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Abstract 

Non-linear model predictive control (NMPC) is a promising control algorithm due to its ability to 

deal with constrained multivariable problems. However, NMPC can be computationally expensive 

to solve due to its non-linear nature, multiple interacting process units and the presence of model 

uncertainty. Real-world NMPC applications also necessitate state estimation for feedback control. 

While robust NMPC and state estimators have been studied individually for large-scale problems, 

understanding their combined impact is crucial for wider NMPC adoption. Integrating tractable 

Machine Learning (ML) surrogates, particularly Neural Networks (NNs), into NMPC to reduce 

the computational load is an emerging strategy. However, embedding NN surrogates in NMPC, in 

a form amenable to simultaneous solution approaches, remains unresolved. 

This thesis aims to address two major NMPC implementation issues. First, this work analyses the 

combined impact of uncertainty and state estimation on the performance of NMPC on large-scale 

systems. Two scenario-based robust approaches to NMPC, multi-scenario NMPC (MSc-NMPC) 

and multi-stage NMPC (MS-NMPC), are implemented on the benchmark Tennessee-Eastman 

(TE) process in closed-loop using two standard state estimation algorithms, Extended Kalman 

Filter (EKF) and Moving Horizon Estimation (MHE). Robust NMPC with MHE is shown to 

prevent constraint violation while closely tracking the set-points under process uncertainty where 

traditional NMPC failed. The additional computational time required to solve the robust NMPC 

and MHE does not cause significant delays for the sampling time considered, demonstrating their 

applicability to challenging large-scale industrial chemical and manufacturing processes. 

This work also aims to benchmark various strategies for embedding NN surrogates in NMPC. One 

strategy embeds NN models as explicit algebraic constraints within the optimization framework, 

leveraging the auto differentiation (AD) of algebraic modelling languages (AMLs) to evaluate the 
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derivatives. Alternatively, the surrogate can be evaluated externally from the optimization 

framework, using the efficient AD of ML environments. Physics-informed NNs (PINNs) and 

Physics-informed Convolutional NNs (PICNNs) are used as NN surrogates due to their ability to 

maintain fidelity to fundamental physics laws while reducing the need for historical/process data. 

The study reveals that replacing mechanistic models with NN surrogates may not always offer 

computational advantages, even with highly nonlinear systems. Smooth activation functions 

provide little to no advantage over the mechanistic equations when a local non-linear program 

(NLP) solver is used. Moreover, the external evaluation of the NN surrogates often outperforms 

the embedding as algebraic constraints, likely due to the difficulty in initializing the auxiliary 

variables and constraints introduced with the explicit algebraic reformulations.  
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1. Introduction 

Non-Linear Model Predictive Control (NMPC) has become a widely accepted control algorithm 

to deal with constrained multivariable problems (Biegler and Zavala, 2009; Lee, 2011; Rawlings, 

Mayne and Diehl, 2017; Valipour and Ricardez-Sandoval, 2021a). However, large-scale chemical 

processes pose an important challenge to the implementation of NMPC. The models for industrial-

scale processes are often large, highly non-linear, and involve several inputs, outputs, and states 

(Biegler and Thierry, 2018). In addition, dynamic systems often feature several constraints, and 

multiple sources of uncertainty such as plant/model mismatch, unmeasured disturbances, and 

measurement errors that can deteriorate controller performance or even lead to constraint violation 

(Bemporad and Morari, 1999). Moreover, NMPC requires initial states for closed-loop feedback 

control; hence, the impact of a state estimator on the process performance must be considered for 

practical applications (Valipour and Ricardez-Sandoval, 2021a). As a result, NMPC problems are 

computationally expensive and can limit their application as online feedback controllers (Mesbah 

et al., 2022). Alternative modelling approaches, such as Machine Learning (ML) surrogate models, 

are gaining attention due to their universal approximation properties and the fast evaluation times 

of trained models (Antonelo et al., 2022; Esche et al., 2022; Misener and Biegler, 2023; Daoutidis 

et al., 2024). 

Robust methods have been developed to explicitly deal with uncertainty in the NMPC formulation 

(Bemporad and Morari, 1999; Mesbah, 2016). In robust NMPC, the uncertain parameters are 

bounded inside an uncertainty set and the constraints must be satisfied for all possible uncertainty 

realizations. General robust NMPC formulations are intractable as they result in non-linear semi-

infinite programs (Yanıkoğlu, Gorissen and den Hertog, 2019). Scenario-based approaches relax 

the requirement to be feasible over the entire uncertainty set to only a few realizations of the 
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uncertainty sampled from this set, resulting in tractable Non-Linear Programs (NLPs). Two 

notable scenario-based approaches are Multi-scenario NMPC (MSc-NMPC) and Multi-stage 

NMPC (MS-NMPC). MSc-NMPC considers discrete scenarios of the uncertain parameters that 

are time-independent (Huang and Biegler, 2009; Piceno-Díaz et al., 2020). MS-NMPC uses 

discrete scenarios that evolve over a scenario tree where future control actions in the prediction 

horizon can adjust to past realizations of the uncertainty (Lucia and Engell, 2015; Tătulea-Codrean, 

Fischer and Engell, 2020). MS-NMPC is generally less conservative than MSc-NMPC due to its 

ability to adjust to past uncertainty in the prediction horizon, however, the branches in the scenario 

tree grow exponentially with the robust horizon, thus, the problem very quickly increases in size. 

Real-world chemical engineering applications generally involve multiple interacting process units 

with several states, control inputs and outputs, highlighting the importance of considering the 

challenges involved in the implementation of NMPC to those processes. The size of the 

computational problem inevitably grows with the size of the process model, making online 

implementation a challenge for large-scale systems. In addition, large process models from 

different sectors often involve a larger number of constraints and sources of uncertainty (Zheng, 

Ricardez-Sandoval and Budman, 2020; Patrón and Ricardez-Sandoval, 2024; Patrón, Toffolo and 

Ricardez-Sandoval, 2024; Toffolo, Meunier and Ricardez-Sandoval, 2024). Although several 

studies have investigated the application of NMPC to large-scale systems, there is a gap in the 

literature regarding the effect on performance caused by the combined presence of uncertainty and 

the necessary use of state estimation on large-scale systems. 

As highlighted above, NMPC problems can be computationally expensive to solve. Especially, 

problems modelled by non-linear partial differential equations (PDEs) as they often result in 

models with a large number of states. Systems of PDEs modelling plug-flow reactors (PFRs) are 
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of particular interest because they are common problems in chemical engineering. Direct 

transcription is a popular approach to make PDE systems amenable to NLP solvers (Cervantes and 

Biegler, 2008; Biegler, 2021). Direct transcription discretizes the PDEs via finite differences or 

collocation to generate algebraic constraints. This approach results in a large system of non-linear 

algebraic equality constraints; hence, the NLP solver performs the optimization and solves the 

modelling equations simultaneously. To find a solution to the NMPC optimization problem, NLP 

solvers often require the gradients of the objective and constraints with respect to the decision 

variables (Luenberger and Ye, 2016). Although simultaneous approaches generate a larger 

optimization problem than shooting methods, the evaluation of gradients is facilitated through the 

auto differentiation (AD) of algebraic modelling languages (AMLs), where even second 

derivatives can be evaluated for relatively low cost (Griewank and Walther, 2003). NLP solvers 

leverage second derivatives to accelerate convergence to optimal solutions (Wächter and Biegler, 

2006; Luenberger and Ye, 2016). Alternative to direct transcription, shooting methods require 

solving the PDE system with an integrator/simulator over the entire prediction horizon at every 

iteration of optimization. Shooting methods are simple to implement and robust in open-loop stable 

systems, however, the calculation of gradients becomes expensive in problems with many decision 

variables (Biegler, 2021); as a result, second derivatives are rarely calculated. 

Both approaches to NMPC, direct transcription and shooting, can be computationally taxing for 

complex systems like PDE-constrained problems, preventing the broad application in online 

feedback control where the NMPC problem must be resolved at every sampling step. Model 

simplifications, like approximating the problem with a linearized model, can reduce the 

complexity of the problem; however, this also means the model may not accurately represent the 

actual process. Hence, in an effort to alleviate the computational burden, surrogate models based 
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on types of Neural Networks (NNs) are becoming a particularly popular choice to replace the 

mechanistic models (Daoutidis et al., 2024). Physics-informed NNs (PINNs) have become a 

prominent choice for ML surrogates due to their ability to decrease the reliance on 

historical/process data while maintaining fidelity to fundamental physics laws (Antonelo et al., 

2022; Hao et al., 2023). Data can be difficult to obtain due to the difficulty of experiments or lack 

of historical data, which is one major obstacle for general ML applications. However, the 

embedding of NN surrogates into the NMPC framework is still an open problem. Previous works 

have used PINNs as surrogates, but, they have employed sequential/shooting methods to solve the 

surrogate NMPC problem (Antonelo et al., 2022; Nicodemus et al., 2022; Sanyal and Roy, 2023). 

Given the properties of simultaneous approaches, they are major contenders for solving NMPC 

problems (Wächter and Biegler, 2006; Biegler and Zavala, 2009). There are two promising 

strategies to include NN surrogates within simultaneous solution approaches. The embedding of 

the NN surrogate as algebraic equations in the AML is a potential strategy (Ceccon et al., 2022). 

This approach can take advantage of the AD from AMLs to evaluate gradients. On the other hand, 

the AD from ML environments is also efficient (Baydin et al., 2018). Hence, embedding the ML 

model as an external function is another potential alternative, where the AD from the AML is 

bypassed, and instead, the gradients are provided to the NLP solver from the ML environment. To 

the author’s knowledge, the different embedding strategies have not been compared in the 

literature highlighting the computational times and challenges in the implementation.  

1.1. Research Objectives and Contributions 

This thesis aims to address two major issues regarding the implementation of NMPC. First, this 

work aims to study the combined effect of uncertainty and the necessary use of state estimation on 

the performance and implementation of NMPC on large-scale chemical and manufacturing 
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systems. These challenges present a major obstacle to the widespread adoption of NMPC. The 

following objectives were proposed to address this gap in the literature: 

• Apply two robust NMPC approaches (MSc-NMPC and MS-NMPC) to handle parametric 

uncertainty in large-scale systems. 

• Leverage the challenging plant-wide TE problem, which has several interacting units, is 

highly non-linear and is open-loop unstable, as a representative large-scale problem. 

• Evaluate the closed-loop performance of the robust NMPC with two standard state 

estimation algorithms: Extended Kalman Filter (EKF) and Moving Horizon Estimator 

(MHE). 

As discussed, NMPC problems are computationally taxing. Hence, this work also aims to explore 

different NN surrogate embedding strategies in NMPC and benchmark their computational times 

and implementation challenges. A comparative analysis is currently missing in the literature 

comparing surrogate embedding strategies that leverage simultaneous solution approaches in the 

context of NMPC. The following objectives were proposed to fill-in this gap in the literature: 

• Apply the embedding of NN surrogate as algebraic constraints in the AML, taking 

advantage of the AD from AMLs, to solve the NMPC problem. 

• Implement the embedding of the NN surrogate within the AML by treating it as an external 

function where the Jacobian and Hessian information are evaluated outside the AML, 

taking advantage of the AD from the ML environment. 

• Compare the challenges and limitations of the proposed embedding methods on PDE-

constrained NMPC case studies, using non-linear plug-flow reactors (PFRs) of increasing 

complexity. 
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• Leverage physics-informed NNs (PINNs) and physics-informed convolutional NNs 

(PICNNs) to eliminate the need for historical/process data. 

The contribution of the first aim outlined above is a comprehensive assessment of the challenges 

of simultaneously dealing with uncertainty and state estimation on a large-scale system while using 

comprehensive robust NMPC strategies. This work may broaden the applicability of robust NMPC 

and state estimation to large-scale systems and highlight the limitations of different algorithms. 

Regarding the second aim of this thesis, i.e., NN surrogate embedding strategies within NMPC. 

These strategies were benchmarked based on their computational times and implementation 

challenges using PINNs and PICNNs as surrogates and comparing their performance against the 

traditional approach. The contribution of this part of this thesis was to inform what strategies are 

most efficient to embed NN surrogates in NMPC formulations solved using simultaneous 

approaches. This work may provide insights about when using a surrogate may be beneficial in 

NMPC while using a direct transcription method for the solution of the NMPC formulation. 

1.2. Thesis Structure 

This thesis is structured as follows: 

Chapter 2 provides a literature review highlighting the relevant work and background in the areas 

of NMPC, robust NMPC, state estimation, PINNs and ML surrogates in control. Gaps in the 

implementations of NMPC on large-scale systems and the use of surrogates on NMPC are 

identified. It is also confirmed that the contributions presented in this thesis are novel. 

Chapter 3 presents the implementation of MSc-NMPC and MS-NMPC on the benchmark TE 

process. The impact on the controller performance is assessed as a result of the presence of process 

uncertainty when coupled with the additional layer of state estimation. To the author’s knowledge, 
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the performance of NMPC and state estimation in the presence of uncertainty had not been studied 

on a large-scale system like the TE process. Outcomes from this study have been published in the 

literature (Elorza Casas, Valipour and Ricardez Sandoval, 2023). This paper was written entirely 

by myself. Dr. Valipour provided guidance on the methods implemented. It was edited by my 

supervisor, Prof. Ricardez-Sandoval. Permission has been granted by the publisher to include the 

content in this thesis. 

Chapter 4 presents the benefits, challenges and limitations of different surrogate embedding 

strategies. This is accomplished via the use of PINNs and PICNNs as surrogate modes, applying 

the approach of embedding the NN surrogate as algebraic equations and the external function 

evaluation approach as the two major embedding strategies. To the author’s knowledge, formal 

benchmarking has not been conducted in the literature on simultaneous optimization approaches. 

Chapter 5 presents concluding remarks on the implementation of robust NMPC and state 

estimation on a large-scale process, and the surrogate embedding strategies for NMPC. In addition, 

recommendations for future work are also outlined in this chapter.  
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2. Background and Literature Review 

Large-scale systems present a major challenge to NMPC. The presence of model uncertainty, the 

requirement of a state estimator and the computational costs associated with the simultaneous 

interactions between the state estimator, controller and uncertain process plant are aspects that 

must be considered for the widespread adoption of NMPC. Chapter 2.1 provides a summary of 

MPC/NMPC and previous work on the implementation of robust NMPC and state estimation on 

large-scale systems. Due to the previously discussed challenges, NMPC problems can be 

computationally taxing and difficult to solve which can limit their online applications (Mesbah et 

al., 2022). As a result, modelling alternatives, such as ML surrogates, are gaining attention 

(Daoutidis et al., 2024). In particular, PINNs are an attractive alternative modelling approach in 

NMPC. Chapter 2.2 provides a broad description of PINNs and some of the advances in this field 

followed by the extensions of PINNs for dealing with control problems and how NN surrogate 

models have been embedded in NMPC. The end of each subsection highlights the major findings 

and gaps identified from the literature review concerning each subject. 

2.1. Non-linear Model Predictive Control 

Non-linear Model Predictive Control (NMPC) seeks to find the optimal control actions, 𝒖𝑘
∗ , at the 

current time interval of the process, 𝑘, based on some desired performance metric (e.g., 

minimization of the squared set-point tracking error of the output variables or a user-defined 

economic function). This is accomplished by placing the dynamic process plant model as a 

constraint within the optimization problem. In this work, linear MPC is referred to as just MPC, 

while non-linear MPC will be referred to as NMPC. MPC uses a linear model as an internal process 

model whereas NMPC, as the name suggests, uses a non-linear process model thus aiming to 

achieve more accurate predictions. As shown in Figure 1, NMPC optimizes the future control 



9 

 

actions, 𝒖, such that the error between the predicted output, 𝒚 (unfilled circle markers), and its set-

point (thin dashed line) is minimized. It also shows that NMPC only predicts for a finite prediction 

horizon, 𝑃, and the control actions (bold dashed line in Figure 1) may be restricted to remain 

constant after the control horizon, 𝑀. Feedback control functions in a receding horizon manner, 

i.e., when the NMPC problem is solved, the control action at the current sampling interval 𝑘 is 

implemented in the process and the dynamics of the process evolve. The prediction horizon shifts 

forward one sampling step. The initial condition, �̂�𝑘, is updated from the process measurements 

(usually a state estimator is necessary), the NMPC problem is resolved to obtain the next control 

action, and the cycle is repeated. NMPC has some key advantages over traditional control schemes 

such as proportional-integral-derivate (PID) controllers. NMPC can take process limits into 

account as constraints in the optimization formulation (e.g., an upper limit on the operating 

temperature can be declared by the constraint 𝑇 ≤ 𝑇𝑈, which means NMPC will find control 

actions that prevent the prediction model from violating this constraint). Furthermore, NMPC can 

drive the system optimally to a user-defined objective. However, the benefits of NMPC hinge on 

the accuracy of the model (i.e., plant/model mismatch can deteriorate performance) and complex 

systems with fast dynamics limit the applications of NMPC, as the NMPC problem can become 

too computationally costly to solve online (Lee, 2011; Rawlings, Mayne and Diehl, 2017; Biegler 

and Thierry, 2018). The following is a conventional discrete-time NMPC formulation: 

min
𝒖𝑖

∗∈ℝ𝑁𝑢  ∀𝑖∈{𝑘,𝑘+1,…,𝑘+𝑃−1}
∑ ‖𝒚𝒔𝒑 − 𝒚𝑖

∗‖
𝑳

2
𝑘+𝑃

𝑖=𝑘+1

+ ∑ ‖Δ𝒖𝑖
∗‖𝑾

2

𝑘+𝑀−1

𝑖=𝑘

  (1) 

s.t. 𝒙𝑖+1
∗ = 𝑓(𝒙𝑖

∗, 𝒖𝑖
∗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1}  (2) 

𝒚𝑖
∗ = ℎ(𝒙𝑖

∗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (3) 

𝑔(𝒙𝑖
∗, 𝒖𝑖

∗, 𝒚𝑖
∗) ≤ 0     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (4) 

𝒙𝐿 ≤ 𝒙𝑖
∗ ≤ 𝒙𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (5) 

𝒖𝐿 ≤ 𝒖𝑖
∗ ≤ 𝒖𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (6) 

𝒖𝑖
∗ = 𝒖𝑘+𝑀−1

∗      ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} (7) 
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Δ𝒖𝑖
∗ = 𝒖𝑖

∗ − 𝒖𝑖−1
∗      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (8) 

𝒙𝑘
∗ = �̂�𝑘 (9) 

 

where:  

𝒙𝑖
∗ ∈ ℝ𝑁𝑥 , 𝒚𝑖

∗ ∈ ℝ𝑁𝑦      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} 

𝑳 ∈ ℝ𝑁𝑦×𝑁𝑦 , 𝑾 ∈ ℝ𝑁𝑢×𝑁𝑢 

𝒙𝐿 ∈ ℝ𝑁𝑥 , 𝒙𝑈 ∈ ℝ𝑁𝑥 , 𝒖𝐿 ∈ ℝ𝑁𝑢 , 𝒖𝑈 ∈ ℝ𝑁𝑢, �̂�𝑘 ∈ ℝ𝑁𝑥 

𝑓: ℝ𝑁𝑥×𝑁𝑢 → ℝ𝑁𝑥 , ℎ: ℝ𝑁𝑥 → ℝ𝑁𝑦 , 𝑔: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑦 → ℝ𝑁𝑔  

 

 

 
Figure 1 Depiction of the prediction horizon in NMPC. 

 

The vector of predicted states is denoted by 𝒙𝑖
∗ whereas 𝒚𝑖

∗ denotes the process outputs. The time 

interval within the prediction horizon is denoted by 𝑖, which goes from the current plant time 

interval 𝑘 to 𝑘 + 𝑃. The scalar 𝑃 denotes the prediction horizon. The term ‖𝒗‖𝑩
2  in the objective 

function denotes the L2-norm of vector 𝒗 with weight matrix 𝑩 squared (‖𝒗‖𝑩
2 ≔ 𝒗𝑇𝑩𝒗). The 

objective function, (1), is a common performance metric for NMPC where the first term aims to 

minimize the set-point tracking error between the process outputs, 𝒚𝑖
∗, and their corresponding set-

points, 𝒚𝒔𝒑. The second term aims to regulate the changes in the control actions, Δ𝒖𝑖
∗ (defined in 

equation (8)), from sampling step to the next. 𝑳 and 𝑾 are user-defined output and input weight 

matrices, respectively, that assign the relative importance to each variable in the objective function. 
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These are typically diagonal matrices with positive elements. The set of constraints in equation (2) 

represents the non-linear discrete-time process model. Real-world systems are generally modelled 

by differential-algebraic equations (DAEs) or PDEs. To generate a tractable optimization problem, 

one major approach is the direct transcription of the system of DAEs/PDEs (Cervantes and Biegler, 

2008; Biegler, 2021). In direct transcription, the DAEs/PDEs are discretized over the continuous 

domains (temporal and spatial) via methods such as finite difference or collocation, generating 

algebraic constraints that can be handled by algebraic modelling languages (AMLs) for 

simultaneous optimization. This results in the discrete-time formulation shown in (1)-(9). The set 

of constraints in equation (3) represents the map from states, 𝒙𝑖
∗, process outputs, 𝒚𝑖

∗. The set of 

inequality constraints, (4), represents any general non-linear path constraints that may be imposed 

on the states, control inputs or control outputs (e.g., a particular control output may be constrained 

to follow a particular trajectory). This highlights the flexibility of NMPC to handle physical and 

process constraints imposed on the system. Constraints (5) and (6) impose upper and lower limits 

on the states and control actions (e.g., a valve can only operate between 0 and 100% open). 

Constraint (7) ensures that the control actions remain constant after the control horizon, 𝑀. The 

state vector, �̂�𝑘, is the initial condition to the NMPC problem that is provided through state 

feedback and the constraint (9) ensures that it is the initial state to the process model (2). In 

practice, the initial condition must be provided by a state estimator because the process outputs are 

usually limited and do not necessarily correspond directly to the process states. For example, it 

may only be possible to measure the temperature of a reactor and, hence, other state variables, 

such as concentration, must be estimated from this measurement. Since the states are not directly 

measured, the state estimator may introduce some error between the actual state of the process, 

𝒙𝑘, and the state that is provided to NMPC, �̂�𝑘, especially if the measurements are noisy. This may 
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deteriorate the performance of the controller; hence, accurate state estimation schemes are 

necessary for NMPC. Furthermore, state estimation adds another layer of computations that must 

be performed online, further increasing the computational cost of NMPC. 

2.1.1. NMPC Under Uncertainty 

To achieve good controller performance (i.e., the controlled variables closely track their set-points 

while process variables remain within their operating limits), the process model, (2), must be an 

accurate representation of the actual process. However, sources of uncertainty may result in 

plant/model mismatch that hinders the performance or even results in infeasible solutions. A major 

source of uncertainty is parametric uncertainty (i.e., inaccurate model parameters). Stochastic and 

robust NMPC are the foremost approaches for handling uncertainty in NMPC. This thesis focuses 

primarily on robust NMPC; however, Mesbah (2016) provides an in-depth review of stochastic 

methods for MPC/NMPC. A general robust NMPC formulation assumes that uncertain 

parameters, 𝒆𝑖, belong to a bounded compact set, ℰ, and process constraints must be satisfied for 

all possible uncertainties within the set (Mayne, 2014). The general formulation for robust NMPC 

can be seen in equations (10)-(18). This NMPC formulation shows that the constraints must be 

satisfied for all possible realizations of 𝒆𝑖 within ℰ. Thus, if a solution is found, it is guaranteed 

that the constraints will be satisfied if the uncertainty lies within the uncertainty set. However, 

even if ℰ is compact and bounded, there is an infinite number of possible realizations for 𝒆𝑖. For 

example, assume there is only one uncertain parameter 𝛼, i.e., 𝒆𝑖 = [𝛼], then, the uncertainty set 

would be the bounds around 𝛼, 𝛼 ∈ ℰ = {𝛼: 𝛼𝐿 ≤ 𝛼 ≤ 𝛼𝑈}. There is an infinite number of 

possible values 𝛼 can take between 𝛼𝐿 and 𝛼𝑈, so, problem (10)-(18) requires the consideration 

of an infinite number of constraints. Thus, the optimization problem (10)-(18) is a semi-infinite 
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program which is intractable (Mayne et al., 2011; Leyffer et al., 2018; Holtorf, Mitsos and Biegler, 

2019; Yanıkoğlu, Gorissen and den Hertog, 2019). 

min
𝒖𝑖

∗∈ℝ𝑁𝑢  ∀𝑖∈{𝑘,𝑘+1,…,𝑘+𝑃−1}
∑ ‖𝒚𝒔𝒑 − 𝒚𝑖

∗‖
𝑳

2
𝑘+𝑃

𝑖=𝑘+1

+ ∑ ‖Δ𝒖𝑖
∗‖𝑾

2

𝑘+𝑀−1

𝑖=𝑘

  (10) 

s.t. 𝒙𝑖+1
∗ = 𝑓(𝒙𝑖

∗, 𝒖𝑖
∗, 𝒆𝑖)     ∀𝒆𝑖 ∈ ℰ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1}  (11) 

𝒚𝑖
∗ = ℎ(𝒙𝑖

∗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (12) 

𝑔(𝒙𝑖
∗, 𝒖𝑖

∗, 𝒚𝑖
∗) ≤ 0     ∀𝒆𝑖 ∈ ℰ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (13) 

𝒙𝐿 ≤ 𝒙𝑖
∗ ≤ 𝒙𝑈     ∀𝒆𝑖 ∈ ℰ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} (14) 

𝒖𝐿 ≤ 𝒖𝑖
∗ ≤ 𝒖𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (15) 

𝒖𝑖
∗ = 𝒖𝑘+𝑀−1

∗      ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} (16) 

Δ𝒖𝑖
∗ = 𝒖𝑖

∗ − 𝒖𝑖−1
∗      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (17) 

𝒙𝑘
∗ = �̂�𝑘 (18) 

 

where:  

𝒙𝑖
∗ ∈ ℝ𝑁𝑥 , 𝒚𝑖

∗ ∈ ℝ𝑁𝑦      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} 

𝑳 ∈ ℝ𝑁𝑦×𝑁𝑦 , 𝑾 ∈ ℝ𝑁𝑢×𝑁𝑢 , ℰ ⊂ ℝ𝑁𝑒 

𝒙𝐿 ∈ ℝ𝑁𝑥 , 𝒙𝑈 ∈ ℝ𝑁𝑥 , 𝒖𝐿 ∈ ℝ𝑁𝑢 , 𝒖𝑈 ∈ ℝ𝑁𝑢, �̂�𝑘 ∈ ℝ𝑁𝑥 

𝑓: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑒 → ℝ𝑁𝑥 , ℎ: ℝ𝑁𝑥 → ℝ𝑁𝑦 , 𝑔: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑦 → ℝ𝑁𝑔 

 

 

Alternative tractable formulations have been proposed that either relax the requirement of 

feasibility for all possible realizations or reformulate the problem in a tractable form. To name a 

few, min-max approaches use an open-loop formulation that calculates the control actions that 

minimize the worst-case cost with respect to a bounded set of parameters, 𝒆𝑖 (Lee and Yu, 1997; 

Scokaert and Mayne, 1998; Alamir and Balloul, 1999; Lee, 2011). The problem is formulated as 

a bilevel optimization program wherein the lower level, the objective is maximized, and the 

uncertain parameters are the decision variables, thereby, finding the worst-case scenario for 𝒆𝑖 in 

the uncertainty set. In the upper level, the objective is minimized, and decision variables are the 

usual control actions. As a result, this approach tends to be overly conservative since it does not 

consider feedback in the prediction. Min-max formulations have generally been limited to linear 

systems because to guarantee that the worst-case is found, strong assumptions about convexity 
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must be made about the non-linear system, which is difficult to guarantee for general non-linear 

systems (Grancharova and Johansen, 2005, 2012; Raimondo et al., 2007; Limon et al., 2009; Lucia 

and Engell, 2012; Bayer, Muller and Allgower, 2016; Jang, Lee and Biegler, 2016; Holtorf, Mitsos 

and Biegler, 2019). Approximations of the min-max NMPC problem have been made where the 

infinite set ℰ is approximated by a finite set of discrete realizations of the uncertain parameters 𝒆𝑖 

(Grancharova and Johansen, 2009); however, it cannot guarantee that the finite set includes the 

worst case in ℰ. Tube-based MPC ensures closed-loop predictions lie in a tube satisfying the 

constraints by employing a feedback control law (Mayne et al., 2011; Mayne, 2014). For linear 

systems, the feedback control law is parametrized by an affine law that is used to determine a 

polytopic set that includes the nominal trajectory for all additive uncertainties. This polytopic set 

acts as a tube around the nominal trajectory that defines tighter constraints ensuring that all 

trajectories satisfy the constraints of the MPC problem. Since tube-based MPC optimizes over a 

feedback control law, future control actions can adjust to past realizations of the uncertainty, 

making it less conservation than min-max formulations. For non-linear systems, the affine 

feedback law is not guaranteed to work, and determining the tightened constraints requires solving 

semi-infinite programs like the general robust NMPC. Methods for determining tubes for nonlinear 

systems have been developed, but they require satisfying assumptions about monotonicity of the 

dynamic system and Lipschitz continuity (Yang and Scott, 2020). Stochastic approximations of 

the tightened constraints have been considered; however, these do not guarantee that all possible 

trajectories will remain inside the tube (Mayne et al., 2011). Due to these challenges, min-max and 

tube-based approaches are beyond the scope of this work since the underlying assumptions may 

be difficult to satisfy for large-scale non-linear systems. 
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Another relatively recent approach is Multi-stage NMPC (MS-NMPC). MS-NMPC uses discrete 

scenarios that evolve over a scenario tree where future control actions in the prediction horizon 

can adjust to past realizations of the uncertainty (Lucia and Engell, 2015; Tătulea-Codrean, Fischer 

and Engell, 2020). A finite number of discrete realizations of the uncertain parameters, 𝒆𝑗, are 

sampled from the uncertainty set ℰ (i.e., 𝒆𝑗 ∈ {𝒆1, 𝒆2, … , 𝒆𝑁𝑟} ⊂ ℰ). The uncertainty evolves over 

time by branching over each combination of 𝒆𝑗. The scenario tree starts from the root node that is 

the initial state �̂�𝑘, which branches to 𝑁𝑟 scenarios; one for each 𝒆𝑗. Then, at the next sampling 

step, each branch further branches for each 𝒆𝑗, creating a total of 𝑁𝑟 × 𝑁𝑟 branches. The tree 

continues to branch until the robust horizon (RH), after which the uncertain parameter is held 

constant for the remaining of the prediction horizon. A depiction of the branching scenario tree 

can be seen in Figure 5 in chapter 3. The MS-NMPC tends to be the least conservative approach 

since the branching tree structure allows future control actions to adapt to past observations within 

the prediction horizon. However, the number of discrete scenarios grows exponentially with the 

length of the robust horizon (the total number of branches would be 𝑁𝑟
𝑅𝐻), which can make it 

computationally expensive. Shortening the RH tends to make MS-NMPC more conservative. 

