The Association between Social Isolation, Functional Social Support, and Memory: A Moderated Mediation Analysis of the Canadian Longitudinal Study on Aging

by

Nicole Endresz

A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Science in

Public Health Sciences

Waterloo, Ontario, Canada, 2024 © Nicole Endresz 2024

## **Author's Declaration**

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.

#### Abstract

Social support is a widely investigated, modifiable factor thought to promote memory function and successful aging. However, the intertwined effects of the two components of social support – objective social isolation and subjective functional social support – on memory are less understood. Therefore, we explored whether social isolation was associated with memory function in middle-aged and older adults, and whether this association was mediated by functional social support. We also examined moderated mediation by age group and sex.

We analyzed data from the baseline and first follow-up waves of the Tracking Cohort of the Canadian Longitudinal Study on Aging. These data included a derived variable for social isolation, a standardized instrument for self-reported functional social support, and a combined immediate and delayed recall memory score from a modified version of the Rey Auditory Visual Learning Test. Using multiple linear regression and an analytical sample of 12,834, we regressed memory scores at follow-up onto baseline social isolation status, controlling for baseline sociodemographic, health, and lifestyle covariates, baseline memory, and baseline and follow-up functional social support. We further assessed whether functional social support at follow-up mediated the association between baseline social isolation and follow-up memory. To assess moderated mediation, each path of the mediation analysis was stratified by age group and sex

The independent and direct effect of social isolation on memory controlling for covariates showed a non-statistically significant, inverse association ( $\hat{\beta} = -0.13$ ; 95% confidence interval [CI]: -0.68, 0.45). Social isolation predicted lower levels of functional social support ( $\hat{\beta} = -0.06$ ; 95% CI: -0.08, -0.04), whereas high functional social support was associated with higher memory scores ( $\hat{\beta} = 0.59$ ; 95% CI: 0.09, 1.10). Memory scores decreased on average by 0.03 points (95% CI: -0.06, -0.01) in socially isolated participants versus non-isolated participants, when mediated by functional social support. Lastly, some evidence of effect modification was found by the oldest age group ( $\geq$  75 years) on the "a" path of the mediation analysis.

This thesis provides novel findings on the mediating effect of functional social support on the relationship between social isolation and memory. Our findings suggest the association between social isolation and memory operates through, not independently of, functional social support. Health professionals working with socially isolated individuals at risk of, or experiencing, memory problems should pay particular attention to these individuals' levels of functional social support.

iii

#### Acknowledgements

I would like to express my sincerest gratitude to my supervisor Mark Oremus who went beyond offering me academic support. Thank you for the practical wisdom and light-heartedness you brought to our interactions. Thank you also for sharing your extensive knowledge of epidemiology and for guiding me to develop a critical lens for examining research. I am grateful for your steadfast confidence and ability to inspire me to achieve higher.

I would also like to thank my committee members, Colleen Maxwell and Suzanne Tyas, for all of your invaluable feedback and investment of time and energy into ensuring that my work met the highest level of standard. To Colleen, you have expressed faith in my abilities and willingly shared your understanding and insights beyond the world of academia. Thank you for your mentorship, enthusiasm, and unwavering support. To Suzanne, your commitment to scientific rigor has inspired me to refine my research skills and strive for excellence. Thank you for your expertise, insight, and encouragement.

Thank you to my classmates for their support and making the past 2 years a memorable experience. Thank you to the faculty and staff of the health department for sharing different perspectives and their knowledge in public health. Finally, I want to thank my family and friends for their endless support throughout my master's. Your love and belief in me have been the cornerstone of my success.

| Lis | t of Figures                                                                                       | viii |
|-----|----------------------------------------------------------------------------------------------------|------|
| Lis | t of Tables                                                                                        | ix   |
| Lis | t of Abbreviations                                                                                 | X    |
| 1.  | Introduction                                                                                       |      |
| 2.  | Literature Review                                                                                  |      |
|     | 2.1. Social Isolation                                                                              | 3    |
|     | 2.1.1. Primary Factors Influencing Social Isolation                                                |      |
|     | 2.1.1.1. Age                                                                                       |      |
|     | 2.1.1.2. Sex                                                                                       |      |
|     | <ul><li>2.1.1.3. Chronic Disease</li><li>2.1.2. Measures of Social Isolation</li></ul>             |      |
|     |                                                                                                    |      |
| 1   | 2.2. Functional Social Support                                                                     | 5    |
|     | 2.2.1. Primary Factors Influencing Functional Social Support                                       |      |
|     | 2.2.1.2. Sex                                                                                       |      |
|     | 2.2.1.3. Chronic Conditions and Functional Social Support                                          |      |
|     | 2.2.2. Measures of Functional Social Support.                                                      |      |
| ,   | 2.3. Memory                                                                                        |      |
| 4   | 2.3.1. Measures of Memory                                                                          |      |
| ,   | 2.4. Theoretical Frameworks                                                                        |      |
| 4   | 2.4.1 The Convoy Theory                                                                            |      |
|     | 2.4.2. The Cognitive-Enrichment Hypothesis                                                         |      |
|     | 2.4.3. The Cognitive Reserve Hypothesis                                                            |      |
|     | 2.4.4. The Stress Hypothesis                                                                       |      |
|     | 2.5. Structural and Functional Social Support and Cognitive Function                               | 11   |
| -   | 2.5.1. Social Isolation and Cognitive Function                                                     |      |
|     | 2.5.1.1. Cross-sectional Studies                                                                   |      |
|     | 2.5.1.2. Longitudinal Studies                                                                      |      |
|     | 2.5.1.3. Summary                                                                                   |      |
|     | 2.5.2. Functional Social Support and Cognitive Function                                            |      |
|     | 2.5.3. Social Isolation, Functional Social Support, and Cognitive Function<br>2.5.3.1. Summary     |      |
|     | 2.5.4. Social Isolation, Functional Social Support, and Memory                                     |      |
|     | 2.5.4.1. Summary                                                                                   |      |
|     | 2.5.5. Factors that Moderate the Association Between Social Support and Cognitive Function         |      |
|     | 2.6. The Effect of Social Isolation on Memory – Mediation by Functional Social Support             | 27   |
|     | 2.7. Conclusion                                                                                    | 29   |
| 3.  | Methods                                                                                            |      |
|     |                                                                                                    |      |
| •   | 3.1. Data source                                                                                   |      |
|     | <ul><li>3.1.1. The Canadian Longitudinal Study on Aging</li><li>3.1.2. Analytical Sample</li></ul> |      |
|     |                                                                                                    |      |
|     | 3.2. Measures                                                                                      |      |
|     | 3.2.1. Social Isolation                                                                            |      |
|     | <i>3.2.2.</i> Functional social support                                                            |      |

|    | 3.2.3. Memory                                                              | 34 |
|----|----------------------------------------------------------------------------|----|
|    | 3.3. Covariates                                                            |    |
|    | 3.3.1. Sociodemographic                                                    |    |
|    | <ul><li>3.3.2. Health Status</li><li>3.3.3. Lifestyle Behaviours</li></ul> |    |
|    | -                                                                          |    |
|    | <b>3.4. Data Analyses</b>                                                  |    |
|    | 3.4.2. Regression Analysis                                                 |    |
|    | 3.4.3. Aim 3 – Mediation Analysis                                          |    |
|    | 3.4.3.1. Methodological background                                         |    |
|    | 3.4.3.2. Analytical approach                                               |    |
|    | 3.4.4. Aim 4 – Moderated Mediation                                         |    |
|    | 3.4.5. Missing data                                                        |    |
| 4. | . Results                                                                  | 46 |
|    | 4.1. Derivation of the Analytical Sample                                   |    |
|    |                                                                            |    |
|    | 4.2. Descriptive Analyses                                                  |    |
|    | 4.2.1.1. Distribution of Covariates by Social Isolation Status             |    |
|    | 4.2.2. Functional Social Support                                           | 52 |
|    | 4.2.3. Memory                                                              |    |
|    | 4.2.3.1. Bivariate Associations – Covariates and Memory                    |    |
|    | 4.3. Aim 1 and 2 - Multivariable Linear Regression Analyses                |    |
|    | 4.4. Aim 3 - Mediation Analysis                                            |    |
|    | 4.5. Aim 4 - Moderated Mediation Analysis                                  | 63 |
|    | 4.6. Differential Dropouts Over Follow-up                                  | 67 |
|    | 4.7. Sensitivity Analysis                                                  | 68 |
|    | 4.7.1. Sensitivity Analysis – Mediation                                    | 68 |
|    | 4.7.2. Sensitivity Analysis – Moderated Mediation                          | 69 |
|    | 4.8. Model Diagnostics                                                     | 70 |
| 5. | . Discussion                                                               | 71 |
|    | 5.1. Summary of Study Findings                                             | 71 |
|    | 5.2. The Indirect Effect                                                   | 72 |
|    | 5.3. The Direct Effect                                                     | 75 |
|    | 5.4. The Total Effect                                                      | 77 |
|    | 5.5. Moderated Mediation                                                   | 77 |
|    | 5.6. Strengths                                                             | 79 |
|    | 5.7. Limitations                                                           | 80 |
|    | 5.8. Implications and Future Directions                                    | 82 |
| 6. |                                                                            |    |
| R  | eferences                                                                  |    |

| Appendices                                                                                             |     |  |  |
|--------------------------------------------------------------------------------------------------------|-----|--|--|
| Appendix A. Literature Review of the Evidence for the Association Between Social Isolation, Functional |     |  |  |
| Social Support, and Memory                                                                             | 108 |  |  |
| Appendix B. Social Isolation Index                                                                     | 146 |  |  |
| Appendix C. Medical Outcomes Study – Social Support Survey (MOS–SSS) <sup>30</sup>                     | 148 |  |  |
| Appendix D. Covariates                                                                                 | 149 |  |  |
| Appendix E. Plots Describing the Relationship Between Baseline and Follow-up Memory                    | 151 |  |  |
| Appendix F. Regression Analyses: Base and Adjusted Models for the Association Between Social           |     |  |  |
| Isolation and Memory                                                                                   | 152 |  |  |
| Appendix G. Mediation Model                                                                            | 154 |  |  |
| Appendix H. Sensitivity Analysis                                                                       | 157 |  |  |
| Appendix I. Model Diagnostics                                                                          | 160 |  |  |

# List of Figures

| Figure 1. Mediation Model Conceptual Diagram                                       | . 40 |
|------------------------------------------------------------------------------------|------|
| Figure 2. Proposed Mediation Diagram                                               | . 42 |
| Figure 3. Derivation of Analytical Sample                                          | . 46 |
| Figure 4. Distribution of Baseline Social Isolation Index (Dichotomized)           | . 47 |
| Figure 5. Distribution of Functional Social Support                                | . 52 |
| Figure 6. Distribution of Memory Scores                                            | . 55 |
| Figure 7. Mediation Model: Social Isolation, Functional Social Support, and Memory | . 62 |
| Figure 8. Forest Plots: Moderated Mediation Analysis                               | . 65 |
| Figure 9. Forest Plot Depicting the Sensitivity Mediation Analysis                 | . 69 |

## List of Tables

| Table 1. Components of the "a" and "b" Paths                                                       |
|----------------------------------------------------------------------------------------------------|
| Table 2. Analytical Sample Characteristics: Overall and by Social Isolation Status at Baseline. 48 |
| Table 3. Analytical Sample Characteristics by Dichotomous Functional Social Support Scores at      |
| Baseline and Follow-up                                                                             |
| Table 4. Continuous Memory Scores at Baseline and Follow-up    56                                  |
| Table 5. Baseline and Follow-up Memory Scores: Stratified by Sex and Age Group       56            |
| Table 6. Bivariate Associations Between Analytical Sample Characteristics and Follow-up            |
| Memory Score 59                                                                                    |
| Table 7. Moderated Mediation Analysis: Social Isolation and Memory – Stratified by Sex and         |
| Age Group 64                                                                                       |
| Table 8. Mean Baseline Memory Scores: Dropouts versus Non-dropouts                                 |
| Table 9. Mean Baseline Functional Social Support Scores: Dropouts versus Non-dropouts 67           |

|         | List of Abbreviations                                   |
|---------|---------------------------------------------------------|
| AD      | Alzheimer's Disease                                     |
| ADL     | Activities of Daily Living                              |
| AIC     | Akaike Information Criterion                            |
| CCHAS   | Charlotte County Healthy Aging Study                    |
| CCHS-HA | Canadian Community Health Survey-Healthy Aging          |
| CES-D10 | Center for Epidemiologic Studies Short Depression Scale |
| CHARLS  | China Health and Retirement Longitudinal Study          |
| CHMS    | Canadian Health Measures Survey                         |
| CI      | Confidence Interval                                     |
| CLSA    | Canadian Longitudinal Study on Aging                    |
| CTUMS   | Canadian Tobacco Use Monitoring Survey                  |
| DCS     | Data Collection Site                                    |
| FSS     | Functional Social Support                               |
| HR      | Hazard Ratio                                            |
| HRS     | Health and Retirement Study                             |
| IADL    | Instrumental Activities of Daily Living                 |
| IQR     | Interquartile Ranges                                    |
| LSNS-6  | Lubben Social Network Scale-6                           |
| MDD     | Major Depressive Disorder                               |
| MI      | Multiple Imputation                                     |
| MIDUS   | Midlife in the U.S.                                     |
| MMSE    | Mini-Mental Status Examination                          |
| MOS-SSS | Medical Outcomes Study – Social Support Survey          |
| OARS    | Older Americans Resources and Services                  |
| PM      | Proportion Mediated                                     |
| PMM     | Predictive Mean Matching                                |
| RAVLT   | Rey Auditory Verbal Learning Test                       |
| RS      | Rotterdam Study                                         |
| SD      | Standard Deviation                                      |
| SI      | Social Isolation                                        |
| SNAC-K  | Swedish National Study on Aging Care in Kungsholmen     |
| To      | Baseline                                                |
| $T_1$   | Follow-up                                               |
| TICS    | Telephone Interview for Cognitive Status                |
| WHO     | World Health Organization                               |
|         |                                                         |

## List of Abbreviations

## 1. Introduction

Aging is characterized by changes in biological, psychological, behavioural, and social processes<sup>1,2</sup>. As people age, the brain undergoes cortical reorganization and remodelling, leading to changes in cognitive ability<sup>3,4</sup>. These changes occur in one or more of the six different domains comprising overall cognitive function: complex attention, executive function, learning and memory, language, perceptual–motor function, and social cognition<sup>5</sup>. For older adults, maintaining cognitive function can enhance health-related quality of life<sup>6</sup> and prolong independent living<sup>7–9</sup>. Conversely, cognitive impairment is associated with institutionalization<sup>10</sup>, lower life expectancy<sup>11,12</sup>, depression<sup>13,14</sup>, and major neurocognitive disorders such as Alzheimer's disease (AD)<sup>15</sup>. For individuals who suffer from cognitive disorders, memory loss can create interpersonal challenges leading to high levels of distress and social withdrawal, as well as difficulties performing activities of daily living<sup>16,17</sup>. Although many studies have focused on risk factors for memory decline, research also seeks to identify factors that promote memory function<sup>18</sup>.

Social support is a modifiable factor shown to promote memory and broader cognitive function<sup>19–21</sup>. Two domains of social support can be defined based on the structure and function of social networks and social engagement<sup>22–27</sup>. Structural social support is the objective size of an individual's social network (e.g., the number of persons in the network and the frequency of contact with these persons) and the frequency of participating in a range of social activities<sup>28</sup>. The objective absence, or low numbers, of social networks and the lack, or low levels, of participation in social activities reflects social isolation (SI)<sup>29</sup>. Functional social support (FSS) refers to an individual's perception of the degree to which they can rely on members of their social networks for support in times of need<sup>30</sup>.

<sup>1</sup> 

Although SI and FSS are distinct concepts, they are also interrelated. Some researchers believe individuals with low SI and abundant social networks have access to a multiplicity of persons to obtain FSS<sup>31</sup>. While larger social networks have been associated with higher levels of FSS, levels of FSS can vary regardless of network size<sup>32,33</sup>. For example, an individual may be objectively isolated yet the few network members they do have may provide strong FSS. On the other hand, one might have an objectively large social network, but low FSS because they do not believe their network members will help in times of need. Studies frequently report that higher levels of FSS are associated with better cognitive function and protect against cognitive decline<sup>34–36</sup>, whereas higher SI produces the opposite effect<sup>37–40</sup>. Furthermore, when multiple aspects of the structure and function of social support are included within the same model, the perception of support, rather than the size of social networks, is typically linked to improved cognitive function<sup>34,36,41–45</sup>. For instance, DiNapoli et al.<sup>45</sup> found that perceived support (another term for FSS) among older adults accounted for nearly double the variance in cognitive function when compared to objective levels of SI.

This thesis explores the association between SI, FSS, and the memory domain of cognitive function. Given the intertwined nature of SI and FSS, along with the fact some degree of social network existence is a precondition for FSS<sup>31,46</sup>, this thesis investigates whether FSS mediates the relationship between SI and memory. We also examine moderated mediation by age group and sex.

## 2. Literature Review

#### **2.1. Social Isolation**

Research suggests SI increases with age<sup>47–49</sup>. A recent estimate from the Government of Canada reported approximately 30% of Canadian older adults were at risk of becoming socially isolated<sup>50</sup> and the World Health Organization (WHO) identified SI as a key policy issue for aging adults<sup>51</sup>. SI is known to increase neurophysiological inflammatory processes<sup>37</sup> and has been associated with a wide range of negative health outcomes, including high blood pressure<sup>21</sup>, cardiovascular disease<sup>27</sup>, stroke<sup>27</sup>, and Type II diabetes<sup>21</sup>. Studies suggest the risk of mortality related to SI is comparable to smoking<sup>22,25</sup>. SI has also been linked to psychological disorders such as anxiety and depression<sup>24,52,53</sup>, cognitive impairment<sup>54–58</sup>, and major neurocognitive disorder<sup>59,60</sup>.

SI should not be confused with loneliness. Although these concepts appear similar<sup>61–64</sup>, SI is the objective absence of social connections and social participation, whereas loneliness is an individual's subjective perception of having inadequate social connections or engagement<sup>24,65,66</sup>. Therefore, one may not be socially isolated, but they may report feeling lonely, or vice versa<sup>24</sup>. In the thesis, SI was the operationalization of structural social support, which aligns with previous literature that distinguishes between SI, loneliness, and FSS <sup>22,23,25–27</sup>.

### 2.1.1. Primary Factors Influencing Social Isolation

#### 2.1.1.1. Age

Social network size tends to decrease as age increases<sup>32</sup>. Advanced age (75 years or older) in particular has been associated with an increased risk of SI because older adults often experience decreased social engagement and participation due to factors such as disability, disease, mobility issues, and life transitions like retirement or the death of social network

members<sup>28,67,68</sup>. Most importantly, spousal loss becomes more common in older adults. Widowhood is a strong driving factor of SI and has been consistently linked to negative effects of SI on health<sup>53,69–71</sup>.

### 2.1.1.2. Sex

Although both males and females experience higher levels of SI with increasing age<sup>72</sup>, the structure of such isolation differs. Females often possess larger, more multidimensional and diverse social networks compared to males, regardless of age<sup>73–77</sup>, and generally report lower SI than males<sup>78,79</sup>. Indeed, males often show less desire than females to maintain large social networks because they perceive such maintenance as stressful<sup>32,77,80</sup>. Marital status is also a key source of social integration for both males and females<sup>81</sup>. However, studies suggest that being unmarried or widowed may impact the social network size of males more profoundly since older males tend to maintain fewer social connections compared to females<sup>72,82,83</sup>.

#### 2.1.1.3. Chronic Disease

A prominent clinical feature of chronic and age-related diseases such as AD or major depressive disorder (MDD) is social dysfunction<sup>84</sup>. Areas of the brain involved in processing social stimuli are particularly vulnerable to pathogenic insult and deficits in social functioning are often noted among individuals who suffer from neuropsychiatric disorders<sup>85–88</sup>. Individuals with AD may express inappropriate social behaviour or lack the cognitive skills and affect to effectively participate in social interactions<sup>89</sup>. Symptoms associated with MDD may result in the inability to form or maintain social relationships and lead to disengagement from social activities<sup>87,88</sup>. The social challenges associated with these disorders place individuals at an increased risk for experiencing SI<sup>84</sup>.

#### 2.1.2. Measures of Social Isolation

In the literature, SI is typically identified by low frequencies of contact with friends and family, and low frequencies of engagement in activities outside the home. These activities include travelling or outings with family/friends, participation in volunteerism or religious activities, membership in community groups or associations, and attending social functions<sup>38</sup>. Many studies also include living arrangements (e.g., lives alone versus living with one or more people), marital status, and number of social ties in assessments of SI<sup>23,24,63,65</sup>.

Researchers generally measure SI using instruments asking about social network size or the types of activities listed in the previous paragraph. The Lubben Social Network Scale-6 (LSNS-6)<sup>90</sup> is an example of a standardized and often-used scale measuring SI based on the number of and frequency of contact with members in the respondent's social network (e.g., "How many relatives/friends do you see or hear from at least once a month?")<sup>45</sup>. However, the LSNS-6 only includes one aspect of SI (social networks) and researchers have begun to employ the use of indices that incorporate the multiple components of SI described above<sup>23,24,63,65</sup>. One such index was created by Menec, Newall, and colleagues<sup>24</sup>; it contains questions about the size of an individual's social network, their frequency of contact with network members, participation in social activities, living arrangement, marital status, and retirement status. This index was used to measure SI in the thesis, and it is described in more detail in Section 3.2.1 below.

## **2.2. Functional Social Support**

FSS is divided into different subtypes of support, including emotional, informational, tangible, affectionate, and positive social interaction. Emotional support includes providing empathy, caring, and understanding (e.g., the sharing of feelings); informational support involves the provision of feedback, advice, or guidance to resolve a challenge in one's life; instrumental

or tangible support includes physical aid with completing tasks or chores; affectionate support involves showing feelings of love, such as a hug; positive support is the generation of feelings of ease or relaxation as a result of social contact<sup>30,91</sup>. Research has shown that experiencing high levels of FSS can reduce stress<sup>92,93</sup>, promote cognitive function<sup>18,94–97</sup>, and protect against cardiovascular disease<sup>98–100</sup>. Individuals integrated into social networks providing high levels of FSS are generally healthier<sup>25</sup>, live longer<sup>101</sup>, and have a decreased risk of developing major neurocognitive disorder<sup>41</sup>. Many risk factors for low FSS are the same as for high SI.

## 2.2.1. Primary Factors Influencing Functional Social Support

## 2.2.1.1. Age

Although social network size may decrease with increasing age<sup>68,102</sup>, older adults frequently report higher satisfaction with relationships and more positive emotions when interacting with remaining social network members<sup>103,104</sup>. This is likely due to continuing investment in social relationships that yield value-added benefits and removing those relationships that produce stress. The perceived level of overall support may also increase with age as older adults draw upon greater support from their social ties<sup>105,106</sup>. Different subtypes of support may also play varying roles of importance throughout the aging process. According to a recent study, the positive effects of emotional support on cognitive function were stronger among adults over the age of 65 years compared to their younger counterparts<sup>107</sup>. However, no difference in effect was found for instrumental support on cognitive function between the younger and older age groups<sup>107</sup>.

## 2.2.1.2. Sex

The literature shows that females tend to derive FSS from a broader, more multifaceted pool of social ties such as friends and children, which explains why females often possess larger,

more diverse social networks compared to males<sup>32,77,80</sup>. In contrast, males tend to derive FSS from their spouses<sup>32,77,80</sup>. Subtypes of FSS also differ by sex. Multiple studies have shown that females report higher average levels of emotional support compared to males<sup>74,108,109</sup>. The literature appears silent on whether the effects of sex vary across age groups (see Section 2.5 below).

#### 2.2.1.3. Chronic Conditions and Functional Social Support

As previously discussed in Section 2.1.1.3 above, chronic conditions such as dementia or MDD may lead to social dysfunction, including difficulty processing social stimuli and social withdrawal<sup>84,89</sup>. Interestingly, persons with mild dementia tend to report lower levels of FSS compared to those with more advanced dementia<sup>110,111</sup>. Individuals with mild dementia may have better awareness of the psychosocial effects of their condition and thereby report lower levels of FSS, while those with advanced dementia may lack an awareness for their social deficits and report higher perceived levels of support<sup>110,111</sup>.

## 2.2.2. Measures of Functional Social Support

No gold standard exists to assess FSS, and inconsistencies often arise in how it is measured. Some studies measure specific dimensions of FSS, such as emotional or tangible support<sup>34,107,112</sup>, and other studies assess FSS through marital quality or satisfaction with social support received<sup>101,113</sup>. However, since FSS is composed of multiple components, suitable instruments should measure multiple subtypes of FSS to generate subtype specific and overall FSS scores. An example of such an instrument is the Medical Outcomes Study-Social Support Survey (MOS-SSS)<sup>30</sup>, which is a self-administered questionnaire generating scores for perceived availability of overall FSS and four subtypes of FSS<sup>74,91,114–117</sup>. The composition of the MOS-SSS is described in Section 3.2.2 below and it was used to measure FSS in the thesis.

#### 2.3. Memory

Memory is a complex neural process in which the brain encodes, consolidates, and retrieves information<sup>118</sup>. The four systems most clinically relevant to memory function among older adults are episodic memory, semantic memory, implicit memory, and working memory<sup>119</sup>. Episodic memory is the ability to remember personal experiences and events. Recalling whether you took your medication this morning would be an example of episodic memory<sup>120</sup>. Semantic memory refers to the reservoir of general knowledge stored in the brain, such as recognizing colour names. Implicit memory or automatic memory is involved in the performance of habits, skills, and other daily activities<sup>121</sup>. For example, knowing how to ride a bike does not require intentional recall of how a person was taught to ride a bike. Lastly, working memory is a component of executive function relating to the temporary storage of information, such as the ability to remember several numbers and sum the total<sup>121</sup>.

Aging does not impact all forms of memory equally<sup>122,123</sup>. Semantic memory is often maintained in middle-aged and older adults<sup>122</sup>, whereas episodic memory can be profoundly impacted by advancing age to the point where it displays the largest degree of age-related decline<sup>122,124–126</sup>. Episodic memory decline follows a pattern known as Ribot's law<sup>127</sup>, where memories of recent events are most likely to fade and memories of distant events are usually spared until the later stages of decline. Poor episodic memory function is an early symptom of major neurocognitive disorder<sup>128</sup>.

## 2.3.1. Measures of Memory

Evaluating memory function is done through psychometric testing, which involves the administration of well-validated tools such as the Rey Auditory Verbal Learning Test (RAVLT)<sup>129</sup> or the Wechsler Memory Scale–IV<sup>130</sup>, among others. These tools are based on the

notion that memory retrieval can occur in response to both external (cued recall) and internal (free recall) prompts<sup>131</sup>. For example, providing an individual with a word list and prompting the recall of items by category would be an example of an external cue, while asking an individual to recall as many words as possible from a list would require the use of internal cues. Internally cued memory is more likely to be recalled episodically than externally cued memory<sup>131</sup>; therefore, most of the literature surrounding episodic memory uses free recall tasks<sup>31,94,96,97,132</sup>. In this thesis, episodic memory was the outcome of interest, and it was measured using the RAVLT, which is built around internal cues.

#### 2.4. Theoretical Frameworks

Several theoretical frameworks can be used to explain the intertwined nature of SI and FSS, as well as the impact of SI and FSS on cognition. These frameworks include the convoy theory, the cognitive-enrichment hypothesis, the cognitive reserve hypothesis, and the stress hypothesis.

#### 2.4.1. The Convoy Theory

The convoy theory<sup>133,134</sup> was developed to explain the multidimensional nature of social relationships. According to the convoy theory, across the lifespan, including late life, individuals maintain social relationships that vary in closeness and receive differing levels of one or more types of FSS from these relationships<sup>26,133,134</sup>. The convoy theory distinguishes between social support based on structure and function. While early work in social epidemiology focused on how the objective quantity of social support (SI) impacted health outcomes <sup>101,135</sup>, later work posited that levels of FSS received from one's social network structure were the true influences on health<sup>38,136,137</sup>. This theory is substantiated by literature showing that higher structural support (or lower SI) predicts higher levels of FSS<sup>138–142</sup>.

#### 2.4.2. The Cognitive-Enrichment Hypothesis

Engaging in positive behaviours (e.g., taking care of one's health, staying connected with others through social activities, managing stress, etc.) is key for the maintenance of cognitive functioning throughout the aging process<sup>143</sup>. A key component of the cognitive-enrichment hypothesis is the 'use-it-or-lose-it' hypothesis<sup>143</sup>, which suggests exercising cognitive faculties by performing cognitively demanding activities (e.g., social engagement, exercise, etc.) stimulates the brain and preserves cognitive function<sup>143</sup>.

Interacting socially requires the use of specific cognitive abilities such as attention, language, and memory<sup>46</sup>. Increased interaction with social ties can facilitate exposure to novel social stimuli including a diversity of ideas, information, activities, verbal and nonverbal social cues, faces, and speech patterns<sup>144,145</sup>. Further, a higher level of perceived support when engaging socially may increase positive affect and cognitive stimulation<sup>143</sup>. Therefore, more meaningful connections and FSS can reinforce and expand the cognitive benefits of social engagement<sup>143</sup>.

## 2.4.3. The Cognitive Reserve Hypothesis

The cognitive reserve hypothesis posits that individuals differ with respect to their levels of resiliency against neuropathological damage<sup>146</sup>. Individuals with a higher level of reserve can have reduced susceptibility to pathological brain damage such as hippocampal atrophy<sup>147</sup> and to the accumulation of amyloid plaque associated with AD<sup>148</sup>. Neuroprotective mechanisms are acquired by individuals differently throughout the lifespan, depending on accumulated levels of cognitive stimulation, which occur through factors such as receiving higher education or having a complex occupation, engaging in regular physical activity, or participating in social activities<sup>149,150</sup>. Neurologically, cognitive reserve translates into the preservation of cognitive

function through the formation of more efficient or extensive neural networks that compensate for age-related changes in pathology<sup>151</sup>. Aspects of both SI and FSS may contribute to these compensatory processes. Studies have shown that individuals with larger and more diverse social networks, and who engage in frequent social activities, have higher cognitive resiliency to neurodegeneration<sup>152,153</sup>. Similarly, individuals with stronger social ties and higher levels of FSS have been shown to display greater cognitive reserve<sup>59,152,154</sup>.

#### 2.4.4. The Stress Hypothesis

The stress hypothesis suggests increased social participation and engagement can reduce psychological stress. Managing stress levels is beneficial for overall cognitive function, memory, and executive performance<sup>155,156</sup>. Animal models have shown SI is associated with prolonged neuroendocrine stress responses leading to neuronal changes (e.g., loss of dendritic spines and neuronal cell death) and the impairment of cognitive function<sup>157</sup>. In humans, SI and lack of perceived support are closely related to the stress-inducing effects of objective SI in animal models. Supportive interpersonal relationships in humans may offer coping resources to manage stressful events<sup>158–160</sup>, whereas the objective presence of others (without FSS) may not be sufficient to provide socio-emotional support and produce stress-reducing benefits<sup>35,161</sup>.

## 2.5. Structural and Functional Social Support and Cognitive Function

The above frameworks provide the biological and social contexts for the thesis research. These frameworks suggest the quantity of social ties and activity may not be sufficient to affect memory without additional consideration of the quality of social relationships (FSS).

To explore published research on the topic area, the thesis candidate conducted a literature review, including articles from January 2000 to May 2024 (described in Appendix A, Figure A-1). The candidate developed the literature search strategy following consultation with a

health sciences librarian to identify articles that investigated (1) the effects of SI on cognitive function, (2) the effects of FSS on cognitive function, and (3) the effects of SI and FSS on cognitive and memory function. The search terms used in the review can be found in Appendix A, Table A-1.

#### 2.5.1. Social Isolation and Cognitive Function

The following section describes findings from articles that investigated the relationship between SI or structural social support and cognitive function. A summary of the articles is shown in Appendix A, Table A-2.

#### 2.5.1.1. Cross-sectional Studies

The literature search identified seven cross-sectional studies that assessed the impact of SI or structural social support on cognitive function. Sample sizes ranged from 189<sup>56</sup> to 5,059<sup>55</sup> participants, including both middle-aged and older adults<sup>54–56,162–165</sup>. Articles investigated populations from Europe<sup>164</sup>, India<sup>164</sup>, the United States<sup>54,162,165</sup>, Ireland<sup>163</sup>, South Africa<sup>55</sup>, and Switzerland<sup>56</sup>. Data were drawn from large panel studies of community dwelling middle-aged and older adults from multiple countries<sup>164</sup>, a single country<sup>54–56</sup>, or a single region<sup>162,165</sup>. One study included participants from multiple cohort studies in Dublin, Ireland<sup>163</sup>.

Two studies assessed SI through an index including frequency of contact with social network members and frequency of participation in social activities<sup>162,164</sup>. The remaining studies assessed participation in social activities<sup>54</sup>, number of network members<sup>54–56</sup>, frequency of contact<sup>55,165</sup>, and social engagement<sup>163</sup> (measured by the Wenger Social Support Network Type Assessment<sup>166</sup>).

Five studies assessed cognitive impairment through the Clinical Dementia Rating Scale <sup>162,167</sup>, the Mini-Mental Status Examination (MMSE)<sup>56,163,168</sup>, the Montreal Cognitive

Assessment<sup>54,169</sup>, and a composite measure of orientation in time, immediate and delayed recall, and the ability to follow counting patterns<sup>55</sup>. One article assessed global cognition through a composite measure of verbal fluency, learning, and delayed recall<sup>164</sup>. The remaining study assessed memory function through the Wechsler Memory Scale<sup>165,170</sup>.

SI was associated with decreased cognitive function<sup>164</sup> and an increased odds of cognitive impairment<sup>162</sup>. Further, less participation in social activities<sup>54</sup> and smaller social networks<sup>54–56</sup> were associated with increased risk of cognitive impairment, and higher social engagement was associated with less risk of cognitive impairment<sup>163</sup>. However, in the single study assessing memory function, no association was found between contact frequency with social network members and memory<sup>165</sup>. Due to the potential for reverse causality bias, the results of cross-sectional studies must be interpreted with caution.

## 2.5.1.2. Longitudinal Studies

The search identified 19 longitudinal studies that assessed the relationship between SI or structural social support and cognitive function. The sample sizes varied between 804<sup>171</sup> and 19,832<sup>172</sup> participants with up to 12 years<sup>173</sup> of follow-up. The locations of recruitment included Korea <sup>173–176</sup>, the United States<sup>19,177–181</sup>, Europe<sup>172</sup>, China<sup>58,182,183</sup>, Taiwan<sup>184</sup>, Spain<sup>185,186</sup>, England<sup>187</sup>, and Sweden<sup>171</sup>. Minimum recruitment ages ranged from 40 years or older at baseline<sup>171</sup> to 65 years or older at baseline<sup>177,180,186</sup>. Data were drawn from large panel studies of community dwelling adults across multiple countries<sup>172</sup>, a single country<sup>19,58,171,173–176,180,182–185,187</sup>, or a single region<sup>177–179,181,186</sup>.

In five studies, SI was operationalized through (1) the lack of social contact and participation in social activities<sup>178</sup>, (2) living arrangements, visits with family, frequency of interaction with friends, and frequency of participation in social activities<sup>182</sup>, or (3) marital status,

living arrangements, frequency of contact with children, family, and friends, and participation in social activities<sup>183,185,187</sup>. The reverse of SI–structural social support–was assessed using a multiplicity of variables, including social networks (marital status, number of ties, and frequency of contact)<sup>171,184</sup>, social integration (marital status, volunteer activities, and frequency of contact)<sup>19</sup>, and social engagement (frequency of contact and participation in social activities)<sup>58,180</sup>. Other studies explored individual aspects of SI, with participation in social activities (i.e., leisure, cultural, religious, and community engagements) being the most common measure of an single aspect of structural social support<sup>172–177,179,184</sup>, followed by the frequency of contact with social network members<sup>175–177</sup>.

Cognitive function was assessed through validated neuropsychological tests such as the MMSE<sup>168,173–177,181,182</sup>, the Telephone Interview for Cognitive Status (TICS)<sup>180,183,188</sup>, the Short Portable Mental Status Questionnaire<sup>184,189</sup>, and the Leganés Cognitive Test<sup>186,190</sup>. Two studies used a composite measure of multiple cognitive domains to assess cognitive function<sup>179,185</sup>, while one study used a similar composite measure to characterize cognitive impairment<sup>58</sup>. Three studies assessed executive function through tests of verbal fluency<sup>172,187</sup> or visuospatial ability<sup>171</sup>. Six studies measured memory function using immediate and delayed recall tasks<sup>19,171,172,178,183,187</sup>, as well as semantic memory via tests of synonym identification<sup>171</sup>.

Having high levels of SI was associated with greater cognitive decline<sup>182,183,185</sup> and worse episodic memory over time<sup>178,183,187</sup>. Increased participation in social activities<sup>172,173,175–</sup> <sup>177,179,184,186</sup>, more frequent social contact<sup>175,181</sup>, and more social engagement<sup>180</sup> were associated with slower cognitive decline. Son and Sung<sup>176</sup> identified that social participation was more important for cognitive function than the frequency of contact with social network members. Béland et al.<sup>186</sup> found that low frequency of participation in social activities was significantly

associated with cognitive decline, but the number of social ties and the frequency of social contact was not related to cognitive function. Further, higher levels of social engagement were associated with a lower risk of cognitive impairment<sup>58</sup>. Larger social networks were associated with preservation of semantic and episodic memory function over time<sup>171</sup>, and higher levels of social integration predicted slower memory decline<sup>19</sup>.

Piolatto et al.'s<sup>57</sup> meta-analysis from 2022 included 17 articles examining structural aspects of social support and cognitive function. Measures of structural social support included social activity (i.e., participation to social clubs, community/religious organisations, voluntary work), network size (i.e., number of contacts and frequency of contact), and social engagement (i.e., indices of social activity and network size). Cognitive function was assessed through validated neuropsychological tests of global cognition or specific cognitive domains. Participants in the included articles averaged 67.7 years of age, the average follow-up was 11 years, and the average sample size was 5,672 (range: 529 to 19,832). The pooled, random effects odds ratio (OR) for all the measures of structural social support and cognition across the 17 studies was 1.11 (95% Confidence Interval [CI]:1.08, 1.14), confirming previous reports that low structural social support is associated with cognitive decline<sup>57</sup>. In meta-analyses researchers employ an I<sup>2</sup> statistic to determine the extent to which differences in effect sizes across studies is due to inconsistencies in study designs. An  $I^2 \ge 0.50$  represents high heterogeneity. The meta-analysis by Piolatto et al.<sup>57</sup> highlighted the vast amount of heterogeneity in measures of structural social support and cognitive function in the literature, which was demonstrated quantitatively with an  $I^2$ = 0.82 and p < 0.01 on the Q-test. However, the authors did not conduct a meta-regression to explore sources of heterogeneity.

#### 2.5.1.3. Summary

Generally, studies found an inverse association between SI and cognitive function, and positive associations between increased structural social support and cognitive function. The most commonly used scale to assess cognitive function was the MMSE<sup>168</sup>. However, only seven of the twenty-six studies included a comprehensive measure of SI and, of these, three different types of SI indices were featured in the research. Further, structural social support was assessed through various approaches, including single components of structural support such as social participation, composite measures including multiple aspects of structural social support, and validated scales. These findings emphasize the need for consistency in how SI is measured in the literature.

#### 2.5.2. Functional Social Support and Cognitive Function

A recent review article published in 2023 by Mogic et al.<sup>18</sup> examined the association between FSS and cognitive function/impairment. The review included 85 articles of participants aged 40 years or older from any residential setting. Of the 85 articles, 44 were cross-sectional and 41 were cohort studies. Sample sizes ranged from 20 to 30,029 participants. The included articles measured overall FSS or subtypes such as emotional/informational support, tangible support, affectionate support, and positive social interactions. Outcomes of interest included cognitive function or incidence or prevalence of a neurological condition. Cognitive function was assessed globally (38 articles) and/or by domain (e.g., memory, executive function [20 articles]) using multiple different instruments (see Table 1 [pp. 4 to 14] in the published review for a list of instruments). Nineteen articles examined dementia including AD. Most of the included articles found a positive association between overall and subtype-specific FSS and cognitive function. Further, higher levels of affectionate support and positive social interactions

were associated with decreased risk for neurocognitive outcomes such as dementia<sup>18</sup>. The review article assessed the literature published prior to 2022. An additional 8 studies<sup>94–97,191–194</sup> exploring the impact of FSS on cognitive function and neurocognitive disorders have been published since the Mogic et al. review. A summary of these 8 studies is shown in Appendix A, Table A-3.

Of the eight additional studies, two assessed FSS on cognitive function<sup>95,191</sup>, four assessed FSS on memory function<sup>94,96,97,194</sup>, one assessed FSS on neurocognitive disorders<sup>193</sup>, and one assessed FSS on cognitive function and neurocognitive disorders<sup>192</sup>. Further, three of the studies assessed both overall FSS as well as subtypes<sup>96,97,193</sup>. The sample sizes varied between 1,319<sup>191</sup> and 24,719<sup>97</sup> participants. The locations of recruitment included the United States<sup>191</sup>, Canada<sup>96,97</sup>, China<sup>94,95,194</sup>, Korea<sup>193</sup>, the Netherlands<sup>192</sup>, and Sweden<sup>192</sup>. Data were drawn from large national panel studies<sup>94–97,191–194</sup> or a single region<sup>192</sup> comprising community-dwelling adults.

Using longitudinal data over 10 years of follow-up across four measurement occasions from the China Health and Retirement Longitudinal Study (CHARLS)<sup>195</sup> of participants aged 65 years or older, Ma et al.<sup>95</sup> found that FSS was associated with reduced risk of incident cognitive impairment (Hazard Ratio [HR]: 0.96; 95% CI: 0.93, 0.98). However, in a study of participants also aged 65 years or older from the Health and Retirement Study (HRS)<sup>196</sup>, Du et al.<sup>191</sup> did not find significant associations between perceived levels of support and changes in cognitive function over eight years of follow-up across three measurement occasions. However, because an additional area of interest for Du et al.<sup>191</sup> was to assess support by relationship type, their analytical sample was limited to only those participants who were married or partnered and had children.

