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Abstract

Living organisms possess the remarkable ability to both respond to rhythms and gen-
erate them. In some instances, unintended rhythms arise, leading to undesirable or even
hazardous consequences, such as synchronized neuronal firing during epilepsy. However, in
other cases, such biological rhythms are beneficial in regulating essential processes across
all life forms. From bacteria to humans, rhythms permeate various aspects of life, in-
fluencing everything from biochemical reactions to lifestyle habits. Here, our focus is on
understanding systems that actively generate rhythms, known as clocks. Clocks, in par-
ticular, are systems that not only generate rhythms but also respond to environmental
signals. Examining rhythms in isolation, without considering their generation, alteration,
or regulation, would provide limited insights into the complexities of biological systems.

We study the interaction between biological clocks and physiological processes: sleep,
the immune system, metabolism, and environmental perturbations such as fluctuations
in photoperiods. We develop mathematical and computational frameworks to investigate
rhythms and their influence on biological processes at tissue and system levels. We specif-
ically study cell-cell interactions at the level of the suprachiasmatic neuleus (SCN) in the
hypothalamus of the brain, also called the master circadian clock. We investigate how
noise at the level of the individual cells affect properties of the ensemble: period, oscilla-
tion amplitude, and bifurcation boundaries. Starting from individual dynamics, we derive
macroscopic descriptions called mean field limits for interacting cells. Going up in scale,
we also study the interactions between the peripheral circadian clock in the lung and the
innate immune system during inflammation. At this organ scale, we investigate protein-
protein interactions between clock proteins and immune agents, called cytokines. We are
interested in the reciprocal modulation between these two systems, especially when the
circadian rhythm is disrupted. Finally, we move from organ-level to the whole-body level.
We develop multi-organ models of metabolism. These whole-body models integrate ex-
ercise and diet. Given the ubiquity of circadian rhythms at all levels of our physiology,
these models are intended for the study of the role of external signals, beside neural signals
emanating from the SCN, on (re-)synchronizing rhythms in the periphery. The interplay
between such signals and metabolic processes plays a role in maintaining homeostasis,
while also organizing and timing physiological processes in a proactive rather than reactive
manner.

This thesis contributes to the development of novel frameworks aimed at understanding
multiscale systems, analyzing the relationships between network structure and dynamics,
and ultimately deriving candidate mechanisms that can be experimentally verified.
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4.8 Sex-specific response to infection during CJL at CT0 and CT12. Model
simulations of the time course of (a) IL-6, (b) TNF-α, (c) IL-10 and (d)
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6.1 Whole-body system diagram. The systemic circulation connects all tis-
sues/organs by transporting substrates in arterial oxygenated blood to the
organs/tissues (solid dark blue arrows). Venous blood (solid light blue ar-
rows) leaving these tissues/organs eliminates by-products and becomes ar-
terial blood to restart circulation after releasing carbon dioxide and absorb-
ing oxygen in the lungs (gas exchange). Blood supply to the liver comes
from both the hepatic artery and venous blood from the GI tract. Exer-
cise promotes epinephrine release, which modulates the secretion of insulin
and glucagon and acts as a neuroendocrine signal for the heart, skeletal
muscle, GI tract, and adipose tissue (solid orange arrows). Changes in
glucagon and insulin production thereby influence metabolic fluxes in the
liver, GI tract, and adipose tissue via the glucagon–to-insulin ratio signal
(solid green arrows). Finally, arterial glucose concentration (dashed arrow)
signals the pancreas to regulate insulin and glucagon levels, thus completing
the feedback regulatory mechanism. Male and female sex symbols repre-
sent compartments where sex-differences, besides differences in tissue/organ
weights, are implemented. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Union map of all-organ metabolic pathways. 9 substrates are transported
between blood and tissues (open arrows). Black arrows are tissue-specific
pathways, whereas dashed arrows represent common pathways found in all
tissues. Pathways marked with an asterisk (*) are composed of multiple
reaction steps but grouped together as a single step in this model. Reaction
rates in females that are significantly different from males at rest are marked
by an arrow indicating the direction of change and the symbol F. Substrate
abbreviations are listed in Table 6.1. . . . . . . . . . . . . . . . . . . . . . 95

6.3 Relative contribution of fuel sources to whole-body ATP production. Per-
cent contribution values are instantaneous values at 15, 30, 45 and 60 min,
respectively. Moderate intensity exercise at 60% V̇O2max (150W). M: male
model; F: female model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Dynamic responses of (a) epinephrine, (b) insulin and glucagon to a step
increase in work rate (150W) during 60 min exercise. Data from [7, 8]. Only
one dataset [7] is used for insulin concentration as there are no significant
sex differences between the sexes. . . . . . . . . . . . . . . . . . . . . . . . 110
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6.5 (a) Glucagon-insulin ratio (GIR) response to an increase in work rate (150W)
from rest at 0 min. The simulations ranging from -10 to 0 min show
steady-state responses; (b) fractional change in GIR and in maximal rate of
glycogenolysis (VmaxGLY→G6P) in the liver in response to a step increase in
work rate (150W) from resting state at 0 min. Fractional change refers to
the ratio of the change in the quantity to its original value. Bars represent
instantaneous values and lines represent dynamic responses. (c) Whole-
body glucose homeostasis during exercise. Data from exercise experiments
in humans [7, 8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Dynamic responses of (a) whole-body glucose production, (b) net hepatic
glycogen breakdown, and net hepatic gluconeogenesis to an increase in work
rate (150W) during 60 min exercise. Net hepatic glycogen breakdown is
defined as the difference in metabolic rates between glycogenolysis (break-
down of glycogen) and glycogenesis (production of glycogen) in the liver.
Net hepatic gluconeogenesis is defined as the difference between gluconeo-
genesis II (production of glucose-6-phosphate) and glycolysis II (utilization
of glucose-6-phosphate) in the liver. . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Hypothetical compensatory mechanism between the liver and skeletal muscle
in females. The figure illustrates the direct (green boxes) and indirect (blue
boxes) effects of female sex hormones (E, estrogens; P, progesterone) on
metabolic processes during exercise. Solid arrows indicate the Cori Cycle,
while dotted arrows represent the compensatory mechanism for fat oxidation.113

6.8 Dynamic response of intramuscular glucose uptake, net glycogen breakdown,
FFA uptake and net triglyceride breakdown to an increase in work rate
(150W) during 60 min exercise. (a) Male, carbohydrate utilization; (b)
Female, carbohydrate utilization; (c) Male, fat utilization; (d) Female, fat
utilization. Glucose uptake is defined as the uptake rate of glucose in the
muscle. Net glycogen breakdown is defined as the difference in metabolic
rates between glycogenolysis (breakdown of glycogen) and glycogenesis (pro-
duction of glycogen) in the muscle. Net triglyceride breakdown is defined as
the difference in metabolic rates between the utilization of triglycerides and
the production of triglycerides in the muscle. . . . . . . . . . . . . . . . . . 115

6.9 Fractional contribution of different organs and tissues to whole-body lipoly-
sis rate for (a) Male, (b) Female. Total lipolysis =

∑
x ϕx,TG→FFA+GLR where

x is heart, skeletal muscle, liver, GI tract, and adipose tissue. . . . . . . . . 117
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7.1 Whole-body system diagram. The systemic circulation connects all tis-
sues/organs by transporting substrates in arterial oxygenated blood to the
organs/tissues (solid dark blue arrows). Venous blood (solid light blue ar-
rows) leaving these tissues/organs eliminates by-products and becomes arte-
rial blood to restart circulation after releasing carbon dioxide and absorbing
oxygen in the lungs (gas exchange). Blood supply to the liver comes from
both the hepatic artery and venous blood from the GI tract. Nutrients
are assimilated in the GI tract and subsequently enter the bloodstream.
The nutrient-rich blood flows to all other organs and tissues. The pancreas
responds to variations in arterial glucose concentration (indicated by the
dashed arrow), regulating the levels of insulin and glucagon. Alterations in
the concentrations of insulin and glucagon impact metabolic fluxes in the
heart, skeletal muscle, liver, gastrointestinal tract, and adipose tissue (de-
picted by solid green arrows), thereby concluding the feedback regulatory
mechanism. Male and female sex symbols represent compartments where
sex-differences, besides differences in tissue/organ weights, are implemented. 129

7.2 Time profile of plasma insulin and glucose concentrations after an overnight
fast and following a single meal. Experiment 1: 96 g carbohydrate and 33 g
fat [9]; Experiment 2: 139 g carbohydrate and 17 g fat [10]; Experiment 3:
58 g carbohydrate and 27.7 g fat [11]; Experiment 4: 289 g carbohydrate and
45 g fat [12]. Square markers ( ) with lines represent calibration data with
standard errors [9]; Triangular markers ( ) with lines represent validation
data with standard errors [10, 11]. Lines represent model simulations. (a),
(c), (e), (g): plasma insulin; (b), (d), (f), (h): plasma glucose. Absorptive
phase, 0–6h; postabsorptive phase, 6–12h. . . . . . . . . . . . . . . . . . . 131

7.3 Time profile of glycogen concentration in liver (left column) and skeletal
muscle (right column), relative to its initial value, after an overnight fast
and following a single meal. Experiment 1: 96 g carbohydrate and 33 g fat
[9]; Experiment 2: 139 g carbohydrate and 17 g fat [10]; Experiment 3: 58
g carbohydrate and 27.7 g fat [11]; Experiment 4: 289 g carbohydrate and
45 g fat [12]. Square markers ( ) with lines represent calibration data with
standard errors [10, 12]. Lines represent model simulations. . . . . . . . . 134
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7.4 Time profile of plasma metabolite concentrations after an overnight fast
and following a single meal. Experiment 1: 96 g carbohydrate and 33 g fat.
Square markers with lines represent experimental data with standard errors
[9, 13]; Lines correspond to the male and female model simulations. (a)-(d)
concentrations, relative to initial values, of plasma lactate, plasma free fatty
acids (FFA), plasma triglycerides (TG), and plasma glycerol, respectively.
Basal concentrations of the following substrates differ significantly between
the sexes: glucose (5 vs. 4.91 mM) [14], FFA (0.66 vs. 0.76 mM) [14], and
TG (0.99 vs. 0.93 mM) [15] in males and females, respectively. The initial
concentrations of other substrates are taken to be the same in both male
and female models. Absorptive phase, 0–6h; postabsorptive phase, 6–12h. . 136

7.5 Time profile of whole-body respiratory quotient (RQ) in response to a single
800 kcal meal. Two distinct meal types were investigated: high-carbohydrate
(HiC) and high-fat (HiF) meals. The whole-body RQ was calculated as the
ratio of V̇CO2/V̇O2, where V̇CO2 and V̇O2 represent the sums of CO2 pro-
duction and O2 consumption rates across all organs and tissues, respectively.
We assumed that the respiratory exchange ratio (RER) reflects systemic
nonprotein RQ, as suggested in Ref. [16]. Absorptive phase, 0–6h; postab-
sorptive phase, 6–12h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.6 Carbohydrates and fat oxidation fractions in response to a single 800 kcal
meal. HiC, high-carbohydrate meal; HiF, high-fat meal; CHO, carbohy-
drate. The oxidation fractions (unitless) establish a relationship between
RQ values and the actual proportion of carbohydrates and fat utilized for
ATP hydrolysis (ϕATP→ADP). Indirect calorimetry methods, as outlined by
Roepstorff et al. [16], were employed: CHO oxidation fraction = (RQ -
0.7)/0.3; fat oxidation fraction = 1 - CHO oxidation fraction. Absorptive
phase, 0–6h; postabsorptive phase, 6–12h. . . . . . . . . . . . . . . . . . . 139

7.7 Carbohydrates (glycogen) and fat (TG) storage during the absorptive phase
(0–6h). A single meal of 800 kcal is simulated at t=0. (a) liver glycogen; (b)
skeletal muscle glycogen; (c) liver TG; (d) skeletal muscle TG. HiC, high-
carbohydrate meal; HiF, high-fat meal. ∆ refers to the absolute change
in a given substrate, Cx,i(T ) − Cx,i(0), where Cx,i is the concentration of
substrate i in tissue x, and T = 6h. . . . . . . . . . . . . . . . . . . . . . . 142
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7.8 Metabolism of carbohydrates during a short-term fast (24h) following a sin-
gle 800 kcal meal. HiC, high-carbohydrate meal; HiF, high-fat meal. (a)
average uptake (or release) rate (mmol/min) of FFA per organ during the
last 12 hours of the fasting window following HiC and HiF meals; (b) rate
of hepatic glucose output (mmol/min) into the blood; (c) concentration of
hepatic glycogen; mM, mmol/L. B, brain; H, heart; M, muscle; G, GI tract;
L, liver, A, adipose tissue; O, other tissues. . . . . . . . . . . . . . . . . . . 144

7.9 Change in hepatic energy metabolism with fasting. Values represent av-
erages over the last 12 hours of a 24-hour fast following a single 800 kcal
meal. HiC, high-carbohydrate meal; HiF, high-fat meal. %∆ F/M refers to
the percent relative difference between the sexes. It calculated as (female
flux/male flux -1)×100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.10 Sex-related differences in liver metabolic pathways during the postabsorptive
phase (>12 h). Rates higher (lower) in the female model compared to the
male model are shown in blue (red). 9 substrates are transported between
blood and tissues (open double-sided arrows). Single-sided arrows indicate
the direction of transport flux, which varies between the sexes. However, we
note that these arrows would be more accurately depicted as double-sided
arrows since substrates can be either taken up or released. Pathways marked
with an asterisk (*) are composed of multiple reaction steps but grouped
together as a single step in this model. Substrate abbreviations are listed in
Table D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.11 Fat metabolism during a short-term fast (24h) following a single 800 kcal
meal. HiC, high-carbohydrate meal; HiF, high-fat meal. (a) Adipose tissue
TG concentration; (b) Net lipolysis rate (the difference between TG break-
down and TG synthesis) in adipose tissue ; (c) average uptake (or release)
rate (mmol/min) of TG per organ during the last 12 hours of the fasting pe-
riod following the HiC and HiF meals, respectively; mM, mmol/L. B, brain;
H, heart; M, skeletal muscle; G, GI tract; L, liver, A, adipose tissue; O,
other tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.12 Results of local sensitivity analysis at 9 hours post-meal. (a) Male model
and HiC; (b) female model and HiC; (c) male model and HiF; (d) Female
model and HiF. HiC, high-carbohydrate meal; HiF, high-fat meal. Glycol-
ysis II, ϕG6P→GAP; gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY;
glycogenolysis, ϕGLY→G6P, lipolysis, ϕTG→FFA–GLR. . . . . . . . . . . . . . . 149
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7.13 Results of local sensitivity analysis at 24 hours post-meal. (a) Male model
and HiC; (b) female model and HiC; (c) male model and HiF; (d) Female
model and HiF. HiC, high-carbohydrate meal; HiF, high-fat meal. Glycol-
ysis II, ϕG6P→GAP; gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY;
glycogenolysis, ϕGLY→G6P, lipolysis, ϕTG→FFA–GLR. . . . . . . . . . . . . . . 150

8.1 Dotted arrows represent activation; blunt dashed arrows represent inhibi-
tion. In the acute inflammation model, P denotes an active replicating
bacterial agent; D, damage marker; N , activated phagocytic cells; CA, slow-
acting anti-inflammatory cytokines; IL-6 and TNFα are pro-inflammatory
cytokines; IL-10 is an anti-inflammatory cytokine; YIL−10 is a tissue-driven
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8.3 Different kinds of network topology. (a) Random network (erdos-renyi
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network (barabasi-albert model). Reproduced from [18]. Copyright © 2014,
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A.1 Sobol’ indices for parameters modified by CJL. Simulation of the baseline
coupled model under acute inflammation with endotoxin dose 3 mg/Kg.
Circles imply no sensitivity to a parameter. A darker area on an index bar
indicates sensitivity levels that persisted for most of the simulation time,
while faded areas represent sensitivity levels that lasted for shorter periods
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A.4 Sobol’ indices for the coupling parameters. Simulation of the baseline cou-
pled model under acute inflammation with endotoxin dose 3 mg/Kg. Circles
imply no sensitivity to a parameter. A darker area on an index bar indi-
cates sensitivity levels that persisted for most of the simulation time, while
faded areas represent sensitivity levels that lasted for shorter periods of time.
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C.3 Local sensitivity results for the female model. Sensitivity coefficients are
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Chapter 1

Introduction

Sleep, diet, and exercise form the cornerstone of a healthy lifestyle, promoting critical
biological functions to uphold physical and mental well-being. Yet, amidst the cadence of
modern life, sleep disorders afflict millions, while the prevalence of type 2 diabetes steadily
increases. According to the National Institutes of Health, 1 in 3 adults in the United
States alone suffer from sleep deprivation, and 50 to 70 million Americans have chronic
sleep disorders [19]. Aditionally, about 422 million people worldwide have diabetes, and 1.6
million deaths are directly attributed to diabetes each year [20]. Both the number of cases
and the prevalence of diabetes have been steadily increasing over the past few decades.
Type 2 diabetes accounts for about 90-95% of all adult diabetes cases [21]. Of particular
concern for the steady increase in these disorders is the disruption of circadian rhythms—
the endogenous rhythms in behavioral and physiological processes, which cycle with a
period of approximately (circa) 24 hours. A master clock located in the suprachiasmatic
nuclei (SCN) of the brain regulates the circadian rhythm of physiological and behavioral
activities in mammals. Circadian disruption is a modern-day lifestyle hazard exacerbated
by factors like shift work, inadequate diet, and physical inactivity [22–24]. Epidemiological
evidence underscores the association between circadian disruptions and an elevated risk of
type 2 diabetes, with shift work alone linked to a 10 to 40% increased risk [25].

Research on circadian biology is still in its nascent stages, while studies on metabolism
and exercise have long been established. However, a significant gap persists in the sci-
entific community, impacting research waves, both old and new: the lack of sex-specific
research. For instance, concerning the escalating rates of sleep deprivation, emerging evi-
dence suggests that women may be more susceptible to extended wakefulness and circadian
misalignment, potentially amplifying their susceptibility to sleep and metabolic disorders
compared to men [19]. This raises concerns regarding long-term health consequences. Sex-
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specific research lags due to the underrepresentation of females in relevant studies [26, 27].
Historically, women were sidelined in biomedical investigations, with studies predominantly
focusing on male subjects under the assumption of generalizability across sexes [26–28].
However, contemporary research underscores fundamental morphological and physiologi-
cal distinctions between males and females [26–29]. This gap in research risks overlooking
crucial insights into sex-based physiological variations, with far-reaching implications such
as sex-specific adverse drug reactions [30, 31].

Key components of maintaining health, such as the sleep-wake cycle, exercise regimen,
and dietary habits, are intricately regulated by circadian rhythms. Our internal clocks
provide a way to anticipate external cues and hence to organize physiology and behavior in
a proactive rather than a responsive manner [32]. For instance, the restriction of molecular
and behavioural processes to specific day-times has the advantage of temporally separat-
ing incompatible metabolic processes [33]. Evidence suggests that disruptions in circadian
rhythmicity are closely linked to metabolic disorders like type 2 diabetes. In turn, other
biological systems, such as our immune, cardiovascular, and metabolic systems, can affect
the circadian system and modulate the rhythms either in a supportive or pervasive manner
[34]. Understanding how our biological clocks integrate with our whole-body machinery
and how circadian disruptions contribute to diseases is paramount. Equally essential is
addressing the disparity in research between sexes to investigate how sex and hormonal
factors impact various physiological processes, including metabolic health, cardiovascular
function, immune responses, and neurological conditions. As such, computational mod-
elling has emerged as a valuable tool to investigate physiological mechanisms [29] in silico.

Several mathematical models have emerged to explore properties of the SCN in iso-
lation, including synchrony, ensemble period, and entrainment ability [35–42]. Most of
these models are deterministic and formulated as coupled ordinary differential equations.
However, recent studies have delved into the impact of noise on the circadian clock us-
ing stochastic differential equations or experimental analyses of stochastic rhythms [43–
45]. These models adopt a particle-like description of interacting neurons and are called
individual-based models (IBMs). They are typically employed in animal swarming sce-
narios [46, 47]. Common coupling topologies include all-to-all coupling and small-world
networks [35–37, 48, 49]. For systems with a large number of interacting agents, macro-
scopic descriptions based on the evolution of a density of individuals are utilized, leading
to continuum models. The scaling limit of these models is referred to as the mean field
limit [47, 50, 51]. Continuum models are valuable for simplifying IBMs into an effective
one-body problem: the particle probability density [50].

There exists coupled mathematical models of the circadian clock and its interaction
with various systems such as immunity and glucose metabolism. In the realm of immunity,
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models can be categorized into two main groups. The first category explores the interplay
between circadian rhythms and the immune system through neuroendocrine mediators
like melatonin and cortisol [52–54]. These models utilize rhythmic hormones to drive
circadian variations without explicitly modelling the core clock machinery. Conversely, the
second category incorporates the core clock system but features unidirectional coupling
from the clock to the immune system, as seen in models of the NF-κB network modulated
by the circadian clock [55]. Recent insights suggest a reciprocal relationship between the
immune system and the circadian clock [56, 57]. Mathematical models focusing on glucose
metabolism can be classified into three groups. The first group explores the interplay
between the SCN and glucose metabolism via rhythmic glucocorticoids like cortisol and
melatonin [58, 59], often without incorporating peripheral clocks or disruptions due to
feeding/fasting schedules. The second group models glucose-stimulated insulin secretion,
incorporating circadian modulation via insulin granule trafficking but omitting the core
clock circuitry [60, 61]. Finally, liver-specific models integrate feeding and fasting cycles
with the clock while disregarding interactions with other organs [62, 63].

As for models of metabolism alone (with no circadian influence), various types of math-
ematical models have been developed. Early models extensively simulated glucose-insulin
metabolism to analyze the effect of insulin secretion on glucose homeostasis [64, 65]. How-
ever, many of these early models used coarse-grained compartmental models that were
not always based on molecular mechanisms, limiting their applicability to specific func-
tions. In contrast, multi-scale, large-scale dynamic models have emerged to provide a more
comprehensive understanding of metabolism [3, 66–77]. These biochemistry-based mech-
anistic models are better suited for identifying specific components that contribute to the
metabolic interface at the whole-body level.

The current state of research in metabolic and immune health highlights the necessity
for sex-specific, multi-organ, and multi-scale models that capture the reciprocal interac-
tions between organs and systems. This thesis aims to address these gaps by integrating
circadian biology with related systems, particularly immunity and metabolism. Utilizing
new biology and new mathematics, this thesis intends to highlight: 1) how network prop-
erties of biological oscillators contribute to broadband synchronization and the emergence
of robust circadian cycles; 2) how sex differences impact circadian regulation in humans,
with a particular focus on immunity under circadian disruption; and 3) how sex differences
modulate energy metabolism related to diet and exercise. Specifically, for the latter, our
work lays down mathematical frameworks for future studies of feeding-fasting cycles, diet
regimens, and their role in shaping the clock-metabolic interface. Ultimately, our research
justifies factoring in sex differences when optimizing mathematical models geared towards
personalized medicine. Our mathematical models serve as computational tools with broad
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applicability across diverse problem domains, ultimately facilitating the generation of ex-
perimentally verifiable predictions.

The remainder of this manuscript is organized as follows.

Chapter 2. Mathematical background
Chapter 2 provides an introduction to the mathematical concepts necessary for the later
work in this thesis. It covers dynamical systems theory, elements of bifurcation theory, and
important results regarding the derivation of mean field limits for Vlasov and McKean-
Vlasov systems.

Chapter 3. Biological background
Chapter 3 presents the biological foundations supporting the applications of our multiscale
models. We delve into concepts such as circadian systems, ranging from the master syn-
chronizer in the brain to peripheral clocks. Additionally, we cover innate and adaptive
immunity, as well as metabolism, including energy homeostasis and substrate utilization
patterns during feeding and fasting cycles. These concepts are important for informing our
model constructions and shaping our modelling assumptions throughout the thesis.

Chapter 4. Modelling the circadian regulation of the immune system: sexually
dimorphic effects of shift work
In Chapter 4, we develop a coupled mathematical model of the interplay between the cir-
cadian clock in the lung and the innate immune system, with a specific emphasis on how
circadian disruption, such as shift work, affects immune responses. We construct both
male and female versions of the model. This study marks the first attempt to model the
circadian-immune interaction system, incorporating circadian disruption and sex-specific
adjustments. This research was conducted in collaboration with Prof. Anita T. Layton,
and the chapter has been published in PLoS Computational Biology [1].

Chapter 5. Can the clocks tick together despite the noise? Stochastic simula-
tions and analysis
In Chapter 5, we derive a macroscopic description of the SCN network based on mean
field PDEs for the evolution of a density of individuals. The biochemical dynamics of each
neuron are modeled by a Goodwin-type oscillator. We conduct a numerical bifurcation
analysis of the continuum limit and characterize the bifurcations resulting from noise-
induced transitions. To the best of our knowledge, no study has discussed the influence
of external noise on the circadian clock through mean-field equations. This research was
performed with Prof. Anita T. Layton and Prof. José A. Carrillo, and the chapter has
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been published in the SIAM Journal on Applied Dynamical Systems [2].

Chapter 6. Sexual dimorphism in substrate metabolism during exercise
In Chapter 6, we construct sex-specific whole-body models of energy metabolism during
aerobic exercise. We develop and utilize these models to address a gap in the literature
regarding the mechanism underlying the observation that women oxidize significantly more
lipids and fewer carbohydrates than men. This sexual dimorphism in substrate metabolism
has been attributed, in part, to observed differences in epinephrine and glucagon levels be-
tween men and women during exercise, as well as differences in body composition. We
quantify the extent of sex differences in carbohydrate and lipid metabolism in various or-
gans and tissues and identify a candidate physiological mechanism in the liver that drives
the observed sex differences in substrate utilization. This research was performed with
Prof. Anita T. Layton and Elisa Casella, and the chapter has been published in the Bul-
letin of Mathematical Biology [3].

Chapter 7. Modelling sex-specific whole-body metabolic responses to feeding
and fasting
In Chapter 7, we further develop our whole-body models to establish connections between
cellular metabolism in organs and systemic responses following different mixed meals. Our
models investigate how men and women metabolize mixed meals, especially those high in
carbohydrates and fats. We specifically address a gap in the experimental literature regard-
ing women exhibiting lower hepatic glucose output compared to men, despite taking up
and oxidizing more FFA. We quantify sex differences in carbohydrate and lipid metabolism
at the whole-body level and propose a candidate physiological mechanism that drives sex
differences in glucose production and fat oxidation patterns. This research was conducted
in collaboration with Prof. Anita T. Layton, and the chapter is currently being prepared
for submission.

Chapter 8. Conclusions and future directions
Chapter 8 summarizes the main findings of this thesis and proposes future research direc-
tions centered around the theme of “timed lifestyle interventions.” We will discuss related
approaches for modelling the influence of biological rhythms through both oscillatory sig-
nals, such as hormones and light, and non-oscillatory signals, such as diet and exercise.
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Chapter 2

Mathematical background

In this chapter, we introduce some mathematical background necessary for understanding
the mathematical concepts and modelling principles in this thesis. We begin with a brief
overview of dynamical systems and bifurcations in the next section. Then, we discuss the
special case of Hopf bifurcations in section 2.2. In section 2.3, we introduce the theory of
mean field limits and propagation of chaos. Specific mathematical prerequisites pertinent
to the biological systems of interest (diet, exercise, immunity, and circadian rhythms) are
presented directly within the relevant chapters, where we explain how to translate biological
information into mathematical formalisms.

The introduction to dynamical systems theory and bifurcations follows closely from the
books of Kuznetsov [4], Wiggins [78], and Strogatz [79]. The section on mean field theory
follows closely from the work of Carrillo et al. [47, 80] and Chaintron and Diez [81, 82].

2.1 A review of dynamical systems

A system is characterized by the setX of all its possible states, called an abstract state space
or phase space. The transition of a state over time t ∈ T , where T is a number set, is
called evolution. In this thesis we will study the evolution of systems in continuous time
T = R. The evolution of an initial state x0 ∈ X to a state xt ∈ X, as time t changes,
can be described by an evolution operator or flow of the system ϕ parametrized by t, i.e.
a family of maps given by

ϕt : X → X, xt = ϕt(x0)
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We proceed to define a dynamical system. We note that not any map is admissible as an
evolution operator of a dynamical system. We make precise the conditions for admissible
evolution operators below.

Definition 2.1.1 (Dynamical system). A state spaceX, time set T , and evolution operator
ϕt are said to uniquely define a dynamical system {T,X, ϕt} if

ϕ0(x) = x, ∀x ∈ X, (2.1)

ϕt+s(x) = ϕs(ϕt(x)), ∀x ∈ X, t, s ∈ T. (2.2)

Condition (2.1) is called the continuity condition, and (2.2) is the semi-group property.
There are two main types of dynamical systems: differential equations and iterated maps
(also known as difference equations). This thesis focuses solely on differential equations.

We next define some preliminary mathematical objects.

Definition 2.1.2 (Orbit). An orbit or trajectory with initial condition x0 is the ordered
set defined by {

x ∈ X : x = ϕt(x0), t ∈ T
}
⊂ X

Definition 2.1.3 (Phase portrait). The phase portrait of a dynamical system is the par-
titioning of the state space into orbits.

Definition 2.1.4 (Smoothness). A dynamical system {T,X, ϕt} is said to be smooth of
index r, or Cr, if the first r derivatives of ϕ with respect to x exist and are continuous at
every point x ∈ X.

Definition 2.1.5 (Invariant set). A set of states Y ⊆ X is called an invariant set if for all
x0 ∈ Y , ϕt(x0) ∈ Y , ∀t ∈ T .

Equilibria are an important special class of invariant sets.

Definition 2.1.6 (Equilibrium). An equilibrium or fixed point x∗ ∈ X is such that
ϕt(x∗) = x∗, for all t ∈ T .

In this thesis we consider states x ∈ X ⊂ Rn of dynamical systems that evolve in
continuous time t ∈ T = R and are described by a system of ordinary differential equations
(ODEs)

dx

dt
≡ ẋ = F (x), x ∈ D ⊂ Rn (2.3)

where D is a domain and F : Rn → Rn is smooth in an open region U ⊂ Rn. Then by
classical theory (Peano, Picard, and Lindelöf), there is a function x = x(t, x0), x : R×Rn →
Rn, which is smooth in (t, x) and, for each initial condition x0 ∈ U , satisfies the conditions
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1. x(0, x0) = x0, and

2. ∃ I = (δ1, δ2), where δ1,2 > 0 such that ∀t ∈ I

y(t) = x(t, x0) ∈ U, and ẏ(t) = F (y(t)).

Let D = X ⊂ Rn then the ODE system given by (2.3) is a continuous dynamical system
{T,X, ϕt} with evolution operator ϕt(x0) := x(t, x0). We will assume that F depends
only on the states x ∈ X explicitly and not on time t ∈ T . Then the dynamical system
{T,X, ϕt} is called autonomous.

For our system of ODEs (2.3) the condition in definition 2.1.6 becomes

F (x∗) = 0.

Definition 2.1.7 (Periodic orbit). A periodic orbit is a non-constant (non-equilibrium)
orbit Γ such that each x∗ ∈ Γ satisfies

x(t+ T ∗, x∗) = x(t, x∗)

with some constant T ∗ > 0. We call the smallest T ∗ which satisfies this definition the
period of Γ.

A periodic orbit Γ on a plane is a closed curve. We call limit cycle an isolated
periodic orbit, i.e., if in the neighborhood of Γ, there are no other periodic orbits. A
significant portion of this thesis is devoted to modelling systems that exhibit limit cycle
behaviour. Such behaviours arise from a transition in the dynamics of a flow, such as a loss
of stability or a change in the number of invariant sets—a bifurcation. Before we formalize
this statement, we remind the reader that a homeomorphism is a continuous invertible
function with a continuous inverse.

Definition 2.1.8 (Topological equivalence). A dynamical system {T,Rn, ϕt} is called topo-
logically equivalent in a region V ∈ Rn to a dynamical system {T,Rn, ψt} in a region
W ∈ Rn if there is a homeomorphism h : Rn → Rn mapping orbits of the first system in
V to orbits of the second system in W , preserving the direction of time.

Definition 2.1.9 (Bifurcation). A bifurcation occurs at µ = µ∗ ∈ Rp if the phase portrait
of the dynamical system is not topologically equivalent as µ is varied through the value
µ = µ∗.
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As part of the analysis conducted in this thesis, we explore local bifurcations, focusing
specifically on the Hopf bifurcation type. For reference, local bifurcations arise when a
change in a parameter leads to a shift in the stability of an equilibrium, or fixed point. In
continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium
crossing through zero. The topological changes in the phase portrait of the system can be
confined to arbitrarily small neighbourhoods of the bifurcating fixed points by moving the
bifurcation parameter close to the bifurcation point, hence the term ‘local’. There exist
global bifurcations, which occur when larger invariant sets, like periodic orbits, collide with
equilibria. This causes changes in the topology of the trajectories which cannot be confined
to a small neighbourhood, as is the case with local bifurcations.

2.2 The case of Hopf bifurcations

2.2.1 Hopf bifurcation for flows

The Hopf bifurcation, also known as the Poincaré-Andronov-Hopf bifurcation, refers to a
switch in the stability of a system accompanied by the emergence of a periodic solution. In
differential equations, a Hopf bifurcation typically occurs when a pair of complex conjugate
eigenvalues of the linearized flow at a fixed point become purely imaginary, indicating that
the fixed point becomes a small-amplitude limit cycle as a parameter changes. This type
of bifurcation can only occur in systems of dimension two or higher. The Hopf bifurcation
is a local (as opposed to global) bifurcation. The following version of the Hopf bifurcation
theorem [83] makes the above precise.

Theorem 2.2.1 (Hopf bifurcation). Consider the planar system

ẋ = fµ(x, y), ẏ = gµ(x, y), (2.4)

where µ is a parameter. Suppose it has fixed point (x, y) = (x0, y0), which may depend on µ.
Let the eigenvalues of the linearized system about this fixed point be given by λ(µ), λ̄(µ) =
α(µ) ± iβ(µ). Suppose further that for a certain value of µ, say µ = µ0, the following
conditions are satisfied:

1. Non-hyperbolicity condition: conjugate pair of imaginary eigenvalues
α(µ0) = 0, β(µ0) = ω ̸= 0, where sgn(ω) = sgn[(∂gµ/∂x)

∣∣
µ=µ0

(x0, y0)]

2. Transversality condition: eigenvalues cross the imaginary axis with non-zero speed
dα(µ)

dµ

∣∣
µ=µ0

= d ̸= 0
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3. Genericity condition
a ̸= 0, where

a =
1

16
(fxxx+fxyy+gxxy+gyyy)+

1

16ω
(fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy),

with fxy = (∂2fµ/∂x∂y)
∣∣
µ=µ0

(x0, y0), etc.

Then a unique curve of periodic solutions bifurcates from the fixed point into the region
µ > µ0 if ad < 0 or µ < µ0 if ad > 0. The fixed point is stable for µ > µ0 (resp. µ < µ0)
and unstable for µ < µ0 (resp. µ > µ0) if d < 0 (resp. d > 0) whilst the periodic solutions
are stable (resp. unstable) if the fixed point is unstable (resp. stable) on the side of µ = µ0

where the periodic solutions exist. The amplitude of the periodic orbits grows like
√
|µ− µ0|

whilst their periods tend to 2π/|ω| as µ tends to µ0. The bifurcation is called supercritical
if the bifurcating periodic solutions are stable, and subcritical if they are unstable.

Figure 2.1 below shows the two possible Hopf bifurcations, as described by the theorem.

(a) Supercritical Hopf bifurcation (b) Subcritical Hopf bifurcation

Figure 2.1: In (a), the system undergoes a supercritical Hopf bifurcation, leading to the
emergence of a stable limit cycle as the parameter α varies. The equilibrium point
transitions from stable to unstable. In (b), a similar transition occurs where the
equilibrium point shifts from stable to unstable, coinciding with the disappearance of an
unstable limit cycle. Figure reproduced from Kuznetsov [4].

The 2D version of the Hopf bifurcation theorem has roots dating back to Poincaré in
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the early 1890s [84], and to Andronov and colleagues in the 1930s [85]. Hopf, in 1942
[86], provided a proof for arbitrary (finite) dimensions. Using center manifold reduction,
the higher-dimensional version essentially reduces to the planar one, provided that, aside
from the two purely imaginary eigenvalues, no other eigenvalues possess zero real parts.
The proof by Hopf, predating the center manifold theorem, assumes analyticity of the
functions fµ and gµ, although C5 differentiability suffices (a proof is available in [87]).
Extensions exist to infinite-dimensional problems such as differential delay equations and
certain classes of PDEs (including the Navier-Stokes equations) [87].

2.2.2 Degenerate Hopf bifurcations

If any of the specified conditions for a Hopf bifurcation are not met (e.g., due to symmetry),
the emergence of a periodic orbit may still occur, but some conclusions of the theorem may
no longer apply. In such cases, the bifurcation is termed a degenerate Hopf bifurcation.
For example, if the transversality condition is unmet, the stability of the fixed point may
remain unchanged, or multiple periodic solutions may bifurcate. A important case arises
in Hamiltonian systems, where complex eigenvalues appear in symmetric quadruples, ren-
dering the transversality condition unsatisfiable. Consequently, the analogous bifurcation
in Hamiltonian systems, known as the Hamiltonian-Hopf bifurcation [88], is considerably
more difficult, requiring a 4-dimensional phase space.

2.3 Mean field theory

Mean field theory is about analyzing the collective behavior of a dynamical system com-
prising many interacting particles. The approach allows to derive a continuous limit for
the macroscopic behavior of the system, the 1-particle distribution, for a large number
of interacting particles. Large systems of interacting particles have become ubiquitous.
While their corresponding microscopic models are typically conceptually simple, they pose
analytical and computational challenges due to the large number N of particles, especially
in physical settings. The classical approach to reduce this complexity involves deriving a
mesoscopic or macroscopic system, which provides a continuous description of the dynam-
ics. The information is embedded in densities, typically solving nonlinear partial differential
equations (PDEs). The concept of employing a kinetic description for large systems of par-
ticles dates back to the to the original derivation of statistical mechanics and the seminal
works of Maxwell and Boltzmann [89].

11



We focus here on the stochastic case and refer to Refs. [90, 91] for a review of the mean
field limit for deterministic systems. In the rest of this introduction, we present some of the
classical theory that one typically considers. The material in this section follows closely
from Refs. [81, 82, 89].

2.3.1 Basic concepts and main tools

Definition 2.3.1 (Polish space). A topological space E is

(a) Completely metrizable if there is a metric d defining the topology of E such that
(E, d) is complete,

(b) Polish if it is separable and completely metrizable.

Definition 2.3.2 (Exchangeability). A family (X i)i∈I of random variables is said to be
exchangeable when the law of (X i)i∈I is invariant under every permutation of a finite
number of indeces i ∈ I.
Definition 2.3.3 (Wasserstein distances). Let (E, dE) be a Polish space. The space
of probability measures with finite p-th moment is denoted by Pp(E). For p ≥ 1, the
Wasserstein-p distance between the probability measures µ and ν in Pp(E) is defined by

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
E×E

dE(x, y)
pπ(dx, dy)

)1/p

,

where Π(µ, ν) is the set of all couplings of µ and ν, that is to say, the set of probability
measures on E × E with first and second marginals respectively equal to µ and ν.

Definition 2.3.4 (Kullback-Leibler (KL) divergence). Let P and Q be two discrete prob-
ability distributions defined on the same sample space X. That is, both P (x) and Q(x)
sum up to 1, and P (x) > 0 and Q(x) > 0 for any x ∈ X. The relative entropy from Q to
P is defined to be

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
Typically P (x) represents the “true” distribution of data, observations, or a precisely
calculated theoretical distribution. The measure Q(x) typically represents a theory, model,
description, or approximation of P (x). The continuous version of the KL divergence is

DKL(P ||Q) =
∫ +∞

−∞
P (x) log

(
P (x)

Q(x)
dx

)
The KL divergence is not a distance (metric) measure because it is not symmetric.
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Itô’s lemma

Given an Itô process dXt = ut dt+vt dBt, whereBt is the standard Brownian motion. Let us
introduce the notation (dXt)

2 which stands for V 2
t dt. Equivalently, (dXt)

2 is (dXt) · (dXt)
which is computed using the rules dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

Definition 2.3.5 (Itô’s lemma). Itô’s lemma is the chain rule for stochastic calculus. Let
Xt be an Itô process dXt = ut dt + vt dBt. Let g(t, x) ∈ C2([0,∞) × R), i.e. g is a twice
continuously differentiable function. Then Yt = g(t,Xt) is again an Itô process and

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt)

(
dXt

)2
Using the notational convention for dXt = ut dt+ vt dBt and (dXt)

2 , we can rewrite Itô’s
formula as

dYt =

(
∂g

∂t
(t,Xt) + ut

∂g

∂x
(t,Xt) +

v2t
2

∂2g

∂x2
(t,Xt)

)
dt+ vt

∂g

∂x
(t,Xt) dBt.

Thus, the space of Itô processes is closed under twice-continuously differentiable transfor-
mations.

Convergence of probability measures

The following are classical theorems for studying the limits of sequences of probability
measures. The first theorem links weak convergence and almost sure convergence of random
variables.

Theorem 2.3.1 (Skorokhod’s representation theorem). Let (fn)n∈N be a sequence of proba-
bility measures on a Polish space E which converges weakly towards f ∈ P(E) as n→ +∞.
Then there exists a probability space (Ω,F ,P) and some E-valued random variables X, Xn

defined on this space for all n ∈ N, such that

Law(Xn) = fn, Law(X) = f, Xn(ω) −−−−→
n→+∞

X(ω), P-a.s.

The second theorem is Prokhorov’s theorem which gives a helpful characterization of
compactness for the weak convergence topology. It relates tightness of measures to relative
compactness. The notion of tightness is defined below.
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Definition 2.3.6 (Tightness). A family (fi)i∈I of probability measures on a separable
metric space E (endowed with its Borel σ-field) is said to be tight when for every ε > 0,
there exists a compact set Kε ∈ E such that

∀i ∈ I, fi(Kε) > 1− ε.

A sequence of random variables is said to be tight when the sequence of their laws is tight.

Theorem 2.3.2 (Prokhorov’s theorem). A tight sequence (fn)n∈N of probability measures
on E is weakly relatively compact. Conversely, if E is also complete, any weakly relatively
compact family (fn)n∈N is tight.

Skorokhod’s topology and tightness in the Skorokhod space

In Chapter 5, the stochastic processes are assumed to belong (at least) to the Skorokhod
space of càdlàg functions.

Definition 2.3.7 (Càdlàg). Let T in (0,+∞]. A function x : [0, T ]→ E is said to belong
to the Skorokhod space D([0, T ], E) of càdlàg functions when x is right-continuous and has
a left-limit at any time t ∈ [0, T ]:

x(t−) := lim
s→t
s<t

x(s) exists, x(t) = x(t+).

A càdlàg function admits an at most countable number of discontinuities.

The law of a stochastic process is therefore an element of P(D([0, T ], E)). In order
to characterize the compact sets of this space, it is first necessary to precise the topology
on D([0, T ], E). For a much more detailed study of the Skorokhod space, we refer to [81]
(Appendix A.2).

Definition 2.3.8 (Skorokhod J1 topology). Let Λ denote the set of strictly increasing
homeomorphisms from [0, T ] onto itself. The Skorokhod J1 metric onD([0, T ], E) is defined
by

d(x, y) := inf
λ∈Λ

{
sup

0≤t≤T
ρ
(
x(t), y(λ(t))

)
+ sup

s<t

∣∣∣∣log λ(t)− λ(s)t− s

∣∣∣∣
}
.

Endowed with this metric, the Skorokhod space D([0, T ], E) is complete and seperable.
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2.3.2 Particle systems, chaos, and propagation of chaos

We consider a system of N particles

XN
I ≡ (XN

t )t∈I ≡ (X1,N
t , . . . , XN,N

t )t∈I , (2.5)

where each particle (X i,N
t )t∈I is a stochastic process with values in the state space E which

is at least Polish (i.e., separable and completely metrizable) and defined on a time interval
I = [0, T ] with T ∈ (0,+∞]. For ease of reading, we drop the N superscript and only
write X i

t ≡ X i,N
T for the i-th particle when no confusion is possible.

The particle particle system is understood as a Markov process (XN
t )t∈I with values

in EN . From the theory of Markov processes (see [81], Appendix A.4), the probbaility
distribution of the particle system at time t denoted by fN

t ∈ P(EN) satistfies the (weak)
Liouville equation

∀φN ∈ Dom(LN),
d

dt
⟨fN

t , φN⟩ = ⟨fN
t ,LNφN⟩ (2.6)

where LN is the infinitesimal generator of a particle system acting on a (dense) subset of
test functions Dom(LN) ⊂ Cb(E

N).

Remark 1. Equation (2.6) is also called the master equation in a probabilistic context
and is better known as the Liouville equation in classical (deterministic) kinetic theory. In
this thesis, we follow this latter terminology and (2.6) will be called the (weak) Liouville
equation. The forward Kolmogorov equation, or (strong) Liouville equation, reads

∂fN
t = LNfN

t ,

where LN ≡ L∗
N is the dual operator of LN . In general, no explicit expression for LN is

available and it is thus easier to focus on the weak point of view.

In stochastic analysis, the pathwise law fN
[0,T ] ∈ P(D([0, T ], EN)) is sometimes preferred

and is characterised as a solution of the martingale problem. This means that fN
[0,T ] is the

unique probability distribution on the Skorokhod space of càdlàg functions such that for
all test function φN ∈ Dom(LN), the process defined by

MφN
t := φN(X

N
t )− φN(X

N
0 )−

∫ t

0

LNφN(X
N
s ) ds, (2.7)

is a fN
[0,T ]-martingale. The particle system is assume to be exchangeable in the sense that

fN
t (resp. its pathwise version fN

[0,T ]) is a symmetric probability distribution on EN (resp.

on D([0, T ], E)N ≃ D([0, T ], EN)).

We define next the notions of chaos and propagation of chaos introduced by Kac [92].
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Definition 2.3.9 (Kac’s chaos). Let f ∈ P(E). A sequence (fN)N≥1 of symmetric prob-
ability measures on EN is said to be f-chaotic when for any k ∈ N and any function
φk ∈ Cb(E

k),
lim

N→+∞

〈
fN , φk ⊗ 1⊗N−k

〉
= ⟨f⊗k, φk⟩.

It means that for all k ∈ N, the k-th marginal satisfies fk,N → f⊗k for the weak topology.

From now on, the initial distribution fN
0 ∈ P(EN) of the particle system is always

assumed to be f0-chaotic for a given f0 ∈ P(E). The goal is to prove that this initial
chaoticity assumption is propagated at later times as in the following definition.

Definition 2.3.10 (Pointwise and pathwise propagation of chaos). Let fN
0 ∈ P(EN) be

the initial f0-chaotic distribution of XN
0 at time t = 0.

• Pointwise propagation of chaos holds towards a flow of measures (ft)t ∈ C(I,P(E))
when the law fN

t ∈ P(EN) of XN
t is ft-chaotic for every time t ∈ I. Note that

the flow of measures is continuous in time as it is the solution of a PDE, but the
(random) trajectories of the particle are càdlàg.

• Pointwise propagation of chaos holds towards a distrubtion fI ∈ P(D(I, E)) on the
path space when the law fN

I ∈ P(D(I, E)N) of the process XN
I (seen as a random

element in D(I, E)N) is fI-chaotic.

The propagation of chaos property, whether considered pointwise or pathwise, describes
the behavior of the particle system as the number of particles tends to infinity. It implies
that any subsystem of a fixed size within the N -particle system eventually behaves as a
system of independent and identically distributed (i.i.d.) processes, each following the same
law ft (note that the particles are always identically distributed by the exchangeability
assumption). As the system size increases, only an averaged behavior can be observed
instead of the detailed correlated trajectories of each particle. This notion of average
behavior can be understood through the following characterization of the notion of chaos.
We omit the proof, but it can be found in the classical course by Sznitman ([93], Proposition
2.2).

Lemma 2.3.3. Each of the following assumptions is equivalent to Kac’s chaos.

(i) There exists k ≥ 2 such that fk,N comverges weakly towards f⊗k.

16



(ii) The random empirical measure

µXN :=
1

N

N∑
i=1

δXi ,

converges in law towards the deterministic measure f , where for any N ∈ N, XN =
(X1, . . . , XN) ∼ fN .

2.3.3 McKean-Vlasov Diffusion

When the particle system is the solution to the following system of SDEs

∀i ∈ {1, . . . , N}, dX i,N
t = b(X i,N

t , µXN
t
) dt+ σ(X i,N

t , µXN
t
) dBi

t, (2.8)

for i ∈ {1, . . . , N} where (Bi
t)t are N independent Brownian motions and the drift function

b and diffusion matrix σ are of the form

b : Rd × P(Rd)→ Rd, σ : Rd × P(Rd)→Md(R), (2.9)

whereMd(R) is the set of d-dimensional square real matrices.

Remark 2. Note that there are actually dN independent one-dimensional Brownian mo-
tions. This observation can be particularly useful in scenarios where the Brownian motions
in the different directions are different.

The mean field limit N → +∞ is given by the (strong form) nonlinear Fokker-Planck
equation

∂tft(x) = −∇x · {b(x, ft)ft}+
1

2

d∑
i,j=1

∂xi
∂xj
{aij(x, ft)ft}, (2.10)

where a(x, µ) := σ(x, µ)σ(x, µ)T. This is the law of the nonlinear McKean-Vlasov process
(X t)t which solves the following nonlinear SDE

dX t = b(X t, ft) dt+ σ(X t, ft) dBt, (2.11)

where Bt is a Brownian motion and ft = Law(X t). The well-posedness of (2.11) is proved
under Lipschitz assumptions on b and σ, which we discuss next.
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Proposition 2.3.4. Let us assume that the functions b and σ are globally Lipschitz: there
exists C > 0 such that for all x, y ∈ Rd and for all µ, ν ∈ P2(Rd) it holds that

|b(x, µ)− b(y, ν)|+ |σ(x, µ)− σ(y, ν)| ≤ C
(
|x− y|+W2(µ, ν)

)
,

where W2 is the Wasserstein-2 distance (see Definition 2.3.3). Assume that f0 ∈ P2(Rd).
Then for any T > 0 the SDE (2.11) has a unique strong solution on [0, T ] and consequently,
its law is the unique weak solution to the Fokker-Planck equation (2.10).

We omit the proof, which can be found in Ref. [81] (Proposition 1).

2.3.4 Proving propagation of Chaos

Since the seminal work of McKean [94], later extended by Sznitman [93], one of the most
widely used techniques for establishing the propagation of chaos in mean field systems
is the synchronous coupling method. In recent years, some alternative coupling methods
have been proposed to handle either weaker regularity or to get uniform in time estimates
under mild physically relevant assumptions [82]. In addition to these SDE techniques,
convergence can be studied via a compactness argument [95, 96]. Compactness methods
provide (non-quantitative) results applicable to mixed jump-diffusion models. For a review
of synchronous coupling and compactness methods, see Ref. [82]. The methods are briefly
outlined below. We use a compactness argument in Chapter 5 and Appendix B.2.

Synchronous coupling

When a SDE description of the particle system is available, the coupling method initiated
by McKean [94] and Sznitman [93] consists in comparing the trajectories of the particle
system with the trajectories of a system of N i.i.d processes with common law ft.

Definition 2.3.11 (Chaos by coupling trajectories). Let be given a final time T ∈ (0,∞],
a distance dE on E and p ∈ N. Propagation of chaos holds by coupling the trajectories
when for all N ∈ N there exist

• a system of particles (XN
t )t with law fN

t ∈ P(EN) at time t ≤ T ,

• a system of independent processes (XN
t )t with law f⊗N

t ∈ P(EN) at time t ≤ T ,

• a number ε(N, T ) > 0 such that ε(N, T ) −→
N→+∞

0,
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such that (pathwise)

1

N

N∑
i=1

E

[
sup
t≤T

dE(X
i
t , X

i
t)

p

]
≤ ε(N, T ), (2.12)

or (pointwise)

1

N

N∑
i=1

sup
t≤T

E
[
dE(X

i
t , X

i
t)

p
]
≤ ε(N, T ). (2.13)

Note that (2.12) implies (2.13). The bound (2.13) implies

sup
t≤T

Wp(f
N
t , f

⊗N
t ) ≤ ε(N, T ) −→

N→+∞
0, (2.14)

where Wp denotes the Wasserstein-p distance on P(EN) (see Definition 2.3.3). It implies
the propagation of chaos in the sense of Definition 2.3.10 since the topology induced by the
Wasserstein distance is stronger than the topology of the weak convergence of probability
measures.

2.3.5 Mckean’s theorem

The following theorem is due to McKean and is the most important result of this section.
For a function K : E2 → R, we recall the notation K ⋆ µ(x) :=

∫
K(x, y)µ(dy).

Theorem 2.3.5 (McKean). Let the drift and diffusion coefficients in (2.8) be defined by

∀x ∈ Rd,∀µ ∈ P(Rd), b(x, µ) := b̃
(
x,K1 ⋆ µ(x)

)
, σ(x, µ) := σ̃

(
x,K2 ⋆ µ(x)

)
, (2.15)

where K1 : Rd × Rd → Rm, K2 : Rd × Rd → Rn, b̃ : Rd × Rm → Rd, and σ̃ : Rd × Rn →
Md(R) are globally Lipschitz and K1, K2 are bounded. Then pathwise chaos by coupling in
the sense of Definition 2.3.11 holds for any T > 0, p = 2, with the synchronous coupling

X i,N
t = X i

0 +

∫ t

0

b̃
(
X i,N

s , K1 ⋆ µXN
s

(
X i,N

s

))
ds+

∫ t

0

σ̃
(
X i,N

s , K2 ⋆ µXN
s

(
X i,N

s

))
dBi

s, (2.16)

and

X i,N
t = X i

0 +

∫ t

0

b̃
(
X i,N

s , K1 ⋆ fs
(
X i,N

s

))
ds+

∫ t

0

σ̃
(
X i,N

s , K2 ⋆ fs
(
X i,N

s

))
dBi

s. (2.17)
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It means that the trajectories satisfy

1

N

N∑
i=1

E

[
sup
t≤T

∣∣X i
t −X i

t

∣∣2] ≤ ε(N, T ),

where the convergence rate is given by

ε(N, T ) =
c1(b, σ, T )

N
ec2(b,σ,T )T , (2.18)

for some absolute constants C, C̃, CBDG > 0 not depending on N, T ,

c1(b, σ, T ) := CT
(
T∥K1∥2∞∥b̃∥2Lip + CBDG∥K2∥2∞∥σ̃∥2Lip

)
, (2.19)

and

c2(b, σ, T ) := C̃
(
T
(
1 + ∥K1∥2Lip

)
∥b̃∥2Lip + CBDG

(
1 + ∥K2∥2Lip

)
∥σ̃∥2Lip

)
. (2.20)

We omit McKean’s original proof [94]. Sznitman’s proof [93] offers a slightly shorter
and more general version of McKean’s argument. It is worth noting that McKean’s proof
is fundamentally an existence result, whereas Sznitman’s proof relies on the well-posedness
result outlined in Proposition 2.3.4. McKean’s argument was initially published in Ref. [97]
and subsequently republished in Ref. [94].

Compactness methods

Thanks to Lemma 2.3.3, the propagation of chaos property is equivalent to the convergence
in law of the sequence of empirical measures. A common approach is to demonstrate the
possibility of extracting a converging subsequence, while also proving the uniqueness of the
accumulation point by applying tightness criteria, as outlined in Section 2.3.1. However,
we note that there are three distinct and non-equivalent points of view on the empirical
measure. These points of view are explained in great detailed in Ref. [81], and we provide
a brief summary here.

• The strongest point of view, called (strong) pathwise, considers the empirical mea-
sure as the empirical measure associated to a sequence of N random processes
defined in the Skorokhod space, that is the sequence (µXN

[0,T ]
)N . For each N , the

empirical measure is thus a random element µXN
[0,T ]
∈ P(D([0, T ], E)) and the goal

is to prove the convergence of the laws in the space P(P(D([0, T ], E))).

20



• The second, weaker point of view, called functional law of large numbers, inter-
prets the empirical measure as a measure-valued process, that is, for each N , a
random process t ∈ [0, T ] 7→ µXN

t
∈ P(E), i.e. a random variable in the space

D([0, T ],P(E)). The goal is to prove the convergence of the sequence of pathwise
laws in the space P(D([0, T ],P(E))).

• Finally, the weakest point of view, called pointwise point of view studies the flow
of time marginals of the law of the empirical measure process, that is the mapping
t ∈ [0, T ] 7→ Law(µXN

t
) ∈ P(P(E)). This defines a deterministic sequence in the

functional space C([0, T ],P(P(E))). Our proof in Appendix B.2 is based on this
perspective.
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Chapter 3

Biological background

3.1 Architecture and molecular mechanisms of the

mammalian circadian clock

3.1.1 The suprachiasmatic nucleus

In mammals, an endogenous clock regulates circadian rhythms, with the central component
located in the suprachiasmatic nucleus (SCN) of the hypothalamus [98, 99]. The pacemaker
within the SCN oscillates with a nearly 24-hour period and synchronizes with the daily
light-dark cycle. Loss of SCN function leads to a complete lack of a regular sleep/wake
rhythm [100]. Studies in rodents and non-human primates also indicate that the SCN
serves as the brain’s internal clock, allowing organisms to predict cyclic environmental
changes [32].

The structure of SCN

The SCN comprises a distinctive cluster of neurons located in the basal region of the an-
terior hypothalamus, situated just dorsal to the optic chiasm on both sides of the third
ventricle. With a volume of approximately 1 mm3, each bilateral SCN houses nearly 100,000
neurons in total [101, 102]. Structurally, the SCN is a heterogeneous network that can be
categorized into a dorsomedial portion, referred to as the shell, and a ventrolateral por-
tion, known as the core. These two segments demonstrate both structural and functional
distinctions, with the dorsomedial aspect exhibiting a faster pace than the ventrolateral
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component [103]. Comprising approximately 25% of SCN neurons, the core region primar-
ily processes light information, transmitting it to the shell, which consists of the remaining
75% of SCN neurons [104]. The core region receives both primary and secondary visual
inputs and is primarily composed of neurons producing vasoactive intestinal polypeptide
(VIP), gastrin-releasing peptide, neurotensin, neuropeptide-Y, substance-P, and calbindin.
In contrast, the shell, enveloping the core, predominantly receives input from nonphotic
sources and consists mainly of neurons containing arginine-vasopressin (AVP). Many neu-
rons in both the core and shell contain γ-aminobutyric acid (GABA). Asymmetric coupling
between the core and shell is observed, characterized by dense projections from the ventro-
lateral to the dorsomedial and sparse projections in the opposite direction [105]. Functional
experiments support the existence of this asymmetry [103, 106, 107]. Figure 8.2 illustrates
the structural layout of the SCN network.

Although the connectivity and topological properties of the SCN cellular network re-
main poorly understood, investigations into anatomical and functional connectivity in other
brain regions, such as the cortex, have revealed small-world properties [5, 17].

Figure 3.1: The SCN is divided in two identical hemispheres (left and right), each
composed of two groups of neurons (core and shell, shown on the right hemisphere),
distinguished by the type of neurotransmitters they release. In the ventrolateral part
(VL), the neurons mainly express VIP (shown on the left hemisphere), whereas in the
dorsomedial part (DM), AVP is expressed. The two parts also differ by their coupling
properties. Moreover, only a subset of VL neurons are light-sensitive and are entrained
by light cues originating from the optic chiasm. Reproduced from [5], with permission.
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3.1.2 The molecular clock

Each SCN neuron expresses clock genes—a complex network of genes able to generate
stable oscillations with a period of circa 24 hours [98]. The molecular clock network
in mammals comprises at least two large interconnected autoregulatory feedback loops,
which drive rhythms [108, 109]. At the center of this network is the CLOCK/BMAL1
heterodimer complex, which serves as the pivotal node and initiates transcription within the
feedback loops. The CLOCK/BMAL1 complex arises from the products of the circadian
locomotor output cycles kaput (Clock) and brain and muscle aryl hydrocarbon receptor
nuclear translocator like–Arntl 1 (Bmal1 ) genes [98]. By binding to enhancer box (E-
box) cis-elements in the promoter regions of various target genes such as Period homolog
1, 2, and 3 (Per1, Per2, Per3), Cryptochrome genes (Cry1, Cry2), retinoic acid-related
orphan receptor (Rora, Rorb, Rorc), and Rev-Erb nuclear orphan receptors (Rev-Erbα,
Rev-Erbβ), CLOCK/BMAL1 activates their transcription [32]. The time cues encoded by
the dynamic molecular states of these intertwined feedback loops are relayed to the rest of
the cell, orchestrating its activities. Next, we detail the mechanisms of these self-sustaining
transcriptional–translational feedback loops (see Figure 3.2).

The PER/CRY loop

At circadian dawn (referred to as circadian time (CT) 0), the heterodimers of CLOCK and
BMAL1 (also known as ARNTL), acting as positive regulators, initiate the transcription
of Per and Cry genes. These genes produce the period (PER) and cryptochrome (CRY)
proteins, which act as negative regulators, through E-box regulatory sequences [110]. By
the end of the circadian day (CT12), PER–CRY complexes accumulate in the nucleus and
begin to repress their own expression [110, 111]. Consequently, during the subsequent
circadian night (CT12–CT24 (CT0)), the levels of Per and Cry mRNA decrease, and
the existing PER–CRY complexes undergo degradation, releasing their inhibitory effect
on CLOCK/BMAL1 and allowing for the initiation of a new transcriptional cycle [98].
This degradation enables the cycle to restart approximately 24 hours after the previous
transcriptional initiation. The negative feedback loop involving PER/CRY is commonly
recognized as the primary driver of circadian rhythms [32, 112, 113].

