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Abstract

The thesis is divided into two parts, both focusing on the topic of open quantum many-
body systems.

The first part explores the properties of quantum circuits interspersed with measure-
ments. Tuned by the frequency of measurements, the circuit exhibits two stable dynamical
phases: a weakly-monitored phase and a strongly-monitored one. For the former case, we
analyze its non-equilibrium properties and unveil that it exhibits physical length scales that
grow super-linearly with time. For the latter case, we demonstrate that it can maintain
non-trivial quantum order when symmetries are present.

The second part addresses phases of matter for mixed many-body states. We pro-
pose a real-space renormalization group approach for mixed states and apply it to derive
phase diagrams for various examples. For decohered topological codes, we establish a pre-
cise relationship between the decodability and the topological phase transitions. Lastly,
we introduce the notion of ‘Markov length’, a length scale that measures the locality of
correlation, as a diagnostic for the stability of mixed state phases.
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Chapter 1

Introduction

Quantum computers, programmable devices that process quantum information, represent
one of the most exciting applications of quantum mechanics. After decades of development,
intermediate-scale devices nowadays are capable of supporting several hundred qubits. De-
spite challenges like short coherence times and limited qubit counts, these devices can
already execute complex tasks, including preparing exotic many-body states [6, 7, 8], sim-
ulating quantum dynamics [9, 10, 11, 12], and demonstrating competitive computational
power in specific tasks [13, 14, 15]. This raises intriguing questions about the capabilities
of these devices, both in computational tasks and in probing novel quantum many-body
phenomena.

These programmable quantum devices differ in several key aspects from other quan-
tum many-body systems, particularly those in condensed matter. They enable controlled
operations and measurements of individual qubits, providing the flexibility to generate
highly-entangled states that are inaccessible in condensed matter systems. However, these
devices are also subject to consistent decoherence due to environmental coupling, which
impairs the ’quantumness’ of any generated state. Although this adverse effect can be min-
imized, it can never be completely eliminated and tends to worsen with larger system sizes
and an increased number of operations. The interplay between controlled operations and
decoherence gives rise to a wide range of open system quantum phenomena and presents
many interesting theoretical challenges.

This thesis studies two topics within this broad context. In Chapters 2 and 3, we explore
the properties of quantum dynamics involving projective measurements. Subsequently, in
Chapters 4, 5, and 6, we consider how to extend the concept of quantum phases of matter
to mixed states. We first review necessary background on both topics to set the stage for
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later chapters.

1.1 Dynamical phases in monitored quantum circuits

Unlike classical systems, where measurements solely extract information, in quantum sys-
tems, measurements also non-trivially alter the state of the system. Consider a quantum
state ρ measured in a basis M = {P1, P2, ..., Pk :

∑
α Pα = I}. If the measurement

outcome is α ∈ {1, ..., k}, the state of the system changes according to:

ρ→ PαρPα
tr(Pαρ)

(1.1)

This transformation occurs with a probability tr(Pαρ). It is important to note that ran-
domness is an inherent aspect of projective measurements and cannot be eliminated by
any physical means. Quantum dynamical processes that involve both unitary evolution
and measurement are vividly termed ’monitored quantum dynamics’.

Many crucial protocols in quantum information science are examples of monitored dy-
namics. For instance, active quantum error correction [16] involves periodic measurements
on a quantum memory to detect the type of error occurring during computation. Based on
the outcomes of these measurements, specific unitary operations are executed to mitigate
the effects of the error. Another example is Measurement-based Quantum Computation
(MBQC) [17]. In MBQC, using using an entangled many-body state (cluster state) as a
resource state, quantum computation is driven entirely by single-qubit measurements and
subsequent feedbacks.

These protocols represent finely-tuned monitored dynamics, designed to fulfill specific
tasks in quantum information processing. Conversely, from the standpoint of many-body
physics, it is more desirable to explore the common properties of generic monitored dy-
namics. The monitored quantum circuit serves as a toy model for investigating these
properties.

For concreteness, in the rest of this section we focus on a prototypical monitored quan-
tum circuit, independently proposed in [18, 19, 20, 21]. The circuit is defined on an array
of qubits. At the t-th time steps, two sub-steps happen sequentially:

1. Depending on whether t is odd or even, an array of two-qubit quantum gates {U (t)
12 , U

(t)
34 , . . .}

({U (t)
23 , U

(t)
45 , . . .}) is applied to all odd (even) pairs of qubits. These unitaries are ran-

domly and independently selected from a certain unitary ensemble.
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Figure 1.1: An illustration of (1+1)D monitored quantum circuit. Each blue block repre-
sents a random unitary gate drawn from the 2-qubit Clifford group. On each vertical bond,
a projective measurement (represented as a green dot) in the Pauli-Z basis is applied with
a probability p.

2. Each qubit is subjected to a projective measurement in the Pauli-Z basis with a prob-
ability p. Based on the measurement outcome, the quantum wavefunction collapses
in accordance with rule 1.1.

An example of the circuit is depicted in Fig.1.1. We note that the dynamics involve both
classical randomness, due to the random selection of unitary gates and measurement lo-
cations, and quantum randomness from measurement outcomes. We are interested in the
behavior of typical dynamics for both types of randomness. Two ensembles of unitary
gates are commonly considered in the literature: the Haar unitary ensemble and the Clif-
ford unitary ensemble. The former is the most generic ensemble of unitary gates and
facilitates theoretical analysis. The latter, however, can be efficiently simulated owing to
the Gottesman-Knill theorem[22, 23, 24]. The most universal properties of the dynamics,
as reviewed below, are largely insensitive to the choice of ensemble.

Entanglement provides a crucial lens to understand monitored quantum circuits[25, 20].
For a quantum state |ψ⟩, the amount of quantum entanglement between a region A and
its complement Ā is quantified by von Neumann entropy:

SA = −tr(ρA log ρA) (1.2)

where ρA := trĀ(|ψ⟩ ⟨ψ|) is the reduced density matrix for the region A.

Unitary gates and measurements has opposite effects on a state’s entanglement struc-
ture. To understand this we consider limiting points of monitored circuits. When p = 0 the
dynamics is free from measurements and reduces to a random unitary circuit, which tends
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to generate entanglement across different parts of the qubit chain. In this limit, any input
pure state rapidly thermalizes, and becomes indistinguishable from a typical random state
on the spin chain. In particular, a subregion A’s von Neumann entropy is proportional
to the region’s size, i.e. SA = O(|A|). Conversely, at the other extreme where p = 1,
measurements are deterministically applied to every single qubits at each time step. Each
measurement collapses the qubit into either |0⟩ or |1⟩, thus regardless of the initial state,
it is ‘frozen’ to a product state at all time steps and has no entanglement.

Away from limiting points, the competition between unitary evolution’s entangling
power and measurements’ collapsing power leads to two phases, a weakly monitored phase
and a strongly monitored one, separated by a phase transition occurring at a critical
measurement frequency pc. The transition is usually called the measurement-induced phase
transition.

In the weakly monitored phase (also referred to as the volume-law phase in this context),
the entangling power dominates the collapsing power, leading to entanglement among
extensive degrees of freedom. A pure steady state in this regime is volume-law entangled:
for a contiguous regime A much smaller than the total system size, its von Neumann
entropy is:

SA = a1|A|+a2|A|β+... (1.3)

where β ≈ 0.33. The presence of the sub-leading term distinguishes the state from a typical
random state and has deep connection to the Kardar-Parisi-Zhang (KPZ) universality
class [26]. Conversely, in the strong monitored phase (or the area-law phase), single site
measurements are so frequent that unitary gates do not have chance to generate much
entanglement. More specifically, steady states in this regime are area-law entangled, i.e.

SA = O(|∂A|) = O(1) (1.4)

throughout the dynamics, which resembles entanglement structure of gapped ground states.
Exactly at the measurement-induced transition point, entanglement scales logarithmically
with L, can is describable by a conformal field theory [27, 28].

An alternative method to describe two phases involves their capability to purify a max-
imally mixed initial state [29]. Measurement can extract entropy from a physical system.
Indeed, in the strongly monitored phase, O(1)-time monitored dynamics are sufficient to
extract all entropy from the system. However, this process is significantly hindered if uni-
taries occur frequently: in the weakly-monitored phase, an O(L) amount of entropy persists
for an exponentially long time, despite continuous measurements. This phenomenon can
be understood through the lens of quantum error correction [30, 31]: rapid unitary dy-
namics scrambles local information and ‘hides’ it within a dynamically generated quantum
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error correcting code. Consequently, a substantial amount of information survives local
measurements, resulting in an very long purification time.

1.1.1 Relation to later chapters

Since steady states of strongly monitored phase has similar entanglement structure as
ground states, one naturally wonders whether familiar ground state quantum phases can
appear as steady states. In Chapter.2, we give an affirmative answer by introducing a class
of monitored quantum circuits which host long-range order in its strongly monitored phase.
The circuit has unitaries respecting a global Ising symmetry and two competing types of
measurements. The phase diagram has an area law phase with spin glass order, which
undergoes a direct transition to a paramagnetic phase with volume law entanglement, as
well as a critical regime.

In Chapter.3, we study behavior of the weakly monitored phase well before the equi-
librium is reached. We show that, due to measurements, the entanglement dynamics in
monitored circuits is indeed “faster” than that of unitary ones in several ways. Specifically,
we find that a pair of well-separated regions can become entangled in a time scale ℓ2/3,
sub-linear in their distance ℓ. In addition, we find initially local information can spread
super-linearly with time as t3/2. Furthermore, by viewing the dynamics as a dynamical en-
coding process, we show that the super-ballistic growing length scale relates to an encoding
time that is sublinear in system size.

1.2 Quantum phases of many-body mixed states

Understanding quantum phases of matter is a central task of quantum many-body physics.
The traditional focus is on pure states, which are typically ground states of local Hamilto-
nians. However, in actual quantum systems with inevitable decoherence, one always needs
to deal with mixed-states. It is thus natural to ask how the notion of phase of matter can
be generalized to cover these states.

One way of defining pure-state phases is via local unitary (LU) circuits [32]: two states
are in the same phase if there is a short-depth LU circuit that connects them. This is
based on the physical intuition that phases should be defined by long-range properties
and representatives only differ in their local properties. For mixed states, an analogous
definition was proposed by Coser and Perez-Garcia [33]: two mixed states ρ1 and ρ2 are in
the same phase if there exists a pair of short-time local channel transformations bringing
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ρ1 to ρ2 and from ρ2 to ρ1. In this section, we formalize the definition provided above,
elucidate the intuitions underlying it, and review some straightforward conclusions that
follow from the definition. We emphasize that the differences between our definition and
the one described in [33] are technical rather than fundamental.

We start by introducing a formal definition of local channel transformations, which
follows the proposal in [34].

Definition 1 (Local channel (LC) transformation). On a given lattice of linear dimension
L, a range-r LC transformation is a quantum channel composed of the following steps:
(1) Adding qubits to each lattice site, all initialized in the |0⟩ state;
(2) Applying a range-r unitary circuit U on the lattice;
(3) Tracing out some qubits on each lattice site.

The range of a circuit is defined as the maximal range of each unitary gate times the
depth of the circuit. Henceforth if r is not specified for an LC transformation, it is assumed
that r/L→ 0 in the thermodynamic limit.

The major difference between local channel transformations and local unitary ones
(LU) [32] is step (3). In local unitary transformations, a qubit can be discarded only when
it is disentangled from the rest of the system. In that context, (1) and (3) are inverse
operations, and hence LU transformations are invertible. In contrast, LC transformations
allow discarding a qubit that is still entangled with the rest of the system, i.e. ρi,̄i ̸= ρi⊗ρī
with i being the qubit to be discarded and ī being the rest of the system. As a result, LC
transformations are generically non-invertible.

Figure 1.2: A circuit of local channel gates represented as an LC transformation.

LC transformations constitute a broad class of operations including any circuit com-
posed of local channel gates, i.e. channels that only act on local domains of sites. To
show this, one needs the Stinespring dilation theorem: any quantum channel EX→Y can be
rewritten as:

E(·) = trA′
(
U((·)⊗ |0⟩ ⟨0|A)U †) (1.5)

where U is a unitary map from X∪A to Y ∪A′. In other words, any quantum channel can be
implemented by adding some degrees of freedom, applying a unitary on the joint system,
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and discarding some degrees of freedom. Applying the theorem to a circuit of channel
gates, one can first replace each channel gate with its Stinesping dilation form. Then one
can move forward all the ancillae addition to the beginning of the circuit and postpone
all the tracing-out to the end of the circuit. We graphically illustrate this in Fig.1.2.
Furthermore, any finite-time local Lindbladian evolution can also be approximated by LC
transformations by trotterizing the continuous dynamics.

The circuit definition of pure state phases reflects the idea that phases of matter should
be characterized by long-range properties of the state, and should remain unchanged under
reversible local modifications. LC transformations, albeit local, are generally not reversible
and can destroy long-range correlations. As an example, if one starts from an arbitrary
state |ψ⟩ and applies the amplitude damping channel Edamping(·) := tr(·) |0⟩ ⟨0| to each qubit

in the system, the resulting state would be a product state |0⟩⊗L without any non-trivial
long-range correlation. On the other hand, an LC transformation’s ability to create corre-
lations is no stronger than LU ones. This follows from the fact that an LC transformation
is some LU followed by discarding some degrees of freedom.

Thus the connectivity under LC transformations induces a partial order relation among
mixed-states. States are ordered according to the amount of long-range correlation they
possess: if ρ2 = C(ρ1) for some LC transformation C, then ρ1 has at least as much long-
range correlation as ρ2. This naturally leads to the following definition of mixed-state
phase equivalence 1

Definition 2 (Mixed-state phase equivalence). On a given lattice, two many-body mixed
states ρ1 and ρ2 are in the same phase if there exists a pair of LC transformations C1 and
C2 such that C1(ρ1) ≈ ρ2 and C2(ρ2) ≈ ρ1.

Several clarifications regarding the definition:

• Mixed-states of interest: Though the definition above does not assume any re-
strictions on states ρ1,2, we are interested in physically relevant mixed states such as
local Hamiltonian Gibbs states at finite temperature, gapped ground states subject
to decoherence, and steady states of local Lindbladians.

• The precise meaning of ‘≈’: This requires some distance measure of mixed states.
For instance, we could define two mixed states ρ ≈ σ if and only if F (σ, ρ) > 1 − ϵ
for some small ϵ > 0, where F (σ, ρ) := ||

√
σ
√
ρ||1 is the (Uhlmann) fidelity.

1The definition resembles the one taken in [33], where a pair of LC transformations is replaced by a pair
of (quasi-)local Lindbladian evolutions. A similar definition also appears in [35] when defining mixed-state
symmetry-protected topological orders.
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• Ranges of LC transformations C1,2: In general we only require the range to be
much smaller than the linear size of the lattice ρ1,2 is defined on. But as we will see
later, it will be sufficient to have a range r = O(polylog(L/ϵ)) when ρ1,2 have finite
correlation length.

The definition is a generalization of pure-state phase equivalence defined through LU
transformations. When restricting to pure many-body states, one can show that two states
|ψ1⟩ and |ψ2⟩ are of the same mixed-state phase if and only if |ψ1⟩ and |ψ2⟩ ⊗ |ϕ⟩ are of
the same pure-state phase for some invertible state |ϕ⟩. We provide a proof in App.A.1.

Product states, e.g. |0⟩⊗L, are states without any long-range correlations. This is also
reflected by the partial order relation under LC circuits: any state can be turned into
the product state by a LC transformation which only consists of the amplitude damping
channel. Thus we identify the trivial phase as the set of states that can be LC transformed
from the product state. In other words, a mixed state is in the trivial phase if it can be

written as ρtrivial = C
[
|0⟩⊗L ⟨0|⊗L

]
for some LC transformation C. This is equivalent to

requiring that the state can be locally purified into a short-range entangled pure state.

We comment that the above definition treats quantum and classical correlations on the
same footing. As an example, the state ρ = 1

2
(|0⊗L⟩ ⟨0⊗L|+|1⊗L⟩ ⟨1⊗L|) is a classical ensem-

ble of L spins which is non-trivial under the above definition, because it has classical long-
range correlation. To single out states that contain long-range classical correlation only,
we can define a state to be in a classical phase if it can be written as ρclassical = C(ρPr(s)))
for some LC transformation C. Here ρPr(s) :=

∑
s Pr(s) |s⟩ ⟨s| is a classical distribution

Pr(s) of product states {|s⟩ : s ∈ {0, 1}L} represented as a density matrix.

1.2.1 Relation to later chapters

In chapters 4, 5 and 6, we leverage the definition Def.2 in identifying mixed-state phases
and characterizing their properties.

In Chapter 4, we propose a real-space renormalization group (RG) scheme for identify-
ing mixed-state phases. We show that if the RG’s coarse-graining maps preserve correla-
tions with the complementary systems, then the state before and after the RG must be of
the same phase. As an application, we demonstrate an exact RG flow of finite temperature
toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase.

In Chapter 5, we discuss connections between quantum error correction and mixed-state
phases. We prove a precise relation between toric code’s mixed state phase and decodabil-
ity, by proving that local noise acting on toric code cannot destroy logical information
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without bringing the state out of the toric code phase. We also show how decoders can be
used to construct LCs for proving mixed-state phase equivalence.

In Chapter 6, we propose criteria for the stability of mixed-state quantum phases.
We define Markov length – the length scale at which the conditional mutual information
decays exponentially. We show that when evolving a mixed-state with a local Lindbladian
evolution, the state’s Markov length remaining finite implies the state’s phase of matter is
unchanged. We then demonstrate our general result with a concrete example, the dephased
toric code state.
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Chapter 2

Measurement protected quantum
phases

In this chapter, we study whether area-law phase of monitored circuits can host area-law
state with long-range order. We focus on a class of monitored quantum circuits with Z2

global symmetry. The model has a phase diagram which contains both a direct transition
between spin-glass area law phase and paramagnetic volume law phase as well as a critical
regime. The mutual information at these entanglement transitions exhibits distinct power
law scaling, indicating new universality classes due to the global symmetry. We also analyze
a two-dimensional version of the monitored circuit which enables coexistence of spin-glass
order and volume law entanglement.

2.1 Z2 symmetric monitored circuit model

We focus on an ensemble of circuits C acting on a one-dimensional chain of qubits of
length L with periodic boundary conditions. The circuit architecture consists of a brick-
wall pattern of two-qubit operations (Fig. 2.1). Each operation is either a measurement
(M), with probability p, or a random unitary (U), with probability 1 − p. Given that
an operation is a measurement, there are two types of measurements M1 and M2, with
probability r and 1−r. For two neighboring qubits i, i+1, we define M1 to be the projective
measurement of ZiZi+1 and M2 to be the projective measurement of Xi.

It is convenient for scalable simulation to choose the random unitary from an ensemble
of Clifford gates, which have the property of mapping a string of Pauli operators to another
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Figure 2.1: Phase diagram of steady state of monitored circuit, which consists of brickwall
2-qubit operations: measurement or Z2-symmetric Clifford unitary with probability p or
1 − p, respectively. Given measurement, it is either M1 = ZZ or M2 = XI measurement
with probability r or 1 − r. The central portion is a critical regime, based on our (finite
size L = 768) numerics, discussed in main text.

Pauli string (in the Heisenberg picture). This enables via the Gottesman-Knill theorem the
efficient simulation of the circuit dynamics [22, 23, 24], as one need only track the evolution
of polynomially many Pauli strings as opposed to an exponentially large wavefunction. It
is important that we add an additional symmetry criteria to this ensemble: each Clifford
gate U should map XiXi+1 to itself; this is sufficient and necessary for preserving a global
Ising symmetry given by

∏L
i=1Xi. Thus, both unitaries and measurements in the circuit

commute with the Ising symmetry, which is clearly essential for defining any symmetry-
breaking order. Details of this ensemble and Clifford/stabilizer technology can be found
in the appendix B.1.

The initial state is the product state |ψ0⟩ = ⊗|+⟩, where X|+⟩ = |+⟩. We are interested
in the long time steady state properties after the initial state has been evolved with a deep
random circuit |ψ⟩ = C|ψ0⟩. In our simulations, we average target quantities over both
different realizations of the circuits and different time slices of a given realization at long
time; we hereafter refer to this as “averaging over the circuit ensemble”. In particular,
to distinguish area and volume law scaling of entanglement, we will compute the Renyi
entanglement entropy of ψ after a bipartition into A and Ā:

SA = − log Tr(ρ2A), (2.1)

averaged over the circuit ensemble. Here ρA = TrĀ|ψ⟩⟨ψ| and as different Renyi entropies
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are identical for stabilizer states, we have specified without loss of generality the second
Renyi.

We will also compute the spin glass order parameter

O =
1

L

L∑
i,j=1

⟨ψ|ZiZj|ψ⟩2 − ⟨ψ|Zi|ψ⟩2⟨ψ|Zj|ψ⟩2 (2.2)

again averaged over the circuit ensemble. Given the Ising symmetry
∏
X, the subtracted

piece is always zero. This order parameter probes long-range entanglement in the following
sense. For a product state, it is manifestly constant (unity), and the application of finite
depth circuits can only lead to exponentially decaying correlators ⟨ZiZj⟩ ≈ e−|i−j|/ξ from
Lieb-Robinson bounds [36, 37]. Hence, in the trivial phase of product-like states, this order
parameter is constant (independent of system size). On the other hand, consider an ideal
spin glass state: a random cat or Greene-Horne-Zeilinger (GHZ) type state |s⟩+ (

∏
X)|s⟩,

where s is a random spin configuration in the z-basis; for this state the order parameter
grows linearly with L because ⟨ZiZj⟩2 = 1 for every i, j. Thus, the scaling of this order
parameter with system size (constant versus linear) can be used to identify the spin glass
phase.

After averaging, these quantities SA, O depend only on the parameters of the circuit
ensemble p, r.

2.2 Phase Diagram

We begin by analyzing several cross-sections of the phase diagram.

First consider the p = 1 cross section (circuits with measurement only). For r = 1 (ZZ
measurement only), the final state has random ZiZi+1 = ±1 for each pair of qubits and is
thus a random cat state described above (due to the Ising symmetry). The other extreme
r = 0 yields random paramagnetic product states. Both spin glass and trivial phases
are perturbatively stable to competing measurements respecting the Ising symmetry. For
example, an X measurement on a single qubit j of a cat state will disentangle the qubit
and leave the remaining system in a cat state; this is because the stabilizers Zj−1Zj, ZjZj+1

become Zj−1Zj+1, Xj after the measurement and the cat heals across j. Note that the Ising
symmetry is essential here; a Z measurement on a single qubit of a cat state would collapse
it into a product state.

This ensemble of measurement only circuits has a duality between ZZ,X measurements
that is manifest after performing a Jordan-Wigner mapping from spins to Majorana modes.
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Figure 2.2: (a) The 2-qubit measurements are fermion parity measurements (denoted by the
pair of arcs) on the 4 corresponding Majorana modes. The 2-qubit unitary acts locally on the 4
modes because it preserves fermion parity. A circuit with only measurements maps to loops of
Majorana worldlines, as noted in [5]. (b) A circuit with only ZZ measurements and unitaries,
and the minimal cut (blue line) for an interval with endpoint qubits (a, b). A minimal cut in
the area law phase also mediates spin glass correlation between a, b via the ZZ measurements
traversed.
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Figure 2.3: r = 0.5 cross section (equal probability for ZZ and X measurements). (left)
Entanglement entropy versus log of partition size, for various p. (right) Mutual information
decay in log-log plot. Total system size is L = 768.

In the latter representation, each spin corresponds to two Majorana modes, and in the
resulting Majorana chain, the two types of measurement correspond to fermion parity
measurements between pairs of Majoranas on even and odd bonds (Fig. 2.2a). The duality
fixes a phase transition between spin glass and paramagnetic phases at r = 0.5, and this
critical point in the Majorana representation is explicitly described by a 2d classical loop
model at its corresponding critical point; this mapping was detailed in [5]. See Fig. 2.2a
for an example of loops arising from Majorana worldlines.

Next, we consider the cross section with fixed r = 0.5 and variable p. Remarkably, we
find (Fig. 2.3) that in the range p ∈ [0.5, 1], the entanglement scales with subsystem size as
SA = c(p) log|A|, with coefficient increasing continuously from c(p = 1) ≈ 0.27 (consistent
with the loop model prediction

√
3/2π [38]). For p < 0.5, the entanglement exhibits volume

law scaling. We also compute the mutual information I(a, b) = Sa+Sb−Sa∪b between two
qubits a, b and find that in the critical regime, I decays as a power law with |b − a|; the
power also varies continuously with p.

Another important cross section is r = 1.0 and variable p, in which unitaries compete
with exclusively ZZ measurements. We find evidence of a critical point at pc ≈ 0.38,
in which there is a simultaneous transition from a spin glass area law phase above pc
to a paramagnetic volume law phase below pc. This is supported by Fig. 2.4, which
depicts a transition of entanglement scaling from area to volume law at pc ≈ 0.38 and a
transition of spin glass order parameter from linear scaling with L to constant scaling at
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pc ≈ 0.39 (the two points are within numerical error). It is evident from the figures that
both entanglement and order parameter exhibit log scaling at the critical point and scaling
collapse near the critical point:

SL/4(L, p)− SL/4(L, pc) = F
(
(p− pc)L1/νS

)
O(L, p)−O(L, pc) = G

(
(p− pc)L1/νO

) (2.3)

with νS ≈ 1.3, νO ≈ 1.5. The critical exponent νS ≈ 1.3 is comparable to the value (4/3)
expected for the percolation transition in two dimensions.

Some intuition for this phase transition can be obtained from the Majorana represen-
tation, in which a two-qubit unitary acts locally on the four corresponding Majoranas
because the unitary respects the Ising symmetry (fermion parity). In particular, the sym-
metric 2-qubit Clifford gate is generated by (non-interacting) Majorana swap operations
and (interacting) multiplication by the local fermion parity (see Appendix B.1). As sug-
gested in [39], it is helpful to consider a minimal cut picture which yields the final state’s
zeroth Renyi entanglement entropy for an interval with endpoints at qubits a, b. We expect
the latter to be proportional to the minimum number of unitaries cut by a curve through
the circuit with endpoints fixed to be a, b at the final time slice (see Fig. 2.2b). Within
this picture, the area-law S0 phase corresponds to minimal cuts which pass through a con-
stant number of unitaries as |b− a|→ ∞. Though the minimal cut picture is only strictly
valid for the zeroth Renyi entropy of a circuit with Haar random unitaries, we use it as a
heuristic for understanding the transition in the Clifford circuit.

Such a minimal cut in the area law phase also implies that the spin glass correlation
⟨ZaZb⟩2 is constant as |b − a|→ ∞, yielding a long-range spin glass. This arises from the
product of ZZs from the measurements along the minimal cut, which is attenuated by only
a constant number of unitaries traversed by the cut. The ZZ correlation begins with the
bottom two qubits of the minimal cut, and as the next measurements along the minimal
cut are performed, the pair of qubits which are correlated propagates outward in both
directions until it reaches a, b.

Hence, the minimal cut links the area law phase and spin glass order, at least for r = 1.
A minimal cut through only a constant number of unitaries is no longer possible when the
unitary cluster percolates. Hence, we expect that the area law spin glass is destroyed near
the site percolation threshold of the square lattice 0.59. Our numerical results indicates
1− pc ≈ 0.62, which is close to the value 0.59 given by the minimum cut picture.