Among the four of the eight studies that specifically assessed memory, high levels of overall FSS or subtypes of FSS were consistently associated with better memory function. A cross-sectional study using CLSA data found overall and subtypes of FSS (affectionate, emotional/informational, positive, and tangible support) were positively, and significantly, associated with immediate and delayed recall memory in participants aged 45 to 85 years, with the exception of positive social interactions and delayed recall memory ( $\hat{\beta} = 0.02$ ; 95% CI: 0.00, 0.04)<sup>97</sup>. A similar study from the CLSA found that although positive associations existed between overall and subtypes of FSS and memory, only tangible support was significantly associated with higher memory function over three years ( $\hat{\beta} = 0.07$ ; 95% CI: 0.01, 0.14)<sup>96</sup>. Using three waves of data collected over five years from the CHARLS<sup>195</sup> of participants aged 45 years or older, Peng et al.<sup>94</sup> found that perceived availability of support was associated with higher memory function at baseline ( $\hat{\beta} = 0.25$ ; p<0.05) and slower memory decline over time ( $\hat{\beta} = 0.32$ ; p < 0.01). However, in disagreement with these findings, a second study from the CHARLS<sup>195</sup>, which enrolled participants aged 60 years or older from four waves of data collected over seven years, found that perceived availability of support was associated with higher memory function at baseline ( $\hat{\beta} = 0.442$ ; 95% CI: 0.207, 0.678), but increased memory decline over time ( $\hat{\beta} = -$ 0.068; 95% CI: -0.123, -0.013)<sup>194</sup>. The authors of the second CHARLS article reasoned that FSS was measured using a single item about perceived availability of support in the future, which may not be detailed enough to capture the true extent of  $FSS^{194}$ .

A single study looked at the impact of two subtypes of FSS (emotional and tangible) on the incidence of neurocognitive disorders<sup>193</sup>. Using data from the Korean Longitudinal Study on Cognitive Aging and Dementia<sup>197</sup>, which enrolled participants aged 60 years or older for followups every two years over eight years total, Oh et al.<sup>193</sup> found that low emotional support was

associated with an increased hazard of all-cause dementia (HR:1.42; 95% CI: 1.04, 1.93) and AD (HR: 1.45; 95% CI: 1.00, 2.11)<sup>193</sup>. In contrast, Freak-Poli et al.<sup>192</sup> did not find an association between FSS and neurocognitive disorders or cognitive decline among participants aged 55 years or older from the Rotterdam Study (RS)<sup>198</sup> and the Swedish National Study on Aging Care in Kungsholmen (SNAC-K)<sup>199</sup>. Although both cohort studies had long follow-up periods (10 and 14 years, respectively), the authors reasoned their null results may have been due to a healthy volunteer bias, as evidenced by the large proportion of participants who showed optimal levels of FSS<sup>192</sup>.

#### 2.5.3. Social Isolation, Functional Social Support, and Cognitive Function

In general, some literature found both structural and functional aspects of social support to be associated with cognitive function when measured separately. However, as described in Section 1 – Introduction above, both types of social support are interrelated with one another, thereby necessitating a review of findings from articles that included both SI and FSS as explanatory variables of global or subdomains of cognitive function. A summary of this literature is shown in Appendix A, Table A-4 and described below. An overview of the literature from articles that included SI and FSS as explanatory variables of memory function follows in Section 2.5.4 below.

Ten articles analyzed SI and FSS as explanatory variables of cognitive function in the same regression models. A cross-sectional study by DiNapoli et al.<sup>45</sup>, containing community-dwelling adults aged 70 years or older in West Virginia, investigated the effects of SI and FSS on cognitive function by parsing out the structural and functional aspects of the LSNS-6<sup>90</sup>. When both aspects of structural and functional support were included in the same model, FSS accounted for 10.2% of the variance in cognitive functioning, while SI accounted for 5.7%.

A second cross-sectional study of adults aged 50 years or older from the Survey of Health, Ageing and Retirement in Europe<sup>200</sup> found that higher objective levels of participation in social activities (social engagement) and subjective emotional closeness (social connectedness) were associated with higher overall cognitive function ( $\hat{\beta} = 0.83$ ; p<0.001 and  $\hat{\beta} = 0.23$ ; p<0.001, respectively)<sup>201</sup>. The authors also found a significant interaction between social engagement and connectedness such that individuals with high levels of social engagement and social connectedness had the highest cognitive function, whereas individuals with low social engagement and social connectedness had the lowest levels of cognition. Individuals with low social engagement, but high levels of social connectedness, had similar cognitive function to those with low social connectedness and high levels of social engagement<sup>201</sup>.

Three additional cross-sectional studies found significant effects between functional and structural support, and cognitive function. Studying adults aged 65 years or older from the Rush Memory and Aging Project in Chicago<sup>202</sup>, Krueger et al.<sup>132</sup> found that when social network, social activity, and FSS were included in the same model, social activity and FSS were significantly associated with global cognitive function ( $\hat{\beta} = 0.16$ ; p<0.001 and  $\hat{\beta} = 0.069$ ; p = 0.003, respectively). From the Population Study of Chinese Elderly<sup>203</sup> in the US, which contained adults aged 60 years or older, Li and Dong<sup>204</sup> found that general cognitive function was significantly associated with network size ( $\hat{\beta} = 0.049$ ; p<0.001) and emotional closeness ( $\hat{\beta} = 0.076$ ; p<0.01). Further, Yeh and Liu<sup>33</sup> found that being married/partnered ( $\hat{\beta} = 0.13$ ; p<0.005) and having a higher perception of social support ( $\hat{\beta} = 0.11$ ; p<0.001) were associated with higher scores on the Short Portable Mental Status Questionnaire<sup>189</sup>.

Three studies found that aspects of FSS, but not SI, were associated with cognitive function. Chen and Chang's<sup>44</sup> investigation of participants aged 65 years or older from the

Taiwan Longitudinal Study on Aging<sup>205</sup> reported emotional support, but not participation in social activities, reduced the odds of cognitive decline among individuals who previously had low cognitive function (OR = 0.77; 95% CI: 0.60 to 0.99). In middle-aged and older adults between the ages of 35-85 years, enrolled in the Midlife in the U.S. (MIDUS)<sup>206</sup> study, Seeman et al.<sup>34</sup> found that baseline emotional support, but not structural social support (including marital status, frequency of contact, living arrangements, and social network size) was associated with higher scores on the Brief Test of Adult Cognition by Telephone<sup>207</sup> at follow-up after seven and a half years. Lastly, Hughes et al.<sup>36</sup> observed a high level of satisfaction with support, but not social network size or frequency of contact, was associated with baseline cognitive function ( $\hat{\beta}$ =0.45; p=0.02). However, this association did not remain significant after five years of follow-up<sup>36</sup>.

A longitudinal study by Fan et al.<sup>112</sup> found that high social activity levels and larger social networks, but not FSS, protected against cognitive decline after three years of follow-up among participants between the ages of 65-110 years, who were enrolled in the Chinese Longitudinal Healthy Longevity Survey<sup>208</sup>. In a multivariable regression model containing social activity, social networks, and FSS, only social activity (OR = 0.80; 95% CI: 0.65-0.98) and social networks (OR = 0.70; 95% CI: 0.56-0.87) were inversely and significantly associated with incident cognitive decline. These results ran contrary to most other articles, where structural support was non-significant and functional support was significant. It is possible that the participants who had poor cognitive health may have received more functional support during the study period therefore, the association between FSS and cognitive function may have been attenuated<sup>112</sup>.

Lastly, one cross-sectional study of persons aged 70 years, recruited into the Lothian Birth Cohort of 1936,<sup>209</sup> found that neither structural (contact with friends/family, marital status and living arrangement) nor functional support (support received and level of satisfaction with support) yielded significant results with cognitive ability<sup>210</sup>.

#### 2.5.3.1. Summary

Five studies found significant effects between SI or aspects of structural social support and FSS on cognitive function<sup>33,45,132,201,204</sup>. Three studies only found significant, positive effects between FSS and cognitive function<sup>34,36,44</sup>, whereas a single study only found significant, positive effects between structural social support and cognitive function<sup>112</sup>. Lastly, one study did not find significant effects between any aspect of social support and cognitive function<sup>210</sup>. The inconsistent results found among both cross-sectional and longitudinal studies assessing the association between aspects of SI and FSS, and cognitive function could be due to differences in study samples (i.e., sample size and sampling frames), differing measures used to assess SI, FSS, and cognitive function, or differing sets of covariates.

## 2.5.4. Social Isolation, Functional Social Support, and Memory

Since this thesis focuses specifically on the memory domain of cognitive function, the following section contains a summary of findings from articles that assessed aspects of SI and FSS together in multivariable regression models with memory as the outcome. A summary of the included studies can be found in Appendix A, Table A-5.

The literature search identified 11 pertinent articles. Of the eleven articles, five articles<sup>36,45,132,204,210</sup> were previously identified in the literature search described in Section 2.5.3 above. The overlap consisted of studies that assessed SI, FSS, and cognitive function, while also conducting subgroup analyses on one or more domains of cognitive function, including memory.

Two studies measured SI and FSS, and memory function, by parsing the structural and functional aspects of the LSNS-6<sup>90</sup>. One was a cross-sectional study by DiNapoli et al.<sup>45</sup>, of community-dwelling adults aged 70 years or older in West Virginia, that reported both lower SI and higher perceived support were associated with better memory function in the same regression model. The other was a longitudinal study by Hughes et al.<sup>36</sup>, containing adults aged 65 years or older from Charlotte County, Florida, that found satisfaction with support, but not SI, was associated with memory decline over five years of follow-up.

Five studies found statistically significant effects between both structural and functional aspects of support and memory function. A cross-sectional study by Krueger et al.<sup>132</sup>, drawing participants aged 65 years or older from the Rush Memory and Aging Project<sup>202</sup> in Chicago, found that having increased social activity and higher FSS was associated with better working memory function; however, neither social contact frequency nor social network size was found to have significant effects on memory function<sup>132</sup>. Similarly, a longitudinal study by Peng et al.<sup>94</sup>, using data from participants aged 45 years or older in the CHARLS<sup>195</sup>, found that individuals who lived alone experienced more memory decline than those who did not. Peng et al.<sup>94</sup> also found that greater perceived availability of support was associated with slower memory decline.

Zahodne et al.'s<sup>46</sup> longitudinal study of American adults aged 50 years or older from the HRS<sup>196</sup> found a higher frequency of social contacts, and being married/partnered, were associated with higher baseline memory ( $\hat{\beta} = 0.10$ ; 95% CI: 0.08, 0.12 and  $\hat{\beta} = 0.02$ ; 95% CI: 0.00, 0.04, respectively), and slower memory decline ( $\hat{\beta} = 0.09$ ; 95% CI: 0.04, 0.15 and  $\hat{\beta} = 0.08$ ; 95% CI: 0.02, 0.13, respectively). A lower quality of support was negatively associated with memory at baseline ( $\hat{\beta} = -0.30$ ; 95% CI:-0.05,-0.01), but not over time ( $\hat{\beta} = -0.30$ ; 95% CI:-0.09, 0.02)<sup>46</sup>. Seeman et al.'s<sup>211</sup> study of adults between the ages of 35-85 years, recruited into the

MIDUS<sup>206</sup> study, found that greater frequency of social contacts and higher FSS were associated with better episodic memory function ( $\hat{\beta} = 0.049$ ; p<0.01 and  $\hat{\beta} = 0.051$ ; p<0.01, respectively).

An additional study from the HRS,<sup>196</sup> by Meister and Zahodne<sup>212</sup>, found that social contact frequency was associated with improved episodic memory function over time among participants aged 50 years or older. However, in contrast to their initial hypothesis, these authors found that a combined measure of emotional and informational social support was negatively associated with episodic memory after three and a half years of follow-up. Counterintuitive results may have occurred because cognitive measures were only taken at the follow-up visit; therefore, participants with poor memory function at baseline, whose memories were more likely to decline over time, began the study with higher levels of emotional and informational support than persons with better memory function<sup>212</sup>.

Three articles found statistically significant associations between measures of structural (not functional) social support and memory function, while one article found no significant associations between measures of structural or functional support and memory function. Using HRS<sup>196</sup> data from participants aged 50 years or older, Hülür et al.<sup>31</sup> found that being married/partnered ( $\hat{\beta} = 0.04$ ; p< 0.01) and having more social contacts ( $\hat{\beta} = 0.02$ ; p< 0.01) were associated with less episodic memory decline. Although their analysis showed that high levels of emotional support prevented memory decline, the association was no longer significant after inclusion of age, sex, education, number of functional health limitations, and depressive symptoms<sup>31</sup>. Li and Dong<sup>204</sup> observed that a larger social network size was positively associated with episodic memory among participants aged 60 years or older from the American-based Population Study of Chinese Elderly<sup>203</sup> ( $\hat{\beta} = 0.059$ ; p<0.001); however, they did not find a significant association between emotional closeness and episodic memory. The studies by

Hülür<sup>31</sup> and Li and Dong<sup>204</sup> only assessed emotional support with a 3-item measure and a single item measure, respectively. Therefore, these studies were unlikely to capture the full essence of emotional support or the wider construct of FSS.

A cross-sectional analysis utilizing the Wisconsin Registry for Alzheimer's Prevention<sup>213</sup>, which contained participants between the ages of 40 to 65 years at baseline, found high levels of verbal interactions (suggestive of low SI) were significantly associated with higher verbal learning and memory scores ( $\hat{\beta} = 0.16$ ; 95% CI: 0.02, 0.30), while a positive though nonsignificant association was found between high perceived support and memory<sup>214</sup>. The absence of an association between FSS and memory may be because of the overly healthy sample of participants that was recruited from a single data collection site<sup>214</sup>. Lastly, the associations between structural and functional support, and memory function, produced null effects among participants aged 70 years from the Lothian Birth Cohort of 1936<sup>209,210</sup>. The null results between structural and functional support, and memory may have been due to survival bias among the birth cohort thereby creating a sample of overly healthy individuals.

## 2.5.4.1. Summary

In summary, some studies found statistically significant effects between SI, structural social support, and FSS on memory<sup>45,46,94,132,211</sup>; however, other results were not significant and the point estimates did not uniformly indicate the same direction of effect. Three studies found significant, positive effects between structural social support and memory<sup>31,115,204</sup>; a single study only found significant, positive effects between FSS and memory<sup>36</sup>. In contrast, one study found an inverse association between FSS and memory<sup>212</sup>. Lastly, one study did not find statistically significant effects between social support and memory<sup>210</sup>. The inconsistent results could be due the lack of consistent measures used to assess SI, FSS, and memory, the differences in study

populations (i.e., sampling frames), or the differing sets of covariates including in the analyses. Covariates commonly included in multivariable models from the 11 articles described above were sociodemographic variables (age<sup>31,36,45,46,94,132,204,211,214,215</sup>, sex<sup>31,36,45,46,94,132,204,210–212,214,215</sup>, education<sup>31,34,36,45,46,94,132,204,211,212,214,215</sup>, income<sup>45,94,204,212</sup>), health status (chronic conditions<sup>45,46,132,204,211</sup>, depressive symptoms<sup>31,45,46,132,210,211,215</sup>, functional impairment<sup>31,94,132,211</sup>), and lifestyle behaviours (smoking<sup>211,214</sup> and alcohol consumption<sup>211,214</sup>). Other covariates included social class<sup>210</sup>, personality<sup>36,132</sup>, BMI<sup>215</sup>, physical activity<sup>132</sup>, race<sup>212</sup>, self-rated health<sup>46</sup>, and apolipoprotein E-ε4 carrier status<sup>214</sup>.

#### 2.5.5. Factors that Moderate the Association Between Social Support and Cognitive Function

Studies examining age and sex as effect modifiers have yielded inconclusive results. Seeman et al.<sup>211</sup> found no difference between the positive effects of increased social contact frequency on episodic memory function between younger (< 65 years) and older ( $\geq$  65 years) adults; however, the relationship between FSS and episodic memory was weaker in the older age group. These results are contradicted by Meister and Zahodne<sup>212</sup>, who found that FSS was more strongly associated with memory function in older ( $\geq$ 75 years) compared to younger adults (<75 years), but contact frequency was more strongly associated with episodic memory in the younger age group compared to the older age group.

Hughes et al.<sup>36</sup> found that only one element of structural social support, i.e., having higher contact frequency with friends, was negatively associated with general cognitive ability in adults aged 74 years or older, but positively associated with general cognitive ability in adults aged less than 74 years. Further, LaFleur and Salthouse<sup>165</sup> found that between the age groups 18-39 years, 40-59 years, and 60-96 years, age did not modify any of the associations between

structural or functional aspects of social support and memory function. Varying results regarding age as an effect modifier may be due to the inconsistent cut-off points used to define age groups.

In a study by Joyce et al.,<sup>215</sup> among participants between the ages of 70-94 years, SI and low FSS were consistently associated with lower cognitive function in females, but not males. However, Hsiao et al.<sup>216</sup> found that among participants aged and 50 over, being married was associated with lower risks of cognitive impairment in males, but not females, over four years. Li and Dong<sup>204</sup> found structural aspects of support, including network size and frequency of contact, had larger positive effects on global cognitive function and episodic memory in males aged 60 years or older compared to females aged 60 years or older. However, the positive effect sizes associated with emotional closeness and cognitive function were larger for females than males<sup>204</sup>. On the other hand, Read et al.<sup>217</sup> and LaFleur and Salthouse<sup>165</sup> found no meaningful difference between SI or FSS in males and females.

## 2.6. The Effect of Social Isolation on Memory – Mediation by Functional Social Support

The literature search described above did not identify any previously published study that assessed FSS as a mediator of the relationship between SI and memory. However, one study reported that the relationship between structural social support and cognitive function was mediated by loneliness<sup>218</sup>. Using a single wave of data from the CHARLS<sup>195</sup>, including persons aged 60 years or older, Yang et al.<sup>218</sup> found loneliness to be a partial mediator of the relationship between SI and cognitive function. SI was measured on a 4-point scale based on level of social activity engagement, weekly contacts with adult children, provision of caregiving for grandchildren, and living arrangements. Loneliness was measured using the 'loneliness question' from the Center for Epidemiologic Studies Short Depression Scale (CES-D10)<sup>219</sup>, which asks 'How often you have felt lonely during the past week'. A score for overall cognitive function

was computed by combining assessments of orientation and attention measured by the TICS<sup>188</sup>, episodic memory measured by immediate and delayed word recall, and visuospatial functioning measured by figure drawing.

The authors found a significant indirect (mediated) effect of SI on cognitive function through loneliness ( $\hat{\beta} = -0.15$ ; 95% CI: -0.07, -0.23). Further, the direct effect of SI on cognitive function, controlling for loneliness, was significant ( $\hat{\beta} = -0.83$ ; 95% CI: -1.18, -0.48), as was the total effect of SI on cognitive function ( $\hat{\beta} = -0.98$ ; 95% CI: -1.35, -0.61)<sup>218</sup>.

Although loneliness and FSS are distinct concepts, both are subjective interpretations of one's state of being, with loneliness occurring when an individual believes their social network interactions or social participation levels fall below a desired threshold. In comparison, FSS is a person's perception of whether members of their social network (however large or small) can be relied upon to help in times of need.

The thesis candidate believes objective counts of acquaintances (friends, family, etc.) and social activities do not function completely independently of subjective or perceptual factors such as FSS. The negative impact of SI on memory may be ameliorated by strong perceived FSS in cases where individuals believe they can rely on even one person to satiate unmet needs. On the other hand, the possible protective effects of low SI on memory may not be realized in situations where one thinks their large social network will be unable to help alleviate unmet needs<sup>34,41–43,46</sup>. Therefore, it is plausible that FSS indirectly accounts for at least some of the effect of SI on memory, which highlights the need to explore the as yet unknown mediating role of FSS in the relation between SI and memory. Indeed, one cannot assume they will receive support from others (FSS) in the complete absence of social ties or other forms of objective social engagement. Thus, FSS emerges from structural social support/SI (the "a" path of a

mediation model)<sup>138–142</sup> and it is also a factor that affects memory on its own (the "b" path of a mediation model)<sup>18</sup>. Likewise, evidence shows SI is directly associated with memory (the "c-prime" or direct path of the mediation model)<sup>19,178,182,183,185,187,220</sup>.

These connections between SI, FSS, and memory are supported by the theoretical frameworks discussed in Section 2.4. The convoy theory believes FSS is derived from a person's social network and an inverse association between SI and FSS is expected on the "a" path of the mediation model. The stress buffering hypothesis posits that FSS may buffer the deleterious effects of stress on cognitive function by either attenuating or preventing stress responses at the outset of potentially stressful experiences<sup>161</sup>. The effects of the stress buffering hypothesis may be seen on the "b" path of the mediation model, where higher FSS is likely to be positively associated with memory function. Further, on the "c-prime" path, low SI may preserve memory through diverse interactions with social contacts and participation in cognitively stimulating activities (i.e., the cognitive enrichment hypothesis), which build cognitive reserve.

# 2.7. Conclusion

The literature review showed that some positive associations generally existed between FSS and memory, whereas some inverse associations existed between SI and memory. We did not find any discernable differences in results between cross-sectional and longitudinal studies. Article-specific differences in the strength and direction of regression coefficients, and width of CIs, as shown in Appendix A, Tables A-4 and A-5, resulted from numerous factors that differed across studies, e.g., measures of FSS or SI, sample characteristics, sample size, length of follow-up, type of memory or cognition construct and how they were measured, and covariates included in the regression models. Importantly, many articles assessed SI using social network size rather

than multi-faceted measures incorporating elements such as social participation, living arrangements, etc.

Despite a total of 10 articles exploring associations between SI, FSS, and cognitive function, and a total of 11 articles exploring associations between SI, FSS, and memory (of which 5 overlapped), none investigated whether FSS mediated the association between SI and memory. Therefore, the research questions listed below constitute a novel line of research inquiry.

<u>Aim 1:</u> Is social isolation associated with memory across two timepoints of data from the Tracking Cohort of the Canadian Longitudinal Study on Aging (CLSA)?

<u>Aim 2:</u> Does the association in Aim 1 above change after adjusting for relevant sociodemographic, health, and lifestyle covariates?

<u>Aim 3:</u> Does functional social support mediate the association between social isolation and memory?

<u>Aim 4:</u> Does age group or sex moderate the effect of (i) SI on FSS, (ii) FSS on memory, (iii) SI on memory indirectly through FSS, and (iv) SI on memory (direct and total effects)?

## 3. Methods

## 3.1. Data source

## 3.1.1. The Canadian Longitudinal Study on Aging

The CLSA is a population-based, panel study collecting biological, physical, psychological, social, health, and environmental data from a sample of middle-aged and older adults<sup>221</sup>. The CLSA's key aim is to understand the determinants of health that contribute to successful aging, with the resulting information being used to guide public health practices and policies<sup>221</sup>.

During initial recruitment between 2011 and 2015, the CLSA enrolled 51,338 participants aged 45-85 years at baseline  $(t_0)^{222}$ . Participants are followed up every three years and the first set of longitudinal data collection was complete in 2018  $(t_1)^{222}$ . Participants provide a common set of core data, including demographic, social, psychological, economic, and health service utilization information relevant to health and aging.

The CLSA is composed of two separate cohorts–Tracking and Comprehensive– distinguished by the sample frames and data collection methodologies. The Tracking Cohort comprised 21,241 of the 51,338 t<sub>0</sub> participants. These individuals were recruited from all 10 provinces and data are being collected through computer-assisted telephone interviews by trained CLSA staff. The Comprehensive Cohort comprised 30,097 of the 51,338 t<sub>0</sub> participants. These persons were recruited within 25-50 kilometers of 11 data collection sites (DCSs) located in 7 provinces (except Saskatchewan, New Brunswick, and Prince Edward Island). Comprehensive Cohort data are collected through in-home interviews and in-person visits to the DCSs<sup>222</sup>. Besides the core data described above, individuals in the Comprehensive Cohort undergo

physical performance and clinical testing at their local DCS and may also choose to provide optional blood and urine samples<sup>222</sup>.

The differences in sampling frames and modes of data collection raise questions about the validity of combining both cohorts in analyses. This is especially the case when investigating cognitive outcomes because the mode of administration of neuropsychological tests – in this case, telephone versus in person – can affect participants' test performance<sup>223</sup>. Therefore, this thesis utilized data from the Tracking Cohort only<sup>224</sup>. The Tracking Cohort was also chosen because its sample frame is less restrictive than the Comprehensive Cohort, i.e., recruitment across all geographical areas in the 10 provinces versus recruitment within 25-50 kilometers of 11 DCSs in 7 provinces.

# 3.1.2. Analytical Sample

Participants in the Tracking Cohort were recruited from three sources: a subset of participants enrolled in Statistics Canada's Canadian Community Health Survey-Healthy Aging 4.2 (CCHS-HA 4.2)<sup>225</sup>, the registries of provincial healthcare systems (e.g., Ontario Hospital Insurance Plan rolls), and random digit dialing of landline telephones<sup>222</sup>. Participants were excluded from the study if they could not complete the study measures in either English or French; showed overt signs of cognitive impairment at the time of recruitment; resided in a Canadian territory; were a full-time member of the Canadian Armed Forces; were institutionalized (i.e., resided in a long-term care home); or resided on a First Nations settlement<sup>222</sup>. The CLSA recruited participants into pre-defined age and sex strata established for each province and later expanded their stratified sampling to enrol more persons with less than high school education<sup>226</sup>. Further information about the CLSA's sampling procedure is available elsewhere<sup>226</sup>.

This thesis drew upon two timepoints of data for analyses (to and t1). Complete case analysis was used to handle missing data on all three main variables of interest, namely SI, FSS, and memory. Participants were removed from the analytical sample if they: (1) had missing data on SI at t0; and/or (2) had missing data on FSS or memory at t0 or t1. Participants with missing covariate data were retained in the analytical sample by creating 'missing' response categories for all instances of missing covariate data. All descriptive, regression, and mediation analyses were undertaken using the analytical sample described in this paragraph.

# 3.2. Measures

### 3.2.1. Social Isolation

The main exposure variable was SI at t<sub>0</sub>. SI was measured using an index developed by Menec et al.<sup>24</sup>, which itself was based on Steptoe et al.'s work with the English Longitudinal Study on Ageing<sup>63</sup>. The index converts questions from the CLSA's Social Support, Social Network, Social Participation, Retirement Status, and Socio-Demographic Characteristics modules into a 5-point scale ranging from 0 to 5, with higher scores representing greater SI. Points are allocated based on an individual's marital/cohabiting status; retirement status; number and frequency of participation in social activities; and number/frequency of contact with friends, neighbours, relatives, siblings, or children within the past six months. Based on Menec et al.<sup>24</sup>'s recommendation, scores were dichotomized at a cut point of 2, with persons scoring 2-5 classified as socially isolated and those scoring 0-1 classified as not socially isolated. Complete details about the composition and computation of the SI index are provided in Appendix B.

# 3.2.2. Functional Social Support

The mediator variable was FSS at t<sub>1</sub>. FSS scores were derived from the 19-item MOS-SSS<sup>30</sup> (Appendix C). Eighteen questions on the scale pertain to different subtypes of FSS,

including emotional/informational (8 questions), tangible (4 questions), affectionate (3 questions), and positive social interactions (3 questions). The 19<sup>th</sup> question - "someone to do things with to help you get your mind off things" - is not included in any of the subscales yet is used to compute the overall FSS score. The CLSA used the RAND scoring formula<sup>227</sup> to transform all question responses into an overall FSS score ranging from 0-100.

Due to the novelty of the thesis research and in line with previous research<sup>116,132,214</sup>, only overall FSS was used as the mediator in the analysis. Since participants in the CLSA generally report high levels of FSS, descriptive analyses showed that FSS scores at both to and t<sub>1</sub> were highly left skewed (see Section 4.2.2 below). To account for left skewness, FSS scores were dichotomized at the median (88.2 at to and 89.5 at t<sub>1</sub>) to create a "high" FSS group and a "low" FSS group.

To determine whether FSS at t<sub>0</sub> or t<sub>1</sub> was a better fit for mediation, a model containing a base set of covariates (Section 3.4.2 below provides a description of these covariates) and FSS at t<sub>0</sub> was compared to a model containing the same covariates and FSS at t<sub>1</sub>. The two models were compared using the Akaike Information Criterion (AIC); a lower AIC value was computed for the model with FSS at t<sub>1</sub>, suggesting this model was a better fit to the data. Using FSS at t<sub>1</sub> as the mediator variable was further substantiated by literature suggesting the need for a latency period to observe the effects of exposures on mediator and outcome variables<sup>228</sup>.

## 3.2.3. Memory

The main outcome was memory function at t<sub>1</sub>. A modified version of the RAVLT was used to measure participants' immediate (RAVLT I) and delayed (RAVLT II) recall memory. While the original RAVLT is a comprehensive test to evaluate short-term memory, working memory, and long-term memory<sup>229</sup>, CLSA investigators modified the RAVLT to fit within the

time constraints of the participant interviews. The CLSA's modified RAVLT eliminates an interference list recall and reduces the number of recall administrations from five to two<sup>224</sup>. Therefore, the CLSA's modified RAVLT only measures working and episodic memory<sup>230</sup>.

During the telephone interview, participants hear a recorded list of 15 words and are asked to immediately recall as many words as possible within 90 seconds (RAVLT I); five minutes later, participants are again asked to recall as many of the words as possible in 60 seconds, without hearing the recording again (RAVLT II). One point is assigned to each correctly recalled word or variant word. Variant words are those that sound similar to the 15 original words. The same variant word must be recalled at both administrations to receive points. Participants' responses to RAVLT I and II were recorded and later scored by trained CLSA staff.

CLSA created a derived variable for memory ( $\mu = 100, \sigma = 15$ ) that combined scores from RAVLT I and RAVLT II when the raw scores for both test administrations were available<sup>231</sup>. This derived variable was used to quantify memory function at to and t<sub>1</sub>.

# 3.3. Covariates

Based on the literature about SI, FSS, and memory<sup>31,35,36,45,46,94,132,204,210–212,214</sup>, the following variables were included as covariates in the analyses for Aims 2-4 above: (1) Sociodemographic variables: age group, sex, province, education, income; (2) Health status: depressive symptoms, number of chronic conditions, functional impairment; and (3) Lifestyle behaviours: smoking and alcohol consumption. Covariate levels reported at  $t_0$  were included in the analysis. See Appendix D for a complete description of the covariates.

# 3.3.1. Sociodemographic

The CLSA dataset includes a four-level variable for age group: 45-54 years, 55-64 years, 65-74 years, and 75 years or older. Categories for sex were male and female. Education was

categorized into four groups representing one's highest level of educational attainment: less than high school, high school diploma, some post-secondary education, and post-secondary degree/diploma. Province of residence was listed as one of the ten Canadian provinces. Total annual household income was categorized into five levels: less than \$20,000, from \$20,000 to under \$50,000, from \$50,000 to under \$100,000, from \$100,000 to under \$150,000, and \$150,000 or more.

## 3.3.2. Health Status

The presence of severe depressive symptoms was measured using the CES-D10<sup>219</sup>. The CES-D10<sup>219</sup> is a well-validated depression screening tool that scores depressive symptomology on a scale from 0 to 30. Reports have shown the CES-D10 to have high internal consistency, test–retest reliability, and measurement invariance regarding factors such as language of administration, age group, and level of educational attainment<sup>219,232</sup>. Further, performance on the CES-D10 is correlated with other self-report measures and clinical ratings of depression<sup>219</sup>. A cut-off score of 10 or more is used to indicate the presence of severe depressive symptoms versus mild or no depressive symptoms<sup>219</sup>. This cut-off was utilized to control for depressive symptoms

Chronic conditions are assessed by self-report of doctor diagnosis of 11 chronic conditions that are associated with cognitive function. The conditions include high blood pressure, diabetes, cancer, hypothyroidism, chronic obstructive pulmonary disease, chronic cardiac conditions, stroke-related conditions, peripheral vascular disease, and asthma. The presence of chronic conditions was summed and assessed dichotomously as 'no chronic conditions' versus 'one or more chronic conditions'.

Functional status was assessed using measures of activities of daily living (ADL) and instrumental activities of daily living (IADL) from the Older Americans Resources and Services (OARS) Multidimensional Assessment Questionnaire<sup>233</sup>. ADLs refer to participants' ability to perform seven basic daily tasks such as eating, dressing, grooming, and walking. IADLs refer to the ability to perform seven high-level daily functions such as grocery shopping, money handling, meal preparation, and taking medications. The CLSA transforms participants' responses to the ADL and IADL questions into a derived variable for functional status on a five-level scale ranging from (1) no functional impairment, (2) mild impairment, (3) moderate impairment, and (4) severe impairment to (5) total functional impairment. In the thesis, functional status was dichotomized into 'no functional impairment' versus 'any level of functional impairment'<sup>234</sup>.

## 3.3.3. Lifestyle Behaviours

The CLSA provides a derived variable for alcohol use<sup>235</sup> similar to the one used by Statistics Canada's CCHS-HA 4.2<sup>236</sup>. The variable represents participants' drinking habits within the past year and is coded into three groups. Participants who did not drink in the last 12 months comprised the 'not at all' group; participants who drank on occasion throughout the year, but less than once a month, comprised the 'occasionally' group; and participants who drank at least once a month comprised the 'regularly' group.

Smoking status was measured using a self-report questionnaire derived from the Canadian Health Measures Survey (CHMS)<sup>237</sup> and the Canadian Tobacco Use Monitoring Survey (CTUMS)<sup>238</sup>. Participants were asked about current smoking habits within the last month. Participants who did not smoke in the past 30 days were characterized as 'non-user'; participants who smoked at least one cigarette in the past 30 days, but not every day, were characterized as

'occasional user'; and participants who used at least one cigarette every day for the past 30 days were characterized as 'daily user'.

## **3.4. Data Analyses**

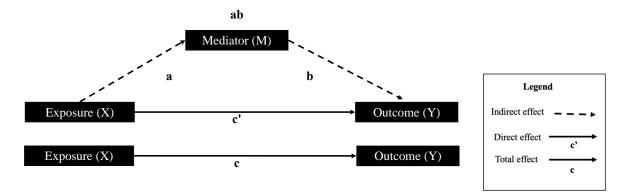
## 3.4.1. Descriptive Analysis

To descriptive statistics were computed for SI and all 10 covariates; to and t<sub>1</sub> descriptive statistics were computed for overall FSS and dichotomized FSS, and overall memory scores. Categorical variables were summarized as frequencies and percentages. Continuous variables were summarized using medians and interquartile ranges (IQRs) if non-normally distributed or means and standard deviations if normally distributed. Simple linear regression was employed to conduct bivariate analyses by regressing memory scores at t<sub>1</sub> onto: (1) SI at t<sub>0</sub>, (2) FSS at t<sub>0</sub> and t<sub>1</sub>, (3) memory scores at t<sub>0</sub>, and (4) covariates at t<sub>0</sub>.

### 3.4.2. Regression Analysis

Aim 1: To assess if SI was associated with memory, memory scores at t<sub>1</sub> were regressed onto t<sub>0</sub> SI status, controlling for FSS at t<sub>0</sub> and t<sub>1</sub>, and memory at t<sub>0</sub>. Based on CLSA recommendations to address the complex survey design, the model in Aim 1 (the 'base' model) included age group, sex, and province as covariates. The base regression model equation was:  $Memory_{t1} = \hat{\beta}_{intercept} + \hat{\beta}_{Sl_{t0}} + \hat{\beta}_{AgeGroup_{t0}} + \hat{\beta}_{Sex_{t0}} + \hat{\beta}_{Province_{t0}} + \hat{\beta}_{FSS_{t1}} + \hat{\beta}_{FSS_{t0}} + \hat{\beta}_{Memory_{t0}} + \varepsilon$ [1]

Aim 2: The remaining covariates at t<sub>0</sub> (i.e., sociodemographic, health status, lifestyle behaviours) were added to the base model from Aim 1 to create the 'adjusted' model. The change in the regression coefficient ( $\hat{\beta}$ ) for SI was compared between the base and adjusted models to determine whether the base or adjusted model should be used for the analyses in Aims 3 and 4 below. The 10% rule<sup>239</sup> was applied to assess whether the covariates included in the adjusted model confounded the association between SI and memory, such that if the change in  $\hat{\beta}$  for SI in the adjusted model compared to the base model was  $\pm 10\%$  or greater, then the adjusted model would be used. If the change was less than  $\pm 10\%$ , then the base model would be used for Aims 3 and 4.


## 3.4.3. Aim 3 – Mediation Analysis

## 3.4.3.1. Methodological background

Mediation analyses are used to explore whether part or all of the association between an exposure (X) and an outcome (Y) is linked through an intermediary variable, known as a mediator (M). A mediation model (such as the one depicted in Figure 1 below) comprises an indirect, a direct, and a total effect. The indirect effect (or the "ab" path) represents the effect of X on Y that passes through M. This effect, also known as the 'mediation effect', is the product of (1)  $\hat{\beta}_X$  for the regression of M on X ("a" path) and (2)  $\hat{\beta}_M$  for the regression of Y on M controlling for X ("b" path).

The direct effect of X on Y (or the "c-prime" path) represents the association between X and Y, controlling for M. The summation of the "ab" and "c-prime" paths produces the total effect ("c" path) of X on Y. All these pathways may be adjusted for covariates, in which case the interpretation of results changes to include the covariates. For example, "the effect of X on Y, passing through M and adjusted for covariates, is [EFFECT SIZE]." Effect sizes in mediation

analyses are not restricted to continuous units and may take on forms such as log odds ratios or log relative risks, among others.

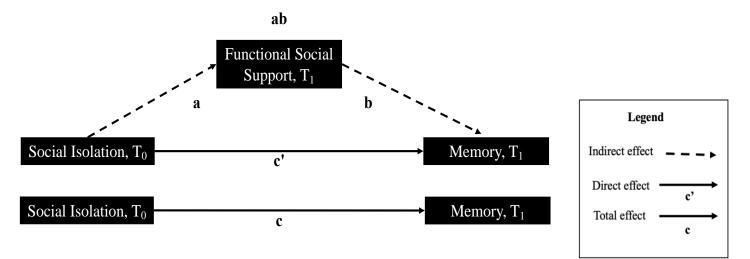


#### Figure 1. Mediation Model Conceptual Diagram

Notes: The mediator (M) and the outcome (Y) are both dependent variables. M is dependent upon the exposure (X) ("a" path), while Y is dependent upon X and M ("b" and "c-prime" paths).

The joint significance test<sup>240</sup> is an approach to assess the presence of an

indirect/mediation effect. Under this test, mediation is present if the  $\hat{\beta}s$  for the "a" and "b" paths are both statistically significant. The joint significance test is different from the index approach recommended by Hayes<sup>241</sup> et al. in the conditional process analysis macro. The index approach relies on a single statistical significance test of the "ab" path to conclude whether mediation is present. The joint significance test is preferred over the index approach because Yzerbyt et al. found that checking the significance of the "a" and "b" paths individually reduces the risk of Type I error – concluding the presence of mediation when no mediation exists – compared to checking the "ab" path<sup>240</sup>.


# 3.4.3.2. Analytical approach

Based on the joint significance test<sup>240</sup>, mediation was considered to be present if the 95% CIs for  $\hat{\beta}_{SI_{t_0}}$  on the "a" path and  $\hat{\beta}_{FSS_{t_1}}$  on the "b" path both did not include 0. Following the approach of Imai et al.<sup>242–245</sup> and Yamamoto<sup>246</sup>: (1) FSS<sub>t1</sub> was regressed on SI<sub>t0</sub> to obtain  $\hat{\beta}_{SI_{t_0}}$  for the "a" path; (2) memory<sub>t1</sub> was regressed on SI<sub>t0</sub>, and FSS<sub>t1</sub> to obtain  $\hat{\beta}_{FSS_{t_1}}$  for the "b" path. Table 1 outlines all the variables contained in the models for the "a" path and "b" path. The mediation diagram depicting the effects of SI on memory, channelled through FSS as the mediator, is found in Figure 2.

|                   | "a" Path: regress M on X                                                                                                                                                                                                                                                                                                    | "b" Path: regress Y on M           |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Base model        | Exposure (X):                                                                                                                                                                                                                                                                                                               | Exposure (X):                      |  |
|                   | Social Isolation (t <sub>0</sub> )                                                                                                                                                                                                                                                                                          | Functional Social Support (t1)     |  |
|                   | Outcome (M):                                                                                                                                                                                                                                                                                                                | Outcome (M):                       |  |
|                   | Functional Social Support (t <sub>1</sub> )                                                                                                                                                                                                                                                                                 | Memory function $(t_1)$            |  |
|                   | Punctional Social Support (II)                                                                                                                                                                                                                                                                                              |                                    |  |
|                   | Baseline adjustment:                                                                                                                                                                                                                                                                                                        | Baseline adjustment:               |  |
|                   | Functional Social Support (t <sub>0</sub> )                                                                                                                                                                                                                                                                                 | Social Isolation (t <sub>0</sub> ) |  |
|                   | Memory Function (t <sub>0</sub> )                                                                                                                                                                                                                                                                                           | Functional Social Support (to)     |  |
|                   |                                                                                                                                                                                                                                                                                                                             | Memory Function (t <sub>0</sub> )  |  |
|                   | Covariates:                                                                                                                                                                                                                                                                                                                 |                                    |  |
|                   | Age group (t <sub>0</sub> )                                                                                                                                                                                                                                                                                                 | Covariates:                        |  |
|                   | Sex (t <sub>0</sub> )                                                                                                                                                                                                                                                                                                       | Age group (t <sub>0</sub> )        |  |
|                   | Province (t <sub>0</sub> )                                                                                                                                                                                                                                                                                                  | Sex $(t_0)$                        |  |
|                   |                                                                                                                                                                                                                                                                                                                             | Province (t <sub>0</sub> )         |  |
| Adjusted<br>Model | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                       |                                    |  |
|                   | <ul> <li>Sociodemographic: Education (t<sub>0</sub>), Total annual household in (t<sub>0</sub>)</li> <li>Health: Functional status (t<sub>0</sub>), Chronic conditions (t<sub>0</sub>), Depress symptoms (t<sub>0</sub>)</li> <li>Lifestyle: Smoking status (t<sub>0</sub>), Alcohol consumption (t<sub>0</sub>)</li> </ul> |                                    |  |
|                   |                                                                                                                                                                                                                                                                                                                             |                                    |  |
|                   |                                                                                                                                                                                                                                                                                                                             |                                    |  |
|                   |                                                                                                                                                                                                                                                                                                                             |                                    |  |

Table 1. Components of the "a" and "b" Paths

Notes: t<sub>0</sub>=Baseline, t<sub>1</sub>=Follow-up



#### **Figure 2. Proposed Mediation Diagram** Notes: T<sub>0</sub> = baseline; T<sub>1</sub> = follow-up

To complete the mediation analysis, the "a" and "b" path models were used to calculate  $\hat{\beta}s$  for the "ab", "c-prime", and "c" paths. The mathematical calculations to obtain the  $\hat{\beta}s$  for these three paths are shown in Imai et al.<sup>242–245</sup> and Yamamoto<sup>246</sup>. The calculations were implemented using R v4.3.0 (The R Foundation for Statistical Computing, Vienna, Austria) and the mediation package<sup>247</sup>. This package generated 95% CIs around the  $\hat{\beta}s$  for the "ab", "c-prime", and "c" paths via the Monte Carlo sampling method, White's heteroskedasticity-consistent estimator for the covariance matrix, and 10,000 simulations<sup>240</sup>. The CLSA's sample weights were not employed in the mediation analysis because Imai et al.<sup>242–245</sup> and Yamamoto's<sup>246</sup> calculations were not designed to handle sample weights.