Multi-scenario NMPC (MSc-NMPC) also considers discrete scenarios of the uncertain parameters 

but the parameters are assumed to remain constant over the entire prediction horizon (Huang and 

Biegler, 2009; Rasoulian and Ricardez-Sandoval, 2015; Patrón and Ricardez-Sandoval, 2020a; 

Piceno-Díaz et al., 2020). The MSc-NMPC is equivalent to MS-NMPC with the scenario tree only 

branching at the first sampling interval (i.e., the robust horizon is one). The mathematical 

formulations of MS-NMPC and MSc-NMPC and their detailed description are presented in 

Chapter 3, section 3.2. Other approaches such as Offset-Free NMPC attempt to correct for 

unmeasured disturbances by either adding state disturbance or output disturbance term to the 
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model which can eliminate the steady-state set-point tracking error (Huang, Biegler and 

Patwardhan, 2010; Das and Mhaskar, 2014; Pannocchia, Gabiccini and Artoni, 2015; Tatjewski 

and Ławryńczuk, 2020; Jalanko et al., 2021). Lyapunov-based NMPC formulates appropriate 

constraints in the optimization problem such that the controller inherits the stability and robustness 

properties of the Lyapunov-based controller (Christofides, Liu and Muñoz De La Peña, 2011; 

Zhang and Liu, 2013; Das and Mhaskar, 2014; Ellis, Liu and Christofides, 2017). However, there 

currently are no methods for constructing Lyapunov functions for general non-linear systems 

(Zhang and Liu, 2013). These last two approaches are beyond the scope of this work. Table 1 

summarizes the robust NMPC approaches discussed above. 

Table 1 Summary of robust NMPC approaches. 

Method Description Advantages Drawbacks Sources 

Min-max Uses a closed-loop 

formulation that 

calculates the 

control actions that 

minimize the worst-

case cost with 

respect to a 

bounded set of 

parameters, 𝒆𝑖. 

• Guarantees 

constraint 

satisfaction in 

all uncertain 

scenarios. 

• Minimizes the 

worst-case 

objective. 

• Strong 

assumptions 

about the 

convexity of the 

problem must 

be made. 

• Assumptions 

for general non-

linear systems 

are hard to 

verify. 

• Overly 

conservative. 

(Lee and Yu, 

1997; Scokaert 

and Mayne, 

1998; Alamir 

and Balloul, 

1999; 

Grancharova 

and Johansen, 

2005) 

Tube-

based 

Ensures closed-

loop predictions lie 

in a tube satisfying 

the constraints by 

employing a 

feedback control 

law 

• Less 

conservative by 

considering 

feedback in the 

formulation. 

• Guarantees 

constraint 

satisfaction in 

all uncertain 

scenarios. 

• Non-linear 

systems result 

in semi-infinite 

programs. 

• Stochastic 

approximation 

does not 

guarantee all 

trajectories will 

remain inside 

the tube. 

(Mayne et al., 

2011; Mayne, 

2014) 
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MS-

NMPC 

Uses discrete 

scenarios that 

evolve over a 

scenario tree where 

future control 

actions in the 

prediction horizon 

can adjust to past 

realizations of the 

uncertainty. Tends 

to be less 

conservative. 

• Less 

conservative by 

considering 

feedback in the 

formulation. 

• Tractable for 

NLP solvers, 

even in non-

linear cases. 

• Scenario tree 

grows 

exponentially 

with the robust 

horizon. 

• Becomes 

expensive due 

to model 

inflation. 

(Lucia and 

Engell, 2015; 

Tătulea-

Codrean, 

Fischer and 

Engell, 2020) 

MSc-

NMPC 

Considers discrete 

scenarios of the 

uncertain 

parameters but the 

parameters are 

assumed to remain 

constant over the 

prediction horizon. 

• Tractable for 

NLP solvers, 

even in non-

linear cases. 

• Less expensive 

to solve than 

MS-NMPC. 

• Tends to be 

more 

conservative 

than MS-

NMPC. 

(Huang and 

Biegler, 2009; 

Piceno-Díaz et 

al., 2020). 

Off-set 

free 

NMPC 

Attempts to correct 

for unmeasured 

disturbances by 

either adding a state 

disturbance or 

output disturbance 

term to the model 

which can eliminate 

the steady-state 

error. Tends to be 

less conservative 

and easy to 

implement. 

• Eliminates 

steady-state set-

point tracking 

error. 

• Similar 

computational 

costs as 

nominal 

NMPC. 

• Does not 

directly 

consider the 

uncertain 

parameters. 

• An observer 

may need to be 

used to estimate 

the disturbance 

terms. 

• The joint 

system of states 

and disturbance 

must be 

observable. 

(Huang, 

Biegler and 

Patwardhan, 

2010; Das and 

Mhaskar, 2014; 

Pannocchia, 

Gabiccini and 

Artoni, 2015; 

Tatjewski and 

Ławryńczuk, 

2020; Jalanko 

et al., 2021) 

Lyapunov-

based 

Formulates 

appropriate 

constraints in the 

optimization 

problem such that 

the controller 

inherits the stability 

and robustness 

properties of the 

Lyapunov-based 

controller. 

• Guarantees 

Lyapunov 

stability. 

• Slightly more 

expensive than 

the nominal 

NMPC. 

• Does not 

directly 

consider the 

uncertain 

parameters.  

• Methods to 

formulate 

Lyapunov 

functions for 

general 

nonlinear 

(Christofides, 

Liu and Muñoz 

De La Peña, 

2011; Zhang 

and Liu, 2013; 

Das and 

Mhaskar, 2014; 

Ellis, Liu and 

Christofides, 

2017) 
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systems are not 

available. 

 

2.1.2. State Estimation 

As mentioned above, the initial state, �̂�𝑘, must be provided as the initial condition for the NMPC 

problem. However, the number of process measurements is limited and does not necessarily 

correspond to the states of the process. Hence, state estimators seek to compute the states from the 

measured variables (or process outputs). There are two major approaches for model-based state 

estimation of non-linear systems: iterative approaches and optimization-based approaches. 

Iterative approaches use the estimate from the previous sampling interval plus the measurements 

at the current sampling interval to recursively compute the current estimate (Valipour and 

Ricardez-Sandoval, 2021b). Optimization-based approaches embed the process model in an 

optimization problem that minimizes process and measurement errors (Zavala and Biegler, 2009). 

In this thesis, two state estimation strategies are explored: Extended Kalman Filter (EKF) (an 

iterative approach) and Moving Horizon Estimator (MHE) (an optimization-based approach) as 

these have been widely studied approaches for state estimation in non-linear systems. 

Extended Kalman Filter (EKF) is widely accepted as the standard approach in the industry to tackle 

estimation for non-linear processes (Welch and Bishop, 2006). EKF is a two-step iterative 

approach that uses a stochastic form of the process model where the process and measurement 

noises are assumed to follow normal distributions. The main drawback of EKF is that it does not 

take into account process constraints (Valipour and Ricardez-Sandoval, 2021b). To overcome this 

limitation, the Moving Horizon Estimator (MHE) has been introduced as an optimization-based 

estimation scheme that can consider process constraints. This makes it a powerful estimation 

framework for constrained non-linear applications. MHE considers a sliding window involving a 
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finite number of past measurements and provides an optimal estimation of the unknown states by 

minimizing the process and measurement noises (Segovia et al., 2019; Valipour and Ricardez-

Sandoval, 2021a). Figure 2 shows a depiction contrasting the sliding window looking into the past 

used in MHE against the prediction horizon used in NMPC. MHE minimizes the error between 

the estimated measurements (square markers) and the past plant measurements (filled circle 

markers) by treating the past states as decision variables. It only considers a sliding window of 𝑁 

sampling steps looking into the past. The past control actions are known; thus, they appear as fixed 

parameters in the MHE formulation. The state at time 𝑘 (the last sampling step in the window) is 

passed as the initial condition to NMPC. At every sampling step, the window shifts forward one 

step like NMPC, thus, the MHE problem must be resolved at every step. Chapter 3 shows the 

mathematical formulations of EKF and MHE. 

 
Figure 2 Depiction contrasting the sliding window in MHE against the prediction 

horizon in NMPC. 

 

Other state estimation strategies for non-linear systems include the Unscented Kalman Filter which 

utilizes the unscented transform to calculate the statistics of a Gaussian random variable after a 

non-linear transformation (Vinoth Upendra and Prakash, 2013). Particle filters draw samples from 
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the process plant and integrate them with the process model to handle non-Gaussian distributions 

and non-linearities (Arulampalam et al., 2002; Fuchigami, Niina and Takada, 2020). These 

methods overcome some of the challenges for non-Gaussian noises that are present in the EKF, 

but, as a result, they are more computationally taxing. The EKF has also been more extensively 

studied. In this work, it was assumed that noises follow Gaussian distributions, thus, these two 

approaches are beyond the scope of this work. 

2.1.3. Robust NMPC and State Estimation on Large-Scale Systems 

A few studies have investigated the application of NMPC to large-scale industrial systems. Huang 

et al. (2009) successfully implemented an advanced-step NMPC for an air separation unit of 320 

states. The typical NMPC implementation took 120-220 seconds to solve, but the advanced-step 

NMPC reduces online computations to 1 second. Lopez-Negrete et al. (2013) applied NMPC to a 

detailed distillation column model and steam generation in a power plant. Their advanced-step 

formulation successfully reduces computational time by 2-3 orders of magnitude and the use of 

exact derivatives significantly reduced the computational costs. Toffolo et al. (2024) and Patrón et 

al. (2024) applied an NMPC and economic NMPC, respectively, to a chemical looping combustion 

process with 75 states for the oxidation stage and 200 states for the reduction stage. Both used a 

pseudo-homogeneous model to offset the NMPC computational cost of their rigorous multi-scale 

model. Despite these efforts, those studies have not considered the effect of uncertainty or state 

estimation. Fewer have considered the impact of the interaction between NMPC and state 

estimation. Biegler and Zavala (2009) applied an NMPC with Moving Horizon Estimator (MHE) 

as the state estimator to a polyethylene process with 350 state variables and differential algebraic 

equations. The advanced-step MHE implemented in that work successfully reduced the MHE 

computational costs. Patrón and Ricardez (2020b, 2022) applied NMPC with MHE and Kalman 
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Filter as state estimators to a CO2 capture system with 116 states. Moreover, Patrón and Ricardez 

(2020a) also implemented an MSc-NMPC to a CO2 absorber unit with 80 states but did not 

consider state estimation in that work. They showed the successful implementation of state 

estimation and NMPC as well as the robust NMPC on large-scale problems, simultaneously 

applying real-time optimization to determine the NMPC set-points. Other works have studied the 

implementation of scenario-based robust NMPC, but generally, it has been performed on small-

case studies involving a relatively low number of states (Tătulea-Codrean, Fischer and Engell, 

2020; Piceno-Díaz et al., 2020; Kummer, Nagy and Varga, 2020; Lucia et al., 2014, 2017; Puschke 

and Mitsos, 2018; Skupin et al., 2022; Subramanian, Lucia and Engel, 2015; Thangavel et al., 

2018; Thangavel, Paulen and Engell, 2020; Thombre et al., 2021; Zheng, Ricardez-Sandoval and 

Budman, 2020; Santander, Elkamel and Budman, 2019; Holtorf, Mitsos and Biegler, 2019). For 

instance, Holtorf et al. (Holtorf, Mitsos and Biegler, 2019) implemented an MS-NMPC with 

online-generated scenario trees for a semi-batch polymerization process with seven states. 

Kummer, Nagy and Varga (2020) applied an MS-NMPC to a semi-batch Williams-Otto process 

with four states and used Extended Kalman Filter (EKF) as the state estimator. Piceno-Diaz et al. 

(2020) implemented an MSc-NMPC for an anaerobic digester with seven states. Lucia et al. (2014) 

applied an economic MS-NMPC to a polymerization reaction with eight states. In practice, for 

large-scale problems, both state estimation and uncertainty will be present as obstacles to the 

implementation of NMPC. There is a gap in the literature highlighting the challenges that arise 

regarding controller performance and computational costs from the interactions between state 

estimation, uncertainty and robust NMPC; especially regarding the fact that uncertainty will be 

present in both the NMPC and state estimator models. This work will attempt to address this gap 
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by studying the challenging Tennessee-Eastman (TE) problem. A brief introduction to this plant 

is provided next. 

The benchmark TE challenge is a plant-wide process control problem introduced by Downs and 

Vogel (1993). It is an open-loop unstable MIMO system, with several process units, which makes 

it a desirable problem to test large-scale state estimation and control applications. Jockenhövel, 

Biegler and Wächter (2003) described the implementation of an NMPC to the TE process whereas 

Tătulea-Codrean, Fischer and Engell (2020) used an economic MS-NMPC. However, those 

studies did not consider the effect of state estimation. Ricker and Lee (1995b, 1995a) applied 

NMPC and EKF to the TE process and analysed the performance. Kraus et al. (2006) and Kuhl et 

al. (2011) applied an MHE state estimator; the control schemes used to stabilize the TE process 

were not described. The process models describing the operation of the TE process used in the 

aforementioned studies and several other works, which include control and state estimation 

applications, often exhibit significant variations. Some works neglected the energy balances which 

are important to consider temperature and energy consumption effects (Ricker and Lee, 1995b, 

1995a; Zheng, 1998); others neglected dynamic mole balances in parts of the process such as the 

stripper (Jockenhövel, Biegler and Wächter, 2003; Kraus et al., 2006; Kühl et al., 2011; Tătulea-

Codrean, Fischer and Engell, 2020). The TE problem and the corresponding process model are 

described in more detail in Chapter 3. 

2.1.4. Summary 

Robust NMPC has become a popular way to deal with uncertainty in non-linear systems. Several 

formulations have been made available in the literature, such as min-max NMPC, tube-based 

NMPC, offset-free NMPC, and scenario-based approaches. However, implementations on large-

scale systems are limited. In addition to uncertainty, practical implementations of NMPC require 
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an additional layer of state estimation. Many state estimation algorithms have been developed for 

non-linear systems, such as EKF and MHE. However, there is a gap in the literature highlighting 

the challenges and limitations of the combined effect of uncertainty and state estimation on a large 

industrial-scale system. Real-world chemical engineering applications such as the benchmark TE 

process generally involve multiple interacting process units with several states, control inputs and 

outputs, highlighting the importance of considering the challenges involved in implementing 

NMPC to such processes. Chapter 3 attempts to address this gap by presenting the implementation 

of two robust NMPC controllers, MS-NMPC and MSc-NMPC, together with the state estimation 

algorithms, EKF and MHE, on the TE process. 

2.2. Physics-Informed Neural Networks 

Physics-Informed NNs (PINNs) leverage mechanistic models, based on fundamental physics laws, 

to alleviate the need for historical/process data to train NNs (Raissi, Perdikaris and Karniadakis, 

2019; Hao et al., 2023). The seminal work by Raissi et al. (2019) on PINNs aimed to solve PDEs 

of the following form: 

𝜕𝒙

𝜕𝑡
(𝑡, 𝒛) = ℱ𝒛(𝒙, 𝒖, 𝒑)(𝑡, 𝒛)     𝑡 ∈ 𝒯, 𝒛 ∈ Ω ⊂ ℝ𝑁𝑧 (19) 

ℬ(𝒙, 𝒖)(𝑡, 𝒛) = 0     𝑡 ∈ 𝒯, 𝒛 ∈ 𝜕Ω (20) 

ℐ(𝒙)(𝑡, 𝒛) = 0     𝑡 = 𝑡0, 𝒛 ∈ Ω (21) 

 

where 𝒙: 𝒯 × Ω → 𝒳 (𝒳 ⊂ ℝ𝑁𝑠𝑣) are the state variables of the PDEs, the solution of which is a 

function of the time, 𝑡 ∈ 𝒯 = [𝑡0, 𝑡𝑓], and spatial, 𝒛 ∈ Ω, domains (i.e., 𝒙(𝑡, 𝒛)). ℱ𝒛 represents a 

non-linear differential operator with respect to the spatial domain. ℬ represents the boundary 

condition operator and ℐ the initial condition. The control actions, 𝒖: 𝒯 → 𝒰 (𝒰 ⊂ ℝ𝑁𝑢), are time-

dependent inputs that the user can manipulate; these may appear either at the boundary condition, 
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ℬ (e.g., inlet flow to a PFR) or as forcing terms within the PDE equations, ℱ𝒛 (e.g., a heat 

generation term in the heat equation). The PDE modelling parameters are represented by 𝒑; these 

may be constants (e.g., the reaction rate constant in an isothermal PFR) or dependent on the state 

variables, 𝒑(𝒙) (e.g., the heat diffusivity is temperature-dependent when solving the heat 

equation). PINNs approximate the solution of the PDEs via an NN parametrized by 𝜃 (i.e., the 

weights and biases of the NN), as shown in equation (22). The NN takes as inputs the independent 

variables of the PDEs and returns the solution of the PDEs as the outputs. This is depicted in Figure 

3 where it is shown that a NN takes the independent variables, 𝑡 and 𝒛, and returns the solution of 

the PDE as its prediction. 

𝒙(𝑡, 𝒛) ≈ 𝑁𝑁𝜃(𝑡, 𝒛) (22) 

 

 
Figure 3 Depiction of PINN predicting the solution to PDE. 

 

PINNs can only accurately predict the solution to the PDEs if the NN parameters, 𝜃, have been 

sufficiently optimized. In typical supervised deep-learning tasks, one would like to train a model 

that takes the independent variables, 𝒾, as inputs and predicts the dependent variables, ℴ, as 

outputs, (i.e., ℴ = 𝑁𝑁𝜃(𝒾)). To accomplish this task, one may have an input-to-output labelled 

data set, {𝒾𝑑, ℴ𝑑}𝑑=1
𝑁𝑑𝑎𝑡𝑎. In the context of PINNs, the labelled data set corresponds to 

historical/process data or experimental data. Then, one can define what is known as a loss function, 



25 

 

as the prediction error from the NN as depicted in equation (23). The NN parameters can then be 

obtained by minimizing the loss function with respect to the network parameters 𝜃, as seen in 

problem (24). Hence, supervised learning is similar to performing model regression. Several 

algorithms have been developed to perform this optimization such as stochastic gradient descent 

(SGD) or ADAM (Amari, 1993; Kingma and Ba, 2017). Note that even if the best possible 

parameters are achieved, i.e., problem (24) is solved to global optimality, the NN might not be 

able to make accurate predictions due to having a suboptimal structure (e.g., number of layers, or 

number of neurons in each layer) (Hammerstrom, 1993). 

𝑙𝑜𝑠𝑠 =
1

𝑁𝑑𝑎𝑡𝑎
∑ ‖𝑁𝑁𝜃(𝒾𝑑) − ℴ𝑑‖2

𝑁𝑑𝑎𝑡𝑎

𝑑=1

  (23) 

𝜃 = argmin
𝜃

𝑙𝑜𝑠𝑠 (24) 

 

Learning tasks often require large amounts of data for accurate predictions (Siemers, Feldmann 

and Bajorath, 2022). However, it may be difficult to obtain sufficient data, as it may require a 

significant number of experiments and historical/process data may not be available (Antonelo et 

al., 2022; Hao et al., 2023). PINNs overcome the requirement for labelled data by incorporating 

the physics equations as terms in the loss function. One may define the operator 𝒻 to describe the 

residuals of the PDEs in equation (19), i.e., 

𝒻(𝒙)(𝑡, 𝒛) =
𝜕𝒙

𝜕𝑡
(𝑡, 𝒛) − ℱ𝒛(𝒙, 𝒖, 𝒑)(𝑡, 𝒛) (25) 

 

Therefore, the following loss can be defined which is used to train the PINN: 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝒻 + 𝛽𝑙𝑜𝑠𝑠ℬ + 𝛾𝑙𝑜𝑠𝑠ℐ (26) 
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where: 
 

𝑙𝑜𝑠𝑠𝒻 =
1

𝑁𝒻
∑‖𝒻(𝑁𝑁𝜃)(𝑡𝒻

𝑑 , 𝒛𝒻
𝑑)‖

2

𝑁𝒻

𝑑=1

  (27) 

𝑙𝑜𝑠𝑠ℬ =
1

𝑁ℬ
∑‖ℬ(𝑁𝑁𝜃)(𝑡ℬ

𝑑 , 𝒛ℬ
𝑑)‖

2

𝑁ℬ

𝑑=1

 (28) 

𝑙𝑜𝑠𝑠ℐ =
1

𝑁ℐ
∑‖ℐ(𝑁𝑁𝜃)(𝑡0, 𝒛ℐ

𝑑)‖
2

𝑁ℐ

𝑑=1

 (29) 

 

where 𝑙𝑜𝑠𝑠𝒻 (equation (27)) describes the error due to the PDEs in equation (19); 𝑙𝑜𝑠𝑠ℬ (equation 

(28)) and 𝑙𝑜𝑠𝑠ℐ  (equation (29)) describe the errors due to the boundary and initial conditions, 

respectively. Recall that the operator ℬ defined the boundary conditions in equation (20) whereas 

the operator ℐ specifies the initial conditions in equation (21). The data points {𝑡𝒻
𝑑 , 𝒛𝒻

𝑑}
𝑑=1

𝑁𝒻
  are 

randomly sampled from the time, 𝒯, and spatial domains, Ω. The data points {𝑡ℬ
𝑑 , 𝒛ℬ

𝑑}
𝑑=1

𝑁ℬ
 are 

sampled from the time domain and the boundary of the spatial domain, 𝜕Ω. The points {𝒛ℐ
𝑑}

𝑑=1

𝑁ℐ
 

are sampled from the spatial domain. As can be seen, it is not necessary to have output data to 

evaluate the loss. It is only necessary to generate random points in the domains of the PDE 

equations. The differential terms in 𝒻 can be evaluated via automatic differentiation (AD) by 

applying the chain rule on compositions of functions which most ML packages support (Baydin et 

al., 2018; Raissi, Perdikaris and Karniadakis, 2019). A typical NN structure involves the sequential 

composition of affine/linear and nonlinear functions. AD keeps track of the symbolic rules of 

differentiation (i.e., chain rule, product rule, power rule, etc.) without generating symbolic 

expressions. Hence, AD is computationally efficient at evaluating exact derivatives. For example, 

the term 
𝜕𝒙

𝜕𝑡
(𝑡, 𝒛) in equation (25) can be evaluated by backpropagating the gradient of the NN 



27 

 

output with respect to the input (i.e., 
𝜕𝑁𝑁𝜃

𝜕𝑡
(𝑡, 𝒛)). Backpropagation means evaluating the gradient 

backwards from the output, by applying the chain rule on a NN, to obtain the exact partial 

derivatives with respect to the inputs (Baydin et al., 2018). The parameters 𝛽 and 𝛾 assign relative 

importance to each of the loss terms which may have different magnitudes. These can be user-

defined, but they may require tuning to achieve accurate predictions; trial-and-error may be tedious 

and does not guarantee satisfactory results, thus, more sophisticated methods have been developed 

such as Lagrange-dual approaches (Fioretto et al., 2020; Eydenberg et al., 2022) and learning rate 

annealing (Wang, Teng and Perdikaris, 2020). From this point, the loss can be minimized using 

traditional ML training algorithms like SGD and ADAM. If labelled data is available from past 

historical data or experimental measurements, e.g., {𝑡𝑑𝑎𝑡𝑎
𝑑 , 𝒛𝑑𝑎𝑡𝑎

𝑑 , 𝒙𝑑𝑎𝑡𝑎
𝑑 }

𝑑=1

𝑁𝑑𝑎𝑡𝑎
, it can also be 

included as an additional term in the loss function, i.e.,  

𝑙𝑜𝑠𝑠𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎
∑ ‖𝑁𝑁𝜃(𝑡𝑑𝑎𝑡𝑎

𝑑 , 𝒛𝑑𝑎𝑡𝑎
𝑑 ) − 𝒙𝑑𝑎𝑡𝑎

𝑑 ‖
2

𝑁𝑑𝑎𝑡𝑎

𝑑=1

  (30) 

 

Since their introduction to the community by Raissi et al. (2017a, 2017b, 2019), many extensions 

and alternative approaches have been developed. To name a few, Eydenberg et al. (2022) perform 

loss reweighting by applying a Lagrange dual formulation, Nabian et al. (2021) proposed an 

importance sampling approach to better select training points, Sirignano and Spiliopoulos (2018) 

use numerical differentiation to deal with higher order PDEs, whereas Gao et al. (2021) used CNNs 

as alternative ML architectures. PINNs can be used to solve a broad number of problems given its 

flexibility and universal approximation properties of NNs. As a result, PINNs have found 

widespread engineering applications, e.g., Zhang (2022) applied CNNs to Darcy flow in reservoirs, 

Mao et al. (2020) used PINNs to model high-speed flows, Cai et al. (2021) used PINNs to solve 
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heat transfer problems, and Chaffart et al. (2024) employed PINNs to capture multiscale stochastic 

thin-film deposition. 