So far, research consistently highlights the remarkable sensitivity of the circadian pe-
riod length in mammals to alterations in the phosphorylation status of the PER proteins
and the stability of the CRY proteins. Casein kinases CKIδ and CKIε sequentially phos-
phorylate multiple residues on the PER proteins. These kinases control the rate at which
the PER/CRY complexes degrade or enter the nucleus, thereby determining the intrinsic
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Figure 3.2: Schematic diagram of the transcription-translation feedback loop of the
endogenous molecular circadian clock. Adapted from “BIOLOGICAL CLOCK”, by E.
Murgo (2024) BioRender. Retrieved from https://app.biorender.com/biorender-templ

ates/figures/all/t-65bbb7c5e6423ca0a08e50d9-biological-clock

period of the clock. Phosphatases PP1 and PP5 counteract or regulate the activity of
CKIδ and CKIε, respectively [114, 115]. Familial mutations, such as the loss of a sin-
gle phospho-acceptor site on PER2 (S662G) [116] or a loss-of-function mutation in CKIδ
(T44A) [117], lead to a shortened intrinsic period of the clock in mice and cause sleep
phase disorders in humans. Phosphorylation also affects the stability of CRY1 and CRY2
[118]. However, unlike the PER proteins, CRY phosphorylation by AMP-activated protein
kinase (AMPK) does not involve a complex multisite phosphorylation sequence. When
genetically or pharmacologically manipulated, changes in CRY protein abundance closely
correspond to alterations in the circadian period length [119].

The ROR/REV-ERB loop

The clock genes Rev-Erb and Ror are transcribed during the circadian day (CT0–CT12)
and the messages are exported to the cytoplasm for translation. The newly translated
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proteins, the nuclear receptors RORa, RORb, RORc, REV-ERBα (also known as NR1D1)
and REV-ERBβ (also known as NR1D2), in turn act via REV response element (RRE)
sequences to activate and suppress Bmal1 transcription, respectively. ROR and REV-ERB
proteins compete for ROR regulatory element binding sites in the promoter region of Bmal1
and respectively activate and repress its transcription [98]. REV-ERB proteins, which also
repress Cry1 transcription [120] in the PER/CRY loop, are essential for robust oscillations
[98, 121, 122]. The cross connection with REV-ERB [123] reinforces the interaction of
the two loops and allows fine-tuning of the regulation of Cry. Mutations in the genes
of these nuclear receptors alter the amplitude and period of activity rhythms, and Rev-
erb-double-knockout mice exhibit severely disrupted circadian behaviour [124]. Moreover,
administration of a synthetic REV-ERB agonist can suppress the amplitude of the SCN
rhythm and nocturnal behaviour in mice [125]. Thus, an output of the ROR/REV-ERB
loop, circadian expression of REV-ERB proteins, is also an input to it. The ROR/REV-
ERB feedback loop is usually seen as adding robustness to the system [111].

Beyond transcriptional mechanisms

The mammalian clock relies not only on transcriptional mechanisms but also on mem-
brane depolarization, intracellular calcium flux, and activation of cyclic AMP (cAMP)
signaling, which have emerged as significant regulators [126]. Intracellular calcium, for
instance, plays a fundamental role in the rhythmic firing of neurons in SCN slices [127].
Moreover, rhythmic expression of core clock components in SCN neurons necessitates ad-
equate membrane depolarization, periodic calcium influx, and daily activation of cAMP
signaling [128–130]. Importantly, these effects stem from the phosphorylation-dependent
activation of the calcium/cAMP response element-binding protein (CREB), which binds to
calcium/cAMP regulatory elements (CREs) on DNA. Notably, CRE sequences have been
identified in the promoters of several clock genes, including PER1 and PER2 [130, 131].
Given that membrane potential [132], calcium flux [127], and activation of cAMP signaling
[128, 130] also exhibit rhythmicity in the SCN, they serve as both outputs and inputs to
the transcriptional clock, potentially forming positive feedback loops that contribute to
rhythm generation [126].

3.1.3 Peripheral circadian clocks

Identification of clock genes revealed that not only SCN neurons but also most peripheral
cells engage in intracellular molecular processes of cellular circadian clocks [99]. As such,
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our body hosts almost as many peripheral circadian clocks as there are cells. Both the
SCN and peripheral clocks share identical molecular architecture [108] (Figure 3.2).

Peripheral clocks in organs such as the lung, liver, heart, kidney, and skin are in-
volved in regulating local transcriptional activity and can be coordinated by systemic cues
originating from the SCN, including neuronal connections and endocrine signals [32]. Ad-
ditionally, peripheral clocks can be synchronized by external cues such as temperature,
feeding schedules, exercise, and light [109]. This internal synchronization orchestrates the
physiological functions of individual organs in a temporally coordinated manner to opti-
mize overall organismal performance [133]. These peripheral clocks likely orchestrate the
daily rhythms of local functions within individual tissues and organs. Research by Sinturel
et al. [134] supports the concept of autonomous peripheral oscillators, which depend on
the SCN only to establish synchrony among but not within peripheral body clocks [133].
Indeed, Sinturel et al. [134] demonstrate that peripheral circadian rhythms persist in vivo
even in the absence of rhythmic input from the SCN. To achieve this, they employed their
RT-Biolumicorder technology [135], an advanced method for monitoring peripheral circa-
dian bioluminescence rhythms from clock gene reporters in real time in freely moving mice.
These results differ from those reported by Koronowski et al. [136], where there was no
rhythmic gene expression in mice under constant conditions. However, because this study
obtained tissue samples from different animals at each time point, it is probable that low-
amplitude peripheral rhythms were not detected due to desynchronization between animals
rather than within tissue oscillators.

Nevertheless, the hierarchical concept cannot be entirely discarded. The significance
of the SCN as the central clock remains solid, as it functions as the timekeeper and dis-
seminates the standard time throughout the entire body according to the environmental
day/night cycle, via neural, humoral, and other pathways to drive and/or entrain multi-
ple peripheral clocks. Sinturel et al. [134] also demonstrate that in SCN-lesioned animals
housed in constant conditions, the amplitude of whole-body bioluminescence rhythms is
significantly reduced. This indicates that the SCN master clock plays a crucial role in
maintaining synchrony among non-SCN body clocks. In this sense, our body comprises a
multi-oscillator system. Therefore, disruption of such temporal coordination, i.e., internal
desynchronization, due to jet lag, shift work, irregular lifestyle, and so on, could lead to
various health problems [137].

3.1.4 Coupling among circadian clocks

Almost every cell in the body functions as a self-sustained and cell-autonomous circadian
oscillator. Cellular populations display a typical distribution of periods and phases ranging
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from approximately 20 to 28 hours [138]. If individual cells operated independently with
their own periods, the phases of cellular oscillators would gradually drift apart, leading to
desynchronized tissue rhythms over time. Thus, single-cell oscillators within central and
peripheral tissue clocks, such as the SCN or the lung, must either synchronize with each
other or align with external or systemic cues to maintain coherent network rhythms.

Since the central pacemaker in the SCN maintains synchrony among body clocks, the
significance of systemic coupling may not be immediately evident. Nevertheless, there could
be a reciprocal exchange of timing information among different body clocks, potentially
offering synchronized feedback from the periphery to the SCN or regulating organismic re-
sponses to external entrainment signals [138]. Although various communication pathways
among body clocks have been identified (see Figure 3.3), it is uncertain whether these
pathways facilitate bidirectional coupling or merely unilateral clock entrainment or reset-
ting. Feeding signals or energetic changes may constitute a systemic coupling pathway, as
adjustments in the mammalian clock system to these signals are plausible. Feeding-fasting
cycles serve as prominent Zeitgebers for peripheral clocks, while also influencing SCN ac-
tivity, body temperature, and rest-activity cycles through the release of feeding-related
hormones [119]. This, in turn, leads to feedback regulations of peripheral oscillators via
neuronal pathways.

Coupling facilitates phase- and period-locking of individual oscillators, ensuring syn-
chronized rhythms at the population level. Without coupling, generating consistent net-
work oscillations necessitates additional external or internal forcing signals. Coupling
within the circadian system can occur at various organizational levels (for a comprehensive
review, see Refs [139]), and whether it operates at the systemic level remains an open
question.

3.2 Immune system: innate and adaptive immunity

The immune system consists of cells, chemicals, and processes that defend the skin, res-
piratory passages, intestinal tract, and other areas against foreign antigens like microbes
(such as bacteria, fungi, and parasites), viruses, cancer cells, and toxins. It comprises two
primary lines of defense: innate immunity and adaptive immunity [140]. Innate immunity
acts as the initial immunological defense against invading pathogens, initiating a rapid
immune response within minutes or hours. The innate immune response lacks immuno-
logic memory, meaning it cannot recognize or “remember” the same pathogen upon future
exposure to it. In contrast, adaptive immunity is antigen-specific—it has the ability to
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Figure 3.3: Coupling among body clocks: the central clock and selected peripheral clocks
in humans. Adapted from “Key Metabolic Mechanisms on Body Weight Regulation”, by
E. Huang (2022) BioRender. Retrieved from
https://app.biorender.com/biorender-templates/figures/all/t-62065ff195cacf009f2

f7190-key-metabolic-mechanisms-on-body-weight-regulation

“form memory” that facilitates a faster and more efficient immune response upon subse-
quent encounters with the antigen [140]. Innate and adaptive immunity do not operate
independently; rather, they complement each other. Defects in either system render the
host susceptible to infections or elicit inappropriate responses [141–143].
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3.2.1 Innate immunity

Innate immunity consists of four types of defensive barriers: anatomical (skin and mu-
cous membranes), physiological (temperature, low pH, and chemical mediators), endocytic
and phagocytic, and inflammatory. It relies on pattern recognition receptors (PRRs) that
enable a limited range of immune cells to swiftly detect and respond to a broad spec-
trum of pathogens sharing common structures known as pathogen-associated molecular
patterns (PAMPs). Examples of these patterns include bacterial cell wall components like
lipopolysaccharides (LPS) released during bacterial infection and double-stranded ribonu-
cleic acid (RNA) produced during viral infections [140].

Innate immunity plays a crucial role in rapidly recruiting immune cells to infection
and inflammation sites by producing cytokines and chemokines, small proteins involved in
cell–cell communication and recruitment. Cytokines are involved in cell signaling, while
chemokines specifically mediate cell migration and recruitment to sites of infection or
injury. Cytokine production mobilizes numerous defense mechanisms throughout the body
during innate immunity, activating local cellular responses to infection or injury. The
complement system, a biochemical cascade, identifies and opsonizes (coats) bacteria and
other pathogens, rendering them susceptible to phagocytosis, the process in which immune
cells engulf microbes. The phagocytic activity of the innate immune response also facilitates
the clearance of dead cells or antibody complexes and eliminates foreign substances from
organs, tissues, blood, and lymph. Furthermore, it can activate the adaptive immune
response by mobilizing and activating antigen-presenting cells (discussed in section 3.2.2)
[141, 143].

Various cells participate in the innate immune response, including phagocytes (macrophages
and neutrophils), dendritic cells, mast cells, basophils, eosinophils, natural killer (NK) cells,
and innate lymphoid cells. Figure 3.4 shows immune cells lineage. Phagocytes, categorized
into neutrophils and macrophages, share the function of engulfing microbes and eliminat-
ing them through multiple bactericidal pathways. Neutrophils are short-lived and possess
granules and enzyme pathways aiding in microbial elimination, whereas macrophages are
long-lived cells involved not only in phagocytosis but also in antigen presentation to T
cells. Cytokines are mainly produced by macrophages [140]. In this thesis, we focus on
discussing the functions of cytokines released by macrophages, along with summarizing
their release mechanisms. Interested readers may refer to Ref. [144] for a comprehensive
review of immune cells.
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Figure 3.4: Cells of the immune system. The immune system comprises cells from two
primary lineages: lymphoid cells, which originate from a lymphoid progenitor, and
myeloid cells, which derive from a myeloid progenitor. Myeloid cells execute a diverse
array of innate immune functions, whereas lymphoid cells are involved in adaptive
immunity. Created with BioRender.com.

3.2.2 Adaptive immunity

Adaptive immunity serves several key functions: recognizing specific foreign antigens and
distinguishing them from self-antigens, generating targeted immunological responses to
eliminate particular pathogens or infected cells, and forming immunological memory to
mount rapid responses upon re-exposure to specific pathogens [142]. Effective immuniza-
tion against infectious diseases relies on adaptive immune responses. The cells of the
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adaptive immune system include antigen-specific T cells, which undergo activation and
proliferation upon interaction with antigen-presenting cells, and B cells that differentiate
into plasma cells to produce antibodies [140] (see Figure 3.4).

T cells
T cells originate from hematopoietic stem cells in the bone marrow and undergo matura-
tion in the thymus. They bear distinctive antigen-binding receptors on their membrane,
referred to as the T-cell receptor (TCR). Each T cell expresses a unique type of TCR
and possesses the ability to undergo rapid proliferation and differentiation upon receiving
appropriate signals. As noted earlier, the recognition of a specific antigen by T cells neces-
sitates the involvement of antigen-presenting cells (typically dendritic cells, although also
macrophages, B cells, fibroblasts, and epithelial cells) [142, 143].

B cells
B cells, like T cells, originate from hematopoietic stem cells in the bone marrow. Upon
maturation, they leave the marrow equipped with a unique antigen-binding receptor on
their membrane. Unlike T cells, B cells can directly recognize antigens without depending
on antigen-presenting cells, thanks to specific antibodies expressed on their cell surface.
Upon activation by foreign antigens matching their specific antigen receptors, B cells un-
dergo proliferation and differentiate into either antibody-secreting plasma cells or memory
B cells. Memory B cells, considered as long-term survivors of prior infections, retain the
expression of antigen-binding receptors. They are poised to mount rapid responses upon
re-exposure by generating antibodies and eliminating the antigen. In contrast, plasma
cells, relatively short-lived, often undergo apoptosis once the inciting agent triggering the
immune response is eradicated [142, 143].

3.2.3 A summary of the macrophage cytokine repertoire

Proinflammatory cytokines

In the early stages of bacterial infection, key inflammatory cytokines released include tu-
mor necrosis factor (TNF), interleukin 1 (IL-1), and interleukin 6 (IL-6). While mainly
originating from monocytes and macrophages, these cytokines can also be produced by
activated lymphocytes, endothelial cells, and fibroblasts. They collectively induce vascular
permeability and attract inflammatory cells [144]. While the inflammatory response proves
beneficial when cytokines are produced in appropriate amounts, their excessive production
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can lead to toxicity. For example, overproduction of IL-1β and TNF can trigger an acute
generalized inflammatory response characteristic of septic shock and multi-organ failure
[145].

TNF
Tumor necrosis factor (formerly known as tumor necrosis factor alpha, TNF-α), a 185-
amino acid glycoprotein, was initially identified for its capacity to induce necrosis in some
tumors [146]. It acts as a potent pyrogenic cytokine and is among the first to be released
upon pathogen exposure [145], thus playing a crucial role in septic shock. TNF promotes
vasodilation and increased vascular permeability, which facilitates the infiltration of lym-
phocytes, neutrophils, and monocytes into the affected area. Additionally, it regulates the
release of chemokines to recruit these cells to the site of inflammation. TNF, in conjunction
with IL-17, stimulates the expression of neutrophil-attracting chemokines CXCL1, CXCL2,
and CXCL5 [147], and can also enhance the expression of cell adhesion molecules involved
in diapedesis [144, 148].

IL-1
Three forms of IL-1 have been identified: IL-1α, IL-1β, and IL-1Ra. Both IL-1α and
IL-1β exhibit strong proinflammatory properties. Similar to TNF, IL-1β functions as an
endogenous pyrogen. During inflammation, IL-1β promotes the production of acute phase
proteins from liver and affects the central nervous system, inducing fever and stimulating
prostaglandin secretion. In mast cells, IL-1β triggers the release of histamine, leading to
vasodilation and localized inflammation. IL-1Ra competes for the same receptor as IL-1α
and IL-1β, but the precise secretion mechanism remains unclear. Its binding to the IL-1R
does not initiate the proinflammatory signaling cascade prompted by IL-1α and IL-1β [144].

IL-6
IL-6 is a multifunctional cytokine with both proinflammatory and anti-inflammatory prop-
erties. It stimulates the differentiation of B cells into plasma cells, activates cytotoxic T
cells, and regulates bone homeostasis. Like TNF and IL-1β, IL-6 acts as an endogenous
pyrogen, inducing fever and the synthesis of acute phase proteins in the liver [144]. Its
proinflammatory effects are mediated by trans-signaling, wherein IL-6 binds to soluble IL-
6 receptors, which then bind to gp130 receptors present in all cell types. On the other
hand, its anti-inflammatory effects are mediated by classical signaling, involving interac-
tion with IL-6 receptors expressed by only a subset of cells. The anti-inflammatory role of
IL-6 is evident in IL-6−/− mice, which display hepatosteatosis, insulin resistance, and liver
inflammation [149].
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Anti-inflammatory cytokines

IL-10
IL-10 is synthesized by activated macrophages, B cells, and T cells. Its primary functions
involve suppressing macrophage activation and the production of TNF, IL-1β, IL-6, IL-8,
and IL-12 [144]. Macrophages, when exposed to IL-10, experience decreased microbicidal
activity and a reduced ability to respond to IFN-γ [140]. Studies in murine models have
demonstrated that blocking or neutralizing IL-10 results in elevated levels of TNF and IL-
6, while administration of exogenous IL-10 enhances survival and decreases inflammatory
cytokine levels [150]. Lower levels of IL-10 have been associated with an increased risk of
gastrointestinal pathologies such as inflammatory bowel disease [150].

TGF-β
TGF-β is a potent anti-inflammatory cytokine that acts on various target cells to dampen
the inflammatory effects of TNF, IL-1β, IL-2, IL-12, and others [151, 152]. Its significance
in the immune system is highlighted by studies showing that mice deficient in the TGF-β1
isoform, which is prevalent in immune cells, develop severe multi-organ inflammation and
succumb by week 4 [153]. Additionally, TGF-β plays a role in hematopoiesis and is crucial
for embryogenesis, tissue regeneration, and cell proliferation and differentiation [144].

3.3 Energy metabolism

In this section, we discuss the integration of carbohydrate and fat metabolism across various
tissues within the body, with a significant role played by the hormonal system. We note
that this discussion involves approximations and should be viewed as illustrative only. For
the sake of continuity with the work presented in chapters 6 and 7, we will assume a
healthy individual weighing 58–70 kg for most purposes. The information presented here
is summarized from Refs. [6] and [154].

3.3.1 Carbohydrate metabolism

Glucose maintains a relatively stable concentration in the blood, hovering around 5 mmol/l
in humans. Among all circulating energy substrates, glucose exhibits the most constant
levels. This stems from its role in providing a constant energy source to tissues, particularly
those regulated by extracellular glucose levels. Glucose enters the bloodstream through
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three primary mechanisms: absorption from the intestine, breakdown of liver glycogen
(glycogenolysis), and liver gluconeogenesis (production of new glucose).

The postabsorptive state

The term postabsorptive state indicates that all the nutrients from the last meal have been
absorbed from the intestines, but not enough time has passed for signs of starvation to
appear. In humans, this state typically occurs after an overnight fast before breakfast is
consumed. During the postabsorptive state, blood glucose concentration is usually just
below 5 mmol/l, while plasma insulin levels vary widely among individuals, averaging
around 60 pmol/l. The concentration of glucagon typically ranges from 20 to 25 pmol/l.
However, determining typical glucagon concentrations presents challenges due to varying
measurement methods in different laboratories. Moreover, since glucagon primarily af-
fects metabolism in the liver, its relevant concentration in the hepatic portal vein is not
easily measured in normal volunteers. During the postabsorptive state, glucose turnover
predominantly arises from glycogen breakdown, which accounts for approximately half of
the total glucose supply. This process is stimulated by a decreased insulin/glucagon ra-
tio. The remaining glucose entry is attributed to gluconeogenesis. Substrates utilized for
gluconeogenesis primarily consist of lactate, along with pyruvate, alanine (mainly sourced
from muscle), and glycerol (derived from adipose tissue lipolysis, i.e., fat breakdown). On
the utilization side, the brain consumes about 60% of the available glucose per day. The
remainder is utilized by various tissues, including red blood cells, skeletal muscle, the renal
medulla, and adipose tissue. The pattern of glucose metabolism after an overnight fast is
illustrated in Figure 3.5.

Breakfast: the absorptive state

The postabsorptive state typically lasts only a few hours before being interrupted by the
arrival of a meal, marking a dramatic shift from production to storage. Following a meal,
there is a rapid increase in blood glucose concentration, detectable within approximately
15 minutes. This concentration peaks around 30–60 minutes after consuming a moderate
breakfast—the exact timing varies based on factors like meal size and carbohydrate compo-
sition. As blood glucose concentration rises, the pancreas responds by stimulating insulin
secretion, leading to an increase in plasma insulin concentration. Figure 3.6 summarizes
glucose metabolism during the absorptive phase and key regulatory points.

The liver receives blood from the small intestine via the hepatic portal vein, and so it
experiences the most significant change in blood glucose concentration. Glucose flows into
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Figure 3.5: The pattern of glucose metabolism after an overnight fast. The numbers are
approximations only, in mg per min, for a typical person of 65 kg body weight. Much of
the glucose delivered to peripheral tissues (muscle, adipose tissue, blood cells, etc.) is
“recycled” as lactate, which returns to the liver as a substrate for gluconeogenesis.
However, a large proportion is oxidized, especially in the brain, and this constitutes an
irreversible loss from the body’s store of carbohydrate. Figure from Ref. [6]. Copyright
© 2019 Keith N. Frayn and Rhys Evans. Reproduced with permission of John Wiley &
Sons, Ltd.

hepatocytes via the transporter GLUT2. The rise in intracellular glucose concentration
within hepatocytes, coupled with the altered insulin/glucagon ratio, results in the inhi-
bition of glycogen phosphorylase and the activation of glycogen synthetase, shifting from
glycogen breakdown to glycogen storage. While one might anticipate that the pathway of
gluconeogenesis would be suppressed by this hormonal shift, empirical evidence suggests
otherwise. Following carbohydrate ingestion, there is consistently an increase in blood
lactate concentration. This lactate production sustains gluconeogenesis without causing
glucose release into the bloodstream; instead, lactate is directed toward glycogen storage.
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The redirection of lactate into glycogen in the liver reflects a strong drive to maximize
glucose storage. Other tissues also respond to the increase in insulin levels. In skeletal
muscle and adipose tissue, insulin prompts glucose uptake by increasing the presence of
GLUT4 transporters on the cell membrane and enhancing glucose disposal within the cell.
Concurrently, the plasma concentration of non-esterified fatty acids decreases due to the
suppression of fat mobilization in adipose tissue, a topic we will delve into further later.
Consequently, tissues like skeletal muscle, which can utilize either fatty acids or glucose
for energy, switch to predominantly using glucose. However, insulin also activates muscle
glycogen synthase, leading to glycogen storage in muscles. This metabolic shift towards
glucose utilization and storage characterizes the postprandial period after carbohydrate-
rich meals.

Figure 3.6: The pattern of glucose metabolism after a carbohydrate breakfast. The direct
pathway of glycogen storage is shown (glucose from small intestine going to liver
glycogen), as is the indirect pathway (glucose forming lactate in the small intestine or in
peripheral tissues, lactate then being used for liver glycogen synthesis). Figure from
Ref. [6]. Copyright © 2019 Keith N. Frayn and Rhys Evans. Reproduced with
permission of John Wiley & Sons, Ltd.
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3.3.2 Fat metabolism

There are different forms of fat and their concentrations may vary considerably throughout
a normal day. In this section, we will consider the regulation of non-esterified fatty acid
(also known as free fatty acid or FFA), as well as the fate of dietary fat consumed in
the form of triglyceride (TG). TG exists in various forms, and the variant that enters the
bloodstream after a meal is referred to as chylomicron. Chylomicrons are large triglyceride-
rich lipoproteins. They transport dietary lipids from the intestines to other tissues in the
body.

The postabsorptive state

In the postabsorptive state, FFA consitute an important energy source. Their turnover
involves liberation from adipose tissue and uptake by tissues like skeletal muscle and liver.
Lipolysis, the breakdown of TG, yields three fatty acids, providing energy equivalent to a
concentration of 3 mmol/l of FFA. Utilization of FFA from plasma largely depends on their
concentration: higher FFA concentration correlates with increased utilization. Plasma
FFA concentration mirrors their release from adipose tissue, which in turn determines
their utilization rate in other tissues. FFA are not water soluble, and they are transported
in plasma bound to the protein albumin. The plasma FFA concentration during a normal
day is an inverse reflection of the plasma glucose and insulin. When the body is relatively
starved—for instance after overnight fast—the concentrations of glucose and insulin are at
their lowest and the concentration of FFA is at its highest. Various factors such as exercise
or illness may disrupt this relationship. Figure 3.7 shows the pattern of pattern of FFA
metabolism after an overnight fast.

Breakfast: the absorptive state

After a meal, increased glucose levels stimulate insulin secretion, causing insulin concen-
tration in the plasma to rise. This directly inhibits lipolysis in adipose tissue. However,
elevated glucose and insulin levels also enhance glucose uptake and glycolysis in adipose
tissue, leading to increased production of glycerol 3-phosphate and re-esterification of fatty
acids into TG within the tissue. Consequently, the release of FFA from adipose tissue is
nearly completely suppressed following a carbohydrate-rich meal, resulting in a significant
decrease in plasma FFA concentration from its postabsorptive level of approximately 0.5
mmol/l to less than 0.1 mol/l. The decrease in plasma FFA concentration impacts the
metabolism of tissues relying on fatty acids as an oxidative fuel post-overnight fast, such
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Figure 3.7: The pattern of FFA metabolism after an overnight fast. Fatty acids are
released by lipolysis of the triacylglyceride stores in adipose tissue. VLDL:
very-low-density lipoprotein. Figure from Ref. [6]. Copyright © 2019 Keith N. Frayn and
Rhys Evans. Reproduced with permission of John Wiley & Sons, Ltd.

as skeletal muscle. The rate of FFA uptake by muscle primarily depends on fatty acid
delivery—namely, plasma concentration and blood flow. However, with the availability of
glucose in the plasma post-meal, insulin prompts glucose utilization over FFA. Skeletal
muscle has no direct way of turning off fatty acid utilization, but the coordinated control
of metabolism in the whole body leads instead to its supply being cut off.

If the meal includes a significant fat content, it elicits additional responses. However,
the processing of dietary fat does not directly impact the coordinated responses of the
glucose/FFA-insulin/glucagon system. Dietary fat is mostly in the form of TG, absorbed
in the small intestine and processed into chylomicron particles. These particles are released
into the bloodstream via the lymphatic system. This process is much slower than the ab-
sorption of glucose, so that the peak in plasma TG concentration after a fatty meal does
not occur until 3-5 hours after the meal. Unlike other nutrients, dietary fat bypasses the
liver upon entry into the circulation. Instead, most of TG are extracted from chylomicrons
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in tissues outside the liver, especially adipose tissue, skeletal muscle, and the heart. Fig-
ure 3.8 shows the pattern of plasma TG metabolism after a breakfast containing both fat
and carbohydrates.

Figure 3.8: The pattern of plasma triacylglyceride metabolism after a breakfast
containing both fat and carbohydrates. TG enters the circulation in the form of
chylomicron particles and is hydrolyzed by the enzyme lipoprotein lipase (LPL) in the
capillaries of tissues. Figure from Ref. [6]. Copyright © 2019 Keith N. Frayn and Rhys
Evans. Reproduced with permission of John Wiley & Sons, Ltd.
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Chapter 4

Modelling the circadian regulation of
the immune system: sexually
dimorphic effects of shift work

The content of this chapter is based on the paper: S. M. Abo and A. T. Layton, “Modeling the circadian
regulation of the immune system: Sexually dimorphic effects of shift work,” PLoS Comput Biol, vol. 17,
no. 3, p. e1008514, 2021. URL: https://doi.org/10.1371/journal.pcbi.1008514. Reproduced with
permission from PLOS Computational Biology.
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Abstract

The circadian clock exerts significance influence on the immune system and disruption
of circadian rhythms has been linked to inflammatory pathologies. Shift workers often
experience circadian misalignment as their irregular work schedules disrupt the natural
light-dark cycle, which in turn can cause serious health problems associated with alter-
ations in genetic expressions of clock genes. In particular, shift work is associated with
impairment in immune function, and those alterations are sex-specific. The goal of this
study is to better understand the mechanisms that explain the weakened immune system
in shift workers. To achieve that goal, we have constructed a mathematical model of the
mammalian pulmonary circadian clock coupled to an acute inflammation model in male
and female rats. Shift work was simulated by an 8h-phase advance of the circadian system
with sex-specific modulation of clock genes. The model reproduces the clock gene expres-
sion in the lung and the immune response to various doses of lipopolysaccharide (LPS).
Under normal conditions, our model predicts that a host is more sensitive to LPS at circa-
dian time (CT) 12 versus CT0 due to alterations in Interleukin 10 (IL-10) dynamics. We
identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The
model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with
males and females exhibiting an exaggerated response to LPS at CT0, which is countered
by a blunted immune response at CT12.

4.1 Introduction

Most organisms from bacteria to humans are equipped with an internal biological clock,
known as a circadian clock—a network of molecular interactions generating biochemical
oscillations with a near 24-hour period [32]. In mammals, the circadian timing system
consists of almost as many clocks as there are cells, as most cells house self-sustained and
autonomous circadian oscillators [32]. This coordination of rhythms with the diurnal cycle
is under the control of a central synchronizer, the suprachiasmatic nucleus (SCN), located
in the ventral hypothalamus [155]. The SCN receives direct photic input from the retina,
produces rhythmic outputs and orchestrates local clocks in the brain and peripheral clocks
throughout the body [109].

Peripheral clocks can be coordinated by systemic cues emanating from the SCN [32],
and they can be synchronized also by external cues such as temperature, feeding schedules
and light [109]. In particular, the circadian circuitry in the lungs is exquisitely sensitive
to environmental factors and exposomes [156], including air pollutants [157], cigarette
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smoke [158, 159], shift work [160–162], jet lag [163, 164], pathogens [165, 166] and much
more. Of particular interest is the impact of circadian disruption on immune cell function,
host defense and inflammation. The emerging picture is that the strength of the immune
response varies throughout the day and that dysregulation of clock genes can lead to
inflammatory disease or immunodeficiency [57].

Over the past decades, our societies have experienced rapid growth in the need for
work in recurring periods other than traditional daytime periods. Research shows that
shift work disrupts the natural sleep-wake cycle and feeding patterns [167], which may in
turn cause serious health problems [168]. Here, we use mathematical modelling to study
the effects of shift work, also known as chronic jet lag (CJL), on the lung circadian clock
and consequently the immune response to inflammation. We address important questions:
How do interactions between clock genes affect the strength of the inflammatory response at
CT0 compared to CT12? Does the disruptive effect of shift work manifest itself differently
in males and females? If so, what are the clock genes responsible for the sex-specific
responses? Existing mathematical models of the circadian clock that focus on immunity
can be classified into two categories: 1) models of the interplay between circadian rhythms
and the immune system via neuroendocrine players (e.g. melatonin, cortisol) [52–54]; 2)
models for the NF-κB network modulated by the circadian clock [55]. The former do not
model the core clock machinery, but rather use rhythmic hormones such as cortisol to drive
the circadian variations in the system. The latter include the core clock system but with
unidirectional coupling from the clock to the immune system. It is now known that the
immune system can affect the circadian clock in a reciprocal manner [56, 57]. Given this
observation, we have developed a model of the core circadian clock genes and proteins
and their reciprocal interactions with the immune system under acute inflammation. Our
mathematical model was extended to include the effect of shift work, represented as an
8h-advancea of the circadian phase with sex-specific alterations in the expression of clock
genes and proteins (see Figure 4.1).

The immune system is under control of the circadian clock. A primary means of circa-
dian control over the immune system is through direct interactions of clock proteins with
components of key inflammatory pathways such as members of the NF-κB protein family
[56]. This regulation is independent of transcription and allows the immune system to also
reciprocally exert control over the function of the circadian clock [56]. Our model, which is
composed of core clock genes (Bmal1, Per, Cry, Rev-Erb and Ror) and their related pro-
teins as well as the regulatory mechanism of pro- and anti-inflammatory mediators (e.g.

aBased on the study by Hadden et al. [164], shift work or CJL consisted of serial 8h advances of light-
dark cycle every two days for 4 week. Experiments were performed on 2- to 3-month old C57BL6J female
and male mice.
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IL-6, TNF-α and IL-10), predicts temporal profiles of clock gene expression and cytokine
expression during inflammation. This allows us to study how immune parameters respond
to shift work-mediated circadian disruption. Moreover, we compare how the disruptive
effect of shift work manifests itself differently in males and females.

4.2 Methods

We present a mathematical model for simulating the circadian clock in the lung of a rat, the
immune system under acute inflammation, and the interactions between the two systems.
A schematic diagram that depicts the regulatory network is shown in Figure 4.1. Model
equations and parameters can be found in Tables A.1-A.10 in Appendix A.

Figure 4.1: Regulatory network of the coupled immune system and circadian clock.
Schematic diagram of the acute immune response model (green boxes) and the circadian
clock (blue boxes) in the lung of a rat. In the circadian clock model, slanted boxes denote
mRNAs; rectangles denote proteins; ovals denote protein complexes. Dotted arrows
represent transactivation; solid arrow represent mRNA translation into proteins (or the
process of two proteins forming a complex through heterodimerization, or vice versa);
blunt dashed arrows represent inhibition. In the acute inflammation model, P denotes
endotoxin; D, damage marker; N , activated phagocytic cells; CA, slow-acting
anti-inflammatory cytokines; IL-6 and TNFα are pro-inflammatory cytokines; IL-10 is an
anti-inflammatory cytokine; YIL−10 is a tissue-driven (non-accessible) IL-10 promoter.
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4.2.1 Circadian clock in the lung

The mammalian clock consists of interlocked transcriptional-translational feedback loops
that drive the circadian oscillations of core clock components [169]. Both the master and
peripheral clocks share essentially the same molecular architecture [108]. The activators
CLOCK and BMAL1 dimerize to induce the transcription of target genes, including the
Period genes (Per1, 2, 3 ), Cryptochrome genes (Cry1, 2 ), retinoic acid-related orphan
receptor (Rora, Rorb, Rorc) and Rev-Erb nuclear orphan receptor (Rev-Erbα, Rev-Erbβ)
to activate their transcription [32]. PERs and CRYs then heterodimerize and enter the
nucleus to inhibit their own transcription by acting on the CLOCK-BMAL1 protein com-
plex, and thus form the main feedback loop [32, 112, 113]. In the secondary loop, the nu-
clear receptors REV-ERBα, β and RORa, b, c compete for ROR regulatory element (RRE)
binding sites in the promoter region of Bmal1 and respectively repress and activate its
transcription. The REV-ERBs, which also repress Cry1 transcription [120], are essential
for robust oscillations [98, 121, 122]. See the clock network in Figure 4.1, and refer to
Refs.[98, 109, 113] for a detailed overview of the molecular clock architecture.

The present lung circadian clock model, inspired by Ref.[170], describes the time evo-
lution of mRNA and corresponding protein concentrations of Per, Cry, Rev-Erb, Ror, and
Bmal1, and their modulation of proximal tubule epithelial transport [171]. In our model
we refer to gene family groups, or gene entities: we grouped the three Period homologs
(Per1-3 ) as a single Per gene and the two cryptochromes (Cry1,2 ) as a single Cry gene.
Similarly, the two isoforms Rev-Erbα and Rev-Erbβ and three isoforms Rora, Rorb and
Rorc are represented by single variables Rev-Erb and Ror, respectively. It was assumed
that the CLOCK protein is constitutively expressed. We did not include post-translational
protein modifications, considering that transport between the cytoplasm and the nucleus is
fast on a circadian timescale [172]. The time evolution of the core clock genes and proteins
is described by Eqs. (A.1)–(A.12) in Table A.2.

4.2.2 Acute immune response

The acute immune response model, inspired by Refs.[173] and [174] with some modifica-
tions, consists of eight variables: endotoxin concentration (P); the total number of activated
phagocytic cells (N, which includes activated immune response cells such as neutrophils
and monocytes); a non-accessible tissue damage marker (D); concentrations of pro- and
anti-inflammatory cytokines, namely IL-6, TNF-α and IL-10; a tissue driven non-accessible
IL-10 promoter (YIL10); and a state representing the level of slow acting anti-inflammatory
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mediators (CA), which comprises slow-acting anti-inflammatory agents such as cortisol and
TGF-β1.

The introduction of bacterial insult in the system activates the phagocytic cells, N,
and inflicts direct tissue damage, D [175]. This is different from the work of Roy et al.
[173] in which endotoxin only activates phagocytic cells. The activated cells up-regulate
the production of inflammatory agents (TNF-α, IL-6, IL-10, and CA) [176]. The pro-
inflammatory cytokines TNF-α and IL-6 exert a positive feedback on the system by further
activating N, as well as up-regulating other cytokines [176, 177]. The anti-inflammatory
cytokines IL-10 and CA, on the other hand, have a negative feedback on the system. They
inhibit the activation of N and other cytokines [178, 179]. The model also incorporates
tissue damage, represented by a non-accessible damage marker, D. Tissue damage further
up-regulates activation of N [180] and also contributes to up-regulation of IL-10 [181, 182].
In our model, D is up-regulated by IL-6 because it has been shown that IL-6 is associated
with the development of sepsis [183–185]. This differs from Ref.[173] in which damage is
up-regulated by N. Note also that D should not be interpreted directly as a cell type in the
model. The acute inflammatory response is described by Eqs. (A.13)–(A.20) in Table A.2;
see also Figure 4.1.

4.2.3 Coupling between the circadian clock and the immune sys-
tem

Most studies on circadian-immune interactions have focused on Bmal1, since inactivation of
this gene is a convenient way to abrogate clock function [165, 186, 187]. Thus, care should
be taken in distinguishing Bmal1 -specific effects from downstream effects because other
clock components act as intermediaries. The inhibitory effects that the circadian clock and
the inflammatory response have on each other are shown in Figure 4.1. Specifically:

• CRY proteins. Cry1−/−Cry2−/− mice exhibit an elevated number of T cells in the
spleen with increased TNF-α levels [56, 188]. Other studies showed that Cry1 and
Cry2 double KO in fibroblasts and bone-marrow-derived macrophages (BMDMs)
leads to increased Il6 and Tnf-α mRNA and an hypersensitivity to lipopolysac-
charide (LPS) infection [57, 189]. Furthermore, the NF-κB signaling pathway was
shown to be constitutively activated in Cry1−/−Cry2−/− BMDMs [189]. Due to the
ensuing higher constitutive inflammatory state, Cry1−/−Cry2−/− mice exhibit in-
creased infiltration of leukocytes in lungs and kidneys [190]. Therefore, CRYs play
an important anti-inflammatory role by downregulating inflammatory cytokines.
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Because IL-6 is inducible with TNF-α, effects on IL-6 in CRY double KO experi-
ments are primarily mediated by TNF-α [189]. In our model, CRY directly inhibits
the production of TNF-α, hence indirectly inhibits the TNF-α-induced IL-6 pro-
duction (see Eq. (A.17) in Table A.2).

• ROR proteins. Similarly to the CRY proteins, experiments have shown that
Rora−/− mice, also known as the staggerer mutant, exhibit higher levels of IL-
6 in bronchoalveolar lavage fluid, which renders them more susceptible to LPS
lethality [191]. Interestingly, staggerer mutant mice have an increased production
of IL-6 and TNF-α in mast cells and macrophages after LPS stimulation [192,
193]. Furthermore, overexpression of RORa in human primary smooth muscle cells
inhibits TNF-α-induced expression of IL-6 [194]. The present model assumes that
ROR downregulates TNF-α, thus indirectly downregulates IL-6 (see Eq. (A.17)
in Table A.2). We recall that the model does not distinguish between the three
isoforms Rora, Rorb and Rorc.

• REV-ERB proteins. There is compelling evidence for a role for REV-ERBα in
the control of the immune system. REV-ERBα is encoded by Nr1d1 and in vivo
challenge of Nr1d1−/− mice with LPS leads to IL-6 upregulation in serum in com-
parison to wildtype animals [195]. REV-ERBα represses Il6 expression not only
indirectly through an NF-κB binding motif but also directly through a REV-ERBα
binding motif in the murine Il6 promoter region [196]. A more recent study showed
that the dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial
epithelial cells further augmented inflammatory responses and chemokine activa-
tion [197]. REV-ERBα also negatively affects the expression of anti-inflammatory
cytokine IL-10. Rev-Erbα mRNA binds to the IL-10 proximal promoter and re-
presses expression in human macrophages [198]. Together, these studies reveal the
role of REV-ERBα as an equilibrist. In our model, REV-ERB directly inhibits the
production of IL-6 and IL-10 (Eqs. (A.16) and (A.18) in Table S2, respectively).
We note that the two isoforms Rev-Erbα and Rev-Erbβ are represented by a single
model variable Rev-Erb.

• Inflammation. In a reciprocal manner, inflammation induced by agents such as
LPS, TNF-α, and IFN-γ [199–203] or acute bacterial infection [204] can affect the
circadian clock. In particular, rodent studies indicate that LPS transiently sup-
presses clock gene expression and oscillations in the SCN and peripheral tissues
[172, 203, 205, 206]; notably, a number studies show significant suppression of Bmal1
[57, 205, 207]. The inhibition of the circadian mechanism during endotoxemia lasts
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for at least 24 h [203, 207]. To represent the sustained effect of a bacterial infec-
tion on the circadian clock, we introduced a filter function for LPS (Eq. (A.21) in
Table A.2), which acts on the clock through its inhibition of Bmal1 (Eq. (A.5) in
Table A.2). The filter function decays linearly over 24h and causes circadian dis-
ruption for at least this amount of time. We assume that the effects of cytokines
such as TNF-α are incorporated in the net effect of LPS on clock genes, and so we
do not include direct links from cytokines to clock genes and proteins.

4.2.4 Model parameters

Most of the model parameters are not well characterized, and were estimated by fitting
model dynamics to experimental data. Due to the transient nature of acute inflammation,
this is done in a two-step process: we first fit the circadian clock model in isolation, in
an infection-free state. In the absence of infection, the acute inflammation model is idle
and therefore has no influence on the expression of clock genes. Likewise, clock genes
have no effect on inflammation variables whose initial conditions are zero. The fitting
of the clock model is done using data on the expression of circadian genes in the mouse
lung (CircaDB : http://circadb.hogeneschlab.org). Animals were entrained to a 12h
light:12h dark schedule for one week, then released into constant darkness. Clock gene
expression was recorded starting at CT18 postrelease [208]. It is noteworthy that the
present model is based on the rat, whereas the parameters for the circadian clock were
based on mouse data. However, while species differences exist, core clock gene expressions
of the mouse and rat lungs exhibit substantial similarities [209]. Our model inherits the
period of the data which is 24 h.

In a second step, we fit the acute inflammation model together with the clock-inflammation
coupling, without changing the circadian clock parameters. This is done by simultaneously
fitting experimental measurements of the cytokines IL-6, TNF-α, and IL-10 in rat follow-
ing the administration of endotoxin at 3 mg/Kg and also at 12 mg/Kg [173, 174]. In
other words, we fit the time profiles for all variables (P, D, N, CA, IL-6, IL-10, TNF-α)
using measured data on IL-6, IL-10 and TNF-α only. This fitting was conducted with the
coupling with the clock model taken into account. Some parameters in the model were
specified. The clearance rate of endotoxin, P, captured by the parameter dP in Eq. (A.13)
was obtained from the literature [210, 211]. Parameters sIL10 and sCA from Eqs. (A.18)
and (A.20) were extracted directly from the experimental data, respectively [173]. Model
parameters are shown in Tables A.3–A.10.
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Parameter estimation

Parameter estimation for the coupled system was carried out with a nonlinear least-squares
method with a normalized residual, which minimizes the error between the computed model
output and the experimental data. To this end, we defined:

χ2 =

Q∑
i=1

[
yi − y(ti,θ)

max(yi(i=1,...,Q))

]2
(4.1)

Here, yi, is the measured data at time ti. The model prediction is given by y(ti,θ), where
θ represent model parameters. Q is the total number of data points. Experimental error
bars, as shown in Figure 4.4, were not taken into account. The cost function that we
minimize is given by:

κ(θ) = χ2
IL63

+ χ2
IL612

+ χ2
TNFα3

+ χ2
TNFα12

+ χ2
IL103

+ χ2
IL1012

(4.2)

The subscripts 3 and 12 refer to the injected dose of endotoxin (mg/Kg). As proposed
in Ref. [212], the cost function has been minimized by using an optimization function in
MATLAB known as fminsearch to search for the parameter estimated values which give the
best fit of the model to the experimental data. fminsearch is an unconstrained multidimen-
sional minimizer that uses the Nelder-Mead algorithm. Nelder-Mead is a derivative-free
algorithm that evaluates the cost function at the vertices of a parameter simplex, ranks the
values of the function, replaces the worst value with a best one based on a set of rules, and
repeats until a tolerance error or a number of function evaluations prescribed by the au-
thorized user has been reached. A more detailed description of Nelder-Mead algorithm can
be found elsewhere. Still, obtaining our final result required a series of educated guesses,
manually correcting the most obvious differences before restarting the optimization. We
have found that the parameter values are not uniquely determined, as different sets of pa-
rameters provide almost the same goodness of fit. In order to assess the relative influence
of each parameter on the outcomes, we performed a global sensitivity analysis using the
Sobol’ method (Appendix A, Section A.2).

4.2.5 Sexual dimorphism in clock gene alterations under circa-
dian disruption

In their 2012 study, Hadden et al. [164] reported sexual dimorphism in clock gene expression
in the lungs of mice exposed to chronic jet lag. Male and female mice were assigned to either
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remain in a light-dark (LD) LD12:12 regimen or to undergo experimental chronic jet lag
(CJL). Under the CJL regimen, mice were subjected to serial 8-h advances of the light-dark
cycle every 2 days for 4 weeks. Then using quantitative polymerase chain reaction (PCR)
to measure the relative amount of clock gene mRNAs, Hadden et al. [164] observed that
Rev-Erbα gene expression is upregulated in CJL males and downregulated in CJL females
by 98% and 70% on average, respectively. Bmal1 is downregulated in CJL females only by
43% on average, while Clock, which forms a heterodimer with Bmal1 (CLOCK-BMAL1)
[208], is downregulated in males only by 26%. The repressors Per2 and Cry2 are both
upregulated when compared with same-sex control animals, although Cry2 upregulation
was not significant for CJL males. In particular, Per2 and Cry2 increased by 497% and
69%, respectively in CJL female mice, while Per2 increased by 230% in CJL male mice.
The authors did not test the effects of chronic jet lag on Ror gene expression. This could be
explained by the fact that Ror is not directly related to the shift work phenotype. Indeed,
the association between Ror and shift work disorder has been shown to be weak at best
[213].

We used this information to create separate mathematical models of the lung circadian
clock for males and females undergoing CJL. The decrease in Clock mRNA for CJL males is
not taken into account because we do not model this gene explicitly and only constitutively
represent the associated CLOCK protein. In addition, NPAS2, a paralog of CLOCK,
has been shown to compensate for the loss of CLOCK in peripheral circadian oscillators
[214, 215]. We note also that the baseline immune system likely differs between the sexes,
but due to insufficient quantitative data, we were only able to construct one baseline model.
Figure 4.2 shows the male-to-female relative abundance of mRNAs for controls and shifters,
as reported by Hadden et al., normalized by control male-to-female ratios.

A method similar to that of the baseline system was used for the calibration of the
CJL male and CJL female models. Hadden et al. did not measure clock gene expression
over a 24-hour period, which would have allowed identification of rhythm differences, i.e.
mesor, amplitude and phase expression of these genes, but rather reported the average
expression level of clock genes. We have therefore modified the cost function, Eqs. 4.1–
4.2, to minimize the error between the average gene concentration in our models and the
experimental data. A comparison between the change in mean gene expression between
our models and experimental data is available in Table A.12 in Appendix A.

Only a few parameters changed drastically from the nominal values in the baseline
model. Thus, we fixed the parameters that had not changed much, and repeated the cal-
ibration with a reduced set of free parameters for the CJL models: 6 parameters for the
male CJL model and 10 parameters for the female CJL model. CJL model parameters can
be found in Table A.11 in Appendix A. This process resulted in a change in the average con-
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centration of clock genes in CJL models to the levels specified by the data. Consequently,
the amplitude of the oscillations increased or decreased depending on the direction of the
change. A previous study using the same experimental protocol has recorded sustained
alterations to the average gene concentration as well as the amplitude of clock genes in the
SCN and peripheral tissues [216].

At the time of this study, Ref. [164] is the only work known to us that reports quanti-
tative data on the sexual dimorphism of clock gene expression in the lungs of mice exposed
to CJL. However, other studies involving only male rats or mice have recorded changes
similar to CJL males [216, 217].

Figure 4.2: Male-to-female relative abundance of mRNAs for controls and shifters,
normalized by control male-to-female ratios.

4.3 Results

4.3.1 Expression of clock genes in lungs is accurately reproduced
by the model

Using the baseline model parameters (Tables A.3–A.10), the circadian clock model predicts
limit-cycle oscillations in the expression levels of all clock components with a system period
of 24 h. Figure 4.3 compares the predicted time profiles of Bmal1, Per, Cry, Rev-Erb and
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Ror with experimental observations for Bmal1, Per2, Cry1, Rev-Erbα and Rorc. We refer
to the onset of the rest phase of night-active organisms as CT0 and to the onset of activity
as CT12 [218]. These two times correspond to the onset of the light and dark phases,
respectively. Good agreement can be observed between the predicted and experimental
temporal profiles. Note that the parameter estimation procedure above (4.1) concerns the
baseline model and does not involve CJL. Thus, all CJL results are model predictions.

4.3.2 Cytokine dynamics during endotoxemia are accurately re-
produced by the model

We estimated the parameter values for the acute inflammation model by simultaneously
fitting experimental measurements of the cytokines IL-6, TNF-α, and IL-10 at endotoxin
doses 3 mg/Kg and 12 mg/Kg. The predicted time profiles are shown in Figure 4.4, left
and center columns. The model performs similarly well for all three cytokines, and is
able to capture the second peak in IL-10 expression. We note that the predicted IL-10
concentrations at 1 h and after 10 h are slightly underestimated compared to the value
recorded experimentally for the endotoxin dose 12 mg/Kg.

Model predictions were validated by comparing model simulations with available cy-
tokine data at a 6 mg/Kg endotoxin challenge level. These data were not used in the
parameter fitting. The results are shown in Figure 4.4, right column. In general, model
predictions of the measured cytokines are in good agreement with the experimental data.
We observe that TNF-α concentration is overestimated at 1 h. This discrepancy may be
explained by the apparent inconsistency between the data collected at 1 h with samples
collected at the same time point for endotoxin dose levels of 3 and 12 mg/Kg. A similar
model behavior was observed in the initiating article [173]. We note also that the model
over-predicts IL-10 concentration after 12 h.

4.3.3 Effect of infection timing on immune response

It is well established that the survival of rodents after endotoxemic shock varies with the
time of administration of bacterial insult. Studies have shown an increased lethality to-
wards the end of the resting phase in controlled light-dark experiments [195, 219, 220].
Since an organism’s ability to fight off an infection depends in part on having a sufficiently
large population of cytokines, we investigate how the timing of infection affects cytokine
dynamics. Interestingly, a discrepancy can be discerned in post-infection IL-10 dynam-
ics: some studies reported a single peak [221], whereas others reported two peaks [173].
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Figure 4.3: Predicted clock gene time profiles. Comparison of predicted time profiles
(solid lines) for Per, Cry, Rev-Erb, Ror and Bmal1, with experimental data (circles) for
Per2, Cry1, Rev-Erbα, Rorc, and Bmal1 mRNA expression levels obtained in mouse
lungs in constant darkness. Gray shading and white regions correspond to activity and
restcycles, respectively.

We hypothesize that this discrepancy can be explained by the different infection timing
(unfortunately infection timing was not reported in those studies).

We first seek to explain how the time of infection affects its lethality. Model simulations
predict higher concentrations of inflammatory cytokines (IL-6 and TNF-α) and more tissue
damage result from an infection administered at CT12 compared to CT0 (Figure 4.5a-
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Figure 4.4: Predicted cytokine time profiles. Comparison of predicted time-courses of
IL-6, TNF-α and IL-10 (solid line), against experimental data (circle) (mean ± SD), in
response to endotoxin challenge at dosages of 3 mg/Kg, 12 mg/Kg and 6 mg/Kg.

b,d). This difference can be explained in terms of the organism’s sensitivity to LPS, which
is predicted to be highest at CT12, consistent with the observed phenotype of increased
cytokine release [57, 195]. This increased sensitivity to LPS can be explained by a mismatch
in the acrophases of REV-ERB and ROR in particular. Figure 4.6 shows the phase relations
between CRY, REV-ERB and ROR. REV-ERB crests while ROR attains its minimum at
CT12. Thus ROR inhibition of TNF-α and IL-6 is considerably reduced, hence allowing for
a greater production of the cytokines. At the same time, the inhibition of IL-6 and IL-10
by REV-ERB is maximized, but since IL-10 also inihibits IL-6, its inhibition by REV-
ERB repeals its action on IL-6, leading IL-6 to more than double (Figure 4.5a). We note
that TNF-α increases less than IL-6 due to the inhibitory action of CRY which increases
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as REV-ERB decreases (see Figure 4.1 and Figure 4.6). The larger increase in cytokine
populations following a CT12 infection results in more tissue damage, compared to a CT0
infection (Figure 4.5).

Figure 4.5: Inflammatory response after infection at CT0 and CT12. Model simulations
of the time course of (a) IL-6, (b) TNF-α, (c) IL-10 and (d) the damage marker for the
control model in response to endotoxin dose 3 mg/Kg administered at CT0 and CT12

It is noteworthy that our model predicts a single peak in the expression of the anti-
inflammatory cytokine IL-10 when the host is infected at CT0 versus two peaks when
the infection occurs at CT12 (Figure 4.5c). This behavior persists across different doses of
endotoxin (results not shown), which indicates that the immune response might be different
at CT0 compared to CT12 regardless of the extent of the infection. We hypothesize that
the different timing of infection may explain the single peak versus two peaks in IL-10 time
profiles in previous studies [173, 221]

A closer look at the dynamics of REV-ERB revealed the following: at CT0 and without
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Figure 4.6: Phase relations between CRY, REV-ERB and ROR. Baseline model
simulation of the main clock genes involved in the inflammatory response. Normalized
temporal expression profiles of CRY, REV-ERB and ROR proteins, relative to their
respective mean value.

infection, REV-ERB is close to its minimum. An attack by pathogens inhibits Bmal1,
causing REV-ERB to drop below its nadir. This is followed by an almost complete loss of
IL-10 inhibition by REV-ERB, and thus leads to a single IL-10 spike. The high levels of
circulating IL-10 limit the production of proinflammatory cytokines (Figures 4.5a-b). On
the contrary, REV-ERB is close to its maximum at CT12, and while an attack by pathogens
inhibits its production, REV-ERB concentration remains sufficiently high for the first few
hours. Therefore, REV-ERB still inhibits IL-10 during the early stages of inflammation
and only a weak peak in IL-10 emerges. This inhibitory action is later counteracted by
the accumulation of circulating IL-6 and TNF-α which upregulate IL-10 production, hence
explaining the rise of a second peak in IL-10 when the infection occurs at CT12. About ten
hours after the onset of inflammation, REV-ERB finally drops below its normal minimum
levels. This is similar to the case at CT0, and leads to sustained elevated levels of IL-10
for a few hours after the elimination of IL-6 and TNF-α (see Figure 4.5, >10 h).

We hypothesize that the lower production of pro-inflammatory cytokines at CT0 is due
to high levels of IL-10, which spikes earlier during endotoxemia due to the loss of REV-
ERB. The second peak in IL-10 production can be an indicator of a stronger inflammatory
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response as can be seen at CT12. To test our hypothesis, we simulate acute inflammation
under three scenarios at CT12: Rev-Erb KO, Cry KO and Ror KO. Figure 4.7A shows that
the loss of Rev-Erb leads to a loss of the second peak of IL-10, while the absence of Cry or
Ror does not give rise to qualitatively different dynamics. As expected, a CT12 infection
following Rev-Erb KO produces results similar to a CT0 infection (see Figure 4.5) because in
both cases the concentration of the REV-ERB is at a minimum or even zero. Additionally,
the damage marker is greatly reduced by the loss of Rev-Erb (Figure 4.7b). This is due to
the inhibition of IL-6 following the sharp increase in the anti-inflammatory cytokine IL-10.
Consequently, IL-6 induced activation of D is abrogated. In this case, the damage marker
indicates an inadequate immune response because not enough inflammatory cytokines are
produced to fight the infection. The different timing of infection may indeed explain the
single peak versus two peaks in the IL-10 temporal profiles.

Figure 4.7: Knockout experiment at CT12. Model simulations of the time course of IL-10
(a) and the damage marker (b) in response to endotoxin dose 3 mg/Kg administered
CT12. Three scenarios are simulated: Rev-Erb KO, Cry KO and Ror KO.

4.3.4 Circadian disruption alters host immune response

It has been reported that a challenge of LPS in rodents with a disrupted circadian clock
leads to a stronger inflammatory response and increased mortality [222, 223]. Particu-
larly, Castanon-Cervantes et al. [223] observed a sustained reduction in Bmal1 transcript
following CJL. This is similar to findings by Hadden et al. [164] for female mice. Below
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we conduct simulations to illustrate that how circadian disruption alters immune response
depends on (i) the time of infection, and (ii) the sex of the organism.

When endotoxin is administered at the onset of the rest phase (CT0), our model pre-
dicts an increased production of IL-6 and TNF-α in CJL males compared to controls (Fig-
ure 4.8b-c). Similar results were shown in experiments on CJL male mice [224] and CJL
male rats [225] where the animals were injected with LPS during the early rest period. This
stronger response is due to the 8h-advance circadian disruption which resets their clock
to the middle of the active phase. In contrary, CJL females remained relatively close to
baseline compared to their male counterparts (Figure 4.8). Unlike males, the upregulation
of CRY in CJL females decreases TNF-α and IL-6 production, while the downregulation
of REV-ERB leads to increased levels of IL-10 and therefore more IL-10-induced IL-6 inhi-
bition. In sum, CJL rats suffer more tissue damage from LPS administered at CT0, with
CJL males more so than females (Figure 4.8a).

The trend is reversed at CT12. Figure 4.8 shows that CJL rats have blunted IL-6
and TNF-α responses. We recall that REV-ERB is upregulated in CJL males compared
to CJL females and controls (Figure 4.2d). Higher levels of REV-ERB further inhibit
the production of IL-10, which then releases its inhibitory action on pro-inflammatory
cytokines. This explains why CJL males, while having a blunted immune response, still
produce more cytokines than CJL females. The downregulation of IL-6 following CJL has
also been observed in all-male mice experiments [226–228]. Moreover, the weaker immune
response in both CJL males and females is explained by their internal circadian disruption
(8-h phase advance) which puts them at a circadian phase similar to CT4 in control rats.
The reduced production of cytokine is represented by a lower damage marker and could
indicate an inadequate and disrupted immune response (Figure 4.8a), particularly for CJL
females. We note that the damage marker for CJL females (Figure 4.8a) is similar to that
of the Rev-Erb KO experiment (Figure 4.7a). This highlights the role of REV-ERB in
promoting an adequate immune response. Our model predictions at CT12 are consistent
with experimental reports that the immune system in females is detrimentally affected
more than that of males during CJL [229].

4.3.5 Effect of infection timing on immune response: Beyond
CT0 and CT12

Previous studies have shown, in the absence of CJL, increased lethality towards the end
of the resting phase, approximately 2 h before the onset of activity [219, 220]. We tested
our baseline (no CJL) model predictions for different time points of infection, and indeed

58



Figure 4.8: Sex-specific response to infection during CJL at CT0 and CT12. Model
simulations of the time course of (a) IL-6, (b) TNF-α, (c) IL-10 and (d) the damage
marker for controls (black) against CJL males (blue) and CJL females (pink) in response
to endotoxin challenge of 3 mg/Kg administered at CT0 and CT12.

our results show higher sensitivity to LPS infection at CT9, followed closely by CT12 (see
Figure 4.9a-d: Control).
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Figure 4.9: Simulated acute inflammation across different circadian times. IL-6 (a),
TNF-α (b), IL-10 (c), Damage marker (d). The endotoxin dose is 3 mg/Kg. Left
column, no CJL; middle column, CJL females; right column, CJL males.

We also conducted simulations under CJL. As shown in Figure 4.9a-d, CJL males and
females are more sensitive to LPS than controls at CT0, and exhibit reduced induction of
cytokines at CT12. This supports our hypothesis that the CJL induced by an 8-h phase
advance of the lung circadian clock would reverse the times of lowest and highest sensitivity
to LPS. Interestingly, CT18 appears to be a time of lesser sensitivity to LPS regardless of
the experience of the host: CJL or normal lighting conditions (Figure 4.9).