As noted above, the total effect of a mediation analysis comprises the indirect and direct effects. An additional component of mediation analysis that was estimated in this thesis was the proportion mediated (PM), obtained by dividing (i) the  $\hat{\beta}$  for the indirect effect of SI on memory that acts through FSS ("ab" path) by (ii) the  $\hat{\beta}$  for the total effect of SI on memory ("c" path):

$$PM = \frac{ab}{c}$$
[2]

The mediation package's output provides a point estimate of the PM and a 95% CI for the point estimate.

The  $\hat{\beta}s$  for the "a" and "b" paths should ideally be based on the same scale (linear, logistic, etc.) to permit the calculation of the mediation effect ("ab" path). However, the "a" path of the mediation model was computed using logistic regression because the outcome (FSS<sub>t1</sub>) was a binary variable, whereas memory<sub>t1</sub> on the "b" path was continuous. To permit the mediation package to compute the "ab" path, the "a" path's  $\hat{\beta}_{SI_{t_0}}$  and 95% CI were rescaled from the logistic to the linear scale following Kenny's procedure<sup>248</sup>, thereby matching the "b" path, whose  $\hat{\beta}s$  and CIs were obtained through multiple linear regression. Section 3.4.3.3 below describes additional components of the mediation analysis.

# 3.4.3.3. Baseline Outcome Adjustment

As informed by Hayes<sup>241</sup>, associations in regression models with t<sub>1</sub> variables as outcomes may be inflated by not controlling for t<sub>0</sub> values of these variables. Therefore, the "a" and "b" path regression models were both controlled for FSS<sub>10</sub>. Although FSS<sub>t1</sub> was not the outcome variable in the "b" path model (it was the outcome in the "a" path model), FSS<sub>10</sub> was added to both models to ensure a common set of covariates were utilized in the calculation of the "ab", "cprime", and "c" paths. The inclusion of FSS<sub>10</sub> was empirically substantiated because the change in median FSS score between t<sub>0</sub> and t<sub>1</sub> was statistically significant (p < 0.05) according to a Wilcoxon signed rank test. Furthermore, the Spearman's correlation between FSS<sub>10</sub> and FSS<sub>11</sub> was 0.57, which suggested a lack of agreement between FSS at t<sub>0</sub> and t<sub>1</sub>.

For memory function, the same logic as with FSS was employed to control for memory at  $t_0$  in the "a" and "b" path models. Descriptively, a scatterplot (Appendix E, Figure E-1) showed a positive relation between  $t_0$  and  $t_1$  memory scores; however, a Bland-Altman plot (Appendix E,

Figure E-2) showed individual-level variation between t<sub>0</sub> and t<sub>1</sub> memory scores because numerous data points fell outside the limits of agreement. Therefore, t<sub>0</sub> memory scores did not neatly predict t<sub>1</sub> memory scores.

## 3.4.4. Aim 4 – Moderated Mediation

To investigate the possibility of moderated mediation by age group and sex, the analysis described for Aim 3 above was repeated for each of the four levels of age group (45-54, 55-64, 65-74, 75+ years). For all five mediation pathways, Cuzick's forest plot method<sup>249</sup> was used to check for effect modification by comparing the 95% CI of the relevant  $\hat{\beta}$  within each stratum of age group to the unstratified  $\hat{\beta}$  from Aim 3 above. Moderated mediation on any path was identified if all the stratum-specific 95% CIs excluded the unstratified  $\hat{\beta}$ . The moderated mediation analysis was repeated by stratifying on female versus male sex. When stratifying on age group or sex, the stratification variable in question was removed as a covariate from the regression models.

# 3.4.5. Missing data

The thesis candidate assessed the potential impact of missing data by exploring associations between dropping out of the CLSA post-baseline (yes/no) and SI<sub>t0</sub> status, memory<sub>t0</sub> scores, and FSS<sub>t0</sub> scores. A simple logistic regression model was utilized to obtain the odds of dropping out among persons with SI versus no SI at baseline. Mean memory scores and median FSS scores at baseline were compared across dropouts versus non-dropouts using the t-test and the Mann-Whitney U test, respectively.

To further assess the impact of missing data, two sensitivity analyses were conducted by modifying the analytical sample described in Section 3.1.2 above. For the first modification, Aims 2-4 were repeated in an analytical sample that excluded participants with missing data on

any covariate. For the second modification, Aim 3 was repeated using multiple imputation (MI) to replace missing covariate values with imputed values.

For the MI approach, variables with high levels of missingness (> 2%) were identified and imputed using predictive mean matching (PMM)<sup>250</sup> in R's mice package<sup>251</sup>. In PMM, the analytical sample (S) is partitioned into individuals with complete information on all covariates (S<sub>C</sub>) and individuals with missing information on one or more covariates (S<sub>M</sub>)<sup>250</sup>. For every S<sub>M</sub> participant, a set of candidate participants from S<sub>C</sub> whose characteristics are similar to those of the S<sub>M</sub> participant is formed. Then, a single participant from the set of candidates is selected randomly and that person's data are used to replace the missing values for the S<sub>M</sub> participant in question.

Nine imputation cycles (each yielding one imputed dataset) were conducted to impute for missing data. The mediation analysis for Aim 3 in Section 3.4.3 above was repeated on each of the nine imputed datasets. The relevant  $\hat{\beta}s$  for each of the five pathways across the nine datasets were combined using Rubin's Rules<sup>252,253</sup>, whose equations were programmed into an Excel spreadsheet and independently double-verified for accuracy. The resulting single set of combined  $\hat{\beta}s$  served as the final result of the MI procedure.

The MI procedure emerged from work conducted for a Masters-level research project in the University of Waterloo's Department of Statistics and Actuarial Science<sup>254</sup>. This thesis was the first practical test of the procedure; the imputed results were presented solely as a trial run to inform future use of MI. Therefore, MI was not undertaken to explore moderated mediation in Aim 4.

# 4. Results

# 4.1. Derivation of the Analytical Sample

The analytical sample was derived by removing participants who did not provide any  $t_1$  information, who had missing information on the exposure at  $t_0$ , or who had missing information on the mediator or outcome variables at  $t_0$  or  $t_1$ . Overall, 17,052 of the 21,241 participants at  $t_0$  (80.3%) provided  $t_1$  information. After removing participants who had missing SI information at  $t_0$  and those who had missing FSS and memory information at  $t_0$  or  $t_1$ , 12,834 out of 17,052 participants (75.4%) remained in the analytical sample. Figure 3 below depicts the sequential removal of participants from the study.

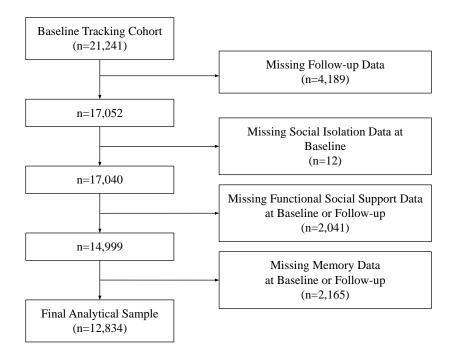



Figure 3. Derivation of Analytical Sample

# 4.2. Descriptive Analyses

# 4.2.1. Social Isolation

The distribution of SI at  $t_0$  is shown in Figure 4. Approximately 20.5% of participants in the analytical sample were socially isolated (n = 2,632). Descriptive results for  $t_0$  SI status are summarized in Table 2 below.

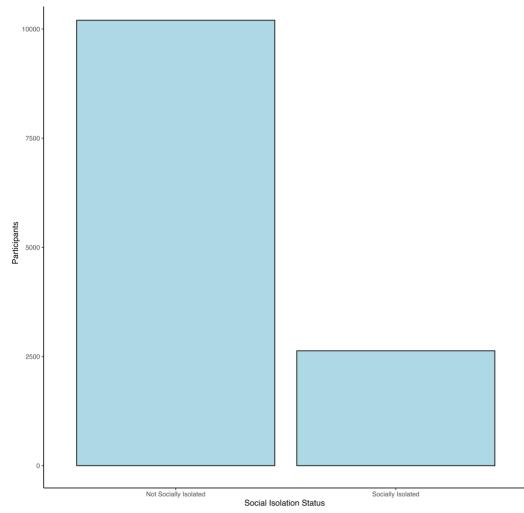



Figure 4. Distribution of Baseline Social Isolation Index (Dichotomized)

| Characteristic                          | <b>Total</b> $(n = 12,834)$ | Not Socially<br>Isolated | Socially<br>Isolated |
|-----------------------------------------|-----------------------------|--------------------------|----------------------|
|                                         | (,)                         | (n = 10,202)             | (n = 2,632)          |
|                                         | n (%)                       | n (%)                    | <u>n (%)</u>         |
| Sex (t <sub>0</sub> )                   |                             |                          |                      |
| Male                                    | 6,182 (48.2)                | 4,923 (48.3)             | 1,259 (47.8)         |
| Female                                  | 6,652 (51.8)                | 5,279 (51.7)             | 1,373 (52.2)         |
| Age (to)                                |                             |                          |                      |
| 45-54 years                             | 3,973 (30.1)                | 3,326 (32.6)             | 647 (24.6)           |
| 55-64 years                             | 4,287 (33.4)                | 3,370 (33.0)             | 917 (34.8)           |
| 65-74 years                             | 2,721 (21.2)                | 2,118 (20.8)             | 603 (22.9)           |
| 75 years or older                       | 1,853 (14.4)                | 1,388 (13.6)             | 465 (17.7)           |
| Education (t <sub>0</sub> )             |                             |                          |                      |
| Less than high school                   | 875 (6.8)                   | 660 (6.5)                | 215 (8.2)            |
| High school diploma                     | 1,680 (13.1)                | 1,355 (13.3)             | 325 (12.3)           |
| Some post-secondary education           | 930 (7.3)                   | 719 (7.0)                | 211 (8.0)            |
| Post-secondary degree/diploma           | 9,349 (72.9)                | 7,468 (73.2)             | 1,881 (71.5)         |
| Province of residence (t <sub>0</sub> ) |                             |                          |                      |
| Alberta                                 | 1,235 (9.6)                 | 1,015 (9.9)              | 220 (8.4)            |
| British Columbia                        | 1,437 (11.2)                | 1,085 (10.6)             | 352 (13.4)           |
| Manitoba                                | 896 (7.0)                   | 724 (7.1)                | 172 (6.5)            |
| New Brunswick                           | 826 (6.4)                   | 638 (6.3)                | 188 (7.1)            |
| Newfoundland and Labrador               | 711 (5.5)                   | 586 (5.7)                | 125 (4.7)            |
| Nova Scotia                             | 964 (7.5)                   | 781 (7.7)                | 183 (7.0)            |
| Ontario                                 | 3,007 (23.4)                | 2,452 (24.0)             | 555 (21.1)           |
| Prince Edward Island                    | 679 (5.3)                   | 542 (5.3)                | 137 (5.2)            |
| Québec                                  | 2,239 (17.5)                | 1,702 (16.7)             | 537 (20.4)           |
| Saskatchewan                            | 840 (6.5)                   | 677 (6.6)                | 163 (6.2)            |
| Total annual household outcome (to)     |                             |                          |                      |
| < \$20,000                              | 573 (4.5)                   | 283 (2.8)                | 290 (11.0)           |
| \$20,000 to < \$50,000                  | 3,132 (24.4)                | 2,254 (22.1)             | 878 (33.4)           |
| \$50,000 to < \$100,000                 | 4,569 (35.6)                | 3,760 (36.9)             | 809 (30.7)           |
| \$100,000 to < \$150,000                | 2,271 (17.7)                | 2,005 (19.7)             | 266 (10.1)           |
| $\geq$ \$150,000                        | 1,622 (12.6)                | 1,450 (14.2)             | 172 (6.5)            |
| Missing                                 | 667 (5.2)                   | 450 (4.4)                | 217 (8.2)            |
| Functional status (t <sub>0</sub> )     |                             |                          |                      |
| No assistance required                  | 11,626 (90.6)               | 9,355 (91.7)             | 2,271 (86.3)         |
| Assistance required $\geq 1$ activity   | 1,152 (9.0)                 | 812 (8.0)                | 340 (12.9)           |
| Missing                                 | 56 (0.4)                    | 35 (0.3)                 | 21 (0.8)             |
| Chronic conditions (t <sub>0</sub> )    |                             |                          |                      |
| No chronic conditions                   | 1,255 (9.8)                 | 1,081 (10.6)             | 174 (6.6)            |
| $\geq$ 1 chronic conditions             | 11,549 (90.0)               | 9,095 (89.1)             | 2,454 (93.2)         |
| Missing                                 | 30 (0.2)                    | 26 (0.3)                 | 4 (0.2)              |

 Table 2. Analytical Sample Characteristics: Overall and by Social Isolation Status at

 Baseline

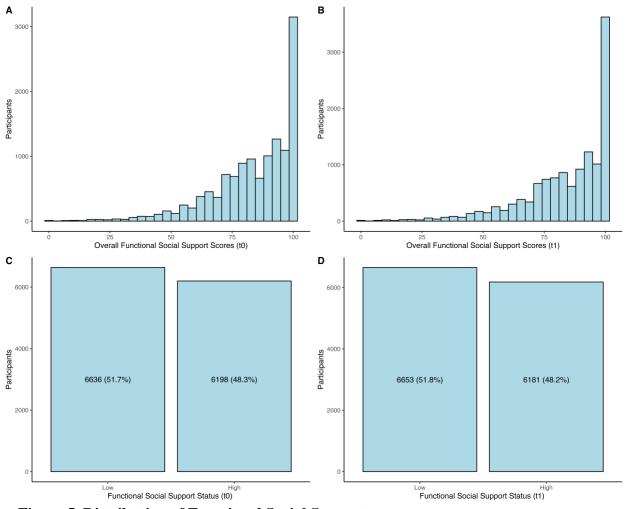
| Depressive symptoms (t <sub>0</sub> )       |               |                  |              |
|---------------------------------------------|---------------|------------------|--------------|
| Not severe                                  | 10,907 (85.0) | 8,853 (86.8)     | 2,054 (78.0) |
| Severe                                      | 1,093 (14.8)  | 1,328 (13.0)     | 575 (21.8)   |
| Missing                                     | 24 (0.2)      | 21 (0.2)         | 3 (0.1)      |
| Current smoking status (to)                 |               |                  |              |
| Non-smoker                                  | 7,700 (60.0)  | 6,164 (60.4)     | 1,536 (58.4) |
| Occasional smoker                           | 214 (1.7)     | 155 (1.5)        | 59 (2.2)     |
| Daily smoker                                | 953 (7.4)     | <b>679</b> (6.7) | 274 (10.4)   |
| Missing                                     | 3,967 (30.9)  | 3,204 (31.4)     | 763 (29.0)   |
| Alcohol consumption (t <sub>0</sub> )       |               |                  |              |
| Non-drinker                                 | 1,369 (10.7)  | <b>998 (9.8)</b> | 371 (14.1)   |
| Occasional drinker                          | 1,924 (15.0)  | 1,466 (14.4)     | 458 (17.4)   |
| Regular drinker                             | 9,152 (71.3)  | 7,428 (72.8)     | 1,724 (65.5) |
| Missing                                     | 389 (3.0)     | 310 (3.0)        | 79 (3.0)     |
| Functional Social Support (to)              |               |                  |              |
| Low                                         | 6636 (51.7)   | 4905 (48.1)      | 1731 (65.8)  |
| High                                        | 6198 (48.3)   | 5297 (51.9)      | 901 (34.2)   |
| Functional Social Support (t <sub>1</sub> ) |               |                  |              |
| Low                                         | 6653 (51.8)   | 4960 (48.6)      | 1693 (64.3)  |
| High                                        | 6181 (48.2)   | 5242 (51.4)      | 939 (35.7)   |

Notes: Chi-square p-value< 0.05 in bolded font; frequencies shown are column %;  $t_0$  = baseline;  $t_1$  = follow-up; Not severe depressive symptoms < 10; Severe depressive symptoms  $\geq$  10.

## 4.2.1.1. Distribution of Covariates by Social Isolation Status

Table 2 shows the distribution of participants' sociodemographic, health, and lifestyle covariates at t<sub>0</sub>, both overall and stratified by t<sub>0</sub> SI status. Of the entire sample, just over half the participants were female (51.8%), a third were between the ages of 55-64 years (33.4%), and almost three-quarters had a post-secondary degree or diploma (72.9%). Most participants lived in Ontario (23.4%), Québec (17.5%), or British Columbia (11.2%). Just over one-third of participants (35.6%) reported annual household incomes from \$50,000 to under \$100,000 and approximately one-third of participants (30.3%) reported annual household incomes over \$100,000.

After stratifying on SI status, the distributions of males and females and across all age groups in the socially isolated and not socially isolated groups were roughly the same (Table 2). The proportionate distribution of educational levels was relatively even across both SI groups, as was the proportionate distribution of province of residence. Compared to the proportion of persons who were not socially isolated, a greater proportion of socially isolated participants had an annual household income from \$20,000 to under \$50,000, whereas a lower proportion of socially isolated participants had an annual household income over \$100,000.


Regarding the distribution of the health status covariates in the overall sample, most participants reported not requiring assistance for any daily activity (90.6%), although most participants had at least one chronic condition (90.0%). Most participants also reported not having severe depressive symptoms (85.0%). A greater proportion of persons who were socially isolated, compared to the proportion of persons who were not socially isolated, reported requiring assistance with at least one daily activity, had one or more chronic condition(s), and had severe depressive symptomology.

Turning to the lifestyle variables, most participants in the total sample were non-smokers and regular drinkers (60.0% and 71.3%, respectively). Furthermore, greater proportion of persons who were not socially isolated, compared to the proportion of persons who were socially isolated were non-smokers and regular drinkers

Lastly, at to and t<sub>1</sub>, a greater proportion of socially isolated participants had low compared to high FSS.

## 4.2.2. Functional Social Support

The distribution of FSS scores at both  $t_0$  and  $t_1$  were left skewed (Figure 5a and Figure 5b). Scores ranged from 0-100, with 75% of participants scoring above 75 at both time points. The median scores for overall FSS were 88.2 (IQR: 22.4) at  $t_0$  and 89.5 (IQR: 23.7) at  $t_1$ . To account for the left skewedness of FSS, the scores for each timepoint were dichotomized at the median to create "high" and "low" FSS groups. Roughly even proportions of participants – based on the median – were spread across the high and low groups (Figure 5c and Figure 5d).

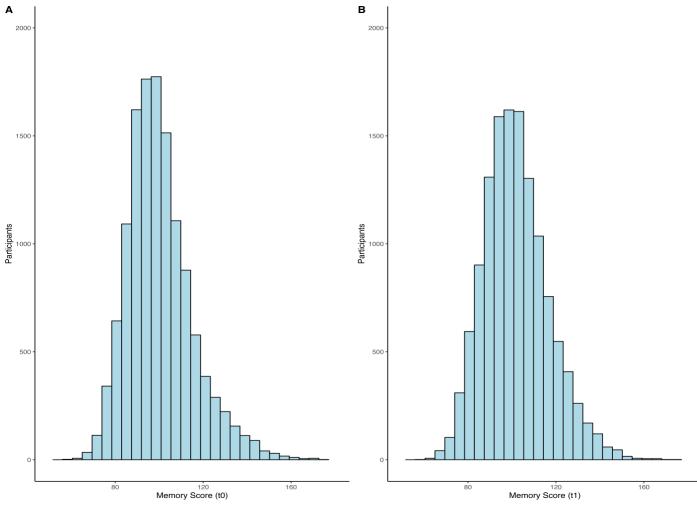


# **Figure 5. Distribution of Functional Social Support**

Figure 5 (A): Distribution of Baseline ( $t_0$ ) Functional Social Support - Continuous Figure 5 (B): Distribution of Follow-up ( $t_1$ ) Functional Social Support - Continuous Figure 5 (C): Distribution of Baseline ( $t_0$ ) Functional Social Support - Dichotomized Figure 5 (D): Distribution of Follow-up ( $t_1$ ) Functional Social Support – Dichotomized The distribution of covariates remained relatively stable in the low and high FSS groups between both timepoints (Table 3). The proportionate distributions of sociodemographic, health status, and lifestyle behaviour covariates in the low and high FSS groups did not change between  $t_0$  and  $t_1$ . However, at  $t_0$  and  $t_1$ , a greater proportion of participants in the low FSS group were socially isolated compared to in the high FSS group (p<0.0001).

| Characteristic                   | Baseline FSS |             | Follow-up FSS |             |
|----------------------------------|--------------|-------------|---------------|-------------|
|                                  | Low          | High        | Low           | High        |
|                                  | (n = 6636)   | (n = 6198)  | (n = 6653)    | (n = 6181)  |
|                                  | n (%)        | n (%)       | n (%)         | n (%)       |
| Sex (t <sub>0</sub> )            |              |             |               |             |
| Male                             | 3095 (46.6)  | 3087 (49.8) | 3022 (45.4)   | 3160 (51.1) |
| Female                           | 3541 (53.4)  | 3111 (50.2) | 3631 (54.6)   | 3021 (48.9) |
| Age Group (t <sub>0</sub> )      |              |             |               |             |
| 45-54 years                      | 2069 (31.2)  | 1904 (30.7) | 2037 (30.6)   | 1936 (31.3) |
| 55-64 years                      | 2228 (33.6)  | 2059 (33.2) | 2175 (32.7)   | 2112 (34.2) |
| 65-74 years                      | 1355 (20.4)  | 1366 (22.0) | 1401 (21.1)   | 1320 (21.4) |
| 75 years or older                | 984 (14.8)   | 869 (14.0)  | 1040 (15.6)   | 813 (13.2)  |
| Province (t <sub>0</sub> )       |              |             |               |             |
| Ontario                          | 1515 (22.8)  | 1492 (24.1) | 1518 (22.8)   | 1489 (24.1) |
| Alberta                          | 669 (10.1)   | 566 (9.1)   | 700 (10.5)    | 535 (8.7)   |
| British Columbia                 | 772 (11.6)   | 665 (10.7)  | 771 (11.6)    | 666 (10.8)  |
| Manitoba                         | 491 (7.4)    | 405 (6.5)   | 457 (6.9)     | 439 (7.1)   |
| New Brunswick                    | 424 (6.4)    | 402 (6.5)   | 416 (6.3)     | 410 (6.6)   |
| Newfoundland and Labrador        | 354 (5.3)    | 357 (5.8)   | 360 (5.4)     | 351 (5.7)   |
| Nova Scotia                      | 459 (6.9)    | 505 (8.1)   | 486 (7.3)     | 478 (7.7)   |
| Prince Edward Island             | 339 (5.1)    | 340 (5.5)   | 345 (5.2)     | 334 (5.4)   |
| Québec                           | 1157 (17.4)  | 1082 (17.5) | 1176 (17.7)   | 1063 (17.2) |
| Saskatchewan                     | 456 (6.9)    | 384 (6.2)   | 424 (6.4)     | 416 (6.7)   |
| Education (to)                   |              |             |               |             |
| Less than secondary              | 490 (7.4)    | 385 (6.2)   | 465 (7.0)     | 410 (6.6)   |
| Completed secondary              | 886 (13.4)   | 794 (12.8)  | 856 (12.9)    | 824 (13.3)  |
| Some post-secondary              | 490 (7.4)    | 440 (7.1)   | 489 (7.4)     | 441 (7.1)   |
| Post-secondary degree or diploma | 4770 (71.9)  | 4579 (73.9) | 4843 (72.8)   | 4506 (72.9) |

 Table 3. Analytical Sample Characteristics by Dichotomous Functional Social Support


 Scores at Baseline and Follow-up

| 418 (6.3)   | 155 (2.5)                                                                                                                                                                                                                                                                       | 424 (6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149 (2.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1808 (27.2) | 1324 (21.4)                                                                                                                                                                                                                                                                     | 1865 (28.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1267 (20.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2244 (33.8) | 2325 (37.5)                                                                                                                                                                                                                                                                     | 2278 (34.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2291 (37.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1071 (16.1) | 1200 (19.4)                                                                                                                                                                                                                                                                     | 1012 (15.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1259 (20.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 696 (10.5)  | 926 (14.9)                                                                                                                                                                                                                                                                      | 669 (10.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 953 (15.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 399 (6.0)   | 268 (4.3)                                                                                                                                                                                                                                                                       | 405 (6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262 (4.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5894 (88.8) | 5732 (92.5)                                                                                                                                                                                                                                                                     | 5901 (88.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5725 (92.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 712 (10.7)  | 440 (7.1)                                                                                                                                                                                                                                                                       | 718 (10.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 434 (7.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30 (0.5)    | 26 (0.4)                                                                                                                                                                                                                                                                        | 34 (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 590 (8.9)   | 665 (10.7)                                                                                                                                                                                                                                                                      | 557 (8.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 698 (11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6031 (90.9) | 5518 (89.0)                                                                                                                                                                                                                                                                     | 6082 (91.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5467 (88.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15 (0.2)    | 15 (0.2)                                                                                                                                                                                                                                                                        | 14 (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5217 (78.6) | 5690 (91.8)                                                                                                                                                                                                                                                                     | 5291 (79.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5616 (90.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1407 (21.2) | 496 (8.0)                                                                                                                                                                                                                                                                       | 1346 (20.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 557 (9.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12 (0.2)    | 12 (0.2)                                                                                                                                                                                                                                                                        | 16 (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3922 (59.1) | 3778 (61.0)                                                                                                                                                                                                                                                                     | 3948 (59.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3752 (60.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 559 (8.4)   | 394 (6.4)                                                                                                                                                                                                                                                                       | 555 (8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 398 (6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 124 (1.9)   | 90 (1.5)                                                                                                                                                                                                                                                                        | 124 (1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90 (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2031 (30.6) | 1936 (31.2)                                                                                                                                                                                                                                                                     | 2026 (30.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1941 (31.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 785 (11.8)  | 584 (9.4)                                                                                                                                                                                                                                                                       | 787 (11.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 582 (9.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4556 (68.7) | 4596 (74.2)                                                                                                                                                                                                                                                                     | 4571 (68.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4581 (74.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1101 (16.6) | 823 (13.3)                                                                                                                                                                                                                                                                      | 1091 (16.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 833 (13.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 194 (2.9)   | 195 (3.1)                                                                                                                                                                                                                                                                       | 204 (3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 185 (3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4905 (73.9) | 5297 (85.5)                                                                                                                                                                                                                                                                     | 4960 (74.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5242 (84.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 1808 (27.2) $2244 (33.8)$ $1071 (16.1)$ $696 (10.5)$ $399 (6.0)$ $5894 (88.8)$ $712 (10.7)$ $30 (0.5)$ $590 (8.9)$ $6031 (90.9)$ $15 (0.2)$ $5217 (78.6)$ $1407 (21.2)$ $12 (0.2)$ $3922 (59.1)$ $559 (8.4)$ $124 (1.9)$ $2031 (30.6)$ $785 (11.8)$ $4556 (68.7)$ $1101 (16.6)$ | 1808(27.2) $1324(21.4)$ $2244(33.8)$ $2325(37.5)$ $1071(16.1)$ $1200(19.4)$ $696(10.5)$ $926(14.9)$ $399(6.0)$ $268(4.3)$ $5894(88.8)$ $5732(92.5)$ $712(10.7)$ $440(7.1)$ $30(0.5)$ $26(0.4)$ $590(8.9)$ $665(10.7)$ $6031(90.9)$ $5518(89.0)$ $15(0.2)$ $15(0.2)$ $5217(78.6)$ $5690(91.8)$ $1407(21.2)$ $496(8.0)$ $12(0.2)$ $12(0.2)$ $3922(59.1)$ $3778(61.0)$ $559(8.4)$ $394(6.4)$ $124(1.9)$ $90(1.5)$ $2031(30.6)$ $1936(31.2)$ $785(11.8)$ $584(9.4)$ $4556(68.7)$ $4596(74.2)$ $1101(16.6)$ $823(13.3)$ | 1808(27.2) $1324(21.4)$ $1865(28.0)$ $2244(33.8)$ $2325(37.5)$ $2278(34.2)$ $1071(16.1)$ $1200(19.4)$ $1012(15.2)$ $696(10.5)$ $926(14.9)$ $669(10.1)$ $399(6.0)$ $268(4.3)$ $405(6.1)$ $5894(88.8)$ $5732(92.5)$ $5901(88.7)$ $712(10.7)$ $440(7.1)$ $718(10.8)$ $30(0.5)$ $26(0.4)$ $34(0.5)$ $590(8.9)$ $665(10.7)$ $557(8.4)$ $6031(90.9)$ $5518(89.0)$ $6082(91.4)$ $15(0.2)$ $15(0.2)$ $14(0.2)$ $5217(78.6)$ $5690(91.8)$ $5291(79.5)$ $1407(21.2)$ $496(8.0)$ $1346(20.2)$ $12(0.2)$ $12(0.2)$ $16(0.2)$ $3922(59.1)$ $3778(61.0)$ $3948(59.3)$ $559(8.4)$ $394(6.4)$ $555(8.3)$ $124(1.9)$ $90(1.5)$ $124(1.9)$ $2031(30.6)$ $1936(31.2)$ $2026(30.5)$ $785(11.8)$ $584(9.4)$ $787(11.8)$ $4556(68.7)$ $4596(74.2)$ $4571(68.7)$ $1101(16.6)$ $823(13.3)$ $1091(16.4)$ |

Notes:  $t_0$  = baseline;  $t_1$  = follow-up; FSS= functional social support; Not severe depressive symptoms < 10; Severe depressive symptoms  $\ge 10$ .

# 4.2.3. Memory

Memory scores at both time points were roughly normally distributed with some right skewness (Figure 6a and Figure 6b) and means of 100.3 and 102.0 at t<sub>0</sub> and t<sub>1</sub>, respectively (Table 4). The distribution of memory among the male and female groups was also normal at t<sub>0</sub> and t<sub>1</sub>, with similar sets of mean values at both timepoints (Table 5). Across the age groups, t<sub>0</sub> memory scores were also normally distributed with comparable mean values (Table 5).



**Figure 6. Distribution of Memory Scores** Figure 6 (A): Distribution of Baseline Memory Scores Figure 6 (B): Distribution of Follow-up Memory Scores

| Memory score | Mean (SD) (95% CI)         | Median (IQR) | Minimum | Maximum |
|--------------|----------------------------|--------------|---------|---------|
| Baseline     | 100.3 (14.8) (100.1,100.7) | 98.4 (18.1)  | 59.2    | 174.6   |
| Follow-up    | 102.0 (14.7) (101.7,102.2) | 100.7 (19.0) | 57.8    | 180.4   |

Table 4. Continuous Memory Scores at Baseline and Follow-up

Notes: SD = standard deviation; CI = confidence interval; IQR = interquartile range.

| Table 5. Baseline and Follow-up Memory Scores: Stratified by Sex and Age Group |             |              |              |         |         |
|--------------------------------------------------------------------------------|-------------|--------------|--------------|---------|---------|
| Memory score                                                                   |             | Mean (SD)    | Median (IQR) | Minimum | Maximum |
| Baseline                                                                       | Male        | 100.5 (14.9) | 98.4 (17.7)  | 61.0    | 174.6   |
|                                                                                | Female      | 100.2 (14.7) | 98.4 (18.3)  | 59.2    | 162.7   |
| Follow-up                                                                      | Male        | 101.9 (14.6) | 100.5 (18.5) | 63.7    | 180.4   |
|                                                                                | Female      | 102.0 (14.8) | 100.9 (19.6) | 57.8    | 161.3   |
| Baseline                                                                       | 45-54 years | 99.4 (14.1)  | 98.1 (17.7)  | 59.2    | 170.4   |
|                                                                                | 55-64 years | 100.8 (14.8) | 99.0 (18.0)  | 59.8    | 162.7   |
|                                                                                | 65-74 years | 101.9 (15.6) | 99.5 (18.6)  | 64.3    | 174.6   |
|                                                                                | 75+ years   | 99.1(14.8)   | 96.8 (17.4)  | 68.0    | 171.6   |
| Follow-up                                                                      | 45-54 years | 102.4 (13.8) | 101.3 (18.2) | 57.8    | 156.5   |
|                                                                                | 55-64 years | 102.7 (14.5) | 101.8 (18.5) | 62.6    | 173.5   |
|                                                                                | 65-74 years | 102.7 (15.7) | 101.2 (19.5) | 65.9    | 178.7   |
|                                                                                | 75+ years   | 98.3 (15.0)  | 96.1 (18.9)  | 65.1    | 180.4   |

Notes: SD = standard deviation; IQR = interquartile range.

## 4.2.3.1. Bivariate Associations – Covariates and Memory

The associations between t<sub>1</sub> memory regressed on t<sub>0</sub> SI status, t<sub>0</sub> sociodemographic, health status, and lifestyle behaviour covariates, and t<sub>0</sub> and t<sub>1</sub> FSS are shown in Table 6. Being socially isolated at t<sub>0</sub> was significantly associated with lower t<sub>1</sub> memory scores, suggesting that SI adversely impacts memory over three years of follow-up ( $\hat{\beta} = -1.43$ ; 95% CI: -2.06, -0.80).

Memory scores at t<sub>1</sub> were not statistically significantly different for females compared to males ( $\hat{\beta} = 0.12$ ; 95% CI: -0.39, 0.63. Compared to persons aged 45-54 years, participants aged 55-64 years and 65-74 years had slightly better memory scores ( $\hat{\beta} = 0.34$ ; 95% CI: 0.29, 0.97;  $\hat{\beta} = 0.30$ ; 95% CI: 0.42, 1.01, respectively), whereas participants aged 75 years or older had worse memory scores ( $\hat{\beta} = -4.14$ ; 95% CI: -4.94, -3.33). Across the 10 provinces, only individuals from New Brunswick had significantly lower memory scores compared to individuals from Ontario ( $\hat{\beta} = -1.42$ ; 95% CI: -2.55, -0.28).

None of the associations between educational attainment and memory were significant; however, income was significantly positively associated with memory in a dose-response manner, except for the missing category, which had a regression coefficient like that of the "less than \$20,000" group.

Among the health status variables, requiring assistance for at least one daily activity and having missing information on functional status were both significantly associated with lower memory scores, compared to not needing any assistance for any activity ( $\hat{\beta} = -4.54$ ; 95% CI: - 5.43, -3.65;  $\hat{\beta} = -4.42$ ; 95% CI: -8.27, -0.57, respectively). Having one or more chronic condition(s) was also significantly negatively associated with memory score ( $\hat{\beta} = -1.86$ ; 95% CI: -2.72, -1.00), compared to having no chronic conditions. Similarly, memory scores were

significantly lower among those with severe depressive symptomology compared to those without ( $\hat{\beta} = -2.57$ ; 95% CI: -3.29, -1.86).

Regarding lifestyle behaviours, smoking occasionally was positively associated with memory compared to not smoking at all and smoking daily was negatively associated with memory compared to not smoking at all; however, none of these effects were significant. Having missing information on smoking status was associated with better memory scores compared to not smoking at all ( $\hat{\beta} = 1.40$ ; 95% CI: 0.84, 1.96). Furthermore, regularly consuming alcohol was significantly associated with higher memory scores compared to not consuming alcohol at all ( $\hat{\beta}$ = 2.26; 95% CI: 1.43, 3.10).

Regarding lifestyle behaviours, Missing information on smoking status was associated with better memory scores compared to not smoking at all ( $\hat{\beta} = 1.40$ ; 95% CI: 0.84, 1.96) and regularly consuming alcohol or occasionally consuming alcohol were significantly associated with higher memory scores compared to not consuming alcohol at all ( $\hat{\beta} = 2.26$  95% CI:1.43, 3.10 and  $\hat{\beta} = 1.53$ ; 95% CI: 0.51, 2.55 respectively).

High compared to low FSS at both t<sub>0</sub> and t<sub>1</sub> were significantly associated with higher memory scores ( $\hat{\beta} = 1.49$ ; 95% CI: 0.98, 2.00 and  $\hat{\beta} = 1.91$ ; 95% CI: 1.40, 2.42, respectively), suggesting that FSS positively impacts memory cross-sectionally and over three years of followup. Similarly, higher baseline memory scores were associated with higher t<sub>1</sub> memory scores ( $\hat{\beta} =$ 0.44; 95% CI: 0.43, 0.46).

| Memory Score<br>Characteristic                          | Memory (t <sub>1</sub> )                 |
|---------------------------------------------------------|------------------------------------------|
|                                                         | $\hat{\boldsymbol{\beta}}$ (95% CI)      |
| Exposure                                                |                                          |
| Social Isolation Status (to)                            |                                          |
| (Ref: Not socially isolated)                            |                                          |
| Socially isolated                                       | -1.43 (-2.06, -0.80)                     |
| Sociodemographic                                        |                                          |
| Sex (to)                                                |                                          |
| (Ref: Male)                                             |                                          |
| Female                                                  | 0.12 (-0.39, 0.63)                       |
| Age Group (to)                                          |                                          |
| (Ref: 45-54 years)                                      |                                          |
| 55-64 years                                             | 0.34 (0.29, 0.97)                        |
| 65-74 years                                             | 0.30 (0.42, 1.01)                        |
| 75 years +                                              | -4.14 (-4.94, -3.33)                     |
| Province (to)                                           |                                          |
| (Ref: Ontario)                                          |                                          |
| Alberta                                                 | -0.01 (-1.01, 0.88)                      |
| British Columbia                                        | 0.23 (-0.70, 1.15)                       |
| Manitoba                                                | -1.07 (-2.17, 0.03)                      |
| New Brunswick                                           | -1.42 (-2.55, -0.28)                     |
| Newfoundland and Labrador                               | -0.96 (-2.17, 0.03)                      |
| Nova Scotia                                             | 0.56 (-1.63, 0.51)                       |
| Prince Edward Island                                    | -0.90 (-2.13, 0.32)                      |
| Quebec                                                  | 0.37 (-0.44, 1.17)                       |
| Saskatchewan                                            | -0.74 (-1.87, 0.39)                      |
| Education (to)                                          |                                          |
| (Ref: Less than secondary)                              | 0.03(0.06, 1.02)                         |
| Completed secondary                                     | 0.03 (-0.96, 1.02)<br>0.22 (-0.43, 1.10) |
| Some post-secondary<br>Post-secondary degree or diploma | 0.33 (-0.43, 1.10)<br>0.52 (-0.50, 1.54) |
| Income (t <sub>0</sub> )                                | 0.52 (-0.50, 1.54)                       |
| (Ref: < \$20,000)                                       |                                          |
| <\$20,000                                               | 2.40 (1.10, 3.70)                        |
| \$20,000 to < \$50,000                                  | 4.78 (3.51, 6.05)                        |
| \$50,000 to < \$100,000                                 | 5.49 (4.15, 6.83)                        |
| \$100,000 to < \$150,000                                | 6.45 (5.06, 7.85)                        |
| Missing                                                 | 2.72 (1.09, 4.36)                        |

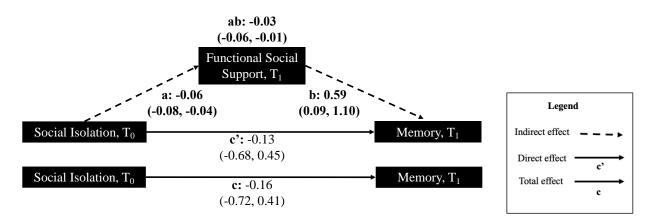
# Table 6. Bivariate Associations Between Analytical Sample Characteristics and Follow-up Memory Score

| Health Status                             |                      |
|-------------------------------------------|----------------------|
| Functional Status (to)                    |                      |
| (Ref: No assistance required)             |                      |
| Assistance required for $\geq 1$ activity | -4.54 (-5.43, -3.65) |
| Missing                                   | -4.42 (-8.27, -0.57) |
| Chronic Conditions (to)                   |                      |
| (Ref: No chronic conditions)              |                      |
| $\geq 1$ chronic condition(s)             | -1.86 (-2.72, -1.00) |
| Missing                                   | -0.06 (-5.39, 5.26)  |
| Depressive Symptoms (to)                  |                      |
| (Ref: Not Severe)                         |                      |
| Severe                                    | -2.57 (-3.29, -1.86) |
| Missing                                   | -5.07 (-10.95, 0.82) |
| Lifestyle Behaviours                      |                      |
| Smoking (t <sub>0</sub> )                 |                      |
| (Ref: Not at all)                         |                      |
| Daily                                     | -0.32 (-1.31, 0.67)  |
| Occasionally                              | 0.35 (-1.65, 2.34)   |
| Missing                                   | 1.40 (0.84, 1.96)    |
| Alcohol Consumption (to)                  |                      |
| (Ref: Not at all)                         |                      |
| Regularly                                 | 2.26 (1.43, 3.10)    |
| Occasionally                              | 1.53 (0.51, 2.55)    |
| Missing                                   | 1.55 (-0.11, 3.20)   |
| Functional social support (to)            |                      |
| (Ref: Low)                                |                      |
| High                                      | 1.49 (0.98, 2.00)    |
| Functional social support (t1)            |                      |
| (Ref: Low)                                |                      |
| High                                      | 1.91 (1.40, 2.42)    |
| <i>Memory score</i> $(t_0)$               | 0.44 (0.43, 0.46)    |

 Internot y score (10)
 U.44 (U.43, U.46)

 Notes: p < 0.05 in bolded font;  $\hat{\beta}$ =regression coefficient; CI=confidence interval; Ref=reference category;  $t_0$ =baseline,  $t_1$ =follow-up; Not severe depressive symptoms < 10; Severe depressive symptoms ≥ 10.</td>

## 4.3. Aim 1 and 2 - Multivariable Linear Regression Analyses


In the base model, SI status at t<sub>0</sub> had a small and statistically significant, inverse association with memory at t<sub>1</sub>, thereby indicating the average memory score among socially isolated persons was lower than the average score among non-socially isolated participants ( $\hat{\beta} = -$ 0.75; 95% CI: -1.32, -0.18). However, after adjusting for all the t<sub>0</sub> sociodemographic, health, and lifestyle covariates, the effect of SI remained negative, but was no longer significant ( $\hat{\beta} = -0.13$ ; 95% CI: -0.68, 0.45). The extent of change between the  $\hat{\beta}$  for SI in the base model compared to the adjusted model exceeded the threshold amount of 10%, thereby indicating confounding<sup>255</sup>. Therefore, the adjusted model was employed to undertake the moderated mediation analysis (Aims 3-4). The full regression output is shown in Appendix F.

