
On Enabling Layer-Parallelism for
Graph Neural Networks using IMEX

Integration

by

Omer Ege Kara

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2024

© Omer Ege Kara 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Graph Neural Networks (GNNs) are a type of neural networks designed to perform ma-
chine learning tasks with graph data. Recently, there have been several works to train
differential equation-inspired GNN architectures, which are suitable for robust training
when equipped with a relatively large number of layers. Neural networks with more layers
are potentially more expressive. However, the training time increases linearly with the
number of layers. Parallel-in-layer training is a method that was developed to overcome
the increase in training time of deeper networks and was first applied to training residual
networks. In this thesis, we first give an overview of existing works on layer-parallel train-
ing and graph neural networks inspired by differential equations. We then discuss issues
that are encountered when these graph neural network architectures are trained parallel-
in-layer and propose solutions to address these issues. Finally, we present and evaluate
experimental results about layer-parallel GNN training using the proposed approach.

iii

Acknowledgments

This master’s process that I experienced taught me many things and allowed me to
discover many different research areas that I wouldn’t have done without attending.

I want to thank my supervisors Hans De Sterck and Jun Liu for all the mentorship
and guidance they provided. Your supervision has shaped my perspective on applied
mathematics research a lot. Additionally, thanks for giving me a chance to play soccer in
the intramural team.

I want to thank Eric C. Cyr for the discussion related to parallel-in-layer training,
and maintaining the TorchBraid library which I was a frequent user. Special thanks for
allocating time for online meetings, and timely replies to my emails.

I want to thank Giang Tran, and Roberto Guglielmi for reviewing this thesis and being
committee members.

I want to thank the University of Waterloo, especially the Applied Math Department
members, including students, faculty, and staff for providing such a rich environment for
a young mathematician.

I want to thank my family members, my mother, my father, my sister, and my grand-
mother for showing their support throughout all phases of my education.

iv

Dedication

I dedicate this thesis to all people who apply math to problems for the benefit of humankind.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments iv

Dedication v

List of Figures viii

1 Introduction 1

2 Background 3

2.1 Differential Equations and Numerical Solutions 3

2.1.1 Ordinary Differential Equations and Initial Value Problems 3

2.1.2 Numerical Methods for Initial Value Problems 4

2.1.3 Partial Differential Equations and Diffusion Equation 7

2.2 Machine Learning and Neural Networks . 8

2.3 Machine Learning on Graphs . 10

2.3.1 Basic Definitions about Graphs . 10

2.3.2 Node Classification as a Learning Task 14

2.3.3 Graph Neural Networks . 14

vi

3 Parallel-in-Layer Training of Neural Networks 16

3.1 Multigrid-Reduction-in-Time Algorithm 16

3.2 Neural Differential Equations . 20

3.3 Parallel-in-Layer Training of Neural Networks with MGRIT 23

4 IMEX Schemes Applied to PDE-GCN 25

4.1 Dynamical Systems, GNNs, and PDE-GCN 25

4.2 IMEX Net in Residual Networks Setting 28

4.3 PDE-GCN with IMEX Term . 30

5 Experiments 33

5.1 Experiments for Stability . 33

5.2 Experiments with MGRIT Propagation . 38

5.3 Experiments with Multiple Processors . 41

6 Conclusion and Discussion 47

6.1 Numerical Results . 47

6.2 Potential Future Work . 48

References 49

vii

List of Figures

2.1 Graph for a 1-D grid with 5 grid points . 12

3.1 Fine and coarse temporal grid obtained by uniform discretization. The
coarse grid is created by removing all F - points (represented by short mark-
ers) of the fine grid. 19

3.2 F -relaxation and C-relaxation on temporal grids with coarsening factor pa-
rameter cf = 5. 19

5.1 Accuracy comparison for different step sizes and number of layers with con-
stant α = 0, i.e., without any IMEX term involved. Each curve is obtained
by averaging the accuracy values from three runs 34

5.2 Accuracy comparison for different (step size, layer number) pairs with α = 1,
i.e. , IMEX terms L1 = I, L2 = I . 35

5.3 Accuracy comparison for different (step size, layer number) pairs with α =
10, i.e., IMEX terms L1 = 10I, L2 = I . 36

5.4 Training curves for 16 layer network, where the tuned ”optimal” stepsize
multiplied by 4. The best-performing alpha is 1.0. 37

5.5 Training curves for 4 layer network, where the tuned stepsize is multiplied
by 16. The best-performing initial alpha is 1.0. 38

5.6 Networks with different alpha values are trained with MGRIT using 2 levels
and coarsening factor 2. Except for the case without IMEX ,i.e., α = 0, all
training curves end close to each other, and the best-performing α value is
1.0. 39

viii

5.7 Networks with different alpha values are trained with MGRIT using 2 levels
and coarsening factor 4. Except for the case without IMEX i.e. α = 0 and
α = 0.1, all training curves end close to each other, and the best performing
α value is 2.5. 40

5.8 Networks with different alpha values are trained with MGRIT using 3 levels
and coarsening factor 2. Except for the case without IMEX i.e., α = 0 and
α = 0.1, all training curves end close to each other, and the best performing
α value is 2.5. 41

5.9 Networks with different alpha values are trained with MGRIT using 3 levels
and coarsening factor 4. Except for the case without IMEX i.e. α = 0, and;
cases α = 0.1 and α = 1.0 all training curves end close to each other, and
the best performing α value is 5.0. 42

5.10 Training curves to compare different IMEX parameters on different levels
(solid lines), and using the same choice for α on all levels (with markers). 43

5.11 Training curves for a different number of levels and different coarsening
factor parameters when a 64-layer network is trained with 32 processors.
The black curve is serial PDE-GCN without IMEX. The best-performing
IMEX parameter choice is employed for each pair. This experiment is done
with 32 MPI processes. We used the same alpha value in fine and coarser
levels. For the blue curve α = 1.0, for the red and green curves α = 2.5,
and for the cyan curve α = 5.0 values are used. 44

5.12 Training curves for 256 layer network experiments. Each curve is from train-
ing with different MGRIT parameter pairs. We can state that network with
3 levels, and coarsening factor 4, had completed 150 epochs around 3.5 times
earlier (around 2000 seconds) than the serial-trained network (around 7000
seconds).The number of processors used is 64. 45

5.13 In this experiment, we fixed the training end time to compare training
curves. It can be seen the parallel-trained network with a cyan curve reached
the peak accuracy in a shorter time when compared with the serial-trained
network. Achieving comparable accuracies for serial training in a shorter
time is a result of the IMEX modification that we did. The number of
processors used is 64. 46

ix

Chapter 1

Introduction

Deep learning is a branch of machine learning that aims to solve learning problems
by artificial neural network (ANN) models and training algorithms. Recent advances in
deep learning research showed that neural networks have achieved tremendous success in
problems of various scientific disciplines, such as computer vision [24], natural language
processing [37], and applied mathematics [30]. While the models have been achieving
promising success, computations that involve neural networks require long training times
and expensive hardware resources, which makes using these tools challenging.

In this thesis, we consider one solution to decrease the computing time of neural net-
works, named parallel-in-layer training. Given a neural network with many layers, parallel-
in-layer training aims to distribute stages of forward and backward propagation to multiple
processors. It is powered by concepts and numerical algorithms that were invented for the
parallel-in-time integration of dynamical systems.

In the literature, parallel-in-layer training was first applied to Residual Networks [16],
and a similar parallel-in-time training is applied to Gated Recurrent Units(GRU) [25], for
sequence-models where index in a sequence can be interpreted as time. Parallel-in-layer
and parallel-in-time approaches are using ordinary differential equation formulations of
these architectures. In this thesis, we apply this training algorithm to a graph convolu-
tional network architecture, named PDE-GCN [8], which is inspired by a parabolic partial
differential equation. We evaluate the performance of naive parallel-in-layer training in
terms of speed-up and accuracy. We also proposed a feasible solution to problems related
to numerical stability and accuracy loss when this GNN is trained in a parallel-in-layer
manner.

This thesis is divided into six chapters. Background material on preliminary topics

1

such as numerical solution of differential equations, neural networks, and machine learning
on graphs is provided in Chapter 2, followed by a discussion of how neural network ar-
chitectures in the form of differential equations can be trained parallel-in-layer in Chapter
3. Chapter 4 introduces implicit-explicit time integration of dynamical systems, its appli-
cation to residual networks, and corresponding feasible implementations for PDE-GCN to
make this architecture more suitable for parallel-in-layer training. Chapter 5 describes the
experiments and results. Chapter 6 concludes this thesis and discusses future work.

2

Chapter 2

Background

This chapter provides background material for the upcoming chapters. It states def-
initions, discusses concepts about differential equations, and introduces algorithms for
numerical solutions. We then introduce neural networks and describe different layer types.
Lastly, definitions of concepts related to graph machine learning are given.

2.1 Differential Equations and Numerical Solutions

Differential equations state the relationship between functions and their derivatives.
The language they introduce is useful in modeling laws in science and engineering, and
they can appear in many different formats and types in practical problems. This variety
led to different ways to classify those equations to develop theories about them. One
common classification is according to the dimension of the function domain and the type of
derivatives involved, where differential equations are divided into two categories, ordinary
differential equations (ODE) and partial differential equations (PDE). In this section, we
give definitions and descriptions of concepts related to ODEs and then mention their PDE
counterparts.

2.1.1 Ordinary Differential Equations and Initial Value Problems

This subsection defines ordinary differential equations and initial value problems whose
solutions are single-variable scalar functions, x : R −→ R. Definitions for equations whose
solutions are vector-valued single-variable functions x⃗ : R −→ Rn, are similar.

3

Definition 2.1.1 An ordinary differential equation of order n is an equation of the
form,

F (t, x(t),
dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn
) = 0,

where t ∈ R is an independent variable, and x is single-variable scalar function of t
called dependent variable, and F defines the equation in terms of t, x, and derivatives
of x with respect to t.

