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Abstract

Quantum computing potentially offers unprecedented computational capabilities that
transcend the limitations of classical computing paradigms. Despite its conceptual in-
ception over three decades ago, recent years have witnessed remarkable progress in the
realization of physical quantum computers, spurring a surge of research activity in the
field. Although fault-tolerance devices remain unrealized, modern quantum hardware is
getting less noisy, which allows us to investigate quantum algorithms that require only short
depth circuits. One particular class of algorithms that falls into this category are varia-
tional quantum algorithms, which treat a quantum computer as a black box with tunable
parameters that can be optimized via a classical optimization routine. This thesis delves
into the realm of variational quantum algorithms and explores their optimization prop-
erties, trainability and geometric properties. Through a blend of numerical experiments,
geometric insights, and mathematical analysis, it provides a comprehensive exploration
of variational quantum algorithms paving the way for future advancements in variational
quantum computing.
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Chapter 1

Introduction

Quantum computing has been described as the next frontier of computing in the informa-
tion age. With the number of transistors that can be fit into a square millimeter reaching
physical limits, scientists are looking for alternative methods of compute. Although the
founding ideas of quantum computing are already more than three decades old [7], recent
years have seen significant advances to build physical quantum computers, which has led
to an explosion of research in the field.

One of the big promises of quantum computing is to provide an (almost) exponential [8]
or polynomial speedup [9] over classical algorithms using polynomial resources to manip-
ulate and measure a quantum state. Developing these algorithms turns out to be quite
challenging, and the few known algorithms that are provably faster than the best known
classical algorithms make use of very specific properties of a quantum states. In fact, in
the last couple of years we have seen several works that “dequantize” a class of sparse
linear algebra quantum algorithms by developing a classical counterpart with similar per-
formance [10]. Nonetheless, the zoo of quantum algorithms keeps expanding as more novel
algorithms are found.

A particular exciting area of quantum computing is the field of quantum simulation [11],
where a quantum computer is used to simulate the dynamics of a physical quantum sys-
tem [12]. Such simulations could be used to study condensed matter physics, quantum
chemistry and high energy physics, which currently require a large amount of compu-
tational resources [13]. For most quantum algorithms, one requires a digital quantum
computer, which can in principle prepare an arbitrary quantum state and apply any uni-
tary operations given enough resources. However, for the purposes of quantum simulation,
an analog quantum device could be enough to study non-trivial physics. In these so-called
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analog quantum computers, one is limited to the dynamics of a particular controllable
Hamiltonian. Examples of such platforms are D-Wave’s quantum annealer [14], which per-
forms a quantum quench of a tunable spin glass and a Rydberg atom array where cold
atoms are manipulated in optical tweezers [15]. Although provable speedups are much
harder to establish for the purposes of quantum simulation, it is believed that this will be
an area where quantum computers will outshine classical methods.

The main issue that prevents us from accessing this nascent field of computing is noise.
Unlike classical computers, which are largely unaffected by random errors, quantum com-
puters are constantly affected by different sources of noise. To combat this, computations
need to be error-corrected at all times to keep calculations accurate. To achieve this, quan-
tum error correction codes have been developed, which enable the development of logical
qubits constructed out of multiple of their noisy counterparts [16]. In the last couple of
years, these ideas have been taken from theory into the lab, and we are starting to see
the building blocks of a fault-tolerant quantum computer getting developed [17, 18, 19].
Nonetheless, it will likely take many more years for us to develop this holy grail of a
fault-tolerant quantum computer.

Even though fault-tolerant devices do not exist yet, attempts have been made in the
last couple of years to make use of the noisy devices that are currently available. This is era
of quantum computing has been dubbed the Noisy Intermediate-Scale Quantum (NISQ)
computing era [20]. On the one hand, it has been shown noisy machines can do something
non-trivial, although their usefulness for practical applications seems highly limited at the
moment. Additionally, similar to the dequantization of known quantum algorithms, the
classical computing community has made great efforts to challenge and debunk claims of
quantum supremacy [21, 22, 23]. Nonetheless, a wide variety of NISQ algorithms has been
developed that aims to use the limited resources of noisy devices to solve a classically
challenging problem.

A particular class of NISQ algorithms treats the quantum computer as a black box,
with parameterized operations that can be individually controlled. These operations are
then optimized with a gradient-based method in order to minimize a specific cost function.
This approach to quantum computing is called variational quantum computing [24, 25]
which is close in spirit to the deep learning, where one attempts to optimize a black box
function over a non-convex cost landscape. Somewhat miraculously, this approach seems
to work extremely well given the right neural network architecture. It seems that given
enough data, one is typically able to find high quality local minima of the cost function
that leads to an accurate model of the data. The hope is that similar behavior will occur
in parameterized quantum circuits, even when they can only perform noisy operations. To
turn this hope into a reality, we need a detailed analysis of variational quantum algorithms,
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both in theory and application to uncover if there is merit to this approach of quantum
computing. This is the main point of this thesis and the work contained herein.

We investigate variational quantum algorithms, with a focus on its optimization prop-
erties. The goal of this research program is to investigate if variational quantum circuits
can be optimized reliably and used to solve non-trivial problems. Although variational
quantum algorithms are proposed in the NISQ context, where noise is omnipresent and
only shallow algorithms can realistically be performed on current hardware, we almost
exclusively considered an idealized setting. In particular, we consider the case where ob-
servables are measured exactly, gradients calculated with floating point precision, and we
stayed far away from any practical implementations on a real quantum device (with the
exception of Section 2.4). This is not out of laziness, but by choice. The focus of this
work has been to investigate the power of variational quantum computing under the most
favorable conditions possible, since if it does not work under these circumstances, what
hope is there that it will work under noisy conditions?

This thesis is divided in three parts, with an introductory chapter for each chapter. The
first part (Chapter 2) consists of numerical studies to investigate the power of variational
algorithms. We considered the main algorithmic paradigm in the field and apply it to
various problems in quantum many-body physics. Within the context of these problems,
we sought to understand when the circuit can be optimized efficiently, or in machine learn-
ing terminology, is trainable. We connect overparameterization phenomena in Machine
Learning to the quantum setting and explore different ways to get around barren plateau
problems in the cost landscape.

The second part of this thesis is a more explorative body of work, focused on devel-
oping variational algorithms using ideas in Riemannian geometry (Chapter 3). Although
standard Riemannian optimization ideas quickly made its way into the field [26], our ex-
ploration has been quite distinct in character from others works. The core perspective
that we considered is that instead of thinking about training a variational quantum cir-
cuit as an optimization problem in some real parameter space, we can think about it as
an optimization problem on the special unitary group SU. This approach has been quite
fruitful and led to a series of works that has gotten more esoteric over time, culminating in
a work that constructs quantum gates from the homogeneous spaces one obtains by taking
a quotient of Lie groups.

The third part of this thesis (Chapter 3) is the most mathematical part of this work.
Although the author is no mathematician by any stretch of the imagination, the body of
research in the first two chapters led to fundamental questions that required a mathematical
approach. In particular, a central object called the Dynamical Lie Algebra (DLA) of a
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variational quantum circuit is intricately related to its optimization properties, and we will
encounter this object in both Chapter 2 and Chapter 3. A DLA is a Lie algebra that
is generated by the terms in a Hamiltonian, which subsequently tells us about the Lie
group that is explored during the quantum dynamics generated by that Hamiltonian. The
term DLA comes from the quantum control literature [27], where one is mainly concerned
with the question, “Can I generate the full special unitary group given the Hamiltonian
of my system?”, since doing so gives one access to universal quantum computing. In the
variational quantum computing context, most works have only considered identifying the
DLA of particular circuits. The approach in Chapter 3 is fundamentally different from this
perspective, since we seek to answer the question: “What is the set of all possible DLAs,
and how do we generate them?” In mathematical terms, we have provided a classification
of DLAs and subsequently of classes of variational quantum circuits.
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Chapter 2

Ground state approximations with
Variational Quantum Circuits

2.1 Variational Quantum Computing

To establish notation, we briefly introduce some core concepts in quantum computing [28].
We denote a quantum state with the ket |ψ⟩. Unless stated otherwise, |ψ⟩ is an element
of an n-qubit Hilbert space H = (C2)⊗n where we set N = 2n. We can think of the ket
|ψ⟩ as an element of the H, and the bra ⟨ψ| as an element of the dual space H∗ so that
⟨ψ| : H → C, i.e. a bra is a function that takes in a vector, and produces a (complex)
scalar. Throughout this thesis we will assume that |⟨ψ|ψ⟩| = 1, hence a quantum state is
normalized with respect to the ℓ1-norm. Bras and kets can be transformed into each other
via complex transposition

⟨ψ| = |ψ⟩† .

The canonical basis for H is given by a tensor product of the states

|0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

)
,

which gives

H = spanC

{
|b⟩ =

n⊗

i=1

|bi⟩ , bi ∈ {0, 1}n
}
.
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This basis is called the computational basis.

Let L(H) be the space of linear operators onH. An equivalent description of a quantum
system is via a density matrix ρ ∈ L(H) which is positive, semi-definite and trace one. If
the state has rank one, it can be written as

ρ = |ψ⟩⟨ψ| , (2.1)

and is called a pure state. A mixed state, on the other hand, is a convex linear combination
of pure states

ρ =
n∑

i

pi |ψi⟩⟨ψi| , (2.2)

with
∑n

i pi = 1 and 0 < pi ≤ 1.

A quantum computer is a physical device that prepares an initial state |ψ0⟩ and trans-
form it to some output state |ψ⟩ via a linear transformation U ,

|ψf⟩ = U |ψ0⟩ .

For this operation to result in a valid quantum state, we need U to be norm-preserving.
Such transformations are given to us in the form of unitary operations U , that satisfy
UU † = IN with IN the identity matrix of size N ×N .

Although, we are free to use any unitary to transform the state, we are typically limited
to unitary operations called quantum gates, that act locally on a subsystem of the full
Hilbert space. Due to the tensor product nature of H, these gates also act as a tensor
representation. For example, for a one-qubit gate acting on qubit i, we have

Ui |ψ⟩ = I2(i−1) ⊗ U ⊗ I2n−i−1 .

Similarly, for a two qubit gate acting on i < j,

Ui,j = I2(i−1) ⊗ Ūi,j ⊗ I2n−j−2 ,

where Ūi,j acts only on the subspace spanned by |bi⟩ ⊗ |bj⟩, ∀i, j ∈ {0, 1} and behaves like
the identity elsewhere. This notation quickly becomes too involved when we are applying
multiple gates, so the identity tensor products are usually dropped. Additionally, one can
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replace the mathematical notation with so-called circuit diagrams,

Ui |ψ⟩ =

i−1

n−i−1

|ψ0⟩ Ui

Ui,j |ψ⟩ =

i−1

j−i−1

n−i−2

|ψ0⟩

Ūi,j

Ūi,j

where the lines indicate local states |bi⟩ gates are applied from left to right to the state.

A quantum circuit consists of multiple gates {Ul}, with l = 1, . . . , L, acting on different
parts of the system.

U =

←−
L∏

l=1

Ul, (2.3)

where
←−∏

indicates the ordering from right to left. If the unitaries Ul are chosen from a
specific gate set called a universal gate set, then any unitary U ∈ U(N) can be written as
a product of these gates. In the worst case, this will require a number of quantum gates
that is exponential in n. In practice however, we can only apply a polynomial number of
quantum gates. Designing an efficient (polynomial) quantum circuit to prepare a specific
target state is the central goal of quantum computing [28].

2.1.1 Variational Quantum Eigensolver

Instead of designing a quantum circuit from a particular set of fixed quantum gates, we
instead parameterize the gates in the circuit. Such a quantum circuit is called a variational
quantum circuit and corresponds to a product of parameterized unitaries

U(θ) =

←−
L∏

l=1

Ul(θl), (2.4)
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with θl ∈ Rdl and θ = {θ1, . . . ,θL}. One can apply the circuit to an initial state

U(θ) |ψ0⟩ = |ψ(θ)⟩ , (2.5)

to obtain the variational quantum state |ψ(θ)⟩. Throughout the literature, variational
quantum circuits have obtained different names, such as quantum neural network and
parameterized quantum circuit.

This variational quantum state can be used in a variety of different contexts, such as
ground state problems, real-time dynamics and quantum machine learning [24, 25]. A key
algorithm in all these approaches is Variational Quantum Eigensolver (VQE) [29], a hybrid
classical-quantum algorithm for finding eigenstates of a quantum many-body Hamiltonian
H, which is typically a linear combination operators Oi

H =
∑

i

Oi,

where each Oi is Hermitian. Due to physical constraints, the Oi typically act locally, i.e.
only on a subsystem of the entire system. We will often make use of the following set of
Hermitian operators called the Pauli matrices

σ0 = I =

(
1 0
0 1

)
, σ1 = X =

(
0 1
1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
,

including the identity matrix I, which form a basis for the real vector space of 2 × 2
Hermitian matrices. A Pauli string is a tensor product of n Pauli matrices of the form

a = A1 ⊗ A2 ⊗ · · · ⊗ An, Aj ∈ P1. (2.6)

We denote the set of all such Pauli strings by Pn := {I,X, Y, Z}⊗n. The Pauli strings
form a basis over the real numbers for any Hermitian operator that of size CN × CN (see
also Appendix A.1. In this thesis, we will mostly consider spin Hamiltonians that can be
described in terms of Pauli strings.

According to the variational principle of quantum mechanics, a variational quantum
state |ψ(θ)⟩ provides an upper bound on the ground state energy,

Eground ≤ ⟨ψ(θ)|H |ψ(θ)⟩ = E(θ), (2.7)

Since the variational energy E(θ) is always larger than the ground state energy, we can
approximate the ground state by minimizing E(θ) with respect to the parameters θ. The
quantum part of VQE is thus the measurement of the energy E(θ) on a variational quantum
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state |θ⟩. The hybrid aspect of VQE is that these observables can be used in a classical
optimization routine which can be used to find the optimal parameters θ∗ that minimize
the variational energy:

θ∗ = arg min
θ

E(θ). (2.8)

This can provide us with a good approximation of the true ground state if U(θ) is expressive
enough to capture the ground state and the if optimization is successful. An alternative
notation for the variational energy is

E(θ) = Tr
{
U(θ)ρ0U

†(θ)H
}
, (2.9)

where ρ0 = |ψ0⟩⟨ψ0| is an initial state density matrix. Throughout this thesis we will only
consider the choice |ψ0⟩ = |0⟩, and absorb any pre-processing of the state into U(θ).

To estimate the energy E(θ) during the optimization we estimate the observables that
make up the Hamiltonian H. With the notation

⟨ψ(θ)|Oi |ψ(θ)⟩ = ⟨Oi⟩θ ,

we have

⟨ψ(θ)|H |ψ(θ)⟩ =
∑

i

⟨Oi⟩θ .

The practical implementation of such measurements is discussed in Appendix A.2.

2.1.2 Gradients of quantum gates

To solve the optimization problem in Equation (2.8), one typically uses the gradient descent
algorithm, which is a discretization of the gradient flow θ̇ = ∇E(θ):

θ(k+1) = θ(k) − ϵ∇E(θ), (2.10)

where ϵ is called the learning rate or step size. In practice, there exists a zoo of gradient-
based optimizers, with Equation (2.10) being the simplest implementation.

Before we can perform the gradient descent, we need to obtain the gradient of E(θ)
with respect to the gate parameters. As it turns out, the gradient of a parameterized
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quantum gate has a simple form if our parameterized gates are given by the exponent of
an idempotent operator:

Ul(θl) = exp

{
−iθl

2
A

}
= cos(θl/2)I + i sin(θl/2)A, if A2 = I. (2.11)

which is a generalization of Euler’s formula. The gradient with respect to θ can then easily
be derived:

∂θlUl(θl) = − i
2
AU(θl).

Consider the cost function Equation (2.7) in a quantum circuit with L gates.

E(θ) = ⟨0|
−→∏

L
l=1U

†(θl)H
←−∏

L
l=1U(θl) |0⟩ .

Differentiating with respect to θl gives two terms from the product rule

∂θlE(θ) = ⟨0|U †(θ1) . . . ∂θlU
†(θl) . . . U

†(θL)H
←−∏

L
l=1U(θl) |0⟩+ c.c.

= − i
2
⟨ψ′|

[
A,U †(θl) CU(θl)

]
|ψ′⟩ ,

with

⟨ψ′| = ⟨0|
←−∏

l−1
l=1U

†(θl), |ψ′⟩ =
−→∏

l−1
l=1U(θl) |0⟩

C =
←−∏

L
l+1U

†(θl)H
−→∏

L
l+1U(θl).

As a direct consequence of the Euler relation in Equation (2.11)

[A,O] = i
[
U †
(π

2

)
O U

(π
2

)
− U †

(
−π

2

)
O U

(
−π

2

)]
,

and so we can rewrite the commutator as

[
A,U †(θl) CU(θl)

]
=

1

2

[
U †
(π

2

)
U †(θl) CU(θl)U

(π
2

)
− U †

(
−π

2

)
U †(θl) CU(θl)U

(
−π

2

)]
.

Using that U(ϕ)U(θ) = U(ϕ+ θ) we find the gradient as the difference between the expec-
tation value of two circuits, where the gate parameter θl is shifted by π

2
.

∂θlE(θ) =
1

2
⟨ψ′|

[ E+,l(θ)︷ ︸︸ ︷
U †
(
θl +

π

2

)
C U

(
θl +

π

2

)
−

E−,l(θ)︷ ︸︸ ︷
U †
(
θl +

−π
2

)
C U

(
θl +

−π
2

)]
|ψ′⟩ .
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So evaluating the gradient of an expectation value with respect to θl requires us to evaluate
two expectation values

∂θlE(θ) =
1

2

(
E+,l(θ)− E−,l(θ)

)
. (2.12)

This rule is known in the literature as the parameter shift rule [30, 31] which is at the core
of variational optimization (see Equation (2.12)), since it allows us to construct circuits
to calculate the gradients of the cost function in Equation (2.7). We emphasize that the
above relation is analytic. Although it seems that this is some finite-shift approximation,
the gradient is in fact exact. There are generalizations of the parameter-shift rule to more
general settings where we do not require A2 = I, and we will discuss these methods in
both Section 2.3 and Section 3.3.
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2.2 The Hamiltonian Variational Ansatz

As we described in Section 2.1.1, a VQE algorithm contains three ingredients: A varia-
tional quantum circuit ansatz consisting of a set of ordered operators with parameters θ,
an energy function given by the expectation value of a local Hamiltonian H composed of
local measurements on the variational circuit state and a classical optimizer. A natural
first approach is the random quantum circuit ansatz [32, 33, 34], capable of expressing a
wide variety of states. However, this was shown to be problematic for gradient-based op-
timization strategies due to the barren plateau phenomenon [35, 36, 37, 38], which causes
the optimization of randomly initialized circuits to get stuck on flat areas in the cost
landscape where gradients are exponentially small. These observations suggest that an
effective ansatz for VQE requires a circuit that is problem-specific, such that the optimiza-
tion landscape of the problem is not hindered by barren plateaus. For quantum many-body
problems, Ref. [39] suggests a novel variational circuit that is now called the Hamiltonian
Variational Ansatz (HVA). While there is no rigorous proof that HVA will be an effective
ansatz, recent work has demonstrated that HVA is rather effective for several one- and
two-dimensional quantum many-body models [40, 41]. It is thus an intriguing question to
further understand the empirically observed effectiveness of HVA.

For the purpose of understanding the effectiveness of such ansätze, it is useful to note
that quantum entanglement provides a window into the capabilities of several families of
numerical techniques and algorithms aimed at understanding the properties of quantum
many-body states, as well as helps us delineate the boundary between quantum states that
can be simulated classically and those which call for quantum simulators and quantum
computers for their accurate description. For instance, for a one-dimensional (1D) gapped
local Hamiltonian, the entanglement entropy of the ground state obeys an area law, i.e., the
entanglement entropy grows proportional to the boundary area of the system instead of the
system size [42]. This remarkable result allows us to combat the exponential scaling of the
Hilbert space, since this area law provides evidence that the relevant physics of a system
only takes place in a restricted part of the full state space. These observations have inspired
a variety of variational numerical methods, most notably, Tensor Network approaches such
as Matrix Product State (MPS), Multiscale Entanglement Renormalization and Projected
Entangled Pair States [43], but also deep learning inspired variational approaches, which
have been successful at representing quantum many-body states [44, 45, 46, 47].

In this section we study various entanglement properties of HVA and present sev-
eral results on the favorable features of HVA that shed light on the underlying reasons
for its effectiveness for solving natural many-body problems. Our findings suggest that
HVA is highly expressive but yet structured enough to allow for efficient optimization.
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Through the study of two prototypical models in condensed matter physics, namely the
1D Transverse-field Ising Model (TFIM) and XXZ models, we find that entanglement
entropy and entanglement spectrum can shed light onto the initialization and optimiza-
tion properties of HVA in the context of the VQE algorithm. Whereas HVA provides a
restricted and effective state space for the TFIM which yields ground state approxima-
tions largely insensitive to the circuit initialization, the 1D XXZ model ansatz requires a
careful parameter initialization for its successful optimization. Through the study of the
dynamics of entanglement spectrum during the optimization of the XXZ model we find
that initializing the HVA near the identity operator enables a restricted and effective sub-
space during optimization that yields accurate approximations to the ground state with
fast convergence. Furthermore, we show evidence that the gradient vanishing problem in
HVA, especially if the HVA is initialized near the identity operator, is mild or entirely
absent in comparison to the random circuit ansatz, where barren plateaus in the energy
landscape cause gradients to decay exponentially with increasing system size. We also ex-
plore the over-parameterization phenomena in HVA and observe a “computational phase
transition” between an under-parameterized and over-parameterized regime where the opti-
mization landscape of HVA crosses over to a regime with faster convergence and absence of
low-quality solutions. Lastly, as a demonstration of the entangling power and effectiveness
of HVA, we study a modified Haldane-Shastry (MHS) Hamiltonian which has long-range
interactions and a power-law scaling entanglement entropy [48]. We observe that HVA
can find approximations to the ground state of the MHS Hamiltonian reaching fidelities
> 99% for system sizes n = 4, 8, 12, 16 and circuit depths L = n. Our findings point to
important features of HVA that will lead to a deeper understanding of its effectiveness, and
point the way to developing more sophisticated ansätze for other many-body problems, as
well as more informed optimization strategies. Moreover,we establish a substantial connec-
tion between quantum entanglement and the efficacy of HVA and show how entanglement
properties such as the entanglement spectrum can be used to study variational quantum
circuits. Furthermore, the surprising phenomenon of over-parameterization in HVA signals
a nontrivial connection with deep neural networks which merits further investigation.