One should point out some of the difficulties that arise from this methodology. For instance, 

training strongly depends on many user-defined hyperparameters (number of hidden layers, 

number of neurons in each layer, selection of training algorithm, initialization of weight and biases, 

etc.). PINNs also add challenges of their own, e.g., the selection of the loss weighting parameters, 

𝛽 and 𝛾, and the selection of the number of training points required for every loss term are non-

trivial user decisions that directly impact convergence. Also, additional loss weighting terms may 

be required for PDEs of different scales. For instance, suppose a non-isothermal PFR has 

concentration and temperature as state variables. If the PDE describing the energy balance has 

terms of different magnitude than the PDE describing the mole balance, the training algorithm may 

focus on the larger term. Problem-specific challenges may also be present, like stiffness or high-

order derivatives. These are still open challenges for PINNs. Hao et al. (2023) make a 

comprehensive review of several extensions of PINNs and current methodologies available. 

Moreover, the trained NN only approximates a unique solution to the PDEs. The time profile of 

the control inputs, 𝒖(𝑡), had to be known a priori to evaluate the loss (26). If the initial conditions, 

boundary conditions, parameters within the PDE equations, or the control profile change, a new 

solution must be obtained by retraining the PINN. This means that this formulation is not suitable 

for generating surrogate models for PDE-constrained feedback NMPC which requires updating 

the initial conditions and changing the control actions over time. The following section describes 

how PINNs have been extended to deal with feedback control problems. 
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2.2.1. PINNs in Feedback Process Control 

As mentioned above, PINNs in their basic formulation as proposed by Raissi et al. (2019) cannot 

be directly applied to solve control problems. PINNs have primarily been used to solve single 

instances of PDEs, i.e., find the solution for a given set of boundary and initial conditions. In a 

problem where there is a control input in a dynamical system, the time profile of this input must 

be known ahead of time. To find a solution for a new initial condition and control profile, the PINN 

must be retrained. However, a few extensions have been proposed to apply NN surrogates in 

control problems. For instance, Barry-Straume et al. (2022) solve the optimal control problem by 

minimizing the Lagrangian of the system as the loss. They trained three NNs: one for the state 

variables, one for the manipulated variables and one for the Lagrange multipliers (co-states). On 

the other hand, Mowlavi and Nabi (2023) solved the optimal control problem by adding the 

objective of the PDE-constrained optimal control problem to the PINN training loss. They trained 

two NNs: one for the state variables and one for the manipulated variables. However, in both 

works, the trained models only learn the solution to the open-loop optimal control problem. Thus, 

to apply their methods in a closed-loop feedback scheme, the model must be retrained at each time 

interval using the new initial conditions, i.e., the current states of the plant, thus making this 

approach computationally taxing or even intractable for large-scale systems. In addition, neither 

of these works considered process constraints in their optimal control problem. 

As an alternative, other works have trained models that learn the system dynamics by constructing 

models that map states and control actions at a current sampling time step to states at the next 

sampling step. The trained model is then embedded as a surrogate in an NMPC formulation. Chen 

et al. (2019) used an input convex recurrent NN (RNN) to learn the system dynamics and 

embedded the model into NMPC by evaluating the gradients via backpropagation. Zheng et al. 
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(2023) also employed a physics-informed RNN structure. The trained RNN was used as a surrogate 

model to control non-linear systems subjected to Gaussian measurement noise. The derivative 

information (Jacobian and Hessian) was provided to IPOPT (an NLP solver) via finite difference 

approximations; however, they did not report the computational time to solve the NMPC problem. 

Alhajeri et al. (2022) implemented Long-Short Term Memory (LSTM) networks as surrogate 

models. They applied a Monte Carlo dropout technique for training the LSTM; the strategy used 

to embed the surrogate model within NMPC, and the computational time to solve the NMPC 

problem were not reported. Antonelo et al. (2022) trained a PINN that accepts time, 𝑡, as a 

continuous input, the current states, 𝒙𝑘, and the current control actions, 𝒖𝑘. The PINN predicts the 

states at any time within the sampling interval 𝑡 ∈ [0, Δ𝑇] using a fully-connected feedforward 

deep NN (FNN). The output of the PINN can be provided as a new input to the NN model to make 

predictions over longer time horizons. To the author’s knowledge, a shooting approach was used 

to numerically solve the PINN embedded within the NMPC framework. Other works have 

implemented the same numerical approach in different case studies (Nicodemus et al., 2022; 

Sanyal and Roy, 2023). Their implementations were restricted to small ODE-constrained problems 

(e.g., a multilink manipulator of four states, and a quadrotor drone of 13 states). Gokhale et al. 

(2022) proposed a similar formulation, except that they did not include time as an input to the 

network and instead used a loss function that is discretized over the time domain. However, their 

PINN was not embedded within an NMPC problem. Zhang (2022) formulated a physics-informed 

CNN for modelling time-dependent PDEs. The model maps the initial condition, as 𝑁𝑧-

dimensional input (𝑁𝑧 is the number of spatial dimensions), to the next time step as the output. 

That formulation does not consider control inputs; however, they could be added as additional 

inputs to the network. Table 2 summarises the above literature involving PINNs and NMPC. 
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Table 2 Summary of literature involving PINNs and NMPC. 

Source Description Advantages Drawbacks 

Barry-

Straume et 

al. (2022) 

• Solved optimal control 

problems by minimizing 

the Lagrangian of the 

system.  

• Lagrangian is used as the 

loss of the PINN. 

• Trained three NNs: one for 

the states, one for the 

manipulated variables and 

one for the Lagrange 

multipliers. 

• Find the solution to 

the PDE-

constrained optimal 

control problem. 

• Only learns the 

solution to the 

open-loop optimal 

control problem. 

• Updating the initial 

condition would 

require retraining. 

• Does not consider 

process constraints. 

Mowlavi 

and Nabi 

(2023) 

• Solved the PDE-constraint 

optimal control problem. 

• Add the control problem 

objective to the PINN loss. 

• Trained two NNs: one for 

the states and one for the 

manipulated variables. 

• Find the solution to 

the PDE-

constrained optimal 

control problem. 

• Formulation only 

involved two NNs. 

Chen et al. 

(2019) 
• Used input-convex RNN 

to learn the system 

dynamics as a state-space 

model. 

• Used backpropagation to 

evaluate derivative 

information for NMPC 

optimization. 

• Data-driven models using 

labelled data were 

considered (not PINN 

models). 

• Solution found by 

the NMPC is global 

due to convexity. 

• Optimization 

algorithm used to 

solve the NMPC 

problem is not 

clear. 

• Input-convex 

structure may 

restrict the class of 

problem on which 

the model can be 

trained. 

Zheng et 

al. (2023) 
• Trained physics-informed 

RNNs to learn the system 

dynamics. 

• Model is treated as a 

discrete-time state-space 

model. 

• Integrated 

measurement data 

and physics-

informed losses. 

• Used finite 

differences to 

approximate 

derivative 

information for the 

optimizer. 

Alhajeri et 

al. (2022) 
• Trained physics-informed 

LSTMs under noisy data 

to learn the system 

dynamics. 

• Model is treated as a 

discrete-time state-space 

model. 

• Reduced over-

fitting in the 

presence of noisy 

data by employing 

a drop-out 

technique. 

• The model 

embedding method 

and computational 

times were not 

reported. 
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Antonelo 

et al. 

(2022) 

• Trained a PINN that takes 

time as continuous input, 

as well as the current 

states and control actions. 

• Outputs the state over a 

sampling interval. 

• PINN is treated as a 

discrete-time state-space 

model to predict over 

longer horizons and to be 

used in NMPC. 

• Evaluates exact 

derivatives with 

respect to time to 

evaluate loss. 

• Showed slight 

improvement in 

computational cost. 

• Solved the NMPC 

problem using a 

shooting approach. 

• Case studies were 

restricted to small 

ODE problems. 

Gokhale et 

al. (2022) 
• Used a PINN that accepts 

the current states and 

control actions as inputs. 

• Outputs the states at the 

next sampling step.  

• Derivative terms in the 

loss function are 

discretized over time. 

• Formulated a PINN 

amenable to control 

problems. 

• Did not embed their 

model within 

NMPC. 

• Restricted to small 

ODE problems. 

Zhang 

(2022) 
• Formulated a physics-

informed CNN to model 

time-dependent PDEs. 

• Leverages the structure of 

CNNs to deal with the 

multidimensional nature 

of PDEs. 

• Physics-informed 

CNN can handle 

changing initial 

conditions. 

• Did not consider 

changing control 

inputs in their 

formulation. 

 

 

When embedding the ML model within NMPC, the study performed by Antonelo et al. (2022) has 

shown slight computational advantages over the implementation of the analytic/mechanistic model 

within the shooting optimization approach using Runge-Kutta (RK) methods as the ODE 

integrator. Nevertheless, optimization approaches where the modelling equations are solved 

simultaneously have become popular in NMPC (Wächter and Biegler, 2006; Biegler and Zavala, 

2009). One particular approach by which NN surrogates could be made amenable to simultaneous 

solution approaches is through the embedding of the NN structure as explicit algebraic constraints 

within the algebraic modelling language (AML) (Ceccon et al., 2022). Several formulations have 

been proposed depending on the type of activation functions. For smooth activations, like tanh or 
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sigmoid, full-space (FS) and reduced-space (RS) formulations have been proposed 

(Schweidtmann and Mitsos, 2019). These formulations are amenable to local NLP solvers, like 

IPOPT. Therefore, they can take advantage of the AD from the AML to evaluate the gradients of 

the optimization problem. For non-smooth activations, like rectified linear units (ReLU), 

formulations involving mixed-integer variables like BigM or ReLU-partition have been proposed 

(Anderson et al., 2019; Tsay et al., 2021). These two formulations involve adding variables like 

𝑚 ∈ {0,1} in the optimization problem which can only take the discrete-integer values of 0 and 1. 

Problems involving integer variables can be challenging to solve within short time spans because, 

in the worst-case, branch-and-bound algorithms might have to check all possible combinations of 

the integer values (Hillier and Lieberman, 2015). Since the ReLU constraint repeats at every neuron 

at every hidden layer in the NN, the number of integer variables required to represent a full NN 

may also be very large. Thus, solving mixed-integer programs is not desirable for online feedback 

control applications. The ReLU-complementarity formulation converts the ReLU activations to 

complementarity constraints (Yang, Balaprakash and Leyffer, 2022), which are amenable to NLP 

solvers (i.e., they can be expressed as nonlinear equalities/inequalities). However, NLP solvers 

usually make assumptions about the optimization problem, like satisfaction of constraint 

qualification. NLP solvers struggle with complementarity constraints due to degeneracy because 

they fail to meet the constraint qualification assumption (Thierry and Biegler, 2020). The FS and 

RS formulations are described in more detail in Chapter 4. Moreover, ML environments can 

efficiently evaluate derivatives. Hence, evaluating the NN surrogate as an external function and 

providing the NLP solver with the evaluation of the gradients is another potential approach is to 

embed it within the AML. In this approach, the NLP solver passes the current iteration of the 

decision variables to the ML environment. The AD in the ML environment can apply the chain 
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rule over the layers of the NN to evaluate the Jacobian and Hessian matrices of the surrogate model. 

The NLP can then use these gradients to update the decision variables in an optimal direction until 

a solution is found. Note that this approach requires smooth activation functions because NLP 

solvers, like IPOPT, generally assume that the constraints and objective are differentiable to 

second order derivatives. This approach is also described in more detail in Chapter 4. Hence, there 

is a gap in literature comparing the different approaches by which NN surrogates can be embedded 

to NMPC models, highlighting the challenges of each approach and the impact on computational 

time. 

2.2.2. Summary 

NMPC problems are computationally expensive to solve, particularly for large-scale applications. 

Hence, alternative modelling approaches, such as ML surrogates, have recently gained attention. 

Various formulations of control-oriented PINNs have been proposed in the literature. Some 

attempt to solve the optimal control problem by directly minimizing the Lagrangian of the system 

in the loss function. The main drawback is that the solution is unique to the initial condition used; 

hence, it cannot be used in feedback control because updating the initial condition would require 

retraining. Other studies have used various NN structures, such as RNNs, LSTMs and CNNs, that 

map current states and control actions to states at the next sampling interval. The resulting model 

can then act as a surrogate state-space model in NMPC. However, there is a gap in the literature 

comparing how these surrogates can be embedded within the NMPC framework, highlighting the 

challenges and computational costs. Given the rise in popularity of simultaneous optimization 

approaches in NMPC, embedding strategies that take advantage of these optimization methods 

could be potential avenues. Chapter 4 attempts to address this gap by benchmarking multiple 

embedding strategies. The FS and RS formulations are used to directly formulate the ML model 
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as mathematical expressions in the optimization program. AD from ML environments was used to 

evaluate the model externally from the optimization program, thereby, solving the NMPC problem 

in an external function approach.  
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3. Multi-Scenario and Multi-Stage Robust NMPC with State Estimation: Application on 

the Tennessee-Eastman Process 

As discussed in Chapter 2, uncertainty and state estimation are inevitable challenges to the 

implementation of NMPC in large-scale systems. Plant/model mismatch and inaccurate state 

estimation cause controller performance to deteriorate. There is a gap in the literature studying the 

combined effect of uncertainty, state estimation and robust NMPC, highlighting the challenges, 

effects on performance and computational costs. To address this gap, in this study, two scenario-

based robust NMPC formulations, MS-NMPC and MSc-NMPC, are applied to consider 

parametric uncertainty in the TE process model. The performance of these two controllers is 

assessed when coupled with the additional layer of state estimation, with an unconstrained 

estimator such as EKF and a constrained estimator such as MHE. In addition, the model used in 

this study was based on the original Fortran model by Downs and Vogel (1993) and the parameters 

were taken from it, which considers the complete mole and energy balances in each unit of the 

process. It is expected that the implementation of the full model as considered in this study 

provides a more realistic representation of such an industrial-scale process. 

The study is structured as follows: Section 3.1 briefly introduces the TE process model. Section 

3.2 introduces MS-NMPC and MSc-NMPC. Section 3.3 introduces the idea of state estimation 

and the EKF and MHE formulations. Section 3.4 presents the results of the computational 

experiments under different simulation scenarios and controller/state estimator combinations. 

Finally, section 3.5 summarizes the major findings of this work. 

3.1. Tennessee-Eastman Model 

The Tennessee-Eastman (TE) process is a benchmark plant model initially proposed by Downs 

and Vogel (1993) for control strategies and process monitoring. It is based on a real industrial 
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process, but the names of components have been modified with generic names. It is modelled by 

five process units: a two-phase reactor, a phase separator, a stripper, a reactor-feed mixing zone, 

and a compressor. Figure 4 presents a flowsheet of the TE process. There are eight chemical 

components involved, A to H. Components A to C are non-condensable gases and components D 

to H may exist in both liquid and gaseous phases. Component B is an inert component. The 

reactions occur in the gas phase of the reactor (Downs and Vogel, 1993). Products G and H are 

desirable and component F is a by-product. This process is open-loop unstable since the reactions 

shown in (31)-(34) are exothermic, and irreversible, and their rates are highly sensitive to 

temperature changes. Thus, this system is considered a highly non-linear plant (Jockenhövel, 

Biegler and Wächter, 2003). Moreover, an efficient control strategy is required to stabilize the 

system and maintain it within the corresponding operating limits. 

A(𝑔) + C(𝑔) + D(𝑔) → G(𝑙𝑖𝑞) (31) 

A(𝑔) + C(𝑔) + E(𝑔) → H(𝑙𝑖𝑞) (32) 

A(𝑔) + E(𝑔) → F(𝑙𝑖𝑞) (33) 

3D(𝑔) → 2F(𝑙𝑖𝑞) (34) 

 

 
Figure 4 Flowsheet of the Tennessee-Eastman process. 

   

   

  

  

  

  

       

         

  

   

   

  

          

  

     

    

      
         

  

  

       

  

     

    

        

 

  

  

  

  

  

  

 

  

 

  

 

  

  

 

 

 

 

 

 

 

 

  

  

  

  

    

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

  

  

  

  

  



38 

 

The original TE model has been rewritten in Pyomo to make use of this optimization platform. 

The model was validated against the original Fortran model by providing the same inputs to both 

models and observing that the output responses were the same. The model consists of 38 ordinary 

differential equations (ODEs); hence, 38 differential process states are considered in the state 

estimation. The states correspond to variables such as the molar hold-ups of each species in each 

of the major units of the process, the energy balance of each of the units and the energy balance of 

the cooling streams. It also includes 91 nonlinear algebraic expressions for evaluating pressures, 

liquid levels, heat transfer rates, among other physical quantities. Additionally, there are 

12 manipulated variables and 35 measured variables. From the measured variables, only two are 

directly measured states, i.e., the remaining states must be estimated. Downs and Vogel (1993) 

state that some of the composition measurements have a sampling rate of 0.1 h and others of 0.25 h. 

In this work, it was assumed a constant sampling period of 0.1 h for all measurements, and the 

measurements are available without delay. Note that this has been a common assumption in 

practically all previous studies involving the TE process, e.g., (Ricker and Lee, 1995b, 1995a; 

Zheng, 1998; Jockenhövel, Biegler and Wächter, 2003; Kraus et al., 2006; Kühl et al., 2011; 

Kumar, Patwardhan and Noronha, 2020; Tătulea-Codrean, Fischer and Engell, 2020). There is 

some variability in the exact choice of the sampling period, with some opting for 0.028 h (100 s) 

and others using 0.25 h. 

3.2. Multi-stage and Multi-scenario Robust NMPC 

Multi-stage Robust NMPC (MS-NMPC) represents the uncertainty by a tree of discrete scenarios 

that evolve by branching at each predicted sampling interval (Lucia and Engell, 2015; Tătulea-

Codrean, Fischer and Engell, 2020). In this formulation, future control actions can take into 

consideration future state feedback (i.e. the controller considers that in future stages, the state 
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vector will be updated as the uncertainty becomes realized, hence, the control actions can adjust 

to the uncertainty from earlier stages in the prediction horizon). Thus, it is a less conservative 

approach compared to multi-scenario NMPC (MSc-NMPC). The evolution of states in the 

prediction horizon of MS-NMPC is depicted in Figure 5. It shows that the initial state, 𝒙𝑘
∗ , branches 

to three discrete realizations of the uncertain parameters, 𝒆𝑘. This results in three possible states 

in stage two which subsequently branch again at each stage for each realization of the uncertain 

parameters, resulting in the tree structure shown in the figure. If the tree continues to branch to the 

end of the prediction horizon, 𝑃, the problem size grows exponentially with the length of the 

prediction horizon. Thus, branching in the scenario tree is often considered to a time length shorter 

than the prediction horizon, this is referred to as the robust horizon (RH). After the end of the RH, 

the values of the uncertain parameters are held constant in each branch, as shown in Figure 5. The 

MS-NMPC formulation is as follows: 

min
𝒖∗

𝑖
𝑗
∈ℝ𝑁𝑢  ∀𝑖∈{𝑘,𝑘+1,…,𝑘+𝑃−1}∀𝑗∈𝐽

∑ 𝜔𝑛 ( ∑ ‖𝒚𝒔𝒑 − (𝒚∗
𝑖
𝑗)

𝑛
‖

𝑳

2
𝑘+𝑃

𝑖=𝑘+1

+ ∑ ‖(Δ𝒖𝑖
∗)𝑛‖𝑾

2

𝑘+𝑀−1

𝑖=𝑘

)

𝑁𝑠

𝑛=1

  (35) 

s.t. 𝒙∗
𝑖+1
𝑗

= 𝑓 (𝒙∗
𝑖
𝑝(𝑗)

, 𝒖∗
𝑖
𝑗
, 𝒆𝑖

𝑟(𝑗)
)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗 ∈ 𝐽  (36) 

𝒚∗
𝑖
𝑗 = ℎ(𝒙∗

𝑖
𝑗
)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ 𝐽 (37) 

𝑔(𝒙∗
𝑖
𝑗
, 𝒖∗

𝑖
𝑗
, 𝒚∗

𝑖
𝑗) ≤ 0     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ 𝐽 (38) 

𝒙𝐿 ≤ 𝒙∗
𝑖
𝑗

≤ 𝒙𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ 𝐽 (39) 

𝒖𝐿 ≤ 𝒖∗
𝑖
𝑗

≤ 𝒖𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗 ∈ 𝐽 (40) 

𝒖∗
𝑖
𝑗

= 𝒖∗
𝑘+𝑀−1
𝑗

     ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗 ∈ 𝐽 (41) 

Δ𝒖∗
𝑖
𝑗

= 𝒖∗
𝑖
𝑗

− 𝒖∗
𝑖−1
𝑗

     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗 ∈ 𝐽 (42) 

𝒖∗
𝑘
𝑗

= 𝒖∗
𝑘
𝑙  if 𝒙∗

𝑘
𝑝(𝑗)

= 𝒙∗
𝑘
𝑝(𝑙)

     ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗, 𝑙 ∈ 𝐽 (43) 

𝒙𝑘
∗ = �̂�𝑘 (44) 

 

where:  

𝒙∗
𝑖
𝑗

∈ ℝ𝑁𝑥 , 𝒚∗
𝑖
𝑗 ∈ ℝ𝑁𝑦 , 𝒆𝑖

𝑗
∈ ℝ𝑁𝑒  ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ 𝐽 

𝑳 ∈ ℝ𝑁𝑦×𝑁𝑦 , 𝑾 ∈ ℝ𝑁𝑢×𝑁𝑢 

𝒙𝐿 ∈ ℝ𝑁𝑥 , 𝒙𝑈 ∈ ℝ𝑁𝑥 , 𝒖𝐿 ∈ ℝ𝑁𝑢 , 𝒖𝑈 ∈ ℝ𝑁𝑢, �̂�𝑘 ∈ ℝ𝑁𝑥 

𝑓: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑒 → ℝ𝑁𝑥 , ℎ: ℝ𝑁𝑥 → ℝ𝑁𝑦 , 𝑔: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑦 → ℝ𝑁𝑔 

 



40 

 

The vector of predicted states at time interval 𝑖 is denoted by 𝒙𝑖
∗ whereas 𝒚𝑖

∗ denotes the process 

outputs. The term ‖𝒗‖𝑩
2  denotes the L2-norm of vector 𝒗 with weight matrix 𝑩 squared (‖𝒗‖𝑩

2 ≔

𝒗𝑇𝑩𝒗). 𝑳 and 𝑾 are the output and input weight matrices, respectively, in the objective function. 

The scalar 𝑀 denotes the length of the control horizon. The state vector, �̂�𝑘, is the initial condition 

to the NMPC problem that is provided through state feedback. In practice, the initial condition 

must be the estimate provided by a state estimator (Valipour and Ricardez-Sandoval, 2021a). In 

the process model, equation (36), the term 𝒙∗
𝑘
𝑝(𝑗)

 represents the dependence of the states at the 

next sampling interval on the parent state by the branching in the scenario tree. The superscript in 

this variable 𝑝(𝑗) is a function that makes reference of the uncertainty realization 𝑗 to the parent 

node 𝑝(𝑗) or state 𝒙∗
𝑘
𝑝(𝑗)

. The function 𝑟(𝑗) makes reference to the considered uncertainty 

realization of 𝒆𝑖
𝑟(𝑗)

 in the branch of the scenario tree (e.g. 𝒙∗
𝑘+2
6 = 𝑓(𝒙∗

𝑘+1
𝑝(6)

, 𝒖∗
𝑘+1
6 , 𝒆𝑘+1

𝑟(6)
) =

𝑓(𝒙∗
𝑘+1
2 , 𝒖∗

𝑘+1
6 , 𝒆𝑘+1

3 ) as shown in Figure 5). The realization, 𝑟(𝑗), of the uncertainty at the stage 

𝑖 is one of 𝑁𝑟 total possible combinations of the uncertain parameters (i.e., 𝒆𝑖
𝑟(𝑗)

∈ {𝒆𝑖
1, 𝒆𝑖

2, … , 𝒆𝑖
𝑁𝑟}) 

Here, 𝐽 is defined as the set of the index 𝑗 in the scenario tree. The non-anticipativity constraints, 

(43), imply that the control actions cannot anticipate the future realization of the uncertainty; 

hence, control actions stemming from the same node must be equal (e.g., in the tree shown in 

Figure 5, 𝒖∗
𝑘
1 = 𝒖∗

𝑘
2 = 𝒖∗

𝑘
3
, 𝒖∗

𝑘+2
4 = 𝒖∗

𝑘+2
5 = 𝒖∗

𝑘+2
6

, …). Let 𝑆𝑛 denote the 𝑛th scenario which 

constitutes the path from the root node, 𝒙𝑘
1 , to the end of one of the leaves and it contains all the 

inputs (𝒖∗
𝑖
𝑗
)

𝑛
, states (𝒙∗

𝑖
𝑗
)

𝑛
 and outputs (𝒚∗

𝑖
𝑗)

𝑛
 in between (e.g., the sequence of states 𝒙∗

𝑘
1 →

𝒙∗
𝑘+1
1 → 𝒙∗

𝑘+2
2 → 𝒙∗

𝑘+3
2 → 𝒙∗

𝑘+4
2

 constitute scenario 𝑛 = 2 in Figure 5). To summarize the 

indexes, the subscript 𝑖 refers to the sampling interval within the prediction horizon; the subscript 

𝑘 is the current sampling interval in the process whereas the superscript 𝑗 refers to the branch of 
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the scenario tree. Moreover, the subscript 𝑛 refers to a full scenario in the tree starting from the 

root node to the end of one of the leaves. The objective function in (35) is given by the weighted 

sum over each of the scenarios, where each scenario is assigned a non-negative weight 𝜔𝑛, such 

that ∑ 𝜔𝑛
𝑁𝑠
𝑛=1 = 1. More detailed descriptions of MS-NMPC can be found elsewhere (Lucia and 

Engell, 2015; Lucia et al., 2017). 

 
Figure 5 MS-NMPC scenario tree representation of the evolution 

of the uncertainty. 

 

The MS-NMPC can be reduced to MSc-NMPC when RH is set to one. Accordingly, MSc-NMPC 

considers the uncertainty in the model parameters by finding control actions that are feasible under 

multiple discrete realizations (Piceno-Díaz et al., 2020). The realization of the uncertain parameter 

remains constant throughout the prediction horizon in the given scenario. Since MSc-NMPC 

cannot adapt to past realizations of the uncertain parameter, it is a more conservative approach 

compared to MS-NMPC. However, the advantage over MS-NMPC, with a robust horizon greater 
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than or equal to two, is that it requires less computational effort for an equal number of possible 

realizations, thus making this approach computationally attractive for large-scale applications. 