If functions x(t) exist that satisfy the differential equation, then they are defined up
to some constants. To eliminate this uncertainty in constant values, differential equations
arise in practical problems with initial conditions. In definition 2.1.2, we define initial value
problems with first-order ODEs.

Definition 2.1.2 A first-order differential equation with an initial condition specified at
t=0 forms a first-order initial value problem:

dx

dt
= f(x, t), (2.1)

x(0) = x(0). (2.2)

A function x(t) which satisfies both differential equation (2.1) and initial condition (2.2) is
called a solution of the initial value problem (IVP).

Like many problems in mathematics, we can discuss the well-posedness of initial value
problems. Three properties are required for the well-posedness of an initial value problem:
existence, uniqueness, and stability (i.e. the solution changes continuously with changes
in initial conditions) of a solution. Well-posedness is a desirable property, when we don’t
have a closed-form solution but still want to make inferences about the properties of the
solution with approximations.

2.1.2 Numerical Methods for Initial Value Problems

Finding closed-form solutions to initial value problems is often not trivial. For such cases,
various numerical methods have been developed to simulate solutions to the problem of
interest. The predictions generated by these methods are called numerical solutions.
Obtaining a numerical solution is an algorithmic process. Therefore, numerical methods
make the most sense when implemented in a computer environment.

4

Within the context of IVPs, one iteration of these numerical methods computes a
prediction for the function value at some point t in the time domain, in terms of known
values (exact or approximate) for points smaller than t. This procedure has several names,
some of which are time integration, time stepping, and time marching.

Many different time marching schemes can be found in the literature. Euler’s method
[11], Heun’s method, and Runge-Kutta-Fehlberg [13] are some well-known examples.

Before employing a time marching scheme, a discrete representation of the time interval
has to be generated. Given a time interval [t0, tf], and a positive number N , a uniform

discretization of the time interval with N + 1 points, leads to grid points t(k) = t0 + k
tf−t0
N

, k = 0, . . . , N . This procedure is temporal discretization and the set formed by the
t(k) values is named as temporal grid.

Two different Euler method formulas are given below for the IVP in Definition 2.1.2
and an appropriate temporal discretization. Equation (2.3), is called the explicit (for-
ward) Euler scheme, and Equation (2.4) corresponds to the implicit (backward)
Euler scheme. Here, x(k) stands for the numerical solution value at time point t(k). Nu-
merical solution values are computed for any t(k), k > 0 starting from the known initial
value x(t(0)) = x(0) :

x(k+1) = x(k) + hf(t(k), x(k)), or (2.3)

x(k+1) = x(k) + hf(x(k+1), t(k+1)), (2.4)

where h > 0 is called the step size.

Two properties worth mentioning about Euler’s time marching schemes are their trun-
cation error and numerical stability.

The truncation error quantifies the difference between the numerical solution and the
exact solution, in terms of step size h. Both the explicit and implicit Euler schemes have
local truncation error O(h2), and the global truncation error O(h). These orders can be
derived using Taylor’s expansion of the exact solution of x(t). Other than Euler method,
Runge-Kutta schemes with multiple steps have higher order truncation errors, i.e. values
generated are expected to be closer to the exact solution.

Other than truncation error, another concern for a time marching scheme is whether
the exact solution and numerical solution stay close and do not diverge from each other
as time goes to infinity for the case in which the exact solution approaches zero, despite
the errors accumulated in each iteration. This is relevant to the property known as the
numerical stability of the time marching scheme. Numerical stability can be understood
by considering Example 2.1.1 below, which defines a special ODE named the test equation.

5

Example 2.1.1 Consider the initial value problem

dx

dt
= λx(t),

x(0) = x(0),
(2.5)

where λ ∈ R, λ < 0 Its solution is x(t) = eλt, and limx→∞ x(t) = 0.

The criterion for numerical stability of the forward Euler scheme can be obtained by
following the steps below. First the forward Euler scheme (2.3) is applied to the problem
(2.5). We can write x(k+1) in terms of the initial condition :

x(k+1) = x(k) + hλx(k) (2.6)

= (1 + hλ)x(k) (2.7)

= (1 + hλ)k+1x(0). (2.8)

Because limt→∞ x(t) = 0, we require for numerical stability that limk→∞ x(k) = 0, to
have the numerical solution remain close to the exact solution as time increases. This is
possible if

|1 + hλ| < 1, (2.9)

−1 < 1 + hλ < 1, (2.10)

−2 < hλ < 0, (2.11)

h <
−2

λ
. (2.12)

Similarly, the solution sequence generated by the backward Euler scheme in terms of
the initial condition can be obtained. Application of the backward Euler scheme (2.4) to
problem (2.5) leads to recursive relation (2.15):

x(k+1) = x(k) + hλx(k+1), (2.13)

=
1

(1 − hλ)
x(k), (2.14)

=
1

(1 − hλ)k+1
x(0). (2.15)

6

Following a similar reasoning as how (2.8) was derived, the numerical stability condition
of the backward Euler scheme (2.16) can be obtained:

1

|1 − hλ|
< 1. (2.16)

Since λ < 0, this inequality holds for any h > 0. Therefore there is no restriction on
the step size h for numerical stability.

As seen above, the backward Euler scheme is stable for any step size h, this is called
unconditional stability of the backward Euler. However, larger step sizes when used by
the forward Euler scheme lead to unstable numerical solutions due to the upper bound in
inequality (2.12). Equations sensitive to the choice of step size are called stiff differential
equations. In general implicit methods allow taking larger time step values, which are
preferred for problems with stiffness.

2.1.3 Partial Differential Equations and Diffusion Equation

Other than ODEs, partial differential equations (PDEs) are another type of equation that
we will mention. PDEs involve functions with multiple variables and partial derivatives
of the functions involved. We will focus on one relevant type of PDEs called diffusion
equations, rather than discussing PDEs in general.

A diffusion PDE models heat/substance distribution in some region over time. The
heat equation is given by

∂u

∂t
= α∇ · ∇u, (2.17)

where u is a multivariable function that maps a point x⃗ ∈ Rn and time t ∈ R+ to a real
scalar value. Also, ∇· is divergence and ∇u stands for the gradient of u; they only involve
partial derivatives of the spatial variables. Finally, α > 0 is called the diffusion coefficient,
which is assumed to be a constant value.

The form of the diffusion equation in one spatial dimension is given by

∂u

∂t
= α

∂2u

∂x2
, u(x, 0) = f(x). (2.18)

Here, u(x, 0) = f(x) is called the initial condition.

7

Similar to ODEs, numerical schemes exist for simulating the solution of diffusion PDEs.
These numerical schemes are obtained by discretizing time and space to obtain finite differ-
ence approximations of derivatives and can be divided into explicit and implicit schemes.
For example, the explicit method Forward in Time Central in Space, uses the current state
of the system, and the implicit method Backward in Time Central in Space, uses future
function values to approximate spatial derivative. The Crank-Nicholson method combines
two methods by averaging and it can be considered as an example of the implicit-explicit
method.

The explicit method has a condition for numerical stability, which is known as the
Courant-Friedrichs-Lewy (CFL) condition [6]. The implicit method and the Crank-Nicholson
has no restrictions for stability.

2.2 Machine Learning and Neural Networks

There are many different definitions of what the field of machine learning is concerned
with. One can view the task as an approximation of unknown functions by parametrized
models. The function is approximated according to data, which provides information about
the true function. Formal introduction to machine learning and its problems can be found
in resources [34, 36].

Problems of machine learning can be divided into classes. One division is according
to whether data is labeled or not. Such division puts problems with labeled data into
supervised learning, and the ones with unlabeled data into unsupervised learning.
In this thesis, our interest will be in supervised learning problems and we will assume the
dataset consists of ordered pairs and will denote the dataset by S = {(Xi, Yi)}ND

i=1, where
Xi denotes the feature vector, and Yi denotes the label of ith sample. The domains Xi

and Yi belong to differ: their components can be binary, real, or in some other data form
depending on the problem. In supervised learning the goal is obtaining a parametrized
function f̂(X, θ) such that f̂(Xi, θ) ≈ Yi for all samples in the dataset S. The rule for
computing the parametrized function is defined by a model decided to be used. θ stands
for all learnable parameters of the model.

Artificial Neural Networks (ANN) are one family of possible model types, which we can
use for obtaining f̂ . They are inspired by mechanisms in the brain and can be interpreted
as a directed graph, especially in visuals.

Neural networks consist of parts called layers, each layer has learnable parameters that
define the mapping for a given input. Input and output relation for layer i on arbitrary

8

input x can be modeled as a parametrized function similar to ANNs. We will denote the
output of function defined by layer i on vector x with f (i)(x, θ(i)), and the parameters θ(i) ∈
Rp, will be weights of layer i and x ∈ Rni−1 , in function notation f : Rni−1 × Rnp → Rni ,
ni stand for the output dimension of layer i.

There are various layer types, designed for different purposes. The most primitive layer
type is the fully connected layer as used in feedforward neural networks. Computation of
a single fully connected layer with an index i involves an application of an affine trans-
formation defined by its parameters, θ(i) that outputs a hidden state of the layer hi and
application of nonlinear activation function to hi to compute output. Parameters θ(i) con-
sists of weight matrix Wi, and bias vector bi. Example activation functions σ are Relu and
tanh, they introduce nonlinearity to the function. Formulas for the fully connected layer
are given in Example 2.2.1 below.

Example 2.2.1 Let x(i−1) ∈ Rni−1 be the output of layer i−1, W (i) ∈ Rni×ni−1 , b(i) ∈ Rni

weight matrix and bias vector. The hidden state hi and output xi are obtained as follows :

h(i) = W (i)x(i−1) + b(i), (2.19)

x(i) = σ(h(i)). (2.20)

Fully connected layer computations take linear combinations of input vector elements
and compute output according to them. They are not designed specifically for recognizing
local, stationary, and multiscale patterns, which are properties of natural signals such as
sound and images. Convolutional layers are types of layers designed so that these natural
signal properties are considered. The convolution operation is linear and has a sparse
matrix representation. More detailed information about convolutional can be found in
[27].