In general, the extent of sequelae experienced by male and female rats varied across
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the circadian day. Females had a more disrupted inflammatory response closer to CT12.
Figure 4.9d shows that CJL females were not able to recover the second peak in IL-10
at any of the times tested. This means that CJL females did not produce as much pro-
inflammatory cytokines (e.g. CT9, CT12) as controls. Compared to CJL males, CJL
females produce less cytokines overall during acute inflammation. Males, however, lost
their circadian gating of cytokines closer to CT0 (see Figure 4.9: CT21, CT0) and produced
greater amounts of pro-inflammatory cytokines, making them more susceptible to sepsis
at that time, as indicated by experiments [230, 231].

4.4 Discussion

The circadian clock is responsible for the daily rhythms in immune functions [232]. A
growing body of research supports the role of clock genes in regulating cytokines before
and during infection [233]. In a reciprocal fashion, immune agents can impact the clock
[234]. To investigate the interplay between the immune system and the circadian clock, we
developed a mathematical model incorporating the bidirectional coupling between the lung
circadian clock and the acute inflammatory response. We adapted this model to study the
sexual-dimorphic effects of shift work (also known as CJL) on both the clock mechanism and
inflammation. It has been recognized that shift work has a negative impact on health [235]
and a better understanding of the mechanisms by which disruption of circadian rhythms
affects immunity, and how that effect differs between males and females, may help the
development of chronotherapies for treating shift work-related disorders such as shift work
sleep disorder (SWSD) and its related health-risks.

Given that sensitivity to LPS is highest at CT12 in rodents [57, 195], we showed circa-
dian disruption induced by an 8-h phase advance reduces cytokine production at this time
while exacerbating the response at CT0. Remarkably, our models predict a second peak in
the production of the anti-inflammatory cytokine IL-10 when the immune system is poised
for attack (e.g. CT12). At times when the immune system is undergoing regeneration
and repair (e.g. CT18-CT6) [57], the model predicts a single peak in IL-10 because the
inflammatory response is weaker. The recurrence of this pattern at different doses of LPS
implies the existence of qualitative differences at CT0 compared to CT12.

Overall, our results show that the extent of sequelae experienced by male and female
rats depends on the time of infection. Females suffered more severe sequelae than males
when infected during the late rest or early active periods. Specifically, IL-6 and TNF-α
production at CT12 was greatly lowered in females. This response is not potent enough
to maintain long term control of the infection. Female rats produce less cytokines overall
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during acute inflammation when compared to males. Nonetheless, males also suffer from
circadian-induced immune disruption. Their higher levels of IL-6 and TNFα and damage
could increase their susceptibility to sepsis.

The modulation of circadian activity by cytokines has been reported over the last years.
For instance, TNFα-incubation has been shown to suppress Per gene expression in vitro
and in vivo in mice [201] as well as Cry1 [236]. Some recent work by Yoshida et al.
[237] and Ertosun et al. [238] reveals that TNFα modulates the transcription of Bmal1
through the up-regulation of Rorα. The present model does not include the direct links
from cytokines to clock genes and proteins, but those links can be incorporated into future
extensions of the model. It should be noted that different lengths of phase advances and
phase delays in expression of clock genes could lead to different immune responses in males
and females. Our current model focuses on 8h advance of the circadian phase, but if more
data is available in the future, it could lead to an extension of this investigation to different
lengths of phase shifts. Testing different shifts will help determine 1) if specific changes
are better than others, 2) if the male/female difference is as crucial as the polymorphisms
that alter circadian timing in specific individuals. These questions will be considered in
future extensions of this model. The development of mathematical models that investigate
the role of circadian rhythms in immunity and vice versa help our understanding of the
dynamics involved in the interplay between these two systems. Extending the model to
investigate the circadian control of other organ systems such as the liver [239] and kidney
[240] would also be worthwhile.

In conclusion, our results suggest that circadian disruption due to shift work is primarily
mediated by the circadian disruption of REV-ERB and CRY. REV-ERB in particular
acts as an equilibrist by negatively affecting the expression of pro-inflammatory cytokine
IL-6 and anti-inflammatory cytokine IL-10. We also showed the importance of sexual
dimorphism in the magnitude of the inflammatory response during CJL. A functional and
rhythmic clock confers immunoprotection and improves organismal fitness [241]. Thus,
it is important to understand the molecular mechanisms that link the clock to immune
functions, particularly during unrest caused by behavioral changes such as shift work.
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Chapter 5

Can the clocks tick together despite
the noise? Stochastic simulations and
analysis

The content of this chapter is based on the paper: S. M. Abo, J. A. Carrillo, and A. T. Layton, “Can
the clocks tick together despite the noise? stochastic simulations and analysis,” SIAM J Appl Dyn Syst,
vol. 22, no. 2, pp. 850–877, 2023. URL: https://doi.org/10.1137/22M147788X
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Abstract

The suprachiasmatic nucleus (SCN), also known as the circadian master clock, consists of
a large population of oscillator neurons. Together, these neurons produce a coherent signal
that drives the body’s circadian rhythms. What properties of the cell-to-cell communi-
cation allow the synchronization of these neurons, despite a wide range of environmental
challenges such as fluctuations in photoperiods? To answer that question, we present a
mean-field description of globally coupled neurons modeled as Goodwin oscillators with
standard Gaussian noise. Provided that the initial conditions of all neurons are indepen-
dent and identically distributed, any finite number of neurons becomes independent and
has the same probability distribution in the mean-field limit, a phenomenon called propa-
gation of chaos. This probability distribution is a solution to a Vlasov-Fokker-Planck type
equation, which can be obtained from the stochastic particle model. We study, using the
macroscopic description, how the interaction between external noise and intercellular cou-
pling affects the dynamics of the collective rhythm, and we provide a numerical description
of the bifurcations resulting from the noise-induced transitions. Our numerical simulations
show a noise-induced rhythm generation at low noise intensities, while the SCN clock is
arrhythmic in the high noise setting. Notably, coupling induces resonance-like behavior at
low noise intensities, and varying coupling strength can cause period locking and variance
dissipation even in the presence of noise.

5.1 Introduction

The suprachiasmatic nucleus (SCN) in the brain serves as the central clock in mammals
and regulates most circadian rhythms in the body [110, 242]. The SCN is remarkable
– it not only synchronizes the biological rhythms to the external light–dark cycle [243],
but also generates robust rhythmic outputs with an endogenous period of around 24 h in
constant darkness [44, 244].The specific mechanism responsible for this behaviour continues
to be the subject of numerous experimental and theoretical studies. The rhythmic output
emanates from a regulatory circuit with a negative feedback loop. We refer to the reviews
[245, 246] for a description of the architecture of the SCN clock.

Although single neurons produce autonomous oscillations, the emergence of global and
robust oscillations of the SCN activity requires the synchronization of neural cells [247].
Oscillations at the global level arise from the interaction, also called coupling, between SCN
neurons. In this work, we study how a population of SCN neurons manages to synchronize
and remain synchronized despite external perturbations. Our focus is on the effect of
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coupling strength and external noise on synchronization dynamics. Experimental studies
have shown that cell-to-cell coupling in the SCN is carried out in part by neurotransmitters
[35, 246]. Vasoactive intestinal polypeptide (VIP), arginine vasopressin (AVP) and gamma-
aminobutyric acid (GABA) are examples of neurotransmitters which play a role in the
coupling [248]. The SCN is divided into two hemispheres, each of which contains two
groups of neurons: a dorsomedial shell (DM) and a ventrolateral (VL) core. These two
sets of neurons differ by their light sensitivity, the neurotransmitters they produce, hence
their coupling properties. DM cells mainly express AVP, whereas VL neurons express VIP
[5, 249]. Yet, all SCN neurons express the neurotransmitter GABA [250]. In addition to
coupling, SCN function is influenced by stochastic noise, which includes exogenous and
endogenous cellular noise [251]. Exogenous noise results from changes in the environment
[44, 251], such as fluctuations in light signals, and has been shown to play an important
role in the amplitudes of neural oscillators and the entrainment to a new environmental
cycle [43, 252]. The endogenous noise is caused by low molecular counts of the mRNA and
protein species involved [251].

A number of mathematical models of coupled oscillators have been developed to study
the SCN properties such synchrony, the ensemble period and the entrainment ability of
the SCN [35–42]. Most of these models are in the form of coupled ordinary differential
equations, and are therefore deterministic. Some recent modeling and experimental studies,
however, investigate the influence of noise [43–45] on the circadian clock by means of
stochastic differential equations or experimental analysis of stochastic rhythms. All of
these models based on the particle-like description of a set of interacting neurons are
called individual-based models (IBM), and often used in animal swarming [46, 47]. The
topologies often considered are all-to-all coupling between the neurons [35–37] and small
world networks [48, 49]. For a large number of interacting agents, the collective motion in
the system can be studied through macroscopic descriptions based on the evolution of a
density of individuals. These models are known as continuum models, and the scaling limit
is called the mean-field limit [47, 50, 51]. These continuum models are useful in reducing
IBMs into an effective one-body problem: the particle probability density [50].

Naturally, noise at the level of the IBMs which represent the SCN network is essential
since the neuronal activity is not totally deterministic. The randomness should be reflected
in the macroscopic description. As pointed out in [253], stochastic IBMs lead to Fokker-
Planck type equations in the mean-field limit for second order models. The proof of this
stochastic mean-field limit relies on standard hypotheses: global Lipschitz continuity and
linear growth condition of the drift and diffusion coefficients, and the Lipschitz continuity
of the interaction function [93, 94, 254].

In the present article, we consider a stochastic system of interacting SCN neurons in
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a diffusive scaling and study the effects of external noise, as the network size approaches
infinity, on SCN properties: robust oscillation amplitude and period. We also investigate
the effect of noise on bifurcation boundaries. SCN neurons are characterized by small size
and high density [39], and all express GABA [250]. We assume, based on this information,
that intercellular coupling is carried out by chemical signals released by each cell and
that spatial transmission is fast in comparison to the time scale of the oscillations (24h).
We derive the mean-field equation for a system of globally-coupled Goodwin-type neurons
with noise. The Goodwin model is commonly employed for circadian oscillators because
it describes a biological process with a negative feedback loop — one of the key circadian
clock regulation mechanisms [37]. Many studies have considered the SCN as a network
where neurons are globally connected [35, 36, 40, 41, 255], but other network topologies for
coupling oscillators have also been studied: Newman-Watts (NW) small-world networks
[5, 256], regular networks [39, 257], random networks [258] and scale-free networks [5, 258].

To the best of our knowledge, no study has discussed the influence of external noise
on the circadian clock through mean-field equations. We present numerical results on the
relation between amplitude of circadian oscillations and coupling strength. We also discuss
the effect of noise on bifurcation boundaries. The question arises as to whether fluctuations
in the noise level can influence bifurcation boundaries and therefore influence the robustness
of circadian oscillations with respect to external noise. Moreover, synchronization will be
understood to mean the dissipation of the empirical variance. This approach does not rely
on the stability properties of individual neurons nor on the existence of limiting oscillatory
behaviors [259].

The work is organized as follows: in Section 5.2, the mean-field model is introduced
to describe a network of coupled SCN neurons with noise. Simulation results about the
dependence of the rhythms on the coupling strength and noise intensity are discussed
in Section 5.3. Then, we assess the accuracy of our numerical scheme in Section 5.4.
The conclusions and discussion are presented in Section 5.5. We present the derivation
of the continuum model in Appendix B.2, convergence results for stochastic and mean-
field solutions in Appendix B.1, and a complete description of the numerical scheme in
Appendix B.3.
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5.2 A minimal SCN model and its mean-field descrip-

tion

5.2.1 Model description

In this paper, we propose a mathematical model for describing the collective activity of
SCN neurons. The core architecture in mammals of the circadian clock consists of two
feedback loops that interact to generate biochemical oscillations with a period of nearly
24 h [260]. The primary feedback loop is driven by clock proteins CLOCK and BMAL1.
The proteins dimerize to create the CLOCK-BMAL1 complex which initiates the tran-
scription of the target period (PER) and cryptochrome (CRY) genes. Negative feedback is
achieved through PER-CRY heterodimers that repress their own transcription after delays
due to cellular processes, such as transcription, translation, and nuclear transport [261].
In a secondary loop, CLOCK-BMAL1 proteins activate the transcription of Rev-Erbα.
After being translated into proteins, Rev-Erbα downregulates Bmal1 transcription, thus
completing the loop [255, 260]. The Goodwin model, a negative feedback oscillator with
variables X, Y and Z, can be used to represent these two regulatory loops; see Eqs.(5.1)-
(5.2) and Figure 5.1. In general, the mechanism behind biological oscillators consists of
delayed negative feedback loops. [262].

The Goodwin model has been widely studied theoretically [261, 263, 264] and applied
to various biological systems, such as circadian clocks [35–37, 243] or enzymatic regulation
[265]. The temporal evolution of a single Goodwin-type neuron is governed by the following
equations:

Ẋ = f(Z)− k2X, Ẏ = k3X − k4Y, Ż = k5Y − k6Z, (5.1)

where

f(Z) = k1
Kn

i

Kn
i + Zn

. (5.2)

In this model, X denotes the mRNA concentration of a certain clock gene, Y is the
matching protein, and Z is a transcriptional inhibitor in the nuclear form or the phos-
phorylated form of the protein. The inhibition term is described by a nonlinear and
hyperbolic function (i.e. Hill function), f(Z). All other terms are linear. The Hill function
is parametrized by a Hill coefficient n characterizing the response steepness, and an inhibi-
tion threshold Ki that describes the concentration of inhibitor that halves the production
rate, i.e., half-maximal repression occurs when Z = Ki. In many organisms, the Hill func-
tion has been employed to characterize transcriptional repression: Neurospora [266, 267],
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Drosophila [124, 266, 268] and mammals [35, 36, 260, 269]. Hill functions are often em-
ployed to describe cooperative binding of repressors to the gene promotor in transcription
[270] or repression based on multisite phosphorylation [264]. The latter is a more realis-
tic mechanism, especially because a large Hill exponent is required for oscillations in the
Goodwin model (n > 8). The recent work of Cao et al. [271], which builds upon [272, 273],
provides some evidence for repression based on multisite phosphorylation in mammals. The
authors show that removal of CLOCK–BMAL1 involves phosphorylation (hyperphospho-
rylation) of CLOCK, which is accomplished by CK1δ when CRY and PER deliver CK1δ
to the CLOCK–BMAL1 complex in the nucleus of cells. A different transcriptional repres-
sion mechanism based on protein sequestration has been proposed to describe the negative
feedback underlying circadian oscillators. See Refs. [274–277] for details. The various rate
constants parametrize transcription (k1, k3), degradation (k2, k4, k6), and nuclear import
(k5). Note that all reaction rates are positive. Concentrations X, Y, Z and Ki have units
nM. Rate constants have units h−1, except for k1 which has units nM h−1. Depending on
parameter values, the model can produce limit cycle oscillations. Following the approach

Figure 5.1: Limit cycle oscillations for the following parameter values: k1 = 1nM· h−1,
k3 = k5 = 1h−1, k2 = k4 = k6 = 0.1h−1, Ki = 1nM, and n = 10 in (5.1). The oscillation
period is about 40h.
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in [263], we reformulate the equations in (5.1) in dimensionless form. Assuming equal
degradation rates (k2 = k4 = k6), we introduce the new variables:

x =
k3k5
k22Ki

X, y =
k5
k2Ki

Y, z =
Z

Ki

, t =
k2T

τ
,

with τ chosen to make the intrinsic period of the oscillator 23.5. We obtain,

dx

dt
=

α

1 + zn
− x, dy

dt
= x− y, dz

dt
= y − z, (5.3)

where

α ≡ k1k3k5
k32Ki

(5.4)

is the only parameter for a given n. Figure 5.2 represents the bifurcation and stability
diagrams for system (5.3). At the critical value αH , the system transitions from a stable
steady state to an unstable steady state (via a Hopf bifurcation), and a periodic solution
arises (Figure 5.2a). The steady state is stable if α < αH and unstable otherwise. To
obtain limit-cycle oscillations, the Hill coefficient must be larger than 8 (Figure 5.2b).

We now consider a population of N identical neurons. Let xi(t), yi(t), zi(t) ∈ R denote
the concentration of mRNA, protein and inhibitor protein of neuron i at time t, respectively.
To produce a functional SCN network, there must be reciprocal signalling between neurons.
We examine our network under all-to-all coupling conditions. Each neuron in the group
adjusts its production of mRNA (x) by averaging with all the others. We obtain,

dxi

dt
= α

1+zni
− xi +K(x̄− xi)

dyi
dt

= xi − yi
dzi
dt

= yi − zi
(5.5)

Here, and throughout this paper, the coupling parameter K is assumed to be the same
for all oscillators. x̄(t) is the average value of all individual variables xi(t) at time t:

x̄(t) =
1

N

N∑
i=1

xi(t) (5.6)

5.2.2 Stochastic extension and mean-field limit

Our goal is to analyze a system of the type (5.5) with Gaussian noise. Biological clocks,
although noisy at the microscopic level due to both external noise (e.g., fluctuations in
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(a) (b)

Figure 5.2: (a) Bifurcation diagram of the stable periodic solutions near the Hopf
bifurcation point (αH = 1.633) when n = 20. At αH , the system’s stability switches from
stable (solid black line) to unstable (dashed black line) and a periodic solution arises.
The bifurcation is supercritical (solid blue curves). (b) Two-parameter bifurcation
diagram in terms of α and n. Hill exponent n > 8 is required for oscillations. If n < 8,
the steady state is a stable focus for all values of α.

photoperiods) and inherent stochasticity (e.g., coupling between cells), can be relatively
precise at the macroscopic level [278, 279]. We represent stochasticity via additive white
noise acting through the first variable x. Specifically, we will consider a large network of
N interacting R3-valued processes (xi(t), yi(t), zi(t))t≥0 with 1 ≤ i ≤ N solution of

dxi(t) =

[(
α

1+zi(t)n
− xi(t)

)
+K

N

N∑
j=1

H(xi(t)− xj(t))
]
dt+
√
2DdWi(t)

dyi(t) =
(
xi(t)− yi(t)

)
dt

dzi(t) =
(
yi(t)− zi(t)

)
dt

(5.7)

whereH(ω) := −ω and with independent and identically distributed initial data (x0i , y
0
i , z

0
i ),

1 ≤ i ≤ N . The processes (Wi(t))t≥0 with 1 ≤ i ≤ N are independent Brownian motions in
R and the noise intensity is

√
2D, with D > 0. To our knowledge, the stochastic mean-field

limit description of a system of coupled Goodwin-type neurons has not yet been considered.

All neurons have the same distribution on R3 at time t due to the symmetry of the
initial configuration and of the evolution [50]. For any t > 0 the neurons become correlated
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due to the coupling term K
N

N∑
j=1

H(xj − xi) in the evolution, though they are independent

at t = 0. However, given the order 1/N of the interaction term, it seems reasonable that
any fixed number k of these interacting neurons become less correlated as N gets large.
This property is called propagation of chaos [50]; see Definition 2.3.10 in Chapter 2.

The following assumptions hold for the stochastic model: 1) global Lipschitz continuity
of the drift and diffusion terms; 2) linear growth condition of the drift and diffusion terms;
3) Lipschitz continuity of the coupling function. These assumptions imply that the system
of stochastic differential equations (5.7) is well-posed.

It follows from the general theory of Sznitman [93] (see also the more recent [50, 280])
that our N interacting processes (xi(t), yi(t), zi(t))t≥0 respectively behave as N → ∞ like
the processes (x̃i(t), ỹi(t), z̃i(t))t≥0, solutions of the kinetic McKean-Vlasov type processes
on R3: 

dx̃i(t) = ψ(ρ) dt+
√
2DdWi(t)

dỹi(t) = (x̃i(t)− ỹi(t)) dt
dz̃i(t) = (ỹi(t)− z̃i(t)) dt(
x̃0i , ỹ

0
i , z̃

0
i

)
=
(
x0i , y

0
i , z

0
i

)
, ρ = law

(
x̃i(t), ỹi(t), z̃i(t)

)
ψ
(
ρ
)(
x̃i, ỹi, z̃i, t

)
= α

1+z̃i(t)n
− x̃i(t) +K

(
H ⋆ ρ(x̃i, ỹi, z̃i, t)

)
(5.8)

The Brownian motions (Wi(t))t≥0 in (5.8) are those governing the evolution of (xi(t), yi(t),
zi(t))t≥0. The processes (x̃i(t), ỹi(t), z̃i(t))t≥0 with i ≥ 1 are independent since the initial
conditions and governing Brownian motions are independent. Notice that they are iden-
tically distributed and, by the Itô formula (see Definition 2.3.5), their common law ρ at
time t should evolve according to the kinetic McKean-Vlasov equation

∂ρ

∂t
= D∂2xρ− ∂x

[
ξ(ρ)ρ

]
− ∂y

[
(x− y)ρ

]
− ∂z

[
(y − z)ρ

]
(5.9)

where
ξ
(
ρ
)(
x, y, z, t

)
=

α

1 + zn
− x+K

(
H ⋆ ρ

)
(5.10)

with

H ⋆ ρ(x, y, z, t) =

∫
R3

H(x− w)ρ(w, y, z, t) dw dy dz . (5.11)

Since (5.8) models the evolution of concentrations (x̃i(t), ỹi(t), z̃i(t))t≥0 we constrained
the solutions of the network when performing numerical simulations to ensure that they
remained in a smooth positive domain in R3

+. In particular, we used the compact support
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[0, 2] × [0, 2] × [0, 2]. The boundaries of the domain are instantaneously reflecting in an
oblique direction. See [281, 282] and the references therein for a detailed discussion of Euler
schemes for reflected stochastic differential equations. In this case, the general theory of
Snitzman [93, 283, 284] still applies, but we recover (5.9) with no-flux boundary conditions.

5.3 Numerical results

We focus on the dynamic evolution of solutions in the mean field scaling of the SCN
network with noise. Our model (5.9) is a nonlocal nonlinear transport equation with no-flux
boundary conditions. Such characteristics of the mean-field equation make it difficult to
conduct a theoretical study using center manifold or bifurcation theory [285, 286]. Instead,
we investigate the nature of the bifurcations numerically and compare the solution to the
mean-field equation with that of the finite SCN network. We consider two main parameters
in our analysis, namely the strength of the coupling K and the noise level D. In all our
simulations, we refer to the marginal probability densities for x, y and z as ρ1, ρ2, and ρ3,
respectively.

A noise-free network analysis is outside the scope of this article, but we refer the reader
to [263, 277] for details on the stability of the noise-free system and associated bifurcation
diagrams. In the case of the noise-free network with identical Goodwin cells (5.5), the
linear stability of steady states is tractable and bifurcation diagrams can be determined
by solving for the steady states of the amplitude equations [287]. Moreover, for oscillators
with weak coupling the phase-locked states could be studied using weakly coupled oscillator
theory, where the network can be reduced to its phase model description [288–290]. The
stability of the synchronous state for strong coupling can be studied using the master
stability function, which allows to calculate the stability as determined by a particular
choice of stability measure, like Lyapunov or Floquet exponents [291, 292].

5.3.1 Coupling strength and synchronization

The SCN coordinates physiological cycles throughout the body with incredible precision
[293]. Nevertheless, local oscillations at the level of individual neurons can be substantially
different from global network-wide oscillations [293, 294]. In fact, defining characteristics
of circadian rhythms such as period, large amplitude, accuracy and synchrony arise due to
coupling [294–296]. In this section, we investigate the effect of coupling in the overall dy-
namics of the SCN. We perform a numerical bifurcation analysis by varying the parameter
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K, which quantifies the strength of the chemical signal that is transmitted to oscillator
cells. A value of K < 1 signifies a decay of the chemical signal before it reaches the target
cell, while K = 1 represents the perfect transduction of the chemical signal to the target
cell. In particular, K = 0 implies an uncoupled network where oscillations are localized in
individual neuronal cells. Following the approach done in [285, 297], a stationary solution
of (5.9) characterises asynchronous activity, a state in which neurons exhibit out-of-phase
oscillations. Synchronized activity refers to a state where the mean-field is periodic in time.

In Figure 5.3 we show a bifurcation diagram of the spatial averages in x, y, and z
as a function of the coupling strength K. E[x], E[y] and E[z] are calculated from the
solution to the mean-field equation (5.9). We call E[·] the average over the values of
a given variable across the space domain. We assume a low level of noise with D =
0.01. Figure 5.3a shows the transition from a stable regime without oscillations to a
regime of sustained oscillations, which correspond to the progression of solutions toward a
periodic orbit [298]. For values of K less than 0.3, the mean-field solution shows damped
oscillations that eventually result in an invariant distribution. This indicates that the
network of SCN neurons is out of sync. However, past the critical value KH ≈ 0.3,
synchronized activity emerges within the network as shown by a periodic solution to (5.9).
Figures 5.3a and 5.3b suggest the existence of a bifurcation of the asynchronous state.
At this bifurcation emerges a limit cycle corresponding to a stable and robust sinusoidal
oscillation. Mathematically, the expansion of amplitude as the periodic orbit moves away
from the bifurcation boundary (Figure 5.3a) and the relatively constant period of the
oscillations (Figure 5.3b) are characteristic of a supercritical Hopf bifurcation. Moreover,
the amplitude grows as the coupling strength increases, and this phenomena is especially
prominent near the bifurcation boundary (Figure 5.3a). Previous studies have shown that
coupling can induce amplitude expansion near the Hopf bifurcation [243, 294, 299]. This
so-called “resonance” may be enhanced by synchronizing factors, here represented by the
coupling strength K.

Examining the temporal evolution of the empirical variance offers a complementary
perspective on the role of coupling. Synchronization can be understood as the dissipation
of the empirical variance for the spatial averages of x, y and z computed from the solution
of (5.9) as time goes by. In Figure 5.4 and Figure 5.5 we show two extreme scenarios in
this regard: absence of coupling where K = 0 and perfect coupling with K = 1. Figure 5.4
gives the time evolution of E[x]. The solution to the mean-field equation approaches a
steady state when K = 0 as shown by damped oscillations in E[x], but looses its stability
to rapidly settle into a periodic orbit when K = 1. The other variables y and z, which
are not shown here, are qualitatively similar with x. It should be noted that regardless of
initial conditions, the system follows the same trajectories (data not presented). For each
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(a) (b)

Figure 5.3: (a) Bifurcation diagram associated with the coupling strength K in the
mean-field model. E[x], E[y] and E[z] refer to spatial averages. Numerical simulations
are run until a steady state is reached or until the oscillation amplitude becomes stable.
For the latter, the graph shows the peaks and troughs of oscillations as a function of K.
(b) Period of oscillations of E[z]. Noise level is constant at D = 0.01 in both (a) and (b).
A Hopf bifurcation appears around the critical value KH ≈ 0.3.

scenario, the time evolution of the variance for all three variables is recorded in Figure 5.5.
Assuming a low level of noise (D = 0.01), we observe when K = 0 an asynchronous state
represented by an empirical variance of constant order in time and which is greater than the
input noise level. However, for perfect coupling K = 1, the empirical variance dissipates to
a minimum equal to the magnitude of the external noise, and the global output is rhythmic
(see Figure 5.4B and Figure 5.5B). In the ideal case of perfect coupling, the variance in y
and z decreases to about zero, whereas the variance in x decreases to about 0.01 (the level
of input noise D).

Our numerical experiment suggests the following about the qualitative behavior of the
coupled SCN network in terms of D: for D > 0 the neuron trajectories are enclosed in a
band whose width rises with D, whereas a noise-free network will ultimately reach perfect
synchronisation where the empirical variance decreases to zero. The direct consequence of
these observations is that the threshold KH is itself a function of D. To see this, consider
Figure 5.6 which shows the joint probability distribution between x and z at t = 600h,
ρ(t = 600, x, z), for different values of K. We choose a long integration time in order to
not be influenced by the initial conditions. As the coupling parameter increases, variance
decreases and the distribution ρ(t = 600, x, z) tends to concentrate on a delta function in
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(a) (b)

Figure 5.4: Evolution of the average in x for two limiting scenarios: (a) no coupling with
K = 0 and (b) perfect coupling with K = 1. E[x] is computed from the solution to the
mean-field equation (5.9).

(a)

(b)

Figure 5.5: Time evolution of the empirical variance in two limiting scenarios: (a) no
coupling with K = 0 and (b) perfect coupling with K = 1. D = 0.01 in all simulations.
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the z dimension and to be distributed only along the spatial dimension x due to noise.
Overall, studying the effects of coupling on the solution to the mean-field limit gave the
following numerical predictions: increasing coupling strength can lead to period locking,
variance dissipation, and larger amplitudes due to resonance effects.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Joint probability distribution between x and z at t = 600. (A) K=0.1, (B)
K=0.2, (C) K=0.4, (D) K=0.6, (E) K=0.8 and (F) K=1. Noise level D = 0.01.

5.3.2 Effect of noise on bifurcation boundaries

Using our stochastic mean-field model, we examine how the robustness of the SCN clock is
affected by noise. This refers to how the noise intensity in the system affects the distance
to a bifurcation point. We proceed by varying the parameter α in (5.9) for different noise
levels, and we look for synchronized activity within the network. Robustness is used here
to denote the persistence of a certain type of dynamic behavior over a significant range of
parameter values. The term “robustness” refers to the persistence of a specific dynamic
behavior over a wide range of parameter values.
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Consider D = 0.01 as an example of low noise setting. As shown in Figure 5.7, there is
in the low noise setting a critical value αH at which the system’s stability appears to change
from a stable stationary distribution to an oscillatory solution. This result shows that the
development and maintenance of a global rhythmic output requires the synchronization of
single-cell rhythms [247]. The existence of such invariant distributions characterizes a state
of incoherence within the SCN network (see Figure 5.7a). Noting that α = k1k3k5/k

3
2Ki,

Figure 5.7 suggests that the circadian system is more favorable to lower degradation rates
in the presence of noise.

(a) steady state regime (b) oscillatory regime

Figure 5.7: Evolution of the marginal density of x in the presence of noise. (a) steady
state regime with α = 1.5, (b) oscillatory regime with α = 2. Other parameters: n = 20,
K = 0.6, D = 0.01.

To formally investigate the bifurcation in Figure 5.7, we use the same parameters and
initial conditions as in Figure 5.7, with the exception of the parameter α which now varies
from 1.5 to 3. Results are displayed in Figure 5.8a. When α < 1.73, the network is not
synchronised and evolves towards a steady state. Above the critical value αH ≈ 1.73, the
network is synchronised and the solution to the mean-field equation (5.9) is periodic in
time. As characteristic of a local Hopf bifurcation, the cycle that is born is nearly elliptical
with a small amplitude; see Figure 5.8b.

We investigate further how increasing the level of noise affects bifurcation boundaries.
Figure 5.9 shows a high-low plot for the peaks and troughs of oscillations of the means in
x, y and z as a function of the parameter α for different noise levels. Since it is difficult
to numerically estimate exact bifurcation values, we use dotted lines to represent intervals
containing exact bifurcation points, which we call αH . We estimate αH ∈ (1.72, 1.73],
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(a) (b)

Figure 5.8: (a) Bifurcation diagram associated with the parameter α. Details of the
diagram are the same as those of Figure 5.3. (b) Example of a periodic orbit when α = 2.
Other parameters: n = 20, K = 0.6, D = 0.01.

(1.8, 1.9] or (2.0, 2.1] when the noise intensity is low, moderate or high, respectively. As
the noise level increases, the value of αH necessary to obtain sustained circadian oscillations
also increases. From Figure 5.9d, the amplitude of these oscillations gradually decreases
as noise intensity increases, and the oscillations disappear through a supercritical Hopf
bifurcation, thus resulting in trivial behavior with a single fixed point.

These findings indicate that higher noise levels render synchronisation more difficult to
achieve. That is because a new and larger value αH becomes the sine qua non condition
for oscillations. Given the biological meaning of α in (5.3), its value could increase to
recover oscillations if: 1) activation rate k1, k3, or k5 increases for x, y or z, respectively; 2)
degradation rates decrease for all three clock components (k2, k4, k6 where k2 = k4 = k6);
3) inhibition of x by z is attenuated (i.e., lower Ki).

We argue that noise can affect synchrony-dependent rhythmicity. The noise can affect
ensemble properties of oscillators including their coupling and their period of oscillations.
In Figure 5.10, we present solutions to (5.9) which are qualitatively different from the solu-
tions shown in Figure 5.6: as the intensity of the noise increases, the variance increases and
the distribution tends to widen and shorten in all directions, indicating that a wider spread
of values is possible and that external noise impairs the synchrony of the system. Although
we showed that uniformly coupled networks can robustly synchronize (Figure 5.6), it can
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(a) (b)

(c) (d)

Figure 5.9: Bifurcation diagrams associated with the parameter α for the spatial averages
(a) E[x], (b) E[y] and (c) E[z]. (d) Stable limit cycles in the E[x]–E[z] plane when
α = 3. We model low noise (D = 0.01), medium noise(D = 0.025) and high noise
(D = 0.05). Dotted lines represent intervals containing exact bifurcation values αH .
Details of the figures are the same as those of Figure 5.3.

also be concluded that noise weakens synchronization degree and affects the robustness of
the system. Figure 5.11 illustrates that the SCN is able to withstand higher noise levels
with increasing coupling strength. However, noise eventually abrogate the oscillation in
the SCN (Figure 5.11b). For instance, when K = 0.6, a noise intensity superior to 0.08
is sufficient to desynchronize the neurons as indicated by the null period in Figure 5.11a.
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When D < 0.08, the system remains in synchrony with an ensemble period between 24.5
and 22.

(a) (b) (c)

(d) (e) (f)

Figure 5.10: Joint probability distribution between x and z at t = 600. (a) D = 0.01, (b)
D = 0.02, (c) D = 0.04, (d) D = 0.08, (e) D = 0.12 and (f) D = 0.15. Coupling strength
K = 0.6.

5.4 Convergence studies

In this section, we report numerical results relating to the spatial accuracy of the numerical
method. Our discussion focuses on a mesh convergence study to validate the order of
convergence of the scheme in space. If the solution ρ is sufficiently smooth, then the
spatial discretization is expected to be second-order accurate (see Appendix B.3).

In default of an analytical solution to our problem, we instead compute relative errors
using different grid sizes. More precisely, we compute deviations from the estimated solu-
tion on a 3D fine mesh made of 3843 cells. Figure 5.12 illustrates the results in L1 and L∞
norms. The time step ∆t is determined by the CFL condition derived in equation (B.12)
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(a) (b)

Figure 5.11: (a) Bifurcation diagram associated with the noise intensity (D). A Hopf
bifurcation appears around the critical value DH ≈ 0.8 for K fixed at 0.6. Details of the
figure are the same as those of Figure 5.3. (b) Period of oscillations of E[z] as a function
of noise for different coupling strengths.

and the spatial step size is uniform in all directions (∆x = ∆y = ∆z). We used zero-flux
boundary conditions. The initial probability density function ρ(x, y, z, 0) is Gaussian,

ρ(x, y, z, 0) =
1

(2π)3/2σx0σy0σz0
e−(x−µx0 )

2/(2σ2
x0

)−(y−µy0 )
2/(2σ2

y0
)−(z−µz0 )

2/(2σ2
z0

). (5.12)

It appears from Figure 5.12 that the numerical scheme is at least second-order accurate,
as anticipated. Figure 5.13 shows a qualitative similarity between solutions to the network
equations and those obtained by solving the mean-field equation. In particular, we expect
that the network and mean-field equation solutions will condense their mass around the
periodic orbit [300]. This is shown in Figure 5.13a where the dynamics evolve to sustained
oscillations. Table 5.1 summarizes all of the parameters involved in the aforementioned
simulations.

5.5 Discussion

To summarize, we have conducted an analysis of the Goodwin model using the mean-
field limit approach from kinetic theory. We developed a minimal yet effective macroscopic
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Figure 5.12: Convergence of error for the solution to the mean-field equation (5.9) in L1

and L∞ norms. Grid cells are uniform in size across all three variables,
h = ∆x = ∆y = ∆z. The final time is tfinal = 1.

Initial conditions Domain Goodwin neuron
µx0 = 1 xmin = 0 α = 1.8
µy0 = 0.9 xmax = 2 n = 20
µz0 = 0.9 ymin = 0 K = 0.5
σ2
x0

= 0.05 ymax = 2 D = 0.005
σ2
y0

= 0.02 zmin = 0 τ = 6.4885
σz0 = 0.01 zmax = 2

∆x = 0.002
∆y = 0.002
∆z = 0.002

Table 5.1: Model parameters. These parameters apply to the validation results
presented in Section 5.4.

model of the SCN circuit level dynamics and investigated the impact of noise on the emerg-
ing properties of the SCN — rhythmicity (i.e., synchronisation), amplitude expansion, and
ensemble period. We applied a positivity-preserving finite volume scheme developed in
[301] for our numerical simulations.

We presented simulation results indicating that coupling is important in maintaining
the synchronization and amplitude expansion characteristics of the SCN, at least in the
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(a) (b)

Figure 5.13: (a) Time evolution of the averages in x, y, and z obtained by simulating the
network equations (solid curves) and the mean-field equation (dashed curves). We ran
100 Monte Carlo simulations of the network with network size N=100 up to time tfinal =
400. (b) Comparison between marginal probability densities ρ1(t, x), ρ2(t, y), ρ3(t, z)
derived from the network and mean-field equation solutions. We conducted 10,000 Monte
Carlo simulations with a network size N=10,000 up to time tfinal = 1.

mean-field limit. Notably, increasing the coupling strength leads to phase transitions. We
provided numerical evidences for the existence of Hopf bifurcations, with respect to the
coupling parameter, which is synonymous with synchronized activity (Figures 5.3 and 5.6).
On the one hand, low coupling strengths result in a decrease of the amplitude of the SCN
rhythm. In particular, if the coupling strength is less than a certain threshold (KH),
the oscillation amplitude becomes null, meaning that the circadian rhythm is lost due to
neuronal oscillators being out of phase with each other. Our findings, on the other hand,
show that significant coupling causes resonance effects. This leads to amplitude expansion
and the rapid establishment of a coherent evolution implying the dissipation of variance in
the system.

Moreover, we provided a numerical description of the bifurcations that govern the in-
stabilities caused by noise-induced transitions, i.e., Hopf bifurcations. Our approach allows
us to identify where the system of coupled SCN neurons exhibit a stable stationary state
(incoherence within the SCN network) or limit cycle oscillations (synchronized activity).
We suggest that noise weakens synchrony-dependent rhythmicity and affects the robust-
ness of the system (Figure 5.10). Robustness to external noise decreases in proportion
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to the noise level: bifurcation boundaries are pushed forward as the noise level increases,
making it more difficult to reach the oscillatory regime (Figure 5.9). However, in a bio-
logical context, rhythmicity could be recovered with higher activation rates (k1, k3), lower
degradation rates (k2, k4, k6) or slower inhibition of the mRNA by its inhibitor protein (Ki)
in equation (5.4).

The repression mechanism used in modelling the negative feedback loop in circadian
clocks can affect significantly properties of models, including robustness to perturbations.
We use a Hill-type repression function to explain how transcriptional activity decreases
as repressor concentration rises (see equation 5.2). Recently, a new mechanism of tran-
scriptional repression based on protein sequestration has been proposed: repressors tightly
bind activators to form an inactive 1:1 stoichiometric complex (see [274] for details). In
Hill-type (HT) and protein-sequestration (PS) models, Kim and Forger investigated the
qualitative differences based on the repression mechanisms [274, 276]. According to their
analyses, the HT and PS models have different prerequisites for generating rhythms: a
large Hill exponent and a 1:1 molar ratio between repressor and activator, respectively.
Kim and colleagues [275] also showed that the coupled periods are near the mean period
of the SCN when transcriptional repression occurs via protein sequestration, whereas the
collective period is farther from the mean if modeled with Hill-type regulation. Apart from
the repression mechanism, the models mentioned above are IBMs and differ from ours
in that the coupling function is different, cells are heterogeneous in terms of period, and
noise is not taken into account. In our mean-field model that uses Hill-type repression, we
observe that the collective period is close to the intrinsic period of the cells in the presence
of low to moderate noise. This could be explained by our use of a homogeneous network
(see Figure 5.3b and Figure 5.11b). Moreover, according to Chen et al. [277], there exist
coupling strengths c in both HT and PS models such that the collective frequency equals
the average frequency of individual cells. For the HT model, such strength c is larger.

Despite these differences between HT and PS models, many intercellular coupling prop-
erties are shared between the two and some general trends are similar. For instance, the
logarithmic sensitivity of the repression function should be greater than 8 at steady state
for both models to generate oscillations [276], and increasing coupling strength causes am-
plitude expansion in both models [276, 277]. Our results can be extended when the protein
sequestration function is used instead of the Hill function up to a constant in the bifurca-
tion values for homogeneous networks of cells. Further study is needed when heterogeneous
oscillators with different periods are coupled.

In addition to nonlinearity in the repression function, oscillations require sufficiently
long delays in feedback loops. This can be achieved by adding intermediate steps in the
ODE formulation or by introducing explicit delays representing the durations of post-
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translational regulations. Our numerical scheme, first developed in [301], applies when
time-independent delays are modeled with noise, white or colored additive and multiplica-
tive. However, numerical challenges may arise from adding explicit time delays. First, a
delay may further constrain the stability condition on the time step so that the solver’s
time step is smaller than its value. Second, delays require storing a history of the function,
which can be memory-prohibitive. Not the least is the noise effect, as noise causes the
stochastic solution to disperse around the deterministic solution and the empirical vari-
ance stabilizes but for large time, with a limit value which increases as spatial regularity
decreases and noise intensity increases. Importantly, the major numerical challenges would
be due neither to noise nor to delay, but rather to the nature of the equation whose type de-
generates at certain points of the domain of definition or at the boundary of this domain.
The proposed scheme is able to cope with non-smooth stationary states, different time
scales including metastability, as well as concentrations and self-similar behavior induced
by singular nonlocal kernels [301].

Lastly, our model has limitations, which should be acknowledged. It has been shown
that the SCN is a heterogeneous network, consisting of two groups of neurons that are
structurally and functionally different. Namely, the ventralateral part (VL) which receives
light information and transmits it to the dorsalmedial part (DM). This second group is
only indirectly sensitive to light [302]. Within these regions different neurotransmitters
are used for communication between the cells [43]. Network topology, in addition to net-
work heterogeneity, has a substantial influence on the SCN’s collective behaviour. In
this article, we tested an all-to-all linear coupling between neurons, which may not be a
realistic architecture for the SCN network. Extensions of our work could include a dual-
network representation of the VL-DM architecture, as well as an emphasis on nonlinear
cross-regional coupling. Future research could also look at the molecular details of the
repression pathway, which could include both phosphorylation and protein sequestration.
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Chapter 6

Sexual dimorphism in substrate
metabolism during exercise

The content of this chapter is based on the paper: S. M. Abo, E. Casella, and A. T. Layton, “Sexual
dimorphism in substrate metabolism during exercise,” Bull Math Biol, vol. 86, no. 2, p. 17, 2024. URL:
https://doi.org/10.1007/s11538-023-01242-4. Reproduced with permission from Springer Nature.
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Abstract

During aerobic exercise, women oxidize significantly more lipids and less carbohydrates
than men. This sexual dimorphism in substrate metabolism has been attributed, in part,
to the observed differences in epinephrine and glucagon levels between men and women
during exercise. To identify the underpinning candidate physiological mechanisms for these
sex differences, we developed a sex-specific multi-scale mathematical model that relates
cellular metabolism in the organs to whole-body responses during exercise. We conducted
simulations to test the hypothesis that sex differences in the exercise-induced changes to
epinephrine and glucagon would result in the sexual dimorphism of hepatic metabolic
flux rates via the glucagon-to-insulin ratio (GIR). Indeed, model simulations indicate that
the shift towards lipid metabolism in the female model is primarily driven by the liver.
The female model liver exhibits resistance to GIR-mediated glycogenolysis, which helps
maintain hepatic glycogen levels. This decreases arterial glucose levels and promotes the
oxidation of free fatty acids. Furthermore, in the female model, skeletal muscle relies on
plasma free fatty acids as the primary fuel source, rather than intramyocellular lipids,
whereas the opposite holds true for the male model.

6.1 Introduction

Men and women exhibit physiological differences beyond their reproductive system and
reproductive organs. Indeed, significant sexual dimorphism has been observed in anatomy,
cardiovascular activity, and metabolic functions [29, 303]. Despite this, many studies focus
on the male sex and their results are then generalized to the entire population. The choice
of males as the dominant research subject is often justified by the idea that females expe-
rience fluctuations in sex hormones throughout the menstrual cycle, potentially leading to
variability in results [304]. For the sake of time and costs, it is often cheaper for researchers
to study only the male sex. However, thousands of genes exhibit differences in expression
between the sexes in all organs. These differences are most prevalent in the liver, muscle,
and adipose tissue [305–307]. In fact, the liver has been regarded as “the best example of a
sexually dimorphic non-reproductive organ” [308]. Sex differences in liver metabolism can
be attributed to gene regulation by sex hormones. By binding to estrogen receptors (ERs)
and estrogen response elements (EREs), estrogens exercise their effects on the liver through
estrogen signalling [34]. For instance, cellular 17β-estradiol (E2) signaling is mediated pri-
marily via nuclear ERs, ER-α, and ER-β [309]. In carbohydrate metabolism, estrogens are
known to reduce glucose production in the liver via gluconeogenesis and glycogenolysis,
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and lower blood glucose levels [309–311]. In fat metabolism, endogenous estrogens regulate
many aspects of hepatic free fatty acid (FFA), triglyceride, and cholesterol metabolism,
but the physiologic control of these effects is distributed across different tissues, primar-
ily adipose and liver. Lipids are primarily transported between tissues as free fatty acids
released by adipose tissue or as lipoprotein carriers produced primarily by the liver and
gut [312]. Gaps in sex-specific research threaten the validity and applicability of findings,
since biological differences between men and women can alter how the body responds to
medication or metabolic disturbances. One such disturbance is exercise. Specifically, in
the context of endurance exercise, sex differences in performance are known to exist when
metrics are expressed relative to body mass and composition. Females have a metabolic
advantage over males when training at the same submaximal intensity [313]. This is due
to lower muscle fatigability and greater activation of fatigue resistant muscle fibers [314].
There are also sex differences in the relative utilization of carbohydrates and lipids as fuel
sources at rest or in response to exercise [14, 315, 316]. Notably, at the whole-body level,
females have a lower respiratory exchange ratio (RER) during endurance exercise than
males, indicating a greater contribution of lipids to oxidative metabolism during exercise
[8, 14, 317–320]. In addition, studies have shown that females rely less on liver and muscle
glycogen stores during endurance exercise [319, 321, 322]. It is not yet clear whether the
mechanisms behind this difference involve the fact that women have a higher overall body
fat percentage, making lipids an available resource to meet the fuel demands of exercise, or
the fact that women have a greater deposition of intramyocellular lipids (IMCL) in contact
with mitochondria, possibly leading to a greater ability to utilize IMCL [321]. Researchers
have also reported sex differences epinephrine and glucagon levels during exercise [14], and
some studies suggest that such hormones may play a role in the sexual dimorphism of
carbohydrate and lipid metabolism [8, 323, 324].

In a well-controlled study [325], females had higher adipose tissue triglyceride lipolysis
and plasma FFA availability than males who were matched for percent body fat and aerobic
fitness. However, due to a reciprocal decrease in the oxidation rate of non-plasma-derived
FFA, both sexes showed similar total fat oxidation. Such findings draw our attention to
some inconsistencies in the literature on this subject. Indeed, some studies have found
no statistically significant differences in substrate utilization between sexes during exercise
[16, 326, 327]. In Ref. [16], a sample of 7 men is compared to 7 eumenorrheic women (mid-
follicular phase) during a submaximal cycling test. Participants were controlled in terms
of nutrient composition as well as energy content for eight days preceding the experiment.
The results indicated that no sex difference existed in the relative contribution from carbo-
hydrate and lipids to the oxidative metabolism across the leg during submaximal exercise
at the same relative workload. We should note, however, that all subjects in this study were
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endurance trained, and the lack of a sex difference may be due to their history of endurance
training, as opposed to sedentary individuals. In Ref. [326], 6 age- and fitness-matched
men and women (follicular phase of their menstrual cycle) were studied. Both groups had
comparable exercise responses in terms of systemic and leg FFA release. This study did
not control for body composition, specifically whole-body fat and lean body mass. The
study in Ref. [327] included 28 people of similar weight and fitness status, 12 women and
16 men, with the goal of determining whether there exist differences in glucoregulatory re-
sponses to exercise. Glucose production, after stepwise multiple regression and covariance
analysis, showed no effect of sex, body weight or free fat mass. Although the study verified
that all participants were non-smokers and not taking any medications, no monitoring of
menstrual cycle phase, except for a negative pregnancy test, was implemented.

It is reasonable to hypothesize that body composition influences the extent of substrate
oxidation during exercise, because a higher basal body fat percentage in females would re-
sult in greater regional lipolysis [320, 328], assuming similar substrate oxidation efficiencies.
Inadequate control of this parameter may be to blame for the controversies surrounding re-
ported differences in lipid oxidation rates. Importantly, hormonal and enzymatics aspects,
in addition to histological factors, contribute to sex differences in performance, fatigability,
and substrate handling and may have confounding effects [329]. This becomes particularly
important when studying fuel sources and utilization, given differences in body compo-
sition, endogenous sex hormones, and pathway-preferential signalling of said hormones.
This could explain why contrasting findings regarding the type of substrate used to sustain
submaximal endurance exercise can be found in the available sex-comparative literature.
There are also methodological differences that come into play [330]. Inconsistencies in
results may be attributed to poor control of training and nutritional status, the various
methods used to assess metabolic rates, and the characteristics of populations studied (e.g.,
age, ethnicity, diet, drinking and smoking habits). Furthermore, overlooking menstrual cy-
cle phases and hormonal profiles can result in a highly heterogenous female population.
Not to mention that insufficient sample sizes can have a significant impact on the precision
and accuracy of estimates reported in individual studies. We refer interested readers to a
meta-analysis [329] and reviews [312, 322] for more details.

Computational modelling has played an increasingly important role in medicine. By
simulating biological processes, revealing their underlying mechanisms, and predicting
physiological responses, the incorporation of mathematics in medicine can lead to more
refined methods for disease diagnosis, prevention, and treatment. That said, major bene-
fits can only be achieved if model predictions are valid for both halves of the population,
given the ubiquitous sex differences. Thus, there is an opportunity to harness the power
of mathematical modelling in investigating sexual dimorphism in cellular and whole-body
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metabolism. The human body utilizes carbohydrates and lipids as its primary fuel sources.
For medical conditions related to glucose and lipid metabolism, such as diabetes and obe-
sity, understanding the regulatory mechanisms behind the body’s response to perturbations
in fuel homeostasis can guide exercise and nutritional recommendations. Although exercise
perturbs metabolism on a whole-body level, individual changes occur in cellular signalling
pathways within different organs. Integrating these multi-scale processes allows for the un-
derstanding of how cellular reactions affect whole-body responses [68]. Since experimental
observations of cellular processes on an organ-specific level during exercise are scarce and
difficult to obtain, mathematical modelling can provide supplementation to these studies.

This study aims to develop a sex-specific multi-scale mathematical model that relates
cellular metabolism in the organs to whole-body responses during exercise. We hypoth-
esized that sex differences in the exercise-induced changes to epinephrine and glucagon
would result in the sexual dimorphism of hepatic metabolic flux rates via the glucagon-
to-insulin ratio (GIR = glucagon/insulin). Additionally, we hypothesized that the female
model would predict a relatively larger contribution from lipids vs. carbohydrates to
oxidative metabolism due to the sex-specific alterations in the hormones and liver por-
tion of the model. To investigate these questions, we extended a whole-body metabolism
model described in Ref. [68], which models a young adult man, to incorporate sex-specific
experimental observations and to test hypotheses of mechanisms that seem to explain
experimental observations in the sexual dimorphism of carbohydrate and lipid oxidation
during exercise. We (1) quantified the extent of sex differences in carbohydrate and lipid
metabolism in different organs and tissues; (2) identified a candidate physiological mech-
anism in the liver that drives sex differences in glucose production; and (3) assessed the
subsequent metabolic responses in skeletal muscle and adipose tissue and their role in
potentiating differences in substrate utilization.

6.2 Methods

We describe a multi-scale computational model of energy balance during exercise. Whole-
body responses are influenced by cellular metabolism in organ-level systems connected
via the circulation. The model predicts glucose homeostasis during a moderate-intensity
exercise (150 W power output at 60% of peak oxygen consumption, V̇O2max), separately for
a healthy young adult man and a healthy young adult woman. It comprises seven tissue
compartments: brain, heart, liver, gastrointestinal (GI) tract, skeletal muscle, adipose
tissue, and “other tissues” (Figure 6.1). This last compartment includes kidneys, upper
extremity muscles, and the rest of tissues. Each compartment is connected to the others
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via blood circulation and is described by dynamic mass balance equations for 25 cellular
metabolic reactions involving 22 substrates (see Table 6.1). The basic assumption of the
model regarding the effect of physical activity is that during moderate-intensity exercise,
circulating blood levels of epinephrine directly affect heart and skeletal muscle metabolism,
and indirectly other tissues by affecting the release of pancreatic insulin and glucagon.

Table 6.1: List of substrates and metabolic reactions

Substrates Reactions
1. GLC: Glucose 1. Glycolysis I, ϕGLC→G6P

2. PYR: Pyruvate 2. Glycolysis II, ϕG6P→GAP

3. LAC: Lactate 3. Glycolysis III, ϕGAP→PYR

4. ALA: Alanine 4. Gluconeogenesis I, ϕPYR→GAP

5. GLR: Glycerol 5. Gluconeogenesis II, ϕGAP→G6P

6. FFA: Free fatty acids 6. Gluconeogenesis III, ϕG6P→GLC

7. TG: Triglycerides 7. Glycogenesis, ϕG6P→GLY

8. O2: Oxygen 8. Glycogenolysis, ϕGLY→G6P

9. CO2: Carbon dioxide 9. Pyruvate reduction, ϕPYR→LAC

10. G6P: Glucose-6-phosphate 10. Lactate oxidation, ϕLAC→PYR

11. GLY: Glycogen 11. Glycerol phosphorylation, ϕGLR→GRP

12. GAP: Glyceraldehyde-3-phosphate 12. GAP reduction, ϕGAP→GRP

13. GRP: Glycerol-3-phosphate 13. GRP oxidation, ϕGRP→GAP

14. ACoA: Acetyl coenzyme A 14. Alanine formation, ϕPYR→ALA

15. CoA: Coenzyme A 15. Alanine utilization, ϕALA→PYR

16. NAD+: Nicotinamide adenine dinucleotidea 16. Pyruvate oxidation, ϕPYR→ACoA

17. NADH: Nicotinamide adenine dinucleotideb 17. Fatty acids oxidation, ϕFFA→ACoA

18. ATP: Adenosine triphosphate 18. Fatty acids synthesis, ϕACoA→FFA

19. ADP: Adenosine diphosphate 19. Lipolysis, ϕTG→FFA–GLR

20. Pi: Phosphate 20. Triglycerides synthesis, ϕFFA–GRP→TG

21. PCR: Phosphocreatine 21. TCA cycle, ϕACoA→CO2

22. CR: Creatine 22. Oxidative phosphorylation, ϕO2→H2O

23. Phosphocreatine breakdown, ϕPCR→CR

24. Phosphocreatine synthesis, ϕCR→PCR

25. ATP hydrolysis, ϕATP→ADP

a Oxidized
b Reduced

The goal of this work is to provide mechanistic models with known sex differences
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Figure 6.1: Whole-body system diagram. The systemic circulation connects all
tissues/organs by transporting substrates in arterial oxygenated blood to the
organs/tissues (solid dark blue arrows). Venous blood (solid light blue arrows) leaving
these tissues/organs eliminates by-products and becomes arterial blood to restart
circulation after releasing carbon dioxide and absorbing oxygen in the lungs (gas
exchange). Blood supply to the liver comes from both the hepatic artery and venous
blood from the GI tract. Exercise promotes epinephrine release, which modulates the
secretion of insulin and glucagon and acts as a neuroendocrine signal for the heart,
skeletal muscle, GI tract, and adipose tissue (solid orange arrows). Changes in glucagon
and insulin production thereby influence metabolic fluxes in the liver, GI tract, and
adipose tissue via the glucagon–to-insulin ratio signal (solid green arrows). Finally,
arterial glucose concentration (dashed arrow) signals the pancreas to regulate insulin and
glucagon levels, thus completing the feedback regulatory mechanism. Male and female
sex symbols represent compartments where sex-differences, besides differences in
tissue/organ weights, are implemented.
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to quantify the energy expenditure of organs according to sex. Dynamic mass balance
equations are developed for key metabolites in the biochemical pathways of organs and
tissues. Our approach allows for quantitative analysis of metabolic fluxes after an overnight
fast and following an exercise bout. Key organs/tissues such as the liver, skeletal muscle,
and adipose tissue provide metabolic fuels needed for energy balance and lead adaptive
responses during exercise. The model also represents a modified pancreas-like controller
which models the actions of insulin, glucagon, and the stress hormone epinephrine. Sex
differences are represented mainly in the liver, skeletal muscle, and adipose tissue. Sex-
specific modifications include also the descriptions of epinephrine production, insulin and
glucagon, hepatic blood flow, lipolysis, gluconeogenesis, and glycogenolysis. Appendix C
contains a full description of the modelling approach, parameter values, and experimental
data used. In addition, the present work improves on the published model [68] (i) by
modeling the general circulation as a dynamic rather than instantaneous compartment
because blood volume is sufficiently large that the rate of change in concentrations is
comparable to that of tissues, (ii) and by representing the modulation of the effect of
epinephrine on insulin secretion by glucose levels, allowing glucose to remain the primary
driver of insulin secretion even during exercise. Details are described below.

Subjects’ characteristics and exercise parameters

Female: a lean healthy adult female of childbearing age weighing 58 Kg. We assumed
that the female subject’s peak oxygen consumption (V̇O2max) is 2.7 l/min [8]. The exercise
intensity is set to 60% V̇O2max, which corresponds to moderate-intensity exercise with a
power output of 150W. We assumed that 60% of the subject’s V̇O2max is below the lactate
threshold. The subject is overnight-fasted (8–12h) and has a cardiac output of 5 l/min
and a resting Respiratory Quotient (RQ) of 0.8.

Male: a lean healthy adult male with 70 Kg body weight. We assumed that the male
subject has a peak oxygen consumption (V̇O2max) of 3.4 l/min [7]. The exercise intensity is
set to 60% V̇O2max, which corresponds to moderate-intensity exercise with a power output
of 150W. We assumed that 60% of the subject’s V̇O2max is below the lactate threshold.
The subject is overnight-fasted (8–12h) and has a cardiac output of 5.5 l/min and a resting
Respiratory Quotient (RQ) of 0.8.
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6.2.1 Compartmental modelling

We present a dynamic description of the different compartments based on the net rate of
substrate uptake or release by tissues. The following substrates are transported between
blood and tissue: glucose, pyruvate, lactate, alanine, glycerol, free fatty acids, triglyceride,
oxygen, and carbon dioxide. With the exception of “other tissues”, and under the as-
sumption of a perfectly mixed tissue-capillary compartment, the concentration dynamics
of substrate i in tissue x are described as follows:

Vx
dCx,i

dt
= Px,i − Ux,i +Qx(Ca,i − σx,iCx,i), (6.1)

where Vx is a constant parameter and represents the volume of tissue x, Px,i and Ux,i

are respectively the production and utilization rates of substrate i, Qx is the blood flow to
tissue x, Ca,i is the arterial concentration of substrate i, Cx,i is the respective concentration
of substrate i in tissue x, and σx,i is the partition coefficient of substrate i. These partition
coefficients are fixed and represent the relative distribution of metabolites between blood
and tissues at rest. The first two terms on the right side of Eq (6.1) represent the net
metabolic reaction rate of substrate i in tissue x. The third term, Qx(Ca,i − σx,iCx,i)
represents the net rate of absorption or release of substrate i in tissue x. The net metabolic
rate for substrates that are present only within tissues is

Vx
dCx,i

dt
= Px,i − Ux,i. (6.2)

Production and utilization rates must account for all major metabolic processes, which
can be expressed as

Px,i − Ux,i =
m∑
k=1

γsk→siϕx,sk→si −
n∑

k=1

γsi→skϕx,si→sk , (6.3)

where ϕx,sk→si is the rate of utilization of substrate sk for the formation of substrate si in
tissue x and similarly for ϕx,si→sk . The constants γ(·) are the corresponding stoichiometric
coefficients, m is the number of processes forming substrate i, and n is the number of pro-
cesses consuming substrate i. Figure 6.2 shows a union map of all the metabolic pathways
represented in our models, and Table 6.2 highlights tissue-specific metabolic pathways.

Our model includes a central blood compartment that is connected to all other com-
partments. The rate of change in the concentration of a substrate in the circulation is
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Figure 6.2: Union map of all-organ metabolic pathways. 9 substrates are transported
between blood and tissues (open arrows). Black arrows are tissue-specific pathways,
whereas dashed arrows represent common pathways found in all tissues. Pathways
marked with an asterisk (*) are composed of multiple reaction steps but grouped together
as a single step in this model. Reaction rates in females that are significantly different
from males at rest are marked by an arrow indicating the direction of change and the
symbol F. Substrate abbreviations are listed in Table 6.1.

determined by the net sum of transport fluxes between all organs and the circulation. As
a result, the arterial concentration of the substrate i is updated according to

Vblood
dCa,i

dt
= −

∑
x

Qx(Ca,i − σx,iCx,i), (6.4)

where Vblood is the whole-body blood volume. Table 6.3 outlines sex differences in physical
characteristics such as tissue weights and basal blood flows to specific compartments.