A useful probe of the critical point is the mutual information between two antipodal
intervals A,B of equal size |A| (see Fig. 2.5). In previous studies without a global sym-
metry, including both Haar and Clifford random circuits, the mutual information scales as
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Figure 2.4: r = 1 cross section (unitaries and only ZZ measurements with probability p).
(top) Entanglement entropy versus log of partition size for total system size L = 768 and
spin glass order parameter versus log of system size, for various p. At pc ≈ 0.38, 0.39, the
two exhibit log scaling. (bottom) Scaling collapse of both quantities with νS ≈ 1.3, νO ≈
1.5.
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Figure 2.5: (left) Antipodal geometry. Intervals A and B are of the same size and centered
on two antipodal points of the periodic qubit chain of length L. (right) Simulated mutual
information I(A,B) as a function of the ratio |A|/L at critical points corresponding to
r = 0 (Z2-Clifford unitaries + X measurement) and r = 1 (Z2-Clifford unitaries + ZZ
measurement).

IA,B ∝ (|A|/L)4 [40, 39] in the regime of (|A|/L)≪ 1. In contrast, in our symmetric mon-
itored circuit, at the spin glass area-law to paramagnetic volume-law transition described
above, we find IA,B ∝ (|A|/L)1.4. Moreover, in the r = 0 cross section (which involves X
measurement only), there is a direct transition between paramagnetic area-law and param-
agnetic volume-law, at which we find IA,B ∝ (|A|/L)2.7 (Fig. 2.5). These indicate that the
entanglement transitions in the presence of a global symmetry are in distinct universality
classes than those without symmetry.

The full phase diagram is presented in Fig. 1 and obtained from both cross sections
presented. The shaded central portion is a critical regime including the segment of the
r = 0.5 cross section discussed earlier, with logarithmic entanglement scaling in our current
system sizes. One possibility is that the segment at r = 0.5 closely borders two phase
boundaries and thus appears critical in finite systems. However, both the large range of
the log scaling observed (p ∈ [0.5, 1]) as well as the sharp transition from log to volume law
scaling (Fig. 2.3) (as opposed to a smooth crossover) are surprising. In short, the critical
phase in the thermodynamic limit either (1) persists as a critical phase (2) disappears,
resulting in two critical lines separating volume law from paramagnetic and spin glass or
(3) disappears, resulting in three critical lines meeting at a point.

For understanding the critical regime, one may consider loop models with crossings
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Figure 2.6: (left) A cross section of the (2 + 1)d circuit architecture. Black dots are qubits
and each colored square denotes an operation acting on qubits within the square. An
operation is either a random Ising-symmetric 4-qubit Clifford gate (yellow) or a series of 3
two-qubit measurements Z1Z2, Z2Z3, Z3Z4 (blue), with probability 1− p or p. The circuit
alternates between the background and foreground, which consist of two distinct partitions
into sets of four. (right) The two order parameters O(L, p) and SA(L, p) as functions of p.
For the simulation of SA(L, p) the total system size is fixed to be L = (Lx, Ly) = (60, 20).

[41, 42, 43, 44, 45, 46, 47, 48] as toy models for our monitored circuit. As mentioned, the r =
0.5, p = 1 critical point is described by non-intersecting loops, and loop crossings represent
unitaries which swap Majoranas; these serve as bottlenecks in the circuit/loop configuration
which lengthen the minimal cut and increase entanglement. Interestingly, for finite crossing
probability, loop models have a critical “Goldstone phase” [41, 42, 43, 44, 45, 46, 47, 48],
referring to a sigma model description in the continuum. Indeed, the phase diagram in
[41] bears much similarity to ours, and it would be interesting to understand in detail the
connection. This Goldstone phase has also been discussed in the context of entanglement
transitions in random tensor networks [49].

2.3 Higher dimensions and other architectures

In contrast to one dimension, higher-dimensional circuit architectures allow for the possi-
bility that both measurement and unitary clusters can percolate in a parameter range. In
such a range, the final state consists of an extensive subset of spins connected in the past
by a measurement cluster, enabling spin-glass order. On the other hand, the percolating
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unitary cluster may intersect a minimal surface an extensive number of times, leading to
volume law entanglement scaling.

This can be verified by simulating a generalization of our architecture to a two-dimensional
system using the generalized order parameter

O2d(L, p) =
1

LxLy

∑
mi,mj

⟨ψ|ZmiZmj|ψ⟩2 − ⟨ψ|Zmi|ψ⟩2⟨ψ|Zmj|ψ⟩2 (2.4)

The left panel of Fig.2.6 shows a temporal cross-section of our (2+1)d circuit; the circuit al-
ternates between the background and foreground, which involve two distinct partitions into
sets of 4-qubit operations. Each operation is, with probability 1− p or p, either a random
4-qubit Clifford gate commuting with X1X2X3X4, or 3 consecutive measurements in bases
Z1Z2, Z2Z3 and Z3Z4. Our result (right panel of Fig. 2.6) shows that the entanglement
transition and the spin glass transition respectively happen at pc,S ≈ 0.5 and pc,O ≈ 0.25.
The parameter range between them corresponds to a volume-law, spin-glass-ordered phase.

We expect that replacing symmetric Clifford with symmetric Haar random unitaries
will not change the qualitative aspects of the phase diagrams. The stability of the ordered
phase derives from the inability of finite depth circuits to destroy the order, and this holds
for any symmetric unitary circuit.

Furthermore, the monitored circuits considered in the literature can also support spin
glass order, after a small but important modification. Such circuits are brick walls of
operations that have probability 1−p of being a random unitary and probability p of being
a projective measurement followed by a random unitary, and previous work has considered
this setup with ZZ measurements as the projective measurement [50]. However, both the
fact that a unitary is always applied, even after a measurement is made, and the fact that
each measurement layer was restricted to either even bonds or odd bonds of qubits [50],
implies that the measurement basis is irrelevant and no spin-glass order can exist.

Consider a very similar setup in which random unitaries are always applied in a brick
wall pattern, but between each layer of unitaries, ZZ measurements on any neighboring
qubits are performed with probability p (see Fig. 2.7). In this case, for large p, connected
clusters of ZZ measurements are performed, and the subsequent (single) layer of unitaries
cannot destroy the spin-glass order as long as the Lieb-Robinson length is shorter than
the typical measurement cluster size. As before, it is essential that each random unitary
respect the global Ising symmetry.

We find that the volume law phase persists up to p ≈ 0.52 and the spin glass order
begins at p ≈ 0.58. Based on our numerics, the interval between these points appears to
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volume law spin glass

Figure 2.7: Alternative class of circuits with Z2-symmetric random unitaries always applied
in brick-wall fashion, with in-between layers of M1 = ZiZi+1 measurements for every i, each
applied with probability p. Phase diagram has a paramagnetic volume law phase, a critical
regime, and spin glass area law phase. pc,S ≈ 0.52, pc,O ≈ 0.58,.

20



be critical (entanglement scaling is not strictly area or volume law), but we cannot rule
out finite size effects masking a direct transition between the two phases. Nonetheless, the
existence of the spin glass phase is unambiguous.

2.4 Discussions and outlook

The measurements in the monitored circuit can be generalized to stabilize other types of
quantum order. For example, measurements of the (commuting Pauli) operators in the
toric code Hamiltonian [51] would stabilize a random topologically ordered state. One
could use the same type of order parameter as Eq. (2.2), with the Z operator replaced
by a string operator (one of the Wilson lines). In contrast to the spin glass order, the
unitaries in this monitored circuit need not respect any global symmetry for the stability
of topological order.

The use of measurements to protect against random operations also forms the basis
of active quantum error correction. An important difference is that active quantum error
correction seeks to reverse errors by applying operations depending on the error syndromes
are obtained. In contrast, in our setup, while the measurement operations are essential,
their outcomes are not important (our scheme has no feedback). This is because the
protocol does not preserve a particular quantum state but instead a particular long-range
entanglement structure. Hence the name measurement protected quantum phases.

Nonetheless, it would be interesting to incorporate conditioning on measurements. More
generally, can the hybrid unitary and measurement circuits lead to new quantum orders
beyond the critical points? And how can these new universality classes with symmetry be
understood? We leave these explorations for the future.
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Chapter 3

Information dynamics in weakly
monitored quantum circuits

In this chapter, we study behavior of the weakly monitored phase well before the equi-
librium is reached. Specifically, we consider the following two complementary aspects of
entanglement dynamics.

(a) How does the entanglement structure evolve with time starting from an unentangled
(maximally mixed or pure product) initial state?

(b) How does the monitored dynamics spread and forget the input information?

Our main findings are summarized as follows.

3.1 Main results

Entanglement dynamics: In Sec. 3.2, we study how the entanglement structure of a
trajectory state ρm(t) evolves with time until its saturation.

Stabilizer growth: We start by considering the dynamics with a maximally mixed initial
state. The length distribution of the stabilizer generators provides an informative proxy
for the underlying entanglement structure. In Sec. 3.2.1, we find that the evolution of
stabilizer length distribution takes the following form:

h(ℓ, t) ≃ e−ℓ/ℓ
∗(t)

ℓ5/3
, (3.1)
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with a time-dependent soft cutoff ℓ∗(t) which exhibits a super-linear growth:

ℓ∗(t) ∝ t
3
2 , (3.2)

indicating that there is a small fraction of stabilizers that grows super-linearly with time,
as conjectured in [52].

Entanglement growth: The fast-growing stabilizers leave important imprints on ρ(t)’s
entanglement evolution. In Sec. 3.2.3, we show that they can be detected by a tripartite
entanglement measure, namely the conditional mutual information:

IA:B|C ≡ SAC + SBC − SABC − SC , (3.3)

where A and B are two regions separated by another large region C. We show that
IA:B|C exactly measures the number of nonlocal stabilizer generators connecting A and B.
Eq. (3.1) then implies that IA:B|C starts to take non-zero values at a time scale

t∗ ≃ dist(A,B)
2
3 ; (3.4)

which suggests that, at time t, non-trivial entanglement at the distance scale of O(t3/2)
will be generated.

Code growth: The super-linear growth of entanglement naturally gives rise to a new
sublinear time scale of O(L2/3) when the cutoff ℓ∗(t) reaches the system size L. In Sec. 3.2.4,
we argue that the O(L2/3) time scale coincides with the encoding time of a monitored circuit
when it is regarded as a dynamically generated quantum error-correcting code whose code
subspace is supported on ρ(t). Furthermore, we show that the ρ(t)’s (contiguous) code
distance grows as

dcode ∝ t
1
2 , (3.5)

until it reaches its steady value ≃ O(L1/3) [30] , which occurs at t ≃ O(L2/3).

Pure initial state: In Sec. 3.2.6, we extend the discussion to the dynamics starting from
a pure initial state. We find that the entanglement dynamics is qualitatively similar to
that of unitary-only dynamics and does not display any super-linearly growing length scale.

Information dynamics: In Sec. 3.3, we switch our attention from an evolving tra-
jectory state ρ(t) ∝ C(t)ρ0C

†(t) to the circuit itself and study the fate of initially local
information. To quantify information spreading, we introduce a reference system R which
is initially maximally entangled with the physical qubits in the circuit, referred to as P
(Fig. 3.6). After acting the monitored dynamics on P for time t, we use the following
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Figure 3.1: An illustration of the spreading and decay of local information.

quantity to measure how much information within region AP at input is detectable within
region BP at output:

IAR:BP
(t) ≡ SAR

(t) + SBP
(t)− SAR∪BP

(t), (3.6)

where AR is the part of the reference system corresponding to AP .

In Sec. 3.3.2, we show that any Clifford monitored dynamics can be treated as a map
between two quantum code spaces. We introduce the notion of logical operator transferring,
which is a natural generalization of operator evolution in unitary dynamics. Furthermore,
we show that IAR:BP

(t) exactly counts how many logical operators are transferred from
region A to the region B by the dynamics C(t) (Thm.1).

Then we focus on the behavior of information spreading in a monitored circuit. Our
findings are graphically illustrated in Fig. 3.1. Roughly, local information undergoes a
combination of two types of dynamics, decay and spreading, as summarized in the heat
map.

Decay of local information: Measurements can destroy the input information. In
Sec. 3.3.4, we show that the information within an interval A will be completely destroyed
at a time scale:

tloss ∝ |A|2, (3.7)

with IAR:P (t) = 0 for t > tloss. In fact, this relation is fundamentally equivalent to
Eq. (3.5) due to a statistical time-reversal symmetry of the dynamics, as further discussed
in Sec. 3.3.4.

Spreading of local information: Before the time tloss, local information gradually delocal-
izes. In Sec. 3.3.5, we numerically find that the remaining part of initially local information

24



is contained within a region of the size

D(t) ∝ t
3
2 . (3.8)

This super-ballistic information spreading again originates from the nonlocal effects of
measurements. We also confirm that it is ballistic in unitary circuits.

Initial state dependence: In Sec. 3.3.6, we discuss how the behavior of information
spreading changes if we fix a part of the input state. Specifically, we consider the setting
where only a subsystem A ⊆ P is considered as the variable input, while the rest of the
system Ac = P −A has a fixed initial state. We find that the spreading of A’s information
depends on the choice of the initial state for Ac. Namely, if Ac is initially in a pure product
state, then the spreading becomes linear instead of super-linear.

Comparison with DRPE: In Sec. 3.4, we discuss the relation between our results and
the statistical mechanics of directed polymers in random environment (DRPE), an effective
theory recently proposed for the entanglement dynamics in weakly monitored circuits [26].
We demonstrate that some of our results can be derived using DPRE, while the rest are
numerically consistent with DPRE.

3.2 Entanglement Dynamics

In this section, we study the dynamics of the stabilizer length distribution in weakly
monitored circuits and then discuss its implications for the evolving state’s entanglement
structure and the contiguous code distance growth. We will also discuss the initial state
dependence of these properties.

3.2.1 Stabilizer length distribution in clipped gauge

An L-qubit stabilizer state ρ, associated with a set of mutually commuting Pauli operators
(dubbed stabilizers) S = {g1, g2, ...gm}, is defined as:

ρ =
1

2L

∑
g∈G

g, (3.9)

where G = ⟨S⟩ is the stabilizer group: the Abelian group generated by all possible products
of the operators in S. If m = L, then the state ρ will be a pure state.
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Since two different sets of stabilizer generators could generate the same stabilizer group,
there is a gauge degree of freedom in choosing S for a given state ρ. When the qubits
are arranged in a 1D chain, there is a gauge choice called clipped gauge [53, 25], that is
particularly suitable for studying the entanglement structure. The clipped gauge is defined
as follows. We denote the left endpoint and right endpoint of each generator g ∈ S, a Pauli
string operator, as l(g) and r(g). We say S is in the clipped gauge if the following two
conditions are satisfied:

• |{g ∈ S : l(g) = i}|+|{g ∈ S : r(g) = i}|≤ 2 ∀i;

• if one of the two terms above equals 2, then two left (or right) endpoints at position
i must be different Pauli operators.

For any stabilizer state ρ, a clipped-gauged S always exists, but may not be unique.
However, the set of end-points pairs defined below is unique

B(ρ) ≡ {(l(g), r(g)) : g ∈ S}. (3.10)

See the appendix of Ref. [25] for details.

The clipped gauge and the set B are particularly useful for studying the entanglement
structure. Specifically, for any contiguous region A, we have [25, 53]:

SA = |A|−|{g ∈ S : supp(g) ⊆ A}|; (3.11)

where supp(g) is the interval [l(g), r(g)]. Therefore for two neighboring contiguous regions
A and B,

IA:B ≡ SA + SB − SAB
= |{g ∈ S : l(g) ∈ A, r(g) ∈ B}|.

(3.12)

Namely, for questions involving contiguous regions only, clipped-gauged stabilizer genera-
tors can be thought of as “generators of entanglement” where entanglement across a cut
is proportional to the number of bridging generators.

Even when A and B are not neighboring, a certain useful entanglement measure can
be explicitly computed. Suppose that A and B are separated by some interval C. Using
Eq. (3.11) four times, we find that the conditional mutual information is given by

IA:B|C ≡ IA:BC − IA:C
= SAC + SBC − SABC − SC
= |{g ∈ S : l(g) ∈ A, r(g) ∈ B}|.

(3.13)
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This relation tells us IA:B|C directly measures the sizes of the stabilizers. Namely, the
number of long stabilizers starting from A and ending in B exactly equals the conditional
mutual information.

Returning to the setting of (1+1)D monitored quantum circuits, for the evolving sta-
bilizer state ρ(t), we define its stabilizer length distribution as:

h(ℓ, t, x) = |{g ∈ S(ρ(t)) : len(g) = ℓ, mid(g) = x}|, (3.14)

where S(ρ(t)) is a clipped-gauged set of generators for ρ(t), while len(·) and mid(·) are
defined as:

len(g) = r(g)− l(g) + 1

mid(g) =

⌊
r(g) + l(g)

2

⌋
.

(3.15)

Evidently, h(ℓ, t, x) only depends on B(ρ(t)), thus is well-defined for a given ρ(t). In the
thermodynamic limit L→∞, the distribution should be independent of x as the dynamics
is statistically translational invariant. In numerical simulations where system size is always
finite, we expect this to still be the case, especially when the typical stabilizers’ endpoints
x± ℓ/2 are far from the system’s boundary. We omit the x dependence of h from now on.
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Figure 3.2: (a) Stabilizer length distribution h(ℓ, t) in an L = 512 circuit with open
boundary condition. (b) The same data after rescaling the x and y axes by t−ν and tµ,
respectively. The inset shows the same plot on a log-log scale.

We now study how the distribution evolves with time before the system reaches steady
states with a maximally mixed initial state ρ(0) = 1

2L
I. The simulation result, shown in

Fig. 3.2(a), leads us to the following scaling form for h(ℓ, t):

h(ℓ, t) = c(ℓ/ℓ∗(t))
e−ℓ/ℓ

∗(t)

ℓµ
, (3.16)
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with c(x) is a slow varying function that takes non-vanishing O(1) value for any x ∈ (0,∞).
Namely, below the length scale ℓ∗(t), the distribution has an equilibrium form that possesses
a time-independent power-law tail. On the other hand, above the length scale ℓ∗(t), the
distribution exhibits an exponential tail, indicating that stabilizer generators of size larger
than ℓ∗(t) are extremely rare and are essentially negligible.

Furthermore, we find that the cutoff ℓ∗(t) grows according to a power law in time:

ℓ∗(t) ∝ tν . (3.17)

This observation, together with the validity of the scaling form in Eq. (3.16), is reflected
by the data collapse of h(ℓ, t) at different time t, shown in Fig. 3.2(b). The best collapse is
given by µ = 1.66 and ν = 1.5, telling us that ℓ∗(t) ∝ tν grows super-linearly with time. As
we will discuss later in Sec. 3.4, these results are consistent with the domain-wall picture
which predicts µ = 5

3
and ν = 3

2
.

These results suggest that a small but non-negligible fraction of stabilizer generators will
grow super-linearly, namely ∼ t3/2. We will later demonstrate that these fast-growing sta-
bilizer generators can be indeed detected by a multipartite entanglement measure, namely
the conditional mutual information IA:B|C .

3.2.2 Entropy of a contiguous region

We have seen that the distribution h(ℓ, t) possesses a super-linear length scale ℓ∗(t) ∝ tν .
Given the close relation between h(ℓ, t) and the ρ(t)’s entanglement structure, we expect the
length scale to leave some imprint on the ρ(t)’s entanglement structure. In this subsection
we analyze the simplest case: the entanglement entropy SA of a contiguous subsystem A.

Recalling that the stabilizer distribution h(ℓ, t) contains information about ρ(t)’s en-
tanglement structure Eq. (3.11), we have:

SA(t) ≡ |A|−|{g ∈ S : supp(g) ⊆ A}|

= |A|−
|A|∑
l=1

(|A|−ℓ)h(ℓ, t)

≈ |A|−
∫ |A|

a

(|A|−ℓ)h(ℓ, t)dℓ.

(3.18)

In the last (approximate) equality, we introduced a UV cutoff a = O(1) in order to regu-
larize the integral.
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To build some intuition, let us begin by studying late-time cases with ℓ∗(t) ≫ |A|.
Then, the distribution h(ℓ, t) in the above integral is proportional to ℓ−µ. Performing the
integral, we find that the entanglement entropy SA approaches to the following steady form
for t≫ |A|1/ν :

SA ≈ b1|A|+b2|A|2−µ, (3.19)

where b1, b2 ≥ 0 are some constants. Hence, we find that the entanglement entropy consists
of the leading volume-law term as well as a sub-leading correction proportional to |A|2−µ
with 2−µ ≈ 1

3
. Furthremore, we find that the saturation time t ∼ |A|1/ν≈ |A| 23 is sublinear.

Next, let us turn our attention to the early time cases with ℓ∗(t) ≪ |A|. The scaling
behavior of the integral can be analyzed by approximating the distribution h(ℓ, t) as ℓ−ν

with a cutoff at ℓ∗(t), which leads to the following result for t≪ |A|1/ν :

SA ≈ b1|A|+b(1)2 |A|ℓ∗(t)−(µ−1) + b
(2)
2 ℓ∗(t)2−µ, (3.20)

with some constants b1, b
(1)
2 , b

(2)
2 > 0.

Here it is worth looking at the dynamical aspect of each term. The first term obviously
represents the time-independent volume-law contribution which survives at late times as
well. As for the second term, we notice that it is proportional to |A|, and hence contributes
to the volume-law entanglement. As t increases, however, the second term becomes smaller,
reducing the volume-law contribution. Explicitly, the second term decays as

b
(1)
2 |A|ℓ∗(t)−(µ−1) ∼ c1|A|t−ν(µ−1) (3.21)

until it becomes order of |A|2−µ at t ∼ |A|1/ν . Here it is natural to interpret this decay as
the loss of the volume-law entanglement due to projective measurements in the bulk of the
interval. As for the third term, it is initially zero, and then grows as

b
(2)
2 ℓ∗(t)2−µ ∼ c2t

ν(2−µ) (3.22)

until it becomes order of |A|2−µ at t ∼ |A|1/ν . Since it does not depend on |A|, it is natural
to interpret this growth as the creation of entanglement due to projective measurements
followed by unitary evolution.

Plugging µ = 5
3

and ν = 3
2

in, we obtain the following behavior for SA when ℓ∗(t)≪ |A|:

SA ≈ (b1 + c1t
−1)|A|+c2t

1
2 . (3.23)
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It is worth emphasizing that, while both the c1 and the c2 terms eventually contribute the
sub-leading terms |A|1/3 at saturation when t ∼ |A|2/3, their origins are of different nature.
It is also useful to note that the subleading term in the above equation implies that the
mutual information IA:B between small neighboring regions A,B grows sublinearly as t1/2

at early time, which is consistent with an observation from [26].

The time dependence of SA(t) at any time scale can also be studied by explicitly
performing the integral Eq. (3.16). Since c(x) takes O(1) values throughout x ∈ (0,∞),
its specific form does not change any scaling behavior of our interest. Hence, by setting
c(x) = 1, we obtain:

SA = b1(a)|A|+b2(η)|A|2−µ+o(a, |A|0), (3.24)

with
η = |A|/tν ,

b1(a) = 1 + a1−µ/(1− µ),

b2(η) = ηµ−1Γ(1− µ, 0, η) + ηµ−2Γ(2− µ, 0, η),

(3.25)

where Γ(z, x1, x2) =
∫ x2
x1
sz−1e−sds is the generalized incomplete gamma function. The key

observation is that the time-dependent part b2(η)|A|2−µ depends on t and A only through
the ratio η = |A|/tν .

3.2.3 Multipartite entanglement generation

We have observed that the stabilizer size distribution grows super-linearly and leaves some
imprints on the sub-leading behavior of SA for a contiguous subsystem A. These con-
tributions, however, are often hidden in the sub-leading terms, and are not manifest in
simple bipartite entanglement measures. In this section, we probe the super-linear stabi-
lizer growth using multipartite entanglement measures.

The underlying difficulty in detecting the super-linear stabilizer growth is the absence
of bi-partite entanglement in a weakly monitored circuit. Namely, the mutual information
IA:B for two distant subsystems A,B remains almost zero at any time. Here, we begin
by presenting a derivation of a universal expression of the mutual information from the
stabilizer length distribution.

Let A, C and B be three consecutive intervals, with C separating two disjoint intervals
A and B. Recall that the mutual information IA:B is given by

IA:B = SA + SB − SAB. (3.26)
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Here, SA, SB can be computed from the stabilizer length distributions as A,B are single
contiguous regions. However, SAB is the entanglement entropy for a union of two disjoint
intervals and cannot be readily computed. [Note that Eq. (3.12) considers the case where
A,B are neighboring.]

In order to overcome this difficulty, we shall utilize a stabilizer counting argument
combined with a certain probabilistic assumption about the Pauli operator contents of
stabilizers [52]. Let ρ(t) be an evolving stabilizer state in a monitored circuit, with G
being ρ(t)’s stabilizer group. In the stabilizer formalism, the mutual information between
A and B is given by:

IA:B = log|GAB|− log|GA|− log|GB|, (3.27)

where GX is the subgroup of G that only acts non-trivially on the subsystem X.

We now estimate log|GAB|, by assuming that each stabilizer in GABC has random
content within its support. Requiring stabilizers to be identity on C would impose 2|C|
independent constraints. However, since all stabilizers must commute with each other, in
particular with elements in GC , log|GC | constraints are automatically satisfied. Hence, we
arrive at the following estimation:

log|GAB| ≈ log|GABC |−2|C|+ log|GC |
= |AB|−SABC − SC .

(3.28)

The estimation combined with exact formulas for log|GA| and log|GB| gives rise to an
unphysical negative number for IA:B when stabilizers with empty support on C are rare.
Taking this case into consideration, we arrive at the following expression for IA:B:

IA:B ≈ max{SA + SB − SABC − SC , 0}. (3.29)

In Sec. 3.4.3 we will present another derivation of it based on the domain-wall picture.

The relation Eq. (3.29) holds regardless of C’s size. In the case of |C|> |A|, |B|, recalling
that the single interval entropy SX has a leading term that is linear in |X| at any time, we
conclude the first term in max{·} is always negative and IA:B ≈ 0 at any time.

We now return to the discussions of multipartite entanglement measures and their
relation to the sizes of stabilizer generators. The fact that IA:B ≈ 0 prompts us to con-
sider multipartite entanglement measures. A particularly useful choice is the tri-partite
information [54]:

IA:B:C ≡ SA + SB + SC − SAB − SAC − SBC + SABC , (3.30)
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which is also known as the topological entanglement entropy in studies of topological
phases of matter [55]. Roughly, the negativity of IA:B:C implies the presence of quantum
entanglement among four subsystems A,B,C and their complement (ABC)c. See [56, 57]
for detailed discussions on various properties of IA:B:C .

It turns out that, in a weakly monitored circuit, the tri-partite information is equivalent
to the conditional mutual information:

IA:B:C = IA:B − IA:B|C ≈ −IA:B|C (3.31)

since IA:B ≈ 0. This enables us to evaluate IA:B:C using the stabilizer length distribution
via Eq. (3.13).

Let us consider two regions A and B separated by a long interval C. For concreteness,
we let |A|= |B|= r|C| for some small r ≪ 1, so that |C| is the only length scale in the
problem. Recalling that IA:B|C exactly measures the number of stabilizers that connect A
and B, and the longest stabilizer at time t has a size ℓ∗(t), we conclude IA:B|C(t) should
go from zero to non-zero when ℓ∗ ∼ |C| ⇔ t ∝ |C|2/3.