Nonetheless, MSc-NMPC is still more computationally expensive than the standard NMPC 

formulation, since doubling the number of scenarios, doubles the number of state variables, 

algebraic variables, and constraints and equations involving the states. Notice that if one reduces 

the number of scenarios, 𝑁𝑠, to one, the formulation reduces to the standard NMPC formulation 

thus using only the nominal values for the uncertain parameters. As shown in Figure 6, the scenario 

tree for MSc-NMPC shows that the tree only branches on the first node. The MSc-NMPC 

formulation is as follows: 

min
𝒖𝑖

∗∈ℝ𝑁𝑢  ∀𝑖∈{𝑘,𝑘+1,…,𝑘+𝑃−1}
∑ 𝜔𝑗 ( ∑ ‖𝒚𝒔𝒑 − 𝒚∗

𝑖
𝑗‖

𝑳

2
𝑘+𝑃

𝑖=𝑘+1

+ ∑ ‖Δ𝒖𝑖
∗‖𝑾

2

𝑘+𝑀−1

𝑖=𝑘

)

𝑁𝑠

𝑗=1

  (45) 

s.t. 𝒙∗
𝑖+1
𝑗

= 𝑓(𝒙∗
𝑖
𝑗
, 𝒖𝑖

∗, 𝒆𝑗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} ∀𝑗 ∈ {1, 2, … , 𝑁𝑠} (46) 

𝒚∗
𝑖
𝑗 = ℎ(𝒙∗

𝑖
𝑗
)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ {1, 2, … , 𝑁𝑠} (47) 

𝑔(𝒙∗
𝑖
𝑗
, 𝒖𝑖

∗, 𝒚∗
𝑖
𝑗) ≤ 0     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ {1, 2, … , 𝑁𝑠} (48) 

𝒙𝐿 ≤ 𝒙∗
𝑖
𝑗

≤ 𝒙𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃} ∀𝑗 ∈ {1, 2, … , 𝑁𝑠} (49) 

𝒖𝐿 ≤ 𝒖𝑖
∗ ≤ 𝒖𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (50) 

𝒖𝑖
∗ = 𝒖𝑘+𝑀−1

∗      ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} (51) 

Δ𝒖𝑖
∗ = 𝒖𝑖

∗ − 𝒖𝑖−1
∗      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (52) 

𝒙∗
𝑘
𝑗

= �̂�𝑘     ∀𝑗 ∈ {1, 2, … , 𝑁𝑠} (53) 

 

where: 

𝒙∗
𝑖
𝑗

∈ ℝ𝑁𝑥 , 𝒚∗
𝑖
𝑗 ∈ ℝ𝑁𝑦  ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃}∀𝑗 ∈ {1, 2, … , 𝑁𝑠} 

𝑳 ∈ ℝ𝑁𝑦×𝑁𝑦 , 𝑾 ∈ ℝ𝑁𝑢×𝑁𝑢 

𝒆𝑗 ∈ ℝ𝑁𝑒 , 𝒙𝐿 ∈ ℝ𝑁𝑥 , 𝒙𝑈 ∈ ℝ𝑁𝑥 , 𝒖𝐿 ∈ ℝ𝑁𝑢 , 𝒖𝑈 ∈ ℝ𝑁𝑢, �̂�𝑘 ∈ ℝ𝑁𝑥 

𝑓: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑒 → ℝ𝑁𝑥 , ℎ: ℝ𝑁𝑥 → ℝ𝑁𝑦 , 𝑔: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑦 → ℝ𝑁𝑔 

 

 

Each scenario, which corresponds to a realization of the uncertainty, is denoted by the superscript 

𝑗. Note that the model takes the same initial condition for all realizations and the manipulated 

variables are not indexed by the superscript 𝑗, which means the same control actions must be 
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feasible for all scenarios. Additionally, non-negative weight 𝜔𝑗 is assigned to each scenario in the 

objective function such that ∑ 𝜔𝑗
𝑁𝑠
𝑗=1 = 1.  

 
Figure 6 Scenario tree for a RH of one. This is equivalent to the 

MSc-NMPC formulation. 

 

3.3. State Estimation 

This section provides an overview of two common model-based state estimation strategies, the 

Extended Kalman filter (EKF) and the Moving Horizon Estimator (MHE). These strategies were 

used in this study to have access to the states that cannot be measured online and use them to 

provide the initial condition for the different NMPC strategies considered in this work. 

3.3.1. Extended Kalman Filter 

The extended Kalman filter (EKF) is one of the most widely applied state estimation algorithms 

for nonlinear systems (Vinoth Upendra and Prakash, 2013). Some industrial-scale studies include 

the application of EKF to a Gasification system (Valipour, Toffolo and Ricardez-Sandoval, 2021), 

to a thermal power plant (Prasad et al., 1999) and multiple works have applied EKF to the TE 
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process (Ricker and Lee, 1995b; Yan and Ricker, 1995; Ming Yan and Ricker, 1997; Golshan, 

Boozarjomehry and Pishvaie, 2005; Golshan, Pishvaie and Bozorgmehry Boozarjomehry, 2008; 

Vinoth Upendra and Prakash, 2013; Kumar Kottakki, Bhushan and Bhartiya, 2017; Mukherjee et 

al., 2021). The Kalman filter is an optimal estimator for linear stochastic systems with normal 

distributions on process and measurement noise. The EKF expands on the Kalman filter to 

nonlinear systems by linearizing over the current estimate of the states. This estimator uses the 

non-linear model in the prediction step, and it updates the Jacobian matrices at every sampling 

step, which provides a significant improvement in accuracy over the Kalman filter; in addition, its 

two-step formulation makes it very efficient to compute online and straightforward to implement. 

The limitations of EKF are that the distributions may not be normal after passing through the 

nonlinear transformations of the process model, it does not take into account process constraints 

and it uses a linear approximation to propagate the error over time (Welch and Bishop, 2006). This 

could result in large estimation errors or even infeasible estimates which ultimately results in loss 

of performance, suboptimal control actions or possibly destabilization of the system. EKF assumes 

a model of the following form: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1 (54) 

𝒚𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 (55) 

 

where 𝒘𝑘 ∈ ℝ𝑁𝑥 and 𝒗𝑘 ∈ ℝ𝑁𝑦 are the process and measurement noises, respectively. The 

algorithm follows two general steps. First, in the time update step, Eq. (56)-(57), the process model 

is used to make an a priori estimation of the current state, �̂�𝑘
−, based on the previous state estimate, 

�̂�𝑘−1, by assuming 𝒘𝑘 = 𝟎. Similarly, an a priori estimation of the state error covariance matrix, 

𝑷𝑘, is made.  
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Time update:  

�̂�𝑘
− = 𝑓(�̂�𝑘−1, 𝒖𝑘−1) (56) 

𝑷𝑘
− = 𝑨𝑘𝑷𝑘−1𝑨𝑘

𝑇 + 𝑸𝑘−1 (57) 

 

In the measurement update step, the a posteriori estimates of the states and the error covariance 

matrix are made by correcting with the plant output measurements via the Kalman gain, 𝑲𝑘, i.e.,  

Measurement update:  

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)−1 (58) 

�̂�𝑘 = �̂�𝑘
− + 𝑲𝑘(𝒚𝑘 − ℎ(�̂�𝑘

−)) (59) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
− (60) 

 

where: 

 

𝑨𝑘 =
𝜕𝑓

𝜕𝒙
|

𝒙=�̂�𝑘−1

, 𝑯𝑘 =
𝜕ℎ

𝜕𝒙
|

𝒙=�̂�𝑘
−
 

𝑲𝑘 ∈ ℝ𝑁𝑥×𝑁𝑦 , 𝑨𝑘 ∈ ℝ𝑁𝑥×𝑁𝑥 , 𝑯𝑘 ∈ ℝ𝑁𝑦×𝑁𝑥 

𝑸𝑘 ∈ ℝ𝑁𝑥×𝑁𝑥 , 𝑷𝑘 ∈ ℝ𝑁𝑥×𝑁𝑥 , 𝑹𝑘 ∈ ℝ𝑁𝑦×𝑁𝑦 

 

 

One of the computational challenges of EKF is that the Jacobian matrices, 𝑨𝑘 and 𝑯𝑘, must be 

evaluated at every sampling step. This is particularly challenging for large-scale problems as the 

number of partial derivatives that must be evaluated increases quadratically with the number of 

states. 
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Figure 7 a) EKF using the nominal value of the uncertain parameters to provide a single initial 

condition to MSc-NMPC; b) 1-to-1 EKF providing a different initial condition to the 

corresponding scenario in MSc-NMPC. 

 

In an attempt to improve the robustness of the EKF estimate, in this study, a MSc-NMPC/EKF 

combination that considers the uncertain scenarios used in MSc-NMPC was implemented. It is 

referred to as 1-to-1 EKF because multiple versions of the EKF are evaluated at each sampling 

time, each one with the same parameter values used in the MSc-NMPC scenarios. Then, each 

version of the EKF provides the initial condition to the corresponding scenario in MSc-NMPC. 

Figure 7 is a schematic that shows a) the typical arrangement where a single version of EKF uses 
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the nominal value of the uncertain parameter to provide a single initial condition to MSc-NMPC, 

and b) how 1-to-1 EKF provides a unique initial condition to the corresponding scenario in MSc-

NMPC. 

3.3.2. Moving Horizon State Estimation 

The moving horizon estimator (MHE) finds estimates for the unknown states at the current time 

interval 𝑘 by minimizing the estimates of the process and measurement noises using the non-linear 

process model. The main advantage of MHE over EKF is that it can directly consider process 

constraints in the formulation of the optimization problem. One limitation of the MHE scheme is 

that it must be solved online at each sampling instance generating additional computational costs. 

This could be particularly challenging for large-scale problems since the model may also be 

complex (Zavala and Biegler, 2009). The MHE formulation is as follows (Segovia et al., 2019; 

Valipour and Ricardez-Sandoval, 2021a): 

min
�̂�𝑖∈ℝ𝑁𝑥  ∀𝑖∈{𝑘−𝑁,𝑘−𝑁+1,…,𝑘}

𝒘𝑖∈ℝ𝑁𝑥  ∀𝑖∈{𝑘−𝑁,𝑘−𝑁+1,…,𝑘−1}

𝒗𝑖∈ℝ𝑁𝑦  ∀𝑖∈{𝑘−𝑁−1,𝑘−𝑁+1,…,𝑘}

∑ ‖𝒘𝑖‖
𝑸𝑖

−1
2

𝑘−1

𝑖=𝑘−𝑁

+ ∑ ‖𝒗𝑖‖𝑹𝑖
−1

2

𝑘

𝑖=𝑘−𝑁+1

+ 𝜑𝑘−𝑁 
(61) 

s.t. �̂�𝑖+1 = 𝑓(𝒙𝑖, 𝒖𝑖) + 𝒘𝑖     ∀𝑖 ∈ {𝑘 − 𝑁, 𝑘 − 𝑁 + 1, … , 𝑘 − 1} (62) 

𝒚𝑖 = ℎ(�̂�𝑖) + 𝒗𝑖     ∀𝑖 ∈ {𝑘 − 𝑁 + 1, 𝑘 − 𝑁 + 2, … , 𝑘} (63) 

𝑔(�̂�𝑖, 𝒖𝑖, 𝒚𝑖) ≤ 0     ∀𝑖 ∈ {𝑘 − 𝑁, 𝑘 − 𝑁 + 1, … , 𝑘} (64) 

𝒙𝐿 ≤ �̂�𝑖 ≤ 𝒙𝑈     ∀𝑖 ∈ {𝑘 − 𝑁, 𝑘 − 𝑁 + 1, … , 𝑘} (65) 

𝜑𝑘−𝑁 = ‖�̂�𝑘−𝑁 − �̅�𝑘−𝑁‖
𝑷𝑘−𝑁

−1
2  (66) 

 

where: 

 

�̂�𝑖 ∈ ℝ𝑁𝑥  ∀𝑖 ∈ {𝑘 − 𝑁, 𝑘 − 𝑁 + 2, … , 𝑘} 

𝒚𝑖 ∈ ℝ𝑁𝑦 , 𝒗𝑖 ∈ ℝ𝑁𝑦 , 𝑹𝑖 ∈ ℝ𝑁𝑦×𝑁𝑦  ∀𝑖 ∈ {𝑘 − 𝑁 + 1, 𝑘 − 𝑁 + 2, … , 𝑘} 

𝒘𝑖 ∈ ℝ𝑁𝑥 , 𝒖𝑖 ∈ ℝ𝑁𝑢 , 𝑸𝑖 ∈ ℝ𝑁𝑥×𝑁𝑥  ∀𝑖 ∈ {𝑘 − 𝑁, 𝑘 − 𝑁 + 1, … , 𝑘 − 1} 

𝒙𝐿 ∈ ℝ𝑁𝑥 , 𝒙𝑈 ∈ ℝ𝑁𝑥 , �̅�𝑘−𝑁 ∈ ℝ𝑁𝑥 , 𝜑𝑘−𝑁 ∈ ℝ 

𝑓: ℝ𝑁𝑥×𝑁𝑢 → ℝ𝑁𝑥 , ℎ: ℝ𝑁𝑥 → ℝ𝑁𝑦 , 𝑔: ℝ𝑁𝑥×𝑁𝑢×𝑁𝑦 → ℝ𝑁𝑔  
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MHE considers a finite time window, 𝑁, of past measurements. In this problem, the estimates of 

the states, �̂�𝑖, and the estimates of the noises, 𝒘𝑖 and 𝒗𝑖, are decision variables; and the previously 

observed measurements, 𝒚𝑖, and the past control actions, 𝒖𝑖, are fixed parameters. The noises in 

the objective function are weighted by their corresponding covariance. The term 𝜑𝑘−𝑁 is referred 

to as arrival cost which is meant to consider past information that is not within the finite horizon 

window. The expected value, �̅�𝑘−𝑁, and the state error covariance matrix, 𝑷𝑘−𝑁, are typically 

approximated using the a posteriori estimate from methods like EKF (Valipour and Ricardez-

Sandoval, 2021a). Only the last state estimate in the finite horizon, �̂�𝑘, is passed as the initial 

condition to NMPC. If the estimation horizon is short and the arrival cost will play significant role 

in the MHE estimation (Valipour and Ricardez-Sandoval, 2021a). In other words, it is highly 

dependent on the quality of the estimate of �̅�𝑘−𝑁 and 𝑷𝑘−𝑁. The role of the arrival cost can be 

neglected by increasing the size of the estimation window; however, this also increases the size of 

the problem, making it more computationally demanding. 

3.4. Results 

This section presents the results of implementing the robust NMPC schemes discussed previously, 

coupled with state estimation, on the TE process. Figure 8 illustrates the closed-loop feedback 

control framework considered in this work. First, the performance of a selected MS-NMPC is 

evaluated and compared to MSc-NMPC and standard NMPC under various scenarios of the 

uncertain parameters in the plant assuming full access to the states (i.e., the online measurement 

is available for all the state variables). This was repeated with the inclusion of state estimation to 

evaluate the impact that estimating the initial states may have on the performance of a robust 

NMPC. Next, the impact of the RH on the MS-NMPC performance was evaluated and compared 

to MSc-NMPC and the standard NMPC. Finally, a closed-loop simulation using MSc-NMPC and 
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MHE as state estimator under the additional impact of set-point changes (i.e., changes in the mode 

of operation of the plant) and disturbances was assessed. 

 
Figure 8 Block diagram representation of the closed-loop feedback control framework. 

 

Table 3 Controlled variables present in the NMPC objective function along with their nominal set-

points and weights. 

𝑚 Controlled Variable, 𝑦𝑚 Nominal Set-point Weight, 𝐿𝑚 

1 Mole fraction of B in purge, 𝑦𝐵,𝑠 0.138 209 

2 Mole fraction of G in product, 𝑥𝐺,𝑠𝑡𝑟 0.537 17.3 

3 Mole fraction of H in product, 𝑥𝐻,𝑠𝑡𝑟 0.438 26.0 

4 Product flow rate, 𝐹11 58.6 mol s−1 11.6E−4 

5 Recycle flow rate, 𝐹8 333.4 mol s−1 9.00E−6 

6 Reactor temperature, 𝑇𝑟 120.4 ℃ 38.7E−5 

7 Mixing zone temperature, 𝑇𝑚 86.1 ℃ 11.6E−5 

8 Separator temperature, 𝑇𝑠 80.1 ℃ 16.0E−5 

9 Stripper temperature, 𝑇𝑠𝑡𝑟 65.7 ℃ 17.4E−5 

10 Reactor liquid level, 𝑉𝐿,𝑟 16.55 m3 18.2E−4 

11 Separator liquid level, 𝑉𝐿,𝑠 4.88 m3 20.9E−3 

12 Separator liquid level, 𝑉𝐿,𝑠𝑡𝑟 4.43 m3 25.5E−3 

13 Reactor pressure, 𝑃𝑟 2705 kPag 12.7E−7 

 

The selected uncertain parameters for the TE process were the pre-exponential factors of the 

reaction kinetics of the first two reactions, i.e. 𝒆𝑘 = [𝛼1 𝛼2]𝑇. The two selected parameters are 

expected to have a severe impact on the performance of the TE process due to the high-temperature 

sensitivity of the exothermic reactions. These parameters were also used in the work by Tatulea-
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Codrean et al. (2020) where an economic MS-NMPC was implemented. The TE plant has process 

and safety-based limitations; these were taken from Downs and Vogel (1993) and were formulated 

as constraints in the NMPC problems as shown in equations (67)-(71), in addition to the saturation 

limits on the manipulated variables. Moreover, constraints were also included on the limits of the 

variable regions without physical meaning, such as molar hold-ups must be non-negative and 

molar fractions between zero and one. The prediction horizon, 𝑃, and control horizon, 𝑀, were 

equal and set to 6 h. Jockenhovel et al. (2003) selected horizons of 5 h and they explained that it 

is too short for the process to reach steady state, but they selected it due to the computational 

burden of using a long horizon with NMPC. Other works have used even shorter horizons of 0.55 h 

(Tătulea-Codrean, Fischer and Engell, 2020) and 1 h (Ricker and Lee, 1995a). The objective 

function can generally be written as shown in equation (72), where the first term represents the 

error between the controlled variable 𝑦𝑚𝑖
 and its set-point 𝑦𝑠𝑝 weighted by 𝐿𝑚, 𝑦𝑚𝑖

 being element 

𝑚 in 𝒚𝑖 at sampling interval 𝑖. The second term represents the magnitude of the changes in the 

manipulated variables, 𝑢𝑙𝑖
, weighted by 𝑅𝑙, 𝑢𝑙𝑖

 representing element 𝑙 in 𝒖𝑖 at sampling interval 𝑖. 

Table 3 and Table 4 summarize the controlled variables and manipulated variables included in the 

objective function along with their corresponding weights, respectively. The NMPC presented by 

Jockenhovel et al. (2003) for the TE process was utilized as a starting point. Then, a trial-and-error 

approach was employed to fine-tune the NMPC weights. Throughout the study, the focus was on 

the set-point tracking performance of the reactor pressure because it is a safety critical variable 

due to the open-loop unstable reactor. In addition to the reactor pressure, the analysis in this study 

also focuses on the set-point tracking performance of the mixing-zone temperature since it is a 

controlled variable in the objective function, but it is not a measured variable, which means NMPC 

must solely rely on the state estimates to predict its behaviour. 



51 

 

𝑇𝑟 ≤ 150 ℃ (67) 

𝑃𝑟 ≤ 2895 kPag (68) 

11.8 m3 ≤ 𝑉𝐿,𝑟 ≤ 21.3 m3 (69) 

3.3 m3 ≤ 𝑉𝐿,𝑠 ≤ 9.0 m3 (70) 

3.5 m3 ≤ 𝑉𝐿,𝑠𝑡𝑟 ≤ 6.6 m3 (71) 

𝐽 = ∑ ( ∑ 𝐿𝑚 (𝑦𝑚𝑠𝑝𝑖
− 𝑦𝑚𝑖

)
2

𝑁𝑦

𝑚=1

)

𝑘+𝑃

𝑖=𝑘

 + ∑ (∑ 𝑅𝑙Δ𝑢𝑙
2

𝑖

𝑁𝑢

𝑙=1

)

𝑘+𝑃−1

𝑖=𝑘

  (72) 

 

Table 4 Manipulated variables along with their nominal operating values and weights in the objective 

function. 

𝑙 Manipulated Variable, 𝑢𝑙 Nominal Value Weight, 𝑅𝑙  
1 A feed, 𝐹1 3.11 mol s−1 0.207 

2 D feed, 𝐹2 31.8 mol s−1 19.8E−4 

3 E feed, 𝐹3 27.2 mol s−1 27.2E−4 

4 A and C feed, 𝐹4 116 mol s−1 14.9E−5 

5 Compressor recycle valve, 𝑝8 22.2% 40.5E−4 

6 Purge valve, 𝑝9 40.1% 12.5E−4 

7 Separator liquid product, 𝐹10 72.1 mol s−1 38.6E−5 

8 Product flow rate, 𝐹11 58.6 mol s−1 58.2E−5 

9 Agitator speed, 𝐴𝐺𝑆𝑃 50.0% 40.0E−5 

10 Reactor cooling water, 𝐹𝑐𝑤,𝑟 25.9 kg s−1 29.7E−4 

11 Separator cooling water, 𝐹𝑐𝑤,𝑠 13.7 kg s−1 10.6E−3 

12 Steam valve, 𝑝𝑠𝑡𝑚 47.4% 44.4E−6 

 

The closed-loop framework presented in Figure 8 was implemented in Pyomo 6.4.2 with Python 

3.9.12 on a Windows 10 computer equipped with 32.0 GB RAM, Intel® Core™ i9-10980HK CPU 

@ 2.40 GHz 3.10 GHz. The ODEs that model the TE process were discretized by a backward 

finite difference such that the dynamic optimization problems may be converted to large-scale 

non-linear programs (NLPs). It was assumed that the discretization step size was equal to the 

sampling period of 0.1 h. This results in a large-scale NLP with 14,456 variables for the standard 

NMPC formulation, i.e., no uncertainty considered. All NLPs were solved using IPOPT.  
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EKF requires the evaluation of the Jacobian matrixes of the system at each time interval. For this 

purpose, the differentiate function from pyomo.core.expr was used. It automatically converts 

Pyomo expressions to Sympy and uses the symbolic differentiator. To make the online 

implementation more efficient, the symbolic Jacobians only have to be computed once before the 

simulation, for each iteration hereafter, it is only necessary to evaluate the symbolic expression at 

the current values. The MHE model was discretized in the same way as the NMPC formulation. 

The moving window was set to 4 h (𝑁 = 40); since the window is long, the arrival cost was not 

considered. This results in an NLP with 10,812 variables. The first time MHE is solved in the 

closed-loop framework, an initial guess must be provided for all the variables. To generate a 

reasonable initial guess, the model can be simulated in closed-loop with NMPC, assuming full-

state knowledge, until steady-state. Since in the first 4 h of using MHE, the moving window 

overlaps with times earlier than the first sampling instance, in which there are not any 

measurements available, all measurements before that time were assumed to be the nominal value 

of the measurement complemented with randomly sampled measurement noise.  

The set-point tracking performance of a given controlled variable was measured with the root-

mean-squared error (RMSE) defined in equation (73), where 𝑁𝑠𝑖𝑚 is the number of sampling 

instances in the simulation and 𝑦𝑗𝑘
 represents the controlled variable 𝑗 at sampling instance 𝑘. 

𝑅𝑀𝑆𝐸 = (
1

𝑁𝑠𝑖𝑚
∑ (𝑦𝑗𝑠𝑝

− 𝑦𝑗𝑘
)

2
𝑁𝑠𝑖𝑚

𝑘=0

)

0.5

 (73) 
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3.4.1. Robust NMPC Performance without State Estimation 

NMPC, MSc-NMPC and MS-NMPC were compared assuming full access to the states considering 

uncertainty in the reaction kinetics of the first two reactions. In other words, the state estimator 

was not considered, and the states were passed directly to the controller. Different realizations of 

the uncertain parameters were used in the plant to simulate multiple scenarios that may cause a 

plant-model mismatch. A 5% uncertainty was considered, i.e. values up to 5% above and 5% below 

the nominal value of the parameters. As it will be shown below, this range of uncertainty was 

found to have a severe impact on the process performance. In the MSc-NMPC, two levels of the 

uncertain parameters were used which resulted in four discrete scenarios. Let 𝒆𝑁𝑂𝑀 =

[𝛼1
𝑁𝑂𝑀 𝛼2

𝑁𝑂𝑀]𝑇 represent the nominal values of the uncertain parameter, then, the four scenarios 

used in MSc-NMPC are summarized in Table 5. For MS-NMPC, two variable combinations were 

considered, one where both are at the highest value and one where both are at the lowest, i.e. 

𝒆𝑖
𝑟(𝑗)

∈ {1.05𝒆𝑁𝑂𝑀, 0.95𝒆𝑁𝑂𝑀}, and the two combinations were varied over a RH of three, which 

resulted in eight scenarios; the scenario tree for this configuration can be seen in Figure 9. The 

variables in the NLPs were initialized with the nominal steady-state values. For standard NMPC, 

the uncertain variables were left at the nominal value, i.e., 𝒆𝑁𝑂𝑀. These three controllers were 

tested in closed-loop assuming three different cases, i.e., S1, the plant was run at the nominal case, 

i.e. 𝒆𝑘 = 𝒆𝑁𝑂𝑀; S2, both uncertain parameters were fixed at 5% below their nominal value, i.e. 

𝒆𝑘 = 0.95𝒆𝑁𝑂𝑀; and S3, the kinetics of reaction one was run at 5% above the nominal value and, 

for reaction two, at 5% below, i.e. 𝒆𝑘 = [1.05𝛼1
𝑁𝑂𝑀 0.95𝛼2

𝑁𝑂𝑀]𝑇. For all cases, the initial states 

of the plant were 1% above the nominal steady-state value to introduce a dynamic response. In 

general, for all cases, if the initial states provided to the controller are within the feasible range, 

the standard NMPC can find optimal solutions relatively fast, within 4 seconds on average at every 
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sampling instance. Finding an optimal solution to a robust NMPC can take significantly more time, 

1 to 5 h depending on the number of uncertain scenarios considered. However, the online solution 

time can be significantly reduced by using the solution at the previous sampling time to initialize 

primal and dual variables in IPOPT for the next sampling time as a warm start. This was set up via 

the warm_start_init_point option in IPOPT. The RMSE of some selected controlled variables and 

computational time for each controller in each of the three cases are summarized in Table 6. 

 
Figure 9 MS-NMPC scenario tree implemented in this study. 

 

The closed-loop responses of the three controllers on the reactor pressure and the mixing-zone 

temperature for cases S1, S2 and S3 are shown in Figure 10. In the nominal case, S1, Figure 10 a) 

and b), where there is not any mismatch between the plant and the NMPC model, it can be observed 

that the controlled variables quickly reach the set points without any offset; as expected, NMPC 

(blue line) has the best performance of all controllers in this case. Both MS-NMPC and MSc-
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NMPC exhibit an offset between the controlled variable and the set-point. These controllers must 

balance between all the scenarios considered in their respective formulations and remain feasible, 

as a result, one must sacrifice some performance, which is the main drawback of using a robust 

controller (Patrón and Ricardez-Sandoval, 2020a). Offset-free NMPC formulations are potential 

methods to correct for uncertainty while overcoming the set-point tracking error (Skupin et al., 

2022). However, when the uncertainty realization used in the plant is changed to S2, the process 

using the NMPC becomes unstable and violates the process shutdown constraint limits. As shown 

in Figure 10 c), the pressure goes above the shut-down limit from equation (68). When the realized 

values of the reaction kinetics are below the nominal values, like in S2, the reaction rates in the 

process are lower than what NMPC predicts; since the reactants are gaseous and the products 

condensable, lower reaction rates lead to higher pressures in the reactor because there is more 

material in the gas phase. This mismatch causes NMPC to predict that the pressure will quickly 

decrease back to its set-point value and thus, it does not take any action to counter the high pressure 

that is observed in the process. If NMPC could detect a problem within the prediction horizon, an 

alarm could be activated to warn that the process is approaching the constraint limits. However, as 

mentioned the NMPC predicted that the process would return to the set-point within the prediction 

horizon, thus, such a feature would not be possible with the nominal NMPC when there is 

uncertainty in the plant. The fact that NMPC could fail in such scenarios serves as the main 

motivation to use robust NMPC in the TE process. Under model uncertainty, a well-tuned NMPC 

may result in a closed-loop unstable response that violates the process constraints. Even in other 

scenarios where NMPC does not result in constraint violation, as observed for S3, Figure 10 e) 

and f), there is a significant deterioration in performance with large offsets and long settling times. 

This also highlights the difficulties in controlling the TE plant; an uncertainty of only 5% was 
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sufficient to cause the plant/model mismatch to become significant due to the highly non-linear 

nature of this process. 

Table 5 Scenarios considered within MSc-NMPC 

𝑗 𝒆𝑗 

1 [1.05𝛼1
𝑁𝑂𝑀 1.05𝛼2

𝑁𝑂𝑀]𝑇 

2 [0.95𝛼1
𝑁𝑂𝑀 0.95𝛼2

𝑁𝑂𝑀]𝑇 

3 [1.05𝛼1
𝑁𝑂𝑀 0.95𝛼2

𝑁𝑂𝑀]𝑇 

4 [0.95𝛼1
𝑁𝑂𝑀 1.05𝛼2

𝑁𝑂𝑀]𝑇 

 

Table 6 Summary of the robust NMPC performance under multiple scenarios with full state access. 

