The motivation behind all the derivations that have been shown

so far was to enable the study of each term in the final expression separately. Also, note
that the negative versions (A−, B−, C− and ξ−) will appear in the calculation of the single
photon emission rate in the next section.

Φ(∆k) =
π

2

√
kski
kp

√
Lc

A+B+

∫ 1

−1

dl

√
ξ+

(1− ilξ+ − C+ξ2+l
2)
ei

ϕ
2
l (3.23)

Note that the differential was transformed as dz → (Lc/2) dl, and so did the limits of the
integral. In the case where ξ+ ≪ 1, the photon fields can be approximated as plane waves,
and the spatial overlap function becomes proportional to the standard phase matching
function.

Φ(∆k) ∝ sinc

(
∆kL

2

)
(3.24)

If ξ+ is not small enough,
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Photon Pair Emission Rate

Suppose the nonlinear SPDC process was successful in the crystal. Using E.3, the resulted
state from an initial state |i⟩ = |1p, 0s, 0i⟩ (generated by the pump laser) can be expressed
as

|ψspdc(t)⟩ = − i

ℏ

∫ t

0

dt Ĥspdc(t) |i⟩ (3.25)

To calculate the photon pair emission rate, we first need to determine the probability of
generating one of the paired photons under the assumption that the other photon of the
paired photon has been generated. The Fermi’s Golden Rule (refer to Appendix E) allows
one to determine the transition rate if the density of energy states ρ is regarded as constant
due to the narrow range of the energy. Here, we won’t make such an approximation, but
rather accounts for the frequency dependency, keeping the density of states inside the
integral in equation E.7. The probability of finding the idler mode ki in the final state
|f⟩ = |0p, 1s, 1i⟩ = âpâ

†
sâ

†
i |1p, 0s, 0i⟩ for each signal mode ks can be determined by the

probability density function of SPDC summed over all possible idler modes.

Pki(ks) =
∑
ki

|⟨f |ψspdc(t)⟩|2 (3.26)

Then we integrate it again over all values of the signal mode ks to find the total photon
pair probability Pc.

Ppair =
∑
ks

Pki(ks) (3.27)

Consequently, the pair probability can be considered as a coincident photodetection prob-
ability (assuming no detection loss). Analogous to the approximation made for the pump
mode earlier, the signal and idler wavelengths are also much shorter than the interaction
length (or the bandwidths are narrow enough that the coherence lengths are much longer
than the interaction length) such that we can apply the same approximation as follows.

∑
ks

∑
ki

≈
(
Lc

2π

)2 ∫
dksdki =

nsniL
2
c

4π2c2

∫
dωsdωi (3.28)

Then the coincidence probability from the SPDC is
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Ppair =

(
4

π

∞∑
m=0

(−1)m

2m+ 1

)2(
32d2effπ

2NpℏL
ϵ0n2

pλ
2
sλ

2
i

)
1

A+B+

∫
dωsdωiJ

2(ωp)

×

∣∣∣∣∣
∫ 1

−1

dl

√
ξ+

(1− ilξ+ − C+ξ2+l
2)
ei

ϕ
2
l

∣∣∣∣∣
2

(3.29)

If the frequency bandwidths of the photons are much smaller than the optical frequencies,
we could further assume that the followings are constant [16].

A±, B±, ξp, ξs, ξi (3.30)

This relates to the approximation that the frequency dependence of the pair rate is essen-
tially determined by the pump spectral function, J(ωp), and the phase mismatch δk. In
order to work with the two dominant factors, one could transform the differentials into a
favorable form. First, by putting equation 3.2 into 3.1 (including the Fourier term), we
obtain an expression for the phase shift.

ϕ =

[
ωs(np − ns) + ωi(np − ni)−

2π(2m+ 1)

Λ

]
Lc

c
(3.31)

The phase shift can be distorted by the presence of various frequency components within the
signal and idler photon bandwidths. The further these frequency components stray from
their nominal frequencies, the more severe the phase distortion happens. As illustrated in
Figure 3.7, we can assume the wave mismatch to have a linear frequency dependence with
a group index n′ = n− λdn/dλ.

δk ≈ n′

c
δω (3.32)

By this assumption, we could approximate the phase mismatch as follows.

ϕ ≈ ϕ0 +
[
δωs

(
n′
p − n′

s

)
+ δωi

(
n′
p − n′

i

)] Lc

c
(3.33)

The fourier term essentially contributes to worsening the phase mismatch ϕ0 at nominal
frequency. Hence, we consider this contribution as part of the deviation of the frequency
components. We could let a Jacobian matrix

J =


dϕ

dωs

dϕ

dωi

dωp

dωs

dωp

dωi

 =

[
Lc

c
(n′

p − n′
s)

Lc

c
(n′

p − n′
i)

1 1

]
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Figure 3.7: Linear frequency dependency in the wave mismatch. Depending on the crystal’s
sellmeier equation, this could not always be the case. In our case with PPLN crystal.

to transform dωsdωi → dϕdωp.

dωsdωi =
1

|J |
dϕdωp =

c

Lc |n′
i − n′

s|
dϕdωp (3.34)

We can now replace the differentials with what we have derived.

Ppair =
32d2effπ

2Npℏc
ϵ0n2

p |n′
i − n′

s|λ2sλ2i
1

A+B+

∫
dϕ

∣∣∣∣∣
∫ 1

−1

dl

√
ξ+

(1− ilξ+ − C+ξ2+l
2)
ei

ϕ
2
l

∣∣∣∣∣
2

(3.35)

As
∫
J2(ωp)dω = 1, the pump spectral function disappears. We can also integrate the

phase term as it becomes a function
(∫

e
iϕ
2
(l−l′)dϕ = 4πδ(l − l′)

)
. Finally, by replacing Np

with Pλp/2πcℏ, we obtain the expression for the photon pair emission rate Rpair (in Hz).

Rpair =
64π2d2effλp

ϵ0n2
p |n′

i − n′
s|λ2sλ2i

Pξ

A+B+

∫ 1

−1

dl
1

(1− ilξ+ − C+ξ2+l
2) (1 + ilξ+ − C+ξ2+l

2)

(3.36)
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Single Photon Emission Rate

When we refer to the photon pair emission rate, we calculate the pair probability of col-
lecting pairs at a specific spatial mode, typically the fundamental mode (since collecting
higher-order spatial modes could result in collecting the lower modes as well). However,
one could derive the single photon emission rate (signal photon for instance) by summing
the pair probability density function over all spatial modes for the idler photon. Then
equation 3.15 becomes

Ĥspdc(t) =

∫
2ϵ0χ

′′(r⃗)Ê(+)
p (r⃗, t)Ê(−)

s (r⃗, t)E
(−)
i:n,l(r⃗, t) d

3r⃗ (3.37)

where the idler photon field is expressed by the Laguerre Gauss modes.

E
(−)
i:n,l(r⃗, t) = −i

√
ℏωi

πϵ0n2
iLc

(
Wi

qi

)l+1(
q∗i
qi

)n

Ll
n

(
2W 2

i ρ
2

|qi|2

)
e
− ρ2

qi
+ikiz+ilϕ

êi (3.38)

Ll
n is the associated Laguerre polynomial, and ρ =

√
x2 + y2 and tanϕ = x/y. As we

have been considering paraxial Gaussian beam, one could assume the idler mode to be
azimuthally symmetric (l = 0). With such an assumption, equation 3.17 becomes

Φn(∆k) =

∫ ∞

0

ρ dρ

∫ 2π

0

dθ

∫ Lc
2

−Lc
2

dz
WpWsWi

qpq∗sq
∗
i

(
qi
q∗i

)n

Ln

(
2W 2

i ρ
2

|qi|2

)
e
−ρ2

 1

qp
+
1

q∗s
+
1

q∗i

+i∆kz

(3.39)
with a simplified version of the Laguerre polynomial, Ln(x) =

∑n
m=0(−1)m n!

(n−m)!m!m!
xm.

With a bit of work, the overlap function becomes

Φn(∆k) =

∫ Lc
2

−Lc
2

dz
πWpWsWi

q∗sq
∗
i + qpq∗s + qpq∗i

(
q∗sqi + qpqi − qpq

∗
s

q∗sq
∗
i + qpq∗i + qpq∗s

)n

ei∆kz (3.40)

The probability density function Pn,spdc(t) would have the same expression as 3.35, except
the spatial overlap Φ2(∆k) is now Φ2

n(∆k). In case of n = l = 0, we see that equation
3.40 gives us back the spatial overlap of the fundamental Gaussian mode (equation 3.18).
Referring to the previous derivation, the expression for the single photon rate in terms of
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the focal parameters would be as follows.

Rs =
64π2d2effλp

ϵ0n2
p |n′

i − n′
s|λ2sλ2i

Pξ+
A+B+
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−1

dl
1

(1− ilξ+ − C+ξ2+l
2) (1 + ilξ+ − C+ξ2+l

2)

×
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2
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2
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2)

(
1 + ilξ− − C−ξ

2
−l

2
)

(1 + ilξ+ − C+ξ2+l
2)

]n

(3.41)

Again, with n = l = 0, equation 3.41 becomes equivalent to equation 3.36. This implies
that if one uses a Single Mode Fiber (SMF) to collect the signal or the idler photons, the
single photon emission rate is going to be exactly the photon pair emission rate.

Theoretical Analysis and Discussions

Figure 3.8: Photon pair emission rate Rpair as a function of the beam radius of the pump
Wp.

We examine how the focusing of the beam affects the photon emission rate by increas-
ing the aggregate focal parameter ξ+. As we aim to increase the aggregate focal parameter
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Figure 3.9: (a) A contour plot of the normalized joint spectral function (brightness) for
different phases per half cycle ϕ/π and focal parameters ξ. The brightness is maximized
at (ϕ/π, ξ) = (−1.035, 2.841). (b) The phase bandwidth ∆ϕ plotted for each ξ. The phase
bandwidth for each ξ is obtained by numerically calculating the FWHM of |ϕ(∆k)|2 from
(a). (c) A 3-d plot of (a). (d) One layer of (c) which could correspond to the sinc function
with a FWHM of ∆ϕ in co-linear case.
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rather than individual focal parameters (ξp, ξs, ξi), we preferably decrease the pump beam
radius (implying increase in the ξp) and let the signal and idler beam radii adjust accord-
ingly such that ξ+ increases. Using equation 3.36, we obtain the plot shown in Figure
3.8. Interestingly, there exists a maximum pair rate. In our case, at 1.0mW of pump
power, the maximum pair rate can go as high as Rpair ≈ 20MHz at Wp = 21.8µm, while
Ws = 19.2µm andWi = 22.2µm are determined to be the optimal values for the signal and
idler beam radii, respectively. To find the reason, we investigate the spatial overlap Φ(∆k).
As evident from equation 3.24, the photon pair rate is proportional to the joint spectral
function |ϕ(∆k)|2 = sinc2 (ϕ/2) under the approximation of ξ+ ≪ 1. Hence, it would be
interesting to examine the spatial overlap from equation 3.23 without such an approxi-
mation. In Figure 3.9a, a contour plot illustrating the normalized joint spectral function
with respect to the phase and the focal parameter is presented. Interestingly, there exists
a maximum focal condition (ϕ/π, ξ) = (−1.035, 2.841), which is also confirmed by several
papers [16, 23, 22]. By carefully selecting the focal parameters of pump, signal and idler

Figure 3.10: Graphical representation of the focusing of a Gaussian beam. The beam being
focused to the sizes of 1mm (blue) and 2mm (red) of beam waist is shown as an example,
under the assumption of the same focal condition. The dotted lines represent the Rayleigh
lengths of the beams. Initially (assuming the beams are focused from either left or right),
the blue beam is larger than the red beam. However, within the Rayleigh length region of
the blue beam, it becomes narrower than the red beam.

modes, one could optimize the emission rate of the SPDC process. In the meantime, if
we plot the phase bandwidth ∆ϕ, determined numerically from Figure3.9a through the
calculation of the FWHM of |ϕ(∆k)|2 for each ξ+, we see the phase bandwidth starting to
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exponentially broaden from around ξ ≈ 10 (a strong focusing condition where the Rayleigh
length is 10 times shorter than the crystal length). This indicates a pronounced deviation
from an optimal QPM condition. There exists an optimal aggregate focal parameter, and
once we surpass this optimal parameter, the pair rate begins to decrease. The reason
for the increase in the phase bandwidth with strong focusing is that the focusing causes
the light to become non-colinear [28, 16]. According to the descriptions of the paraxial
Gaussian beam (equations (i) and (iv) shown in Figure D.1), the beam radius at a far
distance (z ≫ zR) can be approximated as W (z) ∼ W0(z/zR) = θ0z, where θ0 is the beam
divergence angle. Thus, the angle can be expressed as

θ0 =
λ

πW0

(3.42)

Figure 3.10 compares the cases where a Gaussian beam is focused to sizes of different
sizes of beam waist as an example. In accordance with the profound symmetry of nature,
a beam strongly focused at a large angle diverges by the same large angle. Thus, in
identical focal condition, a beam initially larger in size than another beam will become
smaller within its Rayleigh length, despite its initial size being larger than the narrower
beam. Stronger focusing leads to a smaller beam waist, which in turn results in greater
divergence. This is precisely the reason for the significant mismatch of QPM that occurs
with a high aggregate focal parameter. Suppose we choose a very weak focal condition
ξ+ ≪ 1, such as it is similar to the case where C+ ≈ 0 (near-degenerate SPDC where
δk/kp,s,i are typically small). Then by letting x = ξl and dx = ξdl, the integral part of the
3.36 can be simplified as follow∣∣∣∣∫ 1

−1

dl

∫ 1

−1

dl′
√
ξ

(1− ilξ)

√
ξ

(1 + il′ξ)

∣∣∣∣ = ∫ 1

−1

ξ

(1 + l2ξ2)
dl

=2arctan (ξ)

where we used the delta function . Using the approximation, equation 3.36 becomes

Rpair ≈ P
128π2d2effλp

ϵ0n2
p |n′

i − n′
s|λ2sλ2i

arctan (ξ)

A+B+

(3.43)

The single photon emission rate from the signal mode can also be simplified.

Rs ≈ P
128π2d2effλpℏ

ϵ0n2
p |n′

i − n′
s|λ2sλ2i

arctan
(

C2,s

C1,s
ξs

)
C1,sC2,s

(3.44)
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where

C1,s = 2

√(
1 +

ks
kp

ξs
ξp

)
ki
kp

C2,s = 2

(
1− δk

kp

)√(
1 +

ks + δk

kp − δk

ξp
ξs

)
ki + δk

kp − δk

Equations 3.43 and 3.45 highlight that both the single and pair rates increase with shorter
wavelengths of the signal and idler photons or with longer wavelength of the pump photon.
They are also linearly proportional to the pump power. Strong overall focusing increases
the rate under the approximation of C+ ≈ 0. Using equations 3.43 and 3.45, one can
also determine the pair-to-single ratios (mode-coupling efficiencies), denoted as µs,i ≡
Rpair/Ri,s. The mode-coupling efficiencies indicate how likely it is to receive the signal/idler
photon mode, when receiving anidler/signal photon. The overall mode-coupling efficiency
(multiplicative average) is µpair ≡ Rpair/

√
RsRi. One can determine the upper bounds

of single and pair rates by optimizing certain factors in equations 3.43 and 3.45. Firstly,
the inverse of the tangent in both equations 3.43 and 3.45 asymptotically approaches
π/2. Next, to optimize the spatial overlap by the beam waists, we focus on maximizing
1/
√
A+B+. We can simplify equation 3.20 by introducing new parameters to separate the

focal parameters from the constants.

Xj =
kj
kp

√
1 + δk/kj
1− δk/kp

, rj =
ξj
ξp

√
1− δk/kp
1 + δk/kj

j = signal(s), idler(i) (3.45)

Using equation 3.45, equation 3.20 can be written as

A+B+ =

(
1− δk

kp

)
(1 +Xsrs +Xiri)

(
1 +

Xs

rs
+
Xi

ri

)
(3.46)

Figure 3.11 shows that the term is maximized when rs = ri = 1. Hence, in the case
of δk/kj ≪ 1 (near-degenerate SPDC), we have A+B+ ≈ 4. Hence, we can write upper
bounds for the pair rate and the single rate as follow.

Rpair ≤ P
32π3d2effλp

ϵ0n2
p |n′

i − n′
s|λ2sλ2i

Rs ≤ P
128π3d2effλp

3ϵ0n2
p |n′

i − n′
s|λ2sλ2i
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Figure 3.11: Contour plots of the term, 1/
√
A+B+. It shows that it is maximized at

rs = ri = 1.

Setting aside the upper bound for now, we revisit equations 3.43 and 3.45. Upon exam-
ination, we can see that both the pair and single rates depend on the aggregate focal
parameter ξ+. Hence, we explore various combinations of ξp, ξs and ξi by subsituting them
into the mentioned equations. By doing so, we find the optimal focusing condition for a
given ξp

5, that maximizes the Rpair. Subsequently, we compile these optimal conditions,
and plot them as a function of the pump beam’s radius, Wp, which is inversely propor-
tional to ξp. Figure 3.12 shows the numerical results of the aforementioned analysis (we
are only interested in the solid lines at the moment). It is evident from Figure 3.12a that
with increasing ξ+ (strong overall focusing), the pair rate also increases. This character-
istic can be understood visually in Figure 3.13. When the beam is strongly focused, we
essentially confine a given number of pump photons into a narrower space for interaction.
Consequently, spatial overlap is naturally enhanced, and so is the pair rate. However, the
overall mode-coupling efficiency µpair decreases as a trade-off. This decrease is due to the
disturbance (or mismatch) of the QPM condition caused by the shift in phase under differ-
ent focal conditions, such that the enhancement in the pair rate is slower compared to the
enhancement in the single rate. The overall mode-coupling efficiency seems to approach
71% according to the theory. This roughly agrees with the theoretical upper bounds that
we have derived (equation 3.47), in which the upper bound of the overall mode-coupling

5We chose to analyze with respect to ξp for no particular reason. The analysis can also be performed
with respect to the other two focal parameters, ξs and ξi.
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efficiency is (Rpair/Rs)max = 75%. In fact, the 75% of efficiency was the degenerate SPDC
case, where the disturbance of QPM condition would be minimal. However, once again, we

Figure 3.12: (a) Optimal photon pair emission rate (black dashed curve) and the corre-
sponding overall mode-coupling efficiency (orange dashed curve) over different pump beam
radii at 1.0mW of pump power. The black dashed curve is the pair rate calculated without
the approximation of C+ ≈ 0. The black solid curve is the same curve from Figure 3.8. (b)
The optimal focal parameters (translated into the beam radius) of the pump, signal and
idler modes that gave the results in (a).

utilize SMFs, meaning we are not concerned about the mode-coupling efficiency. When de-
riving equations 3.36 and 3.41, we mentioned that we made the approximation of C+ ≈ 0.
In the case of a highly non-degenerate SPDC, with a strong focal condition, such an ap-
proximation may no longer be valid, potentially leading to worse outcomes than expected.
This also applies to degenerate SPDC, although occurring in a distant future upon in-
creasing ξ compared to the non-degenerate case. In our case, where we have the QPM
condition of 523.64 nm → 790.8 nm + 1550 nm, this invalidation happens quite early, and
the pair rate does not actually approach π/2, but degrades. Therefore, the asymptotic
behavior shown in Figure3.12a is, in reality, not perfectly accurate, especially in our case
of non-degenerate SPDC. In our case, equation 3.43 is valid with an uncertainty of ±20%
from ξ+ > 0.1. This implication also helps us understand Figure 3.12b. As depicted, in
a strong focusing regime, the optimal beam radius values for the signal and idler beams
exhibit peculiar behavior due to sudden phase broadening caused by strong focusing. The
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analysis showed that with a right focal condition, Rpair = 100MHz can be achieved even
with 5mW of pump power.

Figure 3.13: Visualizations of three paraxial Gaussian beams with radii Wp, Ws, and
Wi inside the nonlinear crystal. Strong focusing of the beams increases the photon pair
emission rate while the mode-coupling efficiency drops. Weak focusing of the beams results
in the opposite phenomenon.
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3.2.2 Measurements and Results

Experiments are conducted to verify the variation in the pair rate Rpair under different
focal conditions as indicated by equation 3.36. Figure 3.14 shows the design and the
experimental setup to verify the theoretically derived photon emission rates for a given
beam waist combination. The CW laser provides the pump beam at 523.64 nm wavelength
through a SMF. The pump beam is collimated by an aspheric lens (8mm), and is linearly
polarized before being focused to the PPLN crystal by a plano-convex lens. In the actual
experimental setup, the linear polarizer was replaced with a zeroth-order HWP and a Po-
larizing Beamsplitter (PBS). The two schemes are equivalent nonetheless (Linear Polarizer
(LP)=HWP+PBS). Additionally, an additional HWP* was placed between the pump-side
lens and the PPLN crystal in order to verify the consistency in the pair emission rates
for different polarization states; horizontal (H) and vertical (V). A 10mm PPLN crystal
is placed at where the pump beam is focused, and is temperature-controlled to achieve
the QPM condition for 523.64 nm → 790.8 nm1550 nm. The signal beam passes through
a dichroic mirror, while the idler beam reflects off the dichroic mirror. Each beam is col-
limated by a plano-convex lens. After ensuring that only the signal and idler photons
are received using two bandpass filters (for each), both beams are then focused into the
SMFs using aspheric lenses (11mm for the signal and 15mm for the idler). The SMF on
the signal side sends signal photons to the SPAD, while the SMF on the idler side sends
idler photons to the SNSPD. As explained in section 1.3.3, the two detectors send out
electric signals to the time-tagging unit whenever they receive a photon. The time-tagging
(coincidence) window is set to ∆t = 1.5 ns, while a time delay is applied to adjust the ar-
rival times of the electric signals from the two detectors. Once raw single and coincidence
counts are measured, the actual single and coincidence counts are obtained through the
dark subtraction method using equations 1.31 and 1.32. It is important to note that in a
real experiment, one considers not only the mode-coupling efficiencies (µs, µi) but also the
detection efficiencies (ηs, ηi) for the signal and idler photons.6 With the assumption that
photons in all spatial mode are detected, the theoretical expectations are the followings :

Single count rate (signal) : Ns = ηsRs =
ηs
µs

Rpair

Single count rate (idler) : Ni = ηiRi =
ηi
µi

Rpair

Coincidence rate : Nc = ηsηiRpair

(3.47)

6Detection efficiency is quite often also called heralding efficiency. One must not be confused with the
mode-coupling and detection efficiencies.
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Figure 3.14: Experimental design for the optimization test (top figure) and the actual
experimental setup (bottom figure). Optical components are : Objective lens (OL), Half
waveplate (HWP/HWP*), Polarizing beamsplitter (PBS), Linear polarizer (LP), Lens (L),
Periodically poled Lithium Niobate crystal (PPLN), Dichroic mirror (DM), Bandpass filter
(F), Single-mode fiber (SMF).
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As we use SMFs to collect the signal and idler photons, we can assume µs = µi = 1
such that Rpair = Rs = Ri. The detection efficiencies must includes transmittivity of all
optical components (including the detectors’ efficiencies) along the optical path. These
values are predicted based on the specifications of the optical components provided by the
manufacturers. The detection efficiencies are expected to be ηs = 47.45% for the signal
beam and ηi = 39.37% for the idler beam. We first demonstrate whether strong focusing
leads to an increase in the pair rate. The lens focal lengths for the signal and idler beam
are fixed at fs = 15 cm and fi = 10 cm, respectively. Then we vary the lens focal length
for the pump beam to see the changes in the pair rates. Figure 3.15 shows the photon

Figure 3.15: Photon pair emission rates (left axis) and their corresponding pair mode-
coupling efficiencies (right axis) across different lens focal lengths for the pump beam with
1.0mW of power. Background noises and the detection efficiencies are considered. Both
errors are calculated by applying Poissonian statistics (the error bars of the Rpair were too
small to be visible). Both shaded regions represent the 95% confidence interval of the fitted
curves. The dashed curve is the theoretical curve of the photon pair emission rate.

pair emission rates and the mode-coupling efficiencies calculated from the experimentally
obtained single and coincidence counts. We can see that the theoretically model (dashed
curve) and the experimentally obtained pair rates are in good agreement with each other.
The overall heralding efficiency ηpair is expected to remain constant, but the graph shows
that efficiency drops as the pump lens focal length increases. This is suspected to be due to
saturation of the detector and time-tagger. We also verify the linear relationship between
the power of the pump and the pair rate, as implied in equation 3.36. The lens focal length
for the pump beam is fixed at fp = 50 cm, while those for the signal and idler beams are
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varied to see the changes in the pair rates. As shown in Figure 3.17, variations in the focal
lengths of the pump, signal and idler lenses translate into the resulting spot sizes at the
crystal. When determining the spot sizes, we use the paraxial approximation (Appendix
D), which is also applied in our theoretical model. We perform measurements of the

Figure 3.16: Single and coincidence rates over different pump power for each measurement
with different pump focal lengths; 20 cm, 30 cm, 40 cm, 50 cm.

single counts of the signal and idler photons, as well as the coincidence counts, for each
lens combination corresponding to a specific aggregate focal condition. Each aggregate
focal condition is measured multiple times to average the results. This overall process
is repeated for verifying various lens combinations (see Figure 3.18). The experimentally
obtained data are plotted as a contour in Figure 3.18. The theoretical expectations well
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Figure 3.17: Ray diagrams showing the pump (green), signal (red) and idler (purple)
beams. The SMFs are drawn as boxes on both ends of the graph. The PPLN crystal is
also shown at the focal points of the three beams.

agreed with with actual data trend observed through the experiment (data is shown in
Appendix N). Both theory and experimental results from Figure 3.18 tell us that what the
pair rate relies on is not the individual focal parameters for the pump, signal and idler
modes, but rather the aggregate focal parameter. If the ξp is determined by the pump
beam radius, then we need to find ξs and ξi that can optimize ξ along with it.
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Figure 3.18: Contour plots of the photon pair rates with different signal and idler lens
combinations. (a) seen from above. (b) seen from side. The meshes are the theoretical
expectations, and the dots are the experimentally obtained data. The vertical axis corre-
sponds to the normalized pair rate, and the horizontal axes are the lenses’ focal lengths.
Focal lengths for the signal beam : 15 cm, 17.5 cm, 20 cm, 25 cm. Focal lengths for the
idler beam : 10 cm, 12.5 cm, 15 cm, 17.5 cm, 20 cm, 25 cm. Pump focal length was fixed to
50 cm. In (b), pair rates for different pump focal lengths are shown : 20 cm, 30 cm, 40 cm,
50 cm
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3.3 Entangled Photon Source

Figure 3.19: The EPS setup (Completed in January 2024).

94



3.3.1 Hybrid Interferometer

Figure 3.20: a) Interferometer using two beam displacers and a half waveplate. b) Sagnac
loop with two crystals placed in the middle. The arrows indicate the propagation directions
of the pump beam that is separated from the polarizing beamsplitter.

