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Abstract

The advancement of quantum theory is rooted in challenging established assumptions.
This trend persists as quantum theory extends into other fields, including thermodynamics.
One such assumption in thermodynamics is that conserved quantities, known as charges,
commute. Lifting this assumption has led to a new subfield, noncommuting charges [1],
at the intersection of quantum information and quantum thermodynamics. The work
presented in this thesis identifies various effects of noncommuting charges and extends the
topic to many-body physics and experiments.

Initially, the field’s findings were conveyed in abstract information-theoretic terms. To
transition these findings to experimental practice and tie them to many-body physics,
constructing relevant Hamiltonians is essential. We introduce a method for constructing
Hamiltonians that globally conserve noncommuting quantities while facilitating their local
transport [2].

Having demonstrated the testability of noncommuting-charge physics, we aim to de-
lineate its effects. To do so, we construct analogous models that differ in whether their
charges commute [3]. We find that noncommuting models exhibit higher entanglement
entropies. Since entanglement accompanies thermalization, our result challenges previous
assertions that charges’ noncommutation hinders thermalization.

Motivated by understanding noncommuting charges’ effects on entanglement, we in-
troduce them into monitored quantum circuits. Monitored quantum circuits typically
transition from a highly entangled volume-law phase to a less entangled area-law phase as
one increases the rate of measurements. This holds for monitored quantum circuits with
no charges and commuting ones. We find that by introducing noncommuting charges into
monitored quantum circuits, the area-law phase becomes replaced with a critical phase [4].
Since critical phases are characterized by long-range entanglement, this result reinforces
entanglement enhancement by noncommuting charges.

Finally, we revisit the puzzle of whether noncommuting charges promote or hinder
thermalization. Most quantum many-body systems thermalize; some don’t. In those
that don’t, what effect do noncommuting charges have? One type of system that does
not thermalize is a system whose Hamiltonian has so-called dynamical symmetries (or
spectrum-generating algebras). We find that noncommuting charges promote thermaliza-
tion by reducing the dynamical symmetries in a system [5].
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Chapter 1

Introduction

Thermodynamics problems have surprisingly many similarities with fairy tales. For
example, most of them begin with a familiar opening. In thermodynamics, the phrase
“Consider an isolated box of particles” serves a similar purpose to “Once upon a time” in
fairy tales—both serve as a gateway to their respective worlds. Additionally, both have
been around for a long time. Thermodynamics emerged in the Victorian era to help us
understand steam engines, while Beauty and the Beast and Rumpelstiltskin, for example,
originated about 4000 years ago. Moreover, each conclude with important lessons. In
thermodynamics, we learn hard truths such as the futility of defying the second law,
while fairy tales often impart morals like the risks of accepting apples from strangers.
The parallels go on; both feature archetypal characters—such as wise old men and fairy
godmothers versus ideal gases and perfect insulators—and simplified models of complex
ideas, like portraying clear moral dichotomies in narratives versus assuming non-interacting
particles in scientific models.

Of all the ways thermodynamic problems are like fairytales, one is most relevant to
this thesis: both have experienced modern twists. In thermodynamics, the introduction of
noncommuting conserved quantities, or charges, has been one such twist.

1.1 Motivation

Across physics, systems exchange conserved quantities. Such exchanges occur, for ex-
ample, in electrochemical batteries, in a cooling cup of coffee, and when spins flip to align
with a magnetic field. We call globally conserved quantities charges. Many of us initially
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Figure 1.1: Common thermodynamic paradigm: A small system and large environ-
ment locally exchange quantities that are conserved globally. Common quantities include
energy, as well as particles of different species.

encounter the concept of charges through the following setup from undergraduate statistical
physics. Consider a global system partitioned into a small system S and a large environ-
ment E . (Fig. 1.1). S and E exchange quantities which are globally conserved. Suppose

that the systems are quantum. S may thermalize to the canonical state ρcan ∝ e−βH(S)

if the system and environment exchange only energy, where the energy can flow in the
form of heat. The environment’s inverse temperature is β, and H(S) denotes the system-
of-interest Hamiltonian. If S and E exchange heat and particles, S may thermalize to
the grand canonical state ρGC ∝ e−β(H(S)−µN (S)). The chemical potential is µ, and N (S)

denotes the system-of-interest particle-number operator. This pattern extends to many
exchanged quantities (electric charge, magnetization, etc.) and other thermal states. Since
the exchanged quantities are conserved globally (across SE), they are charges. Hermitian

operators Qa represent the conserved quantities; S has an operator Q
(S)
a , E has Q

(E)
a , and

the global system has Qtot
a := Q

(S)
a +Q

(E)
a ≡ Q

(S)
a ⊗1(E)+1(S)⊗Q(E)

a , where 1 is the identity
operator. The index a = 0, 1, . . . , c.

A common implicit assumption is that charges commute with each other: [Qa, Qa′ ] = 0
∀a, a′. This assumption is rarely mentioned but underlies derivations of the form of ther-
mal states [12, 13], linear-response coefficients [14], and more. However, observables’ abil-
ity to fail to commute enables quintessentially quantum phenomena: uncertainty rela-
tions [15, 16], measurement disturbance [17, 18], foundational quantum tests [19, 20, 21],
etc. Quantum physics, thus, compels us to lift the assumption that charges commute.
Doing so has led to the discovery of new physics [1].
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1.2 Familiar example

To clarify and illustrate the concept of noncommuting charges, we’ll begin with a
straightforward example. First, let’s introduce some essential notation that will be consis-
tently used throughout this thesis. We call a closed quantum many-body system (e.g., the
composite SE in Fig. 1.1) a global system. N denotes the number of degrees of freedom
in a global system. Often, SE will consist of N copies of S. For example, N denotes
the number of qubits in Fig. 1.2. Large but finite N—the mesoscale—interests us: as
N → ∞, SE grows classical, according to the correspondence principle [13]. Noncommu-
tation enables nonclassical phenomena1, so we should expect charges’ noncommutation to
influence thermodynamic phenomena at finite N . Continuing with notation, we denote
by σa the Pauli-a operator, for a = x, y, z; by σ

(j)
a , a spin component of qubit j; and by

σtot
a :=

∑
j σ

(j)
a , a total spin component. Furthermore, we ascribe to the Pauli operators σa

eigenstates |a±⟩ associated with the eigenvalues ±1. Subscripts index charges (as in σ
(j)
a ),

whereas superscripts index sites or other subsystems (e.g., S and E). In this and the next
chapter, we often denote commuting charges, or other observables that might commute,
with a tilde (Q̃′

as).Tensored-on 1’s are implicit where necessary to make operators act on
the appropriate Hilbert spaces.

We can now present a simple example of a system with noncommuting charges, the
well-known Heisenberg model. Consider a chain of trapped ions. A few (e.g., two) qubits
form S, and the other qubits form E . The chain constitutes a closed quantum many-body
system of the sort whose internal thermalization has recently been studied theoretically and
experimentally (e.g., [22, 23, 24, 25]). According to the main result of Chapter 3, one can

construct a Hamiltonian H that overtly transports quanta of each σa locally,
[
H, σ

(j)
α

]
̸= 0

∀α, while conserving the three σtot
a ’s globally, [H, σtot

α ] = 0 ∀α [3]. Denote the σz ladder

operators by σ±z := 1
2
(σx ± iσy). The operator σ

(j)
+zσ

(j+1)
−z + σ

(j)
−zσ

(j+1)
+z transports one σz

quantum from qubit j + 1 to qubit j and vice versa, in superposition. Define ladder
operators and couplings analogously for σx and σy. The Hamiltonian

Htot
Heis =

∑
⟨j,k⟩

∑
α=x,y,z

(
σ
(j)
+ασ

(k)
−α + σ

(j)
−ασ

(k)
+α

)
, (1.1)

=
∑
⟨j,k⟩

σ⃗(j) · σ⃗(k), (1.2)

1In classical mechanics, the components of the angular momentum vector do not commute under the
Poisson bracket. Thus, noncommutation is not an exclusively quantum phenomenon. How nonclassical is
noncommuting-charge physics is an open question we touch on in Chapter 7.
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Figure 1.2: Example thermodynamic system that conserves noncommuting
charges: Two qubits form the system S of interest, and the rest form the environment
E . A qubit’s three spin components, σa=x,y,z, form the local noncommuting charges. The
dynamics locally transport and globally conserve the charges.

where ⟨j, k⟩ denotes nearest neighbour coupling, transports the σa’s locally, while conserv-
ing them globally. Htot

Heis is often expressed as in (1.2) and rarely expressed as in (1.1)—as
locally transporting and globally conserving three noncommuting charges. We can eas-
ily extend Htot

Heis to nonintegrable models (which promote thermalization) by, for example,
adding next-nearest neighbour coupling. This is one example of a system with noncom-
muting charges. Using the procedure in reference [3], we can readily find Hamiltonians that
transport noncommuting charges whose subsystems extend beyond qubits and to charges
beyond spin components.

1.3 Outline

Noncommuting charges have emerged as a distinct subfield within quantum thermody-
namics, presenting numerous foundational questions. This thesis, the first on the subject,
tackles two of these: identifying the effects of noncommuting charges and integrating these
findings into broader scientific contexts, such as many-body physics and experimental re-
search.

Chapters 2 to 6 of this thesis correspond to references [1, 2, 3, 4, 5], respectively.
References [1, 2, 3, 4, 5] resulted from collaboration with some combination of the following
researchers: U. Agrawal, W. F. Braasch, S. Gopalakrishnan, D. A. Huse, A. Kalev, A.
Lasek, A. Potter, T. Upadhyaya, R. Vasseur, and N. Yunger Halpern. Please refer to
the Statement of Contributions for details of my specific contributions to each project.
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Reference [5] I authored independently. I didn’t include the work published during my
PhD unrelated to noncommuting charges [6, 7, 8, 9].

The chapters do not precisely replicate the respective papers; while they generally
correspond, content from some papers has been shifted to chapters of others, and many
sections have been rewritten. These edits eliminate redundancy and align with my evolved
writing style on the topic.

Chapter 2 first reviews the history of noncommuting charge physics and then introduces
new results that are relevant to this thesis. Chapter 3 introduces a method for constructing
Hamiltonians that globally conserve noncommuting quantities while facilitating their local
transport [2]. This work was done to help transition the abstract information-theoretic
findings of noncommuting charges physics to experimental practice, numerical studies, and
many-body physics.

Chapters 4 to 6 focus on uncovering new phenomena arising from the noncommutation
of charges. In Chapter 4, we present analogous models that differ in whether their charges
commute [3]. We find that the noncommuting charge model exhibits higher average en-
tanglement entropy. This increase is quantified with a Page curve: consider partitioning
the system into two subsystems, calculating a subsystem’s entanglement entropy, and av-
eraging the entropy over states drawn randomly from the full system’s Hilbert space. The
average, plotted against the subsystem’s size, forms a Page curve. Entanglement typically
accompanies thermalization in quantum systems, yet noncommuting charges were initially
believed to impede this process. Consequently, Reference [3] opened up a now widely
explored question: do noncommuting charges facilitate or obstruct thermalization?

Chapter 5 integrates noncommuting charges into monitored quantum circuits—unitary
circuits interspersed with mid-circuit projective measurements—to investigate their impact
on entanglement dynamics. Typically, monitored quantum circuits exhibit a transition
from a highly entangled volume-law phase to a less entangled area-law phase. However, we
find that noncommuting charges result in a critical phase in place of the area-law phase [4].
Characterized by long-range entanglement, among other features, this critical phase un-
derscores the role of noncommuting charges in enhancing entanglement. Furthermore, we
find a new type of phase transition within these systems, a “spin-sharpening” transition.

Chapter 6 concludes our exploration of how noncommuting charges affect thermal-
ization. Dynamical symmetries are sufficient conditions for a system not to thermalize,
according to the Eigenstate Thermalization Hypothesis (ETH) [26, 27]. In this chapter,
we establish a link between noncommuting charges and dynamical symmetries, by essen-
tially formulating a “Noether-like” theorem for dynamical symmetries. Using this theorem,
we find that noncommuting charges facilitate thermalization by diminishing the number
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of local observables that do not thermalize according to the ETH [5]. This further bolsters
the argument that noncommuting charges are conducive to thermalization.

The thesis ends each chapter with a summary, highlighting the main findings and
suggesting directions for future research. Chapter 7 presents a complete summary of the
entire thesis, placing its findings within the broader context of the field’s most pressing
research questions. We have also included an Index that tracks where terminology is first
defined.
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Chapter 2

Background on noncommuting
charges

Excerpts from this chapter are based on reference [1] and overlap with its text.

2.1 Overview

This chapter reviews the major developments in the physics of noncommuting charges,
excluding those results presented in the later chapters of this thesis. We begin by dis-
cussing the early work on noncommuting charges in Section 2.2. This research underscores
the importance of seriously considering the noncommutation of charges. The Eigenstate
Thermalization Hypothesis has played a significant role in the study of noncommuting
charges, and it is introduced properly in Section 2.3. We then explore some of the new
physics that arises from the noncommutation of charges in Section 2.4.

2.2 Early work

In the studies discussed in this section, a recurring theme becomes apparent: the break-
down of previously understood derivations and the efforts to formulate a new framework
that incorporates noncommuting charges. These findings underscore, but do not entirely
encompass, the many outcomes predicated on the commutation of charges. Challenging
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this assumption can be likened to removing a block from a Jenga tower1, causing a cascade
of subsequent results. Critics may contend, “If you’re merely rederiving known results,
isn’t this field somewhat redundant?” However, the actual situation is more interesting.
As researchers have worked to rebuild this theoretical Jenga tower, they have discovered
ways in which noncommuting charges cause new physics. However, the discussion of new
phenomena is saved for Section 2.4.

2.2.1 First appearance in the 1950s

There is a blink-and-you’ll-miss-it reference to noncommuting charges in E.T. Jaynes’s
1957 formalization of the maximum entropy principle [28]. The principle of maximum
entropy pinpoints the state ρ =

∑
k pk |k⟩⟨k| most reasonably attributable to a system

about which one knows little. Imagine knowing about ρ only the expectation values ⟨Q̃a⟩
of observables Q̃a. The state obeys the constraints Tr

(
ρQ̃a

)
=: qavga ∈ R2, plus the nor-

malization condition Tr(ρ) = 1. According to the maximum-entropy principle, whichever
constraint-obeying state maximizes the von Neumann entropy SvN(ρ) := −Tr(ρ log(ρ)) is
most reasonable. (This subsection’s logarithms are base-e.) The entropy maximization
encapsulates our ignorance of everything except the constraints. To maximize the entropy
subject to these constraints, we introduce Lagrange multiplies λ, µ̃a ∈ R. The function
maximized, i.e. the Lagrange function, is

L(ρ, λ, {µ̃a}) := SvN(ρ) − λ [Tr(ρ) − 1] −
∑
a

µ̃a

[
Tr
(
ρQ̃a

)
− qavga

]
. (2.1)

Maximizing L(ρ, λ, {µ̃a}) with respect to pk yields3

ρ =
1

Z
exp

(
−
∑
a

µ̃aQ̃a

)
, (2.2)

where the µ̃a’s denote generalized chemical potentials. Maximizing with respect to λ

fixes the partition function: Z = Tr
(
e−

∑
a µ̃aQ̃a

)
. Maximizing with respect to µ̃a yields

1Jenga is a game with a tower of wooden blocks. Players take turns removing a block and placing it
on top, trying to avoid collapsing the tower.

2The additional notation of qavga is introduced for clarity in the calculation of Eq. (2.1).
3You may be asking where the Hamiltonian and β are in Eq. (2.2). The energy is technically a charge

for any closed system since H always commutes with itself. Since H is a special charge, most literature
doesn’t refer to it as a charge, but some do. When they do, they often label it using the subscript 0. In
Eq. (2.2), H = Q̃0 and β = µ̃0.

8



qavga = − ∂
∂µ̃a

log(Z). Jaynes noted that this procedure works even if the Q̃a’s do not

commute. Equation (2.2) is called the generalized Gibbs ensemble (GGE) regardless of
whether the charges commute [29, 30, 31, 32]. However, if the charges don’t commute, we
refer to the generalized Gibbs ensemble as the non-Abelian thermal state (NATS) [13],

ρNATS :=
1

Z
e−β(H−

∑
a µaQa). (2.3)

where β := µ̃0 is a special label given to the Lagrange multiplier corresponding to the
Hamiltonian, and all other µα := βµ̃α.

Jaynes’s work shows that at least one derivation of the thermal state form remains valid
even when our knowledge is restricted to the expectation values of noncommuting charges.
This derivation is based on information theory. However, the more physical arguments
break down when charges are free not to commute, i.e., when trying to derive the ρNATS.
Examples of more physical arguments include those based on resource theories (discussed
in the next section) or arguments like the following by Balian and Balazs [33].

Balian and Balazs were the first to seek such a physical justification. They imagined
N copies of the system of interest, in the ensemble tradition of thermodynamics. In
thermodynamics, we regard all copies except one (S) as forming an effective environment
(E) [34]. Imagine S exchanging energy and particles with E . How do we typically prove that
S is in a grand canonical state ρGC? We assume that SE has a fixed particle number and
an energy in a small window, i.e., assume that SE is in a microcanonical subspace, aka a
simultaneous eigenspace of the charges. Tracing out E from the microcanonical state yields
S’s state, which equals ρGC (if S and E couple weakly [35]). Suppose that S and E exchange
several commuting charges Q̃a. The microcanonical subspace is an eigenspace shared by
the Q̃tot

a ’s. However, if S and E exchange noncommuting charges Qa, the Qtot
a share no

eigenbasis. Thus, the charges might share no eigenspaces, and microcanonical subspaces
might not exist. Balian and Balazs tried to overcome this challenge by observing that
the charge densities Qtot

a /N commute in the infinite-N limit: limN→∞
1
N2 [Qtot

a , Qtot
a′ ] = 0

∀a, a′. However, they could not construct a well-justified generalization of microcanonical
subspaces for noncommuting charges. To be clear, what is failing here is that the notion
of microcanonical subspaces does not accommodate noncommuting charges.

2.2.2 Reemergence in the 2010s

For decades, no literature addressed the ability of thermodynamic charges not to com-
mute. The topic gained attention a decade ago at the intersection of quantum information
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and quantum thermodynamics. In 2014, separate work by Lostaglio and Yunger Halpern
demonstrated that noncommuting charges can defy thermodynamic expectations [36, 12]4.

Lostaglio demonstrated that noncommuting charges overturn an expectation about free
energy [36]. Consider a system of interest S in the state ρ(S) and an environment E in the
state ρ(E), wherein ρ(E) has the generalized Gibbs ensemble form (2.2). The system and

environment begin uncorrelated: ρ(S) ⊗ ρ(E). S and E have c commuting charges, Q̃
(S)
a and

Q̃
(E)
a . One can attribute to S a “free energy”5 for each of its charges

F (S)
a (ρ) := − 1

βµa

SvN(ρ) + Tr
(
Q̃aρ

)
. (2.4)

We now evolve SE under a charge-conserving unitary U to a final state ρ
(SE)
f : [U, Q̃tot

a ] = 0
∀a. Subscript f’s will also distinguish S’s and E ’s final states. E ’s jth subsystem ends up
in ρ

(E,j)
f := Trj̄(ρ

(E)
f ). Here, and throughout the thesis, we use the notation Trj̄ to denote

tracing over the complement of j. Furthermore, D(ρ1||ρ2) = −Tr(ρ1[log ρ1 − log ρ2]) is
the quantum relative entropy [37]. The quantum relative entropy is the classical analog of
the classical relative entropy, or Kullback–Leibler divergence, and it quantifies the distance
between quantum states ρ1,2.

Three more quantities change under the charge-conserving unitary U : S’s von Neumann
entropy, by ∆S

(S)
vN := SvN(ρ

(S)
f ) − SvN(ρ(S)); the ath charge’s environmental expectation

value, by ∆⟨Q̃(E)
a ⟩ := Tr(Q̃

(E)
a [ρ

(E)
f − ρ(E)]); and the system’s ath “free energy,” by ∆F

(S)
a .

These changes are related (see Eq. 2.24 of Ref. [36]):

D
(
ρ
(SE)
f || ρ(S)f ⊗ ρ

(E)
f

)
− ∆S

(S)
vN = β

∑
a

µa

(
∆⟨Q̃(E)

a ⟩ − ∆F (S)
a

)
−D

(
ρ
(E)
f || ⊗j ρ

(E,j)
f

)
.

(2.5)

The right-hand side of the equation contains a sum of terms that depend on distinct charges.
When charges fail to commute, the terms cannot be cleanly attributed to individual charges,
and the derivation fails.

An intuition for why this derivation should break down is that noncommuting charges
do not necessarily move independently of one another. A simple way to see this is to
consider two sites exchanging quanta of spin angular momentum in a spin chain via an

interaction H. Say that H conserves the z-component of the spin
[
H, σ

(1)
z + σ

(1)
z

]
= 0, but

4Yunger Halpern’s paper was published in 2018 but appeared on the arXiv in 2014.
5The quotation marks reflect the controversy surrounding free energies defined information theoretically

for out-of-equilibrium states.
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transfers the spins locally:
[
H, σ

(1)
z

]
̸= 0 ̸=

[
H, σ

(2)
z

]
. The most general Hamiltonian that

satisfies the conservation equation is: H = cziσ
(1)
z + cizσ

(2)
z + czzσ

(1)
z σ

(2)
z + cxx(σ

(1)
x σ

(2)
x +

σ
(1)
y σ

(2)
y ) + cxy(σ

(1)
x σ

(2)
y − σ

(1)
y σ

(2)
x ). Any of these coefficients can be zero. However, to

also satisfy the transport condition, we need that cxx ̸= ±icxy. Thus, cxx or cxy must
be non-zero. Thus, this Hamiltonian necessarily transports the quanta of the other spin
components, σ

(j)
x and σ

(j)
y . Since noncommuting charges do not move independently, it is

natural then to expect one can not define free energies for them independently.

Yunger Halpern reasoned about noncommuting charges using thermodynamic resource
theories [12]. Resource theories are information-theoretic frameworks used to quantify how
effectively an agent can perform a task, subject to some constraints. These constraints are
typically placed on the operations performable and on the systems that are accessible [38].
Using a resource theory, one can calculate the optimal efficiency for extracting work from
a nonequilibrium quantum system. In thermodynamics, the first law constrains operations
to conserve energy. Every unitary U performable on a closed, isolated system conserves the
total Hamiltonian: [U,Htot] = 0 [39]. Now suppose that U must also conserve commuting
global charges Q̃tot

a : [U, Q̃tot
a ] = 0 [40]. From which systems can the agent not perform

work for free? Systems in the equilibrium state, Eq. (2.2) [40, 41]. However, the proof
fails if the charges fail to commute [12]. This is ultimately because the noncommutation
of charges does not allow one to use the Backer–Campbell-Hausdorff Formula to equate∏

α=0 exp
(
− 1

kB
FαQ

tot
α

)
= exp

(
− 1

kB

∑
α=0 FαQ

tot
α

)
where Fi are free energies and Qtot

α are

charges.

Building on these two results, three separate groups presented physically motivated
derivations of the form of the thermal state for systems with noncommuting charges using
resource-theory-related argumentss [13, 42, 43, 44]. Ultimately, the form of the NATS was
recovered in each work. The trio of papers physically justified ρNATS’s form in various
ways. We highlight one of these below because it will be important in Chapter 4, and it
completes the story that Balian and Balazs started.

The authors of reference [13] realized that noncommuting charges prevent microcanon-
ical subspaces from existing (in abundance). The authors therefore generalized micro-
canonical to approximate microcanonical subspaces. In an approximate microcanonical
subspace M, every Qtot

a has a fairly well-defined value: measuring any Qtot
a has a high

probability of yielding a value near the expectation value ⟨Qtot
a ⟩. In other words, the prob-

ability distribution of possible outcomes has one peak with a variance that is small and
grows slowly with the system size. The authors defined M and proved its existence under
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certain conditions [13]. Denote by ΠM the projector onto M6. Consider ascribing the ap-
proximate microcanonical state ΠM/Tr(ΠM) to the global system, formed from N copies
of the system S of interest. Trace out all copies except the ℓth: ρ(ℓ) = Trℓ̄(ΠM/Tr(ΠM)).
Compare ρ(ℓ) with ρNATS using the relative entropy. Average over ℓ. This average distance
is upper-bounded as 〈

D
(
ρ(ℓ)||ρNATS

)〉
ℓ
≤ θ√

N
+ θ′, (2.6)

where θ, θ′ depend on various parameters (the number c of charges, their expectation values,
etc.) but not N . As the global system grows (N → ∞), the 1/

√
N → 0, so the distance

shrinks. Hence a physical argument, based on an ensemble in an approximate micro-
canonical subspace, complements Jaynes’s information-theoretic derivation of ρNATS. Fur-
thermore, the approximate microcanonical subspace enabled later noncommuting-charge
work [3, 45, 46, 47].

2.3 Eigenstate Thermalization Hypothesis

Isolated quantum many-body systems undergo reversible dynamics. How, then, can
they come to thermal equilibrium? This question is largely answered by the Eigenstate
Thermalization Hypothesis (ETH) [26, 27]. The following section and the results of Chap-
ter 5 hinge on the ETH. In the spirit of efficiently killing birds with stones,7 we will take
a detour to thoroughly introduce the ETH.

To begin, we need to define what is meant by thermalization. Consider a closed quan-
tum system consisting of a lattice with N sites. Each site corresponds to a Hilbert space H
of finite dimensionality d. The system is governed by a Hamiltonian H =

∑
k Ek |ψk⟩⟨ψk|,

where |ψk⟩ are energy eigenstates with energies Ek. The time-dependent state |Φ(t)⟩ =∑
k exp(−iEkt)ck |ψk⟩8 will have a fixed total energy E = ⟨Φ(t)|H|Φ(t)⟩, where we set

ℏ = 1. The expectation value of an observable O for the state |Φ(t)⟩ is

⟨O(t)⟩ =
∑
j,k

e−i(Ek−Ej)tc∗jck ⟨ψj|O|ψk⟩ . (2.7)

6To be clear on terminology, if M was the computational basis ΠM = |0⟩⟨0|+ |1⟩⟨1|.
7“Kill two birds with one stone” is an idiom for successfully achieving two things with one action.
8Having a pure initial state is not necessary for the ETH. However, the paradox of unitary dynamics

leading to thermalization is most pronounced in pure states; therefore, we consider them.
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⟨O⟩th := tr[ρthO] is the thermal expectation value, where ρth is the thermal state with
temperature fixed by the energy of the initial state. We say a system is in thermal equilib-
rium at time t if ⟨Oi(t)⟩ ≈ ⟨Oi⟩th for a set of observable Oi. If the Hamiltonian and local
observables satisfy the ETH, the system will thermalize in this sense.

We can also state the approximation ⟨Oi(t)⟩ ≈ ⟨Oi⟩th in a different and more precise
way. Imagine we begin with an out-of-equilibrium state |Φ(0)⟩. We expect ⟨O(t)⟩ to (i)
initially deviate greatly from ⟨O⟩th, (ii) approach ⟨O⟩th over time, and (iii) fluctuate around
⟨O⟩th. Thus, if we take the time-average of ⟨O(t)⟩ for a long enough time, we expect it to
equal ⟨O⟩th up to some correction:

lim
t→∞

1

t

∫ t

0

dt′ ⟨O(t′)⟩ = ⟨O⟩th +O(N−1). (2.8)

Throughout this subsection, big-O notation means “scales as.”

Myriad numerical and experimental observations support the ETH, which has been
applied across many-body physics. Despite the apparent tension between unitary dynamics
and thermalization, most quantum many-body systems thermalize [48]. However, not all
combinations of Hamiltonians, states, and observables obey the ETH, nor should we expect
them to, based on classical thermodynamics. Below, we explain more precisely when the
ETH holds and what its physically motivated assumptions are.

What are the conditions for the ETH? The first two conditions restrict the initial state
so that it is possible to define a notion of temperature. The first condition is that the
energy scales with the system size,

E = ⟨Φ(t)|H|Φ(t)⟩ ∼ N. (2.9)

This ensures we have a finite amount of energy per degree of freedom, which is necessary
for defining a finite temperature. Second, the energy uncertainty is small,

∆E =

√
⟨H2⟩ − ⟨H⟩2 ∼ Nγ (2.10)

where γ < 1. Expand your initial state in energy eigenstates; this condition restricts the
range of energies one is superposing to be small compared to the total energy. This is also
necessary for defining a temperature. If your initial state is, for example, a superposition of
two states with extremely different energies, then it is unclear how to define the temperature
because if the energy is not well defined, the temperature is not well defined. These first
two conditions place restrictions on the states |Φ(0)⟩, but most physically realistic states
satisfy these first two conditions. States that do not satisfy these conditions exist; however,
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we do not expect those states to adhere to classical statistical mechanics, which is what
the ETH is trying to derive.