Case Variable NMPC MSc-NMPC MS-NMPC 

S1 

Nominal 

RMSE 𝑷𝒓 (kPag) 0.215 13.1 13.9 

RMSE 𝑻𝒎 (℃) 0.00204 0.669 0.519 

RMSE 𝒙𝑮,𝒔𝒕𝒓 1.03E-5 3.32E-3 3.61E-3 

RMSE 𝒙𝑯,𝒔𝒕𝒓 7.21E-6 2.97E-3 2.72E-3 

S2 

𝜶𝟏 = 𝟎. 𝟗𝟓, 

𝜶𝟐 = 𝟎. 𝟗𝟓 

RMSE 𝑷𝒓 (kPag) Unstable 39.8 44.3 

RMSE 𝑻𝒎 (℃) Unstable 0.997 1.36 

RMSE 𝒙𝑮,𝒔𝒕𝒓 Unstable 3.94E-3 4.69E-3 

RMSE 𝒙𝑯,𝒔𝒕𝒓 Unstable 5.54E-3 5.89E-3 

S3 

𝜶𝟏 = 𝟏. 𝟎𝟓, 

𝜶𝟐 = 𝟎. 𝟗𝟓 

RMSE 𝑷𝒓 (kPag) 66.7 33.5 36.4 

RMSE 𝑻𝒎 (℃) 2.01 0.745 1.02 

RMSE 𝒙𝑮,𝒔𝒕𝒓 5.63E-3 3.71E-3 4.31E-3 

RMSE 𝒙𝑯,𝒔𝒕𝒓 7.96E-3 5.41E-3 5.57E-3 

NMPC Solve Time (s) 3.06 21.4 55.7 

 

In scenarios where NMPC does not perform well, both MS-NMPC and MSc-NMPC can more 

closely track the set points of the process, prevent constraint violation and provide significantly 

better performance compared to NMPC. In S2, the robust controllers, MS-NMPC (green line) and 

MSc-NMPC (orange line), prevented constraint violation and maintained the closed-loop response 

under an acceptable operation. This can be seen in the reactor pressure and mixing zone 

temperature response in Figure 10 c) and d) and the response of other important controlled 

variables with constraint limits such as the reactor temperature a) and the separator liquid level b) 

in Figure 11. Further looking at the graphical responses in Figure 10 and Figure 11, the 
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performance of both robust controllers is similar for all controlled variables in all cases. 

Furthermore, Figure 11 also shows that the product quality in S2, i.e. the mole fractions of G, 

Figure 11 c), and H, Figure 11 d), in the product stream, remains close to its objective when a 

robust controller is used. Figure 12 shows the control profiles of two selected manipulated 

variables: the purge valve position Figure 12 a), and the reactor cooling water Figure 12 b) in S2. 

NMPC does not take control actions to reject the increase in the reactor pressure because the model 

mismatch results in inaccurate predictions. 

  
Figure 10 Simulation of robust NMPC under various realizations of the uncertain parameters 

assuming full state access. Reactor pressure and mixing zone response in cases S1, a) and b); S3, c) 

and d); and S4, e) and f). Note that the nominal NMPC response in a) and b) overlaps with the set-

point for most of the simulation time. 

 

a) b) 

c) d) 

e) f) 
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Both MSc-NMPC and MS-NMPC can maintain the process within the operational limits while 

closely tracking the set point. In S3, Figure 10 e) and f), the response to NMPC is not closed-loop 

unstable but the simulation time was not enough to reach steady state and the offset from the 

controller set point is significant. The robust controllers showed similar performance in S3 as in 

the previous two cases. The RMSE, listed in Table 6, of a given controlled variable, would suggest 

that MSc-NMPC performed slightly better in some cases, but worse in others compared to MS-

NMPC. For example, the RMSE of the mixing zone temperature is slightly higher for MSc-NMPC 

in S1, 0.669 ℃, compared to MS-NMPC, 0.519 ℃. However, it is lower in the other cases, like 

S2 where MSc-NMPC has an RMSE of 0.997 ℃ and MS-NMPC is 1.36 ℃. Similar observations 

can be made with the other controlled variables shown in Figure 11. 

 
Figure 11 Reactor temperature a), separator liquid level b), and product stream mole fractions of 

G, c), and H, d), in S2. 

 

The computation times reported in Table 6 are the average online solve times for each controller. 

It shows that MS-NMPC takes the longest to solve at every sampling instance. This is primarily 

a) b) 

c) d) 
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due to the size of the problem because, with a RH of three, MS-NMPC involves eight scenarios. 

Recall, the standard NMPC has 14,456 variables; in addition, MSc-NMPC has 51,308 variables 

and MS-NMPC has 110,951. The size of the problem is proportional to the number of scenarios 

considered. The computation time could be reduced if the RH is reduced, however, as discussed 

in section 3.4.2, the controller will become more conservative. Additionally, MS-NMPC, with RH 

of one, yields identical performance to MSc-NMPC when the same combinations of discrete 

uncertain variable realizations are considered. Hence, the selection of the controller is dependent 

on how much conservativeness the user is willing to accept as well as how sensitive the process 

may be to uncertainty. The control architecture used in this work is centralized; depending on the 

size of the problem a decentralized architecture may be necessary to alleviate the computational 

burden (Anderson, Ellis and Christofides, 2015). However, for the selected sampling time (0.1 h) 

in this problem, the computation times were found to be reasonable, thus, decentralized approaches 

were not considered and are beyond the scope of this work. 

 
Figure 12 Control profiles of the purge valve a), and the reactor cooling water b), in S2. 

 

3.4.2. Robust NMPC/State Estimation Closed-loop Performance 

The same set of cases as in the previous section was considered in this section, except that instead 

of providing the current states directly from the plant to the controllers, the framework shown in 

Figure 8 was implemented, where a state estimator takes the current measurements from the plant 

a) b) 
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and provides the estimates as the initial condition to the controller. The observability of the system 

was evaluated by verifying that det(𝒪𝑇𝒪) is different from zero, where 𝒪 is the observability 

matrix of the linearized system. The two state estimators studied in this work (i.e., EKF and MHE) 

use the TE process model to generate their estimates, and when there is uncertainty present in 

model parameters, the quality of the state estimates is affected. That in turn, affects the quality of 

the control actions since the solution that NMPC finds is optimal to the estimated state values but 

not necessarily to the current state of the plant. For standard EKF and MHE, it was assumed that 

the uncertain parameter remains at the nominal value. In an attempt to improve the robustness of 

the estimate, the 1-to-1 EKF described in section 3.3.1 was also considered as a state estimator 

where each scenario used MSc-NMPC is also in a corresponding version of EKF. A schematic 

representing the interaction between 1-to-1 EKF and MSc-NMPC is shown in Figure 7 b). In the 

plant and the internal models used for estimation, it was assumed a zero-mean Gaussian process 

noise, 𝒘𝑘, with standard deviation of 0.1% the nominal magnitude of the corresponding state; and 

zero-mean Gaussian measurement noise, 𝒗𝑘, with the standard deviation of 0.1% of the 

corresponding measurement (e.g., the nominal reactor pressure is 2705 kPag, hence, the 

measurement noise has a standard deviation of 2.705 kPag). 

The cases presented here are, S1, the nominal case, i.e. 𝒆𝑘 = 𝒆𝑁𝑂𝑀; S3, the kinetics of the first 

reaction 5% above and the second 5% below the nominal value, i.e. 𝒆𝑘 =

[1.05𝛼1
𝑁𝑂𝑀 0.95𝛼2

𝑁𝑂𝑀]𝑇; and S4, both uncertain variables are 5% above their nominal value, i.e. 

𝒆𝑘 = 1.05𝒆𝑁𝑂𝑀. The combination of controller and state estimator tested in this work were 

NMPC/EKF, MSc-NMPC/EKF, MSc-NMPC/1to1EKF, MSc-NMPC/MHE and MS-NMPC/EKF. 

Figure 13 shows the reactor pressure and the mixing zone temperature in all three cases tested in 
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this section. Table 7 summarizes the calculated RMSE and the computational times of the 

controllers and state estimators. 

Table 7 Summary of the robust NMPC performance under multiple scenarios with state estimation. 

Case Variable NMPC/ 

EKF 

MS-NMPC/ 

EKF 

MSc-

NMPC/ 

EKF 

MSc-

NMCP/ 

MHE 

MSc-

NMPC/ 

1-to-1 EKF 

S1 

Nominal 

RMSE 𝑷𝒓 

(kPag) 

3.61 13.7 12.9 12.9 Unstable 

RMSE 𝑻𝒎 

(℃) 

0.148 0.525 0.674 0.678 Unstable 

RMSE 

𝒙𝑮,𝒔𝒕𝒓 

5.58E-4 3.74E-3 3.37E-3 3.37E-3 Unstable 

RMSE 

𝒙𝑯,𝒔𝒕𝒓 

5.67E-4 2.77E-3 3.02E-3 3.03E-3 Unstable 

S3 

𝜶𝟏 = 𝟏. 𝟎𝟓, 

𝜶𝟐 = 𝟎. 𝟗𝟓 

 

RMSE 𝑷𝒓 

(kPag) 

98.5 45.7 41.5 32.5 32.3 

RMSE 𝑻𝒎 

(℃) 

2.96 1.27 0.840 0.783 0.827 

RMSE 

𝒙𝑮,𝒔𝒕𝒓 

8.77E-3 4.94E-3 4.33E-3 3.83E-3 3.26E-3 

RMSE 

𝒙𝑯,𝒔𝒕𝒓 

1.14E-2 6.61E-3 6.33E-3 7.26E-3 5.56E-3 

S4 

𝜶𝟏 = 𝟏. 𝟎𝟓, 

𝜶𝟐 = 𝟏. 𝟎𝟓 

RMSE 𝑷𝒓 

(kPag) 

39.4 Unstable Unstable 15.2 Unstable 

RMSE 𝑻𝒎 

(℃) 

0.897 Unstable Unstable 0.819 Unstable 

RMSE 

𝒙𝑮,𝒔𝒕𝒓 

2.63E-3 Unstable Unstable 3.39E-3 Unstable 

RMSE 

𝒙𝑯,𝒔𝒕𝒓 

3.47E-3 Unstable Unstable 2.48E-3 Unstable 

NMPC Solve Time (s) 3.06 55.7 21.4 

State Estimation Time (s) 0.171 2.99 0.534 

 

As shown in Table 7, in case S1, NMPC/EKF has the best performance because the NMPC and 

the EKF model perfectly match the plant model. This is also observed in the blue line Figure 13 a) 

and b). However, note that because NMPC/EKF is less conservative compared to the other 

controllers, the effect of the added process/measurement noise is more amplified compared to the 

other controllers. This is most evident in the reactor pressure response in case S1 in Figure 13 a). 
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As mentioned above, MSc-NMPC and MS-NMPC leave an offset between the controlled variable 

and the set-point because they must balance all the scenarios considered in their formulations. The 

main observation is that MSc-NMPC/EKF and MS-NMPC/EKF may not be able to control the TE 

process in all cases when EKF is used as the state estimator. In cases such as S4, the mismatch 

between the EKF model and the plant causes the estimated initial state to fall into an infeasible 

region. Figure 14 shows the estimation performance on the reactor molar hold-up of D and the 

hold-up of G in the stripper in cases S1 and S4. Note that the dashed and solid lines of the same 

colour represent the estimated states and the true states, respectively. In case S4 in Figure 14 c), it 

is observed that MS-NMPC/EKF (green line) and MSc-NMPC/EKF (orange line) made the 

estimate of the molar hold-up of D below zero kmol. In almost all cases where the plant response 

became unstable, it was because the reactor molar hold-up of D was estimated to be below zero by 

EKF. At sampling instances where EKF made infeasible state estimates, neither of the two robust 

controllers could find feasible solutions, and the solver either converged to an infeasible point or 

reached maximum iterations. Then, the implemented control action resulted in destabilizing the 

process, hence, the simulation stops earlier as shown in Figure 13 e) and f) and in Figure 14 c) and 

d). Figure 15 shows the control profiles of the purge valve, Figure 15 a), and the reactor cooling 

water, Figure 15 b), for case S4. For the cases where the robust controllers were engaged with 

EKF, i.e., MS-NMPC/EKF and MSc-NMPC/EKF, the state estimator returned overly aggressive 

control actions with the valves moving between their upper and lower saturation limits for a few 

iterations thus leading to an unstable closed-loop operation, as shown in Figure 15 a). The same 

condition was observed in cases S1 and S4 when 1-to-1 EKF was used, as one or more of the 

scenarios considered in the MSc-NMPC/1to1EKF (purple line) returned unrealistic estimates, as 

shown in Figure 14 a) and c). However, in S3, where all the scenarios used in 1-to-1 EKF made 
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feasible estimates, the closed-loop performance was observed to be better than the standard EKF 

as reflected by the RMSE values reported in Table 7. Thus, 1-to-1 EKF can improve the set-point 

tracking performance of MSc-NMPC, however, it does not resolve the problem that EKF may also 

return unrealistic estimates in some instances. Moreover, in cases where there is model mismatch 

between the plant and the EKF model, but EKF does not make infeasible estimates, a large gap 

between the true and predicted states is observed, as depicted in S4 in Figure 14 c) and d) in 

NMPC/EKF (blue line). This further adds to the large offset observed with NMPC/EKF in Figure 

13 c), d), e) and f). 

     

  

  
Figure 13 Response to different controller/state estimator combinations. Pressure and mixing zone 

temperature response in cases S1, a) and b); S3, c) and d); and S4, e) and f). The solid lines represent 

the plant output, and the markers are the output plus the measurement noise. 

 

a) b) 

c) d) 

e) f) 
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The only controller/state estimator combination attempted that resulted in a feasible closed-loop 

response under all cases was MSc-NMPC/MHE. MHE has the benefit of considering process 

constraints, which means the estimates from MHE will be within the feasible range of the process. 

As shown in Figure 14, the state estimates from MHE remain within the feasible bounds and the 

gap between the estimated and the true state is smaller compared to EKF. Figure 13 and the RMSE 

values in Table 7 show that MSc-NMPC/MHE displayed the best set-point tracking performance 

in most cases. Consequently, the closed-loop performance of MSc-NMPC/MHE is better than any 

robust controller/EKF combination. The main drawback of MHE compared to EKF is the 

increased computational time, which in this case was 17.5 times larger, however, considering that 

the sampling time of the process is 0.1 h, the MSc-NMPC/MHE combination can be suitable for 

this application. 

 

  
Figure 14 State estimation performance on the molar hold-up of D in the reactor in S1 a) and S4 

c), and the hold-up of G in the stripper in S1 b) and S4 d). The true states (from the plant) are 

represented by solid lines and the estimated states are dashed lines. 

 

a) b) 

c) d) 
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Figure 15 Control profiles of the purge valve a), and the reactor cooling water b) in S4. 

 

3.4.3. Effect of the Robust Horizon 

The size of the MS-NMPC problem can grow very quickly as the number of uncertain variables 

considered increases, as the number of discrete values of the uncertain variables increases, and as 

the RH increases (Lucia and Engell, 2015). To analyse the effect of the RH in this section, the 

number of uncertain variables was limited to one (the kinetics of reaction one), 𝒆𝑁𝑂𝑀 = [𝛼1
𝑁𝑂𝑀], 

the number of discrete values to two, i.e. 𝒆𝑖
𝑟(𝑗)

∈ {1.05𝒆𝑁𝑂𝑀, 0.95𝒆𝑁𝑂𝑀}, and varied the RH from 

one to three. This results in three MS-NMPCs with two, four and eight scenarios respectively for 

increasing RH. For comparison, MSc-NMPC was run with two, four and eight discrete values of 

the uncertain parameter that were uniformly distributed between ±5% of the nominal value. Full 

access to the states was assumed, and the uncertain parameters in the plant were left at their 

nominal value. Figure 16 shows the effect of changing the RH on the reactor pressure and the 

mixing zone temperature, compared with MSc-NMPC. Table 8 summarizes the calculated RMSE 

and the average time that it takes to solve the control problem at each sampling step. 

a) b) 
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Figure 16 Set-point tracking performance of MS-NMPC at varying RHs on the reactor pressure a) 

and mixing zone temperature c), compared to MSc-NMPC, b) and d) respectively. 

 

Table 8 Summary of the performance of MS-NMPC at varying RH compared with MSc-NMPC. 

MS-NMPC 

RMSE 𝑷𝒓 

(kPag) 

RMSE 𝑻𝒎 

(℃) 

RMSE 

𝒙𝑮,𝒔𝒕𝒓 

RMSE 

𝒙𝑯,𝒔𝒕𝒓 Solve Time (s) 

RH = 1 23.6 0.392 1.16E-3 2.77E-3 7.69 

RH = 2 21.7 0.340 7.60E-4 1.23E-3 25.5 

RH = 3 16.6 0.427 1.55E-3 2.91E-4 53.2 

MSc-NMPC      

2-Levels 23.6 0.392 1.16E-3 2.77E-3 8.20 

4-Levels 14.3 0.751 1.28E-3 2.13E-3 15.7 

8-Levels 13.5 0.757 9.58E-4 1.83E-3 58.2 

Traditional 

NMPC 
0.215 0.00205 1.03E-5 7.21E-6 3.06 

 

Robust NMPC is more conservative than standard NMPC, hence, larger offsets and longer settling 

times were observed for both MS-NMPC and MSc-NMPC. Figure A.1 in Appendix A shows the 

effect of decreasing the uncertainty from 5% to 1% when a MSc-NMPC with two levels is used. 

It was observed that the process settles much faster. Thus, the long settling time in Figure 16 may 

be due to the nonlinearity of the process. For non-linear systems, the worst-case scenario is not 

necessarily at the extreme value. Since the realization used in the plant is not one of the scenarios 

a) b) 

c) d) 



67 

 

considered in the MS-NMPC or MSc-NMPC formulations, a deteriorated performance is observed 

and the settling time is long. Increasing the RH led to less conservative responses because the 

manipulated variables can adjust to the past observations of the uncertain parameters in the 

prediction horizon; however, this led to an increased computational time due to the increase in the 

problem size. In the graphs in Figure 16 a) and c), it can be observed that as the RH increases, the 

controller approaches the set point faster. Note that the performance of an MS-NMPC with RH 

equal to one is identical to an MSc-NMPC with two discrete realizations of the uncertain 

parameter. Looking at the RMSE values in Table 8, increasing the number of discrete realizations 

in an MSc-NMPC from two to four led to improved performance on the reactor pressure and the 

mole fraction of H in the product stream; however, the opposite was observed with the mixing 

zone temperature and mole of G in the product. Running the same controllers with only the reactor 

pressure as a controlled variable in the MSc-NMPC objective function resulted in worse 

performance as the number of realizations increased (not shown for brevity). These results suggest 

that there is a trade-off between the controlled variables that the MSc-NMPC balances out as the 

number of discrete scenarios increases. A re-tuning of the weights in the MSc-NMPC may result 

in different results. Comparing MS-NMPC to MSc-NMPC with an equal number of discrete 

scenarios (i.e., RH of two to four levels, RH of three to eight levels), the set-point tracking 

performance may vary depending on the controlled variable that one focuses on; with MSc-NMPC 

tracking the pressure set point closer than MS-NMPC but performing poorer when tracking the 

mixing-zone temperature. Figure 17 shows the control profiles on the reactor cooling water and 

the purge valve. As shown in plots Figure 17 a) and Figure 17 c), changing the RH does not seem 

to affect the trajectory taken by these manipulated variables with most of the difference occurring 

near the end of the operation on the purge valve. Increasing the number of scenarios in MSc-



68 

 

NMPC makes the control actions more aggressive near the beginning of the operation, but the 

controllers with four and eight scenarios eventually converge to somewhat similar values. As 

shown in Table 8, the computational time was very similar for both controllers and was directly 

related to the number of discrete scenarios. 

 

 
Figure 17 Effect of the RH on the control profiles of MS-NMPC on the reactor cooling water a) 

and the purge valve c), compared to MSc-NMPC, b) and d) respectively.  

 

3.4.4. Set-point Changes and Disturbance Rejection 

Based on the results presented in section 3.4.2, the MSc-NMPC/MHE combination is the only one 

that was able to generate a closed-loop response that did not violate constraints under all attempted 

cases. Thus, the robust performance of this closed-loop framework was tested under a series of 

changes in the modes of operation of the plant and unmeasured disturbances as recommended by 

Downs and Vogel (1993). Figure 18 shows the response to a series of set-point changes and 

disturbances. At 13 h, a set-point change of the reactor pressure from 2705 to 2645 kPag was 

implemented. At 25 h, a product mix set-point change is made from 50 G/50 H to 40 G/60 H. This 

is one of the recommended operating mode changes in Downs and Vogel (1993). At 41 h, the two 

a) b) 

c) d) 
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uncertain parameters in the plant are changed from their nominal value to both being 5% below in 

a step. Then, at 46 h, the kinetics of the first reaction is changed to 5% above the nominal value 

and the second parameter remains at 5% below. At 51 h, both parameters are changed to their 

nominal value. At 56 h, the inlet temperature of the reactor cooling water makes a step change 

from 35 to 40 ℃ and back to 35 ℃ at 61 h. Figure 19 shows the performance of the manipulated 

variables, the reactor cooling water and the purge valve, as the process is subjected to the various 

operational changes indicated above. 

 

 
Figure 18 MSc-NMPC/MHE performance under set-point changes and disturbances. 

 

Figure 18 and Figure 19 show that the RNMPC/MHE can accommodate the recommended set-

point changes. As expected, the robust controller exhibited a steady-state offset between the set 

point and the controlled variable since it must remain feasible under all the scenarios considered. 

Additionally, it takes longer to reach steady-state compared to a traditional NMPC; however, as 

shown in previous sections, NMPC may cause a closed-loop unstable response in the presence of 

uncertainty. Moreover, MSc-NMPC/MHE was shown to remain in the feasible range even if the 
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uncertain parameters change over time. Furthermore, the cooling water disturbance showed that 

the MSc-NMPC/MHE can handle external sources of perturbations that may not be considered in 

the MSc-NMPC formulation. Since the cooling water temperature is not measured, its value cannot 

be updated within the NMPC model. When the same disturbance is used on the NMPC, even if 

there is not any uncertainty in the model parameters, the system exhibits very large offsets between 

the set-points and the controlled variables. This is shown in the reactor pressure and temperature 

response in Figure 20. The cooling water temperature directly affects the heat transfer rate for 

cooling the reactor, hence, the process is very sensitive to this disturbance. 

 

 
Figure 19 Control profile of reactor cooling water and purge valve of MSc-NMPC/MHE subjected 

to set-point changes and disturbances. 
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Figure 20 Reactor pressure and temperature response using NMPC/MHE subject to reactor 

cooling water inlet temperature disturbance. 

 

3.5. Summary 

This study presented challenges associated with the implementation of robust NMPC in the 

presence of uncertainty with EKF and MHE as state estimators, and showed the applicability of 

MS-NMPC and MSc-NMPC to a large-scale plant-wide problem like the TE. The two studied 

robust controllers were shown to prevent constraint violation in the process when model 

uncertainty may cause plant-model mismatch under different scenarios. However, when EKF was 

used as a state estimator, the mismatch between the EKF model and the plant caused the system 

to become destabilized because EKF made unrealistic estimates of the states. MHE was shown to 

resolve the problems of using EKF since it considers process constraints in its formulation, hence, 

even under uncertainty, MHE was able to find feasible state estimates. Robust NMPC and MHE 

led to an increase in the computation time required, compared to traditional NMPC and EKF; 

however, for the sampling time of the process, significant input delays are not expected for this 

plant.  
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4. Benchmarking Surrogate Embedding Strategies for NMPC 

Complex non-linear systems, modelled by ODEs and PDEs, make NMPC computationally costly. 

As discussed in Chapter 2, NN surrogates have become a popular modelling approach for NMPC. 

In particular, various formulations of control-oriented PINNs have been proposed; a few have 

solved the optimal control problem by directly including the objective within the PINN loss 

function (Barry-Straume et al., 2022; Mowlavi and Nabi, 2023). However, the solution is unique 

to initial conditions, and thus, cannot be used in feedback control because updating the initial 

condition requires retraining; thus, making this approach computationally expensive to perform in 

online feedback control. Other studies have proposed various NN structures, such as RNNs, 

LSTMs and CNNs, that map current states and control actions to states at the next sampling step 

(Chen, Shi and Zhang, 2019; Alhajeri et al., 2022; Antonelo et al., 2022; Gokhale, Claessens and 

Develder, 2022; Zhang, 2022; Zheng et al., 2023). The NN model acts as a surrogate state-space 

model in NMPC. However, the representation of NN surrogates in a form that is amenable to NLP 

solvers is still an open research problem. Previous works have used sequential/shooting approaches 

to solve the surrogate NMPC problem (Antonelo et al., 2022; Nicodemus et al., 2022; Sanyal and 

Roy, 2023). Despite those efforts, optimization approaches where the modelling equations are 

solved simultaneously using direct transcription have become popular in NMPC (Wächter and 

Biegler, 2006; Biegler and Zavala, 2009; Biegler, 2021). There is a gap in the literature comparing 

different ways by which NN surrogates could be embedded in the NMPC framework using a 

simultaneous approach. To address this gap, two major embedding strategies are explored in this 

work: i) embedding the NN model as explicit algebraic constraints in the algebraic modelling 

language (AML), which uses the AD from the AML to provide the NLP solver with gradients, and 

ii) treatment of the surrogate model as an external function, which uses the AD from ML 

environment to evaluate the gradients. These NN surrogate embedding strategies are benchmarked 
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based on the computational performance and limitations of each approach. To generate the NN 

surrogates, a physics-informed approach has been considered in this work. Physics-informed NNs 

(PINNs) have become popular due to their ability to maintain fidelity to fundamental physics 

models while reducing the need for historical/process data (Raissi, Perdikaris and Karniadakis, 

2019; Alhajeri et al., 2022; Antonelo et al., 2022; Hao et al., 2023). Physics-Informed NN (PINNs) 

and physics-informed convolutional neural networks (PICNNs) were used as NN structures. 

Moreover, previous works have focused on ODE case studies involving a small number of system 

states (Antonelo et al., 2022; Nicodemus et al., 2022; Sanyal and Roy, 2023). In this work, the aim 

is to solve more complex PDE-constrained NMPC problems. Three non-linear benchmarking case 

studies of increasing complexity, based on PFRs modelled by PDEs, are used for illustration given 

that these are common problems in chemical engineering applications. 

This study is structured as follows: Section 4.1 begins with a description of the class of problems 

considered in this study followed by the NN structure used to approximate the problem. Section 

4.1.1 describes the structure of the PINNs and PICNNs used and their training. Section 4.1.2 

describes the strategies to embed the NN surrogates within the NMPC framework. The 

benchmarking models are presented in section 4.2, and the computational times of each strategy 

and controller performance are compared in the results section, 4.3. Section 4.4 summarizes the 

major findings of this work. 