2.2.1 The ansatz

As with other variational methods for approximating the ground state, a key ingredient to
the success of the method is finding a good parameterization scheme of the wave function.
Ideally, the manifold of states parameterized by the ansatz of choice contains the ground
state of interest, and this ground state can be reached using a numerical optimization. The
HVA [39] is a quantum circuit ansatz as defined in Equation (2.4) inspired by the Quantum
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Approximation Optimization Algorithm (QAOA) [49] and adiabatic computation [50]. In-
stead of using only two (non-commuting) operators as in QAOA, HVA uses more terms of
the Hamiltonian. More specifically,

H =
∑

s

Hs, (2.13)

where we assume that each pair of Hs and Hs′ do not commute, i.e., [Hs, Hs′ ] ̸= 0. A
depth-L HVA is given by

U(θ, {Hs}) =

←−
L∏

l=1

(∏

s

exp{−iθs,lHs}
)
. (2.14)

For the initial state |ψ0⟩, we take the ground state of one of the terms in Equation (2.13),
i.e. Hs0 . When ordering the unitaries, we make sure that Hs0 is not the first Hs acting
on |ψ0⟩. The order of the other unitaries is ambiguous, as long as we make sure that
subsequent layers do not commute, since otherwise they can be absorbed into a single
layer which leads to a redundancy of parameters. Note that due to the periodicity of the
complex exponent, we can restrict the parameters to [0, 2π], although in the case of certain
symmetries, this restriction can be made tighter without losing expressive power [40]. Since
these circuits are model specific, the properties of the circuit can vary per problem.

Our goal is to find the ground state of H, which we try to achieve by performing a
VQE optimization (see Section 2.1.1 for more details):

θ∗ = arg min
θ

E(θ),

where E(θ) is the variational energy

E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ .

2.2.2 Models

Transverse Field Ising-Model

The TFIM is a paradigmatic model for studies of quantum magnetism. The Hamiltonian
for the one-dimensional chain is given by:

HTFIM = −
n∑

i=1

(ZiZi+1 + gXi) = Hzz + gHx, (2.15)
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with Hzz = −∑n
i=1 ZiZi+1 and Hx = −∑n

i=1Xi where we assume g > 0 and use periodic
boundary conditions Zn+1 ≡ Z1. The matrices Zi and Xi correspond to Pauli matrices
X,Z ∈ P1 tensored with the identity (see Equation (A.2)). The Hamiltonian has a Z2

symmetry, so it is invariant under the operation of flipping all spins.

For g < 1, the system is in a ferromagnetic phase where the Hamiltonian favors spin
alignment along the z direction. For g > 1 the system transitions to a disordered param-
agnetic phase. In the limit that g →∞, the X term dominates the Hamiltonian, and the
ground state becomes |+⟩⊗n. At g = 1 there is a critical point, and the system becomes
gapless in the thermodynamic limit.

A depth-L HVA circuit for the TFIM corresponds to

UTFIM(β,γ) =

←−
L∏

l=1

exp
{
−iγl

2
Hx

}
exp

{
−iβl

2
Hzz

}
. (2.16)

Hence for a depth-L circuit, we have 2L parameters. Figure 2.1a illustrates the correspond-
ing quantum circuit for n = 4 and L = 1. Note that we choose |ψ0⟩ in Equation (2.14)
to be the ground state of Hx = −∑n

i=1Xi, i.e., |ψ0⟩ = |+⟩⊗n. The HVA circuit of Equa-
tion (2.16) is the same as the QAOA ansatz used in [49] for solving the MaxCut problem.
By using the Jordan-Wigner transformation, it was shown that the ground state can be
represented accurately with a depth L = n/2 circuit for the case that g = 0 [51]. For the
case that g ̸= 0, there is only numerical evidence to support this claim [40, 52].

XXZ-model

Another prototypical model for studying quantum magnetism is the XXZ model. For the
1D XXZ model, the Hamiltonian is given by

HXXZ =
n∑

i=1

(XiXi+1 + YiYi+1 + ∆ZiZi+1)

= Hxx +Hyy + ∆Hzz, (2.17)

with Hxx =
∑N

i=1XiXi+1, Hyy =
∑N

i=1 YiYi+1 and Hzz =
∑N

i=1 ZiZi+1. Here we also use
Y ∈ P1 and use Yi to describe the Pauli Y matrix tensored with the identity. Again we
assume periodic boundary conditions. The parameter ∆ controls the spin anisotropy in the
model. For ∆ = 1, this model has a SU(2) symmetry, which implies that the Hamiltonian
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Figure 2.1: HVA quantum circuits of depth L = 1. (a) TFIM circuit. The first layer
of Hadamard gates, represented by H, are used to construct the initial |+⟩ state. The ZZ
gates are 2-local qubit rotation gates of the form ZZ = exp{iβl/2 ZiZj}. The RX gates
are single qubit rotation gates RX = exp{iγl/2Xi}. (b) The XXZ model circuit. Here,
the X gates are given by X = Xi. Together with a single Hadamard gate and a CNOT on
even links, we prepare the |Ψ−⟩ Bell state. The 2-local qubit rotations are all of the form
AA = exp

{
−ix/2 σa

i σ
a
j

}
, with x = θ, ϕ, β, γ depending on whether the links are even or

odd and ZZ or XX, YY.

commutes with the generators of SU(2) acting on the full Hilbert space. The generators
for this N -dimensional representation of SU(2) is the set

A =

{
Px :=

n∑

i

Xi, Py =
n∑

i

Yi, Pz =
n∑

i

Zi

}
,

for which it is easy to verify that we have [Pα, Pβ] = 2iϵαβγPγ with α, β, γ ∈ {x, y, z},
which are the commutation relations of SU(2). It is also easy to confirm that

[H,Pα] = 0,

which implies that the eigenstates of H are also eigenstates of the symmetry SU(2). For
∆ ̸= 1, this symmetry gets reduced to a U(1)×Z2 symmetry. For 1 < |∆| the system is in
the XY quasi-long-range ordered state and becomes gapless in the thermodynamic limit.
At |∆| = 1 there is a phase transition to the Néel ordered state. This model can be solved
exactly using the Bethe-ansatz for n→∞ [53].

Inspired by [40], we decompose the 1D chain into even and odd links and separate the
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Hamiltonian into two parts,

Heven = Heven
xx +Heven

yy +Heven
zz

Hodd = Hodd
xx +Hodd

yy +Hodd
zz ,

where the indices only run over non-overlapping bonds:

Heven
αα =

n/2∑

i=1

σα
2i−1σ

α
2i and Hodd

αα =

n/2∑

i=1

σα
2iσ

α
2i+1,

where σα = X, Y, Z for α = x, y, z, respectively. Our numerical experiments indicate
that separately parameterizing these bonds gives better performance when studying the
anisotropic system ∆ ̸= 1. Additionally, we parameterize Hxx, Hyy and Hzz terms with
their own respective parameter. The reason for this is that for ∆ ̸= 1 the anisotropy in
the model cannot be accounted for by a single parameter. A depth-L HVA circuit for the
XXZ model corresponds to

UXXZ(β,γ) =
L∏

l=1

G(θl, H
odd
zz )G(ϕl, H

odd
xx )G(ϕl, H

odd
yy )

G(βl, H
even
zz )G(γl, H

even
xx )G(γl, H

even
yy ), (2.18)

where
G(x,H) = exp

{
−ix

2
H
}
.

Hence, for a depth-L circuit, we have 4p parameters. Figure 2.1b illustrates a quantum
circuit for n = 4 and L = 1. We choose the initial state |ψ0⟩ in Equation (2.14) to be the

ground state of Heven, i.e., |ψ0⟩ =
⊗n/2

i=1
1√
2

(|01⟩ − |10⟩)2i−1,2i =
⊗n/2

i=1 |Ψ−⟩, which is in the

correct symmetry sector [54]. It was shown in [40] that the Heisenberg chain (i.e., ∆ = 1)
can be solved accurately with HVA with L = n/2. Note that for the case of ∆ = 1, one
can use a single parameter for Hxx +Hyy +Hzz.

We consider the problem of approximating the ground state at the critical points g = 1
and ∆ = 1 for the TFIM and XXZ model respectively since their particular entanglement
scaling properties makes them harder to approximate with classical methods [55], such as
the Density Matrix Renormalization Group. Due to the criticality of the aforementioned
systems at these order values, the energy spectrum becomes gapless in the thermodynamic
limit and hence there is a logarithmic correction of S ∝ log n to the area law of entangle-
ment entropy. A matrix product state with bond dimension D bounds the entanglement
of the state to S ≤ 2 logD, so the necessary bond dimension to express the ground state
grows polynomially in a Density Matrix Renormalization Group calculation [55].
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Performance Metrics

We use the fidelity F between the VQE optimized state |ψ(θ∗)⟩ and the true ground state
|ψground⟩ obtained from exact diagonalization:

F = |⟨ψ(θ∗)|ψground⟩|2.

Note that for the models studied in here, |ψground⟩ is always non-degenerate. If the square
root of the fidelity is > 99.9%, we assume that we have successfully found the ground state.
When assessing the quality of an optimized HVA circuit, the fidelity is a strong indicator
of the success for solving the ground state problem, since the infidelity upper bounds the
difference between the ground state and variational expectation value of any observable.
Let 1−F < ϵ

∣∣∣⟨O⟩ground − ⟨O⟩θ
∣∣∣ ≤ 2c

√
ϵ(1− ϵ) + ϵ,

where c is the operator norm of O [56] and ⟨O⟩ground−⟨O⟩θ is the difference in expectation
value between the ground state and variational state.

2.2.3 Entanglement

In the context of quantum many-body physics, quantum correlations play a central role in
our current understanding of the equilibrium and out-of-equilibrium properties of several
systems in condensed matter. The source of these correlations is inherently non-local, and
can be traced back to the presence of entanglement in the quantum state. In this section we
introduce several commonly used entanglement quantities in quantum many-body physics.

In classical systems, one uses entropy to quantify our lack of knowledge of the state of
the system due to thermal fluctuations. However, for a quantum system at zero tempera-
ture, the entropy of a subsystem has a different origin: entanglement. To quantify it, we
use the bipartite entanglement entropy [42], which is defined as the von Neumann entropy
of the reduced density matrix ρA. To obtain this reduced density matrix, we divide the
system into two subsystems A and B and trace out subsystem B,

ρA(|ψ⟩) = TrB(|ψ⟩ ⟨ψ|), (2.19)

where |ψ⟩ is a pure state. For example, for an 8-spin model on a ring, a typical bipartition
is given in Figure 2.2.
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Figure 2.2: Choice of the bipartition of a 1D chain. Division of the full system into
two subsystems A (blue) and B (red) on a one-dimensional chain.

The von Neumann entropy generalizes the concept of Shannon entropy to quantum states,
and is given by

S(ρ) := −Tr(ρ log ρ). (2.20)

Since a bipartite quantum state can always be rewritten using the Schmidt decomposition,

|ψ⟩ =
K∑

k=0

e−
1
2
ξk
∣∣ψk

A

〉
⊗
∣∣ψk

B

〉
, (2.21)

with
〈
ψk
A

∣∣ψm
A

〉
=
〈
ψk
B

∣∣ψm
B

〉
= δkm and K the size of the smallest subsystem, the von

Neumann entropy of ρA reduces to [57]

S(ρA) =
K∑

k=0

ξk exp{−ξk}, (2.22)

In recent years, the importance of entanglement in condensed matter physics has been
elucidated in several systems through the study of the scaling behavior of the entanglement
entropy, which has enabled the identification and characterization of exotic phases of matter
such as topological quantum states [58] and quantum spin liquids [59, 60].

Fully characterizing the entanglement properties of a system cannot be done by looking
solely at the entanglement entropy [57, 61, 62]. The so-called entanglement spectrum has a
much richer structure, and has been used to study many-body localization [61], observable
thermalization [63], irreversibility in quantum circuits [62], and preparation of ground states
of non-integrable quantum models [64]. In addition, the entanglement spectrum has been
used to study the properties of variational methods such as the Restricted Boltzmann
Machine [48]. The entanglement spectrum is defined as the eigenvalue spectrum of the
entanglement Hamiltonian

Hent(ρ) = − log ρ. (2.23)

From Equation (2.21) it follows directly that this Hamiltonian has eigenvalues ξk. For ran-
dom quantum states distributed according to the Haar measure, the entanglement spec-
trum follows the Marchenko-Pastur (MP) distribution [65, 66]. This distribution describes
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the asymptotic average density of eigenvalues of Wishart matrices, i.e., matrices of the form
XX∗ where X be m× n random matrices.

Finally, the Page entropy [67] describes the average entanglement entropy over ran-
domly drawn pure states in the entire Hilbert space, and is given by

SPage(nA, nB) = −nA − 1

2nB

+

nAnB∑

k=nB+1

1

k
≈ log(nA)− nA

2nB

, (2.24)

where nA and nB are the dimensions of subsystem A and B, respectively.

2.2.4 The ansatz space through the lens of entanglement spec-
trum

The effectiveness of a VQE optimization is determined by two factors. First, one requires
an expressive enough ansatz space that contains the ground state. Within the context of
HVA, the ansatz space of a specific model H and depth L refers to the set of all possible
quantum states that can be reached by applying a depth-L HVA circuit corresponding to
H to a fixed initial state |ψ0⟩ which depends on the model. Secondly, the non-convex cost
landscape induced by the variational energy of Equation (2.7) must be favorable, in the
sense that the optimization does not get stuck in local minima and can reliably reach the
ground state.

Here, we investigate the properties of the ansatz space by examining the entanglement
spectra of HVA quantum states generated with random parameters sampled uniformly in
the range [0, π] for the TFIM and [0, 2π] for the XXZ model. For each model, we sample
5000 sets of parameters and calculate the entanglement spectrum of the resulting state. If
the spectrum of the sampled states follows a distribution close to the Marchenko-Pastur
distribution, a random HVA state has entanglement spectrum that resembles that of a
Haar random state. On the contrary, a distribution far away from the MP distribution
indicates a restricted manifold of states that has a non-random structure. We hypothesize
that the shape of the average entanglement spectrum can give insight into the performance
of the VQE optimization by revealing the structure of the ansatz space.

Figure 2.3 shows the average entanglement spectrum for a state in the ansatz space
of circuits with depths ranging from 1, 2, . . . , n for the 16-qubit TFIM and XXZ models.
From the insets we see that both ansätze have enough entangling power to express the
ground state, even for low depth circuits. For the TFIM with 16 qubits (Figure 2.3a), we
see that for all L the HVA spectrum is further away from the MP distribution, and the
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Figure 2.3: Average entanglement spectrum of HVA quantum states. We show
layer L = 1 (bottom line in purple) to L = n (top line in yellow) over 5000 random
parameter initializations. ξk denotes the k-th eigenvalue of Hent. The eigenvalues are
arranged in descending order and cut off at ξk = −30. The black lines in the insets show
how close the average entanglement entropy is to the Page-entropy (purple dashed line)
as a function of increasing circuit depth. The lower blue dashed line in the inset indicates
the entanglement entropy of the ground state. We see that the average HVA state is more
entangled than the ground states of interest.

HVA space corresponding to the TFIM appears to be a manifold of states with restricted
entanglement structure. In contrast, for the XXZ model, we see that the average spectra
gets closer to the MP distribution as L increases. This suggests that the HVA space for the
XXZ model is not as restricted as for the TFIM. This can be understood directly by looking
at the circuit complexity, which for the XXZ model contains more gates and parameters
per layer. However, this is necessary because the XXZ model is inherently a much richer
model in terms of physics, and it may be necessary for HVA space to accommodate more
variety of states.
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We now turn to examining the entanglement features of the XXZ model HVA states
explored during optimization. For the variational minimization of Equation (2.7) we use
a gradient descent algorithm (see Appendix B.1 for details). Since the cost function is
non-convex, the quality of the solution will vary significantly between different starting
points in parameter space. We compare the following initialization strategies:

1. A completely random-state initialization, where all parameters are sampled as θl ∼
U(0, 2π).

2. An identity initialization. We set all parameters equal to π, so that our circuit is
equal to the identity circuit and a global phase i.

Our approach of starting close to the identity is similar to the block identity initialization
strategy discussed in [68], however, we study a simpler version by setting all parameters
equal to π. For both parameter initializations, we extract the final layer state from the
circuit at multiple times during the optimization and calculate its entanglement spectrum
with Equation (2.23). Not surprisingly, our experiments indicate that a random start
is prone to getting stuck in a local minimum, due to our local optimization strategies
combined with a non-convex energy landscape.

To study this finding in more detail, we study the dynamics of the entanglement spec-
trum for different initialization strategies. In Figure 2.4a we see that an identity state
initialization stays far away from the MP distribution at all times, indicating that we are
accessing a highly structured restricted subspace of the full HVA space. Additionally, this
initialization reaches a state with F = 99.9%. On the contrary, the random state initializa-
tion in Figure 2.4b starts close to the MP distribution and then moves to a more structured,
local minima with F = 70%. We conclude that even though the shape of the entanglement
spectrum from Figure 2.3b indicates a possible large unstructured ansatz space, a local
optimization is still capable of finding the ground state if we choose a suitable parameter
initialization. We further investigate the qualitative properties of the optimization dynam-
ics in Appendix B.2. In the next section, we will see that the disadvantage of starting at a
bad initial point can be overcome by making the circuit sufficiently deep, a process known
as overparameterization.

2.2.5 Overparameterization in HVA

Overparameterization is a phenomenon in certain types of non-convex optimization prob-
lems. For an overparameterized model, the optimization landscape becomes dramatically
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Figure 2.4: Change of the entanglement spectrum of the final layer during the
optimization. Both figures are for a 16 qubit XXZ model with a depth L = n/2 circuit.
The times are percentages of the total optimization time. Figure (a) correspond to a
converged state of fidelity, whereas figure (b) corresponds to a ≈ 70% fidelity state. (a)
The identity state initialization remains far away from the MP distribution at all times
during the optimization and convergence to state with > 99.9% with the ground state.
Since this initialization strategy starts with the identity circuit, we find the t = 0% state
to be a product state, as indicated by the single eigenvalue. (b) The random initialization
starts close to the MP distribution and converges to a local minimum with ≈ 70% fidelity.

better (e.g., almost trap free or almost-convex) as the number of parameters reaches some
threshold. In most cases the rate of convergence also becomes better, sometimes even
exponentially faster after passing this threshold.

Overparameterization has been studied extensively in the classical deep neural network
literature [69, 70]. For example, in [69] it was shown that under certain mild assumptions,
the optimization landscape of a deep neural network is almost-convex in a large neigh-
borhood of a random starting point. As a consequence the stochastic gradient descent
algorithm can almost always find an accurate solution.

For VQE algorithms it is clear that growing the ansatz allows us to cover more of the
Hilbert space, which could lead to finding better minima in the cost landscape. However,
it is not clear if this minimum can be found consistently due to the non-convexity of the
energy landscape. Hence, a deeper understanding of the energy landscape with increasing
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Figure 2.5: Overparameterization in HVA. Each line corresponds the VQE optimiza-
tion at depth L that took the most iterations to converge out of 100 random initializations.
Both figures are for n = 12 qubits. The rapid oscillations in figure (b) are artifacts of the
Adam optimizer and are less severe as the circuit depth increases. Due to our stopping
criterion, we know that if the number of iterations is smaller than 3000, then ϵres ≤ 10−4

and so the model did converge to a good ground state approximation.

depth is required. There is some work on overparameterization in the context of control-
lable quantum systems with unconstrained time-varying controls [71, 72, 73], where the
authors show that there are no suboptimal local minima in the optimization landscape.
For the case of a constrained controllable quantum system, a recent work [74] considers
the problem of learning N -dimensional Haar random unitaries by gradient descent using
general alternating operator ansatz of the form e−iγLAe−iβLB · · · e−iγ1Ae−iβ1B, where A and
B are matrices sampled from the Gaussian Unitary Ensemble [75]. The authors show
that gradient descent always converges to an accurate solution when the number of pa-
rameters is N2 or greater, and a “computational phase transition” is observed between an
under-parameterization (< N2) and overparameterization (> N2) regimes.

Since HVA also has the form of an alternating operator ansatz, and the problem of
finding the ground states can also be seen as a constrained quantum control problem, we
expect a similar overparameterization phenomenon in our setting. To investigate this, we
randomly sample 100 initial parameters θ (uniformly drawn from the interval [0, π] for the
TFIM and [0, 2π) for the XXZ model) and perform the optimization for increasing values
of L. Here, we set the stopping criterion for the optimization to ϵres = E(θ)p − Eground <
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10−4 and the maximum number of iterations to 3000. Indeed, Figure 2.5 shows that the
overparameterization phenomenon also occurs in HVA for the 12-qubit TFIM and XXZ
model. We find that for both the TFIM and XXZ model, gradient descent from all 100
random starting points converges to an accurate solution once the depth L reaches a certain
threshold L̃(n).

Moreover, we also observe a “computational phase transition” around this threshold
where the convergence speed becomes exponentially fast, i.e., the decrease of the residue
energy as a function of the number of iterations. However, this threshold L̃(n) is not tight,
i.e., for depth L < L̃(n) it is possible that gradient descent still converges to a high fidelity
state. This indicates that in the setting of finding ground states using HVA, the problem
is more structured and gradient descent is effective. In Figure 2.7 we see that for all
system sizes, the mean number of iterations eventually converges to about 100 iterations.
In addition, we can find the overparameterization thresholds L̃(n) in Table 2.1 for the
TFIM and XXZ model with different system sizes. Our data suggests that L̃(n) has a
polynomial scaling, which is compatible with the analogous parameter count required to
express critical 1D ground states with an MPS. A more detailed view of this data can be
found in Figure 2.6, which shows that all random initializations converge to the ground
state after a certain threshold L̃(n).
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Figure 2.6: Ratio of random initializations that converge to the ground state.
We consider a run converged if ϵres ≤ 10−4.