6.2.2 Metabolic rates and rate coefficients

Rates of utilization (ϕx,si→sk) of any substrate si in tissue x are functions of the sub-
strate concentration Cx,i, except when stated otherwise, and of the phosphorylation state
(CATP/CADP), and the redox state (CNADH/CNAD+). The dependence of these rates on the
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Table 6.2: Map of tissue-specific metabolic pathways. A filled box means the existence of
the corresponding pathway. In addition to the common pathways depicted in Figure 6.2,
each tissue has its own different set of metabolic pathways.

Pathways Brain Heart
Skeletal
muscle

GI
tract

Liver
Adipose
tissue

Gluconeogenesis I, II, III
(PYR→GAP,GAP→G6P,G6P→GLC)

Glycogen synthesis
(GLY→G6P)
Glycogenolysis
(G6P→GLY)

Fatty acid synthesis
(ACoA→FFA)

Fatty acid oxidation
(FFA→ACoA)

Lipolysis
(TG→FFA+GLR)

TG synthesis
(FFA+GRP→TG)

Glycerol phosphorylation
(GLR→GRP)
GAP reduction
(GAP→GRP)
GRP oxidation
(GRP→GAP)

Alanine breakdown
(ALA→PYR)

Alanine synthesis
(PYR→ALA)

PCR breakdown
(PCR→CR)
PCR synthesis
(CR→PCR)

concentration of the substrate Cx,i provides mass action-based regulation, while the reliance
on metabolic modulators ATP, ADP, NADH and NAD+ provides feedback mechanisms to
control the rates of reaction processes. Each reaction rate is expressed as an irreversible
uni-uni (or bi-bi when two reactants are involved) substrate to product enzymatic reaction
coupled with metabolic modulator pairs. As a general reaction, we consider reactants X
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Table 6.3: Sex differences in physical characteristics

Male Female References

Tissue/Organ Weight (Kg) Volume (L)† Weight (Kg) Volume (L)†

Brain 1.40 1.35 1.20 1.15 [70, 331, 332]
Heart 0.331 0.315 0.253 0.241 [70, 331, 333]
Skeletal muscle 22.4a 21.33 13.6a 12.95 [70, 331, 333]
GI tract 2.0 1.89 2.0 1.89 [68, 70, 333]
Liver 1.80 1.67 1.40 1.30 [70, 331, 334]
Adipose tissue 11.0b 11.9 17.1c 18.5 [68, 70, 331, 333]
Othersd 31.069 29.59 22.447 21.38 [335]
Whole-body 70.0 68.045 58.0 57.411 [70, 331]

Blood flow (l/min)e

Brain 0.75 0.75
Heart 0.25 0.25
Skeletal muscle 0.9 0.9
GI tract 1.1 1.1
Liver 1.50 1.35 [336]
Adipose tissue 0.36 0.36
Othersd 1.74 1.39
Whole-body 5.5 5.0 [70, 337]

a Skeletal muscles, excluding upper extremities which account for 18-20% of total weight. Male total:
28 Kg; female total: 17 Kg.
b Based on 16% body fat content.
c Based on 29.5% body fat content.
d Values for “Others” are chosen to balance whole-body values.
e Unless otherwise noted, regional blood flows are assumed to be the same between sexes. Values are
reproduced from Ref. [68]. †Organ volumes are calculated by dividing each tissue weight by its density:
brain (1.04 Kg/L)[332], heart and skeletal muscle (1.05 Kg/L)[333], GI tract (1.06 Kg/L)[333], liver
(1.08 Kg/L)[334], adipose tissue (0.923 Kg/L)[333]. Assuming that others include only nonfat tissues,
a tissue density of 1.05 Kg/L is used [335]. The total volume of the body is calculated by adding the
volumes of all compartments.

and Y and products Z and W . The corresponding reaction rate equation in tissue x is

ϕx,X–Y→Z–W = Vmax,x,X–Y→Z–W

(
CX

KX
· CY

KY

1 + CX

KX
+ CY

KY
+ CX

KX
· CY

KY

)

×
(

PS±

µ± + PS±

)(
RS±

ν± +RS±

) (6.5)
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where Vmax,x,X–Y→Z–W , KX , and KY are Michaelis-Menten parameters specific to the re-
action process, CX and CY are concentrations of substrate X and Y in tissue x. Phos-
phorylation states are PS+ = CATP/CADP in the forward direction and PS− = CADP/CATP

in the opposite direction. Redox states are analogous, i.e., RS+ = CNADH/CNAD+ and
RS− = CNAD+/CNADH. Parameters µ± and ν± are related to the metabolic modulator
pairs. It is worth noting that AMP is a key allosteric regulator of glycogen phospho-
rylase for glycogenolysis (GLY→G6P) and phosphofructokinase-1 (PFK-1) for glycolysis
II (G6P→GAP). As AMP is not included in this model, AMP/ATP is approximated by
[ADP/ATP]2 in these reactions (see Table C.13 in Appendix C). Micahelis-Menten pa-
rameters and substrate concentrations are obtained from Ref. [68] and references therein.
Parameters µ± and ν± are estimated from data as discussed later in section 6.2.5. As
an example of a bi-bi irreversible mechanism, consider the metabolic process of pyruvate
oxidation

PYR + CoA + NAD+ −→ ACoA + NADH + CO2

which mathematically corresponds to

ϕPYR–CoA→ACoA–CO2 =

Vmax,PYR–CoA→ACoA–CO2

(
CPYR

KPYR
· CCoA

KCoA

1 + CPYR

KPYR
+ CCoA

KCoA
+ CPYR

KPYR
· CCoA

KCoA

)
×
(

RS−

µ− +RS−

)
(6.6)

6.2.3 Regulation of glucose by glucagon and insulin

Pancreatic α- and β-cells in the islets of Langerhans secrete glucagon and insulin, re-
spectively. A healthy pancreas secretes both insulin and glucagon at rest; after a meal or
during exercise, both are released, but at different rates [338]. During exercise in particular,
the concentration of glucagon increases and that of insulin decreases to maintain normo-
glycemia. These hormonal changes are also influenced by the parasympathetic nervous
system and the sympathetic nervous system (SNS). Although insulin production by pan-
creatic β-cells is primarily mediated by circulating glucose levels, the release of epinephrine
from sympathetic neurons during exercise inhibits insulin secretion and thus increases the
release of glucagon [339]. In this study, we model the effect of exercise via epinephrine,
which directly modulates insulin secretion and indirectly glucagon secretion.

Many adaptations, both at rest and during exercise, are mediated by stress hormones
epinephrine and norepinephrine. In fact, epinephrine and norepinephrine are the primary
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hormones whose concentrations rise significantly during exercise. Experimentalists re-
ported increases ranging from 1.5 to more than 20 times basal concentrations [330]. The
magnitude of these changes is a function of exercise characteristics (e.g., exercise duration,
exercise type, training status, and sex). Horton et al. [8] showed a significantly lower mean
epinephrine concentration at rest, during exercise, and after exercise in women compared
with men. Some studies observed similar results [14, 340]. In another study, Horton and
colleagues investigated the effects of exercise during different phases of the menstrual cycle
and found no effect of the menstrual cycle on resting and exercise epinephrine concentra-
tions [341], as others have too [342, 343]. Given these findings, we can reasonably assume
that physical activity causes an increase in circulating epinephrine, which is significantly
lower in women than in men. Yet, these changes do not depend on the phase of the men-
strual cycle. In both male and female models, blood epinephrine level changes with a step
increase in work rate:

CE(t) = CE(0) + ω(WR) · (1− exp (t/τE)) , (6.7)

where CE(0) is the initial concentration of epinephrine at rest, WR is the work rate fixed
at 150W or 60% of V̇O2max, and ω(WR) is a parameter determining the gain with respect
to a step change in work rate applied during exercise; τE is a time constant for epinephrine
dynamics.

The hormones insulin and glucagon are modeled as an integral rein controller, which
is a modelling concept developed by Saunders et al. to maintain blood glucose homeosta-
sis [338]. Under most conditions both glucagon and insulin are produced and control is
achieved by altering the balance between the two hormones [338]. An important feature
of the model is that the set point of blood glucose is determined by the dynamics of the
two hormones and specifically by the intersection of two chemical response curves, mak-
ing the model resilient to perturbations in either direction. In our model, the action of
epinephrine on insulin dynamics is included in the formulation of the integral rein control.
This modelling choice was motivated by the fact that pancreatic hormone production in
low glucose settings, such as during exercise, depends on glucose levels and SNS activity
(e.g., epinephrine level) [344]. This approach was also implemented in Ref. [69], but it
differs from Ref. [68] in which epinephrine’s action on insulin is independent of blood glu-
cose levels. The set of equations shown below still adhere to the formalism proposed by
Saunders et al. Insulin dynamics are described by:

dCI

dt
= CI(t)

(
ψ(Ca,GLC) ·

(
h− k3(CG(t)− CG(0))− k4(CI(t)− CI(0))

−k5(CE(t)− CE(0))
)
−D

)
,

(6.8)
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and glucagon dynamics by:

dCG

dt
= CG(t)

(
θ(Ca,GLC) ·

(
h− k1(CG(t)− CG(0))− k2(CI(t)− CI(0))

)
−D

)
, (6.9)

where ψ(Ca,GLC) is an increasing function of Ca,GLC, θ(Ca,GLC) is a decreasing function of
Ca,GLC, and h,D, k1, k2, k3, k4 and k5 are estimated parameters. θ(Ca,GLC) and ψ(Ca,GLC)
are formulated to result in a steady-state arterial glucose concentration of 5 mM [345].

ψ(Ca,GLC) =


0 Ca,GLC < 2.5

1− (Ca,GLC − 7.5)2/25 2.5 ≤ Ca,GLC ≤ 7.5

1 7.5 < Ca,GLC

(6.10)

θ(Ca,GLC) =


1 Ca,GLC < 2.5

1− (Ca,GLC − 2.5)2/25 2.5 ≤ Ca,GLC ≤ 7.5

0 7.5 < Ca,GLC

(6.11)

Bi-hormonal pancreatic responses exhibit some sex differences. Glucagon concentration
is higher in women than in men at rest and during submaximal exercise, but the increment
in glucagon from rest to exercise is lower in women [8]. However, neither insulin response
nor insulin concentrations differ significantly between men and women during exercise [8].
These findings apply to young, healthy individuals. The implication of these differences is
that, while the glucagon-to-insulin ratio (GIR) is higher in women during exercise, it may
increase at a slower rate than in men.

6.2.4 Parallel activation during exercise

Hormonal control of metabolic reaction rates. Blood glucose levels tend to rise
during intense exercise, but gradually fall during moderate-intensity exercise. Yet, exercise
is typically characterized by euglycemia. This implies, in general, that the increase in
hepatic glucose production during exercise matches roughly with the increase in glucose
uptake. This tight regulation is made possible by hormonal signals, specifically insulin
and glucagon, which provide an important feedback mechanism between the pancreas and
tissues that interact via blood circulation. The ratio of glucagon to insulin, which strongly
correlates with changes in hepatic glucose, characterizes the effect of signalling [346]. As a
result, we hypothesize that the glucagon-to-insulin ratio influences glycogenolysis and all
gluconeogenesis steps in the liver, including the conversion of glucogenic amino acids such
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as alanine. Namely, these correspond to reactions 4,5,6,8, and 15 in Table 6.1. For these
reactions, maximum rate coefficients Vmax,x,i, characterizing the metabolic flux i in tissue
x (liver), are modulated as follows:

Vmax,x,i = V 0
max,x,i

(
1.0 + λGx,i

(GIR(t)−GIR(0))2

αG
x,i + (GIR(t)−GIR(0))2

)
, (6.12)

where GIR is the ratio of glucagon (CG) to insulin (CI) arterial concentrations (i.e., GIR =
CG/CI), λ

G
x,i and α

G
x,i are the associated hormonal control parameters.

Skeletal muscle cells lack glucagon receptors [347], and although glucagon receptors are
found in the heart, improving cardiac contractility is not the primary function of glucagon
in this organ [348]. Thus, we hypothesized that the heart and skeletal muscle primarily
respond to an epinephrine signal during exercise. In particular, we assume that the rates of
glycolysis, glycogenolysis, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle,
fatty acid oxidation, and lipolysis are modulated by epinephrine. For metabolic rate i (re-
actions 1,8,14,17, and 19 in Table 6.1) in tissue x (heart or skeletal muscle), the maximum
rate coefficient Vmax,x,i is:

Vmax,x,i = V 0
max,x,i

(
1.0 + λEx,i

(CE(t)− CE(0))
2

αE
x,i + (CE(t)− CE(0))

2

)
, (6.13)

where CE is the arterial concentration of epinephrine, λEx,i and α
E
x,i are the hormonal reg-

ulatory parameters for epinephrine.

Lipolysis in adipose and GI tissues is influenced by epinephrine and insulin levels.
Hence, this reaction rate is controlled by a combination of GIR and epinephrine factors:

Vmax,x,i = V 0
max,x,i

(
1.0 + λGx,i

(GIR(t)−GIR(0))2

αG
x,i + (GIR(t)−GIR(0))2

+ λEx,i
(CE(t)− CE(0))

2

αE
x,i + (CE(t)− CE(0))

2

)
.

(6.14)

In Eqs (6.12),(6.13), and (6.14), CE(0) and GIR(0) are the initial values for epinephrine
and GIR, respectively, V 0

max,x,i are the maximum rate coefficients at rest, and Vmax,x,i are
the corresponding maximum rate coefficients modulated by hormones during exercise. The
latter interact with the rest of the model through Eq (6.5). V 0

max,x,i are constant param-
eters and Vmax,x,i are dynamic parameters. Our choice to model the hormonal activation
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using sigmoidal functions is motivated as follows: 1) the change in hormone concentrations
relative to the initial conditions serves as a proxy measure of metabolic demand induced by
exercise; 2) the use of the second power steepens the response curves and helps to represent
the rapid increase in metabolic rates from baseline at the beginning of exercise. We note
that the differences (CE(t)−CE(0)) and (GIR(t)−GIR(0)) are nonnegative during exercise
as both epinephrine and GIR increase during exercise, and thus the exponent only poten-
tiates the response in the positive direction; 3) gains in the middle region of the response
curve are better than gains in bilateral regions, implying that maximum rate coefficients
eventually reach saturation when hormone concentrations are high enough. This is typical
of real-world systems, where unlimited activation is not possible.

Neural control of metabolic reaction rates. Neural activation prompted by exercise
causes an increase in intracellular calcium concentration, which helps the heart and skeletal
muscles contract. Calcium ions are the major signaling ions in the cells, and are an im-
portant activator for metabolic process rates such as glycolysis, glycogenolysis, TCA cycle,
and oxidative phosphorylation. Changes in calcium concentrations are much faster (<100
ms) than hormonal or allosteric activators (>1 min), and cause instantaneous changes in
metabolic rates [68]. As a result, we assume that the maximum reaction rates for glycolysis
II and III, glycogenolysis, pyruvate oxidation, TCA cycle, oxidative phosphorylation, and
ATP hydrolysis undergo a step change at the start of exercise (see reactions 2,3,8,16,21,22,
and 25 in Table 6.1). The work rate determines the level of activation as follows:

Vmax,x,i = V 0
max,x,i ·

ϕx,ATP→ADP (WR)

ϕ0
x,ATP→ADP

. (6.15)

V 0
max,x,i represent basal maximum rate coefficients, whereas Vmax,x,i are dynamic maximum

rate coefficients modulated by exercise that influence metabolic rates via Eq (6.5). Ac-
cording to Cabrera et al. [349], the rate of ATP hydrolysis in skeletal muscle is directly
proportional to work rate (WR):

ϕx,ATP→ADP (WR) = ϕ0
x,ATP→ADP + γx ·WR, (6.16)

where ϕ0
x,ATP→ADP is the basal rate of ATP hydrolysis, and γx is a conversion factor in

skeletal muscle. In the heart, the force and frequency of myocyte contraction increase
during exercise, pushing more blood out of the heart and thus increasing stroke volume. In
healthy people, acute increases in heart rate and stroke volume during exercise can cause
cardiac output to increase four to eightfold [350, 351]. Because the heart has a very high
energy demand and must continuously produce large amounts of ATP to sustain contrac-
tile function [352], we model exercise-induced increases in cardiac ATP energy demand
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similarly to skeletal muscle. Therefore the rate of ATP hydrolysis in the heart is also mod-
ulated by work rate and x ={heart, skeletal muscle} in Eq (6.16). ATP hydrolysis rates
are kept constant in other tissues.

Blood flow regulation. In response to exercise, blood flow is markedly increased in
contracting cardiac and skeletal muscles, while perfusion in other organs (brain and bone)
is only slightly increased or even reduced (visceral organs) [353]. In this model, a step
increase in work rate causes an increase in blood flow to the heart and skeletal muscle,
a decrease in blood flow to the GI tract and liver, and no change in blood flow to other
organs (brain, adipose, and other tissues). The blood flow for affected tissue x changes
according to:

Qx(t) = Qx(0) + δx(1− e−t/τQ), (6.17)

where δx is a parameter or step gain that represents the change in blood flow in tissue
x, and τQ is a time constant. Notably, the blood flow to the liver is different between
the sexes in absolute terms. In adults, typical steady state hepatic blood flow is 1.35
L/min in women and 1.5 L/min in men [336]. Cardiac output (CO) determines regional
blood flows. Since CO is related to body size, it is best to normalize it based on surface
area. When normalized in this manner, men and women have similar average cardiac
indices of 3.5 L/min/m2 [354]. As a result, this variation in hepatic blood flow may reflect
anatomical differences in liver size between the sexes. In our model, total blood flow to
the liver includes inflow from the hepatic artery as well as venous blood from the GI tract.
To account for sexual dimorphism, basal blood flow (Qx(0)) from the GI tract was kept
constant at 1.1 L/min for both sexes, while basal blood flow from the hepatic artery is 0.4
L/min for the male model and 0.25 L/min for the female model. It is also worth noting
that absolute resting blood flows to adipose tissue and skeletal muscle are the same in
both male and female models. Thus, when expressed per unit tissue weight, blood flows to
adipose tissue (greater in women) and skeletal muscle (greater in men) differ between the
sexes. Sex differences in parameters related to blood flow regulation are listed in Table 6.3.

6.2.5 Parameter estimation

Parameter values for simulating the metabolism of a healthy adult (either male or female)
in an overnight fasted condition are available in the literature and are described in Ap-
pendix C. Parameters that represent metabolic changes in response to exercise, which are
listed in Table 6.4, are estimated by a least-squares method. In particular, we used fmin-
search, a nonlinear least-squares algorithm with a normalized residual, to minimize the
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difference between model-predicted substrate concentrations and concentration data for at
least 60 minutes of exercise. Call p0 the set of initial guesses for model parameters. For
parameters related to the glucagon-insulin controller and blood flow regulation, the initial
guess is set to 1, except for δGI, which is set to -1 because blood flow to the viscera de-
creases during exercise [354]. GIR and neural regulatory factors, λGx,i and λ

E
x,i, are set to 1,

while αG
x,i and α

E
x,i are set to [GIR(t = 60)−GIR(t = 0)]2 and [CE(t = 60)− CE(t = 0)]2,

respectively, where values at t = 0 and t = 60 are obtained from experimental data. Other
neural regulatory factors, γx are set to 1. In the case of epinephrine, the initial guess
for τE is set to 30 and that for ω(WR) is set to CE(t = 60) (experimental datum). The
maximum rate coefficients of pyruvate oxidation in muscle (Vx,PYR→LAC) and lipolysis in
adipose tissue (Vx,TG→FFA–GLR) are estimated only in the female model, and initial esti-
mates are set to male values from Ref. [68]. We noted that the parameter estimates are not
determined uniquely, as different sets of parameters provide nearly the same goodness of
fit. As a result, we extended the calibration step to include the use of fmincon, a gradient-
based constrained optimization algorithm. Once we obtained a preliminary set of suitable
parameters (say, p1) using fminsearch, we ran fmincon with p1 as the starting point and
upper and lower bounds that were an order of magnitude larger (p1×10) and lower (p1/10),
respectively, until the algorithm converged. Final fitted parameter values are available in
Tables S9 and S10 in Appendix C. Parameters for the male and female models are fitted
separately to their respective set of experimental data. Differential equations are solved
using ode15s (MATLAB 2020a), a variable-step, variable-order solver of orders 1 to 5. It
is an implicit integration algorithm for stiff systems.

For a given substrate s, consider the weighted residuals:

ϵ2s =
Ns∑
i=1

(
ys,i − ŷs,i(θ)

)2
σ2
s,i

, (6.18)

where ys,i, is the measured data point i for substrate s, σs,i is the corresponding experi-
mental standard error, Ns is the total number of data points for substrate s, and ŷs,i(θ) is
the predicted value over the set of parameters θ. Therefore, the cost to minimize is given
by:

ξ(θ) =
∑
s∈S

ϵ2s. (6.19)

Set S = {insulin, glucagon, GLC, LAC, GLR, FFA, TG, Ra, Rd} for male and female
models. Ra is the rate of glucose appearance, also known as hepatic glucose production,
and Rd is the rate of glucose disappearance, also known as tissue glucose disposal. In both
models, epinephrine parameters are fitted independently, and the cost function simplifies
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Table 6.4: Estimated parameters

Parameter description Symbols Compartment(s) Equation(s)

Epinephrine parameters τE, ω(WR) blood (6.7)

Glucagon-Insulin
controllera

h,D, k1, k2,
k3, k4, k5

pancreas (6.8),(6.9)

GIR regulatory factors λGx,i, α
G
x,i

liver, GI tract,
adipose tissue

(6.12),(6.13)

Neural regulatory factors λEx,i, α
E
x,i, γx

heart, muscle, GI
tract, adipose tissue

(6.13),(6.14),(6.16)

Blood flow regulation δx, τQ
heart, muscle,
GI tract

(6.17)

Maximum rate coefficientsb
Vx,PYR→LAC,
Vx,TG→FFA–GLR

muscle, adipose tissue (6.5)

a Decay rate D is set to 0.1, then h is calculated assuming steady state conditions with a
blood glucose level of 5 mM [338].
b These maximum rate coefficients are estimated only for the female model. The direction of
the change relative to the male values is described in Figure 6.2. Values for the male model
are obtained from Ref. [68].

to Eq (6.18). Data represent plasma concentrations of hormones and substrates and are
reported in Table C.11 in Appendix C. We used time series data that reflect dynamic
concentrations throughout a cycling session. In particular, male model parameters were
fitted to eight data points for each of epinephrine, insulin, glucagon, GLC, FFA, Ra and
Rd, five data points for LAC and four data points for each of TG and GLR. Female
model parameters were fitted to nine epinephrine data points, six LAC data points, five
data points for each of Ra and Rd, and three data points for each of GLC and GLU.
Male data for INS, FFA, and GLR were used to calibrate the female model since neither
substrate concentrations nor substrate dynamics differ between the sexes [8, 16]. Each data
set includes a data point for the initial resting concentration of the substrate. The data
for both male and female models cover 60 minutes of exercise. Except for epinephrine,
all datasets were used simultaneously for calibration. A list of estimated parameters is
presented in Table 6.4.

When it comes to model calibration, the initial parameter guesses can have an impact on
the resulting estimates and, more importantly, the mechanistic insight. We ran fmincon, as
described above, with different initial parameter sets, namely Sp = {p1 · [0.1, 0.2, 0.5, 2, 5, 10]},
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to test the dependence of estimates on initial parameters. We found only minor differences
in final estimates. Most importantly, the mechanistic insight, as discussed in the ‘Re-
sults’ section below, remained unchanged. This gives us confidence in the robustness of
parameter estimates. Sensitivity analysis results are available in Appendix C.

6.3 Results

6.3.1 What are the regional hubs of sex-based differences in en-
ergy substrate utilization?

In this study, the respiratory quotient (RQ) is used to calculate the proportion of carbo-
hydrates and lipids to whole-body ATP generation during exercise. RQ is the metabolic
exchange of gas ratio at the cellular level that equals the ratio of CO2 eliminated to oxy-
gen consumed. According to the Fick principle, oxygen consumption = blood flow ×
arteriovenous oxygen difference, and similarly for CO2 production. In vivo, it is a direct
measurement obtained from the blood; in silico, we use the ratio between the CO2 release
rate into the blood compartment and the oxygen uptake rate for all tissues/organs. This
offers a calorimetry measure of the amount of heat produced by metabolism or energy
expenditure. In other words, RQ indicates which fuel source (e.g., carbohydrate or fat) is
being metabolized to supply the body with energy [355]. Physiological values for whole-
body RQ typically range between 0.7 and 1.0, and vary with substrate oxidation. The RQ
of glucose is 1.0, whereas that of fat is 0.7 [356]. Our sex-specific dynamic models predict
that the whole-body RQ increases from 0.80 at rest in both male and female models to 0.9
for the male model and 0.87 for the female model at the end of 60 minutes of moderate
exercise. On average, during low-intensity exercise, RQ normally ranges between 0.80 and
0.88, when fatty acids are the primary fuel. The RQ increases to between 0.9 and 1.0 as
exercise intensity increases and carbohydrates play a predominant role as fuel [321]. Based
on this information, model results for moderate intensity exercise indicate that, while both
male and female models rely primarily on carbohydrates for fuel, the relative contribution
of fat is lower in the male model (RQ = 0.9, whole-body average value over 60 minutes)
than in the female model (RQ= 0.88, whole-body average value over 60 minutes), where
a larger FFA fraction is used as fuel (see Table 6.5). This difference could initially be
attributed to tissue weight differences (body fat content of 16% and 29.5% for male and
female models, respectively), allowing females to burn more fat for fuel. However, when
the adiposity in the male model is matched to that of the female model, our simulations
show that RQ values do not change during exercise (Table 6.5), nor does the time-average
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whole-body value (RQ = 0.9). This implies that, while the difference in RQ is small, it
is a matter of sex. Females have higher lipolytic efficiency [314], meaning that they are
better able to use their fat stores as fuel under stress conditions such as moderate-intensity
exercise.

Table 6.5: Whole-body sex-specific RQ during exercise at 60% V̇O2max.

Time (min) rest 15 30 45 60

Male model 0.80 0.93 0.91 0.91 0.90
Male (F-matched) modela 0.80 0.93 0.91 0.91 0.91

Male (exp.)b
0.79
± 0.02

0.92
± 0.01

0.92
± 0.02

0.90
± 0.01

0.91
± 0.01

Female model 0.80 0.90 0.89 0.88 0.87

Female (exp.)b
0.79
± 0.02

0.89
± 0.02

0.90
± 0.02

0.89
± 0.02

0.89
± 0.02

a Male model with female-matched adiposity. The weight of adipose tissue
represents 29.5% of the total body weight, as is the case for the female
model.
b Data from [16] on the assumption that the respiratory exchange ratio
(RER) reflected the systemic nonprotein RQ. Females and males com-
pleted a bicycle exercise test at a workload averaging 58± 1% of VO2max.

Figure 6.3 illustrates the relative contribution of carbohydrates and lipids to fuel uti-
lization in response to a 60-minute exercise session. First, we note that whole-body RQ was
computed as V̇CO2/V̇O2, where V̇CO2 and V̇O2 are the sums of CO2 elimination and oxy-
gen consumption rates in all tissues, respectively. Using indirect calorimetry methods as
outlined by Roepstorff et al. [16], the relative contribution of fuel sources was determined:

RQ =
V̇CO2

V̇O2

=

∑
xQx(Ca,CO2 − σx,CO2Cx,CO2)∑

xQx(Ca,O2 − σx,O2Cx,O2)
,

% carbohydrate in V̇O2 =
RQ− 0.7

0.3
· 100%,

% lipid in V̇O2 = 100−% carbohydrate in V̇O2.

(6.20)

Since lipids require more oxygen than carbohydrates in order to be oxidized, the in-
creased oxygen consumption from lipids will indicate a lower RQ. The female model pre-
dicted a lower RQ during exercise compared with the male model, which is consistent with
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Figure 6.3: Relative contribution of fuel sources to whole-body ATP production. Percent
contribution values are instantaneous values at 15, 30, 45 and 60 min, respectively.
Moderate intensity exercise at 60% V̇O2max (150W). M: male model; F: female model.

the experimental data and implies that females are oxidizing more lipids than males [16].
Specifically, the male model predicts 76% of energy from carbohydrates and 24% from
lipids after 15 minutes, decreasing to 68% from carbohydrates and 32% from lipids after
60 minutes. The female model predicts 67% of energy from carbohydrates and 33% from
lipids soon after the onset of exercise (15 minutes), decreasing to 56% from carbohydrates
and 44% from lipids after 60 minutes. Percentage values are consistent with the literature
that suggests higher lipid oxidation in females [14, 16, 321, 329]. Our mechanistic models
make it possible to determine the RQ of each tissue. Table 6.6 shows organ/tissue specific
RQ values during 60 minutes of moderate-intensity exercise. Carbohydrates are the prin-
cipal fuel source for skeletal muscle in both males and females, as evidenced by high tissue
RQ values (0.91 vs. 0.89). These results, however, suggest that carbohydrate oxidation
and glycogen utilization are higher in men than in women. Besides skeletal muscle, our
results show that adipose tissue is also a site of sex-based differences in fuel utilization. For
both sexes, the RQ values are less than 0.8, indicating significant fat burning, with females
being more so dependent on lipids than males (adipose tissue RQ of 0.71 vs 0.76 for female
and male, respectively). Surprisingly, our models predict a marginal sex difference in liver
RQ (0.73 for male vs 0.72 for female). Since the liver is the primary gluconeogenic organ,
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we postulate that sex-specific compensatory mechanisms exist at the gluconeogenic and
glycogenogenic steps in response to differences in substrate metabolism in skeletal muscle
and adipose tissue across sexes. The benefit of such a mechanism would be better plasma
glucose maintenance to avoid hyperglycemia when other fuel sources, such as lipids, are
employed alongside glucose. Building on our observations of whole-body and tissue-specific
RQ values for males and females, we now aim to identify underlying candidate physiolog-
ical mechanisms in the liver that potentiate the role of skeletal muscle and adipose tissue
as hubs of sex differences in substrate manipulation during exercise. Since our models
do not represent direct effects of sex hormones, but rather indirect actions through sex
differences in circulating levels of epinephrine and GIR, we will thus investigate the role of
these specific hormones in the liver.

Table 6.6: Organ/tissue specific RQ over 60 min of exercise at 60% V̇O2max.

Organ/Tissue Respiratory quotient (RQ)

Male Female

Brain 1.0 1.0
Heart 0.87 0.87
Skeletal muscle 0.91 0.89
GI tract 1.0 1.0
Liver 0.73 0.72
Adipose tissue 0.76 0.71
Others 0.73 0.73
Whole-body 0.90 0.88

6.3.2 Is there a compensatory mechanism in the liver that drives
sex differences in glucose production?

In order to understand the liver’s response to the metabolic demand of exercise, it is
important to first understand the role of sex differences in the hormones that drive hepatic
responses: insulin, glucagon, and epinephrine. In particular, we recall that insulin and
glucagon inhibit the production of each other and that epinephrine inhibits the production
of insulin during exercise; see Eqs (6.8) and (6.9). Figure 6.4 illustrates the dynamic
responses of plasma insulin, glucagon and epinephrine to an increase in work rate from a
resting state. In comparison to males, females have lower levels of circulating epinephrine
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at rest and during exercise. The magnitude of sex differences in epinephrine levels is
exacerbated during exercise. At rest, our models predict that males have 67% higher
epinephrine levels than females and up to 175% higher levels after 60 minutes of exercise.
This time course effect for epinephrine is also seen in experimental studies [8, 14]. In
Ref. [8], the authors reported epinephrine concentrations 200% higher in men than in
women after 90 minutes of moderate exercise. When it comes to pancreatic hormones, there
is no sex difference in insulin concentration during exercise, except at rest where women
have higher insulin levels than men [8]. Given the large gap in epinephrine concentration
between the sexes, insulin sensitivity to epinephrine would have to be higher in women
to justify maintaining similar insulin levels to men during exercise (see k5 in Table C.9
in Appendix C). Glucagon levels rise in both models during exercise, but female glucagon
levels are higher than male values throughout exercise. Higher absolute levels of glucagon
in females are consistent with experimental findings from Refs. [8, 14]. Consequently, the
female model has a higher GIR both at rest and during exercise; see Figure 6.5a.

Figure 6.4: Dynamic responses of (a) epinephrine, (b) insulin and glucagon to a step
increase in work rate (150W) during 60 min exercise. Data from [7, 8]. Only one dataset
[7] is used for insulin concentration as there are no significant sex differences between the
sexes.

Exercise induces hormonal changes through the GIR, which modulates metabolic re-
action rates in the liver. As a result, whole-body glucose production increased about 2
fold for the female model and about 3 fold for the male model by the end of exercise
(Figure 6.6). The liver produces glucose at rest from glycogenolysis and gluconeogenesis
equally [7]. During exercise net hepatic glycogen breakdown increased from 0.38 to 1.4
mmol/min in the male model and from 0.38 to 0.83 mmol/min in the female model. Net
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Figure 6.5: (a) Glucagon-insulin ratio (GIR) response to an increase in work rate (150W)
from rest at 0 min. The simulations ranging from -10 to 0 min show steady-state
responses; (b) fractional change in GIR and in maximal rate of glycogenolysis
(VmaxGLY→G6P) in the liver in response to a step increase in work rate (150W) from
resting state at 0 min. Fractional change refers to the ratio of the change in the quantity
to its original value. Bars represent instantaneous values and lines represent dynamic
responses. (c) Whole-body glucose homeostasis during exercise. Data from exercise
experiments in humans [7, 8].

hepatic gluconeogenesis increased from 0.35 to 0.51 mmol/min in the male model and from
0.35 to 0.40 mmol/min in the female model. Effectively, this suggests that most of glucose
production during exercise results from glycogenolysis. These results support experimen-
tal reports that men rely more on stored glucose during exercise compared with women
[14, 321, 329]. Since glycogenolysis and gluconeogenesis are facilitated by the GIR, the
rise in glucagon during exercise is thought to be the driver of these reaction rates [8].
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However, this may not be the full explanation, as the simulations below suggest. GIR
is higher throughout exercise in females than males, so we would normally expect higher
rates of glucose production by the female liver. However, this is not true. Figure 6.5
shows fractional changes in GIR and in maximal rates of glycogenolysis (VmaxGLY→G6P)
in response to exercise. Despite the male GIR’s slower increase over time, the rate of
glycogenolysis after 60 minutes of exercise is three times higher than its rest value. The
rate of glycogenolysis in the female liver, on the other hand, is about two times the rest
value. As represented in the parameters of our models, we have assumed that females are
less sensitive to the glycolytic effects of pancreatic hormones than males (see Table C.10 in
Appendix C). Thus, differences in carbohydrate utilization during moderate exercise may
be primarily related to sex-based differences in tissue sensitivity rather than circulating
levels of hormones such as glucagon, insulin, and epinephrine.

Figure 6.6: Dynamic responses of (a) whole-body glucose production, (b) net hepatic
glycogen breakdown, and net hepatic gluconeogenesis to an increase in work rate (150W)
during 60 min exercise. Net hepatic glycogen breakdown is defined as the difference in
metabolic rates between glycogenolysis (breakdown of glycogen) and glycogenesis
(production of glycogen) in the liver. Net hepatic gluconeogenesis is defined as the
difference between gluconeogenesis II (production of glucose-6-phosphate) and glycolysis
II (utilization of glucose-6-phosphate) in the liver.

To investigate this question further, we matched female liver hormonal control param-
eters for glycogenolysis (λGx,GLY→G6P , α

G
x,GLY→G6P , with x := liver) to male values. These

control parameters represent tissue sensitivities to changes in the GIR; see Eq (6.12). Re-
sults are shown in Figure 6.5b. Assuming identical hepatic sensitivity to GIR in males and
females, higher GIR levels for females translate to higher maximal rates of glycogenoly-
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Figure 6.7: Hypothetical compensatory mechanism between the liver and skeletal muscle
in females. The figure illustrates the direct (green boxes) and indirect (blue boxes) effects
of female sex hormones (E, estrogens; P, progesterone) on metabolic processes during
exercise. Solid arrows indicate the Cori Cycle, while dotted arrows represent the
compensatory mechanism for fat oxidation.

sis than males, meaning higher glucose production. In this case, blood sugar rises above
euglycemic levels for the female model, as shown in Figure 6.5c. Our in silico matching
experiment supports the hypothesis that sex differences in hepatic glucose production are
driven by tissue sensitivity to hormones rather than absolute hormone concentrations.

Another factor that contributes to females lower glucose production during exercise
may be the engagement of the female liver in a liver-muscle crosstalk. That crosstalk may
act as a compensatory mechanism for glycogen sparing, thereby preventing the higher GIR
in females from over-activating glucose-producing pathways and instead promoting fat ox-
idation in working muscles. Our proposed mechanism is shown in Figure 6.7. Reduced
glycogenolysis during exercise reduces gluconeogenesis and thus blood glucose concentra-
tion. As the arteriovenous difference in glucose decreases, so does the net exchange of
glucose with other tissues. Skeletal muscle consumes the most glucose during exercise and
is the most affected by decreased hepatic glycogenolysis. When less glucose enters the mus-
cles, all stages of glycolysis (glycolysis I, II, and III) slow down. As a result, both pyruvate
reduction (PYR→LAC) and pyruvate oxidation (PYR→ACoA) decrease. The latter is
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an important step in the utilization of NADH and the production of NAD+. NADH and
NAD+ concentrations decrease and increase, respectively, as pyruvate oxidation decreases.
The increase in NAD+ concentration stimulates fatty acid oxidation. Furthermore, de-
creasing pyruvate reduction, a critical step in the cori cycle, reduces lactate delivery from
muscles to the liver. The liver uses lactate as a gluconeogenic precursor, and a decrease
in blood lactate directly affects glucose production, further lowering blood sugar. This
creates a positive feedback loop for fatty acid oxidation. In fact, fatty acid oxidation is
also increased in the heart, GI tract, and adipose tissue following the decrease in pyruvate
reduction, but changes are most significant in skeletal muscle.

We further suggest that female sex hormones may regulate liver sensitivity, which would
explain why glycogenolysis and gluconeogenesis are less engaged during exercise in females
than in males. Consistent with our observations, it was observed that female sex hormones
cause a decrease in glycogenolysis, and that estrogen specifically decreases gluconeogenesis
[341]. Additionally, the combination of estrogen and progesterone can decrease glucose
production in response to glucagon [341]. The added value of our results lies in identifying
a potential candidate compensatory mechanism to explain how sex hormones affect glucose
production and utilization during exercise. With this mechanism in place in the female
model, both models are able to maintain normoglycemia during exercise (see Figure 6.5).
It is thus possible that the sex difference in exercise-related glucose production (and uti-
lization) is only apparent in the setting of low hepatic glycogen stores, which occurs here
because the model is initialized using overnight-fasted conditions for all tissues, and that
differences in glucose kinetics become apparent only when hepatic stores are further de-
pleted with moderate exercise [8]. Athough sex difference in carbohydrate use have been
linked to differences in gluconeogenesis and glycogenolysis in the liver, it is still debated
whether the significant increase in lipid metabolism in women during exercise is due to a
preference for oxidation of plasma FFAs or intramyocellular lipids [321, 329]. We explore
this question next.

6.3.3 Is increased lipid metabolism in females owing to the break-
down of intramyocellular lipids or plasma FFA oxidation?

Tissue-specific RQ values indicated that adipose tissue and skeletal muscle show marked sex
differences in substrate utilization. In addition, our study of hepatic glucose production
has shown that the female liver, due to a lower sensitivity to GIR, saves more hepatic
glycogen than the male liver in order to promote the use of lipids by the other organs.
Here, we are interested in the consequent dynamics of carbohydrate and lipid utilization
in skeletal muscle and adipose tissue.
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Figure 6.8: Dynamic response of intramuscular glucose uptake, net glycogen breakdown,
FFA uptake and net triglyceride breakdown to an increase in work rate (150W) during 60
min exercise. (a) Male, carbohydrate utilization; (b) Female, carbohydrate utilization; (c)
Male, fat utilization; (d) Female, fat utilization. Glucose uptake is defined as the uptake
rate of glucose in the muscle. Net glycogen breakdown is defined as the difference in
metabolic rates between glycogenolysis (breakdown of glycogen) and glycogenesis
(production of glycogen) in the muscle. Net triglyceride breakdown is defined as the
difference in metabolic rates between the utilization of triglycerides and the production of
triglycerides in the muscle.

Starting with glucose turnover in skeletal muscle, Figs. 6.8a and 6.8b show that glucose
uptake and net glycogen breakdown are both lower in the female model compared to the
male model. On the one hand, the rate of glucose uptake into the muscles in the male
model increases from 0.16 mmol/min at rest to 1.4 mmol/min after 60 minutes, while
in the female model it goes from 0.16 mmol/min to a maximum of 1.0 mmol/min. Net
glycogen breakdown, on the other hand, is highest in the male model shortly after the start
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of exercise (9 mmol/min), then falls to 6.8 mmol/min after 60 minutes. Comparatively,
net glycogen breakdown goes from 7 mmol/min to 5.5. mmol/min in the female model.
Specific to skeletal muscle is the fact that glycogenolysis is promoted by epinephrine.
Thus, the quantitative difference in net glycogen breakdown is a direct result of the fact
that epinephrine is lower in females. Intramuscular FFA uptake is higher during exercise
in females than males, while net TG breakdown is lower in females (Figs. 6.8c and 6.8d).
Notably, FFA uptake in the female model increases from 0.06 mmol/min at rest to 0.9
mmol/min after 30 minutes of exercise. In contrast, after 30 minutes, the male model’s
FFA uptake rate increases from 0.05 mmol/min to 0.17 mmol/min. On average over 60
minutes, plasma FFAs contribute 45% and 89% of total fat oxidation for male and female
models, respectively, with the balance owing to other fat sources. The male average is
consistent with data from Refs. [357–359], in which plasma FFAs count for 40% to 60%
of total fat oxidation in men; data specific for women is scarce. Throughout exercise,
males have a higher rate of TG breakdown than females; however, the sex difference is not
as pronounced as it is for FFA. Since each TG contains three fatty acids, it significantly
reduces the dependence on plasma FFAs for males. There is evidence of differing amounts
fat oxidation between the sexes, with females oxidizing more fats, but researchers are
unclear whether the source is intramyocellular lipids (IMCL) or plasma FFAs [324, 360].
Our results suggest that the mechanism for increased fat oxidation is increased FFA uptake
in the muscle.

Adipose tissue is the primary source of plasma FFAs. In the female model, the whole-
body lipolysis rate increases from 0.29 mmol/min at rest to 0.86 mmol/min during the ex-
ercise session. In the male model, the total rate of lipolysis increases from 0.27 mmol/min
to 0.64 mmol/min. Women have a higher rate of lipolysis in adipose tissue at rest and dur-
ing exercise than men (see Figure 6.2). As a result, females have increased lipid availability
and oxidation of FFAs by tissues such as skeletal muscle. Figure 6.9 shows the contribution
of organs and tissues to the total rate of lipolysis during exercise. In the female model,
adipose tissue lipolysis predominates, whereas muscle lipolysis prevails in the male model.
This implies that women rely more on FFA from adipose tissue, whereas men rely more
on IMCL stores. Muscle, splanchnic region, and adipose tissue contribute 26%, 20%, and
54%, respectively, to whole-body lipolysis in the female model. In the male model, muscle,
splanchnic region, and adipose tissue contribute 59%, 15%, and 26%, respectively. These
values are averages over 60 minutes of exercise. The splanchnic region includes the liver
and GI tract; the muscle region contains the heart and skeletal muscle. We note that the
heart’s contribution to whole-body lipolysis is minor (data not shown).
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Figure 6.9: Fractional contribution of different organs and tissues to whole-body lipolysis
rate for (a) Male, (b) Female. Total lipolysis =

∑
x ϕx,TG→FFA+GLR where x is heart,

skeletal muscle, liver, GI tract, and adipose tissue.

6.4 Discussion

We developed sex-specific whole-body models of energy metabolism to (1) investigate sex-
based disparities in substrate utilization during moderate-intensity exercise and (2) identify
candidate underlying physiological mechanisms. Our main results are summarized as fol-
lows.

• Compared to the female model, the male model oxidizes less lipids during exercise.
Averaged over 60 minutes of exercise, the female model predicted a 10% higher
contribution of lipids to whole-body ATP production.

• The shift in the female model towards lipid metabolism originates in the liver.
The female liver is resistant to GIR-mediated glycogenolysis, thus leading to the
preservation of hepatic glycogen. The resulting decrease in arterial glucose promotes
FFA oxidation by working muscles via NAD+ and NADH.

• The primary fuel source for skeletal muscle in the female model is the predominant
oxidation of plasma FFAs and not intramyocellular lipids. The reverse is true for
the male model.

In experimental studies, when compared to women, men rely significantly more on whole-
body carbohydrate oxidation to sustain low- to moderate-intensity exercise [14, 321]. Re-
cent meta-analyses by Cano and colleagues [329] assessed substrate use during moderate
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aerobic activity in healthy men and women of reproductive age. Their findings support sex
differences in substrate utilization: in sedentary populations, men are more carbohydrate-
dependent while women are more fat-dependent, and the greater oxidation of carbohydrates
in men persists in athletic populations. Our results for moderate intensity exercise indicate
that the relative contribution of fats, primarily FFAs, is indeed higher in women. Whole-
body RQ values over 60 minutes are 0.88 for the female model and 0.9 for the male model
(see Table 6.5). A closer look at tissue-specific RQ values (Table 6.6) shows that skeletal
muscle and adipose tissue are major sites of sex differences: male skeletal muscle burns
more glucose for energy than female skeletal (RQ of 0.91 for male vs. 0.89 for female). In
particular, FFAs released from adipose tissue lipolysis are mobilized by working muscles
in the female model for energy.

While sex differences in carbohydrate and lipid metabolism during exercise have been
widely studied, fewer studies have investigated the role of sex differences in tissue-specific
substrate utilization. Sex hormones are thought to be significant biological contributors
to sex-based variations in substrate use. Women, in particular, have lower muscle fati-
gability and a metabolic advantage when exercising at the same intensity as men. Both
estrogen and progesterone have been shown to influence metabolic responses, ostensibly
in different ways [329]. In animal models, estrogen stimulates lipolysis and increases fatty
acid availability [361–364], while lowering the rate of gluconeogenesis and sparing muscu-
loskeletal and hepatic glycogen [364, 365]. Controversially, data collected during the luteal
phase (when progesterone predominates) demonstrate reduced muscle glycogen utilization
during exercise compared to the follicular phase (when estrogen predominates) [321]. Pro-
gesterone has also been shown to counteract the lipolytic actions of estrogen and decrease
the availability of fatty acids [364, 366]. Although a large amount of evidence suggests that
progesterone has an anti-estrogenic effect [360, 364, 367], further research on progesterone is
needed to understand its effects on substrate use at different phases of the menstrual cycle.
The physiological processes through which sex hormones regulate substrate metabolism are
attributed to both direct and indirect actions. The former are mentioned above, and the
latter are those ascribed to their role as facilitators for other hormones (e.g., epinephrine,
glucagon) that enhance lipolysis as well as glycogenesis at rest and attenuate glycogenol-
ysis during exercise. For instance, women have lower epinephrine concentrations than
men, which is thought to be due to estrogens. In females 17β-estradiol is associated with
a reduction in plasma epinephrine concentrations during exercise [14, 323]. In addition,
women have higher absolute glucagon levels when compared to men [8]. Greater glucagon
levels have been found in the luteal phase of the menstrual cycle compared to the follicular
phase [341], and progesterone receptors are present on pancreatic α-cells [368], implying
that progesterone may augment tonic glucagon secretion [8].
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Given the lack of an insulin sex difference during exercise (Figure 6.4), our models sug-
gest that glucagon is the hormone responsible for driving sex differences in liver metabolism
via the GIR. Since glycogenolysis and gluconeogenesis are regulated by the GIR, the rise
in glucagon during exercise is thought to be the driver of these reaction rates [8]. Yet,
despite a higher GIR throughout exercise in females than males, the female liver produces
less glucose per unit of time (Figure 6.6). We hypothesized that the female liver initiates
a compensatory mechanism for glycogen sparing, thus causing a shift to lipid utilization
by other organs. As seen on the flow chart (Figure 6.7), reduced glycogenolysis leads to
reduced arterial glucose availability and lower uptake by other organs. Glucose concentra-
tion in tissues leads the glycolysis cascade to produce pyruvate. So the lower uptake of
glucose by tissues causes a slow down of pyruvate production and downstream pyruvate
oxidation. This explains why the female model oxidizes less carbohydrates than the male
model. The shift to FFA oxidation, however, is an indirect consequence of this. The rate
of pyruvate oxidation, i.e., ϕx,PYR→ACoA, contributes to the production of NADH and the
utilization of NAD+. Hence, the redox ratio RS− = CNAD+/CNADH is higher in the female
model compared to the male model since ϕx,PYR→ACoA is lower in females. The redox state
RS− activates FFA oxidation in the heart, skeletal muscle, liver and adipose tissue. There-
fore, the lower rate of glycogenolysis in the liver directly affects hepatic glucose production
and glycolysis everywhere else, but also indirectly activates fat mobilization and oxidation
in several other tissues, skeletal muscle in particular. This chain of events is independent
from the exercise-induced lipolysis in adipose tissue and GI tract. We call this mechanism
compensatory because the reduction in glucose-producing pathways leads to an increase
in lipid-utilizing pathways. Female sex hormones, possibly estrogens, may be the starting
point of the compensatory mechanism marked by hepatic GIR resistance, which would
explain why certain processes are less engaged during exercise in women than in men.

An important consideration is that the relative contribution and source of carbohydrates
and lipids utilized to fuel exercise are determined by the intensity and duration of the
exercise bout [321]. Fat oxidation contributes the most during moderate-intensity exercise
(40-65% V̇O2max), accounting for 40-60% of total energy expenditure [358, 359]. In this
study, fat oxidation accounted for an average of 30% of whole-body energy expenditure in
the male model and 40% in the female model. This quantitative difference is mediated by
sex differences in skeletal muscle substrate origin and utilization. Figure 6.9 shows that
in the male model, skeletal muscle is the primary site of lipolysis, whereas in the female
model, adipose tissue serves as a lipolysis hub. As a result, skeletal muscle in the female
model relies heavily on plasma FFAs for fuel during exercise. The work of Devries et al.
[321] has shown that women have a higher area density of IMCL than men. Our female
model represents this sex difference with 28% more muscle TG density (mmol/l) than the
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male model [321]. Despite this IMCL density advantage, our results suggest that women
may be less efficient in utilizing these IMCL stores because they are clearly dependent
on plasma FFAs. Adipose tissue is the primary source of plasma FFAs, and the female
model has a higher rate of lipolysis in adipose tissue at rest and during exercise than the
male model (Figure 6.2). Therefore, the female model has increased lipid availability and
oxidation of FFAs by tissues such as skeletal muscle. We recall that lipolysis in adipose
tissue is influenced by both epinephrine and GIR levels. Therefore, in addition to the sex
difference in basal lipolysis rates, the higher GIR in females further stimulates adipose
tissue lipolysis. However, in skeletal muscle, lipolysis is modulated by epinephrine alone.
This may be the reason why men use IMCL more. Indeed, our male model represents
both the higher muscle mass in males (Table 6.3) and the significantly higher epinephrine
concentrations. It follows that the in situ breakdown of TGs into FFAs would be higher in
males than in females as the drastic increase in epinephrine during exercise would potentiate
the activation of lipolysis in working muscles in males.

A number of sex comparison studies in human subjects [316–318, 360, 369] found that
women oxidize proportionately more lipids and fewer carbohydrates during submaximal
endurance exercise per relation to men. Importantly, these studies controlled for menstrual
cycle timing and length, workout duration, pairing between sexes for oxygen consumption
relative to lean body mass, and measurement and provision of isoenergetic diets. It is
unclear whether these sex differences were driven by differences in sex hormones or by
known sex differences in fat mass and energy intake [370], even when the latter two are
expressed relative to lean body mass [317, 318, 360, 369]. Consistent with the earlier
claim that female sex hormones promote lipolysis, lipid availability, and lipid oxidation, we
hypothesize that female sex hormones increase lipolysis rates in response to epinephrine
and GIR to increase uptake of FFA into skeletal muscle in women (Figure 6.8). It is
this increased intramyocellular uptake of FFAs, and subsequent oxidation, that leads to
greater lipid utilization during submaximal endurance exercise in women than in men.
We note, however, that carbohydrates fuel the first phase of exercise in both models,
while fat oxidation becomes a more important source of energy after 30 minutes (see
Table 6.5). These results suggest that women may be more sensitive to the lipolytic effects
of pancreatic hormones and catecholamines like epinephrine, whereas men may be more
sensitive to the glycolytic effects of hormones. Different patterns of adrenergic receptor
activation in men and women may be responsible for the disparities in lipolysis regulation.
Moderate-intensity exercise, in particular, stimulates both β1 (lipolysis-activating) and α2

(lipolysis-inhibiting) receptors in men, but only β1 receptors in women [317, 328, 371, 372].
We conclude that during exercise, men have increased carbohydrate oxidation responses,
but women have increased lipolytic responses. Women may compensate for decreased
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autonomic nervous system activity (i.e., epinephrine) during exercise through increased
lipolytic responses.

In this sex-specific model of whole-body metabolism during exercise, each tissue is
treated as a perfectly mixed tissue-capillary compartment with no separate mitochondrial
region. The metabolic modulators ATP, ADP, NADH, and NAD+ are essential regulators
of cellular respiration, with distinctly different concentrations in the mitochondrial domain
[72]. This consideration becomes particularly important in working muscles. As a result,
the model may not be suitable for predicting heavy high intensity exercise or modeling
metabolic adaptations during prolonged endurance exercise. Another limitation of our
models is that the pancreas is abstracted to two hormones, insulin and glucagon, and is
modelled as a rein controller. Alternative formalisms can be based on Michaelis-Menten
type expressions that apply to the relationship between blood glucose concentrations and
pancreatic hormone secretion [154]. A circumstantial limitation is the scarcity of data
on exercise in women. There are few studies that control for menstrual cycle timing and
length, workout duration, sex pairing for oxygen consumption relative to lean body mass,
and provision of isoenergetic diets. This reduces the amount of data available for de-
termining sex differences in substrate metabolism and informing model development and
parameter estimation for kinetic reactions. Future research should focus on the regional
kinetics of substrate to better understand sex-based differences in substrate use. Although
the emphasis is frequently on patterns of substrate utilization throughout the body, future
research should include organ and histological data. Moreover, up-to-date information on
the basal metabolic state of women is required for model development. In other words,
a sophisticated in vivo body composition analysis (BCA) that will improve on the 1975
Reference Man, which was last updated in 2002 by the International Commission on Ra-
diological Protection (ICRP) [373], is required. Such an analysis should provide for new
estimates of average body weight, organ weight, fat mass, lean mass, and skeletal mus-
cle mass in men and women, taking into account age and ethnicity. A BCA should also
include data on substrate concentrations in resting tissues. Importantly for experimental
research, it is necessary to standardize how data is normalized by weight, height, or height2

[374]. The normalization is necessary to understand how the size of individual body com-
ponents relates to metabolism [375]. With regard to endurance exercise, female-specific
experimental data on the rate of utilization and production of key substrates such as FFA,
TG, glycerol, and lactate at the organ level, as well as the rate of oxidation of non-plasma
and plasma-derived FFA, would be beneficial for model calibration. Furthermore, data on
changes in substrate concentrations (glycogen in the liver and skeletal muscle, TG in adi-
pose tissue and skeletal muscle) would allow validation of model predictions at the tissue
level. Most importantly, these studies will need to control for pre-test dietary conditions,
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menstrual phase, training duration and intensity relative to peak O2 consumption, exer-
cise modalities (e.g. walking, cycling, etc.), and outcome measures (i.e., raw, percentage
normalized, or normalized to body composition).

6.5 Conclusions

With the use of sex-specific metabolic modifications that link sex differences to cellular
metabolism in the organs, we were able to successfully extend a previously developed model
of whole-body metabolism during exercise. We obtained good agreement with experimental
data for moderate intensity exercise. Our models predict that women oxidize significantly
more lipids and significantly less carbohydrates than men, and we identified candidate
underlying physiological mechanisms for this sexual dimorphism in substrate utilization.
The female liver, in particular, is resistant to GIR-mediated glycogenolysis, resulting in
hepatic glycogen preservation. The resulting decrease in arterial glucose promotes FFA
oxidation by working muscles via NAD+ and NADH. Moreover, in contrast to the male
model, where intramyocellular lipids serve as the principal fuel source for skeletal muscle,
the female model relies mostly on plasma free fatty acids for this purpose.
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Chapter 7

Modelling sex-specific whole-body
metabolic responses to feeding and
fasting
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Abstract

Men exhibit a preference for carbohydrate metabolism, whereas women tend to favor lipid
metabolism. Significant sex-based differences in energy oxidation are evident across var-
ious metabolic states, including fasting and feeding. While some of these differences can
be attributed to variations in body composition—such as increased fat mass in women
and higher muscle mass in men—there are also inherent disparities in metabolic fluxes.
For instance, women exhibit increased rates of lipolysis independent of body composition.
However, there remain gaps in our understanding of how sex influences the metabolism of
specific organs and how these differences manifest at the systemic level. To address some
of these gaps, we developed a sex-specific, whole-body, multi-scale model of metabolism
during feeding and fasting. Our model represents healthy young adults (male and female)
and integrates cellular metabolism in organs with whole-body responses following various
mixed meals, particularly high-carbohydrate and high-fat meals. We explored sex-related
variations in metabolic responses during both the absorptive and postabsorptive phases
following meals. Our model predicted that sex-related metabolic differences observed at
the systemic level are driven by variations in nutrient storage and oxidation patterns in
the liver, skeletal muscle, and adipose tissue. We hypothesized that sex differences in
hepatic glucose output during short-term fasts are partly influenced by variations in free
fatty acids, glycerol, and glycogen handling. We also identified a candidate mechanism,
possibly more prevalent in the female liver, where lipids are redirected toward carbohy-
drate metabolism to support hepatic glucose production. Integrating sex-specific data and
parameters into multi-scale frameworks holds promise for enhancing our understanding of
human metabolism and its modulation by sex.

7.1 Introduction

Obesity and related metabolic disorders, such as type 2 diabetes, have emerged as world-
wide epidemics [376, 377]. Nutrition has been identified as the primary modifiable factor
that can be addressed to mitigate the escalating prevalence of obesity and metabolic dis-
eases. Nutritional consumption of humans composes largely of carbohydrates, fat, and
proteins. A key factor in determining the ideal nutritional intake is the relative efficiency
of substrate oxidation and conversion. Carbohydrates are preferentially oxidized over fats,
which helps stabilize blood glucose levels. While carbohydrate consumption acutely boosts
carbohydrate oxidation, it usually only minimally increases de novo lipogenesis. In humans,
the storage capacity for carbohydrates is limited, but that for adipose tissue is much more

124



extensive; as a result, fat storage is favored when there is excessive caloric intake. The
high energy density of fats, providing more than twice the energy per gram compared to
carbohydrates or protein, may further contribute to weight gain if not offset by increased
energy expenditure.

One significant aspect influencing whole-body metabolism is the role of sex. The impact
of sex on metabolic processes is a burgeoning field of research, and recent experimental
evidence underscores its importance [321, 378–380]. Sexual dimorphism is observed not
only in body composition but also in metabolic rates, substrate utilization, and hormonal
regulation [303, 378, 381–386]. Sex differences in metabolism manifest across various phys-
iological conditions: fasting [70, 387], feeding [14, 381, 388], hypoglycemia [328, 380, 389],
exercise [3, 69, 321], and more [309–311, 313]. While both sexes exhibit general responses
such as hepatic glycogenolysis, gluconeogenesis, and adipose tissue lipolysis, quantita-
tive distinctions in substrate utilization are notable [309–311]. Studies have revealed a
propensity for carbohydrate metabolism in men and lipid metabolism in women, high-
lighting significant sex-based differences in fuel oxidation during different metabolic states
[14, 317, 318, 320]. The distribution of adipose storage exhibits distinct sexual dimorphism,
with men tending to accumulate more fat in the android region and women favoring the
gynoid region [378]. Apart from adipose tissue, lipid storage occurs in various tissues,
including the liver and skeletal muscle, exhibiting sex-specific patterns. Women tend to
demonstrate greater lipid storage in muscle [321, 381], while men display more pronounced
storage in the liver [388]. These sex-based disparities influence resting, postprandial, fast-
ing, and exercise metabolism, contributing to differences in substrate utilization and the
risk of metabolic diseases [3, 378]. Understanding the role of sex in mediating metabolic
responses can inform tailored nutritional guidelines and therapeutic strategies, potentially
enhancing glycemic control and mitigating the risk of metabolic disorders in both sexes.
However, despite the acknowledged significance of sex-specific differences, integrating these
nuances into comprehensive models has been a challenging yet necessary endeavor.