4.1. Methods 

The PDE-constrained NMPC problem, (74)-(80), poses a major computational challenge to NMPC 

(Biegler and Thierry, 2018; Christiansen and Jorgensen, 2018; Patrón and Ricardez-Sandoval, 

2020a; Toffolo, Meunier and Ricardez-Sandoval, 2024). The state variables and control actions 

are denoted by 𝒙: 𝒯 × Ω → 𝒳 (𝒳 ∈ ℝ𝑁𝑠𝑣) and 𝒖: 𝒯 → 𝒰 (𝒰 ∈ ℝ𝑁𝑢), respectively. ℱ𝒛 denotes a 
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non-linear differential operator with respect to the spatial independent variables 𝒛. The operator ℬ 

denotes the boundary conditions whereas the operator ℐ denotes the initial condition. The set 𝒯 

corresponds to the time domain, 𝒯 = [𝑡0, 𝑡𝑓] ⊂ ℝ; the set Ω specifies the spatial domain of the 

PDEs, Ω ⊂ ℝ𝑁𝑧, where 𝑁𝑧 is the number of spatial dimensions. The control actions 𝒖 generally 

appear as boundary conditions. For example, the conditions at the inlet of a PFR or as forcing 

terms within the PDEs, ℱ𝒛. The constraint (76) represents general, non-linear path constraints that 

may be imposed on the states and manipulated variables. The PDE constraints, equation (75), can 

be highly non-linear and due to the multidimensional/infinite dimensional nature (i.e., the PDEs 

can be functions of multiple continuous independent variables in the time and spatial dimensions), 

discretization methods can result in a large number of nonlinear constraints and variables. Consider 

a PFR system with five reactive components; it must be modelled by at least five PDEs if 

temperature effects are ignored. Assuming the problem is one-dimensional (axial direction), 

discretizing these PDEs with 50 spatial and 30 temporal finite elements results in at least 7500 

(5×50×30) variables and constraints for the states alone. This excludes other supporting equations 

necessary to describe the system (e.g., reaction kinetics, equations of state, etc.), which would add 

1500 (50×30) variables and constraints each. If the PFR also varies radially, the 7500 increases to 

375000 (5×50×50×30), illustrating the complexity of PDE problems as the number of independent 

variables grows. 

min
𝒖

∫ ‖𝒙𝒔𝒑 − 𝒙‖
𝑳

2
+ ‖𝒖‖𝑾

2

𝒯×Ω

𝑑𝒛𝑑𝑡  (74) 

s.t. 
𝜕𝒙

𝜕𝑡
(𝑡, 𝒛) = ℱ𝒛(𝒙, 𝒖)(𝑡, 𝒛)     𝑡 ∈ 𝒯, 𝒛 ∈ Ω (75) 

𝑔(𝒙, 𝒖)(𝑡, 𝒛) ≤ 0 (76) 

𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 (77) 

𝒖𝐿 ≤ 𝒖 ≤ 𝒖𝑈 (78) 

ℬ(𝒙, 𝒖)(𝑡, 𝒛) = 0,     𝑡 ∈ 𝒯, 𝒛 ∈ 𝜕Ω (79) 
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ℐ(𝒙)(𝑡, 𝒛) = 0,     𝑡 ∈ {𝑡0}, 𝒛 ∈ Ω (80) 

 

To make the problem (74)-(80) tractable, the direct transcription approach is to discretize the 

continuous domains of the PDEs modelling the system and approximate the differential terms in 

the PDEs with finite differences or collocation methods (Biegler, 2010). Thereby, the system of 

algebraic constraints that is generated is solved simultaneously by an NLP solver. The time domain 

can be discretized over the sampling interval [0, Δ𝑡], such that 𝒯 is approximated by the finite set 

�̂� = {𝑡𝑘: 𝑡𝑘 = 𝑡0 + 𝑘Δ𝑡, 𝑘 ∈ {0,1, … , 𝑃}, 𝑡𝑓 = 𝑃Δ𝑡}, where 𝑃 is the prediction horizon. The spatial 

domain can also be discretized. For the sake of illustration, assume 𝒛 is unidimensional, i.e., 𝒛 ∈

Ω ⊂ ℝ, Ω can be approximated by the finite set Ω̂ = {𝒛𝑣: 𝒛𝑣 ∈ Ω, 𝑣 ∈ {1, … , 𝑁𝑓𝑒}}, where 𝑁𝑓𝑒 is 

the number of discretization points, i.e. number of finite elements considered in the spatial domain. 

Hence, the tensor 𝒙𝑘,𝑣 ∈ ℝ𝑁𝑠𝑣  represents the state variables of the PDE, equation (75), at time 

interval 𝑘 and spatial location 𝑣. As depicted in equation (81), 𝒙𝑘,𝑣 approximates the solution of 

the PDE at the time 𝑡𝑘 and spatial position 𝒛𝑣. Similarly, 𝒖𝑘 ∈ ℝ𝑁𝑢 is the vector of control inputs 

at time 𝑡𝑘 as shown in equation (82). 

𝒙𝑘,𝑣 ≈ 𝒙(𝑡𝑘, 𝒛𝑣) (81) 

𝒖𝑘 = 𝒖(𝑡𝑘) (82) 

 

The time and spatial derivatives in equation (75) can be approximated via finite difference or 

collocation (Cervantes and Biegler, 2008; Biegler, 2010, 2021; Pulsipher et al., 2022). For 

example, the following shows a backward finite difference over the time domain: 

𝜕𝒙

𝜕𝑡
(𝑡𝑘, 𝒛𝑣) ≈

𝜕𝒙𝑘+1,𝑣

𝜕𝑡
=

𝒙𝑘+1,𝑣 − 𝒙𝑘,𝑣

Δ𝑡
 (83) 
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Therefore, one arrives at the algebraic formulation (84)-(90) that approximates the PDE-

constrained NMPC problem (74)-(80). The non-linear differential operator, ℱ𝒛, is replaced by 

discretized approximation ℱ̂𝒛. Similarly, the boundary, ℬ, and initial condition, ℐ, operators are 

approximated by their discretized form, ℬ̂ and ℐ̂, respectively. The coefficients, 𝜂𝑘,𝑣, are 

appropriately selected in a quadrature or sampling scheme to approximate the integral expression 

in the objective function shown in equation (74) (Pulsipher et al., 2022).  

min
𝒖𝑘

∑ ∑ 𝜂𝑘,𝑣 (‖𝒙𝒔𝒑,𝑘,𝑣 − 𝒙𝑘,𝑣‖
𝑳

2
+ ‖𝒖𝑘‖𝑾

2 )

𝑣∈{1,…𝑁𝑓𝑒}𝑘∈{0,…,𝑃}

  
(84) 

s.t. 
𝜕𝒙𝑘+1,𝑣

𝜕𝑡
= ℱ̂𝒛(𝒙𝑘,𝑣, 𝒖𝑘)     ∀𝑘 ∈ {1, … , 𝑃}, 𝑣 ∈ {1, … , 𝑁𝑓𝑒} (85) 

𝑔(𝒙𝑘,𝑣, 𝒖𝑘) ≤ 0     ∀𝑘 ∈ {1, … , 𝑃}, 𝑣 ∈ {1, … , 𝑁𝑓𝑒} (86) 

𝒙𝐿 ≤ 𝒙𝑘,𝑣 ≤ 𝒙𝑈     ∀𝑘 ∈ {0,1, … , 𝑃}, 𝑣 ∈ {1, … , 𝑁𝑓𝑒} (87) 

𝒖𝐿 ≤ 𝒖𝑘 ≤ 𝒖𝑈     ∀𝑘 ∈ {0,1, … , 𝑃} (88) 

ℬ̂(𝒙𝑘,𝑣, 𝒖𝑘) = 0     ∀𝑘 ∈ {0,1, … , 𝑃}, 𝑣 ∈ {0} (89) 

ℐ̂(𝒙𝑘,𝑣) = 0,     ∀𝑘 ∈ {0}, 𝑣 ∈ {1, … , 𝑁𝑓𝑒} (90) 

 

The constraints represented by equation (85) are non-linear and the model discretization generates 

a problem with a large number of variables and constraints, which poses a major challenge for 

online feedback NMPC applications due to model inflation (i.e., the increase in problem size due 

to discretizing) and their corresponding computational costs. Alternatively, the PDE constraints 

can be replaced by an NN surrogate. PINNs are a particular approach that has gained popularity 

as a means to generate NN surrogates. However, PINNs, as originally formulated by Raissi et al 

(2017a, 2017b, 2019), are not amenable as surrogate models for NMPC. The solution to the PDE 

system found by the PINN is particular to a set of boundary and initial conditions, and to a control 

profile 𝒖(𝑡) that is known a priori. Hence, to update the solution to new initial condition, like in 

closed-loop online feedback control, the PINN needs to be retrained which may become 
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computationally taxing for most chemical engineering systems of interest. Note that some previous 

works were able to solve a single instance of the optimal control problem by incorporating the 

objective function in the training loss (Barry-Straume et al., 2022; Mowlavi and Nabi, 2023). 

However, their methods may also be computationally taxing for online feedback control because 

updating the initial condition requires retraining the PINN model. For this reason, the NN structure 

used in this work takes the current states, 𝒙𝑘,𝑣, and control actions, 𝒖𝑘, as inputs and returns the 

states at the next sampling step, 𝒙𝑘+1,𝑣. This way, the model can accept changing initial conditions, 

𝒙𝑘,𝑣, and control actions, 𝒖𝑘, that can be propagated over the prediction horizon, 𝑃. Figure 21 

depicts how the surrogate modelled by the neural network, 𝑁𝑁𝜃, propagates the initial state, 𝒙𝑘,𝑣, 

to future states in the prediction horizon, 𝑃, with changing control actions, 𝒖𝑘, at each sampling 

step. This can be represented mathematically by equation (91). Since the PINN takes current states 

𝒙𝑘,𝑣 and control actions 𝒖𝑘 as inputs, instead of retraining the PINN every time the initial condition 

changes, the PINN is only trained once with several combinations of initial states 𝒙𝑘,𝑣 and control 

actions 𝒖𝑘, which are randomly sampled from their feasible sets, 𝒙𝑘,𝑣 ∈ 𝒳 and 𝒖𝑘 ∈ 𝒰, 

respectively. Accordingly, the same NN surrogate can be used to predict at every step of the 

prediction horizon as shown in Figure 21. It can be difficult to guarantee that the entire initial state 

space 𝒳 and control action space 𝒰 have been adequately captured in the PINN; unfortunately, 

there is no theoretical basis to guide the number of samples necessary (Van Waarde et al., 2020; 

Daoutidis et al., 2024). The curse of dimensionality is a well-known obstacle to general ML 

applications where the required training data grows exponentially with the dimensions of the inputs 

(Theodoridis and Koutroumbas, 2009). However, one can expect that as the data set sampled from 

𝒳 and 𝒰 increases in size, the surrogate model will better capture the process dynamics (Antonelo 

et al., 2022). Additionally, the use of test and validation data sets (i.e., data points sampled 𝒳 and 
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𝒰 that were not used in the training) are important to verify that model does not overfit on the 

training data set. 

𝒙𝑘+1,𝑣 = 𝑁𝑁𝜃(𝒙𝑘,𝑣, 𝒖𝑘)  (91) 

 

 
Figure 21 State propagation over the prediction horizon from the initial state and the control 

actions at each step in time. 

 

Antonelo et al. (2022) have used a similar surrogate structure to represent ODE-constrained NMPC 

problems. They trained a PINN that accepts time, 𝑡, as a continuous input, the current states, 𝒙𝑘, 

and the current control actions, 𝒖𝑘. The PINN predicts the states at any time within the sampling 

interval 𝑡 ∈ [0, Δ𝑇] using a fully-connected feedforward deep NN (FNN). The output of the PINN 

can be provided as a new input to the NN model to make predictions over longer time horizons. 

However, they used a shooting/sequential approach to solve the NMPC problem. In a shooting 

method, the optimizer generates a sequence of control actions, {𝒖𝑘, 𝒖𝑘+1, … , 𝒖𝑘+𝑀−1}, which are 

passed to an integrator or model simulator to predict the future behaviour of the system. The 

prediction is used to evaluate the objective function and the constraints of the NMPC problem, 

which the optimizer then uses to update the control actions until it finds and optimal control 

sequence (Cervantes and Biegler, 2008; Biegler, 2021). Hence, the shooting method requires 

solving the system model at every iteration of the optimization algorithm. This is depicted in Figure 

22a where it shows the interaction between the optimizer, the integrator and the NMPC objective 

and constraints. In the work by Antonelo et al. (2022), a Runge-Kuta (RK) integration scheme was 
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applied as the model simulator for the mechanistic model. In the case of the surrogate model, the 

NN was evaluated sequentially as in Figure 21 to represent the integrator or simulation model. The 

case studies were restricted to small ODE-constrained problems, involving the Van Der Pol 

oscillator with two states and a four-tank system with four states. Other works have expanded the 

work by Antonelo et al. (2022) to additional case studies, like a multilink manipulator with four 

states (Nicodemus et al., 2022) and a quadrotor drone with 13 states (Sanyal and Roy, 2023). Their 

surrogate NMPC models were shown to have a slight improvement in the NMPC solution time 

compared to the mechanistic NMPC, using the shooting solution approach. However, this 

approach is yet to be tested on more complex problems like PDE-constrained NMPC. Moreover, 

direct transcription is a popular approach for solving NMPC problems (Lopez-Negrete et al., 2013; 

Patrón and Ricardez-Sandoval, 2020b; Valipour and Ricardez-Sandoval, 2021a; Elorza Casas, 

Valipour and Ricardez Sandoval, 2023; Toffolo, Meunier and Ricardez-Sandoval, 2024). In direct 

transcription methods, the system modelling equations and the optimization tasks are performed 

simultaneously by fully discretizing the system of DAEs/PDEs over the independent variables, 

generating a system of algebraic constraints, like that shown in formulation (84)-(90) (Cervantes 

and Biegler, 2008; Biegler and Zavala, 2009; Biegler, 2021). This is depicted by Figure 22b which 

shows that the discretized system of PDEs/DAEs is treated as additional constraints in the 

optimization problem. Instead of treating the control actions as the only decision variables, like in 

the shooting methods, the state variables and the control actions are simultaneously considered as 

decision variables by the optimization solver, but the algebraic constraints from the discretized 

PDE/DAE system ensure the system dynamics are followed; for this reason, the optimization 

approach used to solve the direct transcription formulation is often referred to as simultaneous. 

Simultaneous approaches facilitate the efficient evaluation of first and second-order derivatives 
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through the AD from algebraic modelling languages (AMLs), the resulting problem is a large 

optimization program that can handle open-loop instability more reliably (Biegler, 2021). It is 

common to observe that each of the individual constraints that result from the discretization only 

includes a few of the optimization variables, so, the problem is often, but not always, sparse (i.e., 

the Jacobian and Hessian matrices are comprised of mostly zeros) which facilitates AD. Thus, this 

work aims to benchmark strategies that are amenable to simultaneous solution approaches to 

embed the NN surrogate model, equation (91), within the NMPC problem. Thereby, taking 

advantage of large-scale NLP solvers, like IPOPT, to solve the surrogate NMPC. As discussed, 

one potential approach is to embed the NN surrogate as algebraic constraints in the optimization 

problem, leveraging the AD in the AML to evaluate the gradients. Another approach is to treat the 

NN surrogate model as an external function, leveraging the efficient AD from the ML environment 

to evaluate the gradients. These two approaches are described in detail in section 4.1.2. 

 
Figure 22 Dynamic optimization strategies; a) Sequential methods; b) Direct transcription. 

 

As discussed, this work uses physics-informed methods to train NN surrogate models as a way to 

avoid relying on historical/process data (Raissi, Perdikaris and Karniadakis, 2019; Antonelo et al., 

2022; Hao et al., 2023). FNNs and CNNs are used as neural network structures, referred to as 
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PINNs and PICNNs, respectively. PDEs are infinite-dimensional over the spatial and temporal 

domains (i.e., they are functions of continuous domains, time and space); thus, CNNs are a natural 

choice since they can capture the interaction of variables over spatial domains by providing a 

finite-dimensional approximation (i.e., they rely on discretizing the domain of the PDE) (Jiang and 

Zavala, 2021; Zhang, 2022). FNNs have been a typical structure of choice due to their simplicity 

(Raissi, Perdikaris and Karniadakis, 2019; Antonelo et al., 2022; Gokhale, Claessens and 

Develder, 2022; Nicodemus et al., 2022; Sanyal and Roy, 2023). A finite-dimensional 

approximation was also made with FNNs; however, FNNs can only handle unidimensional inputs. 

The input to the FNN must be flattened (i.e., made unidimensional) before evaluating the FNN 

model, eliminating the spatial relations between the variables. The next section discusses the 

method used to train the PINNs and PICNNs. 

4.1.1. Physics-Informed Neural Networks 

To incorporate the PDEs as physics-informed terms in the loss function of an FNN or a CNN, a 

discretization over the spatial and time domains is performed. Recall, the tensor 𝒙𝑘,𝑣 ∈ ℝ𝑁𝑠𝑣  

represents the state variables of the PDE, equation (75), at time interval 𝑘 and at spatial location 

𝑣. Thus, 𝒙𝑘,𝑣 approximates the solution of the PDE at the time 𝑡𝑘 and location 𝒛𝑣 as seen in 

equation (81). Similarly, 𝒖𝑘 ∈ ℝ𝑁𝑢 is the vector of control inputs at time 𝑡𝑘 as shown in equation 

(82). The time and spatial derivatives in equation (75) can be approximated by finite difference, 

like the example shown in equation (83) which demonstrated a backward finite difference over the 

time domain. 
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Figure 23 PINN model training framework. 

 

To train the surrogate PINN or PICNN model, the initial conditions and control actions are 

randomly sampled from their feasible sets, 𝒙𝑘,𝑣 ∈ 𝒳 and 𝒖𝑘 ∈ 𝒰 respectively, generating the data 

set {𝒙𝑘,𝑣
𝑑 , 𝒖𝑘

𝑑}
𝑑=1

𝑁𝑝
. The data is fed as inputs to the NN. The output, which is the prediction of the 

states at the next sampling step, 𝒙𝑘+1,𝑣, is used to evaluate the residuals of the discretized PDEs 

modelling the system. Then, the sum of the squared residuals becomes the loss function, ℒ, as 

described by equations (92) and (93), where 𝑹𝑣
𝑑 is the PDE residuals at data point 𝑑 at spatial 

location 𝑣. This is depicted by Figure 23 where it shows that the 𝑁𝑁𝜃, parametrized by 𝜃, is 

evaluated, and the outputs are used to evaluate the loss, ℒ. Furthermore, via backpropagation, the 

parameters of the model (the weights and biases in the case of PINNs or the convolution kernels 

in the case of PICNNs) are updated such that the loss function is minimized. Note that if 

process/historical data is available (i.e., {(𝒙𝑘,𝑣
𝑑 )

𝑑𝑎𝑡𝑎
, (𝒖𝑘

𝑑)
𝑑𝑎𝑡𝑎

, (𝒙𝑘+1,𝑣
𝑑 )

𝑑𝑎𝑡𝑎
}

𝑑=1

𝑁𝑑𝑎𝑡𝑎

), it could be 

added as an additional term in the loss function, as shown in equation (94). 

𝑹𝑣
𝑑 =

𝒙𝑘+1,𝑣
𝑑 − 𝒙𝑘,𝑣

𝒅

Δ𝑡
− ℱ̂𝒛(𝒙𝑘+1,𝑣

𝑑 , 𝒖𝑘
𝑑)     ∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (92) 
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ℒ = ∑ ∑(𝑹𝑣
𝑑)2

𝑁𝑓𝑒

𝑣=1

𝑁𝑝

𝑑=1

 (93) 

ℒ𝑑𝑎𝑡𝑎 = ∑ ∑ ‖(𝒙𝑘+1,𝑣
𝑑 )

𝑑𝑎𝑡𝑎
− 𝑁𝑁𝜃 ((𝒙𝑘,𝑣

𝑑 )
𝑑𝑎𝑡𝑎

, (𝒖𝑘
𝑑)

𝑑𝑎𝑡𝑎
)‖

2
𝑁𝑓𝑒

𝑣=1

𝑁𝑑𝑎𝑡𝑎

𝑑=1

 (94) 

 

Note that FNNs can only accept one-dimensional inputs (i.e., vector inputs). Thus, before passing 

the input data to the PINN, the tensor 𝒙𝑘,𝑣 must be flattened along the state variable and spatial 

dimensions. Suppose 𝑥𝑐,𝑘,𝑣 is the 𝑐 element of the state variables, 𝒙𝑘,𝑣 (𝑐 is the index for each 

dependent variable in the set of PDEs, i.e., 𝑐 ∈ {1, … , 𝑁𝑠𝑣}. For example, 𝑐 can correspond to the 

concentration of a component, temperature, etc.), at time 𝑘 and location 𝑣, then, the flattened input 

to the PINN would be the state vector, 𝒙𝑘, defined in equation (95). The initial states and control 

actions can be passed to the NN as a single vector input as shown in equation (96). Each of the 

hidden FNN layers is evaluated according to equation (97), where 𝒓𝑙 represents the output of the 

𝑙th layer. From 𝒓0 to 𝒓𝐿, where 𝐿 is the number of hidden layers as displayed in the FNN depicted 

in Figure 23. Finally, the output of the last layer is the states at the next sampling step 𝒙𝑘+1. This 

is shown in equation (98). The states at the next sampling step 𝒙𝑘+1 can be reshaped back to 𝒙𝑘+1,𝑣. 

𝑬𝑙 and 𝒃𝑙 are the weights matrix and bias vector at layer 𝑙, respectively. The term 𝜎 is the activation 

function. If 𝜎 is smooth, e.g., tanh or sigmoid functions, the trained NN can be formulated as 

continuous equality constraints in an NLP because the constraints shown in equation (97) could 

be differentiated to second-order derivatives with respect to 𝒓𝑙 and 𝒓𝑙+1. 

𝒙𝑘 = [𝑥1,𝑘,0, … , 𝑥1,𝑘,𝑁𝑓𝑒
, 𝑥2,𝑘,0, … , 𝑥2,𝑘,𝑁𝑓𝑒

, … , 𝑥𝑁𝑠𝑣,𝑘,0, … , 𝑥𝑁𝑠𝑣,𝑘,𝑁𝑓𝑒
]

𝑇

 (95) 

𝒓0 = [𝒙𝑘
𝑇 𝒖𝑘

𝑇]𝑇 (96) 

𝒓𝑙+1 = 𝜎(𝑬𝑙𝒓𝑙 + 𝒃𝑙)    ∀𝑙 ∈ {0, … , 𝐿 − 1} (97) 

𝒙𝑘+1 = 𝑬𝐿𝒓𝐿 + 𝒃𝐿 (98) 
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In the case of PICNNs, it is not necessary to flatten the input, preserving the spatial relations 

between the input data. The state variable index, 𝑐, can correspond to the channel in a CNN, and 

the spatial index, 𝑣, to the CNN spatial dimension. The control inputs, 𝒖𝑘, do not necessarily have 

a spatial dimension. Hence, the control input tensor can be made to have the same value along the 

spatial dimension as depicted in equation (99) and each channel, 𝑐, corresponds to a different 

manipulated variable. Then, the input to the first convolutional layer of a PICNN, 𝒓0,𝑣 ∈

ℝ(𝑁𝑠𝑣+𝑁𝑢), is the concatenation of 𝒙𝑘,𝑣 and 𝒖𝑘,𝑣 over the channel dimension as shown in equations 

(100) and (101), where 𝑟𝑙,𝑐,𝑣 is the output of the 𝑙 layer, channel 𝑐 and spatial location 𝑣. 

𝒖𝑘,𝑣 = 𝒖𝑘     ∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (99) 

𝑟0,𝑐,𝑣 = 𝑥𝑐,𝑘,𝑣     ∀𝑐 ∈ {1, … , 𝑁𝑠𝑣} ∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (100) 

𝑟0,𝑐+𝑁𝑠𝑣,𝑣 = 𝑢𝑐,𝑘,𝑣     ∀𝑐 ∈ {1, … , 𝑁𝑢} ∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (101) 

 

In this work, a multilayer CNN of the form displayed in Figure 24 was adopted, where, as described 

earlier, the state variable tensor 𝒙𝑘,𝑣 (green blocks) and manipulated variable tensors 𝒖𝑘,𝑣 (purple 

blocks) are concatenated to form the input to the first convolutional layer 𝒓0,𝑣. The output of the 

1-D convolution (Conv1d) is passed through the activation function 𝜎, generating the output of 

the first convolutional block 𝒓1,𝑣 (blue blocks). This structure repeats over the number of hidden 

layers, 𝐿, until 𝒓𝐿,𝑣 which is the output of the last convolutional block. Here, the output is flattened 

(i.e., 𝒓𝐿,𝑣 is made unidimensional), then passed through a dense/linear layer, of the form shown in 

equation (98), such that the final output, 𝒙𝑘+1,𝑣, has the same dimensions as 𝒙𝑘,𝑣. Figure 24 shows 

that the flatten block makes the output of the last convolutional later unidimensional, followed by 
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a dense/linear layer that reduces the size of the unidimensional output. Moreover, the reshape block 

returns the output 𝒙𝑘+1,𝑣 in the same dimensions as 𝒙𝑘,𝑣. A pooling layer, such as max pooling, 

was not included as this would lead to formulations that require binary variables when embedded 

in optimization programs. Additionally, pooling layers are generally used to extract features from 

the signal, resulting in signal size reduction (Jiang and Zavala, 2021). In this work, it is desired 

that the overall output of the PICNN conserves the signal size because 𝒙𝑘+1,𝑣 should have the same 

dimensions as 𝒙𝑘,𝑣. Hence, pooling layers that do not require binary variables, like average 

pooling, were also avoided. Like FNNs, smooth activations can easily be included in NLPs. 

 
Figure 24 PICNN structure. The green blocks represent the state variable tensor; the purple block 

represents the control variable tensor; and the blue blocks represent the outputs of the 

internal/hidden layers of the CNN. 

 

4.1.2. NMPC Surrogate Embedding 

The PDE constraint NMPC formulation introduced in equations (74)-(80) must be modified to 

accommodate the surrogate process model. Either the PINN or the PICNN replaces the process 
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model, i.e., the PDE constraints shown in equation (75). This results in the formulation (102)-

(109). The limits on the states and manipulated variables (constraints (105) and (106), 

respectively), must consider the domain over which the surrogate was trained. Recall that 𝒙𝑘,𝑣
𝑑  and 

𝒖𝑘,𝑣
𝑑  were sampled from 𝒳 and 𝒰, respectively; hence, the trained model is unlikely to be accurate 

outside these sets.  

min
𝒖𝑖

∗∈ℝ𝑁𝑢  ∀𝑖∈{𝑘,𝑘+1,…,𝑘+𝑃−1}
∑ ‖𝒙𝒔𝒑 − 𝒙𝑖

∗‖
𝑳

2
𝑘+𝑃

𝑖=𝑘+1

+ ∑ ‖Δ𝒖𝑖
∗‖𝑾

2

𝑘+𝑀−1

𝑖=𝑘

  (102) 

s.t. 𝒙𝑖+1,𝑣
∗ = 𝑁𝑁𝜃(𝒙𝑖,𝑣

∗ , 𝒖𝑖
∗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1}∀𝑣 ∈ {1, … , 𝑁𝑓𝑒}  (103) 

𝑔(𝒙𝑖,𝑣
∗ , 𝒖𝑖

∗)     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1}∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (104) 

𝒙𝐿 ≤ 𝒙𝑖,𝑣
∗ ≤ 𝒙𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃}∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (105) 

𝒖𝐿 ≤ 𝒖𝑖
∗ ≤ 𝒖𝑈     ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (106) 

𝒖𝑖
∗ = 𝒖𝑘+𝑀−1

∗      ∀𝑖 ∈ {𝑘 + 𝑀, 𝑘 + 𝑀 + 1, … , 𝑘 + 𝑃 − 1} (107) 

Δ𝒖𝑖
∗ = 𝒖𝑖

∗ − 𝒖𝑖−1
∗      ∀𝑖 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + 𝑃 − 1} (108) 

𝒙𝑘,𝑣
∗ = �̂�𝑘,𝑣     ∀𝑣 ∈ {1, … , 𝑁𝑓𝑒} (109) 

 

The embedding of a surrogate model shown in equation (103) in a form that is amenable to 

simultaneous optimization approaches is not obvious. As discussed above, the simplest approach 

would be to directly transcribe the mechanistic modelling equations within the optimization 

problem by discretizing the differential equations over the independent variables. However, this 

results in a large-scale optimization problem that is non-linear with several states, which can be 

computationally expensive to solve online for large-scale systems such as those that involve PDEs. 