An alternative and more quantitative way is the following. Using Eq. (3.18), we know
that IA:B|C must take a form

IA:B|C(t) = g(|C|/tν)|C|2−µ. (3.32)

This implies that the time-scale t∗ for IA:B:C to develop must be proportional to |C|1/ν=
|C|2/3, i.e. t∗ grows sub-linearly with the A and B’s separation.

Both analyses lead to the conclusion that: A and B start to get entangled in a time scale
that is sublinear in their distance |C|. We verify this statement numerically by simulating
IA:B|C explicitly, as displayed in Fig. 3.3(a). The Fig. 3.3(b) shows the collapse of the
simulated IA:B|C according to the scaling form Eq. (3.32), showing the validity of the scale
form Eq. (3.32).

3.2.4 Code distance growth

In this subsection, we study the entanglement dynamics from the perspective of quantum
error-correcting codes. Namely, we argue that the sublinear time scale t ∼ L

2
3 corresponds

to the encoding time of a monitored quantum circuit.

For a stabilizer code ρ, the number of independent logical operators in a region A equals
IA:R(|ρ⟩), where |ρ⟩ is a purification of ρ and R is the reference system [30]. Thus, the code
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Figure 3.3: (a) Dynamics of conditional mutual information IA:B|C(t), on a periodic spin
chain for various L. Inset shows the geometry of A, B and C, whose sizes are |A|=
|B|= 5

24
|C|= 1

8
L (b) The collapse of IA:B|C ’s data using the scaling form Eq. (3.32), with

(µ, ν) = (1.66, 1.5).

distance dcode can be expressed as:

dcode = min{|A|: IA:R(|ρ⟩) > 0}. (3.33)

In fact, IA:R(|ρ⟩) can be computed from ρ directly. Denote Ac as the complement of A in
the physical system and notice that |ρ⟩ is a pure state on AAcR. We then have:

IA:R(|ρ⟩) = 2SA(ρ)− IA:Ac(ρ), (3.34)

where the r.h.s. can be determined by the entanglement structure of ρ.

Returning to monitored quantum circuits, recall that the evolving state ρ(t) can be
viewed as a stabilizer error-correcting code whose dynamical code space is the subspace
where ρ(t) is supported [29, 30]. The (contiguous) code distance dcode corresponds to the
size of a minimal contiguous subsystem that supports a logical operator.
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Let us begin with the equilibrium case with t ≫ L
2
3 . It has been shown that dcode

is closely related to the subleading term of the steady state entanglement entropy in
Eq. (3.19). Namely, if dcode ∝ Lγcode , then the entanglement entropy SA must have a
sub-leading term with |A|γcode [52]. Using this observation, we obtain the following relation
of scaling exponents:

γcode = 2− µ ≈ 1

3
, (3.35)

which relates the power-law tail of the stabilizer distribution and the code distance. This
is consistent with the numerical estimate of γcode from [30, 26].

Next, let us consider the intermediate case with t ≪ L
2
3 . Here, we find that the code

distance grows as dcode ∼ t1/2 before it reaches the equilibrium value of ∼ L1/3 at a time
scale t ∼ L2/3. This can be derived by following an argument from [52]. Namely, we pick
two equal-sized contiguous regions B1 and B2 to the left and right of A. When |B1|= |B2|
is sufficiently large, we have IA:Ac = IA:B where B = B1∪B2. By making use of the relation
Eq. (3.29), we obtain:

2SA − IA:B = SAB + SA − SB1 − SB2 + IB1:B2

≈ max{0, SAB + SA − SB1 − SB2}.
(3.36)

The second term is negative when |A| is small, and it gradually switches to positive values
as |A| increases. In this regime, we also have IB1:B2 ≈ 0. Thus, the code distance is given
by the size of A that satisfies:

SB1 + SB2 − SAB − SA ≈ 0. (3.37)

Recalling that B1, B2, and A∪B are contiguous regions, we can compute their entanglement
entropies using Eq. (3.23). When |A|≪ t3/2, we find

2
(
(b1 + c1t

−1)|B1|+c2t1/2
)

≈ (b1 + c1t
−1)(2|B1|+|A|) + c2t

1/2 + b1|A|+b2|A|1/3

⇒ dcode = |A| ≈ c2t
1/2

2b1 + c1t−1
∼ t1/2.

(3.38)

We confirmed this scaling numerically, by simulating the following quantity:

dcode,ϵ(t) ≡ argmax|A|(IR:A(t) ≤ ϵ). (3.39)
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ϵ is taken to be 1.

3.2.5 Code equilibrium v.s. entanglement equilibrium

Superlinear growth of stabilizer generators leads to a new sublinear time scale t ≃ L
2
3

which can be identified as an encoding time of a dynamically generated stabilizer code.
Indeed, we have seen that the stabilizer length distribution, as well as the contiguous code
distance, reaches a steady form after t ≃ L

2
3 . This suggests that the resulting output state

ρ(t) is close to a maximally mixed state inside the dynamically generated code subspace

after the code equilibrium time of t ≃ L
2
3 .

This observation, however, appears to be in tension with previous results on monitored
quantum circuits. Namely, if one starts the circuit from states with low entanglement (such
as product states), the evolving state will acquire a steady form of entanglement structure
and reach the volume-law entanglement only at a much later time of t ≃ L [20]. Some
readers might wonder if this suggests that the encoding time would actually be t ≃ L
instead of t ≃ L

2
3 .

The key to resolving this apparent puzzle is to observe that not all the states in the
code subspace possess volume-law entanglement. To understand this point, let us consider
the entanglement entropy SA(t) for different initial states at the encoding time t ≃ L

2
3 .

When the initial state of the circuit is a product state, the output state |ψprod(t)⟩ does not

possess a volume-law entanglement. Namely, we have SA(t) ≃ |A| only up to |A|⪅ L
2
3 ,

and SA(t) ≃ L
2
3 for |A|⪆ L

2
3 . These output states |ψprod(t)⟩, however, are still in the code

subspace. Next, when the initial state of the circuit is a Haar random state, the output
state |ψHaar(t)⟩ has a volume-law entanglement. Namely, one can show that SA for |ψHaar(t)⟩
behaves in a similar way to the one for the case with a maximally mixed initial state as
long as |A|≤ L

2
[52]. Here, |ψHaar(t)⟩ corresponds to a typical random state inside the code
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subspace.

The aforementioned observation suggests that, while there exist atypical codeword
states |ψprod(t)⟩ with ≃ L

2
3 entanglement, typical codeword states indeed possess the

volume-law entanglement. This resolves the puzzle concerning t ≃ L
2
3 v.s. t ≃ L; the

former is the required time to reach the codeword state while the latter is the time to
attain entanglement properties of typical codeword states.

3.2.6 Pure v.s. mixed initial state

So far in this section, we have focused on cases where the initial state of the circuit is the
maximally mixed state. A naturally arising question concerns what will happen if we start
from a pure product state instead. It has been previously noted that the two choices lead
to strikingly different behaviors of the entanglement dynamics at late time [25, 29]. Here
we revisit this problem, focusing on whether the super-linear growth is also present in the
pure initial state case.
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Figure 3.5: Numerical results for a pure initial state. (a) Stabilizer length distribution
h(l, t) with L = 512 and open boundary condition, within the same time period as in
Fig. 3.2 (b) Dynamics of IA:B|C(t), with A, B and C arranged in the same manner as in
Fig. 3.3(a). The inset shows the same data but with both axes rescaled by a factor of L−1.

We present the simulated h(ℓ, t) for a pure product initial state in the Fig. 3.5(a). Recall
that, for a pure product state, all stabilizer generators are of size one, and thus, the initial
distribution is a sharp peak h(ℓ, t = 0) ∝ δ(ℓ−1). For t > 0, the short stabilizer generators
will grow due to the action of unitary gates, which corresponds to a right-moving peak. On
the left side of the peak, one finds a power-law decaying profile that remains unchanged
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even after the peak passes. Here, the exponent 5
3

is the same as the one observed in the
mixed state case. This suggests that the power-law profile in h(ℓ, t) is present regardless
of the choice of initial states. On the right side of the peak, h(ℓ, t) exponentially decays to
zero, with an exponent that does not seem to be strongly dependent on time.

Importantly, numerical results suggest that the pure evolving state does not possess
any super-linear growth. Indeed, the peak only moves linearly with t, and h(ℓ, t) decays
quickly after the peak. This is also reflected in the simulation of IA:B|C(t) [Fig. 3.5(b)].
We find that the time scale for IA:B|C to take non-zero value scales linearly with |C|, in

contrast to the t ∼ |C| 32 in the mixed state case.

To gain some understanding of entanglement dynamics for this case, we propose the
following scaling form of h(ℓ, t) which captures the salient features described above:

h(ℓ, t) = c′1
Θ(ℓ∗(t)− ℓ)

ℓ5/3
+ c′2δ(ℓ− ℓ∗(t)), (3.40)

where ℓ∗(t) ≈ t is the position of the peak. Though the peak in the figure does get broader
with time, we approximate it with a delta function for ease of discussion.

By making use of Eq. (3.11) and the initial condition SA(0) = 0, we derive that a
contiguous region’s entanglement entropy has the following form:

SA(t) =

{
b1t+ b2t

1
3 ℓ∗(t) < |A|

b1|A|+b2|A|
1
3 ℓ∗(t) > |A|

(3.41)

where the b1 and b2 are the same as those appeared in Eq. (3.19). This entanglement
growth is similar to the one in the pure unitary dynamics starting from a pure state, where
SA typically grows linearly until saturation.

We can also use the expression above to compute IA:B|C(t). By keeping the leading
term with b1 only, we have

IA:B|C(t)

=(SAC + SBC − SABC − SC)(t)

=


0 ℓ∗(t)

|C| < 1

b1(t− |C|) 1 < ℓ∗(t)
|C| < 1 + r

b1((1 + 2r)|C|−t) 1 + r < ℓ∗(t)
|C| < 1 + 2r

0 ℓ∗(t)
|C| > 1 + 2r

(3.42)

which indeed captures salient features of the simulated IA:B|C(t) in Fig. 3.5(b).
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3.3 Information dynamics

In the previous section, we studied how the entanglement structure of the output state
ρout(t) evolves. In this section, we consider how local information about the input state
spreads out by studying correlations between the input and the output states.

3.3.1 Input-Output correlation

In order to study information spreading, it is convenient to introduce a reference system
R = {1R, 2R, ..., LR} for the original physical system P = {1P , 2P , ..., LP}. Each qubit in
R is initially maximally entangled with its partner in P , and the monitored circuit acts on
the physical system only, see Fig. 3.6 for an illustration. The resulting state is

|ϕm(t)⟩ ∝
∑

s∈{0,1}L
(Cm(t) |s⟩)P ⊗ |s⟩R (3.43)

where Cm is defined in a way similar to and m represents the measurement outcome. The
output state ρout(t) of a monitored circuit, when starting from a maximally mixed state,
can be obtained by tracing out the reference system R as ρout(t) = TrR( |ϕm(t)⟩ ⟨ϕm(t)| ).

Figure 3.6: A visualization of |ϕm(t)⟩ defined in Eq. (3.43). Physical qubits (P , blue dots)
and reference qubits (R, yellow dots) are initially maximally entangled and the circuit acts
on the physical qubits only.

Under the action of monitored circuits, some of the information initially contained
in a subregion AP will gradually spread without being eliminated by measurements. To
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quantify this effect, we utilize the mutual information between the output and the input
spaces:

IAR:BP
(t) = (SAR

+ SBP
− SAR∪BP

)(|ϕm(t)⟩) (3.44)

for various subregions BP ⊆ P . Intuitively, this quantity measures how much information
is transmitted from A to B by the monitored circuit Cm(t).

In the remainder of this section, we will provide a physical interpretation of IAR:BP
(t)

and its relation to the notion of operator spreading. We then study the behavior of IAR:BP
(t)

in both monitored and unitary (1 + 1)-dimensional circuits.

3.3.2 Isomorphism between quantum codes

A single trajectory of Clifford monitored quantum dynamics Cm can be viewed as an
isomorphism between two quantum error-correcting codes. To see this, we perform the
singular value decomposition to Cm:

Cm =
K∑
i=1

|vi⟩ ⟨ui| . (3.45)

Note that all the non-zero singular values of Cm are 1 as Cm is a Clifford monitored
dynamics. The decomposition defines two stabilizer code subspaces: Hin = ⟨u1, ..., uK⟩
and Hout = ⟨v1, ..., vK⟩, and corresponding projectors are given by

Pin = C†
mCm, Pout = CmC

†
m. (3.46)

Furthermore, the input and output stabilizer code states ρin, ρout are given by maximally
mixed states of |ui⟩ and |vi⟩ respectively.

Using this decomposition, we can view the dynamics Cm as a two-step process: for an
incoming state |ψ⟩, Cm will first discard the part of |ψ⟩ that is orthogonal to Hin:

|ψ⟩ ⇒ Pin |ψ⟩ , (3.47)

then unitarily transform the remaining wavefunction into the subspace Hin:

Pin |ψ⟩ ⇒ CmPin |ψ⟩ . (3.48)

Hence, Hin is the input subspace whose information is preserved, whileHout is the subspace
into which the preserved information is unitarily processed.
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By viewing the monitored dynamics Cm as an isomorphism between two stabilizer
codes, a correspondence between logical operations for Hin and for Hout can be naturally
defined. Assume that O and Õ are non-trivial logical operators defined on Hin and Hout

respectively. We say that O is transferred to Õ by the dynamics Cm if and only if:

CmO = ÕCm, (3.49)

namely, applying O on the input state is equivalent to applying Õ on the output state.
It is worth noting that this is not a one-to-one correspondence as logical operators have
multiple equivalent expressions which act in the same manner in code subspaces.

The notion of transferred operators, defined above, is a natural generalization of oper-
ator spreading to non-unitary settings. Note that, in the special case that C is a unitary
evolution, both Hin and Hout are the total Hilbert spaces and any operator O is a logical
operator. In particular, its transferred operator Õ is uniquely given by its unitary evolution
under C as Õ = C†OC.

The above discussions enable us to discuss information spreading in a quantitative
manner by studying the growth of logical operators under an isomorphism Cm. Letting
A ⊆ P (input) and B ⊆ P (output) be two subsets of qubits, one can ask how many
inequivalent input logical operators defined on A, can be transferred to output logical
operators defined on B. Namely, we are interested in the number of inequivalent OA such
that:

∃ÕB supported on B ÕBCm = CmOA. (3.50)

The following theorem relates this number to the mutual information IAR:BP
defined in

Eq. (3.44):

Theorem 1. IAR:BP
equals the number of independent and inequivalent Pauli logical

operators supported on A that can be transferred by Cm to some logical operator within
B.

This theorem can be easily proven using Eq. (3.11), once we notice that the expression

Eq. (3.50) is equivalent to OT
A ⊗ ÕB |ϕm⟩ = |ϕm⟩, namely OT

A ⊗ ÕB is a stabilizer of |ϕm⟩.

3.3.3 Logical operator growth

The study of operator growth plays a central role in our understanding of unitary circuits.
Given the formalism developed in the previous subsection, it is natural to ask how a logical
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operator’s size changes in time when it is transferred in a monitored circuit. In this part,
we provide an argument showing that an O(1) sized logical operator will be transferred to
an O(t3/2)-sized one by t layers of circuit dynamics.

A key part of the argument is to compare output code states ρout for circuits of different
depths. To do so, we deepen the circuit by adding new operations to the initial time slice
C, one at a time.

First, if we add a unitary gate, then:

C ′ = CU, (3.51)

which induces no change to the output code state:

ρ′out ∝ C ′C ′† ∝ CC† = ρout. (3.52)

Next, we consider the other case that a Zi basis measurement is added to C:

C ′ = C
1 + Zi

2
. (3.53)

The impact on ρout depends on whether Zi is a non-trivial logical operator of ρin ∝ C†C.
Namely, if Zi is not a logical operator of ρin, or if Zi is just a trivial logical operator of
ρin, then one can show that it leaves the ρout unchanged; while if Zi is a non-trivial logical
operator of ρin, it changes ρout in the following way:

ρ′out =
1 + Z̃i

2
ρout, (3.54)

where Z̃i is a non-trivial logical operator of ρout, which is Zi’s transferred operator as
defined in Eq. (3.49):

CZi = Z̃iC. (3.55)

From the perspective of ρout’s stabilizers Sout, the change Eq. (3.54) corresponds to adding
a new stabilizer to Sout:

S ′
out = Sout ∪ {Z̃i}. (3.56)

We can now infer the size of Z̃i by relating our observations above to our earlier con-
clusion that Sout’s stabilizer length distribution h(ℓ, t) follows Eq. (3.14). Since the only
part of h(ℓ, t) that changes at time t is the small region around ℓ = ℓ∗(t) ∼ t3/2, we expect

that Sout’s newly added stabilizer Z̃i is of a size ∼ t3/2. Thus Zi is transferred to a ∼ t3/2

sized operator Z̃i by C(t). We will confirm this conjecture numerically in Sec. 3.3.5.
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Here, we would like to note one caveat in the aforementioned argument concerning
the size of Z̃j. Recall that the size distribution in Eq. (3.14) is defined for stabilizer

generators in a clipped gauge. Adding Z̃j to stabilizer generators in a clipped gauge does
not necessarily create stabilizers in a clipped gauge. As such, the evolution of Eq. (3.14)

may be sourced by the addition of Z̃j as well as some rearrangement of stabilizer generators
to fit in a clipped gauge. Despite this subtlety, we expect that such rearrangement will not
significantly alter our argument. For one thing, in the time regime of our interest, Sin(t)
is not full rank, so there is an O(1) chance that we do not need any rearrangement to a

clipped gauge at all. Furthermore, even when Z̃j breaks a clipped gauge, recombinations

with other stabilizer generators do not change the size of Z̃j much. Hence, we expect that
our estimate remains qualitatively valid.

3.3.4 Loss of local information

In this subsection and the next, we study information spreading through numerical sim-
ulations of IAR:BP

(t). We perform simulation of IAR:BP
(t) for both unitary (p = 0) and

monitored (p = 0.08) cases. We set A = [−a, a] and B = [−d, d], with the origin taken to
be the midpoint of the corresponding system (P or R). An illustration of the setting is
shown in Fig. 3.7. For the brevity of the presentation, we use the symbol IA as a short-hand
notation for the input information within A. As we have discussed, IAR:BP

(t) measures the
amount of IA detectable within region B ⊆ P at time t.

Figure 3.7: Arrangement of AR = [−a, a]R and BP = [−d, d]R in the numerical simulation.
The figure shows the special case of a = 1 and d = 3.
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We start by considering IAR:P (t) = IAR:(−∞,∞)P (t), i.e. the amount of remaining IA in
the whole system at time t. In the unitary (p = 0) case, we know:

IAR:P (t) ≡ 2|A|, (3.57)

because unitary dynamics acts on P only and R is always maximally entangled with P .
This implies that IA is always preserved somewhere within the total system P , as is
expected to be the case for a unitary dynamics.

When measurements are turned on (p ̸= 0), they may destroy IA, as reflected in
a gradual decay of IAR:P (t), see Fig. 3.8(a). It is natural to expect that IAR:P (t) will
eventually become zero and IA will be completely lost, at some time scale that depends
on |A|= 2a.
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Figure 3.8: Decay of the remaining IA within the system for various different A’s sizes.

It turns out this problem, concerning the loss of local information, is equivalent to the
code distance growth which we have studied in Sec. 3.2.4. Monitored circuits respect time
reversal symmetry on average: C†(t), which is the reversed circuit of C(t), has the same
distribution as C(t). This implies that

IAR:P (t) = IAP :R(t). (3.58)

Note that this equality is defined for averaged quantities, and may not hold for each
instance. In Sec. 3.2.4, we derived that the r.h.s. vanishes when |A|< O(

√
t). This

suggests that the time scale for IA to be completely lost is given by

t∗loss ∼ |A|2. (3.59)
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3.3.5 Information spreading

Next, we study how the remaining IA spreads with time. Since we are interested in the
portion of IA which was not lost by measurements, we analyze the following normalized
mutual information:

µ(d, t) =
IAR:[−d,d]P (t)

IAR:P (t)
. (3.60)

Here, µ(d, t) measures the fraction of survived IA detectable within the region [−d, d], at
a given time t. Note that the spreading of IA is only well defined before it is completely
lost, i.e. before the time scale Eq. (3.59).

Fig. 3.9 (a) and (b) show the heatmaps of normalized mutual information as a function
of radius d and time t, for unitary and monitored dynamics respectively. We find that
there are three regimes: a dark blue region where µ(d, t) ≈ 0 for small d, a bright yellow
region where µ(d, t) ≈ 1, and an intermediary transitioning region.

• µ(t, d) ≈ 1 implies that [−d, d] contains all the remaining IA at time t, and thus
the smallest such d marks the boundary of the region where the remaining IA is
supported on. Formally we can define this boundary as

Dϵ(t) = argmind (µ(d, t) ≥ 1− ϵ) (3.61)

for some ϵ ≪ 1, and [−Dϵ(t), Dϵ(t)] is where the remaining IA is suppoerted. We
plotted D0.1(t) with orange dashed lines in Fig. 3.9(a) and (b).

• µ(t, d) ≈ 0 implies that one cannot probe any IA within [−d, d]. We observe
that, in both unitary and monitored cases, there exists a region with µ(t, d) ≈ 0.
[−dϵ(t), dϵ(t)] defines the largest region that no information IA can be detected. The
radius of the information-less region can be quantified by (ϵ≪ 1):

dϵ(t) = argmaxd (µ(d, t) ≤ ϵ) . (3.62)

In Fig. 3.9(b), d0.1(t) are plotted using blue dashed lines.

The physical meaning of Dϵ(t) and dϵ(t) becomes clear by recalling the discussion in

Sec. 3.3.2. Let us assume that OA is transferred to ÕB by the dynamics Cm, in the sense of
Eq. (3.50). Recalling that IAR:BP

measures the amount of logical operators transferred from

A to B, we conclude ÕB can be supported within [−Dϵ(t), Dϵ(t)] but beyond [−dϵ(t), dϵ(t)].
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Figure 3.9: Simulation results for IAR:BP
(t) in a system with L = 768 qubits. (a)(b)

Heatmaps of the normalized mutual information µAR,BP
, as a function of t and |B|= 2d,

for unitary and monitored dynamics respectively. (c) The growth of dϵ(t) and Dϵ(t) with
ϵ = 0.01. Both quantities develop power-law growing behaviors at late time. The Dϵ curve
has a plateau at late time as they reach the boundary of the simulated system.
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This is consistent with and further generalizes our conclusion in Sec. 3.3.3, stating that a
O(1) sized operator will be transferred to a O(t3/2) sized one after t steps of dynamics.

The evolutions of the three regions define information lightcones, whose behaviors
sharply differ between unitary and monitored dynamics. Here, dϵ(t) and Dϵ(t) corre-
spond to the inner and the outer front of the lightcone respectively. In the unitary case
in Fig. 3.9(a), both lightcones grow linearly with time, consistent with emergent causality.
In contrast, in the monitored case in Fig. 3.9(b), both lightcones are outward bent, corre-
sponding to the super-linear spreading of IA. In Fig. 3.9(c), we plot the growth of dϵ(t)
and Dϵ(t) with ϵ = 0.01. Both dϵ(t) and Dϵ(t) display power-law growth in late time, with
the fitted exponents (fitted lines are displayed as black dashed lines in the figure):

a = 4 : dϵ(t) ∝ t1.78, Dϵ(t) ∝ t1.47,

a = 8 : dϵ(t) ∝ t1.89, Dϵ(t) ∝ t1.46.
(3.63)

We notice that the inner and the outer front have different exponents. Namely, the
latter one is close to 3/2 as predicted in Sec. 3.3.3.

Furthermore, the inner exponent is larger than the outer one, suggesting that two fronts
are likely to collide at some point. This is consistent with the interpretation that the inner
front and the outer front respectively mark the shortest and the longest survived logical
operator initially supported on A. Recall that all the logical operators will be eventually
destroyed (i.e. IAR:P ≈ 0) at a time scale t ∝ |A|2, and shortly before this time scale,
there will be only one logical operator surviving. This logical operator is both the longest
logical operator and the shortest logical operator, which means that two fronts of the
lightcone collide. Numerically accessing this time scale, however, is challenging due to the
requirement of running a large system for a long time.

We currently do not have a physical explanation of the exponent for dϵ(t). We leave
this as a future question.

3.3.6 Partially fixing the input state

Until now, we have treated Cm as a dynamical process whose input is the entire physical
system P . In this subsection we discuss the consequence of using only a small subregion
A ⊆ P as the input while fixing the initial state for other qubits in Ac = P\A. In
the error-correcting code perspective, fixing part of the initial state effectively selects a
subspace of the original code space. Here, we restrict our discussion to the case that ρAc

is a homogeneous product state: ρAc = ⊗i∈Ac(ρ0)i, where ρ0 is some single qubit density
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matrix, see Fig. 3.5(a) for illustration. A similar setting was considered in [58] for studying
information spreading in measurement-only circuits.
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Figure 3.10: (a) The circuit configuration for the alternative setting to characterize in-
formation spreading discussed in Sec. 3.3.6, where A = {3, 4} (b) Decay of A = [−a, a]’s
initial information with time t. (c) Heatmap of the normalized mutual information µ(d, t)
in the alternative setting

Let us begin by introducing a reference system R which is maximally entangled with
A initially. Note that, in this case, R = AR = [−a, a]R has the same size as A.

We first discuss the case that ρ0 = 1
2
I, i.e. the input state on AcP is initially maximally

mixed. This enforces no constraint on the codespace, so it is equivalent to the previously
studied case in Sec. 3.3.5.

Next, we consider the case ρ0 = |0⟩ ⟨0|, i.e. qubits in AcP are initially prepared in
a pure product state. We present the numerically simulated IAR:BP

(t) in Fig. 3.10(b-c).
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In panel (b), we observe that A’s input information equilibrates to some constant value
instead of decaying to zero with time (at exponentially long time, we expect it to decay
to zero). In addition, in panel (c) which displays the heatmap for the normalized mutual
information µ(d, t), we find that the remaining information spreads only linearly, instead
of super-linearly with time. This behavior of information spreading is similar to the one
observed in measurement-only dynamics within its volume-law, as reported in [58].

3.4 domain-wall Picture

It has been proposed that several universal features of entanglement dynamics in weakly
monitored circuits can be described effectively by modeling entanglement domain-walls
using directed polymers in a random environment (DPRE) [26]. In this section, we revisit
our results from the domain-wall picture and the DPRE effective theory.

3.4.1 Review of domain-wall picture

We begin by providing a brief review of the domain-wall picture and the DPRE effective
theory. We refer interested readers to [59, 31, 30, 60, 61] for detailed discussions on how
to map monitored circuits to statistical mechanics models as well as how the former’s
entanglement properties are related to domain-walls in the latter.

Consider a t-layer circuit defined on an infinite qubit chain with the initial state being
maximally entangled with the reference R as in Fig. 3.6. By stacking Q copies of the (1+1)-
dimensional circuit and performing disorder average over random unitary gates, one can
map the whole system to a (2+0)-dimensional classical statistical mechanics model on the
same space-time manifold. Through this mapping, each unitary gate is mapped to a spin
in the bulk, while each qubit in P and R is mapped to a spin located at the boundaries.
Here, spins {s} take values in the permutation group SQ. The weakly-monitored phase of
the circuit corresponds to the ordered phase of the spin model.