The ETH is largely an ansatz for the forms of matrix elements. We can break Eq. (2.7)
into two terms,

⟨O(t)⟩ =
∑
k

(
|ck|2 ⟨ψk|O|ψk⟩

)
+
∑
j ̸=k

(
e−i(Ek−Ej)tc∗jck ⟨ψj|O|ψk⟩

)
. (2.11)

The first term is time-independent, thus we expect it to correspond to the time-independent
average value around which ⟨O(t)⟩ fluctuates, denoted by ⟨O⟩th. We then expect the second
term to correspond to the fluctuations. However, the first term in Eq. (2.11) contains
detailed information about the initial state, specifically the sum of |ck|2. In contrast, ⟨O⟩th
contains very little information about the initial state, only its energy.

To resolve this discrepancy, we add a third assumption—if we plotted ⟨ψk|O|ψk⟩ against
the Ek in ascending order, the function would vary smoothly. We can then plot |ck|2 against
the same Ek. This second plot will not vary smoothly. However, since ∆E is small, the non-
negligible values of |ck|2 should be concentrated in a small energy window. Since ⟨ψk|O|ψk⟩
varies smoothly, the exact values of |ck|2 become less significant, and multiplying them with
the eigenvalues of some operator will yield approximately the same value. Thus, our second
and third assumptions explain why the first term depends only on the energy and not the
specific |ck|2.

We now turn to the second term, which needs to account for the fluctuations. We
need these fluctuations to be small. To ensure this, we add a fourth assumption—the
Hamiltonian is nondegenerate and that ⟨ψj|O|ψk⟩ are exponentially small in N . Note that
it is still possible to have specific times when the second term is large due to the majority
of the small terms interfering constructively. In fact, we know this is possible because
non-equilibrium needs to be possible, for example, at t = 0. However, most times, this is
not true. Finally, the degeneracy condition is not strictly necessary but is for mathematical
convenience. Assumptions three and four place restrictions on the observables. There exist
many observables which satisfy these conditions.

2.4 New physics

We are finally ready to introduce the new physics related to noncommuting thermo-
dynamic charges that were not discovered by the research presented in this thesis. We
organize the results indicating that noncommuting charges obstruct thermalization in the
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first subsection (Section 2.4.1) and the remaining results in the second subsection (Section
2.4.2).

2.4.1 Why noncommuting charges may inhibit thermalization

Earlier works in the field proposed that noncommuting charges may inhibit ther-
malization, offering two justifications. One justification is that charges impede phys-
ical derivations of the thermal state’s form [12, 13]. Another is that noncommuting
charges force degeneracies on Htot according to Schur’s lemma, a group-theoretic result
(App. A.1 and [49, 50, 45]). Nondegenerate Hamiltonians underlie foundational assump-
tions of thermalization, mixing, and equilibration present in conventional theories (refer
to [27, 26, 51, 52]), which noncommuting charges challenge. The following results give
three further reasons.

Decreased thermodynamic-entropy production

Noncommuting charges reduce entropy production, which quantifies irreversibility [14].
Throughout this subsection, by entropy, we mean, thermodynamic entropy, not entan-
glement entropy. Moreover, reference [14] studies the entropy production per collision in
a collisional model where each collision is governed by unitary U . The collision model
consists of two systems each composed of many subsystems. One subsystem from each
system is drawn at random, the two subsystems “collide” by evolving under U , and are
then returned to their respective systems. With collisions as a proxy for time, we can think
of the entropy production per collision as the entropy-production rate.

Consider systems X = A,B with charges Q
(X)
a that might or might not commute. Each

system begins in a generalized Gibbs ensemble ρ
(X)

µ⃗(X) ∝ exp
(
−
∑

a µ
(X)
a Q

(X)
a

)
, wherein

µ⃗(X) = (µ
(X)
0 , µ

(X)
1 , ...) [53] (Fig. 2.1). Hence AB begins in ρ(0) := ρ

(A)

µ⃗(A) ⊗ ρ
(B)

µ⃗(B) . Let

us specialize to the linear-response regime, where small external perturbations lead to
proportional changes in the system’s behavior. For example, when a small force is applied
to a spring, the spring stretches by an amount proportional to the force (Hooke’s Law).
If the force is doubled, the displacement doubles. To stay in this regime we restrict the
differences in chemical potential between the systems to be small: µ⃗(A) ≈ µ⃗(B). A charge-
conserving unitary U can shuttle charges between the systems, producing entropy. Denote
by δµa := µ

(A)
a − µ

(B)
a the difference between the systems’ a-type chemical potentials.

System A’s a-type charge changes, in the Heisenberg picture, by U †Q
(A)
a U − Q

(A)
a . We
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combine the foregoing two quantities into

Σ̃ :=
∑
a

δµa

(
U †Q(A)

a U −Q(A)
a

)
. (2.12)

Taking the expectation value of Σ̃ in the initial state, we obtain the net entropy production,
Σ = Tr(Σ̃ ρ(0)).

According to the linear-response assumption9, the initial state lies near the fixed point.
This will be a tensor product of Gibbs ensembles for each subsystem: π := ρ

(A)

µ⃗(A) ⊗ ρ
(B)

µ⃗(A) of

U. π and Σ̃ have a Wigner–Yanase–Dyson skew information

Iy(π, Σ̃) := −1

2
Tr
(
[πy, Σ̃][π1−y, Σ̃]

)
, (2.13)

whose parameter y ∈ (0, 1). Iy(π, Σ̃) quantifies the coherence that Σ̃ has relative to π’s
eigenbasis. Said differently, Iy(π, Σ̃) quantifies the amount of information that is lost due
to the non-commutativity of an observable and a state. Thus, it is natural to expect that
the Wigner–Yanase–Dyson skew information contributes to the entropy production. The
exact expression was found in Ref. [14]:

Σ =
1

2
δ
(

Σ̃
)
− 1

2

∫ 1

0

dy Iy(π, Σ̃) (2.14)

Iy is always ≥ 0 and is positive if and only if the charges fail to commute. Therefore, non-
commuting charges lower Σ. Noncommuting charges decrease the entropy production [14].
Since entropy production accompanies thermalization, noncommutation may inhibit ther-
malization.

Two extensions support [14]. First, Shahidani numerically simulated an optomechanical
system interacting with a squeezed thermal bath [54]. Second, Upadhyaya et al. progressed
beyond the linear-response regime [55]. Even there, charges’ noncommutation decreases
entropy production.

Constraints on charge-conserving dynamics

A key result in quantum computing is that every N -qubit unitary decomposes into
gates on pairs of qubits [56, 57, 58]. This decomposition can further reduce to gates acting

9In π, unlike in ρ(0), A and B have the same lists of chemical potentials.
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Figure 2.1: Two thermal reservoirs exchange charges, producing entropy: Blue
spheres represent charges of one type, and red cubes represent charges of another.

on spatially local qubits. Can charge-conserving local unitaries implement every charge-
conserving global unitary? Marvian proved that they cannot [59]. Locality-constrained
charge-conserving unitaries fail to even approximate the global unitaries U . The reason
is that the two types of unitaries form Lie groups of different dimensions [59, 60, 61,
62]. Marvian also highlighted that noncommuting charges uniquely impose more stringent
restrictions on the global unitaries U . Specifically, noncommuting charges impose four
types of constraints on the implementable global unitaries, in contrast to only two types
from commuting charges [62]. These additional constraints might limit chaos, which often
facilitates thermalization. Therefore, Marvian’s results suggest that noncommuting charges
could inhibit thermalization.

Conflicting with the ETH

Noncommuting charges cause the ETH to conflict with the Wigner–Eckart theorem [63],
violating the ETH. Reference [47] therefore posited a non-Abelian ETH, which shows that
noncommuting charges can lead to larger corrections to the ETH.

We briefly review the Wigner–Eckart theorem. Consider N qubits whose global spin
components Stot

x,y,z are conserved, as in Section 1.2. Denote by {|α,m⟩} the eigenbasis

shared by Htot, (S⃗tot)2, and Stot
z : if ℏ = 1, then Htot|α,m⟩ = Eα|α,m⟩, (S⃗tot)2|α,m⟩ =

sα(sα+1)|α,m⟩, and Stot
z |α,m⟩ = m|α,m⟩. The Wigner–Eckart theorem governs spherical

tensor operators formed from components T
(k)
q [63]. The T

(k)
q ’s form a basis for the space of

operators defined on the system’s Hilbert space. For example, consider an atom absorbing
a photon (of spin k = 1), gaining q = 1 quantum of z-type angular momentum. T

(k=1)
q=1
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represents the photon’s effect on the atom’s state. Consider representing T
(k)
q as a matrix

relative to the energy eigenbasis. That matrix obeys the Wigner–Eckart theorem [63]:

⟨α,m|T (k)
q |α′,m′⟩ = ⟨sα,m|sα′ ,m′; k, q⟩⟨α||T (k)||α′⟩. (2.15)

⟨sα,m|sα′ ,m′; k, q⟩ denotes a Clebsch-Gordan coefficient, a conversion factor between the
product state |sα′ ,m′; k, q⟩ ≡ |sα′ ,m′⟩ |k, q⟩ and the total-spin eigenstate |sα,m⟩. ⟨α||T (k)||α′⟩
is a reduced matrix element—the part of ⟨α,m|T (k)

q |α′,m′⟩ that does not depend on mag-
netic spin quantum numbers. Clebsch–Gordan coefficients are used for adding a couple of
spins, while the ETH is about many-body systems. However, the pairwise addition can be
repeated iteratively. First, add two spins using the Clebsch-Gordan coefficients to find the
possible resultant spin states and their corresponding coefficients. Next, take each resul-
tant spin from this initial pairwise addition and add it to the next spin in the sequence.
Continue this process iteratively, each time using all resultant spins from the previous step,
until all spins have been added.

Continue Iteratively: Continue this process iteratively until all spins have been added.
Each step involves adding the resultant spin from the previous step to the next spin in the
sequence.

We can now see the source of conflict. Consider the term on the left-hand side of
Eq. (2.15). The Wigner–Eckart theorem states this term should equal the right-hand
side of Eq. (2.15). However, ETH states this term should equal something else, the right

side of Eq. (2.11). The ETH states that off-diagonal elements ⟨α,m|T (k)
q |α′,m′⟩ must be

exponentially small in N . The Wigner–Eckart theorem implies that these elements may
be O(1).

Reference [47] therefore posited a non-Abelian ETH. This ansatz depends on the average
energy E := 1

2
(Eα + Eα′), energy difference ω := Eα − Eα′ , average spin quantum number

S := 1
2
(sα + sα′), and difference ν := sα − sα′ . Denote by Sth(E ,S ) the thermodynamic

entropy at energy E and spin S . The observable T
(k)
q and Hamiltonian Htot satisfy the

non-Abelian ETH if, for smooth real functions T (k)(E ,S ) and f
(k)
ν (E ,S , ω),

⟨α||T (k)||α′⟩ =T (k)(E ,S ) δα,α′ + e−Sth(E ,S )/2 f (k)
ν (E ,S , ω)Rα,α′ . (2.16)

Rα,α′ is an erratically varying number. The matrix element (2.15) deviates from the or-
dinary ETH through S -dependent functions and a Clebsch–Gordan coefficient. Equa-
tion (2.16) has withstood numerical checks with a Heisenberg Hamiltonian on a two-
dimensional qubit lattice [64].
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The non-Abelian ETH predicts thermalization to the usual extent in some, but not all,
contexts. Consider preparing the system in a state |ψ(0)⟩ in an approximate microcanonical
subspace (Section 2.2). Suppose that |ψ(0)⟩ has an extensive magnetization along an axis
that we call ẑ: ⟨ψ(0)|Stot

z |ψ(0)⟩ = O(N). According to the non-Abelian ETH,

lim
t→∞

1

t

∫ t

0

dt′ ⟨ψ(t′)|T (k)
q |ψ(t′)⟩ = Tr

(
T (k)
q ρNATS

)
+O

(
N−1

)
. (2.17)

However, if ⟨ψ(0)|Stot
z |ψ(0)⟩ = 0, the correction can become O(N−1/2)—polynomially

larger. This result relies on an assumption argued to be physically reasonable: the smooth
function T (k) in (2.16), akin to a microcanonical average, can contain a nonzero term of
O(sα/N). The unusually large correction constitutes further evidence that charges’ non-
commutation can alter thermalization.

2.4.2 Other new physics

The effects of noncommuting charges have not been limited to topics related to ther-
malization. In this subsection, we complete our discussion on the new physics engendered
by noncommuting charges.

More stationary states

Consider an open quantum system with a Liouvilian superoperator L . ρstat is a sta-
tionary state of L if L ρstat = 0. One might associate a system’s jth stationary state, ρ

(j)
stat,

with a classical alphabet’s jth letter, Lj: ρ
(j)
stat ↔ Lj.To encode Lj in the system, one would

prepare any state that thermalizes to ρ
(j)
stat.The more stationary states the system has, the

more classical information the system may store. Denote by nstat the number of stationary
states. Zhang et al. derive a lower bound nNC on nstat for a system with noncommut-
ing charges [65]: nNC =

∑
j D2

j , wherein Dj denotes the symmetry group’s jth irreducible

representation’s dimension. For example, nNC ∼ N3 for the Heisenberg model (Section

1.2) coupled to an environment that conserves the system-of-interest charges σ
(S)
x,y,z. If the

charges commute, the lower bound nC scales as the number of simultaneous eigenspaces
shared by all the Q

(S)
a ’s. Since nNC and nC scale differently, noncommuting charges could

alter the number of stationary states and so the amount of information storable.

19



Hybrid energy-level statistics

Energy-level statistics diagnose quantum chaos and integrability [66]. Denote by ω =
Ej+1 − Ej the spacing between consecutive eigenenergies of a many-body Hamiltonian.
Any given spacing (near the spectrum’s center) has a probability density P (ω) of being of
size ω. A Poissonian10 P (ω) diagnoses integrability [66, Section 2.3]; and a Wigner–Dyson
distribution, Aβω

β exp(−Bβω
2), chaos. The parameter β ∈ {1, 2, 4} depends on the Hamil-

tonian’s time-reversal and rotational symmetries. Normalization and the mean ω determine
the coefficients Aβ and Bβ. Noncommuting charges break the Poisson-vs.-Wigner–Dyson
dichotomy as commuting charges cannot: the charges generate a non-Abelian algebra,
which has multidimensional irreducible representations. They induce statistics that inter-
polate between the two distributions [67, 64, 68]. Noh observed such statistics numerically
using a 2D Heisenberg model [64].

Many-body localization

Many-body localization (MBL) is an effect that may occur in disordered interacting
quantum systems. For example, consider a qubit chain subject to the disordered Heisenberg
Hamiltonian Htot

MBL =
∑N

j=1

(
Jσ⃗(j) · σ⃗(j+1) + hjσ

(j)
z

)
. The disorder term,

∑N
j=1 hjσ

(j)
z , acts

as an external field whose magnitude hj varies randomly across sites. If the disorder is
much stronger than the interaction, hj ≫ J , the system localizes. Imagine measuring each
qubit’s σz. The qubits approximately maintain the measured configuration long afterward.
This behaviour contrasts with how thermalizing systems, such as classical gases, change
configurations quickly. Hence MBL resists thermalization for long times. The reason is,
the Hamiltonian decomposes as a linear combination of quasilocal degrees of freedom [69].

My examining committee asked me to comment on the controversy surrounding MBL,
which I have added here. The theoretical existence of MBL in one-dimensional systems is
mostly accepted, and its existence in higher dimensions is highly unlikely. Furthermore, it
is clear that for any finite system and in any dimension, some regime exhibits MBL [70].
The controversy surrounding MBL concerns its late-time thermodynamic limit behaviour.
There is debate over MBL being a distinct phase with its unique class, the precise conditions
for MBL, and experimental evidence of MBL [71, 72].

Noncommuting charges seem to destabilize MBL [73]. Consider forcing a non-Abelian
symmetry on Htot

MBL. The resulting Hamiltonian, Htot
MBL′ , will have degeneracies, by Schur’s

10This P (ω) is the Poisson distribution whose average-rate-of-occurrence parameter vanishes. The reason
is, P (ω) dω equals the probability that zero eigenenergies lie in a width-dω interval.
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lemma (App. A.1). So will the quasilocal degrees of freedom, which can therefore become
“excited” at no energy cost. Consider adding to Htot

MBL′ an infinitesimal field that vio-
lates the symmetry. The resulting Hamiltonian, Htot

MBL′′ , can map Htot
MBL′ eigenstates |ψ⟩ to

same-energy eigenstates |ψ̃⟩: ⟨ψ̃|Htot
MBL′′ |ψ⟩ ≠ 0. Two such eigenstates can be zero-energy

“excited” states of neighbouring quasilocal degrees of freedom. Hence Htot
MBL′′ can transport

zero-energy “excitations” between quasilocal degrees of freedom—across the system. Such
transport is inconsistent with MBL. In summary, non-Abelian symmetries force degenera-
cies in the spectrum, leading to instability once you allow for perturbations. This is the first
result reviewed in this thesis that contradicts the earlier expectations that noncommuting
charges hinder thermalization.
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Chapter 3

Bridging to experiments and
many-body physics

This chapter is based on reference [2] and overlaps with its text.

3.1 Introduction

In quantum information theory, “an abstract view of dynamics, minimal in the details
of Hamiltonians, is often employed”[74], and so in quantum-information-theoretic thermo-
dynamics. This approach has also been prevalent in the study of noncommuting charges.
However, the realm of experiments and many-body theory necessitates detailed microscopic
Hamiltonians. It is essential to construct Hamiltonians that facilitate the local transport
of noncommuting charges while ensuring their global conservation to connect the result
of noncommuting charges with practical experiments and many-body physics. Achieving
this integration will allow using many-body tools to study the dynamic of noncommuting
charge physics. Furthermore, the literature on noncommuting-charge physics is filled with
results that merit experimental testing.

Before the work presented in this chapter, it was unknown (i) whether Hamiltonians
that transport noncommuting observables locally, while conserving them globally, exist;
(ii) how such Hamiltonians look, if they exist; (iii) how to construct such Hamiltonians
for given noncommuting charges; and (iv) for which charges such Hamiltonians can be
constructed. We answer these questions, enabling noncommuting charges to progress from
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its quantum-information-theoretic-thermodynamic birthplace to experiments and many-
body physics.

This chapter introduces a procedure for constructing Hamiltonians that overtly move
noncommuting charges between subsystems while conserving the charges globally. The
Hamiltonians can couple arbitrarily many subsystems together and can be integrable or
nonintegrable. The procedure is general, being independent of any physical platforms.
Consequently, the Hamiltonians can be realized with diverse physical systems, such as
superconducting circuits, neutral atoms, and trapped ions.

The rest of the chapter is organized as follows. We detail our setup and review the math-
ematical background in Section 3.2. Section 3.3 presents our procedure. We first synthesize
the procedure, crystallize the main result, and present two properties of the procedure. We
then illustrate the procedure using an example familiar in quantum information, the Lie
algebra su(2). A richer example provides intuition in Section 3.4: Hamiltonians that trans-
port and conserve charges in the Lie algebra su(3). Section 3.5 concludes with a summary
of our results.

3.2 Preliminaries

We begin by outlining our setup and then review the mathematical foundation pertinent
to our study, focusing on the basics of Lie algebra theory. In Chapter 5, we revisit Lie
algebras. To prevent redundancy, we include a few additional details in this section that
will be relevant later.

3.2.1 Setup

Consider a closed quantum system consisting of a lattice with N sites. Each site
corresponds to a Hilbert space H of finite dimensionality d. The system is governed by a
global Hamiltonian Htot. Let Qα denote a Hermitian operator defined on H. We denote by
Q

(j)
α the observable defined on the jth subsystem’s H. We denote an extensive observable

Qtot
α :=

N∑
j=1

Q̃(j)
α ≡

N∑
j=1

1
⊗(j−1) ⊗ Q̃(j)

α ⊗ 1
⊗(N−j). (3.1)

We will construct Htot that conserve noncommuting charges globally, [Htot, Qtot
α ] = 0,

while transporting them locally,
[
Htot, Q

(j)
α

]
̸= 0 for some site j.
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3.2.2 Lie Algebra background

Charges Qα that generate Lie algebras are important in physics because they describe
many conserved physical quantities, including angular momentum, particle number, electric
charge, color charge, and weak isospin [1, 11, 75, 76], i.e., everything in the Standard
Model of particle physics. The Lie algebras relevant to studying noncommuting charges are
finite-dimensional because we study systems with a finite number of linearly independent
charges [2]. The algebras are defined over the complex number because the operators are
Hermitian. Finally, the algebras are semisimple so that the operator representation of the
charges can be diagonalized (not necessarily simultaneously diagonalized) [77]. From this
point onward, we denote by g a finite-dimensional semisimple complex Lie algebra.

An algebra’s dimension c equals the number of generators in a basis for the algebra.
The algebra’s rank r is the dimension of the algebra’s maximal commuting subalgebra, the
largest subalgebra in which all elements are commuting. For example, consider the usual
basis for su(2)—the Pauli-operators. There are three generators in this basis, so c = 3,
and none of these operators commute with one another, so r = 1. A Cartan subalgebra is
a maximal Abelian subalgebra consisting of semisimple elements, h ∈ h. Every g will have
a h.

The g definition includes a vector space V defined over a field F . A form is a map
V × V → F . A representation of A is a Lie-bracket-preserving map from A to a set of
linear transformations. The Killing form of operators x, y ∈ g is the bilinear form

(x, y) := tr(adx · ady) (3.2)

where adx is the image of x under the adjoint representation of g.

We have justified studying algebras that are finite-dimensional, semisimple, and over
the complex numbers. We also assume that on A is defined a Killing form that induces a
metric. Many physically significant algebras satisfy all of these assumptions—for example,
su(N), so(N), and all other simple Lie algebras (see Appdenix B.1 and [11, 75, 76]).
Table 1 lists the simple Lie algebras. Every Cartesian product of simple Lie algebras yields
a semisimple Lie algebra A. Such an algebra generates a semisimple Lie group G. For
example, if A consists of angular momentum, A = su(D), the corresponding G consists of
rotations: G = SU(D). To clarify, the script notation refers to the algebra, e.g. su(D),
and the non-script notation to the corresponding group, SU(D).

Essential to our study are Cartan–Weyl bases [77]. Such a basis consists of r elements
forming a Cartan subalgebra and c− r root vectors. We introduced the Cartan subalgebra
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Algebra Dimension (c) Rank (r) c/r

so(2D) D(2D − 1) D 2D − 1
sl(D + 1) (D + 1)2 − 1 D D + 2
so(2D + 1) D(2D + 1) D 2D + 1
sp(2D) D(2D + 1) D 2D + 1

g2 14 2 7
f4 52 4 13
e6 78 6 13
e7 133 7 19
e8 248 8 31

Table 3.1: Simple Lie algebras: c denotes an algebra’s dimension, and r denotes the
rank. We implicitly omit so(2) and so(4), which are not simple [11]. Also, su(D) is a
simple Lie algebra. However, including su(D) would be redundant: the complexification
of su(D) is isomorphic to sl(D).

above and will introduce the root vectors here. Let β(h) := (h′β, h) where h, h′β ∈ h. β(h)
is a root of g relative to h if there exists a non-zero operator Lβ ∈ g such that

[h, Lβ] = β(h)Lβ. (3.3)

These operators Lβ are the root vectors. Denote by ∆ all roots of g with respect to h.
If β ∈ ∆, then so is −β. Thus, root vectors always come in pairs L±β. In practice,
root vectors often have the form of ladder operators. Each β corresponds to two ladder
operators, one raising (+β) and one lowering (−β). Hence β runs from 1 to c−r

2
. Each L±β

raises or lowers at least one Qα. Every finite-dimensional semisimple complex Lie algebra
A has a Cartan-Weyl basis. In fact, A has infinitely many. The choice of Cartan-Weyl is
not unique.

3.3 Procedure

We first synopsize our procedure before offering a guided walkthrough to facilitate a
more comprehensible presentation.

Below, we will refer to a preferred basis of charges. It is preferable for two reasons.
First, the basis endows the Hamiltonian with a simple physical interpretation: the two-
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body interaction we construct transports all these charges locally while conserving them
globally. Second, the basis is (Killing-)orthogonal.

3.3.1 Synposis

We construct, as follows, Hamiltonians that transport noncommuting charges locally
and conserve the charges globally:

1. Identify an arbitrary Cartan-Weyl basis for the algebra, A.

2. The Cartan-Weyl basis contains r Hermitian operators that commute with each other.
Scale each such operator such that it has a unit Hilbert-Schmidt norm [Eq. (3.5)].
Label the results Qα=1,2,...,r. Include them in the preferred basis for the algebra.

3. The other Cartan-Weyl-basis elements are ladder operators that form raising-and-
lowering pairs: L±β, for β = 1, 2, . . . c − r. From each pair, form one term in the
two-body interaction, H(j,j′) [Eq. (3.6)].

4. Write out the form of the most general element U ∈ G of the Lie group G generated by
A. Conjugate each charge Qα and each ladder operator L±β with U [Eq. (3.7)]. The
new charges and new ladder operators, together, form another Cartan-Weyl basis.

5. Constrain U such that every new charge Qα is Killing-orthogonal to (i) each other
new charge and (ii) each charge already in the basis [Eq. (3.9)].

6. Include each new Qα in the basis for A.

7. From each new pair L±β of ladder operators, form a term in the two-body interaction
H(j,j′) [Eq. (3.10)].

8. Repeat steps 4-7 until having identified c/r Cartan-Weyl bases, wherein c denotes
the algebra’s dimension. Each Cartan-Weyl basis contributes r elements Qα to the
preferred basis for A. The basis is complete, containing r · c

r
= c elements.

9. Constrain the two-body interaction to conserve each global charge [Eq. (3.14)], for all

α = 1, 2, . . . , c. Solve for the hopping frequencies J
(j,j′)
β that satisfy this constraint.
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10. If a k-body interaction is desired, for any k > 2: Perform the following substeps
for ℓ = 3, 4, . . . , k: Multiply together ℓ unconstrained two-body interactions (3.12)
cyclically:

H(j,j′,...,j(ℓ)) = H(j,j′)H(j′,j′′) . . . H(j(ℓ−1),j(ℓ))H(j(ℓ),j). (3.4)

Constrain the couplings so that [H(j,j′,...,j(ℓ)), Qtot
α ] = 0 for all α. If H(j,j′,...,j(ℓ))

contains fewer-body terms that conserve all the Qtot
α , subtract those terms off.

11. Sum the accumulated interactions H(j,j′,...,j(k)) over the subsystems j, j′, . . . to form
Htot.

12. If Htot is to be nonintegrable, add longer-range interactions and/or large-k k-body
interactions until breaking integrability, as signalled by, e.g., energy-gap statistics1.

Having synopsized our procedure, we present two properties of it. The first property
ensures that the procedure runs for an integer number of iterations (step 8).

Proposition 1. Consider any finite-dimensional semisimple complex Lie algebra. The
algebra’s dimension, c, and rank, r, form an integer ratio: c/r ∈ Z>0.

We prove this proposition in Appendix B.4. It seems possible that this Proposition has
been proved before. However, we could not find such a deviation, so we provided one.

Theorem 1. The charges Q1, Q2, . . . , Qc produced by the procedure form a basis for the
algebra A.

Proof. The charges are Killing-orthogonal by construction: (Qα, Qβ) = 0 for all α, β.
The Killing form induces a metric on A by assumption. Therefore, the Qα are linearly
independent according to this metric.

The procedure produces c charges (step 8). c denotes the algebra’s dimension, the
number of elements in each basis for A. Hence every linearly independent set of c A
elements forms a basis for A. Hence, the Qα form a basis.

1This is saying that if you want the system to be nonintegrable, you can keep adding interactions until
it is

27



3.3.2 Pedagogical explanation using su(2)

The procedure’s starting point is an algebra. We first identify an arbitrary Cartan–
Weyl basis for the algebra. For this example we choose σz and σ±z = 1

2
(σx ± iσy). We

assign the Hermitian operators to our basis of charges, Q1 = σz. If r > 1, we rescale these
operators to endow them with unit Hilbert-Schmidt norms,

Tr
(
Q†

αQα

)
= 1, (3.5)

before including them in our preferred basis. In the su(2) example, the ladder operators
raise and lower σz: L±z |∓z⟩ = |±z⟩. In other algebras, an L±β can raise and/or lower
multiple Qα’s. Examples include su(3) (Section 3.4).