Many mathematical models address metabolism, spanning various scales and facets cru-
cial for studying energy metabolism and whole-body homeostatic balance [3, 66–77]. For
instance, there exist well developed compartment models of glucose homeostasis. Cobelli
et al. [390] developed the artificial pancreas for type 1 diabetes mellitus—a simulator model
of the glucose-insulin system. Approved by the Food and Drug Administration in 2013,
this model can be used as a substitute for preclinical trials for select insulin treatments. An
improved iteration, transitioning from simulating a single meal to a full day, was introduced
in 2018 by Visentin et al. [391]. There are also computational models of glucose home-
ostasis that are liver-centric: linking the liver to other organ compartments [392, 393] with
the goal of investigating how food composition influences hepatic lipid synthesis and could
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lead to the development of different types of diabetes [394, 395]. Despite their instrumental
role, these compartment models often adopted a coarse-grained approach. In recent years,
stoichiometry-based mechanistic models have become popular, employing a rate equation
for each metabolic reaction within a cell or organ [66, 68, 71–75]. For instance, Kurata
[66] proposed a comprehensive whole-body model, incorporating enzyme and transporter
reactions alongside hormonal regulation in postprandial and postabsorptive states. Pa-
nunzi et al. [396] extended a whole-body model initially proposed by Sorensen [397] by
incorporating food intake. Sluka et al. [76] proposed a liver model for acetaminophen
pharmacology, integrating three-scale modules of enzyme reactions within a cell, physio-
logically based pharmacokinetics of acetaminophen at organs, and its distribution at the
whole-body level. Ashworth et al. [77] developed a spatial kinetic model of hepatic glu-
cose and lipid metabolism, treating sinusoidal tissue units instead of single hepatocytes.
Carstensen et al. [67] introduced a formalism for developing whole-body multi-scale mod-
els, based on constraint-based modelling approaches described by Yasemi and Jolicoeur
[398]. Per their formalism, the metabolism inside the organs is explained by the stoichiom-
etry of enzymatic reactions, and Michaelis-Menten kinetics are used to describe enzymatic
reactions. Some other models have focused on the metabolism of energy expenditure, with
Dash et al. [72] developing a computational model of skeletal muscle metabolism linking
cellular adaptations induced by altered loading states to metabolic responses during exer-
cise, and Kim et al. [68] developing a whole-body model of fuel homeostasis during exercise
using hormonal control over cellular metabolic processes.

While many models provide valuable insights into metabolic processes, few adequately
address the nuanced differences between male and female physiology. Palmisano et al.
[310] and Abo et al. [3] developped sex-specific models of exercise with the aim of achiev-
ing greater generalization. Thiele et al. [70] introduced the virtual humans: Harvey and
Harvetta, which are network stoichiometric reconstructions based on omics data that sim-
ulate steady-state metabolic fluxes. There is also LiverSex, a sex based multi-tissue and
multi-level liver metabolic model [308]. Swapnasrita et al. [399] developed sex-specific
models to compare kidney function in male and female patients with different stages of di-
abetes. This overview of the multi-compartment modelling literature is not an exhaustive
tabulation of the diverse range of published metabolic models.

In this work, we introduce a sex-specific, multi-organ, and multi-scale whole-body
model of metabolism, which accurately simulates key metabolite dynamics following var-
ious mixed meals. Six major organs—brain, heart, skeletal muscle, gastrointestinal (GI)
tract, liver, and adipose tissue—are modeled, along with an other tissues compartment
representing the rest of tissues. Metabolism within organs is modeled by stoichiometric
enzymatic reactions. We used mass-action kinetics to describe these reactions. This model
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extends our previously published sex-specific model of energy metabolism during aerobic
exercise [3]. Here, our goal is to connect cellular metabolism in organs with whole-body re-
sponses following different mixed meals, particularly high-carbohydrate and high-fat meals.
We investigated sex-related differences in metabolic responses during both the absorptive
and postabsorptive phases following a meal. We hypothesized that the female model will
exhibit a greater reliance on lipid metabolism during both phases. Moreover, we hypoth-
esized that whole-body sex differences will stem from organ-level variations, particularly
in the liver, skeletal muscle, and adipose tissue, given the inherent differences in body
composition between the sexes. Our objectives are to: (1) quantify sex differences in
carbohydrate and lipid metabolism at the whole-body level, (2) assess sex differences in
carbohydrate and lipid metabolism across various organs and tissues, identifying key or-
gans driving whole-body responses, and (3) propose a candidate physiological mechanism
driving sex differences in glucose production and fat oxidation patterns. Notably, point
(3) addresses a gap in the experimental literature: while experiments demonstrate that
increased hepatic free fatty acids (FFA) uptake and subsequent FFA oxidation enhance
glucose production [400–402], women exhibit lower hepatic glucose output compared to
men despite taking up and oxidizing more FFA [378, 384, 388, 403].

Novel contributions of our work to the existing literature involve developing a compre-
hensive, sex-specific model encompassing whole-body dynamics during feeding and fasting.
Extending from our prior work on exercise metabolism, this computational model proves
versatile, offering insights into various functions such as exercise, diet, and sex modulation.

The remainder of this chapter is structured as follows: simulation results are presented
in Section 7.2. In particular, Sections 7.2.1-7.2.2 provide an overview of model construc-
tion and results for model calibration and validation. Our main results are presented
in Sections 7.2.3 and 7.2.4, covering whole-body and organ-specific metabolic responses,
respectively. In Section 7.3, we analyze our key findings and relate them to model assump-
tions. Section 7.4 summarizes our results. Appendix D.1 presents a detailed explanation of
our mathematical model and modelling approach, while Appendix D.2 outlines the param-
eter estimation process. A comprehensive list of all parameter values and model equations
is available in Appendix D.3.
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7.2 Results

7.2.1 Model construction

We present a whole-body model of food intake comprising seven compartments: brain,
heart, liver, GI tract, skeletal muscle, adipose tissue, and “other tissues”, 22 metabolites
and 25 reactions including the hormonal effect from pancreatic hormones, insulin and
glucagon. Other tissues include kidneys, upper extremity muscles, and the rest of tissues.
We specifically model the metabolic response to the intake of a mixed meal (carbohydrates
and fat) from immediately after the meal (postprandial phase) to the postabsorptive phase
(short-term fast). Figure 7.1 illustrates the multi-scale whole-body model. A fundamental
assumption of the model concerning feeding and fasting states is that circulating levels
of insulin and glucagon directly influence the carbohydrate and fat metabolism of organs
and tissues, including the heart, skeletal muscle, GI tract, liver, and adipose tissue. Our
model is tailored to sex, representing the metabolic states of healthy young adult man and
woman. A complete mathematical description of the model is available in Appendix D.1.

7.2.2 Model calibration and validation

In this section, we show the time profiles of key metabolites following diverse single meals.
Model simulations are presented alongside experimental data utilized for model calibration
and validation. The results discussed here pertain to four experiments in which participants
consumed a mixed meal after an overnight fast lasting 12 to 14 hours: (Experiment 1) 96
g carbohydrate and 33 g fat [9, 13], (Experiment 2) 139 g carbohydrate and 17 g fat
[10], (Experiment 3) 58 g carbohydrate and 27.7 g fat [11], and (Experiment 4) 289 g
carbohydrate and 45 g fat [12]. Specifically, selected sets of data from experiments 1, 2,
and 4 were employed for model calibration, while data from experiments 2 (not used in
calibration) and 3 were utilized to validate model predictions. We explored two metabolic
states: (i) the absorptive or postprandial state, also known as the fed state, is defined as the
period (0–6h) following meal ingestion, encompassing the processes of nutrient digestion
and absorption; (ii) the postabsorptive state (6–12h), a fasting period that involves the
utilization and storage of nutrients in specific tissues [154].

To formulate the male model, we first identified parameter values (see Table 7.1) using
data from experiments 1, 2, and 4 [9, 10, 12, 13]. To formulate the female model, we
extended our previously published model that simulates a woman’s metabolism during
aerobic exercise to simulate a meal [3]. The meal-related model components and parameters
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Figure 7.1: Whole-body system diagram. The systemic circulation connects all
tissues/organs by transporting substrates in arterial oxygenated blood to the
organs/tissues (solid dark blue arrows). Venous blood (solid light blue arrows) leaving
these tissues/organs eliminates by-products and becomes arterial blood to restart
circulation after releasing carbon dioxide and absorbing oxygen in the lungs (gas
exchange). Blood supply to the liver comes from both the hepatic artery and venous
blood from the GI tract. Nutrients are assimilated in the GI tract and subsequently enter
the bloodstream. The nutrient-rich blood flows to all other organs and tissues. The
pancreas responds to variations in arterial glucose concentration (indicated by the dashed
arrow), regulating the levels of insulin and glucagon. Alterations in the concentrations of
insulin and glucagon impact metabolic fluxes in the heart, skeletal muscle, liver,
gastrointestinal tract, and adipose tissue (depicted by solid green arrows), thereby
concluding the feedback regulatory mechanism. Male and female sex symbols represent
compartments where sex-differences, besides differences in tissue/organ weights, are
implemented.
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were taken to be the same as in the male model. We then validated both models by
comparing their predictions with additional data from experiments 2 and 3 [10, 11]. We
emphasize that all simulations for the female model are predictions.

Table 7.1: General description of estimated model parameters

Parameters Description Equations

Insulin k0I basal secretion rate (D.7)

VmaxI maximum rate coefficient (D.7)

Glucagon k0G basal secretion rate (D.8)

VmaxG maximum rate coefficient (D.8)

n2, n3 hill coefficients (D.8)

Dietary input KG half-emptying glucose threshold (D.5)

KT half-emptying fat threshold (D.6)

(Post)absorptive
regulation

Vx
maxβ

, Vx
maxγ

Vx
maxβ ,fat

, Vx
maxγ ,fat

maximum rate coefficients for enzyme
activity factors (Bx, Γx, B

fat
x , Γfat

x )
(D.18-D.25)

Kx
maxβ

, Kx
maxγ

Kx
maxβ ,fat

, Kx
maxγ ,fat

Michaelis constants for enzyme
activity factors (Bx, Γx, B

fat
x , Γfat

x )
(D.18-D.25)

n, k,m, q
hill coefficients for enzyme
activity factors (Bx, Γx, B

fat
x , Γfat

x )
(D.18-D.25)

Postprandial dynamics of insulin and glucose

To calibrate the model, model parameters were chosen such that the model adequately
simulates the temporal evolution of key metabolites after an overnight fast and following a
single meal. Figure 7.2 shows the time course of plasma insulin and plasma glucose for the
male model. Similar profiles are observed for the female model (data not shown). Following
a meal, glucose enters the bloodstream by absorption from the intestine. In general, a rise
in blood glucose concentration becomes apparent within approximately 15 minutes and
reaches its peak around 30–60 minutes after a meal, subsequently returning to the baseline
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Figure 7.2: Time profile of plasma insulin and glucose concentrations after an overnight
fast and following a single meal. Experiment 1: 96 g carbohydrate and 33 g fat [9];
Experiment 2: 139 g carbohydrate and 17 g fat [10]; Experiment 3: 58 g carbohydrate
and 27.7 g fat [11]; Experiment 4: 289 g carbohydrate and 45 g fat [12]. Square markers
( ) with lines represent calibration data with standard errors [9]; Triangular markers ( )
with lines represent validation data with standard errors [10, 11]. Lines represent model
simulations. (a), (c), (e), (g): plasma insulin; (b), (d), (f), (h): plasma glucose.
Absorptive phase, 0–6h; postabsorptive phase, 6–12h.

level of approximately 5 mM roughly two hours post-meal. Similar timescales of exogenous
glucose appearance into the bloodstream have been reported in the literature [9, 13, 66,
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154]. Our results indicate no sexual dimorphism in the glucose and insulin responses to a
mixed meal (data not shown) during the absorptive (0–6h) and early postabsorptive phases
(6–12h). The absence of sexual dimorphism was also reported in a study involving young
and healthy individuals during the absorptive phase [387]. Regarding the postabsorptive
phase, some studies have shown no significant sex difference between women and men for
fasts of up to 22 hours, where individuals were either matched on percent body fat [388]
or not [384].

Using the parameters identified above, we conducted a comparison between model
predictions and data from experiments 2 and 3 that were not used in the model calibration
[10, 11]. In Figs 7.2c-7.2f, the time profiles of insulin and glucose are presented after a single
meal containing 139 g of carbohydrates and 17 g of fat (experiment 2, data from Ref. [10]),
as well as after a single meal with 58 g of carbohydrates and 27.7 g of fat (experiment
3, data from Ref. [11]). Our simulations exhibit good qualitative agreement with the
experimental data; however, certain discrepancies are noted. Specifically, our model tends
to overestimate the insulin peak in Figure 7.2c and the glucose peak in Figure 7.2f. For
the former (Figure 7.2c), the rise in glucose is similar to that observed in our calibration
dataset, resulting in insulin reaching a level comparable to what was observed in the
calibration dataset (Figure 7.2a). The type and composition of a meal influence insulin
secretion. Meals with higher carbohydrate content (Figure 7.2c-d, 139g of carbohydrates)
are expected to yield higher insulin excursions compared to meals with lower carbohydrate
content (Figure 7.2a-b, 96g of carbohydrates). However, it is important to note that
the glycemic index of a meal, contributing to different insulin responses, could introduce
variability into the observations [404]. In the case of the glucose peak in Figure 7.2f, as the
dataset does not explicitly specify the proportion of carbohydrate represented by glucose,
we assumed that the entire 58g corresponds to glucose. This assumption may account for
the discrepancy observed in our simulations, where the glucose peak is approximately 7.5
mM compared to the dataset’s peak of around 6.5 mM. It is worth noting that the nature
and composition of a meal can influence the elevation of glucose levels [404].

Post-meal hyperglycemia and glucose clearance depend on three factors: gut-emptying
times, peak times, and the time-to-return to baseline concentrations for glucose and insulin.
We provide a detailed explanation of how we model gut-emptying times in Appendix D.1,
Eqs D.3-D.6. These factors are largely influenced by the size and composition of the meal.
Figure 7.2 illustrates that meals with carbohydrate quantities of 58g (experiment 3), 96g
(experiment 1), 139g (experiment 2), and 289g (experiment 4) have gut-emptying times
for glucose of 39, 50, 61, and 79 minutes, respectively. Trends for peak times and times-
to-return to baseline are similar: larger carbohydrate loads lead to delayed glucose peaks,
with substantial meals causing postprandial hyperglycemia for over 3 hours. Notably, in
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the case of experiment 4 (289 g of carbohydrates), glucose peaks after 1 hour and remains
elevated for over 3 hours after the meal. Such an occurrence characterizes postprandial
hyperglycemia, formally defined as plasma glucose levels exceeding 7.8 mmol/L 1-2 hours
after food intake, and can lead to vascular complications, particularly in diabetic patients
[405]. For larger meals, like those in experiments 2 and 4 shown in Figure 7.2, an undershoot
occurs as glucose concentration returns to baseline. This happens because insulin usually
peaks and returns to its baseline levels 10-30 minutes after glucose. Therefore, a large
carbohydrate meal prolongs elevated circulating insulin levels, causing a delay in the time
organs stay sensitive to insulin and, in turn, uptake glucose. This delay manifests as an
initial undershoot in glucose levels before eventually stabilizing at basal levels.

Overall, we observe no sexual dimorphism in insulin and glucose responses following
different mixed meals, and the simulated results are consistent with experimental data
from several healthy subjects [9–11, 154].

Postprandial dynamics of glycogen storage

In the postprandial phase, glucose is stored as glycogen through a process called glycogen-
esis, primarily occurring in the liver and skeletal muscle [154]. Figure 7.3 shows the change
in glycogen, relative to its initial concentration, in liver (left column) and skeletal muscle
(right column). The female model tends to accumulate more glycogen than the male model
in both organs, particularly after a carbohydrate-rich meal (>100 g carbohydrate, liver:
Figs 7.3c and 7.3g; skeletal muscle: Figs 7.3d and 7.3h). We note that basal glycogen
concentrations are the same for both organs in both models, as indicated in the literature
[406, 407]. In these organs, glycogen concentrations increase due to insulin action following
a meal (i.e., insulin activates glycogenesis), as confirmed by experimental data [10, 12]. The
relative change in hepatic glycogen stores and the duration until the initiation of glycogen
breakdown for energy needs depend on the size of the carbohydrate load. Specifically, for
meals comprising 58g, 96g, 139g, and 289g of carbohydrates, glycogen concentrations in
the male model increase by 15%, 21%, 33%, and 80%, respectively, peaking at 1.5, 2, 3,
and 4.5 hours, respectively. In the female model, glycogen concentrations rise by 15%,
27%, 42%, and 100%, respectively, with similar peak times as the male model. Although
the peak times in skeletal muscle align with those in the liver, the extent of glycogen accu-
mulation is lower in skeletal muscle for both sexes. We observed increases of 3%, 5%, 7%,
and 14% in the male model and increases of 5%, 8%, 12%, and 21% in the female model
following carbohydrate loads of 58g, 96g, 139g, and 289g, respectively. These results imply
a preferential replenishment of hepatic glycogen stores over intramuscular stores.
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Figure 7.3: Time profile of glycogen concentration in liver (left column) and skeletal
muscle (right column), relative to its initial value, after an overnight fast and following a
single meal. Experiment 1: 96 g carbohydrate and 33 g fat [9]; Experiment 2: 139 g
carbohydrate and 17 g fat [10]; Experiment 3: 58 g carbohydrate and 27.7 g fat [11];
Experiment 4: 289 g carbohydrate and 45 g fat [12]. Square markers ( ) with lines
represent calibration data with standard errors [10, 12]. Lines represent model
simulations.
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A few hours after the meal, liver glycogen undergoes degradation into glucose (glycogenol-
ysis), which is then released into the bloodstream. Our model simulations demonstrate
relatively constant blood glucose levels during the postabsorptive phase (beyond 6 hours;
see Figure 7.2, right column), attributed to liver glycogen being degraded into glucose via
glycogenolysis and subsequently released into the bloodstream. Skeletal muscle glycogen re-
mains relatively constant during the postabsorptive phase, as indicated by Ref. [408]. This
observation holds true irrespective of the meal composition and sex, as shown in the right
column of Figure 7.3. Skeletal muscle lacks the essential enzyme glucose 6-phosphatase
for glycogenolysis and therefore cannot release glucose. Muscle glycogen primarily serves
as a local energy substrate for exercise rather than as an energy source to maintain blood
glucose concentration during fasting [408]. The body’s major fuel store is TG in adipose
tissue, while liver and muscle glycogen serve as short-term carbohydrate stores [154].

Postprandial dynamics of other key metabolites

Figure 7.4 shows the time evolution of plasma lactate, TG, FFA, and glycerol concentra-
tions after an overnight fast and following a single meal of 96g carbohydrate and 33g of
fat (Experiment 1). Model predictions show consistent trends across various meal compo-
sitions for both female and male models (data not shown). Beside glucose, there is also an
elevation of the plasma lactate concentration after ingestion of carbohydrates (Figure 7.4a),
as indicated in [9]. There is qualitative agreement between simulations and experimental
data for plasma lactate, although the peak in the simulations occurs approximately two
hours after the experimentally observed peak. While the increase in blood glucose and
lactate production can be correlated, they may not peak at the exact same time. Lac-
tate levels are influenced by various factors, including tissue-specific metabolic activities,
oxygen availability, and the overall metabolic state of the body [409–411]. For instance,
Ref. [410] showed that following the uptake of carbohydrates, plasma lactate, glucose, and
insulin increased within 15-30 min, reaching peak levels at 180, 90, and 90 min, respec-
tively. Numerical simulations show no sex-related differences in lactate response following
a mixed meal.

Dietary fat is absorbed at a much slower rate than glucose, so the peak in plasma TG
concentration occurs 4 hours after the meal (Figure 7.4b). Following the initial post-meal
peak, plasma TG gradually decreases, in line with experimental data [379]. Directly after
the meal, plasma FFA and glycerol drop, then gradually increase to pre-meal levels after
approximately 4 hours (Figure 7.4c and Figure 7.4d). This decrease may be caused by
the reduced release of FFA (and glycerol) from adipose tissue into the bloodstream. The
increase in insulin directly suppresses lipolysis in adipose tissue, causing a postprandial
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Figure 7.4: Time profile of plasma metabolite concentrations after an overnight fast and
following a single meal. Experiment 1: 96 g carbohydrate and 33 g fat. Square markers
with lines represent experimental data with standard errors [9, 13]; Lines correspond to
the male and female model simulations. (a)-(d) concentrations, relative to initial values,
of plasma lactate, plasma free fatty acids (FFA), plasma triglycerides (TG), and plasma
glycerol, respectively. Basal concentrations of the following substrates differ significantly
between the sexes: glucose (5 vs. 4.91 mM) [14], FFA (0.66 vs. 0.76 mM) [14], and TG
(0.99 vs. 0.93 mM) [15] in males and females, respectively. The initial concentrations of
other substrates are taken to be the same in both male and female models. Absorptive
phase, 0–6h; postabsorptive phase, 6–12h.
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reduction in plasma FFA and glycerol concentrations, as evidenced in the literature [154].
General lipid responses (TG, FFA, glycerol) to a mixed meal are sex-neutral in the post-
prandial phase. However, sexual dimorphism becomes evident as soon as 4 hours after
the meal, particularly for FFA and TG. The surge in FFA and glycerol, the products of
lipolysis, is greater in the female model than in the male model. Similar sex differences
in lipid metabolism, but not glucose metabolism, have also been reported in the literature
[388, 403].

7.2.3 Whole-body sexual dimorphism emerge in lipid metabolism

The respiratory quotient (RQ) reflects the relative oxidation levels of macronutrients to
meet metabolic demands. Precisely, RQ is the metabolic exchange of gas ratio at the
cellular level that equals the ratio of CO2 eliminated to oxygen consumed. In vivo, it is
directly measured from blood, while in silico, we use the ratio between CO2 release rate
into the blood compartment and oxygen uptake rate across all tissues/organs [3]. This
method provides an indirect calorimetry measure indicating the primary fuel source (e.g.,
carbohydrate or fat) supporting the body’s energy needs [355]. Physiological RQ values
typically range between 0.7 and 1.0, varying with substrate oxidation; glucose has a RQ of
1.0, while fat has a RQ of 0.7 [356]. RQ inversely correlates with lipid oxidation, where a
high RQ signifies low lipid oxidation and high carbohydrate oxidation.

Figure 7.5 illustrates the dynamics of whole-body RQ during both the absorptive (0-
6h) and postabsorptive (>6h) phases for two meal compositions: high-carbohydrate and
high-fat meals (refer to Table 7.2). Irrespective of sex and meal composition, there is
a significant increase in RQ during the absorptive phase (RQ≥0.88), indicating a pre-
dominant utilization of carbohydrates for energy metabolism. In the absorptive phase,
female RQ shows a higher increase than male RQ, suggesting a slightly higher reliance on
carbohydrate oxidation in the female model. As the absorptive phase transitions to the
postabsorptive phase, a general decrease in RQ is observed. In the postabsorptive phase,
RQ values remain elevated (RQ> 0.8), but no discernible differences in RQ between sexes
become apparent. These RQ values indicate sustained carbohydrate oxidation during the
early postabsorptive phase.

In both male and female models, RQ reaches its peak 2 hours after a high-fat meal
and 3 hours after a high-carbohydrate meal. This observation, where RQ peaks earlier for
a high-fat meal compared to a high-carbohydrate meal, is not trivial and may be linked
to a differential modulation of metabolic pathways by these macronutrients. Figure 7.6
shows the fractions of carbohydrate and fat utilized for energy production, specifically
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Figure 7.5: Time profile of whole-body respiratory quotient (RQ) in response to a single
800 kcal meal. Two distinct meal types were investigated: high-carbohydrate (HiC) and
high-fat (HiF) meals. The whole-body RQ was calculated as the ratio of V̇CO2/V̇O2,
where V̇CO2 and V̇O2 represent the sums of CO2 production and O2 consumption rates
across all organs and tissues, respectively. We assumed that the respiratory exchange
ratio (RER) reflects systemic nonprotein RQ, as suggested in Ref. [16]. Absorptive
phase, 0–6h; postabsorptive phase, 6–12h.

Table 7.2: Meal compositions

Meal type % CHO % Fat CHO (g) Fat (g) CHO (cal) Fat (cal)

High-carbohydrate (HiC) 90 10 180 8.9 720 80
High-fat (HiC) 50 50 100 44.4 400 400

We consider isocaloric meals consisting of 800 calories (kcal). Fat (lipids) provides 9 kcal/g,
whereas carbohydrates offer approximately 4 kcal/g [154].

for ATP hydrolysis (ϕATP→ADP). There is no noticeable difference between the sexes in
the oxidation fractions. However, once again, the peak in carbohydrate oxidation occurs
earlier for the high-fat meal compared to the high-carbohydrate meal (Figure 7.6a). For
the high-fat meal, carbohydrate oxidation peaks after 2 hours and remains elevated until
hour 4. In contrast, for the high-carbohydrate meal, carbohydrate oxidation peaks after 3
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hours and remains elevated until hour 6. Fat oxidation, significantly reduced during the
absorptive phase, also exhibits a similar difference in trough time between the different meal
compositions (Figure 7.6b). During the postabsorptive phase, the contribution of fat to
energy production increases to exceed the contribution of carbohydrates. This transition
from carbohydrate to fat metabolism results in an eventual decline in RQ, as shown in
Figure 7.5.

Figure 7.6: Carbohydrates and fat oxidation fractions in response to a single 800 kcal
meal. HiC, high-carbohydrate meal; HiF, high-fat meal; CHO, carbohydrate. The
oxidation fractions (unitless) establish a relationship between RQ values and the actual
proportion of carbohydrates and fat utilized for ATP hydrolysis (ϕATP→ADP). Indirect
calorimetry methods, as outlined by Roepstorff et al. [16], were employed: CHO
oxidation fraction = (RQ - 0.7)/0.3; fat oxidation fraction = 1 - CHO oxidation fraction.
Absorptive phase, 0–6h; postabsorptive phase, 6–12h.

A closer examination of whole-body metabolic fluxes (Table 7.3) reveals sexual dimor-
phism during both the absorptive and postabsorptive phases. We introduced a quantity
called the percent relative difference between the sexes (∆F/M). For each flux, it is cal-
culated as (female flux/male flux − 1) × 100. During the absorptive phase and for both
diet types, the female model exhibits greater rates of glycogen storage (> 5%) compared
to the male model, along with similarly higher rates of de novo lipogenesis (> 5%)—the
conversion of excess carbohydrate into fatty acids that are then esterified and stored as
TG. Given that blood glucose levels are similar between the sexes during the absorptive
phase (Figure 7.2), this result suggests that the higher rate of net glycogenolysis may not
directly contribute to raising blood glucose. Instead, a higher amount of carbohydrates
may be redirected for storage as fat in the female model rather than being utilized for direct
oxidation. Moreover, the female model exhibits lower rates of TG breakdown (< −20%)
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compared to the male model. Overall, the sex-related difference is more prominent in fat
metabolism than glucose metabolism immediately after a meal. Thus, metabolic changes
at the whole-body level in the absorptive phase could involve sexual dimorphism in lipid
but not glucose metabolism, as indicated in Ref. [387].

Interestingly, the trend in the female model for fat preservation is reversed during the
postabsorptive phase for both high-fat and high-carbohydrate meals, where the female
model shows an approximately 8% higher net rate of TG breakdown compared to the
male model. Overall, sexual dimorphism is more prominent in the postabsorptive phase
following a high-carbohydrate meal. For instance, the net rate of glycogen breakdown is
10% higher, and the net rate of gluconeogenesis is 15% lower in the female model. Since
glucose output in the postabsorptive phase is a combination of glycogen breakdown and
gluconeogenesis, with these processes contributing almost equally to glucose production
(see net rates in Table 7.3; postabsorptive), there is a net decrease of about 5% in the rate
of glucose output in the female model compared to the male model. Consequently, the
observed increase in systemic fat oxidation (>8%) for the female model may compensate,
in part, for the decrease in glucose availability.

It is worth noting that the net rate of systemic gluconeogenesis is negative in both the
absorptive and postabsorptive phases. This is intuitive during the absorptive phase: all
organs and tissues are utilizing glucose (glycolysis) at a faster rate than the liver performs
gluconeogenesis (marginal during this phase). However, during the postabsorptive phase,
this suggests that the rate of glucose synthesis (hepatic gluconeogenesis) is lower than the
rate of glycolysis by other organs. As a result, blood glucose levels decrease during the
postabsorptive phase (refer to Figure 7.4). This aligns with our model assumption that
blood glucose decreases at rest at a rate of 0.03 mmol/min.

7.2.4 Sexual dimorphism is tissue-specific and differences start
appearing even during short-term fasting

Tissue-specific sex differences in the absorptive phase

In the absorptive phase, ingested carbohydrates elevate blood glucose levels. Insulin is
released, promoting glucose uptake by cells for energy or storage as glycogen. Simultane-
ously, dietary fats are broken down into FFA, absorbed into the bloodstream, re-esterified,
and stored as TG within cells. These processes ensure energy balance and nutrient storage
after a meal, contributing to maintaining blood glucose homeostasis and regulating lipid
storage in the body. In this section, our focus is on exploring potential sex-related vari-
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Table 7.3: Whole-body metabolic fluxes

HiC HiF

Metabolic flux (mmol/min)a Male Female ∆F/M Male Female ∆F/M

Absorptive phase

Net glycogen breakdownb -1.05 -1.11 5.25% -0.708 -0.753 6.32%
Net gluconeogenesis c -1.01 -1.05 4.06% -0.791 -0.814 2.90%
Net TG breakdownd 0.041 0.0321 -21.7% 0.0427 0.0314 -26.5%
De novo lipogenesise 0.0193 0.0204 5.47% 0.0177 0.0186 5.37%

Postabsorptive phase

Net glycogen breakdown 0.335 0.372 10.8% 0.347 0.366 5.42%
Net gluconeogenesis -0.380 -0.320 -15.8% -0.309 -0.311 0.902%
Net TG breakdown 0.0936 0.101 8.31% 0.0954 0.103 7.64%
De novo lipogenesis 0.0125 0.0127 1.71% 0.0127 0.0132 3.40%

a Values are averages over the specified phase and following a single 800 kcal meal. HiC,
high-carbohydrate meal; HiF, high-fat meal. Percent change in the female model relative
to the male model (∆F/M) for each flux is calculated as (female flux/male flux −1)× 100.
b Net glycogen breakdown is defined as the difference in metabolic rates between
glycogenolysis (breakdown of glycogen) and glycogenesis (production of glycogen).
c Net gluconeogenesis is defined as the difference between gluconeogenesis II (production
of glucose-6-phosphate), specifically in the liver, and glycolysis II (utilization of glucose-6-
phosphate).
d Net TG breakdown is defined as the difference between lipolysis (TG breakdown) and
TG synthesis.
e De novo lipogenesis refers to the conversion of glyceraldehyde-3-phosphate to glycerol-3-
phosphate.
All fluxes, except for De novo lipogenesis, are net fluxes for which a positive value indicates
breakdown (or release) of the associated substrate, and a negative value indicates storage
(or utilization). Absorptive phase, 0–6h; postabsorptive phase, 6–12h.
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ations in substrate storage and utilization, as well as the potential implications of these
differences for metabolic cross-talk among organs and tissues.

Glycogen, the storage form of glucose, is primarily stored in the liver and skeletal
muscle. While other organs, such as the heart and small intestine, contain glycogen in
smaller amounts, the liver and skeletal muscle are the main reservoirs. Figure 7.7 shows the
change in glycogen concentration in the liver (Figure 7.7a) and skeletal muscle (Figure 7.7b)
after a single meal, comparing high-carbohydrate and high-fat content meals.

Figure 7.7: Carbohydrates (glycogen) and fat (TG) storage during the absorptive phase
(0–6h). A single meal of 800 kcal is simulated at t=0. (a) liver glycogen; (b) skeletal
muscle glycogen; (c) liver TG; (d) skeletal muscle TG. HiC, high-carbohydrate meal; HiF,
high-fat meal. ∆ refers to the absolute change in a given substrate, Cx,i(T )− Cx,i(0),
where Cx,i is the concentration of substrate i in tissue x, and T = 6h.

Irrespective of sex, the liver accumulates more glycogen compared to skeletal muscle
during the absorptive phase. In particular, the liver stores about 15 times more glycogen
following a high-carbohydrate meal and about 9 times more glycogen following a high-
fat meal than skeletal muscle. A comparison between sexes shows that the female model
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stores more glycogen in both the liver and skeletal muscle compared to the male model,
a trend consistent across diet types. Specifically, the female model stores approximately
30% more hepatic glycogen and 58% more intramuscular glycogen than the male model,
following either meals. Unlike glycogen, which is a short-term energy storage molecule in
the liver and muscles, TG are primarily stored in adipose tissue, providing a concentrated
and long-lasting reservoir of energy. However, TG are also stored in small amounts in other
tissues, including the liver and skeletal muscle. Regarding hepatic TG, our model shows
marginal differences in TG concentration between the sexes during the absorptive phase
(Figure 7.7c). However, the female model stores approximately 60% more intramuscular
TG, termed intramyocellular lipids (IMCL), than the male model following either meals
(Figure 7.7d). Experimental studies have shown that women store more IMCL than men
[321, 381]. Women were found to have 84% higher lipid density than men [381]. Our
predictions agree well with quantitative experimental findings, as shown in Figure 7.7d.

Tissue-specific sex differences in the postabsorptive phase

In our models, sex-specific differences become evident during short-term fasting, also re-
ferred to as short-term calorie restriction. We thus investigated sex-related differences in
carbohydrate and fat metabolism during a short-term fast of 24 hours following a single
800 kcal meal (see Figure 7.8).

Figure 7.8a shows the uptake and release rates of FFA by organs and tissues during
the last 12 hours of a 24-hour fast. FFA flux is nil for the brain compartment as the
blood-brain barrier restricts the passage of large, hydrophobic molecules like FFA. Instead,
the brain predominantly relies on other energy sources, primarily glucose. For both sexes,
adipose tissue and the GI tract release the most FFA, while the liver uptakes the most
FFA. Although no significant sex difference appears for the GI tract, skeletal muscle, liver,
and adipose tissue exhibit sex-related differences. For both high-carbohydrate and high-fat
meals, the release (and uptake) rates of FFA are higher in the female model compared to
the male model. In particular, female skeletal muscle releases 6 times more FFA during the
fast period following the high-carbohydrate meal and 5 times more FFA following the high-
fat meal. Female adipose tissue releases 17% and 21% more FFA during the fast period
following the high-carbohydrate and high-fat meals, respectively. Consequently, the female
liver uptakes FFA at rates 32% and 28% higher than the male model for high-carbohydrate
and high-fat meals, respectively. Overall, more FFA is being released into the circulation
during the fast than is being taken up by tissues in the female model, thus explaining the
higher increase in plasma FFA in the postabsorptive phase in the female model compared
to the male model (refer to Figure 7.4c), as observed in experiments [384, 388].
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Figure 7.8: Metabolism of carbohydrates during a short-term fast (24h) following a single
800 kcal meal. HiC, high-carbohydrate meal; HiF, high-fat meal. (a) average uptake (or
release) rate (mmol/min) of FFA per organ during the last 12 hours of the fasting
window following HiC and HiF meals; (b) rate of hepatic glucose output (mmol/min)
into the blood; (c) concentration of hepatic glycogen; mM, mmol/L. B, brain; H, heart;
M, muscle; G, GI tract; L, liver, A, adipose tissue; O, other tissues.

The increased reliance of the female liver on circulating FFA may be attributed to in-
tracellular sex differences in substrate handling. For instance, as illustrated in Figure 7.8b,
hepatic glucose production is lower in the female model compared to the male model during
a short-term fast. Moreover, the difference in glucose release between the sexes becomes
larger over time. This result applies to both high-carbohydrate and high-fat meals. Fur-
thermore, Figure 7.8c shows that, alongside storing more glycogen during the absorptive
phase, the female liver tends to maintain higher concentrations of glycogen during short-
term fasting compared to the male model, specifically following a high-carbohydrate meal.
There is no sex-related difference in hepatic glycogen content after a high-fat meal, yet
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the difference in hepatic glucose production persists. The tendency of the female liver to
retain more glycogen throughout both absorptive and postabsorptive phases could explain
the reduced glucose output, and thus the stronger reliance on FFA, potentially as a buffer
to meet energy demands, especially during fasting periods.

We focus next on the following gap in knowledge in sex differences in metabolism: ex-
periments have shown that increasing hepatic FFA uptake and subsequent FFA oxidation
increases gluconeogenesis [400–402]. Yet, women are known to have lower hepatic glucose
output than men despite uptaking and oxidizing more FFA [378, 384, 388, 403]. We pos-
tulate that sex differences in hepatic glucose output during short-term fasts are influenced,
at least in part, by differences in both FFA and glycerol, as well as glycogen handling.
More precisely, we hypothesize that in the female liver, more lipids are redirected towards
carbohydrate metabolism to contribute to glucose production. However, the tendency of
the female liver to conserve glycogen hinders a net increase in glucose output.

To test the aforementioned hypothesis, we began by analyzing the upstream fluxes
responsible for hepatic glucose output. We note first that in addition to uptaking more
FFA, the female liver also uptakes more glycerol than the male liver: 25% and 14% more
glycerol uptake in the last 12 hours of a 24-hour fast following high-carbohydrate and
high-fat meals, respectively. In a short-term fast, the liver produces glucose through both
glycogenolysis and gluconeogenesis. The major substrates of gluconeogenesis are pyruvate
(a carbohydrate precursor), glycerol (a fat precursor), and amino acids [154]. Figure 7.9
shows a comparison between the sexes of the hepatic fluxes involved in glucose production.
There is a marginal difference between the sexes in the gluconeogenic flux from pyruvate
(ϕPYR—GAP). However, for a high-carbohydrate meal, the gluconeogenic flux from glycerol
(ϕGRP—GAP) is 11% higher in the female model, and glycogenolysis is 7% lower in the
female model than in the male model. In the case of a high-fat meal, the gluconeogenic
flux from glycerol (ϕGRP—GAP) is 9.5% higher in the female model, with glycogenolysis
7% lower compared to the male model. These results suggest that although females take
up more FFA during fasting, FFA may be oxidized for energy or re-esterified to TG in
the liver. At the same time, glycerol, the other product of lipolysis, is uptaken at higher
rates in the female liver and stimulates gluconeogenesis via glycerol oxidation (ϕGRP—GAP).
But the concurrent decrease in glycogenolysis in females may explain why the net glucose
output is lower during fasting. We summarized in Figure 7.10 the sex-related differences in
hepatic metabolic fluxes contributing to the sexual dimorphism in hepatic glucose output
during short-term fasts.

Turning to fat metabolism in adipose tissue, our results show that the male model
stores more fat as TG in adipose tissue than the female model following a high-fat meal.
However, this sex difference in TG accumulation is small and subsides for the case of
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Figure 7.9: Change in hepatic energy metabolism with fasting. Values represent averages
over the last 12 hours of a 24-hour fast following a single 800 kcal meal. HiC,
high-carbohydrate meal; HiF, high-fat meal. %∆ F/M refers to the percent relative
difference between the sexes. It calculated as (female flux/male flux -1)×100.

a high-carbohydrate meal (see Figure 7.11a). The rate of fat breakdown (lipolysis) in
adipose tissue is 22% higher in the female model compared to the male model during the
postabsorptive phase (>6h; see Figure 7.11b), despite the two sexes having similar levels of
TG accumulation in adipose tissue. This result is consistent with our modelling assumption
that body composition influences the extent of regional substrate oxidation: a higher basal
body fat percentage in females (29% in the female model vs. 16% in the male model)
would result in greater regional lipolysis [320, 328], assuming similar substrate oxidation
efficiencies. Notably, Figure 7.11c shows that greater amounts of TG are released into the
circulation by the female liver during the short-term fast irrespective of meal composition.
Hepatic fat is mainly delivered to adipose tissue for the purpose of lipolysis. During this
time and following a high-carbohydrate meal, skeletal muscle and the GI tract in the female
model also uptake more fat than the male model, albeit to a smaller extent than adipose
tissue. Following a high-fat meal, skeletal muscle in both models switches from uptake
to release of TG, and the male model more so than the female model—an observation
consistent with our earlier result that skeletal muscle in females tends to store more IMCL
(refer to Figure 7.7).

The exchange of fat, either as TG or FFA, between organs and tissues highlights a
metabolic exchange between the liver and adipose tissue. This inter-organ metabolic path-
way is more prominent in the female model (Figs 7.8,7.9, and 7.11). Overall the female
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Figure 7.10: Sex-related differences in liver metabolic pathways during the postabsorptive
phase (>12 h). Rates higher (lower) in the female model compared to the male model are
shown in blue (red). 9 substrates are transported between blood and tissues (open
double-sided arrows). Single-sided arrows indicate the direction of transport flux, which
varies between the sexes. However, we note that these arrows would be more accurately
depicted as double-sided arrows since substrates can be either taken up or released.
Pathways marked with an asterisk (*) are composed of multiple reaction steps but
grouped together as a single step in this model. Substrate abbreviations are listed in
Table D.1

model has a greater capacity to remove fat from the liver through TG secretion, which is
exported to adipose tissue for either storage as TG (e.g., following a high-fat meal) or to be
broken down into FFA. For the later, our results show that FFA is then returned to the liver
during a short-term fast. This cycle may be the result of a trade-off of efficiencies: adipose
tissue is reasonably efficient at extracting FFA from chylomicrons (large triglyceride-rich
lipoproteins) while the liver is efficient at converting different gluconeogenic precurssors
(e.g., pyruvate, glycerol) into glucose to meet systemic energy needs. Importantly, we note
that the hepatic TG pool is not a major energy store for the rest of the body (that func-
tion is performed by the TG stored in adipose tissue) but appears to be a local store for
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Figure 7.11: Fat metabolism during a short-term fast (24h) following a single 800 kcal
meal. HiC, high-carbohydrate meal; HiF, high-fat meal. (a) Adipose tissue TG
concentration; (b) Net lipolysis rate (the difference between TG breakdown and TG
synthesis) in adipose tissue ; (c) average uptake (or release) rate (mmol/min) of TG per
organ during the last 12 hours of the fasting period following the HiC and HiF meals,
respectively; mM, mmol/L. B, brain; H, heart; M, skeletal muscle; G, GI tract; L, liver,
A, adipose tissue; O, other tissues.

hepatic needs, and the stored TG also acts as a substrate for hepatic secretion of fat into
the bloodstream (see Figure 7.10).
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Metabolic flux sensitivity to body composition

Our model predicted that sex-related differences in metabolic responses are small during the
absorptive phase but become more pronounced during fasting. We argued that the majority
of these differences are attributable to differences between sexes in liver and adipose tissue
function. Considering the significance of body composition in metabolism, we sought to
examine the robustness of our findings in response to variations in body composition.
Specifically, we aimed to assess how changes in fat mass and muscle mass impact key
metabolic fluxes, such as glycolysis, gluconeogenesis, glycogenesis, glycogenolysis in the
liver, and lipolysis in adipose tissue. These fluxes are key in driving whole-body sex
differences, as outlined in Table 7.3. Figures 7.12 and 7.13 present the results of a local
sensitivity analysis of the mentioned fluxes when fat mass or skeletal muscle mass is varied
by either a 5% increase or decrease in both male and female models. Our focus was on the
postabsorptive phase, where key sex differences become apparent.

Figure 7.12: Results of local sensitivity analysis at 9 hours post-meal. (a) Male model
and HiC; (b) female model and HiC; (c) male model and HiF; (d) Female model and HiF.
HiC, high-carbohydrate meal; HiF, high-fat meal. Glycolysis II, ϕG6P→GAP;
gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY; glycogenolysis, ϕGLY→G6P,
lipolysis, ϕTG→FFA–GLR.

Figure 7.12 shows sensitivity results 9 hours after a meal, while Figure 7.13 shows the
results 24 hours after a meal. In general, at 9 hours post-meal (Figure 7.12), the male
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Figure 7.13: Results of local sensitivity analysis at 24 hours post-meal. (a) Male model
and HiC; (b) female model and HiC; (c) male model and HiF; (d) Female model and HiF.
HiC, high-carbohydrate meal; HiF, high-fat meal. Glycolysis II, ϕG6P→GAP;
gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY; glycogenolysis, ϕGLY→G6P,
lipolysis, ϕTG→FFA–GLR.

model shows that a 5% increase or decrease in fat mass induces larger changes compared
to the same variation in muscle mass in either direction. Across meal types, an increase
in fat mass augments gluconeogenesis but diminishes glycolysis and glycogenolysis. The
opposite holds for a decrease in fat mass. In the female model, greater variations are
observed for changes in muscle mass. A 5% increase in muscle mass results in increased
hepatic glycogenesis and reduced hepatic glycogenolysis, with the reverse occurring for a
decrease in muscle mass. As the fasting period extends to 24 hours (Figure 7.13), lipolysis
in adipose tissue exhibits more substantial variations than hepatic fluxes, particularly in
the male model compared to the female model. During this stage of fasting, changes in
fat mass or muscle mass lead to similar sensitivity indices in magnitude, but the direction
of change varies. For example, both a decrease in muscle mass and fat mass reduce the
lipolysis flux, while the opposite leads to an increase in lipolysis. These results apply to
both high-carbohydrate and high-fat diets. Comparing Figure 7.12 and Figure 7.13 reveals
that hepatic fluxes are most sensitive to body composition during the early postabsorptive
period, whereas lipolysis in adipose tissue is most sensitive during the late postabsorptive
phase.

Overall, the magnitudes of the sensitivity indices remain small, with −0.2 < Si < 0.2
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and where i represents either fat mass or muscle mass. This observation applies to both
models and across both meal types. Such findings provide increased confidence that the
model predictions reflect genuine sex-related metabolic differences, regardless of variations
in body composition. We also point out that the sensitivity indices at 24 hours post-meal
are higher than those at 9 hours post-meal by an order of magnitude. This suggests that
the model is more sensitive to changes in body compositions during the latter stages of the
postabsorptive period, indicating that sex differences associated with body composition
may become more pronounced during longer fasts. This aligns well with our findings that
sex differences become more apparent during the late postabsorptive phase. More detail
about our sensitivity analysis method and actual values of sensitivity indices are available
in Appendix D.4.

7.3 Discussion

Variations in whole-body metabolism resulting from dietary factors. Throughout
the absorptive phase (0-6h), both sexes experience a marked increase in RQ (≥ 0.88),
indicative of a preference for carbohydrate oxidation. Figure 7.5 shows the whole-body
RQ results for male and female models. During the transition to the postabsorptive phase,
RQ values, although decreasing, remain > 0.8, suggesting sustained carbohydrate oxidation
in the early postabsorptive period (6-12h). This trend is consistent across sexes, showing
no significant differences in RQ values. A 2021 experimental study [412] also shows no
sex-related difference in RQ in lean, healthy young males and females in the short term
following a high-fat diet.

Importantly, meal composition, rather than sex, exerts the most significant influence
on the evolution of whole-body RQ after a single mixed meal. Our results indicate that RQ
peaks over an hour earlier for a high-fat meal compared to a high-carbohydrate meal (Fig-
ure 7.6). In line with this observation, the oxidation fractions of carbohydrates, reflecting
the extent to which carbohydrates contribute to ATP energy production, peak earlier and
remain elevated for 2.5 hours following a high-fat meal compared to a high-carbohydrate
meal. Yet, the increased availability of carbohydrate following a high-carbohydrate meal
leads to a swift increase in carbohydrate oxidation, surpassing that induced by a high-fat
meal after 3 hours.

This seemingly counterintuitive result, considering that a high-carbohydrate meal has
40% more carbohydrate content than a high-fat meal in our simulations, raises questions
about the underlying metabolic pathways and energy utilization during the digestion of
carbohydrates and fats. Mechanistically for a high-fat meal, the initial spike in RQ can be
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attributed to the body’s preference for utilizing carbohydrates for quick energy. However,
as the digestion and absorption of dietary fat progress, the body gradually shifts to using
fatty acids for energy. This transition from carbohydrate to fat metabolism contributes to
the eventual decline in RQ. Conversely, with a high-carbohydrate meal, the body promptly
responds by prioritizing the export of carbohydrates from the systemic circulation. This
is followed by the breakdown and storage of excess carbohydrates as glycogen, primarily
in organs like skeletal muscle and the liver. This rapid uptake into organs prevents post-
prandial hyperglycemia, characterized by elevated blood glucose levels persisting for more
than 1-2 hours after food ingestion [405].

The delayed increase in RQ following a high-carbohydrate meal can be attributed to this
differential metabolic response: aggressively storing glucose to restore normal glycemia,
thus continuing to burn fat to some extent during the initial phase following a high-
carbohydrate meal. Then, the body eventually transitions to using carbohydrate as fuel.
In summary, the sequence of RQ peaks reflects the dynamic interplay between carbohy-
drate and fat metabolism during the absorptive phase, illustrating the body’s adaptive
mechanisms to efficiently extract energy from different macronutrients over time.

Variations in whole-body metabolism resulting from sex differences. We
observed sex-related differences in whole-body metabolic fluxes that persist across meal
types, with more pronounced effects following a high-carbohydrate meal (Table 7.3). In the
absorptive phase, our findings indicate that the female model tends to preserve significantly
more fat than the male model. This is evident in the net rate of TG synthesis, which is 21%
and 26% higher in the female model for high-carbohydrate and high-fat meals, respectively.
Additionally, de novo lipogenesis, the process synthesizing FFA from substrates such as
glucose and amino acids, is higher in the female model (Table 7.3). This implies that more
glucose is stored as fat in the female model than in the male model during the absorptive
phase. Sex differences in glucose metabolism during the absorptive phase are also apparent
and suggest a preference in the female model to utilize more carbohydrates to meet energy
needs (Table 7.3). Notably, rates of glycogen breakdown and gluconeogenesis are higher
in the female model during this period. Experimental data indicate a complex role of
sex hormones, with sexual dimorphisms depending on the individual’s metabolic status.
For example, women in the prandial and postprandial states utilize more carbohydrates
than men to meet energy needs, while during fasting or exercise, women rely more on fat
oxidation than men [303, 380, 383, 386, 406]. Our results align with the former during the
absorptive phase, and we will revisit the latter below for the postabsorptive phase.

In the postabsorptive phase, sex differences become more evident in both fat and glu-
cose metabolism and following a high-carbohydrate meal. The female model produces less
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glucose but oxidizes more fat. Specifically, our female model exhibits a 10% higher net rate
of glycogenolysis and a 15% lower net rate of gluconeogenesis compared to the male model.
The female model shows lower rates of glucose production as the decrease in gluconeoge-
nesis dominates. Experimental studies have also demonstrated this sexual dimorphism in
glucose production [303, 380]. Additionally, lipolysis is 8% higher in the female model,
suggesting a higher reliance on FFA by other organs and tissues during the postabsorptive
phase. Following mass action principles, higher glycogen levels may lead to increased rates
of glycogen breakdown, and higher fat levels may lead to increased rates of fat hydrolysis.
As expected, these rates are higher for the female model, given that the female liver stores
more glycogen during the absorptive phase, and the female model has a higher initial body
fat percentage (and mass). Mechanistically, the reduced rate of gluconeogenesis in the
female model is a consequence of increased systemic lipolysis. Since the rate of glucose
output from the liver to the circulation depends on the rate of glucose uptake by other
organs, the inherent net rate of gluconeogenesis is reduced in the female model as other
organs and tissues supplement their energy needs by uptaking and oxidizing FFAs during
the postabsorptive phase. Our predictions aligns with experimental observations indicating
that women rely more on fat oxidation than men during fasting [303, 380, 383, 406]. After
a high-fat meal, the female model continued to show elevated rates of lipolysis. In general,
disparities related to sex are more noticeable in the postabsorptive phase compared to the
absorptive phase, particularly following a high-carbohydrate meal compared to a high-fat
meal.

Sex-differences at the organ and tissue levels drive systemic differences. Our
analysis revealed sex-related differences during both the absorptive and postabsorptive
phases, which persisted for both high-carbohydrate and high-fat meals. Notably, these
differences tended to be more pronounced following a high-carbohydrate meal. In the ab-
sorptive period, two substrates, namely glycogen and TG, exhibited a significant difference
between the sexes (Figure 7.7). The male model tended to store less glycogen in the liver
and skeletal muscle than the female model, consequently producing and oxidizing more
glucose for energy. Regarding TG, our models showed similar amounts stored in the liver,
while the male model stored significantly less TG in skeletal muscle fibers (approximately
60% less). This aligns with the findings of Devries et al. [321] and Tarnopolsky et al. [381],
indicating that men have lower IMCL density compared to women (28%–84% less).

Sex-related differences became more evident during the postabsorptive period (more
than 6 hours after a meal). The female liver’s inclination to preserve more glycogen than
the male model extended into the postabsorptive phase (Figure 7.8c). Consequently, the
female liver released less glucose into the circulation during that time (Figure 7.8c). To
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offset the reduced glucose output, the liver and other organs increased their reliance on
FFA oxidation for energy. For example, the female liver took up significantly more FFA
to meet its energy needs, and some of that FFA was also re-esterified and released into the
bloodstream as TG (Figure 7.11c). The rate of FFA uptake is directly linked to the sub-
strate’s availability in the circulation [154]. The increased FFA availability is attributed to
lipolysis in adipose tissue, the GI tract, and skeletal muscle (Figure 7.8a). We note that the
basal rate of lipolysis in adipose tissue is higher in our female model by 20%, in line with
findings from experimental studies [320, 328]. Overall, FFA release is higher from adipose
tissue and skeletal muscle in the female model. For the latter, the greater amount of IMCL
in the female model explains the higher rate of muscle lipolysis. We identified a candidate
mechanism, driven by adipose tissue and the liver, which could mechanistically explain the
observed sex differences in hepatic glucose output and FFA availability/oxidation between
the sexes. We discuss it next.

Liver and adipose tissue emerge as hubs of sex-related metabolic differences.
Especially during the late postabsorptive phase (more than 12 hours after a meal), our
models have highlighted a metabolic exchange between the liver and adipose tissue that
enables the body to meet energy requirements when glycogen stores are low or depleted
(Fog 7.10). For instance, we observed that in addition to FFA, the female liver also takes
up more glycerol, the other product of lipolysis. On the one hand, when FFA enters hepatic
cells, some of it is oxidized for energy, and some is re-esterified to TG. Our models show that
these processes occur at higher rates in the female model compared to the male model. On
the other hand, the glycerol entering hepatic cells is diverted to promote gluconeogenesis.
We observed no sex difference in the rate of gluconeogenesis from pyruvate. In net, the rate
of gluconeogenesis is higher in the female model than the male model. Simultaneously, the
rate of glycogenolysis is reduced in the female liver to the extent that the net rate of glucose
production and subsequent glucose output is lower in the female model compared to the
male model. We recall that glycogenolysis and gluconeogenesis contribute almost equally
during the postabsorptive phase to glucose production. As such, other organs compensate
for glucose by taking up and oxidizing FFA (except the brain).

The TG released by the liver is then taken up by adipose tissue, broken down into
FFA, and released into the circulation for re-uptake by liver. This cycle implies that
females both synthesize and burn more fat than males during a short-term fast. A result
supported by the higher levels of plasma FFA and glycerol during the postabsorptive
period and regardless of meal composition (Figs 7.4c and d7.4). The greater glycerol rate
of appearance is an index of the whole-body lipolytic rate [380]. This metabolic exchange
between the liver and adipose tissue is independent of sex, but the difference in body
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composition and reaction rates between the sexes causes the female model to rely more
heavily on it.

Our candidate mechanism could partly explain a current gap in the literature. Increased
uptake of FFA is known to increase gluconeogenesis [400–402], but females, who signifi-
cantly uptake more FFA than males, also produce less glucose [378, 384, 388, 403]. This
suggests that an alternate mechanism hinders the increase in gluconeogenesis from leading
to increased glucose output. In summary, we posit that gluconeogenesis is increased in
females due to the concurrent uptake of FFA and glycerol. Glycerol specifically increases
gluconeogenesis in the liver, but the reduction in the rate of glycogenolysis is such that
the net contribution to glucose output is negative in females. At the core of these sex dif-
ferences are the liver, which preserves more glycogen in females, and adipose tissue, which
provides FFA and glycerol to meet the body’s energy needs. The latter is accentuated
in females, who have a higher basal rate of lipolysis regardless of the fact that they have
a higher percentage of body fat [320, 328]. Our candidate mechanism is summarized in
Figure 7.10.

7.4 Conclusion

We developed a whole-body, multi-scale, and sex-specific model of energy metabolism. We
incorporated metabolic adjustments that connect cellular metabolism in organs to sys-
temic responses following different mixed meals. Our model aligns well with experimental
data. According to our predictions, sex-related metabolic differences are more noticeable
following a high-carbohydrate meal compared to a high-fat meal, with differences becom-
ing more pronounced during a short-term fast. In summary, women tend to preserve more
fat than men during the absorptive period but oxidize significantly more fat during the
postabsorptive period. We hypothesized that the increased reliance on fat metabolism
in females is influenced by sex differences in the liver and adipose tissue, and we have
outlined a candidate underlying mechanism for this sexual dimorphism. Specifically, the
female liver conserves more glycogen, leading to reduced glucose output. This decrease
in arterial glucose promotes FFA oxidation by other organs and tissues, except the brain.
Computational biology offer promising avenues for refining whole-body metabolic mod-
els. Integrating sex-specific data and parameters into multi-scale frameworks holds the
potential to enhance our understanding of human metabolism and its modulation by sex.
By accounting for the intricate interplay between organs, hormones, and metabolic path-
ways, these models can provide valuable insights into the underlying mechanisms driving
sex-specific metabolic responses.
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Chapter 8

Conclusions and future directions

In this chapter, I provide a summary of the key findings from this thesis and discuss avenues
for future research aligned with my overarching theme of “timed lifestyle interventions.”
This may involve mechanistic modeling of multi-scale biological systems (sections 8.2 and
8.4), as well as mean field analysis of networks of oscillators (section 8.3). In section 8.2, I
discuss future directions for our model of circadian-immune interactions. Then, in section
8.3, I outline methods for introducing heterogeneity in continuum models of interacting
circadian neurons. Similarly, in section 8.4, I discuss related approached for modeling the
influence of rhythms through both oscillatory signals such as hormones and non-oscillatory
signals such as diet and exercise.

8.1 Summary of work

My work in this thesis entailed building and analyzing mathematical models for biological
systems, as well as developing computational tools for the numerical investigation of these
systems. I was particularly interested in addressing problems with practical impact, and
my projects focused on applications in systems biology ranging from the single cell to the
network or system level. The approaches were: (1) develop multiscale mathematical mod-
els to address fundamental questions in metabolism, immunity, and circadian rhythms,
including their intricate interactions; and (2) derive macroscopic descriptions for interact-
ing neurons, which describe the system’s behavior as the number of particles approaches
infinity, to investigate the neurophysiological mechanisms underlying the emergence of an
ensemble rhythm.
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We developed sex-specific whole-body models representing healthy young adults. Our
models explore how men and women metabolize mixed meals, especially high-carbohydrate
and high-fat meals, as well as how energy utilization varies between the sexes during exer-
cise. From modelling exercise, we were able to (i) quantify the extent of sex differences in
carbohydrate and lipid metabolism in different organs and tissues; (ii) identify a candidate
physiological mechanism in the liver that drives sex differences in glucose production; and
(iii) assess the subsequent metabolic responses in skeletal muscle and adipose tissue and
their role in potentiating differences in substrate utilization. From modelling feeding and
fasting, we were able to (iv) quantify sex differences in carbohydrate and lipid metabolism
at the whole-body level, (v) assess sex differences in carbohydrate and lipid metabolism
across various organs and tissues, identifying key organs driving whole-body responses, and
(vi) propose a candidate physiological mechanism driving sex differences in glucose pro-
duction and fat oxidation patterns. We particularly addressed a gap in the experimental
literature: while experiments demonstrate that increased hepatic free fatty acids (FFA) up-
take and subsequent FFA oxidation enhance glucose production [400–402], women exhibit
lower hepatic glucose output compared to men despite taking up and oxidizing more FFA
[378, 384, 388, 403]. We showed that the female liver conserves more glycogen, leading to
reduced glucose output. This decrease in arterial glucose promotes FFA oxidation by other
organs and tissues, except the brain. We also proposed candidate mechanisms suggesting
cross-talk between the liver and skeletal muscle during exercise, and between the liver and
adipose tissue during feeding and fasting.

We further developed a model of the circadian clock within the lung, which we coupled
with an acute inflammation model to investigate how the disruptive effects of shift work
manifest differently between males and females during inflammation. Drawing from ex-
perimental data, we incorporated sex-specific differences in gene expression into our model
and tested how these variations translate into immune responses. Notably, we (vii) identi-
fied REV-ERB as a key regulator influencing the expression of pro-inflammatory cytokine
IL-6 and anti-inflammatory cytokine IL-10. Additionally, our findings (viii) highlighted
the significance of sexual dimorphism in shaping the magnitude of inflammatory responses
during shift work: females exhibited a weakened immune response attributed to the signif-
icant downregulation of Rev-Erbα, whereas males displayed heightened responses due to
the overexpression of Rev-Erbα.

Starting from individual dynamics, we also derived macroscopic descriptions of neural
networks based on mean field PDEs for the evolution of a density of individuals. These
continuum models allow us to explore the influence of factors such as noise and interactions
on emergent macroscopic properties in the scaling limit (N → ∞). We provided (ix) a
numerical description of the bifurcations resulting from the noise-induced transitions: Hopf
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bifurcations with respect to the coupling and noise parameters, which are synonymous with
synchronized activity. Our numerical simulations show a noise-induced rhythm at low noise
intensities, while the SCN clock is arrhythmic in the high noise setting. Notably, we showed
that (x) coupling induces amplitude expansion at low noise intensities, and varying coupling
strength can cause period locking and variance dissipation even in the presence of noise.

A recurring theme in this thesis is the incorporation of sex differences into modelling.
Computational modelling is increasingly crucial in medicine, offering refined methods for
disease diagnosis, prevention, and treatment by simulating biological processes and un-
covering their underlying mechanisms. Given the ubiquitous sex differences, substantial
benefits can only be realized if model predictions apply to both sexes. In the next few
years, I aim to pursue several questions stemming from (1) how neural networks in the
brain develop topologies that are efficient and robust, and (2) how molecular networks
at the tissue level interact with neural signals in healthy and pathological states. It is
my hope that these model predictions and hypotheses serve to guide future experimental
endeavors.