Entanglement properties of the original quantum circuit can be found by looking for the
domain-walls in the statistical mechanics model. In particular, the entanglement entropy
SA(t) of a boundary region A ∈ P ∪ R is given by the free energy cost of a domain-wall
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that separates A from the rest of the boundary Ā = P ∪R− A:

SA(t) ≈ f



 (3.64)

where f(·) denotes the energy cost of the domain-wall(s) configuration (the dark grey
curve).

While the above figure considers the case where A is a single contiguous region, the
region A can be any subset of P ∪R. Generally, there may be domain-wall configurations
with different topologies that separate A and Ā. For example, if A = A1∪A2 with A1 ⊆ P
and A2 ⊆ R, the domain-wall can have two different topologies:

:

In this case the free energy, in the leading order, is given by the configuration that gives
the smaller free energy:

SA(t) = min

f
  , f

  (3.65)

Furthermore, if the domain-wall has several disconnected pieces (for instance in the case
shown above), its total free energy is the sum of each individual piece’s contribution.

Solving domain-wall’s properties from the statistical mechanics model is in general not
feasible. In [26], the authors find numerical and analytical evidence suggesting that large-
scale properties of the domain-wall are captured by DPRE. In particular, a single piece of
domain-wall’s energy cost is approximately proportional to the length of the shortest path
connecting two endpoints in a random media:

f

  ≃ min
z(τ):z(0)=x,

z(1)=y

(∫ 1

0

V (z(τ))|z′(τ)|dτ
)

≡ D(x,y),

(3.66)
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where V (x) is a quenched random potential without spatial-temporal correlation cov(V (x), V (y)) =
σ2δx,y and with a positive mean E[V (x)] = µ > 0. The z(·) runs over all paths connecting
x to y. It should be noted that, while the leading term in D(x1,x2) is proportional to
|x1 − x2|, it contains a subleading contribution which gives rise to non-trivial multipartite
entanglement as we shall see later.

Before finishing the review, we discuss an issue about the directedness of the shortest
paths z(τ) appearing in Eq. (3.66). In the original proposal of the effective theory [26],
it is further required that z(·) is only chosen from paths that are directed (i.e. not going
backward) along the x-y direction, as is suggested by the word ‘directed’ in the name
DPRE. In fact, this extra constraint does not have to be added by hand. This is because
for a typical realization of V , the not-necessarily-directed shortest path connecting x and
y has only a O(1) length overhang along the x-y direction [62], which is negligible after
coarse-graining. In other words, directed shortest paths and un-directed shortest paths
connecting x and y belong to the same universality class, and are indistinguishable in
the thermodynamic limit. Thus, depending on our purpose, we can impose or lift the
directedness at our convenience at the lattice level without worrying about getting different
conclusions in the thermodynamic limit.

3.4.2 Domain-wall interpretation of SA

Henceforth, for each quantity O defined in the context of monitored circuits, we use [O] to
denote its counterpart in the DPRE effective theory.

We start from the simplest case: entanglement entropy of a single contiguous interval
A. Using the domain-wall description Eq. (3.64), SA can be written as follows:

: SA(t) = f

  , (3.67)

where
x1 = (0, t), x2 = (|A|, t) (3.68)

and
[SA(t)] ≃ D(x1,x2). (3.69)
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Numerical and theoretical studies in [26] found that the mean of D takes the following
scaling form:

D(x1,x2) = s0(t)|A|+|A|
1
3 Φ(t|A|−

2
3 ), (3.70)

where Φ(·) in the subleading term is a universal scaling function with the following limiting
behavior:

Φ(η) =

{
η1/2 η → 0
η0 η →∞ (3.71)

This implies that the subleading part of SA(t) behaves as:

Ssub
A (t) ≃

{
t
1
2 t≪ |A| 23
|A| 13 t≫ |A| 23

(3.72)

This agrees with our results derived from the stabilizer length distribution in Sec. 3.2.2.
Furthermore, since the conditional mutual information Eq. (3.32) and the growth of con-
tiguous code distance Eq. (3.5) rely only on the dynamics of SA(t) in single intervals, we
conclude these are also consistent with the DPRE effective theory.

The domain-wall picture also provides a useful insight into the SA’s different behaviors
for pure and for completely mixed initial states. In the pure initial state case, the underlying
statistical mechanics model assumes free boundary condition on the t = 0 boundary [59,
27, 31], and domain-walls can freely start or end on the t = 0 boundary. We thus have

SA(t) ≈ min

{
f

( )
, f

( )}
. (3.73)

Using properties of the D(·) function, we notice that in the leading order the first term is
O(|A|), while the second term is O(t). This suggests that, when t is sublinear in |A|, the
second term is preferred over the first one. This changes at a time scale t∗ ≃ |A|, after
which the first term becomes smaller. Furthermore, we notice that the time scale t∗ is far
later than the other time scale ≃ |A|2/3 at which the first term would reach the equilibrium.
We thus conclude that SA(t) hardly changes after t∗. In summary, we have the following
behavior of SA(t):

SA(t) ≃
{
t t < t∗ = O(|A|)
|A| t > t∗

(3.74)

which agrees with the results we obtained in Sec. 3.2.6.
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3.4.3 Domain-wall interpretation of IA:B

Next, we turn our attention to the mutual informaiton IA:B and present a derivation of
Eq. (3.29) using the domain-wall picture, which is reprinted below

IA:B ≈ max{SA + SB − SABC − SC , 0}. (3.75)

Here, A, B and C are arranged as follows:

Using the relation Eq. (3.64), the domain-wall representations for the three terms in
IA,B are:

SA = f

  ,

SB = f

  ,

SAB = min

f
  , f

 
= min{SABC + SC , SA + SB}.

(3.76)

Combining them together, we again obtain Eq. (3.29).

Here we would like to point out a certain subtlety, due to the subleading contributions,
in evaluating the minimum of domain-wall’s free energies. Recalling that the leading
order contribution of a domain-wall’s free energy is proportional to the distance between
two endpoints, one might think that the second domain-wall configuration for SAB in
Eq. (3.76) would be always smaller. Notice, however, that the difference in the leading
order contributions is O(|C|), and if |C| is comparable to the subleading terms in SA or
SB, the subleading contributions could make the first domain-wall configuration smaller.
This is indeed what we observed in the calculations of the code distance in Sec. 3.2.4.

52



3.4.4 Domain-wall interpretation of IAR:BP

Finally, we evaluate IAR:BP
, defined in Eq. (3.44), which was used as a measure of in-

formation spreading in Sec. 3.3. Recall that the intervals A and B have the following
configuration:

,

Using the domain-wall picture, we can obtain the following relations:

SAR
= f

 
SBP

= f

 
SAR∪BP

= min

f
  , f

 
⇒ IAR:BP

≈ max

0, f

 − f
  .

(3.77)

In the last line we make use of the additive property of the domain-walls’ energies:

f

 + f

  ≈ f

  . (3.78)

The four points involved are chosen as

x1 = (−d/2, t), x2 = (d/2, t),

x3 = (−a/2, 0), x4 = (a/2, 0).
(3.79)
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and we have
[IAR:BP

(t)] = max{0, D(x1,x2) +D(x3,x4)

−D(x1,x3)−D(x2,x4)}.
(3.80)

Since the analytical expressions for D(x1,x3) and D(x2,x4) are not known, we resort
to a direct simulation of Eq. (3.80). Details about the shortest paths simulation can be
found in Sec. C.2.

As shown in Fig. 3.11(a), the behavior of the simulated [µAR:BP
(t)] = [IAR:BP

(t)]/[IAR:P (t)]
is qualitatively similar to that of µAR:BP

shown in Fig. 3.9(b). Furthermore, we calcu-
late [dϵ(t)] and [Dϵ(t)] and find that they also develop power-law growth in late times
(Fig. 3.11(b), black dashed lines are power-law fittings). The exponents are fitted to be:

dϵ(t) ∝ t1.92, Dϵ(t) ∝ t1.53. (3.81)

The exponents numerically agree with those obtained in Eq. (3.63), reflecting the consis-
tency between our results and the DPRE effective theory.

3.5 Discussions and outlook

In this work, we studied the quantum information dynamics in weakly monitored Clifford
quantum circuits and found that entanglement and information can spread superlinearly
with time (≃ t

3
2 ). Namely, we observed that such superballistic propagation of information

is mediated by superlinear growth of the size of stabilizer generators due to projective
measurements. Furthermore, this led to a new sublinear time scale of ≃ L

2
3 which can

be interpreted as the encoding time of a dynamical quantum error-correcting code. It is
important to emphasize again that these nonlocal effects emerge in the non-relativistic
limit where each local observer instantly learns the measurement outcomes.

While we focused on a particular setup of a (1 + 1)-dimensional random weakly-
monitored Clifford circuit with p = 0.08, we expect that our results reveal universal aspects
of monitored quantum many-body dynamics. Indeed, some of our technical results suggest
further generalization. For example, the stabilizer length distributions can be replaced with
the conditional mutual information Eq. (3.13) when studying monitored circuits beyond
Clifford gates.

One important future question is to reveal the microscopic origin of the superlinear en-
tanglement growth. In this work, we have taken a few first steps toward this goal. Namely,
we identified the scaling form of the time evolution of the stabilizer length distributions
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h(ℓ, t) for both pure and mixed initial states. A key next step will be to understand the
underlying microscopic mechanism for the superlinear growth of stabilizer generators and
the effect of projective measurements. Also, we have presented a derivation of the mutual
information for two disjoint intervals by utilizing a probabilistic argument on the operator
contents of stabilizer generators. Our analysis matched with the macroscopic prediction
from DPREs, including the subleading contributions. This hints that probabilistic argu-
ments on operator contents may provide further insights into the microscopic origin of the
effective theory of monitored quantum circuits.

The notion of information spreading has played a key role in investigating the bulk
and boundary dynamics in the AdS/CFT correspondence. This naturally prompts us to
ponder over a possible gravitational dual of monitored quantum circuits and the geometric
manifestation of the superlinear entanglement growth. In the bulk quantum gravity, it has
been conjectured that some class of projection operations can be modeled as insertions of
End-of-World (EoW) branes [63, 64]. In the boundary quantum many-body physics, recent
studies suggest that projective measurements of a few qubits can induce significant changes
of the entanglement structure due to the underlying scrambling dynamics [65]. The effect
of measurements on a conformal field theory has been considered in [66, 67, 68, 69], and
the holographic bulk interpretation analyzed in [70, 71]. It will be interesting to further
look into the geometric interpretation of continuous monitoring in quantum gravity and
the resulting entanglement dynamics.
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Figure 3.11: Numerical result for the shortest path simulation. (a) Heatmap of the sim-
ulated [µAR,BP

(t)]. The figure should be compared with its counterpart in the Clifford
simulation Fig. 3.9(b). (b) [dϵ(t)] and [Dϵ(t)] extracted from the simulation data, with
ϵ = 0.01. The black dashed lines are power-law fittings, with fitted exponents shown in
Eq. (3.81)
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Chapter 4

Real-space renormalization group for
quantum mixed states

Starting from this chapter, we shift our attention to quantum mixed states’ phases of
matter.

Real-space renormalization group (RG) played a major role in both statistical mechanics
and quantum many-body physics. The idea dates back to Wilson [72] and Kadanoff [73]
who proposed that under block spin transformations, statistical mechanical systems flow to
fixed points whose properties are easier to characterize. In the context of quantum many-
body systems, real-space RG has led to the development of powerful numerical algorithms,
including density matrix renormalization group (DMRG) [74], multiscale entanglement
renormalization ansatz (MERA) [75], as well as theoretical tools, including matrix product
states (MPS) [76], projected entangled pair states (PEPS) [77], etc.

In this chapter, we define a real-space RG scheme for mixed states involving local
channel (LC) transformations to establish the existence of mixed-state phases. We define an
“ideal” RG to consist of local channels acting on blocks which preserve correlations between
different blocks, and we prove that the actions of such correlation-preserving channels
can be reversed by another channel, thus establishing the phase equivalence of the fine-
grained and coarse-grained states. As an example, we construct an ideal RG for the two-
dimensional toric code at finite temperature and show that the temperature monotonically
increases under coarse graining and thus the state does not possess topological order.
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4.1 Real-space RG of quantum mixed-states

According to the definition 2, to answer whether two given states ρ1 and ρ2 are in the same
phase we need to either construct a pair of local channel transformations or prove their
nonexistence.

Recall that when studying pure-state phases of ground states, adiabatic paths between
Hamiltonians provide a convenient way of obtaining phase equivalence. Let |ψ1⟩ and |ψ2⟩
be ground-states of local Hamiltonians H1 and H2. If there is a path from H1 to H2 in the
space of local Hamiltonians such that the energy gap remains O(1) throughout the path,
there is a standard way to construct a LU transformation connecting |ψ1⟩ to |ψ2⟩ which
establishes the phase equivalence [78]. For mixed states, there is generally no counterpart
to adiabatic paths.

In this section, we introduce the mixed-state real-space renormalization group (RG) as
an alternative way to find LC connections and identify mixed-state phases.

4.1.1 From pure-state RG to mixed-state RG

Conceptually, RG transformation in classical and quantum statistical mechanics is an iter-
ative coarse-graining process that discards short-range degrees of freedom while preserving
long-range ones. The idea of using real-space renormalization to study zero-temperature
physics of lattice quantum systems (‘numerical RG’) was pioneered by Wilson when con-
sidering impurity problems [72], and was later generalized and developed into a series of
powerful RG-based numerical methods including DMRG [74], entanglement RG [75], etc.
We refer to all of them as pure-state RGs, in contrast to the mixed-state RG we introduce
in this work. 1

For the sake of presentation, we restrict our attention to one-dimensional systems and
only focus on tree-like RG circuits (see Fig. 4.1). All the main ideas can be easily generalized
to more sophisticated RG circuit structures, e.g. entanglement RG circuits [75], as well as
higher dimensional systems.

Pure-state RG, in its simplest form, involves partitioning the lattice into consecutive
blocks each with size b and applying a coarse-graining map w†

B to each block B of a pure
state |ψ⟩. More specfically, coarse-graining involves truncating the Hilbert space, and wB is
an isometry satsifying w†

BwB = I. As proposed [74] for the density matrix renormalization

1Another aspect of pure-state RG is that it preserves the low-energy physics of the system. But here
we emphasize this less because for mixed-states, there may not be a notion of energy or Hamiltonian.
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Figure 4.1: Real-space RG transformation of pure states– Circuit representation of
two iterations of pure state RG transformation. At the ℓ-th iteration, the coarse-graining
isometry w(ℓ) is determined by the level’s input state |ψ(ℓ)⟩ using Eq.(4.1). By applying
the circuit from bottom to top (red arrows), all the short-range features of the initial UV
state are gradually discarded, and only long-range ones are kept in the IR state ρ(ℓ→∞).
By applying the circuit from top to bottom (blue arrows), the circuit generates the UV
state |ψ(1)⟩.

group (DMRG) algorithm, the optimal choice of wB that preserves all correlations between
B and its complement is given by

supp wBw
†
B = supp ρB (4.1)

where ρB := trB̄(|ψ⟩ ⟨ψ|) is the reduced density matrix of the block B. supp K of a positive
semi-definite matrix K means the subspace spanned by K’s eigenstates with positive eigen-
values. If the original state |ψ⟩ has area law entanglement SB ≡ −tr[ρB log ρB] = O(1),
then each block is efficiently coarse-grained into a constant dimensional Hilbert space in-
dependent of the original block size 2.

Now we turn to 1D mixed-states. In contrast to the pure state case, physical mixed
states (e.g. ones mentioned below Def.2) typically have volume-law scaling of SB, leading
to inefficient compression using the wB selected according to Eq.(4.1). This is because
SB results from not only correlations between B and the complementary system B̄ but
also between B and a purifying environment E of the mixed state. The latter is the non-
universal information that should be discarded. We thus need a new criterion for finding
the coarse-graining map.

2Rigorously speaking, it is only proven that the ground state of a gapped local Hamiltonian satisying
the area law can be represented as an MPS with a bond dimension that grows sublinearly with the system
size [79]. However, in pratice, it is usually true that a finite bond dimension suffices to reproduce an
accurate wavefunction for arbitrary large (even infinite) system sizes.
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To motivate the criterion we introduce, we observe that Eq.(4.1) can be interpreted as
the solution to the optimization problem:

argminwB
dimout(w

†
B)

s.t. IB:B̄(w†
B |ψ⟩) = IB:B̄(|ψ⟩),

(4.2)

where dimout(w
†
B) is the output dimension of w†

B and IX:Y := SX+SY −SXY is the quantum
mutual information, a measure of correlations between two partiesX and Y . The constraint
has clear physical meaning in the context of RG: by preserving IB:B̄, it preserves all the
long-distance correlation within |ψ⟩. We thus use ‘IB:B̄ preserving’ condition as a guideline
to generalize Eq.(4.1) to mixed-states.

4.1.2 Correlation-preserving map

We make the argument above more precise:

Definition 3 (correlation-preserving maps). For a given bipartite quantum state ρ = ρAB,
a quantum channel EA→A′ acting on A is correlation-preserving with respect to ρAB if it
satisfies

IA′:B(EA→A′(ρ)) = IA:B(ρ)

It is worth noting that a channel being correlation-preserving or not depends on both
the input state and the bipartition: the same map E that is correlation-preserving with
respect to one (ρ,B) pair may not be so with respect to another pair.

Recalling that the motivation for defining an RG scheme is to establish equivalence
between two mixed states by finding a local channel transformation and its inverse, ideally
we would like E ’s action on ρ to be reversible. Conveniently, the two desired proper-
ties (correlation-preserving and reversibility) are equivalent, as we prove in the following
theorem.

Theorem 2. For a given bipartite quantum state ρ = ρAB, the map EA→A′ is correlation-
preserving if and only if there exists another quantum channel DA′→A, such that:

ρ = DA′→A ◦ EA→A′(ρ)

Proof. (reversibility ⇒ correlation-preserving) According to the quantum data processing
inequality, a channel acting only on A cannot increase correlations between A and B:

IA:B(ρ) ≥ IA′:B(E(ρ)) ≥ IA:B(D ◦ E(ρ)) = IA:B(ρ) (4.3)
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Thus IA:B(ρ) = IA′:B(E(ρ)).

(correlation-preserving⇒ reversibility) Let W be an isometry from A to A′∪E that dilates
the channel EA→A′ :

EA→A′(·) := trE
[
W (·)W †] , (4.4)

where E is an ancillary system, and let σA′EB = WρW †. Then we have the following
relation:

IA:B(ρ) = IA′E:B(σA′EB) = IA′:B(σA′EB). (4.5)

The second equality, due to the correlation-preserving property, implies that IB:E|A′(σA′EB) =
0 and B − A′ − E forms a quantum Markov chain. Thus there is a channel TA′→A′E that
reconstructs σA′EB from EA→A′(ρ) = σA′B = trEσA′EB alone:

TA′→A′E(σA′B) = σA′EB. (4.6)

The map TA′→A′E is the Petz recovery map [80]:

TA′→A′E(·) := σ
1/2
A′E

(
σ
−1/2
A′ (·)σ−1/2

A′ ⊗ IE
)
σ
1/2
A′E (4.7)

We can then choose the inverse channel D to be

DA′→A(·) = trR

(
U †
WTA′→A′E(·)UW

)
, (4.8)

where UW : A∪R→ A′∪E is a unitary operator that ‘completes’ the isometry W : A→
A′ ∪ E, namely:

W (·)W † = UW ((·)⊗ |0⟩R ⟨0|)U
†
W . (4.9)

We remark that the relation between correlation-preserving and reversibility is robust
in one direction. More precisely, if the channel EA→A′ almost preserves correlation

IA:B(ρ)− IA′:B(EA→A′(ρ)) = ϵ, (4.10)

then there exists an almost perfect recovery channel DA′→A such that

F (ρ,D ◦ E(ρ)) ≥ 2−ϵ/2. (4.11)

A proof, based on approximate quantum Markov chains [81], can be found in App.D.1.1.
The robustness property is desirable especially when we would like to numerically search
for the correlation-preserving channel E .
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When using E for the purpose of coarse-graining, the target space of the channel should
be as small as possible. This corresponds to solving the following optimization problem:

argminEA→A′ dimHA′

s.t. IA:Ā(ρ)− IA′:Ā(E(ρ)) ≤ ϵ
(4.12)

with ϵ taken to be a small number or zero. The problem is analogous to Eq.(4.2) for
pure states, which has Eq.(4.1) as an explicit solution. The current problem, in contrast,
has no known explicit solution. In fact, the problem is closely related to the mixed-
state quantum data compression problem, which is under active exploration in quantum
information theory. We refer interested readers to Refs. [82, 83, 84, 85] for recent discussions
on the problem.

To search for a good coarse-graining map for a given state, one can either numerically
solve the optimization problem Eq.(4.12) (in this case the robustness property is crucial for
the purpose of estimating error), or try to construct the channel analytically by exploiting
the special structure of the given state, as we do later when studying examples in Sec.4.2.

We point out that two familiar coarse-graining schemes in 1D, one for quantum ground
states and one for classical statistical mechanics models, are in fact correlation-preserving
maps. The first one is the Hilbert space truncation reviewed in Sec.4.1.1 using the rule
Eq.(4.1). Since this scheme preserves the entropy of a block, it satisfies the correlation-
preserving condition (for a pure state |ψAB⟩, SA = 1

2
IA:B). The other example is Kadanoff’s

block spin decimation of classical spin chains. Consider the Gibbs state of a classical spin
chain with nearest-neighbor interaction, but written as a quantum mixed-state:

ρβ ∝
∑

s=s0...sL

exp

(
−β
∑
i

hi(si, si+1)

)
|s⟩ ⟨s| (4.13)

The state is classical because it is diagonal in the computational basis |s⟩ = |s1...sL⟩. For
each block B = {i1, ..., ib}, the block spin decimation corresponds to a quantum channel
that traces out all spins in B other than i1. This operation is correlation-preserving with
respect to B′ := B ∪ {ib+1}, because:

IB′:B′(ρ) = I{i1,ib+1}:B′(ρ) (4.14)

which is a consequence of the Markov property of the Gibbs distribution.

4.1.3 Ideal mixed-state RG

In this section, we formulate an ideal real-space RG scheme built from local correlation-
preserving channels.
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Assume ρ is a many-body mixed-state on a lattice with linear size L. We further assume
that we have constructed, either numerically or analytically, a series of coarse-graining
transformations {C(0), C(1), ..., C(ℓ), ...} acting on ρ sequentially. In 1D, each C(ℓ) may have
one of the structures shown in Fig. 4.1, or any other structure as long as it is composed of
at most O(1)-layer of local channels. This leads to an ‘RG flow’ of mixed-states:

ρ = ρ(0)
C(0)

−−→ ρ(1)
C(1)

−−→ ...
C(ℓ−1)

−−−→ ρ(ℓ)
C(ℓ)

−−→ ... (4.15)

along which the level of coarse-graining increases gradually.

Each state ρ(ℓ) is supported on a coarse-grained lattice L(ℓ) with an L(ℓ) := L/bℓ linear
size. The chain has a length at most ∼ logb L, after which the state is supported on O(1)
number of sites.

We call this RG process ideal if every channel gate E within each C(ℓ) is correlation-
preserving with respect to its input and the prescribed bipartition.

As a direct consequence of Thm.2, ideal RG is reversible. More specifically, there exists
a series of local ‘fine-graining’ transformations {F (0),F (1), ...,F (ℓ), ...} that recovers the
original mixed-state from its coarse-grained version by gradually adding local details:

ρ(0)
F(0)

←−− ρ(1)
F(1)

←−− ...
F(ℓ−1)

←−−− ρ(ℓ)
F(ℓ)

←−− ... (4.16)

where each F (ℓ) is the ‘reversed’ channel of C(ℓ), obtained by replacing each channel E
within F (ℓ) by its corresponding recovery map D (see Thm.2). In graphical notation, if

C(ℓ) =
( )

(4.17)

then
F (ℓ) :=

( )
(4.18)

In both plots, the state (ρ(ℓ) for C(ℓ) and ρ(ℓ+1) for F (ℓ)), is inserted from the bottom.

Coarse-graining and fine-graining maps also establish relations between operators at
different coarse-graining levels. Let O(ℓ) be any operator (not necessarily local) defined on
the lattice L(ℓ). Then the following relation holds:

tr
(
ρ(ℓ)O(ℓ)

)
= tr

(
F (ℓ) ◦ C(ℓ)(ρ(ℓ))O(ℓ)

)
= tr

(
ρ(ℓ+1)F †(ℓ)(O(ℓ))

)
,

(4.19)
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where F † is F ’s dual map, defined through the relation tr(A ·F(B)) ≡ tr(F †(A) ·B). Thus
we can define the coarse-grained operator of O(ℓ) through:

O(ℓ+1) := F †(ℓ)(O(ℓ)) (4.20)

so that:
⟨O(ℓ)⟩(ℓ) = ⟨O(ℓ+1)⟩(ℓ+1) (4.21)

where ⟨ · ⟩(ℓ) := tr(ρ(ℓ)( · )).

It is worth noting that F † = F (ℓ)† does not preserve operator multiplication: if O(ℓ) =
o
(ℓ)
1 o

(ℓ)
2 then it is possible that F †(O(ℓ)) = O(ℓ+1) ̸= o

(ℓ+1)
1 o

(ℓ+1)
2 = F †(o

(ℓ)
1 )F †(o

(ℓ)
2 ). However,

if two operators o1 and o2 are spatially well-separated, then the multiplication is preserved:

F †(o
(ℓ)
1 o

(ℓ)
2 ) = F †(o

(ℓ)
1 )F †(o

(ℓ)
2 ) (4.22)

Here ‘well-separated’ means that the lightcones for o1 and o2, as determined by the circuit
structure of C(ℓ) (or equivalently that of F (ℓ)†), are non-overlapping. We illustrate the
definition of the lightcone and a proof of the above equation in App.D.1.2. This guarantees
that long-distance behavior of all the k-point functions are preserved along an ideal RG:

⟨o(ℓ)1 o
(ℓ)
2 ...o

(ℓ)
k ⟩

(ℓ) = ⟨o(ℓ+1)
1 o

(ℓ+1)
2 ...o

(ℓ+1)
k ⟩(ℓ+1) (4.23)

where {oi} are mutually well-separated local operators.

4.1.4 From mixed-state RG to mixed-state quantum phases

In this section we discuss how to use RGs, both ideal and non-ideal ones, to furnish the
two-way LC transformations required to establish the phase equivalence of two mixed states
(Def.2).

Assume that for the state of interest ρ, we have found a (not necessarily ideal) real-
space RG process {C(1), C(2), ..., C(ℓ), ...}. We further assume that the RG has a well-defined
fixed-point state ρ(∞), whose mixed-state phase of matter is presumably easy to identify.

Intuitively, this RG can be treated as an LC transformation connecting ρ to ρ(∞) 3. To
rigorously show this according to Defs.1 and 2, one needs to show that the sequence {ρ(ℓ)}
converges toward ρ(∞) fast enough. More concretely, we need to show that there exists ℓ∗

such that:

3When discussing LC transformations in this section, we fix the reference lattice as the one that ρ = ρ(0)

is defined upon. The renormalized state ρ(ℓ) can be considered as supported on a sub-lattice with L/bℓ

sites.
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1. The channel C(ℓ∗) ◦ ... ◦ C(2) ◦ C(1) is an LC transformation. Noticing that C(ℓ) entails
bℓ range of non-locality while an LC transformation can have at most o(L) range, the
condition is equivalent to requiring ℓ∗ ≲ logLα, for some α < 1.