The most crucial process of entanglement is the perfect merging of two down-converted
photon beams. The ”perfect merging of two beams” means an impeccable alignment
that takes into account all natural aspects, including spatial overlap, temporal overlap,
wavelength overlap and phase overlap. Since we have the type-0 SPDC process, we consider
signal(s)-idler(i) photon pairs with the same polarization. The Bell state for such a case is
written as follows7.

|Bell⟩ = 1√
2

(
|VsVi⟩+ ei(ϕr+∆ϕr) |HsHi⟩

)
(3.48)

The overall relative phase between the |V V ⟩ and the |HH⟩ states can be represented as a
combination of the relative phase resulting from the path difference (denoted as ϕr) and
the relative phase variation induced by temperature fluctuation (denoted as ∆ϕr). The
relative phase variation is essentially a component of the relative phase resulting from
the path difference, given that we are addressing how temperature fluctuation contributes

7One could favorably have the phase term beside either one of the pair states.
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to the additional path difference. However, the purpose of distinguishing between the
two phases is simply to examine them separately in this chapter. The relative phase
should ideally be zero in order to have each pair state have the same probability of being
obtained (i.e, perfect merging of two beams). We utilize a Mach-Zehnder interferometer
type, an optical setup employing two optical components to divide and recombine a beam
of light. While a typical Mach-Zehnder interferometer uses two beam splitters [80, 58], we
specifically opt for a Mach-Zehnder interferometer employing two beam displacers capable
of splitting and recombining two orthogonally polarized beams (refer to Figure 3.20a)
[93, 65]. One additional condition to note is that a HWP must be inserted between the
two beam displacers in order to have two identical path lengths. Having a HWP in the
middle allows the beam that originally traveled straight through and the displaced light
to switch roles (refer to Figure 3.21).

We argue that this scheme is more favorable than typical ones, not only due to the
simplification of the alignment procedure8, but primarily because employing two identical
beam displacers could be interpreted as incorporating the Sagnac loop using two separate
optical components instead of a single optical component. The Sagnac loop offers the
advantage of a self-compensating effect [46] (which will be explained shortly). However,
due to the typical use of only one optical component (polarizing beamsplitter) [44], as shown
in Figure 3.20b, there are current technological limitations for three different waves (pump,
signal and idler) to efficiently pass through and reflect off this single optical component. On
the other hand, two beam displacers, despite being two optical components, are equivalent
to the Sagnac type as they separate the beam in parallel when the beam enters them
perpendicular to their surfaces, ensuring identical beam path lengths. Additionally, we
place a dichroic mirror between the two beam displacers. This arrangement ensures that
when the pump beam split by the first beam displacer passes through their respective
PPLN crystals, only the down-converted signal and idler photons pass through the dichroic
mirror and are recombined at the second beam displacer. Hence, this scheme allows for the
effective transmissions of all three waves by applying separate coatings corresponding to the
wavelengths of the beams passing through the two beam displacers [65]. The main benefit
of having the Sagnac loop is its self-compensating effect. Starting with self-compensation
for ϕr, if the beams travelling through the Sagnac loop do not undergo a wavelength change
through processes like SPDC, the difference in the length of the two paths would be zero,
resulting in ϕr being zero as well9. Of course this is an oversimplified situation, as there

8The alignment procedure becomes simple when two beams propagate in parallel with each other. If
the two beams separated by the first beam displacer are not perfectly recombined at the second beam
displacer, we know that the alignment is not perfect.

9Conversely, a Mach-Zehnder interferometer with two beam splitters would introduce a comparably
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Figure 3.21: Images and diagrams demonstrating how the rotation angle of the HWP alters
the displacement of the beam path. Three different cases with different polarization angles
(with respect to the fast axis of the waveplate) are shown. The actual rotation angles of
the HWP is half of the polarization angles.

Figure 3.22: Interferometer using the beam displacer scheme. The split pump beam (green)
passes through PPLN crystals and is down converted into signal (red) and idler (purple)
beams, which are recombined at the second beam displacer.
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will be a path difference when the pump beam is converted into the signal and idler beam
with different wavelengths during their travel. Nevertheless, it remains true that Sagnac
loop provides a clearer understanding of the phase between the two recombined beams,
and this is further discussed in the following section. Moving on to self-compensation for
∆ϕr, this phase considers a non-vacuum environment where any thermal fluctuations may
occur. In fact as explained in the earlier section, our PPLN crystals are heated by an oven,
undeniably indicating the presence of thermal fluctuations. For each of the separated beam
paths (denoted with subscripts, CW (clock-wise) and CCW (counter clock-wise), as it is
equivalent to the Sagnac loop), the phase is expressed as follows.

∆ϕCW = δϕe(λp, T ) + δϕo(λs, T ) + δϕo(λi, T )

∆ϕCCW = δϕo(λp, T ) + δϕe(λs, T ) + δϕe(λi, T )
(3.49)

Each term can be written as

δϕ =
∑
j

2πLj

λ

(
∂nj

∂T
+ njα

)
∆T (3.50)

where we consider the phase shifts introduced by all the transmissive optical components
(each indexed with j) within the Sagnac loop, each with a length of Lj. The thermo-optic
coefficients ∂nj/∂T and the thermal expansion coefficient αe,o are normally provided by the
manufacturer (See Appendix. B for the information)10. Using equation 3.49, the relative
phase from temperature fluctuations is

∆ϕr = ∆ϕCW −∆ϕCCW

= δϕr(λp, T )− δϕr(λs, T )− δϕr(λi, T )
(3.51)

where δϕr = δϕe − δϕo. If the three phase terms in equation 3.51 are all added together,
compensation by other external factors would be required. However, with the polarization
flip using the HWP (one of the crucial aspects that make this process equivalent to the
Sagnac loop), one of the terms among the three can be subtracted. When the SPDC
process occurs in the PPLN crystal, the beam is greatly influenced by the properties of
the crystal. To ensure that two separated beams propagate in a more similar environment,
we employ additional Sagnac Loop (refer to Figure 3.20). Aligning the two PPLN crystals

large amount of uncertainty in the lengths of the two separated paths that the beam takes within the
interferometer.

10The first and the second terms inside the bracket in equation 3.50 correspond to the changes in the
refractive index and the material length, respectively.
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perpendicular to each other at the center of the loop almost eliminates phase differences
caused by each crystal. This is because both beams from opposite directions would gain
both ordinary and extraordinary phases by going through the two crystals. The thermo-
optic coefficient for the effective extraordinary ray is derived from the formula of the
effective refractive index 3.56.

∂neff

∂T
=

no
∂ne

∂T
+ ne

∂no

∂T√
n2
o sin

2 θeff + n2
e cos

2 θeff
+ 2none

no
∂no

∂T
sin2 θeff + ne

∂ne

∂T
cos2 θeff(

n2
o sin

2 θeff + n2
e cos

2 θeff
)3/2 (3.52)

We make the assumption that the phases introduced by the half waveplate and the dichroic
mirror are negligible in comparison to those induced by the beam displacers, due to their
much smaller thicknesses. Each phase term in equation 3.51 is calculated to be δϕr(λp, T ) =
6.22π, δϕr(λs, T ) = 4.09π and δϕr(λi, T ) = 2.08π. Hence, the relative phase is ∆ϕr =
0.052π, ensuring sufficient phase stability. However, no self-compensation effect would

Figure 3.23: A diagram illustrating the integration of othe two beam displacers (BD) and a
Sagnac loop concept in the setup. The highlighted green area includes the beam displacers
and a Sagnac loop. A dichroic mirror (DM) is placed after the HWP to allow the pump
beam to enter the Sagnac loop. A prism mirror further split the pump beam to create
the Sagnac loop. The signal and idler photons that are generated from the PPLN crystals
exit the Sagnac loop, pass through the dichroic mirror, and merge at the second beam
displacer.

introduce a phase shift of ∆ϕr = 12.39π. As a result, while self-compensation may not
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be entirely perfect, it certainly helps quantum states remain usable for a long enough
period of time. Given that we will be providing high pump power, it would be a good
idea to disperse the returning pump beam to minimize the damage to the optics. If we
solely apply the beam-displacing interferometer scheme, the returning pump beam that has
not undergone down-conversion will be recombined at the first beam displacer. However,
one remarkable feature is that, with the presence of additional Sagnac loop, the beam
disperses upon returning to the first beam displacer, as illustrated in Figure 3.21. If we
use this hybrid interferometer, which combines the beam-displacing interferometer with
the Sagnac loop, entanglement can be achieved much more efficiently. The loop can be
situated anywhere along the beam path between the half waveplate and the second beam
displacer. Lastly, without the loop, it is difficult to mount two crystals side by side between
the beam displacers unless the beam separation is large enough.
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3.3.2 Construction of Crystal Oven

Figure 3.24: Photo of the custom designed crystal oven (Assembly completed in December
2021).
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Figure 3.25: Left : A schematic diagram of the entangled photon source. The highlighted
green box is where two PPLN crystals are mounted on the customized oven. Right :
A picture of the custom designed crystal oven with two PPLN crystals mounted in a
perpendicular orientation to each other. As shown in the picture, two pump beams (green)
enter from both sides, and subsequently, signal beam (red) and idler beam (purple) are
emitted from both sides as well.

As seen in Figure3.3a , our PPLN crystals have gratings with nine different poling
periods. We present a custom-made crystal oven that enables the use of all these gratings.
It is installed in the middle of the Sagnac loop of our EPS, as illustrated in Figure 3.25.
The oven ensures that two crystals are closely aligned perpendicular to each other, and
generates QPM conditions at different temperatures through temperature variation. The
oven was manufactured and improved at the University of Waterloo Science Machine Shop
from February 2021 over the course of a year with the design was created using Fusion360
(Autodesk, US) software. The design drawings are shown in Appendix. P.
We ensured that the two PPLN crystals we have were manufactured in the same batch by
the company. Assuming they were produced in this manner, we implemented a diagonal
translational movement for one of the crystals, enabling both crystals, oriented perpendic-
ular to each other, to utilize all nine gratings (refer to Figure3.26). The front face size of
each grating is a square with dimensions of 0.5mm in both width and height, and there is a
0.2mm spacing between adjacent gratings. This suggested considering the possibility of a
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diagonal translation of at least 8.63mm. Copper was chosen as the material for mounting
the crystals due to its effective heat conduction and generally affordable cost, making it
suitable for use as a mounting plate. Another reason for using this material is the intention
to mount the plate in the existing oven (PV20, Covesion Ltd. US), which is also made
of Copper, designed to accommodate a single PPLN crystal. The two crystals are each

Figure 3.26: Top: A 3-D image showing how the two PPLN crystals are mounted on the
customized oven. Only the copper plates and the oven of the customized oven are shown
here. The image on the right is an enlarged view of the two PPLN crystals. Bottom :
Schematic diagrams illustrating the diagonal translation of the vertically mounted PPLN
crystal (Front faces of the crystals are shown).
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mounted on a top plate and a bottom plate, secured in place with dowel pins. To ensure
efficient heat distribution throughout the entire crystal, the design features a Copper plate
with precisely carved spaces tailored to accommodate the size of the crystals. The bottom
plate is jointed to the existing oven with dowel pins. The top plate is configured to slide
diagonally, as it is not jointed to the bottom plate. To enable a good diagonal translational

Figure 3.27: a) The top Copper plate is attached to the Polyether Ether Ketone (PEEK)
bars, which in turn are attached to the upper Aluminum slider. Another Aluminum slider
is positioned beneath the sliding surface, pulling the upper slider downward with springs.
b) The two engaged sliders allow diagonal sliding. The origin position of the sliders is
at the top. They slide downward by the micrometer attached to the sliding plate and
return upward to the original position by the spring situated inside. c) To prevent heat
transfer through direct and extensive contact with the Aluminum structure, we kept a thin
2 nm gap between the crystal oven and the Aluminum structure. PEEK bars are placed
between the upper and lower ends of the Copper plate’s slide, connecting the Copper and
Aluminum plates. This allows for a balanced junction between the Copper plate and the
Aluminum structure using a narrower area.
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movement of the top plate, it is crucial that the top plate is well-aligned with the bottom
plate, ensuring minimal lateral movement. Furthermore, a micrometer with precision is
required to execute the translation accurately. However, since the Copper plates heat up,
it’s essential for the structure securing and supporting these plates to be made of materials
capable of effectively blocking heat (otherwise, the micrometer will also become hot to
touch). For cost-effectiveness, we choose to utilize the readily available Aluminum for the
structure at the Science Machine Shop, and block heat transfer between the Copper plates
and the Aluminum structure by incorporating thermal insulators (refer to 3.27). PEEK
serves as the thermal insulator due to its low thermal conductivity ∼ 0.25W/m/K, in
contrast to Copper with a thermal conductivity of ∼ 400W/m/K and Aluminum with a
thermal conductivity of ∼ 300W/m/K. The oven structure was designed with an overall
symmetrical shape to ensure uniform heat transfer for both the top and bottom crystals
(This is the reason why the bottom Copper plate has been enclosed with PEEK material
on its side and covered with Aluminum, resembling the top Aluminum slider).

Figure 3.28: a) The plot shows how the temperature of two copper plates deviates when
heated by the customized oven. The top copper plate, which is indirectly in contact with
the oven, is slightly cooler than the bottom copper plate, which is directly in contact
with the oven. b) Wavelength plots for signal (top) and idler (bottom) as a function of
temperature. Signal wavelength from vertically oriented PPLN crystal is slightly higher
than that from horizontally oriented PPLN crystal. Conversely, the idler wavelength from
the vertically oriented crystal is lower than that from the horizontal one.

The crystal oven structure was designed with the expectation of uniform heat transfer.
However, since the top copper plate is not actually mounted on the oven but rather placed
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on top to allow sliding, the top crystal receives slightly less heat transfer compared to the
bottom crystal, as shown in Figure 3.28a. It becomes apparent that with rising temper-
atures, the top and bottom copper plates progressively diverge such that the horizontally
polarized (bottom crystal) and the vertically polarized signal and idler photons also di-
verge, as shown in Figure 3.28b. This raises a major concern. High-quality entanglement
of photons relies on their indistinguishability. However, the slight difference in wavelengths
between vertically and horizontally polarized photons will reduce their indistinguishabil-
ity due to imperfect wavelength overlap. Our target operating temperature is 107.6 ◦C,
and reaching this point exposes an approximately 2 ◦C difference between the two plates.
To address this issue, a separate power resistor (VPG Inc., US). was attached to the top
copper plate, supplying sufficient voltage to slightly elevate the temperature of the top
crystal. When delivering additional heat to the top crystal through a power resistor, the
bottom crystal also experiences a slight temperature increase. However, since this process
compensates for the situation where the top crystal is at a lower temperature than the
bottom crystal, it does not pose any issues.

Figure 3.29: Left : A photo of the fully assembled customized oven with two PPLN crystals
mounted. A power resistor is attached to the top copper plate (where the vertically oriented
PPLN is mounted) in order to compensate for the slightly lower temperature. Right : A
3-D drawing of the fully assembled customized oven, showing how voltage is applied to the
power resistor to generate extra heat.
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3.3.3 Design Tests and Results

Figure 3.30: Photo of a zoomed-in PPLN crystal, with the photon counts measured simul-
taneously from the vertical and horizontal PPLN crystals plotted on the photo.

Figure 3.30 illustrates the measured verification of whether the crystals, placed per-
pendicular to each other, generate photons at all the different gratings through diagonal
translation. Horizontal PPLN denotes the crystal mounted on the upper copper plate (that
can undergo diagonal translation), while vertical PPLN refers to the crystal mounted on
the lower copper plate. The analysis conducted on the signal photon counts (790.8 nm),
measured using a single-mode fiber. The poling periods at both ends are extremely de-
viated from the QPM condition, and the temperature controller failed to adjust to the
corresponding temperature, preventing the acquisition of a plot. Also, the slightly uneven
peaks are presumed to be caused by imperfect poling, resulting in non-uniform domains.
However, the diagonal translation demonstrates the ability to utilize almost all gratings in
the two crystals. As of now, only the 5th grating that is located at the center (Λ = 7.10 µm)
is used. Therefore, the remaining data analysis will be based on this specific grating. It
is demonstrated that both crystals collectively emitted ∼ 1.2MHz for the signal photons
when a pump power of 1.0mW was applied. Although not shown in this figure, the single
count rates were 400 kHz for the idler photons (1550 nm) from both crystals.
The crystal oven is connected to a temperature controller, TC200 (Thorlab Inc., US), for
heating. The power resistor is that is attached to the top copper plate is separately con-
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nected to a Direct Current (DC) power supply, E3630A (Agilent, US), receiving additional
voltage power. Using a spectrometer, SpectraPro2750 (Teledyne Princeton Instruments,
US), we observed the shift in the signal and idler waves with changes in temperature.
When the wavelength of the signal photons emitted from the bottom crystal was 790.8 nm,
the actual temperature reading on the temperature controller was 120 ◦C due to incom-
plete heat transfer (However, since the trend is consistent with Figure 3.5, we regard the
temperature as 107.6 ◦C). Considering that heating with the power resistor also slightly
increases the temperature of the bottom crystal, the experiment was conducted by provid-
ing additinoal voltage to the power resistor at a temperature below the actual value. At

Figure 3.31: Graphs demonstrating the shift in signal and idler photon wavelengths from
the two crystals based on the voltage fed into the power resistor. In the signal plots, the
left peaks represent the photon wavelength generated from the horizontally placed PPLN,
while the right peaks represent the photon wavelength generated from the vertically placed
PPLN. Conversely, in the idler plots, the situation is reversed. As the voltage fed into the
power resistor increases, it can be observed that the signal wavelengths shift to the left
while the idler wavelengths shift to the right.

the lower temperature, we gradually increased the voltage power, aiming to identify the
optimal temperature and voltage at which both the top and bottom crystals emit photons
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of the same wavelength. As shown in Figure 3.33, increasing the applied voltages to the
power resistor induces a shift in the wavelengths of the signal beams towards lower values,
accompanied by a corresponding shift in the idler beams towards higher wavelengths. Such

Figure 3.32: Graphs illustrating how the signal and idler photon wavelengths shift over
time when the power resistor is fed with the voltage amounts indicated in the table above.
In the titles of the graphs, ’Vert’ and ’Horiz’ denote the vertical and the horizontal PPLN
crystals, respectively. As observed, the shift in signal and idler photon wavelengths from
the vertical PPLN crystal is more dramatic compared to that from the horizontal PPLN,
which makes sense since the voltage is fed to the vertical PPLN through the power resistor.

a trend aligns well with what we see from 3.5, with the unique distinction that, in this case,
temperature is increased not through a temperature controller but by applying additional
voltage to the power resistor. Another important observation is that, with each increase
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in voltage power, it takes time for the temperature of both crystals to stabilize. Therefore,
during temperature stabilization, temperature changes are measured at regular intervals
to determine the asymptotic line and establish the average time required for stabilization.
Looking at Figure 3.32, it can be observed that the wavelengths of signal and idler photons
emitted from the bottom crystal generally stabilize after approximately ∼ 3 minutes. The
reason this makes sense is that the bottom crystal does not directly receive voltage power,
resulting in relatively minor temperature changes. On the other hand, for the wavelengths
of the signal and idler photons emitted from the top crystal, it can be observed that it takes
approximately ∼ 5 minutes for stabilization due to large temperature changes. Based on

Figure 3.33: Two graphs showing variations in signal (top graph) and idler (bottom graph)
photon wavelengths in response to varying voltage levels supplied to the power resistor.
’Vert’ and ’Horiz’ denote the vertical and the horizontal PPLN crystals, respectively. We
observe that both the signal and idler photon wavelengths converge at 118.7 ◦C when
V = 2.83V is applied to the power resisitor.11

this observation, it seems appropriate that, when assuming an increase in voltage power
by 0.5V increments to search for the optimal temperature and voltage, waiting for a mini-
mum of ∼ 5 minutes before recording the data is advisable. After a prolonged and patient
search, we identified that the two waves overlap at 118.7 ◦C when the additional voltage of
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2.75V is applied to the power resistor (refer to Figure 3.33). When comparing the graph
shown in Figure 3.33 with the one presented in Figure 3.28b, it can be observed that the
intention behind attaching the power resistor is well reflected.

3.3.4 Walk-offs from Hybrid Interferometer

Figure 3.34: A diagram illustrating the displacement D of a beam in a beam displacer with
a length L.

Even if the relative phase is minimized to some extent in the Sagnac loop, there is still
phase introduced by the two beam displacers. As light propagates through the birefringent
material, the component with a polarization that is non-orthogonal to the material’s optic
axis undergo displacement. This type of component ray is known as the extraordinary
ray (with a subscript ”e”). The component of the ray that maintains its original path is
referred to as the ordinary ray (with a subscript ”o”). The displacement amount can be
determined from the angle of refraction of the e-ray, θe.

tan θe =

(
1− n2

o

n2
e

)
tan θ

1 +
n2
o

n2
e

tan2 θ
(3.53)

θ is the angle between the optic axis and the normal to the surface of the medium for the
incident rays (refer to Figure 3.34). Note that equation 3.53 applies specifically when the
incident beam enters the medium perpendicular to the surface of the medium (the generic
equation is a lot more complicated). The separation between the two rays created by the
medium with a length of L is then D = L tan θe. We use the length of L = 39.4mm
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that corresponds to the two beam displacers (Newlight Photonics inc, Canada) used in our
setup to obtain the plot shown in Figure 3.35. The plot implies that a change in wavelength
leads to a corresponding shift in displacement.

Figure 3.35: Left : Experimentally measured displacements of the pump, signal and idler
beams plotted on the theoretical displacement curve as a function of wavelength. Right
: Three diagrams illustrating how the pump, signal and idler beams undergo spatial ∆D
and temporal ∆T walk-offs in the beam displacer. As seen, the degree of displacement
decreases as the wavelength increases.

We are examining a scenario in which the initial beam with a wavelength of 523.64 nm,
goes through a PPLN crystal, resulting in down-conversion to wavelengths of 790.8 nm and
1550 nm. Consequently, when the down-converted photons pass through the second beam
displacer, they will not return to their original position, given that their wavelengths are
no longer the pump wavelength. This deviation from the original position is reffered to as
spatial walk-off, denoted by ∆D.

∆Ds,i = L tan θpe,2 − L tan θs,ie,1 (3.54)

θe,1 and θe,2 are the refraction angles of the first and the second beam displacers, respec-
tively. equation 3.54 theoretically gives us the spatial walk-offs of 0.10mm for the signal
beam and 0.17mm for the idler beam.
If the wavelength has changed and the presence of spatial walk-off has been confirmed, then
we may also question the existence of temporal walk-off. To calculate temporal walk-off,
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one first needs to determine the group velocity12.

vg,o =
c

No

=
c

no − λ
dno

dλ

, vg,eff =
c

Neff

=
c

neff − λ
dneff

dλ

(3.55)

where N are the group indices of the corresponding rays. dn/dλ can be interpreted as the
slope of the function n(λ), and is calculated numerically. The ordinary and extraordinary
rays exhibit different group velocities due to their distinct refractive indices. Therefore, one
must be cautious when calculating the time difference. The refractive index affecting the
o-ray, denoted as no, can be directly obtained from the Sellmeier’s equation B.1. However,
the refractive index affecting the e-ray is an effective refractive index which depends on
the effective angle, θeff = θ + θe.

neff =
none√

n2
o sin

2 θeff + n2
e cos

2 θeff
(3.56)

The time taken for the beam to pass through the beam disiplacer can be easily conceptu-
alized through a geometric approach.

T s,i
o→e =

L

vpg,o
+

L

vs,ig,e cos θ
s,i
e,2

T s,i
e→o =

L

vpg,e cos θ
p
e,1

+
L

vs,ig,o

(3.57)

To→e is the time taken by the ray, which initially travels straight and then becomes dis-
placed. Similarly, Te→o is the time taken by the ray, which initially becomes displaced then
travels straight. The temporal walk-off is then the time difference between the two travel
time.

∆Ts,i = T s,i
o→e − T s,i

e→o (3.58)

equation 3.58 theoretically gives us the temporal walk-offs of 0.65 ps for the signal beam
and 1.06 ps for the idler beam.

3.3.5 Walk-off Compensation Method

If we are to determine the spatial overlap (quality of the entanglement) of the beams, we
can characterize the spatial modes of the ordinary and extraordinary rays with Gaussian

12One could also use the inverse of the propagation constant that we previously mentioned instead of
the group velocity.
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functions.

g(x, y) =
1√
2πσ2

e−(x2+y2)/2σ2

(3.59)

The standard deviation can be obtained from FWHM= 2
√
2 ln 2σ. The FWHM of the

signal and idler beams were measured to be 0.6mm and 0.8mm, respectively. The beam
overlap is then the product of the two Gaussians integrated over the transverse plane (x,y).

∞∫
−∞

go(x, y)ge(x−∆Dx, y −∆Dy)dxdy (3.60)

The spatial overlap factors are calculated to be 52.4% for the signal photon, and 17.1% for
the idler photon (this is in consideration of the additional walk-off mentioned in section
3.3.7).
We also determine the temporal overlap (quality of the entanglement) by characterizing
the temporal modes of the ordinary and extraordinary rays also with equation 3.59. The
standard deviation can be derived from the temporal width τ = 2

√
2 ln 2σ, which in turn

can be determined from the wavelength and its bandwidth (from FWHM).