8.2 Conclusions and future directions for the clock-

immune interaction model

We have successfully developed a model of the bi-directional interactions between innate
immune responses and the circadian clock within the lung. Model parameters have been
estimated from experimental data concerning key immune agents (cytokines) as well as
clock genes and proteins. Furthermore, we simulated scenarios of shift work or chronic
jet lag by inducing an 8-hour phase advance in the circadian system and incorporated sex
differences in gene expression levels. This coupled system enabled us to explore the intricate
interactions between immune agents and the lung clock. Through our investigations, we
have identified a key circadian regulator in the modulation of inflammatory response: REV-
ERB. Acting as an equilibrist, REV-ERB exerts a negative influence on the expression
of pro-inflammatory cytokine IL-6 and anti-inflammatory cytokine IL-10. Additionally,
our research highlights the significance of sexual dimorphism in the magnitude of the
inflammatory response during chronic jet lag. Specifically, the female model exhibited a
reduced production of pro-inflammatory cytokines compared to the male model, whereas
the male model displayed exacerbated responses. We hypothesize that males may be more
susceptible to sepsis due to their heightened inflammatory response, while females may
endure longer-term effects of infection.
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8.2.1 Modelling active infection with pathogen replication and
death

In our model of acute inflammation, the immune response is initiated by a bolus injec-
tion of LPS. LPS, or lipopolysaccharide, is a molecule present in the outer membrane of
Gram-negative bacteria. It serves as a potent stimulator of the immune system, triggering
inflammatory responses throughout the body. However, it is important to note that LPS
itself does not undergo replication. Instead, it is a constituent of the bacterial cell wall,
and as bacteria multiply, they produce more LPS as part of their outer membrane.

An intuitive extension of our model is to replace LPS with an active, dynamic compart-
ment representing bacterial agents. Unlike adaptive immune responses, which are specific
to particular pathogens, innate immune responses, as depicted in our model, depend on
a set of proteins (cytokines) and phagocytic cells capable of recognizing conserved fea-
tures of pathogens and rapidly activating to combat invading microorganisms. As such, a
generalization of the pathogen compartment can be based on the assumptions that:

(i) Bacteria reproduce asexually through binary fission, where a parent cell divides into
two equal-sized daughter cells, leading to exponential growth;

(ii) Cells in the bacterial population are well mixed, with replication and dwelling times
following exponential distributions.

Relevant modifications to the model include:

(i) Bacteria grow at a rate k, which corresponds to the reciprocal of the doubling time;

(ii) Bacteria can be eliminated by host immune defenses (phagocytic cells) at a rate µ;

(iii) Bacteria can undergo bursting or death at a rate ζ.

These modifications are particularly interesting because they allow for direct specification
of the parameter k based on the known doubling time of the bacteria being modeled.
Alternatively, exploring a range of k values and simulating different scenarios can provide
insights into how the severity of acute inflammation correlates with bacterial growth rates
and whether the responses of the circadian clock are influenced by varying growth rates.
Incorporating mechanisms for bacterial replication within mathematical models describing
bacterial infections in a host would enhance the adaptability and applicability of our model.
A schematic diagram illustrating the structure of the proposed new model is presented in
Figure 8.1.
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Figure 8.1: Dotted arrows represent activation; blunt dashed arrows represent inhibition.
In the acute inflammation model, P denotes an active replicating bacterial agent; D,
damage marker; N , activated phagocytic cells; CA, slow-acting anti-inflammatory
cytokines; IL-6 and TNFα are pro-inflammatory cytokines; IL-10 is an anti-inflammatory
cytokine; YIL−10 is a tissue-driven (non-accessible) IL-10 promoter.

8.2.2 Integrating cytokine-clock interactions

The circadian clock regulates immune processes through precise molecular mechanisms,
with clock proteins such as BMAL1 and REV-ERBα exerting significant control over innate
immune responses. This interplay between the circadian clock and inflammation operates
in a bidirectional manner, whereby inflammation can disrupt the clock mechanism.

For example, active inflammation accelerates the degradation of REV-ERBα [197].
Within our model, we represent active inflammation using a damage marker. This damage
marker can serve as the link between inflammation and the rate of REV-ERBα degradation.
Moreover, studies have shown that TNFα incubation suppresses the expression of Per
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genes both in vitro and in vivo in mice [201], as well as Cry1 [236]. Yoshida et al. [237]
and Ertosun et al. [238] have demonstrated that TNFα modulates the transcription of
Bmal1 through the up-regulation of Rorα. While our current model does not incorporate
direct connections from cytokines to clock genes and proteins, these associations could be
integrated into future expansions of the model.

8.3 Understanding the role of heterogeneity in macro-

scopic dynamics

In Chapter 5, we developed a model of coupled oscillators to study synchronization dy-
namics in the presence of noise (Gaussian). Naturally, noise at the level of the SCN
network is essential since the neuronal activity is not totally deterministic. Our focus was
on the macroscopic picture that approximates the microscopic dynamics as the number
of particles goes to infinity, with the goal to characterize the bifurcations resulting from
noise-induced transitions in a SCN network. We considered an all-to-all coupling topol-
ogy with Goodwin-type neurons and derived the scaling limit, called the mean field limit
[47, 50, 51]. Our results showed that increasing the coupling strength leads to phase tran-
sitions through Hopf bifurcations. The same type of bifurcation governs the instabilities
caused by noise. This approach allowed to identify where the system of coupled SCN neu-
rons exhibit a stable stationary state (incoherence within the SCN network) or limit cycle
oscillations (synchronized activity). Overall, coupling induced resonance-like behavior at
low noise intensities, and varying coupling strength caused period locking even in the pres-
ence of noise. We also confirmed numerically the convergence of error between solutions to
the stochastic system and the mean field equation when the number of neurons tends to
infinity. This prior work lends itself to two areas of improvement: investigating (1) how the
type of interaction or connectivity between cells leads to system-level synchronization, and
(2) how cellular heterogeneity influences ensemble characteristics and potentially influences
the transition to complete network synchrony.

We recall that a circadian rhythm is a natural oscillation that repeats roughly every 24
hours. A master clock located in the suprachiasmatic nuclei (SCN) of the brain regulates
the circadian rhythm of physiological and behavioral activities in mammals. What we are
learning now is that the SCN is not a homogeneous cellular centre but a complex het-
erogeneous network with two distinct groups of neurons (Figure 8.2)—the light-receptive
ventralateral (VL) region (containing 25% of neurons) and the light-insensitive dorsalme-
dial (DM) region (containing 75% of neurons). It is not possible to fully infer the network
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Figure 8.2: Scheme of the SCN network. Reproduced from [17] with permission.

structure of the SCN from experimental data, and the causality between network topol-
ogy/heterogeneity and SCN function remains unclear. While awaiting advancements in
experimental techniques, mathematical models can be employed to investigate the role of
heterogeneity in the SCN. Thus, a long-term goal of my research is to investigate how het-
erogeneity in the SCN leads to efficient and robust circadian rhythms. Remarkably, almost
every cell in the body has a circadian rhythm [32]. I will apply mean field theory to connect
the individual properties of neurons to the overall population dynamics. Besides the previ-
ously mentioned differences between the VL and DM regions, neurons of the same cell type
can also exhibit significant variations in their response properties [413]. Therefore, a more
suitable model for the diversity of cell types in the SCN should account for both genuinely
distinct cell types and variations among cells within a specific type. We refer to the latter
as within-type heterogeneity and the former as between-type heterogeneity. An important
consideration is the choice of topology for the connections between neurons. It would be
reasonable to begin this analysis with all-to-all coupled neurons. However, recent work
[17] has shown that robust rhythms with large amplitudes, a high synchronization degree,
and a large entrainment ability exist mainly in small-world and scale-free type networks
(Figure 8.3), and therefore investigating these topologies will be part of my future work.

8.3.1 How does within-type heterogeneity affect synchronization
and SCN function?

The goal is to investigate the specific contributions of within-type heterogeneity to SCN
properties by making use of a recently developed mean field theory for networks of coupled
neurons with distributed parameters [414, 415]. My proposed approach is as follows: (i)
identify a suitable oscillator model such as coupled phase-amplitude models or mechanistic
negative-feedback oscillator as we did in Chapter 5; (ii) derive the mean field limit that

162



Figure 8.3: Different kinds of network topology. (a) Random network (erdos-renyi
model); (b) small-world network (watts and strogatz model); (c) scale free network
(barabasi-albert model). Reproduced from [18]. Copyright © 2014, IEEE.

governs the network dynamics in the scaling limit N → ∞; (iii) identify relevant sources
of heterogeneity and treat relevant model parameters as distributed values across the pop-
ulation. For example, one can assume that the membrane potential or the recovery time
at any t > 0 is fully captured by a Lorentzian probability distribution. Importantly, point
(ii) involves proving that some limit exists in a suitable topology, identifying the limit as
the solution of a nonlinear problem, and proving that the nonlinear problem is well-posed,
i.e., limit is uniquely defined. This can be a challenge if the interaction kernel is not as
“nice” or regular. Classical mean field limit results require that the interaction kernel be
essentially Lipschitz.
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8.3.2 How does between-type heterogeneity affect synchroniza-
tion and SCN function?

Extending on the idea above, heterogeneity can be represented via two interacting neuron
populations (VL and DM). Between-type heterogeneity can be represented by asymetric
coupling strengths between the two populations, as suggested in Ref. [17]. In addition,
I will differentiate between the two populations by applying the Lorentzian ansatz with
different centers and half-width-at-half-maximum values. If the models have explicit sta-
tionary solutions, I can also investigate heterogeneity via a linear stability analysis that
links to the model parameters. I hypothesize that synchronization arises from bifurca-
tions of the stationary solutions. In particular, the degree of heterogeneity could act as
a bifurcation parameter and be inversely related to the strength of the connectivity. A
majority of work in this direction aims at obtaining limiting ODEs for the proportions of
different compartments of the population [414–416], and the scaling limits presented are by
design approximate. This proposed approach introduces heterogeneity and aims to provide
macroscopic descriptions of neural networks using mean field PDEs for the evolution of a
density of individuals.

8.4 Conclusions and future directions for the metabolism

models

A significant part of this thesis was devoted to the development of whole-body mechanistic
models of metabolism. We first developed a sex-specific multi-scale model that relates
cellular metabolism in the organs to whole-body responses during exercise. We then de-
veloped a new module for this model that represents the metabolism of food intake and
fasting. Our current model proves versatile, offering insights into various functions such as
exercise, diet, and sex modulation. These were constructed with the future goal of inves-
tigating the effect of timed lifestyle interventions such as exercise and diet on metabolic
efficiency. These are important considerations for pathologies such as diabetes, in par-
ticular type 2 diabetes (T2D). The alternation of eating and fasting, in conjunction with
exercise, could be manipulated to balance blood sugar levels.

Besides the light-dark cycle, other environmental and behavioral cues can fine-tune our
circadian rhythm. Our bodies have a peripheral clock system that is primarily composed
of muscle, adipose tissue, liver, and gut, and which also participates in the regulation of
the circadian rhythm. Exercise, and food in particular, have the ability to reset the clocks
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of all of our peripheral tissues. Although the ‘brain clock’ continues to synchronize with
the light signal, peripherical clocks are more responsive to the timing of food and exercise.
Exercise is a strong Zeitgeber of the muscle clock, and it has the ability to effectively reset
circadian rhythms. In addition, physical ability is known to fluctuate throughout the day.
Physical strength and skeletal muscle function, for example, peak in the late afternoon.

In recent years, evidence has emerged that the circadian clock can interact with the
nutrients we consume to influence how our bodies work. The term “chrononutrition” refers
to this relatively new field. Throughout the day, our blood glucose follows a circadian
rhythm. The body is better able to manage blood glucose earlier in the day, when food
is typically consumed, but less so at night, when fasting is typically observed. Hormones
involved in glucose metabolism, such as insulin and cortisol, also exhibit circadian rhythms.
Eating when the body expects insulin to rise improves insulin response and glucose removal
from the bloodstream, allowing us to maintain normal blood sugar levels. This ultimately
results in lower insulin levels during fasting hours, which is a good thing.

Three primary sources contribute to the entrainment of peripheral clocks: (a) direct
entrainment by the SCN via neural and hormonal signals; (b) entrainment through feeding-
fasting rhythms; and (c) entrainment via body temperature fluctuations. We will now
explore how we can integrate sources (a) and (b) into our existing models.

8.4.1 Entrainment through neural and hormonal signals

In 1943, Pincus [417] initially observed that the concentration of specific adrenal hormones
in urine displayed oscillations following a day-night pattern. Nearly twenty years later,
it was discovered that isolated adrenal glands exhibited inherent metabolic rhythmicity
in culture, indicating the presence of an autonomous, internal clock [418]. Subsequent
research suggested the SCN as a potential regulator of circadian adrenal function, as evi-
denced by the loss of circadian oscillations in adrenal corticosterone content following SCN
lesioning [419]. Furthermore, consistent with these findings, studies in humans showed low
circulating catecholamine levels during nighttime hours and elevated levels during the day-
time [420, 421]. Specifically, epinephrine was observed to display distinct, self-sustained
rhythmicity [421]. Our models incorporate the dynamics of epinephrine, which govern
the production of insulin and thus indirectly influence blood glucose balance. Moreover,
epinephrine serves as a direct neuroendocrine signal for various tissues, including the heart,
skeletal muscle, gastrointestinal tract, and adipose tissue (refer to Chapter 6, Figure 6.1).
The current models consider epinephrine to be constant at rest, but to go through a step
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increase during exercise. We recall that

CE(t) = CE(0) + ω(WR) · (1− exp (t/τE)) , (8.1)

where CE(0) is the initial concentration of epinephrine at rest, WR is the work rate fixed
at 150W or 60% of V̇O2max, and ω(WR) is a parameter determining the gain with respect
to a step change in work rate applied during exercise; τE is a time constant for epinephrine
dynamics.

We propose replacing CE(0) with an oscillatory signal at rest denoted as C0
E(t). It is

worth mentioning that if epinephrine oscillates, so will insulin, glucagon and consequently
glucose in our models. Basal epinephrine can be depicted either as a sinusoidal wave or a
square wave. For the sinusoidal form:

C0
E(t) =

A

2
+
A

2
sin(ωt+ φ), (8.2)

where ω = 2π/24 and C0
E(t) varies between 0 and A with a period of 24 hours. Here, φ

represents a phase shift. Alternatively, for the square wave form:

C0
E(t) =

A

2
+
A

2
sgn
(
sin(ωt+ φ)

)
, (8.3)

where ω = 2π/24 and C0
E(t) also varies between 0 and A with a period of 24 hours. Again,

φ denotes a phase shift, and sgn represents the sign function of a sinusoid, taking the value
of 1 when the sinusoid is positive, -1 when negative, and 0 at discontinuities.

While a sinusoidal signal may be more realistic, the square wave offers greater control
for investigation. With a square wave, we can easily manipulate, in silico, the duration of
the light period in the light-dark cycle. This allows for simulations of various light exposure
schedules to examine how the duration of the dark phase, possibly corresponding to sleep
duration, influences the metabolic response to exercise.

8.4.2 Entrainment through feeding-fasting rhythms

Modelling the bidirectional relationship between the circadian clock and metabolism can be
approached in a tissue-specific manner, as peripheral clocks in organs respond to signals be-
yond light cues. Particularly in the context of feeding-fasting cycles, the liver clock exhibits
heightened responsiveness to these signals [422]. I suggest that future research prioritize
investigating the molecular mechanisms underlying hepatic circadian gene regulation and
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exploring the connections between hepatic circadian clock systems and metabolism. Below,
I provide a concise literature review outlining the current understanding of the bidirectional
interactions between the liver clock and metabolites, including hormones and substrates.
This review is not exhaustive.

Hepatic clock regulation (→). The expression levels of numerous hepatic genes, in-
cluding both clock-related and liver-specific genes, exhibit circadian periodicity [422, 423].
Mice deficient in Bmal1 lose rhythmic behavior in both the brain and liver, while those
lacking Clock exhibit impaired hepatic circadian rhythms but retain central periodicity
[424]. However, hepatic periodicity demonstrates relative autonomy from central regula-
tion, partly attributed to food intake. Even when the central brain clock functions correctly,
more than 80% of the hepatic transcriptome is influenced by meal intake [425].

Bmal1. Mice lacking Bmal1 in the liver exhibit severe hypoglycemia during the in-
active period [424]. Another study has demonstrated that the loss of daily BMAL1
fluctuations leads to a decrease in the expression of GLUT2 (Glucose transporter
2) and several other genes involved in hepatic glucose storage, transport, and ex-
port [424]. BMAL1 has also been shown to promote gluconeogenic gene expression
through the HDAC5 pathway [426]. Overall, these findings suggest defective liver
gluconeogenesis following Bmal1 knockout. Additionally, liver-specific Bmal1−/−

causes dyslipidemia, characterized by elevated circulating FFA and high hepatic
TGs [427].

Clock. Hepatic glycogen content exhibits strong circadian fluctuations, peaking at
the end of the active phase in mammals. Circadian rhythms are also observed in
the activities of key enzymes responsible for both glycogenesis and glycogenolysis.
Transient reporter assays have revealed that CLOCK drives the transcriptional
activation of Gys2 (glycogen synthase 2). Thus, CLOCK regulates the circadian
patterns of hepatic glycogen synthesis by promoting the transcriptional activation of
Gys2 [428]. Furthermore, Clock−/− mice demonstrate decreased hepatic triglyceride
accumulation when subjected to high-fat diets [427].

Per. Mice lacking Per1/2 experience severe hypoglycemia [422, 424]. Similar re-
sults have been confirmed in humans, where Per2 was found to regulate glucose
homeostasis [429]. In particular, loss of PER causes hyperinsulinemia [430, 431].

Cry. Cry1 and Cry2, core components of the clock, are rhythmically expressed in
the liver. Hepatic overexpression of Cry lowers blood glucose concentrations and
improves insulin sensitivity [125]. The activity of cAMP response element–binding
protein (Creb) during fasting is modulated by Cry1 and Cry2, which are rhyth-
mically expressed in the liver. Cry1 expression is elevated during the night-day
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transition, when it inhibits gluconeogenic gene expression [125, 422].

Rev-Erb. In human hepatoma cells, Rev-erbα specifically inhibits the expression
of genes encoding gluconeogenic enzymes G6Pase and PEPCK in metabolic gene
regulation [432]. Both liver Rev-Erbα and Rev-Erbβ deficient mice exhibit remark-
able hepatic steatosis (intrahepatic fat accumulation) [427].

Hormonal regulation (←). Insulin secretion is tightly regulated by the circadian
clock. Deficiencies in both CLOCK and BMAL1 lead to hypoinsulinemia [433, 434], while
the absence of PER and CRY results in hyperinsulinemia [430, 431]. In turn, insulin and
glucose also influence the clock. In a model using rat hepatocytes and primary mouse
hepatocytes, insulin resynchronized the liver clock [435, 436]. Specifically, the expressions
of liver Per2 and Rev-erbα genes were advanced in phase within one day of refeeding after
a fast. Moreover, within two hours, insulin injection in intact mice not only influenced gene
expression through food intake but also upregulated Per2 and downregulated Rev-erbα.
Additionally, glucose was found to downregulate Per1 and Per2 expression in cultured rat
fibroblasts [437].

Future extensions of this research should explore the concept of time-restricted eating
(TRE), a behavioral intervention approach driven by the emerging understanding of cir-
cadian rhythms in physiology and metabolism. In TRE, all caloric intake is confined to a
regular interval of less than 12 hours, without any deliberate reduction in calorie intake.
The objective of modeling will be to integrate our model of the circadian gene regulatory
network with the liver compartment in our whole-body model. It is worth noting that the
circadian clock model operates as an autonomous oscillator, and when linked to substrates
in the liver, it will induce oscillations, particularly in the rate of glucose production. Inter-
actions will be modelled as either upregulation or inhibition of maximum rate coefficients,
as we did for the diet and exercise models. The clock model can be adapted to the liver
through parameter estimation using clock gene data specific to hepatocytes. For example,
clock gene expression data can be obtained from various circadian databases, including
CircaDB [438] for 24-hour periodicity profiles in mouse and human, RhythmicDB [439]
providing re-analyzed gene expression datasets from 48 publicly available experiments,
and CGDB [440], a comprehensive resource for circadian genes containing information on
both validated and predicted genes. Subsequently, we will simulate various TRE sched-
ules, incorporating meals with varying fat and carbohydrate content. Manipulating the
alternation of eating and fasting intervals could help regulate blood sugar levels. There
may be favorable effects on lipid metabolism, including reduced triglyceride levels and en-
hanced lipolytic efficiency, especially given the observed communication between the liver
and adipose tissue during fasting (see Chapter 7).
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In this context, our research will address the following questions: (i) Which clock genes
play a significant role in maintaining glucose homeostasis, and which metabolic path-
ways in the liver drive systemic circadian-induced changes? (ii) How does food intake,
mediated through insulin and glucose signaling, influence clock resetting? (iii) Are high-
carbohydrate or high-fat diets more effective in entraining the liver clock? The interplay
between the core clock and metabolism carries significant implications for the management
of metabolic disorders such as diabetes. When peripheral clocks become desynchronized
from the central clock, it leads to chronodisruption [441], which is associated with var-
ious health conditions including cancer, cardiovascular diseases, depression, obesity, and
metabolic syndrome [442]. For instance, in the treatment of obesity, a fundamental dietary
intervention involves reducing energy intake [443]. The circadian clock plays a crucial role
in energy balance and metabolic processes [444]. Therefore, evaluating factors such as
shift work, irregular sleep patterns, and dietary habits that may disrupt circadian rhythms
in individuals with metabolic disorders like obesity, and planning exercise and meal tim-
ings according to normal biological rhythms, can enhance the effectiveness of treatment
strategies.

8.5 Closing remarks

A unique aspect of this research involves the integration of both new mathematics and
new biology. For the latter, we used data and mechanistic modeling to learn new models
of the interaction between circadian rhythms and biological systems. We targeted specific
open questions in the literature about sex-differences in metabolism and immunity and
identified potential candidate mechanisms for the observed differences. For the former, we
applied mean field theory to biochemical models of oscillators to connect the individual
properties of circadian neurons to the overall population dynamics. We also developed
new models of the transition between feeding and fasting cycles, with the goal of using
diet as a synchronizing cue for peripheral circadian clocks. Mathematically, this research
contributes to the development of frameworks designed to understand multiscale systems,
analyze the relationships between network structure and dynamics, and explore the dy-
namics of entrainment by rhythms. The mathematical models we developed can be used
as computational tools to explore applications in different problem domains. Ultimately,
the goal is to make predictions that can be verified experimentally.
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[183] A. Gouel-Chéron, B. Allaouchiche, C. Guignant, F. Davin, B. Floccard,
G. Monneret, A. Group et al., “Early interleukin-6 and slope of monocyte
human leukocyte antigen-dr: a powerful association to predict the development
of sepsis after major trauma,” PloS one, vol. 7, no. 3, p. e33095, 2012. URL:
https://doi.org/10.1371/journal.pone.0033095

[184] S. Mera, D. Tatulescu, C. Cismaru, C. Bondor, A. Slavcovici, V. Zanc, D. Carstina,
and M. Oltean, “Multiplex cytokine profiling in patients with sepsis,” Apmis, vol. 119,
no. 2, pp. 155–163, 2011. URL: https://doi.org/10.1111/j.1600-0463.2010.02705.x

[185] H. Chaudhry, J. Zhou, Y. Zhong, M. M. Ali, F. McGuire, P. S. Nagarkatti, and
M. Nagarkatti, “Role of cytokines as a double-edged sword in sepsis,” In Vivo, vol. 27,
no. 6, pp. 669–684, 2013.

[186] K. D. Nguyen, S. J. Fentress, Y. Qiu, K. Yun, J. S. Cox, and A. Chawla,
“Circadian gene bmal1 regulates diurnal oscillations of ly6chi inflammatory
monocytes,” Science, vol. 341, no. 6153, pp. 1483–1488, 2013. URL: https:
//doi.org/10.1126/science.1240636

[187] A. M. Curtis, C. T. Fagundes, G. Yang, E. M. Palsson-McDermott, P. Wochal, A. F.
McGettrick, N. H. Foley, J. O. Early, L. Chen, H. Zhang et al., “Circadian control
of innate immunity in macrophages by mir-155 targeting bmal1,” PNAS, vol. 112,
no. 23, pp. 7231–7236, 2015. URL: https://doi.org/10.1073/pnas.1501327112

[188] A. Hashiramoto, T. Yamane, K. Tsumiyama, K. Yoshida, K. Komai,
H. Yamada, F. Yamazaki, M. Doi, H. Okamura, and S. Shiozawa, “Mammalian
clock gene cryptochrome regulates arthritis via proinflammatory cytokine
tnf-α,” J Neuroimmunol, vol. 184, no. 3, pp. 1560–1565, 2010. URL:
https://doi.org/10.4049/jimmunol.0903284

[189] R. Narasimamurthy, M. Hatori, S. K. Nayak, F. Liu, S. Panda, and I. M.
Verma, “Circadian clock protein cryptochrome regulates the expression of
proinflammatory cytokines,” PNAS, vol. 109, no. 31, pp. 12 662–12 667, 2012. URL:
https://doi.org/10.1073/pnas.1209965109

190

https://doi.org/10.1097/01.ta.0000196345.81169.a1
https://doi.org/10.1371/journal.pone.0033095
https://doi.org/10.1111/j.1600-0463.2010.02705.x
https://doi.org/10.1126/science.1240636
https://doi.org/10.1126/science.1240636
https://doi.org/10.1073/pnas.1501327112
https://doi.org/10.4049/jimmunol.0903284
https://doi.org/10.1073/pnas.1209965109


[190] Q. Cao, X. Zhao, J. Bai, S. Gery, H. Sun, D.-C. Lin, Q. Chen, Z. Chen,
L. Mack, H. Yang et al., “Circadian clock cryptochrome proteins regulate
autoimmunity,” PNAS, vol. 114, no. 47, pp. 12 548–12 553, 2017. URL:
https://doi.org/10.1073/pnas.1619119114

[191] C. M. Stapleton, M. Jaradat, D. Dixon, H. S. Kang, S.-C. Kim, G. Liao, M. A.
Carey, J. Cristiano, M. P. Moorman, and A. M. Jetten, “Enhanced susceptibility
of staggerer (rorαsg/sg) mice to lipopolysaccharide-induced lung inflammation,”
Am J Physiol Lung Cell Mol Physiol, vol. 289, no. 1, pp. L144–L152, 2005. URL:
https://doi.org/10.1152/ajplung.00348.2004

[192] I. Dzhagalov, V. Giguère, and Y.-W. He, “Lymphocyte development and function
in the absence of retinoic acid-related orphan receptor α,” J Neuroimmunol, vol.
173, no. 5, pp. 2952–2959, 2004. URL: https://doi.org/10.4049/jimmunol.173.5.2952

[193] N. Nejati Moharrami, E. Bjørkøy Tande, L. Ryan, T. Espevik, and V. Boyartchuk,
“Rorα controls inflammatory state of human macrophages,” PloS one, vol. 13,
no. 11, p. e0207374, 2018. URL: https://doi.org/10.1371/journal.pone.0207374
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[333] B. Chowdhury, L. Sjöström, M. Alpsten, J. Kostanty, H. Kvist, and R. Löfgren, “A
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[355] A. Ramos-Jiménez, R. P. Hernández-Torres, P. V. Torres-Durán, J. Romero-
Gonzalez, D. Mascher, C. Posadas-Romero, and M. A. Juárez-Oropeza, “The
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A. Dyś, M. Zyśk, and A. Jankowska-Kulawy, “The regulatory effects of acetyl-coa
distribution in the healthy and diseased brain,” Front cell Neurosci, vol. 12, p. 169,
2018. URL: https://doi.org/10.3389/fncel.2018.00169
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Appendix A

Appendix to Chapter 4

A.1 Model equations

Table A.1: List of variables. We adopt the notation where names with a mix of upper
and lower case letters (e.g., Per) denote mRNAs, and names in all caps (e.g., PER)
denote proteins.

Variable name Description

Per Concentration of Per mRNA
Cry Concentration of Cry mRNA
Rev-Erb Concentration of Rev-Erb mRNA
Ror Concentration of Ror mRNA
Bmal1 Concentration of Bmal1 mRNA
PER Concentration of PER protein
CRY Concentration of CRY protein
REV-ERB Concentration of REV-ERB protein
ROR Concentration of ROR protein
BMAL1 Concentration of BMAL1 protein
PER-CRY Concentration of PER-CRY protein
CLOCK-BMAL1 Concentration of CLOCK-BMAL1 protein
P Concentration of LPS
N Total number of activated phagocytic cells
D Tissue damage marker
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TNF Concentration of tumor necrosis factor-α
IL6 Concentration of interleukin-6
IL10 Concentration of interleukin-10
YIL10 Tissue damage driven non-accessible interleukin-10 promoter
CA Concentration of slow-acting anti-inflammatory mediators

Table A.2: Differential equations defining the mathematical model

Circadian genes and proteins (Eqs.1-12)

dPer(t)

dt
= −dm per · Per(t)

+
vmax per ·

(
1 + fold per ·

(
CLOCK-BMAL1(t)

ka per cb

)hill per cb

1 +
(

CLOCK-BMAL1(t)
ka per cb

)hill per cb

·
(
1 +

(
PER-CRY (t)

ki per pc

)hill per pc) , (A.1)

dCry(t)

dt
= −dm cry · Cry(t) + 1(

1 +
(

REV -ERB(t)
ki cry rev

)hill cry rev)
·

vmax cry ·
(
1 + fold cry ·

(
CLOCK-BMAL1(t)

ka cry cb

)hill cry cb)
1 +

(
CLOCK-BMAL1(t)

ka cry cb

)hill cry cb

·
(
1 +

(
PER-CRY (t)

ki cry pc

)hill cry pc) , (A.2)

dRev-Erb(t)

dt
= −dm rev ·Rev-Erb(t)

+
vmax rev ·

(
1 + fold rev ·

(
CLOCK-BMAL1(t)

ka rev cb

)hill rev cb

1 +
(

CLOCK-BMAL1(t)
ka rev cb

)hill rev cb

·
(
1 +

(
PER-CRY (t)

ki rev pc

)hill rev pc) , (A.3)
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dRor(t)

dt
= −dm ror ·Ror(t)

+
vmax ror ·

(
1 + fold ror ·

(
CLOCK-BMAL1(t)

ka ror cb

)hill ror cb

1 +
(

CLOCK-BMAL1(t)
ka ror cb

)hill ror cb

·
(
1 +

(
PER-CRY (t)

ki ror pc

)hill ror pc) , (A.4)

dBmal1(t)

dt
= −dm bmal ·Bmal1(t)

+
xP

xP + FP (t)
·
vmax bmal ·

(
1 + fold bmal ·

(
ROR(t)

ka bmal ror

)hill bmal ror

1 +
(

REV -ERB(t)
ka bmal rev

)hill bmal rev

+
(

ROR(t)
ka bmal ror

)hill bmal ror
, (A.5)

dPER(t)

dt
=− dp per · PER(t) + kp per · Per(t)

−
[
kass pc · PER(t) · CRY (t)− kdiss pc · PER-CRY (t)

]
, (A.6)

dCRY (t)

dt
=− dp cry · CRY (t) + kp cry · Cry(t)

−
[
kass pc · PER(t) · CRY (t)− kdiss pc · PER-CRY (t)

]
, (A.7)

dREV -ERB(t)

dt
= −dp rev ·REV -ERB(t) + kp rev ·Rev-Erb(t), (A.8)

dROR(t)

dt
= −dp ror ·ROR(t) + kp ror ·Ror(t), (A.9)

dBMAL1(t)

dt
=− dp bmal ·BMAL1(t) + kp bmal ·Bmal1(t)

− kass cb ·BMAL1(t) + kdiss cb · CLOCK-BMAL1(t), (A.10)
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dPER-CRY (t)

dt
=kass pc · PER(t) · CRY (t)

− kdiss pc · PER-CRY (t)− d pc · PER-CRY (t), (A.11)

dCLOCK-BMAL1(t)

dt
=
[
kass cb ·BMAL1(t)− kdiss cb · CLOCK-BMAL1(t)

]
− d cb · CLOCK-BMAL1(t), (A.12)

Immune system agents (Eqs.13-20)

Endotoxin concentration

dP (t)

dt
= −dp · P (t), (A.13)

The endotoxin insult injected intraperitoneally in the rats is a bolus administration, which
initiates the inflammatory cascade. The initial conditions for P are either 3, 6, or 12
mg/Kg depending on the endotoxin dose level.

Total number of activated phagocytic cells

dN(t)

dt
= kN ·

( R(t)

xN +R(t)

)
− dN ·N(t), (A.14)

R(t) =
[
kNP · P (t) + kND ·D(t)

]
· fDNNCA(t) · fDNNIL10(t)

· (1 + kNTNF · fUPNTNF (t)) · (1 + kNIL6 · fUPNIL6(t))

fUPNTNF (t) =
TNF (t)

xNTNF + TNF (t)

fUPNIL6(t) =
IL6(t)

xNIL6 + IL6(t)

fDNNCA(t) =
xNCA

xNCA + CA(t)

fDNNIL10(t) =
xNIL10

xNIL10 + IL10(t)
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The initial condition is N(0) = 0.

Tissue damage marker

dD(t)

dt
= kD ·

IL6(t)4

x4D + IL6(t)4
+ kP

P (t)

xP + P (t)
− dD ·D(t), (A.15)

The initial condition is D(0) = 0.

Concentration of interleukin-6

dIL-6(t)

dt
= kIL6 ·

N(t)4

x4IL6 +N(t)4
· fDNIL6IL10(t) · fDNIL6CA(t) · fDNIL6REV (t)

·
[
1 + kIL6TNF · fUPIL6TNF (t) + kIL6IL6 · fUPIL6IL6(t)

]
− dIL6 · IL6(t), (A.16)

fUPIL6TNF (t) =
TNF (t)

xIL6TNF + TNF (t)

fUPIL6IL6(t) =
IL6(t)

xIL6IL6 + IL6(t)

fDNIL6IL10(t) =
xIL6IL10

xIL6IL10 + IL10(t)

fDNIL6CA(t) =
xIL6CA

xIL6CA + CA(t)

fDNIL6REV (t) =
xIL6REV

xIL6REV +REV (t)

The initial condition is IL-6(0)=0.

Concentration of tumor necrosis factor α

dTNF -α(t)

dt
= kTNF ·N(t)1.5 ·

[
1 + kTNFTNF · fUPTNFTNF (t)

]
· fDNTNFCA(t) · fDNTNFIL10(t)

· fDNTNFIL6(t) · fDNTNFCRY (t) · fDNTNFROR(t)− dTNF · TNF (t),
(A.17)
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fUPTNFTNF (t) =
TNF (t)

xTNFTNF + TNF (t)

fDNTNFCA(t) =
x6TNFCA

x6TNFCA + CA(t)6

fDNTNFIL10(t) =
xTNFIL10

xTNFIL10 + IL10(t)

fDNTNFIL6(t) =
xTNFIL6

xTNFIL6 + IL6(t)

fDNTNFCRY (t) =
xTNFCRY

xTNFCRY + CRY (t)

fDNTNFROR(t) =
xTNFROR

xTNFROR +ROR(t)

The initial condition is TNF -α(0) = 0.

Concentration of interleukin-10

dIL10(t)

dt
= kIL10 ·

N(t)3

x3IL10 +N(t)3
·
[
1 + kIL10IL6 · fUPIL10IL6(t) + kIL10TNF · fUPIL10TNF (t)

]
· fDNIL6REV (t)− dIL10 · fDNIL10d(t) + YIL10(t) + sIL10, (A.18)

fUPIL10IL6(t) =
IL6(t)4

x4IL10IL6 + IL6(t)4

fUPIL10TNF (t) =
TNF (t)

xIL10TNF + TNF (t)

fDNIL10d(t) =
xIL10d

xIL10d + IL10(t)

fDNIL10REV (t) =
xIL10REV

xIL10REV +REV (t)

The production of IL-10 in the basal state is represented by the constant sIL10. With
N(0) = 0, the initial condition is IL-10 (0) = sIL10·xIL10d

dIL10·xIL10d−sIL10
.

Tissue damage driven non-accessible interleukin-10 promoter

dYIL10(t)

dt
= kIL102 ·

D(t)4

x4IL102 +D(t)4
− dIL102 · YIL10(t), (A.19)
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The initial condition is YIL10(0) = 0.

Anti-inflammatory moderator

dCA(t)

dt
= kCA ·N(t)− dCA · CA(t) + sCA, (A.20)

At basal conditions, the system is assumed to be slightly anti-inflammatory. This was
achieved by introducing a constant, sCA, into the ODE. Hence, with N(0) = 0, we obtain
CA(0) = sCA

dCA
.

LPS filter

FP (t) = P0 −
P0

24
t. (A.21)

where P0 = P (t = 0). FP (0) is either 3, 6, or 12 mg/Kg depending on the endotoxin dose
level.

Table A.3: mRNA and protein degradation rate constants (in h−1)

Parameter Value Description

dm per 0.10576 Per mRNA degradation rate constant
dm cry 0.50633 Cry mRNA degradation rate constant
dm rev 0.47914 Rev-Erb mRNA degradation rate constant
dm ror 0.26786 Ror mRNA degradation rate constant
dm bmal 4.6995 Bmal1 mRNA degradation rate constant
dp per 0.14989 PER protein degradation rate constant
dp cry 1.9105 CRY protein degradation rate constant
dp rev 0.28899 REV-ERB protein degradation rate constant
dp ror 0.063637 ROR protein degradation rate constant
dp bmal 0.22534 BMAL1 protein degradation rate constant
d pc 0.22571 PER-CRY protein complex degradation rate constant
d cb 0.1709 CLOCK-BMAL1 protein complex degradation rate constant
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Table A.4: Maximal transcription rates (in nmol ·l−1 · h−1)

Parameter Value Description

vmax per 0.83525 Per mRNA maximal transcription rate
vmax cry 1.0418 Cry mRNA maximal transcription rate
vmax rev 0.065746 Rev-Erb mRNA maximal transcription rate
vmax ror 7.2287 Ror mRNA maximal transcription rate
vmax bmal 0.29055 Bmal1 mRNA maximal transcription rate

Table A.5: Activation ratios (dimensionless)

Parameter Value Description

fold per 0.12156 Activation ratio of Per by CLOCK-BMAL1
fold cry 13.828 Activation ratio of Cry by CLOCK-BMAL1
fold rev 130.78 Activation ratio of Rev-Erb by CLOCK-BMAL1
fold ror 0.078569 Activation ratio of Ror by CLOCK-BMAL1
fold bmal 43.306 Activation ratio of Bmal1 by ROR

Table A.6: Regulation thresholds (in nmol/l)

Parameter Value Description

Ka per cb 3.3679 Regulation threshold of Per by CLOCK-BMAL1
Ki per pc 0.14178 Regulation threshold of Per by PER-CRY
Ka cry cb 1.5508 Regulation threshold of Cry by CLOCK-BMAL1
Ki cry pc 0.0027556 Regulation threshold of Cry by PER-CRY
Ki cry rev 0.64066 Regulation threshold of Cry by REV-ERB
Ka rev cb 0.18454 Regulation threshold of Rev-Erb by CLOCK-BMAL1
Ki rev pc 550.46 Regulation threshold of Rev-Erb by PER-CRY
Ka ror cb 0.56517 Regulation threshold of Ror by CLOCK-BMAL1
Ki ror pc 0.072928 Regulation threshold of Ror by PER-CRY
Ka bmal ror 0.076498 Regulation threshold of Bmal1 by ROR
Ki bmal rev 0.0002375 Regulation threshold of Bmal1 by REV-ERB
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Table A.7: Hill coefficients (dimensionless)

Parameter Value Description

hill per cb 17.025 hill coefficient, regulation of Per by CLOCK-BMAL1
hill per pc 22.829 hill coefficient, regulation of Per by PER-CRY
hill cry cb 7.4632 hill coefficient, regulation of Cry by CLOCK-BMAL1
hill cry pc 2.583 hill coefficient, regulation of Cry by PER-CRY
hill cry rev 58.733 hill coefficient, regulation of Cry by REV-ERB
hill rev cb 9.3373 hill coefficient, regulation of Rev-Erb by CLOCK-BMAL1
hill rev pc 0.95847 hill coefficient, regulation of Rev-Erb by PER-CRY
hill ror cb 6.0371 hill coefficient, regulation of Ror by CLOCK-BMAL1
hill ror pc 3.2993 hill coefficient, regulation of Ror by PER-CRY
hill bmal ror 2.8187 hill coefficient, regulation of Bmal1 by ROR
hill bmal rev 1.5678 hill coefficient, regulation of Bmal1 by REV-ERB

Table A.8: Translation rates (in molecules per hour per mRNA)

Parameter Value Description

kp per 0.77741 Per translation rate
kp cry 0.9308 Cry translation rate
kp rev 0.0004355 Rev-Erb translation rate
kp ror 0.010866 Ror translation rate
kp bmal 0.97306 Bmal1 translation rate

Table A.9: Complexation kinetic rates

Parameter Value Unit Description

kass cb 0.0057803 h−1 CLOCK-BMAL association rate
kass pc 0.15187 nmol ·l−1 · h−1 PER-CRY association rate
kdiss cb 0.00022191 h−1 CLOCK-BMAL disassociation rate
kdiss pc 0.23509 h−1 PER-CRY disassociation rate
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Table A.10: Parameters of the inflammation model

Parameter Value Unit

Endotoxin

dp 3 h−1

Phagocytes

kN 5.239009955e+07 h−1

xN 11.5345 N-unit
dN 0.195335 h−1

kNP 46.8879 N-unit × Kg/mg
kND 0.01297224 N-unit/D-unit
xNTNF 1530.0904 pg/ml
xNIL6 52121.3480 pg/ml
xNCA 0.0819918 pg/ml
xNIL10 138.3830 pg/ml
kNTNF 15.7694
kNIL6 2.916366

Damage

kD 0.747386 D-unit/h
dD 0.434761 h−1

xD 3572.1137 pg/ml
kP 1.385458 D-unit/h
xP 0.5746 mg/Kg

Slow-acting cytokines

kCA 1.381866e-09 pg/(ml × h × N-unit)
dCA 3.1777e-2 h−1

sCA 0.004 pg/(ml × h)

IL-6

kIL6TNF 23.15473
xIL6TNF 1072.9657 pg/ml
kIL6 4.2094572e+07 pg/(ml × h)
dIL6 0.410396 h−1

xIL6 2.012412e+08 N-unit
xIL6IL10 1.32377 pg/ml
kIL6IL6 101.1321
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xIL6IL6 14308.8692 pg/ml
xIL6CA 1.104116 pg/ml

TNF-α

kTNF 9.326669e-08 pg/(ml × N-unit1.5)
dTNF 1.99835 h−1

xTNFIL10 6177.1302 pg/ml
xTNFCA 0.223434 pg/ml
kTNFTNF 0.198227
xTNFTNF 8520.5658 pg/ml
xTNFIL6 40998.1848 pg/ml

IL-10

kIL10TNF 0.212173
xIL10TNF 8905.7477 pg/ml
kIL10IL6 3.27267
xIL10IL6 22345.6179 pg/ml
kIL10 1.9301e+05 pg/(ml × h)
dIL10 95.465 h−1

xIL10 5.938865e+07 N-unit
sIL10 1187.2 pg/(ml × h)
xIL10d 713.8094 pg/ml

YIL10

kIL102 3.804797e+06 YIL10-unit/h
dIL102 0.0224238 h−1

xIL102 8.470849 D-unit

coupling parameters

xIL6REV 0.009 nmol/l
xIL10REV 0.004 nmol/l
xTNFROR 0.4534 nmol/l
xTNFCRY 0.4315 nmol/l
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Table A.11: List of parameters modified in CJL models

Parameter Control CJL male CJL female

vmax per 0.83525 2.1717 2.9568
vmax cry 1.0418 unchanged 1.6669
vmax rev 0.065746 0.1249 0.0164
vmax bmal 0.29055 unchanged 0.1511
kdiss pc 0.23509 0.6112 1.3315
kdiss cb 2.2191e-4 unchanged 1.1539e-4
kass pc 0.15187 0.0584 0.0268
kass cb 0.0057803 unchanged 0.0111
Ki bmal rev 2.375e-4 4.5125e-4 5.9375e-5
Ki cry rev 0.64066 1.2173 0.1602

Table A.12: Percentage change in mean gene expression level due to CJL

Gene CJL male Experimental data [164] CJL female Experimental data [164]

Bmal1 +3% Not significant −44% −43%± 38%
Per2 +236% +230%± 201% +510% +497%± 234%
Cry2 +2% Not significant +69% +69%± 18%
Rev-Erbα +103% +98%± 96.5% −72% −70%± 23%
Ror +8% Not recorded +19% Not recorded

A.2 The Sobol’ sensitivity analysis

The method of Sobol’ [445] is a global and model independent sensitivity analysis method
that is based on variance decomposition. Variance-based measures of sensitivity are at-
tractive because they measure sensitivity across the whole input space, they can handle
non-linear and non-monotonic functions and models. They can also measure the effect of
interactions in such systems.

A first order index, Si, is a measure for the variance contribution of the individual
parameter to the total model variance, whereas a total order index, ST i is the result of
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the main effect of a given parameter and all its interactions with the other parameters.
Note that for non-additive models as ours, interactions exist: ST i is greater than Si and
the sum of all Si is less than 1. On the other hand, the sum of all ST i is greater than
1. By analyzing the difference between ST i and Si, one can determine the impact of the
interactions between a parameter of interest and the other parameters [446]. In this work,
we will not discuss how to implement the Sobol’ method, we refer to [445, 446] and the
references therein.

A.2.1 The parameters considered for the sensitivity analysis

Based on our CJL male and CJL female models, 10 parameters are selected for the initial
Sobol’ sensitivity analysis. The set includes all parameters which took new values after
fitting the CJL models. Lower and upper bounds to the parameter input space are obtained
by halving and doubling nominal values, respectively (see Table A.13). Our outputs of
interest are IL-6, TNF-α, IL-10 and D because they convey the most information about
the state inflammation, and are also directly affected by the circadian clock model. For
each output, we report first and total order effects. We performed 5000×(2+ number of
input parameters) simulations to derive the Sobol’ indices.

Table A.13: Parameters studied for the Sobol’ sensitivity analysis

Parameter nominal value lower bound upper bound

vpermax 0.83525 0.4176 1.6705

vcrymax 1.0418 0.5209 2.0836

vrevmax 0.065746 0.0329 0.1315

vbmal
max 0.29055 0.1453 0.5811

kdiss pc 0.23509 0.1175 0.4702
kdiss cb 2.2191e-4 1.110e-4 4.438e-4
kass pc 0.15187 0.0759 0.3037
kass cb 0.0057803 0.0029 0.0116
Ki bmal rev 2.375e-4 1.188e-4 4.750e-5
Ki cry rev 0.64066 0.3203 1.2813
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A.2.2 Results of the Sobol’ sensitivity analysis

We calculated Sobol’ indices in order to assess the relative influence of each parameter.
These values measure the relative sensitivity of the outcome to each parameter (first-
order) and to all the interactions with the other parameters (total-order). Figure A.1
shows that total output uncertainty is primarily induced by the parameters kass pc, PER-
CRY association rate, and vmax cry, Cry mRNA maximal transcription rate, and how
they interact with the other parameters. The high sensitivity of D, IL-6, TNF-α and IL-10

Figure A.1: Sobol’ indices for parameters modified by CJL. Simulation of the baseline
coupled model under acute inflammation with endotoxin dose 3 mg/Kg. Circles imply no
sensitivity to a parameter. A darker area on an index bar indicates sensitivity levels that
persisted for most of the simulation time, while faded areas represent sensitivity levels
that lasted for shorter periods of time. Infection occurs at CT12.

to kass pc (Sobol index > 0.5), is due to the consequential role of the complex PER-CRY
in the circadian circuitry. Inhibitor proteins PER and CRY dimerize to inhibit their own
transcription as well as that of REV-ERB and ROR by acting on CLOCK-BMAL1 protein
complex [32]. Overall, D, IL-6 and IL-10 are less sensitive with respect to the parameter
set tested (see Table A.13), whereas TNF-α is more sensitive to parameters affecting CRY
and its related complex, PER-CRY.

Figure A.2 shows the time course of the total-order Sobol’ indices for vmax cry, kass pc
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and kass cb, the three most influtential parameters as shown in Figure A.1. D, IL-6 and IL-
10 are sensitive kass pc and vmax cry throughout the inflammation, but the sensitivity of
TNF-α to these parameters decreases over time. Moreover, the times of lower sensitivity of
IL-10 to kass pc, correspond to the times of higher sensitivity of the cytokine to kass cb. To
assess the robustness of the outcomes to uncertainty in the input parameters in Table A.13,
we plotted the computed simulation results showing the 90% quantile region for D, IL-
6, TNF-α and IL-10 (see Figure A.3). Our results show that the inflammation output
variables are qualitatively robust to uncertainty in the parameters that are modified by
CJL.

Figure A.2: Time course of total-order Sobol’ indices for vmax cry, kass pc and kass cb.
Simulation of the baseline coupled model under acute inflammation with endotoxin dose
3 mg/Kg. Infection occurs at CT12.

A.2.3 Assessing sensitivities relative to coupling parameters

We extended our parameter input space to include all the clock model parameters and
the coupling parameters. A sensitivity analysis of this larger parameter space allows us to
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Figure A.3: Computed simulation results for D, IL-6, TNF-α and IL-10 . Simulation of
the baseline coupled model under acute inflammation with endotoxin dose 3 mg/Kg.
Infection occurs at CT12. Parameters used in the sensitivity analysis are shown in
Table A.13.

assess how perturbations to the clock parameters can affect the output of the acute inflam-
mation model, regardless of CJL. We performed 5000×(2+ number of input parameters)
simulations to derive the Sobol’ indices.

Our results indicate that D, IL-6, TNF-α and IL-10 are most sensitive to the coupling
parameters, as should be expected. Figure A.4 shows the Sobol’ indices for the coupling
parameters. These parameters directly link clock proteins to cytokines, and thus inferences
about the effect of parameters on inflammation can be extended to inferences about the
associated clock protein on inflammation. TNF-α is more sensitive to xTNFCRY and
xTNFROR as CRY and ROR directly inhibit the production of the cytokine. IL-6 and
IL-10 are sensitive to xIL6REV and xIL10REV , respectively. This is naturally explained
by the direct inhibition of IL-6 and IL-10 by REV-ERB. We note that the damage marker,
D, is sensitive to the same parameters as IL-6. This is to be expected because D is
upregulated by IL-6. Moreover, Figure A.5 shows the time course of the total-order Sobol’
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indices for the coupling parameters. The results are summarized below for each cytokine:

• IL-6 and Damage. Both outcomes are sensitive to xIL6REV and xIL10REV
throughout the duration of inflammation, but are also sensitive to xTNFCRY and
xTNFROR at the beginning of inflammation. This indicates that most of the effect
of the clock on the damage marker is induced by REV-ERB, but there exists an
initial joint effect of REV-ERB, CRY and ROR on IL-6 and D. CRY and ROR act
indirectly through their modulation of TNF-α.

• TNF-α. The cytokine is particularly sensitive to xTNFCRY and xTNFROR.
The sensitivity of TNF-α to xTNFCRY decreases as its sensitivity to xTNFROR
increases during inflammation. Overall, ROR has a stronger influence on TNF-α
compared to CRY. We note also the increased sensitivity of TNF-α to xIL10REV
a few hours after the onset of inflammation. This is due to the inhibitory action of
IL-10 on TNF-α.

• IL-10. Throughout the period of inflammation, IL-10 is most sensitive to xIL6REV
and xIL10REV . The Sobol’ index for xIL10REV decreases shortly after the onset
of inflammation, before rising again five hours post-infection. This suggests a role
for REV-ERB in the formation of the first peak in IL-10 as well as the second peak
that occurs 5h after the beginning of inflammation (see Figure 4.5 in the main text).
IL-10 is also sensitive to xTNFCRY and xTNFROR at the start of inflammation.
Since ROR and CRY inhibit TNF-α, the sensitivity of IL-10 to those parameters is
because TNF-α peaks early during inflammation and activates its production.
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Figure A.4: Sobol’ indices for the coupling parameters. Simulation of the baseline
coupled model under acute inflammation with endotoxin dose 3 mg/Kg. Circles imply no
sensitivity to a parameter. A darker area on an index bar indicates sensitivity levels that
persisted for most of the simulation time, while faded areas represent sensitivity levels
that lasted for shorter periods of time. Infection occurs at CT12.
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Figure A.5: Time course of total-order Sobol’ indices for the coupling parameters.
Simulation of the baseline coupled model under acute inflammation with endotoxin dose
3mg/Kg. Infection occurs at CT12.
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Appendix B

Appendix to Chapter 5

B.1 Convergence of the particle-like and mean field

solutions

We present, in this section, supplementary convergence results: the convergence of error
between solutions to the stochastic system (5.8) and the mean-field equation (5.9) when
the number of neurons tends to infinity. We have used a population of 10,000 Goodwin-
type neurons and ran 10,000 Monte Carlo simulations of the network model using the
Euler-Maruyama method [447]. Solutions of the network are constrained to remain in
a smooth positive domain D. Namely, we simulate the case where the boundary ∂D is
instantaneously reflecting in an oblique direction. See [281, 282] and the references therein.

The most classical way to show convergence is to reason in terms of trajectories and
to show that, when the number of agents tends to infinity, the behavior of the stochastic
system converges to the mean-field approximation almost surely or in probability. Thus, we
present the Kullback-Leibler (KL) divergenceDKL

(
ρNetwork
x,y,z ||ρMean−field

x,y,z

)
between marginal

distributions; see Definition 2.3.4.

For increasing values of network size N , we ran 10,000 Monte Carlo simulations of the
network equations until tfinal = 1. As seen in Figure B.1a, the Kullback-Leibler divergence
decreases asN increases, validating the efficiency of the mean-field model even for relatively
small values ofN . We conclude that the solution to the mean-field equation (5.9) accurately
represents the network’s average behaviour. These results highlight the accuracy of the
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(a) (b)

Figure B.1: (a) Kullback-Leibler divergence between the marginal probability densities
ρ1(t, x), ρ2(t, y), ρ3(t, z) calculated from the network and mean-field equation solutions as
network size N increases. (b) Convergence of error between solutions to the stochastic
system (5.8) and the mean-field equation (5.9) for the averages in x, y, and z in L1 and
L∞ norms. Grid cells are assumed to be of uniform size in all three variables,
∆x = ∆y = ∆z. We conducted 10,000 Monte Carlo simulations with a network size
N=10,000 up to time tfinal = 1.

numerical method in preserving long time behavior of the solutions. Solution remain
strictly positive for all t > 0, thus the problem is not degenerate (see Remark 4 below).

Next, consider the spatial averages of x, y, and z separately, i.e. E[x], E[y] and E[z].
An estimation of the relative error in L∞ norm at time T is given by:

e∞∆x =

∥∥µMF
∆x (T )− µMC

∆x (T )
∥∥
L∞(Ω)

∥µMC
∆x (T )∥L∞(Ω)

, (B.1)

where µMF
∆x represents the average in x of the probability density computed on a uniform

mesh of size ∆x, and µMC
∆x represents the average in x from the Monte Carlo simulations of

the network equations using a similar mesh size. Relative errors e∞∆y and e
∞
∆z are computed

similarly. Results are shown in Figure B.1b. For reference, a dashed black line of slope
two is added. We see that the slope of the dashed line appears to match well that of the
error curves, suggesting that numerical scheme is indeed second-order in space, and that
the continuum equation accurately describes the network for large N .
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B.2 Derivation of the continuum model (5.9)

The equations in (5.9–5.11) can be derived via the mean-field limit. Here we present a
formal description of this procedure. Starting from the deterministic model, define the
empirical distribution density associated to a solution (x(t), y(t), z(t)) of (5.5) and given
by

ρN(x, y, z, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(y − yi(t))δ(v − zi(t)), t > 0,

where δ is the Dirac delta probability measure. Let us denote by P
(
Rk
)
the space of

probability measures on Rk.

Let us assume that the particles remain in a fixed compact domain (xi(t), yi(t),
zi(t)) ∈ Ω̄ ⊂ R× R× R for all N in the time interval t ∈ [0, T ]. Our model (5.5) satisfies
this assumption if for instance the initial configuration is obtained as an approximation of
an initial compactly supported probability measure ρ0 [47]. Since for each t the measure
ρN(t) := ρN(·, ·, ·, t) is a probability measure in P

(
R3
)
with the uniform support in N , then

Prokhorov’s theorem implies that the sequence is weakly-∗-relatively compact. Assume
there exists a subsequence

(
ρNk
)
k
and ρ : [0, T ] → P

(
R3
)
such that ρNk → ρ (k → ∞)

in the w∗–convergence sense in P
(
R3
)
, pointwise in time. Following the approach in [47],

let us consider the test function φ ∈ C1
0

(
R3
)
. To simplify the notation we will write φ for
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φ
(
xi(t), yi(t), zi(t)

)
, and xi, yi, and zi for xi(t), yi(t), and zi(t), respectively. We compute

d

dt

〈
ρN(t), φ

〉
=

1

N

N∑
i=1

d

dt
φ
(
xi(t), yi(t), zi(t)

)
=

1

N

N∑
i=1

∂xφ
( α

1 + zni
− xi +

K

N

N∑
j=1

H(xi − xj)
)
+

1

N

N∑
i=1

∂yφ (xi − yi)

+
1

N

N∑
i=1

∂zφ (yi − zi)

=
〈
ρN(t), ∂yφ (x− y)

〉
+
〈
ρN(t), ∂zφ (y − z)

〉
+

(
1

N

N∑
i=1

∂xφ
( α

1 + zni
− xi

))
+

(
1

N

N∑
i=1

[
K

N

N∑
j=1

H(xi − xj)
]
∂xφ

)
=
〈
ρN(t), ∂yφ (x− y)

〉
+
〈
ρN(t), ∂zφ (y − z)

〉
+

〈
ρN(t),

(
α

1 + zn
− x

)
∂xφ

〉
+

〈
ρN(t),

(
K

N

N∑
j=1

H(x− xj)

)
∂xφ

〉
.

We can rewrite

1

N

N∑
j=1

H(x− xj) =
1

N

N∑
j=1

〈
H(x− ω), δ(ω − xj)

〉
x
= H ⋆mρN (y, z, t),

where

mρN (y, z, t) =

∫
R
ρN(x, y, z, t)dx =

〈
1,

1

N

N∑
j=1

δ(ω − xj)δ(y − yj)δ(z − zj)

〉
x

;

Collecting all the terms we obtain

d

dt

〈
ρN(t), φ

〉
=
〈
ρN(t), ∂xφ

( α

1 + zn
− x+K

(
H ⋆mρN

))
+ ∂yφ (x− y) + ∂zφ (y − z)

〉
.

After integration by part in x, y, and z, we obtain〈
∂f

∂t
+ ∂x

[
ξ
(
ρN
)
ρN
]
+ ∂y

[
(x− y)ρN

]
+ ∂z

[
(y − z)ρN

]
, φ

〉
= 0
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or, in the strong form,

∂f

∂t
+ ∂x

[
ξ
(
ρN
)
ρN
]
+ ∂y

[
(x− y)ρN

]
+ ∂z

[
(y − z)ρN

]
= 0,

where ξ is defined by

ξ
(
ρ
)(
x, y, z, t

)
=

α

1 + zn
− x+K

(
H ⋆ ρ

)
,

with

H ⋆ ρ(x, y, z, t) =

∫
R3

H(x− w)ρ(w, y, z, t) dw dy dz .

Letting k →∞ in the subsequence ρNk leads formally to

∂ρ

∂t
− ∂x

[
ξ(ρ)ρ

]
− ∂y

[
(x− y)ρ

]
− ∂z

[
(y − z)ρ

]
= 0.

The case with noise in (5.9) follows a similar approach using the so-called coupling method
introduced by Sznitman [93] together with [283, 284] to deal with boundary conditions.
Defining a system of uncoupled copies of McKean-Vlasov particles and comparing the error
with respect to the coupled system of particles is a common approach in many areas of
applications of interacting particle systems in mathematical biology, see [47] for instance.
By taking the difference between the two particle systems, one can develop direct Gronwall
inequalities for the 2-Wasserstein distance among the marginals of the joint probability
distributions. We refer the reader for the details to [50] for instance.

B.3 Presentation of the numerical scheme

In this section, we present our finite volume scheme for (5.9) preserving the structure of
the gradient flow in the case of identical oscillators. We also prove the positivity preserving
property for this scheme.