From each ladder-operator pair, we construct an interaction that couples subsystems

j and j′. Let J
(j,j′)
β denote a hopping frequency. An interaction that transports all the

charges between j and j′, while conserving each charge globally, has the form

H(j,j′) ∝
(c−r)/2∑
β=1

J
(j,j′)
β

(
L
(j)
+βL

(j′)
−β + L

(j)
−βL

(j′)
+β

)
. (3.6)

We assemble the other terms in H(j,j′) from other Cartan-Weyl bases, constructed as
follows. Let U denote a general element of the group G. We conjugate, with U , each
element of our first Cartan-Weyl basis: for α = 1, 2, . . . , r and β = 1, 2, . . . , c−r

2
,

Qα 7→ U †QαU = Qα+r, and (3.7)

L±β 7→ U †L±βU = L±(β+ c−r
2 ). (3.8)

We include the new Qα’s (for which α = r + 1, r + 2, . . . , 2r) in our preferred basis for the
algebra.

We constrain U such that each new Qα is Killing-orthogonal to (i) each other new
charge Qβ and (ii) each original charge Qγ:

(Qα, Qβ) = (Qα, Qγ) = 0 (3.9)

for all α, β = r+1, r+2, . . . , 2r and all γ = 1, 2, . . . , r. For su(n) the Killing form reduces to
(Qα, Qβ) = 2n tr(QαQβ). This orthogonality restricts U , though not completely. The new
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Qα’s generate a Cartan subalgebra Killing-orthogonal to the original Cartan subalgebra.
The new ladder operators contribute to the interaction:

H(j,j′) ∝
c−r∑
β=1

J
(j,j′)
β

(
L
(j)
+βL

(j′)
−β + h.c.

)
. (3.10)

In the su(2) example, U can be represented by the matrix
[
a −b∗

b a∗

]
, wherein a, b ∈

C and |a|2 + |b|2 = 1. The procedure restricts U only via the Killing-orthogonality of
U †σzU to U . We enforce only this restriction in Appendix B.2. Here, we choose a U for
pedagogical simplicity: U = (1 + iσy)/

√
2, such that Qα+r = Q2 = σx. The new ladder

operators, σ±x :=
(
1+iσy√

2

)
σ±z

(
1+iσy√

2

)
, create and annihilate quanta of the x-component

of the angular momentum. The interaction becomes

H(j,j′) ∝
∑
β=z,x

J
(j,j′)
β

(
σ
(j)
+βσ

(j′)
−β + h.c.

)
. (3.11)

We repeat the preceding steps: write out the form of a general U ∈ G. Conjugate each
element of the original Cartan-Weyl basis with U . Constrain U such that the new Qα’s
are orthogonal to each other and to the older Qα’s. Include the new Qα’s in our preferred
basis for the algebra. Form a term, in H(j,j′), from the new ladder operators L±β.

Each Cartan-Weyl basis contributes r elements Qα to the preferred basis. The basis
contains c elements, so we form c/r mutually orthogonal Cartan-Weyl bases. c/r equals
an integer for the finite-dimensional semisimple complex Lie algebras, according to Propo-
sition 1 in Section 3.3.1. Table 1 confirms the claim for the simple Lie algebras. Our
algebra’s finite dimensionality ensures that our procedure halts. The two-body interaction
is now

H(j,j′) =

c−r
2

· c
r∑

β=1

J
(j,j′)
β

(
L
(j)
+βL

(j′)
−β + h.c.

)
. (3.12)

In the su(2) example, c/r = 3/1 = 3. Hence, we construct three Cartan-Weyl bases
using two SU(2) elements. If the first unitary was (1 + iσy)/

√
2, the second unitary is

(1 − iσx + iσy + iσz)/2, to within a global phase. Consequently, Q3 = σy, the preferred
basis for A is {σz, σx, σy}, and

H(j,j′) =
∑

β=x,y,z

J
(j,j′)
β

(
σ
(j)
+βσ

(j′)
−β + h.c.

)
. (3.13)
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Next, we constrain the interaction to conserve every global charge:

[H(j,j′), Qtot
α ] = 0 ∀α = 1, 2, . . . , c. (3.14)

The commutation relations (3.14) constrain the hopping frequencies J
(j,j′)
α . The frequencies

must equal each other in the su(2) example: J
(j,j′)
α ≡ J (j,j′) for all α. We show this in

Appendix B.2.3. In this case, the Hamiltonian simplifies to the familiar Heisenberg model:

H(j,j′) = J (j,j′)σ⃗(j) · σ⃗(j′) = J (j,j′)
∑

α=x,y,z

σ(j)
α σ(j′)

α (3.15)

We have constructed a two-body interaction H(j,j′) that couples subsystems j and j′.

We construct k-body terms H(j,j′,...,j(k)) by multiplying two-body terms (3.12) together,

constraining the couplings such that [H(j,j′,...,j(k)), Qtot
α ] = 0, and subtracting off any fewer-

body terms that appear in the product. Section 3.3.1 details the formalism. In the su(2)
example, a three-body interaction has the form (see Appendix B.2)

H(j,j′,j′′) ∝ H(j,j′)H(j′,j′′)H(j′′,j) (3.16)

∝ J (j,j′,j′′)[(σxσyσz + σyσzσx + σzσxσy) − (σzσyσx + σxσzσy + σyσxσz)]. (3.17)

wherein J (j,j′,j′′) ∈ R.

The Hamiltonian we constructed may be integrable. For example, the one-dimensional
(1D) nearest-neighbor Heisenberg model is integrable [78]. Integrable Hamiltonians have
been featured in studies of noncommuting charges in thermodynamics [79]. But one might
wish for the system to thermalize as much as possible, as is promoted by nonintegrabil-
ity [66, 80]. Geometrically nonlocal couplings, many-body interactions, and multidimen-

sional lattices tend to break integrability. Hence one can add terms H(j,j′) and H(j,j′,...,j(k))

to the global Hamiltonian Htot, and keep growing the lattice’s dimensionality, until Htot

becomes nonintegrable. Nonintegrability may be diagnosed with, e.g., energy-gap statis-
tics [66]. In the su(2) example, one can break integrability by creating next-nearest-
neighbor couplings or by making the global system two-dimensional [45].

3.4 su(3) example

Section 3.3.2 illustrated the Hamiltonian construction procedure with the algebra su(2).
The su(2) example offered simplicity but lacks other algebras’ richness. In other algebras,
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each Cartan-Weyl basis contains multiple Hermitian operators and ladder-operator pairs.
We demonstrate how our procedure accommodates this richness by constructing a two-
body Hamiltonian that transports su(3) elements locally while conserving them globally.
Such Hamiltonians may be engineered for superconducting qutrits, as sketched in Chapter
7. However, this su(3) example only illustrates our more general procedure, which works for
all finite-dimensional semisimple complex Lie algebras on which the Killing form induces
a metric.

Each basis for su(3) contains c = 8 elements. The most famous basis consists of the
Gell-mann matrices, τi=1,2,...,8 [81]. The τi generalizes the Pauli matrices in certain ways,
being traceless and Killing-orthogonal. From the Gell-mann matrices is constructed the
conventional Cartan-Weyl basis [82], reviewed in Appendix B.5. The r = 2 Hermitian
elements are Gell-mann matrices:

Q1 = τ3, and Q2 = τ8. (3.18)

Q1 and Q2 belong in the preferred basis of charges for su(3). For pedagogical clarity, we
will identify all the charges before addressing the ladder operators.

A general element U ∈ SU(3) contains eight real parameters. In the Euler parameteri-
zation [83],

U = eiτ3ϕ1/2eiτ2ϕ2/2eiτ3ϕ3/2eiτ5ϕ4/2eiτ3ϕ5/2eiτ2ϕ6/2eiτ3ϕ7/2eiτ8ϕ8/2 . (3.19)

The parameters ϕ1, ϕ3, ϕ5, ϕ7 ∈ [0, 2π); ϕ2, ϕ4, ϕ6 ∈ [0, π]; and ϕ8 ∈ [0, 2
√

3π). We now
constrain U , identifying the instances Ui that map the first charges to Q3 = U †

i Q1Ui

and Q4 = U †
iiQ2Uii that are Killing-orthogonal to each other and to the original charges.

Appendix B.5 contains the details. We label with a superscript (i) the parameters used

to fix Ui: ϕ
(i)
1 , ϕ

(i)
3 , ϕ

(i)
7 , ϕ

(i)
8 , and n(i). For convenience, we package several parameters

together: a(i) := 1
2

(
ϕ
(i)
3 − ϕ

(i)
7 −

√
3ϕ

(i)
8 + πn(i) + π

2

)
, and b(i) := a(i) + ϕ

(i)
7 . In terms of

these parameters, the new charges have the forms (see Appendix B.5)

Q3 =
1√
3

[
(−1)n

(i)+1 sin
(
a(i) − b(i)

)
τ1 − (−1)n

(i)

cos
(
a(i) − b(i)

)
τ2 − sin

(
a(i)
)
τ4 (3.20)

− cos
(
a(i)
)
τ5 + sin

(
b(i)
)
τ6 + cos

(
b(i)
)
τ7

]
and

Q4 =
(−1)n

(i)

√
3

[
(−1)n

(i)+1 cos
(
a(i) − b(i)

)
τ1 + (−1)n

(i)

sin
(
a(i) − b(i)

)
τ2 + cos

(
a(i)
)
τ4 (3.21)

− sin
(
a(i)
)
τ5 + cos

(
b(i)
)
τ6 − sin

(
b(i)
)
τ7

]
.
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Q3 has the same form as Q5 and Q7, which satisfy the same Killing-orthogonality con-
ditions. Similarly, Q4 has the same form as Q6 and Q8. We denote the later charges’
parameters by a(ℓ) and b(ℓ). These parameters are more restricted (see Appendix B.5). We
have identified our preferred basis of charges.

Let us construct the ladder operators and Hamiltonian. Each Cartan-Weyl basis con-
tains c − r = 8 − 2 = 6 ladder operators. The conventional Cartan-Weyl basis contains
ladder operators formed from Gell-man matrices:

L±1 := 1
2
(τ1 ± iτ2), L±2 := 1

2
(τ4 ± iτ5), and L±3 := 1

2
(τ6 ± iτ7). (3.22)

Transforming these operators with unitaries Uii,iii,iv yields L±4 through L±12, whose forms
appear in Appendix B.5. From each ladder operator, we form one term in the two-body
Hamiltonian (3.6).

Finally, we determine the hopping frequencies J
(j,j′)
α , demanding that [H(j,j′), Qtot

α ] = 0
for all α. For all possible values of the a(ℓ), b(ℓ), and n(ℓ), if all the frequencies are nonzero,

then all the frequencies equal each other. We set J
(j,j′)
α ≡ 4

3
J (j,j′), such that

H(j,j′) = J (j,j′)
8∑

α=1

τ (j)α τ (j
′)

α ∝
8∑

α=1

Q(j)
α Q(j′)

α . (3.23)

The Hamiltonian collapses to a simple form analogous to the su(2) example’s Eq. (3.15)
(see Appendix B.3).

3.5 Summary & Outlook

We have presented a procedure for constructing Hamiltonians that transport noncom-
muting charges locally while conserving the charges globally. The Hamiltonians can couple
arbitrarily many subsystems together and can be integrable or nonintegrable. The pro-
cedure produces, as well as Hamiltonians, preferred bases of charges that are (i) overtly
transported locally and conserved globally and (ii) Killing-form-orthogonal. This construc-
tion works whenever the charges form a finite-dimensional semisimple complex Lie algebra
on which the Killing form induces a metric. Whether there exists any Hamiltonians that
transport charges locally, while conserving the charges globally, outside of those found by
our procedure, is an interesting open question for theoretical exploration.

This work systematically bridges noncommuting thermodynamic charges from abstract
quantum information theory to condensed matter, AMO physics, and high-energy and
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nuclear physics. The mathematical results that have accrued can now be tested experi-
mentally via our construction. When we first wrote reference [2], we presented the follow-
ing predictions that merited experimental exploration: (i) the emergence of the quantum
equilibrium state in [43, 42, 12], (ii) the decrease in entropy production by noncommuting
charges [14], (iii) applications of the entropy decrease to quantum engines [84], (iv) the
conjecture that noncommuting charges hinder thermalization [13], and (v) the conjecture’s
application to quantum memories. Since then, the first bullet has been experimentally
verified [46] using one of the Hamiltonians identified in this work2. Furthermore, other
results have since been proposed that merit testing—increases in entanglement [3], critical
phases [1], etc. Such experiments’ benefits include the simulation of quantum systems
larger than what classical computers can simulate, uncovering behaviours not predicted by
theory, and grounding abstract QIT thermodynamics in physical reality.

As mentioned above, the Heisenberg model (3.13) can be implemented with various
hardware. Reference [45] details how to harness these setups to study noncommuting
thermodynamic charges. Here, we present a more intricate proposal by employing current
superconducting qubit experimental platforms to implement our general framework’s su(3)
instance.

Superconducting circuits can serve as qudits with Hilbert-space dimensionalities d ≥
2 [85]. Qutrits have been realized with transmons [86]. The lowest two energy levels often
serve as a qubit, but the second energy gap nearly equals the first. Hence, the third level
can be addressed relatively easily [87]. Superconducting qutrits offer a tabletop platform
for transporting and conserving su(3) charges as in Section 3.4.

Experiments with ≤ 5 qutrits have been run [88, 89]. Furthermore, many of the tools
used to control and measure superconducting qubits can be applied to qutrits [87, 90, 91,
92, 93]. T ∗

2 relaxation times of ∼ 39 µs, for the lowest energy gap, and ∼ 14 µs, for the
second-lowest gap, have been achieved [89]. Meanwhile, two-qutrit gates can be realized in
∼ 10− 102 ns [89, 94, 95]. Some constant number of such gates may implement one three-
level gate that simulates a term in our Hamiltonian. If the number is order-10, information
should be able to traverse an 8-qutrit system ∼ 10 times before the qutrits decohere
detrimentally. According to numerics in [13], a small subsystem nears thermalization
once information has had time to traverse the global system a number of times linear
in N . Therefore, realizations of our Hamiltonians are expected to thermalize the system
internally. The states of small subsystems, such as qutrit pairs, can be read out via
quantum state tomography [87, 90, 91, 92, 93]. Hence, by simulating the Hamiltonians
constructed here, superconducting qutrits and other platforms can import noncommuting

2To be fair, this same Hamiltonian had come up in earlier literature on noncommuting charges[12]
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charges from quantum thermodynamics to many-body physics.
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Chapter 4

Noncommuting charges can increase
average entanglement

This chapter is based on reference [3] and overlaps with its text.

4.1 Introduction

In Chapter 3, we successfully connected noncommuting charge physics with many-body
physics and experiments. Now, we study the implications of charge noncommutation in
quantum many-body theory. Entanglement tends to accompany thermalization in quantum
systems. Justifying how a pure initial state can evolve unitarily to a state that looks
thermal locally requires entanglement. Thus, entanglement serves as an ideal focal point
for exploring the impacts of charge noncommutation.

Entanglement has illuminated quantum many-body phenomena from space-time’s struc-
ture [96, 97, 98] to phases [99, 100, 101, 102] and thermalization [69]. A large, isolated
many-body system thermalizes internally when evolved under a nonintegrable Hamilto-
nian (Section 2.3). Such dynamics tend to imbue an initial pure state, after long times,
with properties closely approximated in pure states drawn randomly from the available
Hilbert space. The random state’s average bipartite entanglement is quantified with a
Page curve [103]: consider partitioning the system into two subsystems, calculating a sub-
system’s entanglement entropy, and averaging the entropy over states drawn randomly
from the full system’s Hilbert space. The average, plotted against the subsystem’s size,
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forms a Page curve. (We present a more technical introduction to Page curves in Section
4.2).

Page curves have been studied in the context of Abelian symmetries, i.e., commuting
charges [104, 105]. This is done by drawing random pure states from a chosen particle-
number sector, a microcanonical subspace S, instead of the full Hilbert space. More
generally, the system may have multiple charges that commute with each other, so that
the symmetry remains Abelian. S can be chosen to be an eigenspace shared by the charges.
We aim to quantify how charges’ noncommutation—a symmetry’s non-Abelian nature—
affects Page curves.

This comparison calls for two models that parallel each other closely, yet differ in
whether their charges commute. Whether such models exist, what “parallel closely” should
mean, and how to construct such models is unclear. We therefore posit criteria to encapsu-
late models’ analogousness. Furthermore, we construct two models that meet these criteria.
Each model consists of two-qubit sites. Every local charge is a product of two-qubit Pauli
operators and/or identity operators.

We compare these models’ Page curves in two settings. Conventional thermodynamics
suggests one: a microcanonical subspace, a simultaneous eigenspace of the charges. The
noncommuting-charge model has only one microcanonical subspace. Thus, we also identify
approximate microcanonical subspaces (see Section 2.2.2) in the noncommuting-charge
model and analogs in the commuting-charge model. Each pair of such subspaces yields
another pair of Page curves.

We estimate the Page curves numerically and, in the microcanonical comparison, an-
alytically. In every setting where we can do so, the nonconcommuting-charge Page curve
lies above the commuting-charge curve. On average, therefore, charges’ noncommutation
appears to promote entanglement. For systems of N ≫ 1 sites, the Page curves’ separa-
tion decreases, but only polynomially in the system size, as 1/N . We posit that the gap
arises solely from whether the charges commute, due to the close parallel between our two
models. This conjecture calls for testing with more parallel models and for more-general
explanations, which we partially leave as a challenge for future research.

The rest of this paper is organized as follows. In Section 4.2, we overview Page curves;
in Section 4.3, we present the analogous models. We compare the models’ Page curves using
microcanonical subspaces (Section 4.4), then using approximate microcanonical subspaces
(Section 4.5). Section 4.6 concludes with opportunities established by this work.
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4.2 Page-curve background

To introduce Page curves, we must introduce entanglement entropy. Consider an iso-
lated (“global”) system, associated with a Hilbert space H, in a pure state |Φ⟩. Denote by
A a subsystem associated with a dimension-DA Hilbert space. Denote by B the rest of the
system. The full system’s Hilbert space is the tensor product of the subsystems’ Hilbert
spaces. The entanglement entropy is the von Neumann entropy of ρA := TrB(|Φ⟩⟨Φ|) [37]:

SE := S(ρA) := −Tr(ρA log ρA) ≤ logDA. (4.1)

The logarithms are base e, giving entropies in units of nats. A is entangled with B if
SE > 0.

The Page curve quantifies the average entanglement in a subspace S of interest. Let
A consist of NA identical sites, and let B consist of NB more, such that NA + NB = N .
Consider selecting a global pure state from S uniformly at random according to the Haar
measure [106]. Calculating SE, then averaging over Haar-random states, yields

⟨SE⟩S := −⟨Tr(ρA log ρA)⟩S . (4.2)

Plotted against NA, ⟨SE⟩S forms the Page curve for subspace S [103].

We estimate the curve numerically as follows. Denote by {|ψℓ⟩} any basis for the
subspace. We weight the ℓth element with a random number cℓ drawn from a complex
normal distribution. Summing the weighted elements, and renormalizing with a constant
Cnorm, we form a Haar-random state: 1

Cnorm

∑
ℓ cℓ |ψℓ⟩. We sample 103–104 states, calculate

each state’s SE, and average to estimate the Page curve.

In the best-known example, no charges constrain the system [103]. Denote by H the full
Hilbert space and by d the local dimension (of a site’s Hilbert space). The unconstrained
Page curve is, for NA ≤ NB,

⟨SE⟩H ≈ NA log d− 1

2
dNA−NB . (4.3)

The terms in Eq. (4.3) stem from different physics, as do the analogous terms in con-
strained Page curves. Consider averaging the Haar-random states over S before calculating
any entropy. The averaged state, ⟨ρ⟩S , is the maximally mixed state within S. Tracing
out B yields ⟨ρA⟩S := TrB(⟨ρ⟩S), whose entropy follows from state-counting arguments
(App. C.1). We therefore call S (⟨ρA⟩S) the subspace-S Page curve’s state-counting term.
In terms of it, the curve decomposes as

⟨SE⟩S = S (⟨ρA⟩S) + [⟨SE⟩S − S (⟨ρA⟩S)] . (4.4)
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Since ⟨ρ⟩S is maximally mixed, S (⟨ρA⟩S) equals the greatest possible entropy: ⟨SE⟩S ≤
S (⟨ρA⟩S). Hence the bracketed term in Eq. (4.4) is ≤ 0. That term encodes the interference
between different states’ contributions to the Page curve’s Haar average. This interference
term is exponentially small in NB − NA [103]. In the unconstrained curve (4.3), NA log d
is the state-counting term, and −1

2
dNA−NB is the interference term.

4.3 Analogous noncommuting-charge and commuting-

charge models

We aim to identify how charges’ noncommutation affects the Page curve. Therefore,
we need two models that differ in whether their charges commute and otherwise differ
minimally. Whether such models exist, what “differ minimally” should mean, and how to
construct such models is unclear. For instance, the most commonly studied non-Abelian
symmetry group is SU(2); the associated charges are the Pauli operators, X, Y , and
Z. How to construct an analogous model with three commuting charges is not obvious.
For example, the group U(1)×3 is generated by three charges that commute but are not
multiplicatively interrelated. In contrast, XY = iZ.

We address this challenge by positing five criteria that capture what renders the model
with noncommuting charges and commuting charges analogous. Then, we construct two
models that meet these criteria. As in the last chapter, we denote by Qtot

α the global
noncommuting charges. We denote by Ctot

α the global commuting charges. The criteria
concern also the subspaces used to calculate the Page curves. Denote by |ψ⟩ any state
from the noncommuting-charge subspace Q. Measuring Qtot

α yields outcome µ with some
probability. This probability, averaged over the |ψ⟩, we denote by pQα (µ). Define pCα(µ)
analogously for the commuting-charge subspace C.

We define as analogous any commuting-charge and noncommuting-charge models that
satisfy five criteria:

1. In each model, the system consists of N sites, each formed from a d-level qudit. Each
model has c charges.

2. Each global charge (i) is a sum of single-site observables and (ii) acts nontrivially
and identically on all sites.

3. Each charge Qtot
α has the same spectrum as its analog Ctot

α .
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Figure 4.1: Analogous noncommuting-charge and commuting-charge models.
Each model consists of N sites. A site consists of two qubits, a and b. The local non-
commuting observables of interest include Q1; and the local commuting observables, C1.

4. Any two commuting charges form a product analogous to the analogous noncommut-
ing charges’ product.

5. The constrained subspaces, Q and C, are such that pQα (µ) = pCα(µ).

We now construct two models that satisfy the criteria (Fig. 4.1). Each global charge

(Qtot
α or Ctot

α ) follows from summing single-site observables Qα or Cα. Denote by Q
(j)
α an

observable defined on site j’s Hilbert space, and define C
(j)
α analogously. As in the last

chapter, the global charges are extensive:

Qtot
α :=

N∑
j=1

1
⊗(j−1) ⊗Q(j)

α ⊗ 1
⊗(N−j) ≡

N∑
j=1

Q(j)
α , (4.5)

and Ctot
α :=

∑N
j=1C

(j)
α .

The noncommuting charges can generate su(2) if each site contains one qubit (d = 2).
By criterion 2, three charges impose up to three restrictions on each site1. A fourth
restriction follows from the normalization of the site’s state. These restrictions suggest
that, to support a model with three commuting charges, d should be ≥ 4. Choosing d = 4
for simplicity, we form each site’s qudit from two qubits, a and b. The noncommuting local
observables are

Q1 = Xa ⊗ 1b, Q2 = Ya ⊗ 1b, and Q3 = Za ⊗ 1b; (4.6)

and the commuting local observables are

C1 = Xa ⊗Xb, C2 = Ya ⊗ Yb, and C3 = Za ⊗ Zb. (4.7)

1The restrictions are on the global system. Depending on the charges, there could be less than three
independent restrictions per site.
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It is straightforward to check that [Qα, Qβ] = 2iϵαβγQγ and [Cα, Cβ] = 0.

These models satisfy criteria 1–3 overtly and by simple calculation. Criterion 4 concerns
products of charges. For unequal indices α, β, γ ∈ {1, 2, 3},

QαQβ = iϵαβγQγ, and CαCβ = −Cγ. (4.8)

These equations parallel each other because multiplying two distinct charges yields the
third charge times a constant. Furthermore, QαQα = CαCα = 1 ∀α.

Criterion 5 is satisfied if we choose subspaces adroitly. In the microcanonical subspaces
identified below, the pQα (µ)’s and pCα(µ)’s equal Kronecker delta functions and so each other.
As detailed below, we can also construct approximate microcanonical subspaces such that
pQα (µ) = pCα(µ) for all α and µ.

4.4 Microcanonical-subspace comparison

The noncommuting-charge model has exactly one microcanonical subspace, Q0: the
eigenvalue-0 eigenspace shared by Qtot

1,2,3. This subspace exists only if N is even. The
analogous commuting-charge subspace, C0, is the eigenvalue-0 eigenspace shared by Ctot

1,2,3.
This subspace exists only if N equals a multiple of four (App. C.1.2).

We estimate Page curves numerically using the procedure outlined in Section 4.2 and
using [107]. Here, ⟨SE⟩S denotes the Page curve for a subspace S, and ⟨SE⟩H denotes the
unrestricted Page curve (4.3). To highlight the gap between the noncommuting-charge and
commuting-charge curves, we plot ⟨SE⟩S−⟨SE⟩H for S = Q0, C0 in Fig. 4.2. At all partition
locations NA, the noncommuting-charge Page curve lies above the commuting-charge Page
curve. For example, at the midpoint (NA = N/2), the gap is 0.124 nats (17.8% of the
average of the two Page curves at NA = N/2) when N = 4 and 0.0797 nats (10.5%) when
N = 8. In this microcanonical case, therefore, the subspace constrained by noncommuting
charges has more entanglement, on average.

We posit the following possible explanations for this phenomenon in our setting. First,
the subspace’s dimensionality upper-bounds the entanglement entropy: SE ≤ logDA

[Eq. (4.1)]. The bound tends to approximate random states’ entropies. Hence one might
expect a higher Page curve of whichever model has the larger subspace. Indeed, the
noncommuting-charge subspace is of dimensionality 32, whenN = 4, exceeding the commuting-
charge dimensionality of 24. When N = 8, the noncommuting-charge dimensionality is
3584, again exceeding its commuting-charge analog, 2520. Our analytical results below
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(a) Global-system size N = 4 (b) Global-system size N = 8

Figure 4.2: Page curves constructed from microcanonical subspaces. ⟨SE⟩S denotes
any Page curve restricted by charges; and ⟨SE⟩H, the unrestricted Page curve. The red x’s
form the noncommuting-charge model’s Page curve, and the circular blue markers form the
commuting-charge model’s Page curve. The connecting lines guide the eye. We calculated
the top panel’s (N = 4) Page curves from 104 samples each and the bottom panel’s (N = 8)
Page curves from 103 samples each. The x-axis ends at NA = N/2 for conciseness; the
Page curves are symmetric according to numerics. The error bars are present but are too
small to see.

agree at large N : the noncommuting-charge curve lies above the commuting-charge curve
if approximated with the state-counting term, which depends essentially on subspace di-
mensionality.

We expect this dimensionality argument to explain our results only partially, the Page
curves do not saturate the upper bound (4.1). Hence we posit that, when the compared
subspaces have similar dimensionalities, their minimally entangled bases may help deter-
mine the Page curves’ relative locations. The commuting-charge model’s microcanonical
subspace, C0, has a tensor-product basis. The reason is, every global charge Ctot

α commutes

with all the subsystem charges C
(A)
α′ and C

(B)
α′′ . In contrast, in the noncommuting-charge

model, each global charge Qtot
α fails to commute with some subsystem charges Q

(A)
α′ and

Q
(B)
α′′ . Hence the microcanonical subspace N0 has no tensor-product basis. Therefore,

the minimally entangled basis has more entanglement in the noncommuting-charge model.
Hence one might expect a higher Page curve there. Additionally, in App. C.3, we show
that sequentially introducing charges restricts the Page curve subadditively if the charges
fail to commute, and superadditively if the charges commute, at finite N .

We now analytically calculate the difference between the noncommuting-charge and
commuting-charge Page curves in these microcanonical subspaces at large N . Recall that
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the interference term [Eq. (4.4)] is exponentially small in NB−NA [103]. Consequently, the
state-counting term approximates the Page curve when NB−NA ≫ 1 2. We calculate state-
counting terms in App. C.1, using large-N expansions. We assume that NA, NB = O(N);
the subsystems’ sizes are near their average values. Both subspaces’ Page curves have the
leading, O(N0) term

L := NA log d− 3

2
log

N

NB

+
3NA

2N
. (4.9)

The noncommuting-charge Page curve is

L+
3NA

4N2
+

N2
A

2N2NB

+ O
(
N− 3

2

)
, (4.10)

and the commuting-charge Page curve is 3

L+
3NA

4N2
− N2

A

2N2NB

+ O
(
N− 3

2

)
. (4.11)

The noncommuting-charge Page curve is greater by an amount
N2

A

N2NB
, at leading order.