# 4.4. Aim 3 - Mediation Analysis

Figure 7 depicts the results of the mediation analysis. On the "a" path, t<sub>0</sub> SI significantly and negatively impacted FSS at t<sub>1</sub>, after adjusting for all covariates, such that the odds of having high compared to low FSS decreased by 36% in the socially isolated versus not socially isolated group (OR = 0.64; 95% CI: 0.58, 0.70). After following guidance from Kenny<sup>248</sup> and converting the odds ratio from the "a" path to the linear scale, the  $\hat{\beta}$  was -0.06 (95% CI: -0.08, -0.04). On the "b" path, t<sub>1</sub> FSS was significantly and positively associated with t<sub>1</sub> memory after adjusting for all covariates ( $\hat{\beta}$  = 0.59; 95% CI: 0.09, 1.10). Since the  $\hat{\beta}$ s from the "a" and "b" paths were both statistically significant, the effect of SI on memory was mediated by FSS, according to the joint significance test<sup>240</sup>.

In line with the hypothesis, SI at to impacted memory scores at t<sub>1</sub> indirectly through FSS at t<sub>1</sub> ("ab" path). On the "ab" path, memory scores decreased on average by 0.03 points (95% CI: -0.06, -0.01) in socially isolated participants versus non-isolated participants, as mediated by FSS

and adjusted for all baseline covariates. The direct effect of SI on memory ("c-prime" path) was not significant - though still inverse - after adjustment for all covariates (with FSS treated as a covariate in this pathway [ $\hat{\beta} = -0.13$ ; 95% CI: -0.68, 0.45]). No evidence existed to suggest the total effect of SI on memory ("c" path [ $\hat{\beta} = -0.16$ ; 95% CI: -0.72, 0.41]) or the PM (PM = 0.07; 95% CI: -1.46, 1.41) were different from 0.



#### Figure 7. Mediation Model: Social Isolation, Functional Social Support, and Memory

Notes: p < 0.05 in bolded font; Adjusted for baseline functional social support, baseline memory, baseline sociodemographic factors, health Full regression output for the "a" and "b" paths can be found in Table G-1 (Appendix G). Output from the Mediation Package in "R" can be found in Figure G-1 (Appendix G).

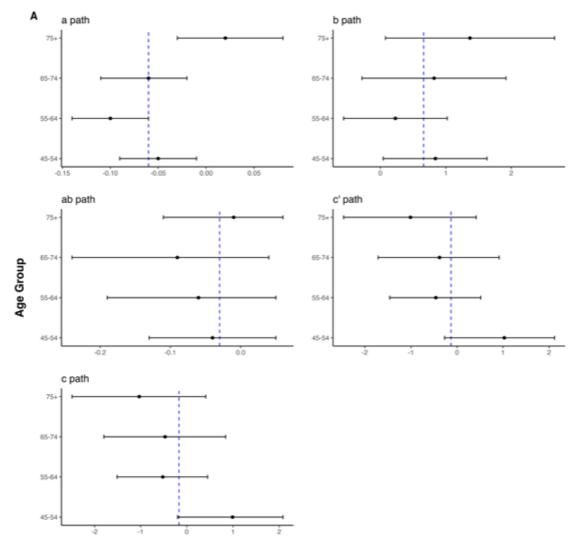
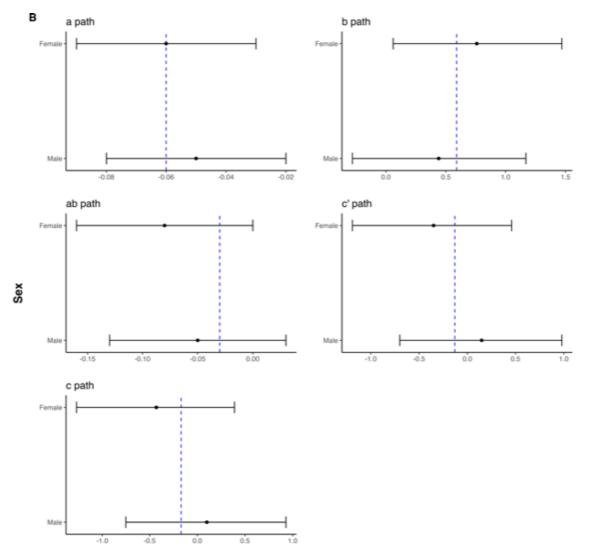

# 4.5. Aim 4 - Moderated Mediation Analysis

Table 7 shows the  $\hat{\beta}s$  and 95% CIs for each path in the mediation analysis stratified by sex and age group. Graphical depictions of the moderated mediation analysis are shown in Figure 8a and Figure 8b. No evidence of moderated mediation was found by sex on any of the paths. However, evidence existed for some effect modification in the oldest age group ( $\geq$  75 years) on the "a" path of the mediation model, as per Cuzick's test, since the 95% CI did not include the unstratified  $\hat{\beta}$ . However, the 95% CI for the  $\geq$  75 years age group partially overlapped with the 95% CIs for the 45-54-year and 65-74-year age groups, indicating the effects in the  $\geq$  75 years age group only differed from the 55-64-year age group. The stratified  $\hat{\beta}$  for the  $\geq$ 75 years age group suggested a weaker inverse association between SI and FSS compared to the 55-64-year age group.

|           | a                    | b                  | ab                  | c-prime             | С                   |
|-----------|----------------------|--------------------|---------------------|---------------------|---------------------|
|           | <b>β</b> (95% CI)    | <b>β</b> (95% CI)  | <b>β</b> (95% CI)   | <b>β</b> (95% CI)   | β̂ (95% CI)         |
| Sex       |                      |                    |                     |                     |                     |
| Male      | -0.05 (-0.08, -0.02) | 0.44 (-0.28, 1.17) | -0.05 (-0.13, 0.03) | 0.15 (-0.70, 0.98)  | 0.10 (-0.75, 0.93)  |
| Female    | -0.06 (-0.09, -0.03) | 0.76 (0.06, 1.47)  | -0.08 (-0.16, 0.00) | -0.35 (-1.19, 0.46) | -0.43 (-1.27, 0.39) |
| Age Group |                      |                    |                     |                     |                     |
| 45.54     | -0.05 (-0.09, -0.01) | 0.36 (-0.53, 1.22) | -0.04 (-0.13, 0.05) | 1.03 (-0.27, 2.12)  | 0.99 (-0.20, 2.08)  |
| 55-64     | -0.10 (-0.14, -0.06) | 0.45 (-0.40, 1.30) | -0.06 (-0.19, 0.05) | -0.46 (-1.46, 0.52) | -0.52 (-1.51, 0.45) |
| 65-74     | -0.06 (-0.11, -0.02) | 0.80 (-0.39, 2.00) | -0.09 (-0.24, 0.04) | -0.38 (-1.71, 0.92) | -0.47 (-1.80, 0.84) |
| 75+       | -0.01 (-0.04, 0.03)  | 1.30 (-0.10, 2.71) | -0.01 (-0.11, 0.06) | -1.01 (-2.46, 0.42) | -1.03 (-2.49, 0.41) |

 Table 7. Moderated Mediation Analysis: Social Isolation and Memory – Stratified by Sex and Age Group

Notes: p < 0.05 in bolded font; Adjusted for baseline functional social support, baseline memory score, baseline sociodemographic factors, health status, and lifestyle behaviours.  $\hat{\beta}$  = regression coefficient; CI = confidence interval.




Effect Size and 95% Confidence Interval

# Figure 8. Forest Plots: Moderated Mediation Analysis by Effect Modifiers Age Group and Sex

#### Figure 8. (A): Forest Plots: Moderated Mediation Analysis by Age Group

Notes: Adjusted for baseline functional social support, baseline memory score, baseline sociodemographic factors, health status, and lifestyle behaviours.; vertical line represents the unstratified regression coefficient.



Effect Size and 95% Confidence Interval

Figure 8. (B): Forest Plots: Moderated Mediation Analysis by Sex

Notes: Adjusted for baseline functional social support, baseline memory score, baseline sociodemographic factors, health status, and lifestyle behaviours.; vertical line represents the unstratified regression coefficient.

# 4.6. Differential Dropouts Over Follow-up

On average, participants who were socially isolated at t<sub>0</sub> had 42% higher odds of dropping out of the CLSA before the first follow-up period, compared to those who were not isolated at t<sub>0</sub> (OR = 1.42; 95% CI: 1.31 to 1.53). Similarly, those who dropped out had slightly lower average t<sub>0</sub> memory scores than those who did not drop out. As shown by the independent group t-test, evidence suggests the difference in means between the dropouts and the nondropouts was significant (p<0.001 [Table 8]). While median FSS scores were roughly the same between dropouts and non-dropouts, the Mann-Whitney U test suggested a significant difference in median FSS score between dropouts and non-dropouts (p<0.001 [Table 9]).

 Table 8. Mean Baseline Memory Scores: Dropouts versus Non-dropouts

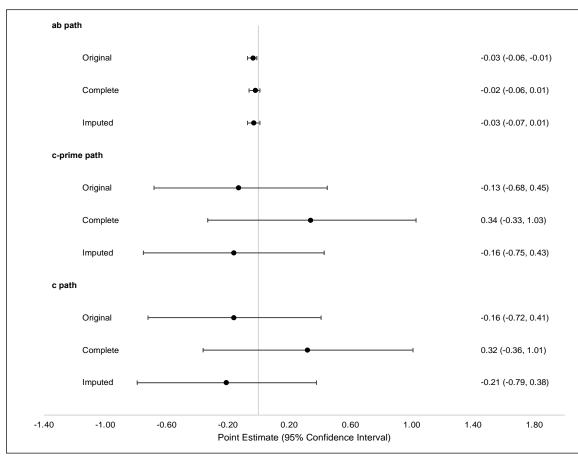
|                                     | Mean (SD)    | Minimum | Maximum |
|-------------------------------------|--------------|---------|---------|
| <b>Baseline Score: Dropouts</b>     | 97.6 (15.6)  | 63.4    | 166.5   |
| <b>Baseline Score: Non-dropouts</b> | 100.0 (14.9) | 59.0    | 174.6   |

Notes: SD = standard deviation; p<0.001

| Table 9. Mean Baseline Functional Social Support Sco | ores: Dropouts versus Non-dropouts |
|------------------------------------------------------|------------------------------------|
|------------------------------------------------------|------------------------------------|

|                                     | Median (IQR) | Minimum | Maximum |
|-------------------------------------|--------------|---------|---------|
| Baseline Score: Dropouts            | 85.5 (19.6)  | 0       | 100     |
| <b>Baseline Score: Non-dropouts</b> | 86.8 (17.3)  | 0       | 100     |

Notes: IQR = interquartile range; p<0.001


## 4.7. Sensitivity Analysis

In the results presented above, participants with missing data on a covariate were assigned to a category called 'missing' for that covariate. This permitted persons with missing covariate data to be retained in the analysis. For the sensitivity analysis, 3,967 participants with missing values on any covariate were removed from the analytical sample, leaving 8,867 participants in the complete case analysis. Table H-1 compares the point estimates and 95% CIs for the base and the adjusted models across both analyses (Appendix H). The point estimates generally moved closer to the null after removing participants with missing covariate information, although the directions of effect did not change (Table H-1). Further, the  $\hat{\beta}$  for SI was no longer statistically significant in the base model following the removal of participants with missing covariate data.

#### 4.7.1. Sensitivity Analysis – Mediation

The point estimates in the "a", "b", and "ab" paths remained relatively unchanged; however, the "b" and "ab" paths were no longer significant after removing participants with missing covariate data, as shown in Table H-2. The point estimates in the "c-prime" and "c" paths became positive after removing participants with missing covariate data but remained statistically non-significant (Table H-2).

For the multiple imputation analysis, the point estimate for the "ab" path remained unchanged compared to the missing covariate category analysis; however, it was no longer significant. The point estimates in the "c-prime" and "c" paths remained negative and statistically non-significant. A forest plot depicting the effect sizes and confidence intervals for the original analysis, the complete case analysis, and the multiple imputation analysis on the "ab", "c-prime", and "c" paths is found in Figure 9.



**Figure 9. Forest Plot Depicting the Sensitivity Mediation Analysis** 

Notes: Original = analysis with participants with missing covariates retained in the model; Complete = analysis with participants with missing covariates removed from the model; Imputed = analysis with imputed values for participants with missing covariates Adjusted for functional social support, baseline memory score, baseline sociodemographic factors, health status, and lifestyle behaviours.

# 4.7.2. Sensitivity Analysis – Moderated Mediation

The point estimates for the "a", "b", "ab", "c-prime", and "c" paths in each sex and age

group stratum remained relatively stable after removing participants with missing covariate data,

as shown in Table H-3. However, in general, the 95% CI widened after removal of participants.

## **4.8. Model Diagnostics**

For the primary analysis utilizing 'missing' covariate categories, the assumptions of logistic regression were not violated for the "a" path model in the mediation triangle (Appendix I). There were no influential outliers in our analysis because all the data points fell within the Cook's distance threshold of 1 (Figure I-1). Multicollinearity was not a problem because the Variance Inflation Factors (VIF) for our explanatory variables were all less than 10.

The assumptions of linear regression were not violated for our model of the "b" path in the mediation triangle (Appendix I). No discernible pattern existed among the residuals, which were spread randomly along the horizontal line marked in red in Figure I-2, thereby suggesting the model satisfied the homoskedasticity assumption. The normality assumption was also met because the residuals in Figure I-3 followed a straight dashed line. Further, outliers and multicollinearity were not problematic because Cook's distance and VIF values did not exceed the thresholds mentioned above.

# 5. Discussion

# 5.1. Summary of Study Findings

Aim 1: Is SI associated with memory across two timepoints of data from the Tracking Cohort of the Canadian Longitudinal Study on Aging?

The regression analysis produced a significant, negative result ( $\hat{\beta} = -0.75$ ; 95% CI: -1.32, -0.18), indicating that on average, the memory score was 0.75 points lower in persons who were socially isolated compared to those who were not socially isolated at baseline.

*Aim 2: Does the association between SI and memory change after adjusting for relevant covariates, i.e., sociodemographic factors, health status, and lifestyle behaviours?* 

Although the effect of SI on memory was still negative, the inclusion of covariates rendered the relationship between baseline SI and follow-up memory non-significant ( $\hat{\beta} = -0.13$ ; 95% CI: -0.68, 0.45). Therefore, we do not have evidence to suggest that changes in SI lead to changes in memory, after controlling for covariates.

Aim 3: Does FSS mediate the association between SI and memory?

We found significance on the "a" path ( $\hat{\beta} = -0.06$ ; 95% CI: -0.08, -0.04) and the "b" path ( $\hat{\beta} = 0.59$ ; 95% CI: 0.09, 1.10) of the mediation triangle, after adjusting for all covariates. Therefore, according to the joint significance test<sup>240</sup>, FSS acted as a mediator of the relationship between SI and memory. The indirect effect ("ab" path) was also significant ( $\hat{\beta} = -0.03$ ; 95% CI: -0.06, -0.01) in the adjusted model, indicating that memory scores decreased on average by 0.03 points (95% CI: -0.06, -0.01) in socially isolated participants versus non-isolated participants, when mediated by FSS. The direct effect ("c-prime" path) was not significant in the mediation analysis ( $\hat{\beta} = -0.13$ ; 95% CI: -0.68, 0.45). Similarly, the total effect ("c" path) and the PM were also not significant ( $\hat{\beta}$  = -0.16; 95% CI: -0.72, 0.41; PM = 0.07; 95% CI: -1.45, 1.41, respectively).

Aim 4: Does age group or sex moderate the (i) effect of SI on FSS, (ii) effect of FSS on memory, (iii) indirect effect of SI on memory through FSS, and the (iv) direct and total effects of SI on memory?

Evidence of some effect modification by age group was found on the "a" path of the mediation model. More specifically, the regression coefficient between SI and FSS in the oldest age group ( $\geq$ 75) shifted toward the null and was weaker than in the 55-64-year age group. However, effect modification on age group was not identified on the "b" path, indirect effect ("ab" path), nor on the direct ("c-prime" path) or total ("c" path) effects. Similarly, no effect modification by sex was present on any of the paths in the mediation triangle.

#### **5.2. The Indirect Effect**

The finding of an indirect effect (mediation) points to the role of FSS in the relationship between SI and memory. Since the  $\hat{\beta}$  for SI is closer to 0 (smaller magnitude of effect) in the indirect path than in the direct path (-0.03 compared to -0.13, respectively), FSS appears to mitigate the adverse effect of SI on memory. Individuals who were socially isolated seemed to perform better on the RAVLT if they reported high levels of support (high FSS) compared to individuals who were socially isolated with low levels of FSS.

After the systematic literature search described in Section 2.5 above, only two published studies out of the 4,361 screened citations were found to bear any relation to the thesis topic. First, Yang et al.<sup>218</sup> conducted a cross-sectional analysis of the CHARLS<sup>195</sup>, which included 7,410 participants aged 60 years or older. These authors investigated whether SI affected cognitive function directly or indirectly through loneliness. The study found that loneliness acted

as a partial mediator of the association between objective SI and cognitive function, accounting for some of the negative effects of SI on cognition. While Yang et al.'s work offers useful insights, its results do not directly apply to the thesis because loneliness was the mediating variable of interest, not FSS. However, Yang et al.'s study does have some relevance because loneliness and FSS are both subjective assessments of participants' state of being that are linked to SI.

The second article from the literature search described a longitudinal cohort study by Santini et al.<sup>256</sup>, containing 3,005 older adults aged 57 to 85 years from the National Social Life, Health, and Aging Project<sup>257</sup>. The authors argued that perceived social support is a better indicator for mental health outcomes among older adults compared to structural social support. The researchers quantified levels of social disconnectedness (a measure of SI) and investigated the association with depression and anxiety. They also investigated whether perceived isolation (a measure of FSS) mediated this relationship. Although the direct relationship between social disconnectedness and the two outcomes was not significant, perceived isolation mediated the relationship such that social disconnectedness predicted higher amounts of perceived isolation, which in turn predicted greater symptoms of depression and anxiety. While Santini et al.<sup>256</sup> highlight a key mediating role for a form of FSS, the results are distally applicable to the thesis because of the differing outcomes and operationalizations of SI and FSS. However, just as in the thesis, Santini et al. found a mediating effect in the absence of a direct or total effect. The lack of studies directly investigating the mediating effect of FSS on the association between SI and memory emphasizes the novelty of the thesis research.

A negative association between SI and FSS and a positive association between FSS and memory are consistent with Santini et al.<sup>256</sup> and other findings in the

literature<sup>23,36,91,94,117,214,256,258–263</sup>. Being socially isolated may lead to the perception of low support. Further, adults who perceive a high level of support from their social network may have better memory function. Although FSS can vary regardless of network size, SI is consistently linked to reports of low FSS<sup>256,258–260</sup>. Conversely, research suggests individuals with more diverse and integrated social networks (low SI) report higher levels of FSS compared to individuals with more restricted and less integrated networks<sup>23,261,262</sup>. As a case in point, Cloutier-Fisher and Kobayashi<sup>264</sup> showed that socially isolated older adults are more likely to report less FSS than non-isolated adults. They believed participating in social activities could facilitate a sense of belonging and create opportunities to engage socially with other individuals, thereby generating perceptions of strong FSS through reciprocal communication and feelings of being valued by others<sup>264</sup>.

Positive associations between FSS and memory have been reported in the literature. Many studies suggest greater levels of FSS, after controlling for structural aspects of support, are associated with better memory function<sup>91,115,117,214</sup> and are protective against memory decline<sup>36,94</sup>. The stress buffering hypothesis, briefly described in Section 2.4.4 above, is often used to explain these findings. In essence, high FSS may offer the socio-emotional support necessary to cope with stress during hard times. This coping effect mitigates the neurotoxic effects of stress and prevents deterioration in brain regions with high densities of glucocorticoid receptors, such as the hippocampus (an area of the brain that is important for memory encoding and consolidation)<sup>156,265,266</sup>. The stress-buffering hypothesis has been substantiated by neuroimaging studies showing that individuals who maintain high levels of perceived support as they age tend to have larger volumes of gray matter in brain regions associated with memory<sup>267,268</sup>.

Altogether, the impact of SI on memory could be mitigated in persons with high levels of FSS. Although SI was shown to indirectly impact memory function through FSS, the effect sizes for the indirect effect are small and, without evidence of a statistically significant direct effect, the thesis is unable to draw firm conclusions about whether FSS is a partial or full mediator of the relationship between SI and memory <sup>241</sup>.

# **5.3.** The Direct Effect

The direct effect of SI on memory was inverse after adjustment for FSS and other covariates, but it was also small and statistically non-significant. In contrast, the existing literature has generally reported strong and statistically significant associations between SI and memory <sup>31,45,46,94,132,204,211,214</sup>. Five reasons may help explain the discrepant findings between the thesis and the published literature. First, while the thesis analysis adjusted for the same general set of covariates as the aforementioned studies (i.e., sociodemographic, health, and lifestyle), these studies adjusted for fewer numbers of covariates than the thesis, meaning the published results could have been affected by residual confounding that exaggerated true effects.

Second, the missing data analysis in Section 4.6 above suggested the presence of attrition bias between baseline and follow-up. Participants who were socially isolated at baseline had higher odds of dropping out of the CLSA and were therefore not included in the analytical sample. The participants who dropped out of the study after baseline also had lower FSS and memory scores on average compared to the individuals in our analytical sample. Consequently, attrition on all three main variables of interest could have biased the results of this thesis to the null, thereby producing very small  $\hat{\beta}s$  for SI.

Third, CLSA staff excluded potential participants during the recruitment interview who appeared to be cognitively impaired. Due to this recruitment bias, the analytical sample

contained an overrepresentation of cognitively healthy participants, which may have further shifted the inverse association between SI and memory toward the null. Previous studies have noted that overly healthy samples may hamper the examination of memory change. For example, using data from the Charlotte County Healthy Aging Study (CCHAS)<sup>269</sup> Hughes et al.<sup>36</sup> reported that both social network size and frequency of contact with network members (components of SI) were not associated with episodic memory. However, their sample showed stable cognitive function over the 5-year follow-up period. The researchers believed the CCHAS's screening protocol for cognitive impairment at baseline, using the MMSE<sup>270</sup>, led to the enrolment of a cognitively healthy sample, thereby reducing the ability to detect an association between SI and memory. Likewise, Gow et al.<sup>210</sup> found small and non-significant effects between components of SI (marital status, living arrangements, and social contact) and overall memory function in a sample drawn from the Lothian Birth Cohort of 1936<sup>209</sup>. The authors believed the voluntary nature of recruitment into the birth cohort, and the possibility that only the healthiest subset of the initial sample remained alive at the time of study in 2013, biased the effect sizes to the null.

Fourth, data from the CLSA included participants aged 45 years or older. As discussed in Section 2.3 above, episodic memory is the most age sensitive, long-term aspect of memory. Longitudinal studies have found that age 60 years is the average mark where one may begin observing the onset of episodic memory decline<sup>271</sup>. While including a middle-aged sample could have dampened the findings in the thesis, stratification by age group did not uncover notable differences in memory between the older and younger age groups.

Fifth, the direct ("c-prime") effects in the unstratified and stratified mediation models are likely underpowered<sup>272</sup>. A post-hoc power analysis using the POWER procedure in SAS Studio v9.4 (The SAS Institute, Cary, NC) estimated that approximately 61,522 participants would be

required to detect a minimum  $\hat{\beta}$  of 0.13 at 80% power and alpha = 0.05 on the direct path. Due to the power issue, one cannot draw firm conclusions from the thesis about the presence or absence of a direct effect on the "c-prime" path<sup>273–276</sup>. However, absence of evidence does not automatically equate to absence of effect. Future research in this area will need to devote careful attention to statistical power as a means of generating strong inferential data.

# **5.4.** The Total Effect

The total effect of SI on memory is the sum of the indirect and direct effects. In the thesis, the total effect is not significant, despite the significance of the indirect effect, because of what Kenny and Judd<sup>272</sup> refer to as a 'power anomaly'. When the effect sizes on the indirect and total paths are close in magnitude, which is seen in this thesis, achieving 80% power on each of the indirect and total effects would require a sample size that is approximately 8 times larger on the total path compared to the indirect path<sup>33</sup>. This is because the indirect path is the product of two effects ("a" path and "b" path); the multiplicative nature of the indirect path enhances statistical power over the single effect on the total path<sup>272,275</sup>.

# **5.5. Moderated Mediation**

The results of this thesis found evidence for some effect modification by oldest age group ( $\geq 75$  years) on the "a" path of the mediation triangle. The strength of the association between SI and FSS was weaker in the  $\geq 75$ -year age group compared to the 55-64-year group. Studies have shown that social networks narrow in aging adults; however, levels of FSS remain more stable<sup>48</sup>. According to the literature<sup>277</sup>, aging leads to changes in motivation for seeking social contact, as older adults focus on fostering finite numbers of close social relationships rather than maintaining many diverse relationships. Therefore, peripheral relationships are thought to be "pruned," and closer, more emotionally satisfying relationships remain<sup>277,278</sup>. This trend could

explain the stratified results on the "a" path for the oldest age group because SI may not have a large influence on FSS compared to the younger 55-64-year age group, who may rely on FSS from wider social networks.

Beyond the "a" path, age group did not moderate any other path of the mediation triangle. This could be due to the length of follow-up, which may not have been long enough to explore age trends over time. The literature notes inconsistencies regarding age as an effect modifier in the relationship between SI and memory. When stratifying by age (< 65 years/ $\geq$  65 years), Seeman et al.<sup>211</sup> found no evidence of effect modification on the relationship between social contact frequency and episodic memory function. These results also echo the work of LaFleur and Salthouse<sup>165</sup>, who found no significant interaction between age group and measures of structural and functional support, and memory function.

Further, sex was not identified as an effect modifier on any path of the mediation triangle. In terms of the direct and total effect, previous research has also produced inconclusive results when stratifying the association between SI and memory by sex. For example, a cross-sectional analysis of 24,531 participants from the Comprehensive Cohort of the CLSA did not find any difference in effects of SI on memory across males and females<sup>230</sup>. Li and Dong's<sup>204</sup> crosssectional investigation of 3,157 Chinese Americans aged 60 years or older found that both social network size and frequency of social contacts were positively associated with memory among both males and females; however, they reported insufficient evidence for effect modification by sex.

The absence of effect modification in the moderated mediation analysis for the moderated mediation analysis may also be due to the lack of power described in Section 5.3 above. Since effect modification was assessed by stratifying each path of the mediation analysis, the

moderated mediation analyses were even further underpowered compared to the unstratified analyses.

#### 5.6. Strengths

This thesis has multiple strengths. First, many previous studies exclusively examined older adults; however, our analysis included both middle-aged and older adults, allowing us to capture the experiences of mid-life, which is known to influence health outcomes later in life<sup>222</sup>. Second, the sampling frame of the Tracking Cohort included adults from all 10 provinces, allowing the results of this thesis to apply to a broader target population compared to previous studies that have been limited to narrow geographic areas such as single cities or counties<sup>36,45,132</sup>.

Third, we utilized the measure of SI that Menec et al.<sup>24</sup> created specifically for CLSA. This measure was based on research emerging from other panel studies<sup>23,63</sup>. Further, unlike many previously published studies<sup>31,36,45,46,94,165,204,210–212,214</sup>, the SI index employed in this thesis contained a larger number of items to more broadly measure SI. Therefore, compared to earlier literature, the results of this thesis may provide a more valid assessment of the relationship between SI and memory.

Fourth, this study adjusted for a larger group of covariates than previous research<sup>31,36,45,46,94,165,204,210–212,214</sup>, thereby minimizing confounding. Further, adjusting for baseline memory accounted for the differences between baseline and follow-up memory scores, as well as potential residual confounding that may manifest in memory function.

Fifth, the associations that we saw between the covariates and memory shown in the regression output in Appendix F yielded expected values. For example, the covariates education and income are positively associated with memory in a dose-response fashion. Additionally, requiring assistance for at least one activity compared to not requiring assistance at all, is

significantly inversely associated with memory function. A similar pattern is seen between memory function and severe compared to not severe depressive symptoms. These results align with previous literature<sup>230,279,280</sup> and indicate the underlying validity of the data and analytical approach, lending credence to the results of the mediation analysis.

Sixth, we conducted two types of sensitivity analysis to look at the impact of different ways of handling missing data. The effects sizes obtained from sensitivity analyses yielded similar values to our main analyses further validating our data and the soundness of our analytical approach.

Lastly, and most importantly, while many studies have assessed the effects of SI or FSS on memory, the thesis candidate is unaware of any published studies that explored the mediation effects of FSS on the relationship between SI and memory. As such, this thesis adds novel information to the current literature about the effects of SI on memory.

# **5.7.** Limitations

This study is not without limitations. Participants in the CLSA were generally healthier than average<sup>222</sup>. Previous CLSA-based studies found these individuals reported higher levels of education, income, and health compared to the average Canadian between the ages of 45 and 85 years<sup>230,279</sup>. In the analytical sample for the thesis, after the completion of baseline data collection, approximately one-third of participants had an average household income over \$100,000 in the same year (2015) that the median household income in Canada was \$56,000<sup>281</sup>. Further, the 2016 census<sup>282</sup> estimated that 53.0% of the 45-54-year age group and 44.3% of the 55-64-year age group in Canada had post-secondary education, while the corresponding age groups in our analytical sample reported post-secondary education levels of 78.7% and 72.7%, respectively. Therefore, the thesis results optimally apply to the subset of the study population

with similar characteristics as the analytical sample. Caution must be exercised when applying the results to other subgroups of the target population.

To handle missing covariate data, categories on variables such as functional status, chronic conditions, and depressive symptoms were collapsed into binary categories. For example, the categories for functional status were 0 or  $\geq 1$  functional limitation(s) however, by collapsing categories, participants who had few limitations were group in with those who had multiple limitations. This prevented the study from assessing confounding by severity, which may have led to residual confounding.

Although the PM has an intuitive interpretation, caution must be exercised when drawing upon it to describe the results of a mediation analysis. Of note: (1) a large sample size ( $n \ge 500$ ) is required to rely on the PM as a description of the magnitude of the indirect effect when the outcome is a continuous variable<sup>283</sup>; (2) the estimate of the PM may be uninformative when the  $\hat{\beta}$ 's for the direct and indirect effects have opposite signs (i.e., one is positive, one is negative), which is known as 'inconsistent mediation'<sup>284,285</sup>; and (3) the PM may also not have a meaningful interpretation when the contributing effect estimates (the indirect and direct effects) are small and clinically irrelevant<sup>286</sup>.

The thesis produced what is called inconsistent mediation, where the "a" path and "b" path components of the indirect effect ("ab" path) showed opposite signs ( $\hat{\beta} = -0.06$ ; and  $\hat{\beta} = 0.59$ , respectively). Further, the coefficients for the direct and total effects were not significant, meaning a lack of evidence exists to suggest the true direction of these estimates. Since the PM is calculated by dividing the indirect effect by the total effect, the presence of inconsistent mediation suggests the PM could be an inaccurate representation of the true degree of mediation

in the SI-FSS-memory triangle shown in Figure 7 above <sup>284–286</sup>. As such, the PM obtained in this thesis should not be used to help explain the results of the mediation analysis.

According to our missing data analysis, attrition bias was likely present in the CLSA. Participants in the analytical sample who were socially isolated at baseline had higher odds of dropout. Participants without follow-up data also had lower median or mean baseline FSS and memory scores. Recruitment bias may have also influenced the thesis results because the CLSA excluded participants with overt signs of cognitive impairment during study recruitment. Taken together, attrition and recruitment biases may have biased the results of the thesis toward the null and led to small effect sizes. Therefore, it is unclear whether the small effect sizes reported above indicate the true absence of clinically important effects or partially reflect the impact of concerns such as bias.

For the bulk of this thesis project, the CLSA had only two timepoints of data available for analysis (baseline, follow-up 1). Additionally, in May 2024, the combined memory variable described in Section 3.2.3 above was only available for these two timepoints. However, some literature proposes that three timepoints is optimal to test for mediation and allow time to elapse between each exposure and effect <sup>287</sup>. Moreover, the CLSA collected follow-up data three years after baseline, which may not be long enough to observe clinically relevant changes in memory scores in a cognitively healthy baseline sample.

## **5.8. Implications and Future Directions**

From a public health standpoint, this thesis may have important implications for the prevention of memory loss in middle-aged and older adults. The findings show that SI is associated with memory indirectly through FSS, although the effect size is small and unlikely to be clinically important. Given the biases discussed above – which likely biased the thesis results

to the null – the true effect size of the mediation effect could be much larger, especially in less healthy target populations. Therefore, public health authorities should consider the possibility of evaluating the extent to which social relationships meet the support needs of older adults during regular gerontological care appointments. This approach is captured by the notion of social prescribing<sup>288</sup>. Social prescribing is a holistic approach to health in which healthcare providers connect patients with local or community services that target social health, with the goal of improving their mental and physical wellbeing<sup>288</sup>. Since the thesis found that FSS mediated the association between SI and memory, policies designed to identify and connect socially isolated adults to health and social services should pay particular attention to these individuals' perceived levels of FSS.

Additional research with more follow-up periods is warranted to further assess the relationship between SI and memory. As time passes, ever increasing numbers of CLSA participants will experience memory decline and the emergence of neurocognitive disorders. This will allow us to better understand the characteristics of those who are lost to follow-up. For example, do participants who dropout after multiple follow-up timepoints have a larger cognitive decline trajectory compared to those who remain in the study. More timepoints will also allow for mediation effects to be tested with exposure, mediator, and outcome in sequence: exposure at baseline, mediator at intermediate follow-up, and outcome at the last available timepoint.

To expand upon the current study, future studies may investigate one or more of the different subtypes of FSS as mediators in the relationship between SI and memory. Exploring FSS subtypes will provide insight regarding how policies tailored to one subgroup may be more effective than policies tailored toward other subgroups. These deeper analyses may further contribute to the development of targeted interventions for maintaining memory function.

# 6. Conclusion

Few studies have considered how different types of social support are interrelated through mediating pathways that impact cognitive health. This thesis was the first to examine the mediating effect of FSS on the relation between SI and memory. Though FSS indirectly accounted for some of the association between SI and memory, the effect was quite small. Furthermore, no evidence of a direct effect of SI on memory (controlling for FSS) was detected. Therefore, a conclusion regarding partial or full mediation cannot be made. Despite the limitations, this thesis offers valuable insights into the relationship between SI, FSS, and memory in middle-aged and older adults. The results serve as a base upon which future studies may build.

# References

- 1. National Institute on Aging (NIH). Understanding the dynamics of the aging process[internet]. NIH; 2020 May. Available from: https://www.nia.nih.gov/about/aging-strategic-directions-research/understanding-dynamics-aging
- 2. Berardi N, Sale A, Maffei L. Brain structural and functional development: genetics and experience. Dev Med Child Neurol. 2015 Apr;57:4–9.
- 3. Dinse HR. Cortical reorganization in the aging brain. Prog Brain Res. 2006; 157:57-80.
- 4. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013 Nov;29(4):737–52.
- 5. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014 Nov;10(11):634–42.
- 6. Rowe JW, Kahn RL. Successful aging. Gerontologist. 1997 Aug 1;37(4):433–40.
- 7. Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006 Dec 20;296(23):2805.
- 8. Tomaszewski Farias S, Cahn-Weiner DA, Harvey DJ, Reed BR, Mungas D, Kramer JH, et al. Longitudinal changes in memory and executive functioning are associated with longitudinal change in instrumental activities of daily living in older adults. Clin Neuropsychol. 2009 Apr;23(3):446–61.
- 9. Spector A, Thorgrimsen L, Woods B, Royan L, Davies S, Butterworth M, et al. Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial. Br J Psychiatry. 2003 Sep;183(3):248–54.
- 10. Agüero-Torres H. Institutionalization in the elderly: the role of chronic diseases and dementia. Cross-sectional and longitudinal data from a population-based study. Clin Epidemiol. 2001 Aug;54(8):795–801.
- 11. Neale R, Brayne C, Johnson A. Cognition and survival: an exploration in a large multicentre study of the population aged 65 years and over. Int. J. Epidemiol. 2001 Dec;30(6):1383–8.
- 12. Pavlik VN. Relation between cognitive function and mortality in middle-aged adults: the atherosclerosis risk in communities study. Am J Epidemiol. 2003 Feb 15;157(4):327–34.
- 13. Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 2012 Feb;11(2):141–68.

- 14. McIntyre RS, Xiao HX, Syeda K, Vinberg M, Carvalho AF, Mansur RB, et al. The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS Drugs. 2015 Jul;29(7):577–89.
- 15. Hugo J, Ganguli M. Dementia and cognitive impairment. Clin Geriatr Med. 2014 Aug;30(3):421–42.
- Von Gunten A, Giannakopoulos P, Duc R. Cognitive and demographic determinants of dementia in depressed patients with subjective memory complaints. Eur Neurol. 2005;54(3):154–8.
- 17. Hogan DB, Ebly EM. Predicting who will develop dementia in a cohort of Canadian seniors. Can j neurol sci. 2000 Feb;27(1):18–24.
- 18. Mogic L, Rutter EC, Tyas SL, Maxwell CJ, O'Connell ME, Oremus M. Functional social support and cognitive function in middle- and older-aged adults: a systematic review of cross-sectional and cohort studies. Syst Rev. 2023 May 22;12(1):86.
- 19. Ertel KA, Glymour MM, Berkman LF. Effects of social integration on preserving memory function in a nationally representative US elderly population. Am J Public Health. 2008 Jul;98(7):1215–20.
- 20. Kuiper JS, Zuidersma M, Zuidema SU, Burgerhof JGM, Stolk RP, Oude Voshaar RC, et al. Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. Int J Epidemiol. 2016 Jun 6; 45(4):1169-1206
- 21. Uchino BN, Cacioppo JT, Kiecolt-Glaser JK. The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychol Bull. 1996;119(3):488–531.
- 22. Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: a metaanalytic review. PLoS Med. 2010 Jul 27;7(7):e1000316.
- 23. Menec VH, Newall NE, Mackenzie CS, Shooshtari S, Nowicki S. Examining social isolation and loneliness in combination in relation to social support and psychological distress using Canadian Longitudinal Study of Aging (CLSA) data. PLoS ONE. 2020 Mar 23;15(3):e0230673.
- 24. Menec VH, Newall NE, Mackenzie CS, Shooshtari S, Nowicki S. Examining individual and geographic factors associated with social isolation and loneliness using Canadian Longitudinal Study on Aging (CLSA) data. PLoS ONE. 2019 Feb 1;14(2):e0211143.
- 25. House JS, Landis KR, Umberson D. Social relationships and health. Science. 1988 Jul 29;241(4865):540–5.
- 26. Antonucci TC, Ajrouch KJ, Birditt KS. The convoy model: explaining social relations from a multidisciplinary perspective. Gerontologist. 2014 Feb;54(1):82–92.

- 27. Valtorta NK, Kanaan M, Gilbody S, Hanratty B. Loneliness, social isolation and social relationships: what are we measuring? A novel framework for classifying and comparing tools. BMJ Open. 2016 Apr;6(4):e010799.
- 28. de Jong Gierveld J, van Tilburg T, Dykstra PA. Loneliness and Social Isolation. In: Vangelisti AL, Perlman D, editors. The Cambridge handbook of personal relationships. 1st ed. Cambridge University Press: 2006. p. 485–500.
- 29. Pantell M, Rehkopf D, Jutte D, Syme SL, Balmes J, Adler N. Social isolation: a predictor of mortality comparable to traditional clinical risk factors. Am J Public Health. 2013 Nov;103(11):2056–62.
- 30. Sherbourne CD, Stewart AL. The MOS social support survey. Soc Sci Med. 1991 Jan;32(6):705–14.
- 31. Hülür G. Structural and functional aspects of social relationships and episodic memory: between-person and within-person associations in middle-aged and older adults. Gerontology. 2022;68(1):86–97.
- 32. Gurung RAR, Taylor SE, Seeman TE. Accounting for changes in social support among married older adults: insights from the MacArthur Studies of Successful Aging. Psychol Aging. 2003;18(3):487–96.
- 33. Yeh SCJ, Liu YY. Influence of social support on cognitive function in the elderly. BMC Health Serv Res. 2003 May 30;3(1):9.
- 34. Seeman TE, Lusignolo TM, Albert M, Berkman L. Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur Studies of Successful Aging. Health Psychol. 2001;20(4):243–55.
- 35. Kelly ME, Duff H, Kelly S, McHugh Power JE, Brennan S, Lawlor BA, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst Rev. 2017 Dec;6(1):259.
- 36. Hughes TF, Andel R, Small BJ, Borenstein AR, Mortimer JA. The association between social resources and cognitive change in older adults: evidence from the Charlotte County Healthy Aging Study. J Gerontol B Psychol Sci Soc Sci. 2008 Jul 1;63(4):P241–4.
- Cacioppo JT, Hawkley LC. Perceived social isolation and cognition. Trends Cogn Sci. 2009 Oct;13(10):447–54.
- 38. Berkman LF, Glass T, Brissette I, Seeman TE. From social integration to health: Durkheim in the new millennium. Soc Sci Med. 2000 Sep;51(6):843–57.
- O'Luanaigh C, O'Connell H, Chin AV, Hamilton F, Coen R, Walsh C, et al. Loneliness and vascular biomarkers: the Dublin Healthy Ageing Study. Int J Geriat Psychiatry. 2012 Jan;27(1):83–8.