For a given learning problem, after defining the architecture of the model in terms of
layers, the next stage is training, where model parameters, that achieve desirable accu-
racy are obtained. This stage involves defining an optimization problem and performing
optimization algorithm iterations to obtain local or global minimum points in learnable
parameter space.

In general, the optimization problem for supervised learning problems involves two
terms, loss and regularization. The loss term 1

N

∑M
i=1 L(Yi, f̂(Xi, θ)) measures how close the

neural networks approximate the to true labels. The regularization term λR(θ)’s presence
prevents overfitting, i.e. it enhances generalization to unseen data. The combined loss
function results in the following optimization problem:

9

minimize J(θ) =
1

N

M∑
i=1

L(Yi, f̂(Xi, θ)) + λR(θ). (2.21)

The local minimum of the optimization problem can be obtained by performing batch
gradient descent; with an update rule given by,

θ(t+1) = θ(t) − α∇θJ(θ(t)) (2.22)

where θ(t) is the parameter state after iteration t, and α is the learning rate. In practice,
to shorten computing time, stochastic gradient-based iterations are used. Some examples
of stochastic iterations that are used for training neural networks are stochastic gradient
descent (SGD), ADAM [22], SGD with Momentum [26], and RMS-Prop [35].

2.3 Machine Learning on Graphs

Standard neural network layers, such as feed-forward layers, convolutional layers, and
recurrent neural networks define their operations on input that belongs to an Euclidian
domain, where components of input have some spatial position. For example, image pixels
have a specific coordinate that defines their position, or each word in a text has an order
that defines its position in a text.

However, not all data are encoded in the appropriate format for Euclidian domains.
One example type of data is data that can be represented as a graph. Standard layer
operations are not suitable for data belonging to domains that are non-Euclidian. This
deficiency requires layer formulations different from standard ones, but at the same time,
they should have some common design with standard layers to make the transferability of
theory possible.

In this section, we first introduce definitions of graphs. We then define graph neural
network operations in terms of primitive definitions. Afterward, we describe an exam-
ple graph machine learning task called node classification by providing details about the
dataset CORA [33]. We end the section by describing Graph Convolutional Network
(GCN) [23], which is relevant to future chapters.

2.3.1 Basic Definitions about Graphs

Graph theory is the branch of mathematics that deals with mathematical structures
called graphs. They have applications in modeling many different situations. Social net-

10

works, geographic maps, and chemical substances are some examples that are suitable for
modeling with graphs. The formal definition of a graph is given in the definition below:

Definition 2.3.1 A graph G is a pair of two sets, (V,E), vertices and edges. E can
either contain 2-element subsets or 2-tuples of vertices. If E consists of 2-element subsets
the graph is undirected, otherwise it is directed.

Nodes in the graph are individual elements and, edges are connections between those
elements. In a social network example, profiles can be viewed as nodes, and having a
friendship relation between two profiles can be seen as the presence of an edge between
corresponding nodes.

For a node in a graph, it can be important to talk about what other nodes it is connected
to. The definition for neighbors of a node is given below:

Definition 2.3.2 Let G = (V,E) be an undirected graph. The neighboring nodes of a
vertex v ∈ V , denoted by N(v), are the vertices that share an edge with v in G. Formally,

N(v) = {u ∈ V | {v, u} ∈ E}.

The definition for the directed graph is similar, by replacing 2-element subsets in the defi-
nition with tuples.

In social media examples, for a given profile, neighboring nodes consist of all friends of
this profile.

There are characteristic matrices for graphs, constructed according to the vertex (V)
and edge (E) sets. In Definitions 2.3.3, 2.3.4, 2.3.5 and 2.3.6 below, we state the rules
to construct some matrices relevant to this thesis. During construction, it is assumed
that nodes in V are indexed from 1 to N , where N = |V | and nodes of the original
graph G do not have any self-connections. Additionally, we define an indicator function
e : N ×N → {0, 1}, where the value of e(i, j) is 1 if there is an edge between nodes with
indexes i and j, and otherwise it is 0.

Definition 2.3.3 Let G = (V,E) be an undirected graph. The adjacency matrix A =
(aij) ∈ RN×N , and its entries are defined as

aij = e(i, j).

From the adjacency matrix A, the adjacency matrix with self connections is obtained
as Ã = A + IN . It is simply an adjacency matrix of a modified G where the self-edge for
each node is added.

11

Definition 2.3.4 Let G = (V,E) be an undirected graph. The degree matrix D =
(dij) ∈ RN×N , is a diagonal matrix whose entries are defined according to the rule below:

dij =

{∑N
k=1 e(i, k) if i = j,

0, otherwise.

Similar to Ã, the degree matrix with self connections is obtained by D̃ = D + IN .

Definition 2.3.5 Let G = (V,E) be an undirected graph. The incidence matrix B =
(bij) ∈ RN×M is a matrix whose entries are defined as follows:

bij =

{
1, if edge ej is incident to vertex vi,

0, otherwise.

Definition 2.3.6 Let G = (V,E) be an undirected graph. The graph Laplacian L of G
is defined as,

L = D − A.

The symmetric normalized graph laplacian with self-connections L̃ is defined by

L̃ = I − D̃−1/2ÃD̃−1/2.

There is a connection between the Laplacian operator ∆ = ∇ · ∇ that appears in
equation (2.17), and matrix operation on graphs. Matrix operator L acts as a discrete
version of the continuous Laplacian operator to functions defined on nodes. Additionally,
there are connections between the gradient and the incidence matrix B, and between
divergence and BT . These connections can be seen by considering the following example:

Example 2.3.1 A grid discretizing a line segment with 5 points can be represented with
the undirected graph G = (V,E) below:

u(1) u(2) u(3) u(4) u(5)

Figure 2.1: Graph for a 1-D grid with 5 grid points

The column vector of u values is given by:

12

u =
[
u(1) u(2) u(3) u(4) u(5)

]T
The adjacency (A), degree (D), and Laplacian (L) matrices of the graph are:

A =

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

 , L =

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 .

The Laplacian on the 1-D grid corresponds to an operator that approximates the second
partial derivative of the spatial variable, assuming the grid spacing h = 1 without loss of
generality. Let Q be the matrix representation of the Laplacian PDE operator and for an
interior grid point with index i, application of the operator to interior grid points results
in the following computation:

(Qu)(i) = u(i+1) − 2u(i) + u(i−1). (2.23)

Another way to obtain this expression is by performing a matrix-vector product involving
L and the vector of ui values.

(Lu)(i) = 2u(i) − u(i+1) − u(i−1). (2.24)

The expression in equation (2.24) is equal to (2.23) with the opposite sign:

The same operation can be expressed in terms of incidence matrices. For the grid in
Figure 2.1, incidence matrix B and its transpose is given by:

B =

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 , BT =

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

 .

The matrix B corresponds to a gradient operation (∇); it maps vectors whose dimension
is equal to the number of nodes to vectors whose dimension is equal to the number of edges.
The matrix BT

1 acts like a divergence operator (∇·); it maps vectors with dimension equal
to the number of edges to vectors with size number of nodes.

13

Similar to the continuous case, the Laplacian L is nothing but the application of the
gradient operation, B followed by divergence, BT as illustrated by the following equality:

Q = −L = −BTB. (2.25)

Similar to this example in 1-D, this interpretation also holds in higher dimensions, if
a grid is viewed as a graph.

2.3.2 Node Classification as a Learning Task

Graphs are involved in various types of learning tasks and one that we tested our ap-
proach with is node classification. In the node classification problem instance relevant to
this work, there is a single graph G = (V,E), where each node belongs to a class, and each
node has a feature vector. Node features are completely given and node classes are par-
tially given to the model. The learning task is training a model that aims to predict unseen
node classes, by using feature vectors, seen node classes, and underlying edge relations in
the training part.

The name of the dataset we used in our experiments is CORA [33]. The type of graph
the CORA dataset includes is called the citation network. There are 2708 nodes, each
corresponding to a computer science publication, and 5429 undirected edges representing
citations. Each node belongs to one of 7 classes according to the category of the paper,
and a binary feature vector with 1433 entries describes each publication, and each entry
indicates whether a keyword appears in the paper.

In the semi-supervised learning task, the training set consists of 140 nodes, 20 per class.
The validation and test sets consist of 500 and 1000 nodes respectively.

2.3.3 Graph Neural Networks

Graph neural networks are the general name of neural networks that can operate on
data represented as graphs. The key idea in designing graph neural networks is to include
message passing in layers. Message passing is the general name of an operation that
computes node features of outputs as a combination of its feature vector and neighboring
node feature vectors. The message passing formulation that we will consider is the one
employed in graph convolutional network (GCN) layers [23]; other variants of message
passing can be seen in [32, 19, 38].

14

The update rule of a graph convolutional layer is given by

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (2.26)

Here, Ã and D̃ are the matrices defined in Definitions 2.3.3 and 2.3.4, H(l) ∈ RN×K is
the node activation of layer l, each row belonging to a node, matrix K is the dimension
of the node activation vectors, i.e., the channel number of node feature vectors in layer l,
W (l) is the trainable weight matrix of layer l, and σ is the chosen activation function.

The multiplication with D̃− 1
2 ÃD̃− 1

2 from the left acts as a message passing operation,
multiplication with W (l) from the right mixes channels for each node vector and application
of σ introduces nonlinearity.

15

Chapter 3

Parallel-in-Layer Training of Neural
Networks

This chapter includes detailed background about parallel-in-layer training of neural net-
works. It first details the multigrid-reduction-in-time (MGRIT) algorithm, a crucial com-
ponent for achieving layer-parallelism. Afterward, we introduce neural differential equa-
tions and end the chapter by giving the formulations on parallel-in-layer training of residual
networks.