2. The state after ℓ∗ iterations is close enough to ρ(∞), namely F (ρ(ℓ
∗), ρ(∞)) > 1− ϵ for

a small ϵ.

We find that such an ℓ∗ does exist in many cases when the fixed-point state ρ(∞) has a
finite correlation length. More specifically, in such cases, the fidelity function satisfies the
form:

F (ρ(ℓ), ρ(∞)) ≃ exp(−α θ(ℓ)L(ℓ)) (4.24)

for some α = O(1) and a positive coefficient θ(ℓ). Further, θ(ℓ) displays a power-law iteration
relation under each coarse-graining step:

θ(ℓ+1) ≲ (θ(ℓ))γ when θ(ℓ) → 0+ (4.25)

for some coefficient γ > 1.

As detailed in the App.D.2, Eqs.(4.24),(4.25) guarantee that choosing

ℓ∗ ∼ log log(L/ϵ) (4.26)

is sufficient to have F (ρ(ℓ), ρ(∞)) > 1 − ϵ. We remark that one can let ϵ be as small as
(polyL)−1 but still guarantee that ℓ∗ steps of RG is a (polylogL) -range LC transformation.

In the App.D.2 we show that conditions Eq.(4.24) and Eq.(4.25) hold for:

• 1D pure-state RG of a matrix product state

• Gibbs state of a classical statistical mechanics model flowing toward a non-critical
fixed point

• All examples we study in Sec.4.2

So far in this section, we have shown that RG can be viewed as an LC transformation
connecting ρ to ρ(∞). Recalling that the phase equivalence is defined through two-way LC
connections, we have to find another LC channel connecting ρ(∞) to ρ to conclude that the
two states are in the same phase.

If the RG is an ideal one, it is composed of correlation-preserving channels and thus
reversible. In this case, the other direction comes from the ‘reversed’ RG process RG−1 =
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{F (1),F (2), ...F (ℓ), ...} which we discussed in Sec.4.1.3. Similar to the forward RG, there is
the issue of convergence concerning whether RG−1 can be treated as an LC transformation.
But the discussion is completely parallel to the one for the forward RG. Thus in this case,
the LC bi-connection is established as

ρ
RG−→ ρ(∞) RG−1

−−−→ ρ (4.27)

and we can conclude ρ and ρ(∞) are in the same phase.

Next we discuss what we can learn from a non-ideal RG. One class of mixed states of
significant interest is a long-range entangled pure-state |ψ⟩ subject to local decoherence
represented by an LC transformation, and an important question is whether or not the
decohered state in the same phase as |ψ⟩. In this setting, one direction of the connection is
already given by the decoherence. Therefore, if the RG (ideal or not) has |ψ⟩ as the fixed
point:

|ψ⟩ decohere−−−−→ ρ
RG−→ ρ(∞) = |ψ⟩ ⟨ψ| , (4.28)

then an LC bi-connection is established and ρ and |ψ⟩ are in the same phase. But on the
other hand, if the fixed-point is not in the same phase as |ψ⟩, then we cannot determine
ρ’s phase because no bi-connection is identified.

4.2 Overview of examples

In the remaining sections we use our formalism to understand the quantum phases of
several many-body mixed-states of recent interest.

In all the examples, the mixed-state is obtained by ‘perturbing’ a long-range entangled
pure state, either through incoherent noise or finite temperature. The question we address
is whether the states before and after the perturbation are in the same phase.

The long-range entangled pure state is chosen to be either the Greenberger–Horne–Zeilinger
(GHZ) state or Kitaev’s toric code state. In most examples, the LC circuits for identifying
phases take the form of RG. The coarse-graining maps therein are either constructed ac-
cording to the correlation-preserving criterion (Def.3), or inspired by decoders of quantum
error correcting codes.

In the App.D.3 we include an example of a mixed symmetry-protected topological
(SPT) state and its associated mixed-state RG.
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4.3 Noisy GHZ states

The many-body GHZ state, defined as

|GHZL⟩ :=
1√
2

(
|0⊗L⟩+ |1⊗L⟩

)
, (4.29)

has long-range entanglement, i.e. it can not be generated from a product state using any
one-dimensional LU (or LC) transformation from a product state. In this section, we study
the effect of dephasing noise on this state.

For convenience of analysis, we let L = bℓmax for some integer ℓmax and an odd integer
b. The state can be rewritten as:

|GHZL⟩ = w⊗bℓmax−1

b · w⊗bℓmax−2

b ... w⊗b1
b |+⟩ (4.30)

where wb = |0⊗b⟩ ⟨0| + |1⊗b⟩ ⟨1| is an isometry and |+⟩ = 1√
2
(|0⟩ + |1⟩). This provides a

tree tensor network representation of the state (see Fig.4.2), as well as a way of blocking
sites when performing RG.

Figure 4.2: Tree tensor network of a GHZ state with L = bℓ = 9, b = 3, ℓ = 2. Each
triangle represents an isometry w (Eq.(4.30)). By replacing the state at the top with a
generic single qubit state |ψ⟩, the same tensor network encodes |ψ⟩ into a codeword state
of the quantum repetition code.

We consider a setting in which each qubit experiences the same noise, as modeled by a
single qubit channel N , resulting in the mixed state

ρL := N⊗L(|GHZL⟩ ⟨GHZL|) (4.31)

We remark that the GHZ state is closely related to the quantum repetition code, whose
codespace is spanned by |0⊗L⟩ and |1⊗L⟩. It is known that quantum information stored
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in a quantum repetition code is robust against bit-flip noise (X dephasing noise), but not
phase-flip noise (Z dephasing noise). As we will see in this section, the robustness of the
GHZ state’s long-range entanglement has a parallel behavior when it is subjected to these
two types of noise. We postpone a detailed discussion of the relation between mixed-state
phases and quantum coding properties to Chap.5.

4.3.1 Bit-flip noise

We first consider dephasing each qubit in the X direction:

N (·) = NX
p (·) := (1− p)(·) + pX(·)X, (4.32)

in which each qubit is flipped with probability p.

The resulting state is

ρXp,L =
1

2

∑
s

p|s|(1− p)L−|s|(|s⟩ ⟨s|+ |s⟩ ⟨s̄|+ |s̄⟩ ⟨s|+ |s̄⟩ ⟨s̄|) (4.33)

where |s|:=
∑

i si is the number of 1 in the bitstring s, and s̄ is the bitwise complement of
s . Since ρXp = ρX1−p, we only consider p ∈ (0, 0.5].

Inspired by decoders for the quantum repetition code, we use the b-qubit majority-vote
channel as the coarse-graining map. To define it, we first introduce the unitary operator
that re-parametrizes the bitstring:

U |s⟩ := |maj(s)⟩ ⊗ |diff(s)⟩ (4.34)

where maj(s) takes the majority vote of the bits within s:

maj(s) :=

{
0 if |s|< b/2
1 if |s|≥ b/2

(4.35)

and diff(s) is a length (b− 1) bitstring that records pairwise difference of s:

diff(s)i := (si+1 − si) mod 2 i = 1, 2, ..., b− 1 (4.36)

Then the majority vote channel can be written as:

Eb(·) := tr2(U(·)U †) (4.37)
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where tr2 denotes tracing out the pairwise difference information, regarded as unimportant
short-distance degrees of freedom in the current example.

We inspect the state’s RG flow under Eb, the coarse-graining map:

E⊗L/bb (ρXp,L)

=E⊗L/bb ◦ (NX
p )⊗L(|GHZL⟩ ⟨GHZL|)

=
(
Eb ◦ (NX

p )⊗b ◦ Uwb

)⊗L/b (|GHZL/b⟩ ⟨GHZL/b|
) (4.38)

where Uwb
(·) := wb(·)w†

b and we applied the relation |GHZL⟩ = w
⊗L/b
b |GHZL/b⟩. Thus after

one iteration of coarse-graining, the resulting state is a GHZ state with 1/b of the original
size subject to a ‘renormalized’ noise channel, which is still X-dephasing (see App.D.1.3
for a derivation):

Eb ◦ (NX
p )⊗b ◦ Uwb

= NX
p′ , (4.39)

but with a renormalized noise strength p′ =
∑b

k=(b+1)/2

(
b
k

)
pk(1− p)b−k .

Thus we obtain an exact description of the state’s RG flow:

ρ(ℓ) = (NX
p(ℓ))

⊗L(ℓ)

(|GHZL(ℓ)⟩ ⟨GHZL(ℓ) |) (4.40)

where L(ℓ) = Lb−ℓ is the renormalized system size at the ℓ-th iteration, and p(ℓ+1) =∑b
k=(b+1)/2

(
b
k

)
(p(ℓ))k(1− p(ℓ))b−k. It is straightforward to check that p = 0 and p = 1/2 are

the two fixed points of the RG transformation.

Around p = 1/2, the iteration relation has the asymptotic behavior:

(p′ − 1/2) ≃ g(b)(p− 1/2) (4.41)

where g(b) :=
∑b

k=(b+1)/2 4k
(
b
k

)
> 1. Thus this is an unstable fixed point. Exactly at

p = 1/2, the fixed-point state is:

ρX1/2, L =
1

2L

∑
s∈{0,1}L

(|s⟩ ⟨s|+ |s⟩ ⟨s̄|) . (4.42)

The state is better understood in the eigenbasis of Pauli X operators, i.e. {|0X⟩ = 1√
2
(|0⟩+

|1⟩), |1X⟩ = 1√
2
(|0⟩ − |1⟩)}:

ρX1/2, L =
1

2L−1

∑
s∈{0,1}L

|sX⟩ ⟨sX | δ(|s|= 0 mod 2) (4.43)
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In this basis, the state is a uniform distribution of bitstrings with even parity. Since it is
diagonal in this basis, the state is a classical state (recall the definition in Chap.1) and is
not in the same phase as the GHZ state 4.

On the other hand, p = 0 is a stable fixed-point attracting p ∈ [0, 0.5). Starting from
any state in the interval, the RG process gradually removes entropy within the state and
brings it back to the noiseless state at p = 0, i.e. |GHZ⟩. We thus obtain the following LC
transformation bi-connection:

|GHZ⟩ NX−−→ ρXp
RG−→ |GHZ⟩ p ∈ [0, 0.5) (4.44)

Thus we can conclude ρXp and |GHZ⟩ are in the same phase. The analysis shows that the
X−dephasing noise acts as an irrelevant perturbation with respect to the |GHZ⟩ state and
its long-range entanglement.

Besides establishing the phase equivalence, the bi-connection in Eq.(4.44) also yields
information on the entanglement structure of the dephased state ρXp . Consider two suffi-
ciently large subregions of the system, referred to as A and B, for which one can always
choose the RG blocking scheme such that coarse-graining channels never act jointly on A
and B. Let EA:B(·) be any quantum or classical correlation measure between A and B
that satisfies the data processing inequality. Then due to the bi-connection we have:

EA:B(|GHZ⟩) ≥ EA:B(ρXp ) ≥ EA:B(|GHZ⟩)
⇒ EA:B(ρXp ) = EA:B(|GHZ⟩).

(4.45)

Some examples of correlation measures are quantum mutual information, entanglement
negativity, and entanglement of formation & distillation. All quantities are easy to compute
analytically for the GHZ state but are difficult to obtain for the mixed-state ρXp by other
means.

We point out that all conclusions in this section hold also for the dephasing noise along
other directions in the X-Y plane. This can be most easily seen by noticing that the
expression Eq.(4.39) holds for any dephasing direction in the X-Y plane. As we will see in
the next subsection, the Z-dephasing acts very differently.

4In fact, the state ρX1/2,L is in the same phase as the product state. One may prepare the state using
LC by first preparing a one dimensional cluster state of 2L spins and then tracing out qubits on all odd
sites.
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4.3.2 Phase-flip noise

Next we consider the GHZ state under another type of noise, namely the phase-flip or
Z-dephasing:

N Z
p (·) := (1− p)(·) + pZ(·)Z (4.46)

which leads to the density matrix

ρZp,L =
1

2
[|0⊗L⟩ ⟨0⊗L|+ |1⊗L⟩ ⟨1⊗L|+

(1− 2p)L(|0⊗L⟩ ⟨1⊗L|+ |1⊗L⟩ ⟨0⊗L|)]
(4.47)

In the thermodynamic limit, the off-diagonal term vanishes for any p /∈ {0, 1} and the state
converges to a classical state 1

2
(|0⊗L⟩ ⟨0⊗L|+ |1⊗L⟩ ⟨1⊗L|). This already indicates that the

state is in a different phase from the GHZ state.

To construct the RG for this mixed state, we still use the majority-vote channel Eb
(Eq.(4.37)) as the coarse-graining map. An important difference of this case compared to
the bit-flip case is that the majority vote channel is now correlation-preserving with respect
to ρZp,L. To see this, we first verify the following relations:

Eb ◦ Uwb
= I

(N Z
p )⊗b ◦ Uwb

= Uwb
◦ N Z

p′
(4.48)

where I is the identity channel and p′ is given later in Eq.(4.51). These equations imply
that:

Uwb
◦ Eb

(
ρZp,L
)

= ρZp,L (4.49)

where Uwb
◦ Eb is applied to any block of b sites. Thus Eb is reversible and correlation-

preserving with respect to ρZp,L.

Following a similar calculation as in the bit-flip noise case, we obtain that the state
after one step of RG maintains the same form:

E⊗L/bb (ρZp,L) = ρZp′,L/b (4.50)

but with a renormalized noise strength

p′ =
1

2
(1− (1− 2p)b), (4.51)

The iteration relation has p = 0 as an unstable fixed point, around which p′ ≃ bp, and
also p = 1/2 as a stable fixed point, around which (p′ − 1/2) = (p− 1/2)b.
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Since the RG is ideal, it leads to the following LC bi-connection:

ρZ1/2
RG−1

−−−→ ρZp
RG−→ ρZ1/2 p ∈ [0, 0.5) (4.52)

and the analysis shows the noisy state is of the same phase as the classical state 1
2
(|0⊗L⟩ ⟨0⊗L|+

|1⊗L⟩ ⟨1⊗L|). Therefore, for the GHZ state the phase flip noise is relevant and destroys the
long-range entanglement therein with an arbitrarily small strength.

4.4 Thermal toric code state

In this section and the next, we discuss two mixed-states related to Z2 topological order.
In Sec.4.4.1 we review key properties of the toric code model and define the notations. In
Sec.4.4.2 we construct an ideal RG to explicitly show that any finite temperature Gibbs
state of the toric code is in the trivial phase.

4.4.1 Review of the toric code model

We consider a square lattice with periodic boundary conditions and qubits on the links.
Kitaev’s toric code model has the Hamiltonian

H = −
∑
□∈P

A□ −
∑
+∈V

B+ (4.53)

where A□ =
∏

i∈□Xi and B+ =
∏

i∈+ Zi. P, V represent plaquettes and vertices, respec-
tively.

Since all terms in the Hamiltonian commute with each other, their common eigenstates
can be used to label the Hilbert space. But in order to construct a complete basis, we need
two more operators X̃1,2 =

∏
i∈S1,2

Xi, where S1, S2 are the two homotopically inequivalent

non-contractable loops on the torus. Each X̃i commutes with A□s and B+s, thus all of
them together define a basis for the Hilbert space:

|m = m1...m|P |; e = e1...e|V |; l = l1l2⟩ , mi, ei, li ∈ {0, 1} (4.54)

satisfying
A□i
|m; e; l⟩ = (−1)mi |m; e; l⟩

B+i
|m; e; l⟩ = (−1)ei |m; e; l⟩

X̃i |m; e; l⟩ = (−1)li |m; e; l⟩
(4.55)
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We call this the anyon number basis in contrast to the computational basis. If mi = 1,
there is a plaquette anyon (or m anyon) at the corresponding plaquette; while if ei = 1,
there is a vertex anyon (or e anyon) at the corresponding vertex. The operator identities∏

□A□ = 1 and
∏

+B+ = 1 enforce that the total number of either type of anyon must be
even:

π(m) = 0 π(e) = 0, (4.56)

where the function π(·) evaluates the total parity of a bit string, i.e. π(s) := (
∑

i si mod 2).

The Hamiltonian’s 4-dimensional ground state subspace V is spanned by anyon-free
states:

V := span{ |m = 0; e = 0; l⟩ : l ∈ {00, 01, 10, 11}} (4.57)

States within this subspace are locally indistinguishable, i.e. ρA = trĀ(|ψ⟩ ⟨ψ|) is indepen-
dent of |ψ⟩ ∈ V whenever A is a topologically trivial region.

We define a mixed-state ρ to be in the toric code phase if it is LC bi-connected to states
within V , namely:

ρa
C1−→ ρ

C2−→ ρb (4.58)

for some states ρa, ρb within V , and some LC transformations C1, C2.

4.4.2 RG of the thermal toric code state

We consider the Gibbs state of the toric code model Eq.(4.53) ρβ ∝ exp(−βH) at inverse
temperature β. Ref. [34] showed that this state for finite β is not long-range entangled, and
here we reproduce the conclusion by constructing an ideal mixed-state RG under which
the state flows to a trivial one.

We notice that the density matrix ρβ is diagonal in the anyon number basis (Eq. (4.54)):

ρβ |m; e; l⟩ ∝ |m; e; l⟩ , (4.59)

and is thus a classical mixture of different anyon configurations, with probabilities

Pr(m, e, l) := ⟨m; e; l| ρβ |m; e; l⟩
=Prm(m)Pre(e)Prl(l)

(4.60)
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in which the three types of degrees of freedom are independent:

Prm(m) = Cβ δ (π(m) = 0)
∏
i

pmi
β (1− pβ)1−mi

Pre(e) = Cβ δ (π(e) = 0)
∏
i

peiβ (1− pβ)1−ei

Prl(l) = 1/4

(4.61)

with pβ = e−β

eβ+e−β and Cβ a normalization constant.

The key property is that m anyons on each plaquette (and e anyons on vertices) are
independently excited with probability pβ, up to a global constraint that the total number
of each anyon type is even. This allows us to find an ideal RG, as we need only preserve
the local anyon parity π(mB), π(eB) of a block B to maintain correlations between the
block and its complement.

We now describe how to coarse-grain to preserve this parity information. Consider the
following quantum channel acting on 12 qubits in a 2× 2 block of plaquettes:

EX(·) :=
∑

m∈{0,1}⊗4

UmPm(·)PmU
†
m (4.62)

where Pm is the projector to the subspace with anyon configuration m, and the unitary
operator Um is a product of Pauli Z matrices that brings |m = m1m2m3m4⟩ to |π(m)000⟩.
For instance, if we assume plaquettes are labeled as 1 2

3 4 and m = 0110, then Um can be
Z12Z13, where Z12(13) is the Pauli-Z matrix acting on the qubit separating 1 and 2 (1 and
3). We remark that Um only acts on the inner four qubits.

In other words, EX first measures the anyon configuration within the block and then
applies a unitary gate depending on the measurement outcome that pushes all anyons to
the top-left plaquette. Since m-anyon is its own anti-particle, the top-left plaquette ends up
with π(m) anyons while the other three end up with 0. Importantly, neither step disturbs
the distribution of e-anyons.

EX is a correlation-preserving map with respect to the state ρβ, and one can explicitly
check that its action on ρβ can be reversed by the following channel:

DX(·) :=
∑
m

Pr(m|π(m))U †
mP

1
π(m)(·)P 1

π(m)Um (4.63)

where P 1
x is the projector to the subspace with m1 = x. The action of DX can be intuitively

understood as follows: It first measures the anyon occupancy of the site 1, which we
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Figure 4.3: RG scheme for the thermal toric code state– In all panels, a plaquette
(vertex) is shaded (dotted) if has a non-zero probability of holding an m- (e-) anyon, and
physical qubits are associated with edges of the lattice and drawn as circles. (left→mid)
EX and EZ (see Eq.(4.62) and Eq.(4.64)) acts on each 2 × 2 block of plaquettes and
vertices, respectively. The resulting state has anyons on one of its sublattices’ plaquettes
and vertices. (mid→right) After disentangling with the unitary U depicted in Eq.(4.65)
and discarding the decoupled qubits, the new state is still a toric code Gibbs state, but
with renormalized temperature p′ (Eq.(4.67)) supported on a coarse-grained lattice.

recall is the only site that may host an anyon after the action of EX . Then based on the
measurement outcome (referred to as x), it randomly generates an anyon configuration on
the block according to the distribution Pr(m|π(m) = x).

Analogously, there is a channel for each 2×2 block of vertices (i.e. a block of plaquettes
of the dual lattice) that coarse-grains e-anyons:

EZ(·) :=
∑

e∈{0,1}⊗4

UePe(·)PeU
†
e (4.64)

where Pe are projector for e-anyon configurations and Ue a product of X operators that
brings |e = e1e2e3e4⟩ to |π(e)000⟩. EZ only moves e-anyons and commutes with EX .

After applying EX(Z) to each block of plaquettes (vertices), the resulting state only has
anyons on plaquettes and vertices corresponding to a sublattice (see Fig.4.3, middle panel).
To complete one iteration of the RG, we need to discard some degrees of freedom and put
the state on a coarse-grained lattice. This step can be achieved by a series of local unitary
operators called elementary moves introduced in [86, 87].
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This step is most easily described graphically:

(4.65)

At each step, multiple controlled-not gates are applied, represented with arrows from the
control qubit to target qubit. These gates decouple qubits into a product state which can
then be removed, and the remaining qubits form a toric code state with anyons on a coarser
lattice. Operations shown in each panel are applied in parallel to all the 2 × 2 blocks on
the lattice.

In summary, one iteration of the RG consists of:

C = U ◦

(⊗
B∈B′

EZB

)
◦

(⊗
B∈B

EXB

)
(4.66)

where B contains 2 × 2 blocks of plaquettes and B′ contains 2 × 2 blocks of vertices. U
stands for the disentangling operations in Eq.(4.65).

After one step of RG, a plaquette (vertex) contains an anyon if and only the four
plaquettes (vertices) it was coarse-grained from contain an odd number of anyons. The
renormalized state is still a thermal toric code state, but with a renormalized probability
(or renormalized temperature):

p′β′ = 4pβ(1− pβ)3 + 4p3β(1− pβ)

⇔ tanh β′ = tanh4 β
(4.67)

We thus conclude that any finite temperature state ρβ<∞ flows to the infinite temperature
one ρβ=0 under the RG.

Furthermore, since all channels in the RG are correlation-preserving with respect to
their inputs, the RG is ideal and can be reversed. Thus there is the following bi-connection:

ρβ=0
RG−1

−−−→ ρβ
RG−→ ρβ=0 β <∞ (4.68)

Since the infinite temperature state ρβ=0 ∝ I is in the trivial phase, we conclude that ρβ is
also in the trivial phase.
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Chapter 5

Mixed-state phases and quantum
error correction

The notion of quantum topologically ordered phases has close connection to quantum error
correction. In this chapter, we consider two closely related questions in this context: 1.
When subjecting a topological quantum code to noise, how is its decodability property
related to its mixed-state phases? 2. How to use known decoders for topological codes to
inspire LC connections required for proving phase equivalence?

Our primary example is the dephased toric code state. All notations in the chapter
follow those introduced in Sec.4.4.1. The toric code model can be viewed as a quantum
memory that stores quantum information in its ground state subspace V . In Sec.5.1, we
discuss the relation between the preservation of logical information and the preservation
of the phase of matter. We prove that if an LC transformation C does not bring a pure
toric code state out of its phase, then C must preserve any quantum information stored in
V . In Sec.5.2 and 5.3, we describe two ways to show that the dephased toric code state is
in the toric code phase when dephasing strength is small. Both methods are inspired by
well-studied decoders (the Harrington decoder and the minimal weight perfect matching
decoder) for the toric code.

5.1 Logical information and long-range entanglement

The toric code model, as its name suggests, is naturally a quantum error correcting code
whose codespace is the ground state subspace V (Eq.(4.57)). In this context, an important
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question is whether a noise channel N destroys logical information stored in a quantum
memory. Mathematically, this is equivalent to asking whether there exists a recovery
channel R such that:

R ◦N (|ψ⟩ ⟨ψ|) = |ψ⟩ ⟨ψ| ∀ |ψ⟩ ∈ V. (5.1)

In quantum error correction, R is often realized by a decoder, which maps any input state
into an output supported within V 1. If such R exists, we say the logical information is
preserved by N . Otherwise, we say the logical information is destroyed.

To relate the phase of the mixed state, as defined by two-way LC connection, to preser-
vation of logical information, we will need to first prove the following theorem.

Theorem 3. Let V be the code subspace of a toric code defined on a torus. Suppose C is
a local channel transformation satisfying supp C(|ψ⟩ ⟨ψ|) ⊆ V ∀ |ψ⟩ ∈ V , then C’s action
when restricted to V is a unitary channel.

To gain some intuition for why locality of the channel is essential in the theorem,
consider the following channel:

N (ρ) :=
1

2
ρ+

1

2
X̃1ρX̃1 (5.2)

where X̃1 = Πi∈S1Xi is the logical X operator of the first encoded qubit (see Sec.4.4.1). N
is not an LC transformation: N (|0⟩⊗L ⟨0|⊗L) = 1

2
(|0⟩⊗L ⟨0|⊗L + |1⟩⊗L ⟨1|⊗L), a non-trivial

mixed-state with long-range correlations. Furthermore, N preserves V , but its action
within V is dephasing the first logical qubit, which is not a unitary action.

We now prove the Thm.3.

Proof. C can be dilated into an LU circuit U that acts jointly on the physical qubits
(referred to as P ) and the ancilla qubits (referred to as A). Consider U ’s action on a
codeword state:

|ψ;0⟩ := |ψ⟩P |0⟩A
U−→ |ϕ⟩PA (5.3)

where |ψ⟩ is any code word state in V . For later convenience we define the expanded
codespace V0, which is the subspace of HPA spanned by {|ψ⟩P |0⟩A}|ψ⟩∈V . We use V0 to
refer to both the subspace and the code defined by it. V0 is still a stabilizer code, whose
stabilizers are those of V combined with {Zi : i ∈ A}.

1Since we are only concerned about in-principle recoverability of logical information, we assume all
operations within R are noiseless.
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Figure 5.1: Geometry of operators L1, L2, and K.

Let L1 and L2 be two Pauli logical operators of the toric code that act in the same way
in the code subspace V (see Fig.5.1). Thus L1L2 is a stabilizer of the toric code. Since C
preserves the code subspace, we have:

⟨ϕ|L1L2 |ϕ⟩ = tr(C(|ψ⟩ ⟨ψ|)L1L2) = 1 (5.4)

This leads to:
⟨ψ;0|LU1 LU2 |ψ;0⟩ = 1 (5.5)

where LUi := U †LiU has support on both P and A, and is not necessarily a Pauli operator.
Recalling that LU1 L

U
2 is a unitary operator and the above expression holds for any |ψ;0⟩,

we conclude that LU1 L
U
2 acts as logical identity in the extended codespace V0.

To proceed, we assume the spatial separation between L1 and L2 to be much larger
than the range of U , so that LU1 and LU2 are also well-separated.

We claim that both LU1 and LU2 are logical operators of V0. Otherwise, there needs to
be a codeword state |a⟩ ∈ V0 such that LU1 |a⟩ /∈ V0. This implies at least one stabilizer S
of V0 is violated by the state: ⟨a| (LU1 )†SLU1 |a⟩ ̸= 1, and S must have spatial overlap with
LU1 . Further, since LU2 is far from both LU1 and S,

⟨a| (LU1 LU2 )†SLU1 L
U
2 |a⟩ ≠ 1 (5.6)

But this cannot be true because LU1 L
U
2 |a⟩ = |a⟩ and S is a stabilizer.