This is a striking difference with [74] where the number of parameters to achieve over-
parameterization is (2n)2. From Figure 2.7 we can also see that the iteration time decreases
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substantially as L increases, which saturates to around 100 iterations after a certain L for
all n.

We tried to observe the overparameterization phenomenon in random quantum circuits
(RQC), which has layers that consists of arbitrarily chosen single and two qubit gates. We
observed there is no indication or evidence that the landscape of RQC gets better as one
increases the depth. On the contrary, in our experiments with random circuits of compara-
ble depths to our HVA circuits, we were unable to observe the same overparameterization
phenomenon. This can be explained from the barren plateau point of view and the lack of
structure in the ansatz space.
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Figure 2.7: The mean iteration time to convergence as a function of depth. Error
bars indicate the standard deviation over 100 different initializations. For both models
there is a clear cutoff where the number of iterations saturate. Note that if the number
of iterations is smaller than 3000, then we know that ϵres ≤ 10−4, indicating that the
optimization has converged to a good ground state approximation. We see that the error
bars decrease systematically with depth. For both models, there is a critical L after which
all random initializations converge to a good ground state approximation. Moreover, for
depth L = 34 and L = 52 for the TFIM and XXZ model respectively, the number of
iterations to find the ground state is of the order of 100 iterations for every starting point.

26



TFIM XXZ model

n L̃(n) L̃(n)
4 6 4
6 6 4
8 8 8
10 10 12
12 14 36

Table 2.1: Overparameterization threshold L̃(n) for TFIM and XXZ model with
different system sizes n. By threshold, we mean that when L ≥ L̃(n), all the random
initializations converged to an accurate solution.

2.2.6 Ameliorated barren plateaus in HVA

In Ref. [35], a barren plateau phenomenon was observed for VQE on random quantum
circuits, where all gradients are exponentially close to zero with overwhelmingly high prob-
ability, making local optimization within the ansatz space very challenging. The barren
plateau phenomenon is due to the fact that RQCs consisting of single- and two-qubit gates
form a 2-design, which means that gradients of the energy objective function will obey the
same concentration of measure properties as if the circuits were Haar-random unitaries.

In contrast to the RQC ansatz, we show that the optimization landscape of HVA is
much more favorable. This is clearly illustrated when optimizing the HVA corresponding
to the TFIM: to begin with, as discussed in Section 2.2.4 the manifold of states has a much
more restricted entanglement structure than a typical, Haar-random state – this already
indicates that the HVA circuits do not form 2-designs, and thus do not obey the same kind
of concentration of measure phenomenon as RQCs. On the other hand, the entanglement
spectrum of the ansatz space corresponding to the XXZ model does not immediately rule
out the same barren plateau behavior as exhibited by RQCs.

Nonetheless, we determined that the barren plateau problem is significantly ameliorated
in the TFIM and mild in the XXZ model. In Figure 2.8, we calculated the variance of
gradients as a function of qubits number n and depth L over 20 random points per n
and per L. For the TFIM, the flatness of the variance curve indicates no barren plateau
problem. However, for the XXZ model, we see an exponential decay, but this decay is not
as strong as in RQCs [35]. The scaling of the mean gradient magnitudes follows a similar
pattern. Nonetheless, we can reliably find an accurate solution when choosing an identity
start, where the barren plateau problem is absent. Indeed, sampling gradients close to
the identity initialization gives a constant gradient variance for all n. This indicates that
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the vanishing gradient problem can be circumvented by choosing a suitable initialization
strategy.
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Figure 2.8: Variance of the gradients of a single Z1Z2 term with respect to θ0 as
a function of the number of qubits at initialization. The number of samples used
per n for each L is 20. (a) For the TFIM, the gradient variance decay is almost constant
for all n. (b) The XXZ model gradient variance is still exponential, although the effect
is not as pronounced as for the RQCs of [35], where the n = 16 variance is two orders of
magnitude smaller.

2.2.7 The entangling power of HVA circuits

For a 1D gapped quantum system, the entanglement entropy of the ground state obeys an
area law [76, 77, 78], i.e., the entanglement entropy grows proportionally to the boundary
area |∂I| of the subsystem ρA:

S(ρA) = O(|∂I|).
In 1D, the boundary area |∂I| is either 1 (for an open chain) or 2 (for a closed chain), and
the area law simply says that the entanglement entropy should be constant as n increases.
For a 1D conformally invariant gapless (critical) system, the entanglement entropy of the
ground state has a logarithmic scaling instead [79], i.e.,

S(ρA) = O(log(n)).
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Entangling power is an important factor for characterizing the expressiveness and efficiency
of many variational ansätze in condensed matter physics. It characterizes how much en-
tanglement (measured by the entanglement entropy) can be generated by the variational
circuit. For example, in the Matrix Product State representation, the entangling power is
limited by the so-called bond dimension D which affects the expressive power and computa-
tional cost of the ansatz. For a 1D gapped system with energy gap ϵ, the ground state can

be approximated well by an MPS with sublinear bond dimension D = exp
(
Õ( log

3/4 n
ϵ1/4

)
)

[80].

In the case of HVA, the amount of entanglement generated by the circuit depends on the
depth L of the circuit. Indeed, we observed in Figure 2.3 numerically that the HVA circuits
for the TFIM and XXZ model have enough entangling power to express the ground states.

As a demonstration that the full entangling power of HVA can be utilized effectively, we
solve for the ground state of the so-called modified Haldane-Shastry (MHS) Hamiltonian.
This model has long range interactions and is expected to have power-law entanglement
scaling in the ground state [81, 82]. The MHS Hamiltonian is given by

HMHS =
n∑

j<k

1

d2jk
(−XjXk − YjYk + ZjZk),

where djk = n
π
|sin(π(j − k)/n)|. Due to the form of the Hamiltonian, we can use the same

HVA Equation (2.18) as for the XXZ model. In Figure 2.9 we see that it is possible to find
the ground state with > 99.7% fidelity using a depth L = n circuit for n = 4, 8, 12, 16.

2.2.8 Conclusion

We have shed light on some of the desirable properties of HVA as a critical ingredient
in the variational quantum eigensolver algorithm. In particular, we show evidence that
there are only mild or entirely absent barren plateaus in HVA. This is strikingly different
from the commonly used random quantum circuits. Moreover, we also observe an over-
parameterization phenomenon in HVA. Similar to what was observed in the deep neural
networks, the optimization landscape of HVA becomes increasingly better as the ansatz is
overparameterized and eventually becomes trap free as the overparameterization reaches a
certain threshold. In contrast with the case of learning Haar random unitaries, we observe
that such threshold in HVA scales at most polynomially with the system size. Finally, we
provide numerical evidence that HVA can be used to find the ground state of the MHS
Hamiltonian, which has a power-law scaling entanglement. We believe that our findings
point to important features of HVA that will lead to a deeper understanding of its effec-
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Figure 2.9: Infidelities found after optimization for the MHS Hamiltonian. The
circuit is initialized with an identity start. For the 4-qubit case we get close to machine
precision, and hence the fidelities are unstable.

tiveness, and point the way to developing more sophisticated ansätze for other many-body
problems, as well as more informed optimization/initialization strategies.

As for future work, since most 1D quantum many-body systems can be simulated
efficiently with classical methods, the crucible for HVA will be 2D systems. If low-depth
circuits are capable of reproducing non-trivial 2D quantum states, then one can start think-
ing when a quantum advantage can be reached for systems where classical methods are
computationally expensive or even ineffective. The effectiveness of the identity initializa-
tion, both in terms of the absence of vanishing gradients and reliability of finding a good
ground state approximation is striking. Scrutinizing the mechanism for why this is the
case will require a deeper understanding of the energy landscape of HVA. Our preliminary
results for the XXZ model and TFIM on rectangular lattices show that this initialization
strategy remains effective even for 2D systems.

Lastly, the overparameterized regime is a double-edged sword. On the one hand, it
implies that we can improve the energy landscape by increasing the depth of the circuit,
ameliorating the effects of local minima. On the other hand, the growth in circuit depth,
may well nullify this increase in performance due to the longer coherence times required
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and multiplicative gate errors. In order to assess how useful this regime is for hardware
implementations, it would require an understanding of the effect that noise has on the op-
timization in the overparameterized regime. The recent work [83] of Wang et al. indicates
that for a class of VQE ansätze including the quantum alternating operator ansatz, there
could be severe noise-induced barren plateaus when the number of layers scales polynomi-
ally. However, for the practical performance of general HVA, a more careful analysis of
the trade-off between the benefits of overparameterization and the detrimental effects of
noise-induced barren plateaus is needed. Moreover, research on designing more effective
variational quantum circuits based on HVA should also be pursued.
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2.3 Measurement-induced entanglement phase tran-

sitions in quantum gradients

Recently, significant progress has been made in understanding the evolution of quantum
entanglement in random unitary quantum circuits undergoing intermediate projective mea-
surements. In these circuits, random nearest neighbor two-qubit gates locally entangle
qubits, which generally leads to volume-law entanglement growth. When such a system is
measured at randomly selected locations throughout the circuit, the measured subsystems
become disentangled from the rest of the state. One might expect that this leads to a
simple decrease in the coefficient of the entanglement growth volume law. However, the
competition between local entanglement creation and non-local disentanglement induces
a phase transition in the entanglement growth from a volume to an area law at a critical
measurement rate pc [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Moreover, it appears that
this critical behavior is universal, independent of the specific implementation of both the
unitary or measurement dynamics. A significant amount of theoretical understanding has
been gained about the properties of entanglement phase transitions in random unitary
circuits [89, 95] by mapping such systems to well-defined statistical mechanics models.

In this section, we connect research in condensed matter theory and variational quan-
tum computing, by showing that measurement-induced entanglement phase transitions
take place in two prototypical variational quantum circuits used within VQE [29]. This
variational quantum algorithm is used throughout the literature to approximate quan-
tum many-body ground states [40, 41, 52, 1, 96], perform quantum chemistry simula-
tions [32, 97, 98, 99, 100] or in quantum machine learning approaches [101, 102, 103, 104].
Our motivation to investigate the measurement-induced entanglement transitions in varia-
tional quantum circuits are twofold. First, most of the quantum ground states of interact-
ing many-body systems follow the area-law entanglement (up to a logarithmic correction).
However, ballistic growth of entanglement in time evolution implies that circuits used in
VQE can rapidly develop much more entanglement than what may be needed to simulate
these ground states of interest [105, 106, 1]. Secondly, as we discussed in Section 2.2, it is
known that randomly initialized variational quantum circuits tend to approximate unitary
2-designs, which are known to have exponentially decaying gradients with respect to the
gate parameters as a function of system size. It has been shown that there is a close relation
between entanglement production in a circuit and barren plateaus, hence it is natural to
consider constraining the amount of entanglement during parts of the variational optimiza-
tion as a useful strategy for increasing the trainability of variational circuits [107, 108, 109].
In fact, constraining the amount of entanglement that two-qubit gates can generate has
been shown to be a potential strategy for avoiding barren plateaus[108]. We anticipate
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that the inclusion of interspersed measurements in variational quantum circuits may ad-
ditionally offer a way to control their quantum entanglement, which could be used as a
strategy to overcome barren plateaus. Quantum hardware that allows for intermediate
measurements can potentially be used to test these ideas in practice [110, 111, 112].

Here, we give numerical evidence to show that a measurement-induced entanglement
phase transition takes place in the variational quantum circuits, and coincides with a “land-
scape transition”, a change from a landscape with severe barren plateaus to a landscape
with mild or no barren plateaus. This suggests that VQE with intermediate projective
measurements can potentially be used to avoid barren plateaus and improve current op-
timization strategies. In deriving our results, we also provide a modified parameter shift
rule for calculating the quantum gradients with intermediate projective measurements that
may lead to the development of such algorithms.

θ1 θ2

U1 U2 . . .

θL

UL

(a) VQE Circuit

θ1 θ2

U1

Π1

U2

Π2

. . .
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(b) Projective VQE Circuit

Figure 2.10: Quantum circuit undergoing projective measurements. (a) Schematic
representation of the circuit U(θ). Each layer Um(θm) can consist of multiple gates with
multiple parameters, hence θm is a vector of parameters. (b) For a circuit undergoing
projective measurements, we apply a projector Πm to all qubits. Whether we apply a
measurement (green circle) or not is determined by flipping a coin with probability p.
Once we decide that a measurement will be applied, we sample the projector according to
the quantum probability p̃m,i = Tr {Πm,iρ}.
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2.3.1 Variational quantum circuits undergoing measurements

We start with the parameterized n-qubit circuit of Equation (2.4),

U(θ) =

←−
L∏

l=1

Ul(θl), (2.25)

We want to find an approximation of the ground state of H by a VQE optimization. We
therefore calculate the variational energy of Equation (2.9),

E(θ) = Tr
{
U(θ)ρ0U

†(θ)H
}
,

with ρ0 = |ψ0⟩⟨ψ0|, and solve the optimization problem of Equation (2.8)

θ∗ = arg min
θ

E(θ).

As with other variational methods, the choice of ansatz U(θ) is crucial since the ground
states must be reachable from the initial state by application of this unitary. There exists a
variety of proposals, including the HVA [40, 41, 1, 52, 96] which we discussed in Section 2.2
and the Hardware Efficient Ansatz (HEA) [39, 32, 113], a type of random quantum circuit.
The former exploits the structure of the Hamiltonian for the unitary ansatz design, whereas
the latter aims to provide a hardware-friendly parameterization with enough degrees of
freedom to capture a variety of states.

We are interested in studying random ensembles of typical VQE circuits undergoing pro-
jective measurements and the entanglement properties of the states they produce. Given
a state ρ, a projective measurement in the computational basis results in

ρ′ =
ΠiρΠi

Tr {Πiρ}
, (2.26)

where Πi = |i⟩⟨i| are the projectors onto the Z (computational) basis (see also Ap-
pendix A.2). Which projector Πi is applied depends on the quantum probability Tr {Πiρ}.

Consider the circuit in Equation (2.25). After each layer l, with probability p (the
measurement rate), we apply a projective measurement to each qubit. For L layers, we
then obtain the variational state

ρL(θ) =



←−
L∏

l=1

ΠlUl(θl)


 ρ0



−→
L∏

l=1

U †
l (θl)Πl


 p−1

L (θ), (2.27)
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where pL(θ) is the probability of obtaining the state ρL(θ) given the L sets of measurements
performed, see also Section 2.3. The projective measurement is represented by the projector
Πl = Πl,0⊗ . . .⊗Πl,n where Πl,i ∈ {|0⟩⟨0| , |1⟩⟨1|} if we perform a measurement and Πl,i = I
otherwise. Here, ρL(θ) is the normalized state obtained after applying the circuit with
intermediate measurements. Each projector Πl has 3n different configurations, hence there
will be a total of 3NL possible states ρL(θ). Note that each state ρL(θ) corresponds to a
pure state. Also, we want to emphasize that we are not performing any optimization; we
consider the variational circuit at initialization.

2.3.2 Measurement–induced entanglement phase transitions

Given a state produced by quantum circuit interspersed with intermediate measurements,
we can calculate the bipartite von Neumann entanglement entropy of Equation (2.20) as
a function of the number of qubits n and the measurement rate p and denote this by

S(n, p) = TrA{ρL(θ)},

where ρL(θ) is depends on n and p and A is one of the subsystems in the bipartition of
Figure 2.2.

We know that the projective measurements disentangle the system over any length
scale due to a local projection onto a single state. As a result, the unitary dynamics locally
entangles nearest neighbor qubits, whereas measurements globally disentangle the different
subsystems by projecting out part of the state. This competition induces a dynamical phase
transition between a volume and area law regime of entanglement scaling at a critical
measurement rate pc [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Although the critical point
pc can vary between different types of random unitary dynamics and measurement schemes,
the critical exponent characterizing the correlation length scale divergence ξ ∝ (p− pc)−ν

appears to be the same for different models at ν ≈ 4/3. This critical exponent can
be derived by considering toy models and mapping the projective dynamics to a two-
dimensional percolation model, which is exactly solvable [85, 86, 90, 95, 89].

Central to the investigations on phase transitions induced by measurements is the
concept of steady state entanglement dynamics [85, 86, 87]. Given a circuit with a number
of qubits n, we are primarily interested in the late time behavior when L → ∞. In
this infinite depth (long time) limit we expect the system to evolve into a steady state,
characterized by a typical value of entanglement entropy that depends on the measurement
rate p, but not the dynamics at finite times. In order to characterize this regime, we can
investigate the average entanglement entropy as a function of depth for different values of
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p. For the moderate system sizes considered here, we observe steady state entanglement
dynamics at L = 16.

For our numerical study, we investigate the projective entanglement dynamics of the
XXZ-chain HVA and the HEA, whose circuits are depicted in Figure 2.11. Notice that the
dynamics in the HVA is specified by a Hamiltonian in contrast to random unitaries. The
HVA for the XXZ model is of particular interest since the XXZ Hamiltonian is Bethe-ansatz
integrable, i.e. there exists an analytical solution for the energy spectrum. Additionally,
the entanglement properties of these systems undergoing quenches can be understood an-
alytically [114, 106]. For such models, it is still an open question if the corresponding
unitary dynamics interspersed with measurements will produce a measurement-induced
entanglement phase transitions [89]. Here, we address a closely related model, where the
unitary dynamics are generated by random quenches under the XXZ Hamiltonian. For the
HEA, we expect that the behavior is close to that of random circuits [115].

Since phase transitions only occur in the thermodynamic limit n→∞, we have to take
care of the finite-size effects in analyzing our numerical data. To account for finite-size
effects, we fit the scaling form [86, 85, 89]

S(n, p, ν)− S(n, pc, ν) = f(n1/ν(p− pc)),

where f is a scaling function, to get a data collapse of the individual circuits of size n. To
determine pc and ν, we minimize a Chi-squared statistic between the scaling form above and
the data, and use a statistical bootstrap to verify the integrity of the fit. In Figure 2.12 we
find critical exponents close to the previously mentioned value of ν ≈ 4/3. To extrapolate
the critical exponent to the thermodynamic limit, we do a linear fit of ν as a function of
1/n′ where nmax/2 ≤ n′ ≤ nmax is the largest value of n in the data set. The intercept then
gives us the value of ν for n′ →∞ [85]. The details of our statistical estimation procedure
are outlined in Appendix C.1. In addition to the finite scaling analysis, we can investigate
the quantum mutual information,

I(A,B) = SA(n, p) + SB(n, p)− SA∪B(n, p),

between qubits A and B separated by a distance r, which we expect to peak at a critical
point due to subsystem correlations becoming non-negligible. From these data, we find
similar critical measurement rates pc ≈ 0.25 and pc ≈ 0.5 for the XXZ-HVA and HEA,
respectively. In Appendix C.2 we give further details on this procedure.

The results in Figure 2.12 suggest that an entanglement phase transition takes place
in two prototypical circuits used in variational quantum algorithms. Although we have
studied static circuits here where no optimization takes place, we can investigate how the
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Figure 2.11: Schematic depiction of the variational circuits studied. (a) For the
XXZ-HVA, we prepare a Bell state on the even sites and alternatingly and apply ZZ, Y Y
and XX two-qubit rotations on odd and even bonds in the chain. See Section 2.2.2 for more
details. (b) The initial state in the HEA consists of the equal superposition followed by L
layers of low-depth entangling unitaries. These unitaries consists of n Pauli-Y rotations on
each qubit, a chain of nearest neighbor CNOTs and n Pauli-X rotations on each qubit. All
2N rotations are controlled by individual parameters θi,l, ϕi,l, where i = 1, . . . , n indicates
the qubit and l = 1, . . . , L indicates the layer. After each layer, we perform a projective
measurement according to Equation (2.26) with probability p on each qubit (indicated by
the green circles here), bringing the average number of measurements in the circuits to
NMp.

projective measurements affect the gradients with respect to the gate parameters in the
circuit.
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Figure 2.12: Data collapse of the average entanglement entropies. (a) For the
XXZ-HVA, we find pc = 0.25 and ν ≈ 1.22± 0.24. (b) For the HEA, we find pc ≈ 0.5 and
ν ≈ 1.26±0.23. The error bars are calculated as the difference between the critical exponent
in the thermodynamic extrapolation and the finite-size data collapse. The average S(p, n)
is obtained by averaging over 3×103 circuit realizations with all circuit parameters sampled
uniformly in (0, 2π). After each layer, we apply a computational basis measurement with
probability p. Due to the difficulty in simulating large systems, we restrict ourselves to
n = 6, 8, . . . , 18.

2.3.3 Projective gradients and barren plateaus

The variational energy E(θ) is typically a non-convex function of the gate parameters θ. In
practice one typically uses a gradient-based method to find a minimum of the cost function.
To calculate the necessary gradients with respect to the layer parameters, we can employ
hardware-friendly methods, most of which rely on the usage of the so-called parameter-
shift rule which we discussed in Section 2.1.2 [30, 31, 116, 117, 118, 119, 120, 121]. In its
standard form, this allows one to calculate the gradient with respect to the parameters of
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a gate generated by a Pauli operator as

∂θlE(θ) =
1

2

(
E+,l(θ)− E−,l(θ)

)
,

where we use ±, l to denote the expectation value under a circuit U(θ) where parameter
l has been shifted by ±π/2. In other words, the gradient can be calculated by shifting
the parameter θl by ±π/2 and calculating the difference of the expectation values of H
under the shifted circuits. Unfortunately, this kind of gradient calculation is plagued by
barren plateaus in the cost landscape: gradients with respect to the gate parameters vanish
exponentially with the number of qubits in the circuit, preventing us from optimizing the
circuit. To mitigate this problem, a variety of recent works are aimed at finding ways to
avoid these regions where optimization is hard [108, 37, 68, 122, 115, 123, 124].

Here, we investigate the barren plateau problem under the influence of projective mea-
surements, more specifically the variance of the gradients in the XXZ-HVA and the HEA
with intermediate projective measurements. There has been prior work on gradient through
non-unitary quantum circuits. For instance, in [125] the quantum natural gradient [26] is
extended to quantum channels. Additionally, in [126] measurement-based VQE is inves-
tigated, but only in the context where an entangled cluster state is prepared and mea-
surements are directly part of the algorithm [127]. None of these works consider quantum
gradients through a circuit undergoing projective measurements, which is the case we con-
sider here.