- 40. Yin J, Lassale C, Steptoe A, Cadar D. Exploring the bidirectional associations between loneliness and cognitive functioning over 10 years: the English longitudinal study of ageing. Int J Epidemiol. 2019 Dec 1;48(6):1937–48.
- 41. Amieva H, Stoykova R, Matharan F, Helmer C, Antonucci TC, Dartigues JF. What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. Psychosom Med. 2010 Nov;72(9):905–11.
- 42. Gow AJ, Corley J, Starr JM, Deary IJ. Reverse causation in activity-cognitive ability associations: the Lothian Birth Cohort 1936. Psychol Aging. 2012 Mar;27(1):250–5.
- 43. Holwerda TJ, Beekman ATF, Deeg DJH, Stek ML, van Tilburg TG, Visser PJ, et al. Increased risk of mortality associated with social isolation in older men: only when feeling lonely? Results from the Amsterdam Study of the Elderly (AMSTEL). Psychol Med. 2012 Apr;42(4):843–53.
- 44. Chen TY, Chang HY. Developmental patterns of cognitive function and associated factors among the elderly in Taiwan. Sci Rep. 2016 Sep 16;6(1):33486.
- 45. DiNapoli EA, Wu B, Scogin F. Social isolation and cognitive function in Appalachian older adults. Res Aging. 2014 Mar 1;36(2):161–79.
- 46. Zahodne LB, Ajrouch KJ, Sharifian N, Antonucci TC. Social relations and age-related change in memory. Psychol Aging. 2019 Sep;34(6):751–65.
- 47. Routasalo PE, Savikko N, Tilvis RS, Strandberg TE, Pitkälä KH. Social contacts and their relationship to loneliness among aged people a population-based study. Gerontology. 2006;52(3):181–7.
- 48. Wrzus C, Hänel M, Wagner J, Neyer FJ. Social network changes and life events across the life span: A meta-analysis. Psychol Bull. 2013;139(1):53–80.
- 49. Cloutier-Fisher D, Kobayashi K, Smith A. The subjective dimension of social isolation: a qualitative investigation of older adults' experiences in small social support networks. J. Aging Stud. 2011 Dec;25(4):407–14.
- 50. Government of Canada. Social isolation of seniors volume 1: understanding the issue and finding solutions [Internet]. Government of Canada; 2022. Available from: https://www.canada.ca/en/employment-social-development/corporate/partners/seniors-forum/social-isolation-toolkit-vol1.html
- 51. World Health Organization. Global age-friendly cities: a guide [internet]. World Health Organization; 2007. Available from: https://apps.who.int/iris/handle/10665/43755
- 52. Leigh-Hunt N, Bagguley D, Bash K, Turner V, Turnbull S, Valtorta N, et al. An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health. 2017 Nov;152:157–71.

- 53. Nicholson NR. A review of social isolation: an important but underassessed condition in older adults. J Primary Prevent. 2012 Jun;33(2–3):137–52.
- 54. Kotwal AA, Kim J, Waite L, Dale W. Social function and cognitive status: results from a US nationally representative survey of older adults. J Gen Intern Med. 2016 Aug;31(8):854–62.
- 55. Harling G, Kobayashi LC, Farrell MT, Wagner RG, Tollman S, Berkman L. Social contact, social support, and cognitive health in a population-based study of middle-aged and older men and women in rural South Africa. Soc Sci Med. 2020 Sep;260:113167.
- 56. Fankhauser S, Maercker A, Forstmeier S. Social network and cognitive functioning in old age: self-efficacy as a mediator? Z Gerontol Geriat. 2017 Feb;50(2):123–31.
- 57. Piolatto M, Bianchi F, Rota M, Marengoni A, Akbaritabar A, Squazzoni F. The effect of social relationships on cognitive decline in older adults: an updated systematic review and meta-analysis of longitudinal cohort studies. BMC Public Health. 2022 Feb 11;22(1):278.
- 58. Zhou S, Song S, Jin Y, Zheng ZJ. Prospective association between social engagement and cognitive impairment among middle-aged and older adults: evidence from the China Health and Retirement Longitudinal Study. BMJ Open. 2020 Nov;10(11):e040936.
- 59. Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004 Jun;3(6):343–53.
- 60. Huang AR, Roth DL, Cidav T, Chung S, Amjad H, Thorpe RJ, et al. Social isolation and 9year dementia risk in community-dwelling Medicare beneficiaries in the United States. J American Geriatrics Society. 2023 Mar;71(3):765–73.
- 61. Beller J, Wagner A. Loneliness, social isolation, their synergistic interaction, and mortality. Health Psychol. 2018 Sep;37(9):808–13.
- 62. McHugh Power JE, Steptoe A, Kee F, Lawlor BA. Loneliness and social engagement in older adults: a bivariate dual change score analysis. Psychol Aging. 2019 Feb;34(1):152–62.
- Steptoe A, Shankar A, Demakakos P, Wardle J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc Natl Acad Sci USA. 2013 Apr 9;110(15):5797– 801.
- 64. Cornwell EY, Waite LJ. Measuring social isolation among older adults using multiple indicators from the NSHAP study. J Gerontol B Psychol Sci Soc Sci. 2009 Nov 1;64B(Supplement 1):i38–46.
- 65. Newall NEG, Menec VH. Loneliness and social isolation of older adults: why it is important to examine these social aspects together. J Soc Pers Relatsh. 2019 Mar;36(3):925–39.

- 66. Harris M, Brouillette MJ, Scott SC, Smaill F, Smith G, Thomas R, et al. Impact of loneliness on brain health and quality of life among adults living with HIV in Canada. J Acquir Immune Defic Syndr. 2020 Aug 1;84(4):336–44.
- 67. McInnis GJ, White JH. A phenomenological exploration of loneliness in the older adult. Arch Psychiatr Nurs. 2001 Jun;15(3):128–39.
- 68. Coyle CE, Dugan E. Social isolation, loneliness and health among older adults. J Aging Health. 2012 Dec;24(8):1346–63.
- 69. Boden-Albala B, Litwak E, Elkind MSV, Rundek T, Sacco RL. Social isolation and outcomes post stroke. Neurology. 2005 Jun 14;64(11):1888–92.
- 70. Chipperfield JG, Havens B. Gender differences in the relationship between marital status transitions and life satisfaction in later life. J Gerontol B Psychol Sci Soc Sci. 2001 May 1;56(3):P176–86.
- Fratiglioni L, Wang HX, Ericsson K, Maytan M, Winblad B. Influence of social network on occurrence of dementia: a community-based longitudinal study. The Lancet. 2000 Apr;355(9212):1315–9.
- 72. Umberson D, Lin Z, Cha H. Gender and social isolation across the life course. J Health Soc Behav. 2022 Sep;63(3):319–35.
- 73. Liao J, Scholes S. Association of social support and cognitive aging modified by sex and relationship type: a prospective investigation in the English Longitudinal Study of Ageing. Am J Epidemiol. 2017 Oct 1;186(7):787–95.
- 74. Pillemer S, Ayers E, Holtzer R. Gender-stratified analyses reveal longitudinal associations between social support and cognitive decline in older men. Aging Ment Health. 2019 Oct 3;23(10):1326–32.
- Coventry WL, Gillespie NA, Heath AC, Martin NG. Perceived social support in a large community sample-age and sex differences. Soc Psychiatry Psychiatr Epidemiol. 2004 Aug;39(8):625–36.
- 76. Caetano SC, Silva CMFP, Vettore MV. Gender differences in the association of perceived social support and social network with self-rated health status among older adults: a population-based study in Brazil. BMC Geriatr. 2013 Nov 15;13:122.
- 77. Antonucci TC, Akiyama H. An examination of sex differences in social support among older men and women. Sex Roles. 1987 Dec;17(11–12):737–49.
- 78. Ashton WA, Fuehrer A. Effects of gender and gender role identification of participant and type of social support resource on support seeking. Sex Roles. 1993 Apr;28(7–8):461–76.
- 79. Taylor SE, Kemeny ME, Reed GM, Bower JE, Gruenewald TL. Psychological resources, positive illusions, and health. Am Psychol. 2000 Jan;55(1):99–109.

- Fuhrer R, Stansfeld SA. How gender affects patterns of social relations and their impact on health: a comparison of one or multiple sources of support from "close persons." Soc Sci Med. 2002 Mar;54(5):811–25.
- 81. Umberson D, Karas Montez J. Social relationships and health: a flashpoint for health policy. J Health Soc Behav. 2010 Mar;51(1\_suppl):S54–66.
- 82. Michael YL, Berkman LF, Colditz GA, Kawachi I. Living arrangements, social integration, and change in functional health status. Am J Epidemiol. 2001 Jan 15;153(2):123–31.
- 83. Russell D, Taylor J. Living alone and depressive symptoms: the influence of gender, physical disability, and social support among Hispanic and non-Hispanic older adults. J Gerontol B Psychol Sci Soc Sci. 2009 Jan 1;64B(1):95–104.
- 84. Porcelli S, Van Der Wee N, Van Der Werff S, Aghajani M, Glennon JC, Van Heukelum S, et al. Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev. 2019 Feb;97:10–33.
- 85. Dickerson BC. Dysfunction of Social Cognition and Behavior. Behav Neurol. 2015 Jun;21:660–77.
- Havins WN, Massman PJ, Doody R. Factor structure of the geriatric depression scale and relationships with cognition and function in Alzheimer's disease. Dement Geriatr Cogn Disord. 2012;34(5–6):360–72.
- 87. Bora E, Berk M. Theory of mind in major depressive disorder: a meta-analysis. J Affect Disord. 2016 Feb;191:49–55.
- 88. Kupferberg A, Bicks L, Hasler G. Social functioning in major depressive disorder. Neurosci Biobehav Rev. 2016 Oct;69:313–32.
- 89. Bierman KL, Welsh JA. Assessing social dysfunction: the contributions of laboratory and performance-based measures. J Clin Child Adolesc Psychol. 2000 Nov;29(4):526–39.
- 90. Lubben JE. Assessing social networks among elderly populations. Fam Med Community Health. 1988 Nov;11(3):42–52.
- 91. Oremus M, Tyas SL, Maxwell CJ, Konnert C, O'Connell ME, Law J. Social support availability is positively associated with memory in persons aged 45–85 years: a crosssectional analysis of the Canadian Longitudinal Study on Aging. Arch. Gerontol. Geriatr. 2020 Jan;86:103962.
- 92. Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: a review of animal models and human studies across development. Psychol Bull. 2014 Jan;140(1):256–82.

- 93. Kirsch JA, Lehman BJ. comparing visible and invisible social support: non-evaluative support buffers cardiovascular responses to stress: effective social support. Stress Health. 2015 Dec;31(5):351–64.
- 94. Peng C, Burr JA, Han SH. Cognitive function and cognitive decline among older rural Chinese adults: the roles of social support, pension benefits, and medical insurance. Aging Ment Health. 2022 Jun 14;1–9.
- 95. Ma T, Liao J, Ye Y, Li J. Social support and cognitive activity and their associations with incident cognitive impairment in cognitively normal older adults. BMC Geriatr. 2024 Jan 9;24(1):38.
- 96. Yoo SS, Tyas SL, Maxwell CJ, Oremus M. The association between functional social support and memory in middle-aged and older adults: a prospective analysis of the Canadian longitudinal study on aging's comprehensive cohort. Arch Gerontol Geriatr. 2023 Nov;114:105076.
- 97. Ohman A, Maxwell CJ, Tyas SL, Oremus M. Subtypes of social support availability are not differentially associated with memory: a cross-sectional analysis of the Comprehensive Cohort of the Canadian Longitudinal Study on Aging. Aging Neuropsychol Cogn. 2023 May 4;30(3):354–69.
- 98. Fontana AM, Diegnan T, Villeneuve A, Lepore SJ. Nonevaluative social support reduces cardiovascular reactivity in young women during acutely stressful performance situations. J Behav Med. 1999;22(1):75–91.
- 99. Uno D, Uchino BN, Smith TW. Relationship quality moderates the effect of social support given by close friends on cardiovascular reactivity in women. Int J Behav Med. 2002 Sep;9(3):243–62.
- 100. Lett HS, Blumenthal JA, Babyak MA, Strauman TJ, Robins C, Sherwood A. Social support and coronary heart disease: epidemiologic evidence and implications for treatment. Psychosom Med. 2005 Nov;67(6):869–78.
- 101. Berkman LF, Syme SL. social networks, host resistance, and mortality: a nine-year followup study of Alameda county residents. Am J Epidemiol. 1979 Feb;109(2):186–204.
- 102. Luong G, Charles ST, Fingerman KL. Better with age: social relationships across adulthood. J Soc Pers Relatsh. 2011 Feb;28(1):9–23.
- 103. Lansford JE, Sherman AM, Antonucci TC. Satisfaction with social networks: an examination of socioemotional selectivity theory across cohorts. Psychol Aging. 1998 Dec;13(4):544–52.
- 104. Charles ST, Piazza JR. Memories of social interactions: age differences in emotional intensity. Psychol Aging. 2007 Jun;22(2):300–9.

- 105. Field D, Minkler M. Continuity and change in social support between young-old and oldold or very-old age. J Gerontol. 1988 Jul;43(4):P100-106.
- 106. Schnittker J. Look (closely) at all the lonely people: age and the social psychology of social support. J Aging Health. 2007 Aug;19(4):659–82.
- 107. Ellwardt L, Aartsen M, Deeg D, Steverink N. Does loneliness mediate the relation between social support and cognitive functioning in later life? Soc Sci Med. 2013 Dec;98:116–24.
- 108. Costa-Cordella S, Arevalo-Romero C, Parada FJ, Rossi A. Social support and cognition: a systematic review. Front Psychol. 2021 Feb 23;12:637060.
- 109. Pillemer SC, Holtzer R. The differential relationships of dimensions of perceived social support with cognitive function among older adults. Aging Ment Health. 2016 Jul 2;20(7):727–35.
- 110. Yang S, Zhang Y, Xie S, Chen Y, Jiang D, Luo Y, et al. Predictors of perceived social support for patients with dementia: a mixed-methods study. Clin Interv Aging. 2020 Apr;Volume 15:595–607.
- 111. Cheston R, Dodd E, Christopher G, Jones C, Wildschut T, Sedikides C. Selective forgetting of self-threatening statements: Mnemic neglect for dementia information in people with mild dementia. Int J Geriat Psychiatry. 2018 Aug;33(8):1065–73.
- 112. Fan Z, Lv X, Tu L, Zhang M, Yu X, Wang H. Reduced social activities and networks, but not social support, are associated with cognitive decline among older Chinese adults: a prospective study. Soc Sci Med. 2021 Nov;289:114423.
- 113. Marioni RE, Proust-Lima C, Amieva H, Brayne C, Matthews FE, Dartigues JF, et al. Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study. BMC Public Health. 2015 Dec;15(1):1089.
- 114. Lino VTS, Portela MC, Camacho LAB, Atie S, Lima MJB. Assessment of social support and its association to depression, self-perceived health and chronic diseases in elderly individuals residing in an area of poverty and social vulnerability in Rio de Janeiro City, Brazil. PLoS ONE. 2013 Aug 12;8(8):e71712.
- 115. Zuelsdorff ML, Engelman CD, Friedman EM, Koscik RL, Jonaitis EM, Rue AL, et al. Stressful events, social support, and cognitive function in middle-aged adults with a family history of Alzheimer's disease. J Aging Health. 2013 Sep;25(6):944–59.
- 116. Oremus M, Konnert C, Law J, Maxwell CJ, O'Connell ME, Tyas SL. Social support and cognitive function in middle- and older-aged adults: descriptive analysis of CLSA tracking data. Eur J Public Health. 2019 Dec 1;29(6):1084–9.
- 117. Ge S, Wu B, Bailey DE, Dong X. Social support, social strain, and cognitive function among community-dwelling U.S. Chinese older adults. J Gerontol A Biol Sci Med Sci. 2017 Jul 1;72(suppl\_1):S16–21.

- 118. Zlotnik G, Vansintjan A. Memory: an extended definition. Front Psychol. 2019;10:2523.
- 119. Budson AE, Price BH. Memory dysfunction. N Engl J Med. 2005 Feb 17;352(7):692–9.
- 120. Struble LM, Sullivan BJ. Cognitive health in older adults. J Nurse Pract. 2011 Apr;36(4):24–34.
- 121. Drag LL, Bieliauskas LA. Contemporary review 2009: cognitive aging. J Geriatr Psychiatry Neurol. 2010 Jun;23(2):75–93.
- 122. Nyberg L, Maitland SB, Rönnlund M, Bäckman L, Dixon RA, Wahlin Å, et al. Selective adult age differences in an age-invariant multifactor model of declarative memory. Psychol Aging. 2003;18(1):149–60.
- 123. Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012 May;16(5):292–305.
- 124. Craik FIM, Salthouse TA, editors. The handbook of aging and cognition. 2nd ed. Mahwah, N.J: Lawrence Erlbaum Associates; 2000. p. 755.
- 125. Rönnlund M, Nyberg L, Bäckman L, Nilsson LG. Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol Aging. 2005;20(1):3–18.
- 126. Schaie KW. Developmental influences on adult intelligence: the Seattle longitudinal study. 1st ed. N.Y: Oxford University Press; 2005.
- 127. Ribot T, Smith WH. Diseases of memory: an essay in the positive psychology. New York: Appleton; 1882.
- 128. Bäckman L, Small BJ, Fratiglioni L. Stability of the preclinical episodic memory deficit in Alzheimer's disease. Brain. 2001 Jan;124(1):96–102.
- 129. Rey A. L'examen psychologique dans les cas d'encephalopahie traumatique. Librairie Naville & Cie; 1941. p. 286–340.
- 130. Wechsler D. Administration and scoring manual for the Wechsler Memory Scale–fourth edition. Pearson; 2009.
- 131. Tulving E. Memory and consciousness. Can J Psychol. 1985 Jan;26(1):1–12.
- 132. Krueger KR, Wilson RS, Kamenetsky JM, Barnes LL, Bienias JL, Bennett DA. Social engagement and cognitive function in old age. Exp Aging Res. 2009 Jan 12;35(1):45–60.
- 133. Kahn RL, Antonucci TC. Convoys over the life course: attachment, roles, and social support. In: Baltes PB, Grim OG, editors. Life span development and behavior. New York: Academic Press; 1980. 253-286.

- 134. Antonucci TC, Birren JE, Schaie KW. Handbook of the psychology of aging. 5th ed. Academic Press; 2001.
- 135. House JS, Robbins C, Metzner HL. The association of social relationships and activities with mortality: prospective evidence from the Tecumseh community health study. Am J Epidemiol. 1982 Jul;116(1):123–40.
- 136. Antonucci TC, Fuhrer R, Dartigues JF. Social relations and depressive symptomatology in a sample of community-dwelling French older adults. Psychol Aging. 1997;12(1):189–95.
- 137. Blazer DG. Social support and mortality in an elderly community population. Am J Epidemiol. 1982 May;115(5):684–94.
- 138. Li H, Wang C. the relationships among structural social support, functional social support, and loneliness in older adults: analysis of regional differences based on a multigroup structural equation model. Front Psychol. 2021 Sep 9;12:732173.
- 139. Santini ZI, Jose PE, York Cornwell E, Koyanagi A, Nielsen L, Hinrichsen C, et al. Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): a longitudinal mediation analysis. Lancet Public Health. 2020 Jan;5(1):e62–70.
- 140. Montes-Berges B, Augusto JM. Exploring the relationship between perceived emotional intelligence, coping, social support and mental health in nursing students. J Psychiatr Ment Health Nurs. 2007 Apr;14(2):163–71.
- 141. Gallo LC, Fortmann AL, McCurley JL, Isasi CR, Penedo FJ, Daviglus ML, et al. Associations of structural and functional social support with diabetes prevalence in U.S. Hispanics/Latinos: results from the HCHS/SOL Sociocultural Ancillary Study. J Behav Med. 2015 Feb;38(1):160–70.
- 142. Pollack JM, Rutherford MW, Seers A, Coy AE, Hanson S. Exploring entrepreneurs' social network ties: quantity versus quality. J Bus Ventur. 2016 Dec;6:28–35.
- 143. Hertzog C, Kramer AF, Wilson RS, Lindenberger U. Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol Sci Public Interest. 2008 Oct;9(1):1–65.
- 144. Pan X, Chee KH. The power of weak ties in preserving cognitive function: a longitudinal study of older Chinese adults. Aging Ment Health. 2020 Jul 2;24(7):1046–53.
- 145. Thoits PA. Mechanisms linking social ties and support to physical and mental health. J Health Soc Behav. 2011 Jun;52(2):145–61.
- 146. Stern Y. Cognitive reserve. Neuropsychologia. 2009 Aug;47(10):2015-28.
- 147. Valenzuela MJ, Sachdev P, Wen W, Chen X, Brodaty H. lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE. 2008 Jul 9;3(7):e2598.

- 148. Marks SM. Association of lifetime cognitive engagement and low β-amyloid deposition. Arch Neurol. 2012 May 1;69(5):623.
- 149. Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012 Nov;11(11):1006–12.
- 150. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002 Mar;8(3):448–60.
- 151. Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci. 2013 Oct;17(10):502–9.
- 152. Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS. The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol. 2006 May;5(5):406–12.
- 153. Sharifian N, Zaheed AB, Morris EP, Sol K, Manly JJ, Schupf N, et al. Social network characteristics moderate associations between cortical thickness and cognitive functioning in older adults. Alzheimers Dement. 2022 Feb;18(2):339–47.
- 154. Saito T, Murata C, Saito M, Takeda T, Kondo K. Influence of social relationship domains and their combinations on incident dementia: a prospective cohort study. J Epidemiol Community Health. 2018 Jan;72(1):7–12.
- 155. Luethi M, Meier B, Sandi C. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Front Behav Neurosci. 2008;2:5.
- 156. Souza-Talarico JND, Marin MF, Sindi S, Lupien SJ. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement neuropsychol. 2011 Mar;5(1):8–16.
- 157. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009 Jun;10(6):434–45.
- 158. Cohen S, Syme SL, editors. Social support and health. Orlando, Fla: Academic Press; 1985. p. 390.
- 159. Cohen S. Social relationships and health. Am Psychol. 2004 Nov;59(8):676-84.
- 160. Baum A, Taylor SE, Singer JE, editors. Handbook of psychology and health Volume IV, Social psychological aspects of health. 1st ed<sup>-</sup> Abingdon, Oxon: Routledge; 2020.
- Cohen S, Wills TA. Stress, social support, and the buffering hypothesis. Psychol Bull. 1985 Sep;98(2):310–57.

- 162. Fang F, Hughes TF, Weinstein A, Dodge HH, Jacobsen EP, Chang CCH, et al. Social isolation and loneliness in a population study of cognitive impairment: the MYHAT study. J Appl Gerontol. 2023 Dec;42(12):2313–24.
- 163. Golden J, Conroy RM, Lawlor BA. Social support network structure in older people: underlying dimensions and association with psychological and physical health. Psychol Health Med. 2009 May;14(3):280–90.
- 164. Belessiotis-Richards C, Livingston G, Marston L, Mukadam N. A cross-sectional study of potentially modifiable risk factors for dementia and cognitive function in India: a secondary analysis of 10/66, LASI, and SAGE data. Int J Geriat Psychiatry. 2022 Feb;37(2):gps.5661.
- 165. La Fleur CG, Salthouse TA. Which aspects of social support are associated with which cognitive abilities for which people? J Gerontol B Psychol Sci Soc Sci. 2016 Jan 18;gbv119.
- 166. Wenger GC. A network typology: from theory to practice. J Aging Stud. 1991 Jun;5(2):147–62.
- 167. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997 Dec;9(S1):173–6.
- 168. Arevalo-Rodriguez I, Smailagic N, Roqué I Figuls M, Ciapponi A, Sanchez-Perez E, Giannakou A, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2021 Jul;7(7):CD010783.
- 169. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J American Geriatrics Society. 2005 Apr;53(4):695–9.
- 170. Wechsler D. Wechsler Memory Scale. 3rd ed. San Antonio, TX: The Psychological Corporation; 1997.
- 171. Sörman DE, Rönnlund M, Sundström A, Norberg M, Nilsson LG. Social network size and cognitive functioning in middle-aged adults: cross-sectional and longitudinal associations. J Adult Dev. 2017 Jun;24(2):77–88.
- 172. Bourassa KJ, Memel M, Woolverton C, Sbarra DA. Social participation predicts cognitive functioning in aging adults over time: comparisons with physical health, depression, and physical activity. Aging Ment Health. 2017 Feb;21(2):133–46.
- 173. Bae S. Autoregressive cross-lagged modelling of the relationship between social activity, depressive symptoms, and cognitive function in Korean elderly. Psychogeriatrics. 2021 May;21(3):350–8.

- 174. Choi Y, Park S, Cho KH, Chun S, Park E. A change in social activity affect cognitive function in middle-aged and older Koreans: analysis of a Korean longitudinal study on aging (2006–2012). Int J Geriat Psychiatry. 2016 Aug;31(8):912–9.
- 175. Kim J, Park GR. Prolonged social isolation and cognitive function in older adults: lack of informal social contact versus formal social activity as the source of social isolation. Aging Ment Health. 2023 Dec 2;27(12):2438–45.
- 176. Son J, Sung P. The reciprocal relationship between social engagement and cognitive function among older adults in South Korea. J Appl Gerontol. 2023 May;42(5):928–41.
- 177. Barnes LL, Mendes De Leon CF, Wilson RS, Bienias JL, Evans DA. Social resources and cognitive decline in a population of older African Americans and whites. Neurology. 2004 Dec 28;63(12):2322–6.
- 178. Goldberg TE, Choi J, Lee S, Gurland B, Devanand DP. Effects of restriction of activities and social isolation on risk of dementia in the community. Int Psychogeriatr. 2021 Nov;33(11):1207–15.
- 179. James BD, Wilson RS, Barnes LL, Bennett DA. Late-life social activity and cognitive decline in old age. J Int Neuropsychol Soc. 2011 Nov;17(6):998–1005.
- 180. Park S, Kwon E, Lee H. Life course trajectories of later-life cognitive functions: does social engagement in old age matter? Int. J. Environ. Res. Public Health. 2017 Apr 7;14(4):393.
- 181. Green AF, Rebok G, Lyketsos CG. Influence of social network characteristics on cognition and functional status with aging. Int. J. Geriatr. Psychiatry. 2008;23(9):972–8.
- 182. Duan Y, Jiang S, Yin Z, Wang S, Gao J, Yang M, et al. Association of social isolation and cognitive performance: a longitudinal study using a four-wave nationwide survey. BMC Public Health. 2023 Jul 22;23(1):1409.
- 183. Yu B, Steptoe A, Chen Y, Jia X. Social isolation, rather than loneliness, is associated with cognitive decline in older adults: the China Health and Retirement Longitudinal Study. Psychol Med. 2021 Oct;51(14):2414–21.
- 184. Glei DA, Landau DA, Goldman N, Chuang YL, Rodríguez G, Weinstein M. Participating in social activities helps preserve cognitive function: an analysis of a longitudinal, population-based study of the elderly. Int J Epidemiol. 2005 Aug 1;34(4):864–71.
- 185. Lara E, Caballero FF, Rico-Uribe LA, Olaya B, Haro JM, Ayuso-Mateos JL, et al. Are loneliness and social isolation associated with cognitive decline? Int J Geriat Psychiatry. 2019 Nov;34(11):1613–22.
- 186. Béland F, Zunzunegui MV, Alvarado B, Otero A, Del Ser T. Trajectories of cognitive decline and social relations. J Gerontol B Psychol Sci Soc Sci. 2005 Nov;60(6):P320–30.

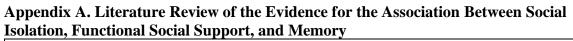
- 187. Shankar A, Hamer M, McMunn A, Steptoe A. Social isolation and loneliness: relationships with cognitive function during 4 years of follow-up in the English Longitudinal Study of Ageing. Psychosom Med. 2013 Feb;75(2):161–70.
- 188. Fong TG, Fearing MA, Jones RN, Shi P, Marcantonio ER, Rudolph JL, et al. Telephone Interview for Cognitive Status: creating a crosswalk with the Mini-Mental State Examination. Alzheimers Dement. 2009 Nov;5(6):492–7.
- 189. Pfeiffer E. A Short Portable Mental Status Questionnaire for the assessment of organic brain deficit in elderly patients. J American Geriatrics Society. 1975 Oct;23(10):433–41.
- 190. De Yébenes MJG, Otero A, Zunzunegui MV, Rodríguez-Laso A, Sánchez-Sánchez F, Del Ser T. Validation of a short cognitive tool for the screening of dementia in elderly people with low educational level. Int J Geriat Psychiatry. 2003 Oct;18(10):925–36.
- 191. Du C, Dong X, Katz B, Li M. Source of perceived social support and cognitive change: an 8-year prospective cohort study. Aging Ment Health. 2022 Oct 2;1–10.
- 192. Freak-Poli R, Ryan J, Tran T, Owen A, McHugh Power J, Berk M, et al. Social isolation, social support and loneliness as independent concepts, and their relationship with health-related quality of life among older women. Aging Ment Health. 2022 Jul 3;26(7):1335–44.
- 193. Oh DJ, Yang HW, Kim TH, Kwak KP, Kim BJ, Kim SG, et al. Association of low emotional and tangible support with risk of dementia among adults 60 years and older in South Korea. JAMA Netw Open. 2022 Aug 11;5(8):e2226260.
- 194. Wang Y, Chen X, Hu Y. Relationship between social support and 7-year trajectories of cognitive decline: results from the China Health and Retirement Longitudinal Study. J Epidemiol Community Health. 2023 Sep;77(9):578–86.
- 195. Chen X, Wang Y, Strauss J, Zhao Y. China Health and Retirement Longitudinal Study (CHARLS). In: Gu D, Dupre ME, editors. Encyclopedia of Gerontology and Population Aging. Springer International Publishing; 2021. p. 948–56.
- 196. Langa KM, Ryan LH, McCammon RJ, Jones RN, Manly JJ, Levine DA, et al. The Health and Retirement Study harmonized cognitive assessment protocol project: study design and methods. Neuroepidemiology. 2020;54(1):64–74.
- 197. Han JW, Kim TH, Kwak KP, Kim K, Kim BJ, Kim SG, et al. Overview of the Korean Longitudinal Study on Cognitive Aging and Dementia. Psychiatry Investig. 2018 Aug 25;15(8):767–74.
- 198. Ikram MA, Brusselle GGO, Murad SD, Van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017 Sep;32(9):807–50.

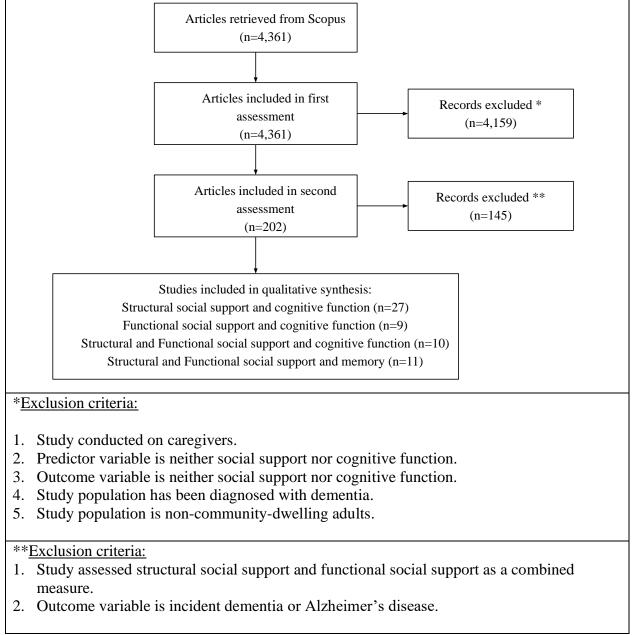
- 199. Lagergren M, Fratiglioni L, Hallberg IR, Berglund J, Elmståhl S, Hagberg B, et al. A longitudinal study integrating population, care and social services data. The Swedish National study on Aging and Care (SNAC). Aging Clin Exp Res. 2004 Apr;16(2):158–68.
- 200. Börsch-Supan A, Brandt M, Hunkler C, Kneip T, Korbmacher J, Malter F, et al. Data resource profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int J Epidemiol. 2013 Aug;42(4):992–1001.
- 201. Paiva AF, Cunha C, Voss G, Delerue Matos A. The interrelationship between social connectedness and social engagement and its relation with cognition: a study using SHARE data. Ageing Soc. 2023 Aug;43(8):1735–53.
- 202. Bennett DA, Schneider JA, Buchman AS, Mendes de Leon C, Bienias JL, Wilson RS. The Rush Memory and Aging Project: study design and baseline characteristics of the study cohort. Neuroepidemiology. 2005;25(4):163–75.
- 203. Dong X, Wong E, Simon MA. Study design and implementation of the PINE study. J Aging Health. 2014 Oct;26(7):1085–99.
- 204. Li M, Dong X. is social network a protective factor for cognitive impairment in US Chinese older adults? Findings from the PINE study. Gerontology. 2018;64(3):246–56.
- 205. Chiu CJ, Yang MC, Huang CC, Chang CM. From disability to death: a 20-year follow-up from the Taiwan Longitudinal Study on Aging. Clin Interv Aging. 2021 Oct;16:1813–23.
- 206. Radler BT, Ryff CD. Who participates? Accounting for longitudinal retention in the MIDUS national study of health and well-being. J Aging Health. 2010 Apr;22(3):307–31.
- 207. Lachman ME, Agrigoroaei S, Tun PA, Weaver SL. Monitoring cognitive functioning: psychometric properties of the Brief Test of Adult Cognition by Telephone. Assessment. 2014 Aug;21(4):404–17.
- 208. Zeng Y. Chinese Longitudinal Healthy Longevity Survey and some research findings. Geriatrics Gerontology Int. 2004;4(s1):S49-54
- 209. Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. Int J Epidemiol. 2012 Dec 1;41(6):1576–84.
- 210. Gow AJ, Corley J, Starr JM, Deary IJ. Which social network or support factors are associated with cognitive abilities in old age? Gerontology. 2013;59(5):454–63.
- 211. Seeman TE, Miller-Martinez DM, Stein Merkin S, Lachman ME, Tun PA, Karlamangla AS. Histories of social engagement and adult cognition: Midlife in the U.S. Study. J Gerontol B Psychol Sci Soc Sci. 2011 Jul 1;66B(Supplement 1):i141–52.
- 212. Meister LM, Zahodne LB. Associations between social network components and cognitive domains in older adults. Psychol Aging. 2022 Aug;37(5):591–603.

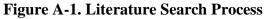
- 213. Johnson SC, Koscik RL, Jonaitis EM, Clark LR, Mueller KD, Berman SE, et al. The Wisconsin Registry for Alzheimer's Prevention: a review of findings and current directions. Alz & Dem Diag Ass & Dis Mo. 2018 Jan;10(1):130–42.
- 214. Zuelsdorff ML, Koscik RL, Okonkwo OC, Peppard PE, Hermann BP, Sager MA, et al. Social support and verbal interaction are differentially associated with cognitive function in midlife and older age. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2019 Mar 4;26(2):144–60.
- 215. Joyce J, Ryan J, Owen A, Hu J, McHugh Power J, Shah R, et al. Social isolation, social support, and loneliness and their relationship with cognitive health and dementia. Int J Geriatr Psychiatry. 2021 Nov 5;37(1).
- 216. Hsiao FY, Peng LN, Lee WJ, Chen LK. Sex-specific impacts of social isolation on loneliness, depressive symptoms, cognitive impairment, and biomarkers: results from the social environment and biomarker of aging study. Arch Gerontol Geriatr. 2023 Mar;106:104872.
- 217. Read S, Comas-Herrera A, Grundy E. Social isolation and memory decline in later-life. J Gerontol B Psychol Sci Soc Sci. 2020 Jan 14;75(2):367–76.
- 218. Yang R, Wang H, Edelman LS, Tracy EL, Demiris G, Sward KA, et al. Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. Age Ageing. 2020 Jul 1;49(4):599–604.
- 219. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977 Jun;1(3):385–401.
- 220. Sörman DE, Rönnlund M, Sundström A, Adolfsson R, Nilsson LG. Social relationships and risk of dementia: a population-based study. Int Psychogeriatr. 2015 Aug;27(8):1391–9.
- 221. Raina PS, Wolfson C, Kirkland SA, Griffith LE, Oremus M, Patterson C, et al. The Canadian Longitudinal Study on Aging (CLSA). Can J Aging. 2009 Sep;28(3):221–9.
- 222. Raina P, Wolfson C, Kirkland S, Griffith LE, Balion C, Cossette B, et al. Cohort profile: the Canadian Longitudinal Study on Aging (CLSA). Int J Epidemiol. 2019 Dec 1;48(6):1752–1753j.
- 223. Jagtap S, Dawson DR, Vandermorris S, Anderson ND, Davids-Brumer N, Dar M, et al. Known-groups and convergent validity of the Telephone Rey Auditory Verbal Learning Test: total learning scores for distinguishing between older adults with amnestic cognitive impairment and subjective cognitive decline. Arch Clin Neuropsychol. 2021 May 21;36(4):626–31.
- 224. Tuokko H, Griffith LE, Simard M, Taler V, O'Connell ME, Voll S, et al. The Canadian Longitudinal Study on Aging as a platform for exploring cognition in an aging population. Clin Neuropsychol. 2020 Jan 2;34(1):174–203.

- 225. Canadian Community Health Survey Healthy Aging (CCHS) [Internet]. Statistics Canada; 2008. Available from: https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5146
- 226. Canadian Longitudinal Study on Aging. Sampling and computation of response rates and sample weights for the tracking (telephone interview) participants and comprehensive participants [Internet]. 2023. Available from: https://www.clsa-elcv.ca/doc/5130
- 227. Social Support Survey instrument scoring instructions [Internet]. RAND Corporation. Available from: https://www.rand.org/health-care/surveys\_tools/mos/socialsupport/scoring.html
- 228. Richardson DB, Cole SR, Chu H, Langholz B. Lagging exposure information in cumulative exposure-response analyses. Am J Epidemiol. 2011 Dec 15;174(12):1416–22.
- 229. Khosravi Fard E, L Keelor J, Akbarzadeh Bagheban A, W Keith R. Comparison of the Rey Auditory Verbal Learning Test (RAVLT) and Digit Test among typically achieving and gifted students. Iran J Child Neurol. 2016;10(2):26–37.
- 230. Taqvi U. The Association between Social Isolation and Memory Function in Middle-aged and Older Adults: A Cross-sectional Analysis of the Comprehensive Cohort of the Canadian Longitudinal Study on Aging. [Internet]. [UWSpace]; 2023. Available from: http://hdl.handle.net/10012/19093
- 231. Canadian Longitudinal Study on Aging. Derived variables cognition (COG) normative data (tracking assessment) [Internet]. 2022. Available from: https://www.clsa-elcv.ca/doc/4749
- 232. O'Connell ME, Grant PR, McLean M, Griffith LE, Wolfson C, Kirkland S, et al. Measurement invariance of the Centre for Epidemiological Studies Depression Scale 10item short form (CES-D-10) in the Canadian Longitudinal Study on Aging. Alzheimers Dement. 2018;14:570
- 233. Fillenbaum G. OARS multidimensional functional assessment questionnaire. In: Older Americans Resources and Services Program of the Duke University Center for the Study of Aging and Human Development. Durham, NC: Duke University Center for the Study of Aging and Human Development; 1975.
- 234. Canadian Longitudinal Study on Aging. Derived variables- basic activities of daily living (ADL) & instrumental activities of daily living (IAL) (Tracking and Comprehensive assessments) v1.0 [Internet]. 2018. Available from: https://www.clsa-elcv.ca/sites/default/files/documents/dv\_adl\_10aug2018.pdf
- 235. Canadian Longitudinal Study on Aging. Derived variable alcohol use (ALC) (Tracking and Comprehensive assessments) v1.2 [Internet]. 2017. Available from: https://www.clsa-elcv.ca/doc/2267

- 236. Canadian Community Health Survey Healthy Aging (CCHS) [Internet]. 2010. Available from: https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=47963
- 237. Tremblay MS, Gorber SC. Canadian health measures survey: brief overview. Can J Public Health. 2007 Nov;98(6):453–6.
- 238. Government of Canada. Canadian Tobacco Use Monitoring Survey (CTUMS) 2012 [internet]. Government of Canada; 2012. Available from: https://www.canada.ca/en/healthcanada/services/publications/healthy-living/canadian-tobacco-use-monitoring-surveyctums-2012.html
- 239. Budtz–Jørgensen E, Keiding N, Grandjean P, Weihe P. Confounder selection in environmental epidemiology: assessment of health effects of prenatal mercury exposure. Ann Epidemiol. 2007 Jan;17(1):27–35.
- 240. Yzerbyt V, Muller D, Batailler C, Judd CM. New recommendations for testing indirect effects in mediational models: the need to report and test component paths. J Pers Soc Psychol. 2018 Dec;115(6):929–43.
- 241. Hayes AF. Introduction to mediation, moderation, and conditional process analysis : a regression-based approach. In: Little TD, editor. New York, NY: The Guilford Press; 2022. p. 92.
- 242. Imai K, Yamamoto T. Identification and sensitivity analysis for multiple causal mechanisms: revisiting evidence from framing experiments. Polit anal. 2013;21(2):141–71.
- 243. Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects; 2010. Available from: https://arxiv.org/abs/1011.1079
- 244. Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010;15(4):309–34.
- 245. Imai K, Tingley D, Yamamoto T. Experimental designs for identifying causal mechanisms. J R Stat Soc Ser A Stat Soc. 2013 Jan 1;176(1):5–51.
- 246. Yamamoto T. Identification and estimation of causal mediation effects with treatment noncompliance. Unpublished; 2013.
- 247. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis. J Stat Soft. 2014;59(5).
- 248. Kenny DA. Mediate [internet]. 2024. Available from: https://davidakenny.net/cm/mediate.htm
- 249. Cuzick J. Forest plots and the interpretation of subgroups. Lancet. 2005 Apr;365(9467):1308.
- 250. Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc.1996 Jun;91(434):473-89.