Figure 3.36: Theoretical Gaussian beam spatial overlap of signal photons with a Mode
Field Radius (MFR) of 0.26mm (left) and idler photons with a MFR of 0.34mm (right) as
a function of spatial walk-off, respectively. We see that the amount of spatial walk-off at
the intensity of Imax/e

2 exactly corresponds to the MFR of the Gaussian intensity profiles.
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τ ≈ λ2

c∆λ
(3.61)

The bandwidths of the signal and the idler photons are measured to be ∆λs = 0.66 nm
and ∆λi = 2.61 nm, respectively. According to equation 3.61, the temporal widths (at
1/e) are τs = 2.68 ps for the signal photon, and τi = 2.61 ps for the idler photon. In a
similar manner, by using equation 3.60, the temporal overlap of two Gaussian intensity
profiles is calculated to be 88.8% for the signal photon, and 72.1% for the idler photon.
The entanglement quality decreases as the two beams fail to overlap both spatially and
temporally. This highlights the necessity for us to compensate for the spatial and temporal
walk-offs. Say, our objective is to attain a beam overlap of over 95% in both temporal and
spatial domains. In case of compensating only for the temporal walk-off, the solution
is fairly straightforward. Temporal walk-off refers to the phenomenon where one beam
arrives earlier than the other in a pair of beams. A simple temporal walk-off compensation
is having another birefringent material (compensator) to slow down the leading beam. In
our case, the leading beam in both the signal and idler paths is the ordinary beam. This
means, either a negative uniaxial (no > ne) compensator with its optic axis aligned with
the oscillation direction of the slower ray, or a positive uniaxial (ne > no) compensator
with its optic axis aligned with the oscillation direction of the faster ray is needed for
the temporal walk-off compensation. Suppose we use Calcites which have ordinary and
extraordinary refractive indices of no and ne, respectively. The length of the Calcite needed
for the temporal walk-off compensation will be

L = |vg,e − vg,o|∆T (3.62)

To simultaneously compensate for both spatial and temporal walk-offs, we developed
a novel approach for compensation. Employing a separation between two crystal wedges
proves to be an effective approach for achieving spatial compensation (See Figure 3.62).
One side is flat, allowing the ray to enter perpendicularly. This simplifies calculations such
as group velocity. Moreover, even if the ray exits the first wedge at a non-perpendicular
angle, when it enters the second wedge that is identical in shape, it will regain its original
propagation direction. This offers a great advantage. One important thing to remember
is that the distance the two beams travel within the gap between the wedges is slightly
different, due to the different refractive indices. This leads to either an increase or a
decrease in the original temporal walk-off, and this should be taken into account when
determining the thickness of the crystal. In our case, the o-ray is bent more than the
e-ray, as Calcites are negative uniaxial crystals. Consequently, the o-ray travels a longer
distance than the e-ray, resulting in a reduction of the temporal walk-off. Additionally, it
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Figure 3.37: The left and right graphs illustrate the theoretical Gaussian beam overlap of
signal beams and idler beams (each with two orthogonal polarization states) as a function
of temporal walk-off, respectively We see that the amount of spatial walk-off at the intensity
of Imax/e

2 exactly corresponds to the temporal width of the Gaussian intensity profiles.

is crucial to note that in the first Calcite wedge (on the left), the e-ray travels a slightly
longer distance than the o-ray. We determine the lateral separation d needed for a perfect
spatial overlap. We let the vertical shift of the o-ray be b = a tan (θo − ϕ) such that the
vertical shift of the e-ray is b −∆D. In doing so, a relationship between the two vertical
shifts can be established as follows.

a tan (θo − ϕ)−∆D = (a−∆D tanϕ) tan (θe − ϕ) (3.63)

θo,e, ϕ and ∆D are known quantities, so we can rearrange equation 3.63 to determine a.

a =
1− tanϕ tan (θe − ϕ)

tan (θo − ϕ)− tan (θe − ϕ)
∆D (3.64)

Finally, we calculate the lateral separation d as follows.

d = a− b tanϕ (3.65)

We use two pairs of Calcites (Newlight Photonics inc, Canada) with a wedges angle ϕ = 15◦

(The angle can be chosen arbitrarily, as long as the rays do not bend excessively and
refrain from entering the second wedge). The total path lengths traveled by each ray can
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Figure 3.38: A schematic diagram of two Calcite wedges used to compensate for both spatial
and temporal walk-offs. The optic axis of our Calcite wedges is aligned perpendicular to the
direction of ray propagation such that both the ordinary (purple) and extraordinary (red)
rays undergo no beam displacement when entering the Calcite perpendicularly. However,
upon exiting the first wedge, the e-ray experiences more bending than the o-ray due to
negative birefringence (ne < no). The path lengths of the e-ray and the o-ray in between
the two wedges are shown as P2,e and P2,o, respectively. By identifying the correct lateral
separation between the two wedges, we effectively merge the two rays at the second wedge.
Temporal walk-offs are compensated by the thickness of the wedges.
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be expressed as follows.

P (o-ray) = P1 + P2,o + P3

P (e-ray) = P1 +∆D tanϕ+ P2,e + P3

(3.66)

We want the temporal walk-off to be canceled by the time delay created by P (o-ray) and
P (e-ray). Hence, using equations 3.55, the temporal walk-off can be written as

∆T =

[
1

vg,o
(P1 + P3) +

1

c
P2,o

]
−
[

1

vg,e
(P1 +∆D tanϕ+ P3) +

1

c
P2,e

]
(3.67)

3.3.6 Walk-off compensation Results

We can deduce from Figure 3.39 that to achieve the spatial overlap above 95%, a spa-
tial walk-offs of approximately ∆D = 0.05mm and ∆D = 0.06mm is deemed accept-
able for the signal and idler beams, respectively. In actual experiments, higher values
of ∆Ds = 0.145mm and ∆Di = 0.325mm are observed due to additional divergence at
the two dichroic mirrors. The additional divergence could potentially introduce ambigu-
ity in temporal walk-off compensation (fortunately, it seems to have had minimal, if any,
impact on the trend). However, when compensating for the spatial walk-off, the addi-
tional divergence poses no issues and should simply be taken into account. The lateral
separation needed for the signal and idler paths with the additional divergence considered
are calculated to be ds = 2.75mm and di = 6.60mm, respectively. Figure 3.39 shows
theoretical Gaussian beam overlap of signal photons and idler photons (each with two
orthogonal polarization states) as a function of spatial walk-off, respectively. To validate
the theoretical curve of the spatial overlap, we completely compensated for the spatial
walk-off of the signal beam and varied the spatial walk-off of the idler beam while measur-
ing coincidence counts. The spatial walk-off of the idler beam is varied by changing the
lateral separation between the two Calcite wedges that are placed on the idler beam path.
13Coincidence counts at each variation is measured. The peak experimental value plotted
on the idler graph corresponds to when spatial walk-off is fully compensated for both the
signal and idler beams, with the coincidence counts measuring Nc = 33.3 kHz. This marks
almost 8 times enhancement in the coincidence counts, as without compensation on the
idler side (while the signal side remained fully compensated), the coincidence count was
Nc = 4.2 kHz. It is worth noting that SPDC occurs randomly in time when using a CW

13We choose to vary the idler beam primarily because the effect of the variation is more noticeable and
easier with the idler beam path to validate the spatial overlap through the experiment.
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laser as the pump field. Therefore, we focus on minimizing the relative temporal walk-off
|∆Ts −∆Ti| between the signal and the idler beams, rather than minimizing them indi-
vidually. Since Calcites are placed in both beam paths for spatial compensation, we fix

Figure 3.39: Theoretical Gaussian beam spatial overlap of idler photons (right) as a func-
tion of the lateral separation length between the two Calcites, respectively. We shift the
position of one of the Calcite wedges on the idler side as illustrated in Figure (left). The
lateral separation between the wedges is varied as 0mm, 1.6mm, 3.6mm, 6.6mm, 9.6mm
and 11.6mm. The optical fiber collecting idler photons is realigned for each variation. The
results are plotted (dots) on the same graph.

the thickness of the Calcite wedges in the signal path and adjust the temporal walk-off of
the idler beam accordingly.14 The adjustment can be done simply by allowing diagonal
translation of the idler Calcite wedge as shown in Figure 3.39.

14We choose to vary the idler beam positions primarily due to a technical limitation. There was not
much of space to move the optics diagonally in the signal beam path.
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3.3.7 Polarization-Entanglement Test and Results

Figure 3.40: Design of EPS. Optical components are : Filter (F), Optical Isolator (OA),
Linear Polarizer (LP), Lens (L), Beam Displacer (BD), Half waveplate (HWP), Dichroic
Mirror (DM), Polarizing Beam splitter (PBS).

We demonstrate polarization-entanglement of photons with our entangled photon source,
with the hybrid interferometer implemented (See Figure 3.40). We use the CW pump laser
that operates at a wavelength of 523.6±0.1nm. The pump beam, collimated by an aspheric
lens (fp = 8mm) passes through several optical components to be diagonally polarized. It
is then focused by the magnifying lens (fp = 40 cm) to the PPLN crystals in the Sagnac
loop. The first beam displacer splits the diagonally polarized pump beam into two beams
with horizontal and vertical polarization by displacing one of them that is extraordinary
with respect to the displacer’s optic axis. The polarization of the two beams is switched
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by passing through a half waveplate before they enter the Sagnac loop. The first dichroic
mirror reflects the pump beam into the Sagnac loop, while allowing the signal and idler
beams that are produced from down conversion by the PPLN crystals to pass through
and reach the second beam displacer. The two pairs of signal and idler beams combined
by the second beam displacer are separated by the second dichroic mirror (signal beam
is transmitted and idler beam is reflected). Along each beam path, there is another lens
(fs = 60 cm and fi = 50 cm) to re-collimate the beam before entering the Calcite wedges for
walk-offs compensation. Note that the lenses must be placed before the wedges in order to
prevent from the beam entering non-perpendicular to the wedges’ surfaces. This is where
we expect the signal and the idler photons to be entangled. We place a long-pass filter and

Figure 3.41: Polarization entanglement measurement results. The correlation measurement
was conducted using four different polarization bases. The coincidence counts, measured at
1.0mW of pump power while changing the polarization angle from 0o to 180o, are plotted
on the graph.

a bandpass filter on each beam path to ensure that any noises are reduced. From here,
the polarization-entanglement test is proceeded by measuring the polarization correlation
of the Bell states. We place a half waveplate and a polarizing beam splitter on each arm
(signal and idler). The arrived signal and idler photons are focused by the aspheric lenses
(fs = 11 cm and fi = 15 cm) and collected through the SMFs. SPAD and SNSPD are used
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to collect signal and idler photons, respectively. The detection efficiencies from the signal
and the idler beam paths are estimated to be ηs = 0.38 and ηi = 0.217 considering all the
optical components along the ways including the detectors. These values are estimated
based on the specifications of the optical components provided by the manufacturers. The
coincidence counts within a 1.5 ns detection window are measured using a time-tagging
unit. The correlations are measured by rotating the half waveplate on the signal arm while
the half waveplate on the idler arm are fixed to 0o (V basis), 45o (A basis), 90o (H basis)
and 135o (D basis). The measurements are done with the pump power of 1.0mW, and the
coincidence window of 1.5 ns. As the result shown in Figure 3.41, the visibilities (correla-
tion quality) V = (Nc,max−Nc,min)/(Nc,max+Nc,min) of the four basis, from the background
subtracted coincidence rates are V = (96.8± 0.5)%, V = (95.5± 0.5)%, V = (98.6± 0.5)%
and V = (95.4± 0.5)%. In order to confirm the entanglement, we perform the CHSH test
[30]. The CHSH inequality is expressed as

S = |E (α, β)− E (α, δ) + E (γ, δ) + E (γ, β)| ≤ 2 (3.68)

where we have the correlation estimates expressed as

E (α, β) =
Nc (α, β)−Nc (α, β + 90o)−Nc (α + 90o, β) +Nc (α + 90o, β + 90o)

Nc (α, β) +Nc (α, β + 90o) +Nc (α + 90o, β) +Nc (α + 90o, β + 90o)
(3.69)

We chose α = 0o, β = 22.5o, γ = 45o and δ = 67, 5o and confirmed that the inequality is
strongly violated at S = 2.75 ± 0.03 by 25 standard deviations, which also agrees nicely
with the expected value from the average visibility Sexp = 2

√
2Vavg ≈ 2.75, indicating

the entanglement [81, 30]. We also examine the consistency of experimental data quality
with increasing pump power levels. The experimental data includes the single counts of
signal(Ns) and idler(Ri) photons, as well as coincidence counts(Nc) representing simulta-
neous detection of the signal and the idler photons. Detection saturation was observed
during the experiment when the power exceeded 4mW. To mitigate this effect, atten-
uators are installed at both ends of the signal and idler beams. Initially, single counts
and coincidence counts are recorded with and without the attenuators, spanning power
levels from 1.0mW to 4mW. From these measurements, a calibration factor is derived,
which is then used to estimate counts at power levels of 5mW and above based on the
counts measured with the attenuators. The results are plotted in Figure 3.42a. At a pump
power of 1.0mW, the average background subtracted values for four different bases were
Ns = (460.7 ± 3.5)kHz, Ni = (210.7 ± 1.0)kHz and N = (33.33 ± 0.05)kHz. These are
the values that also corresponds to the maximum counts shown in Figure 3.41. The mea-
sured pump-varied counts from all four bases demonstrate a consistent linear increase with
increasing power. This observation supports the idea that there is a direct relationship
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Figure 3.42: The single counts of both signal (red) and idler (blue) photons, as well as the
coincidence (green) counts are measured from four different polarization basis while varying
the pump power. After the necessary background subtractions, the data are plotted on
these graphs. Graphs showing the photon pair emission rates Rpair (green), along with
the heralding efficiencies of the signal photon ηs (blue) and the idler photon ηi (red) for
different pump powers, calculated from the data shown in (a).
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between pump power and photon rates, as predicted by equations 3.43 and 3.45. The
calculated pair rates and the heralding efficiencies are plotted in Figure 3.42b. The pair
rate at 1.0mW was Rpair = 2.92 ± 0.12MHz which agrees with the theoretical predic-
tion Rtheo = 2.82MHz. Also, signal and idler heralding efficiencies of ηs = 15.8% and
ηi = 7.2%, respectively. The pair rate from all four bases showed a linear increase with
increasing pump power, while the heralding efficiencies remained fairly constant as one
would expect. As derived from our theoretical model in Chapter 2, we have set a minimum
requirement of 100MHz pair rate for each polarization measurement basis to establish a
long-distance quantum link. The trends of all four bases in Figure 3.42b indicate that such
a pair rate is possibly achieved at the power level of 50mW.

3.3.8 Discussion

The 100MHz pair rate was deduced with the assumption that we start with near-100%
visibility at the EPS. The average visibility obtained from the entanglement test using the
four polarization bases is (96.6± 0.3)%, with a maximum visibility of 98.8% (H/V basis).
It is important for us to examine how well these values are maintained as the power is
increased. Figure 3.43 shows the decreasing trends in visibility from all four polarization
bases measurements. In particular, the visibility of D/A bases drops below 90% when the
pump power reaches 10mW. One reason could be attributed to the issue of mode hopping
effect that arises with increasing power. Figure 3.45 depicts the spectra of the pump, signal
and idler photons obtained while increasing the pump power. The laser we use operates
in not exactly a single frequency mode. Additionally, as evident in the spectra of the
pump mode, increasing the power causes the pump wavelength to shift towards the right.
As explained earlier in the process of obtaining the data shown in Figure 3.42, the mode
hopping effect is observed in both the signal and idler modes when the pump power exceeds
4mW. When we draw dashed lines representing the positions of the pump peak at the
far left and far right in the spectra, assuming that our original temperature of 107.6 ◦C is
maintained, we find that the the signal and idler wavelengths achieved by the QPM with the
shifted pump wavelength exactly correspond to the peak positions shownw in the signal and
idler spectra. From this observation, we can be confident that the mode hopping originated
from the shift in the pump wavelength. The overall phase shift due to the wavelength shift
of the pump wavelength affects the visibility in the following manner.[78]

V =
1

2
(1 + cos∆ϕ) (3.70)

Figure 3.44 illustrates the impact of the phase change caused by the shift in the pump
wavelength on the visibility. We see that, in fact, the visibility would drop below 90%
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Figure 3.43: Graph showing the measured entanglement visibility across different pump
powers for the four polarization bases.

when the pump wavelength is shifted by 0.05 nm. Considering the changes in phase and

Figure 3.44: Graph showing a theoretical curve of the changes in entanglement visibility
across different pump wavelength, assuming the peak visibility is 100% at λp = 523.64 nm.

walk-offs when the wavelengths of pump, signal and idler photons shift, we can conclude
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that the drop in visibilities was an inevitable consequence. Therefore, the entanglement
visibility could be improved by using either a single-frequency (more sharp bandwidth)
laser or a narrower spectral filters or both. Another possible cause for the decrease in
visibility could be the multi-photon pair generation events. The accidental-to-coincidence
ratio (D basis, for instance) at 20mW of pump power was calculated to be NsNi∆t/Nc ≈
0.073, indicating approximately 7.3% chances of an uncorrelated coincidence detection.
Accidental coincidences may arise from detector dark counts, multi-photon pair generation
[49]. The issue can also be addressed by using detectors and a time tagger with a better
timing resolution (a narrower coincidence window).

Figure 3.45: Spectra showing the mode hopping effects in the pump, signal, and idler
modes across varying pump powers. The black dashed lines represent the positions of the
pump, signal and idler photon wavelengths that we would expect from our QPM condition.
Meanwhile, the orange dashed lines and the blue dashed lines represent the left and right
positions where the unwanted peaks are observed. Two spectra captured at different time
points are shown to illustrate the deformations caused by the mode hopping in the signal
mode at 20mW of pump power. Similarly, two spectra are shown for each 5mW, 10mW
and 20mW of pump power to show the mode hopping occuring in the idler mode.

Table 3.2 shows the performances of the different types of EPS built by the QPL team,
including the EPS presented here (first item). The EPS made with a Periodically Poled
Potassium Titanyl Phosphate (PPKTP) crystal and consisting of a Sagnac loop has a high
heralding efficiency, and narrow bandwidths. However, the wavelengths of the signal and
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Material
(Type)

Interferometer λs, λi ∆λs,∆λi
Rpair

(1mW)
ηpair References

PPLN
(Type0)

BD & Sagnac
791nm,
1550nm

0.66nm,
2.61nm

2.92 MHz 11% This work

PPKTP
(Type2)

Sagnac
776nm,
842nm

0.3nm,
0.3nm

0.808 MHz 35% [12]

PM fiber
(Type1)

BD & Sagnac
764nm,
1220nm,

1.14nm,
4nm

0.001 MHz 22% [65]

PPLN
waveguide
(Type0)

N/A
785nm,
834nm

2nm, 5nm 708 MHz 6% [97]

PPKTP
(Type0)

BD
780nm,
842nm

3nm, 3nm 0.3 MHz 19% [69]

Table 3.2: Comparison of other EPS built by QPL team. The first item shows the EPS
presented in this thesis; λS(I) are the central wavelengths of signal (idler) photons; ∆λS(I)
are their spectral bandwidths (from FWHM); Rpair is the photon pair emission rate; ηpair
is the pair heralding efficiency.

idler photons are not suitable for QEYSSat. Furthermore, attaining a pair rate of 100MHz
would require a pump power of 124mW, presenting a challenge ini finding a commercially
available laser with such high power output and low noise characteristics comparable to
our current laser. The EPS built using a PM fiber also exhibits an inadequate pair rate
for QEYSSat, despite its production of degenerate photon wavelengths that are closest to
our signal and idler photon wavelengths. The EPS built using a PPLN waveguide has the
highest pair rate, even much higher than the pair rate achieved by our EPS. However, it
not only has wide bandwidths (making it vulnerable to atmospheric effects due to large
dispersion), but it has also shown a significant amount of fluorescence noise, which is a
contributing factor to increasing the QBER.[97] As of now, although there are tasks (such as
improving entanglement visibility) that were previously addressed, the EPS presented here
shows specifications that make it the most suitable for use in QEYSSat compared to other
EPSs listed on the table. It is worth noting that utilizing both the beam displacer scheme
and the Sagnac loop scheme necessitate the integration of numerous optical components
in constructing our EPS, thereby leading to an overall decrease in efficiency. Therefore,
another improvement suggested for future enhancements of the EPS presented in this
paper is the enhancement of pair heralding efficiency ηpair = Nc/

√
NsNi by finding optical

components with higher performances.
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Chapter 4

Radiation Test

Figure 4.1: (a) A diagram illustrating the exposure of a satellite to various forms of space
radiation, including solar radiation. (b) Entrance building of TRIUMF, Canada’s particle
accelerator centre. (c) The photo was taken during the radiation test conducted in the
radiation chamber at TRIUMF in December 2020.

Although this thesis focuses solely on uplink QKD, our group is working towards future
quantum communication missions involving the demonstration of downlink QKD [19]. To
study downlink QKD, we shall consider the case where the EPS is integrated into the
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satellite and deployed into space.

Figure 4.2: Effective proton fluence over time in space. The data is provided by the Euro-
pean Space Agency (ESA)’s Space Environment Information System (SPENVIS) system,
which is an open-source of space radiation simulations [60]. The saw-tooth pattern ob-
served in the graph arises from a change in the confidence intervals of the measurement
model, which becomes smaller as the duration increases [98, 61].

As shown in Figure 4.2, the measurement of trapped ions reveals lower levels at high
altitudes such as Geosynchronous Equatorial Orbit (GEO). Conversely, at lower altitudes
like LEO, the detection of ions trapped by Earth’s magnetic field, particularly protons,
electrons, and heavy ions, is evident. This underscores the necessity for us to anticipate
the operational performance of the quantum source, which incorporates a nonlinear optical
material, when integrated into a LEO satellite in the future. In Vancouver, at TRIUMF,
the cyclotron is capable of achieving a decade’s worth of proton radiation exposure at LEO
(i.e,∼ 1010protons/cm2) in a few minutes. Therefore, we conducted tests at this facility
to assess the transmittivity changes of the nonlinear optical materials that could be used
for the quantum source. We tested with three distinct nonlinear crystals : Beta Barium
Borate (BBO), Potassium Titanyl Phosphate (KTP) and Lithium Niobate (LN). Given the
substantial cost associated with utilizing TRIUMF’s cyclotron, we have designed a crystal
holder to maximize efficiency in testing, allowing for the most time-effective experiments.
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Statement of contribution

1. Radiation test : Prof. Thomas Jennewein conceived the idea of conducting radi-
ation test at TRIUMF (BC, Canada). I designed the test setup, and conducted the
radiation test experimentally at TRIUMF. Joanna Krynski and Paul Godin assisted
me with the experiment. I wrote Matlab codes to perform the analysis.

2. Customization of crystal holder : I designed and constructed a crystal holder
that can hold three crystals using the air suction method. I confirmed its performance
experimentally.

4.0.1 Experimental Setup

Figure 4.3: Left : A diagram illustrating the paths of the LED beam (green) and the proton
radiation beam on the crystal holder. Right : Photo of the customized crystal holder.

Figure 4.3 illustrates our custom-made crystal oven. Three crystals are mounted diago-
nally in a row, and the heights of the bases on which the crystals are placed were carefully
considered to ensure that the beam used to verify transmittivity passes through the central
points of all three crystals. When verifying the transmittivity, the beam is focused on a
single crystal at a time. Hence, a micrometer is used to remotely translate the crystal
holder for each measurement. Due to the risk of crystals breaking when glued to the sur-
face and later detached, we adopted a method of mounting them on the holder using air
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suction. Small holes are drilled at the center of each of the three bases where the crystals
are placed, creating passages that connect the three holes inside the holder. This allows air
to be suctioned through those passages. Taking into account the maximum acceleration of
the micrometer, which moves the crystal holder at 4mm/s2, we calculate the minimum air
suction force required to withstand this acceleration. The calculation was done considering
LN crystal which is the lighest among the three prepared crystals.

F⃗suction > F⃗micrometer − F⃗friction (4.1)

Figure 4.4: A diagram illustrating the mechanism of a custom-designed vacuum system
(left). The actual photo of the vacuum chamber installed in the radiation test setup (right).

The crystal holder is connected to a 125mL glass container through a plastic hose, and
the glass container, which serves as a vacuum chamber, is connected to a syringe capable
of extracting air (refer to Figure 4.4). The volume of the glass container was determined

by the amount of pressure needed to generate the suction force, F⃗suction. Since we are
calculating the minimum suction force required to prevent the crystals from slipping, a
rough upper bound calculation was sufficient for determining the volume of the container.
To create a vacuum equivalent to the volume of the vacuum chamber, air is sucked in with
a syringe until it is pumpable by hand, and then expelled through a T-valve.

We designed a measurement setup for the proton radiation exposure. Considering that
a proton beam is incident in the direction shown in Figure 4.5, the transmittivity changes
of crystals and optical components due to radiation are measured in real-time. For broad

131



Figure 4.5: The top figure shows the design of the radiation test setup. The bottom figure
shows the actual setup built for the test. The regions highlighted in red indicates the area
of the path that has been exposed to proton radiation. The yellow and green arrows are
the path of the LED light.
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wavelength range scanning, an LED lamp was employed as the light source. Moreover,
for precise transmittivity measurements, the beam from the LED lamp was focused at the
location of the crystals by a focal lens. The transmittivity change is measured by two
mini spectrometers (Ocean Insight, US). Due to the limited wavelength range of these two
spectrometers, it is necessary to incorporate a dichroic mirror to split the beam passing
through the crystal into two for the measurements. For precise measurements, background
intensity measurements I0,i, I0,f and intensity measurements with the crystals Ii, If are
taken both before and after the radiation exposure. The relative transmission is then
calculated by determining the ratio of the measurements after exposure to those taken
before exposure.

Trel =
If/I0,f
Ii/I0,i

(4.2)

4.0.2 Radiation Damage Tests and Analysis

Figure 4.6: Scanning process of the crystals on the customized crystal holder.

We ran the experiment with the aim of exposing the optical setup to a proton radiation
dose equivalent to the amount accumulated over 10 years in space (i.e, ∼ 1010 p+/cm2 from
Figure 4.2). The cyclotron delivered a proton beam at 116MeV energy through BL2C
line. Testing with protons of such energy is reasonable, as it is known that the number of
protons occupying space decreases significantly beyond 100MeV [73]. To observe changes
in transmission, we exposed the setup to proton radiation amounts equivalent to 3 months,
6 months, and 1 year, followed by progressively increasing the exposure each subsequent
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year until reaching a dose equivalent to 10 years’ worth of proton radiation in space1.
For safety reasons, our group conducted experiments remotely from outside the radiation
chamber. For each radiation exposure, we used a micrometer to remotely translate the
crystal holder, obtaining the spectrum of each crystal (illustrated in Figure 4.6).

Figure 4.7: Graphs showing the changes in transmittivity of LN crystal due to proton
radiation exposure, ranging from equivalent of 1 year to 10 years in space. The shaded
region (left plot) is the 95% confidence interval of the transmittivity values from the 1st

year. The transmittivities corresponding the 8th, 9th and 10th years are highlighted in the
right plot to improve visibility of the lines.

The experimental results overall provided us with somewhat insignificant yet positive
indications2. Figure 4.8 indicates that neither the BBO nor the KTP crystals exhibit
performance degradation due to exposure of proton radiation equivalent to 10 years in
space. Both the transmission quality of BBO and KTP crystals shows little variation,
remaining within the 95% confidence interval of the transmittivity values from the 1st

year. Concerning the transmittivity change of LN, as shown in Figure 4.7, the transmission
qualities up until the 9th year show little variation that remains within the 95% confidence
interval (shaded region in the left plot of Figure 4.7) of the transmittivity values from the
1st year. The only year transmittivity line that falls distinctly outside the 95% confidence
interval of the 1-year transmittivity line is from the 10-year spectrum. This implies that
there should be no concerns regarding the future implementation of download QKD, where

1However, the proton radiation equivalent to durations of 3 and 6 months in space had minimal impact
on the change in transmittivity of all three crystals. As a result, they are excluded from the graphs shown
in Figure 4.7 and 4.8.

2The insignificance is also observed in other papers [86, 31].
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Figure 4.8: Graphs showing the changes in transmittivities of BBO and KTP crystal due
to proton radiation exposure, ranging from equivalent of 1 year to 10 years in space.

the EPS, with the LN crystal mounted on it, will be deployed in space. This assumes that
CSA intends to operate the downlink QKD for a similar duration of about 2 years as they
plan for the uplink [4].
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Figure 4.9: A proton-radiated photograph of the radiation test setup. The film was also
exposed to the proton radiation by being positioned in front of the test setup, along the
proton beam path.
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Chapter 5

Conclusion and Outlook

The work presented in Chapter 2 focused on theoretical modelling and experimental valida-
tion of the long-distance quantum link. This study and testing contributed to understand-
ing the link attenuation for the QEYSSat mission. We demonstrated the LEO satellite
tracking test by tracking the ISS. Based on the remarkable alignment observed between
the predicted path of the ISS using SGP4 and its actual trajectory, it became evident
that the SGP4 algorithm is well-suited for tracking LEOsatellites, despite the substandard
movement quality of the telescope motor mount that was used for the tests. The pointing
error of the motor mount that we used was calculated to be 5.2× 10−4 rads, which would
result in approximately L ≈ 72 dB link attenuation. This indicates a significant contribu-
tion to the loss of quantum signal. By confirming experimentally that the ISS being within
1000 km (from the tracking site) lasts approximately 2 minutes, we expect QEYSSat to
appear for around the same duration for the QKD demonstration. After conducting an
analysis of atmospheric properties and considering technical constraints, it was determined
that the optimal configuration for the ground-to-space QKD demonstration would involve
a signal wavelength of 790 nm for free-space transmission, coupled with a wavelength of
1550 nm for ground-based transmission. Additionally, using these wavelengths along with
the link length estimated from the tracking test, we determined the optimal aperture size
of the transmitter telescope to be 20 cm. As a summary, having established all parameters
(with the exception of adopting a reasonable value for the pointing error), the estimated
overall quantum link loss is approximately 37.5 dB.