Two major strategies were considered in this work. Since NNs consist of a well-defined 

mathematical structure, they can be translated into mathematical expressions that can be included 

as explicit constraints in an NLP (only if he NN consists of smooth activation functions like tanh 

or sigmoid). The AD from the AML can then be used to evaluate the gradients, which the NLP 

solver uses to find the solution to the optimization problem. Alternatively, the NN model can be 
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evaluated as an external function, taking advantage of the efficient AD from ML packages to 

evaluate Jacobians and Hessians. Overall, three methods to solve the NMPC problem were 

implemented in this work, i.e., the two embedding strategies and the more traditional approach, 

which directly transcribes the complex non-linear mechanistic model. Figure 25 summarizes the 

different NN surrogate embedding strategies. Figure 25a shows that the NN surrogate can be 

converted into algebraic constraints and variables for an AML. Figure 25b shows that the surrogate 

NN model can be evaluated as an external function, directly from the ML environment, and 

provide the gradients to the NLP solver via the AD from the ML environment. Furthermore, Figure 

25c shows that the mechanistic model, represented by DAEs, can be directly transcribed in the 

AML.  

 
Figure 25 NN surrogate embedding strategies  

 

The discussed embedding strategies fundamentally differ in the ways they perform AD. In general 

terms, AD refers to the evaluation of exact derivatives by following the symbolic derivative rules 

on function composition of elementary operations, i.e., product, summation, transcendental 

functions like exp and sin, etc. (Griewank and Walther, 2003; Baydin et al., 2018). Note that AD 

is not symbolic differentiation, where the rules of differentiation are used to take a symbolic 
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expression to generate a new symbolic expression of the exact derivatives. AD instead keeps track 

of intermediate variables and their derivatives when a sequence of computations is performed to 

return an evaluation of the exact derivatives. AD can be performed using forward and reverse 

modes. In the forward mode, the gradients are accumulated forward from the input variables to the 

outputs by applying the chain rule. In the reverse mode, the derivatives are propagated backwards 

from a given output to the inputs. Backpropagation is a special case of reverse mode AD applied 

to neural networks, though the term is often used interchangeably with AD in ML (Baydin et al., 

2018). Both AMLs and ML environments usually have integrated AD for evaluating gradients. 

AMLs have generally been developed for the purpose of solving optimization problems, while ML 

environments have been developed for training ML models. In the case where the internal model 

of NMPC has been replaced with a NN surrogate model, it is not obvious which approach is more 

suitable. Therefore, this work compares two embedding strategies, one that uses the AD from an 

AML (i.e., embedding the surrogate model as algebraic constraints) and one the uses the AD from 

the ML environment (i.e., embedding the surrogate model as an external function). Section 4.1.2.1 

describes the methods by which NN surrogates can be embedded as algebraic constraints in 

NMPC. Section 4.1.2.2 describes the approach where NN surrogates can be embedded as external 

functions. 

A particular approach for directly transcribing the mechanistic model within NMPC is Pyomo 

DAE which supports model transformations that discretize the system of DAEs, using finite 

elements or collocation, to generate algebraic expressions that are included as constraints in an 

NLP (Nicholson et al., 2018). This approach is used to create mechanistic NMPC models in this 

work. The implementation of the discussed embedding strategies is available on GitHub 

(https://git.uwaterloo.ca/ricardez_group). 
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4.1.2.1. Surrogate Embedding as Algebraic Constraints 

Multiple optimization formulations have been proposed in the literature to embed FNNs as 

algebraic constraints in an AML. For FNNs with smooth activations, the full-space smooth (FS) 

and reduced-space smooth (RS) are the foremost approaches (Schweidtmann and Mitsos, 2019; 

Ceccon et al., 2022) which are amenable to NLP solvers. Non-smooth activations, such as 

rectified-linear units (ReLU), can be expressed with BigM formulations (Anderson et al., 2019), 

or partition-based formulations (Tsay et al., 2021), that result in the generation of linear mixed 

integer constraints. Complementary formulations for ReLU networks can be included in NLPs 

(Yang, Balaprakash and Leyffer, 2022); however, NLP solvers struggle with complementarity 

constraints due to degeneracy. Thus, neither of these approaches is suitable for online feedback 

NMPC applications since it would involve solving mixed-integer programs or programs with 

complementarity constraints. The FS formulation of an FNN dense layer with activation, such as 

that shown in equation (97), requires the representation of every node in every layer by the 

following equations: 

𝑟𝑙+1,𝑝
′ = ∑ 𝐸𝑙,𝑝,𝑝′𝑟𝑙,𝑝′

𝑁𝑟,𝑙

𝑝′=1

+ 𝑏𝑙,𝑝    ∀𝑙 ∈ {0, … , 𝐿 − 1} ∀𝑝 ∈ {1, … , 𝑁𝑟,𝑙+1} (110) 

𝑟𝑙+1,𝑝 = 𝜎(𝑟𝑙+1,𝑝
′ )    ∀𝑙 ∈ {0, … , 𝐿 − 1} ∀𝑝 ∈ {1, … , 𝑁𝑟,𝑙+1} (111) 

 

where 𝑟𝑙,𝑝 is the 𝑝 element of the 𝑙 layer output, 𝒓𝑙.Then, 𝑟𝑙,𝑝
′  is 𝑟𝑙,𝑝 before activation. 𝐸𝑙,𝑝,𝑝′ is the 

(𝑝, 𝑝′) entry of the weight matrix 𝑬𝑙 ∈ ℝ𝑁𝑟,𝑙+1×𝑁𝑟,𝑙 at layer 𝑙. 𝑏𝑙,𝑝 is the 𝑝 entry of the bias 𝒃𝑙 ∈

ℝ𝑁𝑟,𝑙+1 of the 𝑙 layer. 𝑁𝑟,𝑙 is the number of nodes/neurons in layer 𝑙. For every neuron in every 

layer, two constraints and two variables are generated within the NLP. Thus, each layer generates 

𝑁𝑟𝑙
× 2 constraints and auxiliary variables. The RS formulation reduces the total number of 
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variables and constraints. This is accomplished by directly substituting the outputs of a given layer 

to the next layer, from the input layer to the output layer. Even though this reduces the number of 

variables and constraints, it also results in very large expressions. 

Convolutional layers use the discrete convolution operation to handle spatially dependent data. A 

1-D convolutional layer with activation can be represented with a FS formulation via the following 

equations (Jiang and Zavala, 2021): 

𝑟𝑙+1,𝑐,𝑣
′ = ∑ ∑ 𝜅𝑙,𝑐,𝑐′,𝑣′𝑟𝑙,𝑐′,𝑣+𝑣′−1

𝑁𝜅,𝑙

𝑣′=1

 

𝑁𝑐,𝑙

𝑐′=1

+ 𝑏𝑙,𝑐    ∀𝑙 ∈ {0, … , 𝐿 − 1} ∀𝑐

∈ {1, … , 𝑁𝑐,𝑙+1} ∀𝑣 ∈ {1, … , 𝑁𝑣,𝑙 − 𝑁𝜅,𝑙 + 1} 

(112) 

𝑟𝑙+1,𝑐,𝑣 = 𝜎(𝑟𝑙+1,𝑐,𝑣
′ )     ∀𝑙 ∈ {0, … , 𝐿 − 1} ∀𝑐 ∈ {1, … , 𝑁𝑐,𝑙+1} ∀𝑣 ∈ {1, … , 𝑁𝑣,𝑙+1} (113) 

 

The convolutional kernel for the input channel 𝑐′ to output channel 𝑐 in layer 𝑙 is represented by 

𝜿𝑙,𝑐,𝑐′ ∈ ℝ𝑁𝜅,𝑙; where 𝑁𝜅,𝑙 is the kernel size. The output signal of layer 𝑙 is represented by 𝒓𝑙,𝑣 ∈

ℝ𝑁𝑐,𝑙 , where 𝑁𝑐,𝑙 is the number of channels and 𝑁𝑣,𝑙 is the signal size. Figure 26a shows a depiction 

of an illustrative example of a 1-D convolutional layer. As shown in this Figure, three stacked 

input signals (i.e., 𝑐′ ∈ {1,2,3}, green blocks) with seven output signals (i.e., 𝑐 ∈ {1, … ,7}, blue 

blocks) are considered. Figure 26b shows the operation that occurs between the input channel 𝑐′ =

3 and the output channel 𝑐 = 7 (the orange connection in Figure 26a). This is known as the discrete 

convolution operation (Jiang and Zavala, 2021). This example uses a kernel 𝜿𝑙,𝑐,𝑐′ of size 3. The 

kernel moves forward one step at a time over the input signal to obtain the output signal. If the 

kernel moves multiple steps at a time, the number of steps is known as the stride. Note that the 

size of the output signal is smaller than the input. This is because convolution operation is not 

well-defined at the edges. Adding what is known as padding on both ends of the input signal can 
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prevent this signal reduction. Typically, this involves adding zeros to both ends of the input. Also, 

note that the operation shown in Figure 26 is only the summation over the spatial dimension 𝑣′ 

shown in equation (112). There is one convolutional kernel for every input channel, 𝑐′ ∈ {1,2,3}, 

going into output channel 𝑐 = 7. Thus, to obtain the output channel 𝑐 = 7, summation must be 

performed over the input channels. For a stride of one and no padding, the output signal size is 

related to the input signal size by 𝑁𝑣,𝑙+1 = 𝑁𝑣,𝑙 − 𝑁𝜅,𝑙 + 1. Note that each layer generates 

𝑁𝑐,𝑙+1 × 𝑁𝑣,𝑙+1 × 2 constraints and auxiliary variables. 

 
Figure 26 Depiction of 1-D convolutional layer, a), and discrete convolution operation, b). 

 

The Optimization and Machine Learning Toolkit (OMLT) is a particular platform that supports 

several NN reformulations as constraints in the Pyomo optimization environments (Ceccon et al., 

2022). As shown in Figure 27, OMLT can read the trained model from an ML Package such as 

Pytorch (Ansel et al., 2024). As discussed, the NN model follows a well-known mathematical 

structure. Therefore, a set of equality constraints and auxiliary variables express each node/neuron 

of the NN. OMLT creates Pyomo expressions where the inputs, outputs, and each neuron within 
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the hidden layers become variables within a larger optimization program. Therefore, OMLT is 

leveraged in this work to pursue this embedding method. OMLT supports the FS and RS 

formulation for FNNs; however, it only supports the FS formulation for CNNs. 

 
Figure 27 OMLT NN model transcription to Pyomo expressions. 

 

4.1.2.2. External Function Surrogate Embedding 

As an alternative to embedding the surrogate model as algebraic constraints, the surrogate model, 

and its gradients, can be evaluated as an external function. An external function can generally be 

represented in this form, 

𝐺(𝐱) = 0 (114) 

 

where 𝐱 ∈ ℝ𝑁x are the decision variables of the optimization program and 𝐺: ℝ𝑁x → ℝ𝑁𝐺 

represents the external function that must return zeros at a feasible solution. The external function 

must then provide the evaluation of 𝐺, the Jacobian of 𝐺, i.e., 
𝜕

𝜕𝐱
𝐺(𝐱), and the Hessian of the dot 

product between the Lagrange multipliers 𝝀 ∈ ℝ𝑁𝐺  and the corresponding constraints, i.e., 

𝜕2

𝜕𝐱2 𝝀𝑇𝐺(𝐱). There is one Lagrange multiplier for every constraint in 𝐺, so the product 𝝀𝑇𝐺(𝐱) is 

a scalar. The Lagrange multipliers assign the contribution of every constraint to the gradient of the 

optimization problem at optimality conditions. To embed a surrogate model using this approach, 

the constraints in equation (103) must be represented in the form of equation (114). One may place 
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the predicted states and future control actions within the decision variables, to represent the 

decision variables of the NLP, as depicted in equation (115). Then, the external function can be 

defined as in equation (116). 

𝐱 = [𝒙𝑘
∗ 𝑇 , … , 𝒙𝑘+𝑃

∗ 𝑇, 𝒖𝑘
∗ 𝑇 , … , 𝒖𝑘+𝑀−1

∗ 𝑇]
𝑇
 (115) 

𝐺(𝐱) = [
𝒙𝑘+1

∗ − 𝑁𝑁𝜃(𝒙𝑘
∗ , 𝒖𝑘

∗ )
⋮

𝒙𝑘+𝑃
∗ − 𝑁𝑁𝜃(𝒙𝑘+𝑃−1

∗ , 𝒖𝑘+𝑀−1
∗ )

] (116) 

 

PyNumero is a particular platform that facilitates the evaluation of external functions from the 

Pyomo optimization environment, which they refer to as Greybox Interface (Rodriguez et al., 

2023). The idea is to use the AD capabilities of ML environments, like Pytorch (Ansel et al., 2024), 

to evaluate first and second-order derivatives. Figure 28 depicts the interaction between the 

PyNumero interface and the external model. PyNumero obtains the current guess of the decision 

variables from the NLP solver and passes it to the external model, e.g., Pytorch. The external 

model evaluates the model residuals, 𝐺, the Jacobian, 
𝜕

𝜕𝐱
𝐺(𝐱), and Hessian, 

𝜕2

𝜕𝐱2 𝝀𝑇𝐺(𝐱), matrices. 

The model evaluations are passed back to PyNumero, which the NLP solver uses to update the 

decision variables. The main drawback of this approach is that the overhead required for the 

communication between the different Python packages and the conversion between different data 

formats is computationally taxing and is likely to increase the solution time compared to the other 

strategies. 
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Figure 28 PyNumero interface interaction with external functions and Pyomo solvers. 

 

Pytorch can make multiple evaluations of an NN or CNN model if the inputs are provided in a 

batch. Therefore, the constraints in (116) can be efficiently evaluated batch-wise. Pytorch provides 

two methods by which Jacobians and Hessians can be evaluated. The method 

torch.autograd.functional provides two functions, i.e., jacobian and hessian. These two functions 

evaluate the entries of the Jacobian and Hessian matrices element by element. Alternatively, the 

method torch.func provides the functions jacrev and jacfwd to evaluate Jacobians and the function 

hessian. This method uses a vectorized approach, hence, jacrev evaluates the Jacobian row by row 

and jacfwd column by column. The hessian function applies jacrev followed by jacfwd. Therefore, 

one can reduce the evaluation time by choosing a function that requires the least computations. In 

an optimization problem, one would expect to have some degrees of freedom, i.e. 𝑁x > 𝑁𝐺 . In this 

case, the Jacobian has fewer rows than columns, hence, jacrev is expected to be faster than jacfwd 

for this particular problem. 

4.2. Benchmarking Models 

Three benchmarking models are used to demonstrate the challenges and limitations of the different 

surrogate embedding strategies described in the previous section. Benchmark 1 is a 1-D isothermal 

PFR; benchmark 2 is a non-isothermal 1-D PFR; benchmark 3 is a highly non-linear methane 

steam reforming PFR. The models of each of the case studies are described in the following 
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sections. The tests are performed on a Windows 10 computer equipped with 32 GB RAM, Intel® 

Core™ i9-10980HK CPU @ 2.40 GHz 3.10 GHz, NVIDIA RTX 2070s GPU 8GB VRAM. All 

models were trained with Pytorch 2.0.1 on the GPU using ADAM optimizer with an initial learning 

rate of 1.e−2 and exponential decay factor of 0.7 every 100 epochs. 

4.2.1. Benchmark 1: Isothermal Plug-Flow Reactor 

This model is meant to be a simple illustrative example. The PDE for benchmark 1 is shown in 

equation (117); where 𝐶 is the concentration, 𝑉 the reactor volume and 𝑘𝑟𝑥𝑛 the reaction rate 

constant. For this problem, the outlet concentration, 𝐶𝑜𝑢𝑡, was selected as the controlled variable. 

The inlet concentration, 𝐶𝑖𝑛, and the volumetric flow rate, 𝐹, were the manipulated variables. The 

boundary condition is given by the inlet concentration as seen in equation (118). The initial 

condition is given by the equation (119), where 𝐶0 represents a concentration profile as a function 

of the spatial dimension 𝑉. The sampling period was selected to be 0.1 s. Table 9 summarizes the 

nominal values and bounds around the model variables and parameters. 

𝜕𝐶

𝜕𝑡
= −𝐹

𝜕𝐶

𝜕𝑉
− 𝑘𝑟𝑥𝑛𝐶2 (117) 

𝐶(𝑡, 𝑉) = 𝐶𝑖𝑛(𝑡)     𝑉 = 0 (118) 

𝐶(𝑡, 𝑉) = 𝐶0(𝑉)     𝑡 = 𝑡0 (119) 

 

For benchmark 1, the PINN consisted of a structure involving six hidden layers with 24 neurons 

at each hidden layer. The PDE is discretized into 10 finite elements over the spatial domain, 

therefore, the PINN has 12 inputs (10 states and 2 manipulated variables), and 10 outputs. The 

PICNN has a structure with 32 hidden channels, two hidden layers and a kernel size of 4, with 3 

input channels (1 state and 2 manipulated variables, i.e., 𝑁𝑠𝑣 = 1, 𝑁𝑢 = 2) and 1 output channel. 
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The input and output channels have a size of 10 spatial elements (i.e., 𝑁𝑓𝑒 = 10), so the spatial 

location 𝑣 goes from 1 to 10. Figure 29 shows the training curves of PINN and PICNN for 

benchmark 1. As shown in equation (93), the loss function measures model error from the 

mechanistic process model; and the NN parameters are optimized such that this function is 

minimized. The PINN model (Figure 29a) and PICNN model (Figure 29b) both converge to low 

loss values. Recall that it can be difficult to guarantee that the sampled training data fully captures 

all possible combinations of initial states and control action. when testing the size of the random 

sample, it was observed that increasing the size of the sampled data does not further improve 

accuracy. In addition, the training curve and the test curve follow similar trajectories in the graphs 

shown in Figure 29. This suggests that the surrogate NN models are generalizing to data points 

that it does not observe during training and is not overfitting on the training data set. 

Table 9 Parameters and variable bounds for benchmark model 1. 

Parameter or 

Variable 
Nominal Value Lower Bound Upper Bound 

𝑘𝑟𝑥𝑛 (L mol−1 s−1) 1.0 -- -- 

𝑉 (L) -- 0.0 1.0 

𝐹 (L s−1) 1.0 0.0 1.0 

𝐶𝑖𝑛 (mol L−1) 0.5 0.1 1.0 

𝐶0 (mol L−1) 0.5 0.1 1.0 
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Figure 29 PINN, a), and PICNN, b), training curves for benchmark 1. 

 

4.2.2. Benchmark 2: Non-isothermal Plug Flow Reactor with Heat Exchange 

Benchmark 2 is modelled by a set of two PDEs: a mole balance, equation (120), and an energy 

balance, equation (121). The reaction rate constant, 𝑘𝑟𝑥𝑛, is sensitive to temperature and it is 

modelled by the Arrhenius equation, (122). The controlled variables for this problem are the outlet 

concentration, 𝐶𝑜𝑢𝑡, and outlet temperature, 𝑇𝑜𝑢𝑡. The manipulated variables are the inlet 

concentration, 𝐶𝑖𝑛, the inlet temperature, 𝑇𝑖𝑛, the exchanger heating temperature, 𝑇𝑎, and the 

volumetric flow rate, 𝐹. The boundary conditions are given by the inlet concentration and 

temperature as shown in equation (123). The initial conditions are given by equation (124), where 

𝐶0 and 𝑇0 represent concentration and temperature profiles, respectively, as a function of the spatial 

dimension 𝑉. The sampling period was selected to be 100 s. Table 10 summarizes the model 

parameters, the variables, and the bounds of each variable which are adapted from a textbook 

problem (Fogler, 2016). 

𝜕𝐶

𝜕𝑡
= −𝐹

𝜕𝐶

𝜕𝑉
− 𝑘𝑟𝑥𝑛𝐶2 (120) 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= −𝜌𝐶𝑝𝐹

𝜕𝑇

𝜕𝑉
+ 𝑈𝑎(𝑇𝑎 − 𝑇) + 𝑘𝑟𝑥𝑛𝐶2(−Δ𝐻) (121) 

𝑘𝑟𝑥𝑛 = 𝑘0 exp (−
𝐸𝐴

𝑅𝑇
) (122) 
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𝐶(𝑡, 𝑉) = 𝐶𝑖𝑛(𝑡), 𝑇(𝑡, 𝑉) = 𝑇𝑖𝑛(𝑡)     𝑉 = 0 (123) 

𝐶(𝑡, 𝑉) = 𝐶0(𝑉), 𝑇(𝑡, 𝑉) = 𝑇0(𝑉)     𝑡 = 𝑡0 (124) 

 

Table 10 Parameters and variable bounds for benchmark model 2. 

Parameter or 

Variable 
Nominal Value Lower Bound Upper Bound 

𝑘0 (L mol−1 s−1) 47.9E6 -- -- 

𝐸𝐴 (J mol−1) 65730 -- -- 

Δ𝐻 (J mol−1) -34.5 -- -- 

𝜌𝐶𝑝 (J L−1 K−1) 295.7 -- -- 

𝑈𝑎 (J L−1 K−1) 1.389 -- -- 

𝑉 (L) -- 0.0 5.0E3 

𝐹 (L h−1) 2.125 1.062 4.249 

𝑇𝑎 (K) 315 300 320 

𝐶𝑖𝑛 (mol L−1) 1.86 0.2 1.9 

𝐶0 (mol L−1) 1.86 0.2 1.9 

𝑇𝑖𝑛 (K) 305 300 320 

𝑇0 (K) 305 300 320 

 

For benchmark 2, a PINN that could achieve a low enough loss could not be trained such that 

either the explicit algebraic formulation or the external function formulation could find feasible 

solutions when the model was embedded as the NMPC surrogate. The resulting loss function value 

was around 1e−2 at the lowest. Nevertheless, a PICNN model was still trained for benchmark 2. 

Recall that this work aims to benchmark the surrogate embedding methods in NMPC. It may be 

possible to find a PINN structure that improves the model predictions by varying the FNN 

hyperparameters (i.e., number of layers, neurons per layer, training algorithm, etc.); this is beyond 

the scope of this work. In this work, a trial-and-error approach is employed to determine the 
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hyperparameters until a structure that results in a satisfactory loss function value is found. The 

PICNN has 32 hidden channels, two hidden layers and a kernel size of 4. Benchmark 2 is also 

discretized into 10 spatial finite elements; thus, the input is a tensor of dimensions 6×10, i.e., 6 

input channels (6 corresponds to 2 state variables, i.e., the concentration and temperature of the 

PFR, and 4 manipulated variables), 2 output channels and 10 spatial elements. Thus, in this case, 

𝑁𝑠𝑣 = 2, 𝑁𝑢 = 4 and the spatial location 𝑣 goes from 1 to 10. Figure 30 shows the PICNN training 

curve for benchmark model 2, which indicates that an acceptable loss value is achieved at the end 

of training. 

 
Figure 30 PICNN training curve for benchmark 2. 

 

4.2.3. Benchmark 3: Steam Reformer PFR 

The steam reforming process consists of the following three gas-phase reactions: 

CH4 + H2O ⇌ CO + 3H2 (125) 

H2O + CO ⇌ H2 + CO2 (126) 

CH4 + 2H2O ⇌ CO2 + 4H2 (127) 

 

This process requires five-mole balances depicted in equation (128). The mole fraction of each 

component, 𝑦𝑠, is related to the molar flow rate, 𝐹𝑠, via equation (129), from which one can 
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calculate the partial pressure of each component 𝑃𝑠 via equation (130). It was assumed that the 

pressure remained constant throughout the length of the reactor. Additionally, all components were 

assumed to behave as ideal gases. Hence, the molar concentration of each component 𝐶𝑠 follows 

from equation (131). The equations modelling the reaction kinetics and thermodynamics are shown 

in Appendix B. The kinetic parameters are obtained from Xu and Froment (1989). The 

thermodynamic parameters are obtained from Yaws et al. (1999). The reaction rates 𝑅𝑅𝑗
′ are highly 

non-linear functions of the partial pressures of the reactants and the temperature. The manipulated 

variables for this problem are the inlet flow rates of hydrogen and methane, 𝐹H2,𝑖𝑛 and 𝐹CH4,𝑖𝑛 

respectively, and the reactor temperature, 𝑇. The controlled variables are the outlet flow rates of 

hydrogen, methane, and carbon monoxide, 𝐹H2,𝑜𝑢𝑡, 𝐹CH4,𝑜𝑢𝑡 and 𝐹CO,𝑜𝑢𝑡, respectively. The 

boundary conditions are given by the inlet flow rate of each component as in equation (132). The 

initial conditions are given by equation (133), where 𝐹𝑠,0 represents the flow rate profile of each 

component, 𝑠, as a function of the reactor length 𝑧. The sampling period was selected to be 0.004 s. 

Table 11 summarizes the reactor specifications and variable bounds. The initial states were 

restricted to an upper and lower limit on the flow rate on each component, i.e., 𝐹𝑠,0
𝐿 (𝑧) ≤ 𝐹𝑠,0(𝑧) ≤

𝐹𝑠,0
𝑈 (𝑧). The bounds are shown in Figure B.1 of Appendix B. 

𝜕𝐶𝑠

𝜕𝑡
= −

1

𝐴

𝜕𝐹𝑠

𝜕𝑧
+ 𝜌𝑐 ∑ 𝜈𝑗𝑠𝑅𝑅𝑗

′

3

𝑗=1

     ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (128) 

𝑦𝑠 =
𝐹𝑠

∑ 𝐹𝑠𝑠
     ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (129) 

𝑃𝑠 = 𝑦𝑠𝑃𝑡𝑜𝑡     ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (130) 

𝐶𝑠 =
𝑃𝑠

𝑅𝑇
     ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (131) 

𝐹𝑠(𝑡, 𝑧) = 𝐹𝑠,𝑖𝑛(𝑡)     𝑧 = 0, ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (132) 

𝐹𝑠(𝑡, 𝑧) = 𝐹𝑠,0(𝑧)     𝑡 = 𝑡0, ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (133) 
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Table 11 Variable bounds and reactor specifications for benchmark model 3. 

Parameter or 

Variable 
Nominal Value Lower Bound Upper Bound 

𝐹CH4,𝑖𝑛 (mmol s−1) 3.11 1.56 6.22 

𝐹H2,𝑖𝑛 (mmol s−1) 9.33 4.67 18.67 

𝑇 (K) 848 838 858 

𝑧 (cm) -- 0.0 2.2 

𝐴 (cm2) 0.785 -- -- 

𝜌𝑐 (g cm−3) 2.835 -- -- 

𝑃𝑡𝑜𝑡 (atm) 10.0 -- -- 

 

 
Figure 31 PICNN training curve for benchmark 3. 

 

Similar to benchmark 2, a PINN model that achieved a low enough loss function could not be 

trained such that the surrogate NMPC model could find a feasible solution. However, a PICNN 

was still trained. The PICNN for benchmark 3 has 32 hidden channels, 3 hidden layers and a kernel 

size of 4. Benchmark 3 is discretized into 50 spatial elements; thus, the input tensor has dimensions 

of 8×50, i.e., 8 input channels (8 corresponds to 5 state variables and 3 manipulated variables), 5 

output channels and 50 spatial elements. Thus, in this case, 𝑁𝑠𝑣 = 5, 𝑁𝑢 = 3 and the spatial 

location 𝑣 goes from 1 to 50. Figure 31 shows the training curve of PICNN for benchmark 3. The 
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loss converges to a value that was still relatively high at the end of the training, thus, some 

plant/model mismatch is expected between the PICNN and the mechanistic plant model. 

4.3. Results 

This section presents the results of embedding the physics-informed surrogate models within the 

NMPC framework. The different strategies are compared in terms of the computational time 

required to solve the NMPC problem, the accuracy of the methods compared to the mechanistic 

models, and the challenges in implementation, e.g., overhead involved in the interaction between 

different packages, the size of the optimization problem, etc. The surrogate NMPC model is 

connected in closed-loop with the plant (simulated by the mechanistic model) to measure the 

NMPC computational time at every sampling step. Figure 32 depicts this by showing that NMPC 

uses the surrogate as its internal plant model. First, the computational time to solve the NMPC 

problem using different embedding methods is compared for each of the benchmarking models. 

The formulations compared are the full-space (FS), reduced-space (RS), external function method 

1 (EF1), external function method 2 (EF2) and the mechanistic model. EF1 uses torch.func to 

evaluate the Jacobian and Hessian, which uses the vectorized approach. EF2 uses 

torch.autograd.functional, which evaluates the Jacobian and Hessian element by element. 