- 251. Buuren SV, Groothuis-Oudshoorn K. Mice : multivariate imputation by chained equations in R. J Stat Soft. 2011;45(3).
- 252. Rubin DB. Multiple Imputation for Nonresponse in Surveys. 1st ed. Wiley; 1987.
- 253. Heymans MW, Eekhout I. Chapter 9 Rubin's Rules. Applied missing data analysis with SPSS and (R) Studio. 2019. Available from: https://bookdown.org/mwheymans/bookmi/rubins-rules.html
- 254. Golberg M. Using multiple imputation to deal with missing data in the Canadian Longitudinal Study on Aging. University of Waterloo; 2023.
- 255. Hernan MA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002 Jan 15;155(2):176–84.
- 256. Santini ZI, Jose PE, York Cornwell E, Koyanagi A, Nielsen L, Hinrichsen C, et al. Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): a longitudinal mediation analysis. Lancet Public Health. 2020 Jan;5(1):e62–70.
- 257. O'Muircheartaigh C, English N, Pedlow S, Kwok PK. sample design, sample augmentation, and estimation for wave 2 of the NSHAP. J Gerontol B Psychol Sci Soc Sci. 2014 Nov 1;69(Suppl 2):S15–26.
- 258. Gable SL, Bedrov A. Social isolation and social support in good times and bad times. Curr Opin in Psychol. 2022 Apr;44:89–93.
- 259. Stickley A, Koyanagi A, Roberts B, Richardson E, Abbott P, Tumanov S, et al. Loneliness: its correlates and association with health behaviours and outcomes in nine countries of the former soviet union. PLoS ONE. 2013 Jul 4;8(7):e67978.
- 260. Tomaka J, Thompson S, Palacios R. The relation of social isolation, loneliness, and social support to disease outcomes among the elderly. J Aging Health. 2006 Jun;18(3):359–84.
- 261. Doubova SV, Pérez-Cuevas R, Espinosa-Alarcón P, Flores-Hernández S. Social network types and functional dependency in older adults in Mexico. BMC Public Health. 2010 Dec;10(1):104.
- 262. Litwin H, Landau R. Social network type and social support among the old-old. J Aging Stud. 2000 Jun;14(2):213–28.
- 263. Wilson RS, Boyle PA, James BD, Leurgans SE, Buchman AS, Bennett DA. Negative social interactions and risk of mild cognitive impairment in old age. Neuropsychology. 2015 Jul;29(4):561–70.
- 264. Cloutier-Fisher D, Kobayashi KM. Examining social isolation by gender and geography: conceptual and operational challenges using population health data in Canada. Gend Place Cult. 2009 Apr;16(2):181–99.


- 265. Conrad CD, Bimonte-Nelson HA. Impact of the hypothalamic–pituitary–adrenal/gonadal axes on trajectory of age-related cognitive decline. Prog Brain Res. 2010;182:31-76.
- 266. Hasan KMM, Rahman MdS, Arif KMT, Sobhani ME. Psychological stress and aging: role of glucocorticoids (GCs). Age (Dordr). 2012 Dec;34(6):1421–33.
- 267. Cotton K, Verghese J, Blumen HM. Gray matter volume covariance networks, social support, and cognition in older adults. J Gerontol B Psychol Sci Soc Sci. 2020 Jun 2;75(6):1219–29.
- 268. Van Der Velpen IF, Melis RJF, Perry M, Vernooij-Dassen MJF, Ikram MA, Vernooij MW. Social health is associated with structural brain changes in older adults: the Rotterdam Study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Jul;7(7):659–68.
- 269. Borenstein AR, Mortimer JA, Wu Y, Jureidini-Webb FM, Fallin MD, Small BJ, et al. Apolipoprotein E and cognition in community-based samples of African Americans and Caucasians. Ethn Dis. 2006;16(1):9–15.
- 270. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. Psychiatry Res. 1975 Nov;12(3):189–98.
- 271. Nyberg L. Functional brain imaging of episodic memory decline in ageing. J Intern Med. 2017 Jan;281(1):65–74.
- 272. Kenny DA, Judd CM. Power anomalies in testing mediation. Psychol Sci. 2014 Feb;25(2):334–9.
- 273. Hayes AF. Beyond Baron and Kenny: statistical mediation analysis in the new millennium. Commun Monogr. 2009 Dec;76(4):408–20.
- 274. Preacher KJ, Kelley K. Effect size measures for mediation models: quantitative strategies for communicating indirect effects. Psychol Methods. 2011;16(2):93–115.
- 275. Rucker DD, Preacher KJ, Tormala ZL, Petty RE. Mediation analysis in social psychology: current practices and new recommendations. J Pers Soc Psychol. 2011 Jun;5(6):359–71.
- 276. Hayes AF, Scharkow M. The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: does method really matter? Psychol Sci. 2013 Oct;24(10):1918–27.
- 277. Carstensen LL. The influence of a sense of time on human development. Science. 2006 Jun 30;312(5782):1913–5.
- 278. Harasemiw O, Newall N, Shooshtari S, Mackenzie C, Menec V. From social integration to social isolation: the relationship between social network types and perceived availability of social support in a national sample of older Canadians. Res Aging. 2018 Sep;40(8):715–39.


- 279. Yoo S. The Association Between Functional Social Support and Memory: A Prospective Analysis of the Canadian Longitudinal Study on Aging [Internet]. [UWSpace]; 2021. Available from: http://hdl.handle.net/10012/17063
- 280. Ohman A. The Association Between Social Support Availability and Memory: A Cross-Sectional Analysis of the Canadian Longitudinal Study on Aging [Internet]. [UWSpace]; 2020. Available from: http://hdl.handle.net/10012/16002
- 281. Statistics Canada. Canadian Income Survey, 2015 [Internet]. Statistics Canada; 2015. Available from: https://www150.statcan.gc.ca/n1/daily-quotidien/170526/dq170526aeng.htm
- 282. Education highlight tables, 2016 census [Internet]. Statistics Canada; 2017. Available from: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/index-eng.cfm
- 283. MacKinnon DP, Warsi G, Dwyer JH. A simulation study of mediated effect measures. Multivariate Behav Res. 1995 Jan;30(1):41–62.
- 284. Pearl J. Direct and indirect effects. 2013. Available from: https://arxiv.org/abs/1301.2300
- 285. MacKinnon DP. Introduction to statistical mediation analysis [Internet]. 1st ed. Routledge; 2012. Available from: https://www.taylorfrancis.com/books/9781136676147
- 286. Miočević M, O'Rourke HP, MacKinnon DP, Brown HC. Statistical properties of four effect-size measures for mediation models. Behav Res. 2018 Feb;50(1):285–301.
- 287. Cain MK, Zhang Z, Bergeman CS. Time and other considerations in mediation design. Educ Psychol Meas. 2018 Dec;78(6):952–72.
- 288. Husk K, Blockley K, Lovell R, Bethel A, Bloomfield D, Warber S, Pearson M, Lang I, Byng R, Garside R. What approaches to social prescribing work, for whom, and in what circumstances? A protocol for a realist review. Systematic Reviews. 2016 Dec;5:1-7.
- 289. Canadian Longitudinal Study on Aging. 60-min questionnaire (Tracking main wave) v4.0 [Internet]. 2018. Available from: https://www.clsa-elcv.ca/doc/446
- 290. Canadian Longitudinal Study on Aging. Main wave telephone questionnaire (telephone follow up 1) v2.2 [Internet]. 2019. Available from: https://www.clsa-elcv.ca/doc/1235
- 291. Canadian Longitudinal Study on Aging. Derived variable chronic conditions (CCT/CCC) (tracking and comprehensive assessments) v1.1 [Internet]. 2018. Available from: https://www.clsa-elcv.ca/doc/2755
- 292. Canadian Longitudinal Study on Aging. Derived variable–depression (DEP) (Tracking and Comprehensive assessments) v1.1 [Internet]. 2018. Available from: https://www.clsa-elcv.ca/doc/2528

293. Canadian Longitudinal Study on Aging. Derived variable- education (ED) (Tracking and Comprehensive Assessments) v.10 [Internet]. 2018. Available from: <u>https://www.clsa-elcv.ca/sites/default/files/documents/dv\_ed\_10aug2018.pdf</u>

## Appendices







## Table A-1 Literature Search Strategy

Scopus

(TITLE ("Social Support\*" OR "social isolation" OR "social network\*" OR "social resources" OR "social engagement" OR "social connectedness" OR "social relationships" OR "Social environment" OR "social cohesion" OR "community networks") AND ABS (memory OR "Cognitive function" OR dementia\* OR "Cognitive Decline" OR "Cogni\*")

Retrieved 4,361 retrieved as of May 2<sup>nd</sup> 2024

| Author(s)                              | Title                                                                                                                                                            | Study<br>Design | Study Population                                                                                                                                 | Predictor Measures                                                                                                                                                                                                            | Outcome Measures                                                                                                                                                                                                               | Covariates                                                                                                                                                                                          | Conclusions and<br>Findings                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bae <sup>173</sup> , 2021              | Autoregressive cross-<br>lagged modelling of the<br>relationship between<br>social activity, depressive<br>symptoms, and cognitive<br>function in Korean elderly |                 |                                                                                                                                                  | Social activity<br>including social<br>gatherings,<br>participation in leisure,<br>culture, or sports, and<br>involvement in<br>community<br>engagements on a 11-<br>point scale (0=no<br>activity to 10=almost<br>every day) | Cognitive function<br>assessed through the<br>Korean version of the<br>Mini-Mental State<br>Examination (K-<br>MMSE) on a scale<br>from 0-30, with<br>higher scores<br>indicating higher<br>cognitive function                 | Sociodemographic:<br>Age and education                                                                                                                                                              | Social activity was<br>found to have a<br>significant positive<br>relationship with<br>cognitive function<br>(β=0.1040; p<0.001)                                                                                                                                                                                                                          |
| Barnes et<br>al. <sup>177</sup> , 2004 | Social Resources and<br>Cognitive Decline in a<br>Population of Older<br>African Americans and<br>Whites                                                         | Longitudinal    | 3,899 participants<br>from the Chicago<br>Health and Aging<br>Project aged 65<br>and older across<br>two follow-up<br>timepoints over 6<br>years | Social networks:<br>frequency of contact<br>with network members<br>Social engagement:<br>participation in social<br>and productive<br>activities                                                                             | Cognition function<br>Episodic memory:<br>East Boston Story<br>immediate and<br>delayed recall test<br>Perceptual speed:<br>Symbol Digit<br>Modalities Test<br>Global cognition:<br>Mini-Mental State<br>Examination<br>(MMSE) | Sociodemographic:<br>Age, sex, race,<br>education, marital<br>status, income<br>Lifestyle: Cognitive<br>and physical<br>activity<br>Health status:<br>Depressive<br>symptoms, chronic<br>conditions | Greater social<br>networks and<br>engagement were<br>significantly<br>associated with<br>better cognitive<br>function $\beta$ =0.003;<br>p<0.001 and<br>$\beta$ =0.060; p<0.001<br>respectively)<br>For every point<br>decrease on the<br>social engagement<br>scale an average<br>decrease of 0.009<br>was observed in<br>cognitive function<br>overtime |

## Table A-2. Summary of the Literature on the Association between Social Isolation and Cognitive Function

| Béland et<br>al. <sup>186</sup> , 2005   | Trajectories of Cognitive<br>Decline and Social<br>Relations                                                                                                                     | Longitudinal        | 1,571 participants<br>aged 65 and older<br>from the Aging in<br>Leganés study<br>including 4 waves<br>of data collection<br>across 7 years                                      | Social networks:<br>number of social ties<br>and frequency of<br>social engagement<br>Social integration:<br>frequency of<br>participation in four<br>social<br>activities/community<br>events | Overall cognitive<br>function assessed by<br>the Leganés<br>Cognitive Test                                             | Sociodemographic:<br>Age, gender,<br>education<br>Health status:<br>Chronic conditions<br>(stroke<br>hypertension, heart<br>disease, and<br>diabetes),<br>depressive<br>symptoms, and<br>functional<br>limitations | integration was<br>associated with<br>accelerated<br>cognitive decline<br>overtime                                                                                                                                                                                               |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Richards et                              | A Cross-Sectional Study<br>of Potentially Modifiable<br>Risk Factors for Dementia<br>and Cognitive Function in<br>India: A Secondary<br>Analysis of 10/66, LASI<br>and SAGE Data | Cross-<br>sectional |                                                                                                                                                                                 | Social isolation<br>including frequency of<br>contact with social and<br>participation in social<br>activities                                                                                 |                                                                                                                        | Age,<br>socioeconomic<br>position, locality<br>(Urban/Rural), sex,<br>income, food<br>insecurity                                                                                                                   | Social isolation was<br>associated with<br>lower cognitive<br>scores in all three<br>datasets. In 10/66<br>( $\beta$ =-0.40; 95% CI: -<br>0.54 to -0.25), in<br>LASI ( $\beta$ =-0.31; 95%<br>CI:-0.53 to -0.09),<br>and in SAGE ( $\beta$ =-<br>0.22; 95% CI:-0.36<br>to -0.08) |
| Bourassa et<br>al. <sup>172</sup> , 2017 | Social Participation<br>Predicts Cognitive<br>Functioning in Aging<br>Adults over time:<br>Comparisons with<br>Physical Health,<br>Depression, and Physical<br>Activity          | Longitudinal        | 19,832 participants<br>aged 50 and older<br>from the Survey of<br>Health, Ageing,<br>and Retirement in<br>Europe (SHARE)<br>study across three<br>waves of data over<br>6 years | frequency of<br>participation in<br>various social<br>activities                                                                                                                               | Cognitive functioning<br>including<br>Executive function:<br>verbal fluency<br>Memory: immediate<br>and delayed recall | Age, gender, and<br>income<br>Health status:                                                                                                                                                                       | At each timepoint<br>(baseline, follow-up<br>one, and follow-up<br>two) increased social<br>participation was<br>positively associated<br>with memory<br>function and<br>executive function                                                                                      |

| Choi et<br>al. <sup>174</sup> , 2016 | A Change in Social<br>Activity affect Cognitive<br>Function in Middle-aged<br>and Older Koreans:<br>Analysis of a Korean<br>Longitudinal Study on<br>Aging | Longitudinal | 6,076 participants<br>aged 45 and older<br>from the Korean<br>Longitudinal Study<br>of Aging (KLoSA)<br>across 4 waves of<br>data over 6 years                                                       |                                                                                                                                            | Cognitive function<br>assessed through the<br>Korean version of the<br>Mini-Mental State<br>Examination (K-<br>MMSE) on a scale<br>from 0-30, with<br>Normal: ≥24<br>Mild cognitive<br>impairment: 18-23<br>Severe cognitive<br>impairment: ≤17 | Sociodemographic:<br>Sex, age, marital<br>status, education,<br>income,<br>employment status,<br>region<br>Health status:<br>chronic diseases<br>Lifestyle: Exercise | The "no<br>participation to<br>participation" group<br>$(\beta=0.778, p<0.001)$<br>and the "consistent<br>participation" group<br>$\beta=0.968, p<0.001$<br>showed reduced<br>cognitive decline<br>compared to the<br>"consistent non-<br>participation" group |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duan et<br>al. <sup>182</sup> , 2023 | Association of Social<br>Isolation and Cognitive<br>Performance: A<br>Longitudinal Study using<br>a Four-Wave Nationwide<br>Survey                         | Longitudinal | 9,367 participants<br>from the China<br>Health and<br>Retirement<br>Longitudinal Study<br>(CHARLS) over<br>the age of 45 at<br>baseline, followed-<br>up every 2 years<br>over four waves of<br>data | from 0-5 with higher<br>scores indicating<br>higher levels of social<br>isolation including:<br>Living arrangements,<br>Visits with family | measured by an<br>adapted version of the<br>Mini-Mental State<br>Examination                                                                                                                                                                    | Lifestyle: Smoking<br>and Alcohol use                                                                                                                                | associated with poor<br>cognitive scores at<br>baseline (β=-1.38;                                                                                                                                                                                              |

| Ertel et                 | Effects of Social         | Longitudinal | 16, 638            | Social integration:   | Memory: Immediate  | Sociodemographic:    | Increase social        |
|--------------------------|---------------------------|--------------|--------------------|-----------------------|--------------------|----------------------|------------------------|
| al. <sup>19</sup> , 2008 | Integration on Preserving |              | participants aged  | marital status,       | and delayed recall | Age, gender, race,   | integration at         |
|                          | Memory Function in a      |              | 50 and older from  | volunteer activities, | task               | income, education    | baseline predicted     |
|                          | Nationally Representative |              | the Health and     | frequency of contact  |                    |                      | slower declines in     |
|                          | US Elderly Population     |              | Retirement Study   | with network members  |                    | Health status:       | memory overtime        |
|                          |                           |              | (HRS) over 6 years |                       |                    | chronic conditions,  | (p<0.01)               |
|                          |                           |              |                    |                       |                    | functional           |                        |
|                          |                           |              |                    |                       |                    | limitations,         | Memory declined at     |
|                          |                           |              |                    |                       |                    | activities of daily  | double the rate in the |
|                          |                           |              |                    |                       |                    | living, instrumental | least integrated       |
|                          |                           |              |                    |                       |                    | activities of daily  | group compared to      |
|                          |                           |              |                    |                       |                    | living, depressive   | the most integrated    |
|                          |                           |              |                    |                       |                    | symptoms             |                        |

| Fang et                   | Social Isolation and       | Cross-    | 1,982 participants, | Social Isolation        | Cognitive             | Demographic: Age,    | The odds of          |
|---------------------------|----------------------------|-----------|---------------------|-------------------------|-----------------------|----------------------|----------------------|
| al. <sup>162</sup> , 2023 | Loneliness in a Population | sectional | 65 years or older   |                         | Impairment: The       | Gender, Education,   | cognitive            |
|                           | Study of Cognitive         |           | (mean age=77.65     | Social activities:      | Clinical Dementia     | Race, Marital        | impairment were      |
|                           | Impairment: The MYHAT      |           | years) from the     | Volunteering,           | Rating Scale (0-5),   | status, Living       | 54% higher in        |
|                           | Study                      |           | Monongahela-        | Organization meeting,   | with 0=cognitively    | arrangement,         | socially isolated    |
|                           |                            |           | Youghiogheny        | Provision of unpaid     | normal and $\geq 0.5$ | Working status       | individuals          |
|                           |                            |           | Healthy Aging       | help to network         | =cognitively impaired |                      | compared to non-     |
|                           |                            |           | Team (MYHAT)        | members, Interaction    |                       | Lifestyle: Smoking   | socially isolated    |
|                           |                            |           |                     | with friends or family  |                       | status, Alcohol      | individuals          |
|                           |                            |           |                     | (not living in the same |                       | consumption,         | (OR=1.54; 95% CI:    |
|                           |                            |           |                     | household)              |                       | Exercise             | 1.28-1.86). The odds |
|                           |                            |           |                     | ,                       |                       |                      | of cognitive         |
|                           |                            |           |                     |                         |                       | Vascular health:     | impairment in        |
|                           |                            |           |                     |                         |                       | Hypertension,        | socially isolated    |
|                           |                            |           |                     |                         |                       | Cardiovascular       | compared to non-     |
|                           |                            |           |                     |                         |                       | disease,             | socially isolated    |
|                           |                            |           |                     |                         |                       | Cerebrovascular      | individuals          |
|                           |                            |           |                     |                         |                       | disease, Diabetes,   | decreased            |
|                           |                            |           |                     |                         |                       | Irregular heartbeat, | approximately 20%    |
|                           |                            |           |                     |                         |                       | Obesity              | when loneliness was  |
|                           |                            |           |                     |                         |                       |                      | added to the model,  |
|                           |                            |           |                     |                         |                       | Sleep complaints     | but remained         |
|                           |                            |           |                     |                         |                       |                      | significant          |
|                           |                            |           |                     |                         |                       | Depressive           | (OR=1.35; 95% CI:    |
|                           |                            |           |                     |                         |                       | symptoms (mCES-      | 1.16-1.58)           |
|                           |                            |           |                     |                         |                       | D)                   | 1110 1100)           |
|                           |                            |           |                     |                         |                       | 2)                   |                      |
|                           |                            |           |                     |                         |                       | General health:      |                      |
|                           |                            |           |                     |                         |                       | Self-rated health,   |                      |
|                           |                            |           |                     |                         |                       | Number of            |                      |
|                           |                            |           |                     |                         |                       | medications,         |                      |
|                           |                            |           |                     |                         |                       | Instrumental         |                      |
|                           |                            |           |                     |                         |                       | activities of daily  |                      |
|                           |                            |           |                     |                         |                       | living               |                      |
|                           |                            |           |                     |                         |                       |                      |                      |
|                           |                            |           |                     |                         |                       |                      |                      |

| Fankhauser<br>et al. <sup>56</sup> ,<br>2017 | Social Network and<br>Cognitive Functioning in<br>Old Age                                                                                                     | Cross-<br>sectional | 189 participants<br>between the ages<br>of 59-94 years                                                                                                                      | Structural support:<br>size of social network,<br>frequency of contact                                                                                                                                   | Cognitive function:<br>Mini-Mental State<br>Examination                                        | Sociodemographic:<br>Age, gender,<br>education<br>Health status:<br>Depressive<br>symptoms and<br>activities of daily<br>living                      | Number of social<br>contacts was<br>associated with<br>lower odds of<br>cognitive<br>impairment<br>(OR=0.96; 95% CI:<br>0.93-0.99)                                                                                                                                                                                                                                                          |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glei et<br>al. <sup>184</sup> , 2005         | Participating in Social<br>Activities helps Preserve<br>Cognitive Function: An<br>Analysis of a<br>Longitudinal, Population-<br>Based Study of the<br>Elderly | Longitudinal        | 2,387 participants<br>aged 60 or older<br>from the Study of<br>Health and Living<br>Status of the<br>Elderly in Taiwan<br>across 4 follow-up<br>timepoints over 11<br>years | Social network:<br>marital status, number<br>of ties and frequency<br>of contact<br>Participation in social<br>activities:<br>'no activities', 'one or<br>two activities', 'three<br>or more activities' | Cognitive<br>impairment: 5 items<br>from the Short<br>Portable Mental<br>Status Questionnaire  | Sociodemographic:<br>Sex, age,<br>occupational status,<br>economic<br>satisfaction<br>Health status:<br>functional status,<br>depressive<br>symptoms | Participants who<br>participated in 'one<br>or two' social<br>activities failed on<br>average 13% less<br>cognitive tests<br>compared to those<br>who participated in<br>no social activities.<br>Those who<br>participated in 'three<br>or more' social<br>activities failed on<br>average 33% less<br>cognitive tests<br>compared to those<br>who participated in<br>no social activities |
| Goldberg et<br>al. <sup>178</sup> , 2021     | Effects of Restriction of<br>Activities and Social<br>Isolation on Risk of<br>Dementia in the<br>Community                                                    | Longitudinal        | 855 participants<br>aged 65 years or<br>older from the<br>North Manhattan<br>Aging Project<br>across three<br>follow-up<br>timepoints across<br>~5 years                    | Social Isolation:<br>including lack of<br>social contact and<br>participation in social<br>activities                                                                                                    | Episodic memory<br>decline: immediate<br>recall from the<br>Selective Reminding<br>verbal list | Sociodemographic:<br>Sex, age, education                                                                                                             | Social isolation was<br>associated with<br>worse episodic<br>memory function<br>overtime ( $\beta$ =-2.66;<br>95% CI: -3.72, -<br>1.59).                                                                                                                                                                                                                                                    |

| Golden et<br>al. <sup>163</sup> , 2009 | Social Support Network<br>Structure in Older People:<br>Underlying Dimensions<br>and Association with<br>Psychological and<br>Physical Health | Cross-<br>sectional | 1,334 participants<br>aged 65 years or<br>older                                                                                                        | Social engagement:<br>Wenger social support<br>network type<br>assessment | Cognitive<br>impairment: Mini-<br>Mental State<br>Examination<br>A score <24 indicated<br>cognitive impairment |                                                                         | High social<br>engagement was<br>associated with a<br>decreased odds of<br>cognitive<br>impairment<br>(OR=0.68 p<0.001) |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Green et<br>al. <sup>181</sup> , 2008  | Influence of Social<br>Network Characteristics<br>on Cognition and<br>Functional Status with<br>Aging                                         | Longitudinal        | 874 participants<br>(mean age=47.3<br>years) from the<br>Baltimore<br>Epidemiologic<br>Catchment Area<br>(ECA) study over<br>~10 years of<br>follow-up | Structural support:<br>Social network size<br>and frequency of<br>contact | Cognitive function:<br>MMSE and delayed<br>recall task                                                         | Age, sex, race,<br>education,<br>household income<br>Health status: CVD | overtime (β=-0.008;<br>95% CI: -<br>0.080,0.064)                                                                        |

| Harling et al. <sup>55</sup> , 2020   | Social Contact, Social<br>Support, and Cognitive<br>Health in a Population-<br>based Study of Middle-<br>aged and Older Men and<br>Women in Rural South<br>Africa | Cross-<br>sectional | 5,059 participants<br>aged 40 years or<br>older from the<br>Health and Aging<br>in Africa: A<br>Longitudinal Study<br>of an INDEPTH<br>community in<br>South Africa<br>(HAALSI) | Structural support:<br>Social contact (number<br>of network members<br>and frequency of<br>contact) | Cognitive<br>impairment: Scores of<br>cognition including<br>orientation in time,<br>episodic memory<br>(immediate and<br>delayed recall task),<br>and ability to follow<br>counting patterns<br>dichotomized into<br>'cognitively<br>impaired' and 'not<br>cognitively impaired' | Sociodemographic<br>(childhood):<br>country of origin,<br>education, self-<br>reported literacy,<br>self-rated childhood<br>health, and father's<br>occupation<br>Sociodemographic<br>(current): marital<br>status, household<br>size and wealth,<br>and employment<br>status | Smaller, denser<br>social networks were<br>associated with<br>cognitive<br>impairment |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| James et<br>al. <sup>179</sup> , 2011 | Late-Life Social Activity<br>and Cognitive Decline in<br>Old Age                                                                                                  | Longitudinal        | 1,138 participants<br>from the Rush<br>Memory and<br>Aging Project<br>(mean age=79.6<br>years) follow-up<br>over 12 years                                                       | Social activity:<br>frequency of<br>participation in six<br>common types of<br>social activities    | Cognitive function:<br>combination of tests<br>of episodic memory<br>working memory,<br>perceptual speed,<br>semantic memory,<br>and visuospatial<br>ability                                                                                                                      | Sociodemographic:<br>age, sex, education,<br>race<br>Health status:<br>depression, chronic<br>conditions,<br>disability<br>Social network size<br>Neuroticism,<br>extraversion<br>Cognitive and<br>physical activity                                                          | to infrequent social<br>activity was<br>associated with a                             |

| Kim &                    | Prolonged Social Isolation | Longitudinal | 2,740 participants | Social contact:         | Cognitive function                      | Sociodemographic:    | Absence of social         |
|--------------------------|----------------------------|--------------|--------------------|-------------------------|-----------------------------------------|----------------------|---------------------------|
| Park <sup>175</sup> ,    | and Cognitive Function in  | 8            | ('social contact'  | Frequency of contact    | assessed by the                         | Age, Sex,            | contact was linked        |
| 2023                     | Older Adults: Lack of      |              | sample) and 2.785  | with network members    |                                         |                      | to declines in            |
|                          | Informal Social Contact    |              | participants       | (dichotomized into      | Mini-Mental State                       | Religious            | cognitive function        |
|                          | versus Formal Social       |              | ('social activity' | 'frequent' and          | Examination (K-                         | Affiliation, Marital | until wave 3 ( $\beta$ =- |
|                          | Activity as the Source of  |              | sample) aged 45    | 'infrequent' social     | MMSE) on a scale                        | status, Residence    | 2.135; p<0.001)           |
|                          | Social Isolation           |              | years or older at  | contact groups)         | from 0-30 with higher                   | (Urban/Rural)        | , <b>1</b> ,              |
|                          |                            |              | baseline across 7  |                         | scores indicating                       |                      | Absence of social         |
|                          |                            |              | waves of data over | Social activity:        | better cognitive                        | Lifestyle            | activity was              |
|                          |                            |              | 12 years from the  | Participation in 7      | function.                               | Behaviours:          | associated with           |
|                          |                            |              | Korean             | social activities       |                                         | Smoking, Drinking,   | cognitive decline up      |
|                          |                            |              | Longitudinal Study | (dichotomized into 'no  |                                         | Exercise             | to wave 5 ( $\beta$ =-    |
|                          |                            |              | of Aging (KLoSA)   | social activity' and    |                                         |                      | 3.073; p<0.001)           |
|                          |                            |              |                    | 'otherwise'             |                                         |                      |                           |
|                          |                            |              |                    |                         |                                         | Health Status:       |                           |
|                          |                            |              |                    |                         |                                         | Instrumental         |                           |
|                          |                            |              |                    |                         |                                         | activities of daily  |                           |
|                          |                            |              |                    |                         |                                         | living, Depressive   |                           |
|                          |                            |              |                    |                         |                                         | symptoms (CES-       |                           |
|                          |                            |              |                    |                         |                                         | D10)                 |                           |
| Kotwal et                | Social Function and        | Cross-       | 3,310 participants | Structural support:     | Mild Cognitive                          |                      | Smaller network size      |
| al. <sup>54</sup> , 2016 | e                          | sectional    | between the ages   | network structure (size | 1 · · · · · · · · · · · · · · · · · · · | Age, sex,            | and increased             |
|                          | from a US Nationally       |              | of 62-90 years     | and density),           | (Montreal Cognitive                     | education, race,     | density was               |
|                          | Representative Survey of   |              | from the National  | social engagement       | Assessment (MoCA)                       | marital status       | associated with risk      |
|                          | Older Adults               |              | Social life Health | (community              | >22 points=normal                       |                      | for MCI                   |
|                          |                            |              | and Aging Project  | involvement and         | 18-22 points=MCI                        | Health status: Self- |                           |
|                          |                            |              | (NSHAP)            | socializing)            | <18                                     | rated health,        |                           |
|                          |                            |              |                    |                         | points=Dementia)                        | depressive           | Less community            |
|                          |                            |              |                    |                         |                                         | symptoms             | involvement was           |
|                          |                            |              |                    |                         |                                         |                      | also more highly          |
|                          |                            |              |                    |                         |                                         | Lifestyle factors:   | correlated in those       |
|                          |                            |              |                    |                         |                                         | Alcohol              | who screen positive       |
|                          |                            |              |                    |                         |                                         | consumption,         | for MCI                   |
|                          |                            |              |                    |                         |                                         | smoking, physical    |                           |
|                          |                            |              |                    |                         |                                         | activity             |                           |

| LaFleur &                    | Which Aspects of    | Cross-       | 2,613 cognitively     | Structural support:     | Cognitive ability:       | Sociodemographic:    | Increased social                |
|------------------------------|---------------------|--------------|-----------------------|-------------------------|--------------------------|----------------------|---------------------------------|
| Salthouse <sup>165</sup> ,   | Social Support Are  | sectional    | normal adults         | Social embeddedness     | Vocabulary (Wechsler     | age, sex, education  | contact with friends            |
| 2017                         | Associated with     |              | stratified into three | (Frequency of contact   | Adult Intelligence       |                      | but not family was              |
|                              | Which Cognitive     |              | age groups (18-39,    | with family and         | Scale, a picture         | Health status: self- | positively associated           |
|                              | Abilities for Which |              | 40-59, 60-99) from    | friends)                | naming task, and         | related health       | with memory                     |
|                              | People?             |              | the Virginia          |                         | synonym and antonym      |                      | function ( $\hat{\beta}=0.06$ ; |
|                              |                     |              | Cognitive Aging       |                         | matching), Speed         | General              | p<0.01) however,                |
|                              |                     |              | Project.              |                         | (comparison task and     | intelligence         | this association was            |
|                              |                     |              | -                     |                         | digit symbol task),      | _                    | not significant after           |
|                              |                     |              |                       |                         | Reasoning (letter sets   |                      | the inclusions of               |
|                              |                     |              |                       |                         | task, Shipley's          |                      | covariates                      |
|                              |                     |              |                       |                         | Abstraction, and         |                      |                                 |
|                              |                     |              |                       |                         | matrix reasoning),       |                      |                                 |
|                              |                     |              |                       |                         | Space (form boards       |                      |                                 |
|                              |                     |              |                       |                         | task, paper folding      |                      |                                 |
|                              |                     |              |                       |                         | task, and a spatial      |                      |                                 |
|                              |                     |              |                       |                         | relations task) and      |                      |                                 |
|                              |                     |              |                       |                         | Memory (Wechsler         |                      |                                 |
|                              |                     |              |                       |                         | Memory Scale-            |                      |                                 |
|                              |                     |              |                       |                         | Logical memory task,     |                      |                                 |
|                              |                     |              |                       |                         | free recall task, and    |                      |                                 |
|                              |                     |              |                       |                         | paired associates' task) |                      |                                 |
| Lara et al. <sup>185</sup> , | Are Loneliness and  | Longitudinal | 1,691 participants    | Social isolation:       | A global composite       | Sociodemographic:    | Increased social                |
| 2019                         | Social Isolation    |              | aged 50 years or      | marital status, living  | cognition score and      | Age, sex, education  | isolation was                   |
|                              | Associated with     |              | older from "Edad      | arrangement, contact    | subtypes of cognition:   |                      | associated with                 |
|                              | Cognitive Decline   |              | con Salud" over ~     | with friends, family,   | word list immediate      | Lifestyle            | lower cognitive                 |
|                              |                     |              | 3 years of follow-    | and children, and       | and delayed verbal       | behaviours:          | scores over time                |
|                              |                     |              | up                    | participation in social | recall from the          | Physical activity,   | (β=-0.85; 95% CI: -             |
|                              |                     |              |                       | activities              | Consortium to            | alcohol              | .55, -0.14)                     |
|                              |                     |              |                       |                         | Establish a Registry     | consumption          |                                 |
|                              |                     |              |                       |                         | for Alzheimer's          |                      |                                 |
|                              |                     |              |                       |                         | disease (CERAD),         | Health status:       |                                 |
|                              |                     |              |                       |                         | digit span forward and   |                      |                                 |
|                              |                     |              |                       |                         | backwards from the       | conditions,          |                                 |
|                              |                     |              |                       |                         | Wechsler Adult           | depression           |                                 |
|                              |                     |              |                       |                         | Intelligence scale, and  |                      |                                 |
|                              |                     |              |                       |                         | an animal naming test    |                      |                                 |

| Park et al. <sup>180</sup> , 2017 | Life Course Trajectories<br>of Later-Life Cognitive | Longitudinal  | 7,374 participants<br>65 years or older | Social engagement:<br>frequency of contact | Cognitive function:<br>Telephone Interview | Sociodemographic:<br>age, sex, race, | As social engagement  |
|-----------------------------------|-----------------------------------------------------|---------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|-----------------------|
|                                   | Functions: Does Social                              |               | from the Health                         | with social network                        | for Cognitive Status                       | education, poverty                   | increased overtime,   |
|                                   | Engagement in Old Age                               |               | and Retirement                          | members (0 to 2, with                      | scored from 0-35 with                      | status, childhood                    | participants were     |
|                                   | Matter?                                             |               | study from seven                        | higher scores                              | score of 0-12=low                          | health, income,                      | more likely to have   |
|                                   |                                                     |               | waves of data over                      | representing more                          | cognitive function,                        | marital status                       | high to moderate      |
|                                   |                                                     |               | 12 years                                | engagement) and                            | 13-24=moderate                             |                                      | cognitive function    |
|                                   |                                                     |               | -                                       | volunteer work (0=no                       | cognitive function,                        | Health status:                       | (RRR=1.24) and        |
|                                   |                                                     |               |                                         | and 1=yes)                                 | and 25-35=high                             | chronic conditions,                  | those who became      |
|                                   |                                                     |               |                                         | •                                          | cognitive function                         | instrumental                         | less engaged were     |
|                                   |                                                     |               |                                         |                                            |                                            | activities of daily                  | less likely to have   |
|                                   |                                                     |               |                                         |                                            |                                            | living and activities                | high stable levels of |
|                                   |                                                     |               |                                         |                                            |                                            | of daily living                      | cognitive function    |
|                                   |                                                     |               |                                         |                                            |                                            |                                      | (RRR=0.78)            |
| Piolatto et                       | The Effect of Social                                | Systematic    | 34 articles in                          | Social activity (i.e.,                     | Cognitive function or                      |                                      | The cumulative        |
| al. <sup>57</sup> , 2022          | Relationships on                                    | Review and    | systematic                              | participation in social                    | decline assessed by                        |                                      | meta-analysis odds    |
|                                   | Cognitive Decline in                                | Meta-Analysis | review/31 articles                      | clubs, religious                           | neuropsychological                         |                                      | ratio was estimated   |
|                                   | Older Adults: An Updated                            |               | in meta-analysis –                      | organizations,                             | test data including the                    |                                      | to be 1.12 (95%       |
|                                   | Systematic Review and                               |               | in which 17                             | volunteer work),                           | MMSE and the                               |                                      | CI:1.05, 1.20)        |
|                                   | Meta-Analysis of                                    |               | investigated                            | Network size, Social                       | Wechsler scale                             |                                      | confirming previous   |
|                                   | Longitudinal Cohort                                 |               | structural aspects                      | engagement (based on                       |                                            |                                      | reports that low      |
|                                   | Studies                                             |               | of support                              | indices)                                   |                                            |                                      | structural social     |
|                                   |                                                     |               |                                         |                                            |                                            |                                      | support is associated |
|                                   |                                                     |               | Participants were                       |                                            |                                            |                                      | with cognitive        |
|                                   |                                                     |               | an average of 67.7                      |                                            |                                            |                                      | decline               |
|                                   |                                                     |               | years of age. The                       |                                            |                                            |                                      |                       |
|                                   |                                                     |               | average study                           |                                            |                                            |                                      |                       |
|                                   |                                                     |               | timeframe was 11                        |                                            |                                            |                                      |                       |
|                                   |                                                     |               | years. The average                      |                                            |                                            |                                      |                       |
|                                   |                                                     |               | sample size was                         |                                            |                                            |                                      |                       |
|                                   |                                                     |               | 5,672 (ranging                          |                                            |                                            |                                      |                       |
|                                   |                                                     |               | from 529-19,832)                        |                                            |                                            |                                      |                       |

| Shankar et al. <sup>187</sup> , 2013     | Social Isolation and<br>Loneliness: Relationships<br>with Cognitive Function<br>During 4 Years of Follow-<br>up in the English<br>Longitudinal Study of<br>Ageing | Longitudinal | (mean age at<br>baseline=65.6<br>years) from the<br>English                                                                                                         | Social isolation: index<br>based on marital<br>status, living<br>arrangement,<br>frequency of contact<br>with children, family,<br>and friends, and<br>participation in social<br>activities | Memory: immediate<br>and delayed recall<br>task<br>Executive function:<br>verbal fluency via an<br>animal naming task                                                                                     | age and sex,<br>education, wealth,<br>working status<br>Health status: | Baseline social<br>isolation predicted a<br>decrease in verbal<br>fluency ( $\beta$ =-0.32,<br>p<0.05), immediate<br>recall ( $\beta$ =-0.14,<br>p<0.001), and<br>delayed recall at<br>follow-up ( $\beta$ =-0.15,<br>p<0.001)                                                                                                                                                                                                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Son and<br>Sung <sup>176</sup> ,<br>2022 | The Reciprocal<br>Relationship Between<br>Social Engagement and<br>Cognitive Function<br>Among Older Adults in<br>South Korea                                     | Longitudinal | 4,731 participants<br>aged 45 years or<br>older at baseline<br>across 7 waves of<br>data over 12 years<br>from the Korean<br>Longitudinal Study<br>of Aging (KLoSA) |                                                                                                                                                                                              | Cognitive function<br>assessed by the<br>Korean version of the<br>Mini-Mental State<br>Examination (K-<br>MMSE) on a scale<br>from 0-30 with higher<br>scores indicating<br>better cognitive<br>function. | Religious<br>Affiliation, Marital<br>status, Residence                 | Participation in<br>organizational<br>activities is more<br>robustly associated<br>with cognitive<br>function ( $\beta$ =0.060;<br>p<0.001) compared<br>to frequency of<br>contact with network<br>members ( $\beta$ =0.057;<br>p<0.001) or the<br>number of<br>association<br>memberships<br>( $\beta$ =0.042; p<0.001)<br>over 12 years of<br>follow-up. No<br>significant<br>bidirectional<br>association between<br>cognitive function<br>and any form of<br>social engagement<br>was found. |

| Sörman et<br>al. <sup>171</sup> , 2017 | Social Network Size and<br>Cognitive Functioning in<br>Middle-Aged Adults:<br>Cross-Sectional and<br>Longitudinal Associations | Longitudinal | 804 Swedish adults<br>between the ages<br>of 40-60 years<br>cross-sectionally,<br>604 participants at<br>5-year follow-up,<br>and 255<br>participants at 10-<br>year follow-up | Social network size:<br>number of contacts<br>and frequency of<br>interaction | Episodic memory:<br>Free and cued recall<br>tasks<br>Semantic memory:<br>verbal fluency and<br>correctly identifying<br>synonyms<br>Visuospatial ability:<br>WALS-R Block<br>Design Test | Sociodemographic:<br>age and sex,<br>education<br>Health status: Self-<br>rated health,<br>depressive<br>symptoms<br>Lifestyle: Alcohol<br>consumption,<br>physical activity | Social network size<br>was positively<br>associated with<br>semantic memory<br>$(\beta=0.099, p<0.01)$ ,<br>episodic<br>memory $(\beta=0.074, p<0.05)$ , and<br>visuospatial ability<br>$(\beta=0.088, p<0.05)$ at<br>baseline<br>At five year follow-<br>up, baseline social<br>network size was<br>associated with<br>semantic memory<br>$(\beta=0.058, p<0.05)$<br>At 10 year follow-up<br>social network size<br>was associated with<br>semantic and<br>episodic memory<br>$(\beta=0.010, p<0.05)$<br>and $\beta=0.088, p<0.088$<br>respectively) |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                                                |              |                                                                                                                                                                                |                                                                               |                                                                                                                                                                                          |                                                                                                                                                                              | After reversing the<br>association at 10-<br>year follow-up, no<br>relationship was<br>found between any<br>cognitive domain<br>and network size                                                                                                                                                                                                                                                                                                                                                                                                      |

| Yu et al. <sup>183</sup> , | Social Isolation, rather  | Longitudinal | 7761 participants  | Social Isolation score  | Episodic memory:      | Sociodemographic:   | Social Isolation was     |
|----------------------------|---------------------------|--------------|--------------------|-------------------------|-----------------------|---------------------|--------------------------|
| 2021                       | than Loneliness, is       |              | aged 50 and older  | from 0-3 including:     | Immediate and         | Age, gender,        | significantly            |
|                            | Associated with Cognitive |              | from the China     | Marital status, social  | delayed recall        | education,          | associated with          |
|                            | Decline in Older Adults:  |              | Health and         | contact frequency with  | memory test with      | residence           | declines in episodic     |
|                            | The China Health and      |              | Retirement         | children, and           | scores from 0-10 with | (urban/rural)       | memory ( $\beta$ =-0.05; |
|                            | Retirement Longitudinal   |              | Longitudinal Study | participation in social | higher scores         |                     | p<0.001) and mental      |
|                            | Study                     |              | (CHARLS) across    | activities, with higher | indicating better     | Lifestyle habits:   | status ( $\beta$ =-0.03; |
|                            |                           |              | two waves of data  | scores indicating a     | function              | smoking status and  | p<0.01) after 4 years    |
|                            |                           |              | over 4 years       | higher level of social  |                       | alcohol             |                          |
|                            |                           |              |                    | isolation               | Mental status:        | consumption         |                          |
|                            |                           |              |                    |                         | Telephone Interview   |                     |                          |
|                            |                           |              |                    |                         | for Cognitive Status  |                     |                          |
|                            |                           |              |                    |                         | (TICS) with scores    | Health status:      |                          |
|                            |                           |              |                    |                         | from 0-10 with higher | Activities of daily |                          |
|                            |                           |              |                    |                         | scores indicating     | living and          |                          |
|                            |                           |              |                    |                         | better function       | instrumental        |                          |
|                            |                           |              |                    |                         |                       | activities of daily |                          |
|                            |                           |              |                    |                         |                       | living, depressive  |                          |
|                            |                           |              |                    |                         |                       | symptoms (CES-      |                          |
|                            |                           |              |                    |                         |                       | D10), Chronic       |                          |
|                            |                           |              |                    |                         |                       | diseases            |                          |

| Zhou et                  | Prospective Association   | Longitudinal | 6920 participants   | Social engagement       | Global cognition          | Demographic: Age,   | Having a higher      |
|--------------------------|---------------------------|--------------|---------------------|-------------------------|---------------------------|---------------------|----------------------|
| al. <sup>58</sup> , 2020 | between Social            |              | from the China      | including frequency of  | based on episodic         | Sex, Education,     | level of social      |
|                          | Engagement and            |              | Health and          | participation in social | memory (measured          | Marital status,     | engagement was       |
|                          | Cognitive Impairment      |              | Retirement          | activities and          | by an immediate and       | Residence           | associated with      |
|                          | among Middle-Aged and     |              | Longitudinal Study  | interactions with       | delayed recall task on    | (Urban/Rural)       | lower risk of        |
|                          | Older Adults: Evidence    |              | (CHARLS) aged       | friends categorized     | a scale from 0-20)        |                     | cognitive            |
|                          | from the China Health and |              | 45 and older at     | into 4 levels of        | and mental intactness     | Lifestyle: Smoking  | impairment in a dose |
|                          | Retirement Longitudinal   |              | baseline, followed- | engagement with         | (measured through         | and Alcohol use     | response fashion     |
|                          | Study                     |              | up every 2 years    | higher levels           | numerical ability,        |                     | -                    |
|                          | -                         |              | over four waves of  | indicating greater      | time orientation, and     | Health status       |                      |
|                          |                           |              | data                | social engagement       | picture drawing           | Chronic conditions, |                      |
|                          |                           |              |                     |                         | scored on a scale         | Self-reported       |                      |
|                          |                           |              |                     |                         | from 0-10)                | depressive          |                      |
|                          |                           |              |                     |                         |                           | symptoms,           |                      |
|                          |                           |              |                     |                         | Scores were summed        | Instrumental        |                      |
|                          |                           |              |                     |                         | from 0-30 and             | activities of daily |                      |
|                          |                           |              |                     |                         | dichotomized such         | living and          |                      |
|                          |                           |              |                     |                         | that a score of $\leq 11$ | Activities of daily |                      |
|                          |                           |              |                     |                         | indicated the presence    | living              |                      |
|                          |                           |              |                     |                         | of cognitive              | e                   |                      |
|                          |                           |              |                     |                         | impairment                | Depressive          |                      |
|                          |                           |              |                     |                         | L .                       | symptoms: CES-      |                      |
|                          |                           |              |                     |                         |                           | D10                 |                      |