The difference decreases as N grows. This decline is consistent with the correspondence
principle [63]—as systems grow large, they grow classical. Noncommutation is nonclassical,
so its effects on observable phenomena should diminish as N → ∞ [13]. More precisely, the
charge densities Qtot

α /N have commutators that vanish in the thermodynamic limit [108,
13]: [Qtot

α /N, Qtot
α′ /N ] → 0, for all α and α′, as N → ∞. However, the Page-curve difference

shrinks relatively slowly—as 1/N , rather than exponentially—as N grows.

To be clear, we have posited explanations for the difference we observed in the model’s
Page curve. However, we do not prove that one of these reasons is the cause of the difference
in the entanglement entropy.

4.5 Approximate-microcanonical-subspace comparison

Having compared our two models using microcanonical subspaces, we progress to ap-
proximate microcanonical subspaces, generalizations that accommodate charge noncommu-
tation [13, 46, 45]. Instead of having well-defined values in an approximate microcanonical

2Computational restrictions prevent NB −NA from growing very large in the numerics. Therefore, we
refrain from plotting our analytics in Fig. 4.2.

3In both expressions, the O
(
N− 3

2

)
term may vanish, so the next nonzero term may be O

(
N−2

)
.
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subspace, the charges have fairly well-defined values: measuring any Qtot
α has a high prob-

ability of yielding an outcome close to the expected value. This section outlines how to
construct analogous approximate microcanonical subspaces in the noncommuting-charge
and commuting-charge models. We then compare the models’ Page curves numerically.
The noncommuting-charge Page curve is always higher, as in the microcanonical-subspace
comparison.

One can construct as follows approximate microcanonical subspaces in the noncommuting-
charge model. Define the a-qubit magnetization Ztot

a :=
∑N

j=1 Za, which has eigenvalues

2m. Define the a-type spin-squared operator (S⃗tot
a )2 :=

∑3
a=1(Q

tot
a )2, which has eigenvalues

s(s + 1) (we set ℏ = 1). (S⃗tot
a )2 shares with Ztot

a eigenspaces Q labeled by the quantum

numbers (s,m). Thus, (S⃗tot
a )2 ⊗ 1

tot
b shares with Qtot

3 eigenspaces Q labeled by the quan-
tum numbers (s,m). Some such eigenspaces are approximate microcanonical subspaces, we
find by direct calculation. For each (s,m) value, we calculate the probability distributions
pQα (µ). Each distribution exhibits one peak, as required by the definition of “approximate
microcanonical subspace,” for certain (s,m) (App. C.4). Having identified approximate mi-
crocanonical subspaces defined by noncommuting charges, we construct analogs C defined
by commuting charges. Appendix C.4 details the process. We identify six pairs of paral-
lel (commuting-charge and noncommuting-charge) approximate microcanonical subspaces,
labeled by s = m = 1, N/2, for N = 4, 8, as well as by s = m = N/2, for N = 2, 6.

We estimate each approximate microcanonical subspace’s Page curve numerically. In
every comparison, the noncommuting-charge (Q) Page curve lies above its commuting-
charge (C) partner. An illustrative example is parameterized by N = 8 and s = m = 1.
We compare the two curves at the midpoint NA = N/2. Recall that ⟨SE⟩S denotes a Page
curve for the subspace S. When NA = 4, ⟨SE⟩Q − ⟨SE⟩C = 0.027 nats, which is 7.11%
of the two Page curves’ average. The percent difference varies across the approximate-
microcanonical-subspace pairs from 0.272% to 7.11%. Hence charges’ noncommutation
increases the average entanglement entropy in approximate microcanonical subspaces as
in the microcanonical comparison.

4.6 Summary & Outlook

We have demonstrated that constrained charges’ noncommutation promotes average
entanglement. Numerical and analytical calculations support this conclusion in micro-
canonical and approximate microcanonical subspaces. In the microcanonical comparison,
the Page-curve gap stems from the discrepancy between the subspaces’ dimensionalities.
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This work reveals how one hallmark of quantum theory—operators’ failure to commute—
influences another—entanglement. Due to entanglement’s role in thermalization, our re-
sults are suggestive of how charges’ noncommutation affects quantum many-body thermal-
ization (as discussed more below).

Our conclusions rest on two models that resemble each other closely but differ in
whether their charges commute. Our models can now be used to explore effects of charges’
noncommutation on other quantum phenomena. Possibilities include chaos [109, 66], as
analyzed with out-of-time-ordered correlators [110, 111, 112, 113] and random unitary
circuits [114, 115]; bounds on quantum-simulation errors [116]; and quantum-machine-
learning algorithms’ performances [117].

After publishing rerence [3] we came across other works that concern non-Abelian sym-
metries’ effects on entanglement entropy, but focus less on what charges’ noncommutation
changes and not on normal Page curves. For example, a non-Abelian symmetry raises the
entanglement in Wess–Zumino–Witten models, (1+1)-dimensional conformal field theories
with Lie-group symmetries [118, 119]. Second, holographic calculations highlight another
correction that non-Abelian symmetries introduce into entanglement entropy [120, 121].
This correction appears to be negative. However, [120, 121] concern symmetry-resolved
Page curves, in contrast with the conventional Page curves of [3]. A symmetry-resolved
Page curve models the entanglement, averaged over time, of a system whose charges move
only within A and within B, not between the subsystems. Conventional Page curves
model less-restricted thermalization. Third, algebraic-quantum-field-theory calculations
agree that non-Abelian symmetries should raise Page curves [122].

These works suggest several research opportunities. The entanglement entropy’s in-
crease merits checking with other comparable models à la Fig. 4.1. Additionally, one
might adjust the Page-curve calculations following Marvian’s revelation that local charge-
conserving unitaries constrain global U ’s tightly [59]. Under locality constraints, the Haar
distribution may model chaotic dynamics inaccurately.

Additionally, our results raise a puzzle. We find that charges’ noncommutation pro-
motes entanglement, which accompanies thermalization. This result links noncommuting
charges to enhanced thermalization. In contrast, charges’ noncommutation was found to
restrict thermalizing behaviours in several ways detailed in Section 2.4.1. These results
invite a more general understanding of when non-Abelian symmetries enhance or suppress
entanglement and thermalization.

Apart from the foregoing theoretical opportunities, the difference between commuting-
charge and noncommuting-charge entanglement entropies may be observed experimentally.
For example, at the Page curves’ midpoints (NA = N/2), the difference is 0.124 nats in the
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microcanonical setting for N = 4. A precision of ≈ 0.05 nats should, therefore, suffice to
observe the difference. Such a precision has been achieved with trapped ions [123, 124, 125]
and ultracold atoms [22, 126, 127]. Fortunately, noncommuting-charge thermodynamics
has been shown to be observable on these platforms [2, 46].
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Chapter 5

Noncommuting charges induce a
critical phase in monitored quantum
circuits

This chapter is based on reference [4] and overlaps with its text.

5.1 Introduction

In the preceding chapter, we found that the noncommutation of charges can lead to
increased entanglement. This finding warrants further examination for two primary rea-
sons. Entanglement is necessary to explain how closed quantum systems thermalize lo-
cally. In this sense, we say entanglement accompanies thermalization. However, numerous
studies have suggested that noncommuting charges should impede thermalization (see Sec-
tion 2.4.1). While the findings in Chapter 4 do not technically contradict these studies
due to differences in the set-up, this discrepancy prompts a deeper inquiry. Secondly, our
results were derived from a single model, raising the question of their generality. It is
important to explore more diverse settings to understand the broader implications of non-
commuting charges on entanglement dynamics. Another setting is in monitored quantum
circuits.

Monitored quantum circuits are random unitary circuits augmented with mid-circuit
projective measurements [114, 128, 129]. A typical monitored quantum circuit acts on a
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chain of L qubits. The circuit contains layers of unitary gates applied between nearest-
neighbour qubits. We say two-qubit gates acting on qubits 0-1, 2-3, etc., act on even-bonds,
and others, on odd bonds. These layers alternate between the unitaries applied on the even
and odd bonds, creating a so-called “brick-work” circuit as shown in Fig. 5.1. A unitary
gate can also be applied between the first and Lth qubit during the even-bond layers to
introduce periodic boundary conditions. Between each layer of unitaries, single-site projec-
tive measurements are performed with probability p on each qubit. Since the unitaries are
random, the choice of measurement basis is arbitrary. A hallmark of monitored circuit is
that they exhibit measurement-induced phase transitions due to the competition between
entangling unitaries and disentangling measurements. These transitions have received sig-
nificant attention recently (see the reviews [114, 128, 129] for a survey of the results).
A measurement-induced phase transition is a transition between phases with distinct en-
tanglement scalings: volume-lawindex (scaling as L in 1D) and area-law (constant, L0, in
1D) [99, 100].

In principle, random circuits reduce quantum dynamics to their most fundamental as-
pects: unitarity and locality. This simplification allows for the examination of generic,
model-independent properties of quantum systems. As a result, random circuits have
emerged as a valuable tool for isolating specific properties to analyze their influence on
entanglement dynamics. Monitored circuits, in particular, have been enhanced by incorpo-
rating commuting charge conservation [130, 131, 132, 133, 134, 135], targeted measurements
of specific operators (such as the generators of the toric-code stabilizer) [136, 137], and the
substitution of qubits with free fermions [138, 139, 140, 141, 142, 143]. Introducing a sin-
gle charge, represented as a U(1) symmetry, did not significantly alter the entanglement
dynamics; both volume-law and area-law entanglement persisted. The phase transition
between two entanglement regimes occurred at a smaller value of p (at p ≈ 1/10 instead of
p ≈ 1/6). To further understand the impact of noncommuting charges on entanglement,
we explore monitored quantum circuits that incorporate such charges.

Having numerically constructed monitored circuits with noncommuting charges, it’s
sensible to extend our study to the influence of these charges on other phase transitions.
The entanglement phase transition can equivalently be seen as a purification transition
between a mixed phase and a pure phase [144]. When the measurement rate p is low,
the chaotic dynamics scramble information about the initial state. Local measurements
cannot extract that information in this mixed phase. An initially mixed state becomes
pure, conditionally on measurement outcomes, in a time tP ∼ exp(L), with L the number
of qubits. In contrast, at large p, the measurements can distinguish different initial states
efficiently. In this pure phase, an initially mixed state purifies quickly, often at an L-
independent rate [99]. Furthermore, U(1)-symmetric monitored circuits exhibit a second
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type of phase transition—a charge-sharpening transition [132] between a charge-fuzzy phase
and a charge-sharp phase. In the charge-fuzzy phase, it takes much longer to learn the
global charge from local measurements than in the charge-sharp phase. This is what
distinguishes the two phases.

In this work, we explore monitored-random-circuit dynamics of one-dimensional qubit
chains with SU(2) symmetry. Equivalently, the circuits conserve three noncommuting
charges: the total spin angular momentum’s components. Our main first result is the
identification of a transition from a volume-law entangled phase to a critical phase. We
have three pieces of evidence that support this result. First, we explore the purification
dynamics of a spin chain initially entangled with an ancilla spin. We identify a purification
transition between a mixed phase, in which the ancilla purifies over an exponential-in-
L time, and a critical phase with scale-invariant purification and entanglement growth.
Above a critical measurement rate (at p > pc), we observe an extended-in-p critical phase
in which the purification time scales diffusively: tP ∼ L2. Second, we examine the entan-
glement dynamics undergone by an initially unentangled state. The purification transition
doubles as an entanglement transition between volume-law entanglement scaling, at p < pc,
and subextensive (logarithmic or small-power-law) scaling, at p > pc. The critical entan-
glement dynamics p > pc—even in the measurement-only limit (p = 1)—due to the local
measurements’ noncommuting nature. Finally, we study the mutual information between
sites on opposite ends of the chain. Since the chain has periodic boundary conditions, it
is like a ring, so these qubits are L/2 sites apart. As one approaches a critical point, the
mutual information begins to peak and drops back down as one passes the point. However,
the mutual information will grow and stay large in the critical phase. We observe such
behaviour.

Observing the purification/entanglement transition experimentally would require many
instances of the same set of measurement outcomes. Such instances occur with vanishing
likelihood in the thermodynamic limit. This challenge is the postselection problem. To
evade this difficulty, we explore a “spin-sharpening/learnability” transition. Denote by s
the total spin quantum number. We examine whether the dynamics collapse an initial
superposition of states in different s sectors. Unlike in the U(1)-symmetric problem, the
sectors generally cannot be shared by the (extensive) charges: our system’s three charges,
failing to commute, share only one sector. We identify a spin-sharpening transition at a
measurement rate p = p#, which is numerically indistinguishable from the entanglement-
transition rate: p# ≈ pc. In the “spin-sharp” phase (p > p#), an observer can, in principle,
determine the system’s s in a time scale t ∼ L2, with a probability tending to unity as
L → ∞. In contrast, in the “spin-fuzzy” phase (p < p#), the time scale is t ∼ L3. This
“learning” perspective might be used to probe the transition experimentally.
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Figure 5.1: SU(2)-symmetric monitored quantum circuits. L qubits (circles) are
prepared in the state ρi. Each “brick” in the brickwork circuit is an SU(2)-symmetric
unitary gate with a probability 1 − p and is a two-qubit projective measurement with a
probability p. The circuit acts for some time (some number of layers) before the final state,
ρf , is read out. One brick illustrates which bonds have even (odd) indices.

The rest of this paper is organized as follows. In Section 5.2, we introduce SU(2)-
symmetric monitored quantum circuits. We present the numerics revealing the critical
phase in Section 5.3 and the spin-sharpening transition in Section 5.4. Section 5.5 finishes
with opportunities established by this work.

5.2 SU(2)-symmetric monitored circuits

Consider a brickwork circuit acting on a 1D chain of qubits, as depicted in Fig. 5.1. The
number L of spins is even for convenience. Denote by σ

(x,y,z)
j the Pauli matrices acting on

qubit j. The total spin components S(x,y,z) = 1
2

∑L
j=1 σ

(x,y,z)
j generate the algebra associated

with a global SU(2) symmetry. We set ℏ to 1. The spin-squared operator S⃗2 has eigenvalues
s(s + 1) labelled by the total spin quantum number s. We denote the eigenvalues of S(z)

by m, the two-qubit singlet state by |s0⟩, and the two-qubit eigenvalue-m triplets by |tm⟩.
Each brick is, with a probability 1 − p, a gate, or, with a probability p, a projective

measurement. The gates are chosen randomly from SU(2). The most general such gate
acting on spins j and j + 1, has the form1

cos(ϕ)1− i sin(ϕ) SWAPj,j+1, (5.1)

1This is found by solving for the unitary U which satisfies
[
U, σ

(α)
j + σ

(α)
j+1

]
= 0∀α.
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Figure 5.2: The purification time reveals a z=2 phase. The entropy SA quantifies
the ancilla qubit’s entanglement with the system. We plot log(SA) for clarity, as SA decays
exponentially. t/L2 runs along the x-axis to demonstrate the existence of a phase in which
the system purifies over a time scale tP ∼ L2. The curves’ collapsing at p > 0.35 evidences
this phase. We used 30 000 samples when L = 8 to 16; 10 000 samples when L = 18; and
1 500 samples when L = 20. The y-axis’s lower limit is log(10−3) ≈ −6.91. Additional
numerics for p = 0.6, 0.8, and 1.0 are included in Appendix D.1.

up to an irrelevant overall phase.SWAPj,k swaps the states of the spins j and k. We draw
each gate’s parameter ϕ independently from the uniform distribution on [0, 2π). Each
measurement projects a two-qubit state onto the singlet (s = 0) or triplet (s = 1) subspace.
Crucially, two measurements fail to commute when acting on overlapping spin pairs. One
time step consists of a brick layer on even-index bonds and a layer on odd-index bonds.
In the even-index-bond layers, a brick connects the first and Lth qubits, effecting periodic
boundary conditions.

5.3 Critical phase

We present three pieces of evidence supporting the existence of a critical phase: first,
a purification transition leading to scale-invariant behavior (Section 5.3.1); second, an
entanglement transition from extensive to subextensive scaling (Section 5.3.2); and third,
the growth of correlations with p (Section 5.3.3).

5.3.1 Purification time

We determine the purification time as follows [145]. Denote by |s,m, λ0⟩ and |s,m, λ1⟩
two orthogonal states from the same (s,m) sector. The last index distinguishes degenerate
states. We entangle an ancilla qubit with the system’s L qubits, forming the (L+ 1)-qubit
state

˜|ψi⟩ = 1√
2

(|0⟩A |s,m, λ0⟩ + |1⟩A |s,m, λ1⟩) . (5.2)
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The subscript A distinguishes the ancilla from the system qubits. A does not undergo
gates or measurements.

We choose two system states that have s = 1 and m = 0. In |s = 1,m = 0, λ0⟩, qubits
1 and 2 are in the triplet |t0⟩; and the remaining pairs of qubits, in singlets |s0⟩. In
|s = 1,m = 0, λ1⟩, qubits 3 and 4 are in |t0⟩, instead. These two system states are orthog-

onal, in the same S⃗2 sector, and in the same S(z) sector. However, one can distinguish the
states by measuring qubits 1 and 2. Such local distinguishability is undesirable. Therefore,
after preparing ˜|ψi⟩, we scramble the system: the system undergoes a unitary-only (p = 0)
SU(2)-symmetric circuit for L2 time steps. (The tP identified later in this subsection mo-
tivates the L2.) The scrambling encodes quantum information about the ancilla roughly
uniformly in many-body entanglement. This process prepares |ψi⟩.

|ψi⟩ undergoes t = L2 time steps under monitored-random-circuit dynamics with p ≥ 0.
Denote by ρA := TrĀ(|ψf⟩⟨ψf |) the final state of A. We calculate the final entanglement
entropy between A and the system:

SA := S(ρA) := −Tr[ρA log(ρA)]. (5.3)

(All logarithms are base-e.) We anticipate that the measurements will purify the system at
an exponential-in-t rate: SA ∼ e−t/tP(L). Therefore, we plot log(SA) in Fig. 5.2. Along the
x-axes runs t/L2. At each p > pc ≈ 0.35, the different-L curves collapse. Hence this phase
purifies according to SA ∼ e−t/L2

and so has a dynamical critical exponent z=2. This z-
value characterizes diffusive scaling [146] and suggestively evokes ferromagnetic spin waves’
dynamics [147, Ch. 33]. At lower measurement rates, p ≪ pc, we observe a mixed phase.
Figure 5.3 shows the purification time plotted against L, at several p values. At p = 0.05,
tP ∼ eL.

5.3.2 Entanglement dynamics

To characterize the critical phase further, we explore an initially pure state’s late-time
bipartite entanglement entropy, Sf . The purification transition manifests as a qualitative
change in the L-dependence of Sf at p = pc.

We initialize the system in a short-range-entangled state |ψi⟩, a tensor product of a
triplet |t0⟩ and L−2

2
singlets |s0⟩. This choice’s details are unimportant. However, we choose

this state so that |ψi⟩ is in the same s sector at all system sizes L. The state undergoes
monitored-circuit dynamics for L2 time steps. This time suffices for the entanglement
entropy to reach a steady value, regardless of the measurement rate, p. Figure D.2 in
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Figure 5.3: Qualitative comparison of the purification time’s growth with L at
different p values. For p < pc, the purification time diverges rapidly with system size in
a manner consistent with exponential.

Figure 5.4: The entanglement dynamics evidence no area-law phase. The bipartite
entanglement entropy reaches the long-time value Sf . At p = 0, Sf is linear in L. As p
increases, Sf gradually becomes logarithmic or power-law with a small exponent. When
L = 10 to 16, we use 30 000 samples; when L = 18 and 20, we use 10 000.
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Appendix D.1 illustrates this point at the extreme values p = 0, 1. We measure the
bipartite entanglement entropy, Sf , between two equal-size halves of the chain.

Figure 5.4 shows the dependence of Sf on L at different measurement rates p. At
p = 0, we observe the volume-law phase common to monitored circuits: Sf ∼ L. At
larger p values,2 the entanglement scaling is less consistent with a linear fit. Better fits are
logarithmic and small-power-law (Sf ∼

√
L). Figure 5.5 presents three fittings [L, log(L),

and
√
L] at each of three measurement rates (p = 0, p = 1, and p ≈ pc). At p = 0.35 ≈ pc,

it is unclear which fit is most accurate. However, the two nonlinear fits are visibly best.
The p = 1 fits resemble the p = 0.35 ones. One cannot definitively distinguish these
behaviors at the accessible system sizes.

A skeptic may say that the lack of area-law phase comes from the measurements being
on pairs of sites and not from the non-Abelian symmetry. However, monitored quantum
circuits with two-site measurements have been studied and do have an area-law [136].

5.3.3 Mutual information

We added to our characterization of the critical phase by studying mutual information.
To introduce the mutual information, we consider a quantum system in a state |ψ⟩. Let
A and B denote subsystems. The reduced state of A is ρA := trĀ(|ψ⟩⟨ψ|). The reduced
states of B and AB are defined analogously. The mutual information between A and B is

I(A : B) := S(ρA) + S(ρB) − S(ρAB). (5.4)

The mutual information upper-bounds equal-time correlators between local operators act-
ing nontrivially on A alone and on B alone [148]. We denote by I

(1)
j,k the mutual information

between sites j and k.

We denote by I
(2)
j,k the mutual information between the pair (j, j + 1) and the pair

(k, k + 1). If p is a critcal point, we expect the mutual information versus to grow as it
approaches p, peak, and then rapidly decrease. However, as we see in Fig. 5.6a, the mutual
information continues to grow with p. This reinforces our result that the system is in a
critical phase.

I
(2)
j,k decays with the distance |j − k| at all p > 0. For particular sites j and k, I

(2)
j,k

may depend on p nonmonotonically. However, the asymptotic decay rate monotonically

2According to [144], the entanglement phase transition is equivalent to the purification transition. Our
system’s purification transition happens at pc ≈ 0.35, according to the previous subsection. This section’s
numerics are consistent with an entanglement transition at p ≈ 0.35, since the transition’s exact location
is somewhere slightly above p = 0.25.
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Figure 5.5: Long-time bipartite entanglement entropy vs. system size. At p = 0,
Sf ∼ L, signaling a volume law. At p = 1, the entropy scales logarithmically or as a small
power law: Sf ∼ log(L), or Sf ∼

√
L.
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Figure 5.6: Mutual information at antipodal sites. We call sites 1 and L/2 antipo-

dal. (a) log
(
I
(2)
1,L/2

)
is plotted against log(L) at several L values. Using the fit function

log
(
I
(2)
1,L/2

)
= a log(L) + b, we identify the critical exponent a in I

(2)
1,L/2 ∼ La. (b) Plotting

a against p, we find that I
(2)
1,L/2 decays as a power law in both phases, where a seems to be

drifting.

decreases as p decreases. To explore this decay rate, we examine the mutual information
between antipodal pairs of sites: I

(2)
1,L/2 (Fig. 5.6a). Given the limitations on system size,

we cannot convincingly determine the asymptotic decay’s functional form. A power-law
decay fits the data reasonably well (Fig. 5.6b). The fitted power a gradually decreases
with p. Furthermore, a changes qualitatively around pc = 0.35—from changing quickly
with p, at p < pc, to drifting slowly near −2, at p > pc. Given the small range of system
sizes available, exponential decay fits the data reasonably well, too; we cannot rule out this
behavior. Yet, given the other critical scaling behavior at p > pc, we expect that power-
law decay to be more natural in this regime. The data also prohibit confident distinction
between (i) one power at p > pc, with drifts in the fitted exponent, due to finite-size
corrections, and (ii) continuously evolving power laws (as would arise in, say, a Luttinger
liquid).

5.4 Spin-sharpening transition

Having explored the purification dynamics within an s sector, we explore the purifi-
cation of a superposition spread across s sectors. We again entangle the chain with an
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ancilla qubit. This time, the ancilla is in |0⟩, and the chain has a spin quantum number s0,
in superposition with the ancilla’s being in |1⟩ and the chain’s having s1. The dynamics
may purify the ancilla in a given measurement trajectory. In this case, the chain’s state
has collapsed onto the s0 (or s1) sector. Consequently, the measurement outcomes’ proba-
bility of being compatible with the system’s having s1 (or s0) vanishes. An observer with
knowledge of the circuit can learn the spin quantum number by monitoring measurement
outcomes (though doing so may require the ability to classically simulate the circuit with
post-selected measurement outcomes). To be clear, the circuit looks exactly like the one
in Fig. 5.1 but with a different initial state. The initial state consists of L+ 1 qubits, L of
which evolve as shown in Fig. 5.1 and 1, which is untouched until the end of the circuit.
At the end, the ancilla’s entanglement entropy is measured.

Comparing spin sharpening with U(1)-charge sharpening is illuminating. One can es-
timate as follows the total charge of qubits undergoing a U(1)-symmetric hybrid circuit:
running the circuit, one obtains ptL measurement outcomes (0s and 1s), on average. Con-
sider averaging the outcomes, multiplying by L, and rounding to the nearest integer. If
t ∼ L, this procedure estimates the charge accurately [149]. If the dynamics are SU(2)-
symmetric on average (as in Section 5.2), sequential measurements fail to commute. Hence
later measurements render partially irrelevant the information obtained from earlier mea-
surements. An observer cannot obviously learn s ever. Nevertheless, we numerically iden-
tify a measurement-induced transition at a measurement rate p#. We call this transition
a spin-sharpening transition. It separates regimes in which an observer can (p > p#) and
cannot (p < p#) identify s from the measurement outcomes, with a probability tending to
unity as the L→ ∞.

We diagnose the spin-sharpening transition using a similar procedure to the one in
Section 5.3.1. The difference is that, unlike in Eq. (5.2), we construct ˜|ψi⟩ from distinct S⃗2

eigenspaces:
˜|ψi⟩ = 1√

2
(|0⟩A |s0,m, λ0⟩ + |1⟩A |s1,m, λ1⟩) . (5.5)

We choose m = 0, s0 = 1, and s1 = 0 for convenience: one can construct such a ˜|ψi⟩
by tensoring together singlets and an m = 0 triplet, regardless of L. After preparing
˜|ψi⟩, we scramble the system under a p=0 circuit for L2 time steps, as in Section 5.3.1.

This procedure prepares a state |ψi⟩. Then, we evolve the system under monitored-circuit
dynamics with a fixed p. Anticipating z=2 dynamical scaling in the spin-sharp phase, we
evolve the system for L2 time steps. If the ancilla purifies after this short time, we say that
the spin has sharpened. We denote the final state by |ψf⟩.

Figure 5.7a shows the ancilla’s final entanglement entropy, SA, plotted against p. Differ-
ent curves correspond to different system sizes L. The curves cross at p# ≈ 0.28, suggesting
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Figure 5.7: Evidence of spin-sharpening transition. The entropy SA quantifies the
ancilla qubit’s entanglement with the system. Different curves correspond to different
system sizes L. (a) The curves’ crossing at p ≈ 0.28 indicates a phase transition. (b) We
identify a finite-size collapse using ν = 3.0 and p# = 0.28.

that a spin-sharpening transition occurs at p#. Furthermore, Fig. 5.7b displays a finite-size
collapse. We used the scaling form log(SA) = (p−p#)L1/ν , the correlation-length exponent
ν = 3.0, and p# = 0.28. Using ν = 3.0, we observe a suitable collapse. ν values within
±1.2 of 3.0 yield reasonable collapses, too.

Figure 5.8 reveals the phases’ spin-sharpening time scales: ∼ L2 in the spin-sharp
phase and ∼ L3 in the spin-fuzzy phase. A simple argument supports the latter [150]: |ψi⟩
corresponds to an eigenvalue s(s + 1) ∈ {1, 2} of S⃗2 =

∑
j,k σ⃗j · σ⃗k. The system contains

∼ L2 pairs (j, k). One might expect all pairs to contribute roughly equally to ⟨S⃗2⟩, by
ergodicity, in the spin-fuzzy phase. Hence ⟨σ⃗j · σ⃗k⟩ ∼ s(s + 1)/L2. To identify s(s + 1),
we therefore must measure L2 correlators ⟨σ⃗j · σ⃗k⟩. Measuring one correlator with an
imprecision ∼ 1/L requires ∼ L2 measurements. We hence need ∼ L4 measurements total.
Since (const.)L measurements occur per time step, the spin should sharpen in a time ∼ L3.