The same reasoning applies to any Pauli logical operator, referred to as K, whose
spatial support is perpendicular to L = L1 (see Fig.5.1). By varying K and L, their
product R = K · L can represent all of the 15 inequivalent Pauli logical operators of the
toric code. We fix such a set: P = {R1, R2, ..., R15}. The image of P under R → RU is a
set of 15 logical operators of V0, as we just proved. Furthermore, since the map R → RU
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preserves all the multiplication and commutation relations, we know PU must act as a set
of 15 inequivalent Pauli logical operators on V0, up to a basis rotation.

We consider the part of RU
i (or Ri) when restricted to the codespace V0 (or V ):

ΠV0R
U
i = R̃U

i ⊗ |0⟩ ⟨0|
ΠVRi = R̃i

(5.7)

where R̃U
i and R̃i are operators acting within V only. ΠV is the projector to the subspace

V and ΠV0 = ΠV ⊗ |0⟩ ⟨0|. As explained, both {R̃i} and {R̃U
i } realize the algebra of Pauli

operators in the logical space.

We have:
C(R̃U

i ) = trA(U(R̃U
i ⊗ |0⟩ ⟨0|)U †)

= trA(U(RU
i ΠV0)U

†)

= trA(RiUΠV0U
†)

= RiC(ΠV )

= R̃iC(ΠV )

(5.8)

The second to last equality holds because Ri is supported on P only, while the last one
holds because supp C(ΠV ) ⊆ V by assumption.

On the r.h.s. of the second equality above RU
i and ΠV0 commute. Thus if we change

their order then the same derivation gives:

C(R̃U
i ) = C(ΠV )R̃i (5.9)

Since the relation holds for any i ∈ {1, ..., 15} and supp C(ΠV ) ⊆ V , we know C(ΠV ) ∝ ΠV .
Further, since C is trace-preserving, we have C(ΠV ) = ΠV . Thus:

C(R̃U
i ) = R̃i (5.10)

This implies that when restricted to V , C(·) is a ∗-isomorphism and must be a unitary
channel.

We use the theorem to explore the relation between the phase of the noisy toric code
state and the preservation of quantum information stored.
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Consider a toric code’s codeword state |ψ⟩ ∈ V . Suppose Nψ is an LC transformation
that preserves the toric code phase. By definition, there exists another LC transformation
Dψ such that supp Dψ ◦Nψ(|ψ⟩) ⊆ V 2. We first point out that the pair (Nψ,Dψ) satisfies

Dψ ◦ Nψ(|ψ′⟩ ⟨ψ′|) ⊆ V ∀ |ψ′⟩ ∈ V, (5.11)

which we prove in App.??. Since the choice of (Nψ,Dψ) does not depend on the codeword
state |ψ⟩, we drop the ψ subscript henceforth.

The channel D ◦ N thus satisfies the condition in Thm.3, according to which we have

D ◦ N (|ψ⟩ ⟨ψ|) = U |ψ⟩ ⟨ψ|U † ∀ |ψ⟩ ∈ V (5.12)

for some logical unitary operator U .

We thus conclude that if the noise N preserves the toric code phase, then it also
preserves the logical information stored. In particular, the recovery map can be chosen as
R(·) = U †D(·)U .

We consider a more detailed scenario where the channel N = Np has a strength param-
eter p. When the noise is very strong, both the toric code phase and the logical information
stored should be destroyed. Thus one can define two critical noise strengths: pt.c., beyond
which the noisy state is no longer in the toric code phase; and pcoding, beyond which the
stored logical information is no longer recoverable. The previous analysis shows that

pt.c. ≤ pcoding (5.13)

Namely, the loss of logical information must occur after transitioning out of the toric code
phase.

If there is a gap between pt.c. and pcoding, then the noisy state Np(|ψ⟩ ⟨ψ|) for p ∈
(pt.c., pcoding) is not in the toric code phase but still contains logical information. In this
case, the corresponding recovery map R that recovers logical information must be non-LC.

5.2 LC transformation from the Harrington decoder

We illustrate these general results in a specific example, for which we construct explicit LC
transformation inspired by the Harrington decoder [88]. We consider a toric code ground
state |t.c.⟩ ∈ V subject to phase-flip noise with strength p ( Eq.(4.32)):

ρp := (N Z
p )⊗L (|t.c.⟩ ⟨t.c.|) (5.14)

2We emphasize that the condition should not be Dψ ◦Nψ(|ψ⟩) = |ψ⟩, according to our definition of the
toric code phase in Sec.4.4.1
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We ask whether the state is in the same phase as |t.c.⟩, when p is small.

It is convenient to work in the anyon number basis Eq.(4.54), and since all states in
this example are in the e-anyon-free subspace, we omit the e labeling henceforth. An Z
operator acting on a qubit on an edge will create a pair of anyons in the two plaquettes
adjacent to the edge. But if two anyons meet in the same plaquette, they annihilate. Thus
if we fix the set of edges acted on by Z, then anyons appear on faces adjacent to an odd
number of Zs (see Fig.5.3).

The noisy state is a classical mixture of anyon configurations which differ significantly
from those of the Gibbs state. When p is sufficiently small, the typical size of an error
cluster is much smaller than the typical distance between clusters. The errors create anyons
at the boundary of each cluster.

This picture suggests that by locally identifying clusters and pairing up anyons therein,
one can remove all errors if p is sufficiently small. This intuition underlies the design of
several decoding algorithms for the toric code [89, 90, 91, 88], which aim to pair up anyons
such that the quantum information stored in the code remains intact. As we show now,
these decoders can be modified into RG schemes to reveal mixed-state phases of the noisy
toric-code states.

We construct a simplified version of the Harrington decoder for the toric code [88, 91] to
demonstrate that ρp and |t.c.⟩ are in the same phase when p is small. We first partition the
lattice into even blocks Beven and odd blocks Bodd (see Fig.5.2). Odd blocks are obtained
by translating even blocks by one lattice spacing in both spatial directions. The two types
of blocks will play different roles: coarse-graining will occur on even blocks and anyons will
be paired up within odd blocks, regarded as boundary regions of even blocks.

Each step of the RG is composed of three layers of local channels:

C = U ◦

( ⊗
B∈Beven

EXB

)
◦

( ⊗
B∈Bodd

GB

)
(5.15)

where the final step U is the disentangling operation depicted in Eq.(4.65), and EX is the
coarse-graining channel defined in Eq.(4.62).

The main difference between this RG scheme and the one for the thermal toric code
state (see Sec.4.4.2) is the introduction of Gs. GB annihilates all anyons within B only if
there are an even number of them; otherwise it leaves anyons within B unmodified:

GB :=
∑

m∈{0,1}⊗4

ŨmPm(·)PmŨ
†
m (5.16)
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Figure 5.2: RG of the dephased toric code state– (a) In each RG iteration, G is
applied in parallel to all the odd blocks (blue), then EX is applied to all the even blocks
(green). Finally disentangling unitaries (see Eq.(4.65), not drawn in the figure) are applied

to reduce the lattice size by half. (b) RG flow of the anyon density q
(ℓ)
p . (c) Iteration

relation of q
(ℓ)
p when approaching 0, for various choices of p.
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Figure 5.3: A sample anyon configuration for noisy toric code– A dashed line on
an edge denotes the corresponding qubit’s phase is flipped by an Z operator. Anyons are
created in plaquettes (shaded) where an odd number of dashed lines meet.

where Ũm equals Um (Eq.(4.62)) if π(m) = 0, and is I when π(m) = 1. The heuristic
reason for introducing GB is to pair up anyon clusters across the boundaries of the even
blocks before the coarse-graining step. If such anyons were not paired, the coarse-graining
on even blocks potentially prolongs them into clusters with a larger size, thus hindering
effective anyon removal.

After each RG step C, the new state is still an ensemble of different anyon configurations,
albeit one that is not analytically tractable. Thus, we numerically compute how the RG
steps affect the anyon density:

q(ℓ)p =
1

|P (ℓ)|
∑

□∈P (ℓ)

tr

(
ρ(ℓ)p

1− A□

2

)
(5.17)

where P (ℓ) is the set of plaquettes on the renormalized lattice and ρ
(ℓ)
p is the renormalized

state after ℓ iterations. q = 0 implies the state is in the ground state subspace V of the
toric code Hamiltonian Eq.(4.53).

We use Monte Carlo method to study the flow of q
(ℓ)
p under RG. The simulation (Fig.5.2

(b)) shows that there is a sharp transition of q
(ℓ)
p at pc ≈ 0.041:

lim
l→∞

q(ℓ)p =

{
0 p < pc
O(1) p > pc

(5.18)

When p < pc the RG successfully annihilates all anyons and the fixed-point state is in
the ground state subspace of V ; while when p > pc, the fixed-point state has finite anyon
density.
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Furthermore, when the anyon density q(ℓ) approaches 0, it transforms under each RG
step as (see Fig.5.2 (c)):

q(ℓ+1) ≃ (q(ℓ))γ (5.19)

for γ > 1. This behavior guarantees that a small number of iterations is sufficient for the
convergence to the toric code ground state subspace.

We thus obtain the LC bi-connection:

|t.c.⟩ noise−−→ ρp
RG−→ |t.c.′⟩ p < pc (5.20)

where |t.c.′⟩ is another toric code state. This shows that ρp is in the same phase as the pure
toric code state, when p < pc and therefore X-dephasing noise is an irrelevant perturbation
to the topologically ordered phase.

We emphasize that this analysis does not show that ρp with p > pc is in a different
phase, because no bi-connection has been identified with this decoder. In fact, in the next
section, we will construct another local channel that establishes that the phase boundary
of the toric code phase extends to a much higher pc.

5.3 Truncated minimal weight perfect matching chan-

nel

The seminal work [86] showed that the dephased toric code state (Eq.(5.14)) retains its
logical information up to a critical point pcoding ≈ 0.108, by relating the coding phase
transition to the ferromagnetic-paramagnetic transition in the random bond Ising model.
A recovery channel called the maximal likelihood decoder [86, 92] decodes the logical
information for any p < pcoding, but the channel is not an LC transformation.

The minimal weight perfect matching (MWPM) decoder is another decoder introduced
in [86]. It has a decoding threshold pMWPM ≈ 0.103 very close to pcoding [93]. The MWPM
decoder, as a quantum channel, is also not an LC transformation. In the rest of this section,
we show that it is possible to approximate the MPWM decoder’s action arbitrarily well with
an LC transformation whenever p < pMWPM. Consequently, we show that any dephased
toric code state with p < pMWPM is in the toric code phase.

The core component of the MWPM decoder (henceforth referred to as CMWPM) is a
classical algorithm that solves the MWPM problem, namely looking for an anyons pairing
scheme that minimizes the total length of the strings connecting pairs. Afterward, the
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Figure 5.4: Truncated minimum weight perfect matching channel– (a) For a given
block B, the corresponding channel EB,a acts on both B and a buffer region F of a width
a. (b) µ(a, p) is the probability that the truncated and global MWPM algorithms produce
the same anyon pairings. It is plotted against p for various choices of a.

decoder annihilates each anyon pair by acting with the string of X operators connecting
the pair.

We now devise a way to truncate the CMWPM into an LC transformation. We first
partition plaquettes into disjoint blocks, each with a size b× b. For each block B, we apply
a local channel EB,a which acts jointly on B and a buffer region F of width a surrounding
B (see Fig.5.4). The local channel first solves the MWPM of anyons within the truncated
region B∪F , with the additional requirement that each anyon can either pair with another
anyon or with the outer boundary of F (the dashed line in Fig.5.4). Then given the pairing
scheme suggested by the MWPM solution, the channel only accepts a subset of it, namely
pairs with at least one anyon within B. The truncated MWPM (tMWPM) channel applies
the above channel to every block:

CtMWPM
a :=

∏
B∈B

EB,a (5.21)

Note that different EB,a can have overlapping domains. But since each EB,a acts only on
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a patch of (b + 2a)2 qubits, we can always rearrange {EB,a} into an O((b + 2a)2)-layer
circuit so that each layer is composed of channels with non-overlapping domains. After
the rearrangement, it is apparent that E tMWPM

a is a range-O((b+ 2a)4) LC transformation
(because both the depth and the range of gate is O((b+ 2a)2)).

The assumption behind the design of the tMWPM channel is the existence of a corre-
lation length ξ(p), such that when a ≫ ξ(p), solving MWPM on B ∪ F only and solving
MWPM on the whole system produce the same pairing for anyons in B. If the assumption
holds for every block B, then the CtMWPM

a pairs all anyons in the same way as CMWPM:

CtMWPM
a (ρp) ≈ CMWPM(ρp) = |t.c.⟩ a≫ ξ(p) (5.22)

We provide a rough estimate of how large a needs to be for the ‘≈’ above to hold
(agreement between local and global MWPM with probability 1−ϵ). Given the correlation
length assumption, the probability that for a single block B the global and the truncated
MWPM agrees should be (1 − e−a/ξ(p)). Assuming these probabilities for different blocks
are independent (which should hold for far apart blocks), then we need

(1− e−a/ξ(p))L2/b2 > 1− ϵ (5.23)

which occurs when

a = ξ(p)O

(
log

L2

ϵ

)
. (5.24)

a diverges whenever ξ(p) does, and this is expected to happen when p→ pMWPM.

To numerically support the assumption that there exists a correlation length for MWPM,
we sample anyon configurations in the X-dephased toric code state and solve the MWPM
first for all the anyons, and then only for anyons within B ∪ F (Fig.5.4(a)). Then we
compute the probability µ(a, p) that the two solutions are identical on B. We let both the
system size L and the diameter of B be proportional to a, the width of the buffer F , so
that the system has only one length scale a.

The simulation result is shown in Fig.5.4(b) and suggests there is a critical point ptMWPM

in the interval (0.10, 0.11), presumably consistent with pMWPM in the thermodynamic limit.
Below ptMWPM, we observe that lima→∞ µ(a, p) = 1. This indicates that the MWPM
solution within B is independent of anyons that are more than O(ξ) away from B, for some
correlation length ξ which diverges at ptMWPM. tMWPM thus serves as a local channel
which, along with the noise channel, establishes the two-way connection demonstrating
the toric code phase up to ptMWPM ≈ 0.1. Above ptMWPM, lima→∞ µ(a, p) = 0, implying
non-locality in the MPWM solution.
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We point out that the simulation method above provides a way to detect the toric code
phase using the anyon distribution data. One can fix a region B, implement MWPM on
B ∪ F , and gradually increase the buffer width a. If the MWPM solution when restricted
to B becomes stationary after a is larger than some a∗ = O(1) with high probability,
then the original mixed state is in the toric code phase because the tMWPM channel with
a ≳ a∗ logL can transform it into a pure toric code state. The method can potentially be
used to detect mixed-state topological order in experiments.

5.4 Discussion and outlook

In this and the previous chapters, we provide two routes (real-space RG and truncated
decoders) for constructing local channels connecting two mixed states to prove they are
in the same phase. We formulated a real-space RG scheme for mixed states and proposed
the correlation-preserving property as a guiding criterion for finding coarse-graining maps;
this property is necessary and sufficient for the map’s action to be reversible (Thm.2). We
applied this formalism to identify the phases of several classes of mixed states obtained
by perturbing a long-range entangled pure state with noise or finite temperature, and in
particular we constructed an exact RG flow of the finite temperature 2D toric code state
to infinite temperature.

For toric code subject to decoherence, we also established a relation between the mixed
state phase of the toric code and the integrity of logical information. In Thm.3, we proved
that if local noise preserves the long-range entanglement of the toric code (and the resulting
mixed state remains within the same phase as toric code), it must also preserve logical
information encoded in the initial pure state. We conjecture that the converse statement is
also true, namely, if local noise destroys the long-range entanglement of toric code, it must
also destroy any encoded logical information. Even though the theorem and subsequent
discussion focused on the toric code state, the main proof idea generalizes to many other
topological codes and their corresponding phases.

• After formalizing the definition of mixed-state phase, one natural question to ask is
whether there is a nontrivial phase that has no pure state nor classical state in this
phase. A promising candidate is the ZX-dephased toric code state recently studied
in [94]. Since the state (when noise is strong) loses logical information [94], it is
provably not in the toric code phase according to our Thm.3. Thus if the state is
not in the trivial phase, it is an example of intrinsic mixed-state topological order.
Another class of potential examples are decohered critical ground states [95, 96],
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because such states naturally sit between a long-range entangled pure state and a
long-range correlated classical state.

• One related question is whether one can find a computable quantity to detect non-
trivial mixed-state phases. Topological entanglement negativity has been successfully
used as a probe of mixed-state topological order [97, 98], but its robustness under
LC transformations needs to be studied further.

• The decoherence-induced toric code transition can also be understood as a sepa-
rability transition of the mixed-state [99], and it would be valuable to relate this
perspective with the mixed state phase and local channel perspective.

• Pure state RG methods like DMRG serve as powerful computational methods for
analyzing many-body systems. It is thus important to develop a numerical imple-
mentation of our mixed-state RG scheme. To facilitate simulations, one needs to
first find an efficient representation of the mixed state (e.g. using tensor networks),
then update it iteratively using exact or approximately correlation-preserving maps,
obtained by solving the optimization problem Eq.(4.12). We leave this problem for
future exploration.

• As presented in Sec.5.3, tMWPM also serves as a practical probe of the mixed state
toric code phase using anyon measurements. However, in experiments imperfect
measurements lead to a finite density of ‘fake’ anyons as well as unprobed anyons.
To address this, one needs to consider a specific model of measurement errors and
perform more than one round of measurements. Another potential direction is gen-
eralizing tMWPM to other topologically ordered mixed-state phases in two or higher
dimensions.
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Chapter 6

Markov length and mixed-state
quantum phases

For quantum phases of Hamiltonian ground states, the energy gap plays a central role
in ensuring the stability of the phase as long as the gap remains finite. In this chapter,
we introduce Markov length, the length scale at which the quantum conditional mutual
information (CMI) decays exponentially, as an equally essential quantity characterizing
mixed-state phases and transitions.

6.1 Quantum conditional mutual information andMarkov

length

Quantum conditional mutual information is defined as:

I(A : C|B) ≡ S(AB) + S(BC)− S(A)− S(ABC) (6.1)

where each S(X) ≡= −tr(ρX log ρX) is von Neumann entropy of the region X. For a
annulus shaped tripartition (Fig.1), CMI is closely tied to the reversibility of Lindbladian
evolution. CMI (for different partitions) has provided insight into ground state topological
phases [100, 101, 102], quantum dynamics involving measurement and noise [2, 103, 104],
and the efficiency of preparing and learning quantum states [105, 106, 107]. Here we use it
to understand mixed state phases of matter. To gain some intuition, CMI can be written
as a difference of mutual informations

I(A : C|B) = I(A : BC)− I(A : B), (6.2)
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Figure 6.1: (left) Quantum conditional mutual information I(A : C|B) quantifies how
non-local is the correlation between A and its complement. When I(A : C|B) decays
exponentially with B’s width r, we call the corresponding length scale the Markov length
ξ. (right) The dark grey line is a path of mixed-states generated from local Lindbladian
evolution, i.e. ρt = T exp(

∫ t
0
L(τ)dτ)[ρ0]. For each segment in which ξ remains finite, e.g.

below (above) the dashed line, we argue there exists a quasi-local Lindbladian L̃1(2) that
reverses L’s action. Thus states within each segment are in the same mixed-state phase.

and thus small CMI implies that A’s correlation with its complement is mostly captured
by a buffer region B surrounding it.

We give a formal definition of Markov length, the key quantity in this chapter. Let ρ be
a state defined on a D-dimensional lattice. We say ρ has Markov length ξ if its conditional
mutual information (CMI) satisfies

Iρ(A : C|B) ≤ poly(|A|, |C|)e−dist(A,C)/ξ (6.3)

for any three regions A,B,C with topology displayed in Fig.6.1(a), namely A is simply
connected, B is an annulus-shaped region surrounding A, and C = A ∪B is the rest of the
system. When ρ can be consistently defined on lattices of arbitrarily large size L (e.g. ρ is
Gibbs state of some local Hamiltonian), and if ξ is independent of L, we say the state has
ξ-finite-Markov-length (ξ-FML).
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6.2 Reversing a local quantum operation

Assume a quantum channel E acts on a local region A of state ρ, and let B be a width-r
annulus region surrounding A. Can the effect of E be approximately reversed by another
quantum channel Ẽ acting on the enlarged region A ∪B?

Using the approximate data processing inequality [108], we prove there exists a map Ẽ
acting on A ∪B whose recovery quality satisfies (see SM for a derivation) 1:

1
2 ln 2
|Ẽ ◦ E [ρ]− ρ|21 ≤ Iρ(A : C|B)− IE[ρ](A : C|B)

≤ Iρ(A : C|B) (6.4)

where the second inequality follows from strong subadditivity and |σ|1≡ tr(
√
σ†σ) is the

trace norm. The explicit form of Ẽ is given by the twirled Petz recovery map Ẽ = P(E , ρAB),
defined as:

PE,ρ[·] =

∫ ∞

−∞
f(τ)ρ

1−iτ
2 E†

[
E [ρ]

−1+iτ
2 (·)E [ρ]

−1−iτ
2

]
ρ

1+iτ
2 dτ (6.5)

which depends on the forward channel E and the local reduced density matrix ρAB. The
above bound shows that if ρ has ξ-FML, local recovery is possible because the recovery
error |Ẽ ◦ E [ρ]− ρ|1 decays exponentially with r, the width of B.

Now we turn to the local reversibility of a continuous time evolution acting everywhere
on an FML state. Generically, such dynamics can be represented as a time-dependent local

Lindbladian evolution: G ≡ T e
∫ 1
0 Lτdτ where Lt ≡

∑
x Lt,x is a local Lindbaldian at all

time. But for technical simplicity, we consider a discretized (or ‘Trotterized’) Lindbladian
dynamics:

G ≡ Cℓ=δt−1 ◦ ... ◦ Cℓ=2 ◦ Cℓ=1

Cℓ ≡
∏

x
Eℓ,x =

∏
x
eδtLℓ,x (6.6)

Here each Lℓ,x is a Lindbladian superoperator acting on a region referred to as Aℓ,x, and
x indexes gates within a layer and ℓ indexes time steps. For a given ℓ, different Aℓ,xs
are non-overlapping. Thus the total map G takes the form of a circuit, whose gates are
Lindbladian evolutions with a small time δt.

We show that G’s effect on ρ can be reversed by another (quasi-)local evolution G̃ if ρ’s
Markov length remains finite throughout the dynamics G. More precisely, we assume that
for any ℓ ∈ {1, ..., ℓmax = δt−1}:

1All the logarithms in this work, including those show up in the definition of entropic quantities, use 2
as the base.
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Figure 6.2: Reversal circuit for continuous evolution— (top left) Two layers of
the forward circuit G acting from bottom to top. Each box is a quantum channel Ex,t =
exp(δtLx,t). (top right) Gates in each layer are reorganized into multiple layers so that
any two gates in a layer are at least distance 2r separated (in the figure r = 2). (bottom)

The reversal circuit G̃ constructed from the reorganized G by replacing each Ex,t with its

reversal Ẽx,t (grey box) defined in Eq.(6.7). The reversal circuit acts from top to bottom.

1. ρℓ ≡ Cℓ[ρℓ−1] is ξ-FML (let ρ0 ≡ ρ), and further

2. C ′ℓ[ρℓ−1] is ξ-FML, for C ′ℓ formed from any subset of gates within Cℓ

The (technical) second condition is expected to follow from the first condition and small
enough δt; it corresponds to the intuition that ξ does not suddenly change from being
finite to infinite under a small perturbation. In the absence of a proof, we leave it as an
assumption for the sake of rigor.

Now we describe the reversal circuit G̃. The big picture is to reverse the circuit gate by
gate using the recovery map described in the previous section in a carefully chosen order.
To this end, we first reorganize the circuit structure of G: for each layer Cℓ, we reorganize
gates within it into multiple layers such that gates within each newly formed layer are
at least distance 2r separated from each other (r is a distance parameter we will specify
later). After the reorganization, the circuit depth may increase by a factor of O(rD), but the
number of gates is unchanged. Importantly, the new circuit still satisfies aforementioned
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conditions 1, 2 with respect to the state ρ for the same ξ (thanks to condition 2). With a
slight abuse of notation, we still use {Cℓ} to denote layers in the reorganized circuit.

The reversal dynamics can be explicitly written as:

G̃ ≡ C̃ℓ=1 ◦ C̃ℓ=2 ◦ ... ◦ C̃ℓ=δt−1 (6.7)

C̃ℓ ≡
∏

x
Ẽℓ,x Ẽℓ,x ≡ P(Eℓ,x, (ρℓ−1)Aℓ,x∪Bℓ,x

)

where each Eℓ,x acts on both Aℓ,x and a width-r annulus Bℓ,x surrounding Aℓ,x. We

emphasize that each Eℓ,x’s reversed channel Ẽℓ,x is calculated using ρℓ−1 as the refer-

ence state. Each Ẽℓ,x also admits a (time-dependent) Lindbladian representation, i.e.

Ẽℓ,x = T exp(
∫ δt
0
dτ L̃ℓ,x(τ)), as shown in [109]. Thanks to the reorganization step, dif-

ferent Ẽ s are non-overlapping and thus commute with each other. This guarantees, as we
show rigorously in the SM, that the cumulative recovery error is bounded by the sum of
single-step errors, namely:

ϵ ≡ |G̃ ◦ G[ρ]− ρ|1≤
∑
ℓ,x

∣∣∣Ẽℓ,x ◦ Eℓ,x [ρℓ−1]− ρℓ−1

∣∣∣
1
. (6.8)

Since each ρℓ is ξ-FML, according to Eq.(6.4) each of the terms in the r.h.s. is bounded by
poly(L)e−r/2ξ with L being the system size. In order to achieve the global recovery error
ϵ, it suffices to require

r ≥ ξ · log

(
poly(L)

ϵ · δt

)
(6.9)

Thus a quasi-local 2 reversal circuit is sufficient to achieve a high recovery fidelity. Using
the definition of phase equivalence, we conclude that G[ρ] and ρ are in the same phase. We
observe that the conclusion does not change even if we let ϵ and δt scale with the system
size as 1/poly(L).

6.3 Example: dephased toric code

Given that finite ξ implies continuity of a phase, it is natural to expect that a phase
transition occurs when ξ diverges. We demonstrate this with a concrete example: toric
code topological order subject to dephasing noise.