3.1 Multigrid-Reduction-in-Time Algorithm

Classical methods for simulating initial value problems, which we mentioned in Chapter
2, generate values of the numerical solution sequentially. Obtaining the solution value at an
arbitrary time point requires previously computed values at earlier time points, and this
dependency on past values puts a barrier to the trivial parallelization of time-marching
computations. However, modern computing technology favors increasing the number of
computing units instead of developing faster processors. To use modern computers with
many cores, numerical integration algorithms that are suitable for parallelization with
multiple processors are proposed to replace sequential time-marching schemes, and the
general name of these methods is parallel-in-time integration [15].

The parallel-in-time integration algorithm that we consider for introducing layer-parallelism
in neural networks is the multigrid-reduction-in-time (MGRIT) algorithm [12]. A general

16

form of time-dependent ODE initial value problem that MGRIT can be used for, is given
by

dx(t)

dt
= f(t, x(t)), x(0) = x0, t ∈ (0, tf]. (3.1)

It is possible to apply MGRIT to problems with PDEs as well.

To estimate values of the solution x(t) at certain points in time, we discretize the
time interval with a grid of uniformly distributed points t(i) = i∆t, i = 0, 1..., Nt, where
∆t = tf/Nt. This discretization divides the interval into Nt equally spaced time intervals.
The approximate solution at t(i) is x(i) ≈ x(t(i)) for i = 1..., Nt, with x(0) = x(0) = g0.
Given this discretization of the time interval, the time integration of the initial value
problem of equation (3.1) is computed by the sequence

x(i) = Φ(x(i−1)), i = 1, 2, . . . , Nt, (3.2)

, where Φ is the time propagation rule that depends on the time integration scheme of
choice. The variants of the Euler scheme in equations (2.3) and (2.4) we mentioned in
Chapter 2 are examples of formulas that define different time propagation rules. Time
integrator Φ can have an index as well if different rules are used at different time points,
and such dependency can be useful to represent adaptive solvers. Throughout this thesis,
we will assume the choice of time propagation rule is global, independent of the time point
index.

The x(i) values satisfying the relation (3.2) define a system with Nt + 1 algebraic equa-
tions whose representation is given by

A(x⃗) ≡

x(0)

x(1) −Φ(x(0))
...

x(Nt) −Φ(x(Nt−1))

 =

g(0)

0
...
0

 ≡ g⃗. (3.3)

Conventional time-stepping methods solve this system sequentially, by computing x(i)

values one after another according to the propagation rule (3.2). This sequential forward
scheme obtains all x(i) values after Nt time steps, with time complexity O (Nt).

The MGRIT algorithm follows an iterative procedure to generate a sequence converging
to the solution of the system (3.3). MGRIT starts with an initial guess for the solution
and after each iteration, the application of MGRIT is expected to update the current

17

guess with a better approximation. The pseudocode that outlines the operations of one
MGRIT iteration is given in Algorithm 1, this example is for 2-level MGRIT; pseudocode
for arbitrary level numbers are similar with recursion.

Algorithm 1 MGRIT-FAS(A, x⃗, g⃗)

1: Apply F -relaxation or FCF -relaxation to A0(x⃗0) = g⃗0
2: Inject the approximation and its residual to the coarse grid:

x⃗1 = RI(x⃗0),
g⃗1 = RI(g⃗0 −A0(x⃗0))

3: Solve A1(v⃗1) = A1(x⃗1) + g⃗1
4: Compute the error approximation: e⃗ = v⃗1 − x⃗1

5: Correct using ideal interpolation: x⃗0 = x⃗0 + P(e⃗)

In Algorithm 1 FAS stands for Full-Approximation Storage, and it is used for nonlinear
problems, but the algorithm is still valid for linear problems. We will describe the algorithm
details in the following paragraphs.

Iterations of MGRIT achieve speedup by performing operations on multiple temporal
grids. Each temporal grid has a level, associated with it. The grid with the smallest level,
i.e., level 0, is the finest grid, it contains all time points of interest.

Given the fine grid, coarser grids are constructed according to an integer parameter
called coarsening factor, which we will denote with cf . Points on the fine grid are divided
into two classes, F -points, and C-points. All points that have an index with an integer
multiple of cf form the C-points of the grid, and the remaining points are F -points. The C-
points of the fine grid are the points that define the coarser grid on one higher level. Figure
3.1 summarizes the relation between fine and coarse temporal grids. Different coarsening
factors can be used for different grid levels, however, for simplicity, we will assume cf is
shared among levels.

It is worth clarifying the notation before describing the steps of Algorithm 1. Lowercase
letters with arrows on top are vectors, and bold capital letters are operators that map
vectors to vectors. Superscripts in the algorithm denote the level of the grid, where the
vector of level 0 contains all data corresponding to points of the fine grid.

The first phases of MGRIT are the relaxations that appear in line 1 of Algorithm 1.
Relaxations in MGRIT are local operations that update approximation at temporal points
in a parallelizable way. F -Relaxation starts by taking the solution value at a C-point
and updates the solution at F -points in future time by applying the propagation rule
(3.2). This propagation stops at an F -point whose next point is a C point. Similar to

18

Fine grid

t(0)t(1)t(2)· · · t(m) t(Nt)
∆t

Coarse grid

T (0) T (1) · · · T (NT)

∆T = cf∆t

Figure 3.1: Fine and coarse temporal grid obtained by uniform discretization. The coarse
grid is created by removing all F - points (represented by short markers) of the fine grid.

F-relaxation

C-relaxation

Figure 3.2: F -relaxation and C-relaxation on temporal grids with coarsening factor pa-
rameter cf = 5.

F -relaxation, C-relaxation updates the solution value at C points, by applying the rule
(3.2) to the solution value located at the preceding F point. The F and C relaxations
can be considered primitive relaxations. New relaxations can be defined in terms of these.
FC relaxation consists of F relaxation followed by C and FCF -relaxation consists of
application of F , C, and F relaxations. Relaxations can be parallelized by distributing
the computations of intervals between C-points to different processors. Visuals describing
F and C relaxations are provided in Figure 3.2. This relaxation phase updates the fine
approximation x⃗0 in Algorithm 1.

The phase after relaxation is the restriction of the updated fine grid solution x⃗0 and
the residual g⃗0 −A0(x⃗0) to the coarser grid. There are different ways to define restriction
operators; one common choice is injection, denoted with RI . Restriction with injection
transfers updated solution values at C-points to a coarser grid vector without any change.
The restricted solution on level 1 is denoted as x⃗1 and the restricted right-hand side is g⃗1.

After the restriction of the vectors to the coarse grid, the error on the coarse grid has
to be calculated. This error is calculated according to the coarse-level time propagator.
The coarse-level time propagator has to be different from the one defined for the fine grid
because the length of time intervals between grid points is changed from ∆t to cf∆t. We
denote the time propagator function of level l with Φl(.) and the propagation operator

19

of the coarse grid (on level 1) with A1. If the fine level contains Nt + 1 points with Nt

subintervals, the coarse level system contains Nt/cf + 1 points and Nt/cf ≡ NT non-
overlapping intervals between coarse points. This error on the coarse grid is computed
by solving a system of equations similar to the fine level. If the grid is the coarsest one,
the exact solution to the coarse system is calculated, otherwise, an approximate using an
MGRIT iteration is computed. The equation that needs to be solved on the coarse grid is
given in line 3 of Algorithm 1. The operator A1 is defined according to

A1(x⃗1) =

x
(0)
1

x
(1)
1 −Φ1(x

(0)
1)

...

x
(NT)
1 −Φ1(x

(NT−1)
1)

 . (3.4)

where x
(i)
1 stands for guessed solution value at ith time point of the coarse grid (on level

1).

After error calculation on the coarse level, this error vector is interpolated to the fine
level to estimate the fine error. This fine grid error estimate is used to update the fine grid
solution, to make it closer to the exact solution of the fine system.

Optionally, error correction can be followed by F -relaxation to propagate values at C
points to F points. This concludes one MGRIT iteration.

MGRIT can be seen as a fixed-point method: its iterations are expected to converge
to the fixed point of the equation (3.5) below:

x⃗(k) = MGRIT-FAS(A, x⃗(k−1), g⃗). (3.5)

Here x⃗(k) is the approximation computed by the kth MGRIT iteration. This notation will
appear in the parallel-in-layer algorithm where MGRIT is used instead of classical time
marching.

3.2 Neural Differential Equations

With the increase in popularity of deep learning in the last decade, there have been
several works to define connections between the theory of dynamical systems and neural
network architectures [39, 18, 4]. These ideas enabled the application of prior knowledge
from differential equations to deep learning. Parallel-in-layer training’s main inspiration

20

relies on this differential equation interpretation of neural networks. In this section, we
will focus on the ODE viewpoint of residual networks (ResNets) [21]. We will describe the
foundations of parallel-in-layer algorithms with the help of this viewpoint. In Chapter 4, we
will describe PDE-GCN [8], a graph neural network architecture, whose layers are inspired
by the numerical solution of diffusion PDEs which we introduced in equation (2.17) before.

ResNets are neural network architectures that are designed to allow the training of
deeper networks with skip connections. Skip connections make it easier to express identity
maps in forward propagation from layer to layer. The output of layer k + 1 is computed
in terms of the output of layer k by

x(k+1) = x(k) + f(x(k), θ(k)). (3.6)

Here x(k) denotes the output of layer k, and θ(k) stands for the trainable parameters of
layer k.

For the N -layer residual network this formula is calculated starting from the initial
value x(0) and ends when x(N) is obtained. We will assume that before the application of
residual layers, input feature vector Xi will be mapped to x

(0)
i , an initial embedding for

the ith sample. The initial embedding is obtained by an application of an embedding layer
Lin to feature vectors. We will denote this calculation with

x
(0)
i = LinXi. (3.7)

The forward propagation of residual layers performed for obtaining x(N), can be seen
as a sequential evaluation of the forward Euler scheme with time step size h = 1, for the
initial value problem with parametrized ODE

dx(t)

dt
= f(x(t), θ(t)), x(0) = x(0) = LinX, t ∈ (0, tN]. (3.8)

In this viewpoint x(N) corresponds to the value of the solution at time point tN , which is
x(tN).