Our identification of a spin-sharpening transition at p# is subject to at least two caveats.
First, the crossing point drifts to larger p as L increases (perhaps coalescing with the
purification transition at pc as L → ∞). Second, the scaling ansatz we chose for the data
collapse in Fig. 5.7b may not be valid. The ansatz implies that the time scale for a size-L
system to sharpen increases more quickly than L2 for p < p# and more slowly than L2 for
p > p#. However, our data for p > p# (see Fig. D.3 in Appendix D.1) is compatible with a
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Figure 5.8: The spin-sharpening time scale is ∼ L3 in the fuzzy phase and ∼ L2

in the sharp phase. The entropy SA quantifies the ancilla qubit’s entanglement with the
system. Different curves correspond to different system sizes L. (a) t/L3 runs along the
x-axis to demonstrate that the spin can sharpen over a time scale ∼ L3. This time scale
characterizes the spin-fuzzy phase (p < p#). Simulating an L=18 circuit over L3 time steps
is not computationally feasible. Thus no L = 18 curve is present. (b) t/L2 runs along the
x-axis to demonstrate that the spin can sharpen over a time scale ∼ L2. This time scale
characterizes the spin-sharp phase (p > p#). We used 30 000 samples when L = 8 to 16;
and 10 000 samples when L = 18.
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sharpening time scale ∼ L2 deep in the critical phase. If the sharpening time indeed scales
as L2 throughout the critical phase, the crossing in Fig. 5.7a must be a finite-size artifact.
Precisely identifying p# and the sharpening transition’s nature is outside the scope of this
work, due to the paucity of L values accessible in exact computations. We defer a detailed
analysis of the spin-sharpening time scales to future work.

Finally, the spin-sharpening transition suggests a means of observing a measurement-
induced transition experimentally that mitigates the postselection-problem [149, 151, 152,
153]: identify whether an observer can learn s from measurement outcomes in a given
time interval. This learning would require “decoders” for estimating s from the outcomes.
The decoders’ accuracy, as a function of the measurement rate, would need to be tested.
In principle, one can learn s most accurately via brute-force decoding [149]. One would,
upon running the circuit and obtaining the measurement outcomes, simulate the circuit,
postselected on the observed outcomes and operating on a state in the s0 sector. Next, the
simulation would be repeated with an initial state in the s1 sector. From each simulation,
the probability that s0 (or s1) had engendered the observed outcomes could be inferred.

However, this approach generically costs exponential-in-L time (even if a quantum
computer performs the simulation, due to the postselection). Special classes of monitored
dynamics [149, 151, 152, 153] may allow for approximate decoders that can be implemented
efficiently on classical or quantum computers without postselection. In this case, the
transition’s nature will depend on both the circuit and the decoder and may differ, in
location or universality class, from the spin-sharpening transition observed under optimal
decoding. We leave for future work the problem of designing efficient decoders for spin-
sharpening transitions.

5.5 Summary & Outlook

We studied the dynamics of monitored random circuits with SU(2) symmetry, i.e., with
three noncommuting charges: the total spin angular momentum’s components. First, we
numerically discovered a purification transition between a mixed phase (at p < pc ≈ 0.35)
and a critical phase (at p > pc). In the critical phase, the purification time scales as tP ∼ L2.
The purification transition doubles as an entanglement transition, which separates volume-
law (at p < pc) and subextensive (logarithmic or small-power-law, at p > pc) entanglement
scalings. Even in the measurement-only limit (at p = 1), the symmetry’s non-Abelian
nature enables nontrivial entanglement scaling. Furthermore, we found the systems mutual
information continues to grow past pc. All of this together is clear evidence of a critical
phase.
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Additionally, we observed a spin-sharpening transition across which there is a para-
metric change in the time at which one can (in principle) learn the system’s total spin by
monitoring measurements. The time scale is t ∼ L2 in the “spin-sharp” phase and t ∼ L3

in the “spin-fuzzy” phase.

Our results open opportunities for future work. One is to understand the purifica-
tion/entanglement and sharpening transitions analytically. Second, our system offers a
playground for numerically exploring the recent result that non-Abelian symmetries con-
strain local unitary circuits more than Abelian symmetries do and so may constrain chaos
more [59, 60, 61, 62]. Third, efficient classical and quantum spin-sharpening decoders merit
exploration. Finally, consider again the postselection problem. Measuring the final state
of the qubits will always require multiple runs of the experiment. However, to observe a
measurement-induced phase transition, one also requires that the measurement outcomes
be the same in multiple runs. The likelihood of this happening is exponentially small in the
number of measurements. This is the postselection problem. However, one might leverage
spin sharpening to avoid this problem (Section 5.1). This is because the spin sharpening
tradition seems to coincide with the entanglement transition in the SU(2) case. Thus,
one can distinguish the two phases by asking—How efficiently could the experimenter, in
one trial, determine the global charge from local measurement? The thermodynamics of
noncommuting charges have already been observed experimentally with trapped ions [46].
Superconducting qubits, quantum dots, and spinful fermionic atoms are natural candidates,
too [45, 2].
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Chapter 6

Noncommuting charges remove
non-thermalizing local observables

This chapter is based on reference [5] and overlaps with its text.

6.1 Introduction

Since publishing the previous chapter of my thesis, the conceptual puzzle we highlighted–
noncommuting charges seem to promote and hinder thermalization simultaneously–has be-
come a topic of broad interest [47, 55, 154, 155, 156, 157, 158, 159, 160]. This paradox
serves as the driving force for this final chapter. While prior studies have indirectly sug-
gested a dual role for noncommuting charges in thermalization, this chapter intends to
confront the question more directly.

What would it mean for noncommuting charges to hinder thermalization? Quantum
systems thermalize according to the ETH (Section 2.3), i.e., by having the expectation
value of local observables ⟨Oi(t)⟩ stop changing in time and settle on the thermal expec-
tation value. We posit then that if noncommuting charges hinder thermalization, they
must stop such a process from occurring —i.e., they must lead to ⟨Oi(t)⟩ experiencing
non-thermalizing dynamics. Thus, to help resolve this puzzle, we connect noncommuting
charges and conditions that lead to violations of the ETH. Buča et al. [161] proposed a
set of conditions wherein if an operator A satisfies [H,A] = λA with λ ∈ R and λ ̸= 0,
then any local operator Oi overlapping with A (i.e., tr[OiA] ̸= 0) will not thermalize,
displaying non-thermalizing dynamics in violation of the ETH [161]. These operators, A,
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Figure 6.1: Introducing charges into systems with existing dynamical symme-
tries. A system with commuting charges {Qα} possesses paired dynamical symmetries
{A±α}. Modifying the system’s Hamiltonian to conserve noncommuting charges {Qβ} rel-
ative to {Qα} will result in the loss of some or all dynamical symmetries {A±α}. Conversely,
a different modification that introduces new commuting charges will bring associated dy-
namical symmetries. These new charges have no algebraic relationship with the initial
charges, suggesting an increase in the system’s dynamical symmetries.

are referred to as dynamical symmetries’ [161, 162, 163, 164] or spectrum generating alge-
bras’ [165].1 Dynamical symmetries represent a departure from the conventional definition
of ‘symmetry’ as an invariance under a transformation. Therefore, Noether’s theorem does
not directly establish the link between dynamical symmetries and charges. These sym-
metries prevent a quantum many-body system from reaching a stationary state, affecting
both open [161, 168, 169] and closed [162] quantum systems. Dynamical symmetries can
be responsible for the non-thermalizing dynamics observed in systems such as quantum
time crystals [162], OTO crystals [170], and quantum attractors [171].

Our first result is a correlation between charges and dynamical symmetries. We es-
tablish that a corresponding charge exists for each pair of dynamical symmetries, and we
detail the method for deriving this charge from the dynamical symmetries. Additionally,
we confirm that this reciprocal relationship extends to a wide range of charges and Hamil-
tonians. This correlation illustrates that even a single charge can cause a violation of the

1The terms ‘dynamical symmetry’ and ‘spectrum generating algebra’ encompass a range of related
concepts [166, 167]. In this paper, we specifically refer to the condition previously stated.
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ETH. Using this framework, we show that introducing a new charge to a system can en-
hance or disrupt its non-thermalizing dynamics. Specifically, if the new charge commutes
with the existing ones, it will preserve the current dynamical symmetries and introduce
new ones. Conversely, if the new charge does not commute, it will reduce the number of
dynamical symmetries. Figure 6.1 encapsulates these findings. Our analyses reveal a fun-
damental tension between noncommuting charges and dynamical symmetries and highlight
that introducing additional conservation laws can drive a system toward thermalization.

Dynamical symmetries are also linked to quantum scars, a class of eigenstates that do
not thermalize [172, 173, 174, 175]. Ref.[176] describes creating Hamiltonians with quantum
scars by altering a non-Abelian symmetric Hamiltonian with a dynamical symmetry-based
term. Our research contrasts this by examining how noncommuting and commuting charges
affect various systems’ dynamical symmetries and establishing a related correspondence.
Unlike the quantum scar focus, our analysis targets local observables and can naturally
extend beyond Hamiltonians to Lindbladians since noncommuting charges and dynamical
symmetries are relevant in both closed and open systems [65, 161, 168, 169]. Future
connections are explored in the Outlook (Chapter 7).

The rest of this chapter is structured as follows: Section 6.2 reviews the ETH, dy-
namical symmetries, and noncommuting charges. Section 6.3 introduces our first main
result, detailing the correspondence between dynamical symmetries and charges. Section
6.4 discusses our second result, which shows how introducing a new charge to a system af-
fects its non-thermalizing dynamics, contingent on the commutation with existing charges,
illustrated through various examples. We summarize our results in 6.5.

6.2 Dynamical symmetries

We previously introduced the ETH in Section 2.3. Systems with dynamical symmetries
violate the ETH [161, 163]. Dynamical symmetries can, for example, lead Heisenberg XXZ
spin-chains to behave as quantum time crystals [162] and spin lace systems to behave
as quantum many-body attractors [171]. We denote a dynamical symmetry by a non-
Hermitian operator A, such that

[H,A] = λA, (6.1)

where λ is a real and non-zero constant. We assume that A is extensive, by restricting
it to have the form A =

∑N
j=1 Ã

(j), where Ã(j) is an operator that acts non-trivially on 1
site and as the identity on all other sites. Furthermore, for every dynamical symmetry A,
there exists another A†,

[
H,A†] = −λA†. Thus, dynamical symmetries always come in
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pairs. A system can have multiple pairs of dynamical symmetries. In that case, we add
subscripts as follows [H,Aβ] = λβAβ. Furthermore, we define A+β := Aβ and A−β := A†

β.
The expectation value of an observable O that overlaps with one dynamical symmetry,
tr[AO] ̸= 0, will continue to change over time.

6.3 Correspondence between charges and dynamical

symmetries

In this section, we present a correspondence between the existence of charges and
dynamical symmetries. This correspondence is in the form of two theorems. One theorem
identifies a charge from pairs of dynamical symmetries. The other theorem identifies a pair
of dynamical symmetries from charges. We first prove this correspondence (Section 6.3.1)
before illustrating it using the Hubbard model (Section 6.3.2).

6.3.1 Correspondence

We introduced the necessary background in Lie Algebra theory in Section 3.2.2. As
outlined there, we denote by g a finite-dimensional semisimple complex Lie algebra. From
this point onward, we denote by h a Cartan subalgebra of a g. Furthermore, for this
chapter, we use the notation X±β to denote the root vectors. This chapter’s results apply
to all sets of charges {Qα} that can be partitioned into subsets such that each subset
generates a g or a h. Note that this includes all sets {Qα} that generate a g and all sets
{Qα} that generate a h, even if they may not generate a full g. This is a wide class that
includes, for example, everything in the Standard Model of physics and the charges of the
Hubbard, Ising, and Heisenberg models.

We highlight additional features of root vectors which are important to this work. For
all root vectors [X+β, X−β] ∈ h (Proposition 7.17 of Ref. [177]). X±β can always be chosen

such that X+β = X†
−β (p. 273 of Ref. [178]). It follows then that

([Xβ, X−β])† = [Xβ, X−β] (6.2)

and that
[X+β, [H, X−β]] = ([X−β, [H, X+β]])† (6.3)

where H is any Hermitian operator.
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Theorem 2. For every pair of dynamical symmetries A±β that a Hamiltonian has, there
exists a charge Qβ = [A+β, A−β].

Proof. For Qβ to be a charge, it must be conserved by the Hamiltonian, a Hermitian
operator, and extensive. Using the Jacobi identity, Eq. (6.2), and Eq. (6.3), we find that

[H, [A+β, A−β]] = [A+β, [H,A−β]] − [A−β, [H,A+β]] (6.4)

= −λβ ([A+β, A−β] + [A−β, A+β]) (6.5)

= 0. (6.6)

Thus, the Hamiltonian conserves Qβ. For Qβ to be a charge, it must also be Hermitian,
which it is

Q†
β =

(
AβA

†
β − A†

βAβ

)†
(6.7)

=
(
AβA

†
β − A†

βAβ

)
= Qβ. (6.8)

Finally, recall that we are studying dynamical symmetries, which are k = 1 local, meaning
they are sums over operators acting on single sites of the lattice. Thus, all Qβ = [A+β, A−β]
will also be 1-local and are charges by our definition.

We say a set of dynamical symmetries ‘produces’ a set of charges {Qβ} when the span
of {Qβ} equals the span of the set of charges found using Theorem 2.

Theorem 3. For every set of charges {Qα} that form a h of g, there exists a Hamiltonian
H conserving those charges such that the root vectors that complete the Lie algebra are
dynamical symmetries of H.

Proof. Consider a Hamiltonian of the form H = Hg+
∑

α cαQα, where Hg is a Hamiltonian
that commutes with all charges that generate g and cα are constants. The charges that
generate g form a basis for the algebra [2]. Since the root vectors can be written in this
basis, [Hg, X±β] = 0. For any charge and root vector [Qα, X±β] = β(α)X±β. It follows
then that X±β are dynamical symmetries:

[H,X±β] =
∑
α

cα[Qα, X±β] =
(∑

α

cαβ(α)
)
X±β. (6.9)
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We say a set of charges ‘produces’ a set of dynamical symmetries {A±β}, when {A±β}
equals one set of dynamical symmetries that can be found using Theorem 3.

Theorem 3 is for a set of charges that form a h of g. Any set of charges that generate a g
can be partitioned into c

r
sets of mutually commuting charges [2], where c is the dimension

of the algebra and r is the rank. Thus, through the repeated application of Thm. 3, this
theorem can be used to study charges that generate g.

6.3.2 Illustration using the Hubbard model

A simple setting to illustrate this correspondence is the Hubbard model. We choose
this model for various reasons. First, it has been shown to demonstrate non-thermalizing
behaviour emerging from dynamical symmetries and the forms of the charges and dynam-
ical symmetries are known [161]. Additionally, its two commuting charges form separate
h’s, illustrating the effect commuting charges have on dynamical symmetries. Finally, it is
a physically important model—the prototypical model of strongly correlated materials.

Consider a chain of N fermions. Denote by c
(j)†
σ and c

(j)
σ the creation and annihilation

operators for a fermion of spin σ at lattice site j, σ ∈ {↑, ↓}. Denote by n
(j)
σ := c

(j)†
σ c

(j)
σ

the number operator for fermions of spin σ at lattice site j. The 1D Hubbard model’s
Hamiltonian can be written as [179]

H =
N−1∑
j=1

∑
σ=↑,↓

−t
(
c(j)†σ c(j+1)

σ + c(j+1)†
σ c(j)σ

)
+ Un

(j)
↑ n

(j)
↓ − µ

(
n
(j)
↑ + n

(j)
↓

)
+
B

2

(
n
(j)
↑ − n

(j)
↓

)
,

(6.10)

where t is the hopping amplitude, U is the on-site Coulomb interaction, µ is the chemical
potential, and B is the strength of a constant external magnetic field. The first term is
proportional to the kinetic energy of electrons hopping between neighbouring sites. The
second term describes the Coulomb repulsion between two electrons on the same site. The
third term adjusts the total number of electrons in the system. The fourth term splits the
energy levels of the up-spin and down-spin electrons.

The Hubbard model has two pairs of dynamical symmetries [161]. The first pair are

Stot
+z =

L∑
j=1

c
(j)†
↑ c

(j)
↓ and Stot

−z =
L∑

j=1

c
(j)†
↓ c

(j)
↑ , (6.11)
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and the second pair are

ηtot+z =
N∑
j=1

(−1)jc
(j)†
↑ c

(j)†
↓ and ηtot−z =

L∑
j=1

(−1)jc
(j)
↓ c

(j)
↑ . (6.12)

Using theorem 2, we identify two charges:

[
Stot
+z , S

tot
−z

]
= Stot

z =
L∑

j=1

(
n
(j)
↑ − n

(j)
↓

)
, and (6.13)

[
ηtot+z , η

tot
−z

]
= ηtotz =

L∑
j=1

(n
(j)
↑ + n

(j)
↓ − 1). (6.14)

These charges are the two known charges of the system. Stot
z is the total spin along the z-

axis and ηtotz is a component of the pseduo-spin [180]. The pseudo-spin symmetry reflects
the symmetry of the Hubbard model with respect to η-pairing states. η-pairing states
are many-body states where electrons pair up with opposite spins and opposite momenta.
The conservation of pseudo-spin quantities suggests that the Hubbard model possesses an
inherent symmetry that protects these paired states, making them stable and energetically
favourable under certain conditions.

Starting from the charges, we can also identify the dynamical symmetries using theorem
3. When B = 0 and µ = 0, the Hubbard Hamiltonian contains two sets of charges that
generate su(2) [181]. For B ̸= 0 and µ ̸= 0, the Hubbard model has two sets of charges that
generate Cartan subalgebras of su(2). Each charge, Stot

z and ηtotz , is an element in one of
these algebras. We can use these Cartan subalgebras to complete a Cartan-Weyl basis for
su(2). Doing so, we find two sets of generators {Stot

z , Stot
+z , S

tot
−z} and {ηtotz , ηtot+z , η

tot
−z}. This

demonstrates how Cartan-Weyl bases can be used to identify the dynamical symmetries
from the charges.

6.4 Noncommuting charges’ effect on dynamical sym-

metries

In this section, we consider the following setting. We begin with a system that has a
set of charges {Qα} that, according to theorem 3, produce dynamical symmetries {A±α′}.
This system experiences non-thermalizing dynamics in all observables O that overlap with
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any elements in {A±α′}. We then introduce one or more charges into the system. This in-
troduction of charge(s) can either add to or disrupt its existing non-thermalizing dynamics.
The Hubbard model illustrates that in systems with commuting charges, the dynamical
symmetries of each charge can coexist. This section will present another example with
commuting charges and two examples with noncommuting charges. A summary of this
section’s results is presented in Fig. 6.1.

First, to be mathematically rigorous, we formalize our procedure for introducing charges
in Section 6.4.1. Our procedure highlights why there is a difference in the commuting and
noncommuting charge cases. In Section 6.4.2, we illustrate this procedure using charges
that generates a Cartan subalgebra of su(2) and to charges that generate su(2). We do
the same analysis in Section 6.4.3 for the su(3) algebra. These sections further demon-
strate the difference in introducing commuting and noncommuting charges. We conclude
by presenting Hamiltonians in Section 6.4.4 that can be used to explore the distinction
between commuting and noncommuting charges. This connection links our findings with
experimental tests and related research on quantum scars.

6.4.1 Procedure

Consider a system with a set of charges {Qα} that can be partitioned into subsets such
that each subset generates a h or a g. In the earlier Hubbard model example, we had two
subsets that each generate a h (Stot

z and ηtotz ). We want a procedure to identify a system’s
dynamical symmetries from these charges. Below is a procedure for doing so for one of the
subsets.

1. Partition the system’s charges into n
r

sets of mutually commuting charges, where n
is the number of generators in a basis for h or g.

2. Select any one of h’s identified in step 1.

3. Construct a Cartan-Weyl basis by adding to h c−r
2

pairs of root vectors, X±β.

4. According to Theorem 3, these pairs of root vectors are dynamical symmetries. We
add them to our list of the system’s potential dynamical symmetries, A±β := X±β.
The values of λβ can be determined in two ways. One is that they are equal to the
roots of g relative to h for a given charge Q′

α ∈ h′. Thus, one can solve for β(h) and
set λβ equal to that. Alternatively, one can explicitly solve for [H,Aβ] = λβAβ. The
specific g will determine which is simpler to do.
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5. Select a different one of the sets of charges identified in step 1, if one exists. Verify
whether including the new charges removes any of the dynamical symmetries found
earlier.

6. Repeat steps 3 to 5 until no further Cartan subalgebras remain.

One can then repeat this procedure for different h or a g.

The procedure can naturally be reversed using Theorem 2, where one identifies a charge
from each pair of dynamical symmetries. The reverse procedure uses c

r
(c − r) dynamical

symmetries to identify c
2r

(c−r) charges. This is because the charges identified in the reverse
procedure are generally not linearly independent. The linear independence of charges Qα

generating a Lie algebra g can be assessed by computing the Killing forms between all
pairs of Qα. The Killing form, introduction in Sec. 3.2.2 is

(x, y) := tr(adx · ady) (6.15)

where adx is the image of x under the adjoint representation of g.

These charges are linearly independent if all the Killing forms are 0 [2]. However,
from a linearly dependent set of charges, one can easily form a linearly independent set by
summing over different charges.

In our framework, charges can commute in two ways. First, they may be components
of distinct algebras, as exemplified by the Hubbard model. Alternatively, they can belong
to the same Cartan subalgebra, denoted by h, which will be illustrated with the su(3)
example. In this scenario, the procedure adds dynamical symmetries for the charges at
Step 4. It is important to note that root vectors are associated with specific charges, as
indicated in Eq. (3.3). We could deconstruct this step by sequentially adding the dynamical
symmetries for each of the charges within h. Doing so would highlight that introducing a
new charge preserves the dynamical symmetries established by the preceding charges.

Charges noncommutation enters the picture in step 5. If the charges generate a g, there
is the possibility that the full set of charges does not commute. The Cartan-Weyl basis is
a basis for g. The charges also form a basis for g. Thus, the elements of the Cartan-Weyl
basis can be written in the basis of the charges, i.e., the dynamical symmetries can be
written as a linear combination of charges. Thus, if the Hamiltonian commutes with more
noncommuting charges, it will commute with more dynamical symmetries. This is why
introducing noncommuting charges leads to removing existing dynamical symmetries.
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6.4.2 Illustration using su(2)

First, we consider charges represented by su(2). {σx, σy, σz} are the usual Pauli opera-

tors. Consider again a system of N sites. We denote by σ
(j)
α a Pauli operator acting on the

jth site. We define the operators Stot
α :=

∑N
j=1 σ

(j)
α . If we were studying the full algebra,

we would have three charges that are the components of the spin-1
2

angular momentum.

First, we will consider having a single Cartan subalgebra and return to the full algebra
later. The system has c = 3 and r = 1. Thus, its maximal Abelian subalgebra will have
one element. To be concrete, we choose this element to be Stot

z . Next, we complete the
Cartan-Weyl basis by identifying the root vectors of the algebra, which are

Stot
±z =

N∑
j=1

1
⊗(j−1) ⊗ S

(j)
±z ⊗ 1

⊗(N−j) ≡
N∑
j=1

S
(j)
±z (6.16)

where S±z = 1
2
(σx ± iσy). Starting from the system’s charge, we identified two dynamical

symmetries. Like with the Hubbard model, it is straightforward to reverse this procedure.
Doing so, we check that [S+z, S−z] = Sz, and thus

[
Stot
+z , S

tot
−z

]
= Stot

z .

The system described above has one charge and one pair of dynamical symmetries. We
now aim to introduce another charge that does not commute with the existing one, such
as Stot

x . However, a Hamiltonian that conserves two su(2) charges will necessarily conserve
all three [2]. Thus, we introduce two additional charges into the system, thereby applying
the procedure from Sec. 6.4.1 for su(2). The first round of steps 1 to 4 for finding the
dynamical symmetries of the full su(2) is equivalent to finding the dynamical symmetries
of one Cartan subalgebra of su(2). To complete su(2), we include Stot

x and Stot
y as charges.

Say we did not check whether these new charges remove earlier dynamical symmetries
in step 5. We would then choose one of these two charges and repeat steps 1 to 4. Doing so
we would find the dynamical symmetries Stot

±α =
∑N

j=1 S
(j)
±α for α = x and y, where S±x =

1
2
(σz ∓ iσy) and S±y = 1

2
(σz ± iσx). It is straightforward to check that

[
Stot
+x, S

tot
−x

]
= Stot

x

and
[
Stot
+y , S

tot
−y

]
= Stot

y . If we did these steps for both additional charges, we would have
identified c

r
(c− r) = 6 dynamical symmetries. However, we find a different story when we

check whether the additional charge removes any of the previous dynamical symmetries
(see step 5). Introducing the charges means that the Hamiltonian now commutes with
Stot
±x and Stot

±y , and thus also commutes with Stot
±z . Together, the three conservation laws

eliminate all six dynamical symmetries we listed above. When the system had one charge
of su(2), it had two dynamical symmetries. Now that the system has three charges of su(2)
it has no dynamical symmetries. This example contrasts with the Hubbard model, where
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the dynamical symmetries of Stot
±z could coexist with that of another charge that commutes

with Stot
±z .

6.4.3 Illustration using su(3)

To demonstrate the second way charges can commute in our construction—from being
part of the same Cartan subalgebra—we turn to su(3). su(3) has dimension c = 8 and rank
r = 2. Thus, our system has eight charges that we can partition c

r
= 4 sets of mutually

commuting charges. These sets generate Cartan subalgebras. The eight charges of su(3)
can be represented by the Gell–Mann matrices [82], τi for i = 1 to 8.

We begin with one Cartan sublagebra of su(3). For example, take the Cartan subalgebra
with τ3 and τ8. In the three-dimensional representation of su(3), these operators can be
represented with

τ3 =

1 0 0
0 −1 0
0 0 0

 and τ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (6.17)

As before, our charges will be sums over these operators on each site, Q1 =
∑N

j=1 τ
(j)
3

and Q2 =
∑N

j=1 τ
(j)
9 . Using this Cartan subalgebra, we construct a Cartan-Weyl basis.

This requires identifying c−r
2

= 3 pairs of root vectors. We define the following operators,
A+1 := τ1 + iτ2, A+2 := τ4 + iτ5, and A+3 := τ6 + iτ7. These operators and their Hermitian
conjugates are the root vectors. As we did in the previous example, we can construct
the dynamical symmetries by taking sums over the operators on each site in our chain,
Atot

±β :=
∑N

j=1A
(j)
±β. Thus, we have again found the dynamical symmetries from the charges.

We could reverse this procedure to find the charges generated by these dynamical
symmetries. We do this explicitly to point out an effect not observed in the su(2) cases.
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We identify the operators,

Q1 = c1[A+1, A−1] =
1√
2

1 0 0
0 −1 0
0 0 0

 , (6.18)

Q2̃ = c2[A+2, A−2] =
1√
2

1 0 0
0 0 0
0 0 −1

 , and (6.19)

Q3̃ = c3[A+3, A−3] =
1√
2

0 0 0
0 1 0
0 0 −1

 . (6.20)

Note that they are not linearly independent since not all of the Killing forms between all
pairs are zero. The Killing form, Eq. (6.15) reduces to 2ntr(XY ) for su(n). We have
then that (Q1, Q2̃) = 3, (Q1, Q3̃) = −3, and (Q2̃, Q3̃) = 3. A Cartan subalgebra basis will
require two charges. Thus, we sum over two of these three operators. We are free to do
so in different ways. The choice that recovers the original two operators we began the
procedure with is summing over charges Q2̃ and Q3̃: Q2 = 1√

3
(Q2̃ +Q3̃).

The system described above has two charges and three pairs of dynamical symmetries.
We now want to introduce other charges that do not commute with the existing ones, i.e.,
more of the charges that generate su(3). However, recall the dynamical symmetries for τ3
and τ8 are linear combinations of the other six Gell–Mann matrices. If the Hamiltonian
now commutes with any elements from other Cartan subalgebras of su(3), it will stop some
combination of A1, A2, and A3 from being dynamical symmetries. If the Hamiltonian
commutes with all of su(3)’s charges, it will nullify the system’s dynamical symmetries.
When the system had two commuting charges, it had six dynamical symmetries. Now that
it has eight noncommuting charges, it has no dynamical symmetries.

6.4.4 Hamiltonians

Although the primary aim of this study is not to construct Hamiltonians, we include
some examples to connect our findings with physically viable systems and establish a link
with research on quantum scars [176]. We start with the su(2) case, illustrating how
various Hamiltonians can transition from a single charge forming a Cartan subalgebra of
su(2) (U(1) symmetry) to three charges constituting the full algebra (SU(2) symmetry).
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An example of this is the Heisenberg model under an external field.