We also conducted light pollution measurement and analysis to investigate the amount
background noise that could affect the visibility of the QKD. Firstly, rather than directly
measuring the background noise originating from moonlight, we established the validity of
using observations of light from stars to infer the amount of light present. This approach
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provided some degree of assurance regarding the applicability of the blackbody radiation
function. For instance, the theoretically estimated number of photons received from Vega
is Ntheo = 9.7 × 105Hz, and the experimentally measured value was Nexp = 5.7 × 105Hz,
suggesting a reasonable level of agreement between the two values. Having gained some
confidence in estimating the background photons from moonlight using blackbody function,
we arrived at a worst-case scenario estimate of NML = 863 Hz for photons originating from
moonlight. Also, we estimate that the photons that the receiver telescope in the satellite
would receive are about 1.4× 10−4 Hz, indicating that starlight is a negligible background
source. Next, we experimentally examined the light pollution coming from the parking
lot next to our OQGS. Using the two methods presented in Section 2.3.1, we were able to
estimate that the light pollution within the wavelength range of 790±5 nm emitted from the
parking lot during a full moon is about NLP = 2000 Hz. Combining the background noise
from both moonlight and light pollution, we anticipate the receiver telescope to experience
a background photon noise level of approximately 3000 Hz. In summary, Chapter 2 helped
us to determine that the minimum required photon pair rate is 100MHz.

In Chapter 3 we presented the complete development process of the EPS. Through ex-
perimental validation, our PPLN crystal experimentally demonstrated its ability to achieve
a QPM condition of 523.64 nm → 790.8 nm + 1550 nm. Also, the spectral bandwidths of
the signal and idler photons were ∆λs = 0.66 nm and ∆λi = 2.61 nm, respectively, nicely
agreeing with our theoretical predictions. The customization process of the crystal oven
and its functionalities are also presented. Although the initial intention of placing both
crystals at the same temperature was not achieved due less heat transfer to the top copper
plate than the bottom copper plate, the issue was resolved by attaching a power resistor
to the top copper plate to feed extra voltage power, effectively equilizing the temperature
of the two crystals. Simultaneous compensation for the spatial and temporal walk-offs us-
ing Calcite wedges has made a significant contribution to optimizing both the coincidence
counts and the visibility. Prior to any compensation, the coincidence counts at P = 1mW
was Nc = 4.2 kHz, which improved to Nc = 33.3 kHz after full spatial walk-off compensa-
tion. The visibility was also enhanced, reaching up to 95%, through simultaneous temporal
compensation. The photon pair emission rate was calculated to be Rpair = 2.92±0.12MHz
which nicely agrees with the theoretical value of Rtheo = 2.82MHz. However, at high power,
the phase instability caused by the laser’s mode hopping effect led to significant fluctua-
tions in visibility, providing the necessity for a single-frequency laser to resolve this issue.
Nevertheless, as seen in table 3.2, we can conclude that among the EPSs developed so far,
this one is the most suitable source for ground-to-space quantum links.

Lastly, in Chapter 4, we tested how well crystals can maintain performance under
proton radiation for potential downlink applications ini the future. Based on the experi-
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mental results,it is conjectured that LN, BBO and KTP crystals will experience minimal
performances degradation from proton radiation in space over several years. However,
limitations in theoretical modelling implies that further validation for accurate assessment
will be needed in the future.

The work presented in this thesis shows several advancements in the EPS for long-
distance entanglement-based QKD. We plan to commercialize the EPS by enhancing the
robustness and compactness of the interferometer, as illustrated in Figure 5.1. Our current
EPS setup has a dimension of 24”×24”. The miniaturized interferometer shown in Figure
will have a dimension of 13”×15”, such that it can be installed in the 19”×19” rack.

Figure 5.1: Schematic diagram detailing the construction plan for the EPS rack. The 3-D
figure on the right depicts the miniaturized EPS design.

Note that this miniaturization plan also includes miniaturizing the custom-designed
crystal oven. Additionally, with financial support from the CSA, we aim to procure optical
components with enhanced specifications for the forthcoming prototype, thereby improv-
ing the performance of the EPS. The photon pair rate can improve upon the nonlinear
coefficient of the crystal. Exploring methods to enhance the pair rate generation capabil-
ity of crystals appears to be another important future task that we will have to consider.
The EPS rack will encompass all necessary components for the EPS, including the CW
laser and the temperature controller for the crystal oven. In the rack, the laser and the
temperature controller will be controllable by a single computer. Finally, the photon pairs
generated by the EPS will pass through a polarization compensator, also installed in the
rack, to ensure correction of any polarization drift. Recently, our research team has agreed
that due to significant losses in the fiber connecting the EPS and telescope, as well as
losses due to the intensity pick-off, setting 100MHz as a lower bound is overly optimistic.
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Therefore, there is a need for further discussion in defining the lower bound in the future.

Figure 5.2: Schematic diagram detailing the construction plan for the detection rack.

The 19”×19” detection rack will serve as the platform for the measurement system
responsible for detecting the idler photons with a wavelength of 1550 nm using a 6-state
analyzer, as illustrated in Figure 5.2. The rack will also be equipped with SNSPD necessary
for photodetection, along with a time-tagging unit capable of capturing coincidence events
between signals sent from the satellite and those detected by the SNSPD. These coincidence
detections captured by the time tagger will be sent to a computer installed inside the rack,
used as quantum information for performing QKD. Furthermore, we plan to have a short-
term storage device in the rack for temporarily storing data needed during the satellite
pass. The SNSPD requires a helium compressor to maintain low temperatures, but the
current model we are using is too bulky to be accommodated within the rack. Therefore,
alternatives will be explored, such as installing the compressor adjacent to the rack or
seeking out other options that demonstrate sufficient performance while being sized to fit
within the rack. We aim to establish these systems by the end of this year (2024), with
the belief that this thesis will contribute significantly.
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Appendix A

Coherence Time

As a wave packet travels through space, its wave components gradually shift out of phase,
a phenomenon known as dispersion. In Quantum Mechanics, coherence time refers to
the duration over which a wave packet (i.e, a quantum state) maintains a consistent phase
relationship. After a time longer than the coherence time has passed, the information about
the wave or system is said to be lost. This is because if the wave components of the wave
packet are too off-phase, precise predictions and measurements become very challenging.
Hence, it is crucial to understand the coherence time of the waves used when aiming to
implement quantum technologies. Suppose we have a wave packet that can be described

Figure A.1: Gaussian distributions of a wave packet. Note that the wavelength and the
frequency are inversely proportional to each other such that the order is flipped when one
is transformed to the other. Nonetheless, the relationship of the two different types of
bandwidth is consistent.
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with a Gaussian distribution (FigureA.1). We consider two wavelength components λ1 and
λ2, that are close to the central wavelength λ, so that the following assumption is possible.

λ1λ2 ≈ λ2 (A.1)

Since the speed of light c = λν relates the wavelength and the frequency, the relationship
between the bandwidths of the wavelength and the frequency is

∆ν =
c

λ2
∆λ (A.2)

Such an approximation is typically employed when dealing with laser beams which normally
have sharp distributions.
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Figure A.2: Left : Two distinct frequency modes. Right : The two frequency modes
expanded in time domain. The coherence time, denoted as tcoh, represents the duration
for which the two frequency modes maintain coherence.

When two different wave components with frequencies ν1 and ν2 travel together, they
create a wave packet (shown in the Figure A.2). At times, they create constructive and
destructive interferences. One occurance of fully constructive and one occurance of fully
destructive interference complete a cycle which corresponds to 1/∆ν. The coherence time
is then tcoh = 1/(2∆ν). This means the wave packet retrieves its coherence after 2tcoh.
Coherence length is simply Lcoh = ctcoh. Figure A.3 shows different cases, each with a
different outcome. The more wave components a wave packet has, the harder it becomes to
maintain coherence. This is because each wave is influenced by many other waves, leading
to rapid overall destruction. On the other hand, the narrower the bandwidth, the longer
the overall phase is maintained. A narrower bandwidth also results in the overall phase
taking longer to recover, but by that time, the wave packet will no longer be useful anyway.
2πn of phase shifts may create other constructive interferences, but the wave packet will
no longer be exactly the same as the original one. According to these analyses, we can
conclude that a single frequency implies permanent coherence (Figure A.4). However, a
perfect single frequency is not realistically achievable. Instead, we normally have a wave
packet that contains different wave components (Figure A.5). Because coherence time
really depends on the chosen bandwidth, it is important to make a reasonable choice. The
Full-Width-Half-Maximum of the wave packet is normally chosen.
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Figure A.3: Graphs illustrating how coherence time changes with frequency modes in
different combinations.

Figure A.4: Single frequency mode shown in the frequency domain (left) and time domain
(right).
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Figure A.5: Left : A typical mode spectrum. Right : Expansion of the mode spectrum in
time domain.
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Appendix B

Specifications of Nonlinear Materials

5% MgO doped Periodically Poled Lithium Niobate (Covesion Ltd.)

� d33 (nonlinear coefficient) : 25 pm/V

� Dimensions (L× W× H) : 10mm× 10mm× 0.5mm

� Contains 9 gratings (in µm) : 6.00, 6.26, 6.53, 6.81, 7.10, 7.40, 7.71, 8.03, 8.36

� Both sides are AR-coated (R < 1% at 523 nm and R < 1.6% at 791/1550nm)

The temperature-dependent Sellmeier equation (λ in µm) and the coefficients for ordi-
nary and extraordinary refractive indices provided by the company are

n2 (λ, T ) = a1 + b1f +
a2 + b2f

λ2 − (a3 + b3f)
2 +

a4 + b4f

λ2 − a25
− a6λ

2
(B.1)

where there exists a termperature dependent parameter, f = (T − (298.15K)) (T + (298.15K))
[37]. Assuming room temperature, temperature-dependent poling period and length of the
crystal are characterized by

Poling period : Λ(T ) = Λ0

(
1 + α(T − 298.15K) + β(T − 298.15K)2

)
Crystal Length : L(T ) = L0

(
1 + α(T − 298.15K) + β(T − 298.15K)2

) (B.2)

where we have the thermal expansion coefficients, α = 1.54× 10−5 and β = 5.3× 10−9.
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Refractive index no ne

a1 5.653 5.756
a2 0.1185 0.0983
a3 0.2091 0.2020
a4 89.61 189.32
a5 10.85 12.52
a6 0.0197 0.0132
b1 7.941× 10−7 2.860× 10−6

b2 3.134× 10−8 4.700× 10−8

b3 −4.641× 10−9 6.113× 10−8

b4 −2.188× 10−6 1.516× 10−4

α-BBO Beam Displacer (Newlight Photonics inc.)

� Dimensions (L× W× H) : 39.4mm× 10mm× 10mm

� First Beam Displacer : AR-coated (R < 1% at 523 nm)

� Second Beam Displacer : AR-coated R < 1.6% at 791/1550nm)

� Optic Angle : 45o

Sellmeier equation (λ in µm) for ordinary and extreaordinary indices provided by the
company.

n2
o (λ) = 2.67579 +

0.02099

(λ2 − 0.00470)
− 0.00528λ2

n2
e (λ) = 2.31197 +

0.01184

(λ2 − 0.01607)
− 0.00400λ2

(B.3)

The thermo-optic coefficients dno/dT = −9.3 × 10−6/Co and dne/dT = −16.6 × 10−6/Co

are provided. The thermal expansion coefficients αo = 4× 10−6/K and αe = 36× 10−6/K
are provided.

Calcite Compensators (Newlight Photonics inc.)

� Face Dimensions (W× H) : 10mm× 10mm

� Wedge Thickness : Minimum 1mm , Maximum 3.68mm.
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� Wedge angle : 15o from the face

� AR-coated (R < 0.2% at 1550 nm and R < 0.5% at 791nm)

� Optic Angle : Perpendicular to the 10× 1mm face.

Sellmeier equation (λ in µm) for ordinary and extreaordinary indices provided by the
company.

n2
o (λ) = 2.69705 +

0.0192064

(λ2 − 0.01820)
− 0.0151624λ2

n2
e (λ) = 2.18438 +

0.0087309

(λ2 − 0.01018)
− 0.0024411λ2

(B.4)

The thermo-optic coefficients dno/dT = 2.7× 10−6/Co and dne/dT = 12.3× 10−6/Co are
provided. The thermal expansion coefficients αo = 4.9× 10−6/K and αe = 25.1× 10−6/K
are provided.
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Appendix C

Single/Multi mode electric fields

(i) ∇ · E⃗ =
ρ

ϵ0

(ii) ∇ · B⃗ = 0

(iii) ∇× E⃗ = −∂B⃗
∂t

(iv) ∇× B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗

∂t

(C.1)

We start from these Maxell’s equations which describe the relations between electric fields
E⃗, magnetic fields B⃗ = ∇×A⃗ (curl of vector potentials), currents J⃗ and charge densities ρ.
The divergence ”∇·” tells whether the vector diverges or not. The curl ”∇×” tells whether
the vector rotates or not. Combine (iii) and (v).

∇× E⃗ = − ∂

∂t

(
∇× A⃗

)
→ ∇×

(
E⃗ +

∂

∂t
A⃗

)
= 0 (C.2)

A vector field is said to be conservative (irrotational), if its curl is zero. In calculus, a
conservative vector field implies that it can be expressed as the gradient of a scalar field.

Therefore, we can represent it as −∇V = E⃗+
∂

∂t
A⃗ where V is the scalar potential that we

all know. This integrates the findings from C.2, combining (iv) and (v).

160



∇× B⃗ = ∇×
(
∇× A⃗

)
= µ0J⃗ + µ0ϵ0

∂

∂t

(
−∇V − ∂

∂t
A⃗

)

= µ0J⃗ − µ0ϵ0∇
(
∂V

∂t

)
− µ0ϵ0

∂2A⃗

∂t2

(C.3)

Next, we use one of the known vector identities : ∇× (∇× A⃗) = ∇(∇ · A⃗)−∇2A⃗

−→ ∇
(
∇ · A⃗

)
−∇2A⃗ = µ0J⃗ − µ0ϵ0∇

(
∂V

∂t

)
− µ0ϵ0

∂2A⃗

∂t2
(C.4)

Then we apply the Coulomb (transverse) gauge (∇ · A⃗ = 0). By assuming that fields are

in free space (i.e, no charges V = 0 and no currents J⃗ = 0),

−→ ∇
���

��*
0(

∇ · A⃗
)

−∇2A⃗ = �
��>

0

µ0J⃗ −
�
���

����*
0

µ0ϵ0∇
(
∂V

∂t

)
− µ0ϵ0

∂2A⃗

∂t2

−→ ∇2A⃗− µ0ϵ0
∂2A⃗

∂t2
= 0

(C.5)

This is precisely the Laplace’s wave equation (c2∇2ψ = ∂2ψ/∂t2), which implies that the
vector potential is a wave. A solution for the differential equation can be the following

∴ A⃗ = Cei(k·r−ωt) + C⋆e−i(k·r−ωt) (C.6)

where C and its complex conjugate C⋆ are both constant. Coulomb gauge also allows
the expression for the scalar potential (from equation C.2) become E⃗ = −∂A⃗/∂t. By
considering an eletromagnetic field (light) propagating in z-direction, we can have the
following three expressions :

A⃗ =
(
Cei(kz−ωt) + C⋆e−i(kz−ωt)

)
x̂ (C.7)

E⃗ = − ∂

∂t
A⃗ = iω

(
Cei(kz−ωt) − C⋆e−i(kz−ωt)

)
x̂ (C.8)
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B⃗ = ∇× A⃗ = det


x̂ ŷ ẑ

d

dx

d

dy

d

dz

A 0 0

 = ik
(
Cei(kz−ωt) − C⋆e−i(kz−ωt)

)
ŷ (C.9)

Figure C.1: Electromagnetic wave. k̂ is the propagation direction of the light, ϵ̂ is the
transverse polarization direction of the electric field. Hence, we can say the transverse
polarization direction of the magnetic field can be expressed in terms of the two other
vectors, (k̂ × ϵ̂).

We see that directions of the electric field, magnetic field and propagation are mutually
perpendicular. Additionally, the magnetic field can be expressed in terms of the electric
field using the relation k = ω/c. Different values of k (or ω = ck) correspond to different
frequency (or temporal) modes of the fields. For instance, the multi-frequency mode (or
multimode) electric and magnetic fields can be written as

E⃗ =
∑
k

E⃗k · · · ϵ̂k

B⃗ =
∑
k

1

c
E⃗k · · · (k̂× ϵ̂k)

(C.10)

where E⃗k is the single frequency mode (or single mode) electric field. k̂ is the propagation
vector that is perpendicular to the polarization vectors, ϵ̂k and k̂× ϵ̂k. To obtain the coef-
ficients shown in equations C, C.8 and C.9, we examine the total energy (Hamiltonian) of
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the electrimagnetic field within an arbitrary volume, V.

H =
1

2

∫
V

(
ϵ0

∣∣∣E⃗k · E⃗⋆
k′

∣∣∣+ 1

µ0

∣∣∣B⃗k · B⃗⋆
k′

∣∣∣) dV (C.11)

We typically study the interactions (or quantizations) of the electromagnetic field. There-
fore, this arbitrary volume could correspond to a cavity space where such interactions
occur. By using the periodic boundary condition,∫

V

ei(k−k′)·rdV = δkk′V (C.12)

the first term becomes
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ϵ0
2

∫
V

∣∣∣E⃗k · E⃗⋆
k′

∣∣∣ dV (C.13)

=
ϵ0
2

∫
V

∣∣∣(iω) (Cke
i(kz−ωt) − C⋆

ke
−i(kz−ωt)

)
ϵ̂k (−iω′)

(
C⋆

k′e
−i(k′z−ω′t) − Ck′e

i(k′z−ω′t)
)
ϵ̂k′
∣∣∣

=
ϵ0
2

∫
V

ωω′
∣∣∣CkC

⋆
k′e

i(k−k′)ze−i(ω−ω′)tϵ̂k · ϵ̂k′ + C⋆
kCk′e

−i(k−k′)zei(ω−ω′)tϵ̂k · ϵ̂k′

−CkC k′
e
i
(
k +k′

)
z
e
−i

(
ω+ ω′

)
t
ϵ̂k · ϵ̂ k′

− C⋆
kC

⋆

k′
e
−i

(
k +k′

)
z
e
i
(
ω+ ω′

)
t
ϵ̂k · ϵ̂ k′

∣∣∣∣ dV
=
ϵ0
2

∫
V

ωω′
∣∣∣CkC

⋆
k′e

i(k−k′)ze−i(ω−ω′)tϵ̂k · ϵ̂k′ + C⋆
kCk′e

−i(k−k′)zei(ω−ω′)tϵ̂k · ϵ̂k′

−CkC −k′
e
i
(
k −k′

)
z
e
−i

(
ω −ω′

)
t
ϵ̂k · ϵ̂ −k′

− C⋆
kC

⋆

−k′
e
−i

(
k −k′

)
z
e
i
(
ω −ω′

)
t
ϵ̂k · ϵ̂ −k′

∣∣∣∣ dV
=

1

2
ϵ0ωω

′V
(
CkC

⋆
k′δkk′e

−i(ω−ω′)tϵ̂k · ϵ̂k′ + C⋆
kCk′δkk′e

i(ω−ω′)tϵ̂k · ϵ̂k′

−CkC−k′δkk′e
−i(ω−ω′)tϵ̂k · ϵ̂−k′ − C⋆

kC
⋆
−k′δkk′e

i(ω−ω′)tϵ̂k · ϵ̂−k′

)
We have renamed one of our dummy variables, k′ → −k′ (shown in the yellow boxes),which
also means ω′ → −ω′, in order to get rid of the exponential terms by using Eq C.12. For
a single mode (k = k′), we then have

ϵ0
2

∫
V

∣∣∣E⃗k · E⃗⋆
k′

∣∣∣ dV =
1

2
ϵ0ω

2V
(
2CkC

⋆
k − CkC−k ϵ̂k · ϵ̂−k − C⋆

kC
⋆
−k ϵ̂k · ϵ̂−k

)
(C.14)

For the second term, the result is slightly different.
We use another vector identity : (A×B) · (C ×D) = (A · C) (B ·D) − (A ·D) (B · C)
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which gives what we need to derive for the second term.

1

2µ0

∫
V

∣∣∣B⃗k · B⃗⋆
k′

∣∣∣ dV (C.15)

=
1

2µ0

∫
V

ωω′

c2

∣∣∣(Cke
i(kz−ωt) − C⋆

ke
−i(kz−ωt)

) (
k̂ × ϵ̂k

)(
C⋆

k′e
−i(k′z−ω′t) − Ck′e

i(k′z−ω′t)
)(

k̂′ × ϵ̂k′
)∣∣∣ dV

=
1

2µ0

∫
V

ωω′

c2

∣∣∣CkC
⋆
k′e

i(k−k′)ze−i(ω−ω′)t
(
k̂ × ϵ̂k

)(
k̂′ × ϵ̂k′

)

+C⋆
kCk′e

−i(k−k′)zei(ω−ω′)t
(
k̂ × ϵ̂k

)(
k̂′ × ϵ̂k′

)

−CkC k′
e
i
(
k +k′

)
z
e
−i

(
ω+ ω′

)
t
(
k̂ × ϵ̂k

)(
k′ × ϵ̂

k′

)

−C⋆
kC

⋆

k′
e
−i

(
k +k′

)
z
e
i
(
ω+ ω′

)
t
(
k̂ × ϵ̂k

)(
k′ × ϵ̂

k′

)∣∣∣∣ dV
(C.16)

We can rename one of the dummy variables just as before (k′ → −k′ and ω′ → −ω′).

=
1

2µ0

∫
V

ωω′

c2

∣∣∣CkC
⋆
k′e

i(k−k′)ze−i(ω−ω′)tδkk′ + C⋆
kCk′e

−i(k−k′)zei(ω−ω′)tδkk′

−CkC −k′
e
i
(
k −k′

)
z
e
−i

(
ω −ω′

)
t
(
k̂ × ϵ̂k

)(
−k′ × ϵ̂ −k′

)
−C⋆

kC
⋆

−k′
e
−i

(
k −k′

)
z
e
i
(
ω −ω′

)
t
(
k̂ × ϵ̂k

)(
−k′ × ϵ̂ −k′

)∣∣∣∣ dV
=

1

2
ϵ0ωω

′V
(
CkC

⋆
k′δkk′e

−i(ω−ω′)tϵ̂k · ϵ̂k′ + C⋆
kCk′δkk′e

i(ω−ω′)tϵ̂k · ϵ̂k′

+CkC−k′δkk′e
−i(ω−ω′)tϵ̂k · ϵ̂−k′ + C⋆

kC
⋆
−k′δkk′e

i(ω−ω′)tϵ̂k · ϵ̂−k′

)
· · · c2 =

1

ϵ0µ0

Again, for a single mode we have
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1

2µ0

∫
V

∣∣∣B⃗k · B⃗⋆
k′

∣∣∣ dV =
1

2
ϵ0ω

2V
(
2CkC

⋆
k + CkC−k ϵ̂k · ϵ̂−k + C⋆

kC
⋆
−k ϵ̂k · ϵ̂−k

)
(C.17)

Using Eq ?? and Eq C, we find that the result for Eq [??] is

H = 2ϵ0ω
2V CkC

⋆
k (C.18)

A quantized EM field could simply be driven from H |ψ⟩ = ℏω(n+ 1/2) |ψ⟩. Thus,

Ck =

√
ℏ

2ωϵ0V
â , C⋆

k =

√
ℏ

2ωϵ0V
â† (C.19)

Finally we have full expressions for the two single mode fields.

E⃗k = i

√
ℏω
2ϵ0V

(
âei(kz−ωt) − â†e−i(kz−ωt)

)
ϵ̂

B⃗k = i

√
ℏω

2ϵ0c2V

(
âei(kz−ωt) − â†e−i(kz−ωt)

)
ϵ̂× k̂

(C.20)
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Appendix D

Paraxial Gaussian Wave

Beam diverges. It can also be focused or defocused, reflected or refracted using variety
of optics. For this reason, the interaction space described by the unit volume V (from
the equations C.20) does not remain constant but evolves along the direction of the beam
propagation unless it is the case where one can simply consider a plane wave to describe
the beam. We must further develop the equations C.20) to describe propagation of a
beam. Assuming that the beam is propagating along z-axis, we will first recall the electric
field expression (from the equation C.20) and divide it into two frequency terms, E⃗ =

E⃗(+) + E⃗(−).

E⃗(+)(r⃗, t) = i

√
ℏω

2ϵ0V (r⃗)
âei(kz−ωt) ϵ̂

E⃗(−)(r⃗, t) =− i

√
ℏω

2ϵ0V (r⃗)
â†e−i(kz−ωt) ϵ̂

(D.1)

where the volume constant became a function 1√
V (r⃗)

= 1√
V0
g(r⃗). Such a wave well-describes

laser beam in optical experiments. Let us examine the negative frequency term, which is
responsible for photon creation, as an example. For simplicity, we can separate the spatial
and temporal terms of the complex amplitude function.

E⃗(−)(r⃗, t) = −i
√

ℏω
2ϵ0V0

â†E(−)(r⃗)E(−)(t) ϵ̂ (D.2)

such that E(−)(r⃗) = g(r⃗)e−ikz. The blue box in the equation D.2 corresponds to E0.
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In ray optics, a light ray is paraxial when the ray remains nearly parallel and close to the
optical axis. This means g(r⃗) should be considered as a slowly varying complex envelope.
We apply Helmholtz equation to develop a new version for the paraxial wave.

Helmholtz equation :
(
∇2 + k2

)
E(r⃗) = 0 (D.3)

−→ ∇2
[
g(r⃗)e−ikz

]
+ k2

[
g(r⃗)e−ikz

]
=∇

[
(∇g(r⃗)) e−ikz − ikg(r⃗)e−ikz

]
+ k2g(r⃗)e−ikz

=
(
∇2g(r⃗)

)
e−ikz − ik (g(r⃗)) e−ikz − ik (g(r⃗)) e−ikz − k2g(r⃗)e−ikz + k2g(r⃗)e−ikz

=
(
∇2g(r⃗)

)
e−ikz − 2ik (g(r⃗)) e−ikz

Slowly varying within a wavelength period (∆z = λ) : ∆E ≪ E

∆E =
dE

dz
∆z → dE

dz
=

∆E

∆z
→ dE

dz
≪ E

λ
=
kE

2π

dE

dz
≪ kE (D.4)

which means
d2E

dz2
≪ k2E .