The gradient with respect to a single parameter θl of the expectation value of a Hermi-
tian operator H undergoing a set of measurements is given by

∂θlE(θ) = ∂θlTr {HρL(θ} ,

where ρL(θ) is given in Equation (2.27)). In Appendix C.3, we show that the full projective
gradient can be written as

∂θlE(θ) =
1

2

(
(
E+,l(θ)− E(θ)

) p+,l
L

pL
−
(
E−,l(θ)− E(θ)

) p−,l
L

pL

)
. (2.28)

The probabilities pL and p±,l
L are the probabilities of obtaining ρL(θ) and ρL(θ1, . . . , θl ±

π/2, . . . θL), respectively. Note that obtaining these probabilities will be difficult and re-
quire a large number of measurements, since estimating the ratio p−,l

L /pL requires full
knowledge of the wave function.

To investigate the severity of the barren plateau effect, we consider the same circuits as
in Figure 2.12 and examine the projective gradients of Equation (2.28) with respect to the
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expectation value of H = Z0Z1. We calculate the projective gradients for the first circuit
parameter (θ1 in the first parameterized layer in both the HVA and HEA (see Figure 2.11)).
We consider a depth L = 16 circuit for system sizes n = 8, . . . 18. In Figure 2.13a and
Figure 2.13b, we observe that the gradient variances in both the XXZ-HVA and HEA tran-
sition from exponentially decaying to a constant as the measurement rate increases. This
transition coincides with the critical measurement rate for the volume-area law transition
(See Appendix C.5). Therefore, we see that the measurement-induced entanglement phase
transitions induces a landscape transition in the circuit from mild/severe barren plateaus
to no barren plateaus.
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Figure 2.13: Variance of the projective gradients taken with respect to the first
parameter in the circuit. θ in the first parameterized layer in both the HVA and
HEA, see Figure 2.11. The variances are estimated over 103 samples where for each data
point, we randomly choose measurements with probability p and uniformly sample the gate
parameters. The gradient is then calculated exactly from Equation (2.28). We emphasize
that these gradients are thus calculated with respect to the individual pure states resulting
from measuring the state during the application of the circuit. For the 1D XXZ-HVA
circuits with depth L = 16 (a) and the 1D HEA circuit with depth L = 16 (b) the gradient
variance becomes constant as the measurement rate p increases.
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This landscape transition can serve as the motivation for a projective gradient VQE
algorithm where the early optimization of the circuit is done with projective gradients
to escape barren plateaus due to initialization. However, calculating the gradients in
Equation (2.28) is exponentially hard in the number of layers L, since we need accurate
estimates of pL and p±,l

L .

On the contrary, the mixture of all pure states ρL(θ) has a simple gradient formula
that can be calculated in practice, as we show in Appendix C.4. This approach does not
require post-selection and can be applied by ignoring the results of the measurements. The
resulting ensemble however, corresponds to system at infinite temperature [85, 87, 86]. It
is known that such a high temperature ensemble will suffer again from barren plateaus [83].
Additionally, we require a pure state as the outcome of our optimization algorithm, which
will require annealing the measurement rate to zero during the optimization. Any useful
variational algorithm with intermediate measurements must not remix all projective states
but still be efficiently calculable. We leave the exploration of this class of algorithms as
future work.

2.3.4 Conclusion

We demonstrated the existence of a measurement-induced entanglement phase transition
in variational quantum circuits which coincides with a “landscape transition” in the be-
havior of quantum gradients. As mentioned earlier, the exponentially-vanishing quantum
gradients in presence of volume-law entanglement growth, the so-called barren plateau, is
a serious obstacle in the applications of variational quantum circuits. Our work suggests
that intermediate projective measurements may provide a useful knob to control the bar-
ren plateau issue. Inclusion of the measurement protocol in the quantum-classical hybrid
algorithm would be a timely development given that quantum computing hardware com-
panies like IBM and Honeywell now allow their users to perform mid-circuit measurements,
enabling the real-time logic required for performing these algorithms in an experimental
setting [110, 111, 112]. In particular, the HVA quantum circuits considered in here could be
implemented in the quantum hardware. For the projective gradient VQE, the exponential
sum in Equation (2.28) currently inhibits the number of measurements that can be per-
formed in practice. A detailed analysis of when and how a projective circuit optimization
can be practical and “advantageous” would be an excellent topic of future study.

For a practical implementation of a projective gradient VQE algorithm, note that the
scheme we provided here is quite general and many extensions and modifications are pos-
sible. For instance, the projective measurements used in here can be replaced by general
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Positive Operator Value Measures (POVM) or parameterized measurements. Additionally,
we have focused on one-dimensional quantum circuits where the measurement-induced en-
tanglement transition belongs to the same universality class as in the random unitary
circuits. It would be interesting to consider moderately sized quantum circuits with a two-
dimensional topology, and see if a similar phase transition appears there and investigate
the universality class.
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2.4 Quantum-Classical-Quantum interfaces

The paradigm of NISQ devices limits quantum algorithms to circuits of low qubit numbers,
low depth, and low connectivity [20]. This poses serious concerns on the actual usefulness
of quantum computers in the near term and has thus ignited a both experimental and
theoretical quest to make use of NISQ hardware [128, 129, 24].

To combat the noise in these systems, subsequent variants incorporated the idea of
quantum error mitigation [130, 131, 132, 133]. This refers to schemes whereby noisy ex-
perimental implementations (e.g., in different noise regimes or with different gate choices),
together with suitable classical post-processing, are used to simulate a target, noiseless
quantum circuit of limited size. This offers a NISQ alternative to quantum error correc-
tion (which requires large-scale quantum circuits), where full fault tolerance is achieved by
actively correcting errors on the quantum hardware during the execution of the computa-
tion. Here, we achieve error correction by removing noisy gates from circuit at the cost of
an increase in the sampling budget.

More recently, a different type of hybrid method has been put forward [134, 135, 136,
137, 138, 139]. There, a classical algorithm calls a quantum computer as a sub-routine to
simulate a larger quantum circuit. However, the cost of this is that both the number of
queries to the quantum sub-routine and the classical post-processing runtime unavoidably
grow exponentially with the size of the target circuit. Moreover, a particularly challenging
aspect of NISQ devices is their inability to run algorithms that require high, long-range
connectivity among the constituent qubits. In most NISQ hardware, long-range gates are
synthesized by a long sequence of nearest-neighbor gates. This drastically inflates the
circuit depth and causes large infidelity due to noise accumulation incurred during the
syntheses. This is a crucial limitation in the NISQ era.

Here, we take a conceptually different direction from previous hybrid schemes: instead
of assembling a large quantum circuit from small pieces, we simulate a high-connectivity
circuit from circuits with low connectivity and depth. To that end, we introduce the
notion of Quantum-Classical-Quantum (QCQ) interfaces. A QCQ interface for a gate
U corresponds to a local measurement on the qubits on which U acts followed by a re-
preparation of those same qubits in a random product state that depends on U . In other
words, the interface performs a hybrid quantum-classical simulation of U . Each interface
introduces a multiplicative statistical overhead that, as we prove below, is independent of
the on-chip distance between the qubits. Hence, for fixed number of interfaces, e.g., the
longer the range of the target gates is, the more drastic the reduction in depth attained is
at the expense of a constant overall statistical overhead.
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More technically, our interfaces combine state-of-the-art state estimation based on
single-qubit random measurements [46, 140] with quasi-probability representations based
on frames [141, 142]. Such representations have been used for classically simulating a
quantum circuit with Monte Carlo sampling techniques [143, 144, 145]. In particular, our
algorithm can be seen as a hybrid version of the scheme of Ref. [145] where everything
is quantum except for a subset of gates that one wishes to “cut out” of the experimental
circuit. Here, we choose such subset in terms of the on-chip qubit distance. However,
other relevant choices may be due simply to error mitigation or hardware-specific lim-
itations. As most quasi-probability schemes, our method suffers from the infamous sign
problem [146, 147, 148]. Remarkably, the severity of the problem depends only on the num-
ber of interfaces and not the on-chip distance between the qubits. Moreover, as by-product
contribution, in order to minimize the average sign of our quasi-probability representation,
we develop a Metropolis-Hastings simulated-annealing algorithm based on random walks
in the space of a dual Positive Operator Valued Measurement (POVM). We implement
such walks through a convenient, long-known parameterization of generalized inverse ma-
trices [149]. This allows us to decrease the sample complexity overhead per interface by
almost a factor of four relative to the canonical POVM choice, constituting a practical tool
of general relevance for sign-problem mitigation [150, 151].

2.4.1 Positive Operator Valued Measures

Here, we give a high level description of our method and leave the formal treatment in
terms of frame theory [141, 142] for the Appendix (See Appendix D.1).

We consider an n-qubit system S described by a density matrix ρ. This density matrix
can be fully described via the measurement statistics of an informationally complete posi-
tive operator valued measure (IC-POVM) M = {Ma}a∈{1,...,m}n , which can be constructed
by taking the tensor product of single qubit IC-POVMS, Ma = Ma1 ⊗ . . . ⊗MaN , where
Mai ≥ 0 and

∑m
ai=1Mai = I [28, 152] (see Appendix A.3). For each operator Ma we can

define a dual IC-POVM element M̃a such that the following equality holds

ρ =
∑

a

pρ(a)M̃a, (2.29)

where pρ(a) := Tr {Maρ} is the probability of measurement outcome a on ρ. Equa-
tion (2.29) is the basis of classical-shadow tomography, a powerful technique to get compact
classical representations of states from measurements [153, 140]. Note that Equation (2.29)
also works if Ma acts on a subset of all n qubits, e.g. ρ =

∑
a pρ(a)(M̃a ⊗ ρred(a)) where

ρred(a) is the normalized state on the rest of the system after applying Ma.
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(a) A QCQ interface (b) Replacing multiple gates with QCQ interfaces

Figure 2.14: Schematic depiction of the QCQ interfaces.(a) A QCQ interface V(a, b)
applying the identity operator Uk = I between qubits 1 and n. We measure the POVM
M on both qubits reprepare them in a product state that depends on the simulated gate
and the outcome a. The other n − 2 qubits are left untouched. (b) An exemplary 4-
qubit circuit (left) is simulated by a hybrid quantum-classical circuit (right), where the
non nearest-neighbor gates U1 and U3 are substituted by QCQ interfaces (V1(as1 , bs1) and
V3(as3 , bs3), respectively). The summation over (as1 , bs1 ,as3 , bs3) represents the average
over all interface outcomes sampled (see text).

The dual POVM elements M̃a can be expressed in terms of the Mb’s as

M̃a =
∑

b

T̃a,bMb, (2.30)

where T̃ = TT T and Ta,b := Tr {MaMb}, hence T is an mn ×mn matrix. The matrix T
has to satisfy the equation T = TTT , i.e. T is a generalized inverse of T [154].

By virtue of Eqs. (2.29) and (2.30), we can then express any ρ as an affine combination
of product states by normalizing the POVM elements.

This fact has been used to reconstruct quantum states [46], processes [155], and over-
laps [156] from single-qubit measurements. Additionally, this has been used to simulate
quantum circuits [157] with generative machine learning models, where T was taken as the
canonical pseudo-inverse of T . However, other choices of T are possible. The columns of
T are normalized, but in general, its elements can be positive or negative, hence we can
understand it as a quasi-probability distribution [145]. The negativity of T has important
consequences for the sample complexity of our algorithm.
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2.4.2 Interfaces for hybrid classical-quantum circuits

Our goal is to simulate observable measurements on quantum circuits using hybrid classical-
quantum ones. More precisely, we are given an observable O, an n-qubit input state
ρ0 := |0⟩⟨0|, and a target circuit C := {Uk}k=1,...,K , consisting of single- or two-qubit
unitary gates Uk. We denote by sk ⊂ S the subset of qubits on which Uk acts, and by ask

a corresponding sub-string of POVM measurement outcomes on sk. There are K gates
{Uk}k=k1,...,kK ⊂ C where ki ≤ L in the circuit that we intend to replace, because they are
for instance particularly experimentally demanding for NISQ implementations or do not
match the native hardware connectivity of the device.

The case we explicitly study below is that of two-qubit gates on qubits far apart in the
connectivity graph in question. We want to estimate the expectation value Tr{ρLO} of
O on the output state ρL := UL . . . U1 ρ0 U

†
1 . . . U

†
L by substituting every Uk by a classical

simulation of it. Our main tool to achieve this are interfaces between quantum objects and
their (classical) representations. Note that we can also use a partial state reconstruction.
The first one is based on Equation (2.29):

Definition 2.4.1 (Quantum-classical interfaces). We refer to a QC interface on sk as the
assignment of a classical snapshot M̃ask

according to the measurement outcome ask of a

factorable POVM M on a state ρ, occurring with probability pρ(ask) := Tr
{
Mask

ρ
}
.

Hence, the QC interface is a list of bitstrings corresponding to measurement outcomes
on the subsystem sk (see Appendix A.2).

From the outcomes ask of the QC interface, we can use Equation (2.30) to reconstruct
the state by importance sampling bsk . To achieve this, we first define the normalized states
ρ̄b := Mb/Tr {Mb}. Next, we rewrite T̃ask

,bsk
as

T̃ask
,bsk

=:
∥∥∥T̃ask

∥∥∥
1

sgn
(
T̃ask

,bsk

)
p(bsk |ask), (2.31)

where
∥∥∥T̃ask

∥∥∥
1

:=
∑

bsk

∣∣T̃ask
,bsk

∣∣ is the l1-norm of the rows T̃ask
,bsk

, and p(bsk |ask) :=
∣∣∣T̃ask

,bsk

∣∣∣/
∥∥∥T̃ask

∥∥∥
1

the conditional probability distribution obtained by taking the absolute

value of the rows and normalizing appropriately. By construction, p(◦|ask) is a valid prob-
ability distribution, which allows us to quantum Monte Carlo simulate M̃ask

by sampling
bsk [145]. This leads us to the definition of our second interface:

Definition 2.4.2 (Classical-quantum interface). We refer as CQ interface on sk as the
repreparation of the state ρ̄bsk , with probability p(bsk |ask), given a classical snapshot M̃ask

.

Each sampled pair (ask , bsk) is assigned the value
∥∥∥T̃ask

∥∥∥
1
sgn
(
T̃ask

,bsk

)
Tr {Mb}.
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The CQ interface is thus a collection of bitstrings indicating which state to reprepare on
sk, while we keep track of the signs and norms of T̃ . One can combine the QC with the CQ
interface to represent ρ by measuring and repreparing states on sk. The main contribution
of our work is going beyond this identity. To do this, we absorb the action of a gate Uk

acting on sk into the measurement-and-repreparation of ρ by defining T̃Uk := TTUk T,
where

TUk := Tr
{
UkMask

U †
kMbsk

}
.

We provide a derivation of this quantity in Appendix D.1. This leads us to our final
definition:

Definition 2.4.3 (Quantum-classical-quantum interface). We refer as a QCQ interface
on sk given a gate Uk as the measurement of M with outcome ask , followed by the reprepa-
ration of ρ̄bsk with probability pUk

(bsk |ask). Each sampled pair (ask , bsk) is assigned the

value vask
,bsk

:=
∥∥∥T̃Uk

ask

∥∥∥
1
sgn
(
T̃Uk
ask

,bsk

)
Tr {Mb}. We represent this interface by Vk(ask , bsk).

Note that we can place an interface at any point in the circuit to replace a gate. For
example, we can perform the gates {U1 . . . Ul1−1} to our initial state ρ0, create an interface
Vl1(asl1

, bsl1 ) and then apply the rest of the circuit {Ul1+1 . . . UK} to the reprepared state
ρ̄sl1 . By combining Eqs. Equation (2.29), Equation (2.30) and Equation (2.31) we can
obtain the following equation for the expectation value of an observable O via a QCQ
interface:

Tr {ρO} =
∑

ask
,bsk

pρ(asl1
) vask

,bsk
Tr
{
Mbsk

}

× Tr
{
UK . . . Ul1+1ρ̄bskUl1+1 . . . UKO

}
, (2.32)

We can extend the single QCQ interface example above to multiple interfaces by applying
subsequent measurement-and-repreparation steps and multiplying the norms and signs
vask

,bsk
of each interface accordingly.

Equation (2.32) and its generalization to multiple interfaces can be experimentally
calculated with a finite statistics estimator O∗

Ms
over Ms runs (see Appendix D.2.). We

refer to Ms as the sample complexity of our protocol. Clearly, the estimation of observables
via QCQ interfaces comes at a cost. In particular, the multiplicative factors of vask

,bsk
increase the variance of the observable estimator O∗

Ms
, hence we need more runs Ms to

get an accurate estimate of Tr {ρKO}. In practice, Ms needs to be chosen to guarantee
that the statistical error and significance level (failure probability) of the estimation are
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respectively given by target values ε and δ. The entire procedure is sketched by the
pseudocode in Algorithm 1.

To quantify the runtime of the algorithm given ε and δ, we define the interface negativity
of the gate Uk and the total forward interface negativity of the entire circuit C respectively
as

NUk
:= max

ask
,bsk

∥∥∥T̃Usk
ask

∥∥∥
1

Tr
{
Mbsk

}
and N→ :=

∏

k∈K
NUk

. (2.33)

This allows us to state the following theorem.

Theorem 2.4.1. [Correctness and sample complexity] The finite-statistics average O∗
M of

Algorithm 1 is an unbiased estimator of Tr{ρLO} (See Appendix D.2). Moreover, if

Ms ≥ N 2
→ ×

2 ∥O∥2 log (2/δ)

ε2
, (2.34)

with ∥O∥ the operator norm of O, then, with probability at least 1− δ, the statistical error
of O∗

M is at most ε.

The proof follows straightforwardly from the Hoeffding bound. We note that the fac-

tor 2 ∥O∥2 log (2/δ)
ε2

in Equation (2.34) is the equivalent sample complexity bound one would
obtain if Tr{ρLO} was estimated from measurements on the actual state ρL. Hence, N 2

→
quantifies the runtime overhead introduced by the interfaces. In that regard, the interface
negativities play the same role in our hybrid classical-quantum simulation as the nega-
tivities of Ref. [145] in fully classical simulations with quasi-probability representations.
An innovative and advantageous feature of Equation (2.33) is the presence of the POVM-
element trace Tr

{
Mbsk

}
in NUk

, which comes from the state repreparation. Indeed, since

Tr
{
Mbsk

}
< 1, the NUk

’s (and therefore also N→) are significantly smaller than their
counterparts for fully classical simulations [145]. This is consistent with the intuition that
hybrid classical-quantum Monte Carlo simulations should cause lower sample-complexity
increases than fully classical ones. Our bound is similar to sample complexity of the space-
like circuit cuts in [139] and [158], but is not restricted specific gates.

Either way, the most relevant property for our purposes is that N 2
→ (and therefore also

Ms) is independent not only of the numbers of gates L or qubits n but most importantly,
of the connectivity-graph distance between the qubits on which the interfaces act. In other
words, for a fixed budget of measurement runs, simulating a gate Uk with a QCQ interface
increases the statistical error at most by a constant factor NUk

, regardless how far apart
in the circuit the qubits sk are. In contrast, experimentally synthesizing Uk with noisy
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nearest-neighbor gates would give a systematic error due to infidelity accumulation that
grows with the distance between those qubits.

With regard to the limitations of our method, we note that N 2
→ grows exponentially

with the number K of interfaces used. We can therefore only simulate a limited a number
of gates before the number of measurement-and-repreparation steps becomes too large

to perform in practice. Additionally, the forward negativity depends on ∥T̃Usk
ask
∥1 which

increases with the number of qubits onto which the simulated gate acts. However, we are
usually only interested in simulating two qubit gates, where this effect is small. Even with
these drawbacks, Algorithm 1 constitutes a better alternative for many circuits than the
bare NISQ implementation. Also, Theorem 2.4.1 provides a direct way to get a sense of
whether implementing a QCQ interface will be too difficult to perform in practice, since
we can obtain an upper bound on the number of shots required to perform an accurate
simulation of a certain gate. We study relevant exemplary circuits with such trade-offs in
the next sections.

Finally, note that N 2
→ is POVM-dependent. This is crucial to the efficiency of classical

simulations [146, 147, 148]. For instance, in quantum Monte Carlo, it is known that
the statistical overhead due to negative (quasi-)probabilities can be ameliorated [151] or
even removed [150] by local base changes. Something similar applies here: the interface
negativities depend not only on the choice of POVM, but also on how we construct the
dual POVM elements.

Algorithm 1: Hybrid classical-quantum simulation with QCQ interfaces.

Input: ρ0, C, O, ε, δ
Output: O∗

Ms
s.t.

∣∣O∗
Ms
− Tr

[
O ρL

]∣∣ ≤ ε with probability at least 1− δ.
Initialize O∗

Ms
= 0, v = 1, and Ms as in Equation (2.34).

for m ∈ (1, . . . ,Ms) do
for k ∈ (1, . . . , L) do

if k ∈ {l1, . . . , lL} then
Apply a QCQ interface for Uk on qubits sk, obtaining the pair (ask , bsk);
v ← v × vask

,bsk
, with vask

,bsk
as in Definition 2.4.3.

else
Apply the gate Uk on qubits sk.

Measure O, obtaining the measurement outcome (eigenvalue of O) o;
O∗

Ms
← O∗

Ms
+ o× v.

O∗
Ms
← O∗

Ms

Ms
.
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2.4.3 Numerical experiments

Here, we provide numerical experiments to validate the procedure outlined in Algorithm 1.
Throughout the rest of this section, we take {Ma}a to be the Pauli-6 IC-POVM,

{Ma}Pauli-6a :=
⋃

i=x.y,z

{
1

3
|↑i⟩⟨↑i| ,

1

3
|↓i⟩⟨↓i|

}
,

where the vectors |↑i⟩ , |↓i⟩ correspond to the eigenvectors of the Pauli operators with
eigenvalue ±1 respectively. Note that this POVM can be implemented in an experimental
setting without the usage of ancilla qubits (see Appendix A.3).