2Naively the evolution time of the reversed dynamics G̃ is O(rD) because the circuit depth is multiplied
by the same factor due to the reorganization. However it can be turned into a time 1 evolution by absorbing
the factor into L(τ).
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Figure 6.3: CMI of dephased toric code state — (a) Partition with A fixed and vary-
ing r (width of B,C). (b) I(A : C|B) peaks around pc ≈ 0.11 and peak size decays with r.
(c) Finite-size collapse with the scaling ansatz Eq.(6.14), with (pc, ν, α) = (0.11, 1.8, 1.1).
(d) Above (p = 0.15) or below (p = 0.05) the critical point, CMI decays exponentially
with r, in contrast to power-law decay at the critical point pc ≈ 0.11.
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Let |t.c.⟩ be a ground state of the toric code Hamiltonian:

Ht.c. = −
∑

□
A□ −

∑
+
B+, (6.10)

where qubits reside on edges of an L×L square lattice, and □ (+) are plaquettes (vertices).
The two terms are A□ =

∏
i∈□Xi and B+ ≡

∏
i∈+ Zi and all mutually commute. Thus the

ground state satisfies all terms, i.e. A□ |t.c.⟩ = B+ |t.c.⟩ = |t.c.⟩.
After applying dephasing noise Ep[·] ≡ (1 − p)(·) + pZ(·)Z on each qubit, we obtain

a mixed-state ρp ≡ E⊗L
2

p [|t.c.⟩ ⟨t.c.|]. Physically this corresponds to applying a Pauli-Z
gate independently on each qubit with probability p. The channel can be realized by
evolving the Lindbladian L[ρ] =

∑
i
1
2
(ZiρZi − ρ) for time tp = − ln(1 − 2p), with t = ∞

corresponding to p = 0.5.

The mixed state is concisely described by an anyon distribution. We say a plaquette
□ is occupied by an anyon if A□ = −1 (before decoherence, the ground state has no
anyons). Once a Z operator acts on an edge, it flips the anyon occupancy on the two
adjacent plaquettes. Thus for a fixed set of flipped qubits, the resulting state has anyons
on plaquettes that contain an odd number of flipped links. The state ρp is a mixture of all
compatible anyon configurations weighted by their probabilities. For a simply connected
sub-region Q, its reduced density matrix is:

ρp,Q =
∑
mQ

Pr(mQ)ΠmQ

Pr(mQ) ≡
∑
e

p|e|(1− p)|Q|−|e|δ(mQ = ∂e)
(6.11)

where the binary vector mQ indicates the anyon configuration of plaquettes within Q. ΠmQ

is the maximally mixed state that has anyon configuration mQ and satisfies B+ = 1 for all
vertices.

After some algebra, one can show that region Q’s von Neumann entropy is

S(ρQ,p) = S(ρQ,0) +H(mQ), (6.12)

H(m) ≡ −
∑

m Pr(m) log Pr(m) being the Shannon entropy of the anyon distribution
Pr(m). If Q is not simply connected and contains a hole denoted Γ, the r.h.s. of Eq.(6.12)
is replaced by H(mQ, π(mΓ)), with π(mΓ) being the parity of anyon number within Γ (see
SM for details). Thus for an annulus-shaped A,B,C partition (Fig. 6.3(a)),

I(A : C|B) =H(mBC , π(mA))−H(mABC)

−H(mB, π(mA)) +H(mAB). (6.13)
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We simulate I(A : B|C) in this geometry for various rs (i.e. width of B and C) and system
sizes by representing Pr(m) as a two-dimensional tensor network and contracting it using
the boundary transfer matrix technique [110, 111] (see SM).

We first focus on the parameter regime around the presumed critical point pc ≈ 0.11.
Our results (Fig.6.1) show that for any system size r, CMI has a peak around pc with
height decreasing with r. Furthermore, data from different system sizes can be collapsed
with the scaling ansatz:

I(A : C|B) = r−αΦ
(
(p− pc)r1/ν

)
(6.14)

by choosing pc = 0.11, α = 1.1 and ν = 1.8. In particular, when p = pc, CMI decays as a
power-law with r, in contrast to mutual information and conventional correlation functions.
To verify that the state is FML away from the critical point pc, we pick two representative
points below and above the threshold: p = 0.05 < pc and p = 0.15 > pc. As shown in
Fig.6.1(d), at both points CMI decays exponentially. These observations imply that in the
large r limit:

I(A : C|B) ≃


e−r/ξ−(p) p < pc
r−α p = pc
e−r/ξ+(p) p > pc

(6.15)

where ξ±(p) diverges near the critical point as ξ± ∝ (p− pc)−ν .
Because the Markov length remains finite in p ∈ [0, pc) and p ∈ (pc, 0.5] 3, these intervals

constitute two mixed-state phases. The former is a topologically ordered phase containing
|t.c.⟩, and the latter is a trivial phase containing ρ0.5 ∝

∑
s∈loops |s⟩ ⟨s|, i.e. a classical

uniform distribution of all closed-loop spin configurations. This state can be obtained by
applying G□[·] ≡ 1

2
(·) + 1

2
A□(·)A□ on each plaquette □ of a product state |0⟩ ⟨0|; thus it

belongs to a trivial phase.

Similar to other aspects of decohered toric code studied in [86, 99, 98, 112], the behavior
of CMI can also be understood in terms of the random bond Ising model (RBIM) along the
Nishimori line [113]. Each term in Eq.(6.13) can be mapped to a free energy in RBIM (see
SM for detailed mapping and RBIM definition). For instance, H(mAB) = FRBIM,p(AB) +

c1|AB|+c2, where FRBIM,p(AB) is the disorder-averaged free energy of the RBIM defined
on region AB’s dual lattice, and c1,2 are constants. For non-simply-connected regions B
and BC, the central hole A is treated as a single dual lattice site in the correponding
RBIM. Since A is O(1)-sized, from a coarse-grained point of view the CMI is:

I(A : C|B) = Fdef(4r)− Fdef(2r), (6.16)

3We remark that the p = 0.5 state requires infinite time dephasing Lindbladian evolution. But as we
show in SM, a O(logL) time evolution is enough to obtain a sufficiently close-by state
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where Fdef(x) is the free energy cost of introducing a point defect at the center of RBIM on
an x×x lattice. The two terms come fromH(π(mA),mBC)−H(mABC) andH(π(mA),mB)−
H(mAB), respectively. The RBIM has ferromagnetic and paramagnetic phases, separated
by a critical point presumably described by a conformal field theory, where Fdef(r) has
a subleading piece decaying as a power law with r. Thus we expect the scaling form
Eq.(6.14) to originate from the RBIM critical point. As the correlation length is the only
length scale near a critical point, we expect that the Markov length ξ can be identified
with the RBIM’s correlation length. We note however that our fitted exponent ν ≈ 1.8
deviates from νRBIM ≈ 1.5 reported in [114], and we leave this discrepancy, likely due to
finite-size effects, for future work.

6.4 G̃ as a quasi-local decoder

Using the mapping to RBIM as a bridge, we associate the dephased toric code’s mixed-
state phase transition to its decodability transition studied in [86], since both occur at the
RBIM transition. In fact, our reversal channel allows us to make a stronger statement
justified below: when the dephased toric code state is decodable (i.e. p < pc), it can be

decoded with a quasi-local process derived from G̃.

When defined on a torus, the Hamiltonian Eq.(4.53) has a degenerate ground state
subspace V which can store quantum information. We care about whether the information
stored is decodable despite the noise E⊗L2

p , namely whether there exists a decoding channel

D satisfying D ◦ E⊗L2

p [ρ] = ρ, ∀ρ ∈ BV , the set of density operators on V . The reversal

circuit G̃ constructed earlier naturally induces a decoding channel. We invoke a theorem
in [3], which states that if a quasi-local channel F satisfies F [BV ] ⊆ BV , then F|BV

[·] =
U [·]U † for some quasi-local unitary evolution U that leaves V invariant. Now we let F =

G̃ ◦E⊗L2

p , with G̃ being the reversal circuit constructed from the forward dynamics G = E⊗L2

p

and any |t.c.⟩ ∈ V as initial state, using the strategy described earlier. Applying the

theorem 4 , we conclude that U †G̃[·]U is a decoding channel, and is quasi-local because

both U †[·]U and G̃ are quasi-local channels.

4The theorem is only rigorously proved for F that exactly preserves BV ; nevertheless here we are
applying it on a map G̃ ◦ G which approximately preserves BV .
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6.5 Discussions and outlook

We have shown that under a local Lindbladian evolution, a mixed state remains in the
same phase of matter whenever its Markov length stays finite. Applying this diagnostic to
the dephased toric code state and identifying the Markov length with the RBIM correla-
tion length reveal that the mixed state phase transition and decoding transition precisely
coincide and as a byproduct, furnishes a quasi-local decoding channel.

Our main result and methods can be readily generalized to mixed-state phases with
symmetry, e.g. symmetry-protected topological (SPT) phases [115, 35, 116, 117, 118,

119, 120], since the reverse evolution is naturally symmetry respecting: G̃ satisfies any
strong (or weak) symmetry present in both the forward evolution G and the initial state
ρ. This derives from the same property of the Petz map P(E , ρ), which is manifest from
its definition (see SM).

Our discussion relies on paths of FML states from local Lindbladian evolution, which
is only justified if FML states constitute extended regions under generic local Lindbladian
evolutions, and non-FML states constitute a measure-zero set requiring fine-tuning (as
depicted in Fig.6.1). Our work shows this is true in the case of dephased toric code, but
understanding its generic validity is desirable.

The Markov length criteria for continuity of a phase also encompasses pure ground
state phases, in which the Markov length should reduce to the correlation length that
remains finite along a path of gapped parent Hamiltonians. It is worth exploring the role
of Markov length in understanding phases of other types of mixed-states, e.g. Gibbs states
and Lindbladian steady states. For the former case, FML property is rigorously established
for several special cases [121, 122, 123], and is believed to be generically true at non-
zero temperature. On the other hand, there are states with infinite Markov length which
are unstable to certain Lindbladian perturbations, e.g. the Greenberger–Horne–Zeilinger
(GHZ) state |GHZ⟩ ∝ |00...0⟩+|11...1⟩ and critical ground states. It is worth understanding
how infinite Markov length is related to the state’s instability.
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Appendix A

Appendix for Chapter.1

A.1 Relation between pure- and mixed- state phase

equivalence

We sketch a proof of the following statement: On a given lattice, two pure states |ψ1⟩ and
|ψ2⟩ are of the same mixed-state phase if and only if there exists an invertible state |a⟩
on the same lattice such that |ψ1⟩ and |ψ2⟩ ⊗ |a⟩ are of the same pure state phase. A
many-body ground state |a⟩ is called an invertible state if there exists another state |ã⟩
such that |a⟩ ⊗ |ã⟩ can be LU transformed into a product state.

Since a LU transformation is also a LC transformation, pure-state phase equivalence
trivially implies mixed-state phase equivalence.

Now we show the other direction. Assume that there exists a pair of LC transformations
C1,2 such that C1(ρ1) ≈ ρ2 and C2(ρ2) ≈ ρ1. We use U1, U2 to denote the unitary circuit
within the definition of C1 and C2.

We observe that: Since C1(ρ1) ≈ ρ2 and ρ2 is a pure state, the state right before the
tracing-out operation must factorize as:

U(|ψ1⟩ ⊗ |0⟩) ≈ |ψ2⟩ ⊗ |a1⟩ (A.1)

where |a1⟩ is the state that supports on qubits to be traced out and is defined on the
same lattice. Recalling the definition of pure-state phases, we conclude the (pure-state)
phase equivalence: |ψ1⟩ ∼

pure
|ψ2⟩ ⊗ |a1⟩. Following a similar argument, we can also obtain
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|ψ2⟩ ∼
pure
|ψ1⟩ ⊗ |a2⟩. We thus have:

|ψ1⟩ ∼
pure
|ψ2⟩ ⊗ |a1⟩ ∼

pure
|ψ1⟩ ⊗ |a2⟩ ⊗ |a1⟩ (A.2)

As a result, the state |a1⟩⊗|a2⟩ is in the trivial phase, and |a1⟩ is either in the trivial phase
or an invertible state. Note that the proof assumes there is no ‘catalyst’ effect in phase
equivalence relation: if |ψ1⟩ and |ψ2⟩ cannot be LU connected to each other, then neither
does the pair |ψ1⟩ ⊗ |a⟩ and |ψ2⟩ ⊗ |a⟩, for any state |a⟩.
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Appendix B

Appendix for Chapter.2

Proposition Claim

B.1 Clifford Circuits with Symmetry

A stabilizer state over N qubits |ψS⟩ is defined to be the unique simultaneous +1 eigen-state
of a set of stabilizers S:

s |ψS⟩ = |ψS⟩ ∀s ∈ S (B.1)

Where S = {s1, ..., sN} is a set of mutually commuting and independent (under multipli-
cation) Pauli string operators. The algorithm for obtaining entanglement entropy from S
was introduced in [39]

Since any non-identity Pauli string operator s ∈ S has spectrum {1,−1}, 1
2
(s + 1) is

a projector to the s ’s positive eigen-space. Further the density matrix of |ψS⟩ can be
explicitly written as:

ρS = |ψS⟩ ⟨ψS | =
∏
i

(
1 + si

2

)
=

1

2N

∑
g∈G

g (B.2)

Here GS = {sb11 , ..., s
bN
N |bi ∈ {0, 1} ∀i} is the finite abelian group spanned by S under

multiplication, named the stabilizer group of |ψS⟩.

A stabilizer state |ψS⟩ can be efficiently stored in memory by only keeping track of S,
which takes O(N2) bytes. One can also obtain quantities involving |ψS⟩ by only referring
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to S. A method for calculating bipartite entanglement entropy from S was introduced in
[40]. For the spin glass order parameter 2.2, the two-point correlation square term can be
expressed as:

⟨ψS |ZiZj|ψS⟩2

=Tr(ρSZiZjρSZiZj)

=
1

22N
Tr

(∏
k

(1 + sk)ZiZj
∏
l

(1 + sl)ZiZj

)

=
1

22N
Tr

(∏
k

(1 + sk)(1 + ckickjsk)

)

=
1

22N
Tr

(∏
k

(1 + sk)(1 + ckickj)

)

=
1

22N
Tr

(∏
k

(1 + sk)

)∏
l

(1 + cliclj)

=
1

2N

∏
l

(1 + cliclj)

=
∏
l

1[cliclj = 1]

(B.3)

where c is a {1,−1} valued matrix such that Zisk = ckiskZi. The one-point square term
can similarly be obtained as:

⟨ψS |Zi|ψS⟩2 =
∏
l

1[cli = 1] (B.4)

Clifford gates over N qubits Cn is a class of unitary gates with the property of always
mapping one Pauli string operator to another. The action of Clifford gate U ∈ CN on a
stabilizer state |ψS⟩ is given by:

U † |ψS⟩ ⟨ψS |U =
∏
i

(
1 + U †siU

2

)
= |ψSU ⟩ ⟨ψSU | (B.5)

where SU = {sU1 , ..., sUN} = {U †s1U, ..., U
†sNU} is still a valid set of stabilizers. So Clifford

group also leaves the set of stabilizer states invariant.

A N -qubit Clifford gate is completely decided by its action on single site Pauli oper-
ators {Xi, Zi}i∈[N ]. Clearly the mapping must preserve the commutation relation within
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{Xi, Zi}i∈[N ]. Moreover, it can be shown that any mapping that maps {Xi, Zi}i∈[N ] to the
set of Pauli string operators and preserves their commutation relations uniquely (up to a
phase factor) determines a U ∈ CN .

In the maintext we focused on a subset of CN that respects the Ising symmetry, namely
the Z2 symmetric Clifford gates CsymN . Such gates can be characterized by their defining
property of leaving the global flipping operator T =

∏
iXi invariant:

CsymN = {U ∈ CN |U †TU = T} (B.6)

Similar to generic Clifford gates, CsymN as a finite discrete group can be generated by a
much smaller set of one- and two-qubit gates. The description of this set is more clear in
the Majorana picture through the Jordan-Wigner transformation:

γ2i−1 = (
∏
j<i

Xj)Yi

γ2i = (
∏
j<i

Xj)Zi
(B.7)

Because the transformation always maps a Pauli string operator to a Majorana one
and vise versa, we can conclude that in the Majorana picture a Clifford gate always maps
one Majorana string operator to another (up to some phase factor). The Z2 symmetry
constraint guarantees that the action of U ∈ CsymN preserves the Majorana parity, and is
local in both spin and Majorana picture.

Within the Majorana picture, CsymN is generated by two kinds of gates: the two-Majorana
swap gate U s = exp(π

4
γ1γ2):

(U s)† γ1 U
s = γ2

(U s)† γ2 U
s = −γ1

(B.8)

and the four-Majorana “parity gate” (acting like a multiplication by the local fermion
parity operator) Up = exp( iπ

4
γ1γ2γ3γ4):

(Up)† γ1 U
p = iγ2γ3γ4

(Up)† γ2 U
p = −iγ1γ3γ4

(Up)† γ3 U
p = iγ1γ2γ4

(Up)† γ4 U
p = −iγ1γ2γ3

(B.9)
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Figure B.1: Spin glass order parameter O as a function of time for a system of 512 spins
at r = 1, p = pc = 0.39

To numerically sample an element U from Csym2 , first a random element is picked in
P2−{I1I2, X1X2} asXU

1 (P2 is the set of 2-Pauli operators), thenXU
2 is automatically deter-

mined through XU
1 X

U
2 = X1X2. Z1 is sampled from a subset of P2−{I1I2, X1X2, X

U
1 , X

U
2 }

that commutes with XU
2 and anti-commutes with XU

1 . Finally ZU
2 can be sampled in a

similar manner.

B.2 Details of sampling procedure

In the main text, we are mainly concerned about properties of the ensemble of late time
steady states produced by some given circuit architecture. In this section we explain how
we sample states from this ensemble numerically.

For a given random realization of circuit with size L, we first evolve the initial state
(which is typically chosen to be a product state) for τL steps so that it reaches the equi-
librium, then sample the evolving state every ∆t steps. By increasing ∆t, one can reduce
the correlation between two adjacent sampled states and increase the convergence speed
of target quantities. In our simulations ∆t is fixed to be 32. The selection of τ is usually
simulation-wise as τL needs to be larger than the time required for the system to reach
equilibrium, and the latter is usually architecture and parameter dependent. To decide
τ one can plot the quantity of interest as a function of time steps then take any time
after which the quantity saturates divided by L as τ . As an example, FIG.B.1 shows the
transient behavior of O(L = 512, p = 0.39, t) at r = 1.
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B.3 Entanglement entropy on other cross sections

We obtain entanglement entropy scaling for three additional cross sections of the phase
diagram: r = 0.25, 0.75 (Fig. B.2) and p = 0.75 (Fig. B.3).

B.4 Data for the Alternative Architecture

For the alternative architecture (Fig. 2.7 in main text), we present the entanglement
entropy scaling and spin glass order parameter data in Figures B.4 and B.5. Based on
the data, we conclude that the volume law phase is destroyed at pc,S ≈ 0.52 and the spin
glass order onsets at pc,O ≈ 0.58. The intermediate regime has spin-glass correlation and
entanglement scaling that is neither clearly area or volume law. These could be due to
finite size effects and require larger systems for further study.

B.5 Further data for (2+1)D circuit at p = 0.3

Fig.B.6 and fig.B.7 present the behaviors of SA(L, p) and O(L, p) at p = 0.3 in (2+1)D
circuit (see fig.2.6 in maintext). Our result shows that SA(L, p) / O(L, p) scales linearly
with partition size / system size when p = 0.3.
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Figure B.2: Entanglement entropy versus log of partition size near the critical points at
r = 0.25 (top) and r = 0.75 (bottom). L = 768.
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Figure B.3: Entanglement entropy versus log of partition size near the critical points at
p = 0.75, two figures for two different ranges of r. L = 768.
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Figure B.4: Entanglement entropy versus log of partition size, for various p, for the alter-
native architecture.

Figure B.5: Spin glass order parameter versus log of system size, for various p, for the
alternative architecture.
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Figure B.6: Simulated bipartite entanglement entropy SA(L, p) at p = 0.3 in (2+1)D circuit
with varying partition size A = (Ax, Ay). The total system size L = (Lx, Ly) = (60, 20)
and Ay = 20 are fixed while Ax is varying. For dashed line (aS, bS) = (4.87, 35.85)

Figure B.7: Simulated spin-glass order parameter O(L, p) at p = 0.3 in (2+1)D circuit
with Ly = 20 fixed and Lx varying. For dashed line (aO, bO) = (0.33, 0.67)
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Appendix C

Appendix for Chapter.3

C.1 Monitored dynamics as a quantum channel

In the main part of the paper, we focused on the trajectory dynamics Cm corresponding
to a single measurement outcome sequence m. In this appendix, we study the ensemble of
all the trajectory dynamics {Cm} that can arise in a monitored circuit with given unitary
gates and measurement locations.

To study the ensemble of dynamics {Cm}, we introduce a set of registers M to record
all the measurement outcomes. The whole process can be viewed as a Clifford quantum
channel from P to P ∪M [29, 168], written as:

EC(ρP ) =
∑

m∈{0,1}|M|

|m⟩ ⟨m|M ⊗ (CmρC
†
m)P . (C.1)

Here we have made each measurement outcome decoherent by applying a complete de-
phasing channel on registers.

Given a Pauli operator OA defined on A ⊂ P , we are naturally led to look for a Pauli
operator ÕS defined on S ⊂ Q such that:

tr(OAρ) = tr(ÕSEC(ρ)) ∀ρ. (C.2)

Accordingly, we use the following quantity as a measure for the amount of information
transferred from A into S by the stabilizer channel E :

HA→S(E) ≡ |{O ∈ PA : ∃ ÕS ∈ PS s.t. O = E†(ÕS)}|, (C.3)
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where PA (PS) denotes the set of Pauli operators supported on A (S).

The central result of this appendix is a relation between the entanglement properties
of a single trajectory dynamics and that of the ensemble of dynamics.

Theorem 4. Letting EC be a Clifford monitored dynamics and A,B ⊆ P , we have:

IAR:BP
(|ϕm⟩) = log2HA→B∪M(EC)− log2HA→M(EC). (C.4)

On the r.h.s of the equation, the first (second) term measures how much information is
transmitted from A to B ∪M (to B). Therefore, IAR:BP

(t) quantifies the amount of extra
information within the input A extractable within the output B, given all the classical
measurement outcomes M are known. Below, we present a proof of Thm.4.

It is convenient to introduce the Choi state:

ΦE =
1

dimP

∑
i,j

EC(|i⟩ ⟨j|P )⊗ |i⟩ ⟨j|R

=
∑

m∈{0,1}|M|

pm(|m⟩ ⟨m|)M ⊗ (|ϕm⟩ ⟨ϕm|)PR.
(C.5)

Stabilizer generators of the Choi state ΦE can be related to the recoverability of oper-
ators via the following lemma.

Lemma 1. Given a stabilizer channel E : L(HP ) → L(HQ), O ∈ PP is recovered by

Õ ∈ PQ through E if and only if OT ⊗ Õ is a stabilizer of ΦE .

Proof. Starting from the definition of recoverability, we have

O = E†(Õ)

⇔ E†(Õ)O = IP
⇔ tr(E†(Õ)O) = dimP

⇔ tr(ΦEO
T ⊗ Õ) = 1.

(C.6)

The second last equivalence follows from the fact that I is the only Pauli operator with
non-zero trace and the fact that E† maps Pauli operators to Pauli operators. The last
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equivalence is due to

tr(E†(Õ)O) =tr(ÕE(O))

=

=

= dimP · tr(ΦEO
T ⊗ Õ).

(C.7)

The last condition in Eq. (C.6) shows that OT ⊗ Õ is a stabilizer. This completes the
proof.

Next, we relate the amount of transferred operators to the mutual information, as
summarized in the following lemma.

Lemma 2. Given a stabilizer channel E : L(HP ) → L(HQ) and two regions A ⊆ P ,
S ⊆ Q, we have log2HA→S(E) = IA:S(ΦE).

Proof. Letting S be the stabilizer group of ΦE . Define GS = G ∩ PS and similarly GAS.
By lemma 1, we have:

log2HA→B(E) = log2|GAS|− log2|GS|. (C.8)

Here, log2|GB| is subtracted since the Õ in lemma 1 has the redundancy resulting from
multiplying stabilizer operators in GS.

Let us recall the formula for entanglement entropy:

SAS = |A|+|S|− log2|GAS|, SS = |S|− log2GS. (C.9)

We obtain
log2HA→S(E) = |A|+|S|−SAS − |S|+SS = IA:S(ΦE). (C.10)

The last equation is due to SA = |A| since A is maximally mixed. This completes the
proof.
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We are now ready to prove Thm.4. Recall that entanglement of the ensemble state ΦE
and that of each trajectory |ϕm⟩ are related by the following property of the conditional
entropy:

Em[SX(|ϕm⟩)] = SX|M(ΦE) = SX∪M(ΦE)− SM(ΦE). (C.11)

Here X is any subregion of P ∪R, and Em denotes averaging over all the trajectories:

Em[· · ·] ≡
∑
m

pm(· · ·)m. (C.12)

Moreover, for a Clifford monitored circuit, entanglement entropies of |ϕm⟩ do not depend
on m as long as pm ̸= 0.

We are now ready to derive Eq. (C.4):

IA:B(|ϕm⟩) =(SA + SB − SA∪B)(|ϕm⟩)
=(SAR|M + SBP |M − SAR∪BP |M)(ΦE)

=(IAR:(BP∪M) − IAR:M)(ΦE)

= log2HA→B∪M(E)− log2HA→M(E).

(C.13)

Here the second equality follows from Eq. (C.11), and the last equality follows from lemma
1. This completes the proof of Thm. 4.

C.2 Details about random polymer simulation

To perform numerical simulations of DPRE, we consider a lattice discretization of DV (x,y)
defined in Eq. (3.66). We replace the continuous spacetime manifold with a L × T grid,
then change the continuous shortest path z(τ) into a discrete one zi on the grid:

Ddiscretized
V (x,y) = min

z:z0=x,
zl(z)=y

l(z)−1∑
i=0

V(zi,zi+1)

 , (C.14)

where the integer valued l(z) is the total length of the path z. The discretized random
potential V(z,z′) is defined on the grid’s links, and takes independent values at different
locations. The problem, when formulated this way, is equivalent to looking for the ground
state domain-wall of a random bond Ising model at zero temperature [62].

For simulations presented in Sec. 3.4, for each site z we take Vz to be a uniform dis-
tribution on the interval (0, 1). Since all V s are positive, the shortest path can be solved
with the Dijkstra’s algorithm using O(LT log(LT )) time.
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Appendix D

Appendix for Chapter.4

D.1 Various short proofs

D.1.1 Derivation of Eq.(4.11)

Let us assume EA→A′ approximately preserves the correlation of a bi-partite state ρAB:

IA:B(ρ)− IA′:B(EA→A′(ρ)) = ϵ, (D.1)

After defining W and σA′EB the same way as in the proof of Thm.2, the condition above
is equivalent to:

IB:E|A′(σA′EB) = ϵ. (D.2)

Using the result in [81], there exists a reconstruction map TA′→A′E to approximately re-
construct σA′EB from σA′B, with the approximation error bounded as:

ϵ ≥ −2 log2 F (σA′EB, TA′→A′E(σA′B)). (D.3)

We still define the recovery map DA′→A using Eq.(4.8). We have:

F (ρAB,D ◦ E(ρAB))

=F
(

trR

(
U †
WUW ((ρAB)⊗ |0⟩R ⟨0|)U

†
WUW

)
, trR

(
U †
WT (σA′B)UW

))
≥F

(
UW ((ρAB)⊗ |0⟩R ⟨0|)U

†
W , T (σA′B)

)
=F (σA′EB, T (σA′B)) ,

(D.4)
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where the inequality is due to the monotonicity of F under quantum channels. Combining
the two expressions above, we arrive at the approximate recoverability we want:

ϵ ≥ − log2 F (ρAB,D ◦ E(ρAB)) (D.5)

D.1.2 Derivation of Eq.(4.22)

We assume that the two operators o
(ℓ)
1 = o1 and o

(ℓ)
2 = o2 have non-overlapping lightcones

L(o1) and L(o2) in the circuit representation of F †, as illustrated below:

To prove Eq.(4.22), we decompose F † into O(1) number of layers (as is drawn in the figure
above). Each individual layer is of the form E†1⊗E

†
2⊗...⊗E

†
K , where each E†I is a dual channel

that acts on a block of sites referred to as BI such that BI ∩BJ = ∅ whenever I ̸= J . We
inspect o1o2’s transformation under a single layer. Assuming o1, o2 are supported on BI

and BJ respectively, we have

E†1 ⊗ E
†
2 ⊗ ...⊗ E

†
K(o1o2) = E†I (o1)E

†
J(o2) (D.6)

because dual channels are unital. By doing induction over all the layers in F †, we arrive
at our conclusion Eq.(4.22).