This initial value problem interpretation lets us view the optimization problem for
training in (2.21) as an optimization problem of a functional which has constraints in the
form of a differential equation. ODE-constrained optimization that corresponds to (2.21)

21

is given by

min J(θ(t)) =
1

M

M∑
i=1

L(yi, xi(tf)) +

∫ tf

0

R(θ(t)) dt (3.9)

subject to
dxi(t)

dt
= f(xi(t), θ(t)), t ∈ (0, tf], (3.10)

xi(0) = LinXi ∀i = 1, . . . ,M. (3.11)

Here, L is the training loss function that measures the difference between predictions xi(tf)
and labels yi, and R is a regularization function. It defines a training objective over M
samples, where each sample has a different initial condition. The differential equations
controlled by θ map initial conditions to output vectors at final time tf .

Obtaining a solution to the constrained optimization problem in (3.9) is not tractable;
discretization of the ODE constraint and the parameter function θ(t) yields the approxi-
mate problem

min J(θ) =
1

M

M∑
k=1

L(Yk, x
(N)
k) + λ

N−1∑
i=0

R(θ(i)) (3.12)

subject to x
(i+1)
k = Φ(x(i), θ(i)), ∀i = 0, . . . , N − 1. (3.13)

xk
(0) = LinXk ∀k = 1, . . . ,M. (3.14)

It represents a learning problem for residual networks as a constrained optimization prob-
lem over a finite-dimensional space of parameters with algebraic constraints. Here N is
the number of residual layers and M is the number of training examples. We denote the
residual network propagation rule in equation (3.6) with Φ, where x(k+1) = Φ(x(k), θ(k)).

In addition to constraints (3.13) and (3.14) (called state equations), there are two more
groups of constraints which are the adjoint equations and the design equations.

1. Adjoint equations

x̄
(i)
k =

(
∂Φ(x

(i)
k , θ(i))

∂x

)T

x̄
(i+1)
k , ∀i = 0, . . . , N − 1, (3.15)

with x̄
(N)
k =

1

M

(
∂L(YK , x

(N)
k)

∂x

)T

, ∀k = 1, . . . ,M. (3.16)

22

2. Design equations

0 =
M∑
k=1

(
∂Φ(x

(i)
k , θ(i))

∂θ(i)

)T

x̄
(i+1)
k +

(
∂R

∂θ(i)

)T

,∀i = 0, . . . , N − 1. (3.17)

Here, the x̄
(i)
k s are the adjoint state variables. Adjoint constraints and design constraints

are derived using the method of Lagrange multipliers, which is a common method to solve
optimization problems with smooth equality constraints. Adjoint constraints are a result of
the forward propagation constraints in (3.13) and (3.14), and the design equation derivation
comes from optimality conditions, i.e. forcing partial derivatives of the Lagrangian to zero.

Each constraint satisfaction and optimality condition has a corresponding phase in
neural network training. The forward propagation phase corresponds to obtaining values
that satisfy the state equation (3.13). Backpropagation computes the loss gradient which
corresponds to generating the adjoint variable sequence that satisfies (3.15). Finally, the
right-hand side of the design equations is nothing but the analytical gradient of the loss
and regularization terms with respect to network parameters. Taking gradient descent
steps corresponds to solving the design equations.

3.3 Parallel-in-Layer Training of Neural Networks with

MGRIT

Layer-parallel training aims to distribute the phases of forward and backward propa-
gation to multiple processors and execute those phases in parallel so that total execution
time can be shortened.

In [16], the authors achieve parallelism by replacing serial forward/backward propaga-
tion with MGRIT iterations applied to state/adjoint systems and then computing gradients
with output of the MGRIT iterations. The reason for the applicability of MGRIT to the
state/adjoint conditions is that the rule generates the solution of these conditions, and has
the form of sequential time marching. Like the state equations, the adjoint equations can
be interpreted as time integration starting from ūN and ending at ū0. The applicability of
MGRIT can be understood better when considering the system of equations for the adjoint
variables:

23

A(x⃗adj) ≡

x̄(N)

x̄(N−1) − (∂Φ(x(N),θ(N))
∂x

)T x̄(N)

...

x̄(0) − (∂Φ(x(1),θ(1))
∂x

)T x̄(1)

 =

1
M

(
∂L(Y,x(N))

∂x

)T
0
...
0

 ≡ g⃗adj. (3.18)

The linear system in equation (3.18) is in a form that is suitable for MGRIT iterations,
i.e., a Φ rule can be constructed for it. Therefore MGRIT can be utilized to approximate
its solution to obtain an approximation for the adjoint variables. We can denote the
relation between approximate solutions of the adjoint system with MGRIT iterations with
a relation stated in equation (3.5). Similar to the state equations, MGRIT converges to
the fixed point of this sequence.

After obtaining approximations of the state and adjoint variables, the approximate
gradient can be calculated and used for a gradient descent step, and this is the end of one
epoch. The pseudocode of one epoch of training is given in Algorithm 2.

Algorithm 2 Layer-Parallel-Epoch

1: Compute state variables with T1 iterations x⃗ = MGRIT − FAS(A, x⃗, g⃗)
2: Compute adjoint variables with T2 iterations x⃗adj = MGRIT − FAS(Aadj, x⃗adj, g⃗adj)
3: Assemble Gradient of Loss J w.r.t. weights, ∇θJ , using (3.17)

4: Perform gradient descent update on trainable parameters, θ⃗ = θ⃗ − α∇θJ

The main motivation for utilizing MGRIT for neural network training is to achieve
speed-up by eliminating the bottleneck introduced by serial forward and backward prop-
agations. The potential for speed-up in training becomes more apparent when the layer
number is large and the number of MGRIT iterations per epoch is small.

24

Chapter 4

IMEX Schemes Applied to
PDE-GCN

In this chapter, we introduce PDE-GCN-D, the graph neural network architecture that
we choose to evaluate the performance of the parallel-in-layer training algorithm’s perfor-
mance introduced in Section 3.3. We then mention potential numerical instability that
arises due to stepsizes of different lengths when multigrid iterations of more than one level
are performed. In the final part, we discuss a potential solution for numerical instability
called IMEX integration and outline various implementation choices for parallel-in-layer
training.

4.1 Dynamical Systems, GNNs, and PDE-GCN

Similar to neural network architectures that operate on data belonging to the Euclidian
domain, there have been works to design new graph neural network architectures inspired
by differential equations [5, 3, 31, 9, 8]. The general idea of differential equation-inspired
graph neural networks is picking up a dynamical system whose evolution in time was
studied, defining graph neural network layers accordingly, and explaining the strengths of
the chosen dynamical system as an inductive bias for a particular graph machine learning
problem. As examples of dynamical system-inspired models, GRAND [3] and PDE-GCN-
D [8] are inspired by diffusion PDEs. Their training dynamics are similar to GCNs [23].
PDE-GCN-H [8] and Graph-CON [31] employ training dynamics where energy is preserved,
and ADR-GNN [9] includes an advection term in its architecture and achieves feature

25

transportation with directionality. Broad information about GNN architectures inspired
by dynamical systems can be found in the survey paper [20].

Papers on the architectures GRAND, PDE-GCN-D, and Graph-CON discuss over-
smoothing problems that appear in the training of earlier GNN architectures [23, 38],
using a dynamical systems point of view. Over-smoothing in earlier architectures makes
it hard to train GNN models with many layers. Architectures in [3, 31, 8] reported they
were able to maintain accuracy at a desirable level for a large number of layers, where
earlier GNN architectures suffer. The appearance of GNN architectures that use a large
number of layers makes those graph neural networks suitable for speedup if trained with
the parallel-in-layer algorithm that we mentioned in Chapter 3.

The rest of this section is about PDE-GCN, the architecture we used in our compu-
tational experiments. It describes the fundamentals of diffusion equations on manifolds,
PDE-GCN-D layer operations (where D stands for diffusion), and details about training
PDE-GCN-D on semisupervised node classification learning tasks.

PDE-GCN-D is formulated as a discretization of diffusion PDEs on manifolds. Let M
be a manifold and f : M → Rn be a vector-valued function that maps points on this
manifold M . Continuous differential operators gradient ∇, divergence ∇·, and Laplacian
∆ are defined similarly to corresponding operators on functions over Rn. Given these
differential operators, the initial value problem for the nonlinear PDE equation is given by

∂f

∂t
= ∇ ·K∗σ(K∇f), f(t = 0) = f (0), t ∈ [0, T]. (4.1)

Here K is a coefficient matrix that is assumed to be time-dependent, K∗ is its conjugate
transpose, and σ is a non-linear activation function. This PDE in equation (4.1) can be
interpreted as an operator on the space of vector-valued functions defined on M . It maps
initial value f (0) to the solution value at T , f (T), where both of them can be viewed as
time-independent functions, i.e. functions only dependent on points of the manifold.

Similar to the operator interpretation of the PDE in (4.1), graph neural networks can be
considered as operators defined on the space of vector-valued functions over graph nodes.
Feature values of input data defined for each node can be regarded as an initial value, f (0),
and the GNN model maps this function to output features of its final layer. We first define
graph analogs of differential operators and then define the time integration of a PDE on
the graph.

Let G = (V,E) be a directed graph with n nodes and m edges; we can consider it as
a discretization of a manifold M to a finite space. Let f : V → Rc be a function that
maps each node of the graph to a vector of Rc, where c denotes the number of channels

26

or features. We will assume nodes have indices from 0 to n − 1, and the vector that the
function f maps node i to will be denoted with fi. We also consider the matrix f ∈ Rn×c

that stores the feature vectors for the n nodes in its rows. This means fi can be seen as
the ith row of matrix f .