## Table A-3. Summary of the Literature on the Association between Functional Social Support and Cognitive Function

| Author(s)                  | Title                   | Study<br>Design | Study Population   | Predictor Measures        | Outcome Measures      | Covariates        | Conclusions and<br>Findings           |
|----------------------------|-------------------------|-----------------|--------------------|---------------------------|-----------------------|-------------------|---------------------------------------|
| Du et al. <sup>191</sup> , | Source of Perceived     | Longitudinal    | 1,319 participants | FSS: 4-items regarding    | Cognitive function:   | Sociodemographic: | Perceived levels of                   |
| 2022                       | Social Support and      |                 | aged 65 years or   | perceived availability of | measured by the       | Age, sex, race,   | support were not                      |
|                            | Cognitive Change: An 8- |                 | older from three   | support                   | Telephone Interview   | education, wealth | significantly associated              |
|                            | Year Prospective Cohort |                 | waves of data      |                           | Cognitive Screen      |                   | with changes in cognitive             |
|                            | Study                   |                 | (2006, 2010, and   |                           | (TICS) on a scale     | Health status:    | function however, support             |
|                            |                         |                 | 2014) from the     |                           | from 0-35 with higher | Physical health,  | from children was                     |
|                            |                         |                 | HRS                |                           | scores indicating     | depressive        | positively associated with            |
|                            |                         |                 |                    |                           | better cognitive      | symptoms          | changes in cognitive                  |
|                            |                         |                 |                    |                           | function              |                   | function over time                    |
|                            |                         |                 |                    |                           |                       |                   | $(\hat{\beta}=0.05, p<0.01)$ whereas, |
|                            |                         |                 |                    |                           |                       |                   | support from other family             |
|                            |                         |                 |                    |                           |                       |                   | members were negatively               |
|                            |                         |                 |                    |                           |                       |                   | associated with cognitive             |
|                            |                         |                 |                    |                           |                       |                   | change over time ( $\hat{\beta}$ =-   |
|                            |                         |                 |                    |                           |                       |                   | 0.07, p<0.01)                         |

| Freak-Poli              | Loneliness, Not Social | Longitudinal | 4,514 participants   | FSS (RS): 5-items         | Cognitive function                          | Sociodemographic:   | Perceived levels of social |
|-------------------------|------------------------|--------------|----------------------|---------------------------|---------------------------------------------|---------------------|----------------------------|
| et al. <sup>192</sup> , | Support, Is Associated |              | aged $\geq 55$ from  | modified from the         | (RS): Delayed                               | Age, sex,           | support were not found to  |
| 2022                    | with Cognitive Decline |              | the Rotterdam        | Health and Lifestyle      | learning task, the                          | education           | have an association with   |
|                         | and Dementia Across    |              | Study (RS)           | Survey regarding          | Stroop 3 test, Letter-                      |                     | cognitive decline or risk  |
|                         | Two Longitudinal       |              | follow-up every 4-   | perceived availability of | Digit Substitution                          | Health status:      | of dementia in either      |
|                         | Population-Based       |              | 5 years over 14      | support                   | Task, Purdue                                | Chronic             | cohort.                    |
|                         | Cohorts                |              | years                |                           | Pegboard test, and                          | conditions,         |                            |
|                         |                        |              |                      | FSS (SNAC-K): 5-items     | Word Fluency                                | Activities of Daily |                            |
|                         |                        |              | 2,112 participants   | regarding satisfaction    |                                             | Living, BMI,        |                            |
|                         |                        |              | $\geq$ 55 years from | with support              | Cognitive function                          | Depressive          |                            |
|                         |                        |              | the Swedish          |                           | (SNAC-K): Pattern                           | symptoms            |                            |
|                         |                        |              | National Study on    |                           | Comparison, free                            |                     |                            |
|                         |                        |              | Aging Care in        |                           | recall, vocabulary,                         | Lifestyle           |                            |
|                         |                        |              | Kungsholmen          |                           | letter fluency, and                         | behaviours:         |                            |
|                         |                        |              | (SNAC-K) with 3      |                           | animal fluency                              | Smoking status,     |                            |
|                         |                        |              | follow-up            |                           |                                             | alcohol             |                            |
|                         |                        |              | timepoints over 10   |                           | Dementia (RS): an                           | consumption         |                            |
|                         |                        |              | years                |                           | MMSE score <26 or a                         |                     |                            |
|                         |                        |              |                      |                           | Geriatric Mental                            |                     |                            |
|                         |                        |              |                      |                           | Schedule (GMS)                              |                     |                            |
|                         |                        |              |                      |                           | score >0                                    |                     |                            |
|                         |                        |              |                      |                           | D                                           |                     |                            |
|                         |                        |              |                      |                           | Dementia (SNAC-K):                          |                     |                            |
|                         |                        |              |                      |                           | diagnosis according to                      |                     |                            |
|                         |                        |              |                      |                           | the Diagnostic and<br>Statistical Manual of |                     |                            |
|                         |                        |              |                      |                           | Mental Disorders-IV                         |                     |                            |
|                         |                        |              |                      |                           |                                             |                     |                            |
|                         |                        |              |                      |                           | (DSM-IV)                                    |                     |                            |

| Ma et al.95, | Social Support and      | Longitudinal | 9,394 participants | FSS: Perceived       | Cognitive          | Sociodemographic:   | Social support was         |
|--------------|-------------------------|--------------|--------------------|----------------------|--------------------|---------------------|----------------------------|
| 2024         | Cognitive Activity and  |              | aged 65 or over    | availability of      | impairment:        | Age, sex,           | associated with reduced    |
|              | their Associations with |              | from               | emotional,           | Measured by the    | urban/rural living  | risk of incident cognitive |
|              | Incident Cognitive      |              | 4 waves of data    | informational, and   | MMSE, cutoff score | status, education,  | impairment (HR: 0.956;     |
|              | Impairment in           |              | collected from the | instrumental support | for impairment was | household income,   | 95% CI: 0.932, 0.980)      |
|              | Cognitively Normal      |              | China Health and   |                      | based on level of  | marital status, and |                            |
|              | Older Adults            |              | Retirement         |                      | education received | living arrangement  |                            |
|              |                         |              | Longitudinal       |                      |                    |                     |                            |
|              |                         |              | Study              |                      |                    | Health status:      |                            |
|              |                         |              |                    |                      |                    | Physical activity   |                            |
|              |                         |              |                    |                      |                    | score, diet score   |                            |
|              |                         |              |                    |                      |                    | activities of daily |                            |
|              |                         |              |                    |                      |                    | living, chronic     |                            |
|              |                         |              |                    |                      |                    | conditions          |                            |
|              |                         |              |                    |                      |                    |                     |                            |
|              |                         |              |                    |                      |                    | Lifestyle           |                            |
|              |                         |              |                    |                      |                    | behaviours:         |                            |
|              |                         |              |                    |                      |                    | Smoking status      |                            |
|              |                         |              |                    |                      |                    | and alcohol         |                            |
|              |                         |              |                    |                      |                    | consumption         |                            |

| Mogic et<br>al. <sup>18</sup> , 2023 | Functional Social<br>Support and Cognitive<br>Function in Middle-<br>and Older-Aged Adults:<br>A Systematic Review<br>of Cross-sectional<br>and Cohort studies | Systematic<br>Review | 85 studies (44<br>cross-sectional<br>and 41 cohort) of<br>participants aged<br>40 years or older<br>from any<br>residential setting<br>Sample sizes<br>ranged from 20 to<br>30,029<br>participants. |                                                                                                                                  | <ul> <li>(e.g., memory,<br/>executive function [20<br/>articles])</li> <li>Dementia: all-cause or<br/>Alzheimer's disease<br/>diagnosis (19 articles)</li> <li>See Table 1 [pp. 4 to<br/>14] in the published<br/>review for a list of</li> </ul> |                                                                                                                                                                                                                                            | Positive associations were<br>generally found between<br>overall FSS and subtype<br>specific FSS, and<br>cognitive function<br>High levels of affectionate<br>support and positive<br>support were associated<br>with decreased risk for<br>neurocognitive<br>outcomes                                                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oh et al. <sup>193</sup> ,<br>2022   | Association of Low<br>Emotional and Tangible<br>Support with Risk of<br>Dementia Among Adults<br>60 Years or older in<br>South Korea                           | Longitudinal         | 5,852 community-<br>dwelling adults<br>from the Korean<br>Longitudinal<br>Study on<br>Cognitive Aging<br>and Dementia<br>(KLOSCAD)<br>follow-up every 2<br>years over 8 years                       | FSS: Emotional and<br>Tangible support based<br>on the MOS-SSS<br>Low FSS classified as<br>below the 25 <sup>th</sup> percentile | for Alzheimer's<br>Disease                                                                                                                                                                                                                        | Sociodemographic:<br>Age, sex,<br>education,<br>economic status<br>Health status:<br>Chronic conditions<br>and depressive<br>symptoms<br>Lifestyle<br>behaviours:<br>alcohol<br>consumption,<br>smoking, and level<br>of physical activity | was associated with an<br>increased risk of all-cause<br>dementia and Alzheimer's<br>disease (HR:1.42; 95%<br>CI: 1.04,1.93 and HR:<br>1.45 95% CI: 1.00, 2.11<br>respectively)<br>Low tangible support was<br>associated with an<br>increased risk of all-cause<br>dementia and Alzheimer's<br>disease (HR:0.79; 95%<br>CI: 0.57,1.09 and HR:<br>0.99 95% CI: 0.69,1.44 |

| Ohman et                 | Subtypes of Social          | Cross-       | 24,719             | FSS: Overall FSS and     | Episodic memory:      | Sociodemographic:    | Overall and subtypes of          |
|--------------------------|-----------------------------|--------------|--------------------|--------------------------|-----------------------|----------------------|----------------------------------|
| al. <sup>97</sup> , 2023 | Support Availability are    | Sectional    | participants aged  | affectionate,            | immediate and         | Age, sex, province,  | FSS were positively, and         |
|                          | not Differentially          |              | 45 to 85 years     | emotional/informational, | delayed recall        | education,           | significantly associated         |
|                          | Associated with             |              | from the           | positive, and tangible   | memory measured by    | household income,    | with immediate and               |
|                          | Memory: A Cross-            |              | Comprehensive      | support subtypes         | a modified version of | marital status, and  | delayed recall memory            |
|                          | Sectional Analysis of the   |              | Cohort of the      | measured by the MOS-     | the RAVLT I and II    | urban/rural living   | expect for positive support      |
|                          | Comprehensive Cohort        |              | CLSA               | SSS                      |                       | status               | and delayed recall               |
|                          | of the Canadian             |              |                    |                          |                       |                      | memory ( $\hat{\beta}$ =0.02 95% |
|                          | Longitudinal Study on       |              |                    |                          |                       | Health status: self- | CI:0.00, 0.04)                   |
|                          | Aging                       |              |                    |                          |                       | rated health,        |                                  |
|                          |                             |              |                    |                          |                       | depressive           |                                  |
|                          |                             |              |                    |                          |                       | symptoms, and        |                                  |
|                          |                             |              |                    |                          |                       | number of chronic    |                                  |
|                          |                             |              |                    |                          |                       | conditions           |                                  |
|                          |                             |              |                    |                          |                       | Lifestyle            |                                  |
|                          |                             |              |                    |                          |                       | behaviours:          |                                  |
|                          |                             |              |                    |                          |                       | Smoking status       |                                  |
|                          |                             |              |                    |                          |                       | and alcohol          |                                  |
|                          |                             |              |                    |                          |                       | consumption          |                                  |
| Peng et                  | Cognitive function and      | Longitudinal | 5,135 participants | FSS: A single item       | Episodic memory:      | Sociodemographic:    | Perceived availability of        |
| al. <sup>94</sup> , 2022 | cognitive decline among     |              | aged 45+           | regarding perceived      | immediate & delayed   | Age, gender,         | support was associated           |
|                          | older rural Chinese         |              | 3 waves of data    | availability of future   | word recall           | education, marital   | with higher memory               |
|                          | adults: the roles of social |              | collected (2013,   | support                  |                       | status, household    | function at baseline             |
|                          | support, pension            |              | 2015, 2018) from   |                          |                       | consumption,         | $(\hat{\beta}=0.25, p<0.05)$ and |
|                          | benefits, and medical       |              | the China Health   |                          |                       |                      | slower memory decline            |
|                          | insurance                   |              | and Retirement     |                          |                       | Health status:       | over time ( $\hat{\beta}=0.32$ , |
|                          |                             |              | Longitudinal       |                          |                       | Activities of daily  | p<0.01)                          |
|                          |                             |              | Study              |                          |                       | living               |                                  |

| Wang et<br>al. <sup>194</sup> , 2023 | Relationship between<br>Social Support and 7-<br>Year Trajectories of<br>Cognitive Decline:<br>Results from the China<br>Health and Retirement<br>Longitudinal Study                                            | Longitudinal | 6,795 participants<br>aged 60 or over<br>from<br>4 waves of data<br>collected from the<br>China Health and<br>Retirement<br>Longitudinal<br>Study | regarding perceived<br>availability of future<br>support                                                                                       | Cognitive function:<br>measured by<br>immediate and<br>delayed recall, time<br>orientation, and<br>executive function | Sociodemographic:<br>Age, Sex,<br>Urban/Rural status,<br>Education<br>Health status:<br>BMI, depression,<br>activities of daily<br>living, chronic<br>conditions                                | support was associated                                                                         |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                      |                                                                                                                                                                                                                 |              |                                                                                                                                                   |                                                                                                                                                |                                                                                                                       | Lifestyle<br>behaviours:<br>Smoking status<br>and alcohol<br>consumption                                                                                                                        |                                                                                                |
| al. <sup>96</sup> , 2023             | The Association between<br>Functional Social<br>Support and Memory in<br>Middle-Aged and Older<br>Adults: A Prospective<br>Analysis of the Canadian<br>Longitudinal Study on<br>Aging's Comprehensive<br>Cohort | C            | 12,011<br>participants aged<br>45 to 85 years at<br>baseline from the<br>Comprehensive<br>Cohort of the<br>CLSA                                   | FSS: Overall FSS and<br>affectionate,<br>emotional/informational,<br>positive, and tangible<br>support subtypes<br>measured by the MOS-<br>SSS | change scores from a                                                                                                  | education,<br>household income,<br>marital status, and<br>living arrangement<br>Health status:<br>functional status,<br>number of chronic<br>conditions,<br>depressive<br>symptoms<br>Lifestyle | associations were found<br>between overall and<br>subtypes of FSS and<br>memory, only tangible |
|                                      |                                                                                                                                                                                                                 |              |                                                                                                                                                   |                                                                                                                                                |                                                                                                                       | behaviours:<br>Smoking status<br>and alcohol<br>consumption                                                                                                                                     |                                                                                                |

 Table A-4. Summary of the Literature on the Association between Structural and Functional Social Support, and Cognitive Function

| Author(s)                               | Title                                                                                                       | Study<br>Design | Study Population                                                                                                                             | Predictor Measures                                                                             | Outcome Measures                                                                       | Covariates                                    | Conclusions and Findings                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chen &<br>Chang <sup>44</sup> ,<br>2016 | Developmental Patterns<br>of Cognitive Function<br>and Associated Factors<br>among the Elderly in<br>Taiwan | Longitudinal    | 3,155 participants<br>aged 65 years or<br>older from the<br>Taiwan<br>Longitudinal<br>Study on Aging<br>(TLSA) over 15<br>years of follow-up | Social interaction<br>(playing games<br>and socializing with<br>others)<br>Functional support: | Cognitive function:<br>The Short Portable<br>Mental Status<br>Questionnaire<br>(SPMSQ) | Age, sex,<br>education<br>Lifestyle: physical | Emotional support reduced<br>the odds of cognitive<br>decline in individuals who<br>previously has low<br>cognitive function<br>(OR=0.77; 95% CI: 0.60 to<br>0.99)<br>No association was found<br>between social interaction<br>and odds of cognitive<br>trajectory<br>Analyses included all<br>social variables<br>simultaneously |

| DiNapoli et | Social Isolation and  | Cross-    | 267 community-     | Structural support:   | Memory: Rey-             | Sociodemographic:   | For overall cognitive     |
|-------------|-----------------------|-----------|--------------------|-----------------------|--------------------------|---------------------|---------------------------|
| al.45, 2014 | Cognitive Function in | sectional | dwelling older     | LSNS-6 - SI (network  | 1                        | Age, sex,           | function, when both       |
|             | Appalachian Older     |           | adults in West     | size and frequency of | Figure and California    | education, marital  | aspects of structural and |
|             | Adults                |           | Virginia, 70 to 94 | contact)              | Verbal Learning Test-    | status, annual      | functional support were   |
|             |                       |           | years (mean =      |                       | 2nd edition Short        | income              | included in the same      |
|             |                       |           | 78.5 years)        | Functional support:   | From (CVLT-II)           |                     | model, perceived support  |
|             |                       |           |                    | LSNS-6 - Perceived    |                          | Health status:      | accounted for 10.2% of    |
|             |                       |           |                    | isolation and         | Executive functioning:   | vascular risk       | variance in cognitive     |
|             |                       |           |                    | perceived confidence  | Trail making B and       | factors, depressive | functioning while social  |
|             |                       |           |                    | in network            | Controlled Oral Word     | symptoms            | isolation accounted for   |
|             |                       |           |                    |                       | Association Test         |                     | 5.7%                      |
|             |                       |           |                    |                       |                          |                     |                           |
|             |                       |           |                    |                       | Attention: Trail         |                     |                           |
|             |                       |           |                    |                       | Making A                 |                     |                           |
|             |                       |           |                    |                       | T D                      |                     |                           |
|             |                       |           |                    |                       | Language: Boston         |                     |                           |
|             |                       |           |                    |                       | Naming Test              |                     |                           |
|             |                       |           |                    |                       |                          |                     |                           |
|             |                       |           |                    |                       | Cognitive function: a    |                     |                           |
|             |                       |           |                    |                       | score from all six tests |                     |                           |
|             |                       |           |                    |                       | with higher scores       |                     |                           |
|             |                       |           |                    |                       | indicating higher        |                     |                           |
|             |                       |           |                    |                       | cognitive function       |                     |                           |
|             |                       |           |                    |                       |                          |                     |                           |

| Fan et<br>al. <sup>112</sup> , 2021 | Reduced Social Activities<br>and Networks, but not<br>Social Support are<br>associated with Cognitive<br>Decline among Older<br>Chinese Adults: A<br>Prospective Study | Longitudinal        | 3,314 participants<br>between the ages<br>of 65-110 years at<br>baseline from the<br>Chinese<br>Longitudinal<br>Healthy Longevity<br>Survey (CLHLS)<br>over 3 years of<br>follow-up | discussions, fieldtrips,<br>and attendance of<br>social groups) | Scores of overall cognitive functions | Lifestyle: smoking status, alcohol                                                                 | model including social<br>activity, social networks,<br>and social support only the<br>associations between social<br>activity (OR=0.80; 95%<br>CI:0.65-0.98) and social<br>networks (OR=0.70 95%<br>CI: 0.56-0.87) and incident<br>cognitive decline remained<br>significant such that high                                                     |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gow et<br>al. <sup>210</sup> , 2013 | Which Social Network or<br>Support Factors are<br>Associated with<br>Cognitive Abilities in Old<br>Age?                                                                | Cross-<br>sectional | 1,091 individuals<br>from the Lothian<br>Birth Cohort 1936<br>(LBC1936), at age<br>70                                                                                               | Structural support:<br>Contact with<br>friends/family, marital  | Memory (Wechsler                      | Sociodemographic:<br>Social class, sex<br>Health status:<br>symptoms of<br>depression<br>Age-11 IQ | No associations were<br>found between objective<br>and subjective measures of<br>social support and general<br>cognitive ability<br>Only processing speed was<br>significantly associated<br>with living alone after<br>adjusting for covariates<br>$(\hat{\beta}=0.006; p<0.05)$<br>Analyses included all<br>social variables<br>simultaneously |

| Hughes et                | The Association Between | Longitudinal | Charlotte County | Structural support:   | Cognitive function:       | Sociodemographic:  | At baseline, increased                    |
|--------------------------|-------------------------|--------------|------------------|-----------------------|---------------------------|--------------------|-------------------------------------------|
| al. <sup>36</sup> , 2008 | Social Resources and    |              | Healthy Aging    | LSNS-6 (network size  | General cognitive         | age, gender,       | negative social interactions              |
|                          | Cognitive Change in     |              | Study            | and frequency of      | ability (MMSE),           | education, marital | and greater satisfaction of               |
|                          | Older Adults: Evidence  |              | 217 participants | contact with friends, | Perceptual speed (Trail   | status, residence  | support were associated                   |
|                          | from the Charlotte      |              | (mean age=72.5   | family, and other     | making test A and B),     |                    | with higher global                        |
|                          | County Healthy Aging    |              | SD=6.2)          | relatives)            | Attention (Stroop test),  | Personality        | cognitive function ( $\hat{\beta}=0.42$ ; |
|                          | Study                   |              | 5-year follow-up |                       | and                       |                    | p=0.03 and $\hat{\beta}$ =0.45; p=0.02    |
|                          |                         |              |                  | Functional support:   | Episodic memory           |                    | respectively) however,                    |
|                          |                         |              |                  | LSNS-6 (perception    | (Hopkins Verbal           |                    | these association were not                |
|                          |                         |              |                  | and satisfaction with | Learning Test [delayed    | l                  | significant at follow-up                  |
|                          |                         |              |                  | support)              | free recall, cued recall, |                    | o o o o o o o o o o o o o o o o o o o     |
|                          |                         |              |                  |                       | and recognition])         |                    |                                           |
|                          |                         |              |                  |                       |                           |                    | Analyses included all                     |
|                          |                         |              |                  |                       |                           |                    | social variables                          |
|                          |                         |              |                  |                       |                           |                    | simultaneously                            |

| Krueger et al. <sup>132</sup> , 2009 | Social Engagement and<br>Cognitive Function in<br>Old Age | Cross-<br>sectional | Rush Memory and<br>Aging Project in<br>Chicago (n=838,<br>mean age= 80.2,<br>SD=7.5) | Structural support:<br>Network size,<br>frequency of contact,<br>and frequency of<br>social activity<br>Functional support:<br>Multidimensional<br>Scale of Perceived<br>Social Support | Episodic memory<br>(Word list memory,<br>Recall and<br>Recognition, and                                                                                                                                                                                                                                                                      | Sociodemographic:<br>age, sex, education<br>Health status:<br>depressive<br>symptoms, chronic<br>conditions,<br>disability,<br>Lifestyle |  |
|--------------------------------------|-----------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      |                                                           |                     |                                                                                      |                                                                                                                                                                                         | memory (15-item<br>version of the Boston<br>Naming Test, Verbal<br>Fluency, and a 15-item<br>version of the National<br>Adult Reading Test),<br>Perceptual speed<br>(Symbol Digit<br>Modalities Test,<br>Number comparison,<br>Stroop test),<br>Visuospatial ability<br>(Judgement of line<br>orientation, Standard<br>Progressive Matrices) | Personality traits                                                                                                                       |  |

| Li &                  | Is Social Network a     | Cross-    | Population Study   | Structural support:    | Cognitive function:     | Sociodemographic:  | General cognition was             |
|-----------------------|-------------------------|-----------|--------------------|------------------------|-------------------------|--------------------|-----------------------------------|
| Dong <sup>204</sup> , | Protective Factor for   | sectional | of Chinese Elderly | Network size, volume   | General cognition       | age, gender,       | positively, significantly         |
| 2018                  | Cognitive Impairment in |           | (PINE) in the US   | of contact, proportion | (MMSE), Episodic        | education, annual  | associated with emotional         |
|                       | US Chinese Older        |           | aged 60 and older, | kin, proportion        | memory (Immediate       | income, years in   | closeness ( $\hat{\beta}=0.076$ ; |
|                       | Adults? Findings from   |           | with a sample size | female, and            | recall of the East      | the US, years in   | p<0.01) and network size          |
|                       | the PINE Study          |           | of 3,157           | proportion co-         | Boston Memory Test      | the community      | $(\hat{\beta}=0.049; p<0.001)$    |
|                       |                         |           |                    | resident               | (EBMT) and delayed      | Health status:     |                                   |
|                       |                         |           |                    |                        | recall of East Boston   | medical            | Analyses included all             |
|                       |                         |           |                    | Functional support:    | Memory Test (EBDR)      | comorbidities,     | social variables                  |
|                       |                         |           |                    | Quality of social      | of brief stories in the | overall health     | simultaneously                    |
|                       |                         |           |                    | relationship           | East Boston Memory      | status, health     |                                   |
|                       |                         |           |                    | (emotional closeness)  | Test), Executive        | change in the last |                                   |
|                       |                         |           |                    |                        | function (Symbol Digit  | year               |                                   |
|                       |                         |           |                    |                        | Modalities Test),       |                    |                                   |
|                       |                         |           |                    |                        | Working memory          |                    |                                   |
|                       |                         |           |                    |                        | (Digit span backwards)  |                    |                                   |
|                       |                         |           |                    |                        |                         |                    |                                   |

| Paiva et                  | The Interrelationships   | Cross-    | 66,504 non-        | Structural support:     | Cognitive function:   | Sociodemographic:   | Higher levels of social              |
|---------------------------|--------------------------|-----------|--------------------|-------------------------|-----------------------|---------------------|--------------------------------------|
| al. <sup>201</sup> , 2023 |                          | sectional | working            | Social Engagement       | sum of five cognitive |                     |                                      |
|                           | Connectedness and Social |           | individuals aged   | (participation in three | test scores ranging   | arrangement,        | p<0.001) and social                  |
|                           | Engagement and its       |           | 50 years or older  | types of social         | from 12.53 to 40.48   | education,          | connectedness ( $\hat{\beta}$ =0.23; |
|                           | relation with Cognition: |           | from the Survey of | • •                     | including (1) Verbal  | perception of       | p<0.001) were associated             |
|                           | A Study using SHARE      |           | Health, Ageing     | volunteering, club      | Fluency (2) Immediate |                     | with higher overall                  |
|                           | Data                     |           | and Retirement in  | membership, and         | recall (3) Delayed    | income              | cognitive function                   |
|                           |                          |           | Europe (SHARE)     | community               | recall (4) Numeracy   |                     |                                      |
|                           |                          |           |                    | organization            | (5) Orientation       | Health status: grip | The interaction between              |
|                           |                          |           |                    | membership and the      |                       | strength, self-     | social engagement and                |
|                           |                          |           |                    | frequency of            |                       | reported health,    | connectedness was                    |
|                           |                          |           |                    | participation. Scores   |                       | chronic conditions, | associated with higher               |
|                           |                          |           |                    | were summed on a        |                       | depressive          | cognitive function                   |
|                           |                          |           |                    | scale from 0-9 and      |                       | symptoms            | compared to when one of              |
|                           |                          |           |                    | categorized into four   |                       |                     | these aspects was lacking            |
|                           |                          |           |                    | levels: 0, 1, 2, and 3  |                       |                     |                                      |
|                           |                          |           |                    | or more)                |                       |                     | Analyses included all                |
|                           |                          |           |                    |                         |                       |                     | social variables                     |
|                           |                          |           |                    | Functional support:     |                       |                     | simultaneously                       |
|                           |                          |           |                    | Social Connectedness    |                       |                     | -                                    |
|                           |                          |           |                    | (Number of and          |                       |                     |                                      |
|                           |                          |           |                    | frequency of contact    |                       |                     |                                      |
|                           |                          |           |                    | with close confidants   |                       |                     |                                      |
|                           |                          |           |                    | and level of emotional  |                       |                     |                                      |
|                           |                          |           |                    | closeness)              |                       |                     |                                      |

|                                       |                                                                                                                                                                             | 1                   | 1                                                                                                                                     | 1                                                                                                                                                                                                                            | 1                                                                                         | 1                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seeman et<br>al. <sup>34</sup> , 2001 | Social Relationships,<br>Social Support, and<br>Patterns of Cognitive<br>Aging in Health, High-<br>Functioning Older<br>Adults: MacArthur<br>Studies of Successful<br>Aging | Longitudinal        | 1,189 participants<br>between the ages<br>of 70-79 years<br>from the<br>MacArthur<br>Studies of<br>Successful Aging<br>over 7.5 years | Structural support:<br>marital status, number<br>of close contacts<br>(friends, relatives, and<br>friends), participation<br>in religious or other<br>groups<br>Functional support:<br>emotional and<br>instrumental support | cognition by telephone                                                                    | Age, sex,                                                                                                                                                                                                                                                                | Higher baseline emotional<br>support was associated<br>with higher cognitive<br>scores at follow-up<br>$(\hat{\beta}=1.20; p=0.05)$<br>Analyses included all<br>social variables<br>simultaneously |
|                                       |                                                                                                                                                                             |                     |                                                                                                                                       |                                                                                                                                                                                                                              |                                                                                           | Baseline cognitive function                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |
| Yeh &<br>Liu <sup>33</sup> ,<br>2003  | Influence of Social<br>Support on Cognitive<br>Function in the Elderly                                                                                                      | Cross-<br>sectional | 4,993 city-<br>dwelling adults<br>from Taiwan aged<br>65 years or older                                                               | Structural support:<br>Marital status, Living<br>arrangement<br>Functional support:<br>perceived support<br>from friends                                                                                                     | Cognitive function:<br>Higher Short Portable<br>Mental Status<br>Questionnaire<br>(SPMSQ) | Sociodemographic:<br>Age, gender,<br>religion,<br>occupation,<br>education<br>Health status: self-<br>rated health,<br>activities of daily<br>living and<br>instrumental<br>activities of daily<br>living, self-<br>reported functional<br>status, chronic<br>conditions | p<0.005) and perceived<br>support (β=0.11; p<0.001)<br>were positively associated<br>with higher scores on the<br>SPMSQ<br>Analyses included all<br>social variables<br>simultaneously             |

| Author(s)                 | Title                | Study design    | Study<br>population | Predictor measures      | Outcome measures               | Covariates          | Conclusions and<br>Findings |
|---------------------------|----------------------|-----------------|---------------------|-------------------------|--------------------------------|---------------------|-----------------------------|
| DiNapoli et               | Social Isolation and | Cross-sectional | 267                 | Structural support:     | Memory: Rey-Osterrieth         | Sociodemographic:   | Lower SI was                |
| al.45, 2014               | Cognitive Function   |                 | community-          | LSNS-6 - SI (network    | Complex Figure and             | Age, sex,           | associated with better      |
|                           | in Appalachian       |                 | dwelling older      | size and frequency of   | California Verbal Learning     | education, marital  | memory function             |
|                           | Older Adults         |                 | adults in West      | contact)                | Test-2nd edition Short From    |                     | (β=0.25; 95% CI: 0.11,      |
|                           |                      |                 | Virginia, 70 to     |                         | (CVLT-II)                      | income              | 0.39)                       |
|                           |                      |                 | 94 years (mean      |                         |                                |                     |                             |
|                           |                      |                 | = 78.5 years)       | LSNS-6 - Perceived      | 6                              |                     | Higher perceived            |
|                           |                      |                 |                     | isolation and           | making B and Controlled        | vascular risk       | support was positively      |
|                           |                      |                 |                     | perceived confidence    | Oral Word Association Test     | factors, depressive | associated with memory      |
|                           |                      |                 |                     | in network              |                                | symptoms            | (β=0.28; 95% CI: 0.16,      |
|                           |                      |                 |                     |                         | Attention: Trail Making A      |                     | 0.40)                       |
|                           |                      |                 |                     |                         | Language: Boston Naming        |                     |                             |
|                           |                      |                 |                     |                         | Test                           |                     |                             |
|                           |                      |                 |                     |                         | Cognitive function: a score    |                     |                             |
|                           |                      |                 |                     |                         | from all six tests with higher |                     |                             |
|                           |                      |                 |                     |                         | scores indicating higher       |                     |                             |
|                           |                      |                 |                     |                         | cognitive function             |                     |                             |
| Gow et                    | Which Social         | Cross-sectional | 1,091               | Structural support:     | Cognitive ability:             | Sociodemographic:   | No associations were        |
| al. <sup>210</sup> , 2013 | Network or Support   |                 | individuals         | Contact with            | Memory (Wechsler Adult         | Social class, age,  | found between objective     |
|                           | Factors are          |                 | from the            | friends/family, marital |                                | sex                 | and subjective measures     |
|                           | Associated with      |                 | Lothian Birth       | status and living       | and Wechsler Memory            |                     | of social support and       |
|                           | Cognitive Abilities  |                 | Cohort 1936         | arrangement             | Scale-III UK) and              | Health status:      | memory                      |
|                           | in Old Age?          |                 | (LBC1936), at       |                         | Processing speed (reaction     | symptoms of         |                             |
|                           |                      |                 | age 70              | Functional support:     | and inspection time tests)     | depression          | Analyses included all       |
|                           |                      |                 |                     | Adapted from the        |                                |                     | social variables            |
|                           |                      |                 |                     | Social Support          |                                | Age-11 IQ           | simultaneously              |
|                           |                      |                 |                     | Questionnaire-          |                                |                     |                             |
|                           |                      |                 |                     | support received and    |                                |                     |                             |
|                           |                      |                 |                     | level of satisfaction   |                                |                     |                             |
|                           |                      |                 |                     | regarding received      |                                |                     |                             |
|                           |                      |                 |                     | support                 |                                |                     |                             |