D.1.3 Derivation of Eq.(4.39)

We prove the channel equality by checking its action on |0⟩ ⟨0|, |0⟩ ⟨1| and |1⟩ ⟨1|, which
form a basis of linear operators for a single qubit.
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We first act on the isometry and the noise channel:

(NX
p )⊗b ◦ Uwb

(|0⟩ ⟨0|) =
∑

s∈{0,1}b
p|s|(1− p)b−|s| |s⟩ ⟨s| = σ00

(NX
p )⊗b ◦ Uwb

(|0⟩ ⟨1|) =
∑

s∈{0,1}b
p|s|(1− p)b−|s| |s⟩ ⟨s̄| = σ01

(NX
p )⊗b ◦ Uwb

(|1⟩ ⟨1|) =
∑

s∈{0,1}b
p|s|(1− p)b−|s| |s̄⟩ ⟨s̄| = σ11

(D.7)

Then we act the majority vote channel. Its action on σ00 is:

E(σ00) =
∑
s

p|s|(1− p)b−|s| |maj(s)⟩ ⟨maj(s)| ⊗ tr(|diff(s)⟩ ⟨diff(s)|)

=

 ∑
s:|s|<b/2

p|s|(1− p)b−|s|

 |0⟩ ⟨0|+
 ∑

s:|s|>b/2

p|s|(1− p)b−|s|

 |1⟩ ⟨1|
= (1− p′) |0⟩ ⟨0|+ p′ |1⟩ ⟨1|
= NX

p′ (|0⟩ ⟨0|),

(D.8)

where

p′ =
∑

s:|s|>b/2

p|s|(1− p)b−|s| =
b∑

k=(b+1)/2

(
b

k

)
pk(1− p)b−k (D.9)

Following a very similar calculation, we have:

E(σ01) = (1− p′) |0⟩ ⟨1|+ p′ |1⟩ ⟨0| = NX
p′ (|0⟩ ⟨1|)

E(σ11) = (1− p′) |1⟩ ⟨1|+ p′ |0⟩ ⟨0| = NX
p′ (|1⟩ ⟨1|)

(D.10)

Then we obtain Eq.(4.39).

D.2 Convergence of real-space RGs

In Sec.4.1.4 it is stated that if a mixed state’s RG flow {ρ(0), ρ(1), ...} satisfies the following
conditions for large enough ℓ:

Eq.(4.24): F (ρ(ℓ), ρ(∞)) ≃ exp(−αθ(ℓ)L(ℓ))

Eq.(4.25): θ(ℓ+1) ≲ (θ(ℓ))γ when θ(ℓ) → 0+,
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then choosing
ℓ∗ = O(log log(L/ϵ)) (D.11)

guarantees F (ρ(ℓ
∗), ρ(∞)) > 1− ϵ for a small ϵ. L(ℓ) = L/bℓ is the renormalized system size.

In this appendix we first prove the statement, then show the validness of conditions
Eqs.(4.24),(4.25) in several scenarios, including all examples we studied in the main text.

Suppose ℓ0 = O(1) simultaneously satisfies the following two conditions: Eq.(4.25)
holds when ℓ > ℓ0 and that θ(ℓ0) := θ0 < 1. Iterating the condition (ℓ− ℓ0) times, we get:

θ(ℓ) < (θ0)
γℓ−ℓ0

. (D.12)

We need to find how large ℓ needs to be, in order to satisfy:

exp(−αθ(ℓ)L(ℓ)) > 1− ϵ, (D.13)

which is implied by (note that L(ℓ) < L):

θ(ℓ) < ϵ/L, (D.14)

which is further implied by:

ℓ > ℓ0 + logγ logθ−1
0

(L/ϵ) = O(log log(L/ϵ)) (D.15)

This completes the proof.

In the rest of this appendix section, we show several scenarios where the condition
Eq.(4.24)(4.25) is satisfied. For the case of matrix product state with a tree tensor network
RG, the analysis is done thoroughly in a recent work [212].

D.2.1 Classical statistical mechanics models

Let us consider a classical statistical mechanics model with the Hamiltonian:

Hg = H0 − gH ′ (D.16)

We assume that under some given RG process, H0 is the RG fixed point while H ′ is
an irrelevant perturbation with respect to H0. Further, we assume both H0 and H ′ are
summations of spatially local terms each involving O(1) number of sites. Further, each
spin only appears O(1) number of terms, and terms are uniformly bounded.
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Let ρg ∝ exp(−Hg) be the Gibbs state ofHg. We are interested in how fast it approaches
the fixed-point ρ0. We use the fidelity as a measure of closeness between the two states:

F (ρg, ρ0) = |√ρg
√
ρ0|1= tr(e−Hg/2e−H0/2)/

√
ZgZ0 = Zg/2/

√
ZgZ0 (D.17)

where Zg := tr(ρg) is the partition function. We note that since ρg is a classical state, the
fidelity function F coincides with the Bhattacharyya coefficient, a measure of similarity for
classical distributions.

We have:

Zg = tr

(
e−H0

∑
n

gn

n!
(H ′)n

)
= Z0

∑
n

gn

n!
⟨(H ′)n⟩0 (D.18)

Without loss of generality, we assume each term in H ′ is positive, so that: 0 ≤ ⟨(H ′)n⟩0 ≤
|H ′|n. Thus we have:

Z0 ≤ Zg ≤ Z0e
g|H′| (D.19)

Combining with Eq.(D.17), we get:

F (ρg, ρ0) ≥ e−g|H
′| (D.20)

Since |H ′| is a summation of spatially local terms whose norms are uniformly bounded,
|H ′| must be upper-bounded by αL for some α = O(1) and large L. This leads to:

F (ρg, ρ0) ≥ e−gαL (D.21)

Thus Eq.(4.24) is satisfied. The Eq.(4.25) is satisfied because g is an irrelevant coupling
for a non-critical fixed point.

D.2.2 Noisy GHZ state in Sec.4.3

(a) Bit flip noise

The fidelity function is:

F (ρXp,L, ρ
X
0,L) = ⟨GHZ| ρXp,L |GHZ⟩

=
1

2

∑
s∈{0,1}L

p|s|(1− p)L−|s| ⟨GHZ| (|s⟩ ⟨s|+ |s̄⟩ ⟨s|+ |s⟩ ⟨s̄|+ |s̄⟩ ⟨s̄|) |GHZ⟩

= (1− p)L + pL

≈ e−pL

(D.22)
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The approximation follows from p≪ 1. The iteration relation of p satisfies:

p′ =
b∑

k=(b+1)/2

(
b

k

)
pk(1− p)b−k ≤ 2b−1p(b+1)/2 ≤ pb/2 (D.23)

the last inequality holds if p < 2−2b+2, which can be always achieved after an O(1) number
of RG iterations starting from any p ∈ (0, 0.5).

(b) Phase-flip noise

The fidelity function is:

F (ρZp,L, ρ
Z
1/2,L) = tr

√√
ρZ1/2,L ρ

Z
p,L

√
ρZ1/2,L

=
1

2
+

1

2

√
1− (1− 2p)2L

(D.24)

We notice that the fidelity function actually goes to 1 when L→∞. This can be treated
as a special case of the condition Eq.(4.24) for α = 0.

The iteration relation for p around the stable fixed-point p = 0.5 is:

(p′ − 1/2) = (p− 1/2)b (D.25)
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D.2.3 Thermal toric code state in Sec.4.4.2

We consider the fidelity between the finite temperature state and the infinite temperature
one. Note that the latter is proportional to identity. Thus,

F (ρβ, ρ0) = 2−L2

2 tr
√
ρβ

= 2−L2

2

∑
m,e,l

√
Prm(m)Pre(e)Prl(l)

= 2−L2

2
+1

(∑
m

√
Prm(m)

)2

≥ 2−L2

2
+1

 ∑
m:π(m)=0

p
|m|/2
β (1− pβ)(L

2/2−|m|)/2

2

= 2−L2

2
+1(1− pβ)L

2/2

 ∑
m:π(m)=0

e−β|m|

2

≥ 2−L2

2
+12−L2/2

(
2L/2−1e−βL

2/2
)2

= 2−βL2−1

(D.26)

The iteration relation of the inverse temperature β is given by

β′ = tanh−1 tanh4 β ≈ β4 (D.27)

at small β, which satisfies the condition.

D.3 Symmetric RG of Z2 × Z2 cluster state

In this appendix, we consider the RG of a mixed SPT (symmetry protected topological)
state. The problem was first considered in [115], where the authors use the string order
parameter as a definition for the mixed state SPT. They show that, when a pure SPT
state is subject to noise, the string order parameter (i.e. the SPT phase) is preserved if
and only if the noise is strongly symmetric, meaning that all its Kraus operators commute
with the symmetry operator.
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The above definition (via string order parameters) of mixed-state SPT actually agrees
with the LC transformation based definition. To show this, we put forward a symmetric
RG transformation that brings the noisy state back to a clean one. The RG is the same
as the one proposed in [195]. Although in [195] the circuit is designed for recognizing
pure-state phases, we point out that it can be readily applied on a mixed-state SPT states.

Here we demonstrate the principle with a simple (1+1)D SPT state, namely the Z2×Z2

SPT. Consider a 1D lattice spin chain where in the bulk each site contains 2 qubits, labeled
as A and B. The pure SPT wavefunction can be written as:

|ψ⟩ =
+∞⊗
i=−∞

|EPRiB ,(i+1)A⟩ , (D.28)

where each |EPRi,j⟩ := 1√
2
(|0i0j⟩+ |1i1j⟩). Note that the above way of defining the Z2×Z2

SPT is related to the cluster state by rotating the two spins within a unit cell with a CNOT
gate. It is straightforward to verify that the state has a Z2×Z2 symmetry generated by 2
generators:

UX =
∏
i

XiAXiB , UZ =
∏
i

ZiAZiB . (D.29)

Two generators define two string order parameters:

SXij = XiB

(
j−1∏
k=i+1

XkAXkB

)
XjA , SZij = ZiB

(
j−1∏
k=i+1

ZkAZkB

)
ZjA (D.30)

One signature of the SPT order in |ψ⟩ is that expectation value of string order parameters
does not decay with |i− j|.

We consider the XX dephasing channel:

NXX
p (·) = (1− p)(·) + pXAXB(·)XAXB, (D.31)

whose action can be realized by the pair of spins within each site being flipped simultane-
ously with probability p. The channel is strongly symmetric under UX and UZ , because
its Kraus operators commute with symmetry operators.

The noisy SPT state of our interest is obtained by applying Np uniformly upon ψ:

σp,L = N⊗L
p (|ψ⟩ ⟨ψ|). (D.32)
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It will be useful to unravel σp into a classical mixture of pure SPT states decorated by
domain walls:

σp = E[|ψs⟩ ⟨ψs|] =
∑

s∈{0,1}L
P (s) |ψs⟩ ⟨ψs|

P (s) := p|s|(1− p)|s|

|ψs⟩ :=
⊗
i

Xsi
iA
X

si+1

(i+1)B
|EPRiB ,(i+1)A⟩

(D.33)

Now we focus on a block of b sites within the state and devise the channel that coarse-
grains the block. The part of the |ψs⟩ within the block can be drawn as (for b = 3):

where each hollowed circle is either an identity gate if s = 0 or an X gate if s = 1. Each
si is an independent Bernoulli random variable with chance p.

The renormalized site is formed by qubits {1A, bB}, while the (b − 2) entangled pairs
supporting on the remaining qubits {1B, 2A, 2B, ..., bA} can help us infer and correct errors
s1 and sb before they get traced out. More concretely, the coarse-graining channel E ’s
action is the following:

1. Measure each Bell pairs within the block in the ZZ basis, whose outcome records the
domain-walls between si, i.e., {t1 = s1 − s2, t2 = s3 − s2, ..., tb−1 = sb−1 − sb}. The
outcomes decide all the si up to a global flip, i.e. once we assume a value for the first
error s1 = ŝ1, the remaining s are also uniquely determined by: ŝk = (

∑k−1
j=1 tj)− ŝ1.

2. Assume
ŝ1 = argmaxs1∈{0,1}Pr(s1|t1, ..., tb−1) (D.34)

to be the actual error, and correct all sites within the block. Namely, applying
XiAXiB if ŝi = 1. After this step, all Bell pairs within the block are noiseless and
decoupled from {1B, bA}.

3. Trace out {1B, 2A, 2B, ..., bA}. Then we obtain the renormalized site with {1B, bA},
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It is clear that channel E is strongly symmetric under Z2 × Z2 since each individual
step is. The renormalized site gets a XX error if and only if ŝ1 ̸= s1, whose probability
we denote as p′. Thus we find that the normalized state is still a symmetrically dephased
SPT state, but with a normalized noise strength p′:

E⊗
L
b (σSPT

p,L ) = σSPT
p′,L/b (D.35)

The explicit form of p′ is:

p′ =
b∑

k=(b+1)/2

(
b

k

)
pk(1− p)b−k (D.36)

Thus we obtain a similar RG flow as in the X-dephased GHZ state studied in Sec.4.3:
symmetrically decohered SPT state flows back to a pure SPT state when 0 ≤ p < 0.5.
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Appendix E

Appendix for Chapter.6

E.1 Petz recovery map

Let H, H′ be two Hilbert spaces. For a density operator ρ defined on H and a completely
positive trace preserving (CPTP) map E : B(H) → B(H′), the CPTP map called twirled
Petz map PE,ρ : B(H′)→ B(H) is defined as:

PE,ρ[·] =

∫ ∞

−∞
f(τ)ρ

1−iτ
2 E†

[
E [ρ]

−1+iτ
2 (·)E [ρ]

−1−iτ
2

]
ρ

1+iτ
2 dτ (E.1)

where f(t) ≡ π
2(cosh(πt)+1)

, and the map E† is defined through the relation tr(E†[X]Y ) =

tr(XE [Y ])

The importance of the twirled Petz map comes from the following inequality concerning
approximate quantum sufficiency [108]:

D(ρ∥σ)−D(E [ρ]∥E [σ]) ≥ −2 logF (ρ,PE,σ ◦ E [ρ]) (E.2)

Where ρ and σ are both states defined on H. D(ρ∥σ) ≡ tr(ρ(log ρ − log σ)) and F (·, ·)
is the fidelity between states. In plain language, the theorem states that the twirled Petz
map PE,σ approximately reverses the action of E on any state ρ whose relative entropy
with respect to σ does not change much under E .

In order to derive Eq.(6.4), we take ρ = ρABC and σ = ρAB⊗ρC , and let E be a channel
acting on A only. In this case the l.h.s. becomes:

Iρ(AB : C)− IE[ρ](AB : C) = Iρ(A : C|B)− IE[ρ](A : C|B) (E.3)
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which comes from I(A : C|B) ≡ I(AB : C) − I(B : C). We notice that Iρ(B : C) =
IE[ρ](B : C) because E acts on A only. To bound the r.h.s. in terms of trace norm, we use
the relation:

1− F (ρ, σ) ≥ 1

4
|ρ− σ|21 ⇒ − 2 logF ≥ 1

2 ln 2
|ρ− σ|21 (E.4)

Combining two expressions together, we obtain:

Iρ(A : C|B)− IE[ρ](A : C|B) ≥ (2 ln 2)−1 · |PE,ρAB
◦ E [ρ]− ρ|21 (E.5)

which is also Eq.(6.4).

E.2 Derivation of Eq.(6.8)

The recovery error of a single layer is bounded as:

∣∣∣C̃ℓ ◦ Cℓ[ρℓ−1]− ρℓ−1

∣∣∣
1

=

∣∣∣∣∣
xmax−1∑
x=1

(
Ẽx,ℓ ◦ Ex,ℓ [C<x,ℓ[ρℓ−1]]− C<x,ℓ[ρℓ−1]

)∣∣∣∣∣
1

≤
xmax−1∑
x=1

∣∣∣Ẽx,ℓ ◦ Ex,ℓ [C<x,ℓ[ρℓ−1]]− C<x,ℓ[ρℓ−1]
∣∣∣
1

≤
xmax−1∑
x=1

∣∣∣Ẽx,ℓ ◦ Ex,ℓ [ρℓ−1]− ρℓ−1

∣∣∣
1

(E.6)

where C<x,ℓ ≡
∏

y<x Ẽy,ℓ ◦ Ey,ℓ. The first inequality is from the triangle inequality of trace
norm, while the second one is from the contractivity of CPTP maps.

The cumulative error of the total forward-backward evolution is:∣∣∣G̃(t) ◦ G(t)[ρ]− ρ
∣∣∣
1
≡
∣∣∣C̃1 ◦ ... ◦ C̃ℓmax ◦ Cℓmax ◦ ... ◦ C1[ρ]− ρ

∣∣∣
1
≡
∣∣∣C̃{1,...,ℓmax}[ρℓmax ]− ρ0

∣∣∣
1

(E.7)

where ℓmax = t/δt, and C̃{1,...,ℓ} ≡ C̃1◦ ...◦C̃ℓ. We make use of the following iteration relation
which holds for ℓ = 1, ...ℓmax:

C̃{1,...,ℓ}[ρℓ] = C̃{1,...,ℓ−1}[ρℓ−1] + C̃{1,...,ℓ−1}

[
C̃ℓ ◦ Cℓ[ρℓ−1]− ρℓ−1

]
(E.8)
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so that the cumulative error can be expanded and bounded as follows:∣∣∣C̃{1,...,ℓmax}[ρℓmax ]− ρ0
∣∣∣
1

=

∣∣∣∣∣
ℓmax−1∑
ℓ=1

C̃{1,...,ℓ−1}

[
C̃ℓ ◦ Cℓ[ρℓ−1]− ρℓ−1

]∣∣∣∣∣
1

≤
ℓmax−1∑
ℓ=1

∣∣∣C̃{1,...,ℓ−1}

[
C̃ℓ ◦ Cℓ[ρℓ−1]− ρℓ−1

]∣∣∣
1

≤
ℓmax−1∑
ℓ=1

∣∣∣C̃ℓ ◦ Cℓ[ρℓ−1]− ρℓ−1

∣∣∣
1

≤
∑
x,ℓ

∣∣∣Ẽx,ℓ ◦ Ex,ℓ [ρℓ−1]− ρℓ−1

∣∣∣
1

(E.9)

E.3 Derivation of Eq.(6.12)

Suppose Q is a non-simply-connected region of the toric code ground states surrounding a
hole.

Figure E.1: Illustration of a non-simply connected region Q. Only qubits (edges) that
belong to Q is drawn. Supports of the two non-local operators A□̃ and B+̃ surrounding
the hole are denoted with green and blue edges, respectively.

Before the dephasing, the reduced density operator on Q is:

ρ0,Q = tr (|t.c.⟩ ⟨t.c.|)

=

(
1 + A□̃

2

)(
1 +B+̃

2

) ∏
□ within Q

(
1 + A□

2

) ∏
+ within Q

(
1 +B+

2

)
(E.10)

where A□̃ is a X-loop operator acting on green edges (see Fig.E.1), and B+̃ is a Z-loop
operator acting on blue edges. The two terms show up because Q is not simply-connected.
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We notice that each factor in the expression is a projector operator and all factors commute
with each other.

Once a Z operator acts on an edge, anyon occupancies of the two adjacent plaquettes
will be flipped. Thus if we use the binary vector e to indicate the set of edges that are
acted by Z, plaquettes with a net anyon (indicated with a binary vector m) are those
intersects odd number of times with e. We denote this relation as m = ∂e. The dephased
state is the weighted mixture of states result from all the possible es:

ρp,Q =
1

2zQ

∑
m

Pr(m)

(
1 +B+̃

2

)(
1 + (−1)m□̃A□̃

2

) ∏
□ within Q

(
1 + (−1)m□A□

2

) ∏
+ within Q

(
1 +B+

2

)
≡ 1

2zQ

∑
m

Pr(m)Πm

(E.11)
where Pr(m) =

∑
e p

|e|(1 − p)|Q|−|e|δ(∂e = m). Noticing that each Πm is a projector and
ΠmΠm′ = 0 when m ̸= m′, we obtain the expression for ρp,Q’ s von Neumann entropy:

S(ρp,Q) = −tr(ρp,Q log ρp,Q) = S(ρ0,Q) +H(m) (E.12)

Which is the Eq.(6.12) in the maintext. We remark that there is a small difference between
the notation here and that adapted in the maintext: In the maintext m represents only
anyon configuration of unit plaquettes within Q, and the net anyon number in the big
plaquette (i.e. the green plaquette above) is denoted with π(mΓ). But here we use m to
denote both.

E.4 Tensor network technique for simulating H(m)

In order to simulate H(m), we first rewrite it as a sample averaged quantity:

H(m) = −Em∼Pr(m) [log Pr(m)] . (E.13)

Anyon configuration m can be efficiently sampled by first sampling e, which follows a
product distribution, then calculating m as m = ∂e. However a bruteforce evaluation of
Pr(m) is not easy because it requires enumerating all the es that can produce m, which
leads to exponentially many terms.

To circumvant this difficulty, we represent Pr(m) as a two dimensional tensor net-
work. For instance, for the following anyon configuration m (plaquattes holding anyons
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are shaded):

, (E.14)

its probability can be expressed as:

Pr(m) =
∑
e

p|e|(1−p)|Q|−|e|δ(∂e = m) = = ,

(E.15)
where each two-leg circle tensor Ts1s2 , s1,2 ∈ {0, 1} is used for assigning weights:

Ts1s2 = δ(s1 = s2)ps1(1− p)s1 (E.16)

and each q-leg square tensor Qs
s1,...,sq

, si ∈ {0, 1} is used for imposing parity constraint on
each plaquatte:

Qs
s1,...,sq

= δ

(
q∑
i=1

si = s mod 2

)
. (E.17)

In the tensor network image above, Q0s and Q1s are drawn with yellow and green
squares, respectively. Correctness of the tensor network representation can be explicitly
checked by expanding all the tensors. The 2D tensor network can be evaluated approxi-
mately and efficiently using the boundary matrix product state (bMPS) method [110, 111].
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E.5 Details on numerical simulation in Fig.6.3

For numerical results presented in Fig.6.3, regions A, B and C are taken as follows (the
plotted figure correponds to r = 2):

.

Edges belong to different regions are indicated with different colors. When varrying r, the
region A remains unchanged.

In Figs.6.3(b, c), each data point is averaged over at least 3.5 × 104 samples. In
Fig.6.3(d), each data point is averaged over at least 6× 106 samples.

E.6 Mapping to RBIM’s free energy

In this appendix we derive the mapping from the anyon distribution’s Shannon entropy
H(mQ) (r.h.s. of Eq.(6.12)) to the RBIM’s free energy, and further relate CMI to RBIM’s
free energy cost due to a point defect.

We focus on an annulus shaped subregion Q which contains a hole. mQ is used for
denoting both the anyon configuration within Q and the net anyon occupancy in the hole,
i.e. the hole is treated as a big plaqquette. A simply connected region Q can be considered
as a special case where the hole contains only one plaquette.

We use binary vector e to indicate edges that are acted by Z gates, and m = ∂e is its
corresponding anyon configuration. The probability of observing the configuration m is:

Pr(m) =
∑
e′

δ(∂e = ∂e′)p|e
′|(1− p)|Q|−|e′|. (E.18)
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After a change of variable: c ≡ e + e′ (the summation is modular 2), the delta function
constraint becomes into ∂c = 0, i.e. c must form a loop. We obtain:

Pr(m) = [p(1− p)]|Q|/2
∑
c

δ(∂c = 0)eJ
∑

x ηxc̃x (E.19)

where c̃x ≡ 2cx − 1, ẽx ≡ 2ex − 1, J = 1
2

log(p/(1− p)), and the index x runs over edges.

In order to solve the loop constraint, we perform another change of variable: cx=ij =
σiσj, where σs are spin variables defined on plaquettes of the orignal lattice, i.e. the dual
lattice:

Pr(m) =
1

2
[p(1− p)]|Q|/2

∑
{σ}

eJ
∑

ij ηijσiσj = e−FRBIM,p(Q,ẽ)−c1|Q|−c2 (E.20)

where c1 = −1
2

ln p(1− p) and c2 = ln 2.

The Shannon entropy of m can now be written as:

H(mQ) = −
∑
mQ

Pr(mQ) log Pr(m) (E.21)

=
∑
mQ

Pr(mQ)(FRBIM,p(Q, ẽ) + c1|Q|+c2) (E.22)

=
∑
e

Pr(e)(FRBIM,p(Q, ẽ) + c1|Q|+c2) (E.23)

= FRBIM,p(Q) + c1|Q|+c2 (E.24)

Finally we look into the meaning of CMI in terms of the RBIM. Letting Q = B and
Q = AB following the geometry below:
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we obtain that:

H(π(mA),mB)−H(mAB) (E.25)

=FRBIM,p



− FRBIM,p



+ c.c. (E.26)

where lattices upon which the correponding RBIMs are defined were drawn. Since A is
fixed, in the large r limit the expression above can be viewed as the free energy cost of
introducing a point-like defect in the center of the lattice, which we denote with Fdef(2r).
Following exactly the same argument, one can derive that H(π(mA),mBC)−H(mABC) =
Fdef(4r). We thus obtain the Eq.(6.16):

I(A : C|B) = H(π(mA),mBC)−H(mABC)− (H(π(mA),mB)−H(mAB)) (E.27)

= Fdef(4r)− Fdef(2r), (E.28)

E.7 Convergence of dephasing Lindbladian

In this appendix we examine how fast does exp(tL), where L[·] ≡
∑

i Li =
∑

i
1
2
(·) −

1
2
Zi(·)Zi, converges to the complete dephasing channel

∏
i Ei[·] ≡

∏
i

(
1
2
(·) + 1

2
Zi(·)Zi

)
.

We consider the diamond distance: for two quantum channels C1, C2 acting on a n-
dimensional Hilbert space, their diamond distance is defined as

|C1 − C2|⋄ ≡ max
ρ
|C1 ⊗ In[ρ]− C2 ⊗ In[ρ]|1 (E.29)

where In is the identity channel.

We first check the distance between exp(Li) and Ei. Bringing in C1 = exp(tLi) and
C2 = Ei , we get:

|exp(tLi)− Ei|⋄ =

∣∣∣∣pt − 1

2

∣∣∣∣ ·max
ρ
|ZρZ − ρ|1 =

1

2
e−tλ (E.30)

where pt = (1− e−t)/2. We let λ ≡ maxρ |ZρZ − ρ|1, which is an O(1) constant.
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Then the diamond distance between E and ⊔L is bounded as:

|exp(tL)− E|⋄ ≤
∑
i

|exp(tLi)− Ei|⋄ =
L

2
e−tλ (E.31)

Thus in order to acheive ϵ proximity, it suffices to pick t = O(log(L/ϵ)).

In conclusion, E can be well-approximated by a quasi-local Lindbladian evolution.
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