For our simulations, we make use of full density matrix simulations and Locally Purified
Density Operator tensor networks [159] (see Appendix D.3). For the latter, we choose the
bond and Kraus dimensions D and κ, respectively, such that the simulation errors are under
control, and we end up with a high fidelity (> 99.9%) state approximation. To simulate
realistic experimental settings, we apply noise to the two-qubit gates in our circuit. In
particular, for each numerical experiment reported in this section, we implement noisy
CNOTs throughout our circuits by applying single-qubit depolarizing channels E : ρ 7→
E(ρ) to both the control and target qubit of the CNOT gate. We apply depolarizing noise in
the CNOTs with λunit = 0.005. These values correspond to experimentally realistic values
of Google’s Sycamore quantum processor [160]. At the end of the circuit we estimate
observables Tr {ρO} exactly, i.e. without further sampling bitstrings but relying on the
full state representation.

Since we are considering two-qubit gates for our numerical experiments, our interfaces
only act on two-qubit systems. Hence, for our measurement-and-repreparation step, hence
we only need to store bitstrings asl of length 2, as well as the 62 × 62 overlap matrix T̃Uk .

2.4.4 RandomWalk Metropolis-Hastings for negativity minimiza-
tion

To improve the sample complexity of our algorithm, we use a Monte Carlo algorithm
to minimize the interface negativities. We first note that the matrix T̃Uk defined un-
der Equation (2.30) defines a domain over which to optimize such negativity. Similar
optimizations have been used for alleviating the sign problem in partition-function estima-
tions [150, 151]. In our setting, we use a convenient parameterization of generalized inverse
matrices by Rao [149] to propose new dual POVM elements for an adaptive random walk
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Metropolis-Hastings algorithm. This allows us to decrease the multiplicative sample com-
plexity overhead per interface by almost a factor of four relative to the canonical dual
POVM (corresponding to T̃ = T−1, with T−1 the pseudo-inverse of T ), which reduces the
number of samples required by a factor of four.

In particular, we present a method to minimize the sample-complexity overhead by the
interface of a unitary gate U exploiting the freedom in the choice of dual POVM, namely
the choice of T subject to Equation (D.4). For concreteness, we focus on the case where
all POVM elements have the same trace, so Tr [Mb] = 1/D for all b, with D the number of
POVM elements. Moreover, we optimize a modified version of the interface negativity nU

where, instead of maximizing
∥∥T̃U

a

∥∥
1

over a (as in Equation (D.9), we average
∥∥T̃U

a

∥∥2
1

over
a). Such an average is the sample-complexity overhead directly given by the Hoeffding
bound for when the sampled random variables can lie within segments of different lengths.
The reason for this modification is that, while in Theorem D.1.1 we are interested in the
worst-case complexity, here we are interested in the more practical problem of the average
case.

For optimizing T̃U over T, we express it as T̃U = T1 T
UT2, with TU given by TUk :=

Tr
[
UkMask

U †
kMbsk

]
. Note that by not enforcing that T1 = T2, we are explicitly allowing

for the more general case of possibly different input and output dual POVMs. Hence, we
want to solve the constrained non-convex optimization

min
T

1

D

∑

a

∥∥(T1 T
UT2

)
a

∥∥2
1
, (2.35)

s.t. T = TTiT, for i = 1, 2, (2.36)

where
(
T1 T

UT2

)
a

is a shorthand notation for the a-th row of T1 T
UT2 and

∥∥(T1 T
UT2

)
a

∥∥
1

its l1-norm. Equation (2.36) is a necessary but not sufficient condition for Ti to be the
Penrose-Moore pseudo-inverse of T . Indeed, such condition implies that Ti is a so-called
generalized inverse of T [161, 154]. So, the first question we need to consider is how to
variationally explore the space of generalized inverses of T in a practical way.

Fortunately, this question has been previously studied. In particular, in Ref. [149] it
was shown that for an arbitrary matrix A ∈ Rm×n and given any particular generalized
inverse A− of it, every generalized inverse B− can be obtained from some C ∈ Rm×n by
the map

B−(C) := A− + C − A−ACAA−. (2.37)
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That is, the entire space of generalized inverses is parameterized by C. This leads us to a
practical way to obtain a random walk across the space of generalized inverses: In the first
iteration, take the Penrose-Moore pseudo-inverse A−1 as starting generalized inverse and a
randomly sampled C. This produces the first B−. As inputs for the second iteration, use
the first iteration’s output B− as generalized inverse and a fresh, independently sampled
C. This produces a new B−. Then continue to iterate.
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Figure 2.15: Monte Carlo random walk for interface negativity optimization of
the ZZ gate used in Section 2.4.6. The total number of steps in the annealing schedule
is 5000 . The gray dashed line indicates the mean average squared negativity of the pseudo-
inverse, whereas the blue line indicates the one for the newly accepted T’s during the Monte
Carlo random walk. The inset shows the adaptive scheme that fine-tunes the search with
the temperature and variance, given in black and red, respectively.

Using this recipe for A = T and A−1 = T−1, we can ergodically explore the space of
generalized inverses Ti of T . In turn, the resulting random walk can be used as Markov
Chain Monte Carlo dynamics for a simulated-annealing optimization [162, 163] that ap-
proximates a solution to Equation (2.35). More precisely, for each random walk iteration,
we (probabilistically) accept or reject the newly produced Ti via a standard Metropolis-

Hastings algorithm with 1
D

∑
a

∥∥(T1 T
UT2

)
a

∥∥2
1

as energy function.
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For U a two-qubit gate and the Pauli-6 POVM, each dual-overlap matrix can be ex-
pressed as Ti = T

(1)
i ⊗T

(2)
i , where T

(1)
i and T

(2)
i are respectively the 6× 6 real dual-overlap

matrices of the two qubits on which U acts. We can independently sample all four matrices,
T

(1)
1 , T

(2)
1 , T

(1)
2 , and T

(2)
2 . Hence, the search-space dimension is 4× 6× 6 = 142.

For the simulated-annealing schedule, we take random matrices C ∼ N (0, σ2)6×6. We
set the initial temperature to be T = 10 and decrease it with a factor 0.999 at each Monte
Carlo step. In addition to the temperature, the Monte dynamics are controlled by the
variance σ2 of the normal distribution N (0, σ2)6×6 for C. We start with a large initial
σ2 = 0.1 to coarsely explore the search space. However, as the temperature decreases, we
want to refine the search without freezing the Monte Carlo dynamics. Therefore, we use an
adaptive scheme where σ2 is decreased according to the acceptance ratio. Specifically, we
halve the value of σ if the acceptance ratio per 100 MCS is smaller than 0.23, a well-known
heuristic for continuous-variable MCMC [164]. The search is terminated if the negativity
decreases less than 10−2 after 100 accepted steps.

As a result, we consistently find dual frames whose averaged squared negativities are
about half the value of the canonical dual frame from the pseudo-inverse (see Figure 2.15).
This is also observed to greatly improve the sample complexity in practice (see Figure 2.16).

2.4.5 Simulation of long-range maximal Bell violations

As a proof of principle experiment, we show that a maximally entangled state simu-
lated with our method attains the maximal violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequalities as expected. The CHSH inequalities constrain a set of four correla-
tors in an Alice (A) and Bob (B) type experiment and provide a condition to check if the
correlations between the observations of Alice and Bob can be explained by a local theory,
or necessitate a non-local theory such as quantum mechanics [165]. Consider the quantity

fCHSH(A,B) =C00(A,B) + C01(A,B) + C10(A,B)

− C11(A,B)
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Figure 2.16: Improvement of energy-estimator variance for the 8-qubit TFIM
circuit experiment of Figure 2.18b. Sample variance is estimated over 50 runs. The
red line shows sample variance corresponding to the canonical dual frame given by the
pseudo-inverse of T . In blue, we see the variance of the energy corresponding to the dual
frame obtained from the Monte Carlo search.

where

C00(A,B) =
1√
2

(−⟨ZAZB⟩ − ⟨ZAXB⟩)

C01(A,B) =
1√
2

(−⟨XAZB⟩ − ⟨XAXB⟩)

C10(A,B) =
1√
2

(⟨ZAZB⟩ − ⟨ZAXB⟩)

C11(A,B) =
1√
2

(⟨XAZB⟩ − ⟨ZAXB⟩)

are the correlations obtained from the state shared by Alice and Bob. The observables
X and Z are the Pauli matrices. We call fCHSH(A,B) the Bell polynomial. The CHSH
inequality is given by fCHSH(A,B) ≤ 2, which if satisfied, implies that a local hidden vari-
able theory can explain the observed correlations. On the other hand, for fCHSH(A,B) > 2
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we have to invoke quantum theory to explain the correlations. The maximum value of
fCHSH(A,B) is 2

√
2 which is obtained for a maximally entangled two qubit state.

We consider the Bell state |Φ+⟩ = 1
2
(|00⟩+ |11⟩) which has the maximum CHSH viola-

tion fCHSH(A,B) = 2
√

2. We consider the case where the state is prepared on two qubits
separated by a distance d. Applying the CNOT between these distant qubits requires im-
plementing a swap chain to bring the two states close together. In Figure 2.17 we compare
the CHSH violation of the Bell state simulated with our algorithm and one prepared with
a circuit containing a noisy swap chain. We see that the CHSH violation is only affected by
the statistical fluctuations of our method and therefore approximates the maximum value
independent of the distance between the qubits.

2.4.6 The Transverse Field Ising-model circuit

As a practical example of implementing our method in an experimentally realistic setting,
we investigate the ground state of a prototypical model for quantum magnetism: the
transverse field Ising-model (TFIM) on a one dimensional ring. The Hamiltonian of the
TFIM for the 1D chain is given by

HTFIM = −
n∑

i=1

[ZiZi+1 + gXi] , (2.38)

where we assume periodic boundary conditions and set g = 1. The ground state of H can
be approximated reliably with a depth L = n/2 HVA circuit (see Section 2.2) [40, 52, 1].

To evaluate the accuracy of the state reconstruction, we compare the finite statistics

estimator of the energy
〈
ĤM

〉
from our algorithm with the ground-state energy Egs =

⟨ψgs|H |ψgs⟩ from exact diagonalization.

We consider three setups: First, we consider the n = 4 and n = 8 qubit TFIM chains
where the last long range ZZ gate (in the 2nd and 4th layer respectively) is classically
simulated with our algorithm (See Figure 2.18). Next, we apply our method twice for the
same circuits, with simulation of both the last and first-to-last long range ZZ gate (See
Figure 2.19). Finally, we consider the ground state of an n = 20 TFIM chain, where we only
apply the first two layers of the circuit and simulate the second long range ZZ gate (See
Figure 2.20). For all simulations, we confirm that we can greatly improve the final energy
estimates by making use of QCQ interfaces at the cost of Ms measurement-and-reprepare
steps.
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Figure 2.17: CHSH violation as a function the number of qubits. These results
where obtained with an LPDO simulation where D = 12 and κ = 24. In addition to the
gate noise, we apply a depolarizing channel to simulate measurement noise with λmeas =
0.01 and repreparation noise with λreprep = 0.005. The classical bound (pink) and maximal
violation (green) are 2 and 2

√
2 respectively for all d. We see that the violation in the noisy

circuit (green) decreases linearly with the number of qubits as a result of the 4(d− 2) + 1
noisy swap gates required to prepare the state. Our algorithm provides the maximum
CHSH violation up to statistical fluctuations independent of the distance between the
qubits. This comes at a cost of sampling M = 60000 measurement-and-repreparation
steps to estimate the violation.

2.4.7 Conclusion

We have introduced a rigorous framework of hybrid quantum-classical interfaces for quantum-
circuit simulations. We applied a specific variant of these gadgets – which we dub quantum-
classical-quantum (QCQ) interfaces – to simulate long-range gates in low-connectivity de-
vices without using swap-gate ladders. QCQ interfaces replaces an experimentally prob-
lematic gate (e.g. a very long-range one) by single-qubit random measurements and state-
preparations sampled according to a classical quasi-probability simulation of the ideal
target gate. This procedure eliminates long swap-gate ladders which would otherwise be
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Figure 2.18: Comparison of QCQ interface simulation with both noisy and noise-
less TFIM circuits. (a) n = 4 and (b) n = 8 qubits obtained with a full density matrix

simulation. Each dot represents the average energy E
[〈
ĤM

〉]
estimated over 50 separate

instances. The error bars indicate the standard deviation. As the number of samples Ms

increases, the statistical fluctuations of our method become small in accordance with the
central limit theorem. We can determine the scaling of the size of the error bars by fitting
σ = σ̄/

√
Nsamples. While for 4 qubits σ̄ ≈ 27.8, for 8 qubits we have σ̄ ≈ 76.5. This scaling

only depends on the mean negativity, which differs between the two circuits because we
apply a different ZZ rotation on each circuit. The energy of the noiseless circuit (orange
dashed line) corresponds to the ground-state energy Egs. The noisy circuit (green dashed
line) shows the energy obtained when we apply depolarizing channels with λunit = 0.005
to the CNOT gates in the circuit. We see that for both the 4 and 8 qubit our algorithm
provides a significant improvement on the final estimated energy of the circuit for a rea-
sonable number of measure-and-reprepare steps. In (b) we observe that the large number
of number of noisy CNOTs dominates the simulation, hence the improvement is not as
significant as for 4 qubit.

required to physically synthesize the target gate. This results in a drastic increase in gate
fidelity. The final output of the scheme is an estimate of the expectation value of a given
observable on the output of the target high-connectivity circuit.

The quasi-probability distribution used is given by a POVM representation of the
gate simulated at each interface. As any sampling scheme based on non-positive quasi-
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Figure 2.19: Comparison of double QCQ interface simulation with both noisy and
noiseless TFIM circuits. (a) n = 4 and (b) n = 8 qubits. These results were obtained
with a full density matrix simulation. In (a), we see that we can almost approximate the
true ground-state energy of the 4 qubit state, because the only noisy operations are the
12 CNOTs required for implementing the 6 nearest neighbor ZZ gates in layers 1 and 2.
In (b) we see a more significant improvement over the energies from Figure 2.18b, but
still the noise dominates. Since we apply the QCQ method twice, the standard deviation
σ = σ̄/

√
Nsamples of the error bars increases quadratically, as per Equation (2.33). We find

σ̄ ≈ 333.1 and σ̄ ≈ 856.8 for 4 and 8 qubits respectively.

probabilities, our method suffers from the sign problem. Because of this, the overall
sample complexity grows exponentially with the number of interfaces applied. How-
ever, the statistical overhead per interface is independent of the on-chip distance between
the qubits on which the interface acts. To ameliorate the sign problem, we developed a
Metropolis-Hastings simulated-annealing algorithm based on random walks in the space of
dual POVMs. This allowed us to decrease the statistical overhead per interface by almost
a factor of two over that of the canonical dual POVM. This is potentially interesting on
its own beyond the current scope and further optimization is possible. All together, we
show that any circuit with a limited number of gates to cut out can be simulated at the
expenses of a moderate overall overhead in sample complexity. As examples, we explicitly
considered a Bell-state preparation circuit for two qubits increasingly far apart and varia-
tional ground-state solvers for the transverse-field Ising model on ring lattices. The former
involves a single long-range gate, whereas the latter contains one such gate per variational
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Figure 2.20: Comparison of a QCQ interface simulation with both noisy and
noiseless circuits for a 20 qubit TFIM circuit. These results where obtained with
an LPDO simulation where D = 50 and κ = 50. Only two of the 8 layers of the circuit are
simulated here, to keep simulation errors under control. The sample variance σ̂ ≈ 195.0.

layer.

Interestingly, the quasi-probability approach we use here is not the only route to
gate simulation. In [166], similar in spirit to [145], quantum circuits are simulated via
Monte Carlo simulation. However, instead of using the language of frames, a Hubbard-
Stratanovich transformation is applied. In this context, the sign problem manifests itself
in the form of a complex action that inhibits the efficient simulation of a large number of
gates. A potential fruitful direction of future work would be to investigate the limits of
this alternative gate simulation approach (see Appendix D.4).

Importantly, our method requires platforms supporting mid-circuit measurements and
state preparations, which are readily provided by some quantum hardware companies such
as, e.g., IBM and Honeywell [110, 111]. This may pave the way to implement our method in
a practical setting in the near future. However, the efficacy of our method will rely on the
speed and accuracy of intermediate measurements. Although our numerical experiments for
the CHSH violation indicate that our algorithm is insensitive to imperfect measurements,
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slow measurements may be more problematic since NISQ devices only have a limited
coherence time.

Finally, we emphasize that our framework is not restricted to connectivity boosts only.
It could also be applied to any gate that is too noisy for a given platform or combined with
error-correcting codes to remove a gate that is particularly difficult to implement fault-
tolerantly by the code. Another interesting application that will be studied elsewhere is
circuit-depth boosts, where a deep circuit is simulated by shallower experimental circuits
together with classical simulations of entire slices of the target circuit. In conclusion, our
framework provides a versatile toolbox for both error-mitigation and circuit boosts well
suited for noisy, intermediate-scale quantum hardware.
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Chapter 3

Riemannian geometry in Variational
Quantum Computing

3.1 Differential Geometry and Lie groups

To establish notation, we briefly summarize some of the key concepts in differential ge-
ometry needed for our purposes. There exist many excellent references on the topic,
see [167, 168] for the physicist-friendly references and [169, 170] for the more technical
expositions on the subject. Since this is a physics thesis, we will not spend too much
time discussing the beautiful mathematics of differential geometry, and only introduce the
necessary concepts.

3.1.1 Differentiable Manifolds

An n-dimensional (topological) manifold M is a set that locally looks like Rn. This local
description is given by charts φa, which smoothly map open subsets Ua of the manifold
onto coordinate patches in Rn. So if {xi} are the coordinates in Rn, and p ⊆ Ua ∈ M,
then

φ(p) = x. (3.1)

If all charts between two subsets of the manifold are compatible, the manifold is differen-
tiable. For the purposes of this work, all manifolds will be C∞ differentiable. The beauty
of differential geometry is that you can work in a “coordinate-free” description where you

61



never choose coordinates, however, due to the applied nature of this thesis we will mostly
work in an explicit coordinate chart.

3.1.2 Tangent spaces

In calculus, we learn about function and its derivatives on a real vector space Rn. Given
that differentiable manifolds can be described locally via charts, many ideas of calculus
carry over directly to the manifold setting, with the caveat that they are defined locally.

A prime example of this is the idea of a tangent space TpM at a point p ∈M. We can
think of the tangent space as a collection of vectors that provide the possible directions one
can move in on the manifold from point p. Consider a curve γ : I →M where I = (−a, a)
is an open subset of R and M is a differentiable manifold. We can construct a curve on
M so that γ(0) = p. Then we can ask, what is the derivative of a function f :M→ R in
the direction of this curve? By working in a chart (U, ϕ), p ∈ U and ϕ(p) = {xi} where xi

is the ith coordinate of the vector ϕ(p), we find

df(γ(t))

dt

∣∣∣∣
t=0

=
∂(f ◦ ϕ−1)

∂xi
d(ϕ ◦ γ)(t)

dt

∣∣∣∣
t=0

=
∂f

∂xi
dxi(γ(t))

dt

∣∣∣∣
t=0

. (3.2)

This allows us to define a tangent vector at p as

v =
n∑

i

vi
∂

∂xi
≡

n∑

i

vi∂i, vi =
dxi(γ(t))

dt

∣∣∣∣
t=0

. (3.3)

So a tangent vector is an operator that differentiates a function in the direction of some
curve γ(t) going through a point p as v(f)(p). There exist many such curves, and these
curves form an equivalence class. The collection of these equivalence classes is then called
the tangent space TpM of M at p, which is a vector space that be spanned by a basis of
differential operators {∂/∂xi} ≡ {∂i}. This may be somewhat surprising, since we are not
used to think about derivatives as elements that can span a vector space, however this is
what tangent vectors represent: operators that can differentiate a function on Rn.

We can change the coordinates with a simple transformation. To see this, consider two
tangent vectors v,u defined in different charts (Ua, φa), (Ub, φb) such that p ∈ Ua ∩Ub and
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φa(p) = x, φb(p) = y. Then

n∑

i

vi
∂

∂xi
=

n∑

j

uj
∂

∂yj

vi =
n∑

j

uj
∂xi

∂yj
. (3.4)

The object ∂xi/∂yi should look familiar: it is the Jacobian matrix of the coordinates x
with respect to the coordinates y which tells us how tangent vectors in one coordinate
system transform to another coordinate system.

3.1.3 Cotangent vectors (one-forms)

Since TpM is a vector space, there exists a dual vector space T ∗
pM called the cotangent

space. Elements of the cotangent space are called cotangent vectors or one-forms ω :
TpM → R, which accept a tangent vector and produce real number. Similar to the
tangent vectors in Equation (3.3), a one-form can be expanded into a basis {dxi} that is
dual to {∂i},

∂idx
j = δji , (3.5)

so that

ω =
n∑

i

ωidx
i. (3.6)

One-forms are also known as covectors. In the following, we will drop the explicit basis
vectors ∂i and dxi and denote the components of tangent vectors v and one-forms ω, with
an upper index vi and lower index ωi, respectively. We will also make use of the Einstein
summation convention,

∑

i

viu
i ≡ viu

i. (3.7)

3.1.4 Riemannian manifolds

At this point, we know how to take a manifoldM, equip it with coordinates and calculate
derivatives at points of the manifold. In order to talk about distances between points we

63



need to define a metric, which is a positive-definite bilinear tensor that takes two points
in a tangent space and produces a scalar. Once we equip M with a metric, it becomes a
Riemannian manifold.

Specifically, a Riemannian manifold is a manifoldM equipped with a symmetric, non-
degenerate metric g : TpM×TpM→ R. Hence, the metric takes two vectors in the tangent
space at a point p and produces a positive number. For example, given v,u ∈ TpM we get

g(v,u) = viujgij.

The components gij of g are always defined with respect to a basis {∂i}, so gij = gij(∂
i, ∂j)

and we can represent g as an n× n matrix. Consider now the function g(v, ) : TpM→ R.
Remember that a one-form ω is function ω : TpM→ R. Hence, we can use the metric to
turn tangent vectors into one-forms:

g(v, ) = vigij = vj,

so that

g(v,u) = vju
j.