−→
(
∇2

Tg(r⃗)
)
e−ikz +

���
����* 0(

d2

dz2
g(r⃗)

)
e−ikz − 2ik

(
d

dz
g(r⃗)

)
e−ikz = 0

d2

dx2
+

d2

dy2
d

dx
=

d

dy
= 0

We come up with a new version of Helmholtz equation.

∴ ∇2
Tg(r⃗)− 2ik

d

dz
g(r⃗) = 0 · · · · · · Paraxial Helmholtz equation (D.5)

A paraxial ray solution to Eq. D.5 could be a paraboloidal wave.

g(r⃗) =
1

z
e
−ik

ρ2

2z , ρ2 = x2 + y2
(D.6)

E(−)(r⃗) =
1

z
e
−ik

ρ2

2z
−ikz (D.7)
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By adding the Gaussian wave property by replacing z → z+izR (complex envelope), where
zR is the Rayleigh length, the expression becomes

E(−)(r⃗) =
1

(z + izR)
e
−ik

ρ2

2(z + izR)
−ikz

(D.8)

I
II

Using the trigonometric identity
1

1− ix
=

1√
1 + ix

ei tan−1x

I
1

z + izR
=

1

izR

(
1− z

zR

) =

exp

[
i tan−1

(
z

zR

)]
izR

√
1 +

z2

z2R

=
W0

izRW (z)
exp

[
i tan−1

(
z

zR

)]

(D.9)

II
1

z + izR
=

1

z + izR

z − izR
z − izR

=
z

z2 + z2R
− izR
z2 + z2R

=
z

z2
(
1 +

z2R
z2

) − izR

z2R

(
1 +

z2

z2R

)
=

z

z2
R(z)

z

− izR

z2R
W 2(z)

W 2
0

=
1

R(z)
− iW 2

0

zRW 2(z)

=
1

R(z)
− iλzR
πzRW 2(z)

=
1

R(z)
− i

2

kW 2(z)

(D.10)
k =

2π

λ

We now have an expression for the complex amplitude by re-writting the equation D.8
as follows.
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E(−)(r⃗) =
W0

W (z)
e
−ik ρ2

2R(z)
− ρ2

W 2(z)
− ikz + i tan−1

(
z

zR

)
(D.11)

Note that the constant factor 1
izR

at the front was taken out and absorbed by the volume
constant for convenience. The normalization volume constant from the equation D.1 could

Figure D.1: Ray diagram. The figure shows a beam, initially focused by a lens to the focal
point, propagating along the z-axis. Its width increases as it propagates, and becomes

√
2

times the original width W0, at the distance which is defined as Rayleigh length zR. The
factor

√
2 times its original width means 2 times its original area.

be split into the area (A0) and the length (L0) terms as V0 = A0L0. The length would
simply correspond to the length of the interaction region we are interested in. In order to
find the area of the beam, we simply integrate the optical intensity I(r⃗) = |E(r⃗)2| over the
transverse (x,y) plane. ∫ ∞

0

∣∣E(r⃗)2∣∣ 2πρdρ = 1

2
πW 2

0 (D.12)

Thus, giving us 1√
A0

=
√

2
πW 2

0
. In fact, this is exactly the normalization constant for the

Gaussian wave function which its standard deviation is half of the beam radius σ = 2W .

G(r) =
1√
2πσ2

e
−
r2

2σ2 (D.13)
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Figure D.2: Definition of the intensity profile of a Gaussian beam.
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The definitions of a Full-Width-Half-Maximum (FWHM), the standard deviation (σ) and
the beam radius is shown in the Figure D.2. We finally have an expression for the paraxial
gaussian wave.

E⃗(−)(r⃗, t) = −i
√

ℏω
2ϵ0L0

√
2

πW 2
0

W0

W (z)
e
−ik ρ2

2R(z)
− ρ2

W 2(z)
− ikz + i tan−1

(
z

zR

)
+ iωt

ϵ̂

(D.14)

D.0.1 Fiber Coupling

Figure D.3: Fiber-coupling. The figure shows a beam, initially focused by a lens to the
focal point, propagating along the z-axis. Its width increases as it propagates, and becomes√
2 times the original width W0, at the distance which is defined as Rayleigh length zR.

The factor
√
2 times its original width means 2 times its original area.

The fiber-coupling efficiency, ν can be computed by the following expression
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ν =

∣∣∣∣ ∞∫
−∞

∞∫
−∞

E⃗inE⃗
∗
outdxdy

∣∣∣∣2∣∣∣∣ ∞∫
−∞

∞∫
−∞

E⃗inE⃗
∗
indxdy

∣∣∣∣ ∣∣∣∣ ∞∫
−∞

∞∫
−∞

E⃗outE⃗
∗
outdxdy

∣∣∣∣ (D.15)

We favorably consider the paraxial gaussian wave expression that we have derived. All
the normalization constants vanish as they would cancel each other. We assume that the
beam is perfectly aligned with the fiber core (i.e

∫
dθ = 2π). Lastly, we assume that the

fiber is located at the focal point of the objective lens (i.e z = 0 and R = ∞). Hence, the
expression can be simplifeid as

ν =

∣∣∣∣∣ ∞∫
−∞

e
−ρ2

(
1

W2
in

+ 1

W2
out

)
ρdρ

∣∣∣∣∣
2

∣∣∣∣ ∞∫
−∞

e
− 2ρ2

W2
in ρdρ

∣∣∣∣ ∣∣∣∣ ∞∫
−∞

e
− 2ρ2

W2
out ρdρ

∣∣∣∣ = 4

(
WinWout

W 2
in +W 2

out

)2

(D.16)

in case of Win = Wout, the fiber coupling efficiency is ν = 1 as expected.
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Appendix E

Fermi’s Golden Rule

Transition state.

Perturbed Hamiltonian : H(t) = H0 +H1(t) +H2(t) +H3(t) · · · (E.1)

Spontaneous parametric downconversion happens in first-order hamiltonian interaction.
We simplify the perturbation by neglecting all the other higher-orders : H(t) = H0+H1(t).
Consider a state |ψ(t)⟩ =

∑
n

Cn(t) |ψ(t)⟩ =
∑
n

Cn(t) |ϕn⟩ exp(−iEnt/ℏ). According to

Schrödinger’s equation, our expression becomes

Schrödinger′s equation : (H0 +H1(t)) |ψ(t)⟩ = iℏ
d

dt
|ψ(t)⟩ (E.2)

−→
∑
n

Cn(t) (H0 +H1(t)) |ϕn⟩ e
−
iEnt

ℏ = iℏ
d

dt

∑
n

Cn(t) |ϕn⟩ e
−
iEnt

ℏ

−→
��������������∑
n

Cn(t)En |ϕn⟩ e
−
−iEnt

ℏ +
∑
n

Cn(t)H1(t) |ϕn⟩ e
−
−iEnt

ℏ =

��������������∑
n

Cn(t)En |ϕn⟩ e
−
−iEnt

ℏ + iℏ

(∑
n

d

dt
Cn(t)

)
|ϕn⟩ e

−
−iEnt

ℏ
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Projecting to the final state ⟨ϕf |Hfn(t) |ϕn⟩

∑
n

Cn(t)Hfn(t) ⟨ϕf |ϕn=f⟩ e
−
−iEnt

ℏ =iℏ
(
d

dt
Cf (t)

)
⟨ϕf |ϕn=f⟩ e

−
−iEf t

ℏ

−→ 1

iℏ
Cn(t)Hfn(t)e

−i(Ef − En)t

ℏ =
d

dt
Cf (t)

Hfn(t) allows all Cn to survive only Cf survives and the rest Cn disappear

There are two assumptions to be made :

� at t = 0, only the initial state exists → Ci(0) = 1 , Cf (0) = 0

� at t = t, the initial state is weakly perturbed → Ci(t) ≈ 1 , Cf (t) ≪ 1

only n = i term survives since everything else is nearly unchanged.

1

iℏ
Ci(t)Hfi(t) e

−i(Ef − Ei)t

ℏ =
d

dt
Cf (t) −→ 1

iℏ
Hfi(t) e

−i(Ef − Ei)t

ℏ =
d

dt
Cf (t)

∴ Cf (t) =
1

iℏ

∫ t

0

Hfi(t
′) eiωfit

′
dt′

(E.3)

where ωfi = (Ef − Ei)/ℏ.

Ci(t) ≈ 1

Hence, probability of finding the system in |ϕf⟩ is

Pif (t) = |⟨ϕf |ψ(t)⟩|2 =
1

ℏ2

∣∣∣∣∫ t

0

Hfi(t
′) eiωfit

′
dt′
∣∣∣∣2 (E.4)
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Pif (t) =
H2

fi

ℏ2

∣∣∣∣∫ t

0

(
eiωt

′
+ e−iωt′

)
eiωfit

′
dt′
∣∣∣∣2

=
H2

fi

ℏ2

∣∣∣∣∫ t

0

ei(ω+ωfi)t
′
+ ei(ωfi−ω)t′ dt′

∣∣∣∣2 = H2
fi

ℏ2

(∣∣∣∣ ei(ω+ωfi)t
′

i(ω + ωfi)
+

ei(ωfi−ω)t′

i(ωfi − ω)

∣∣∣∣t
0

)2

=
H2

fi

ℏ2

∣∣∣∣∣
��

���
��

ei(ω+ωfi)t − 1

i(ω + ωfi)
+
ei(ωfi−ω)t − 1

i(ωfi − ω)

∣∣∣∣∣
2

(E.5)
ω is near resonance with ωfi such that the 2nd term becomes dominant. Hence,

≈
H2

fi

ℏ2

∣∣∣∣ ei(ωfi−ω)t − 1

i(ωfi − ω)

∣∣∣∣2
=
H2

fi

ℏ2

∣∣∣∣∣ ei(ωfi−ω) t
2

(
ei(ωfi−ω) t

2 − e−i(ωfi−ω) t
2

i(ωfi − ω)

)∣∣∣∣∣
2

=
H2

fi

ℏ2

∣∣∣∣∣ ei(ωfi−ω) t
2
t sin

(
(ωfi − ω) t

2

)
(ωfi − ω) t

2

∣∣∣∣∣
2

=
H2

fi

ℏ2

(
������
e−i(ωfi−ω) t

2
t sin

(
(ωfi − ω) t

2

)
(ωfi − ω) t

2

)(
�����
ei(ωfi−ω) t

2
t sin

(
(ωfi − ω) t

2

)
(ωfi − ω) t

2

)

=
H2

fi

ℏ2
t2
∣∣∣∣sinc((ωfi − ω)

t

2

)∣∣∣∣2
(E.6)

We call ∆ = ωfi − ω as detuning. If ∆ = 0, it is at resonance.

Transition probability : P (t) =
∫
Pfi(t)ρ(E)dE. The density of the energy states could

be considered as a constant, if its energy range is very narrow.

P (t) =

∫
H2

fi

ℏ2

∣∣∣∣t · sinc((ωfi − ω)
t

2

)∣∣∣∣2 ρ(E) dE

=
H2

fi

ℏ2
ρ(E)

∫ ∣∣∣∣∣t · sin
(
(ωfi − ω) t

2

)
(ωfi − ω) t

2

∣∣∣∣∣
2

dℏω

=
H2

fi

ℏ
ρ(E)

∫ ∣∣∣∣∣t2 · sin2
(
(ωfi − ω) t

2

)(
(ωfi − ω) t

2

) ∣∣∣∣∣
2

dω

(E.7)
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Figure E.1: Comparison of the intensity of the wave generated by a periodically poled
nonlinear crystal for different phase matching conditions. A phase mismatch (blue) makes
the intensity oscillates periodically in time. A perfect phase-matching condition (red) is the
ideal case where the intensity increases quadratically. A quasi-phase-matching condition
(black) might not be ideal, but achievable by a periodically poloed nonlinear medium.

By letting x = (ωfi − ω) t
2
and dx = − t

2
dω,

=
H2

fi

ℏ
ρ(E)

∫ ∣∣∣∣−2

t
t2
sin2(x)

x2

∣∣∣∣ dx · · ·
∫
sinc2(x)dx = π

=
2π

ℏ
H2

fiρ(E)t

(E.8)

We finally arrive at the Fermi’s golden rule.

Γi→f =
d

dt
P (t) =

2π

ℏ
H2

fiρ(E) (E.9)
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Appendix F

Matlab Code -
Quasi-Phase-Matching Condition

1 % 2020/05/05 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 %------------[Inputs]--------------

3 Temp_Start =107; % (in degC)

4 Temp_End =108; % (in degC)

5 Lambda_End =2000e-9; % (in meters)

6
7 Decimal_Temp = 1; % number of decimals for temperature array (degC)

8 Decimal_Lambda = 1; % number of decimals for wavelength arrays (nm)

9
10 Crystal = "PPLN";

11 CT_ref =107.6; % crystal temperature (in degC)

12 CL=1e-2; % crystal length (in meters)

13 CP=7.10e-6; % crystal poling periods (in meters)

6.00 ,6.26 ,6.53 ,6.81 ,7.10 ,7.40 ,7.71 ,8.03 ,8.36

14 d_eff =25e-12; % Nonlinear coefficient (m/V)

15
16 Lambda_P = 523.64e-9; % Pump wavelength (in meters)

17 dLambda_P =0.01e-9; % Pump bandwidth (in meters)

18
19 %----------Preparations ------------

20 cLight =299792458; % Speed of light (in m/s)

21
22 Lambda_P_Front = Lambda_P - 10^(-9- Decimal_Lambda); % To calculate the propagation

constant of the pump

23 Lambda_P_Back = Lambda_P + 10^(-9- Decimal_Lambda); % To calculate the propagation constant

of the pump

24
25 Lambda_Start = (1/ Lambda_P -1/ Lambda_End)^(-1); % starting wavelength from the array (in

meters)

26 Length_Temp = (round(Temp_End ,Decimal_Temp)-round(Temp_Start ,Decimal_Temp))*10^

Decimal_Temp ;

27 Length_Lambda = (round(Lambda_End *10^9 , Decimal_Lambda) - round(Lambda_Start *10^9,

Decimal_Lambda))*10^ Decimal_Lambda;
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28
29 Array_Lambda_S = linspace(Lambda_Start ,Lambda_End ,Length_Lambda +1);

30 Array_Lambda_I = (1/ Lambda_P -1./ Array_Lambda_S).^(-1);

31
32 Array_Temp = linspace(Temp_Start ,Temp_End ,Length_Temp +1);

33 Array_QPM_S = zeros(Length_Temp +1,1);

34 Array_QPM_I = zeros(Length_Temp +1,1);

35 Array_QPM_dS = zeros(Length_Temp +1,1);

36 Array_QPM_dI = zeros(Length_Temp +1,1);

37
38 PolyTerm = 10;

39 for i=1: length(Array_Temp +1)

40 [no_P ,ne_P ,no_group_P(j),ne_group_P(j),CLT ,CPT] = Function20_Crystalinfo(Lambda_P ,

Crystal ,CL ,CP,Array_Temp(i));

41 QPM = zeros(length(Array_Lambda_S) ,1);

42 for j=1: length(Array_Lambda_S)

43 [no_S(j),ne_S(j),no_group_S(j),ne_group_S(j),CLT ,CPT] = Function20_Crystalinfo(

Array_Lambda_S(j),Crystal ,CL,CP ,Array_Temp(i));

44 [no_I(j),ne_I(j),no_group_I(j),ne_group_I(j),CLT ,CPT] = Function20_Crystalinfo(

Array_Lambda_I(j),Crystal ,CL,CP ,Array_Temp(i));

45 QPM(j) = 2*pi*CLT*((ne_P -ne_I(j))/Lambda_P +(ne_I(j)-ne_S(j))/Array_Lambda_S(j) -1/

CPT);

46 end

47 QPMCurve = polyfit(Array_Lambda_S ,QPM ,PolyTerm);

48 warning(’off’,’all’);

49
50 Optimal_S=sort(roots(QPMCurve)); % roots coorespond to possible signal wavelengths for

the deltaK(quasi -Phase)=0 % (in meters)

51 Optimal_I =(1/ Lambda_P -1./( Optimal_S)).^( -1); % (in meters)

52 for p=1: PolyTerm

53 if isreal(Optimal_S(p))==1 && Optimal_S(p)>=Lambda_Start && Optimal_S(p)<=

Lambda_End % allow only signal and idler positive -real , and higher than pump

wavelength

54 Optimal_S(p)=Optimal_S(p); % (in meters)

55 Optimal_I(p)=Optimal_I(p); % (in meters)

56 else

57 Optimal_S(p)=0; % non -positive -real , or lower than pump wavelength = erased

58 Optimal_I(p)=0; % non -positive -real , or lower than pump wavelength = erased

59 end

60 end

61 if sum(Optimal_S)==0

62 Optimal_S (1)=NaN;

63 Optimal_I (1)=NaN;

64 else

65 end

66 MultipleRoots_S = round(nonzeros(Optimal_S)*10^9, Decimal_Lambda)*10^( -9);

67 MultipleRoots_I = round(nonzeros(Optimal_I)*10^9, Decimal_Lambda)*10^( -9);

68 % Signal will go something like 700 ,800 ,900 ,1000 ,1100 , when Idler goes

1100 ,1000 ,900 ,800 ,700.

69 % To avoid double calculations , we only take the first half of the signal and idler.

70 if mod(length(MultipleRoots_S) ,2)==0 && length(MultipleRoots_S)~=1

71 Candidate=length(MultipleRoots_S)/2;

72 elseif mod(length(MultipleRoots_S) ,2)==1 && length(MultipleRoots_S)~=1

73 Candidate =( length(MultipleRoots_S) -1)/2;

74 else

75 Candidate=length(MultipleRoots_S); % which should be 1

76 end
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77 % re-analyze the candidates

78 CanQPM=zeros(Candidate ,1);

79 for C=1: Candidate

80 [Can_no_S(C),Can_ne_S(C),Can_no_group_S(C),Can_ne_group_S(C),CLT ,CPT] =

Function20_Crystalinfo(MultipleRoots_S(C),Crystal ,CL ,CP,Array_Temp(i));

81 [Can_no_I(C),Can_ne_I(C),Can_no_group_I(C),Can_ne_group_I(C),CLT ,CPT] =

Function20_Crystalinfo(MultipleRoots_I(C),Crystal ,CL ,CP,Array_Temp(i));

82 CanQPM(C)=2*pi*CLT .*(( Can_ne_I(C)-Can_ne_S(C))./( MultipleRoots_S(C)*10^( -9))+((

ne_P -Can_ne_I(C))./ Lambda_P) -(1./CPT));

83 end

84 BestQuasiPhase=min(abs(CanQPM)); % whichever among the candidates is the closest to

deltaK =0

85 Best_S=find(abs(CanQPM)== BestQuasiPhase); % whichever among the candidates is the

closest to deltaK =0

86 Final_S=MultipleRoots_S(Best_S); % I choose you ! (in nanometers)

87 Final_I=MultipleRoots_I(Best_S); % I choose you ! (in nanometers)

88 if sum(Final_S)==0

89 Final_S=NaN;

90 Final_I=NaN;

91 else

92 end

93 Array_QPM_S(i) = Final_S (1);

94 Array_QPM_I(i) = Final_I (1);

95 %--------------------- Bandwidth calculations ------------------------

96 Final_S_Front = Array_QPM_S(i) - 10^(-9- Decimal_Lambda);

97 Final_S_Back = Array_QPM_S(i) + 10^(-9- Decimal_Lambda);

98
99 Final_I_Front = Array_QPM_I(i) - 10^(-9- Decimal_Lambda);

100 Final_I_Back = Array_QPM_I(i) + 10^(-9- Decimal_Lambda);

101
102 [no_P_Front ,ne_P_Front ,no_group_P_Front ,ne_group_P_Front ,CLT ,CPT] =

Function20_Crystalinfo(Lambda_P_Front ,Crystal ,CL ,CP,Array_Temp(i));

103 [no_P_Back ,ne_P_Back ,no_group_P_Back ,ne_group_P_Back ,CLT ,CPT] = Function20_Crystalinfo

(Lambda_P_Back ,Crystal ,CL,CP,Array_Temp(i));

104
105 [no_S_Final ,ne_S_Final ,no_group_S_Final ,ne_group_S_Final ,CLT ,CPT] =

Function20_Crystalinfo(Array_QPM_S(i),Crystal ,CL ,CP,Array_Temp(i));

106 [no_S_Front ,ne_S_Front ,no_group_S_Front ,ne_group_S_Front ,CLT ,CPT] =

Function20_Crystalinfo(Final_S_Front ,Crystal ,CL ,CP,Array_Temp(i));

107 [no_S_Back ,ne_S_Back ,no_group_S_Back ,ne_group_S_Back ,CLT ,CPT] = Function20_Crystalinfo

(Final_S_Back ,Crystal ,CL,CP ,Array_Temp(i));

108
109 [no_I_Final ,ne_I_Final ,no_group_I_Front ,ne_group_I_Front ,CLT ,CPT] =

Function20_Crystalinfo(Array_QPM_I(i),Crystal ,CL ,CP,Array_Temp(i));

110 [no_I_Front ,ne_I_Front ,no_group_I_Final ,ne_group_I_Final ,CLT ,CPT] =

Function20_Crystalinfo(Final_I_Front ,Crystal ,CL ,CP,Array_Temp(i));

111 [no_I_Back ,ne_I_Back ,no_group_I_Back ,ne_group_I_Back ,CLT ,CPT] = Function20_Crystalinfo

(Final_I_Back ,Crystal ,CL,CP ,Array_Temp(i));

112
113 dndLambda_P = (((ne_P -ne_P_Front)/(Lambda_P -Lambda_P_Front))+(( ne_P_Back -ne_P)/(

Lambda_P_Back -Lambda_P)))/2;

114 Beta_P(i) = (ne_P_Front -Lambda_P*dndLambda_P)/cLight; % propagation constant

115 dndLambda_S = ((( ne_S_Final -ne_S_Front)/( Array_QPM_S(i)-Final_S_Front))+(( ne_S_Back -

ne_S_Final)/( Final_S_Back -Array_QPM_S(i))))/2;

116 Beta_S(i) = (ne_S_Front -Array_QPM_S(i)*dndLambda_S)/cLight; % propagation constant

117 dndLambda_I = ((( ne_I_Final -ne_I_Front)/( Array_QPM_I(i)-Final_I_Front))+(( ne_I_Back -

ne_I_Final)/( Final_I_Back -Array_QPM_I(i))))/2;
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118 Beta_I(i) = (ne_I_Front -Array_QPM_I(i)*dndLambda_I)/cLight; % propagation constant

119 Array_QPM_dS(i) = abs(Array_QPM_S(i).^2/ cLight *(1/ CLT/( Beta_I(i)-Beta_S(i)) -(Beta_P(i)

-Beta_I(i))/( Beta_I(i)-Beta_S(i))*cLight*dLambda_P/Lambda_P ^2)); % signal BW

120 Array_QPM_dI(i) = abs(Array_QPM_I(i).^2/ cLight *(1/ CLT/( Beta_S(i)-Beta_I(i)) -(Beta_P(i)

-Beta_S(i))/( Beta_S(i)-Beta_I(i))*cLight*dLambda_P/Lambda_P ^2)); % idler BW

121 fprintf(’%.2f%sC done\n’,Array_Temp(i),char (186));

122 end
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Appendix G

Matlab Code - Phase variation

1 % 2022/02/19 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % Temperature fluctuation

3 Lambda_P = 523.64e-9; % pump wavelength (in meters)

4 Lambda_S = 790.8e-9; % signal wavelength (in meters)

5 Lambda_I = 1550e-9; % idler wavelength (in meters)

6
7 BD = "BBO";

8 OpticAngle = pi/4;

9 Accuracy = 2;

10 alpha_o = 4e-6; % Thermal expansion coefficients of o-ray (in K^-1) in BBO

11 alpha_e = 36e-6; % Thermal expansion coefficients of e-ray (in K^-1) in BBO

12 dno_dT = -9.3e-6; % Thermo -optic coefficients of o-ray (in K^-1) in BBO

13 dne_dT = -16.6e-6; % Thermo -optic coefficients of e-ray (in K^-1) in BBO

14 L = 39.4e-3; % length of the BBO beam displacer (in meters)

15 T = 20; % room temperature (in degC)

16 dT = 1; % temperature fluctuation (in K)

17
18 [no_P ,ne_P ,neff_P ,AOR_P ,Vgroup_o_P ,Vgroup_e_P ,Vgroup_eff_P] = Function1_BDinfo(BD,

OpticAngle ,Lambda_P ,Accuracy);

19 [no_S ,ne_S ,neff_S ,AOR_S ,Vgroup_o_S ,Vgroup_e_S ,Vgroup_eff_S] = Function1_BDinfo(BD,

OpticAngle ,Lambda_S ,Accuracy);

20 [no_I ,ne_I ,neff_I ,AOR_I ,Vgroup_o_I ,Vgroup_e_I ,Vgroup_eff_I] = Function1_BDinfo(BD,

OpticAngle ,Lambda_I ,Accuracy);

21
22 TK = T + 273.15; % temperature (in K)

23 theta_eff_P = OpticAngle + AOR_P;

24 dneff_dT_P = (no_P*dne_dT+ne_P*dno_dT)/sqrt(no_P ^2* sin(theta_eff_P)^2+ ne_P ^2*cos(

theta_eff_P)^2) + 2*no_P*ne_P*(no_P*dno_dT*sin(theta_eff_P)^2+ ne_P*dne_dT*cos(

theta_eff_P)^2)/(no_P ^2*sin(theta_eff_P)^2+ ne_P ^2*cos(theta_eff_P)^2) ^1.5;

25 theta_eff_S = OpticAngle + AOR_S;

26 dneff_dT_S = (no_S*dne_dT+ne_S*dno_dT)/sqrt(no_S ^2* sin(theta_eff_S)^2+ ne_S ^2*cos(

theta_eff_S)^2) + 2*no_S*ne_S*(no_S*dno_dT*sin(theta_eff_S)^2+ ne_S*dne_dT*cos(

theta_eff_S)^2)/(no_S ^2*sin(theta_eff_S)^2+ ne_S ^2*cos(theta_eff_S)^2) ^1.5;

27 theta_eff_I = OpticAngle + AOR_I;

28 dneff_dT_I = (no_I*dne_dT+ne_I*dno_dT)/sqrt(no_I ^2* sin(theta_eff_I)^2+ ne_I ^2*cos(

theta_eff_I)^2) + 2*no_I*ne_I*(no_I*dno_dT*sin(theta_eff_I)^2+ ne_I*dne_dT*cos(

theta_eff_I)^2)/(no_I ^2*sin(theta_eff_I)^2+ ne_I ^2*cos(theta_eff_I)^2) ^1.5;
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29
30 dPhi_o_P = 2*pi*L/Lambda_P *( dno_dT+no_P*alpha_o)*dT;

31 dPhi_e_P = 2*pi*L/Lambda_P *( dne_dT+ne_P*alpha_e)*dT;

32 dPhi_P = dPhi_e_P - dPhi_o_P

33 dPhi_o_S = 2*pi*L/Lambda_S *( dno_dT+no_S*alpha_o)*dT;

34 dPhi_e_S = 2*pi*L/Lambda_S *( dne_dT+ne_S*alpha_e)*dT;

35 dPhi_S = dPhi_e_S - dPhi_o_S

36 dPhi_o_I = 2*pi*L/Lambda_I *( dno_dT+no_I*alpha_o)*dT;

37 dPhi_e_I = 2*pi*L/Lambda_I *( dne_dT+ne_I*alpha_e)*dT;

38 dPhi_I = dPhi_e_I - dPhi_o_I

39
40 dPhi = dPhi_P - dPhi_S - dPhi_I;

41 dPhi_no = dPhi_P + dPhi_S + dPhi_I;

42
43 fprintf(’\n\nphi_P = %.4f pi\n’,dPhi_P/pi);

44 fprintf(’phi_S = %.4f pi\n’,dPhi_S/pi);

45 fprintf(’phi_I = %.4f pi\n’,dPhi_I/pi);

46 fprintf(’\nBD : dPhi = %.4f pi\n’,dPhi/pi);

47 fprintf(’MZ : dPhi = %.4f pi\n’,dPhi_no/pi);

48 %===========================================================================
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Appendix H

Matlab Code - Nonlinear
Susceptibility

1 % 2022/02/02 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % susceptibility

3 d_eff = 25e-12; % Nonlinear coefficient (m/V)

4 CP = 7.1e-6; % (in meters) Poling Period

5 CL = 1e-2; % (in meters) Crystal Length

6 z = linspace(0,CL,round(CL/CP ,0) *10);

7 Crystal = ’PPLN’;

8 CT = 107.6;

9 Sumstart = 1;

10 Sumsize = 100;

11
12 Lambda_P = 523.64e-9;

13 Lambda_S = 790.8e-9;

14 Lambda_I = 1550e-9;

15 cLight = 299792458; % Speed of Light (in m/s)

16 [no_P ,ne_P ,no_group_P ,ne_group_P ,CLT ,CPT] = Function20_Crystalinfo(Lambda_P ,Crystal ,CL,CP ,

CT);

17 [no_S ,ne_S ,no_group_S ,ne_group_S ,CLT ,CPT] = Function20_Crystalinfo(Lambda_S ,Crystal ,CL,CP ,

CT);

18 [no_I ,ne_I ,no_group_I ,ne_group_I ,CLT ,CPT] = Function20_Crystalinfo(Lambda_I ,Crystal ,CL,CP ,

CT);

19 k_P =2*pi*ne_P/Lambda_P; % Wave Number (in rad/m)

20 k_S =2*pi*ne_S/Lambda_S; % Wave Number (in rad/m)

21 k_I =2*pi*ne_I/Lambda_I; % Wave Number (in rad/m)

22 deltak = k_P -k_S -k_I;

23
24 for l=1: length(z)

25 SUM = 0;

26 SUMfactor = 0;

27 expterm = 0;

28 for i=Sumstart:Sumsize

29 SUM = SUM + 4/(i*2-1)/pi.*sin((i*2-1)*pi/2).*exp(1j*2*pi*(i*2-1)/CPT*z(l));

30 end

184



31 Chi(l) = d_eff*SUM;

32 end
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Appendix I

Matlab Code - EPS Pair Rate

1 % 2022 -01 -29 Sungeun (Paul) Oh

2 % Calculating "Heralding Efficiency" and "Pair Rate" with all lenses given.