In the setting described above, one can define discrete gradient operator G ∈ Rm×n,
which maps node functions to edge functions, i.e., functions whose domain is the set of
nodes to functions whose domain is the set of edges. For a node function, f , and an
edge between nodes i and j, the edge function value obtained by the gradient operation is
defined by

(Gf)ij = Wij(fi − fj), (4.2)

where the subscripts ij denotes the edge between nodes i and j and Wij is the weight of
an edge between node i and node j. The weights Wij can be defined in many ways; if
Wij = d−1

ij , where dij is the distance between nodes i and j, then the discrete gradient
operator becomes a second-order approximation of the true gradient. The choice that is
used in our experiments is Wij = γ−1

ij , where γij is the geometric mean of the degrees of
nodes i and j. The discrete gradient maps vector functions of nodes, to vector functions
of edges. In terms of linear algebra, it maps matrices of size n × c to matrices of size
m× c. Therefore, because the gradient operator acts on each channel individually, it can
be represented as an m × n matrix. The incidence matrix is the relevant matrix for the
unweighted discrete gradient, we described this relation in example 2.3.1.

From the definition of discrete gradient, it is possible to define the discrete divergence
which maps edge functions to node functions. Discrete divergence is defined in a way that
would make sense in terms of inner products between vectors. For an arbitrary graph, if
we consider a vector-valued edge function q ∈ Rm×c and a discrete gradient applied to
node function f ∈ Rn×c, it is possible to define an inner product between them. This inner
product should satisfy the property

(q,Gf) = qTGf = fTGTq (4.3)

This property induces a natural definition for discrete divergence as ∇· ≈ −GT . This
definition also resembles when we consider it in terms of dimensions, it can be represented
as a matrix with dimension m× n.

Given these discrete differential operator definitions, the propagation rule for a PDE-
GCN-D layer is defined as,

f (l+1) = f (l) − hGTσ(Gf (l)Kl)K
T
l . (4.4)

27

It corresponds to an explicit time integration of a diffusion PDE defined over the graph.

In this formula, f (l) is the output of lth PDE-GCN layer, h > 0 is step size, Kl is a 1×1
trainable convolution operation, and KT

l is the transpose of this convolution operation. The
differential operators G and GT do message passing between neighboring nodes, and the
convolution operators act on individual node/edge vectors and mix values in the channels.
The only trainable parameter in this equation is the convolution operator Kl.

In practice, the models use the propagation rule (4.4) as their intermediate layers.
These model architectures have two additional parts, the (opening) embedding layer, and
the (closing) embedding layer.

The (opening) embedding layer is where the input vertex features uv are mapped to
the initial feature vectors f0. Input and output relations are defined by f0 = Kouv, where
Ko is a 1 × 1 trainable convolution operator.

The (closing) embedding layer maps the output of the final PDE-GCN-D layer, f (L), to
the network output, uout. The network output is used for postprocessing operations, like
loss computation, or representation learning. Similar to the (opening) embedding layer, it
consists of Kc, a 1× 1 trainable convolution layer, and the input-output relation is defined
by uc = Kcf

(L).

The reason behind our choice of PDE-GCN-D, among other examples, is that it has
distinct parameter definitions for each layer, i.e., there are no learnable parameters shared
among layers. It is known that PDE-GCN-D can achieve relatively high accuracy when
trained with 64 layers. Training a standard GNN with 64 layers is a challenging task
due to over-smoothing, so it can be said that the PDE-GCN-D architecture addresses this
issue. Training a neural network with many layers is required to obtain speed up with
layer-parallel training.

4.2 IMEX Net in Residual Networks Setting

Parallel-in-layer training when performed on multiple levels requires integration with
larger timesteps. When explicit integration is performed, this leads to instabilities due to
the limited stability regions of explicit integration schemes, like forward Euler in (2.3). One
way to obtain stability is by picking an implicit scheme. However, for problems that involve
their nonlinearity, their derivation and implementation are not trivial. In this section, we
describe an alternative method, called implicit-explicit (IMEX) integration, that results in
relatively simple equations for implementation compared to using fully implicit integration.

28

IMEXnet [17] is a neural network architecture whose main motivation was addressing
the limited receptive field problem of convolutional neural networks. It introduces addi-
tional terms to the ODE corresponding to ResNet and states a new forward propagation
rule inspired by the idea of IMEX time integration of dynamical systems.

IMEX schemes have been studied to integrate spatially discretized time-dependent
PDEs with two distinct terms in the spatial derivative part of the PDE[1, 2]. One example
of PDEs suitable for which IMEX schemes are commonly used is the advection-diffusion
equation. Their use is convenient when the implicit scheme is not feasible for the one
term, and explicit time integration of the remaining term is sensitive to h, i.e., the term
is stiff. Under such conditions, picking an explicit discretization for the first term, and
implicit discretization for the second term leads to the implicit-explicit (IMEX) time
integration scheme.

IMEXnet can be considered as a variant of a ResNet which differs in the forward
propagation formulas. In derivations of IMEXNet formulas, first the ResNet ODE in
equation (3.8) is modified by adding and subtracting a term Lx(t). Here, x(t) is multiplied
with an invertible matrix and an equivalent ODE (IMEX ODE) is obtained:

dx(t)

dt
= f(x(t), θ(t)) + Lx(t) − Lx(t). (4.5)

The motivation behind the addition of the L term is to obtain a form in which the IMEX
scheme can be utilized rather than explicit Euler integration. IMEXNet does this by
discretizing the first two terms on the right-hand side explicitly in time, and the remaining
term implicitly in time. The derivation to obtain x(k+1) in terms of x(k) is given below:

x(k+1) − x(k)

h
= f(x(k), θ(k)) + Lx(k) − Lx(k+1), (4.6)

x(k+1) − x(k) = hf(x(k), θ(k)) + hLx(k) − hLx(k+1), (4.7)

x(k+1) = (I + hL)−1(x(k) + hLx(k) + hf(x(k), θ(k))), (4.8)

x(k+1) = x(k) + (I + hL)−1hf(x(k), θ(k)). (4.9)

In [17], the authors discuss the choice of the L term. For their tasks, they design an operator
of the form L = BTB, where B is a group convolution, which leads to a positive definite
invertible IMEX term. The authors mention that the applicability of identities involving
the Fourier transform is computationally cheaper in inverse calculations. Reasoning about
this choice is more relevant to increasing the receptive field of standard convolutional layers,
rather than having a stable time integration scheme which will be our concern in this thesis.

29

In addition to discussing the design decisions on L, the authors of [17] provided a
theoretical analysis for the simplified case where L = αI, α > 0. Their theorem about
stability is provided below.

Theorem 4.2.1 (from [17]) Let J be a given matrix and consider the linear dynamical
system Ẏ (t) = JY (t). Assume that the eigenvalues of J have non-positive real parts, i.e.,
can be written as λ = −λreal + iλimag, where λreal ≥ 0. Then, if we choose α such that

|λ|2 + 2λreal −
1

h
≤ α, (4.10)

for all λ, the magnification factor between layers in the IMEX method is∣∣∣∣1 + hλ + hα

1 + hα

∣∣∣∣ ≤ 1, (4.11)

for all λ, and the method is stable.

Although this theorem does not cover exactly the case for the numerical stability of
ResNet’s forward propagation, the matrix J can be considered as the Jacobian of any layer.
An exhaustive analysis was not provided because the ResNet ODE is non-autonomous and
nonlinear.

4.3 PDE-GCN with IMEX Term

In this section, we discuss the IMEX idea for PDE-GCN-D in (4.4) and describe different
choices for the linear operator L.

We start with adding and subtracting a linear term to the continuous PDE in (4.1).
This operation yields an equivalent continuous PDE,

∂f

∂t
= ∇ ·K∗σ(K∇f) + Lf − Lf. (4.12)

Here L is nothing but a linear differential operator that acts on the function values at a
given time. Example L choices will be mentioned throughout the text.

30

Like in the case of ResNet, IMEX discretization for PDE-GCN results in the following
derivation:

f (l+1) − f (l)

h
= −GTσ(Gf (l)Kl)K

T
l + Lf (l) − Lf (l+1), (4.13)

f (l+1) = f (l) − hGTσ(Gf (l)Kl)K
T
l + hLf (l) − hLf (l+1), (4.14)

f (l+1) = (I + hL)−1(f (l) − hGTσ(Gf (l)Kl)K
T
l + Lf (l)), (4.15)

f (l+1) = f (l) − (I + hL)−1hGTσ(Gf (l)Kl)K
T
l . (4.16)

Here Lf (l) can be written as a matrix multiplication involving two matrices L1 ∈ Rn×n

and L2 ∈ Rc×c, with resulting equality Lf (l) = L1f
(l)L2.

We are using equation (4.16) in our implementations. One important detail to consider
here is that f (l) is a matrix defined by all feature vectors of nodes produced by the output
of layer l, it lies in n × c dimensional space. It is possible to define L whose matrix
representation has dimensions (nc) × (nc) where f (l) is viewed as a vector in Rnc. This is
in contrast to the ResNet setting, where the linear term L in equation (4.5) has dimension
c× c if x(t) ∈ Rc.

After obtaining a general IMEX formula for PDE-GCN-D, we investigated various
potential IMEX terms which resulted in a feasible forward propagation rule, i.e., terms not
involving computationally expensive procedures. The first variant was choosing L1 as a
scalar value multiplied by the identity matrix, expressed as L1 = αlI, and L2 = I We will
call it the shared diagonal IMEX term since all channels share the same α per layer then
(4.16) becomes

f (l+1) = f (l) − h

1 + hαl

(GTσ(Gf (l)Kl)K
T
l). (4.17)

Here αl is the coefficient for the IMEX term in layer l. We use a learnable α term for each
layer in some of our experiments.