H2 =
B

2

( N∑
j=1

σ(j)
z

)
+
J

2

(∑
⟨j,k⟩

∑
⟨⟨j,k⟩⟩

σ(j)
x σ(k)

x + σ(j)
y σ(k)

y

+ σ(j)
z σ(k)

z

)
, (6.21)

where ⟨j, k⟩ indicates the sum over nearest neighbours, ⟨⟨j, k⟩⟩ indicates the sum is over
next-nearest neighbours, B is the strength of an external magnetic field, and J is a coupling
constant. For B ̸= 0, the system has one charge corresponding to a Cartan subalgebra of
su(2) and one pair of dynamical symmetries. By setting B = 0, we introduce two additional
noncommuting charges into the system, thereby removing the dynamical symmetries. We
included the next-nearest neighbour interaction to break integrability. Alternatively, we
could construct our Hamiltonian using genuine three-body interactions that are SU(2)-
symmetric, such as

σ(j)
x σ(j+1)

y σ(j+2)
z + σ(j)

y σ(j+1)
z σ(j+2)

x + σ(j)
z σ(j+1)

x σ(j+2)
y

−σ(j)
z σ(j+1)

y σ(j+2)
x − σ(j)

x σ(j+1)
z σ(j+2)

y − σ(j)
y σ(j+1)

x σ(j+2)
z , (6.22)

and then break the symmetry with an external field.

We can similarly study Hamiltonians for the su(3) example. These Hamiltonians are
less familiar but can be derived using the procedure in Ref.[2],

H3 =
J

2

(∑
α

∑
⟨j,k⟩

∑
⟨⟨j,k⟩⟩

τ (j)α τ (k)α

)
+
B1

2

(∑
j

τ
(j)
3

)
+
B2

2

(∑
j

τ
(j)
8

)
. (6.23)

Setting B1 and B2 to zero allows the noncommuting charges to give way to dynamical
symmetries. These Hamiltonians align with the procedure presented in Ref. [176], where
the introduction of an external field breaks the non-Abelian symmetry and facilitates the
emergence of quantum scars. Notably, the transitions in the Hamiltonian that give rise to
quantum scars also lead to non-thermalizing local observables. This connection between
quantum scars and non-thermalizing observables presents an avenue for future research.

6.5 Summary & Outlook

This work addresses the unresolved question of whether noncommuting charges aid or
hinder thermalization [3, 46, 47, 154, 155, 156, 157, 158, 4, 159, 55, 1, 160]. We found
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that noncommuting charges reduce the set of local observables that achieve thermalization
under the ETH, leading these systems toward thermal equilibrium. This result underscores
the role of noncommuting charges in promoting thermalization.

Our findings reveal that noncommuting charges remove the non-thermalizing dynam-
ics that emerge from dynamical symmetries. While dynamical symmetries are sufficient
conditions to produce non-thermalizing dynamics, they are not necessary. A natural next
step is to investigate the impact of noncommuting and commuting charges on the non-
thermalizing dynamics in Hamiltonians without dynamical symmetries. For example, we
could alter the Heisenberg Hamiltonian to break its non-Abelian symmetry without using
an external field. This could be done by adding a coupling term like (σ

(j)
x σ

(j+1)
y −σ(j)

y σ
(j+1)
x ),

which also retains the U(1) symmetry. If noncommuting charges diminish non-thermalizing
dynamics under these conditions, their role in promoting thermalization would be further
substantiated. If not, this would suggest that the thermalization-promoting ability of non-
commuting charges is limited to certain systems.

Non-Abelian symmetries have now been shown to suppress three forms of non-thermalizing
behaviour: quantum scars [176], many-body localization (MBL) [73, 182], and the phenom-
ena observed in this study. There are two reasons to seek a link between these findings.
In Section 6.4.4, we showed that the perturbation causing quantum scars also leads to
non-thermalizing dynamics in local observables. Although a direct link between quan-
tum scars and observables violating the ETH has not been established, similarities in the
Hamiltonians suggest a potential connection. Second, both the studies of quantum scars
and MBL highlight the elimination of low-entangled states. Reference [182] shows that,
in contrast to typical systems where MBL occurs, SU(2) symmetry mandates eigenstates
with entanglement exceeding area law. Meanwhile, Reference [176] finds that breaking
SU(2) symmetry removes states with subthermal entanglement entropy. Both of these
works align with recent research that indicates non-Abelian symmetries can increase en-
tanglement entropy [3]. Exploring a common underlying mechanism that connects these
phenomena presents another promising avenue for future research.

The central theme of this discussion is unravelling the intricate influence of noncommut-
ing charges on thermalization. On the one hand, several studies indicate that noncommut-
ing charges obstruct thermalization, evidenced by deviations from the thermal state [47],
slower entropy production [14], more constrained dynamics compared to systems with
commuting charges [59], and difficulties in characterizing the thermal state [12, 13, 42, 43].
On the other hand, there is evidence suggesting they facilitate thermalization, as seen
in increased average entanglement [3, 4], the elimination of many-body localization and
quantum scars [73, 182, 176], and the findings of this study. This apparent contradic-
tion highlights a complex and nuanced relationship between noncommuting charges and
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thermalization, underscoring the need for more in-depth research to elucidate their role
fully.
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Chapter 7

Conclusions

Excerpts from this chapter are based on reference [1] and overlap with its text.

We conclude with a summary of the thesis’s results. In our Perspective article [1], we
highlighted five major research opportunities in noncommuting charges. This thesis has
significantly advanced two of these five and contributed to another two. We briefly review
these five opportunities (Section 7.1) and then connect our results to them (Section 7.2).

7.1 Research opportunities

Opportunity one: The predictions merit experimental testing. The first test of noncommuting-
charge thermodynamics was performed with trapped ions [46]. Other potential platforms
include superconducting qubits, quantum dots, ultracold atoms, quantum optics, and op-
tomechanics [45, 2, 14].

Opportunity two: Existing results present a conceptual puzzle. Evidence suggests that
noncommuting charges hinder thermalization to an extent: they invalidate derivations of
the thermal state’s form [12, 13], decrease thermodynamic-entropy production [14], clash
with the ETH [47], and uniquely restrict the global unitaries implementable via local
interactions [62]. Other evidence, however, suggests that noncommuting charges enhance
thermalization: they destabilize MBL [73], increase average entanglement entropy [3, 4],
and stop local observables from thermalizing [5]. These results do not conflict with each
other, stemming from different setups. Yet the results clash conceptually. Reconciling them
presents another opportunity. For example, one possible resolution is that noncommuting
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charges hinder thermalization in some cases and promote it in others. If that is the case,
resolving the puzzle would entail delineating these regimes.

Opportunity three: To what extent can classical mechanics reproduce noncommuting-
charge thermodynamics? Observables’ noncommutation underlies quintessentially quan-
tum phenomena including uncertainty relations, measurement disturbance, and the Einstein–
Podolsky–Rosen paradox. Yet classical mechanics features quantities that fail to com-
mute with each other—for example, rotations about different axes. How nonclassical is
noncommuting-charge thermodynamics (achievable only outside of classical physics), be-
yond being merely quantum (achievable within quantum physics)?

Opportunity four: Every chaotic or thermodynamic phenomenon merits re-examination.
To what extent does it change under dynamics that conserve noncommuting charges? Ex-
ample phenomena include diffusion coefficients, transport relations, thermalization times,
monitored circuits [4], out-of-time-ordered correlators [183], operator spreading [130], frame
potentials [184], and quantum-complexity growth [185].

Opportunity five: Noncommuting-charge thermodynamics merits bridging to similar
topics in neighbouring fields. Non-Abelian gauge theories, non-Abelian hydrodynamics,
generalize Gibbs ensemble studies, and dynamical phase transitions overlap with noncom-
muting thermodynamic charges. To what extent can these areas inform each other?

7.2 Summary of results

In Chapter 3, we outlined a method for constructing Hamiltonians that facilitate the
local transportation of noncommuting charges while preserving global charge conservation.
These Hamiltonians have the capacity to link multiple subsystems and may be either inte-
grable or nonintegrable. Our findings bridged the conceptual gap between noncommuting
thermodynamic charges in quantum information theory and practical applications in con-
densed matter, atomic, molecular, and optical (AMO) physics. The theoretical framework
developed here paves the way for empirical validation through our proposed experimental
setups. This work, thus, enabled the first major research opportunity.

Chapter 4 established that noncommuting charges can enhance the average entangle-
ment, as supported by both numerical simulations and analytical calculations within mi-
crocanonical and approximate microcanonical subspaces. This work introduced the second
research opportunity. This chapter’s conclusions rest on two models closely resembling
each other but differ in whether their charges commute. Our models can now be used to
explore the effects of charges’ noncommutation on other quantum phenomena. Possibilities
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include chaos [109, 66], as analyzed with out-of-time-ordered correlators [110, 111, 112, 113]
and random unitary circuits [114, 115]; bounds on quantum-simulation errors [116]; and
quantum-machine-learning algorithms’ performances [117]. Therefore, this chapter also
contributes significantly to the fourth research opportunity.

In Chapter 5, we introduced noncommuting charges into monitored random circuits.
Our study led to the identification of a critical phase transition. First, we numerically
discovered a purification transition between a mixed phase (at p < pc ≈ 0.35) and a
critical phase (at p > pc). In the critical phase, the purification time scales as tP ∼
L2. The purification transition doubles as an entanglement transition, which separates
volume-law (at p < pc) and subextensive (logarithmic or small-power-law, at p > pc)
entanglement scalings. Even in the measurement-only limit (at p = 1), the symmetry’s
non-Abelian nature enables greater than area-law entanglement scaling. Furthermore, we
found the system’s mutual information continues to grow past pc. Our analysis extended
noncommuting-charge thermodynamics to adjacent fields, supporting the fourth research
opportunity.

Chapter 6 demonstrates that noncommuting charges remove the non-thermalizing dy-
namics that energy from dynamical symmetries. This is another form of non-thermal
behaviour which is ruled out by noncommuting charges. This work was motivated by and
directly contributed to the first research opportunity.
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[17] Ernesto Beńıtez Rodŕıguez and Luis Arévalo Aguilar. A survey of the concept of
disturbance in quantum mechanics. Entropy, 21(2):142, Feb 2019.

[18] Christopher J Fewster and Rainer Verch. Quantum fields and local measurements.
Communications in Mathematical physics, 378:851–889, 2020.

[19] Alain Aspect. Bell’s inequality test: more ideal than ever. Nature, 398(6724):189–190,
1999.

[20] Clive Emary, Neill Lambert, and Franco Nori. Leggett–garg inequalities. Reports on
Progress in Physics, 77(1):016001, 2013.

[21] Shayan-Shawn Majidy. Violation of an augmented set of leggett-garg inequalities and
the implementation of a continuous in time velocity measurement. Master’s thesis,
University of Waterloo, 2019.

80



[22] Adam M Kaufman, M Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M Preiss, and Markus Greiner. Quantum thermalization through entangle-
ment in an isolated many-body system. Science, 353(6301):794–800, 2016.

[23] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant,
R. Barends, B. Campbell, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, J. Mutus,
P. J. J. O’Malley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
A. Polkovnikov, and J. M. Martinis. Ergodic dynamics and thermalization in an
isolated quantum system. Nature Physics, 12:1037, Jul 2016.

[24] Govinda Clos, Diego Porras, Ulrich Warring, and Tobias Schaetz. Time-resolved
observation of thermalization in an isolated quantum system. Phys. Rev. Lett.,
117:170401, Oct 2016.

[25] Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke,
Bing Yang, Zhen-Sheng Yuan, Jürgen Berges, and Jian-Wei Pan. Thermalization
dynamics of a gauge theory on a quantum simulator. Science, 377(6603):311–314,
2022.

[26] Mark Srednicki. Chaos and quantum thermalization. Physical Review E, 50(2):888,
1994.

[27] Josh M Deutsch. Quantum statistical mechanics in a closed system. Physical Review
A, 43(4):2046, 1991.

[28] Edwin T Jaynes. Information Theory and Statistical Mechanics II. Physical Review,
108(2):171, 1957.

[29] Marcos Rigol, Vanja Dunjko, Vladimir Yurovsky, and Maxim Olshanii. Relaxation
in a completely integrable many-body quantum system: an ab initio study of the
dynamics of the highly excited states of 1d lattice hard-core bosons. Physical Review
Letters, 98(5):050405, 2007.

[30] Marcos Rigol. Breakdown of thermalization in finite one-dimensional systems. Phys-
ical Review Letters, 103(10):100403, 2009.

[31] Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schweigler,
Maximilian Kuhnert, Wolfgang Rohringer, Igor E Mazets, Thomas Gasenzer, and
Jörg Schmiedmayer. Experimental observation of a generalized Gibbs ensemble.
Science, 348(6231):207–211, 2015.

81



[32] Lev Vidmar and Marcos Rigol. Generalized Gibbs ensemble in integrable lattice
models. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):064007,
2016.

[33] Roger Balian and NL Balazs. Equiprobability, inference, and entropy in quantum
theory. Annals of Physics, 179(1):97–144, 1987.

[34] H. B. Callen. Thermodynamics and an Introduction to Thermostatistics. John Wiley
& Sons, New York, 2 edition, 1985.

[35] L. D. Landau and E. M. Lifshitz. Statistical Physics: Part 1. Butterworth-
Heinemann, 1980.

[36] Matteo Lostaglio. The resource theory of quantum thermodynamics. Master’s thesis,
Imperial College London, 2014.

[37] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum informa-
tion, 2002.

[38] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews of Modern
Physics, 91(2):025001, 2019.

[39] Matteo Lostaglio. An introductory review of the resource theory approach to ther-
modynamics. Reports on Progress in Physics, 82(11):114001, oct 2019.

[40] Nicole Yunger Halpern and Joseph M Renes. Beyond heat baths: Generalized re-
source theories for small-scale thermodynamics. Physical Review E, 93(2):022126,
2016.

[41] Fernando Brandão, Micha l Horodecki, Nelly Ng, Jonathan Oppenheim, and
Stephanie Wehner. The second laws of quantum thermodynamics. Proceedings of
the National Academy of Science, 112(11):3275–3279, 2015.

[42] Yelena Guryanova, Sandu Popescu, Anthony J. Short, Ralph Silva, and Paul
Skrzypczyk. Thermodynamics of quantum systems with multiple conserved quanti-
ties. Nat. Commun., 7:12049, Jul 2016.

[43] Matteo Lostaglio, David Jennings, and Terry Rudolph. Thermodynamic resource
theories, non-commutativity and maximum entropy principles. New J. Phys.,
19(4):043008, 2017.

82



[44] Erick Hinds Mingo, Yelena Guryanova, Philippe Faist, and David Jennings. Quan-
tum thermodynamics with multiple conserved quantities. In Thermodynamics in the
Quantum Regime, pages 751–771. Springer, 2018.

[45] Nicole Yunger Halpern, Michael E. Beverland, and Amir Kalev. Noncommuting
conserved charges in quantum many-body thermalization. Phys. Rev. E, 101:042117,
Apr 2020.

[46] Florian Kranzl, Aleksander Lasek, Manoj K Joshi, Amir Kalev, Rainer Blatt, Chris-
tian F Roos, and Nicole Yunger Halpern. Experimental observation of thermalisation
with noncommuting charges. arXiv:2202.04652, 2022.

[47] Chaitanya Murthy, Arman Babakhani, Fernando Iniguez, Mark Srednicki, and Nicole
Yunger Halpern. Non-abelian eigenstate thermalization hypothesis. Phys. Rev. Lett.,
130:140402, Apr 2023.

[48] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. Thermalization and its mecha-
nism for generic isolated quantum systems. Nature, 452(7189):854–858, 2008.

[49] Vincent Bouchard. Ma ph 464 - group theory in physics: Lecture notes.
https://sites.ualberta.ca/ vbouchar/MAPH464/front.html, 2020. University of Al-
berta.

[50] Gilad Gour and Robert W Spekkens. The resource theory of quantum reference
frames: manipulations and monotones. New Journal of Physics, 10(3):033023, mar
2008.

[51] Thiago R. de Oliveira, Christos Charalambous, Daniel Jonathan, Maciej Lewenstein,
and Arnau Riera. Equilibration time scales in closed many-body quantum systems.
New Journal of Physics, 20(3):033032, mar 2018.

[52] Shantanav Chakraborty, Kyle Luh, and Jérémie Roland. How fast do quantum walks
mix? Phys. Rev. Lett., 124:050501, Feb 2020.

[53] Gonzalo Manzano. Squeezed thermal reservoir as a generalized equilibrium reservoir.
Phys. Rev. E, 98(4):042123, 2018.

[54] Sareh Shahidani. Thermodynamic forces and flows between a thermal bath and a
squeezed thermal bath: Application to optomechanical systems. Physical Review A,
105(6):063516, 2022.

83



[55] Twesh Upadhyaya, William F Braasch Jr, Gabriel T Landi, and Nicole
Yunger Halpern. What happens to entropy production when conserved quantities
fail to commute with each other. arXiv preprint arXiv:2305.15480, 2023.

[56] David P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical
Review A, 51(2):1015–1022, February 1995. Publisher: American Physical Society.

[57] Seth Lloyd. Almost Any Quantum Logic Gate is Universal. Physical Review Letters,
75(2):346–349, July 1995. Publisher: American Physical Society.

[58] David Elieser Deutsch, Adriano Barenco, and Artur Ekert. Universality in quantum
computation. Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences, 449(1937):669–677, January 1997. Publisher: Royal Society.

[59] Iman Marvian. Restrictions on realizable unitary operations imposed by symmetry
and locality. Nature Physics, 18(3):283–289, 2022.

[60] Iman Marvian, Hanqing Liu, and Austin Hulse. Qudit circuits with SU(d) symmetry:
Locality imposes additional conservation laws. arXiv:2105.12877, may 2021.

[61] Iman Marvian, Hanqing Liu, and Austin Hulse. Rotationally-Invariant Circuits:
Universality with the exchange interaction and two ancilla qubits. arXiv:2202.01963,
2022.

[62] Iman Marvian. (Non-)Universality in symmetric quantum circuits: Why Abelian
symmetries are special. arXiv e-prints, page arXiv:2302.12466, February 2023.

[63] Ramamurti Shankar. Principles of quantum mechanics. Springer Science & Business
Media, 2012.

[64] Jae Dong Noh. Eigenstate thermalization hypothesis in two-dimensional xxz model
with or without su (2) symmetry. arXiv preprint arXiv:2210.14589, 2022.

[65] Zh. Zhang, J. Tindall, J. Mur-Petit, D. Jaksch, and B. Buča. Stationary state de-
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Appendix A

Appendices for “Review of
noncommuting charges”

A.1 Schur’s lemma implies degeneracy of Hamiltoni-

ans that have non-Abelian symmetries

Consider a quantum system associated with a Hilbert space H. Let Htot denote the
Hamiltonian, which has a symmetry associated with a Lie group G. Let k label the ir-
reducible representations (irreps) of G. For example, G = SU(2) has irreps labeled by
s = 0, 1/2, 1, . . . A corollary of Schur’s lemma states that [50, p. 9]

H =
⊕
k

Hk ⊗Mk (A.1)

Hk denotes a representation space. The multiplicity space Mk has a dimensionality equal
to irrep k’s dimension.

Correspondingly, Htot decomposes as [198, Sec. 3.2.3]

Htot =
⊕
k

Ek1k. (A.2)

Ek denotes an eigenenergy. 1k denotes the identity operator acting on the multiplicity space
Mk. If G is non-Abelian, then some of the irreps k have dimensionalities> 1. Consequently,
some 1k’s act on multidimensional subspaces Mk. Those Mk’s are degenerate eigenspaces
of Htot.
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Appendix B

Appendices for “Bridging to
experiments and many-body physics”

B.1 The Killing form induces a metric on every sim-

ple Lie algebra.

Here, we prove a claim made in Sec. II.A of the main text: The Killing form induces a
metric on every simple Lie algebra. The proof relies on background material reviewed in
Sec. II.B of the main text.

First, we need to prove that every inner product defines a metric. An inner product on
a vector space V over the field F is a function ⟨·, ·⟩ : V ×V → F that satisfies the following
three properties for all u, v, w ∈ V and α ∈ F: (1) conjugate symmetry ⟨u, v⟩ = ⟨v, u⟩, (2)
linearity in the first argument ⟨αu+ v, w⟩ = α⟨u,w⟩+ ⟨v, w⟩, and (3) positive-definiteness
⟨v, v⟩ ≥ 0 with equality if and only if v = 0.

Given an inner product ⟨·, ·⟩, we can define a metric (or distance function) d : V×V → R
as follows:

d(u, v) =
√

⟨u− v, u− v⟩ (B.1)

We need to prove that d satisfies the four properties of a metric. The first is non-negativity

d(u, v) ≥ 0.

This follows from the positive-definiteness of the inner product. The second is the identity
of indiscernible,

d(u, v) = 0 ⇐⇒ u = v.
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This also follows from the positive-definiteness of the inner product since ⟨u−v, u−v⟩ = 0
if and only if u = v. The third is symmetry,

d(u, v) = d(v, u).

This follows from the symmetry property of the inner product d(u, v) =
√
⟨u− v, u− v⟩ =√

⟨v − u, v − u⟩ = d(v, u). The last is the triangle inequality

d(u,w) ≤ d(u, v) + d(v, w).

To prove this property holds, we use the Cauchy-Schwarz inequality:

|⟨u|v⟩|2 ≤ ⟨u|u⟩ · ⟨v|v⟩ . (B.2)

To prove the triangle inequality we first substitute u − w = (u − v) + (v − w) in the
expression for d(u,w)2,

d(u,w)2 = ⟨u− w, u− w⟩ (B.3)

= ⟨(u− v) + (v − w), (u− v) + (v − w). (B.4)

We use the inner product’s linearity to expand and the conjugate symmetry property to
simplify the expression,

d(u,w)2 = ⟨u− v, u− v⟩ + ⟨u− v, v − w⟩ + ⟨v − w, u− v⟩ + ⟨v − w, v − w⟩ (B.5)

= ⟨u− v, u− v⟩ + 2 Re{⟨u− v, v − w⟩} + ⟨v − w, v − w⟩ (B.6)

Note that 2 Re{⟨u− v, v − w⟩} ≤ 2|⟨u− v, v − w⟩|. We then apply the Cauchy-Schwarz
inequality on the right-hand side:

2|⟨u− v, v − w⟩| ≤ 2
√

⟨u− v, u− v⟩
√

⟨v − w, v − w⟩. (B.7)

We have

d(u,w)2 ≤ ⟨u− v, u− v⟩ + ⟨v − w, v − w⟩ + 2
√

⟨u− v, u− v⟩
√

⟨v − w, v − w⟩ (B.8)

The right-hand side is a perfect square (a2 + b2 + 2ab = (a+ b)2),

d(u,w)2 ≤ (⟨u− v, u− v⟩ + ⟨v − w, v − w⟩)2d(u,w) ≤ ⟨u− v, u− v⟩ + ⟨v − w, v − w⟩d(u,w) ≤ d(u, v) + d(v, w)
(B.9)

Which concludes our proof.
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Since d satisfies all the properties of a metric, we have shown that every inner product
defines a metric. Therefore, proving that the Killing form induces an inner product suf-
fices. On a simple Lie algebra, all symmetric bilinear forms equal each other to within a
multiplicative constant [77]. The Killing form is one symmetric bilinear form; another is
Tr(QαQβ). Hence (Qα, Qβ) ∝ Tr(QαQβ) = Tr

(
Q†

αQβ

)
. The final equality follows from the

charges’ Hermiticity. The final expression is the Hilbert-Schmidt inner product. Hence the
Killing form induces an inner product.

B.2 General Hamiltonian that transports su(2) ele-

ments locally while conserving them globally

Section II.B of the main text illustrated how to construct Hamiltonians that transport
su(2) elements locally while conserving them globally. The illustration was not maximally
general; we restricted a unitary U more than required, for pedagogy. We generalize the
construction here. For clarity of presentation, we derive the charges’ forms first (Supple-
mentary Note B.2.1) and the ladder operators’ forms second (Supplementary Note B.2.2).
We then construct the two-body Hamiltonian H(j,j′) and a three-body Hamiltonian (Sup-
plementary Note B.2.3).

B.2.1 Preferred basis of charges for su(2)

The conventional Cartan-Weyl basis contains the Hermitian operator

Q1 = σz. (B.10)

To identify the next Cartan-Weyl basis, we invoke a general unitary U ∈ SU(2). In the
Euler parameterization,

U = eiσzϕ1/2eiσyϕ2/2eiσzϕ3/2, (B.11)

wherein ϕ1 ∈ [0, 2π), ϕ2 ∈ [0, π], and ϕ3 ∈ [0, 2π). We restrict this general unitary to a Ui

that maps Q2 to a Killing-orthogonal charge Q2 = U †
i Q1Ui. For X, Y ∈ (D), the Killing

form evaluates to (X, Y ) = Tr(XY ) [77]. Hence the Killing form between the charges is

0 =
(
U †
i Q1Ui, Q1

)
= Tr

(
U †
i Q1UiQ1

)
= 2 cos

(
ϕ
(i)
2

)
. (B.12)
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The superscript (i), here and below, labels a parameter as belonging to Ui. The equation,

with ϕ
(i)
2 ∈ [0, π], implies that ϕ

(i)
2 = π/2. The unitary and charge assume the forms

Ui = eiσzϕ
(i)
1 /2eiσyπ/4eiσzϕ

(i)
3 /2 and Q2 = cos

(
ϕ
(i)
3

)
σx + sin

(
ϕ
(i)
3

)
σy. (B.13)

Having identified the second charge, we identify the final one. We transform Q1 with a
unitary Uii ∈ SU(2) such that Q3 = U †

iiQ1Uii is Killing-orthogonal to the first two charges.
The first orthogonality constraint has the form of Eq. (B.12), except that a (ii) replaces
the superscript (i). The second orthogonality constraint is

0 = Tr
(
U †
iiQ1Uii, Q2

)
= Tr

(
U †
iiQ1UiiQ2

)
= 2 cos

(
ϕ
(i)
3 − ϕ

(ii)
3

)
. (B.14)

Hence ϕ
(ii)
3 = ϕ

(i)
3 + π

(
n(ii) − 1

2

)
, wherein n(ii) ∈ Z. Hence Uii and Q3 have the forms

Uii = eiσzϕ
(ii)
1 /2eiσyπ/4eiσz [ϕ

(i)
3 +π(n− 1

2
)]/2 and (B.15)

Q3 = (−1)n
(ii)
[
sin
(
ϕ
(i)
3

)
σx − cos

(
ϕ
(i)
3

)
σy

]
. (B.16)

Equations (B.16), (B.13), and (B.10) specify the preferred basis of charges for su(2).

B.2.2 General ladder operators for su(2)

The conventional Cartan-Weyl basis contains operators that raise and lower σz:

L±1 = σ±z =
1

2
(σx ± iσy). (B.17)

Conjugation with Ui yields the ladder operators for Q2, and conjugation with Uii yields the
ladder operators for Q3:

L±2 = U †
i L±1Ui =

−e∓iϕ
(i)
1

2
[σz ± i(sin{ϕ(i)

3 }σx − cos{ϕ(i)
3 }σy)], and (B.18)

L±3 = U †
iiL±1Uii =

−e∓iϕ
(ii)
1

2

{
σz ∓ i(−1)n

(ii)
[
cos
(
ϕ
(i)
3

)
σx + sin

(
ϕ
(i)
3

)
σy

]}
. (B.19)
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B.2.3 Two-body and three-body Hamiltonians for su(2)

To form H(j,j′), we substitute for the ladder operators from Eqs. (B.17) and (B.18) into
Eq. (12). We require that H(j,j′) conserve each global charge, imposing Eq. (14). This

equation holds, algebra reveals, if and only if the hopping frequencies J
(j,j′)
α equal each

other. The Hamiltonian simplifies to Eq. (15). The final expression does not depend on

our choice of ϕ
(i)
k , ϕ

(ii)
k , or n(i).

Let us construct a Hamiltonian H(j,j′,j′′) that transfers su(2) charges between three
sites—j, j′, and j′′—while conserving the charges globally. We multiply three two-body
Hamiltonians together cyclically:

H(j,j′,j′′) ∝ H(j,j′)H(j′,j′′)H(j′′,j) (B.20)

We substitute in from Eq. (13), the H(j,j′) expression in which the hopping frequen-
cies have not yet been restricted. The frequencies can assume different values, when
[H(j,j′,j′′), Qtot

α ] = 0, than when [H(j,j′), Qtot
α ] = 0. Imposing the first commutator equation

yields four sets of solutions for the Jα’s, when Jα ̸= 0 for all α:

1. J1 = J2 = J3, J4 = J5 = J6, and J7 = J8 = J9.

2. J1 = J2 = −J3, J4 = J5 = −J6, and J7 = J8 = −J9.

3. J1 = J2 = −J3
2

, J4 = J5 = −J6
2

, and J7 = J8 = −J9
2

.