3 Lambda_P = 523.64e-9; % in meters

4 Lambda_S = 790.8e-9; % in meters

5 Lambda_I = 1550e-9; % in meters

6 dLambda_P = 0.01e-9; % spectral bandwidth of the pump (in meters)

7 dLambda_S = 0.66e-9; % spectral bandwidth of the signal (in meters)

8 dLambda_I = 2.61e-9; % spectral bandwidth of the idler (in meters)

9
10 Crystal = ’PPLN’;

11 CL = 0.010013082006280; % in meters

12 CP = 7.109288224458798e-06; % in meters

13 T = 107.6; % in degreeC

14 d_eff =25e-12; % Nonlinear coefficient (m/V)

15
16 cLight =299792458; % speed of light (in m/s)

17 hbar =1.0545718*10^( -34); % (in kgm^2/s)

18 epsilon0 =8.8541878*10^( -12); % (in F/m) = (in J/m^3) = (in C/V/m) , V x C = J

19
20 % %------------------------- Fiber Information --------------------------

21 Mode = 1; % 1 : MFD , 2 : NA

22 info_P =3.95e-6;%0.12;% % numerical aperture (P3 -488PM-FC -2) MFD : (3.95+ -0.5)e-6, NA :

0.12

23 info_S =5.3e-6;%0.13;% % numerical aperture MFD : (5.3+ -1)e-6, NA : 0.13

24 info_I =9.3e-6;%0.14;% % numerical aperture MFD : (9.3+ -0.5)e-6, NA : 0.13

25 % %-------------------------------- Lens --------------------------------

26 % % P_obj : 8mm , S_obj : 11mm , I_obj : 15mm

27 Obj_P = 0.011; % Objective lens (in meters) %miniature : 11mm

28 Mag_P = 0.30; % Magnifying lens (in meters) %miniature : 300mm

29 Obj_S = 0.01825; % Objective lens (in meters)

30 Mag_S = 0.35; % Magnifying lens (in meters) %miniature : 350mm

31 Obj_I = 0.01825; % Objective lens (in meters)

32 Mag_I = 0.30; % Magnifying lens (in meters) %miniature : 300mm

33 % %----------------------------------------------------------------------

34 S_eff = 0.4745; % at the crystal

35 I_eff = 0.3937; % at the crystal
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36 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 % calculate the spot size of each beam at the crystal

38 W_P = Function21_SpotSizeWithGivenLenses(Lambda_P ,Mode ,info_P ,Obj_P ,Mag_P); % Spot size of

the pump in meters

39 W_S = Function21_SpotSizeWithGivenLenses(Lambda_S ,Mode ,info_S ,Obj_S ,Mag_S); % Spot size of

the signal in meters

40 W_I = Function21_SpotSizeWithGivenLenses(Lambda_I ,Mode ,info_I ,Obj_I ,Mag_I); % Spot size of

the idler in meters

41 % calculate the pair rate given the spot sizes

42 [R_S ,R_I ,R_c] = Function30_PairRate(Lambda_P ,Lambda_S ,Lambda_I ,dLambda_P ,dLambda_S ,

dLambda_I ,Crystal ,CL,CP,T,W_P ,W_S ,W_I);

43 R_Snew = R_S*S_eff;

44 R_Inew = R_I*I_eff;

45 R_cnew = R_c*S_eff*I_eff;

46 Pair = R_Snew*R_Inew/R_cnew;

47 H_S = R_cnew/R_Inew;

48 H_I = R_cnew/R_Snew;
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Appendix J

Matlab Code - Compensations

1 % 2022/08/02 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 %================================[ Input ]================================

3 Lambda_P = 523.64e-9; % central wavelength of the pump (in meters)

4 WavelengthEnd = 2000e-9; % (in meters)

5 Accuracy = 1; % ex ) 1 = 0.1nm, 2 = 0.01nm

6 BD = "BBO"; % Type of Beam Displacer

7 OpticAngle = pi/4; % Optic angle of the Beam Displacer (in radians)

8 BD_length = 39.7 * 10^( -3); % Beam Displacer length (in meters)

9 cLight = 299792458; % Speed of Light (in m/s)

10 TargetSignal = 790.8*10^ -9;% central wavelength of the signal (in meters)

11 TargetIdler = 1550*10^ -9;% central wavelength of the idler (in meters)

12 TargetSBW = 0.66e-9; % spectral bandwidth of the signal (in meters)

13 TargetIBW = 2.61e-9; % spectral bandwidth of the idler (in meters)

14 Compensator = "Calcite "; % Compensator for walk -off : ’aBBO ’ ’Quartz ’ ’Calcite ’

15 WedgeAngle = 15/180* pi; % angle of the wedges , in radians

16 %=========================================================================

17 % Providing wavelength domains for signal and idler.

18 [Lambda_S ,WavelengthStart_S] = Function3_SPDCwavelengths(Lambda_P ,WavelengthEnd ,Accuracy);

19 [Lambda_I ,WavelengthStart_I] = Function3_SPDCwavelengths(Lambda_P ,WavelengthEnd ,Accuracy);

20
21 % Obtain the refractive indices (no,ne ,neff), the angle of refraction (AOR) and the group

velocities (Vgroup_o ,Vgroup_e ,Vgroup_eff) in the Beam Displacer

22 [P1_BD_no ,P1_BD_ne ,P1_BD_neff ,P1_AOR ,P1_Vgroup_o ,P1_Vgroup_e ,P1_Vgroup_eff] =

Function1_BDinfo(BD,OpticAngle ,Lambda_P ,Accuracy);

23 [S2_BD_no ,S2_BD_ne ,S2_BD_neff ,S2_AOR ,S2_Vgroup_o ,S2_Vgroup_e ,S2_Vgroup_eff] =

Function1_BDinfo(BD,OpticAngle ,Lambda_S ,Accuracy);

24 [I2_BD_no ,I2_BD_ne ,I2_BD_neff ,I2_AOR ,I2_Vgroup_o ,I2_Vgroup_e ,I2_Vgroup_eff] =

Function1_BDinfo(BD,OpticAngle ,Lambda_I ,Accuracy);

25
26 % Spatial and temporal walk -off calculations

27 [S_D_Walkoff , S_T_Walkoff] = Function2_Walkoffs(P1_Vgroup_o ,P1_Vgroup_eff ,S2_Vgroup_o ,

S2_Vgroup_eff ,BD_length ,BD_length ,P1_AOR ,S2_AOR);

28 [I_D_Walkoff , I_T_Walkoff] = Function2_Walkoffs(P1_Vgroup_o ,P1_Vgroup_eff ,I2_Vgroup_o ,

I2_Vgroup_eff ,BD_length ,BD_length ,P1_AOR ,I2_AOR);

29
30 % Find the signal and idler wavelengths that we are interested in.
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31 SignalIndex = find(Lambda_S == TargetSignal);

32 IdlerIndex = find(Lambda_I == TargetIdler);

33
34 % Determine the walk -offs at the target wavelengths.

35 Signal_D_Walkoff = S_D_Walkoff(SignalIndex)+ 0.04747*10^( -3); % An extra walk -off (0.04747

mm) from the dichroic mirrors is manually added

36 Idler_D_Walkoff = I_D_Walkoff(IdlerIndex)+ 0.15835*10^( -3); % An extra walk -off (0.15835 mm

) from the dichroic mirrors is manually added

37 Signal_T_Walkoff = S_T_Walkoff(SignalIndex);

38 Idler_T_Walkoff = I_T_Walkoff(IdlerIndex);

39 %===================================================

40 % Preparing the spatial mode Gaussian functions

41 % Signal : FWHM = 0.6mm

42 % So the standard deviation is FWHM /(2 sqrt(2ln2)) = 0.255mm MFR

43 SBeam_o_MFD = 0.51e-3;

44 SBeam_e_MFD = 0.51e-3;

45 SD_Walkoff = Signal_D_Walkoff;

46
47 % Idler : FWHM = 0.8mm

48 % So the standard deviation is FWHM /(2 sqrt(2ln2)) = 0.34mm MFR

49 IBeam_o_MFD = 0.68e-3;

50 IBeam_e_MFD = 0.68e-3;

51 ID_Walkoff = Idler_D_Walkoff;

52 %===================================================

53 % Preparing the temporal mode Gaussian functions

54 [SBeam_o_TW] = Function8_TemporalWidth(TargetSignal , TargetSBW); % temporal width of

signal (in meters)

55 [SBeam_e_TW] = Function8_TemporalWidth(TargetSignal , TargetSBW); % temporal width of

signal (in meters)

56 ST_Walkoff = Signal_T_Walkoff;

57 [IBeam_o_TW] = Function8_TemporalWidth(TargetIdler , TargetIBW); % temporal width of idler

(in meters)

58 [IBeam_e_TW] = Function8_TemporalWidth(TargetIdler , TargetIBW); % temporal width of idler

(in meters)

59 IT_Walkoff = Idler_T_Walkoff;

60 %===================================================

61 TWidth_o_S = SBeam_o_TW /(2* sqrt (2*log (2))); % convert FWHM into standard deviation , 1sigma

62 TWidth_e_S = SBeam_e_TW /(2* sqrt (2*log (2))); % convert FWHM into standard deviation , 1sigma

63 TWidth_o_I = IBeam_o_TW /(2* sqrt (2*log (2))); % convert FWHM into standard deviation , 1sigma

64 TWidth_e_I = IBeam_e_TW /(2* sqrt (2*log (2))); % convert FWHM into standard deviation , 1sigma

65 [Spatial_Overlap_S] = Function4_SpatialOverlap(SBeam_o_MFD ,SBeam_e_MFD ,SD_Walkoff);

66 [Temporal_Overlap_S] = Function5_TemporalOverlap(TWidth_o_S ,TWidth_e_S ,ST_Walkoff)

67 [Spatial_Overlap_I] = Function4_SpatialOverlap(IBeam_o_MFD ,IBeam_e_MFD ,ID_Walkoff);

68 [Temporal_Overlap_I] = Function5_TemporalOverlap(TWidth_o_I ,TWidth_e_I ,IT_Walkoff)

69
70 [Compensator_no_S ,Compensator_ne_S ,CVgroup_oS ,CVgroup_eS] = Function9_Compensator(

TargetSignal ,Compensator);

71 [Compensator_no_I ,Compensator_ne_I ,CVgroup_oI ,CVgroup_eI] = Function9_Compensator(

TargetIdler ,Compensator);

72 CompensatorN_S = CVgroup_eS -CVgroup_oS;

73 CompensatorN_I = CVgroup_eI -CVgroup_oI;

74 CompensatorSignal = abs((ST_Walkoff -IT_Walkoff).* CompensatorN_S)*1000 % size of the signal

compensator crystal (in meters)

75 CompensatorIdler = abs(CompensatorN_I) % size of the idler compensator crystal (in meters)
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Appendix K

Matlab Code - PairRate Calculations

1 % 2022/02/04 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 %================================[ input ]==================================

3 % Wavelengths (in meters)

4 clear;

5 Lambda_P =523.64e-9;

6 Lambda_S =790.8e-9;

7 Lambda_I =1550e-9;

8 % Frequency bandwidths (in Hz) This is not FWHM but 1 standard deviation

9 domega_P =4.6429874 e9;

10 domega_S =2.4230264 e10;

11 domega_I =2.4941619 e10;

12 % Crystal info

13 Crystal = "PPLN";

14 CL = 1e-2; % crystal length (in meters)

15 CP = 7.10e-6; % crystal poling period (in meters)

16 T = 107.6; % crystal temperature (degC)

17 d_eff =25*10^( -12); % Nonlinear coefficient (in m/V)

18 Power =0.001; % Pump power (in Watts)

19 %=========================================================================

20 epsilon0 =8.8541878*10^( -12); % (in F/m) = (in J/m^3) = (in C/V/m) , V x C = J

21 cLight =299792458; % Speed of light (in m/s)

22 hbar =1.0545718*10^( -34); % Planck constant (in kgm^2/s)

23 % Extraordinary refractive indices (obtained from Sellmeier eq)

24 [no_P ,ne_P ,no_group_P ,ne_group_P ,CLT ,CPT] = Function20_Crystalinfo(Lambda_P ,Crystal ,CL,CP ,

T);

25 [no_S ,ne_S ,no_group_S ,ne_group_S ,CLT ,CPT] = Function20_Crystalinfo(Lambda_S ,Crystal ,CL,CP ,

T);

26 [no_I ,ne_I ,no_group_I ,ne_group_I ,CLT ,CPT] = Function20_Crystalinfo(Lambda_I ,Crystal ,CL,CP ,

T);

27 %=========================================================================

28 % Wave numbers (in rad/m)

29 k_P =2*pi*ne_P/Lambda_P;

30 k_S =2*pi*ne_S/Lambda_S;

31 k_I =2*pi*ne_I/Lambda_I;

32 omega_P = 2*pi*cLight/Lambda_P; % Pump Frequency (in rad Hz)

33 deltak = k_P -k_S -k_I; % Wave number mismatch without QPM

34 mK=2*pi/CPT; % Wave number of poling (First order of Taylor series)
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35 N_P =2*pi*Power/hbar/omega_P; % number of pump photons at the given pump power

36 Phase= (k_P -k_S -k_I -(mK))*CLT; % Phase = (deltak)L

37 %

----------------------------------------------------------------------------------------------------

38 % Find optimal spot sizes

39 logstart =-2; % pump array start

40 logend =2; % pump array end

41 increment =20; % only positive integers should be used for this.

42 % Arrays of Focal parameters

43 Candidate_Length =(logend -logstart)*increment; % Size of the arrays.

44 Xsi_P=logspace(logstart ,logend ,Candidate_Length);

45 Xsi_S=logspace(logstart ,logend ,Candidate_Length);

46 Xsi_I=logspace(logstart ,logend ,Candidate_Length);

47 Xsi=logspace(logstart ,logend ,Candidate_Length);

48 % Combination Arrays of candidate Signal and Idler Spotsize.

49 % 1: Optimal Xsi_P , 2: Optimal Xsi_S , 3: Optimal Xsi_I , 4: Optimal overall Xsi , 5: Upper -

bound coincidence rate , 6: Upper -bound single rate (signal), 7: Upper -bound single

rate (idler)

50 Candidate_Combinations=zeros(Candidate_Length ,7);

51 %

----------------------------------------------------------------------------------------------------

52 % Find the optimal focal parameter. Simulate all possible combinations for each Xsi_P

value , find and collect only the ones that give the optimal coincidence rate

53
54 ProbFactor = Power *64*pi^2* d_eff ^2* Lambda_P/epsilon0/ne_P ^2/( abs(ne_group_I -ne_group_S))/

Lambda_S ^2/ Lambda_I ^2; % Same for pair and single rates

55
56 for i=1: Candidate_Length

57 Candidate_Xsi=zeros(Candidate_Length ,Candidate_Length);

58 IntegralResult=zeros(Candidate_Length ,Candidate_Length);

59 ConstantC1_pair=zeros(Candidate_Length ,Candidate_Length);

60 ConstantC2_pair=zeros(Candidate_Length ,Candidate_Length);

61 ConstantC3_pair=zeros(Candidate_Length ,Candidate_Length);

62 for j=1: Candidate_Length % first loop for the candidate SignalXsi

63 for k=1: Candidate_Length % second loop for the candidate IdlerXsi

64 ConstantC1_pair(j,k)=1+k_S/k_P*Xsi_S(j)./ Xsi_P(i)+k_I/k_P*Xsi_I(k)./Xsi_P(i);

65 ConstantC2_pair(j,k)=(1- deltak/k_P).*(1+(( k_S+deltak).* Xsi_P(i))./((k_P -deltak

).*Xsi_S(j))+(( k_I+deltak).*Xsi_P(i))./((k_P -deltak).*Xsi_I(k)));

66 ConstantC3_pair(j,k)=Xsi_P(i).^2./ Xsi_S(j)./Xsi_I(k).* ConstantC1_pair(j,k)./

ConstantC2_pair(j,k).^2* deltak/k_P;

67 Candidate_Xsi(j,k)=ConstantC2_pair(j,k)/ConstantC1_pair(j,k).*Xsi_S(j).*Xsi_I(

k)./Xsi_P(i);

68 % Joint Spectral Function

69 F=@(l) 1./(1 -1i*Candidate_Xsi(j,k).*l-ConstantC3_pair(j,k).* Candidate_Xsi(j,k)

.^2.*l.^2) ./(1+1i*Candidate_Xsi(j,k).*l-ConstantC3_pair(j,k).* Candidate_Xsi(j,k).^2.*l

.^2);

70 IntegralResult(j,k)=Candidate_Xsi(j,k).*abs(integral(F,-1,1))./(

ConstantC1_pair(j,k).* ConstantC2_pair(j,k));

71 end

72 end

73 % Identify the combination that gave the maximum value from the integral of the Joint

Spectral Function.

74 IntegralMax=max(max(IntegralResult));

75 [FoundSignal ,FoundIdler ]=find(IntegralResult == IntegralMax);

76 Candidate_Combinations(i,1)=Xsi_P(i);
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77 Candidate_Combinations(i,2)=Xsi_S(FoundSignal);

78 Candidate_Combinations(i,3)=Xsi_I(FoundIdler);

79 ConstantC1_pair_Win=ConstantC1_pair(FoundSignal ,FoundIdler); % Optimal C1

80 ConstantC2_pair_Win=ConstantC2_pair(FoundSignal ,FoundIdler); % Optimal C2

81 Candidate_Combinations(i,4)=Candidate_Xsi(FoundSignal ,FoundIdler);

82 Candidate_Combinations(i,5)=2* ProbFactor*atan(Candidate_Combinations(i,4))./

ConstantC1_pair_Win ./ ConstantC2_pair_Win; % pair rate

83 fprintf(’%d done \n’,i);

84 end

85 % ---------------Single rates ------------------------------

86 for i=1: Candidate_Length

87 ConstantC1_S =2* sqrt ((1+ k_S/k_P.* Candidate_Combinations(i,2)./ Xsi_P(i))*k_I/k_P);

88 ConstantC2_S =2*(1- deltak/k_P).*sqrt ((1+(( k_S+deltak).*Xsi_P(i))./((k_P -deltak).*

Candidate_Combinations(i,2)))*(k_I+deltak)/(k_P -deltak));

89 ConstantC1_I =2* sqrt ((1+ k_I/k_P.* Candidate_Combinations(i,3)./ Xsi_P(i))*k_S/k_P);

90 ConstantC2_I =2*(1- deltak/k_P).*sqrt ((1+(( k_I+deltak).*Xsi_P(i))./((k_P -deltak).*

Candidate_Combinations(i,3)))*(k_S+deltak)/(k_P -deltak));

91 Candidate_Combinations(i,6)=ProbFactor*atan(ConstantC2_S/ConstantC1_S .*

Candidate_Combinations(i,2))/ConstantC1_S/ConstantC2_S;

92 Candidate_Combinations(i,7)=ProbFactor*atan(ConstantC2_I/ConstantC1_I .*

Candidate_Combinations(i,3))/ConstantC1_I/ConstantC2_I;

93 end

94 SpotSize_P=sqrt(CLT/k_P./ Candidate_Combinations (:,1)); % Spot radius of the pump (in

meters)

95 SpotSize_S=sqrt(CLT/k_S./ Candidate_Combinations (:,2)); % Spot radius of the signal (in

meters)

96 SpotSize_I=sqrt(CLT/k_I./ Candidate_Combinations (:,3)); % Spot radius of the idler (in

meters)

97
98 semilogx(SpotSize_P *10^6, Candidate_Combinations (:,5)*10^-6,’k’,’LineWidth ’ ,1.5);
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Appendix L

Matlab Code - Other Functions

Listing L.1: Function1 BDinfo
1 % 2021/01/24 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function generates refractive indices of the crystal.