The second IMEX term we considered is the channel-wise diagonal IMEX term. In
this IMEX variant, L is still diagonal with the possibility of having different values for
each channel. In this case, L1 = I and L2 is a diagonal matrix in Rc×c. Having different
values on the diagonal for each channel makes sense: when L is learnable, this can tune
the information propagation with a different rate for each channel. The idea of having a
different propagation rate per channel in GNNs was mentioned in [10], and its benefit is
shown for the over-smoothing problem. Time marching with channel-wise diagonal IMEX
term yields

f (l+1) = f (l) − h(GTσ(Gf (l)Kl)K
T
l)(diag(I + hL2))

−1. (4.18)

31

Here the IMEX term is constructed according to

(L2)ij =

{
0 if i ̸= j,

αi if i = j
, (4.19)

After considering these diagonal operators, we also considered IMEX terms which are
relatively more expensive to invert. We questioned whether we could remove the nonlin-
earity in the diffusion equation and obtain an IMEX term that has a diffusive behavior.
This idea leads to a linear-diffusion IMEX term, given by:

Lf (l) = GTGf (l)KKT ≈ Pf (l)W. (4.20)

Here multiplication with GTG has an effect of message passing between neighboring
nodes, and KKT , where K ∈ Rc×c is a 1×1 convolution (optionally trainable), mixes values
in each channel. Another way to derive a similar formula is to neglect the nonlinearity in
the GCN formula in (2.26) so that P in (4.20) is a graph Laplacian and W is a trainable
weight matrix.

Although the operations in (4.20) are linear, its matrix representation L has a dimension
nc × nc, where n is node count, and c is the number of channels for each feature vector.
Inverting the linear operator whose terms involve this operator introduces a challenge
regarding the memory and computation required. To obtain a compact matrix represen-
tation, we replaced the convolution operation K with a positive constant k, resulting in a
simpler IMEX term:

Lf (l) = GTGf (l)k2, (4.21)

Because k2 is constant, we are free to change its position in the multiplication and obtain
the formula (4.22):

Lf (l) = k2GTGf (l). (4.22)

Picking the formula (4.22) as the IMEX term, and plugging it into (4.16) leads to the final
linear-diffusion formula that is used in our implementations below:

f (l+1) = f (l) − (I + hk2GTG)−1(hGTσ(Gf (l)Kl)K
T
l). (4.23)

Because GTG is symmetric positive definite, (4.23) can be computed efficiently by a few
iterations of a conjugate gradient solver.

The IMEX terms mentioned in this chapter are implemented and their performance in
terms of stability and accuracy in parallel-in-layer training is evaluated in the following
chapter.

32

Chapter 5

Experiments

This chapter includes the results from the experiments we performed and their discussion.
The chapter is divided into three parts. The first part includes experiments that are done
for PDE-GCN without employing MGRIT. We assessed the performance of different IMEX
terms. After the evaluation of IMEX scheme performance on a single level, experiments
are presented for MGRIT-trained networks with different MGRIT parameters. In the final
part, results from experiments with multiple processors are presented to evaluate layer-
parallelism and our approach’s efficiency in terms of speed-up and accuracy.

Before performing the experiments mentioned in the following sections, the hyperpa-
rameters of PDE-GCN [8] were tuned with the help of code provided as supplementary
material of that paper. The task we consider is semi-supervised node classification on the
CORA dataset; we mentioned details about this task in subsection 2.3.2.

Throughout all experiments, PyTorch [28], PyTorch Geometric [14], and TorchBraid
[7] were the main libraries that we used.

5.1 Experiments for Stability

The requirement for achieving stability on a coarse level in MGRIT is to have a propa-
gation scheme that allows the network to take relatively large time steps. To see whether
the IMEX schemes make a difference in the stable step size range for PDE-GCN, we did
experiments with the IMEX terms we introduced with coefficient choices and large stepsize
h. We took the stepsize value which we obtained by hyperparameter tuning for 64 layers,
and trained different architectures by changing the stepsize and the number of layers while

33

keeping their product constant; This can be considered as keeping the final time constant
for each grid level. Below we provide plots from these experiments.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch Alpha: 0.0

(0.5*h_optimal,128 layer)
(2.0*h_optimal,32 layer)
(4.0*h_optimal,16 layer)
(8.0*h_optimal,8 layer)
(16.0*h_optimal,4 layer)
PDE-GCN

Figure 5.1: Accuracy comparison for different step sizes and number of layers with constant
α = 0, i.e., without any IMEX term involved. Each curve is obtained by averaging the
accuracy values from three runs

In Figures 5.1, 5.2, and 5.3, the black curve stands for the original PDE-GCN where no
IMEX term is involved. The other lines stand for architectures equipped with different step
sizes and layer numbers. By looking at the three figures collectively, it can be stated that
the original PDE-GCN does not allow training with large stepsizes. This is potentially due
to the stability of the initial weight configuration. This argument can explain why there
are vertical gaps between the curves in Figure 5.1. Introducing the IMEX term to training

34

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch Alpha: 1.0

(0.5*h_optimal,128 layer)
(1.0*h_optimal,64 layer)
(2.0*h_optimal,32 layer)
(4.0*h_optimal,16 layer)
(8.0*h_optimal,8 layer)
(16.0*h_optimal,4 layer)
PDE-GCN

Figure 5.2: Accuracy comparison for different (step size, layer number) pairs with α = 1,
i.e. , IMEX terms L1 = I, L2 = I

helps the networks achieve comparable accuracies with the original PDE-GCN. This fact
can be seen in Figure 5.2, where the training curves are close to each other. Having a
relatively large weight for the IMEX term results in accuracy loss as seen in Figure 5.3:
differences between training curves are increased compared to the α = 1 case. This is
potentially due to the IMEX term introducing diffusive errors. From the numerical PDE
point of view, the IMEX term introduces a discretization error, which makes the numerical
solution less accurate compared to actual dynamics.

35

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch Alpha: 10.0

(0.5*h_optimal,128 layer)
(1.0*h_optimal,64 layer)
(2.0*h_optimal,32 layer)
(4.0*h_optimal,16 layer)
(8.0*h_optimal,8 layer)
(16.0*h_optimal,4 layer)
PDE-GCN

Figure 5.3: Accuracy comparison for different (step size, layer number) pairs with α = 10,
i.e., IMEX terms L1 = 10I, L2 = I

In addition to comparing each pair in one plot for different α values, we generated
plots for comparing different α in the same plots for specific pairs. Two plots comparing
α values are given in Figures 5.4, and 5.5. Our reason for generating those plots is to
have a reference for MGRIT experiments because MGRIT propagation on coarse levels
corresponds to solving the same PDE with different step sizes and step number parameters.
We see that for each of the stepsize-depth pairs, the best performing α value is 1.0.

36

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch (stepsize,layer): (4.0, 16)

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.4: Training curves for 16 layer network, where the tuned ”optimal” stepsize
multiplied by 4. The best-performing alpha is 1.0.

Next, we implemented the IMEX scheme and ran experiments to see how efficient
variants of the IMEX scheme are in terms of addressing instabilities while maintaining
accuracy. Within this experiment, we evaluated whether there is a potential advantage to
having a learnable stepsize. We did not see any significant advantages between choosing
among shared alpha, channel-wise diagonal, and GCN-1 IMEX terms, therefore we did not
put any plots regarding them.

37

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch (stepsize,layer): (16.0, 4)

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.5: Training curves for 4 layer network, where the tuned stepsize is multiplied by
16. The best-performing initial alpha is 1.0.

5.2 Experiments with MGRIT Propagation

After testing IMEX with one-level propagation and comparing outputs of different alpha
values, and IMEX terms in one-level PDE-GCN, we performed MGRIT training experi-
ments on multiple levels. Our plots are limited to an architecture with 64 layers and a
constant shared diagonal IMEX term.

Figures 5.6, 5.7, 5.8 and 5.9 demonstrate the performance of different α values when
training is equipped with a different number of levels and different coarsening factor choices.
Each figure’s individual commentary is provided in the caption. It can be seen that the

38

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch, level: 2, coarsening factor:2

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.6: Networks with different alpha values are trained with MGRIT using 2 levels
and coarsening factor 2. Except for the case without IMEX ,i.e., α = 0, all training curves
end close to each other, and the best-performing α value is 1.0.

magnitude of the best IMEX term coefficient is positively correlated with the number of
levels and the coarsening factor. An increase in both parameters results in a requirement
with time marching with larger time step values.

Another design decision apart from the choice of alpha for the IMEX terms is picking
IMEX terms with different alpha for various levels. To test whether this design choice
has an advantage, we trained networks that propagate information without IMEX on the
fine level but introduce IMEX with best-performing coefficients depending on the level and
coarsening factor. Results corresponding to this experiment are provided in Figure 5.10,

39

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch level: 2 coarsening factor:4

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.7: Networks with different alpha values are trained with MGRIT using 2 levels
and coarsening factor 4. Except for the case without IMEX i.e. α = 0 and α = 0.1, all
training curves end close to each other, and the best performing α value is 2.5.

where solid lines are from training that uses different IMEX parameters between the finest
and coarser levels, and the lines with markers are from runs in which IMEX parameters
shared among levels. Solid lines are generally positioned below the marker lines, so we can
say this design choice is not helping our case. This can potentially be different if more
MGRIT iterations are performed. In our experiments, however, we always use 2 iterations
for forward and 1 iteration for backward propagation calculations.

40

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch, level: 3, coarsening factor:2

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.8: Networks with different alpha values are trained with MGRIT using 3 levels
and coarsening factor 2. Except for the case without IMEX i.e., α = 0 and α = 0.1, all
training curves end close to each other, and the best performing α value is 2.5.

5.3 Experiments with Multiple Processors

After evaluating the performance of IMEX using single and multiple levels on one proces-
sor, we perform parallel tests with 150 epochs using the best alpha value for each MGRIT
parameter combination and having alpha in all levels. Our plots and commentary regarding
the performance of parallel-in-layer training on multiple processors are divided into two, a
comparison of training times vs accuracy with 64-layered networks, and experiments with
256-layered networks.