Additionally, the shooting optimization approach was also implemented for benchmark model 1 

to compare against the direct transcription method. The NMPC solution times are compared in 

section 4.3.1. The accuracy of the surrogate models is evaluated by comparing the closed-loop 

solution found using NMPC with a surrogate as its internal model against NMPC with the 

mechanistic model (ground truth). In each closed-loop simulation, the process is allowed to run 

for a few sampling steps, until a step set-point change is introduced for each benchmark. Table 12 

summarizes the set-point changes implemented on each benchmark model and the sampling step 
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at which the set-point change is introduced. The focus of this study is to compare the various 

surrogate embedding strategies and not model training; however, this serves to ensure that the 

solution found by the surrogate NMPC is independent of the embedding strategy. The model 

accuracy is compared in section 4.3.2. 

 
Figure 32 Closed-loop framework where NMPC uses a surrogate as the 

internal model for prediction. 

 

Table 12 Set-point changes implemented in closed-loop simulations and sampling step of change. 

Benchmark 
Controlled-

Variable 

Set-point Change 

Time Step (𝑘) 
Initial Set-

point 

Set-point 

Change 

1 𝐶𝑜𝑢𝑡 (mol L−1) 50 0.4 0.3 

2 
𝐶𝑜𝑢𝑡 (mol L−1) 100 570 760 

𝑇𝑜𝑢𝑡 (℃) 50 315 312 

3 𝐹H2,𝑜𝑢𝑡 (mmol s−1) 15 5.69 6.69 

 

NMPC problems formulated using OMLT were solved on Pyomo 6.5.0 with Python 3.9 using 

IPOPT 3.11.1. OMLT was used to implement both the FS and RS formulations. For the sake of 

illustration, NMPC problems formulated using the mechanistic model of the process were also 

solved on the same versions of Pyomo, Python and IPOPT, using Pyomo DAE. Due to 

compatibility issues, NMPC problems formulated using the external function approach were 

solved on Pyomo 6.4.2 with Python 3.8 using the IPOPT Cython wrapper, CYIPOPT 1.1.0, which 

uses IPOPT 3.14.9. The PyNumero package version was 1.3. The Pytorch version used to evaluate 

the external model was 2.2.1. Since IPOPT runs on the CPU, the external function method does 
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not benefit from the parallel computing capabilities of GPUs. Hence, the external models were 

evaluated on the CPU. The shooting method is implemented using the Scipy optimizer fmin_slsqp, 

which utilizes a sequential least-squares quadratic programming approach (Virtanen et al., 2020). 

The integrator is implemented via the method of lines, where the PDE is discretized over the spatial 

domain via finite differences to generate a set of ODEs with respect to time. Then, integration was 

performed with respect to time via the Runge-Kutta method of order 5(4) (RK45) (Dormand and 

Prince, 1980; Virtanen et al., 2020). Note that the sequential method implemented is only meant 

for illustration. Its performance may vary depending on the optimization algorithm, the precision 

of the integrator and integrator algorithm, and the used of more sophisticated shooting approaches, 

e.g., multiple-shooting (Biegler, 2010). 

4.3.1. Computational Costs 

The first sampling step at which NMPC is solved often takes longer as the initial guess provided 

to the solver may not be close to the optimal solution. At subsequent sampling steps, the solver 

can use the solution found at the previous sampling step to update the initial guess and reduce the 

computational time. Hence, both the time required to solve the first iteration and the average over 

all simulated sampling steps were reported. Figure 33 shows the time required to solve the NMPC 

problem at every sampling step for FS (blue) and EF1 (orange) using PICNN, and the mechanistic 

Pyomo model (green) for benchmark 1. As shown in this figure, in all embedding methods, the 

first iteration takes the longest to solve and the following iterations take less time. Whenever a 

change is implemented in the system, e.g., a set-point change, there is a jump increase in the 

computational time as shown at sampling step 50 in Figure 33 (vertical, red-dashed line). 
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Figure 33 NMPC wallclock solve time at each sampling step for FS, EF1 using 

PICNN, and the mechanistic Pyomo model in benchmark 1. 

 

Figure 33 highlights the general pattern observed in all case studies. Using a surrogate did not lead 

to improved solution time compared to using the mechanistic process model, regardless of the 

embedding method. NN surrogates generally lead to larger models due to the use of hidden layers, 

which is a possible reason why the use of a surrogate model does not lead to improvements. It may 

also be the case that more complex models, e.g., those involving high-order derivatives, could be 

more suitable for this modelling approach. The PFR models that were used as benchmarks only 

involved advection terms; dispersion/diffusion terms introduce higher-order derivatives that 

involve more complex boundary conditions. Table 13 shows the average wallclock time to solve 

the NMPC problem over all sampling steps, the wallclock time to solve the first iteration and the 

number of variables in the NLP formulation for all benchmarks for all embedding strategies. As 

depicted in this table, the pattern, where the mechanistic Pyomo model is the fastest, holds for 

benchmarks 2 and 3. Antonelo et al. (2022) used a shooting approach to solve the NMPC problem. 

They reported slight advantages when a surrogate NMPC model was used over the mechanistic 

model. However, in this work, it was observed that the simultaneous approach (i.e., direct 

transcription) generally led to significantly shorter solution times than the shooting approach. The 
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simultaneous approach usually led to an order of magnitude improvement in NMPC solution time. 

Looking at benchmark 1, the mechanistic model implemented in Pyomo DAE had an average 

solution time of 0.101 s, while the mechanistic model implemented using the shooting method had 

an average solution time of 1.284 s. Similarly, the EF1 using the PINN surrogate had an average 

solution time of 0.402 s, meanwhile, the shooting method solved in 4.09 s. Hence, for the 

algorithms and methods implemented, the simultaneous optimization approaches are shown to be 

more computationally efficient. However, note that more sophisticate shooting methods have been 

developed (Biegler, 2010; Soledad Aronna, Frédéric Bonnans and Martinon, 2013; Assassa and 

Marquardt, 2014; Aydin, Bonvin and Sundmacher, 2017; Andrés-Martínez, Biegler and Flores-

Tlacuahuac, 2020); their implementation is beyond the scope of this work. The observed advantage 

of simultaneous methods is likely because the shooting method requires solving the modelling 

equations at every iteration of the optimization algorithm, which increases the number of 

computations. Additionally, the optimization algorithm used in the shooting method must estimate 

the Jacobian of the optimization problem via numerical methods since it does not have direct 

access to the model. 

Moreover, if one is to use a surrogate, EF1 generally leads to shorter NMPC solution times 

compared to FS or RS formulations. This is likely because explicit equation formulations require 

auxiliary variables and constraints to represent the internal layers of the NN. Hence, it is difficult 

to provide a good initialization for the auxiliary variables. The external function method, on the 

other hand, only needs to consider the inputs and outputs of the NN as decision variables. In 

benchmark 1, for example, the FS formulation using a PINN model has 15120 variables, while 

EF1 only has 430 variables. The only exception is benchmark 2 where EF1 took slightly longer to 

solve than FS on average (9.586 s and 7.160 s, respectively). However, the first iteration of EF1 
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was still significantly shorter than FS, likely because the auxiliary variables are farthest from a 

feasible solution at this iteration. This was observed even though the external function method is 

impacted by the overhead necessary to communicate the different Python packages and the data 

format conversions. For example, PyNumero provides the decision variables to Pytorch as a 

Python list, which must be converted to a Pytorch tensor object to evaluate the model. The Jacobian 

and Hessian must be converted from Pytorch tensors to Scipy sparse arrays when returned to 

PyNumero. Furthermore, EF2 always took longer than EF1; EF2 evaluates the Jacobian and 

Hessian element by element, which significantly increases the number of computations, and as a 

result, the evaluation time. EF1 utilizes a vectorized approach, evaluating the matrices row by row 

or column by column, hence, a reduction in the computational time was observed. 

Table 13 Summary of computational time required to solve the NMPC problem for different 

embedding strategies in all benchmark models, and the number of variables in the NLP formulation. 

Benchmark 
Embedding 

Method 

Model 

Type 

Ave. Wallclock 

Time (s) 

First Iteration 

Wallclock Time (s) 

Number of 

Variables 

1 

FS PINN 0.692 5.832 15120 

RS PINN 0.666 1.108 2320 

EF1 PINN 0.402 1.89 430 

EF2 PINN 2.219 10.403 430 

Shooting PINN 4.09 13.704 20 

FS PICNN 3.585 56.195 33920 

EF1 PICNN 1.427 4.377 430 

EF2 PICNN 5.40 17.527 430 

Shooting PICNN 5.04 13.26 20 

Shooting Mechanistic 1.284 9.342 20 

Pyomo DAE Mechanistic 0.101 0.161 1461 

2 

FS PICNN 7.16 105.367 39680 

EF1 PICNN 9.586 35.356 860 

EF2 PICNN 35.63 140.76 860 

Pyomo DAE Mechanistic 0.209 1.224 2922 

3 

FS PICNN 8048.77 92608.582 327120 

EF1 PICNN 2149.671 1761.363 7780 

Pyomo DAE Mechanistic 13.329 53.265 75527 
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Furthermore, the RS formulation (0.666 s) showed very similar performance to the FS formulation 

(0.692 s) on average in benchmark 1. However, the solve time for FS on the first iteration was 

almost 6 times higher than RS. Again, this is likely because the FS formulation requires more 

auxiliary variables, which cannot be easily initialized. Once the solver has a good warm-start 

initialization, obtained from solving the first iteration, the benefit of eliminating auxiliary variables 

that RS formulation provides disappears for this problem. 

4.3.2. Model Accuracy in Closed-Loop Simulations 

The focus of this work was on the surrogate embedding methods and not the surrogate training. 

However, to demonstrate consistency between the different embedding methods, the closed-loop 

performance of the surrogate NMPC was evaluated with respect to its error from the ground truth 

(using the mechanistic model as the internal NMPC model). The difference between the NMPC 

solutions found by the different embedding methods was also analysed. One would expect the 

solution found by the explicit equation approach to be the same as the solution found by the 

external function approach since they have the same surrogate model. Figure 34 shows the set-

point tracking performance for each embedding method in benchmark models 1 and 3. Note that 

the curves for FS and EF1 using a PINN model overlap in benchmark 1; similarly, for FS and EF1 

using PICNN in both benchmarks 1 and 3. The curve for RS using PINN in benchmark 1 also 

overlaps FS, hence, it was not shown for brevity. Similarly, the curves for EF2 overlap EF1 for all 

benchmarks, hence, these were also not shown for brevity. The same controller tuning parameters 

were used for all embedding strategies (i.e., objective weights, control horizon, prediction horizon 

etc.). For benchmark 1, the controllers closely track the set-point for all embedding methods. The 

error between the solution found by the surrogate models and mechanistic Pyomo was small. For 

example, the curve for FS using PINN (orange) lies closely to the mechanistic curve (blue). Thus, 
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the mismatch between the surrogate model and the plant model was deemed acceptable. This is 

expected because the training loss had a very low value at the end of training for benchmark 1. 

 
Figure 34 NMPC set-point tracking for benchmarks 1 and 3, a) and b), respectively, for selected 

embedding methods. Benchmark 1 shows the outlet concentration from the PFR. Benchmark 3 

shows the outlet flow rate of hydrogen from the steam reformer. 

 

On the other hand, in benchmark 3, the solutions from both FS and EF1 using PICNN have a 

significant error from the mechanistic solution. Thus, the mismatch between the surrogate model 

and the plant model was very significant which also resulted in a large set-point tracking error. 

This is expected as the loss for the PICNN trained on benchmark 3 is relatively high at the end of 
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training as seen in Figure 31. In general, the NMPC solutions found by the external function 

methods are the same solutions found by explicit algebraic constraint formulations. For example, 

as mentioned, the curves for FS and EF1 using a PINN in benchmark 1 overlap (same for EF1 and 

FS using PICNN in benchmark 3), thus, the explicit equations and external model approaches are 

equivalent. However, the plots in Figure 34 only show the time trajectory followed by only one 

state. To further confirm this observation, the error between the state trajectory followed by the 

system controlled by the surrogate NMPC and the mechanistic NMPC was evaluated. To measure 

the error, the squared error of the trajectory followed the states was used as defined in equation 

(134); where 𝒙𝑘
𝑡𝑟𝑢𝑒 is the state at sampling step 𝑘 of the plant controlled by the mechanistic NMPC, 

𝒙𝑘
𝑠𝑢𝑟 is the state of the plant that is controlled by the surrogate NMPC, and 𝒙𝑓𝑎𝑐𝑡𝑜𝑟 is the 

normalization/scaling factor used at the input of the NN models to ensure the states have similar 

scales. Hence, this measures the deviation from the closed-loop response of a plant controlled by 

a mechanistic NMPC and a plant controlled by a surrogate NMPC. Similarly, one may evaluate 

the error for the control actions found by the mechanistic NMPC, 𝒖𝑘
𝑡𝑟𝑢𝑒, and the control actions 

found by the surrogate NMPC, 𝒖𝑘
𝑠𝑢𝑟, as shown in equation (135). Hence, this measures the 

deviation of the control actions implemented on the plant by a mechanistic NMPC from the control 

actions implemented by a surrogate NMPC. 

‖𝒙𝑘
𝑡𝑟𝑢𝑒 − 𝒙𝑘

𝑠𝑢𝑟‖
diag(𝒙𝑓𝑎𝑐𝑡𝑜𝑟)

−1
2 = ∑ (

𝑥𝑘
𝑡𝑟𝑢𝑒

𝑖
 − 𝑥𝑘

𝑠𝑢𝑟
𝑖

𝑥𝑖
𝑓𝑎𝑐𝑡𝑜𝑟

)

2𝑁𝑥

𝑖=1
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‖𝒖𝑘
𝑡𝑟𝑢𝑒 − 𝒖𝑘

𝑠𝑢𝑟‖
diag(𝒖𝑓𝑎𝑐𝑡𝑜𝑟)

−1
2 = ∑ (

𝑢𝑘
𝑡𝑟𝑢𝑒

𝑖
 − 𝑢𝑘

𝑠𝑢𝑟
𝑖

𝑢𝑖
𝑓𝑎𝑐𝑡𝑜𝑟

)

2𝑁𝑢

𝑖=1

 (135) 

 

Figure 35a shows the state trajectory error, and Figure 35b the control action trajectory error, over 

time for benchmark 1. As discussed, the plant/model mismatch for PINN NMPC and PICNN 
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NMPC was small in benchmark 1. Hence, regardless of the embedding method and type of 

surrogate model, the error is small in both Figure 35a and Figure 35b. Furthermore, the errors for 

FS and EF1 using PINN overlap. This means that both the explicit algebraic constraints and the 

external function methods find the same control actions, which results in the same closed-loop 

responses; confirming that both embedding methods are equivalent. The same observation can be 

made for FS and EF1 using PICNN. 

 
Figure 35 State trajectory error, a), and control action trajectory error, b), plotted against time 

for benchmark 1. 
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Figure 36 shows the set-point tracking performance of the shooting method with the mechanistic 

model (orange), the PINN model (green) and the PICNN model (red) as the internal plant model 

for benchmark 1. The blue line is the mechanistic model implemented in Pyomo DAE. It can be 

observed that the shooting method is less consistent in the solutions found for the NMPC problem 

depending on the model used. For example, in the case of a PICNN, the simultaneous methods 

found solutions that were close to the solution found by the mechanistic Pyomo model. However, 

in Figure 36, there is a large error between the mechanistic Pyomo model and the shooting method 

using PICNN. There also is a larger error between the shooting method using the mechanistic 

model and the shooting method using PICNN. The reason may be because the shooting method 

must estimate the Jacobian of the model using numerical methods, instead of analytical methods 

like in the simultaneous approaches. This may be leading the shooting method to find different 

local solutions or suboptimal solutions. 

 
Figure 36 Set-point tracking performance of shooting method using different models for 

benchmark 1. 
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4.4. Summary 

This study presented the benchmarking of different NN surrogate embedding strategies in NMPC. 

The direct transcription of the surrogate to explicit constraint equations was compared against the 

external function evaluation of the surrogate model. In general, it was observed that the use of 

surrogates did not accelerate the computational performance of the NMPC compared to the 

traditional approach of directly including the non-linear mechanistic modelling equations of the 

process in the NMPC formulation. This is likely because the use of hidden layers within the PINN 

and PICNN surrogates results in an increase in problem size. Simultaneous solution approaches 

generally lead to a decrease in solution time of an order of magnitude compared to 

shooting/sequential approaches. The shooting approach requires solving the model of the system 

at every iteration of the optimization algorithm, which increases the number of computations. 

Moreover, it was observed that the external model evaluation generally resulted in better 

computational performance than explicitly representing the NN surrogate equations within the 

optimization program. This is because explicitly representing the NN surrogate equations results 

in the generation of auxiliary variables and constraints that increase the size of the problem and 

cannot be easily initialized. Both embedding methods were shown to be consistent, i.e., they find 

the same solution to the surrogate NMPC problem, and in addition, the solutions found are close 

to the solution of the mechanistic NMPC when the mismatch between the surrogate and the 

mechanistic model is small.  
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5. Conclusions and Recommendations 

This thesis aimed to address challenges in the implementation of NMPC on large-scale processes. 

Specifically, this work studied the combined effect of model uncertainty and state estimation on 

the NMPC performance. Two robust NMPC algorithms, MS-NMPC and MSc-NMPC, were 

applied to the TE process with EKF and MHE as state estimators. Thereby, the applicability of 

robust NMPC was demonstrated on a large-scale process. The following conclusions were drawn 

from this implementation: 

• Both MS-NMPC and MSc-NMPC could prevent constraint violation and closely track the 

set-point, even in scenarios where the process response to traditional NMPC became 

unstable due to the plant/model mismatch introduced by the parametric uncertainty. 

• When an unconstrained estimator like EKF was used, it made unrealistic estimates of the 

states due to the mismatch between the EKF model and the plant. This caused the plant to 

become destabilized because the initial states provided to NMPC were either infeasible or 

the solution found by NMPC was suboptimal. 

• MHE resolved the challenges involved with EKF. Since MHE considers process 

constraints in its formulation, it was able to find feasible state estimates even when there 

was mismatch between the MHE and plant models. 

• The combination of robust NMPC and MHE led to an increase in computational costs over 

simpler approaches like traditional NMPC and EKF; however, for the process sampling 

time, input delays are expected to be significant. 

The second aim of this thesis was to benchmark various strategies to embed NN surrogate models 

in NMPC. PINNs and PICNNs were employed as NN surrogates. One strategy was to directly 

transcribe the NN equations as explicit algebraic constraints. The other involved evaluating the 
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surrogate model as an external function from the optimization framework. The following 

conclusions were drawn from this study: 

• Replacing the mechanistic process plant model with an NN surrogate does not always offer 

computational advantages, even when the process is highly non-linear. Although smooth 

activation functions are amenable to NLP solvers, they provide no advantage over 

mechanistic equations. The evaluation of the internal layers of the NN surrogates increases 

the model size. Hence, the use of a surrogate usually does not result in a model reduction 

that may result in shorter computational times compared to the use of the full mechanistic 

process model. 

• Simultaneous solution methods outperformed shooting methods by an order of magnitude 

for the implementation used in this work. This is likely attributed to having to solve the 

system model at every iteration of the shooting method optimization algorithm, which 

increases the number of computations. However, note that more sophisticate shooting 

methods were not implemented. 

• When an NN surrogate was used, the external model evaluation strategy generally 

outperformed the direct transcription of the NN as algebraic equations. This is likely 

because initializing the auxiliary variables introduced by the explicit algebraic 

reformulation is difficult. 

• Both embedding strategies were shown to find the same solutions to the NMPC problem, 

despite using different approaches to evaluate the NN surrogate model. 
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5.1. Future Work 

Despite the advances presented in this thesis, there are still gaps in these research topics that can 

be further investigated. Regarding the work on robust NMPC and state estimation on large-scale 

systems that was studied in Chapter 3, the following are avenues of potential future investigation: 

• The full control framework (i.e., robust NMPC plus state estimation) should be applied to 

other large-scale problems. The TE problem presented particular challenges, like being 

open-loop unstable. However, there are aspects of more complex systems that should be 

considered, e.g., processes modelled by PDEs. 

• The impact of the arrival cost on the MHE performance should be considered in the future. 

The MHE computational costs could be reduced by decreasing the size of the moving 

window. However, the arrival cost becomes more significant as the window shortens. 

Hence, adequate approximation is necessary. 

• Other state estimation schemes, such as constrained EKF, should be considered. Even 

though EKF failed to provide feasible state estimates, it was significantly faster to evaluate 

than MHE. Hence, EKF formulations that consider constraints are promising. 

Regarding the work on PINNs as NMPC surrogate models studied in Chapter 4, it was observed 

that replacing the mechanistic plant with a NN does not always offer computational advantages. 

Despite the unexpected results, there are potential routes for future developments in the application 

of ML in process control: 

• The proposed surrogate embedding strategies could still be useful in cases where only 

surrogates are available. For example, in a process where a mechanistic model is not 

available, a data-driven NN model could be used. 
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• NNs could be used to model the error between the mechanistic model and the actual process 

plant and be embedded into NMPC using the proposed strategies. Although rigorous 

mechanistic models could be developed, a mismatch between the model and the actual 

process may still be present, e.g., due to poorly understood physical phenomena. The NN 

could then be used to correct the mismatch and improve the accuracy of the predictions. 

• The external function evaluation strategy could be improved. The Jacobian and Hessian 

matrices for the surrogate NMPC problems are highly sparse; hence, these could be 

evaluated using more efficient methods. 

• As a means to decrease online computational costs, ML models could be trained to learn 

the solution of the NMPC problem to generate an explicit control law, i.e., develop an 

explicit model predictive controller (EMPC).  
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Appendices 

Appendix A — Supplementary Material for Chapter 3 

This section presents the results of replicating the test from section 3.4.3 for a MSc-NMPC with 

two levels of the uncertain parameter with the uncertainty reduced from 5% to 1%. The uncertain 

parameter was the kinetics of the first reaction, 𝒆𝑁𝑂𝑀 = [𝛼1
𝑁𝑂𝑀], thus, the two scenarios 

considered in MSc-NMPC are the kinetics 1% above the nominal value and 1% below. The 

uncertain parameter in the plant was the nominal value. It was observed that reducing the 

uncertainty causes the process to settle much faster than in Figure 16. This is shown in Figure A.1, 

which shows the set-point tracking performance of the reactor pressure and the mixing-zone 

temperature. This suggests that the long settling times observed in Figure 16 may be due to the 

nonlinearity of the process. For non-linear systems, the worst-case scenario does not necessarily 

lie at the extreme values of the uncertain parameters. Since the plant uses the nominal value of the 

parameter, this is not one of the scenarios considered within the MSc-NMPC formulation, this 

results in the observed deteriorated performance with slower settling time. 

 
Figure A.1 Set-point tracking performance of MSc-NMPC with 1% uncertainty in the 

kinetics of the first reaction. The plant uses the nominal values of the parameters. 
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Appendix B — Steam Reformer Model Kinetics and Thermodynamics 

The kinetics of the reactions occurring in the steam reformer are modelled by equations (B.1)-

(B.3). Here, 𝑅𝑅𝑗
′ is the reaction rate of reaction 𝑗 based on catalyst weight. The rate constant of 

reaction 𝑗 is given by 𝑘𝑟𝑥𝑛,𝑗. 

𝑅𝑅1
′ =

𝑘𝑟𝑥𝑛,1

𝑃H2

2.5 (𝑃CH4
𝑃H2O −

𝑃H2

3 𝑃CO

𝐾1
) /(𝐷𝐸𝑁)2 (B.1) 

𝑅𝑅2
′ =

𝑘𝑟𝑥𝑛,2

𝑃H2

(𝑃CO𝑃H2O −
𝑃H2

𝑃CO2

𝐾2
) /(𝐷𝐸𝑁)2 (B.2) 

𝑅𝑅3
′ =

𝑘𝑟𝑥𝑛,3

𝑃H2

3.5 (𝑃CH4
𝑃H2O

2 −
𝑃H2

4 𝑃CO2

𝐾3
) /(𝐷𝐸𝑁)2 (B.3) 

 

The 𝐷𝐸𝑁 term is defined in equation (B.4) which depends on the absorption constants 𝐾𝑎,𝑠. The 

equilibrium constants of reaction 𝑗 are given by 𝐾𝑗. The dependence on temperature of the rate 

constants and adsorption constants is modelled by the Arrhenius equation, (B.5) and (B.6), 

respectively. 

𝐷𝐸𝑁 = 1 + 𝐾𝑎,CH4
𝑃CH4

+ 𝐾𝑎,H2
𝑃H2

+ 𝐾𝑎,CO𝑃CO + 𝐾𝑎,H2O𝑃H2O/𝑃H2
 (B.4) 

𝑘𝑟𝑥𝑛,𝑗 = 𝑘𝑟𝑥𝑛,𝑗
0 exp (−

𝐸𝐴𝑗

𝑅𝑇
)     ∀𝑗 ∈ {1,2,3} (B.5) 

𝐾𝑎,𝑠 = 𝐵𝑎,𝑠 exp (−
Δ𝐻𝑎,𝑠

𝑅𝑇
)     ∀𝑠 ∈ {CH4, H2O, H2, CO} (B.6) 

 

The temperature dependence of the equilibrium constant is modelled by the Van’t Hoff equation, 

(B.7). The constant 𝐾0,𝑗 is the equilibrium constant at the reference temperature, 𝑇𝑟𝑒𝑓, which can 

be calculated from the standard Gibb’s free energy of reaction 𝛥𝐺𝑗
0 via equation (B.8). The 

constant 𝛥𝐺𝑗
0 can be calculated from the Gibb’s free energy of formation, Δ𝐺𝑠

𝑓
, via equation (B.9). 

The enthalpy of reaction 𝛥𝐻𝑗 is calculated from the standard enthalpy of reaction 𝛥𝐻𝑗
0 and the heat 
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capacities of each component 𝐶𝑝,𝑠 via equation (B.10). The constant 𝛥𝐻𝑗
0 is calculated from the 

enthalpies of formation Δ𝐻𝑠
𝑓
 via equation (B.11). The dependence on temperature of the heat 

capacities is given by equation (B.12). 

𝐾𝑗 = 𝐾0,𝑗 exp (
1

𝑅
∫ 𝛥𝐻𝑗𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓

)     ∀𝑗 ∈ {1,2,3} (B.7) 

𝐾0,𝑗 = exp (−
𝛥𝐺𝑗

0

𝑅𝑇𝑟𝑒𝑓
)     ∀𝑗 ∈ {1,2,3} (B.8) 

𝛥𝐺𝑗
0 = ∑ 𝜈𝑗𝑠Δ𝐺𝑠

𝑓

𝑠

     ∀𝑗 ∈ {1,2,3} (B.9) 

𝛥𝐻𝑗 = 𝛥𝐻𝑗
0 + ∫ ∑ 𝜈𝑗𝑠𝐶𝑝,𝑠

𝑠

𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓

     ∀𝑗 ∈ {1,2,3} (B.10) 

𝛥𝐻𝑗
0 = ∑ 𝜈𝑗𝑠Δ𝐻𝑠

𝑓

𝑠

     ∀𝑗 ∈ {1,2,3} (B.11) 

𝐶𝑝,𝑠 = 𝛼𝑠 + 𝛽𝑠𝑇 + 𝛾𝑠𝑇2 + 𝛿𝑠𝑇3 + 휀𝑠𝑇4     ∀𝑠 ∈ {CH4, H2O, H2, CO2, CO} (B.12) 

 

To reduce the space of feasible initial conditions for the steam reformer model, the steady-state 

flow rate profile at the nominal operation was treated as the nominal initial condition. Then, the 

initial state space of each component was restricted to be between a lower and an upper profile, 

i.e., 𝐹𝑠,0
𝐿 (𝑧) ≤ 𝐹𝑠,0(𝑧) ≤ 𝐹𝑠,0

𝑈 (𝑧), which were determined by varying the manipulated variables 

between their lower and upper bounds. Figure B.1 shows the bounds on the initial states of the 

steam reforming model. 



135 

 

 

 

 
Figure B.1 Initial state bounds for steam reforming model. 

 