Since the metric is symmetric and non-degenerate, we can define the inverse metric g−1 as
providing a distance measure between one-forms,

g−1(ω,η) = ωiηjg
ij = ωiη

i.

Remember that the metric is defined locally at each point p. In order to calculate distances
between two points p and p′, we need to define a curve that connects these points. If we
take γ(t) to be the curve such that γ(0) = p and γ(1) = p′, then we can calculate the
distance between these points by adding up all infinitesimal line elements along the curve

L =

∫ 1

0

√
g(γ′(t), γ′(t))dt. (3.8)

3.1.5 Riemannian gradients

Now that we have defined a metric, we can talk in a meaningful way about the concept of a
gradient. To do so, we will consider a function f :M→ R at a point p and a tangent vector
v. We can define a curve γ : (−a, a)→M with γ(0) = p such that E(γ(t)) = constant for
all t. Differentiating with respect to t then gives

(∂if(γ(t)))γ′(t)
∣∣
t=0

= 0,
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Figure 3.1: Schematic depiction of the gradient of a function E(θ) on R2. The
gradient is always orthogonal to the curve γ(t) where the function is constant. Here, v
corresponds to γ′(t) at some point p.

In other words, the gradient of a function produces a vector orthogonal to the level curves
through a point (see Figure 3.1). To define the gradient in local coordinates, we need the
metric to establish what it means for two vectors to be orthogonal.

This can be achieved with the following construction. Instead of the curve γ(t) on
M, we can pick local coordinates x around p and establish the notion of a gradient in
an explicit coordinate system. To start, we consider the differential df , which takes the
function f and creates a one-form in the chosen coordinate system {∂i},

df = ∂if(x1, . . . , xn)dxi.

When we apply this function to a tangent vector, we get

df(v) = ∂if(x1, . . . , xn)vjdxi.

Remember that vj ≡ vj∂j and ∂jdx
i = δij, which gives

df(v) = ∂if(x1, . . . , xn)vjδij. (3.9)

In other words, the differential gives us the rate of change of the function f , at the point
p in the direction of v. If we change coordinates, x→ y, we can always use the Jacobian
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matrix of Equation (3.4) to account for the change. The (Riemannian) gradient is then
implicitly defined as

g(grad f,v) = df(v), (3.10)

which is known as the compatibility condition. In other words the Riemannian gradient
is a tangent vector that preserves the inner product with any other tangent vector v. We
find

(grad f)ivjgij = ∂if(x1, . . . , xn)vjδij,

so

(grad f)igij = ∂if(x1, . . . , xn)δij.

So in vector form

grad f = g−1 · (∇f), (3.11)

where we defined (∇f)i = ∂if(x1, . . . , xn). If g is the euclidean metric, then the Riemannian
gradient becomes the standard gradient operator in calculus. However, Equation (3.11) is
works for any manifold and a valid metric g.

Analogous to the gradient flow in a Euclidean space that we saw in Section 2.1.2, we
can use the Riemannian gradient to construct a Riemannian gradient flow

ẋ = grad f(x).

Riemannian gradient flows show up in different fields of optimization. For example, con-
sider a probability density function p(x|θ) for a random variable X which takes values in
Ω, parameterized by θ ∈ Rn. The manifold of probability distributions p is smooth, and
the induced metric on the coordinate space Rn is given by the Fisher metric [171]:

gij = −
∫

Ω

∂2 log p(x|θ)

∂θi ∂θj
p(x|θ) dx. (3.12)

If we plug this metric into Equation (3.11), we obtain Natural Gradient Descent [172], a
well-known second order optimization method for statistical models.

The quantum analogue of this can be constructed as follows. Global phases are phys-
ically unobservable, so quantum states are actually rays in a projective complex Hilbert
space CPN−1. This is formalized via the equivalence relation

|ψ⟩ ∼ λ |ψ⟩ , λ ∈ C, |ψ⟩ ∈ H (3.13)
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Given some parameterization |ψ(θ)⟩, the induced metric on CPN−1 is given by (see [173,
174])

gij = ⟨∂iψ(θ)|∂jψ(θ)⟩ − ⟨∂iψ(θ)|ψ(θ)⟩ ⟨∂jψ(θ)|ψ(θ)⟩ , (3.14)

which is known as the Fubini-Study metric. The resulting Riemannian gradient flow of
Equation (3.11) is known as Stochastic Reconfiguration in Variational Monte Carlo [175]
and Quantum Natural Gradient in variational quantum computing [26].

3.1.6 Lie groups

A Lie group is differentiable manifold that is equipped with a group structure. Remember
that a group G is a set of objects that satisfies the following properties

1. a · (b · c) = (a · b) · c for all a, b, c ∈ G (associativity)

2. e · g = g (existence of the identity)

3. g−1 · g = e (existence of inverse)

For this group to be a differentiable manifold, we need both the group product g· and its
inverse g−1· to be differentiable in the sense of Section 3.1.1. Lie groups are omnipresent
in physics. They are at the foundation of the standard model, can be used to describe
the internal symmetries of spin systems and are at the heart of universality theorems in
quantum computing.

In this work we will only be considered with finite-dimensional groups. We will always
work with the fundamental matrix representation of the group (the smallest possible repre-
sentation of the group), unless specified otherwise. The most relevant ones in the quantum
computing context are the following subgroups of the group of complex invertible matrices
GL(N,C)

U(N) = {X ∈ CN×N |X†X = I}
O(N) = {X ∈ RN×N |XTX = I},

which are called the unitary and orthogonal group, respectively. We also have the sym-
plectic group

Sp(2N,C) = {X ∈ C2N×2N : XTJX = J}, J =

(
0 IN
−IN 0

)
. (3.15)
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In the quantum context we typically work with the compact counterpart of Sp(2N,C),

Sp(N) = Sp(2N,C) ∩ U(2N), (3.16)

which is the set of unitary operators that is also symplectic.

3.1.7 SU(N) and its Lie algebra

Consider the special unitary Lie group SU(N):

SU(N) = {X ∈ CN×N |X†X = I, det{X} = 1}. (3.17)

In general, quantum gates belong to the unitary group U(N), which drops the determinant
condition and thus allows for an additional global phase. Restricting ourselves to SU(N)
therefore is physically equivalent. Consider a curve X(t) : R → SU(N), t ∈ (−a, a) such
that X(0) = I and d/dtX(t)|t=0 ≡ Ẋ(0) = Ω. If we differentiate the unitarity condition
with respect to t, we obtain

d

dt
(X†(t)X(t))

∣∣
t=0

= 0

Ẋ†(t)X(t) +X†(t)Ẋ(t)|t=0 = 0

Ω† + Ω = 0,

and so we find that Ω† = −Ω, i.e., Ω is a skew-Hermitian matrix.

The matrices Ω which result from such curves are elements of the Lie algebra

su(N) = {Ω ∈ CN×N |Ω† = −Ω, Tr {Ω} = 0}. (3.18)

The second condition, Tr{Ω} = 0, can be found by realizing that the Lie algebra is con-
nected to a Lie group via the exponential map: etX ∈ SU(N), ∀t ∈ R and X ∈ su(N)
and so 1 = det

{
eX
}

= eTr{X}. Furthermore, from Equation (3.2), we can see that we have
constructed the tangent space TI SU(N); the tangent space of the special unitary group
at the identity. To keep things in the realm of differential geometry, we will defer more
background and details about Lie algebras to Chapter 4, since they are the central object
of study there. For now, it’s only important to know that su(N) is the tangent space of
the unitary group at the identity.
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Instead of considering a curve going through the identity at t = 0, we can consider a
curve X(t) such that X(0) = U and Ẋ(0) = Ξ. We can repeat the same argument as
before,

Ẋ†(t)X(t) +X†(t)Ẋ(t)|t=0 = 0

Ξ†U + U †Ξ = 0.

We quickly see that this equation is solved by setting

Ξ = ΩU,

with Ω ∈ su(N). Hence, the tangent space at U is given by

TU SU(N) = {ΩU |Ω ∈ su(N)}.
In other words, we can always move to the tangent space at a point U from the tangent
space at the identity by multiplying with U on the left. Note that the left multiplication
is a choice; we could have also picked Ξ = UΩ, but this does not affect the final results.

3.1.8 The exponential map and its gradient

The following is due to [176, Chapter 1, Theorem 5]. Let G be a matrix Lie group G ∈
GL(N,C) with a corresponding Lie algebra g. Define conjugation by h ∈ G to be the
transformation ch : G→ G given by ch(g) = hgh−1. Note that c is an (inner) automorphism
of G, since it is an isomorphism from G onto itself. Let exp : g → G be the exponential
map from the Lie algebra to the group. Taking X ∈ g and t ∈ R, the differential of the
conjugation map at the identity is

d(ch)(X) =
d

dt
(hetXh−1)

∣∣∣∣
t=0

= hXh−1,

which maps an element of the Lie algebra to another element of the Lie algebra. This map
is called the adjoint representation Adh : g→ g and takes X 7→ hXh−1. Given X, Y ∈ g,
we compute

d

dt
AdetXY

∣∣∣∣
t=0

=
d

dt
etXY e−tX

∣∣∣∣
t=0

= XY − Y X
= [X, Y ]

= adXY.
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The operator ad: g × g → g is the Lie bracket on g, which for our purposes will be the
standard commutator. It now follows that

d

dt
AdetXY =

d

dt

(
etXY e−tX

)

= XetXY e−tX + etXY e−tX(−X)

= adX(AdetXY ).

With the boundary condition AdetX |t=0 = Id we find that the above differential equation
is solved by

AdeX = eadX , (3.19)

at t = 1.
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3.2 Riemmannian Gradient Flows in variational quan-

tum circuits

As discussed in Section 2.1.1, in a typical VQE setup one calculates gradients with respect
to gate parameters in a quantum circuit to minimize a cost function that depends on the
variational state. Since these approaches often involve minimizing non-convex cost func-
tions, the choice of optimizer can greatly affect the result [177]. Unlike in deep learning,
where backpropagation can remain effective despite a large number of parameters, calcu-
lating gradients in a variational quantum circuit quickly becomes inefficient. This is due
to the fact that the gradients for single parameters cannot be calculated concurrently, but
require additional circuit evaluations for each parameter [30, 31].

Gradient-based methods can be improved by considering additional structure of the
model under consideration. For instance, when dealing with a statistical model, one can
make use of the Fisher information to quantify the statistical distance between probability
distributions [178]. This induces a metric on parameter space, which provides the direction
of steepest descent with respect to the information geometry [172]. The resulting gradient is
called the natural gradient, and forms the basis of a second order optimization algorithm
called natural gradient descent. This method is used in deep learning [179, 180] but
can also be extended to variational quantum Monte Carlo [181] and variational quantum
circuits, where the distance between rays in Hilbert space provides an analogue of the
Fisher information [26, 182].

Optimization algorithms that rely on the Fisher information fall into the category of
Riemannian optimization algorithms [183, 184]. However, they are limited to optimizing
over a real parameter space Rd with a non-Euclidean metric. Riemannian optimization
has a much broader application: we can consider minimizing a function over a differen-
tiable manifold M equipped with a non-degenerate, positive metric. This construction
is more general, and allows one to take the structure of the manifold into account dur-
ing the optimization. Such applications have been considered in the context of quantum
control [185, 186, 187, 188, 189, 190], tensor networks [191, 192] or optimization of neu-
ral networks [193, 194, 195, 196, 197]. In the quantum circuit setting, the Riemannian
manifold perspective has been considered to study the computational complexity of con-
structing specific circuits by approximating geodesics on the unitary group [198, 199]. In
this section, we introduce the optimization of quantum circuits over the special unitary
group SU(N) using Riemannian gradient flows [185]. We show the resulting algorithm
can produce quantum circuits with favorable optimization properties but which may be
exponentially deep. To obtain a practically feasible circuit optimizer, we make approxima-
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tions that keep gate costs under control. We explore several toy problems to illustrate the
properties of the resulting exact and approximate Riemannian gradient flow.

3.2.1 Gradient flows in quantum circuits

Consider the cost function of Equation (2.9),

E(θ) = Tr
{
HU(θ)ρ0U(θ)†

}
, (3.20)

where U(θ) is a variational quantum circuit with d parameters. To solve the optimization
problem minθ E(θ), we can consider the flow

θ̇ = ∇θE(θ), (3.21)

where ∇θ =
∑d

i ∂θi is the standard gradient operator. Equation (3.21) provides a differ-
ential equation for the evolution of the parameters based on the gradient of the function
at a point θ. As shown in Section 2.1.2, this flow equation can be discretized as

θ(k+1) = θ(k) − ϵ∇θ(k)E(θ(k)), (3.22)

where ϵ is the step size that controls the precision of the discretization. Using this equation
to update the parameters of U(θ) is called steepest descent, since we follow the gradient
of the function to a minimum, since the gradient always points in the direct orthogonal
to the level curves of the function. As a result, infinitesimal steps in the direction of
the gradient will decrease the function’s value until we reach a local minimum (under
reasonable assumptions)[200].

As we have seen in Chapter 2, an important point in obtaining a successful VQE
optimization is that the parameterization of the variational circuit U(θ) must be chosen
appropriately. This implies that one must try different ansätze and assume that the state of
interest can be expressed with the chosen ansatz. However, due to the non-convexity of the
cost landscape, we have no guarantees that our optimizer can find a good approximation
to the desired state.

3.2.2 Gradient flows on Lie groups

Since a quantum circuit is ultimately a unitary operation, we can think of an n-qubit
quantum circuit U as an element of the special unitary group SU(N) (remember that
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(a) (b)

Figure 3.2: Difference between the Riemannian gradient flow and Euclidean
gradient flow. (a) At the top, we have a mapping from real parameters θ ∈ Rd to a
unitary in U ∈ SU(N). Gradient updates in the parameter space from θ to θ′ result in a new
unitary U ′ on the group. Starting instead at U , we first obtain the Riemannian gradient at
U in the tangent space TUSU(N). Since the Riemannian gradient can be written as ΩU with
Ω ∈ su(N), we can move to the Lie algebra su(N) by multiplying the Riemannian gradient
with U † from the right. Then, the exponential map and subsequent right multiplication
with U projects the Riemannian gradient back onto the manifold which results in a new
unitary U ′. (b) At the top, we see how a standard gradient flow optimizes a quantum
circuit: The circuit stays fixed and the gradient is calculated via the parameter-shift rule.
Next, the free parameters describing the unitary are updated via gradient descent. In the
bottom figure, we see that a step of the Riemannian optimization corresponds to appending
a new unitary to the original circuit.
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N = 2n). Hence, instead of minimizing the cost Equation (3.20) over Rd for a particular
parameterization U(θ), we can instead directly optimize over SU(N). To achieve this, we
rewrite Equation (3.20) as a scalar function on the special unitary group, E : SU(N)→ R,
to obtain

E(U) = Tr
{
HUρ0U

†} , (3.23)

where U ∈ SU(N). To solve the optimization problem minU E(U), we can consider the
Riemannian gradient flow

U̇ = grad E(U).

We now need to determine the Riemannian gradient grad E(U). As we have pointed out
in Section 3.1.6, SU(N) is a Lie group, which carries a differentiable manifold structure.
We can therefore use the language of differential geometry to define a gradient on the
group [167, 168, 169, 170]. In Section 3.1.7, we showed that the tangent space TUSU(N)
of the manifold at a point U is a vector space that consists of a collection of vectors
Ω ∈ TUSU(N) that provide the possible directions one can move in on the manifold from
point U . The tangent vectors Ω can be defined as derivatives of curves going through the
point U and are fully described by the Lie algebra su(N). Once we introduce a metric, the
manifold becomes a Riemannian manifold, with well-defined notions of angles and distance
that allow use to define a gradient (see Section 3.1.4).

Here, we will explicitly construct gradE(U). First, we remember that the tangent space
of SU(N) at the identity element U0 = IN is given by the Lie algebra su(N), the set of
N × N skew-Hermitian matrices Ω with Tr{Ω} = 0. The elements of TUSU(N) can then
be found by right multiplying an element of the Lie algebra with U :

TUSU(N) := {ΩU |Ω ∈ su(N)}.
With the notion of a tangent vector on SU(N), we can enforce the compatibility condition
of Equation (3.10) to derive the resulting Riemannian gradient flow on SU(N).

We start with the left hand side of Equation (3.10),

dE(U)(ΩU) = Tr
{
HUρ0d(U †)(ΩU) +Hd(U)(ΩU)ρ0U

†} ,
where we simply used the product rule with the differential. Remember that Ω is a tangent
vector, hence we can define a curve γ(t), with t ∈ (−a, a) such that γ(0) = U and γ̇(t) =
ΩU . We the see that

d(U)(ΩU) =
dγ(t)

dt

∣∣∣∣
t=0

= ΩU, d(U †)(ΩU) =
dγ†(t)

dt

∣∣∣∣
t=0

= U †Ω†,
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hence

dE(U)(ΩU) = Tr
{
HUρ0U

†Ω† +HΩUρ0U
†}

= Tr
{

(−HUρ0U † + Uρ0U
†H)Ω

}

= Tr
{[
Uρ0U

†, H
]
Ω
}
,

where in the second line we used the cyclicity of the trace and the fact that Ω† = −Ω.

For the right hand side, we need to define a metric. For SU(N), there exists a (bi-
invariant) metric g : TUSU(N)× TUSU(N)→ R [185, 201]. This metric is given by

g(ΩU, ζU) = g(Ω, ζ) = Tr
{

Ω†ζ
}
, ∀Ω, ζ ∈ TUSU(N).

Plugging this in, we then find

dE(U)(ΩU) = g(grad E(U),ΩU)

Tr
{[
Uρ0U

†, H
]
Ω
}

= Tr
{

(grad E(U))†ΩU
}
,

from which we conclude that

(grad E(U))† = U †[Uρ0U †, H
]

grad E(U) = −
[
Uρ0U

†, H
]
U.

Flipping the sign to find the minimum of Equation (3.23) instead of the maximum gives
the Riemannian gradient flow

U̇ = grad E(U) =
[
Uρ0U

†, H
]
U. (3.24)

Analogous to the gradient in Rd, the Riemannian gradient flow of Equation (3.24) con-
verges to a critical point of E(U) on SU(N) by descending along the level curves of the
function [186]. To numerically compute the flow, we need to discretize the gradient steps.

The commutator
[
Uρ0U

†, H
]

is a skew-Hermitian matrix in the tangent space of SU(N)
at U , hence left multiplication of U with the commutator will in general not keep us on the
manifold. To perform a discrete gradient update step, we have to retract the Riemannian
gradient from the tangent space onto SU(N) [202]. In contrast, for the Euclidean case of
Equation (3.21) whereM = Rd this is not necessary since the tangent space of Rd coincides
with the manifold at all points: TθRd ∼= Rd.

The canonical retraction for our setting is the Lie exponential map expU : TUSU(N)→
SU(N) given by Ω 7→ expU{Ω}, so that expU{tΩ} for t ∈ [0, 1] describes a unique geodesic
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at U with initial “velocity” Ω ∈ TUSU(N). The operator expU can be decomposed as
follows. We realize that gradE(U) = ΩU with Ω =

[
Uρ0U

†, H
]
, hence right multiplication

with the inverse U † yields an element of the Lie algebra. Taking exp{Ω} and multiply-
ing with U from the right then produces the retracted gradient (see Figure 3.2a). If we
discretize Equation (3.24) and perform the retraction, we finally obtain

U (k+1) = exp
{
ϵ
[
U (k)ρ0U

(k)†, H
]}
U (k), (3.25)

where ϵ is the step size and U (k) ∈ SU(N) the unitary at step k.

To analyze the convergence properties of Equation (3.25), we rely on the fact that the
map ρ0 7→ U (k)ρ0U

(k)† can be understood as a so-called double bracket flow on the adjoint
orbits of the group [201, 203, 204].

Double bracket flows can be used to solve a variety of tasks such as sorting lists [205],
describing Toda flows [206], or diagonalizing Hamiltonians in many-body physics [207, 208,
209]. Additionally, they have been studied in the context of quantum gate design [210]. The
properties of this optimization scheme are well understood, in particular, if the Hamiltonian
H is non-degenerate there exist exactly N ! minima on SU(N), and (N−1)! global minima.
Amazingly, only the global minima are stable attractors of the optimization dynamics, and
one can show that almost all points will converge to these minima given a suitable step
size [186]. Hence the Riemannian gradient flow is guaranteed to find the ground state of a
non-degenerate Hamiltonian H.

3.2.3 Exact Riemannian gradient flow in quantum circuits

If U (k) in Equation (3.25) is implemented by a quantum circuit, then left multiplication of
U (k) with the retracted Riemannian gradient is nothing more than appending a set of gates
to that circuit, as illustrated in Figure 3.2b. However, it should come as no surprise that
an implementation of the Riemannian gradient flow on a quantum computer will require
an exponential number of gates as the number of qubits n increases, since an element in the
Lie algebra su(2n) is described by 4n − 1 parameters in general. Nevertheless, we describe
an approach for implementing the Riemannian gradient in a circuit in order to set up an
approximate scheme that requires only a polynomial number of operations.

An exact approach to implement the Riemannian gradient on a quantum circuit is
to decompose the skew-Hermitian operators

[
U (k)ρ0U

(k)†, H
]

in terms of a basis of the
Lie algebra su(2n). One such basis is the set of Pauli strings Pn := {I,X, Y, Z}⊗n (see
Appendix A.1. We denote a Pauli string multiplied with the imaginary unit i by Pj = ia
with a ∈ Pn, which ensures that all Pj are skew-Hermitian.
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(a) (b)

Figure 3.3: Schematic depiction of the compatibility condition and subspace
restriction. (a) Restricting the algebra to a subspace and projecting the Riemannian
gradient onto this subspace. Schematically, one can also break down the projected subspace
into further component subspaces (represented for simplicity as single lines). (b) The
compatibility condition. By taking the Euclidean inner product as the reference inner
product, we can enforce the invariance of the inner product under a change of metric and
explicitly construct grad E(U).