41

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch, level: 3, coarsening factor:4

0.0
0.1
1.0
2.5
5.0
10.0
PDE-GCN

Figure 5.9: Networks with different alpha values are trained with MGRIT using 3 levels
and coarsening factor 4. Except for the case without IMEX i.e. α = 0, and; cases α = 0.1
and α = 1.0 all training curves end close to each other, and the best performing α value is
5.0.

The results from the parallel training of a 64-layer network are shown in Figure 5.11,
and the results from the parallel training of a 256-layer network are given in Figure 5.12
and Figure 5.13.

For 64-layer network experiments, we can see that the training curve with 2 levels, and
coarsening factor parameter 2, achieved comparable accuracy with the serial training in a
shorter time, however, this choice is insufficient to have a speed-up for a fixed number of
epochs. The training time of the network equipped with 3 levels, and coarsening factor 4

42

0 20 40 60 80 100 120 140
Epoch

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

 (%
)

Accuracy vs Epoch (Level Dependent vs Common)

PDE-GCN
level:2 cf:2 level dependent
level:2 cf:2 common
level:2 cf:4 level dependent
level:2 cf:4 common
level:3 cf:2 level dependent
level:3 cf:2 common
level:3 cf:4 level dependent
level:3 cf:4 common

Figure 5.10: Training curves to compare different IMEX parameters on different levels
(solid lines), and using the same choice for α on all levels (with markers).

(cyan curve) is the smallest. However, larger MGRIT parameters require larger α values,
which introduces a loss in accuracy and prevents the network from attaining final accuracy
comparable with the serial training (black curve).

For 256-layer network experiments, the network equipped with 3 levels, and coarsening
factor 4 (cyan curve) produces a training curve in which speed-up is apparent. When all
the networks are trained for a duration of the same length, it can be a cyan curve that
belongs to parallel training with 3 levels, and coarsening factor 4 has achieved a steep
section in a shorter time, and final accuracy values are comparable.

43

0 500 1000 1500 2000 2500
Time (second)

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

Accuracy vs Time Comparison layer numbers: 64

Serial Training
MGRIT lvl:2 cf:2
MGRIT lvl:2 cf:4
MGRIT lvl:3 cf:2
MGRIT lvl:3 cf:4

Figure 5.11: Training curves for a different number of levels and different coarsening factor
parameters when a 64-layer network is trained with 32 processors. The black curve is serial
PDE-GCN without IMEX. The best-performing IMEX parameter choice is employed for
each pair. This experiment is done with 32 MPI processes. We used the same alpha value
in fine and coarser levels. For the blue curve α = 1.0, for the red and green curves α = 2.5,
and for the cyan curve α = 5.0 values are used.

44

0 2000 4000 6000 8000 10000
Time (second)

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

Accuracy vs Time Comparison (number of layers: 256)

Serial Training
MGRIT lvl:2 cf:2
MGRIT lvl:2 cf:4
MGRIT lvl:3 cf:2
MGRIT lvl:3 cf:4

Figure 5.12: Training curves for 256 layer network experiments. Each curve is from training
with different MGRIT parameter pairs. We can state that network with 3 levels, and
coarsening factor 4, had completed 150 epochs around 3.5 times earlier (around 2000
seconds) than the serial-trained network (around 7000 seconds).The number of processors
used is 64.

45

0 1000 2000 3000 4000 5000 6000
Time (second)

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

Accuracy vs Fixed Time Comparison (number of layers: 256)

Serial Training
MGRIT lvl:2 cf:2
MGRIT lvl:2 cf:4
MGRIT lvl:3 cf:2
MGRIT lvl:3 cf:4

Figure 5.13: In this experiment, we fixed the training end time to compare training curves.
It can be seen the parallel-trained network with a cyan curve reached the peak accuracy
in a shorter time when compared with the serial-trained network. Achieving comparable
accuracies for serial training in a shorter time is a result of the IMEX modification that
we did. The number of processors used is 64.

46

Chapter 6

Conclusion and Discussion

This work explores parallel-in-layer training of graph neural networks using MGRIT,
potential solutions to stability problems on coarse grids, and experimental results that
evaluate the effectiveness of those potential solutions. In this chapter, we summarize our
comments about the experiments and mention potential future work that can be relevant
to this thesis.

6.1 Numerical Results

We can evaluate the plots in Chapter 6 collectively. It can be stated that having stability
at coarser levels is critical for achieving competitive performance with parallel-in-layer
training. The idea of introducing an additive term, with IMEX integration, improves the
performance of parallel-in-layer training in terms of accuracy and makes training networks
closer in accuracy to serial training.

The choice of the IMEX parameter α is also an important factor. Introducing IMEX
terms with small quantities contributions to achieving coarse propagation stability likely
to be minimal, if the IMEX term introduced dominates the original network equation, this
might result in a small final accuracy.

Experimental results also show that for 2 forward and 1 backward iteration, using
IMEX only on coarser levels is not achieveing competitive accuracy compared to choosing
same α on all levels.

47

6.2 Potential Future Work

Extensions of the work performed within this thesis are possible in several directions

Spatial coarsening on graph data can be a direction to explore. Spatial coarsening
is a technique to accelerate numerical PDE algorithms that can be coupled with time
parallelization. New techniques inspired by PDEs can be introduced to graph machine
learning, which might accelerate graph neural network training.

Theoretical justification for the optimal IMEX parameter α, given the level, and the
coarsening factor, can be another potential direction of interest, where numerical PDE and
parallel-in-time knowledge can be useful.

48

References

[1] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-
kutta methods for time-dependent partial differential equations. Applied Numerical
Mathematics, 25(2-3):151–167, 1997.

[2] Uri M Ascher, Steven J Ruuth, and Brian TR Wetton. Implicit-explicit methods for
time-dependent partial differential equations. SIAM Journal on Numerical Analysis,
32(3):797–823, 1995.

[3] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan
Webb, and Emanuele Rossi. Grand: Graph neural diffusion. In International Confer-
ence on Machine Learning, pages 1407–1418. PMLR, 2021.

[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems,
31, 2018.

[5] Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph
neural reaction-diffusion networks. In International Conference on Machine Learning,
pages 5722–5747. PMLR, 2023.

[6] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations
of mathematical physics. IBM journal of Research and Development, 11(2):215–234,
1967.

[7] Eric Cyr, Gordon Moon, Jacob Schroder, Stephanie Guenther, University of New Mex-
ico, Lawrence Livermore National Laboratory, and USDOE. Torchbraid, version 0.1,
6 2020.

[8] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for
graph neural networks motivated by partial differential equations. In A. Beygelz-

49

imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[9] Moshe Eliasof, Eldad Haber, and Eran Treister. Feature transportation improves
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 11874–11882, 2024.

[10] Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks
with learnable propagation operators. In International Conference on Machine Learn-
ing, pages 9224–9245. PMLR, 2023.

[11] Leonhard Euler. Institutiones calculi integralis, volume 4. Academia Imperialis Sci-
entiarum, 1794.

[12] Robert D Falgout, Stephanie Friedhoff, Tz V Kolev, Scott P MacLachlan, and Ja-
cob B Schroder. Parallel time integration with multigrid. SIAM Journal on Scientific
Computing, 36(6):C635–C661, 2014.

[13] Erwin Fehlberg. Classical fourth-and lower order runge-kutta formulas with stepsize
control and their application to heat transfer problems. Computing, 6:61–71, 1970.

[14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

[15] Martin J Gander. 50 years of time parallel time integration. In Multiple Shooting and
Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, pages
69–113. Springer, 2015.

[16] Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R
Gauger. Layer-parallel training of deep residual neural networks. SIAM Journal
on Mathematics of Data Science, 2(1):1–23, 2020.

[17] Eldad Haber, Keegan Lensink, Eran Treister, and Lars Ruthotto. Imexnet a forward
stable deep neural network. In International Conference on Machine Learning, pages
2525–2534. PMLR, 2019.

[18] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
problems, 34(1):014004, 2017.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

50

[20] Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph
neural networks: Neural diffusion and beyond. arXiv preprint arXiv:2310.10121, 2023.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[23] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations, 2017.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25, 2012.

[25] Euhyun Moon and Eric C Cyr. Parallel training of GRU networks with a multi-grid
solver for long sequences. In International Conference on Learning Representations,
2022.

[26] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate o (1/k** 2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

[27] Keiron O’shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[29] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7):629–
639, 1990.

[30] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

51

[31] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and
Michael Bronstein. Graph-coupled oscillator networks. In International Conference
on Machine Learning, pages 18888–18909. PMLR, 2022.

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93,
2008.

[34] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[35] Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26,
2012.

[36] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In International Conference on Learn-
ing Representations, 2018.

[39] Ee Weinan. A proposal on machine learning via dynamical systems. Communications
in Mathematics and Statistics, 1(5):1–11, 2017.

52

	Author's Declaration
	Abstract
	Acknowledgments
	Dedication
	List of Figures
	Introduction
	Background
	Differential Equations and Numerical Solutions
	Ordinary Differential Equations and Initial Value Problems
	Numerical Methods for Initial Value Problems
	Partial Differential Equations and Diffusion Equation

	Machine Learning and Neural Networks
	Machine Learning on Graphs
	Basic Definitions about Graphs
	Node Classification as a Learning Task
	Graph Neural Networks

	Parallel-in-Layer Training of Neural Networks
	Multigrid-Reduction-in-Time Algorithm
	Neural Differential Equations
	Parallel-in-Layer Training of Neural Networks with MGRIT

	IMEX Schemes Applied to PDE-GCN
	Dynamical Systems, GNNs, and PDE-GCN
	IMEX Net in Residual Networks Setting
	PDE-GCN with IMEX Term

	Experiments
	Experiments for Stability
	Experiments with MGRIT Propagation
	Experiments with Multiple Processors

	Conclusion and Discussion
	Numerical Results
	Potential Future Work

	References