4. J2
J1

= J5
J4

= J8
J7

, J1 + J2 = −J3, J4 + J5 = −J6, and J7 + J8 = −J9.

We have omitted superscripts for conciseness. The four solutions lead to distinct Hamilto-
nians.1

For concreteness, we detail the first set of solutions, item 1. We collect three of the

frequencies to simplify notation: J j,j′,j′′ = J
(j,j′)
1 J

(j′,j′′)
4 J

(j′,j′′)
7 . Substituting the Jα’s into

the Hamiltonian (B.20) yields

H(j,j′,j′′) ∝ J (j,j′,j′′)
{

3111− 2
(
H(j,j′) −H(j′′,j) +H(j′,j′′)

)
+ i[(σxσyσz + σyσzσx + σzσxσy) − (σzσyσx + σxσzσy + σyσxσz)}.

(B.21)

1However, each solution contains a little redundancy: Consider picking one of the four solutions, then
cycling the indices in (1, 2, 3) identically to the indices in (4, 5, 6) and to the indices in (7, 8, 9). The
resulting Jα’s specify a Hamiltonian identical to the original.

103



We have omitted some superscripts to simplify notation. The first term is trivial, terms 2-4
are two-body, and each of terms 1-4 conserves each Qtot

α . Subtracting these terms off yields
the solely three-body Hamiltonian, Eq. (18). We have absorbed the i into the coefficient
such that J j,j′,j′′ ∈ R.

B.3 Simple form to which a two-body Hamiltonian

may collapse

In the su(2) example, H(j,j′) collapsed to the simple form (16). The su(3) H(j,j′) col-
lapses to an analogous form, we shown in Sec. II.D. This form generalizes to

c∑
α=1

Q(j)
α Q(j′)

α . (B.22)

This expression generally conserves noncommuting charges globally, and transport the
charges locally, as proved below. However, the expression’s equality with a two-body
Hamiltonian that clearly, overtly transports local charges from site to site is proved only
in the su(2) and su(3) examples.

Proposition 2. Consider any Lie algebra whose structure constants have the antisymmetry
property

fγ
αβ = −fα

γβ. (B.23)

A two-body Hamiltonian of the form (B.22) conserves the algebra’s elements globally.

Every compact semisimple Lie algebra has such structure constants [195].

Proof. First, we substitute from Eq. (B.22) into the conservation law. Then, we invoke the
commutator’s linearity and the arguments’ tensor-product forms:

0 =
[
H(j,j′), Qtot

α

]
=

[
c∑

β=1

Q
(j)
β Q

(j′)
β , Q(j)

α ⊗ 1
(j′) + 1

(j) ⊗Q(j′)
α

]
(B.24)

=
c∑

β=1

([
Q

(j)
β Q

(j′)
β , Q(j)

α ⊗ 1
(j′)
]

+
[
Q

(j)
β Q

(j′)
β , 1(j) ⊗Q(j′)

α

])
(B.25)

=
c∑

β=1

([
Q

(j)
β , Q(j)

α

]
Q

(j′)
β +Q

(j)
β

[
Q

(j′)
β , Q(j′)

α

])
. (B.26)
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Let fγ
αβ denote the Lie algebra’s structure constants. The f ’s dictate how a Lie bracket

decomposes as a linear combination of the algebra’s elements:

[Qα, Qβ] =
c∑

γ=1

fγ
αβQγ. (B.27)

We substitute into Eq. (B.26), then pull the sums and constants out front:

0 =
c∑

β=1

[(
c∑

γ=1

fγ
βαQ

(j)
γ

)
Q

(j′)
β +Q

(j)
β

(
c∑

γ=1

fγ
βαQ

(j′)
γ

)]
=

c∑
β,γ=1

fγ
βα

(
Q(j)

γ Q
(j′)
β +Q

(j)
β Q(j′)

γ

)
.

(B.28)

The final equation holds if fγ
βα = −fβ

γα. Consider relabeling the index α as β and vice
versa. Equation (B.23) results.

Having proved that the simple operator (B.22) conserves noncommuting charges glob-
ally, we prove that it transports charges locally.

Proposition 3. The simple two-body Hamiltonian (B.22) transports the charges Qα locally.

Proof. Charge Qα is transported locally if it satisfies Eq. (3), having a nonzero commutator

[
H(j,j′), Q(j)

α

]
=

[
c∑

β=1

Q
(j)
β Q

(j′)
β , Q(j)

α

]
=

c∑
β=1

[
Q

(j)
β , Q(j)

α

]
Q

(j′)
β =

c∑
β,γ=1

fγ
βαQ

(j)
γ Q

(j′)
β . (B.29)

The final expression vanishes if Qα commutes with all the other charges Qγ in the preferred
basis. If a Lie algebra has a basis of which one element commutes with the others, the
algebra is Abelian, by definition [77]. We assume that the algebra A is non-Abelian
(Sec. II.A of the main text). Therefore, the right-hand side of (B.29) is nonzero, and the
Hamiltonian transports the charges locally.

B.4 Proof of Proposition 1

Proposition 1 states that the algebra A has an integer ratio c/r, wherein c denotes the
algebra’s dimension and r denotes the rank.
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Proof. For every finite-dimensional complex Lie algebra, there exists a corresponding con-
nected Lie group that is unique to within finite coverings. The Lie algebra has the same
dimension and rank as each of the corresponding Lie groups. Thus, if Proposition 1 holds
for all semisimple Lie groups, it holds for all semisimple Lie algebras. We prove the group
claim.

Every Lie group has a maximal torus Tr, which is the group generated by a Cartan
subalgebra of the Lie algebra. The torus’ dimensionality equals the group’s rank, r. A
torus is an r-fold Cartesian product of S1 manifolds [equivalently, of the group U(1)].
Quotienting out the torus’ action from the Lie group yields a finite-dimensional coset
space. Every finite-dimensional coset space’s dimensionality is a positive integer n ∈ Z>0.
Thus, the semisimple Lie group’s dimension is c = rn.

B.5 Mathematical details: Construction of a two-body

Hamiltonian that transports su(3) elements lo-

cally while conserving them globally

Section II.D illustrated the Hamiltonian-construction prescription with su(3). We flesh
out the explanation here. Appendix B.5.1 reviews the conventional Cartan-Weyl basis for
su(3). Appendix B.5.2 identifies the preferred basis of charges for su(3). Appendix B.5.3
presents the ladder operators from which we construct a Hamiltonian.

B.5.1 Conventional Cartan-Weyl basis for su(3)

su(3) has dimension c = 8 and rank r = 2. The conventional Cartan-subalgebra
generators are denoted by tz = τ3/2 and y = τ8/

√
3, wherein τ3 and τ8 denote Gell-mann

matrices [82]. These generators, in the three-dimensional representation of su(3), manifest
as

Tz =
1

2

1 0 0
0 −1 0
0 0 0

 and Y =
1

3

1 0 0
0 1 0
0 0 −2

 . (B.30)

tz and y are orthogonal relative to the Killing form. They (more precisely, rescaled versions
of them) belong in our preferred basis of charges: Q1 ∝ tz, and Q2 ∝ y.
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These charges are raised and lowered by c − r = 8 − 2 = 6 ladder operators, t± =
(τ1±iτ2)/2, v± = (τ4±iτ5)/2, and u± = (τ6±iτ7)/2. In the three-dimensional representation
of su(3), the ladder operators manifest as

T+ =
1

2

0 1 0
0 0 0
0 0 0

 , T− =
1

2

0 0 0
1 0 0
0 0 0

 , V+ =
1

2

0 0 1
0 0 0
0 0 0

 , V− =
1

2

0 0 0
0 0 0
1 0 0

 ,
(B.31)

U+ =
1

2

0 0 0
0 0 1
0 0 0

 , and U− =
1

2

0 0 0
0 0 0
0 1 0

 . (B.32)

The ladder operators participate in the following commutation relations with the charges:

[tz, t±] = ±t±, [y, t±] = 0, (B.33)

[tz, v±] = ±1

2
v±, [y, v±] = ±v± (B.34)

[tz, u±] = ∓1

2
u±, and [y, u±] = ±u±. (B.35)

These relations imply that (i) t± raises and lowers tz, whereas (ii) v± raises or lowers both
tz and y, as does u±. We can prove this physical significance easily: Let L± denote a ladder
operator (a t±, a v±, or a u±) that raises/lowers a charge Q. Let |ψ⟩ denote a Q eigenstate
associated with the eigenvalue q: Q |ψ⟩ = q |ψ⟩. Consider operating on the state with the
ladder operator: L± |ψ⟩. Suppose, for notational convenience, that, (i) if L+ operates, q is
not the greatest Q eigenvalue and (ii) if L− operates, q is not the least Q eigenvalue. The
resulting state is a Q eigenstate associated with the eigenvalue q±a, wherein a = 1 or 1/2.
To prove this claim, we operate on the new state with the charge: Q(L± |ψ⟩). Invoking
the appropriate commutation relation [Eqs. (B.33)-(B.35)] yields

QL± |ψ⟩ = (L±Q± L±) |ψ⟩ = L±(Q± a1) |ψ⟩ = L±(q ± a) |ψ⟩ = (q ± a)L± |ψ⟩ . (B.36)

By Eqs. (B.33)-(B.36), t± raises/lowers the tz charge by one quantum and preserves y. u±
lowers/raises tz by half a quantum and raises/lowers y by one quantum. v± raises/lowers
each of tz and y by one quantum.

Having reviewed the conventional Cartan-Weyl basis for su(3), we dispense with the
conventional notation (tz, t±, etc.). We revert to the notation introduced in the main text
(Qα and L±α).

107



B.5.2 Preferred basis of charges for su(3)

The first two charges appear in Eqs. (20). We construct two new charges from Q1,
Q2, and a unitary U ∈ SU(2). The general form of such a U , appears, in the Eu-
ler parameterization, in Eq. (21). We constrain U with the Killing-orthogonality con-
ditions (9), obtaining a unitary Ui. The transformed charges have the forms Q3 = U †

i Q1Ui

and Q4 = U †
i Q2Ui. The new charges are Killing-orthogonal to each other by unitarity:

0 = Tr
([
U †
i Q1Ui

] [
U †
i Q2Ui

])
= Tr (Q1Q2) = 0. Killing-orthogonality to the old charges,

Eq. (20), with the form of the su(D) Killing form [77], implies

0 = Tr
([
U †
i Q1Ui

]
Q2

)
= − cos(ϕ2)/3, (B.37)

0 = Tr
([
U †
i Q1Ui

]
Q1

)
= − 1

2
√

3
cos(ϕ3 + ϕ5), (B.38)

0 = Tr
([
U †
i Q2Ui

]
Q2

)
=

1

2

[
cos(ϕ4) +

1

3

]
, and (B.39)

0 = Tr
([
U †
i Q2Ui

]
Q1

)
= − cos(ϕ6)/3. (B.40)

Since ϕ2, ϕ4, ϕ6 ∈ [0, π] and ϕ3, ϕ5 ∈ [0, 2π), ϕ2 = π
2
, ϕ4 = acos(−1/3), ϕ6 = π

2
and

ϕ5 = π(n− 1/2) − ϕ3, for n ∈ {1, 2, 3, 4}.

Transforming Q1 and Q2 with a Uii ∈ SU(3) yields the charges Q5 and Q6, and trans-
forming Q1 and Q2 with a Uiii ∈ SU(3) yields Q7 and Q8. These last four charges are
Killing-orthogonal to Q1 and Q2, like Q3 and Q4. So Uii and Uiii share the form of Ui.
However, parameters a(ii) and b(ii), or a(iii) and b(iii), replace the a(i) and b(i). The later
unitaries’ parameters are more constrained than the Ui parameters. Similarly, Q5 through
Q8 share the forms of Q3 and Q1, apart from their more-constrained parameters.

Evaluating the restrictions on all the charges simultaneously will prove useful. First,
the conditions for Q5 to be orthogonal to Q3 and Q4 are

0 = Tr(Q5Q3) ∝ (−1)n
(i)+n(ii)

cos
(
a(i) − a(ii) − b(i) + b(ii)

)
+ cos

(
a(i) − a(ii)

)
+ cos

(
b(i) − b(ii)

)
(B.41)

0 = Tr(Q5Q4) ∝ (−1)n
(i)+n(ii)

sin
(
a(i) − a(ii) − b(i) + b(ii)

)
− sin

(
a(i) − a(ii)

)
+ sin

(
b(i) − b(ii)

)
.

(B.42)

The orthogonality conditions for Q6 impose the same constraints, since Tr(Q6Q3) ∝
Tr(Q5Q4) and Tr(Q6Q4) ∝ Tr(Q5Q3) (as can be checked explicitly). Similarly, the or-
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thogonality conditions on Q7 evaluate to

0 = Tr(Q7Q3) ∝ (−1)n
(i)+n(iii)

cos
(
a(i) − a(iii) − b(i) + b(iii)

)
+ cos

(
a(i) − a(iii)

)
+ cos

(
b(i) − b(iii)

)
,

(B.43)

0 = Tr(Q7Q4) ∝ (−1)n
(i)+n(iii)

sin
(
a(i) − a(iii) − b(i) + b(iii)

)
− sin

(
a(i) − a(iii)

)
+ sin

(
b(i) − b(iii)

)
,

(B.44)

0 = Tr(Q7Q5) ∝ (−1)n
(ii)+n(iii)

cos
(
a(ii) − a(iii) − b(ii) + b(iii)

)
+ cos

(
a(ii) − a(iii)

)
+ cos

(
b(ii) − b(iii)

)
,

(B.45)

0 = Tr(Q7Q6) ∝ (−1)n
(ii)+n(iii)

sin
(
a(ii) − a(iii) − b(ii) + b(iii)

)
− sin

(
a(ii) − a(iii)

)
+ sin

(
b(ii) − b(iii)

)
.

(B.46)

The orthogonality conditions for Q8 impose the same constraints [Eqs. (B.43)-(B.46)].

We now identify sets of a(ℓ), b(ℓ), and n(ℓ) that are solutions for all six constraints,
Eqs. (B.41)-(B.46). First, we define xℓm := a(ℓ) − a(m) and yℓm := b(ℓ) − b(m), for (ℓ,m) =
(2, 3), (2, 4), (3, 4). By these definitions, x24 = x23 + x34, and y24 = y23 + y34. Second,
the values of the n(ℓ) themselves are irrelevant. Only whether n(ℓ) + n(m) is even or odd
matters. Only four unique possibilities for the n(ℓ) exist: All the n(ℓ) + n(m) are even; or
one n(ℓ) + n(m) is even, while the other two sums are odd. A solution can therefore be
expressed in terms of just four quantities: x23, x34, y23, and y34. Each solution is periodic:

(x23, x34, y23, y34) ≡ (x23, x34, y23, y34) + (2πn, 2πn, 2πn, 2πn), (B.47)

wherein n ∈ Z. Therefore, we omit the 2πn when listing the solutions below.

First, suppose that all the n(ℓ) + n(m) are even. The constraints (B.41)-(B.46) admit of
18 solutions. The first ten are

(x23, x34, y23, y34) =

(
0,±2π

3
,∓2π

3
,±2π

3

)
,

(
0, 0,±2π

3
,±2π

3

)
,

(
0,±2π

3
,±2π

3
, 0

)
,(

±2π

3
, 0,±2π

3
,∓2π

3

)
,

(
±2π

3
,±2π

3
,±2π

3
,±2π

3

)
. (B.48)

The next eight solutions are identical to the first eight, except that each xℓm is swapped
with the corresponding yℓm.

Second, n(i) + n(iii) can be even while n(i) + n(ii) and n(ii) + n(iii) are odd. The con-
straints (B.41)-(B.46) admit of another 18 solutions. The first ten are

(x23, x34, y23, y34) =
(
π,±π

3
,∓π

3
,±π

3

)
,
(
π, π,±π

3
,±π

3

)
,
(
π,±π

3
,±π

3
, π
)
,(

±π
3
, π,±π

3
,∓π

3

)
,
(
±π

3
,±π

3
,±π

3
,±π

3

)
. (B.49)
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The next eight solutions are identical to the first eight, except that each xℓm is swapped
with the corresponding yℓm.

Third, n(i) + n(ii) can be even while n(i) + n(iii) and n(ii) + n(iii) are odd. The con-
straints (B.41)-(B.46) admit of another 18 solutions. The first ten are

(x23, x34, y23, y34) =

(
0,±π

3
,±2π

3
,±π

3

)
,

(
0, π,±2π

3
,∓π

3

)
,

(
0,∓π

3
,±2π

3
, π

)
,(

±2π

3
, π,±2π

3
,±π

3

)
,

(
±2π

3
,∓π

3
,±2π

3
,∓π

3

)
. (B.50)

The next eight solutions are identical to the first eight, except that each xℓm is swapped
with the corresponding yℓm.

Fourth, suppose that n(ii) + n(iii) is even while n(i) + n(ii) and n(i) + n(iii) are odd. The
constraints (B.41)-(B.46) admit of another 18 solutions. The first ten are

(x23, x34, y23, y34) =

(
π,±2π

3
,±π

3
,±2π

3

)
,

(
π, 0,±π

3
,∓2π

3

)
,

(
π,∓2π

3
,±π

3
, 0

)
,(

±π
3
, 0,±π

3
,±2π

3

)
,

(
±π

3
,∓2π

3
,±π

3
,∓2π

3

)
. (B.51)

The next eight solutions are identical to the first eight, except that each xℓm is swapped
with the corresponding yℓm.

One can check explicitly that the tuple (x23 + y23, x34 + y34) has three possible values:
(x23 + y23, x34 + y34) = (±2π/3, ±2π/3), (±4π/3, ±4π/3), (±2π/3, ∓4π/3). Three sets
of solutions follow. For example, the first set of solutions is (x23 + y23, x34 + y34) =
(±2π/3, ±2π/3). Hence

a(i) − a(ii) + b(i) − b(ii) = ±2π

3
, a(ii) − a(iii) + b(ii) − b(iii) = ±2π

3
, (B.52)

a(ℓ) − a(m) ∈
{

0,
±π
3
,
±2π

3
, π

}
, and b(ℓ) − b(m) ∈

{
0,

±π
3
,
±2π

3
, π

}
, (B.53)

for (ℓ,m) = (2, 3) and (3, 4). All the solutions lead to the same Hamiltonian, Eq. (25).

B.5.3 Ladder operators for su(3)

The conventional Cartan-Weyl basis contains six ladder operators [Eqs. (24)]. We
transform L±1,2,3 with the unitaries Ui, Uii, and Uiii of Sec. B.5.2, to construct the rest of
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the ladder operators: L±4 = U †
i L±1Ui, L±5 = U †

i L±2Ui, and L±6 = U †
i L±3Ui. Substituting

in for L±1,2,3 from Eq. (24) yields

L±4 =
ie∓iϕ

(i)
1

6

{
2i cos

(
a(i) − b(i)

)
τ1 − 2i sin

(
a(i) − b(i)

)
τ2

∓
[√

3 ∓ i(−1)n
(i)
] [

cos
(
a(i)
)
τ4 − sin

(
a(i)
)
τ5
]

±
[√

3 ± i(−1)n
(i)
] [

cos
(
b(i)
)
τ6 − sin

(
b(i)
)
τ7
]
∓
√

3(−1)n
(i)

τ3 −
√

3iτ8

}
,

(B.54)

L±5 =
ie∓

i
2
(ϕ

(i)
3 +ϕ

(i)
1 )

6

(
i
[
cos
(
a(i) − b(i)

)
−
√

3(−1)n
(i)

sin
(
a(i) − b(i)

)]
τ1

− i
[
sin
(
a(i) − b(i)

)
+
√

3(−1)n
(i)

cos
(
a(i) − b(i)

)]
τ2

± 1

2

{
(−1)n

(i) [
3 sin

(
a(i)
)
± i cos

(
a(i)
)]

+
√

3e±ia(i)
}
τ4

± 1

2

{
(−1)n

(i) [
3 cos

(
a(i)
)
∓ i sin

(
a(i)
)]

± i
√

3e±ia(i)
}
τ5

± 1

2

{
(−1)n

(i) [
3 sin

(
b(i)
)
± i cos

(
b(i)
)]

−
√

3e±ib(i)
}
τ6

± 1

2

{
(−1)n

(i) [
3 cos

(
b(i)
)
∓ i sin

(
b(i)
)]

∓ i
√

3e±ib(i)
}
τ7 ∓

√
3(−1)n

(i)

τ3 +
√

3iτ8

)
,

(B.55)

L±6 =
ie

∓ i
2

(
ϕ
(i)
3 −ϕ

(i)
1

)
6

(
− i
[
cos
(
a(i) − b(i)

)
+
√

3(−1)n
(i)

sin
(
a(i) − b(i)

)]
τ1

+ i
[
sin
(
a(i) − b(i)

)
−

√
3(−1)n

(i)

cos
(
a(i) − b(i)

)]
τ2

∓ 1

2

{
(−1)n

(i) [
3 sin

(
a(i)
)
± i cos

(
a(i)
)]

−
√

3eia
(i)
}
τ4

∓ 1

2

{
(−1)n

(i) [
3 cos

(
a(i)
)
∓ i sin

(
a(i)
)]

∓ i
√

3eia
(i)
}
τ5

∓ 1

2

{
(−1)n

(i) [
3 sin

(
b(i)
)
± i cos

(
b(i)
)]

+
√

3eib
(i)
}
τ6

∓ 1

2

{
(−1)n

(i) [
3 cos

(
b(i)
)
∓ i sin

(
b(i)
)]

± i
√

3eib
(i)
}
τ7 ∓

√
3(−1)n

(i)

τ3 −
√

3iτ8

)
.

(B.56)

L±7, L±8, and L±9 have the same forms. However, (ii)’s replace the superscripts (i)’s.
L±10, L±11, and L±12 likewise have the same form, except that (iii)’s replace the (i)’s.
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Appendix C

Appendices for “Noncommuting
charges can increase average
entanglement”

C.1 Analytic expressions for state-counting terms in

microcanonical subspaces’ Page curves

The Page curve (4.2) naturally splits into two terms, the state-counting term [S(⟨ρA⟩S)
from Eq. (4.4)] and the interference term. The interference term is exponentially small in
NB − NA. Thus, if NA ≪ NB, the Page curve approximately equals the state-counting
term. As explained in Sec. 4.2, the state-counting term is easier to calculate than the Page
curve is. We calculate the term in this appendix.

To recall the term’s definition, consider a system restricted to a subspace S (e.g., a
microcanonical or an AMC subspace) of dimensionality D. Denote by {|ψℓ⟩} any or-
thonormal basis for the subspace. Taking any pure state from that subspace and Haar-
averaging it yields the maximally mixed state, ⟨ρ⟩S = 1

D

∑D
ℓ |ψℓ⟩⟨ψℓ|. Tracing out B yields

⟨ρA⟩S := TrB(⟨ρ⟩S), whose entropy is the state-counting term:

S(⟨ρA⟩S) = −Tr(⟨ρA⟩S log ⟨ρA⟩S). (C.1)

We calculate this term for microcanonical subspaces below. First, we introduce notation,
a technical tool, and assumptions (App. C.1.1). We address the commuting-charge model
in App. C.1.2 and the noncommuting-charge model in App. C.1.3.
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C.1.1 Preliminaries

We use the following notation throughout this appendix. Denote by Xtot
a :=

∑N
j=1Xa

the sum of the a qubits’ X operators, and define Y tot
a and Ztot

a analogously. The a qubits’

total-spin-squared operator, S⃗2
a = [(Xtot

a )2+(Y tot
a )2+(Ztot

a )2]/4, has eigenvalues s(s+1) (we
set ℏ = 1). Denote by m the Ztot

a /2 eigenvalue. Denote by sA subsystem A’s spin quantum
number, and denote by mA subsystem A’s magnetic spin quantum number. Define sB and
mB analogously.

We will use Catalan’s triangle, a triangular array of numbers related to the dimension-
alities of qubit systems’ Hilbert spaces [197, 196]. The element in row a and column b
is

Ca,b =
a− b+ 1

a+ 1

(
a+ b

b

)
, for a ≥ b. (C.2)

The bound a ≥ b lends the array its triangular shape. Temporarily consider an N -qubit
system that has quantum numbers s and m. For arbitrary m, CN

2
+s,N

2
−s equals the s

eigenspace’s dimensionality.

Throughout our approximations, we assume that parameters approximately equal their
typical values: m, s,mA, sA,mB, sB = O

(
N−1/2

)
; and NA, NB = O (N). We assume also

that the global system is large: N ≫ 1.

C.1.2 Commuting-charge model’s state-counting term

Appendix C.1.2 describes how the commuting-charge model is constrained in a mi-
crocanonical subspace. In App. C.1.2, we calculate the commuting-charge state-counting
term exactly. How the exact formula scales with N is unclear. Therefore, we approximate
the term to O(N−1) in App. C.1.2, to identify differences from the noncommuting-charge
model.

Constraints on commuting-charge model in microcanonical subspace

The microcanonical subspace C0 parallels the noncommuting-charge model’s s = m = 0
subspace. Let us specify quantitatively how the commuting-charge model is constrained.
First, we introduce notation.
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The local charges C1,2,3 share four eigenstates, the maximally entangled Bell states [37].
They are, if |↑⟩ and |↓⟩ denote the Z eigenstates,

|B1⟩ :=
1√
2

(|↓⟩a |↑⟩b − |↑⟩a |↓⟩b) , |B2⟩ :=
1√
2

(|↓⟩a |↓⟩b − |↑⟩a |↑⟩b) , (C.3)

|B3⟩ :=
1√
2

(|↓⟩a |↓⟩b + |↑⟩a |↑⟩b) , and |B4⟩ :=
1√
2

(|↓⟩a |↑⟩b + |↑⟩a |↓⟩b) . (C.4)

The Bell states correspond to the (C1, C2, C3) eigenvalues (−1,−1,−1), (−1, 1, 1), (1,−1, 1),
and (1, 1,−1), respectively. We will use a C0 basis formed from tensor products of single-
site Bell states. For a given basis state, let Pk denote the number of sites in Bell state
k.

Having specified notation, we use it to derive constraints on the system. The mi-
crocanonical subspace C0 is the eigenvalue-0 eigenspace of Ctot

1,2,3, by analogy with the
noncommuting-charge s = 0 subspace. If the global system is in an eigenvalue-0 eigenstate
of Ctot

1 , then P1 +P2 = P3 +P4 = N
2

. If the system is in an eigenvalue-0 eigenstate of Ctot
2 ,

then P1 + P3 = P2 + P4 = N
2

. If the system is in an eigenvalue-0 eigenstate of Ctot
3 , then

P1 + P4 = P2 + P3 = N
2

. Together, these constraints imply

P1 = P2 = P3 = P4 = N/4 . (C.5)

Since N is an integer, these constraints can be met if N is a multiple of 4, which we assume.

Exact expression for the commuting-charge state-counting term

We first calculate ⟨ρA⟩C0 , the reduced state of system A when the global system is
maximally mixed. In addition to the definitions above, we invoke the “quadnomial” coef-
ficient

(
n

k1,k2,k3,k4

)
:= n!

k1!k2!k3!k4!
. Under the population restriction (C.5), the global system’s

Hilbert space is of dimensionality

D =

(
N

N
4
, N

4
, N

4
, N

4

)
. (C.6)

Denote by Ak the number of A sites in the Bell state |Bk⟩, and denote by Bk the number
of B sites in |Bk⟩. The global system is restricted to a subspace of dimensionality

DA =

(
NA

A1, A2, A3, A4

)(
NB

B1, B2, B3, B4

)
(C.7)

=

(
NA

NA

4
+m1,

NA

4
+m2,

NA

4
+m3,

NA

4
+m4

)(
NB

NB

4
−m1,

NB

4
−m2,

NB

4
−m3,

NB

4
−m4

)
.