Inspired by [301, 448, 449], we construct a discrete numerical scheme in the variables
x, y and z in (5.9) as follows. We introduce a Cartesian mesh consisting of the cells
Ci,j,k :=

[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
×
[
zk− 1

2
, zk+ 1

2

]
, which for the sake of simplicity are

assumed to be of uniform size ∆x∆y∆z, that is, xi+ 1
2
−xi− 1

2
≡ ∆x, ∀ i, yj+ 1

2
−yj− 1

2
≡ ∆y,

∀ j, and zk+ 1
2
− zk− 1

2
≡ ∆z, ∀ k.
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Here, we denote by

ρ̄i,j,k(t) =
1

∆x∆y∆z

∫∫∫
Ci,j,k

ρ(x, y, z, t) dx dy dz (B.2)

the computed cell averages of the solution ρ, which we assume to be known or approximated
at time t ≥ 0. A discrete finite volume scheme is obtained by integrating (5.9) over each
cell Ci,j,k and is given by the following system of ODEs for ρ̄i,j,k:

dρ̄i,j,k(t)

dt
= −

F x
i+ 1

2
,j,k

(t)− F x
i− 1

2
,j,k

(t)

∆x
−
F y

i,j+ 1
2
,k
(t)− F y

i,j− 1
2
,k
(t)

∆y

−
F z
i,j,k+ 1

2

(t)− F z
i,j,k− 1

2

(t)

∆z
, (B.3)

where F x
i+ 1

2
,j,k

, F y

i,j+ 1
2
,k
and F z

i,j,k+ 1
2

are upwind numerical fluxes and approximate the con-

tinuous fluxes in the x, y and z directions, respectively. For simplicity, we will omit the
dependence of the computed quantities on t ≥ 0. In order to construct the upwind fluxes,
we first construct piecewise linear polynomials in each cell Ci,j,k,

ρ̃i,j,k(x, y, z) = ρ̄i,j,k + (ρx)i,j,k(x− xi) + (ρy)i,j,k(y − yj)
+ (ρz)i,j,k(z − zk), (x, y, z) ∈ Ci,j,k

(B.4)

and compute the right (“east”), ρEi,j,k, and left (“west”), ρWi,j,k, point values at the corre-
sponding cell interfaces (xi+ 1

2
, yj, zk), (xi− 1

2
, yj, zk), (xi, yj+ 1

2
, zk), (xi, yj− 1

2
, zk), (xi, yj, zk+ 1

2
)

and (xi, yj, zk+ 1
2
). Namely,

ρEx
i,j,k = ρ̃i,j,k(xi+ 1

2
− 0, yj, zk) = ρ̄i,j,k +

∆x

2
(ρx)i,j,k,

ρWx
i,j,k = ρ̃i,j,k(xi− 1

2
+ 0, yj, zk) = ρ̄i,j,k −

∆x

2
(ρx)i,j,k. (B.5)

and analogously for the other two variables.

These values will be second-order accurate provided the numerical derivatives (ρx)i,j,k,
(ρy)i,j,k and (ρz)i,j,k are at least first-order accurate approximations. To ensure the point
values in (B.5) are both second-order and nonnegative, the slopes (ρx)i,j,k, (ρy)i,j,k, (ρz)i,j,k
are calculated according to the following adaptive procedure. First, the centered-difference
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approximations

(ρx)i,j,k =
ρi+1,j,k − ρi−1,j,k

2∆x
, (ρy)i,j,k =

ρi,j+1,k − ρi,j−1,k

2∆y

and (ρz)i,j,k =
ρi,j,k+1 − ρi,j,k−1

2∆z
(B.6)

are used for all i, j, k. Then, if the reconstructed point values in some cell Ci,j,k become
negative (i.e., either ρEi,j,k < 0 or ρWi,j,k < 0), we recalculate the corresponding slopes (ρx)i,j,k,
(ρy)i,j,k or (ρz)i,j,k using a monotone nonlinear slope limiter, which guarantees that the
reconstructed point values are nonnegative as long as the cell averages ρ̄i,j,k are nonnegative
for all i, j, k. In our numerical experiments, we have used the one-parameter family of the
generalized minmod limiter [301, 450–453]:

(ρx)i,j,k = minmod
(
θ
ρ̄i+1,j,k − ρ̄i,j,k

∆x
,
ρ̄i+1,j,k − ρ̄i−1,j,k

2∆x
, θ
ρ̄i,j,k − ρ̄i−1,j,k

∆x

)
(B.7)

and analogously for the other two variables, where the minmod function and its parameters
are chosen as in [301].

Given the polynomial reconstruction (B.4) and its point values (B.5), the upwind nu-
merical fluxes in (B.3) are defined as

F x
i+ 1

2
,j,k

= ξ+
i+ 1

2
,j,k
ρEx
i,j,k + ξ−

i+ 1
2
,j,k
ρWx
i+1,j,k

F y

i,j+ 1
2
,k
= u+

i,j+ 1
2
,k
ρ
Ey

i,j,k + u−
i,j+ 1

2
,k
ρ
Wy

i,j+1,k

F z
i,j,k+ 1

2
= v+

i,j,k+ 1
2

ρEz
i,j,k + v−

i,j,k+ 1
2

ρWz
i,j,k+1, (B.8)

where the discrete values ξi+ 1
2
,j,k, ui,j+ 1

2
,k and vi,j,k+ 1

2
of the velocities at midpoints are

obtained as follows,

ξi+ 1
2
,j,k = −

(
D

∆x
log

ρ̄i+1,j,k

ρ̄i,j,k
−
fx
i,j,k + fx

i+1,j,k

2
−K

(
∆x∆y∆z

∑
i,j,k

xρ̄i,j,k − xi+ 1
2

))

ui,j+ 1
2
,k =

f y
i,j,k + f y

i,j+1,k

2
, vi,j,k+ 1

2
=
f z
i,j,k + f z

i,j,k+1

2
,

(B.9)

and the positive and negative parts are denoted by

ξ+
i+ 1

2
,j,k

= max
(
ξi+ 1

2
,j,k, 0

)
, ξ−

i+ 1
2
,j,k

= min
(
ξi+ 1

2
,j,k, 0

)
(B.10)
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and analogously for the other two variables. We note that x = [x 1
2
, x1+ 1

2
, . . . , xN+ 1

2
] in

(B.9) is a row vector of (inter)face values of the cells in the x-direction, and the values
fx
i,j,k, f

y
i,j,k, f

z
i,j,k are calculated by discretizing (B.11):

fx(x, y, z) :=
α

1 + zn
− x, f y(x, y, z) := x− y, f z(x, y, z) := y − z. (B.11)

Finally, the semi-discrete scheme (B.3) is integrated using a stable and accurate ODE
solver. In all our numerical examples, the third-order strong preserving Runge-Kutta
(SSP-RK) ODE solver [454] is used.

Remark 3. The second-order finite volume scheme (B.3),(B.8)–(B.10), reduces to the first-
order scheme if the piecewise constant reconstruction is used instead of (B.4), in which case
we have ρ̃i,j,k(x, y, z) = ρ̄i,j,k and therefore

ρEx
i,j,k = ρWx

i,j,k = ρ
Ey

i,j,k = ρ
Wy

i,j,k = ρEz
i,j,k = ρWz

i,j,k = ρ̄i,j,k, ∀i, j, k.

Remark 4. Given initial data ρ0(x) ≥ 0 for system (5.9), the semi-discrete finite-volume
scheme (B.3),(B.8)–(B.10) preserves positivity for all t > 0. A CFL condition can be
computed explicitly using equation (B.3) which is discretized by the forward Euler method.
Specifically, the computed cell averages ρ̄i,j,k ≥ 0, ∀ i, j, k provided that the following CFL
condition is satisfied:

∆t ≤ min

{
∆x

6a
,
∆y

6b
,
∆z

6c

}
, where a = max

i,j,k

{
ξ+
i+ 1

2
,j,k
,−ξ−

i− 1
2
,j,k

}
,

b = max
i,j,k

{
u+
i,j+ 1

2
,k
,−u−

i,j− 1
2
,k

}
, c = max

i,j,k

{
v+
i,j,k+ 1

2

,−v−
i,j,k− 1

2

}
, (B.12)

with ξ±
i+ 1

2
,j,k

, u±
i,j+ 1

2
,k
and v±

i,j,k+ 1
2

defined in (B.10).

Remark 5. Numerical simulations with GPUs.- The finite volume algorithm for solv-
ing the mean-field equation described in Appendix B.3 is computationally very expensive.
In fact, when the discretization steps ∆x, ∆y, and ∆z are small, we must also maintain ∆t
small enough to ensure the algorithm’s stability (see 4). The simulations will undoubtedly
slow down as a result of this. We were able to mitigate this issue by employing more
powerful hardware, specifically graphical processing units (GPUs). Through GPU com-
puting we were able to adopt a more accurate and stable ODE solver, namely the strong
stability-preserving Runge-Kutta (SSP-RK) solver of order three [454], thus allowing for
three calls per time step at a lower computational cost.
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Appendix C

Appendix to Chapter 6

C.1 Parameter estimation

Most parameters for healthy young male and female subjects at rest were obtained from
the literature. Physiological parameters that represent physical characteristics, namely
blood flow, tissue weights, and arterial substrate concentrations of substrates involved in
blood-tissue transport are given in Tables C.1 and C.2. Information on tissue-specific
metabolism in a male subject at rest after an overnight fast (8–12h) was gathered from
Ref. [68] and references therein: substrate concentrations in each tissue/organ (Table C.3),
which are assumed similar between the sexes, with the exception of intramyocellular TG
concentration, which is higher in females [321]; rates of O2 consumption and CO2 produc-
tion (Table C.4), which we assumed are similar at rest in females as evidenced in Ref. [16];
intracellular metabolic fluxes and reaction maximal velocities at rest (Table C.5), which we
assumed similar between the sexes except for pyruvate reduction (PYR→LAC) and lipol-
ysis (TG→FFA—GLR) which exhibit known sex differences even at rest. The maximal
velocities for these reactions were estimated from experimental data and the corresponding
fluxes at rest were then calculated using the intracellular substrate concentrations at rest
and the corresponding Michaelis-Menten parameters, Km. These Km values are fixed at
the initial tissue concentration of the corresponding substrate, unless otherwise indicated
in the literature (Table C.6). Blood-tissue transport rates, Qx(Ca,i − σx,iCx,i) for each
tissue are listed in Table C.7 [68]. Partition coefficients (Table C.8) are calculated from
resting transport rates (Tables C.4 and C.7), blood flow, and arterial and tissue concen-
trations. Under typical physiological conditions, which are far from equilibrium, no whole
body steady-state exists. In our models, it is also true that no steady-state exists for all
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substrate concentrations in all compartments. In particular, after an overnight fast which
corresponds to the resting state in our models, lipolysis in adipose tissue, glycogen degra-
dation in the liver, pyruvate oxidation and FFA oxidation in the other tissues/organs are
ongoing to maintain basal metabolism. As a result, TG in adipose tissue and glycogen in
the liver continuously decrease at rest.

Parameters pertaining to moderate-intensity (150W or 60% V̇O2max) exercise (Ta-
bles C.9 and C.10) were then estimated based on experimental studies in humans. The set
of experimental data used for parameter estimation is listed in Table C.11. Our calibration
approach, as well as the cost function to minimize, are described in the main article (see
the Parameter Estimation section). In total, 50 parameters for the female model and 48
for the male model were estimated. 14 of the 49 estimated parameters for the female model
were close to male values, so we manually adjusted them to male values, leaving us with
35 distinct estimated parameters for the female model. Without sufficient physiological
constraints, the calibration process would produce non-unique estimates due to the large
number of unknown parameters. Acknowledging this limitation, we conducted a sensitivity
analysis on our models. Result are presented in Section C.4.

Our models consist of systems of nonlinear ordinary differential equations (ODEs) and
algebraic equations, which are solved numerically as initial value problems with a stiff
solver, ode15s in MATLAB2020a. Each model has 154 ODEs (22 substrate ODEs per
dynamic compartment, i.e., brain, heart, skeletal muscle, GI tract, liver, and adipose
tissue) and 2 additional ODEs for the dynamics of insulin and glucagon. Model equations
are described in Table C.13 and Table C.14.

The following subscripts serve as abbreviations for different tissues: brain, x = B;
heart, x = H; skeletal muscle, x = M ; GI tract, x = GI; liver, x = L; adipose tissue,
x = A; others, x = O.
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C.2 Supplementary results

(a) (b)

(c) (d)

Figure C.1: Female model predictions. Dynamic responses of relative concentrations of
arterial (a) FFA, (b) lactate, and (c) glycerol to a step increase in work rate (150W)
during 60 min exercise. Relative concentration (unitless) refers to the ratio of the
time-dependent arterial concentration of a substrate and its initial condition,
Ca(t)/Ca(0). (d) Whole-body glucose balance. Glucose balance refers to the difference
between glucose production (Ra) and glucose utilization (Rd).
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(a) (b)

(c) (d)

(e)

Figure C.2: Male model predictions. Dynamic responses of relative concentrations of
arterial (a) FFA, (b) lactate, (c) glycerol, and (d) TG to a step increase in work rate
(150W) during 60 min exercise. Relative concentration (unitless) refers to the ratio of the
time-dependent arterial concentration of a substrate and its initial condition,
Ca(t)/Ca(0). (e) Whole-body glucose balance. Glucose balance refers to the difference
between glucose production (Ra) and glucose utilization (Rd).
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C.3 Model parameters

Table C.1: Physical characteristics

Male Female

Organ/Tissue Blood flow (l/min) Weight (Kg) Blood flow (l/min) Weight (Kg)

Brain 0.75[455] 1.4[70, 331] 0.75 1.2[70, 331]
Heart 0.25 0.331[70, 331] 0.25 0.253[70, 331]
Skeletal muscle 0.9[456, 457] 22.4†[70, 331] 0.9 13.6†[70, 331]
GI tract 1.1 2.0[68, 70] 1.1 2.0[68, 70]
Liver 0.4[70, 331] 1.8[70, 331] 0.25[70, 331] 1.4[70, 331]
Adipose tissue 0.36[458] 11∗[68, 70, 331] 0.36 17.1∗∗[70, 331]
Others 1.74 31.069 1.39 22.447
Whole body 5.5[337] 70[68, 70, 331] 5.0[70] 58[70, 331]

Subjects are in overnight fasted conditions. Values for “Others” are chosen to balance whole-
body values. † Skeletal muscles, excluding upper extremities which account for 18-20% of total
weight. Male total: 28 kg; female total: 17 kg. ∗ Based on 16% body fat content. ∗∗ Based
on 29% body fat content. References are given in brackets. Where experimental data is lacking,
female values are assumed to be the same as male values.
Organ volumes are calculated by dividing each tissue weight by its density: brain (1.04
Kg/L)[332], heart and skeletal muscle (1.05 Kg/L)[333], GI tract (1.06 Kg/L)[333], liver (1.08
Kg/L)[334], adipose tissue (0.923 Kg/L)[333]. Assuming that others include only nonfat tissues,
a tissue density of 1.05 Kg/L is used [335]. The total volume of the body is calculated by adding
the volumes of all compartments. Tissue volumes are reported in the main article text.
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Table C.2: Substrate and hormone concentrations in blood

Male Female

Substrate Arterial concentration (mM) Arterial concentration (mM)

GLC 5.0 4.91[14]
PYR 0.068 —
LAC 0.7 —
ALA 0.192 —
GLR 0.07 —
FFA 0.66 0.76[14]
TG 0.99 0.93[15]
O2 8.0 —
CO2 21.7 —

Hormone Plasma concentration (pM) Plasma concentration (pM)

CE 250 150[8]
CI 45 60
CG 27 39 [8]

Values at rest for healthy subjects after an overnight fast. Male values are taken from
Ref. [68] and references therein. CE, CI , and CG denote concentrations of epinephrine,
insulin, and glucagon, respectively. (—) Same values for male and female models. In
brackets are references for significantly different values in females compared to males.
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Table C.3: Substrate concentrations in each organ/tissue (mM)

Substrate Brain Heart Skeletal muscle GI tract Liver Adipose Tissue

GLC 1.12 1.0 0.48 1.0 8.0 2.54
PYR 0.15 0.2 0.048 0.2 0.37 0.37
LAC 1.45 3.88 1.44 3.88 0.82 0.82
ALA 0 0 1.3 0 0.23 0
GLR 0 0.015 0.064 0.015 0.07 0.22
FFA 0 0.021 0.53 0.021 0.57 0.57
TG 0 3.12 14.8/18.94† 450 2.93 990∗

O2 0.027 0.96 0.49 0.49 0.027 0.027
CO2 15.43 20.0 15.43 15.43 15.43 15.43
G6P 0.16 0.17 0.24 0.17 0.2 0.2
GLY 2.0 33.0 95.0∗ 33.0 417∗ 0
GAP 0.15 0.01 0.08 0.01 0.11 0.11
GRP 0 0.29 0.15 0.29 0.24 0.24
ACoA 0.0068∗∗ 0.0012 0.0022 0.0012 0.035 0.035
CoA 0.06 0.012 0.018 0.012 0.14 0.14
NAD+ 0.064 0.40 0.45 0.4 0.45 0.45
NADH 0.026 0.045 0.05 0.045 0.05 0.05
ATP 2.45 3.4 6.15 3.4 2.74 2.74
ADP 0.54 0.02 0.02 0.02 1.22 1.22
Pi 2.4 1.66 2.70 1.66 4.6 4.6
PCR 4.6 8.3 20.1 8.3 0 0
CR 5.6 3.5 10.45 3.5 0 0

Values at rest after an overnight fast taken from Ref. [68] and references therein. When two values are
listed, they correspond to male/female, otherwise there is no sex difference in substrate concentrations.
∗ For most substrates (excluding null concentrations), sex differences in tissue weights, hence tissue vol-
umes, lead to sex differences in substrate content in each tissue. For example, absolute GLY content is
higher in male liver and skeletal muscle, and absolute TG content is higher in female adipose tissue. In
addition, women have a higher concentration of intramyocellular lipid (IMCL), despite having a smaller
tissue volume. † Women have a 28% higher area density compared to men. IMCL area density (%)= #
IMCL/area×mean IMCL size×100% [321]. This result is directly proportional to the lipid concentration
per unit volume (mM). ∗∗ Data from Ref. [459].
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Table C.4: Resting values of O2 consumption and CO2 production

Organ/Tissue V̇O2 (ml/min) V̇CO2 (ml/min)

Brain 51.07 51.07
Heart 26.80 20.61
Skeletal muscle 41.04 32.01
GI tract 10.21 10.21
Liver 62.72 43.72
Adipose tissue 10.08 7.17
Others 48.08 35.21
Whole body 250 200

Subjects are at rest after an overnight fast. Whole-body respiratory quotient (RQ) at
rest is 0.8 in female and male models. RQ= V̇CO2/V̇O2, where V̇O2 and V̇CO2 are
oxygen consumption and carbon dioxide production rates. Values for “Others” are chosen
to balance whole-body values. Data are taken from Ref. [68] for male. We assumed RQ
values are the same at rest in females and males according to Ref. [16].
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Table C.5: Organ/tissue metabolic fluxes, ϕX→Y(mmol/min) and reaction maximal
velocities, VX→Y (mmol/min)

Brain Heart Skeletal muscle GI tract Liver Adipose tissue

Fluxes ϕX→Y V0
X→Y ϕX→Y V0

X→Y ϕX→Y V0
X→Y ϕX→Y V0

X→Y ϕX→Y V0
X→Y ϕX→Y V0

X→Y

ϕGLC→G6P 0.38 0.79 0.04 0.088 0.165 0.398 0.076 0.167 0.17 0.765 0.038 0.079
ϕG6P→GAP 0.38 1.52 0.04 0.16 0.165 0.66 0.076 0.304 0.17 0.68 0.038 0.152
ϕGAP→PYR 0.76 12.16 0.08 1.28 0.33 5.28 0.152 2.432 0.34 5.44 0.056 0.896
ϕPYR→GAP 0 0 0 0 0 0 0 0 0.93 7.44 0 0
ϕGAP→G6P 0 0 0 0 0 0 0 0 1.04 2.08 0 0
ϕG6P→GLC 0 0 0 0 0 0 0 0 0.9 1.8 0 0
ϕG6P→GLY 0.003 0.012 0.04 0.16 0.125 0.5 0 0 0.1 0.4 0 0
ϕGLY→G6P 0.003 0.024 0.04 0.32 0.125 1.0 0 0 0.48 3.84 0 0
ϕPYR→LAC 0.7 2.8 0.088 0.352 1.0/0.85† 14.85/12.62† 0.2 0.8 0.21 0.84 0.036 0.144
ϕLAC→PYR 0.7 2.8 0.128 0.512 0.488∗ 12.51 0.2 0.8 0.48 1.92 0.01 0.04
ϕGLR→GRP 0 0 0.004 0.016 0.127 0.508 0 0 0.144 0.576 0 0
ϕGAP→GRP 0 0 0 0 0 0 0 0 0 0 0.02 0.08
ϕGRP→GAP 0 0 0 0 0 0 0 0 0.111 0.444 0 0
ϕPYR→ALA 0 0 0 0 0.04 0.08 0 0 0 0 0 0
ϕALA→PYR 0 0 0 0 0 0 0 0 0.32 0.64 0 0
ϕPYR→ACoA 0.76 6.08 0.12 0.96 0.292∗ 2.745 0.152 1.216 0.0013∗ 0.01∗ 0.03 0.24
ϕFFA→ACoA 0 0 0.035 0.28 0.088∗ 0.701 0 0 0.136 1.088 0.02∗ 0.16
ϕACoA→FFA 0 0 0 0 0 0 0 0 0.112 0.896 0 0
ϕTG→FFA—GLR 0 0 0.004 0.008 0.13 0.26 0.04 0.08 0.004 0.008 0.095∗/0.114† 0.19/0.228†

ϕFFA—GRP→TG 0 0 0.012 0.096 0.381 3.048 0 0 0.1 0.8 0.06 0.48
ϕACoA→CO2 0.76 12.16 0.4 6.4 0.623 9.968 0.152 2.432 0.976 15.62 0.08 1.28
ϕO2→H2O 2.28 18.71 1.165 9.327 1.832 14.68 0.456 3.653 2.702 22.18 0.25 2.05
ϕPCR→CR 1.86 7.44 2.0 8.0 20.0 80.0 2.0 8.0 0 0 0 0
ϕCR→PCR 1.86 7.44 2.0 8.0 20.0 80.0 2.0 8.0 0 0 0 0
ϕATP→ADP 15.20 30.4 7.33 14.66 10.82 21.64 3.04 6.08 13.92 27.84 2.74 5.47

Values at rest after an overnight fast taken from Ref. [68]. When two values are listed, they correspond to male/female, otherwise we assumed no sex
difference. ∗ Assumed fluxes under resting conditions. † Estimated female values based on experimental data;

Table C.6: Distinctive Michaelis-Menten parameters

Fluxes KM Brain Heart Skeletal muscle GI tract Liver Adipose tissue

ϕGLC→G6P KGLC 0.05 0.1 0.1 0.1 10.0 0.1
ϕPYR→LAC† KPYR 0.6
ϕLAC→PYR KLAC 17.0
ϕPYR→ACoA KPYR 0.065
ϕO2→H2O KO2

0.7 0.7 0.7 0.7 0.7 0.7

Values taken from Ref. [68] and references therein. All values are in mM, except for KO2
values which are

in µM. † Specifically for this flux, ν+ or KNADH

NAD+
= 0.011 mM. We assumed no sex difference.
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Table C.7: Blood-tissue transport rates (mmol/min) in each tissue/organ

Organ/Tissue GLC PYR LAC ALA GLR FFA TG

Brain 0.380 0 0 0 0 0 0
Heart 0.040 0 0.040 0 0 0.035 0
Skeletal muscle 0.165 0.005/0.003 -0.112/-0.095 -0.040 -0.003 0.046 0.003
GI tract 0.076 0 0 0 -0.040 -0.120 0.006
Liver -0.731 0 0.270 0.320 0.140 0.210 -0.029
Adipose tissue 0.038 0 0.056 0 -0.097 -0.211 0.02
Others 0.062 -0.005/-0.003 -0.142/-0.271 -0.280 0 0.040 0
Sum 0.03 0 0 0 0 0 0

Values at rest after an overnight fast taken from Ref. [68] and references therein. These values correspond
to the term Qx

(
Ca − σx,iCx,i

)
in Eq (1) in the main article text. Positive values represent substrate

uptake into tissue/organs, while negative values represent substrate release into the circulation. Values in
“others” are chosen to yield a zero balance at rest. The net sum of 0.03 for glucose indicates that organs
consume glucose for energy even when at rest, i.e., blood glucose levels gradually decrease following an
overnight fast. When two values are listed, they correspond to male/female, otherwise we assumed no sex
difference.
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Table C.8: Blood-tissue transport partition coefficients (dimensionless)

Substrate Brain Heart Skeletal muscle GI tract Liver Adipose tissue

Male

GLC 4.0119 4.84 10.0347 4.931 0.6796 1.9269
PYR 0.4533 0.34 1.3009 0.34 0.1838 0.1838
LAC 0.4828 0.1392 0.5725 0.1804 0.6341 1.0434
ALA 0 0 0.1819 0 -0.10 0
GLR 0 4.6667 1.1458 7.0909 0.0481 1.5429
FFA 0 24.762 1.1488 36.623 1.0526 2.1861
TG 0 0.3173 0.06667 2.187e-3 0.3430
O2 183.704 3.3483 12.1723 15.481 215.90 249.976
CO2 1.6034 1.269 1.5092 1.4332 1.5104 1.4640

Female

GLC 3.9315 4.75 9.8472 4.841 0.6744 1.8915
PYR — — 1.3530 — — —
LAC — — 0.5596 — 0.6098 —
ALA 0 0 — 0 -0.1958 0
GLR 0 — — — -0.015 —
FFA 0 29.524 1.3375 41.385 1.2164 2.3616
TG 0 0.2981 0.0489 2.0545e-3 0.3232 8.8328e-4
O2 — — — — 206.97 —
CO2 — — — — 1.5219 1.4560

A value of zero indicates no substrate uptake or release. (—) Same values for male and female models.
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Table C.9: Estimated hormonal control parameters I

Parameter Male Female Unit

A. Epinephrine

ω(WR) 1100 330 pM
τE 30 — min

B. Insulin and glucagon

h† 0.1333 — min−1

k1 0.2757 0.3360 pM−1min−1

k2 0.0270 0.020 pM−1min−1

k3 0.20 0.0070 pM−1min−1

k4 0.10 2.6740 pM−1min−1

k5 0.0012 0.30 pM−1min−1

D† 0.10 — min−1

C. Blood flow regulation

γM 2.930 2.850 mmol ·min−1W−1

γH 0.1 — mmol ·min−1W−1

δH 0.75 — l ·min−1

δM 7.6210 7.6590 l ·min−1

δGI -0.2231 -0.2144 l ·min−1

τQ 0.1 — min
τQM

2.0 — min

† Decay rate D is set to 0.1, then h is calculated assuming steady state conditions with a blood glucose
level of 5 mM [338]. (—) Same values for male and female models. The subscripts H, M, and GI stand for
heart, skeletal muscle, and GI tract, respectively.
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Table C.10: Estimated hormonal control parameters II: λi (dimensionless) and αi (pM)

Flux Parameter Heart Skeletal muscle GI tract Liver Adipose tissue

D. Epinephrine-regulated

ϕGLC→G6P λGLC→G6P 4.0 / 12.3 23.3 / 93.15

αGLC→G6P 11002 / 12002 12002 / 11002

ϕGLY→G6P λGLY→G6P 0.014
αGLY→G6P 1705

ϕPYR→ALA λPYR→ALA 2.2
αPYR→ALA 10002

ϕFFA→ACoA λFFA→ACoA 1.2 / 6.06 5.0 / 8.0
αFFA→ACoA 11002 912

ϕTG→FFA—GLR λTG→FFA—GLR 0.66 / 0.53 2.3 / 2.0 2.0 0.58 / 1.0
αTG→FFA—GLR 12002 / 10002 198e3 14702 / 12002 11002 / 9002

E. GIR-regulated

ϕPYR→GAP λPYR→GAP 2.0 / 0.2

αPYR→GAP 0.06 / 0.4

ϕGAP→G6P λGAP→G6P 0.6 / 0.014
αGAP→G6P 0.1 / 0.4

ϕG6P→GLC λG6P→GLC 1.0 / 0.04
αG6P→GLC 0.02 /0.2

ϕGLY→G6P λGLY→G6P 3.0 / 1.285
αGLY→G6P 0.05 / 0.11

ϕALA→PYR λALA→PYR 1.45
αALA→PYR 0.01 / 0.06

ϕTG→FFA—GLR λTG→FFA—GLR 2.0 / 4.0 0.28 / 3.0
αTG→FFA—GLR 0.08 0.8 / 0.01

When two values are listed, they correspond to male/female, otherwise there is no sex difference.
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Table C.11: Experimental data used for parameter estimation and model validation

Study Subjects’ characteristics Exercise parameters Observables

Sex Age BW Duration %VO2max Hormones Substrates Others

Hirsch et al. [7] 13M 22–28 66–85 60 60 EPI GLC Ra

GLU FFA† Rd

INS†

Van Hall et al. [460] 6M 22–28 73–86 60 60 GLR†

TG

Bergamn et al. [461] 7M 21–23 69–82 120 59 LAC

Roepstorff et al. [16] 7M 25–27 73–77 90 58 RER
7F 24–26 63–69 90 58 RER

Horton et al. [8] 10F 28–40 49–65 90 51 EPI LAC Ra

GLU GLC Rd

Horton et al. [341] 13F 24–34 53–67 90 50 EPI
Campbell et al. [360] 8F 22–26 59–63 120 70 GLC

Sex is male (M) or female (F); Age is in years; Body Weight (BW) is in Kg; Duration is the exercise duration in
minutes. ‡ refers to plasma concentration; † Data used to calibrate female model since substrate concentrations
and dynamics do not differ between the sexes during exercise [8, 16]. EPI: epinephrine; GLC: glucose, GLU:
glucagon, GLR: glycerol; INS: insulin, LAC: lactate, TG: triglyceride, FFA: free fatty acids; RER: respiratory
exchange ratio; Ra: rate of appearance of glucose; Rd: rate of disappearance of glucose.
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C.4 Sensitivity analysis

In the following, we present results of a local sensitivity analysis of the male and female
models. We considered all 50 estimated parameters for the female model, and all 48 esti-
mated parameters for the male model. Local analysis is based on calculating the influence
of small perturbations around a nominal parameter value on model output. Often, the
perturbation is applied to one parameter at a time, resulting in an approximation of the
first-order partial derivative of the model output with respect to the perturbed parameter
[462]. Aside from being numerically efficient, sensitivity coefficients obtained from local de-
terministic sensitivity analysis have the advantage of being intuitive in their interpretation,
regardless of the method used.

For each parameter pj, we calculated relative sensitivities using a forward difference
approximation:

Sij(t) ≈
pj

yi(pj, t)
· yi(pj +∆pj, t)− yi(pj, t)

∆pj
, (C.1)

where Sij is the first-order local sensitivity coefficient of parameter pj on model output
yi at time t. We used ∆pj of 10% either up or down, and t = 60 minutes, which corre-
sponded to the end of the exercise session. We decided to focus our analysis on the ten
model outputs most relevant to our main text results. Specifically, arterial concentrations
of glucose, lactate, glycerol, and FFA, GIR, gluconeogenesis and glycogenolysis in the liver,
glycogenolysis and TG breakdown in the muscle, and whole-body lipolysis. Results are
shown in Figures C.3 and C.4. The ten most influential parameters in the female model,
whether perturbed up or down, are parameters 2,5,10,11,19,20,27,39,43, and 49 (see Ta-
ble C.12). For the male model, the most influential parameters are 2,5,7,8,10,11,19,20,27,
and 39 (see Table C.12). These results imply that parameters related to blood flow, gly-
colysis, and lipolysis in skeletal muscle, glycogenolysis in the liver, and lipolysis in adipose
tissue have the greatest influence on model outputs. This is to be expected, as these
parameters help to tightly regulate glucose homeostasis during exercise. Most other pa-
rameters have little effect on the outputs of interest, with sensitivities ranging between
−0.25 and +0.25 (Figures C.3 and C.4). Overall, the results of this sensitivity analysis,
when combined with our calibration approach, show that model output variables are robust
to uncertainty in most parameters related to exercise.

265



Figure C.3: Local sensitivity results for the female model. Sensitivity coefficients are
scaled to between -1 and 1. The subscripts L, M, and WB indicate the liver, skeletal
muscle, and whole-body, respectively. Each index j = {1, 2, 3, . . . , 50} represents one of
the 50 perturbed parameters. Table C.12 shows a one-to-one correspondence between
indices and parameters.
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Figure C.4: Local sensitivity results for the male model. Sensitivity coefficients are scaled
to between -1 and 1. The subscripts L, M, and WB indicate the liver, skeletal muscle,
and whole-body, respectively. The dark boxes, denoted “NaN”, represent two parameters
obtained from the literature for the male model, but estimated in the female model.
These parameters were not varied in the analysis, but are represented in the matrix to
keep the same parameter numbering as that presented in the female case above. Each
index j = {1, 2, 3, . . . , 50} represents one of 50 parameters. Table C.12 shows a
one-to-one correspondence between indices and parameters.
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Table C.12: Ordered list of estimated parameters as presented in the
sensitivity analysis results.

j Parameter j Parameter j Parameter

1 δH 18 αE
H,TG→FFA–GLR 35 λGL,GAP→G6P

2 δM 19 λEM,GLC→G6P 36 αG
L,GAP→G6P

3 δGI 20 αE
M,GLC→G6P 37 λGL,G6P→GLC

4 τQ 21 λEM,GLY→G6P 38 αG
L,G6P→GLC

5 γM 22 αE
M,GLY→G6P 39 λGL,GLY→G6P

6 h 23 λEM,PYR→ALA 40 αG
L,GLY→G6P

7 k1 24 αE
M,PYR→ALA 41 λGL,ALA→PYR

8 k2 25 λEM,FFA→ACoA 42 αG
L,ALA→PYR

9 k3 26 αE
M,FFA–ACoA 43 λGA,TG→FFA–GLR

10 k4 27 λEM,TG→FFA–GLR 44 αG
A,TG→FFA–GLR

11 k5 28 αE
M,TG→FFA–GLR 45 λEA,TG→FFA–GLR

12 D 29 λGGI,TG→FFA–GLR 46 αE
A,TG→FFA–GLR

13 λEH,GLC→G6P 30 αG
GI,TG→FFA–GLR 47 τ †QM

14 αE
H,GLC→G6P 31 λEGI,TG→FFA–GLR 48 V ‡

max,M,PYR→LAC

15 λEH,FFA→ACoA 32 αE
GI,TG→FFA–GLR 49 V ‡

max,A,TG→FFA–GLR

16 αE
H,FFA–ACoA 33 λGL,PYR→GAP 50 γH

17 λEH,TG→FFA–GLR 34 αG
L,PYR→GAP

† This parameter, specific to skeletal muscle, represents the time con-
stant for blood flow regulation; see Eq (6.17) in the main text.
‡ Parameters estimated only in the female model.
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C.5 Model equations

Table C.13: Dynamic mass balance equation in tissue/organ x

1. GLC Vx,GLC
dCx,GLC

dt
= ϕx,G6P→GLC − ϕx,GLC→G6P +Qx(Ca,GLC − σx,GLCCx,GLC)

2. PYR Vx,PYR
dCx,PYR

dt
= ϕx,GAP→PYR + ϕx,LAC→PYR + ϕx,ALA→PYR − ϕx,PYR→GAP − ϕx,PYR→LAC − ϕx,PYR→ALA − ϕx,PYR→ACoA +Qx(Ca,PYR − σx,PYRCx,PYR)

3. LAC Vx,LAC
dCx,LAC

dt
= ϕx,PYR→LAC − ϕx,LAC→PYR +Qx(Ca,LAC − σx,LACCx,LAC)

4. ALA Vx,ALA
dCx,ALA

dt
= ϕx,PYR→ALA − ϕx,ALA→PYR +Qx(Ca,ALA − σx,ALACx,ALA)

5. GLR Vx,GLR
dCx,GLR

dt
= ϕx,TG→FFA—GLR − ϕx,GLR→GRP +Qx(Ca,GLR − σx,GLRCx,GLR)

6. FFA Vx,FFA
dCx,FFA

dt
= 3ϕx,TG→FFA—GLR + 1

8
ϕx,ACoA→FFA − ϕx,FFA—GRP→TG − ϕx,FFA→ACoA +Qx(Ca,FFA − σx,FFACx,FFA)

7. TG Vx,TG
dCx,TG

dt
= 1

3
ϕx,FFA—GRP→TG − ϕx,TG→FFA—GLR +Qx(Ca,TG − σx,TGCx,TG)

8. O2 Vx,O2

dCx,O2

dt
= −ϕx,O2→H2O +Qx(Ca,O2 − σx,O2Cx,O2)

9. CO2 Vx,CO2

dCx,CO2

dt
= ϕx,PYR→ACoA + 2ϕx,ACoA→CO2 +Qx(Ca,CO2 − σx,CO2Cx,CO2)

10. G6P Vx,G6P
dCx,G6P

dt
= ϕx,GLC→G6P + 1

2
ϕx,GAP→G6P + ϕx,GLY→G6P − ϕx,G6P→GLC − ϕx,G6P→GAP − ϕx,G6P→GLY

11. GLY Vx,GLY
dCx,GLY

dt
= ϕx,G6P→GLY − ϕx,GLY→G6P

12. GAP Vx,GAP
dCx,GAP

dt
= 2ϕx,G6P→GAP + ϕx,PYR→GAP + ϕx,GRP→GAP − ϕx,GAP→G6P − ϕx,GAP→PYR − ϕx,GAP→GRP

13. GRP Vx,GRP
dCx,GRP

dt
= ϕx,GLR→GRP + ϕx,GAP→GRP − ϕx,GRP→GAP − 1

3
ϕx,FFA—GRP→TG

14. ACoA Vx,ACoA
dCx,ACoA

dt
= ϕx,PYR→ACoA + 8ϕx,FFA→ACoA − ϕx,ACoA→FFA − ϕx,ACoA→CO2

15. CoA Vx,CoA
dCx,CoA

dt
= ϕx,ACoA→FFA + ϕx,ACoA→CO2 − ϕx,PYR→ACoA − 8ϕx,FFA→ACoA

16. NAD+ Vx,NAD+
dCx,NAD+

dt
=
ϕx,PYR→GAP + ϕx,PYR→LAC + ϕx,GAP→GRP + 14

8
ϕx,ACoA→FFA + 2ϕx,O2→H2O

−ϕx,GAP→PYR − ϕx,LAC→PYR − ϕx,GRP→GAP − ϕx,PYR→ACoA − 14ϕx,FFA→ACoA − 4ϕx,ACoA→CO2

17. NADH Vx,NADH
dCx,NADH

dt
=
ϕx,GAP→PYR + ϕx,LAC→PYR + ϕx,GRP→GAP + ϕx,PYR→ACoA + 14ϕx,FFA→ACoA + 4ϕx,ACoA→CO2

−ϕx,PYR→GAP − ϕx,PYR→LAC − ϕx,GAP→GRP − 14
8
ϕx,ACoA→FFA − 2ϕx,O2→H2O

18. ATP Vx,ATP
dCx,ATP

dt
=

2ϕx,GAP→PYR + ϕx,ACoA→CO2 + 6ϕx,O2→H2O + ϕx,PCR→CR − ϕx,GLC→G6P − ϕx,G6P→GAP − 3ϕx,PYR→GAP

−ϕx,G6P→GLY − ϕx,GLR→GRP − 2ϕx,FFA→ACoA − 7
8
ϕx,ACoA→FFA − 2ϕx,FFA—GRP→TG − ϕx,CR→PCR − ϕx,ATP→ADP

19. ADP Vx,ADP
dCx,ADP

dt
=
ϕx,GLC→G6P + ϕx,G6P→GAP + 3ϕx,PYR→GAP + ϕx,G6P→GLY + ϕx,GLR→GRP + 2ϕx,FFA→ACoA + 7

8
ϕx,ACoA→FFA

+2ϕx,FFA—GRP→TG + ϕx,CR→PCR + ϕx,ATP→ADP − 2ϕx,GAP→PYR − ϕx,ACoA→CO2 − 6ϕx,O2→H2O − ϕx,PCR→CR

20. Pi Vx,Pi
dCx,Pi

dt
=

2ϕx,PYR→GAP + 1
2
ϕx,GAP→G6P + ϕx,G6P→GLC + 2ϕx,G6P→GLY + 2ϕx,FFA→ACoA + 7

8
ϕx,ACoA→FFA

+7
3
ϕx,FFA—GRP→TG + ϕx,ATP→ADP − ϕx,GAP→PYR − ϕx,GLY→G6P − 6ϕx,O2→H2O − ϕx,ACoA→CO2

21. PCR Vx,PCR
dCx,PCR

dt
= ϕx,CR→PCR − ϕx,PCR→CR

22. CR Vx,CR
dCx,CR

dt
= ϕx,PCR→CR − ϕx,CR→PCR

Organ/tissue x refers to brain, heart, skeletal muscle, GI tract, liver, adipose tissue, or “others”; Vx,i := Veff,x,i is the effective volume of substrate i in tissue x.
Since we assumed that each tissue is a spatially lumped tissue-capillary compartment, the distribution volume of substrate i differs from the physical tissue volume
(Vx) [345]. If substrate i exists in blood and in tissue x, Veff,x,i =0.93 Vx + σx,i(0.07 Vx); otherwise, if substrate i exists only in tissue x, Veff,x,i =0.8 Vx (e.g., see
Ref. [72] and the related references therein).
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Table C.14: Metabolic reaction fluxes

1. Glycolysis I GLC + ATP → G6P + ADP

ϕx,GLC→G6P = Vx,GLC→G6P


Cx,GLC
Kx,GLC

1 +
Cx,GLC
Kx,GLC




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


2. Glycolysis II G6P + ATP → 2 GAP + ADP

ϕx,G6P→GAP = Vx,G6P→GAP


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P




(
Cx,ADP
Cx,ATP

)2

K2

x,ADP
ATP

+

(
Cx,ADP
Cx,ATP

)2


3. Glycolysis III GAP + Pi + NAD+ + 2 ADP → PYR + NADH + 2 ATP

ϕx,GAP→PYR = Vx,GAP→PYR


Cx,GAP
Kx,GAP

Cx,Pi
Kx,Pi

1 +
Cx,GAP
Kx,GAP

+
Cx,Pi
Kx,Pi

+
Cx,GAP
Kx,GAP

Cx,Pi
Kx,Pi




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP



4. Gluconeogenesis I PYR + 3 ATP + NADH → GAP + 3 ADP + NAD+ + 2 Pi

ϕx,PYR→GAP = Vx,PYR→GAP


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


5. Gluconeogenesis II 2 GAP → G6P + Pi

ϕx,GAP→G6P = Vx,GAP→G6P


Cx,GAP
Kx,GAP

1 +
Cx,GAP
Kx,GAP


6. Gluconeogenesis III G6P → GLC + Pi

ϕx,G6P→GLC = Vx,G6P→GLC


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P


7. Glycogenesis G6P + ATP → GLY + ADP + 2 Pi

ϕx,G6P→GLY = Vx,G6P→GLY


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


8. Glycogenolysis GLY + Pi → G6P

ϕx,GLY→G6P = Vx,GLY→G6P


Cx,GLY
Kx,GLY

Cx,Pi
Kx,Pi

1 +
Cx,GLY
Kx,GLY

+
Cx,Pi
Kx,Pi

+
Cx,GLY
Kx,GLY

Cx,Pi
Kx,Pi




(
Cx,ADP
Cx,ATP

)2

K2

x,ADP
ATP

+

(
Cx,ADP
Cx,ATP

)2


9. Pyruvate Reduction PYR + NADH → LAC + NAD+
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ϕx,PYR→LAC = Vx,PYR→LAC


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


10. Lactate Oxidation LAC + NAD+ → PYR + NADH

ϕx,LAC→PYR = Vx,LAC→PYR


Cx,LAC
Kx,LAC

1 +
Cx,LAC
Kx,LAC




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


11. Glycerol Phosphorylation GLR + ATP → GRP + ADP

ϕx,GLR→GRP = Vx,GLR→GRP


Cx,GLR
Kx,GLR

1 +
Cx,GLR
Kx,GLR




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


12. GAP Reduction GAP + NADH → GRP + NAD+

ϕx,GAP→GRP = Vx,GAP→GRP


Cx,GAP
Kx,GAP

1 +
Cx,GAP
Kx,GAP




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


13. GRP Oxidation GRP + NAD+ → GAP + NADH

ϕx,GRP→GAP = Vx,GRP→GAP


Cx,GRP
Kx,GRP

1 +
Cx,GRP
Kx,GRP




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


14. Alanine Formation PYR → ALA

ϕx,PYR→ALA = Vx,PYR→ALA


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR


15. Alanine Utilization ALA → PYR

ϕx,ALA→PYR = Vx,ALA→PYR


Cx,ALA
Kx,ALA

1 +
Cx,ALA
Kx,ALA


16. Pyruvate Oxidation PYR + CoA + NAD+ → ACoA + NADH + CO2

ϕx,PYR→ACoA = Vx,PYR→ACoA


Cx,PYR
Kx,PYR

Cx,CoA
Kx,CoA

1 +
Cx,PYR
Kx,PYR

+
Cx,CoA
Kx,CoA

+
Cx,PYR
Kx,PYR

Cx,CoA
Kx,CoA




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


17. Fatty Acid Oxidation FFA + 8 CoA + 2 ATP + 14 NAD+ → 8 ACoA + 2 ADP + 2 Pi + 14 NADH

ϕx,FFA→ACoA = Vx,FFA→ACoA


Cx,FFA
Kx,FFA

Cx,CoA
Kx,CoA

1 +
Cx,FFA
Kx,FFA

+
Cx,CoA
Kx,CoA

+
Cx,FFA
Kx,FFA

Cx,CoA
Kx,CoA




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


18. Fatty Acid Synthesis 8 ACoA + 7 ATP + 14 NADH → FFA + 8 CoA + 7 ADP + 7 Pi + 14 NAD+
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ϕx,ACoA→FFA = Vx,ACoA→FFA


Cx,ACoA
Kx,ACoA

1 +
Cx,ACoA
Kx,ACoA




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


19. Lipolysis TG → GLR + 3 FFA

ϕx,TG→FFA—GLR = Vx,TG→FFA—GLR


Cx,TG
Kx,TG

1 +
Cx,TG
Kx,TG


20. Triglyceride Synthesis GRP + 3 FFA + 6 ATP → TG + 6 ADP + 7 Pi

ϕx,FFA—GRP→TG = Vx,FFA—GRP→TG


Cx,FFA
Kx,FFA

Cx,GRP
Kx,GRP

1 +
Cx,FFA
Kx,FFA

+
Cx,GRP
Kx,GRP

+
Cx,FFA
Kx,FFA

Cx,GRP
Kx,GRP




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


21. TCA Cycle ACoA + ADP + Pi + 4 NAD+ → 2 CO2 + CoA + ATP + 4 NADH

ϕx,ACoA→CO2
= Vx,ACoA→CO2


Cx,ACoA
Kx,ACoA

Cx,Pi
Kx,Pi

1 +
Cx,ACoA
Kx,ACoA

+
Cx,Pi
Kx,Pi

+
Cx,ACoA
Kx,ACoA

Cx,Pi
Kx,Pi




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH



22. Oxidative Phosphorylation O2 + 6 ADP + 6 Pi + 2 NADH → 2 H2O + 6 ATP + 2 NAD+

ϕx,O2→H2O = Vx,O2→H2O


Cx,O2
Kx,O2

Cx,Pi
Kx,Pi

1 +
Cx,O2
Kx,O2

+
Cx,Pi
Kx,Pi

+
Cx,O2
Kx,O2

Cx,Pi
Kx,Pi




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


23. Phosphocreatine Breakdown PCR + ADP → CR + ATP

ϕx,PCR→CR = Vx,PCR→CR


Cx,PCR
Kx,PCR

1 +
Cx,PCR
Kx,PCR




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP


24. Phosphcreatine Synthesis CR + ATP → PCR + ADP

ϕx,CR→PCR = Vx,CR→PCR


Cx,CR
Kx,CR

1 +
Cx,CR
Kx,CR




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


25. ATP Hydrolysis ATP → ADP + Pi

ϕx,ATP→ADP = Vx,ATP→ADP


Cx,ATP
Kx,ATP

1 +
Cx,ATP
Kx,ATP
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C.6 Some key metabolic fluxes

• Net gluconeogenesis =
ϕx,GAP→G6P

2
− ϕx,G6P→GAP, where x is liver;

• Net glycogenolysis = ϕx,GLY→G6P − ϕx,G6P→GLY, where x is brain, heart, skeletal
muscle, GI tract, liver, and adipose tissue;

• Lipolysis = ϕx,TG→FFA–GLR, where x is heart, skeletal muscle, GI tract, liver, and
adipose tissue;

• Net TG breakdown = ϕx,TG→FFA–GLR −
ϕx,FFA–GRP→TG

3
,

• Summing the above fluxes for all relevant organs yields whole-body fluxes.
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Appendix D

Appendix to Chapter 7

D.1 Mathematical model of metabolism

In this section we formulate a mathematical model describing human metabolism and the
dynamics of metabolic flexibility. We model seven tissue compartments: brain, heart,
liver, GI tract, skeletal muscle, adipose tissue, and “other tissues” (Figure 7.1). The latter
includes the kidneys, upper extremity muscles, and remaining tissues. Each compartment is
characterized by dynamic mass balance equations governing 25 cellular metabolic reactions
involving 22 substrates (refer to Table D.1). All compartments are interconnected via blood
circulation. This model represents an extension of our previously published whole-body
model [3] that focused on fuel homeostasis during exercise without food intake. Our model
accounts for the synthesis and transport of each substrate across compartments.

Our focus here is to investigate the temporal evolution of substrate concentrations
following a single meal and short fast of less than 24 hours. A meal is defined as a
combination of carbohydrates and fat. It is important to note that protein is not included
in our modelling. The investigation involves two meal compositions: a high-carbohydrate
meal, with 90% of caloric intake from carbohydrates and 10% from fat; and a high-fat
meal, with an equal distribution of 50% caloric intake from carbohydrates and 50% from
fat. Carbohydrate specifically refers to glucose, and fat refers to TG. Table 7.2 provides
details on meal composition. We assume the usage of glucose and TG by all tissues and
organs to be dependent on the amount of each substrate in the blood plasma. We construct
the model one compartment at a time and start with the blood compartment as this acts
as the main transport medium for substrates between the different organs and tissues of
the body. We note that no synthesis of glucose or TG occurs in the circulation.
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Table D.1: List of substrates and metabolic reactions

Substrates Reactions
1. GLC: Glucose 1. Glycolysis I, ϕGLC→G6P

2. PYR: Pyruvate 2. Glycolysis II, ϕG6P→GAP

3. LAC: Lactate 3. Glycolysis III, ϕGAP→PYR

4. ALA: Alanine 4. Gluconeogenesis I, ϕPYR→GAP

5. GLR: Glycerol 5. Gluconeogenesis II, ϕGAP→G6P

6. FFA: Free fatty acids 6. Gluconeogenesis III, ϕG6P→GLC

7. TG: Triglycerides 7. Glycogenesis, ϕG6P→GLY

8. O2: Oxygen 8. Glycogenolysis, ϕGLY→G6P

9. CO2: Carbon dioxide 9. Pyruvate reduction, ϕPYR→LAC

10. G6P: Glucose-6-phosphate 10. Lactate oxidation, ϕLAC→PYR

11. GLY: Glycogen 11. Glycerol phosphorylation, ϕGLR→GRP

12. GAP: Glyceraldehyde-3-phosphate 12. GAP reduction, ϕGAP→GRP

13. GRP: Glycerol-3-phosphate 13. GRP oxidation, ϕGRP→GAP

14. ACoA: Acetyl coenzyme A 14. Alanine formation, ϕPYR→ALA

15. CoA: Coenzyme A 15. Alanine utilization, ϕALA→PYR

16. NAD+: Nicotinamide adenine dinucleotidea 16. Pyruvate oxidation, ϕPYR→ACoA

17. NADH: Nicotinamide adenine dinucleotideb 17. Fatty acids oxidation, ϕFFA→ACoA

18. ATP: Adenosine triphosphate 18. Fatty acids synthesis, ϕACoA→FFA

19. ADP: Adenosine diphosphate 19. Lipolysis, ϕTG→FFA–GLR

20. Pi: Phosphate 20. Triglycerides synthesis, ϕFFA–GRP→TG

21. PCR: Phosphocreatine 21. TCA cycle, ϕACoA→CO2

22. CR: Creatine 22. Oxidative phosphorylation, ϕO2→H2O

23. Phosphocreatine breakdown, ϕPCR→CR

24. Phosphocreatine synthesis, ϕCR→PCR

25. ATP hydrolysis, ϕATP→ADP

a Oxidized
b Reduced

D.1.1 Blood compartment and dietary intake

The model simulates a meal by adding glucose and TG into the bloodstream. The model
blood compartment serves as the primary conduit for substrate transport among the seven
tissue compartments. Besides glucose and TG, the transport of the following substrates
also occurs between blood and tissue: pyruvate, lactate, alanine, glycerol, free fatty acids,
oxygen, and carbon dioxide. The alteration in the concentration of a substrate in the circu-
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lation is governed by the cumulative transport fluxes among all organs and the circulation,
and, in the case of glucose and TG, a source term. Consequently, the plasma concentration
of a substrate i is modified as follows:

Vblood
dCa,i

dt
= −

∑
x

Qx(Ca,i − σx,iCx,i)− URO,i + Fmeal
i (t− tmeal). (D.1)

Here, Vblood is the blood volume, Qx is the blood flow to/from organ x, Ca,i is the plasma
concentration of substrate i, Cx,i is the corresponding concentration of substrate i in organ
x, and σx,i is the partition coefficient of substrate i. These partition coefficients, unchang-
ing, indicate the relative distribution of metabolites between blood and organs at rest.
The expression Qx(Ca,i − σx,iCx,i) characterizes the net rate of substrate absorption into
organ x, with the negative sign indicating transport out of the circulation. x represents
brain, heart, skeletal muscle, GI tract, liver, and adipose tissue. The “other tissues” com-
partment includes the kidneys, upper extremity muscles, and remaining tissues, and lacks
any metabolic reactions. It functions as a source or sink for the nine substrates exchanged
between blood and tissues. In the case of other species found exclusively in tissues, the
source or sink terms are nil. Let URO,i denote the source or sink term for substrate i
in tissue O, which represents other tissues. A positive value indicates uptake of the cor-
responding substrate, while a negative value indicates release into the circulation. The
source or sink values are set to maintain the overall mass balance of the whole-body model
at rest. However, for substrates such as lactate and glycerol, which can be excreted by the
kidneys when present in excess in the circulation, the source or sink terms are dynamic
and can model excretion. When i represents lactate or glycerol,

URO,i = UR0
O,i +max

(
0, QO

(
Ca,i − Cthresh

a,i

))
, (D.2)

where UR0
O,i is the basal rate of uptake or release of substrate i from other tissues, QO is the

blood flow to other tissues, Ca,i is the blood concentration of substrate i, and Cthresh
a,i is the

corresponding excretion threshold. The kidney is both a lactate producer and consumer.
For instance, in the absorptive state, kidneys act as recipients of the lactate shuttle, and
when in excess, they serve as sites of net lactate disposal [463, 464]. Given that normal
lactate levels are less than 2 mM [465], Cthresh

a,LAC is set to 2 mM. According to Nelson et al.
[466], plasma glycerol concentrations above 0.327± 0.190 mM are associated with urinary
glycerol excretion. Thus, Cthresh

a,GLR is set to 0.33 mM. For other substrates—glucose, pyruvate,

alanine, TG, oxygen, and carbon dioxide, URO,i = UR0
O,i.

We model the rate of appearance of glucose and TG in the blood using modified equa-
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tions introduced by Pearson et al. [392]:

Fmeal
GLC(t− tmeal) = θGLC ·

t− tmeal

τ 2GLC(θGLC)
exp

{
− (t− tmeal)

2

2τ 2GLC(θGLC)

}
, (D.3)

and

Fmeal
TG (t− tmeal) = θTG ·

t− tmeal

τ 2TG(θTG)
exp

{
−
(
(t− tmeal)− 200

)2
2τ 2TG(θTG)

}
, (D.4)

where t and tmeal indicate time (in min), and tmeal specifically marks the beginning of a
meal. According to Frayn [154], glucose peaks 30-60 mins after a meal, and TG peaks 3-4
hours after a meal. The term (t− tmeal−200) models this delayed peak in TG appearance.
For i ̸= GLC or TG, Fmeal

i = 0. The functions θGLC and θTG are the concentrations
of exogenous glucose and TG, respectively, and determine the magnitude of substrate
excursion entering the circulation. The functions τGLC(θGLC) and τTG(θTG) determine the
timescale of substrate release into the blood. While Pearson et al. [392] defined τGLC and
τGLC as constants, we define them as dynamic parameters. We model τGLC(θGLC) and
τTG(θTG) as sigmoids, which depend on the size of the ingested meal, and lead to the
desired peak times of release:

τGLC(θGLC) =M0
GLC +Mmax

GLC

θ2GLC

K2
GLC + θ2GLC

, (D.5)

and

τTG(θTG) =M0
TG +Mmax

TG

θ2TG

K2
TG + θ2TG

, (D.6)

where M0
(·) (min) is fixed and represents the basal gastric emptying time for an exoge-

nous substrate, Mmax
(·) (min) is the maximal gastric emptying time, and K(·) (mmol) is

the half-emptying threshold in the gut. Our modification leads to a more physiological
representation of substrate release into the peripheral circulation following the intake of
a mixed meal compared to the initial model presented in Ref. [392]. In all of the above
equations, t, τGLC, and τTG are expressed in minutes. We set M0

GLC = 30, Mmax
GLC = 60,

M0
TG = 60, and Mmax

TG = 120, in accordance with Ref. [154].

D.1.2 Pancreatic hormones

The pancreas has a dual role in regulating macronutrient absorption and metabolism. It
secretes digestive enzymes (exocrine function) and pancreatic hormones (endocrine func-
tion) [154]. Acinar cells, also known as exocrine cells, produce pancreatic juices containing
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digestive enzymes like amylase, pancreatic lipase, and trypsinogen. Pancreatic hormones,
on the other hand, are released in an endocrine manner—directly into the bloodstream.
Endocrine cells aggregate to form the islets of Langerhans, making up only 1–2% of the
entire organ. These islets resemble small, island-like structures within the exocrine pancre-
atic tissue [467]. The endocrine pancreas is a key contributor to blood glucose regulation
by producing the hormones insulin and glucagon. While glucagon increases blood glucose
levels, insulin acts to decrease them. Specialized cells, namely the glucagon-producing α-
cells (15–20% of total islet cells) and insulin-producing β-cells (65–80% of total cells), are
responsible for synthesizing these hormones [467]. In this model, there is no distinct pan-
creatic compartment; instead, the release and elimination of hormones from the plasma are
described through phenomenological functions that capture the established relationships
between plasma glucose levels and hormone concentrations (Figure D.1).

Figure D.1: Endocrine control of plasma glucose. Blunt arrows indicate inhibition, while
pointed arrows indicate stimulation. Regarding the effects of insulin and glucagon on
plasma glucose, arrows denote the signaling of glucose utilization (blunted arrows) or
production (pointed arrows) by other organs. Created with BioRender.com.

Equations (D.7) and (D.8) below describe the dynamics of insulin and glucagon, re-
spectively; together, they represent the pancreatic hormone responses.

dCI

dt
= k0I + ψ(Ca,GLC) · VmaxI

Cn1
a,GLC

Kn1
mGLC + Cn1

a,GLC

−D · CI , (D.7)

dCG

dt
= k0G + θ(Ca,GLC) · VmaxG

Kn2
iGLC

Kn2
iGLC

+ Cn2
a,GLC

·
Kn3

iI

Kn3
iI

+ Cn3
I

−D · CG, (D.8)
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with

ψ(Ca,GLC) =


0 Ca,GLC < 2.5

1− (Ca,GLC − 7.5)2/25 2.5 ≤ Ca,GLC ≤ 7.5

1 7.5 < Ca,GLC

(D.9)

and

θ(Ca,GLC) =


1 Ca,GLC < 2.5

1− (Ca,GLC − 2.5)2/25 2.5 ≤ Ca,GLC ≤ 7.5

0 7.5 < Ca,GLC

(D.10)

k0I and k0G represent the basal rates of insulin and glucagon secretion, respectively, while
Vmax,I and Vmax,G represent the maximum rate coefficients. Km,GLC is the glucose concen-
tration at which half of Vmax,I is achieved. Similarly, Ki,GLC and Ki,I serve as inflection
points for the glucose and insulin sigmoids, respectively. These values, known as inhi-
bition constants, indicate the concentration required for half-maximum inhibition. The
exponents n1, n2, and n3 denote the slopes of the sigmoids, characterizing sensitivity of
responses. D represents the disappearance rate of insulin and glucagon. The parame-
ter values are sourced from literature or determined through fitting to experimental data
(refer to Section D.2). Specifically, Km,GLC = 7 mM [154, 468], Ki,GLC = 20 mM [469],
Ki,I = 90 pM [470], n1 = 7 [471], and D = 0.1 min−1 [472]. The remaining parameters—
k0I , k

0
G, Vmax,I, Vmax,G, n2, and n3—are estimated from the available data [9, 12, 13].

These responses (Eqs (D.7) and (D.8)) are sigmoid functions that range between basal
hormone secretion rates (k0I and k0G) and maximal hormone secretion rates (k0I + Vmax,I

and k0G + Vmax,G). They monotonically increase with rising blood glucose levels for insulin
(Eq (D.7)) and decrease for glucagon (Eq (D.8)). In terms of regulation, glucose stimulates
insulin release while suppressing glucagon secretion [154]. Furthermore, recent work by
Vergari et al. [470] indicates direct paracrine inhibition of glucagon secretion by insulin.
The relationships between glucose and pancreatic hormones follow characteristic sigmoid
dose–response curves [71, 154], which we modeled by a Michaelis-Menten-like hyperbolic
functions. We assumed that the hormones degrade at a rate linearly proportional to their
respective concentrations (D · CI and D · CG). We introduced the terms θ(Ca,GLC) and
ψ(Ca,GLC) to capture the influence of glucose on maximum rate coefficients. Specifically,
the Vmax values for hormone secretion correlate with the prevailing glucose concentration
[473]—ψ(Ca,GLC) increases with glucose, while θ(Ca,GLC) decreases. Both are formulated
to maintain a steady-state plasma glucose concentration of 5 mM [338].
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D.1.3 Organ and tissue compartments

In the whole-body model, a spatially lumped capillary blood domain facilitates the ex-
change of nutrients and metabolic substrates with spatially lumped domains of tissue cells,
each representing one of the modeled organs or tissues. Each organ compartment, except
“other tissues”, is characterized by a set of organ-specific metabolic reactions. Figure D.2
provides a comprehensive overview of all the metabolic pathways represented in our models,
and Table D.2 delineates tissue-specific metabolic pathways.