3 %-------------------------------[input]-------------------------------

4 % Name of the crystal (BD) : "BBO", "Calcite", "YVO4 ’ available at this moment

5 % Optic Angle (Optic Angle) : in radians

6 % Array of Wavelengths (Lambda): in meters

7 % Accuracy (Accuracy) : number of decimal

8 %-------------------------------[output]-------------------------------

9 % BD_no : ordinary refractive index

10 % BD_ne : extraordinary refractive index

11 % BD_neff : effective refractive index

12 % AOR : angle of refraction

13 % Vgroup_o : ordinary group velocity

14 % Vgroup_e : extraordinary group velocity

15 % Vgroup_eff : effective group velocity

16 %------------------------------[function]------------------------------

17 function [BD_no ,BD_ne ,BD_neff ,AOR ,Vgroup_o ,Vgroup_e ,Vgroup_eff] = Function1_BDinfo(BD ,

OpticAngle ,Lambda ,Accuracy)

18 c = 299792458; % speed of light (m/s)

19 if length(Lambda)==1

20 LambdaNext = Lambda +10^( - Accuracy -9);

21 LambdaPrevious = Lambda -10^(- Accuracy -9);

22 else

23 LambdaNext = Lambda (2);

24 LambdaPrevious = Lambda(end -1);

25 end

26 if BD == "BBO"

27 LambdaFront = Lambda (1) -(LambdaNext -Lambda (1)); % very front

28 LambdaBack = Lambda(end)+( Lambda(end)-LambdaPrevious); % very back

29 ExtendedLambda = cat(2,LambdaFront ,Lambda ,LambdaBack);

30 ExtendedBD_no = sqrt (2.67579+0.02099./(( ExtendedLambda *10^6) .^2 -0.00470)

-0.00528.*( ExtendedLambda *10^6) .^2);

31 ExtendedBD_ne = sqrt (2.31197+0.01184./(( ExtendedLambda *10^6) .^2 -0.01607)

-0.00400.*( ExtendedLambda *10^6) .^2);
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32 Extended_dLambda = ExtendedLambda (2:end)-ExtendedLambda (1:end -1);

33 Extended_dno = ExtendedBD_no (2:end)-ExtendedBD_no (1:end -1);

34 Extended_dne = ExtendedBD_ne (2:end)-ExtendedBD_ne (1:end -1);

35 ExtendedtanAOR = (1-( ExtendedBD_no ./ ExtendedBD_ne).^2) .*(tan(OpticAngle)./(1+(

ExtendedBD_no ./ ExtendedBD_ne).^2.* tan(OpticAngle).^2));

36 ExtendedAOR = atan(ExtendedtanAOR); % angle of refraction

37 ExtendedBD_neff = ExtendedBD_no .* ExtendedBD_ne ./sqrt(( ExtendedBD_no .^2).*sin(

OpticAngle+ExtendedAOR).^2+( ExtendedBD_ne .^2).*cos(OpticAngle+ExtendedAOR).^2);

38 Extended_dneff = ExtendedBD_neff (2: end)-ExtendedBD_neff (1:end -1);

39 for i=1: length(Lambda)

40 d_Lambda(i) = (Extended_dLambda(i)+Extended_dLambda(i+1))/2;

41 d_no(i) = (Extended_dno(i)+Extended_dno(i+1))/2;

42 d_ne(i) = (Extended_dne(i)+Extended_dne(i+1))/2;

43 d_neff(i) = (Extended_dneff(i)+Extended_dneff(i+1))/2;

44 end

45 AOR = ExtendedAOR (2:end -1);

46 BD_no = ExtendedBD_no (2:end -1);

47 BD_ne = ExtendedBD_ne (2:end -1);

48 BD_neff = ExtendedBD_neff (2:end -1);

49 Vgroup_o = c./(BD_no -Lambda .*( d_no./ d_Lambda));

50 Vgroup_e = c./(BD_ne -Lambda .*( d_ne./ d_Lambda));

51 Vgroup_eff = c./( BD_neff -Lambda .*( d_neff ./ d_Lambda));

52 %------------------------------------------------------------------------

53 elseif BD == "Calcite"

54 LambdaFront = Lambda (1) -(LambdaNext -Lambda (1));

55 LambdaBack = Lambda(end)+( Lambda(end)-LambdaPrevious);

56 ExtendedLambda = cat(2,LambdaFront ,Lambda ,LambdaBack);

57 ExtendedBD_no = sqrt (2.69705+0.0192064./(( ExtendedLambda *10^6) .^2 -0.01820)

-0.0151624.*( ExtendedLambda *10^6) .^2);

58 ExtendedBD_ne = sqrt (2.18438+0.0087309./(( ExtendedLambda *10^6) .^2 -0.01018)

-0.0024411.*( ExtendedLambda *10^6) .^2);

59 Extended_dLambda = ExtendedLambda (2:end)-ExtendedLambda (1:end -1);

60 Extended_dno = ExtendedBD_no (2:end)-ExtendedBD_no (1:end -1);

61 Extended_dne = ExtendedBD_ne (2:end)-ExtendedBD_ne (1:end -1);

62 ExtendedtanAOR = (1-( ExtendedBD_no ./ ExtendedBD_ne).^2) .*(tan(OpticAngle)./(1+(

ExtendedBD_no ./ ExtendedBD_ne).^2.* tan(OpticAngle).^2));

63 ExtendedAOR = atan(ExtendedtanAOR); % angle of refraction

64 ExtendedBD_neff = ExtendedBD_no .* ExtendedBD_ne ./sqrt(( ExtendedBD_no .^2).*sin(

OpticAngle+ExtendedAOR).^2+( ExtendedBD_ne .^2).*cos(OpticAngle+ExtendedAOR).^2);

65 Extended_dneff = ExtendedBD_neff (2: end)-ExtendedBD_neff (1:end -1);

66 for i=1: length(Lambda)

67 d_Lambda(i) = (Extended_dLambda(i)+Extended_dLambda(i+1))/2;

68 d_no(i) = (Extended_dno(i)+Extended_dno(i+1))/2;

69 d_ne(i) = (Extended_dne(i)+Extended_dne(i+1))/2;

70 d_neff(i) = (Extended_dneff(i)+Extended_dneff(i+1))/2;

71 end

72 AOR = ExtendedAOR (2:end -1);

73 BD_no = ExtendedBD_no (2:end -1);

74 BD_ne = ExtendedBD_ne (2:end -1);

75 BD_neff = ExtendedBD_neff (2:end -1);

76 Vgroup_o = c./(BD_no -Lambda .*( d_no./ d_Lambda));

77 Vgroup_e = c./(BD_ne -Lambda .*( d_ne./ d_Lambda));

78 Vgroup_eff = c./( BD_neff -Lambda .*( d_neff ./ d_Lambda));

79 %------------------------------------------------------------------------

80 elseif BD == "YVO4"

81 LambdaFront = Lambda (1) -(LambdaNext -Lambda (1));

82 LambdaBack = Lambda(end)+( Lambda(end)-LambdaPrevious);
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83 ExtendedLambda = cat(2,LambdaFront ,Lambda ,LambdaBack);

84 ExtendedBD_no = sqrt (3.77834+0.069736./(( ExtendedLambda *10^6) .^2 -0.04724)

-0.0108133.*( ExtendedLambda *10^6) .^2);

85 ExtendedBD_ne = sqrt (4.59905+0.110534./(( ExtendedLambda *10^6) .^2 -0.04813)

-0.0122676.*( ExtendedLambda *10^6) .^2);

86 Extended_dLambda = ExtendedLambda (2:end)-ExtendedLambda (1:end -1);

87 Extended_dno = ExtendedBD_no (2:end)-ExtendedBD_no (1:end -1);

88 Extended_dne = ExtendedBD_ne (2:end)-ExtendedBD_ne (1:end -1);

89 ExtendedtanAOR = (1-( ExtendedBD_no ./ ExtendedBD_ne).^2) .*(tan(OpticAngle)./(1+(

ExtendedBD_no ./ ExtendedBD_ne).^2.* tan(OpticAngle).^2));

90 ExtendedAOR = atan(ExtendedtanAOR); % angle of refraction

91 ExtendedBD_neff = ExtendedBD_no .* ExtendedBD_ne ./sqrt(( ExtendedBD_no .^2).*sin(

OpticAngle+ExtendedAOR).^2+( ExtendedBD_ne .^2).*cos(OpticAngle+ExtendedAOR).^2);

92 Extended_dneff = ExtendedBD_neff (2: end)-ExtendedBD_neff (1:end -1);

93 for i=1: length(Lambda)

94 d_Lambda(i) = (Extended_dLambda(i)+Extended_dLambda(i+1))/2;

95 d_no(i) = (Extended_dno(i)+Extended_dno(i+1))/2;

96 d_ne(i) = (Extended_dne(i)+Extended_dne(i+1))/2;

97 d_neff(i) = (Extended_dneff(i)+Extended_dneff(i+1))/2;

98 end

99 AOR = ExtendedAOR (2:end -1);

100 BD_no = ExtendedBD_no (2:end -1);

101 BD_ne = ExtendedBD_ne (2:end -1);

102 BD_neff = ExtendedBD_neff (2:end -1);

103 Vgroup_o = c./(BD_no -Lambda .*( d_no./ d_Lambda));

104 Vgroup_e = c./(BD_ne -Lambda .*( d_ne./ d_Lambda));

105 Vgroup_eff = c./( BD_neff -Lambda .*( d_neff ./ d_Lambda));

106 %------------------------------------------------------------------------

107 elseif BD == "Quartz"

108 LambdaFront = Lambda (1) -(LambdaNext -Lambda (1));

109 LambdaBack = Lambda(end)+( Lambda(end)-LambdaPrevious);

110 ExtendedLambda = cat(2,LambdaFront ,Lambda ,LambdaBack);

111 ExtendedBD_no = sqrt (2.3573 -0.01170.*( ExtendedLambda *10^6) .^2+0.01054./(

ExtendedLambda *10^6) .^2+1.3414*10^( -4) ./( ExtendedLambda *10^6) .^4 -4.4537*10^( -7) ./(

ExtendedLambda *10^6) .^6+5.9236*10^( -8) ./( ExtendedLambda *10^6) .^8);

112 ExtendedBD_ne = sqrt (2.3849 -0.01259.*( ExtendedLambda *10^6) .^2+0.01079./(

ExtendedLambda *10^6) .^2+1.6518*10^( -4) ./( ExtendedLambda *10^6) .^4 -1.9474*10^( -7) ./(

ExtendedLambda *10^6) .^6+9.3648*10^( -8) ./( ExtendedLambda *10^6) .^8);

113 Extended_dLambda = ExtendedLambda (2:end)-ExtendedLambda (1:end -1);

114 Extended_dno = ExtendedBD_no (2:end)-ExtendedBD_no (1:end -1);

115 Extended_dne = ExtendedBD_ne (2:end)-ExtendedBD_ne (1:end -1);

116 ExtendedtanAOR = (1-( ExtendedBD_no ./ ExtendedBD_ne).^2) .*(tan(OpticAngle)./(1+(

ExtendedBD_no ./ ExtendedBD_ne).^2.* tan(OpticAngle).^2));

117 ExtendedAOR = atan(ExtendedtanAOR); % angle of refraction

118 ExtendedBD_neff = ExtendedBD_no .* ExtendedBD_ne ./sqrt(( ExtendedBD_no .^2).*sin(

OpticAngle+ExtendedAOR).^2+( ExtendedBD_ne .^2).*cos(OpticAngle+ExtendedAOR).^2);

119 Extended_dneff = ExtendedBD_neff (2: end)-ExtendedBD_neff (1:end -1);

120 for i=1: length(Lambda)

121 d_Lambda(i) = (Extended_dLambda(i)+Extended_dLambda(i+1))/2;

122 d_no(i) = (Extended_dno(i)+Extended_dno(i+1))/2;

123 d_ne(i) = (Extended_dne(i)+Extended_dne(i+1))/2;

124 d_neff(i) = (Extended_dneff(i)+Extended_dneff(i+1))/2;

125 end

126 AOR = ExtendedAOR (2:end -1);

127 BD_no = ExtendedBD_no (2:end -1);

128 BD_ne = ExtendedBD_ne (2:end -1);

129 BD_neff = ExtendedBD_neff (2:end -1);
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130 Vgroup_o = c./(BD_no -Lambda .*( d_no./ d_Lambda));

131 Vgroup_e = c./(BD_ne -Lambda .*( d_ne./ d_Lambda));

132 Vgroup_eff = c./( BD_neff -Lambda .*( d_neff ./ d_Lambda));

133 %------------------------------------------------------------------------

134 else

135 disp(’ ’);

136 disp(’Unknown beam displacer. Type again.’);

137 disp(’ ’);

138 return

139 end

140 if Lambda (1) <400*10^ -9

141 disp(’ ’);

142 disp(’The wavelength range should be longer than 400nm’);

143 disp(’ ’);

144 return

145 end

146 end

Listing L.2: Function2 Walkoffs
1 % 2021/01/25 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function generates spatial and temporal walkoffs after two beam displacers

3 %---------------------------------[input]--------------------------------

4 % Ordinary/Extraordinary group velocities in two beam displacers

5 % Length of the two beam displacers (BD1_length , BD2_length): in meters

6 % Angle of refractions of the two beam displacers (AOR1 , AOR2): in radians

7 %---------------------------------[output]--------------------------------

8 % D_Walkoff : Spatial walkoff ( in meters )

9 % T_Walkoff : Temporal Walkoff ( in seconds )

10 %------------------------------[function]--------------------------------

11 function [D_Walkoff , T_Walkoff] = Function2_Walkoffs(BD1_Vgroup_o ,BD1_Vgroup_eff ,

BD2_Vgroup_o ,BD2_Vgroup_eff ,BD1_length ,BD2_length ,AOR1 ,AOR2)

12 % Spatial Walkoff (D_Signal , D_idler) in meters

13 D_Walkoff = BD2_length .*tan(AOR2)-BD1_length .*tan(AOR1);

14 % Temporal Walkoff (T_Signal , T_idler) in seconds

15 T_Walkoff_oe = BD1_length ./ BD1_Vgroup_o + BD2_length ./cos(AOR2)./ BD2_Vgroup_eff;

16 T_Walkoff_eo = BD1_length ./cos(AOR1)./ BD1_Vgroup_eff + BD2_length ./ BD2_Vgroup_o;

17 T_Walkoff = T_Walkoff_oe -T_Walkoff_eo; %"delay of final e - delay of final o"

18 end

Listing L.3: Function3 SPDCwavelengths
1 % 2021/01/25 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function generates arrays of signal/idler wavelengths

3 %-------------------------------[input]-------------------------------

4 % Pump wavelength : in meters

5 % Wavelength Range(end) : in meters

6 % Accuracy : number of intervals for 1 nm , in number of digits

7 %-------------------------------[output]-------------------------------

8 % Lambda_S : Signal wavelengths (in meters)

9 %-----------------------------[function]--------------------------------

10 function [Lambda_S ,WavelengthStart] = Function3_SPDCwavelengths(Lambda_P ,WavelengthEnd ,

Accuracy)

11 Lambda_P2 = round(Lambda_P *10^9, Accuracy);

12 WavelengthEnd2 = round(WavelengthEnd *10^9 , Accuracy);

13 WavelengthStart2 = round ((1/ Lambda_P2 -1/ WavelengthEnd2)^(-1),Accuracy); %signal/idler
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14 WavelengthStart = WavelengthStart2 *10^( -9);

15 WavelengthBins = (WavelengthEnd2 -WavelengthStart2)*10^ Accuracy;

16 Lambda_S2 = linspace(WavelengthStart2 +10^( - Accuracy),WavelengthEnd2 ,WavelengthBins);

17 Lambda_S = Lambda_S2 *10^( -9);

18 end

Listing L.4: Function4 SpatialOverlap
1 % 2022/01/27 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function calculates spatial overlap of two beams (ordinary , extraordinary)

3 % Gaussian functions are used (FWHM @ 1/e^2, intensity profile)

4 %-------------------------------[input]-------------------------------

5 % Ordinary beam ’s mode -field diameter : in meters

6 % Extraordinary beam ’s mode -field diameter : in meters

7 % Spatial Walkoff : in meters

8 %-------------------------------[output]-------------------------------

9 % Spatial overlap: in fraction

10 %-----------------------------[function]--------------------------------

11
12 function [Spatial_Overlap] = Function4_SpatialOverlap(Beam_o_MFD ,Beam_e_MFD ,D_Walkoff) %

mode field diameter (in meters)

13 sigma_o = Beam_o_MFD /4*10^3; % SD (in mm)

14 sigma_e = Beam_e_MFD /4*10^3; % SD (in mm)

15 D_Walkoffmm = D_Walkoff *10^3; % SD (in mm)

16 pos_o = 0;

17 pos_e = 0;

18 NormalizingGaussian = @(pos_x ,pos_y) exp(-(pos_o -pos_x).^2./2/ sigma_o .^2-(pos_o -pos_y)

.^2./2/ sigma_o .^2-(pos_e -pos_x).^2./2/ sigma_e .^2-(pos_e -pos_y).^2./2/ sigma_e .^2);

19 Normalization = integral2(NormalizingGaussian ,-inf ,inf ,-inf ,inf); % normalization

constant

20 Gaussian = @(pos_x ,pos_y) 1/ Normalization .*exp(-(pos_o -pos_x).^2./2/ sigma_o .^2-(pos_o -

pos_y).^2./2/ sigma_o .^2-(pos_e -pos_x -D_Walkoffmm).^2./2/ sigma_e .^2-(pos_e -pos_y -

D_Walkoffmm).^2./2/ sigma_e .^2);

21 Spatial_Overlap = integral2(Gaussian ,-inf ,inf ,-inf ,inf);

22 end

Listing L.5: Function5 TemporalOverlap
1 % 2022/01/27 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function calculates temporal overlap of two beams (ordinary , extraordinary)

3 % Gaussian functions are used (FWHM @ 1/e^2 intensity overlap)

4 % temporal radius = 1 standard deviation

5 %-------------------------------[input]-------------------------------

6 % Ordinary beam ’s temporal width : in meters

7 % Extraordinary beam ’s temporal width : in meters

8 % Temporal Walkoff : in meters

9 %-------------------------------[output]-------------------------------

10 % Temporal overlap : in fraction

11 %-----------------------------[function]--------------------------------

12 function [Temporal_Overlap] = Function5_TemporalOverlap(Beam_o_TW ,Beam_e_TW ,T_Walkoff)

13 sigma_o = Beam_o_TW *10^12; % SD (in ps)

14 sigma_e = Beam_e_TW *10^12; % SD (in ps)

15 T_Walkoffps = T_Walkoff *10^12;

16 pos_o = 0;

17 pos_e = 0;

18 NormalizingGaussian = @(pos_x ,pos_y) exp(-(pos_o -pos_x).^2./2/ sigma_o .^2-(pos_o -pos_y)

.^2./2/ sigma_o .^2-(pos_e -pos_x).^2./2/ sigma_e .^2-(pos_e -pos_y).^2./2/ sigma_e .^2);
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19 Normalization = integral2(NormalizingGaussian ,-inf ,inf ,-inf ,inf); % normalization

constant

20 Gaussian = @(pos_x ,pos_y) 1/ Normalization .*exp(-(pos_o -pos_x).^2./2/ sigma_o .^2-(pos_o -

pos_y).^2./2/ sigma_o .^2-(pos_e -pos_x -T_Walkoffps).^2./2/ sigma_e .^2-(pos_e -pos_y -

T_Walkoffps).^2./2/ sigma_e .^2);

21 Temporal_Overlap = integral2(Gaussian ,-inf ,inf ,-inf ,inf);

22 end

Listing L.6: Function8 TemporalWidth
1 % 2022/02/21 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function computes Temporal width (or Pulse Duration)

3 %-------------------------------[input]-------------------------------

4 % Central Wavelength (in meters)

5 % Bandwidth (in meters) from FWHM

6 %-------------------------------[output]-------------------------------

7 % Temporal Width or Pulse Duration (in seconds) as FWHM

8 %-----------------------------[function]--------------------------------

9 function [TW] = Function8_TemporalWidth(CW , BW)

10 cLight = 299792458; % in m/s

11 BW_freq = BW*cLight /(CW^2);

12 TW = 1/ BW_freq;

13 end

Listing L.7: Function9 Compensator
1 % 2022/05/09 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function generates refractive indices of quartz.

3 %-------------------------------[input]-------------------------------

4 % Array of Wavelengths : in meters

5 % Name of the material : Calcite , Quartz

6 %-------------------------------[output]-------------------------------

7 % Compensator_no : ordinary refractive index

8 % Compensator_ne : extraordinary refractive index

9 %------------------------------[function]------------------------------

10 function [Compensator_no ,Compensator_ne ,CVgroup_o ,CVgroup_e] = Function9_Compensator(

Lambda ,Material)

11 Lambda2 =1.01* Lambda;

12 cLight =299792458; % speed of light (m/s)

13 % Alpha -BBO

14 aBBO_Ao = 2.67579;

15 aBBO_Bo = 0.02099;

16 aBBO_Co = 0.00470;

17 aBBO_Do = 0.00528;

18 aBBO_Ae = 2.31197;

19 aBBO_Be = 0.01184;

20 aBBO_Ce = 0.01607;

21 aBBO_De = 0.00400;

22 aBBO_no=sqrt(aBBO_Ao+aBBO_Bo /(( Lambda *10^6)^2-aBBO_Co)-aBBO_Do *( Lambda *10^6) ^2);

23 aBBO_ne=sqrt(aBBO_Ae+aBBO_Be /(( Lambda *10^6)^2-aBBO_Ce)-aBBO_De *( Lambda *10^6) ^2);

24 aBBO_no2=sqrt(aBBO_Ao+aBBO_Bo /(( Lambda2 *10^6)^2-aBBO_Co)-aBBO_Do *( Lambda2 *10^6) ^2);

25 aBBO_ne2=sqrt(aBBO_Ae+aBBO_Be /(( Lambda2 *10^6)^2-aBBO_Ce)-aBBO_De *( Lambda2 *10^6) ^2);

26 % Quartz

27 Quartz_no=sqrt (2.3573 -0.01170*( Lambda *10^6) ^2+0.01054/( Lambda *10^6) ^2+0.00013414/(

Lambda *10^6) ^4 -0.000000445337/( Lambda *10^6) ^6+0.000000059236/( Lambda *10^6) ^8);

28 Quartz_ne=sqrt (2.3849 -0.01259*( Lambda *10^6) ^2+0.01079/( Lambda *10^6) ^2+0.00016518/(

Lambda *10^6) ^4 -0.0000019474/( Lambda *10^6) ^6+0.000000093648/( Lambda *10^6) ^8);
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29 Quartz_no2=sqrt (2.3573 -0.01170*( Lambda2 *10^6) ^2+0.01054/( Lambda2 *10^6) ^2+0.00013414/(

Lambda2 *10^6) ^4 -0.000000445337/( Lambda2 *10^6) ^6+0.000000059236/( Lambda2 *10^6) ^8);

30 Quartz_ne2=sqrt (2.3849 -0.01259*( Lambda2 *10^6) ^2+0.01079/( Lambda2 *10^6) ^2+0.00016518/(

Lambda2 *10^6) ^4 -0.0000019474/( Lambda2 *10^6) ^6+0.000000093648/( Lambda2 *10^6) ^8);

31 % Calcite

32 Ao = 2.69705;

33 Bo = 0.0192064;

34 Co = 0.01820;

35 Do = 0.0151624;

36 Ae = 2.18438;

37 Be = 0.0087309;

38 Ce = 0.01018;

39 De = 0.0024411;

40 Calcite_no=sqrt(Ao+Bo/(( Lambda *10^6)^2-Co)-Do*( Lambda *10^6) ^2);

41 Calcite_ne=sqrt(Ae+Be/(( Lambda *10^6)^2-Ce)-De*( Lambda *10^6) ^2);

42 Calcite_no2=sqrt(Ao+Bo/(( Lambda2 *10^6)^2-Co)-Do*( Lambda2 *10^6) ^2);

43 Calcite_ne2=sqrt(Ae+Be/(( Lambda2 *10^6)^2-Ce)-De*( Lambda2 *10^6) ^2);

44 if Material == "aBBO"

45 Compensator_no = aBBO_no;

46 Compensator_ne = aBBO_ne;

47 Compensator_no2 = aBBO_no2;

48 Compensator_ne2 = aBBO_ne2;

49 else

50 end

51 if Material == "Calcite"

52 Compensator_no = Calcite_no;

53 Compensator_ne = Calcite_ne;

54 Compensator_no2 = Calcite_no2;

55 Compensator_ne2 = Calcite_ne2;

56 else

57 end

58 if Material == "Quartz"

59 Compensator_no = Quartz_no;

60 Compensator_ne = Quartz_ne;

61 Compensator_no2 = Quartz_no2;

62 Compensator_ne2 = Quartz_ne2;

63 else

64 end

65 CVgroup_o = cLight ./( Compensator_no -Lambda .*(( Compensator_no2 -Compensator_no)/0.01./

Lambda));

66 CVgroup_e = cLight ./( Compensator_ne -Lambda .*(( Compensator_ne2 -Compensator_ne)/0.01./

Lambda));

67
68 end

Listing L.8: Function20 Crystalinfo
1 % 2022/05/16 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function provides information about the crystal at the given temperature

3 %---------------------------------[input]--------------------------------

4 % Lambda : wavelength (in meters)

5 % Crystal : PPLN(covesion)

6 % CL : Crystal ’s length (in meters)

7 % CP : Crystal ’s poling period (in meters)

8 % T : Temperature (in degrees Celcius)

9 %---------------------------------[output]--------------------------------

10 % no,ne : Refractive indices
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11 % no_group ,ne_group : Group indices

12 % CLT : Crystal ’s length at the temperature (in meters)

13 % CPT : Crystal ’s poling period at the temperature (in seconds)

14 %------------------------------[function]--------------------------------

15
16 function [no ,ne,no_group ,ne_group ,CLT ,CPT] = Function20_Crystalinfo(Lambda ,Crystal ,CL ,CP,T

)

17 if length(Lambda)==1

18 LambdaNext = Lambda+Lambda *0.001;

19 LambdaPrevious = Lambda -Lambda *0.001;

20 else

21 LambdaNext = Lambda (2);

22 LambdaPrevious = Lambda(end -1);

23 end

24 if Crystal == "PPLN"

25 ea1 =5.756;

26 ea2 =0.0983;

27 ea3 =0.2020;

28 ea4 =189.32;

29 ea5 =12.52;

30 ea6 =1.32*10^( -2);

31 eb1 =2.860*10^( -6);

32 eb2 =4.700*10^( -8);

33 eb3 =6.113*10^( -8);

34 eb4 =1.516*10^( -4);

35 oa1 =5.653;

36 oa2 =0.1185;

37 oa3 =0.2091;

38 oa4 =89.61;

39 oa5 =10.85;

40 oa6 =1.97*10^( -2);

41 ob1 =7.941*10^( -7);

42 ob2 =3.134*10^( -8);

43 ob3 = -4.641*10^( -9);

44 ob4 = -2.188*10^( -6);

45 ThermalExp1 =1.54*10^( -5); % thermal expansion coefficient : alpha

46 ThermalExp2 =5.3*10^( -9); % thermal expansion coefficient : beta

47 end

48 coef_factor =10^( -6); % desired unit

49 CT=T+273.15; % in Kelvin

50 CTEff=(CT -(24.5+273.16)).*(CT +(24.5+273.16)); % this is used for calculating

refractive indices

51
52 LambdaFront = Lambda (1) -(LambdaNext -Lambda (1)); % very front

53 LambdaBack = Lambda(end)+( Lambda(end)-LambdaPrevious); % very back

54 ExtendedLambda = cat(2,LambdaFront ,Lambda ,LambdaBack);

55 Extended_no = sqrt(oa1+ob1*CTEff +(oa2+ob2*CTEff)./((( ExtendedLambda/coef_factor).^2) -(

oa3+ob3*CTEff)^2)+(oa4+ob4*CTEff)./((( ExtendedLambda/coef_factor).^2)-oa5 ^2)-oa6*(

ExtendedLambda/coef_factor).^2); % extraordinary refractive index for the pump

56 Extended_ne = sqrt(ea1+eb1*CTEff +(ea2+eb2*CTEff)./((( ExtendedLambda/coef_factor).^2) -(

ea3+eb3*CTEff)^2)+(ea4+eb4*CTEff)./((( ExtendedLambda/coef_factor).^2)-ea5 ^2)-ea6*(

ExtendedLambda/coef_factor).^2); % extraordinary refractive index for the pump

57 Extended_dLambda = ExtendedLambda (2:end)-ExtendedLambda (1:end -1);

58 Extended_dno = Extended_no (2:end)-Extended_no (1:end -1);

59 Extended_dne = Extended_ne (2:end)-Extended_ne (1:end -1);

60 for i=1: length(Lambda)

61 d_Lambda(i) = (Extended_dLambda(i)+Extended_dLambda(i+1))/2;
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62 d_no(i) = (Extended_dno(i)+Extended_dno(i+1))/2;

63 d_ne(i) = (Extended_dne(i)+Extended_dne(i+1))/2;

64 end

65 no = Extended_no (2:end -1);

66 ne = Extended_ne (2:end -1);

67 no_group = no-Lambda .*( d_no./ d_Lambda);

68 ne_group = ne-Lambda .*( d_ne./ d_Lambda);

69 CPT=CP.*(1+ ThermalExp1 .*(CT -298.15)+ThermalExp2 .*(CT -298.15) .^2); % thermally expanded

poling period (in meters)

70 CLT=CL.*(1+ ThermalExp1 .*(CT -298.15)+ThermalExp2 .*(CT -298.15) .^2); % thermally expanded

length (in meters)

71 end

Listing L.9: Function21 SpotSizeWithGivenLenses
1 % 2021/05/16 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % Expected spot size with given aspheric and magnifying lenses

3 % Fiber -> Focused beam (by aspheric lens) -> Collimated beam (by magnifying lens) ->

Diverging beam (with spotsize)

4
5 %-----------------[input]------------------

6 % Wavelength : Lambda (in meters)

7 % Fiber ’s numerical aperture : FiberNA (unitless)

8 % aspheric lens focal length : ObjLens (in meters)

9 % magnifying lens focal length : MagLens (in meters)

10 %-----------------[output]-----------------

11 % Spot size (in meters) waist radius

12 % FWHM (in meters) diameter

13 %------------------------------------------

14 % numerical aperture : NA=sqrt(n_core^2-n_clad ^2) < <========== this is not for single mode

fiber

15 % mode field diameter = sqrt (2)/sqrt(ln(2))*FWHM -> MFD = 1.699 FWHM

16
17 function [W] = Function21_SpotSizeWithGivenLenses(Lambda ,Mode ,Information ,ObjLens ,MagLens)

18
19 % Mode 1 : Information = Mode Field Diameter (in meters)

20 % Mode 2 : Information = Numerical Aperture (dimensionless)

21
22 if Mode == 1

23 FiberMFR = Information /2; % mode field radius

24 zR = pi*( FiberMFR ^2)/Lambda;