(C.8)
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In accordance with Eq. (C.5), Ak +Bk = N/4. Furthermore, A is restricted to a subspace
of dimensionality

dA =

(
NA

A1, A2, A3, A4

)
=

(
NA

NA

4
+m1,

NA

4
+m2,

NA

4
+m3,

NA

4
+m4

)
. (C.9)

The global maximally mixed state is ⟨ρ⟩C0 = 1
D

∑D
ℓ=1 |ψℓ⟩⟨ψℓ|; the sum runs over all

the states in our basis for C0. Denote by {|A1, A2, A3, A4, i⟩} a basis for subsystem A’s
Hilbert space. The index i distinguishes basis states that share the same A1, A2, A3, and
A4. Tracing out subsystem B yields

⟨ρA⟩C0 =
1

D

∑
A1,A2,A3,A4,i

DA

dA
|A1, A2, A3, A4, i⟩⟨A1, A2, A3, A4, i| . (C.10)

The DA

dA
equals the dimensionality of the subsystem-B subspace that is consistent with

the subsystem-A populations A1, A2, A3, and A4. Taking the spectral decomposition, we
calculate ⟨ρA⟩C0 ’s entropy and so the state-counting term:

S(⟨ρA⟩C0) = −
∑

A1,A2,A3,A4

DA

D
log

(
DA

dAD

)
(C.11)

= −
∑

A1,A2,A3,A4

(
NA

A1, A2, A3, A4

)( NB

B1,B2,B3,B4

)(
N

N
4
,N
4
,N
4
,N
4

) log

((
NB

B1,B2,B3,B4

)(
N

N
4
,N
4
,N
4
,N
4

) ) . (C.12)

Closed-form approximation to the commuting-charge state-counting term

Let us approximate the DA

D
in Eq. (C.11) as a Gaussian function. Via differentiation,

we determine that log
(
DA

D

)
maximizes at mk = 0 for all k. We Taylor-expand log

(
DA

D

)
around this maximum, keeping only terms larger than O

(
N−3/2

)
. For conciseness, we

define c := 2N
NANB

= O
(

1
N

)
, d := 1

3

(
8

N2
B
− 8

N2
A

)
= O

(
1
N2

)
, f := 1

2

(
8

N2
A

+ 8
N2

B

)
= O

(
1
N2

)
,

and g := 1
2

(
32

3N3
A

+ 32
3N3

B

)
= O

(
1
N3

)
. We substitute these definitions into the expansion of

log
(
DA

D

)
:

log

(
DA

D

)
= log

(
2c3/2

π3/2

)
− c

(
4∑

i=1

m2
i

)
− d

(
4∑

i=1

m3
i

)
+ f

(
4∑

i=1

m2
i

)
− g

(
4∑

i=1

m4
i

)
+

5

4N
− 5

4NA

− 5

4NB

+ O
(
N−3/2

)
. (C.13)
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Exponentiating each side yields

DA

D
= 2

( c
π

) 3
2

exp

(
−c

4∑
i=1

m2
i

)[
1 − d

(
4∑

i=1

m3
i

)
+
d2

2

(
4∑

i=1

m3
i

)2

+ f

(
4∑

i=1

m2
i

)

− g

(
4∑

i=1

m4
i

)
+

5

4N
− 5

4NA

− 5

4NB

+ O
(
N−3/2

) ]
. (C.14)

We check that this function is normalized to O(N−3/2) (as DA

D
should be normalized), but

omit the check from this appendix.

Having approximated the first factor in the state-counting term (C.11), we address the

second, log
(

DA

dAD

)
. By Stirling’s approximation (C.15),

log(n) = n log(n) − n+
1

2
log(2πn) +

1

12n
+ O

(
n−2
)
, (C.15)

the logarithm is

log

(
DA

dAD

)
= −N log(4) +

NB

4
log

(
N4

B(
NB

4
−m1

) (
NB

4
−m2

) (
NB

4
−m3

) (
NB

4
−m4

))

+m1 log

(
NB

4
−m1

)
+m2 log

(
NB

4
−m2

)
+m3 log

(
NB

4
−m3

)
+m4 log

(
NB

4
−m4

)
+

1

2
log

(
NB(N

4
)4

N
(
NB

4
−m1

) (
NB

4
−m2

) (
NB

4
−m3

) (
NB

4
−m4

))
+

5

4N
+

1

12NB

− 1

12
(
NB

4
−m1

) − 1

12
(
NB

4
−m2

) − 1

12
(
NB

4
−m3

)
− 1

12
(
NB

4
−m4

) + O
(
N−3/2

)
. (C.16)

We Taylor-approximate about N = ∞ and reorganize:

log

(
DA

dAD

)
= −NA log(4) +

3

2
log

(
N

NB

)
+
∑
i

(
−2m2

i

NB

− 8m3
i

3N2
B

+
4m2

i

N2
B

− 16m4
i

3N3
B

)
+

5

4N

− 5

4NB

+ O
(
N−3/2

)
. (C.17)
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The logarithm approximation (C.14) and the ratio approximation (C.17) can now be
substituted into the state-counting term (C.11). The summand varies slowly where its value
is large, so we approximate the sum as an integral. Also, the integrand falls off quickly
enough at large |Ak| that we approximate the limits as ±∞. Evaluating the resulting
Gaussian integrals, we obtain the commuting-charge state-counting term:

S(⟨ρA⟩C0) = NA log(4) − 3

2
log

(
N

NB

)
+

3NA

N
+

3NA

4N2
− N2

A

2N2NB

+ O
(
N−3/2

)
. (C.18)

C.1.3 Noncommuting-charge model’s state-counting term

The noncommuting charges share exactly one eigenspace, N0, specified as follows. Re-
call that the a qubits’ total-spin-squared operator, S⃗2

a, has eigenvalues s(s + 1). Consider
tensoring the a qubits’ s = 0 eigenspace onto the b qubits’ full Hilbert space. The product
is the eigenvalue-0 eigenspace shared by Qtot

1,2,3.

We calculate first the a qubits’ contribution to the state-counting term, then the b
qubits’ contribution (App. C.1.3). In App. C.1.3, we approximate the state-counting term
to order O(N−1), as is necessary for identifying differences from the commuting-charge
model.

Exact expression for the noncommuting-charge model’s state-counting term

First, we calculate the a qubits’ contribution to the state-counting term. By the rules
for angular-momentum addition, s = |sA − sB|, |sA − sB| + 1, . . . , sA + sB. Therefore,
s = m = 0 only if |sA − sB| = 0—equivalently, only if sA = sB and mA = −mB. This
restriction constrains the global system to a subspace N0 of dimensionality

D = CN
2
,N
2

=
1

N
2

+ 1

(
N
N
2

)
. (C.19)

We now choose a basis for this subspace. A natural choice consists of states with
quantum numbers sA = sB. If sA = sB = 0, these basis states are tensor products.
However, almost all the basis states correspond to sA = sB > 0 and encode entanglement
between A and B, unlike the basis states chosen for the commuting-charge model. The
noncommuting-charge basis states Schmidt-decompose as

|sA, i, j⟩ =

sA∑
mA=−sA

(−1)mA

√
2sA + 1

|sA,mA, i⟩A |sB=sA,mB= −mA, j⟩B. (C.20)

117



The i indexes the elements of an arbitrary orthonormal basis for the subsystem-A subspace
associated with the quantum numbers sA and mA. This subspace is of dimensionality

dA = CNA
2

+sA,
NA
2

−sA
=

2sA + 1
NA

2
+ sA + 1

(
NA

NA

2
− sA

)
. (C.21)

The j in (C.20) indexes the elements of an arbitrary orthonormal basis for the subsystem-B
subspace associated with the quantum numbers sB and mB. This subspace is of dimen-
sionality

dB = CNB
2

+sB ,
NB
2

−sB
=

2sB + 1
NB

2
+ sB + 1

(
NB

NB

2
− sB

)
. (C.22)

The global system’s maximally mixed state is

⟨ρ⟩N0
=

1

D

∑
sA,i,j

|sA, i, j⟩⟨sA, i, j| . (C.23)

Tracing out subsystem B yields

⟨ρA⟩N0
=

1

D

∑
sA,mA,i

dB
2sA + 1

|sA,mA, i⟩⟨sA,mA, i| . (C.24)

Taking the spectral decomposition, we calculate the state’s entropy and so the a qubits’
contribution to the state-counting term:

S(⟨ρA⟩N0
) = −

NA
2∑

sA=0

dAdB
D

log

(
dB

D(2sA + 1)

)
(C.25)

= −
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2
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2
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))
. (C.26)

We now calculate the b qubits’ contribution. NA unconstrained qubits have a state-
counting term of NA log(2). Adding NA log(2) to Eq. (C.26) yields the noncommuting-
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charge state-counting term:

S(⟨ρA⟩N0
) = NA log(2) −

NA
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Closed-form approximation to the noncommuting-charge model’s state-counting
term

First, we approximate the dAdB
D

in Eq. (C.25) as a Gaussian function. We break dAdB
D

into two factors, one consisting of factorials and the other of everything else: dAdB
D

=
f(sA)g(sA), wherein

f(sA) :=

(
N
2

)
!
(
N
2

)
!

(N)!
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2
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)
!
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and (C.28)

g(sA) :=

(
2sA + 1

NA

2
+ sA + 1

)(
2sA + 1

NB

2
+ sA + 1

)(
N

2
+ 1

)
. (C.29)

We Taylor-expand log(f(sA)) around its maximum, sA = 0, to O (N−1), assuming s2A ∼ N .
Then, we exponentiate the result:

f(sA) =

√
2N

NANBπ
exp

(
−2Ns2A
NANB

)[
1 +

1

4N
− 1

4NA

− 1

4NB
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N2
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+
2s2A
N2

B

− 4s4A
3N3

A
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3N3

B
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(
N−2

) ]
. (C.30)

Next, we expand g(sA) [Eq. (C.29)]:

g(sA) =
8Ns2A
NANB

[
1 +

1

sA
− 2sA
NA

− 2sA
NB

+
2

N
− 4
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+
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+
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) ]
. (C.31)
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The right-hand sides of (C.30) and (C.31) multiply to

dAdB
D

=
4(2N)

3
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3
2
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. (C.32)

We check that this function is normalized to O(N−3/2) (as dAdB
D

must be normalized), but
omit the details of the check.

Having approximated the first factor in the state-counting term (C.25), we proceed to
the second. According to the Stirling approximation (C.15), the logarithm is
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Taylor-approximating about N = ∞ yields

log
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We can now substitute the logarithm (C.34) and the dAdB/D factor (C.32) into the
state-counting term (C.25). Since the summand varies slowly where its value is large, we
approximate the sum as an integral. Also, since the integrand falls off rapidly at large sA,
we approximate the integral’s upper limit with ∞. Evaluating the integral, we calculate
the a qubits’ contribution to the state-counting term. Adding the b qubits’ state-counting
term, NA log(2), we obtain the noncommuting-charge state-counting term:

⟨SE⟩S = NA log(4) − 3

2
log

(
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NB

)
+

3NA

2N
+
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4N2
+

N2
A

2N2NB

+ O
(
N−3/2

)
. (C.35)
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C.2 How our models’ charges restrict the microcanon-

ical subspaces

The main text posits an explanation for why, in the microcanonical-subspace study,
the noncommuting-charge Page curve lies above the commuting-charge Page curve. We
propose another explanation, using specifics of our models, here. To what extent this
reasoning generalizes beyond those models merits further study.

Consider beginning with an unconstrained system, then restricting the Hilbert space to
the eigenvalue-0 eigenspace of Qtot

1 , then restricting further to the eigenvalue-0 eigenspace
of Qtot

2 , then restricting to the eigenvalue-0 eigenspace of Qtot
3 . The first two restrictions

already restrict the system to the s = 0 subspace; the third restriction is redundant.

Now, consider undertaking the same process but replacing the Qtot
α ’s with Ctot

α ’s. The
first two restrictions only partially imply the third, which therefore constrains the Hilbert
space nontrivially. (Appendix C.2.1 contains a proof.) One might therefore expect the
microcanonical subspace to be larger when defined by our three noncommuting charges
than when defined by our three commuting charges. We have confirmed this expectation
by direct calculation. Furthermore, the available Hilbert space’s dimensionality upper-
bounds the entanglement entropy [Eq. (4.1)]. Hence the noncommuting charges should
enable more entanglement—a higher Page curve—than the commuting charges do.

C.2.1 Constraining Ctot
1 and Ctot

2 constrains Ctot
3 only partially

Consider an unconstrained system of N 4-level qudits. Consider restricting the Hilbert
space to the eigenvalue-0 eigenspace of Ctot

1 , then restricting further to the eigenvalue-0
eigenspace of Ctot

2 , and then restricting to the eigenvalue-0 eigenspace of Ctot
3 . The first

two restrictions partially imply the third, which constrains the Hilbert space nontrivially.
We prove this claim here.

The local charges C1,2,3 share four eigenstates, the maximally entangled Bell states [37].
They are, if |↑⟩ and |↓⟩ denote the Z eigenstates,

|B1⟩ :=
1√
2

(|↓⟩a |↑⟩b − |↑⟩a |↓⟩b) , |B2⟩ :=
1√
2

(|↓⟩a |↓⟩b − |↑⟩a |↑⟩b) , (C.36)

|B3⟩ :=
1√
2

(|↓⟩a |↓⟩b + |↑⟩a |↑⟩b) , and |B4⟩ :=
1√
2

(|↓⟩a |↑⟩b + |↑⟩a |↓⟩b) . (C.37)
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Denote by ρj the jth qubit’s reduced state, which has a weight ⟨Bk| ρj |Bk⟩ on the kth Bell

state. Summing over qudits yields the total population Pk :=
∑N

j=1 ⟨Bk| ρj |Bk⟩.

If the system is in an eigenvalue-0 eigenstate of Ctot
1 , then P1 + P2 = P3 + P4. If the

system is in an eigenvalue-0 eigenstate of Ctot
2 , then P1 + P3 = P2 + P4. Together, these

constraints imply P1 = P4 and P2 = P3. Furthermore, ⟨Ctot
3 ⟩ = P2 + P3 − P1 − P4. This

expectation value, under the Ctot
1,2 constraints, is restricted to 2(P2 − P1), which need not

vanish. Thus, the first two charges do not restrict the Ctot
3 expectation value completely.

Contrarily, if in an eigenstate of Qtot
1,2, the system is in the eigenvalue-0 eigenstate of Qtot

3 .
Hence Ctot

1,2 restrict the Hilbert space less than Qtot
1,2 do.

C.3 How sequentially introduced charges change the

Page curve: superadditively, subadditively, or ad-

ditively

Figure 4.2 shows Page curves constructed from microcanonical subspaces. At finite N ,
the curves violate an expectation that one might gather from earlier literature. We explain
the expectation, discuss the violation, and provide numerical evidence for the expectation
in the thermodynamic limit (as N → ∞).

Consider beginning with an unconstrained N -site system, restricting the Hilbert space
to the eigenvalue-0 eigenspace of Ctot

1 , then restricting further to the eigenvalue-0 eigenspace
of Ctot

2 , and then restricting to the eigenvalue-0 eigenspace of Ctot
3 . One might expect

that, as more charges were introduced, each successive charge would lower the Page curve
by the same amount as the last charge. Such lowering has been argued to happen in
the thermodynamic limit, with commuting charges [104]. We call an expectation of such
lowering the additivity ansatz. One might posit it, expanding on [104], (i) for noncommuting
charges in the thermodynamic limit and (ii) for commuting and noncommuting charges at
finite N .

If the additivity ansatz were true, the Page curve (for three equivalent commuting or
noncommuting charges) could be constructed as follows. Consider restricting the global
Hilbert space to one charge’s eigenvalue-0 eigenspace (any Ctot

α or Qtot
α —which one does

not affect the curve). The corresponding Page curve, we denote by ⟨SE⟩(1)S . Recall that
⟨SE⟩H denotes the unrestricted Page curve. The additivity ansatz predicts the Page curve

⟨SE⟩H − 3
(
⟨SE⟩H − ⟨SE⟩(1)S

)
for our models with three equivalent charges constrained in
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Figure C.1: Testing the additivity ansatz. ⟨SE⟩S denote any Page curve restricted by
charges; and ⟨SE⟩H, the unrestricted Page curve. The red x’s form the noncommuting-
charge model’s Page curve, and the circular blue markers form the commuting-charge
model’s Page curve. Both curves were calculated using microcanonical subspaces. The
gray triangles illustrate the additivity ansatz.

each.

Figure C.1 tests this prediction at finite N . The gray triangles form the additivity-
ansatz curve. It lies below the noncommuting-charge Page curve (red x’s), which are
therefore superadditive. The ansatz curve also lies above the commuting-charge Page curve
(blue circles), which are subadditive. Hence the additivity ansatz breaks in a commutation-
dependent manner at finite N . However, all three curves converge as N grows. We hence
provide numerical evidence for the additivity ansatz, supported analytically in [104] and
in App. C.1 above, in the thermodynamic limit.

C.4 Analogous approximate microcanonical subspaces

The main text specifies how to construct AMC subspaces in the noncommuting-charge
model. We augment this explanation with examples. Then, we explain how to con-
struct analogous AMC subspaces in the commuting-charge model. We also specify the
six analogous-AMC-subspace pairs reported in the main text.

First, we review how to construct AMC subspaces in the noncommuting-charge model.
Denote by 2m the Ztot

a eigenvalue. Ztot
a shares eigenstates with S⃗2

a. Shared eigenstates la-
beled by the same two quantum numbers form the (s,m) eigenspace. Some such eigenspaces
are AMC subspaces, we find by direct calculation. For each (s,m) value, we calculate
the probability distributions pNα (γ). Each distribution should exhibit one peak for the
eigenspace to satisfy the AMC subspace’s definition. pN3 (γ), being a Kronecker delta
function in the (s,m) subspace, meets this criterion. Also, according to direct calcula-
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(s,m)
Possible measurement outcomes

-4 -3 -2 -1 0 1 2 3 4

(1, 0) 0.500 0 0.500
(1, 1) 0.250 0.500 0.250
(2, 0) 0.375 0 0.250 0 0.375
(2, 1) 0.250 0.250 0 0.250 0.250
(2, 2) 0.063 0.250 0.375 0.250 0.063
(3, 0) 0.313 0 0.188 0 0.188 0 0.313
(3, 1) 0.234 0.156 0.016 0.188 0.016 0.156 0.234
(3, 2) 0.094 0.250 0.156 0 0.156 0.250 0.094
(3, 3) 0.016 0.094 0.234 0.313 0.234 0.094 0.016
(4, 0) 0.273 0 0.156 0 0.141 0 0.156 0 0.273
(4, 1) 0.219 0.109 0.031 0.141 0 0.141 0.031 0.109 0.219
(4, 2) 0.109 0.219 0.063 0.031 0.156 0.031 0.063 0.219 0.109
(4, 3) 0.031 0.141 0.219 0.109 0 0.109 0.219 0.141 0.031
(4, 4) 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004

Table C.1: Probabilities pN1 (γ) that characterize (s,m) eigenspaces. Denote by |ψ⟩
any state from an (s,m) eigenspace of the noncommuting-charge model. Measuring Qtot

1

yields outcome γ with some probability. This probability, averaged over the |ψ⟩, we denote
by pN1 (γ). The possible measurement outcomes range from −s to s. The probabilities
pN1 (γ) are listed for each (s,m) and are independent of the system size, N . pN1 (γ) has
exactly one peak only if s = m.

tion, pN1 (γ) = pN2 (γ) for all γ. Hence we need calculate only pN1 (γ) to check whether an
(s,m) eigenspace is an AMC subspace. Table C.1 presents these distributions for s ≤ 4.
Whenever s = m, each distribution exhibits one peak. Therefore, each (s,m=s) subspace
qualifies as an AMC subspace.

Having identified AMC subspaces defined by noncommuting charges, we construct
analogs defined by commuting charges. For each N , we identify the eigenspaces shared by
Ctot

1,2,3. For consistency with the noncommuting-charge model, we keep only the eigenvalue-
m eigenspaces of Ctot

3 . For each shared eigenspace, we calculate the distributions pCα(γ).
If they equal their noncommuting-charge counterparts pNα (γ) (criterion 5), the eigenspace
forms an analogous AMC subspace.

An illustrative example is parameterized by N = 8 and (in the noncommuting-charge
model) s = m = 1. We keep only the eigenvalue-1 eigenspaces of Ctot

3 . Denote by cx the Ctot
1
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N s = m NC C NC − C % diff.

4 1 −0.455 −0.479 0.024 5.112

8 1 −0.364 −0.390 0.027 7.106

2 N/2 −0.587 −0.589 0.002 0.362

4 N/2 −1.350 −1.354 0.004 0.272

6 N/2 −2.074 −2.086 0.012 0.600

8 N/2 −2.770 −2.788 0.017 0.625

Table C.2: Differences between Page curves, constructed from approximate mi-
crocanonical subspaces, at NA = N/2. The Page curves’ values at NA = N/2 are listed
for various N and s = m values. We abbreviate “difference” with “diff.,” “noncommuting”
with “NC,” and “commuting” with “C.”

eigenvalues and by cy the Ctot
2 eigenvalues. We label by (cx, cy, 1) the eigenspaces shared by

Ctot
1,2,3. For consistency with the noncommuting-charge model, we ignore any eigenspaces in

which cx > s or cy > s. Four eigenspaces remain: (0,−1, 1), (−1, 0, 1), (1, 0, 1), and (0, 1, 1).
Each is of dimensionality 1680. The candidate AMC subspace is the union of these four
subspaces and is of dimensionality 6720. These dimensionalities fix the probabilities pC1(γ).
For example, pC1(0) = (1680×2)/6720 = 0.5. The remaining probabilities are pC1(−1) = 0.25
and pC1(1) = 0.25. This distribution equals the corresponding pN1 (γ). Checking every
eigenvalue-m eigenspace of Ctot

3 , we find six eigenspaces for which pCα(γ) = pNα (γ) ∀α, γ,
satisfying criterion 5.

We have identified six pairs of parallel (commuting-charge and noncommuting-charge)
AMC subspaces. The pairs are labeled by s = m = 1, N/2 and N = 4, 8, as well as by
s = m = N/2 and N = 2, 6. (Computational limitations restrict us to N ≤ 8.) Table C.2
compares the two Page curves formed from each subspace pair. We compare the curves
at their midpoints, NA = N/2. The percent difference between the two curves varies from
0.199% to 3.06% across the subspace pairs. Hence noncommuting charges increase the
average entanglement entropy in AMC subspaces as in microcanonical subspaces.
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Appendix D

Appendices for “Noncommuting
charges induce a critical phase in
monitored quantum circuits”

D.1 Additional numerics elucidating the entanglement

dynamics and spin sharpening

In Fig. 5.2, we plot log(SA) [see Eq. (5.3)] against t/L2. We claimed the different-L
curves collapse for p > pc ≈ 0.35 and presented the plots for up to p = 0.4. To confirm
that the curves remain collapsed for larger p we plot p = 0.6, 0.8, and 1.0 in Fig. D.1.

In Sec. 5.3.2, we claimed that L2 time steps suffice for the bipartite entanglement
entropy, Sf , to plateau. Figure D.2 justifies this claim, presenting Sf as a function of log(t)
for ≤ L2 time steps at the extreme values p = 0, 1. At both extrema, Sf stops changing
(to within minor fluctuations) by L2 time steps.

Section 5.4 claimed that our p > p# data are compatible with a sharpening time scale
∼ L2 deep in the critical phase. Figure D.3 justifies this claim. We plot log(SA) against
t/L2 at various p values. The initial collapse occurs at p > p#. The L=8 numerics deviate
from the collapse when p ∈ [0.35, 0.45] ∪ [0.8, 1]. We suspect that these deviations arise
from finite-size effects.
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Figure D.1: The purification time still reveals a z = 2 phase for p > 0.4. The
entropy SA quantifies the ancilla qubit’s entanglement with the system. We plot log(SA)
for clarity, as SA decays exponentially. t/L2 runs along the x-axis to demonstrate the
existence of a phase in which the system purifies over a time scale tP ∼ L2. We used 30 000
samples when L = 8 to 16; 10 000 samples when L = 18; and 1 500 samples when L = 20.
The y-axis’s lower limit is log(10−3) ≈ −6.91.

Figure D.2: The bipartite entanglement entropy saturates after L2 time steps.
At the extreme p values p = 0, 1, Sf quits changing (to within minor fluctuations).
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Figure D.3: In the critical phase, the numerics are consistent with a ∼ L2 sharp-
ening time scale. The entropy SA quantifies the ancilla qubit’s entanglement with the
system. We plot log(SA) for clarity, as SA decays exponentially. t/L2 runs along the x-axis
to demonstrate the numerics are consistent with a ∼ L2 sharpening time scale. We used
30 000 samples when L = 8 to 14; and 10 000 samples when L = 16 to L = 18. The y-axis’s
lower limit is log(10−3) ≈ −6.91.

128



Index

Approximate microcanonical (AMC)
subspaces, 11

Canonical state, 2
Cartan subalgebra, 24
Cartan–Weyl bases, 24
Charge-sharpening transition

Charge-fuzzy phase, 48
Charge-sharp phase, 48

Charges, 1
Chemical potential, 2

Eigenstate Thermalization Hypothesis
(ETH), 12

Entanglement entropy, 37
Entanglement transition

Area-law, 47
Volume-law, 47

Entropy, 15
Entropy-production rate, 15

Free energy, 10

Generalized Gibbs Ensemble (GGE), 9
Grand canonical state, 2

Heisenberg model, 3

Killing form, 24

Lie algebra, 24

Many-body localization (MBL), 20
Maximum entropy principle, 8
Measurement-induced phase transitions

(MIPTs), 47
Microcanonical subsapce, 9
Monitored quantum circuits, 46
Mutual Information, 53

Non-Abelian ETH, 18
Non-Abelian thermal state, 9

Page curve, 37
Interference term, 38
State-counting term, 37

Postselection problem, 48
Principle of maximum entropy, 8
Purification transition

Mixed phase, 47
Pure phase, 47

Quantum chaos, 20

Relative entropy, 10
Resource theories, 11

Spin-sharpening, 56
Stationary state, 19

Thermal equilibrium, 13
Thermal state, 2
Thermodynamic entropy, 15

129



Thermodynamic Entropy production, 16

Wigner–Eckart theorem, 17

Wigner–Yanase–Dyson (WYD) skew
information , 16

130


	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Familiar example
	Outline

	Background on noncommuting charges
	Overview
	Early work
	First appearance in the 1950s
	Reemergence in the 2010s

	Eigenstate Thermalization Hypothesis
	New physics
	Why noncommuting charges may inhibit thermalization
	Other new physics


	Bridging to experiments and many-body physics
	Introduction
	Preliminaries
	Setup
	Lie Algebra background

	Procedure
	Synposis
	Pedagogical explanation using su(2)

	su(3) example
	Summary & Outlook

	Noncommuting charges can increase average entanglement
	Introduction
	Page-curve background
	Analogous noncommuting-charge and commuting-charge models
	Microcanonical-subspace comparison
	Approximate-microcanonical-subspace comparison
	Summary & Outlook

	Noncommuting charges induce a critical phase in monitored quantum circuits
	Introduction
	SU(2)-symmetric monitored circuits
	Critical phase
	Purification time
	Entanglement dynamics
	Mutual information

	Spin-sharpening transition
	Summary & Outlook

	Noncommuting charges remove non-thermalizing local observables
	Introduction
	Dynamical symmetries
	Correspondence between charges and dynamical symmetries
	Correspondence
	Illustration using the Hubbard model

	Noncommuting charges' effect on dynamical symmetries
	Procedure
	Illustration using su(2)
	Illustration using su(3)
	Hamiltonians

	Summary & Outlook

	Conclusions 
	Research opportunities
	Summary of results

	References
	Appendices
	Appendices for ``Review of noncommuting charges''
	Schur's lemma implies degeneracy of Hamiltonians that have non-Abelian symmetries

	Appendices for ``Bridging to experiments and many-body physics''
	The Killing form induces a metric on every simple Lie algebra.
	General Hamiltonian that transports su(2) elements locally while conserving them globally
	Preferred basis of charges for su(2) 
	General ladder operators for su(2) 
	Two-body and three-body Hamiltonians for su(2) 

	Simple form to which a two-body Hamiltonian may collapse
	Proof of Proposition 1
	Mathematical details: Construction of a two-body Hamiltonian that transports su(3) elements locally while conserving them globally
	Conventional Cartan-Weyl basis for su(3) 
	Preferred basis of charges for su(3) 
	Ladder operators for su(3) 


	Appendices for ``Noncommuting charges can increase average entanglement''
	Analytic expressions for state-counting terms in microcanonical subspaces' Page curves
	Preliminaries
	Commuting-charge model's state-counting term
	Noncommuting-charge model's state-counting term

	How our models' charges restrict the microcanonical subspaces
	Constraining C1tot and C2tot constrains C1tot only partially

	How sequentially introduced charges change the Page curve: superadditively, subadditively, or additively
	Analogous approximate microcanonical subspaces

	Appendices for ``Noncommuting charges induce a critical phase in monitored quantum circuits''
	Additional numerics elucidating the entanglement dynamics and spin sharpening

	Index