Figure D.2: Union map of all-organ metabolic pathways. 9 substrates are transported
between blood and tissues (open arrows). Black arrows are tissue-specific pathways,
whereas dashed arrows represent common pathways found in all tissues. Pathways
marked with an asterisk (*) are composed of multiple reaction steps but grouped together
as a single step in this model. Reaction rates in females that are significantly different
from males at rest are marked by an arrow indicating the direction of change and the
symbol F. Substrate abbreviations are listed in Table D.1. Figure reproduced from Abo
et al. [3] with permission.
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Table D.2: Map of tissue-specific metabolic pathways. A filled box means the existence of
the corresponding pathway. In addition to the common pathways depicted in Fig. D.2,
each tissue has its own different set of metabolic pathways. Table reproduced from Abo
et al. [3] with permission.

Pathways Brain Heart
Skeletal
muscle

GI
tract

Liver
Adipose
tissue

Gluconeogenesis I, II, III
(PYR→GAP,GAP→G6P,G6P→GLC)

Glycogenesis
(G6P→GLY)
Glycogenolysis
(GLY→G6P)

Fatty acid synthesis
(ACoA→FFA)

Fatty acid oxidation
(FFA→ACoA)

Lipolysis
(TG→FFA+GLR)

TG synthesis
(FFA+GRP→TG)

Glycerol phosphorylation
(GLR→GRP)
GAP reduction
(GAP→GRP)
GRP oxidation
(GRP→GAP)

Alanine breakdown
(ALA→PYR)

Alanine synthesis
(PYR→ALA)

PCR breakdown
(PCR→CR)
PCR synthesis
(CR→PCR)

The general form of the mass balance equation for chemical species i in tissue x is

Vx
dCx,i

dt
= Px,i − Ux,i +Qx(Ca,i − σx,iCx,i), (D.11)

where Vx is a constant parameter representing the volume of tissue x. The terms Px,i and
Ux,i denote the production and utilization rates of substrate i in tissue x, respectively. Qx

is fixed and corresponds to the blood flow to tissue x, while Ca,i and Cx,i represent the
arterial and tissue concentrations of substrate i respectively. The parameter σx,i denotes the

281



partition coefficient of substrate i, which remains fixed and reflects the relative distribution
of metabolites between blood and tissues at rest. The first two terms on the right side
of Eq (D.11) express the net metabolic reaction rate of substrate i in tissue x. The third
term, Qx(Ca,i − σx,iCx,i), is the net rate of absorption or release of substrate i in tissue x.
It is worth noting that only 9 substrates (substrates 1 to 9 in Table D.1) are transported
between blood and tissue.

In the absorptive period following a meal rich in carbohydrates or fats, hyperglycemia
and/or hypertriglyceridemia may occur. Hyperglycemia is typically defined by blood glu-
cose levels exceeding 6.1 mM [468], while hypertriglyceridemia is indicated by blood TG
levels surpassing 2 mM [154]. Hyperglycemia plays a role in stimulating glucose uptake
by splanchnic (liver and GI tract) and peripheral (mainly skeletal muscle) tissues. Liver
cells are primarily equipped with the GLUT-2 glucose transporter, which does not respond
to insulin. This implies that the rate and direction of glucose movement across the hepa-
tocyte membrane depend on the relative concentrations of glucose inside and outside the
cell. In skeletal muscle, glucose uptake is predominantly mediated by the insulin-sensitive
glucose transporter, GLUT4. The conventional expectation is that hyperinsulinemia fol-
lows hyperglycemia, leading to the stimulation of glucose uptake. This occurs through
an increase in the number of GLUT4 transporters at the cell membrane and enhanced
disposal of glucose within the cell [154]. However, it is noteworthy that hyperglycemia,
even in the absence of hyperinsulinemia, independently stimulates muscle glucose uptake
[474]. To enhance the model’s ability for maintaining glucose homeostasis under different
metabolic conditions, we assume that glucose uptake into the liver and skeletal muscle is
stimulated by hyperglycemia, regardless of whether it is coupled with hyperinsulinemia or
not. In these organs, the partition coefficient for glucose, which modulates the organ’s
capacity for uptake or release of glucose, is a dynamic parameter

σx,GLC = σ0
x,GLC

(
1− 1

1 + exp{−2(Ca,GLC − 9)}

)
, Ca,GLC > 6.1mM (D.12)

and σx,GLC = σ0
x,GLC, otherwise. In this equation, x denotes the liver or skeletal muscle,

and σ0
x,GLC represents the partition coefficient under normal glucose levels. The slope of the

sigmoid is set to 2 to simulate the rapid clearance of glucose during hyperglycemia, in line
with expectations for healthy individuals [154, 468]. The inflection point of the sigmoid is
chosen as 9 so that glucose levels above 6.1 mM start to elicit a response. Similarly, in the
fed state, adipose tissue serves as the primary site for the uptake of dietary TG. Therefore,
during postabsorptive hypertriglyceridemia, we assume that the influx of TG into adipose
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tissue is modulated as follows:

σx,TG = σ0
x,TG

(
1− 1

1 + exp{−2(Ca,TG − 4)}

)
, Ca,TG > 2mM (D.13)

where x represents adipose tissue, and σ0
x,TG denotes the partition coefficient under normal

TG levels. In this case as well, the slope of the sigmoid is set to 2, and the inflection point
is chosen so that TG levels above 2 mM initiate a response. For the remaining substrates
(substrates 10 to 22 in Table D.1), which exist exclusively within tissues, the net metabolic
rate is

Vx
dCx,i

dt
= Px,i − Ux,i. (D.14)

Production and utilization rates encompass all contributing metabolic reactions, for-
mulated as:

Px,i − Ux,i =
m∑
k=1

γsk→siϕx,sk→si −
n∑

k=1

γsi→skϕx,si→sk . (D.15)

Here, ϕx,sk→si denotes the rate at which substrate sk is utilized to form substrate si in tissue
x, and vice versa for ϕx,si→sk . The constants γ(·) represent the respective stoichiometric
coefficients. m refers to the number of processes forming substrate i, while n is the number
of processes consuming substrate i.

D.1.4 Basal metabolic reaction rate

Biochemical reactions in vivo are intricate metabolic processes that encompass multiple
reaction steps. Our modelling approach follows a top-down systems perspective [66, 68, 72]
and characterizes biochemical reactions as aggregate ‘pseudo’ processes by stoichiometri-
cally combining several elementary reactions (Figure D.2). Many lumped reactions are
considered irreversible, reflecting the tendency of corresponding regulatory enzymes in
vivo to have large equilibrium constants favoring product formation [72]. As part of our
modelling framework, reversible reactions, such as the one involving the enzyme lactate
dehydrogenase (LDH) where lactate is synthesized from pyruvate and can also be con-
verted back to pyruvate, are deconstructed into two irreversible reactions. Consequently,
all lumped reactions are treated as specific instances of a general irreversible, uni-uni (or
bi-bi when two reactants are involved) substrate to product enzymatic reaction. Each
reaction also includes the metabolic controller pairs ATP:ADP and NADH:NAD+, whose
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ratios are known to regulate reaction fluxes [72].

(D.16)

In this context, P1 and P2 denote ATP and ADP or vice versa, representing the phospho-
rylation state, while R1 and R2 stand for NADH and NAD+ or vice versa, indicating the
redox state.

Rates of utilization (ϕx,si→sk) for any substrate si in tissue x vary based on the substrate
concentration Cx,i, unless otherwise specified, as well as on the phosphorylation state (PS)
and the redox state (RS). As a general reaction, reactants X and Y and products Z and
W are considered. The corresponding reaction rate equation in tissue x is:

ϕx,X–Y→Z–W = Vmax,x,X–Y→Z–W

(
CX

KX
· CY

KY

1 + CX

KX
+ CY

KY
+ CX

KX
· CY

KY

)

×
(

PS±

µ± + PS±

)(
RS±

ν± +RS±

) (D.17)

where Vmax,x,X–Y→Z–W , KX , andKY represent phenomenological maximum rate coefficients
and Michaelis parameters specific to the reaction process. CX and CY denote the concentra-
tions of substrate X and Y in tissue x. The phosphorylation states are PS+ = CATP/CADP

in the forward direction and PS− = CADP/CATP in the opposite direction. Similarly, redox
states are denoted as RS+ = CNADH/CNAD+ and RS− = CNAD+/CNADH. Parameters µ±

and ν± are associated with the energy controller pairs.

It is noteworthy that AMP acts as a crucial allosteric regulator of glycogen phosphory-
lase for glycogenolysis (GLY→G6P) and phosphofructokinase-1 (PFK-1) for glycolysis II
(G6P→GAP). Since AMP is not explicitly included in this model, AMP/ATP is approxi-
mated by [ADP/ATP ]2 in these reactions (see Table D.18). The maximum rate coefficients,
Michaelis parameters, µ± and ν± values, along with in-tissue substrate concentrations, are
sourced from Ref. [3] and the references therein.

D.1.5 Metabolic response to eating

Postprandial metabolism and nutrient storage. Following a mixed meal, glucose
concentrations in the systemic circulation typically increase within less than 30 minutes.
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However, it takes a longer interval, approximately 3-4 hours, to observe rises in blood fat
levels [154]. The process of nutrient absorption is facilitated by a rapid increase in the
insulin/glucagon ratio, which strongly influences postprandial metabolism [475, 476]. In
healthy individuals, glucagon is suppressed after mixed meal or glucose ingestion, while
insulin increases by at least an order of magnitude [9, 154, 477]. We thus simplified our
approach by using insulin alone instead of the insulin-to-glucagon ratio as our metabolic
signal from blood to tissues. Consequently, we define insulin-regulated enzyme activity
factors, which are determined by plasma insulin concentration and vary for each organ:

Bx = V x
maxβ

Cn
I

Kxn

mβ
+ Cn

I

, (D.18)

and

Γx = V x
maxγ

Ck
I

Kxk

mγ
+ Ck

I

, (D.19)

where activation by insulin is denoted by Bx and inhibition by insulin is denoted by Γx.
Bx and Γx are functions of insulin that are independent of substrate i. The subscript
x denotes the different organs and tissues. The parameters V x

maxβ
and V x

maxγ represent
maximum rate coefficients, Kx

mβ
and Kx

mγ
represent Michaelis parameters, n and k are hill

coefficients modulating the strength of the response. For a given reaction, the maximum
rate coefficient Vmax,x,i, characterizing the metabolic flux i in tissue x (see Eq D.17), is
modulated by insulin activity factors as follows:

Vmax,x,i = V 0
max,x,i

(
1 + Bx − Γx

)
. (D.20)

V 0
max,x,i represents basal maximum rate coefficients (constants), while Vmax,x,i represents

dynamic maximum rate coefficients regulated by insulin, influencing metabolic rates via
Eq (D.17). We note that for Vmax,x,i to assume physiological values (> 0), 1+Bx > Γx with
Bx,Γx ≥ 0. We also note that Km values are chosen ‘large enough’ compared to (i.e., same
order of magnitude as) postprandial insulin concentrations. As such, Bx ≈ 0 and Γx ≈ 0
when insulin returns to basal pre-meal levels. Table D.3 lists the reactions modulated by in-
sulin, along with the corresponding affected organs. Frayn [154] qualitatively described the
enzymes and reactions affected by insulin. Consequently, we introduced insulin-regulated
enzyme activity factors that modulate the production rates of the reactions outlined in
Table D.3.

Postabsorptive metabolism and nutrient mobilization. The term “postabsorp-
tive state” implies that all contents of the previous meal have been absorbed from the GI
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Table D.3: Reactions affected by pancreatic hormones during the postprandial phase

Hormone Effect Reaction # Reaction Affected organs

Insulin ↑ 1 Glycolysis I H, M, G, L, A
↑ 2 Glycolysis II H, M, G, L, A
↑ 3 Glycolysis III H, M, G, L, A
↑ 7 Glycogenesis H, M, L
↑ 16 Pyruvate oxidation A, M, L
↑ 18 Fatty acids synthesis L
↑ 20 TG synthesis L, A

↓ 4 Gluconeogenesis I L
↓ 5 Gluconeogenesis II L
↓ 6 Gluconeogenesis III L
↓ 8 Glycogenolysis M, L
↓ 19 Lipolysis G, A

Symbols H, M, G, L, A denote heart, skeletal muscle, GI tract, liver, and
adipose tissue, respectively. (↑) signifies activation, while (↓) signifies inhi-
bition. The qualitative effects of insulin on reaction rates are discussed in
the works of Frayn [154] (chapters 5 and 7) and Kurata [66]. Additional
information regarding the reactions and relevant metabolites can be found
in Table D.1.

tract, and that not much time has passed, as signs of starvation would otherwise appear.
In the postabsorptive state, the blood glucose concentration usually hovers slightly below
5 mM. The concentration of insulin in plasma returns to basal values, which can vary
widely among individuals but is typically around 60 pM. The concentration of glucagon
also returns to basal values, approximately 20–30 pM [154]. Since insulin and glucagon
concentrations are of comparable magnitudes, we employ the well-known glucagon/insulin
ratio (GIR) and define the GIR-regulated enzyme activity factors that are active during
the postabsorptive phase. This ratio correlates with metabolic changes during the postab-
sorptive phase [475].

Bfat
x = V x

maxβ,fat

GIRm

Kxm

mβ,fat
+GIRm , (D.21)
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and

Γfat
x = V x

maxγ,fat

GIRq

Kxq

mγ,fat
+GIRq , (D.22)

where activation by GIR is modulated by Bfat
x and inhibition by GIR is modulated by Γfat

x .
The subscript x denotes the different organs and tissues. The parameters V x

maxβ,fat
, V x

maxγ,fat
,

Kx
mβ,fat

, Kx
mγ,fat

, and exponents m and q are defined as before (see Eqs (D.18)-(D.19)). For
a given reaction, the maximum rate coefficient Vmax,x,i is modulated by GIR-regulated
enzyme activity factors as follows:

Vmax,x,i = V 0
max,x,i

(
1 + Bfat

x − Γfat
x

)
. (D.23)

Here too, Vmax,x,i assumes physiological values (> 0) when 1+Bfat
x > Γfat

x with Bfat
x ,Γfat

x ≥ 0.
We note that Bfat

x ≈ 0 and Γfat
x ≈ 0 during the postprandial phase because GIR ≈ 0, i.e.,

CI ≫ CG. Table D.4 contains the reactions that are affected by insulin and glucagon, as
well as which organ is affected.

Notably, skeletal muscle and cardiac cells lack glucagon receptors [347], but reduced
insulin levels can signal metabolic pathways in these organs during the postabsorptive
phase [478]. Thus, during the postabsorptive phase, the heart and skeletal muscle solely
respond to an insulin signal:

Bfat
{M,H} = ρ(Ca,GLC) · V {M,H}

maxβ,fat

Cm
I

K
{M,H}m
mβ,fat + Cm

I

, (D.24)

and

Γfat
{M,H} = ρ(Ca,GLC) · V {M,H}

maxγ,fat

Cq
I

K
{M,H}q
mγ,fat + Cq

I

, (D.25)

where

ρ(Ca,GLC) = 1− 1

1 + exp{−4(Ca,GLC − 4.4)}
. (D.26)

The logistic sigmoid function, denoted as ρ(Ca,GLC), serves as a switch governing the ac-
tivation and deactivation of postabsorptive insulin-regulated enzyme activity factors in
skeletal muscle and heart. It is based on blood glucose levels. The threshold defining the
shift from normoglycemia to hypoglycemia is established at 4.4 mM, as specified by Berger
and Zdzieblo [468]. This value is utilized to determine the initiation of the postabsorptive
phase in these organs. It is noteworthy that ρ(Ca,GLC) approaches 0 during the postprandial
phase when Ca,GLC > 4.4 mM, and so is only activated during the postabsorptive phase.
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The slope, set to −4, ensures a rapid shift from activation (ρ(Ca,GLC) ≈ 1) to deactivation
(ρ(Ca,GLC) ≈ 0) even with slight deviations of Ca,GLC above 4.4 mM. This modelling deci-
sion is influenced by the observation that skeletal myocytes can directly sense extracellular
glucose concentrations, activating a signaling pathway for hormone-independent metabolic
activation. This glucose sensing pathway acts in concert with insulin to enhance mus-
cle glucose utilization, contributing to the maintenance of systemic glucose homeostasis
[475, 479]. Table D.4 lists the reactions in skeletal muscle and heart that are affected by
insulin during the postabsorptive phase.

Table D.4: Reactions affected by pancreatic hormones during the postabsorptive phase

Hormone Effect Reaction # Reaction Affected organs

Insulin ↑ 8 Glycogenolysis M
↑ 14 Alanine formation M
↑ 16 Pyruvate oxidation M
↑ 17 Fatty acids oxidation H, M

↓ 7 Glycogenesis M

Glucagon ↑ 4 Gluconeogenesis I L
↑ 5 Gluconeogenesis II L
↑ 6 Gluconeogenesis III L
↑ 8 Glycogenolysis L
↑ 10 Lactate oxidation L
↑ 15 Alanine utilization L
↑ 16 Pyruvate oxidation L
↑ 17 Fatty acids oxidation L

↓ 7 Glycogenesis L
↓ 9 Pyruvate reduction L

Symbols H, M, L, denote heart, skeletal muscle, and liver, respectively. (↑)
signifies activation, while (↓) signifies inhibition. The qualitative effects of
insulin and glucagon on reaction rates are discussed in the works of Frayn
[154] (chapters 5 and 7), Sandoval and D’Alessio [389], Adeva-Andany et al.
[480], and Kurata [66]. Additional information regarding the reactions and
relevant metabolites can be found in Table D.1.
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D.1.6 Virtual subjects

We consider lean, healthy male and female subjects. Table D.5 provides details regarding
physical attributes, including tissue weights and basal blood flows.

Male: 70 Kg body weight, aged between 20 and 35 years. Regarding body composition,
skeletal muscle constitutes 40% of the total body weight, and adipose tissue accounts for
16%. In the initial conditions for each simulation, the subject is in a state of overnight fast
(8-12 h), with a cardiac output of 5.5 l/min and a resting RQ of 0.8.

Female: 58 Kg body weight, aged between 20 and 35 years. Regarding body composition,
skeletal muscle constitutes 30% of the total body weight, and adipose tissue accounts for
29.5%. In the initial conditions for each simulation, the subject is in a state of overnight
fast (8-12 h), with a cardiac output of 5 l/min and a resting RQ of 0.8.

D.2 Parameter estimation

While the qualitative effects of insulin and glucagon are known (Tables D.3-D.4), the spe-
cific parameters governing insulin- and glucagon-induced metabolic regulation remain less
established. We conducted parameter estimations based on experimental data [9, 10, 12, 13]
and reference ranges from literature sources (Table D.6). The parameter values for sim-
ulating the metabolism of a healthy adult (either male or female) in an overnight fasted
condition are detailed in our prior work [3] and are also accessible in Tables D.8–D.16.
Parameters associated with metabolic changes in response to feeding and subsequent fast-
ing, as outlined in Table 7.1, were estimated using fmincon, a gradient-based constrained
optimization algorithm commonly known as constrained nonlinear optimization or nonlin-
ear programming. This algorithm was applied to minimize the difference between model-
predicted concentrations and concentration data over 6 to 10 hours following various mixed
meals.

Let p0 denote the initial guess set for model parameters. For parameters associated
with in-tissue regulation by insulin and glucagon (Eqs (D.18)–(D.25)), the maximum rate
coefficients (Vx

max) for enzyme activity factors are fixed at 1. The Michaelis constants (Kx
m)

are set to the midpoint of the reference range obtained from the literature, while the hill
coefficients (nx) are set to 1. Concerning the dynamics of plasma insulin and glucagon
(Eqs (D.7)–(D.8)), the maximum rate coefficients (VmaxI , VmaxG), basal secretion rates
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Table D.5: Physical characteristics

Male Female References

Tissue/Organ Weight (Kg) Volume (L)† Weight (Kg) Volume (L)†

Brain 1.40 1.35 1.20 1.15 [70, 331, 332]
Heart 0.331 0.315 0.253 0.241 [70, 331, 333]
Skeletal muscle 22.4a 21.33 13.6a 12.95 [70, 331, 333]
GI tract 2.0 1.89 2.0 1.89 [68, 70, 333]
Liver 1.80 1.67 1.40 1.30 [70, 331, 334]
Adipose tissue 11.0b 11.9 17.1c 18.5 [68, 70, 331, 333]
Othersd 31.069 29.59 22.447 21.38 [335]
Whole-body 70.0 68.045 58.0 57.411 [70, 331]

Blood flow (l/min)e

Brain 0.75 0.75
Heart 0.25 0.25
Skeletal muscle 0.9 0.9
GI tract 1.1 1.1
Liver 1.50 1.35 [336]
Adipose tissue 0.36 0.36
Othersd 1.74 1.39
Whole-body 5.5 5.0 [70, 337]

a Skeletal muscles, excluding upper extremities which account for 18-20% of total weight. Male total:
28 Kg; female total: 17 Kg.
b Based on 16% body fat content.
c Based on 29.5% body fat content.
d Values for “Others” are chosen to balance whole-body values.
e Unless otherwise noted, regional blood flows are assumed to be the same between sexes. Values are
reproduced from Ref. [3].
† Organ volumes are calculated by dividing each tissue weight by its density: brain (1.04 Kg/L)[332],
heart and skeletal muscle (1.05 Kg/L)[333], GI tract (1.06 Kg/L)[333], liver (1.08 Kg/L)[334], adipose
tissue (0.923 Kg/L)[333]. Assuming that others include only nonfat tissues, a tissue density of
1.05 Kg/L is used [335]. The total volume of the body is calculated by adding the volumes of all
compartments.

(k0I , k
0
G), and hill coefficients (n2, n3) are uniformly set to 1. Regarding dietary influx

(Eqs (D.5)–(D.6)), the half-emptying gut thresholds for glucose (KGLC) and TG (KTG) are
fixed at half the values of the average daily intake of macronutrients, as outlined in the
literature. Reference ranges are elaborated in Table D.6.
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We then established a set of lower (lb) and upper (ub) bounds for the free variables
in p0, ensuring that the solution remains within the range lb ≤ p0 ≤ ub. Hill coeffi-
cients are confined to the range of 1 to 4, unless specific evidence suggests otherwise,
given that cooperative binding and allosteric enzymatic processes seldom produce Hill co-
efficients exceeding 4 [481]. All half-maximum constants (Kx

m, KGLC, and KTG) have lb
= min(range)/2 and ub = max(range)× 2. We opted not to strictly adhere to experimen-
tal ranges to accommodate variability between experiments and acknowledge that many
reactions are modeled as ‘pseudo’ processes through stoichiometric combinations of several
elementary reactions (Figure D.2). Maximum rate coefficients (Vx

max, VmaxI , VmaxG) are
restricted between 0 and 100 when modelling the activation of a reaction and between 0
and 1 when modelling the inhibition of a reaction. The latter constraint arises from the
equation form for inhibition (see Eqs D.20 and D.23). Model equations are solved using
ode15s (MATLAB 2021a), a variable-step, variable-order solver ranging from orders 1 to
5. This solver is an implicit integration algorithm designed for stiff systems.

For a given substrate (or hormone) s, consider the weighted residuals:

ϵ2s =
Ns∑
i=1

(
ys,i − ŷs,i(θ)

)2
σ2
s,i

, (D.27)

where ys,i represents the measured data point i for substrate (or hormone) s, σs,i denotes the
corresponding experimental standard error, Ns signifies the total number of data points for
substrate s, and ŷs,i(θ) is the predicted value given the set of parameters θ. Consequently,
we aim to minimize a problem specified by

min
θ
f(θ) =

∑
s∈S

ϵ2s subject to lb ≤ θ ≤ ub (D.28)

Set S = {insulin, glucagon, GLC, LAC, TG, FFA, GLR, GLYM, GLYL} specifically for the
male model. The subscripts M and L correspond to skeletal muscle and liver, respectively.
Substrate abbreviations are outlined in Table D.1. The data represent plasma concentra-
tions of hormones and substrates and are detailed in Table D.7. We utilized time series data
reflecting dynamic concentrations following single meals of various compositions spanning
6 to 10 hours post food intake. All datasets were concurrently employed for parameter
estimation. A comprehensive list of estimated parameters is provided in Table D.6.

Table D.6: Estimated model parameters
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Organ Parameters Range Organ Parameters Range

Insulin k0I = 1.8 — pM/min Adipose VA
maxβ

= 5 — mmol/min

VmaxI = 62 — pM/min KA
mβ

= 400 348-720 mM [482]

KmGLC = 7 7–20 mM [154, 468] nA
1 = 3 unitless

n1 = 7 4.6–8.4 [471] VA
maxβ2

= 17 — mmol/min

KA
mβ2

= 80a 348-720 mM [482]

Glucagon k0G = 0.5 — pM/min nA
2 = 2 unitless

VmaxG = 5.4 — pM/min VA
maxγ = 1 — mmol/min

KiGLC = 20 4–20 mM [469] KA
mγ

= 130 42-160 mM [482, 483]

KiI = 90 ∼ 100 pM [470] nA
3 = 4 unitless

n2 = 4 unitless
n3 = 4 unitless GI Tract VG

maxβ
= 2 — mmol/min

KG
mβ

= 480 348-720 mM [482]

Heart VH
maxβ

= 2 — mmol/min nG = 4 unitless

KH
mβ

= 350 348-720 mM [482] VG
maxγ = 1 — mmol/min

nH
1 = 4 unitless KG

mγ
= 280 42-160 mM [482, 483]

VH
maxβ,fat

= 8 — mmol/min

KH
mβ,fat

= 9 6-70 mM [483, 484] Liver VL
maxβ

= 22 — mmol/min

nH
2 = 2 unitless KL

mβ
= 350 348-720 mM [482]

nL = 2 unitless
Muscle VM

maxβ
= 18 — mmol/min VL

maxβ2
= 38 — mmol/min

KM
mβ

= 250 348-720 mM [482] KL
mβ2

= 350 348-720 mM [482]

nM = 2 unitless VL
maxβ3

= 2.2 — mmol/min

VM
maxβ2

= 1.8 — mmol/min KL
mβ3

= 350 348-720 mM [482]

KM
mβ2

= 250 348-720 mM [482] VL
maxγ = 1 — mmol/min

VM
maxγ = 1 — mmol/min KL

mγ
= 90 120-300 mM [482]

KM
mγ

= 120 348-720 mM [482] VL
maxβ,fat

= 2 — mmol/min

VM
maxβ,fat

= 2 — mmol/min KL
mβ,fat

= 1b 0.4–6 [10, 482, 484]

KM
mβ,fat

= 12 6-70 mM [483, 484] VL
maxβ,fat2

= 10 — mmol/min

VM
maxβ,fat2

= 10 — mmol/min KM
mβ,fat2

= 0.6b 0.4–6 [10, 482, 484]

KM
mβ,fat2

= 15 6-70 mM [483, 484] VL
maxγ,fat

= 1 — mmol/min

VM
maxγ,fat

= 1 — mmol/min KL
mγ,fat

= 2b 0.4–6 [10, 482, 484]

KM
mγ,fat

= 10 6-70 mM [483, 484]

Dietary KG
c 0-1667 mmol [154]

influx KT
d 0-117 mmol [154]

292



a This value was manually curated to reproduce experimental data.
b These values are dimensionless, representing the Michaelis constants for GIR-regulated enzyme
activity factors, where GIR itself is dimensionless, denoting the ratio of glucagon to insulin. The
estimated range of values is derived from experimental data. Resting glucagon concentrations
typically fall between 27 and 36.5 pM [10]. Considering the reference range for insulin (6-70 pM)
[482, 484], the broadest interval for GIR is [27/70, 36.5/6].
c The average daily intake of carbohydrates is ∼ 300g. The molecular mass of glucose is 0.18
mmol/g [154]. Assuming that all ingested carbohydrates are digestible and eventually converted
to glucose, we derived the upper bound by converting g to mmol.
d The average daily intake of fat is ∼ 100g. The molecular mass of fat is 0.85 mmol/g [154].
Assuming that all ingested fats, in the form of neutral fats or triglycerides, we derived the upper
bound by converting g to mmol.

Table D.7: Experimental data used for parameter estimation and model validation

Experiment Subjects Meal Observables

Sex Age CHO Fat Substrates # points Time frame

Frayn et al. [9] 5M/3F 29–64 96g 33g GLC 9 0–360 mins
LAC 9
FFA 9
INS 9

Coppack et al. [13] 3M/4F 30–35 96g 33g LAC 9 0–360 mins
GLR 9
TG 9

Taylor et al. [12] 4M/4F 23–27 289g 45g GLYM 10 0–420 mins
Taylor et al. [10] 6M/2F 18–40 139g 17g GLYL 9 0–560 mins

Taylor et al. [10]a 6M/2F 18–40 139g 17g GLC 17/22b 0–600 mins
INS

Hansen et al. [11]a 10M 21–27 58g 27.7g GLC 15 0–600 mins

INS

Sex is male (M) or female (F); Age is in years; CHO, carbohydrates. INS: insulin; GLC:
glucose, LAC: lactate, GLR: glycerol; FFA: free fatty acids; TG: triglycerides; GLY, glycogen.
The subscripts M and L denote skeletal muscle and liver, respectively. Meal uptake occurs
at t = 0.
a Data employed for validating the male model, while all other datasets were utilized in the
process of parameter estimation.
b 17 data points for insulin and 22 data points for glucose.
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D.3 Model parameters

Table D.8: Physical characteristics

Male Female

Organ/Tissue Blood flow (l/min) Weight (Kg) Blood flow (l/min) Weight (Kg)

Brain 0.75[455] 1.4[70, 331] 0.75 1.2[70, 331]
Heart 0.25 0.331[70, 331] 0.25 0.253[70, 331]
Skeletal muscle 0.9[456, 457] 22.4†[70, 331] 0.9 13.6†[70, 331]
GI tract 1.1 2.0[68, 70] 1.1 2.0[68, 70]
Liver 0.4[70, 331] 1.8[70, 331] 0.25[70, 331] 1.4[70, 331]
Adipose tissue 0.36[458] 11∗[68, 70, 331] 0.36 17.1∗∗[70, 331]
Others 1.74 31.069 1.39 22.447
Whole body 5.5[337] 70[68, 70, 331] 5.0[70] 58[70, 331]

Subjects are in overnight fasted conditions. Values for “Others” are chosen to balance whole-
body values. † Skeletal muscles, excluding upper extremities which account for 18-20% of total
weight. Male total: 28 kg; female total: 17 kg. ∗ Based on 16% body fat content. ∗∗ Based
on 29% body fat content. References are given in brackets. Where experimental data is lacking,
female values are assumed to be the same as male values.
Organ volumes are calculated by dividing each tissue weight by its density: brain (1.04
Kg/L)[332], heart and skeletal muscle (1.05 Kg/L)[333], GI tract (1.06 Kg/L)[333], liver (1.08
Kg/L)[334], adipose tissue (0.923 Kg/L)[333]. Assuming that others include only nonfat tissues,
a tissue density of 1.05 Kg/L is used [335]. The total volume of the body is calculated by adding
the volumes of all compartments. Tissue volumes are reported in the main article text.
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Table D.9: Substrate and hormone concentrations in blood

Male Female

Substrate Arterial concentration (mM) Arterial concentration (mM)

GLC 5.0 4.91[14]
PYR 0.068 —
LAC 0.7 —
ALA 0.192 —
GLR 0.07 —
FFA 0.66 0.76[14]
TG 0.99 0.93[15]
O2 8.0 —
CO2 21.7 —

Hormone Plasma concentration (pM) Plasma concentration (pM)

CI 45 60
CG 27 39 [8]

Values at rest for healthy subjects after an overnight fast. Male values are taken from
Ref. [68] and references therein. CI and CG denote concentrations of insulin and glucagon,
respectively. (—) Same values for male and female models. In brackets are references for
significantly different values in females compared to males.
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Table D.10: Substrate concentrations in each organ/tissue (mM)

Substrate Brain Heart Skeletal muscle GI tract Liver Adipose Tissue

GLC 1.12 1.0 0.48 1.0 8.0 2.54
PYR 0.15 0.2 0.048 0.2 0.37 0.37
LAC 1.45 3.88 1.44 3.88 0.82 0.82
ALA 0 0 1.3 0 0.23 0
GLR 0 0.015 0.064 0.015 0.07 0.22
FFA 0 0.021 0.53 0.021 0.57 0.57
TG 0 3.12 14.8/18.94† 450 2.93 990∗

O2 0.027 0.96 0.49 0.49 0.027 0.027
CO2 15.43 20.0 15.43 15.43 15.43 15.43
G6P 0.16 0.17 0.24 0.17 0.2 0.2
GLY 2.0 33.0 95.0∗ 33.0 417∗ 0
GAP 0.15 0.01 0.08 0.01 0.11 0.11
GRP 0 0.29 0.15 0.29 0.24 0.24
ACoA 0.0068∗∗ 0.0012 0.0022 0.0012 0.035 0.035
CoA 0.06 0.012 0.018 0.012 0.14 0.14
NAD+ 0.064 0.40 0.45 0.4 0.45 0.45
NADH 0.026 0.045 0.05 0.045 0.05 0.05
ATP 2.45 3.4 6.15 3.4 2.74 2.74
ADP 0.54 0.02 0.02 0.02 1.22 1.22
Pi 2.4 1.66 2.70 1.66 4.6 4.6
PCR 4.6 8.3 20.1 8.3 0 0
CR 5.6 3.5 10.45 3.5 0 0

Values at rest after an overnight fast taken from Ref. [68] and references therein. When two values are
listed, they correspond to male/female, otherwise there is no sex difference in substrate concentrations.
∗ For most substrates (excluding null concentrations), sex differences in tissue weights, hence tissue vol-
umes, lead to sex differences in substrate content in each tissue. For example, absolute GLY content is
higher in male liver and skeletal muscle, and absolute TG content is higher in female adipose tissue. In
addition, women have a higher concentration of intramyocellular lipid (IMCL), despite having a smaller
tissue volume. † Women have a 28% higher area density compared to men. IMCL area density (%)= #
IMCL/area×mean IMCL size×100% [321]. This result is directly proportional to the lipid concentration
per unit volume (mM). ∗∗ Data from Ref. [459].
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Table D.11: Resting values of O2 consumption and CO2 production

Organ/Tissue V̇O2 (ml/min) V̇CO2 (ml/min)

Brain 51.07 51.07
Heart 26.80 20.61
Skeletal muscle 41.04 32.01
GI tract 10.21 10.21
Liver 62.72 43.72
Adipose tissue 10.08 7.17
Others 48.08 35.21
Whole body 250 200

Subjects are at rest after an overnight fast. Whole-body respiratory quotient (RQ) at
rest is 0.8 in female and male models. RQ= V̇CO2/V̇O2, where V̇O2 and V̇CO2 are
oxygen consumption and carbon dioxide production rates. Values for “Others” are chosen
to balance whole-body values. Data are taken from Ref. [68] for male. We assumed RQ
values are the same at rest in females and males according to Ref. [16].

Table D.12: Organ/tissue metabolic fluxes, ϕX→Y(mmol/min) and reaction maximal
velocities, VX→Y (mmol/min)

Brain Heart Skeletal muscle GI tract Liver Adipose tissue

Fluxes ϕX→Y V0
X→Y ϕX→Y V0

X→Y ϕX→Y V0
X→Y ϕX→Y V0

X→Y ϕX→Y V0
X→Y ϕX→Y V0

X→Y

ϕGLC→G6P 0.38 0.79 0.04 0.088 0.165 0.398 0.076 0.167 0.17 0.765 0.038 0.079
ϕG6P→GAP 0.38 1.52 0.04 0.16 0.165 0.66 0.076 0.304 0.17 0.68 0.038 0.152
ϕGAP→PYR 0.76 12.16 0.08 1.28 0.33 5.28 0.152 2.432 0.34 5.44 0.056 0.896
ϕPYR→GAP 0 0 0 0 0 0 0 0 0.93 7.44 0 0
ϕGAP→G6P 0 0 0 0 0 0 0 0 1.04 2.08 0 0
ϕG6P→GLC 0 0 0 0 0 0 0 0 0.9 1.8 0 0
ϕG6P→GLY 0.003 0.012 0.04 0.16 0.125 0.5 0 0 0.1 0.4 0 0
ϕGLY→G6P 0.003 0.024 0.04 0.32 0.125 1.0 0 0 0.48 3.84 0 0
ϕPYR→LAC 0.7 2.8 0.088 0.352 1.0/0.85† 14.85/12.62† 0.2 0.8 0.21 0.84 0.036 0.144
ϕLAC→PYR 0.7 2.8 0.128 0.512 0.488∗ 12.51 0.2 0.8 0.48 1.92 0.01 0.04
ϕGLR→GRP 0 0 0.004 0.016 0.127 0.508 0 0 0.144 0.576 0 0
ϕGAP→GRP 0 0 0 0 0 0 0 0 0 0 0.02 0.08
ϕGRP→GAP 0 0 0 0 0 0 0 0 0.111 0.444 0 0
ϕPYR→ALA 0 0 0 0 0.04 0.08 0 0 0 0 0 0
ϕALA→PYR 0 0 0 0 0 0 0 0 0.32 0.64 0 0
ϕPYR→ACoA 0.76 6.08 0.12 0.96 0.292∗ 2.745 0.152 1.216 0.0013∗ 0.01∗ 0.03 0.24
ϕFFA→ACoA 0 0 0.035 0.28 0.088∗ 0.701 0 0 0.136 1.088 0.02∗ 0.16
ϕACoA→FFA 0 0 0 0 0 0 0 0 0.112 0.896 0 0
ϕTG→FFA—GLR 0 0 0.004 0.008 0.13 0.26 0.04 0.08 0.004 0.008 0.095∗/0.114† 0.19/0.228†

ϕFFA—GRP→TG 0 0 0.012 0.096 0.381 3.048 0 0 0.1 0.8 0.06 0.48
ϕACoA→CO2 0.76 12.16 0.4 6.4 0.623 9.968 0.152 2.432 0.976 15.62 0.08 1.28
ϕO2→H2O 2.28 18.71 1.165 9.327 1.832 14.68 0.456 3.653 2.702 22.18 0.25 2.05
ϕPCR→CR 1.86 7.44 2.0 8.0 20.0 80.0 2.0 8.0 0 0 0 0
ϕCR→PCR 1.86 7.44 2.0 8.0 20.0 80.0 2.0 8.0 0 0 0 0
ϕATP→ADP 15.20 30.4 7.33 14.66 10.82 21.64 3.04 6.08 13.92 27.84 2.74 5.47

Values at rest after an overnight fast taken from Ref. [68]. When two values are listed, they correspond to male/female, otherwise we assumed no sex
difference. ∗ Assumed fluxes under resting conditions. † Estimated female values based on experimental data as presented in Abo et al. [3].
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Table D.13: Distinctive Michaelis-Menten parameters

Fluxes KM Brain Heart Skeletal muscle GI tract Liver Adipose tissue

ϕGLC→G6P KGLC 0.05 0.1 0.1 0.1 10.0 0.1
ϕPYR→LAC† KPYR 0.6
ϕLAC→PYR KLAC 17.0
ϕPYR→ACoA KPYR 0.065
ϕO2→H2O KO2 0.7 0.7 0.7 0.7 0.7 0.7

Values taken from Ref. [68] and references therein. All values are in mM, except for KO2 values which are
in µM. † Specifically for this flux, ν+ or KNADH

NAD+
= 0.011 mM. We assumed no sex difference.

Table D.14: Blood-tissue transport rates (mmol/min) in each tissue/organ

Organ/Tissue GLC PYR LAC ALA GLR FFA TG

Brain 0.380 0 0 0 0 0 0
Heart 0.040 0 0.040 0 0 0.035 0
Skeletal muscle 0.165 0.005/0.003 -0.112/-0.095 -0.040 -0.003 0.046 0.003
GI tract 0.076 0 0 0 -0.040 -0.120 0.006
Liver -0.731 0 0.270 0.320 0.140 0.210 -0.029
Adipose tissue 0.038 0 0.056 0 -0.097 -0.211 0.02
Others 0.062 -0.005/-0.003 -0.142/-0.271 -0.280 0 0.040 0
Sum 0.03 0 0 0 0 0 0

Values at rest after an overnight fast taken from Ref. [68] and references therein. These values correspond
to the term Qx

(
Ca − σx,iCx,i

)
in Eq (A1) in the main article text. Positive values represent substrate

uptake into tissue/organs, while negative values represent substrate release into the circulation. Values in
“others” are chosen to yield a zero balance at rest. The net sum of 0.03 for glucose indicates that organs
consume glucose for energy even when at rest, i.e., blood glucose levels gradually decrease following an
overnight fast. When two values are listed, they correspond to male/female, otherwise we assumed no sex
difference.
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Table D.15: Blood-tissue transport partition coefficients (dimensionless)

Substrate Brain Heart Skeletal muscle GI tract Liver Adipose tissue

Male

GLC 4.0119 4.84 10.0347 4.931 0.6796 1.9269
PYR 0.4533 0.34 1.3009 0.34 0.1838 0.1838
LAC 0.4828 0.1392 0.5725 0.1804 0.6341 1.0434
ALA 0 0 0.1819 0 -0.10 0
GLR 0 4.6667 1.1458 7.0909 0.0481 1.5429
FFA 0 24.762 1.1488 36.623 1.0526 2.1861
TG 0 0.3173 0.06667 2.187e-3 0.3430
O2 183.704 3.3483 12.1723 15.481 215.90 249.976
CO2 1.6034 1.269 1.5092 1.4332 1.5104 1.4640

Female

GLC 3.9315 4.75 9.8472 4.841 0.6744 1.8915
PYR — — 1.3530 — — —
LAC — — 0.5596 — 0.6098 —
ALA 0 0 — 0 -0.1958 0
GLR 0 — — — — —
FFA 0 29.524 1.3375 41.385 1.2164 2.3616
TG 0 0.2981 0.0489 2.0545e-3 0.3232 8.8328e-4
O2 — — — — 206.97 —
CO2 — — — — 1.5219 1.4560

A value of zero indicates no substrate uptake or release. (—) Same values for male and female models.

Table D.16: Parameters identified directly from data and/or the literature

Parameter Value Equation

Cthresh
a,LAC 2 mM [465] A2

Cthresh
a,GLR 0.33 mM [466] A2

M0
G 30 min [154] A5

Mmax
G 60 min [154] A5

M0
T 60 min [154] A6

Mmax
T 120 min [154] A6

D 0.1 min−1 [472] A7, A8
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D.4 Sensitivity analysis

We conducted a local, one-at-a-time, sensitivity analysis of the male and female models.
Our parameters of interest are fat mass and muscle mass. Local sensitivity analysis in-
volves systematically perturbing each parameter around its nominal value and observing
the resulting changes in the model predictions. This results in an approximation of the
first-order partial derivative of the model output with respect to the perturbed parameter
[462]. Aside from being numerically efficient, sensitivity coefficients obtained from local de-
terministic sensitivity analysis have the advantage of being intuitive in their interpretation,
regardless of the method used.

For each parameter pj, we calculated relative sensitivities using a forward difference
approximation:

Sij(t) ≈
pj

yi(pj, t)
· yi(pj +∆pj, t)− yi(pj, t)

∆pj
, (D.29)

where Sij is the first-order local sensitivity coefficient of parameter pj on model output
yi at time t. We used ∆pj of 5% either up or down. At baseline, the male model has
body weight of 70 Kg, with 40% muscle mass and 16% fat mass. The female model has
body weight of 58 Kg, with 30% muscle mass and 29.5% fat mass. Our model output
of interest are metabolic fluxes in the liver and adipose tissue. Specifically, glycolysis,
gluconeogenesis, glycogenesis, and glycogenolysis in the liver, and adipose tissue lipolysis.
Results are shown in Figures D.3, D.4, and D.5.

We presented a comprehensive analysis of the findings in the main text and recapitulate
the key points here. In general, the magnitude of sensitivity coefficients increases with
the duration of fasting, indicating that variations in body composition influence model
predictions during the postabsorptive phase, more so than during the absorptive phase.This
implies that sex-related differences resulting from body composition variations become
more pronounced in our model during fasting than immediately after a meal, aligning with
our observations in the main text. In the early postabsorptive phase (9 hours post-meal),
liver-related fluxes (gluconeogenesis, glycolysis, glycogenolysis, and glycogenesis) exhibit
higher sensitivity to variations in fat and muscle mass in both male and female models.
However, in the late postabsorptive phase (24 hours after a meal), adipose tissue lipolysis
emerges as the most sensitive flux to changes in body composition. This result underscores
an inherent metabolic transition from glucose metabolism, involving the breakdown of
glycogen by the liver to produce glucose, to fat metabolism, where adipose tissue undergoes
lipolysis, releasing stored lipids as FFA into the circulation for other organs to utilize as
fuel. For both high-carbohydrate and high-fat meals, sensitivities are comparable within
either the male or female model. Across sexes, the female model demonstrates a higher
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Figure D.3: Results of local sensitivity analysis at 3 hours post-meal. (a) Male model and
HiC; (b) female model and HiC; (c) male model and HiF; (d) Female model and HiF.
HiC, high-carbohydrate meal; HiF, high-fat meal. Glycolysis II, ϕG6P→GAP;
gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY; glycogenolysis, ϕGLY→G6P,
lipolysis, ϕTG→FFA–GLR.

sensitivity overall to variations in body composition compared to the male model, although
these differences are marginal.

Overall, the sensitivity coefficients exhibit small magnitudes across both the absorptive
and postabsorptive phases (Figures D.3–D.5). This suggests that model predictions are
robust to variations in body composition (within the range we explored). The observed sex
differences are likely attributed to effective mechanistic and rate differences between the
sexes. The outcomes of this sensitivity analysis, coupled with our calibration approach,
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Figure D.4: Results of local sensitivity analysis at 9 hours post-meal. (a) Male model and
HiC; (b) female model and HiC; (c) male model and HiF; (d) Female model and HiF.
HiC, high-carbohydrate meal; HiF, high-fat meal. Glycolysis II, ϕG6P→GAP;
gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY; glycogenolysis, ϕGLY→G6P,
lipolysis, ϕTG→FFA–GLR.

show that key model output variables are robust to variations in body composition.
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Figure D.5: Results of local sensitivity analysis at 24 hours post-meal. (a) Male model
and HiC; (b) female model and HiC; (c) male model and HiF; (d) Female model and HiF.
HiC, high-carbohydrate meal; HiF, high-fat meal. Glycolysis II, ϕG6P→GAP;
gluconeogenesis II, ϕGAP→G6P; glycogenesis, ϕG6P→GLY; glycogenolysis, ϕGLY→G6P,
lipolysis, ϕTG→FFA–GLR.

303



D.5 Model equations

Table D.17: Dynamic mass balance equation in tissue/organ x

1. GLC Vx
dCx,GLC

dt
= ϕx,G6P→GLC − ϕx,GLC→G6P +Qx(Ca,GLC − σx,GLCCx,GLC)

2. PYR Vx
dCx,PYR

dt
= ϕx,GAP→PYR + ϕx,LAC→PYR + ϕx,ALA→PYR − ϕx,PYR→GAP − ϕx,PYR→LAC − ϕx,PYR→ALA − ϕx,PYR→ACoA +Qx(Ca,PYR − σx,PYRCx,PYR)

3. LAC Vx
dCx,LAC

dt
= ϕx,PYR→LAC − ϕx,LAC→PYR +Qx(Ca,LAC − σx,LACCx,LAC)

4. ALA Vx
dCx,ALA

dt
= ϕx,PYR→ALA − ϕx,ALA→PYR +Qx(Ca,ALA − σx,ALACx,ALA)

5. GLR Vx
dCx,GLR

dt
= ϕx,TG→FFA—GLR − ϕx,GLR→GRP +Qx(Ca,GLR − σx,GLRCx,GLR)

6. FFA Vx
dCx,FFA

dt
= 3ϕx,TG→FFA—GLR + 1

8
ϕx,ACoA→FFA − ϕx,FFA—GRP→TG − ϕx,FFA→ACoA +Qx(Ca,FFA − σx,FFACx,FFA)

7. TG Vx
dCx,TG

dt
= 1

3
ϕx,FFA—GRP→TG − ϕx,TG→FFA—GLR +Qx(Ca,TG − σx,TGCx,TG)

8. O2 Vx
dCx,O2

dt
= −ϕx,O2→H2O +Qx(Ca,O2 − σx,O2Cx,O2)

9. CO2 Vx
dCx,CO2

dt
= ϕx,PYR→ACoA + 2ϕx,ACoA→CO2 +Qx(Ca,CO2 − σx,CO2Cx,CO2)

10. G6P Vx
dCx,G6P

dt
= ϕx,GLC→G6P + 1

2
ϕx,GAP→G6P + ϕx,GLY→G6P − ϕx,G6P→GLC − ϕx,G6P→GAP − ϕx,G6P→GLY

11. GLY Vx
dCx,GLY

dt
= ϕx,G6P→GLY − ϕx,GLY→G6P

12. GAP Vx
dCx,GAP

dt
= 2ϕx,G6P→GAP + ϕx,PYR→GAP + ϕx,GRP→GAP − ϕx,GAP→G6P − ϕx,GAP→PYR − ϕx,GAP→GRP

13. GRP Vx
dCx,GRP

dt
= ϕx,GLR→GRP + ϕx,GAP→GRP − ϕx,GRP→GAP − 1

3
ϕx,FFA—GRP→TG

14. ACoA Vx
dCx,ACoA

dt
= ϕx,PYR→ACoA + 8ϕx,FFA→ACoA − ϕx,ACoA→FFA − ϕx,ACoA→CO2

15. CoA Vx
dCx,CoA

dt
= ϕx,ACoA→FFA + ϕx,ACoA→CO2 − ϕx,PYR→ACoA − 8ϕx,FFA→ACoA

16. NAD+ Vx
dCx,NAD+

dt
=
ϕx,PYR→GAP + ϕx,PYR→LAC + ϕx,GAP→GRP + 14

8
ϕx,ACoA→FFA + 2ϕx,O2→H2O

−ϕx,GAP→PYR − ϕx,LAC→PYR − ϕx,GRP→GAP − ϕx,PYR→ACoA − 14ϕx,FFA→ACoA − 4ϕx,ACoA→CO2

17. NADH Vx
dCx,NADH

dt
=
ϕx,GAP→PYR + ϕx,LAC→PYR + ϕx,GRP→GAP + ϕx,PYR→ACoA + 14ϕx,FFA→ACoA + 4ϕx,ACoA→CO2

−ϕx,PYR→GAP − ϕx,PYR→LAC − ϕx,GAP→GRP − 14
8
ϕx,ACoA→FFA − 2ϕx,O2→H2O

18. ATP Vx
dCx,ATP

dt
=

2ϕx,GAP→PYR + ϕx,ACoA→CO2 + 6ϕx,O2→H2O + ϕx,PCR→CR − ϕx,GLC→G6P − ϕx,G6P→GAP − 3ϕx,PYR→GAP

−ϕx,G6P→GLY − ϕx,GLR→GRP − 2ϕx,FFA→ACoA − 7
8
ϕx,ACoA→FFA − 2ϕx,FFA—GRP→TG − ϕx,CR→PCR − ϕx,ATP→ADP

19. ADP Vx
dCx,ADP

dt
=
ϕx,GLC→G6P + ϕx,G6P→GAP + 3ϕx,PYR→GAP + ϕx,G6P→GLY + ϕx,GLR→GRP + 2ϕx,FFA→ACoA + 7

8
ϕx,ACoA→FFA

+2ϕx,FFA—GRP→TG + ϕx,CR→PCR + ϕx,ATP→ADP − 2ϕx,GAP→PYR − ϕx,ACoA→CO2 − 6ϕx,O2→H2O − ϕx,PCR→CR

20. Pi Vx
dCx,Pi

dt
=

2ϕx,PYR→GAP + 1
2
ϕx,GAP→G6P + ϕx,G6P→GLC + 2ϕx,G6P→GLY + 2ϕx,FFA→ACoA + 7

8
ϕx,ACoA→FFA

+7
3
ϕx,FFA—GRP→TG + ϕx,ATP→ADP − ϕx,GAP→PYR − ϕx,GLY→G6P − 6ϕx,O2→H2O − ϕx,ACoA→CO2

21. PCR Vx
dCx,PCR

dt
= ϕx,CR→PCR − ϕx,PCR→CR

22. CR Vx
dCx,CR

dt
= ϕx,PCR→CR − ϕx,CR→PCR

Organ/tissue x refers to brain, heart, skeletal muscle, GI tract, liver, adipose tissue, or “others”; Vx is a constant parameter and represents the volume of
substrate of organ or tissue x. Table D.18 details the metabolic fluxes, ϕx,(·).
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Table D.18: Metabolic reaction fluxes

1. Glycolysis I GLC + ATP → G6P + ADP

ϕx,GLC→G6P = Vx,GLC→G6P


Cx,GLC
Kx,GLC

1 +
Cx,GLC
Kx,GLC




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


2. Glycolysis II G6P + ATP → 2 GAP + ADP

ϕx,G6P→GAP = Vx,G6P→GAP


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P




(
Cx,ADP
Cx,ATP

)2

K2

x,ADP
ATP

+

(
Cx,ADP
Cx,ATP

)2


3. Glycolysis III GAP + Pi + NAD+ + 2 ADP → PYR + NADH + 2 ATP

ϕx,GAP→PYR = Vx,GAP→PYR


Cx,GAP
Kx,GAP

Cx,Pi
Kx,Pi

1 +
Cx,GAP
Kx,GAP

+
Cx,Pi
Kx,Pi

+
Cx,GAP
Kx,GAP

Cx,Pi
Kx,Pi




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP



4. Gluconeogenesis I PYR + 3 ATP + NADH → GAP + 3 ADP + NAD+ + 2 Pi

ϕx,PYR→GAP = Vx,PYR→GAP


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


5. Gluconeogenesis II 2 GAP → G6P + Pi

ϕx,GAP→G6P = Vx,GAP→G6P


Cx,GAP
Kx,GAP

1 +
Cx,GAP
Kx,GAP


6. Gluconeogenesis III G6P → GLC + Pi

ϕx,G6P→GLC = Vx,G6P→GLC


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P


7. Glycogenesis G6P + ATP → GLY + ADP + 2 Pi

ϕx,G6P→GLY = Vx,G6P→GLY


Cx,G6P
Kx,G6P

1 +
Cx,G6P
Kx,G6P




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


8. Glycogenolysis GLY + Pi → G6P

ϕx,GLY→G6P = Vx,GLY→G6P


Cx,GLY
Kx,GLY

Cx,Pi
Kx,Pi

1 +
Cx,GLY
Kx,GLY

+
Cx,Pi
Kx,Pi

+
Cx,GLY
Kx,GLY

Cx,Pi
Kx,Pi




(
Cx,ADP
Cx,ATP

)2

K2

x,ADP
ATP

+

(
Cx,ADP
Cx,ATP

)2


9. Pyruvate Reduction PYR + NADH → LAC + NAD+

305



ϕx,PYR→LAC = Vx,PYR→LAC


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


10. Lactate Oxidation LAC + NAD+ → PYR + NADH

ϕx,LAC→PYR = Vx,LAC→PYR


Cx,LAC
Kx,LAC

1 +
Cx,LAC
Kx,LAC




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


11. Glycerol Phosphorylation GLR + ATP → GRP + ADP

ϕx,GLR→GRP = Vx,GLR→GRP


Cx,GLR
Kx,GLR

1 +
Cx,GLR
Kx,GLR




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


12. GAP Reduction GAP + NADH → GRP + NAD+

ϕx,GAP→GRP = Vx,GAP→GRP


Cx,GAP
Kx,GAP

1 +
Cx,GAP
Kx,GAP




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


13. GRP Oxidation GRP + NAD+ → GAP + NADH

ϕx,GRP→GAP = Vx,GRP→GAP


Cx,GRP
Kx,GRP

1 +
Cx,GRP
Kx,GRP




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


14. Alanine Formation PYR → ALA

ϕx,PYR→ALA = Vx,PYR→ALA


Cx,PYR
Kx,PYR

1 +
Cx,PYR
Kx,PYR


15. Alanine Utilization ALA → PYR

ϕx,ALA→PYR = Vx,ALA→PYR


Cx,ALA
Kx,ALA

1 +
Cx,ALA
Kx,ALA


16. Pyruvate Oxidation PYR + CoA + NAD+ → ACoA + NADH + CO2

ϕx,PYR→ACoA = Vx,PYR→ACoA


Cx,PYR
Kx,PYR

Cx,CoA
Kx,CoA

1 +
Cx,PYR
Kx,PYR

+
Cx,CoA
Kx,CoA

+
Cx,PYR
Kx,PYR

Cx,CoA
Kx,CoA




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


17. Fatty Acid Oxidation FFA + 8 CoA + 2 ATP + 14 NAD+ → 8 ACoA + 2 ADP + 2 Pi + 14 NADH

ϕx,FFA→ACoA = Vx,FFA→ACoA


Cx,FFA
Kx,FFA

Cx,CoA
Kx,CoA

1 +
Cx,FFA
Kx,FFA

+
Cx,CoA
Kx,CoA

+
Cx,FFA
Kx,FFA

Cx,CoA
Kx,CoA




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH


18. Fatty Acid Synthesis 8 ACoA + 7 ATP + 14 NADH → FFA + 8 CoA + 7 ADP + 7 Pi + 14 NAD+
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ϕx,ACoA→FFA = Vx,ACoA→FFA


Cx,ACoA
Kx,ACoA

1 +
Cx,ACoA
Kx,ACoA




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


19. Lipolysis TG → GLR + 3 FFA

ϕx,TG→FFA—GLR = Vx,TG→FFA—GLR


Cx,TG
Kx,TG

1 +
Cx,TG
Kx,TG


20. Triglyceride Synthesis GRP + 3 FFA + 6 ATP → TG + 6 ADP + 7 Pi

ϕx,FFA—GRP→TG = Vx,FFA—GRP→TG


Cx,FFA
Kx,FFA

Cx,GRP
Kx,GRP

1 +
Cx,FFA
Kx,FFA

+
Cx,GRP
Kx,GRP

+
Cx,FFA
Kx,FFA

Cx,GRP
Kx,GRP




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


21. TCA Cycle ACoA + ADP + Pi + 4 NAD+ → 2 CO2 + CoA + ATP + 4 NADH

ϕx,ACoA→CO2
= Vx,ACoA→CO2


Cx,ACoA
Kx,ACoA

Cx,Pi
Kx,Pi

1 +
Cx,ACoA
Kx,ACoA

+
Cx,Pi
Kx,Pi

+
Cx,ACoA
Kx,ACoA

Cx,Pi
Kx,Pi




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP




C
x,NAD+

Cx,NADH

K
x,NAD+

NADH

+
C
x,NAD+

Cx,NADH



22. Oxidative Phosphorylation O2 + 6 ADP + 6 Pi + 2 NADH → 2 H2O + 6 ATP + 2 NAD+

ϕx,O2→H2O = Vx,O2→H2O


Cx,O2
Kx,O2

Cx,Pi
Kx,Pi

1 +
Cx,O2
Kx,O2

+
Cx,Pi
Kx,Pi

+
Cx,O2
Kx,O2

Cx,Pi
Kx,Pi




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP




Cx,NADH
C
x,NAD+

K
x, NADH

NAD+
+

Cx,NADH
C
x,NAD+


23. Phosphocreatine Breakdown PCR + ADP → CR + ATP

ϕx,PCR→CR = Vx,PCR→CR


Cx,PCR
Kx,PCR

1 +
Cx,PCR
Kx,PCR




Cx,ADP
Cx,ATP

K
x,ADP

ATP
+

Cx,ADP
Cx,ATP


24. Phosphcreatine Synthesis CR + ATP → PCR + ADP

ϕx,CR→PCR = Vx,CR→PCR


Cx,CR
Kx,CR

1 +
Cx,CR
Kx,CR




Cx,ATP
Cx,ADP

K
x, ATP

ADP
+

Cx,ATP
Cx,ADP


25. ATP Hydrolysis ATP → ADP + Pi

ϕx,ATP→ADP = Vx,ATP→ADP


Cx,ATP
Kx,ATP

1 +
Cx,ATP
Kx,ATP



D.6 Key metabolic fluxes

• Gluconeogenesis = ϕx,GAP→G6P, where x is liver;

• Glycolysis ϕx,G6P→GAP, where x is brain, heart, skeletal muscle, GI tract, liver, and
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adipose tissue;

• Net hepatic gluconeogenesis =
ϕx,GAP→G6P

2
− ϕx,G6P→GAP, where x is liver;

• Glycogenesis = ϕx,G6P→GLY, where x is brain, heart, skeletal muscle, and liver;

• Glycogenolysis = ϕx,GLY→G6P, where x is brain, heart, skeletal muscle, and liver;

• Net glycogenolysis = ϕx,GLY→G6P − ϕx,G6P→GLY, where x is brain, heart, skeletal
muscle, and liver;

• Lipolysis = ϕx,TG→FFA–GLR, where x is heart, skeletal muscle, GI tract, liver, and
adipose tissue;

• TG synthesis = ϕx,FFA–GRP→TG, where x is heart, skeletal muscle, GI tract, liver,
and adipose tissue;

• Net TG breakdown = ϕx,TG→FFA–GLR −
ϕx,FFA–GRP→TG

3
, where x is heart, skeletal

muscle, GI tract, liver, and adipose tissue;

• Summing the above fluxes for all relevant organs yields whole-body fluxes.
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