25 CollimatedMFR = FiberMFR*sqrt (1+( ObjLens/zR)^2); % radius (in meters)

26 CollimatedMFD = CollimatedMFR *2; % diameter (in meters) spot size after the objective

lens

27 CollimatedFWHM = 0.5887* CollimatedMFD; % FWHM (in meters)

28 elseif Mode == 2

29 FiberNA = Information; % numerical aperture

30 CollimatedMFR = ObjLens*tan(asin(FiberNA)); % radius (in meters)

31 CollimatedMFD = CollimatedMFR *2; % diameter (in meters)

32 CollimatedFWHM = 0.5887* CollimatedMFD; % (FWHM in meter)

33 else

34 end

35 W = sqrt(( CollimatedMFR ^2-sqrt(CollimatedMFR ^4-4* MagLens ^2* Lambda ^2/pi^2))/2); % spot size

at the crystal

36 end
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Listing L.10: Function30 PairRate
1 % 2022 -02 -14 Sungeun (Paul) Oh

2 % Pair rate and Heralding efficiency calculations at 1mW of power with spot sizes and the

crystal given

3 %-------------------------------[input]-------------------------------

4 % Lambda_P ,S,I : wavelengths (in meters)

5 % dLambda_P ,S,I : bandwidths (in meters)

6 % Crystal : ’PPLN ’

7 % CL : Crystal length (in meters)

8 % CL : Crystal poling period (in meters)

9 % T : Crystal temperature (in degree celsius)

10 % W_P ,S,I : Beam spotsize (in meters)

11 %-------------------------------[output]-------------------------------

12 % R_S , R_I : Single counts (in Hz)

13 % R_C : Coincidences (in Hz)

14 %------------------------------[function]------------------------------

15 [R_S ,R_I ,R_C] = Function30_PairRate2 (523.64e-9 ,790.8e-9 ,1550e-9 ,0.01e-9 ,0.66e-9 ,2.61e-9,’

PPLN’,1e-2,7.1e-6 ,107.6 ,11.9e-6 ,17.6e-6 ,28.8 -6)

16
17 function [R_S ,R_I ,R_C] = Function30_PairRate2(Lambda_P ,Lambda_S ,Lambda_I ,dLambda_P ,

dLambda_S ,dLambda_I ,Crystal ,CL ,CP,T,W_P ,W_S ,W_I)

18 cLight =299792458; % speed of light (in m/s)

19 hbar =1.0545718e-34; % (in kgm ^2/s)

20 epsilon0 =8.8541878e-12; % (in F/m) = (in J/m^3) = (in C/V/m) , V x C = J

21 Power = 1e-3; % Power in Watts

22 omega_P = 2*pi*cLight/Lambda_P;

23 omega_S = 2*pi*cLight/Lambda_S;

24 omega_I = 2*pi*cLight/Lambda_I;

25 domega_S = cLight/Lambda_S ^2* dLambda_S;

26 domega_I = cLight/Lambda_I ^2* dLambda_I;

27 if Crystal == ’PPLN’

28 d_eff = 25e-12; % (in pm/V)

29 else

30 d_eff = 0; % need more information about other crystals

31 end

32 % refractive indices and group indices

------------------------------------------------------

33
34 [no_P ,ne_P ,no_group_P ,ne_group_P ,CLT ,CPT] = Function20_Crystalinfo(Lambda_P ,Crystal ,CL

,CP ,T);

35 [no_S ,ne_S ,no_group_S ,ne_group_S ,CLT ,CPT] = Function20_Crystalinfo(Lambda_S ,Crystal ,CL

,CP ,T);

36 [no_I ,ne_I ,no_group_I ,ne_group_I ,CLT ,CPT] = Function20_Crystalinfo(Lambda_I ,Crystal ,CL

,CP ,T);

37 N_P = Power/hbar/omega_P; % number of pump photons

38 k_P =2*pi*ne_P/Lambda_P; % Wave Number (in rad/m)

39 k_S =2*pi*ne_S/Lambda_S; % Wave Number (in rad/m)

40 k_I =2*pi*ne_I/Lambda_I; % Wave Number (in rad/m)

41 Xsi_P = CLT/k_P/W_P ^2;

42 Xsi_S = CLT/k_S/W_S ^2;

43 Xsi_I = CLT/k_I/W_I ^2;

44 deltak=k_P -k_S -k_I; % without poling period

45 % for pair rate -------------------------------------------------------------------

46 C_1 = 1+( k_S*Xsi_S)/(k_P*Xsi_P)+(k_I*Xsi_I)/(k_P*Xsi_P);

47 C_2 = (1-deltak/k_P)*(1+(( k_S+deltak)*Xsi_P)/((k_P -deltak)*Xsi_S)+((k_I+deltak)*Xsi_P)

/((k_P -deltak)*Xsi_I));
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48 Xsi = (C_2/C_1)*(Xsi_S*Xsi_I/Xsi_P);

49 C_3 = (Xsi_S*Xsi_I/Xsi^2)*deltak/k_P/C_1;

50 F = @(l) Xsi./(1-1i*Xsi*l-C_3*Xsi^2*l.^2) ./(1+1i*Xsi*l-C_3*Xsi ^2*l.^2); % Overlap

function

51 IntResult=abs(integral(F,-1,1));

52 % for single rate -------------------------------------------------------------------

53 C_S4 = 2*sqrt ((1+ k_S*Xsi_S/k_P/Xsi_P)*k_I/k_P);

54 C_S5 = 2*(1- deltak/k_P)*sqrt ((1+( k_S+deltak)/(k_P -deltak)*Xsi_P/Xsi_S)*(k_I+deltak)/(

k_P -deltak));

55 C_I4 = 2*sqrt ((1+ k_I*Xsi_I/k_P/Xsi_P)*k_S/k_P);

56 C_I5 = 2*(1- deltak/k_P)*sqrt ((1+( k_I+deltak)/(k_P -deltak)*Xsi_P/Xsi_I)*(k_S+deltak)/(

k_P -deltak));

57 % assumes the photons are collected through singlemode fiber (R_S=R_I=R_C). Otherwise ,

C_S4/C_S5/C_I4/C_I5 should be used for the single counts.

58 EstProbFactor = 64*pi^2* Lambda_P*Power/epsilon0/ne_P ^2/abs(ne_group_I -ne_group_S)*(

d_eff/Lambda_S/Lambda_I)^2; % This is a factor that applies to all R_c R_S R_I.

59 R_S = EstProbFactor .* IntResult;

60 R_I = EstProbFactor .* IntResult;

61 R_C = EstProbFactor .* IntResult;

62 fprintf(’\n Paul Single (Signal) = %.2f KHz\n’,R_S /1000);

63 fprintf(’ Paul Single (Idler) = %.2f KHz\n’,R_I /1000);

64 fprintf(’ Paul Coincidence = %.2f KHz\n’,R_C /1000);

65 end

Listing L.11: Function31 FriedParam
1 % 2023/03/30 written by Sungeun (Paul) Oh -University of Waterloo , CANADA

2 % This function calculates the Fried parameter.

3 %-------------------------------[input]-------------------------------

4 % Lambda : signal wavelength (in meters)

5 % elev : elevation angle of the satellite (in radians)

6 % alt : altitude of the satellite (in meters)

7 %-------------------------------[output]-------------------------------

8 % r_0 : Fried parameter (in meters)

9 %------------------------------[function]------------------------------

10 function [r_0] = Function31_FriedParam(Lambda ,elev ,alt)

11 altkm = alt /1000; % in kilometers

12 C2 = @(z) ((altkm -z)./altkm).^(5/3) *1.7e-14.* exp(-z./100) +0.00359*(z*1e-5) .^10.* exp(-z

./1000) +2.7e-16.* exp(-z./1500);

13 C2intResult = integral(C2 ,0,altkm);

14 r_0 = (C2intResult *(2*pi./ Lambda).^2./ sin(elev)*0.424) .^( -3/5);

15 end
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Appendix M

Data - SGP4 (ISS-2019-Oct-28)
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y m d

19 10 28

h m s Azi Alt Azi Alt h m s Azi Alt Azi Alt

22 58 30 263.853 9.52515 263.85 9.54358 22 59 58 277.993 22.4835 276.828 21.1522

22 58 32 266.891 6.78955 264.034 9.74294 23 0 0 278.476 22.8351 277.306 21.505

22 58 34 267.083 6.99829 264.222 9.94449 23 0 2 278.948 23.1812 277.797 21.8627

22 58 36 267.27 7.19604 264.413 10.1483 23 0 4 279.448 23.5437 278.302 22.2253

22 58 38 267.468 7.40479 264.607 10.3544 23 0 6 279.965 23.9117 278.821 22.5929

22 58 40 267.665 7.61902 264.805 10.5628 23 0 8 280.393 24.2084 279.354 22.9654

22 58 42 267.863 7.82227 265.007 10.7736 23 0 10 280.953 24.5929 279.902 23.3428

22 58 44 268.033 8.00354 265.212 10.9868 23 0 12 281.508 24.9719 280.465 23.7252

22 58 46 268.193 8.15735 265.421 11.2025 23 0 14 282.101 25.3674 281.045 24.1124

22 58 48 268.407 8.38257 265.634 11.4208 23 0 16 282.673 25.7465 281.641 24.5046

22 58 50 268.621 8.60229 265.851 11.6416 23 0 18 283.288 26.1475 282.254 24.9015

22 58 52 268.846 8.82751 266.072 11.8652 23 0 20 283.931 26.554 282.885 25.3032

22 58 54 269.072 9.05273 266.298 12.0914 23 0 22 284.573 26.9604 283.535 25.7095

22 58 56 269.302 9.28345 266.528 12.3204 23 0 24 285.244 27.3724 284.204 26.1203

22 58 58 269.533 9.51416 266.763 12.5522 23 0 26 285.914 27.7789 284.893 26.5355

22 59 0 269.764 9.73938 267.002 12.7869 23 0 28 286.617 28.1964 285.602 26.955

22 59 2 270.011 9.98108 267.246 13.0245 23 0 30 287.358 28.6304 286.333 27.3785

22 59 4 270.264 10.2283 267.495 13.2652 23 0 32 288.111 29.0588 287.086 27.8058

22 59 6 270.522 10.4755 267.749 13.5089 23 0 34 288.853 29.4763 287.861 28.2367

22 59 8 270.775 10.7117 268.009 13.7558 23 0 36 289.666 29.9213 288.661 28.6708

22 59 10 271.038 10.9644 268.274 14.0059 23 0 38 290.319 30.2618 289.484 29.108

22 59 12 271.313 11.2225 268.545 14.2593 23 0 40 291.165 30.7013 290.333 29.5477

22 59 14 271.533 11.4203 268.821 14.516 23 0 42 292.006 31.1298 291.208 29.9897

22 59 16 271.719 11.5906 269.103 14.7761 23 0 44 292.939 31.5912 292.11 30.4334

22 59 18 272.01 11.8542 269.392 15.0397 23 0 46 293.829 32.0251 293.039 30.8783

22 59 20 272.307 12.1289 269.687 15.3068 23 0 48 294.791 32.4701 293.997 31.324

22 59 22 272.609 12.3981 269.988 15.5776 23 0 50 295.774 32.9205 294.985 31.7698

22 59 24 272.917 12.6727 270.296 15.8521 23 0 52 296.812 33.3765 296.002 32.215

22 59 26 273.23 12.9474 270.612 16.1303 23 0 54 297.834 33.8159 297.05 32.659

22 59 28 273.483 12.7167 270.934 16.4123 23 0 56 298.932 34.2664 298.129 33.1009

22 59 30 273.735 12.9309 271.264 16.6983 23 0 58 300.02 34.7003 299.241 33.5401

22 59 32 274.005 13.5736 271.602 16.9883 23 1 0 301.163 35.1398 300.386 33.9755

22 59 34 274.087 19.1656 271.947 17.2823 23 1 2 302.333 35.5682 301.563 34.4062

22 59 36 274.103 18.9844 272.301 17.5804 23 1 4 303.569 36.0077 302.775 34.8312

22 59 38 273.829 19.2041 272.664 17.8828 23 1 6 304.761 36.4142 304.021 35.2495

22 59 40 274.213 19.5227 273.035 18.1894 23 1 8 305.799 36.7438 305.301 35.6599

22 59 42 274.592 19.8303 273.415 18.5004 23 1 10 307.117 37.1558 306.616 36.0613

22 59 44 274.966 20.1324 273.805 18.8157 23 1 12 308.491 37.5568 307.966 36.4524

22 59 46 275.372 20.4565 274.205 19.1356 23 1 14 309.869 37.9413 309.35 36.832

22 59 48 275.79 20.7916 274.614 19.46 23 1 16 311.292 38.3148 310.768 37.1988

22 59 50 276.191 21.1047 275.035 19.789 23 1 18 312.742 38.6719 312.221 37.5514

22 59 52 276.625 21.4398 275.466 20.1227 23 1 20 314.231 39.0125 313.706 37.8886

22 59 54 277.07 21.7859 275.908 20.461 23 1 22 315.753 39.342 315.223 38.209

22 59 56 277.52 22.1265 276.362 20.8042 23 1 24 317.269 39.6442 316.772 38.5113

SGP4 Actual
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h m s Azi Alt Azi Alt h m s Azi Alt Azi Alt

23 1 26 318.856 39.9353 318.351 38.7941 23 2 58 23.3679 30.2234 23.9069 28.7565

23 1 28 320.493 40.2045 319.957 39.0561 23 3 0 24.1864 29.7839 24.7104 28.3222

23 1 30 322.119 40.4517 321.591 39.2963 23 3 2 24.9719 29.35 25.4901 27.891

23 1 32 323.718 40.6714 323.248 39.5132 23 3 4 25.7465 28.916 26.2468 27.4634

23 1 34 325.432 40.8746 324.928 39.706 23 3 6 26.4276 28.5315 26.9814 27.0396

23 1 36 327.134 41.0449 326.628 39.8736 23 3 8 26.9659 28.2129 27.6945 26.6198

23 1 38 328.326 41.1438 328.345 40.0151 23 3 10 27.6361 27.8119 28.3869 26.2042

23 1 40 330.046 41.2646 330.076 40.1298 23 3 12 28.3228 27.3944 29.0593 25.7929

23 1 42 331.809 41.358 331.819 40.217 23 3 14 29.0094 26.9714 29.7124 25.3861

23 1 44 333.545 41.424 333.57 40.2763 23 3 16 29.6466 26.5704 30.3469 24.984

23 1 46 335.319 41.4624 335.326 40.3073 23 3 18 30.2454 26.1804 30.9635 24.5866

23 1 48 337.11 41.4734 337.084 40.3098 23 3 20 30.8661 25.7794 31.5626 24.1939

23 1 50 338.868 41.4569 338.841 40.2839 23 3 22 31.4594 25.3839 32.1451 23.8061

23 1 52 340.637 41.4075 340.593 40.2297 23 3 24 32.0361 24.9994 32.7115 23.4232

23 1 54 342.339 41.3361 342.337 40.1474 23 3 26 32.5854 24.6259 33.2622 23.0452

23 1 56 344.064 41.2317 344.07 40.0376 23 3 28 33.1293 24.2413 33.798 22.6722

23 1 58 345.811 41.0999 345.79 39.9009 23 3 30 33.6676 23.8623 34.3193 22.304

23 2 0 347.536 40.9406 347.493 39.7379 23 3 32 34.173 23.5052 34.8266 21.9408

23 2 2 349.222 40.7593 349.176 39.5496 23 3 34 34.6674 23.1482 35.3205 21.5826

23 2 4 350.903 40.5505 350.838 39.3369 23 3 36 35.1013 22.8351 35.8013 21.2292

23 2 6 352.529 40.3308 352.475 39.1009 23 3 38 35.4474 22.5769 36.2696 20.8806

23 2 8 353.606 40.155 354.086 38.8428 23 3 40 35.9143 22.2253 36.7258 20.5369

23 2 10 355.21 39.8749 355.669 38.5637 23 3 42 36.3647 21.8848 37.1703 20.198

23 2 12 356.836 39.5673 357.223 38.265 23 3 44 36.7932 21.5497 37.6035 19.8637

23 2 14 358.369 39.2596 358.746 37.9479 23 3 46 37.2217 21.2201 38.0259 19.5342

23 2 16 359.841 38.9355 0.23648 37.6138 23 3 48 37.6392 20.8905 38.4377 19.2092

23 2 18 1.30737 38.5895 1.69419 37.264 23 3 50 38.0457 20.5719 38.8393 18.8888

23 2 20 2.75208 38.2269 3.11825 36.8998 23 3 52 38.4467 20.2478 39.2311 18.5729

23 2 22 4.13086 37.8589 4.50813 36.5227 23 3 54 38.8257 19.9402 39.6135 18.2614

23 2 24 5.49866 37.4689 5.86352 36.1338 23 3 56 39.2047 19.6271 39.9866 17.9543

23 2 26 6.828 37.0734 7.18426 35.7344 23 3 58 39.5728 19.3195 40.3509 17.6514

23 2 28 8.13538 36.6614 8.47036 35.3258 23 4 0 39.9353 19.0173 40.7067 17.3528

23 2 30 9.40979 36.2439 9.72194 34.9092 23 4 2 40.2759 18.7317 41.0541 17.0583

23 2 32 10.6348 35.8209 10.9393 34.4856 23 4 4 40.6274 18.4296 41.3936 16.7678

23 2 34 11.8268 35.3925 12.1227 34.0561 23 4 6 40.9076 18.1879 41.7252 16.4814

23 2 36 12.9474 34.9805 13.2728 33.6219 23 4 8 41.1548 17.9791 42.0494 16.1988

23 2 38 13.7769 34.6509 14.3899 33.1837 23 4 10 41.4734 17.699 42.3663 15.9201

23 2 40 14.8315 34.2279 15.4748 32.7425 23 4 12 41.792 17.4133 42.6762 15.6452

23 2 42 15.8917 33.783 16.528 32.2992 23 4 14 42.0886 17.1552 42.9793 15.374

23 2 44 16.9299 33.338 17.5504 31.8545 23 4 16 42.3853 16.8805 43.2758 15.1064

23 2 46 17.9736 32.8766 18.5426 31.4091 23 4 18 42.6874 16.6113 43.5659 14.8424

23 2 48 18.924 32.4371 19.5054 30.9638 23 4 20 42.973 16.3477 43.8498 14.5819

23 2 50 19.8853 31.9812 20.4397 30.519 23 4 22 43.2477 16.095 44.1277 14.3248

23 2 52 20.7916 31.5417 21.3461 30.0754 23 4 24 43.5223 15.8368 44.3998 14.071

23 2 54 21.676 31.1023 22.2256 29.6335 23 4 26 43.797 15.5841 44.6663 13.8205

23 2 56 22.5165 30.6738 23.0789 29.1937

206



Appendix N

Data - Pair Rate (dark subtracted)
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Signal 

efficiency

Idler 

efficiency

P (cm) S (cm) I (cm) Hz 2SD Hz 2SD Hz 2SD fraction fraction

50 15 10 217391 1119 194462 1077 63094 696 0.4745 0.3937

50 15 12.5 214101 1347 183172 972 63771 1109 0.4745 0.3937

50 15 15 224759 4471 187310 3705 65441 1558 0.4745 0.3937

50 15 17.5 212115 2650 169043 1601 55441 1258 0.4745 0.3937

50 15 20 213942 1302 163589 906 50927 763 0.4745 0.3937

50 15 25 212299 3470 147029 2534 38458 781 0.4745 0.3937

50 17.5 10 198932 1694 191582 1123 57294 903 0.4745 0.3937

50 17.5 12.5 200367 1360 185481 1204 64384 809 0.4745 0.3937

50 17.5 15 204482 1970 187653 1723 65620 1163 0.4745 0.3937

50 17.5 17.5 198309 1660 170503 1480 59998 738 0.4745 0.3937

50 17.5 20 204439 2670 171879 1894 55752 967 0.4745 0.3937

50 17.5 25 198370 1165 149101 936 45095 584 0.4745 0.3937

50 20 10 201353 939 194672 754 59631 714 0.4745 0.3937

50 20 12.5 205413 1207 190905 920 72803 1123 0.4745 0.3937

50 20 15 204840 964 186091 1024 72314 1084 0.4745 0.3937

50 20 17.5 204806 992 179920 892 67589 809 0.4745 0.3937

50 20 20 208857 4229 175550 3593 63649 1460 0.4745 0.3937

50 20 25 203321 1218 153455 700 51501 6781 0.4745 0.3937

50 25 10 199966 4625 199469 4734 53115 1518 0.4745 0.3937

50 25 12.5 201439 1016 190082 1037 63325 598 0.4745 0.3937

50 25 15 204795 1799 188402 1671 66910 1114 0.4745 0.3937

50 25 17.5 201177 1580 178032 1361 71847 1027 0.4745 0.3937

50 25 20 201377 3540 173365 3546 69507 1529 0.4745 0.3937

50 25 25 195680 1773 148082 1352 58735 915 0.4745 0.3937

40 15 10 327065 2747 280830 2221 92479 1075 0.4745 0.3937

30 15 10 492090 2807 386148 2195 117777 1337 0.4745 0.3937

20 15 10 742722 36949 599213 31279 136514 6304 0.4745 0.3937

2021-05-21

Lens Analysis

Sungeun (Paul) Oh

Signal Idler Coincidence
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Pair rate
Signal 

Herald

Idler 

Herald

Signal 

Herald

Idler 

Herald
Pair rate

Signal 

Herald

Idler 

Herald

Pair 

Herald

Hz % % % % Hz % % %

670020.7 32.4% 29.0% 68.38% 73.72% 778323.27 86.19% 84.95% 85.57%

614970.9 34.8% 29.8% 73.37% 75.66% 740389.43 90.61% 86.41% 88.48%

643321.6 34.9% 29.1% 73.63% 73.95% 754118.77 88.96% 80.96% 84.87%

646751.6 32.8% 26.1% 69.12% 66.39% 794060.48 84.48% 72.70% 78.37%

687229.9 31.1% 23.8% 65.61% 60.46% 847720.37 79.14% 63.96% 71.14%

811641.5 26.2% 18.1% 55.12% 46.01% 970807.03 69.10% 48.61% 57.96%

665196.9 29.9% 28.8% 63.03% 73.15% 767242.7 84.67% 86.18% 85.42%

577228.4 34.7% 32.1% 73.15% 81.62% 698571.9 92.99% 91.58% 92.28%

584755.6 35.0% 32.1% 73.70% 81.51% 685544.37 94.76% 89.06% 91.87%

563556.8 35.2% 30.3% 74.16% 76.85% 700187.71 92.78% 82.45% 87.46%

630269.2 32.4% 27.3% 68.36% 69.27% 729411.4 89.06% 74.33% 81.36%

655885.7 30.2% 22.7% 63.74% 57.74% 806424.65 80.56% 58.52% 68.66%

657339.2 30.6% 29.6% 64.56% 75.22% 782184.23 80.05% 84.53% 82.26%

538636.7 38.1% 35.4% 80.37% 90.02% 685298.93 91.36% 93.35% 92.35%

527130.0 38.9% 35.3% 81.90% 89.67% 650221.38 96.29% 93.90% 95.09%

545187.8 37.6% 33.0% 79.17% 83.82% 645559 96.99% 89.43% 93.13%

576047.5 36.3% 30.5% 76.41% 77.41% 657036.71 95.29% 82.52% 88.68%

605825.6 33.6% 25.3% 70.73% 64.34% 701945.54 89.20% 67.23% 77.44%

750955.8 26.6% 26.6% 56.12% 67.47% 853815.15 67.36% 77.44% 72.23%

604657.4 33.3% 31.4% 70.21% 79.85% 703394.23 81.77% 90.95% 86.24%

576652.0 35.5% 32.7% 74.85% 82.99% 631042.15 91.14% 96.75% 93.91%

498503.0 40.4% 35.7% 85.05% 90.71% 596778.35 96.37% 96.73% 96.55%

502276.4 40.1% 34.5% 84.49% 87.67% 582928.95 98.66% 93.01% 95.79%

493346.1 39.7% 30.0% 83.59% 76.24% 584958.24 98.32% 80.67% 89.06%

993194.8 32.9% 28.3% 69.40% 71.82% 1142740.5 87.04% 85.26% 86.15%

1613384.4 30.5% 23.9% 64.28% 60.79% 1793597.9 88.16% 85.49% 86.81%

3260095.5 22.8% 18.4% 48.01% 46.69% 3074933.1 88.00% 84.09% 86.03%

Theory

At the crystalAt the detector

Experiment
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Appendix O

Data - Bell measurement (dark
subtracted)
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Signal SD Idler SD Coin SD Signal SD Idler SD Coin SD

452550 2822 206845 905 33029 414 457213 3074 213453 1303 243 17

457159 2891 206021 788 30946 185 460697 3588 215860 978 2826 63

459385 2964 204856 1023 24730 267 462773 4069 217568 883 9192 159

465237 3438 204829 1080 16338 459 467348 2340 216147 1230 17407 190

466308 3395 205894 596 8234 120 468545 4289 216155 709 25275 367

469506 3585 204699 1161 2197 104 468358 1397 216913 863 31332 298

467383 3838 206115 1111 193 20 472866 4981 216842 856 33752 177

464324 4006 205280 951 2560 56 466677 5225 216557 1123 31133 343

463057 4168 205852 904 8786 180 466942 3650 217778 667 24403 176

460027 4398 205797 571 17494 273 463050 4644 215662 1539 15776 247

450792 4645 203648 1294 25558 463 460640 1742 217047 460 7786 150

452307 2909 203175 1037 31779 584 461302 4007 216686 1014 2024 44

460478 5258 203810 1014 33335 561 454421 4398 217240 335 236 32

Signal SD Idler SD Coin SD Signal SD Idler SD Coin SD

449112 3124 207964 1820 16465 73 457748 3478 212461 354 17032 198

451545 3193 210281 636 24491 233 454563 2211 209970 1018 8750 54

456161 3747 211013 1088 30548 307 455246 3032 208122 1525 2854 160

461502 2521 208318 754 32338 335 461133 4002 210842 666 754 60

463825 3843 211854 677 30729 71 462658 3065 210016 1303 2672 52

466941 1991 211672 1555 24717 415 467603 2786 210123 1395 8278 150

460333 3088 206843 994 16651 374 465119 3178 210171 1027 16312 232

465771 3560 212789 1452 8341 153 464592 4572 209886 1474 24815 281

466288 3070 214247 594 2830 110 462260 4401 211268 329 30441 318

457881 2624 213477 924 738 92 456791 3182 210985 1003 32339 259

456253 3883 212759 1139 2864 117 455823 2332 210689 1230 30236 406

456024 3025 213249 705 9136 120 455567 4273 210043 772 24433 184

451335 2014 207264 1270 17025 135 453618 4292 209265 761 16686 213

V basis H basis

A basis D basis
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Appendix P

Design - Crystal Oven (in
millimeters)
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Aluminum Bottom Slider

221



Back

Bottom

222



Front

Right

Aluminum Wall
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Front

Right

PEEK spacer
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Top

PEEK spacer2
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Left

Front

Oven Mount (Ver.1)
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Top

Right

3-D printing
Oven Mount (Ver.2)
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Appendix Q

Design - Crystal Holder (in
millimeters)
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