We can write the commutator in the exponent of Equation (3.25) in terms of this basis,

[
U (k)ρ0U

(k)†, H
]

= − 1

2n

4n−1∑

j=1

Tr
{[
U (k)ρ0U

(k)†, H
]
Pj

}
Pj. (3.26)

The coefficients

c
(k)
j = Tr

{[
U (k)ρ0U

(k)†, H
]
Pj

}
= ⟨[H,Pj]⟩ρk , (3.27)

with ρk = U (k)ρ0U
(k)† can then be calculated on a quantum device with the parameter-shift

rule [30, 31, 116, 119] (see also Section 2.1.2):

⟨[H,Pj]⟩ = i

〈
V †(

π

2
)HV (

π

2
)− V †(−π

2
)HV (−π

2
)

〉

ρk

, (3.28)

with V (t) = exp{itPj/2} and the expectation value is calculated with respect to the state

U (k)ρ0U
(k)†. Hence estimating the coefficients c

(k)
j requires taking the gradient of

E(U, t) = ⟨ψ0|U (k)†V †(t)HV (t)U (k) |ψ0⟩ ,
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with respect to t. The resulting Riemannian gradient flow can be compactly written as

U (k+1) ≈
4n−1∏

j=1

exp
{
−ϵc(k)j Pj

}
U (k), (3.29)

where we absorbed the exponential factor into ϵ and took the sum out of the product
via the Trotter formula at the cost of an error of O(ϵ2). In addition to requiring 4n − 1

estimates of c
(k)
j , this also requires applying the corresponding multi-qubit gates generated

by all Pauli strings of size n, which will be very difficult in practice.

Note that instead of splitting the exponent of the sum with a Trotter decomposi-
tion, we could directly use a Cartan decomposition algorithm, e.g., the Khaneja-Glaser
or D’Alessandro decomposition to recursively decompose the Riemannian gradient into
products of single- and two-qubit unitaries [211, 212, 213].

3.2.4 Approximate Riemannian gradient flow in quantum cir-
cuits

To circumvent the exponential resources required for the exact Riemannian gradient, we
consider an approximation scheme that requires only a polynomial number of parameters
and gates. A natural approximation is restricting the Riemannian gradient to a subspace
m ⊆ su(2n) via an orthogonal projection onto m. We show this schematically in Figure 3.3a.
If we let {Kj} ⊂ Pn for j = 1, . . . ,m be a basis of the subspace m, then from Equation (3.29)
we obtain the local Riemannian gradient flow

U (k+1) ≈
m∏

j=1

exp
{
−ϵc(k)j Kj

}
U (k), (3.30)

where now c
(k)
j = ⟨[H,Kj]⟩ρk . This approximation gives us control over which directions in

the Lie algebra we want to explore. Depending on the choice of m, we append a sequence
of m gates at each optimization step. This approximation is an example of a stochastic
Riemannian gradient algorithm [214].

Interestingly, the approximate Lie algebra optimization coincides with some VQE ap-
proaches for particular choices of m. For instance, if we restrict the Riemannian gradient
to single qubit Paulis ,

P1−local
n := {I⊗i−1 ⊗ σi ⊗ I⊗n−i|σi ∈ {X, Y, Z}},
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where σi acts on qubit i, then we are performing a variant of the circuit structure learning
algorithm called Rotosolve, [215, 216, 217] where instead of minimizing the expectation
value ⟨H⟩ per added gate, we follow the Riemannian gradient with a step ϵ. Additionally,
we can choose the subspace m in such a way that the terms in the product Equation (3.30)
become two-qubit gates. For example, we could take the subspace to consist only of 2-local
Paulis,

P2−local
n := {I ⊗ σi ⊗ I . . . I ⊗ σj ⊗ I|σi, σj ∈ {X, Y, Z}},

which contains |Pn
2−local| = 9n(n − 1) terms. We can also consider the nearest neighbor

2-local Paulis,

P2−local n.n.
n := {I ⊗ σi ⊗ σj ⊗ . . .⊗ I|σi, σj ∈ {X, Y, Z}},

which contains |P2−local n.n.
n | = 9(n− 1) terms. If instead of appending all Kj in our set we

only append the unitary generated by the Kj with the largest c
(k)
j , we are performing a

popular meta-heuristic first introduced in [113] called ADAPT-VQE. The difference being
that we do not re-optimize the parameters of previous layers at each step. Additionally,
the Lyapunov control strategy FALQON [218] can be understood as a Trotterized time
evolution where the stepsize of the drift Hamiltonian is set to the Riemannian gradient.

Analogous to these methods, the choice of operator pool that will be appended to the
circuit will affect the quality of the ground state approximation. From the optimal control
literature, we know that if {Kj} spans su(2n) under nested commutation, the system is
controllable and any state can be reached given sufficient depth [219, 220]. In the ADAPT-
VQE setting, there are various proposals for which operators Kj to choose if one considers
a fermionic Hamiltonian [221, 222, 223].

With the subspace restriction, the fixed point analysis becomes highly non-trivial. Al-
though we still have the same convergence criterion as before, grad E(U)|m = 0 can be
satisfied if the Riemannian gradient has nonzero components orthogonal to the restricted
subspace of the algebra, i.e., grad E(U)|m ∈ p where su(N) = p ⊥ m. As a result, we lose
the global minima guarantees from the exact optimization. However, with the right choice
of subspace, it is possible that the local Riemannian gradient information is enough to give
a good approximation of the global minimum of Equation (3.23). Recently, a randomized
algorithm was proposed that randomly twirls the local directions with a random unitary,
which recovers the global convergence guarantees [224].
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Figure 3.4: Numerical examples on two qubits. (a) Two-qubit example for the
Hamiltonian H = X1 + X2 + Y2. The circuit at initialization for both the VQE and
Riemannian optimzer is given by the Hardware Efficient Ansatz [32]. This circuit ansatz
consists of two RY gates with initial parameters (0.1, 2.1), followed by two RZ gates with
initial parameters (0.3, 0.1) and finally a CNOT where the second qubit is the target. The
step size for both the Riemannian gradient and parameter-shift VQE are ϵ = 0.5. The
VQE optimization gets stuck in a local minimum, whereas, the Riemannian gradient-flow
optimizer rapidly reaches the optimal solution of ⟨H⟩ ≈ −2.40. We see that the use of the
quantum natural gradient (QNG) does not improve the overal convergence [26].(b) Two-
qubit example for the exact Riemannian gradient for the Hamiltonian H = X1 + Y1 +X2.
The circuit at initialization consists of two Hadamards on each qubit. The learning rate is
set at ϵ = 0.2. After 20 steps, the optimization gets stuck in an eigenstate. We generate a
stochastic 4×4 matrix X ∼ N (0, 0.1)4×4 and obtain a random direction in the Lie algebra
K = i

2
(X −XT ). After 5 perturbations, we escape the saddle point, and the optimization

reaches the ground state of H.
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3.2.5 Numerical examples

Here, we provide several numerical experiments on toy models to test the Riemannian
gradient descent algorithm. Our Riemannian and VQE optimization procedures minimize
the costs in Equation (3.23) and Equation (3.20), respectively. We have implemented the
Riemannian optimizer in PennyLane as the LieAlgebraOptimizer [225].

First, we consider the exact Riemannian gradient flow, which can be implemented on a
circuit for small system sizes. In Figure 3.4a, we compare the optimizer with the parameter-
shift rule for a two-qubit circuit (see Section 2.1.2). We see that the Riemannian gradient
flow can reach the ground state of a simple Hamiltonian, whereas the VQE optimization
can only reach a sub-optimal solution.

To further illustrate the optimization properties of the exact Riemannian gradient flow,
we study a two-qubit example in Figure 3.4b where the optimization gets stuck in an
eigenstate, which corresponds to a saddle point in the optimization landscape. After
performing a small perturbation in the Lie algebra, we escape the saddle point minimum
and converge to the ground state.

In Figure 3.5, we see a simple example of the approximate Riemannian gradient flow,
where we restricted the full Lie algebra to a subset of directions. We see that after a few
steps, we get close to the minimum of the function. For this example, the Lie algebra
restriction still allows us to reach the ground state of the Hamiltonian.

Although the local approximation provides an accurate solution for the previous toy
example, we can run into issues for more non-trivial problems, as we see in the final
example. We consider the problem of finding the ground state of the Transverse Field
Ising model on four qubits, whose Hamiltonian is given in eq. (2.15). We assume periodic
boundary conditions and set g = 1. The ground state of this model can be reached with a
depth n/2 ansatz for an n-qubit chain using gradient-based VQE [40, 52, 1]. We find that
the approximate Riemannian gradient optimizer can get close to the ground state. But
unlike standard VQE, we cannot approximate the ground state closer than 10−2, as can be
seen in Figure 3.6.

Here, we see a limitation of the approximate Riemannian gradient flow. If we restrict
the Lie algebra to su(2) and su(4) operators, the Riemannian gradient only has a local
view of the cost landscape, and cannot access higher-order Lie algebra directions. On
the contrary, VQE can access these directions, since the ansatz is often universal, i.e.,
made from a product of single and two-qubit unitaries. In principle, the unitary that is
implemented by such an ansatz could have a generator W (θ) such that

UVQE(θ) = exp{−iW (θ)},
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Figure 3.5: Non-zero components of the Riemannian gradient versus the op-
timization step. The initial circuit consists of two Hadamard gates. The Hamilto-
nian is H = X1 + Y1Z2. At each step in the optimization, the Riemannian gradient

grad E(U) = −
[
U (k)ρ0U

†
k , H

]
only has components in the Y Y and ZZ direction, keeping

the state in the submanifold spanned by the states reachable by (XX, Y Y, ZZ). We can
therefore restrict the Lie algebra to the subspace m spanned by {Y Y, ZZ} and perform the
approximate Riemannian gradient flow. At each step, we need to calculate {ωY Y

k , ωZZ
k }.

In the inset we see the residual energy ϵres = E0 − ⟨H⟩ versus the optimization steps. As
the optimization progresses, we get exponentially closer to the ground state of H.

that can explore additional su(N) directions in the Lie algebra for N = 8, 16, . . ., albeit
with a restricted parameterization.

A bottleneck for gradient-based VQE is that the number of circuit evaluations per
optimization step scales linearly in the number of parameters, which is difficult in practice
since parallel evaluation of quantum gradients requires multiple quantum devices. The
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approximate Riemannian gradient flow does not suffer from this issue, since the amount of
circuit evaluations is constant independent of circuit depth: we only require |m| gradient
calculations at each step. However, the Riemannian gradient flow may produce a circuit
that is much deeper than the VQE ansatz, since we are appending gates to the circuit at
each step k.

Ultimately, the approximate Riemannian gradient flow may not provide an accurate
approximation to the ground state of a given Hamiltonian H. However, it could dynami-
cally produce an ansatz that serves as a good starting point for further VQE optimization,
similar to ADAPT-VQE.

3.2.6 Conclusion

We proposed Riemannian gradient flows in the context of variational quantum circuits.
We showed that one can perform these types of optimizations on a quantum circuit, with
strong convergence guarantees holding for exponentially deep variants of this algorithm.
The usefulness of the local approximations to the Riemannian gradient flow merits further
investigation in order to understand the power of this class of algorithms.

We hope that this alternative optimization paradigm can lead to new variational quan-
tum algorithms, and provide insight for existing variational methods in noisy intermediate-
scale quantum hardware. Additionally, we believe that the differential geometry and quan-
tum control perspective can be a fruitful direction of research to further our understanding
of the optimization properties such algorithms [227, 228]. In particular, these ideas could
be used to investigate overparameterization in VQE [74, 1, 229, 230, 231]. Perhaps the
global convergence guarantees of double bracket flows can be used to understand the con-
vergence properties of deep quantum circuits and provide deeper insight into the power
and limitations of VQE.
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Figure 3.6: Comparison of Riemannian gradient optimization versus gradient-
based VQE for the 4-qubit transverse field Ising-model. The Riemannian gradient
circuit is initialized with a Hadamard on each qubit. To minimize gate costs, we use an
adaptive scheme to reduce the amount of gates appended at each step of the Riemannian
optimization. We obtain the c

(k)
j ’s on all qubits or pairs of qubits for su(2) and su(4),

respectively. Then, we select the largest c
(k)
j and use we use a structure optimization

algorithm to calculate the optimal step size ϵ [226, 216, 116, 119]. The gradient-based
VQE optimizer has step size ϵ = 0.01. Finally, we append a single gate corresponding
to the chosen Lie algebra direction with this step size. (a) The residual energy ϵres =
E0 − E(U) plateaus for the Riemannian gradient close to the ground state energy. We
verify that the optimizer is not stuck in an eigenstate close to the ground state, and so the
optimization gets stuck due to the projection of the gradient onto the local algebra. The
VQE optimization on the other hand is still getting closer to the ground state. In addition,
the QNG optimizer finds the ground state much more rapidly than the vanilla gradient
descent optimizer by taking the geometry of the Hilbert space into account. (b) Here, we
plot the magnitude of all components of the Riemannian gradient versus the optimization
steps. We see that Riemannian gradient becomes zero in the su(4) direction, but higher
order Lie algebra directions are still non-zero. This explains why we cannot converge close
to the ground state: we need to access higher order elements of the Lie algebra. The
transverse field Ising-model has symmetries that we can exploit. In particular, we can use
the dynamical Lie algebra of the model to construct a Riemannian gradient flow within a
subgroup, see Appendix E.1.
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3.3 Here comes the SU(N): multivariate quantum gates

and gradients

Typically, the gates in variational quantum circuits are parameterized unitary matrices
generated by single Pauli-string operators that can locally rotate a state around some axis:
U(t) = exp{itG}, where t is a gate parameter and G a Pauli string. For a specific family of
cost functions, there exist a variety of methods that allow one to obtain the gradient with
respect to t [232, 30, 31, 233, 118, 116, 119] on quantum hardware. With these gradients,
the cost function can be minimized via any gradient-descent-based algorithm.

Instead of considering a gate generated by a single Pauli string, one can construct
more general parameterized gates that can perform an arbitrary rotation in SU(N), the
special unitary group. These general SU(N) rotations are used in a variety of quantum
algorithms [234, 235, 236, 32]. In practice, rotations in SU(N) can be implemented by
composing several simple parameterized gates together into a more complicated one. For
example, for single and two-qubit gates (where N = 2, 4, respectively), there exist sev-
eral general decomposition schemes of such gates into products of single-qubit gates and
CNOTs [211, 237, 238, 239, 240, 213]. In practice, this compilation comes with hardware-
specific challenges, since quantum hardware usually has a set of native gates into which all
others have to be decomposed [241, 242].

Choosing the right parameterization for a function is important because it can signif-
icantly affect the properties of its gradients. Reparameterizing functions to obtain more
useful gradients is a well-known method in statistics and machine learning. For example, in
restricted maximum likelihood methods one can ensure numerical stability of quasi-Newton
methods by decomposing covariance matrices into Cholesky factors [243]. In addition,
methods like auxiliary linear transformations [244], batch normalization [245] and weight
normalization [246] are used to improve the gradients in neural networks. In variational
inference, the reparameterization trick [247] is at the core of variational autoencoder ap-
proaches and allows for gradients for stochastic back-propagation [248, 249]. Therefore,
it may be worthwhile to investigate alternative parameterizations of quantum gates for
variational quantum algorithms.

Here, we propose a family of parameterized unitaries called SU(N) gates and provide
a method to evaluate their gradients on quantum hardware. In doing so, we generalize the
prior literature one step further, since many past schemes can be understood as special
cases of our proposal [232, 30, 31, 233, 118, 116, 119]. We provide numerical results to
support the validity of our approach and give several examples to illustrate the capabilities
of the SU(N) gate. We show that this gate satisfies the quantum speed limit and that
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it is easier to optimize compared to SU(N) parameterizations that consist of products of
gates. We argue that this is the case because the product of unitaries creates a “bias” in
the Lie algebra that deforms the cost landscape. In addition, we highlight the connections
between our formalism and the properties of semisimple Lie algebras and establish a bound
on the computational complexity of the gradient estimation using tools from representation
theory.

3.3.1 SU(N) gates

As we saw in Section 3.2, we can understand a quantum circuit as an element of the
unitary group. Similarly, we can consider the quantum gates that the circuit consists of
as elements of the unitary group. Note that all the following works for any N > 1, but
here we restrict ourselves to the qubit case. We are interested in constructing a quantum
gate that parameterizes all of SU(N). To achieve this, we make use of the theory of Lie
algebras. We will not be concerned with the formal treatment of this topic, which can be
found in many excellent textbooks [250, 251, 176].

To construct our gate, we realize that SU(N) is a (semisimple) Lie group and so there
exists a unique connection between its elements and the Lie algebra su(N) via the so-called
Lie correspondence, or Lie’s third theorem [252, 176]. In particular, each g ∈ SU(N) can
be identified with an A ∈ su(N) via the exponential map g = exp{A}. For our purposes,
we can understand the Lie algebra su(N) as a vector space of dimension N2 − 1 that is
closed under the commutator, [A,B] = AB − BA ∈ su(N) for A,B ∈ su(N). For su(N),
we choose as a basis the tensor products of Pauli matrices Pn multiplied by the imaginary
unit i. This then gives the following parameterization of SU(N):

U(θ) = exp{A(θ)}, A(θ) =
∑

m

θmGm, (3.31)

where θ = (θ1, θ2, . . . , θN2−1) ∈ RN2−1 and {Gm} where Gm = ia with a ∈ P(n). To dis-
tinguish between the group and the gate, we call the parameterization in Equation (3.31)
an SU(N) gate. The coordinates θ are called the canonical coordinates, which uniquely
parameterize U through the Lie algebra su(N). Since we typically cannot implement the
above gate in hardware, we will have to be decompose it via a standard unitary decomposi-
tion algorithm [211, 237, 238, 239, 240, 213]. We emphasize here that even though the gate
will be decomposed, it is parameterized as an exponential map. Hence, we can understand
Equation (3.31) as a change of coordinates from the SU(N) gate decomposition.
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If we do not want to parameterize all of SU(N), we can instead parameterize a more
restricted Hamiltonian by setting some of the parameters θm to zero. This makes Equa-
tion (3.31) a natural parameterization of several Hamiltonians available on modern quan-
tum hardware platforms. These Hamiltonians often have multiple independently tunable
fields which can be active at the same time and do not necessarily commute. One typically
has local control on each qubit and access to an interacting Hamiltonian between pairs of
qubits, depending on the topology of the quantum device [253]. The interacting pair can
for example be a ZZ interaction for Josephson flux qubits [254], a Heisenberg interaction
for nuclear spins in doped silicon [255] or an XY interaction in quantum dots interacting
with a cavity [256].

To use this gate in a gradient-based variational quantum algorithm, we have to be able
to obtain partial derivatives of U(θ) with respect to each parameter θl. Although there
exist a variety of works that provide analytical expressions for gradients through quantum
circuits via the parameter-shift rule [232, 30, 31, 233, 118, 116, 119, 257], these works almost
uniformly assume that the gate is of the form U(θ) = exp{iθP} (see also Equation (2.12)),
where P is a Hermitian operator. As far as we are aware, the only methods to obtain
gradients of Equation (3.31) with respect to θ are the stochastic and Nyquist parameter-
shift rules of [233] and [234], respectively. The first approach relies on an integral identity
for bounded operators that is estimated via Monte Carlo [258], whereas the latter is based
on a theorem in Fourier analysis [259].

3.3.2 Obtaining the gradient

Here, we provide a new approach to obtain the gradient of Equation (3.31) that makes
use of differentiable programming, which is efficient for gates acting on a small number of
qubits. We are interested in calculating the following gradient:

∂

∂θl
U(θ) =

∂

∂θl
exp{A(θ)}.

We know that this derivation must result in an element of the tangent space of SU(N),

TU SU(N) = {UΩ|Ω ∈ su(N)}.

Where we emphasize that we use the convention of left multiplication by U for the tangent
vector as opposed to right multiplication in Section 3.2.

87



Consider a curveX(t) : R→ SU(N), t ∈ (−a, a) such thatX(0) = I and d/dtX(t)|t=0 ≡
Ẋ(0) = Ω. We define the following parameterized matrix function Y : R× R→ SU(N),

Y (s, t) = e−sX(t) ∂

∂t
esX(t),

where X(t) is a curve on su(N). We then find

∂Y (s, t)

∂s
= e−sX(t)(−X(t))

∂

∂t
esX(t) + e−sX(t) ∂

∂t
(X(t)esX(t))

= −e−sX(t)X(t)
∂

∂t
esX(t) + e−sX(t)X(t)

∂

∂t
esX(t) + e−sX(t)dX(t)

dt
esX(t)

= e−sX(t)dX(t)

dt
esX(t)

= Ade−sX(t)dX(t)

dt
.

Then with equation Equation (3.19), we find

∂Y (s, t)

∂s
= e−adsX(t)dX(t)

dt
.

Using that Y (0, t) = 0, we find by integration

Y (1, t) =

∫ 1

0

ds
∂Y (s, t)

∂s
.

Estimating the above integral forms the basis of the stochastic parameter-shift rule of [121]
(see Appendix F.3). Continuing,

Y (1, t) =

∫ 1

0

ds
∞∑

n=0

(−1)nsn

n!
(adX)n

dX(t)

dt

=

[ ∞∑

n=0

(−1)nsn+1

(n+ 1)!
(adX)n

]s=1

s=0

dX(t)

dt

=

( ∞∑

n=0

(−1)n

(n+ 1)!
(adX)n

)
dX(t)

dt
.

Hence, we see that

d

dt
eX(t) = eX(t)Y (1, t) = eX(t)

( ∞∑

n=0

(−1)n

(n+ 1)!
(adX)n

)
dX(t)

dt
, (3.32)
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Note that at this point the Baker-Campbell-Hausdorff formula can be derived with Equa-
tion (3.32) by considering the derivative of

eZ(t) = etXetY ,

and subsequent integration of the derivative of Z(t) [260, 176].

From Equation (3.32) we see that the partial derivative with respect to a parameter θl
is given by

∂

∂θl
U(θ) = U(θ)

∞∑

p=0

(−1)p

(p+ 1)!
(adA(θ))

p ∂

∂θl
A(θ). (3.33)

Here, adX denotes the adjoint action of the Lie algebra given by the commutator adX(Y ) =
[X, Y ] [176]. Furthermore, we write (adX)p(Y ) = [X, [X, . . . [X, Y ]]], hence (adX)p denotes
a nested commutator of p terms. Note that the term on the right of U(θ) in Equation (3.33)
is an element of the Lie algebra, since ∂/∂θlA(θ) = Gl ∈ su(N) and so the commutator
keeps the entire sum in the algebra. For notational clarity we define

Ωl(θ) =
∞∑

p=0

(−1)p

(p+ 1)!
(adA(θ))

p ∂

∂θl
A(θ), (3.34)

where Ωl(θ) ∈ su(N) is a skew-Hermitian operator that generates a unitary, which we call
the effective generator. This gives the equation

∂

∂θl
U(θ) = U(θ)Ωl(θ) ∈ TU(θ)SU(N).