 Table A-5. Summary of the Literature on the Association between Structural and Functional Social Support & Memory

|   | The Association<br>Between Social<br>Resources and<br>Cognitive Change in<br>Older Adults:<br>Evidence from the<br>Charlotte County<br>Healthy Aging                                    | Longitudinal | Healthy Aging<br>Study<br>217<br>participants<br>(mean<br>age=72.5                                                                                                                                      | Structural support:<br>LSNS-6 (network size<br>and frequency of<br>contact with friends,<br>family, and other<br>relatives)<br>Functional support: | (MMSE), Perceptual speed<br>(Trail making test A and B),<br>Attention (Stroop test), and<br>Episodic memory (Hopkins<br>Verbal Learning Test<br>[delayed free recall, cued | Sociodemographic:<br>age, gender,<br>education, marital<br>status, residence<br>Personality                         | No association was<br>found between network<br>size or frequency of<br>contact and memory<br>function<br>Less satisfaction with<br>support was marginally                                                                                                                                                                                                                                                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Study                                                                                                                                                                                   |              | SD=6.2)<br>5-year follow-<br>up                                                                                                                                                                         | LSNS-6 (perception<br>and satisfaction with<br>support)                                                                                            | recall, and recognition])                                                                                                                                                  |                                                                                                                     | associated with memory<br>decline ( $\hat{\beta}$ =0.18;<br>p=0.06)<br>Analyses included all<br>social variables<br>simultaneously                                                                                                                                                                                                                                                                                                                                                   |
| E | Structural and<br>Functional Aspects<br>of Social<br>Relationships and<br>Episodic Memory:<br>Between-Person and<br>Within-Person<br>Associations in<br>Middle-Aged and<br>Older Adults | Longitudinal | Health and<br>Retirement<br>Study (HRS),<br>50 years or<br>older (mean<br>age at baseline<br>= 66 years, SD<br>= 10, range =<br>50–104),<br>3 waves of data<br>collected from<br>19,297<br>participants | Structural support:<br>Social network size<br>and contact frequency<br>Functional support:<br>Social support and<br>social strain                  | Episodic memory:<br>immediate and delayed<br>recall test                                                                                                                   | Sociodemographic:<br>Age, gender,<br>education<br>Health status:<br>functional health<br>and depressive<br>symptoms | Being married/partnered<br>$(\hat{\beta}=0.04; p<0.01)$ and<br>having more social<br>contacts ( $\hat{\beta}=0.02; p<$<br>0.01) was associated<br>with less episodic<br>memory decline<br>Low social strain ( $\hat{\beta} =$<br>-0.16; p<0.01) and high<br>social support ( $\hat{\beta} = 0.19$<br>p<0.01) buffered<br>memory decline,<br>however, the<br>associations were no<br>longer significant after<br>inclusion of covariates<br>Analyses included all<br>social variables |

| Krueger et<br>al. <sup>132</sup> , 2009 | Social Engagement<br>and Cognitive<br>Function in Old Age                                                                                    |                 | Rush Memory<br>and Aging<br>Project in<br>Chicago<br>(n=838, mean<br>age= 80.2,<br>SD=7.5)                               | Structural support:<br>Network size,<br>frequency of contact,<br>and frequency of<br>social activity<br>Functional support:<br>Multidimensional<br>Scale of Perceived<br>Social Support                                | Cognitive function:<br>Episodic memory (Word list<br>memory, Recall and<br>Recognition, and immediate<br>and delayed recall from the<br>Wechsler Memory Scale-<br>Revised), Working memory<br>(Digit Span Forward and<br>Digit Span Backward),<br>Semantic memory (15-item<br>version of the Boston<br>Naming Test, Verbal<br>Fluency, and a 15-item<br>version of the National<br>Adult Reading Test),<br>Perceptual speed (Symbol<br>Digit Modalities Test,<br>Number comparison, Stroop<br>test), Visuospatial ability<br>(Judgement of line<br>orientation, Standard<br>Progressive Matrices) | age, sex, education<br>Health status:<br>depressive<br>symptoms, chronic<br>conditions,<br>disability,<br>Lifestyle<br>behaviours:<br>physical activity<br>Personality traits | Increased social activity<br>was positively<br>associated with episodic<br>memory after<br>controlling for<br>covariates (β=0.171;<br>95% CI: 0.091, 0.251)<br>FSS was positively<br>related to higher levels<br>of function in working<br>memory (β=0.11; 95%<br>CI: 0.03, 0.18), but not<br>in episodic or semantic<br>memory |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Li &<br>Dong <sup>204</sup> ,<br>2018   | Is Social Network a<br>Protective Factor for<br>Cognitive<br>Impairment in US<br>Chinese Older<br>Adults? Findings<br>from the PINE<br>Study | Cross-sectional | Population<br>Study of<br>Chinese<br>Elderly (PINE)<br>in the US aged<br>60 and older,<br>with a sample<br>size of 3,157 | Structural support:<br>Network size, volume<br>of contact, proportion<br>kin, proportion<br>female, and proportion<br>co-resident<br>Functional support:<br>Quality of social<br>relationship<br>(emotional closeness) | Episodic memory<br>(Immediate recall of the<br>East Boston Memory Test<br>(EBMT) and delayed recall<br>of East Boston Memory Test<br>(EBDR) of brief stories in<br>the East Boston Memory<br>Test), Executive function                                                                                                                                                                                                                                                                                                                                                                            | age, gender,<br>education, annual<br>income, years in the<br>US, years in the<br>community                                                                                    | Network size was<br>positively associated<br>with episodic memory<br>$(\hat{\beta}=0.059; p<0.001)$<br>however, no significant<br>association was found<br>between emotional<br>closeness and memory<br>Analyses included all<br>social variables<br>simultaneously                                                             |

| Meister &                        | Associations                                                                                                                                                         | Longitudinal | 2,553                                                                                                                                                             | Structural support:                                                                                                       | Cognitive outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         | Contact frequency with                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zahodne <sup>212</sup> ,<br>2022 | Between Social<br>Network<br>Components and<br>Cognitive Domains<br>in Older Adults                                                                                  |              | participants<br>from the<br>Health and<br>Retirement<br>Study (HRS)<br>65 years or<br>older in the<br>Harmonized<br>Cognitive<br>Assessment<br>Protocol<br>(HCAP) | Network size, marital<br>status, contact<br>frequency<br>Functional support:<br>Perceived support and<br>perceived strain | (Measured using four<br>indicators from the<br>Consortium to Establish a<br>Registry for Alzheimer's<br>Disease [CERAD]),<br>Executive function (Number<br>series test, Raven's standard<br>progressive matrices, Trail<br>making test B),<br>Visuoconstruction<br>(CERAD), Language (TICS<br>and visual confrontation<br>naming and sentence writing<br>from the MMSE),<br>Processing speed (Symbol<br>Digit Modalities Test, Trail<br>making test A, a backwards |                                                                                                                                                                                         | children ( $\hat{\beta}$ =0.12;<br>p<0.05) and friends<br>( $\hat{\beta}$ =0.22; p<0.05) were<br>positively related to<br>episodic memory<br>Social strain ( $\hat{\beta}$ =-0.30;<br>p<0.05) and perceived<br>social support ( $\hat{\beta}$ =-0.30;<br>p<0.05) were negatively<br>related to episodic<br>memory overtime<br>Analyses included all<br>social variables<br>simultaneously           |
|                                  | Cognitive function<br>and cognitive<br>decline among older<br>rural Chinese adults:<br>the roles of social<br>support, pension<br>benefits, and<br>medical insurance | Longitudinal | China Health<br>and Retirement<br>Longitudinal<br>Study. 5,135<br>participants<br>aged 45+<br>3 waves of data<br>collected<br>(2013, 2015,<br>2018)               | financial transfers<br>from adult children<br>and frequency of<br>contact                                                 | counting task, and a letter<br>cancellation task)<br>Episodic memory:<br>immediate & delayed word<br>recall                                                                                                                                                                                                                                                                                                                                                        | Sociodemographic:<br>age, gender,<br>education, marital<br>status, household<br>consumption<br>Health status:<br>activities of daily<br>living<br>Participation in<br>social activities | Living alone was<br>associated with an<br>increased risk of<br>memory decline ( $\hat{\beta}$ =-<br>0.37; p<0.01)<br>Perceived availability of<br>support was associated<br>with higher memory<br>function at baseline<br>( $\hat{\beta}$ =0.25; p<0.05) and<br>slower memory decline<br>over time ( $\hat{\beta}$ =0.32;<br>p<0.01)<br>Analyses included all<br>social variables<br>simultaneously |

| Seeman et                 | Histories of Social | Longitudinal | 4,963          | Structural: Social     | Cognitive function (Brief   | Age, sex, race,      | Greater social contact          |
|---------------------------|---------------------|--------------|----------------|------------------------|-----------------------------|----------------------|---------------------------------|
| al. <sup>211</sup> , 2011 | Engagement and      |              | participants   | contacts (frequency of | Test of Adult Cognition by  | education, health    | was associated with             |
|                           | Adult Cognition:    |              | aged 35-85     | contact)               | Telephone (BTACT):          | conditions (chronic  | better episodic memory          |
|                           | Midlife in the U.S. |              | years using    |                        | Episodic memory             | conditions, reported | function overtime               |
|                           | Study               |              | data from the  | Functional: Social     | (immediate and delayed      | disabilities, and    | $(\hat{\beta}=0.0493; p<0.01)$  |
|                           |                     |              | national       | support (perceived     | word recall), Working       | depressive           | Social support was              |
|                           |                     |              | Midlife in the | support)               | memory (digits backward),   | symptoms), and       | cross-sectionally               |
|                           |                     |              | U.S. (MIDUS)   |                        | Executive function and      | health behaviors     | associated with episodic        |
|                           |                     |              | study          | Social Strain          | semantic memory (category   |                      | memory ( $\hat{\beta}=0.0513$ ; |
|                           |                     |              | First wave -   | (perceived strain)     | fluency), Reasoning         |                      | p<0.01) but not over            |
|                           |                     |              | 1994/1995      |                        | (number series completion), |                      | time                            |
|                           |                     |              | second wave -  |                        | and Processing speed        |                      |                                 |
|                           |                     |              | 2005/2006      |                        | (backward counting)         |                      | Analyses included all           |
|                           |                     |              |                |                        |                             |                      | social variables                |
|                           |                     |              |                |                        |                             |                      | simultaneously                  |
|                           |                     |              |                |                        |                             |                      |                                 |

| Social Relations and<br>Age-Related Change<br>in Memory | Longitudinal | Health and<br>Retirement<br>Study (HRS)<br>10,390<br>participants<br>(mean age =<br>69, SD = 9.53<br>at baseline)<br>4 follow-up<br>time points<br>over 6 years | Structural support:<br>Marital status,<br>network size,<br>frequency of contact<br>with social network<br>members<br>Functional support:<br>Quality of social<br>relations (social<br>support and strain<br>from social network<br>members) | Episodic memory:<br>Consortium to Establish a<br>Registry for Alzheimer's<br>Disease (CERAD) list<br>learning task | Age, sex,<br>race/ethnicity,<br>education<br>Health status:<br>depressive | Being married/partnered<br>( $\hat{\beta}$ =0.08; p=0.02) and<br>reporting more contact<br>frequency with friends<br>( $\hat{\beta}$ =0.10; p=0.01), but<br>not children or other<br>relatives, was associated<br>with higher memory at<br>baseline and slower<br>episodic memory<br>decline<br>Greater support from<br>spouses ( $\hat{\beta}$ =0.05;<br>p<0.001) or friends<br>( $\hat{\beta}$ =0.09; p<0.001) was<br>associated with better<br>memory function at<br>baseline; no<br>longitudinal association<br>was found between<br>functional support and<br>memory<br>No evidence of<br>bidirectionality was<br>found, such that<br>baseline memory did<br>not predict subsequent |
|---------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |              |                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                                                                                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |              |                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                                                                                    |                                                                           | Analyses included all<br>social variables<br>simultaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Zuelsdorff              | Social support and    | Cross-sectional | Wisconsin     | Structural support:  | Cognitive domains:          | Sociodemographic:  | "High" but not "very                |
|-------------------------|-----------------------|-----------------|---------------|----------------------|-----------------------------|--------------------|-------------------------------------|
| et al. <sup>214</sup> , | verbal interaction    |                 | Registry for  | Quantity of social   | Episodic memory (RAVLT,     | age, gender, race, | high" levels of verbal              |
| 2019                    | are differentially    |                 | Alzheimer's   | interactions (Low,   | Visual Learning and         | study site,        | interactions was                    |
|                         | associated with       |                 | Prevention    | moderate, high, very | Memory, and Weschler        | education, partner | significantly associated            |
|                         | cognitive function in |                 | (WRAP) study  | high)                | Memory Scale -Revised       | status             | with higher verbal                  |
|                         | midlife and older     |                 | 1,052         |                      | immediate and delayed       |                    | learning and memory                 |
|                         | age                   |                 | participants  | Functional support:  | recall) and Executive       | APOE-E4 carrier    | function ( $\hat{\beta}=0.16$ ; 95% |
|                         |                       |                 | (40-65 years) | Medical Outcomes     | function (Trail making test | status             | CI: 0.02, 0.30)                     |
|                         |                       |                 |               | Study-Social Support |                             |                    |                                     |
|                         |                       |                 |               | Survey (MOS-SSS)     | Span forwards and           | Lifestyle          | A positive but not                  |
|                         |                       |                 |               |                      | backwards, and Letter-      | behaviours:        | significant association             |
|                         |                       |                 |               |                      | Number sequencing)          | smoking status,    | was found between high              |
|                         |                       |                 |               |                      |                             | alcohol            | perceived support and               |
|                         |                       |                 |               |                      |                             | consumption,       | memory                              |
|                         |                       |                 |               |                      |                             | caffeine           |                                     |
|                         |                       |                 |               |                      |                             | consumption,       | Analyses included all               |
|                         |                       |                 |               |                      |                             | physical activity  | social variables                    |
|                         |                       |                 |               |                      |                             |                    | simultaneously                      |
|                         |                       |                 |               |                      |                             | Health status: BMI |                                     |

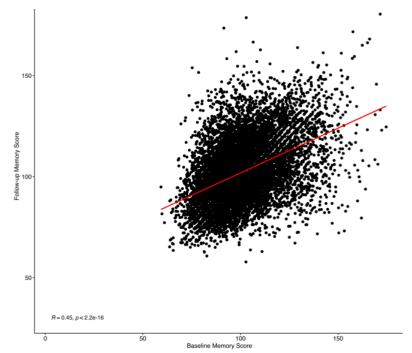
## **Appendix B. Social Isolation Index**

| CLSA Module             | Questions                                                                                                                                                                                                                                                                                | Measurement                                                                                                                                           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Social Networks         | <ul> <li>When did you last get together with:</li> <li>1) any of your children who live<br/>outside of your household?</li> <li>2) any of your siblings who live<br/>outside of your household?</li> <li>3) any of your close friends who live<br/>outside of your household?</li> </ul> | MeasurementWithin the last day or twoWithin the last week or twoWithin the past monthWithin the past 6 monthsWithin the past yearMore than 1 year ago |
|                         | 4) any of your neighbours?                                                                                                                                                                                                                                                               |                                                                                                                                                       |
|                         | How many people, not including<br>yourself, currently live in your<br>household?                                                                                                                                                                                                         | Provide a number                                                                                                                                      |
|                         | How many people do you consider close friends?                                                                                                                                                                                                                                           | Provide a number                                                                                                                                      |
|                         | How many of your neighbours do you know?                                                                                                                                                                                                                                                 | Provide a number                                                                                                                                      |
|                         | How many children do you have?                                                                                                                                                                                                                                                           | Provide a number                                                                                                                                      |
|                         | How many, if any, living siblings do you have?                                                                                                                                                                                                                                           | Provide a number                                                                                                                                      |
|                         | About how many living relatives do you have?                                                                                                                                                                                                                                             | Provide a number                                                                                                                                      |
| Social<br>Participation | <ul><li>In the past 12 months, how often did you participate:</li><li>1. in family or friendship-based activities outside the household?</li></ul>                                                                                                                                       | At least once a day<br>At least once a week<br>At least once a month                                                                                  |
|                         | 2. Sports or physical activities that you do with other people                                                                                                                                                                                                                           | At least once a year                                                                                                                                  |
|                         | 3. Educational and cultural activities                                                                                                                                                                                                                                                   | Never                                                                                                                                                 |

|                   | 4. Church or religious activities such as services, committees, or choirs                                                                 |                                                            |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                   | 5. Service club or fraternal organizational activities                                                                                    |                                                            |
|                   | 6. Volunteer or charity work                                                                                                              |                                                            |
|                   | <ol> <li>Neighbourhood, community, or<br/>professional association activities</li> </ol>                                                  |                                                            |
|                   | 8. Any other recreational activities<br>involving other people, including<br>hobbies, gardening, poker, bridge,<br>cards, and other games |                                                            |
| Sociodemographic  | What is your current marital/partner status?                                                                                              | Single, never married or never lived with a partner        |
|                   |                                                                                                                                           | Married/living with a partner in a common-law relationship |
|                   |                                                                                                                                           | Widowed                                                    |
|                   |                                                                                                                                           | Divorced                                                   |
|                   |                                                                                                                                           | Separated                                                  |
| Retirement Status | At this time, do you consider yourself                                                                                                    | Completely retired                                         |
|                   | to be completely retired, partly retired,<br>or not retired?                                                                              | Partly retired                                             |
|                   | read on menious work by Manas at at 24                                                                                                    | Not retired                                                |

*This social isolation index is based on previous work by Menec et al.*<sup>24</sup> <sup>1</sup>The index is scored on a scale from 0-5. Each of the following criteria yields one point:

The index is scored on a scale from 0-5. Each of the following criteria yields one point:
 Lives alone and is not married or in a common-law relationship.
 Has gotten together with friends or neighbours less frequently than 'within the last month' or reported having no friends or neighbours.
 Has gotten together with relatives/siblings less frequently than 'within the last month' or reported having no relatives or siblings.
 Has gotten together with children less frequently than 'within the last month' or has no children.
 Is retired and participates in no more than one of eight social activities at least once a month or more often.


|        | Questions                                                                    | Type of Functional      |
|--------|------------------------------------------------------------------------------|-------------------------|
|        |                                                                              | Social Support          |
| 1      | Someone you can count on to listen to you when you need to talk              |                         |
| 2<br>3 | Someone to give you advice about a crisis                                    |                         |
| 3      | Someone to give you information in order to help you understand a situation  |                         |
| 4      | Someone to confide in or talk to about yourself or your problems             | Emotional/Informational |
| 5      | Someone whose advice you really want                                         |                         |
| 6      | Someone to share your most private worries and fears with                    |                         |
| 7      | Someone to turn to for suggestions about how to deal with a personal problem |                         |
| 8      | Someone who understands your problems                                        |                         |
| 9      | Someone to help you if you were confined to bed                              |                         |
| 10     | Someone to take you to the doctor if you needed it                           | Tangible                |
| 11     | Someone to prepare your meals if you were unable to                          |                         |
| 12     | Someone to help you with daily chores if you were sick                       |                         |
| 13     | Someone who shows you love and affection                                     |                         |
| 14     | Someone who hugs you                                                         | Affectionate            |
| 15     | Someone to love you and make you feel wanted                                 |                         |
| 16     | Someone to get together with for relaxation                                  | Positive social         |
| 17     | Someone to do something enjoyable with                                       | interaction             |
| 18     | Someone to have a good time with                                             |                         |
| 19     | Someone to do things with to help you get your mind off                      | Additional item         |

**Appendix D. Covariates** 

|                  | Covariate       | Measurement                   | Variable Name  |
|------------------|-----------------|-------------------------------|----------------|
| Sociodemographic | Sex             | Male                          | SEX_ASK_TRM    |
|                  |                 | Female                        |                |
|                  | Age             | 45-54 years                   | AGE_GRP_TRM    |
|                  |                 | 55-64 years                   |                |
|                  |                 | 65-74 years                   |                |
|                  |                 | 75 years or older             |                |
|                  | Education       | Less than high school         | ED_UDR04_TRM   |
|                  |                 | High school diploma           |                |
|                  |                 | Some post-secondary           |                |
|                  |                 | education                     |                |
|                  |                 | Post-secondary                |                |
|                  |                 | degree/diploma                |                |
|                  | Province of     | One of the ten provinces      | WGHTS_PROV_TRM |
|                  | residence       |                               |                |
|                  | Total annual    | Less than \$20,000            | INC_TOT_TRM    |
|                  | household       | From \$20,000 to under        |                |
|                  | outcome         | \$50,000                      |                |
|                  |                 | From \$50,000 to under        |                |
|                  |                 | \$100,000                     |                |
|                  |                 | From \$100,000 to under       |                |
|                  |                 | \$150,000                     |                |
|                  |                 | \$150,000 or more             |                |
| Health status    | Functional      | 0 (no assistance required     | ADL_DCLS_TRM   |
|                  | status          | for any activity)             |                |
|                  |                 | 1 (assistance required for at |                |
|                  |                 | least one activity)           |                |
|                  | Chronic         | 0 (no chronic condition)      | CCT_F2_TRM     |
|                  | conditions      | 1 (one or more chronic        |                |
|                  |                 | conditions)                   |                |
|                  | Depressive      | Score from 0-30               | DEP_CESD10_TRM |
|                  | symptoms        | 0 = not severe (less than 10) |                |
|                  | (Center for     | 1=Severe (10 or more)         |                |
|                  | Epidemiological |                               |                |
|                  | Studies Short   |                               |                |
|                  | Depression      |                               |                |
|                  | Scale [CES-     |                               |                |
|                  |                 | 1                             |                |

| Lifestyle  | Smoking status | 0=Non-user (did not smoke    | SMK_CURRCG_TRM |
|------------|----------------|------------------------------|----------------|
| Behaviours | _              | in the past 30 days)         |                |
|            |                | 1=Occasional user (at least  |                |
|            |                | one cigarette in the past 30 |                |
|            |                | days, but not every day)     |                |
|            |                | 2= Daily user (at least one  |                |
|            |                | cigarette every day for the  |                |
|            |                | past 30 days)                |                |
|            | Alcohol        | 0= Non-user (Did not drink   | ALC_TTM_TRM    |
|            | consumption    | in the last 12 months)       |                |
|            |                | 1= Occasional drinker        |                |
|            |                | 2=Regular drinker (At least  |                |
|            |                | once a month)                |                |

Variables utilized in analysis as covariates – variable names based on original CLSA questionnaires and derived variables<sup>234,235,289–293</sup>. <sup>1</sup>The suffix "TRM" indicates variable at  $t_0$ 



Appendix E. Plots Describing the Relationship Between Baseline and Follow-up Memory

Figure E-1 Scatterplot - Relationship between Baseline and Follow-up Memory Scores

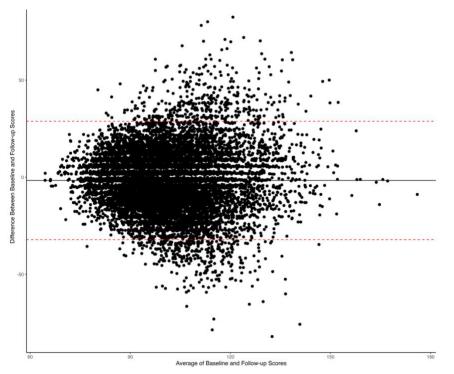



Figure E-2 Bland-Altman Plot - Agreement Between Baseline and Follow-up Memory Scores and 95% Confidence Interval (represented by the red dotted lines)

|                                           | Base Model $\hat{\beta}$ (95% CI) | Adjusted Model $\hat{\beta}$ (95% CI) |
|-------------------------------------------|-----------------------------------|---------------------------------------|
| Exposure                                  | p ()5/0 CI)                       | p (7570 CI)                           |
| Social Isolation Status                   |                                   |                                       |
| (Ref: Not socially isolated)              |                                   |                                       |
| Socially isolated                         | -0.75 (-1.32, -0.18)              | -0.13 (-0.68, 0.45)                   |
| Sociodemographic                          |                                   | (0.000,0.10)                          |
| Sex                                       |                                   |                                       |
| (Ref: Male)                               |                                   |                                       |
| Female                                    | 0.28 (-0.17, 0.74)                | 0.69 (0.23, 1.16)                     |
| Age Group                                 |                                   |                                       |
| (Ref: 45-54 years)                        |                                   |                                       |
| 55-64 years                               | -0.25 (-0.82, 0.32)               | 0.15 (-0.43, 0.73)                    |
| 65-74 years                               | -0.76 (-1.40, -0.12)              | 0.03 (-0.66, 0.72)                    |
| 75 years +                                | -3.90 (-4.62, -3.17)              | -2.91 (-3.69, -2.12)                  |
| Province                                  |                                   |                                       |
| (Ref: Ontario)                            |                                   |                                       |
| Alberta                                   | -0.17 (-1.04, 0.69)               | -0.18 (-1.05, 0.69)                   |
| British Columbia                          | -0.63 (-1.45, 0.20)               | -0.40 (-1.22, 0.43)                   |
| Manitoba                                  | -1.17 (-2.15, -0.19)              | -1.02 (-2.00, -0.05)                  |
| New Brunswick                             | -1.09 (-2.10, -0.08)              | -0.70 (-1.71, 0.31)                   |
| Newfoundland and Labrador                 | -0.53 (-1.61, 0.54)               | -0.25 (-1.32, 0.82)                   |
| Nova Scotia                               | -0.37 (-1.32, 0.58)               | -0.10 (-1.05, 0.85)                   |
| Prince Edward Island                      | -0.75 (-1.84, 0.34)               | -0.64 (-1.73, 0.45)                   |
| Quebec                                    | 0.18 (-0.54, 0.90)                | 0.51 (-0.21, 1.24)                    |
| Saskatchewan                              | -0.75 (-1.75, 0.25)               | -0.63 (-1.63, 0.37)                   |
| Education                                 |                                   |                                       |
| (Ref: Less than secondary)                |                                   |                                       |
| Completed secondary                       |                                   | 0.49 (-0.40, 1.37)                    |
| Some post-secondary                       |                                   | 0.53 (-0.16, 1.22)                    |
| Post-secondary degree or diploma          |                                   | 1.46 (0.52, 2.39)                     |
| Income                                    |                                   |                                       |
| (Ref: Less than \$20,000)                 |                                   |                                       |
| < \$20,000                                |                                   | 0.81 (-0.38, 2.00)                    |
| \$20,000 to < \$50,000                    |                                   | 2.38 (1.18, 3.59)                     |
| \$50,000 to < \$100,000                   |                                   | 2.75 (1.45, 4.05)                     |
| \$100,000 to < \$150,000                  |                                   | 3.15 (1.78, 4.52)                     |
| Missing                                   |                                   | 0.64 (-0.85, 2.12)                    |
| Health Status                             |                                   |                                       |
| Functional Status                         |                                   |                                       |
| (Ref: No assistance required for          |                                   |                                       |
| any activity)                             |                                   |                                       |
| Assistance required for $\geq 1$ activity |                                   | -2.47 (-3.30, -1.65)                  |
| Missing                                   |                                   | -2.73 (-6.16, 0.70)                   |

## Appendix F. Regression Analyses: Base and Adjusted Models for the Association Between Social Isolation and Memory

| Chronic Conditions             |                    |                                       |
|--------------------------------|--------------------|---------------------------------------|
| (Ref: No chronic conditions)   |                    |                                       |
| $\geq$ 1 chronic condition(s)  |                    | -0.46 (-1.24, 0.31)                   |
| Missing                        |                    | 0.23 (-4.50, 4.95)                    |
| Depressive Symptoms            |                    | · · · · · · · · · · · · · · · · · · · |
| (Ref: Not Severe)              |                    |                                       |
| Severe                         |                    | -0.72 (-1.39, -0.05)                  |
| Missing                        |                    | -2.52 (-7.75, 2.71)                   |
| Lifestyle Behaviours           |                    |                                       |
| Smoking                        |                    |                                       |
| (Ref: Not at all)              |                    |                                       |
| Occasionally                   |                    | -0.19 (-1.97, 1.59)                   |
| Daily                          |                    | 0.20 (-0.70, 1.10)                    |
| Missing                        |                    | 1.03 (0.52, 1.55)                     |
| Alcohol Consumption            |                    |                                       |
| (Ref: Not at all)              |                    |                                       |
| Occasionally                   |                    | 0.92 (0.01, 1.83)                     |
| Regularly                      |                    | 0.64 (-0.11, 0.14)                    |
| Missing                        |                    | 0.90 (-0.60, 2.39)                    |
| Functional social support (to) |                    |                                       |
| (Ref: Low)                     |                    |                                       |
| High                           | 0.39 (-0.12, 0.89) | 0.17 (-0.33, 0.68)                    |
| Functional social support (t1) |                    |                                       |
| (Ref: Low)                     |                    |                                       |
| High                           | 0.90 (0.39, 1.40)  | 0.59 (0.09, 1.10)                     |
| Memory (t <sub>0</sub> )       | 0.44 (0.42, 0.45)  | 0.43 (0.42, 0.45)                     |

Notes:  $\hat{\beta}$ =Regression Coefficient; CI=Confidence Interval; Ref=Reference Category; t<sub>0</sub>=baseline, t<sub>1</sub>=follow-up

## Appendix G. Mediation Model

# Table G-1 Regression Analyses: "a" and "b" Paths of the Mediation Model

|                                  | "a" Path             | "b" Path             |
|----------------------------------|----------------------|----------------------|
|                                  | β̂ (95% CI)          | β̂ (95% CI)          |
| Exposure                         |                      |                      |
| Social Isolation Status          |                      |                      |
| (Ref: Not socially isolated)     |                      |                      |
| Socially isolated                | -0.06 (-0.08, -0.04) | -0.13 (-0.68, 0.45)  |
| Functional social support        |                      |                      |
| (Ref: Low)                       |                      |                      |
| High                             |                      | 0.59 (0.09, 1.10)    |
| Sociodemographic                 |                      |                      |
| Sex                              |                      |                      |
| (Ref: Male)                      |                      |                      |
| Female                           | -0.02 (-0.04, -0.01) | 0.69 (0.23, 1.16)    |
| Age Group                        |                      |                      |
| (Ref: 45-54 years)               |                      |                      |
| 55-64 years                      | 0.03 (0.01, 0.05)    | 0.15 (-0.43, 0.73)   |
| 65-74 years                      | 0.02 (0.00, 0.05)    | 0.03 (-0.66, 0.72)   |
| 75 years +                       | 0.00 (-0.03, 0.03)   | -2.91 (-3.69, -2.12) |
| Province                         |                      |                      |
| (Ref: Ontario)                   |                      |                      |
| Alberta                          | -0.05 (-0.08, -0.02) | -0.18 (-1.05, 0.69)  |
| British Columbia                 | -0.01 (-0.04, -0.01) | -0.40 (-1.22, 0.43)  |
| Manitoba                         | 0.02 (-0.02, 0.05)   | -1.02 (-2.00, -0.05) |
| New Brunswick                    | 0.03 (-0.01, 0.06)   | -0.70 (-1.71, 0.31)  |
| Newfoundland and Labrador        | 0.01 (-0.03, 0.05)   | -0.25 (-1.32, 0.82)  |
| Nova Scotia                      | 0.00 (-0.03, 0.04)   | -0.10 (-1.05, 0.85)  |
| Prince Edward Island             | 0.00 (-0.04, 0.04)   | -0.64 (-1.73, 0.45)  |
| Quebec                           | 0.00 (-0.02, 0.03)   | 0.51 (-0.21, 1.24)   |
| Saskatchewan                     | 0.02 (-0.02, 0.06)   | -0.63 (-1.63, 0.37)  |
| Education                        |                      |                      |
| (Ref: Less than secondary)       |                      |                      |
| Completed secondary              | 0.07 (-0.08, 0.22)   | 0.49 (-0.40, 1.37)   |
| Some post-secondary              | 0.16 (0.04, 0.28)    | 0.53 (-0.16, 1.22)   |
| Post-secondary degree or diploma | 0.22 (0.06, 0.38)    | 1.46 (0.52, 2.39)    |
| Income                           |                      |                      |
| (Ref: Less than \$20,000)        |                      |                      |
| < \$20,000                       | 0.07 (0.03, 0.12)    | 0.81 (-0.38, 2.00)   |
| \$20,000 to < \$50,000           | 0.13 (0.08, 0.18)    | 2.38 (1.18, 3.59)    |
| \$50,000 to < \$100,000          | 0.18 (0.13, 0.23)    | 2.75 (1.45, 4.05)    |
| \$100,000 to < \$150,000         | 0.19 (0.14, 0.25)    | 3.15 (1.78, 4.52)    |
| Missing                          | 0.08 (0.03, 0.14)    | 0.64 (-0.85, 2.12)   |

| Health Status                             |                      |                      |
|-------------------------------------------|----------------------|----------------------|
| Functional Status                         |                      |                      |
| (Ref: No assistance required for          |                      |                      |
| any activity)                             |                      |                      |
| Assistance required for $\geq 1$ activity | -0.01 (-0.04, 0.02)  | -2.47 (-3.30, -1.65) |
| Missing                                   | -0.05 (-0.18, 0.07)  | -2.73 (-6.16, 0.70)  |
| Chronic Conditions                        |                      |                      |
| (Ref: No chronic conditions)              |                      |                      |
| $\geq$ 1 chronic condition(s)             | -0.04 (-0.06, -0.01) | -0.46 (-1.24, 0.31)  |
| Missing                                   | -0.01 (-0.18, 0.16)  | 0.23 (-4.50, 4.95)   |
| Depressive Symptoms                       |                      |                      |
| (Ref: Not Severe)                         |                      |                      |
| Severe                                    | -0.09 (-0.12, -0.07) | -0.72 (-1.39, -0.05) |
| Missing                                   | -0.17 (-0.37, 0.02)  | -2.52 (-7.75, 2.71)  |
| Lifestyle Behaviours                      |                      |                      |
| Smoking                                   |                      |                      |
| (Ref: Not at all)                         |                      |                      |
| Occasionally                              | -0.14 (-0.46, 0.17)  | -0.19 (-1.97, 1.59)  |
| Daily                                     | -0.06 (-0.21, 0.10)  | 0.20 (-0.70, 1.10)   |
| Missing                                   | 0.03 (-0.06, 0.12)   | 1.03 (0.52, 1.55)    |
| Alcohol Consumption                       |                      |                      |
| (Ref: Not at all)                         |                      |                      |
| Occasionally                              | 0.03 (-0.13, 0.19)   | 0.92 (0.01, 1.83)    |
| Regularly                                 | 0.06 (-0.07, 0.19)   | 0.64 (-0.11, 0.14)   |
| Missing                                   | 0.08 (-0.17, 0.34)   | 0.90 (-0.60, 2.39)   |
| Functional social support (to)            |                      |                      |
| (Ref: Low)                                |                      |                      |
| High                                      | 0.36 (0.35, 0.38)    | 0.17 (-0.33, 0.68)   |
| Memory (to)                               | 0.00 (0.00, 0.00)    | 0.43 (0.42, 0.45)    |

Notes:  $\hat{\beta}$  = Regression Coefficient; CI = Confidence Interval; Ref = Reference Category; t<sub>0</sub> = baseline, t<sub>1</sub> = follow-up. The "a" path represents the association between social isolation and functional social support. The "b" path represents the association between functional social support and memory.

| Causal Mediation Analysis           |                                                                             |   |  |
|-------------------------------------|-----------------------------------------------------------------------------|---|--|
| Quasi-Bayesian Confidence Intervals |                                                                             |   |  |
| ACME                                | Estimate 95% CI Lower 95% CI Upper p-value<br>-0.0323 -0.0649 -0.01 0.014 * |   |  |
| ADE<br>Total Effect                 | -0.1321-0.68440.450.652-0.1644-0.71590.410.576                              |   |  |
| Prop. Mediated                      | 0.0707 -1.4594 1.41 0.586                                                   |   |  |
| Signif. codes:                      | 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '                                | 1 |  |

Figure G-1 Output from Mediation Package in "R"

Notes: CI = Confidence Interval; ACME = "ab" path; ADE = "c-prime" path; Prop = Proportion; Signif = Significance.

### **Appendix H. Sensitivity Analysis**

# Table H-1 Regression Analyses: Social Isolation and Memory - Main versus Sensitivity Analyses

|                              |              | Base Model $\hat{\beta}$ (95% CI) | Adjusted Model $\hat{\beta}$ (95% CI) |
|------------------------------|--------------|-----------------------------------|---------------------------------------|
| Exposure                     |              |                                   |                                       |
| Social Isolation Status      | Sensitivity* | -0.07 (-1.02, 0.33)               | -0.05 (-1.04, 0.34)                   |
| (Ref: Not socially isolated) | -            |                                   |                                       |
| Socially isolated            | Main         | -0.75 (-1.32, -0.18)              | -0.13 (-0.68, 0.45)                   |

Notes: p < 0.05 in bolded font; Adjusted for baseline functional social support, baseline memory score, sociodemographic factors, health status, and lifestyle behaviours.  $\hat{\beta}$  = regression coefficient value; CI = confidence interval.

\*Analysis where participants with missing covariates were removed from the model.

 Table H-2 Mediation Effects of Functional Social Support on Social Isolation and Memory:

 Main versus Sensitivity Analyses

| Path | <b>β</b> (95% CI) |
|------|-------------------|
|      |                   |

| a       |              |                      |
|---------|--------------|----------------------|
|         | Sensitivity* | 0.05 (-0.08, -0.02)  |
|         | Main         | -0.06 (-0.08, -0.04) |
| b       |              |                      |
|         | Sensitivity* | 0.43 (-0.18, 1.03)   |
|         | Main         | 0.59 (0.09, 1.10)    |
| ab      |              |                      |
|         | Sensitivity* | -0.02 (-0.06, 0.01)  |
|         | Main         | -0.03 (-0.06, -0.01) |
| c-prime |              |                      |
|         | Sensitivity* | 0.34 (-0.33, 1.03)   |
|         | Main         | -0.13 (-0.71, 0.46)  |
| С       |              |                      |
|         | Sensitivity* | 0.32 (-0.36, 1.01)   |
|         | Main         | -0.17 (-0.78, 0.42)  |
| PM      |              |                      |
|         | Sensitivity* | -0.04 (-0.77, 0.67)  |
|         | Main         | 0.07 (-0.58, 4.70)   |

Notes: p < 0.05 in bolded font; Adjusted for baseline functional social support, baseline memory score, sociodemographic factors, health status, and lifestyle behaviours.  $\hat{\beta}$  = regression coefficient value; CI = confidence interval; PM = proportion mediated. The "a" path represents the association between social isolation and functional social support. The "b" path represents the association between functional social support and memory. The "ab" path represents the indirect effect of social isolation on memory through functional social support as a mediator

The "c-prime" path represents the direct effect of social isolation on memory The "c" path represents the total effect of social isolation on memory

\*Analysis where participants with missing covariates were removed from the model.

|              | а                    | b                  | ab                  | c-prime             | с                   | PM                   |
|--------------|----------------------|--------------------|---------------------|---------------------|---------------------|----------------------|
|              | β̂ (95% CI)          | β̂ (95% CI)        | <b>β</b> (95% CI)   | <b>β</b> (95% CI)   | <b>β</b> (95% CI)   | <b>β</b> (95% CI)    |
| Male         | -                    | -                  |                     |                     |                     | -                    |
| Sensitivity* | -0.06 (-0.48, -0.17) | 0.38 (-0.46, 1.22) | -0.02 (-0.08, 0.03) | 0.72 (-0.23, 1.68)  | 0.70 (-0.25, 1.64)  | -0.02 (-0.40, 0.27)  |
| Main         | -0.05 (-0.08, -0.02) | 0.44 (-0.28, 1.17) | -0.05 (-0.13, 0.03) | 0.15 (-0.70, 0.98)  | 0.10 (-0.75, 0.93)  | -0.03 (-1.88, 1.93)  |
| Female       |                      |                    |                     |                     |                     |                      |
| Sensitivity* | -0.05 (-0.09, -0.02) | 0.46 (-0.41, 1.33) | -0.02 (-0.08, 0.02) | -0.17 (-1.02, 0.97) | -0.04 (-1.06, 0.94) | 0.01 (-0.82, 0.80)   |
| Main         | -0.06 (-0.09, -0.03) | 0.76 (0.06, 1.47)  | -0.08 (-0.16, 0.00) | -0.35 (-1.19, 0.46) | -0.43 (-1.27, 0.39) | 0.12 (-1.63, 1.76)   |
| 45-54 years  |                      |                    |                     |                     |                     |                      |
| Sensitivity* | -0.05 (-0.1, 0.00)   | 0.50 (-0.57, 1.57) | -0.03 (-0.12, 0.03) | 1.31 (-0.20, 2.84)  | 1.29 (-0.18, 2.81)  | -0.01 (-0.14, 0.03)  |
| Main         | -0.05 (-0.09, -0.01) | 0.36 (-0.53, 1.22) | -0.04 (-0.13, 0.05) | 1.03 (-0.27, 2.12)  | 0.99 (-0.20, 2.08)  | -0.03 (-0.40, 0.17)  |
| 55-64 years  |                      |                    |                     |                     |                     |                      |
| Sensitivity* | -0.10 (-0.14, -0.05) | 0.19 (-0.81, 1.20) | -0.02 (-0.11, 0.07) | 0.08 (-1.03, 1.18)  | 0.06 (-1.04, 1.16)  | -0.002 (-1.00, 1.06) |
| Main         | -0.10 (-0.14, -0.06) | 0.45 (-0.40, 1.30) | -0.06 (-0.19, 0.05) | -0.46 (-1.46, 0.52) | -0.52 (-1.51, 0.45) | 0.08 (-1.15, 1.45)   |
| 65-74 years  |                      |                    |                     |                     |                     |                      |
| Sensitivity* | -0.07 (-0.13, -0.02) | 0.80 (-0.58, 2.18) | -0.05 (-0.18, 0.04) | 0.15 (-1.38, 1.69)  | 0.10 (-1.41, 1.62)  | -0.007 (-1.24, 1.16) |
| Main         | -0.06 (-0.11, -0.02) | 0.80 (-0.39, 2.00) | -0.09 (-0.24, 0.04) | -0.38 (-1.71, 0.92) | -0.47 (-1.80, 0.84) | 0.08 (-1.65, 1.80)   |
| 75+ years    |                      |                    |                     |                     |                     |                      |
| Sensitivity* | 0.04 (-0.03, 0.11)   | 0.73 (-0.98, 2.44) | 0.03 (-0.06, 0.16)  | -0.63 (-2.50, 1.18) | -0.61 (-2.46, 1.22) | -0.006 (-0.56, 0.51) |
| Main         | -0.03 (-0.06, 0.08)  | 1.30 (-0.10, 2.71) | -0.01 (-0.11, 0.06) | -1.01 (-2.46, 0.42) | -1.03 (-2.49, 0.41) | 0.007 (-0.23, 0.24)  |

#### Table H-3 Moderated Mediation: Main versus Sensitivity Analysis

Notes: p < 0.05 in bolded font; Adjusted for baseline functional social support, baseline memory score, sociodemographic factors, health status, and lifestyle behaviours.  $\hat{\beta}$  = regression coefficient value; CI = confidence interval.

The "a" path represents the association between social isolation and functional social support.

The "b" path represents the association between functional social support and memory.

The "ab" path represents the indirect effect of social isolation on memory through functional social support as a mediator

The "c-prime" path represents the direct effect of social isolation on memory

The "c" path represents the total effect of social isolation on memory

\*Analysis with participants with missing covariates removed from the model

**Appendix I. Model Diagnostics** 

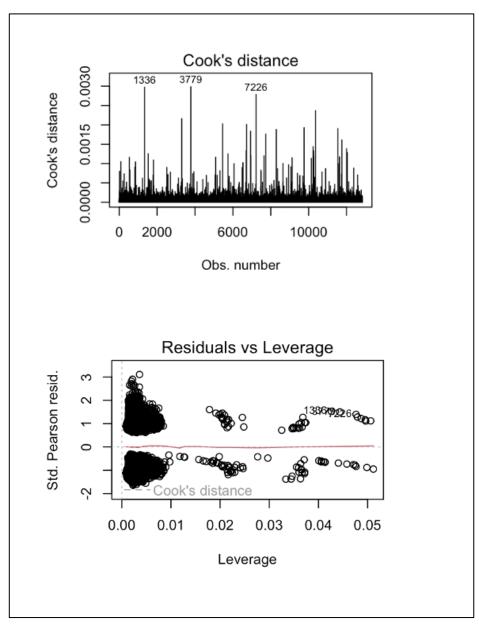



Figure I-1 Model Diagnostics for Logistic Regression of the "a" Path

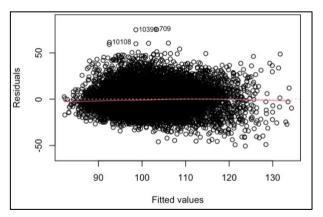



Figure I-2 Model Diagnostics for Linear Regression of the "b" Path - Residuals versus Fitted

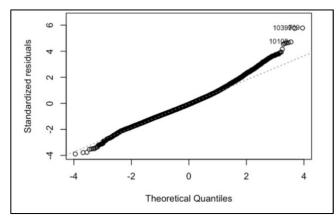



Figure I-3 Model Diagnostics for Linear Regression of the "b" Path - Q-Q Residuals

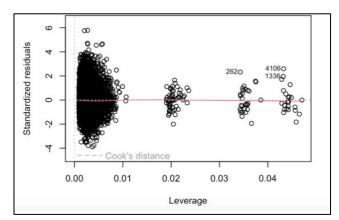



Figure I-4 Model Diagnostics for Linear Regression of the "b" Path - Residuals versus Leverage