Given that Equation (3.34) is an infinite series of nested commutators it is not clear how
Ωl(θ) can be calculated in practice without truncating the sum.

We make the following observation. One can think of U(θ) as a function U : RN2−1 →
SU(N) that we evaluate at the point θ. Since SU(N) is a differentiable manifold, we
can define a set of local coordinates on the group and represent U(x) as a vector de-
scribed by N2 − 1 real numbers. Hence, we can think of our gate as a coordinate trans-
formation between the parameters x and the entries of the matrix representing the uni-
tary. Since U(x) depends smoothly on xl via the matrix exponential, this coordinate
transformation comes with a corresponding Jacobian (or more accurately, pushforward)
dU(x) : TxRN2−1 → TU(x)SU(N) that maps vectors tangential to RN2−1 to vectors tangen-
tial to SU(N) (see also Equation (3.4). We can obtain this Jacobian by differentiating the

89



elements Unm(x) with respect to xl:

∂

∂xl
Unm(x) = ∂xl

Re[Unm(x)] + i∂xl
Im[Unm(x)]. (3.35)

To obtain the above matrix function numerically, we rely on the fact that the matrix
exponential and its derivative are implemented in differentiable programming frameworks
such as JAX [261], PyTorch [262] and Tensorflow [263] through automatic differentiation.
Here we make use of the JAX implementation, which provides the matrix exponential
through a differentiable Padé approximation [264, 265].

Continuing, we note that evaluating ∂U(x)/∂xl at a point θ produces an element of
the tangent space TU(θ)SU(N). We can move from the tangent space to the Lie algebra by
left (or right depending on the chosen convention) multiplying the elementwise derivative
of Equation (3.35) in Equation (3.33) with U †(θ) (see Section 3.1.7),

U †(θ)

(
∂

∂xl
U(x)

∣∣∣∣
θ

)
= U †(θ)U(θ)Ωl(θ) = Ωl(θ), (3.36)

which allows us to obtain Ωl(θ) exactly, up to machine precision. We emphasize that these
steps can be performed on a classical computer, with a cost that is only dependent on the
number of qubits the gate acts on, not the number of qubits in the circuit.

We now make the following observation: Ωl(θ) corresponds to a tangent vector on
SU(N) and generates the one-parameter subgroup V (t) = exp{tΩl(θ)} such that

Ωl(θ) =
d

dt
exp{tΩl(θ)}

∣∣
t=0
,

and

∂

∂θl
U(θ) = U(θ)

d

dt
exp{tΩl(θ)}

∣∣
t=0
. (3.37)

We sketch this procedure schematically in Figure 3.7.

Next, consider a typical variational setting, where we are interested in minimizing the
following cost function:

E(θ) = Tr
{
U(θ)ρU †(θ)H

}
, (3.38)

where H is some Hermitian operator and ρ the initial state of the system. For simplicity,
we consider a circuit consisting of a single SU(N) gate. Differentiating the cost function
with respect to θl gives

∂

∂θl
E(θ) = Tr

{(
∂

∂θl
U(θ)

)
ρU †(θ)H

}
+ h.c..
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Figure 3.7: Schematic depiction of our gradient method. We move to the Lie algebra from
the tangent space by left multiplication with U †(θ) and obtain Ωl(θ). The orbit generated
by Ωl(θ) corresponds to the gate we have to insert in the circuit to compute the gradient.

Then, plugging in Equation (3.37) we find,

∂

∂θl
E(θ) =

d

dt
Tr
{(
U(θ)etΩl(θ)ρe−tΩl(θ)U †(θ)

)
H
} ∣∣∣∣

t=0

≡ E(t), (3.39)

where we used the skew-Hermitian property of the tangent vector Ω†
l (θ) = −Ωl(θ). Note

that Equation (3.39) corresponds to a new circuit with the gate exp{tΩl(θ)} inserted before
U(θ) (see Figure 3.8).

Figure 3.8: Rewriting the gradient calculation. The partial derivative with respect to
the gate parameter θl can be obtained by adding a gate to the circuit that is generated by
Ωl(θ). Calculating the derivative with respect to t and evaluating at t = 0 then provides
one with the correct gradient.

The gradient of this new circuit can be computed on quantum hardware with a gener-
alized parameter-shift rule (GPSR) [116, 118, 119]. In Algorithm 2, we outline the entire
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algorithm for our gradient estimation, where we denote the GPSR subroutine with gpsr.
An alternative to the generalized shift rule is to decompose the effective generators and
apply the original two-term parameter-shift rule to the constituents (see Appendix F.5
for details). In [121], the authors proposed the so-called stochastic parameter-shift rule
for multivariate gates, which is based on the Monte Carlo approximation of an operator
identity.

Algorithm 2: SU(N) gradients.

Input: U(x), ρ, H, θ
Obtain the Jacobian function:
for l ∈ (1, . . . , N2 − 1) do

∂xl
Ul(x) = ∂xl

Re[U(x)] + i∂xl
Im[U(x)]

For each gradient step:
for l ∈ (1, . . . , N2 − 1) do

Ωl(θ)← U †(θ)dUl(x)|θ
E(t)← Tr

{
U(θ)etΩl(θ)ρe−tΩl(θ)U †(θ)H

}
∂
∂θl
E(θ)← gpsr(Ωl(θ))

In Figure 3.9 we consider a toy example using a random Hamiltonian on a single qubit
and compare the exact derivative of an SU(2) gate with our generalized parameter-shift
method (Algorithm 2), the stochastic parameter-shift rule and the central finite difference
derivative with shifts ± δ

2
. In particular, we consider the gate U(θ) = exp(iaX + ibY ) with

θ = (a, b) and compute the partial derivative with respect to a over the range a ∈ [0, π]
for three fixed values of b on a state vector simulator (without shot noise). For the finite
difference recipe we use δ = 0.75, which we found to be a reasonable choice for a shot
budget of 100 shots per cost function evaluation (see Appendix F.4). We observe that
the generalized SU(N) derivative reproduces the exact value while the finite difference
derivative is slightly biased. This is to be expected because the latter is an approximate
method. While decreasing the shift size δ reduces the deterministic approximation error,
it leads to larger overall estimation errors in shot-based computations like on quantum
computers (see Appendix F.4 and e.g., [266]). Finally, the stochastic parameter-shift rule
yields an unbiased estimator for the exact derivative but has a finite variance, which we
estimated using 100 samples (see Appendix F.3). We stress that this variance is a property
of the differentiation method itself and not due to sampling on the quantum computer.
All methods require two unique circuits per derivative, but the stochastic shift rule needs
additional circuits in order to suppress the variance. We provide the code for all our
numerical experiments at [267].
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Figure 3.9: Gradients of E(θ) for a single SU(2) gate and a random single-qubit
Hamiltonian, in the limit of infinitely many shots on quantum hardware. We
take A(θ) = iaX + ibY where θ = (a, b) and consider the fixed values b = 0.5, 1.0, 2.0
together with a ∈ [0, π]. Our generalized shift rule (dotted) reproduces the exact value
(solid), whereas the central finite difference (dashed) is biased and the stochastic shift rule
(solid, shaded) comes with a finite statistical error even without shot noise from the quan-
tum measurements. Since we look at a single-qubit operation, Ωa(θ) has a single spectral
gap, so we require two shifted circuits to calculate the gradient entry (see Appendix F.1
for details). The finite difference and the stochastic shift rule require two circuits as well,
but additional executions are need for the latter to reduce the shown single-sample error.

In addition, we compare the three methods in the presence of shot noise in Figure 3.10.
We show the means and single-shot errors estimated with 1000 shots, which we split over
100 samples for the stochastic shift rule. We observe that the generalized SU(N) shift rule
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systematically performs best. It is not only unbiased but also has the smallest variance.
Note that for smaller parameters b, the SU(N) shift rule and the stochastic shift rule show
very similar variances. This is because U(θ) approaches the gate RX(a) = exp(iaX), which
can be differentiated with the original parameter-shift rule, and both rules indeed reduce
to the two-term shift rule for RX .

3.3.3 Comparison with Riemannian gradient flow

We note that Equation (3.39) is closely related to the Riemannian gradient on SU(N) we
discussed in Section 3.2.2 [185, 4]. However, instead of a gradient flow on a Lie group, we
have defined a flow on the Lie algebra su(N), which we retract back to the manifold via
the exponential map. This subtle difference induces a different flow from the SU(N) one.
Next, we follow the results of [196] in our notation. Consider the cost function

E(A) = Tr
{
eAρe−AH

}
,

where A ∈ su(N). Note that although the minimum of the function is unchanged, the
parameterization of a unitary via the Lie algebra changes the resulting gradient flow. To
see this, we consider again the differential,

d(E ◦ expA)(Ω) = Tr
{
d(eA)ρe−AH + eAρd(e−A)H

}
(Ω),

where now d(E ◦ expA) : su(N)→ R and Ω ∈ su(N). We can now make use of the result
in Equation (3.32) (in the right multiplication convention of the tangent space),

d(eA)(Ω) =

( ∞∑

n=0

(−1)n

(n+ 1)!
(adA)n

)
eA(Ω)

= ΦX(Ω)eA,

to obtain

d(E ◦ expA)(Ω) = Tr
{

ΦX(Ω)eAρe−AH + eAρe−AΦ†
X(Ω)H

}
.

Using that Φ†
X(Ω) = −ΦX(Ω) and Φ†

X(ΦX(Ω)) = Ω, we then have

d(E ◦ expA)(Ω) = Tr{
[
e−AρeA, H

]
ΦX(Ω)}

= Tr{ΦX(
[
e−AρeA, H

]
)Ω},
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Figure 3.10: Gradients of E(θ) as in Figure 3.9 but for finitely many shots on
quantum hardware. We show the single-shot error for each method, estimated with
1000 shots, which varies with the gate parameters as noted e.g., in [119]. Our generalized
SU(N) shift rule systematically outperforms the other methods. For small b, the SU(N)
and the stochastic shift rule approach the single-parameter shift rule and hence behave
similarly. The finite difference shift δ = 0.75 is chosen such that the bias and variance
are traded off reasonably for 100 shots (see Appendix F.3 and e.g., [266]). For other shot
numbers, δ needs to be optimized anew, whereas the parameter-shift rules are known to
perform optimally at fixed shifts.
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With the metric

g(ΩU, ζU) = g(Ω, ζ) = Tr
{

Ω†ζ
}
, ∀Ω, ζ ∈ TUSU(N), (3.40)

we find through the compatibility condition of Equation (3.10),

d(E ◦ expA)(Ω) = g(grad E(A),Ω)

from which we conclude

(grad E(A))† = ΦX(
[
e−AρeA, H

]
)

grad E(A)) = −ΦX(
[
e−AρeA, H

]
).

Hence, with a similar argument as in Section 3.2.2, the gradient on su(N) is

grad E(A) = −ΦX(
[
e−AρeA, H

]
).

Compare this with the Riemmannian gradient on SU(N) of section 3.2.2

grad E(U) = −
[
Uρ0U

†, H
]
U.

We see that only when ΦX = I do we obtain the Riemannian gradient on SU(N); hence
only if A ∈ g where g is Abelian. An example would be the case where A = Z, i.e. the
generator is a single Pauli. The optimization path followed by optimizing the parameters
of an SU(N) gate is thus different from the one following a Riemannian gradient descent
on SU(N) for non-Abelian Lie algebras.

3.3.4 Comparison with decomposed unitaries

Previous parameterizations of SU(N) unitaries consist of products of single-qubit gates and
CNOTs [211, 237, 238, 239, 240, 213]. We refer to this parameterization as decomposed
SU(N) gates. On the other hand, Equation (3.31) describes a general SU(N) unitary by
exponentiating a parameterization of the Lie algebra SU(N). Here, we investigate the
effects of this alternative parameterization.

Gate speed limit

First, we investigate a speed limit in terms of the gate time. We slightly modify the
definition of Equation (3.31) for a unitary evolution of the system, U(θ; t) ∈ SU(N), to
include a time t ∈ R+,

U(θ; t) = exp
{
Ā(θ)t

}
, (3.41)
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where Ā(θ) = A(θ)/
√

Tr {A(θ)†A(θ)} is a normalized time-independent Hamiltonian (the
imaginary unit i is included in A(θ)). The normalization of Ā(θ) is equivalent to the nor-
malization of θ in Euclidean norm, see Lemma F.6.1 in Appendix F.6. The normalization
of the Hamiltonian (or, equivalently, θ) means that the total path length covered by the
evolution is directly proportional to the evolution time t, since we are effectively setting
the speed of the evolution to 1.

The Lie group SU(N) can be turned into a Riemannian manifold by equipping it with
the Hilbert-Schmidt inner product of Equation (3.40). The unitary evolution U(θ; t),
parameterized by t, is a one-parameter subgroup that gives the geodesic [185, Theorem
III.6] from the identity element at time t = 0. Geodesics can be defined as generalizations
of straight lines in Euclidean geometry. Using Lemma F.6.2 (Appendix F.6), the length
of the path (see Equation (3.8)) after time t is constant for time-independent normalized
Hamiltonians with |θ| = 1,

L[U(θ; t), t] =
√
Nt.

In general, there is more than one geodesic between two points on the manifold. For
example, two points on the Bloch sphere can be connected by rotations about the same
axis moving in opposite directions. Using Lemma F.6.3 ( Appendix F.6), one of these
geodesics must be the curve of the minimal path length. Hence, the minimum time to
generate the evolution U(θ; tg) is tg along the geodesic of the minimal path. For an initial
state ρ and final state ρf , the Fubini-Study metric is used to find a minimum evolution
time

tg =
1√
N

arccos

(√
Tr {ρρf}

)
,

giving the Mandelstam-Tamm bound for time-independent normalized Hamiltonians.

In practice, we may only have access to a restricted family of gates within SU(N),
for example due to hardware limitations, in which case we require a decomposition of a
desired gate in SU(N) into gates from this family. Here we want to compute the additional
evolution time required by such a decomposition. The simplest gate decomposition is to
break the unitary into two terms, U(θ; tg) = U(ϕ(2); t2)U(ϕ(1); t1). The parameters ϕ(1)

and ϕ(2) are also normalized Hamiltonians, i.e., they have the norm |ϕ(1)| = |ϕ(2)| = 1.
The following theorem shows that using a decomposed circuit over an SU(N) gate gives
an additional evolution time, which corresponds to longer circuit run times.

Theorem 3.3.1. For unitary gates generated by normalized time-independent Hamilto-
nians, consider a general circuit decomposition of two gates U(ϕ(2); t2)U(ϕ(1); t1). There
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exists an equivalent evolution with an SU(N) gate U(θ; tg) = U(ϕ(2); t2)U(ϕ(1); t1), with
evolution time tg, such that

tg ≤ t1 + t2,

with equality if ϕ(1) + ϕ(2) = θ.

The proof of the theorem is in Appendix F.6. As expected, a decomposition into two
gates gives a longer total evolution time than is possible with an SU(N) gate due to the
normalizations of ϕ(1), ϕ(2), and θ. A decomposition into more gates would generally lead
to an even greater evolution time. A corollary of Theorem 3.3.1 is that any circuit with
multiple non-commuting layers of gates cannot be optimal in total time.

Unbiased cost landscapes

An additional advantage of the SU(N) gate is that it weighs all optimization directions
equally. In contrast, a parameterization of SU(N) in terms of a product of gates will create
a bias in the parameter space. We illustrate this point with the following example. Consider
the decomposed SU(2) gate V (θ) = RZ(θ3)RY (θ2)RZ(θ1) where RA(θ) = exp{iθA} and
A = X, Y, Z. This is the ZY Z decomposition. Using similar techniques as in Appendix F.6,
we can rewrite V (θ) to be parameterized in terms of the Lie algebra:

V (θ) = exp{iϕ · σ},

where σ = (X, Y, Z) and

ϕ =
arccos(cos(θ2) cos(θ1 + θ3))√

1− cos2(θ2) cos2(θ1 + θ3)

×




sin(θ2) sin(θ1 − θ3)
sin(θ2) cos(θ1 − θ3)
cos(θ2) sin(θ1 + θ3)


 .

If we look at the components of ϕ, we see that the different directions in the Lie algebra are
stretched or compressed as a result of the particular choice of parameterization. Consider
the normalization |θ1|+|θ2|+|θ3| = 1 for the ZY Z decomposition and |θ| = 1 for the SU(N)
gate. With each Hamiltonian term normalized to 1, the prefactor gives the evolution time.

These choices of norm give equal total evolution times for the ZY Z decomposition
and SU(2) gate, TZYZ = TSU(N) =

√
2, irrespective of the specific parameters chosen. In
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Figure 3.11, we graphically illustrate the Lie algebra deformation by showing the ϕ surface
for both the ZY Z decomposition and SU(2) gate. Note that we have not considered any
cost function here; the bias occurs at the level of the parameterization of a specific unitary.

������

ZYZ decomposition SU(2) (unbiased)

Figure 3.11: Comparing the decomposed unitary with the SU(N) parameteriza-
tion. The total unitary evolution for the ZY Z decomposition (red) and the SU(2) gate
(blue) can be expressed in the form exp{iϕ · σ}. The components ϕ = (ϕ1, ϕ2, ϕ3) give the
magnitude of the respective basis generators σ = (X, Y, Z). The original parameterization
in θ with norm |θ1| + |θ2| + |θ3| = 1 gives a surface of possible values of ϕ and therefore
possible unitary evolutions. The SU(2) gate (blue) is unbiased because its parameteriza-
tion gives the correspondence θ = ϕ with normalization ϕ2

1 + ϕ2
2 + ϕ2

3 = 1. The unitary
evolution for the ZY Z decomposition (red) is biased because the surface in the ϕ coordi-
nates does not maintain an equal magnitude in all directions.

The effect of this bias is demonstrated in Figure 3.12 for the simplest case of a single-
qubit system with an SU(2) gate. The optimal parameters of the circuit are those that
produce the state that gives the minimum of the cost function E(θ) = −⟨Y ⟩ (green star).
We consider various initial parameters acting on the reference state ρ = |0⟩⟨0|. The corre-
sponding training paths are shown for each initial parameter vector. The training paths for
the decomposed ZY Z circuit are depicted in Figure 3.12(a). As the initial parameter θ0
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acting on the reference state ρ (purple dots) moves closer to an unstable equilibrium point
(orange diamond) the training path becomes increasingly suboptimal. At the unstable
equilibrium the only gradient information is directly away from the instability rather than
providing information about the direction towards the global minimum. This behavior is
further illustrated by the gradient vector field on the Bloch sphere in Figure 3.12(c). For
the SU(N) gate, we see in Figure 3.12(b) that the optimization trajectories follow a direct
path to the minimum.
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Figure 3.12: Comparison of the update of circuit parameters from various initial
parameters acting on the initial state ρ = |0⟩⟨0|. The training paths are depicted on
the Bloch sphere for: (a) parameterized single-qubit rotations for the ZY Z ansatz; and
(b) using the SU(N) gate. The purple dots represent initial states generated by applying
U(θ0) with θ0 = (0, a, 0) where a ∈

{
π
64
, π
8
, 2π

8
, 3π

8
, π
2

}
to ρ. Note that for this choice of

initial parameters, U(θ0) = V (θ0). The objective function is E(θ) = −⟨Y ⟩, giving the
target final state at the green star—the state that gives the global minimum of E(θ). The
unstable equilibrium points are given by orange diamonds, at (0, 0, 1) and (0, 0,−1), and
the black point is at the maximum of the cost function, (0, 1, 0). (c) shows the gradient
vector field of the decomposed ZY Z ansatz. The vector field for the SU(2) gate, shown
in (d), coincides with the geodesic flow towards the target final state at all points which
satisfies the gate speed limit.

Numerical experiments

To investigate the effect on the performance of a typical optimization, we study how an
SU(N) gate compares with a decomposed gate in a larger circuit. In Figure 3.13a we pro-
vide a non-trivial example, where we incorporate our gates into a circuit and show that it
performs better than a decomposed SU(4) gate on a set of random problem instances. We
show the individual optimization trajectories in Figure 3.13b which illustrate the faster
optimization of SU(N) gates compared to decomposed gates. Like for the examples in
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Figure 3.9 and Figure 3.10, we assume that there is no gate or measurement noise. Ad-
ditionally, we assume that we can always implement the gate generated by Ωl(θ), and
have control over all Pauli operators Gm. In practice, we typically only have access to a
fixed set of generators span({Gm}) < span(su(N)). If this is the case, then we require a
decomposition of exp{tΩl(θ)} in terms of the available operations on the device [211, 213].
All numerical results were obtained with PennyLane [225], and the SU(N) gates can be
accessed via the qml.SpecialUnitary class. Although we do not explore this here, one
could make use of sparse optimization methods such as stochastic optimization [268, 269]
and frugal optimization [270] for the GPSR subroutine in our algorithm.

3.3.5 Resource estimation

To obtain the partial derivative in Equation (3.39) in practice we need to estimate the
gradient of a circuit that contains a gate generated by Ωl(θ). As noted in recent works on
GPSR rules [116, 118, 119], the computational cost of estimating this gradient is related
to the spectral gaps of Ωl(θ). In particular, if {λj} is the set of (possibly degenerate)
eigenvalues of Ωl(θ), we define the set of unique spectral gaps as Γ = {|λj − λj′|} where
j′ > j. Note that for d distinct eigenvalues, the number of unique spectral gaps R is at
most R ≤ d(d − 1)/2. The total number of parameter-shifted circuits is then 2R for a
single partial derivative ∂θlE(θ)

Depending on the generator Ωl(θ), this complexity can be improved. For instance,
in [118], a Cartan decomposition is used to improve the number of circuits required from
polynomial to linear or even logarithmic in N . Additionally, in [116], the different costs for
first- and second-order gradients are determined for specific varational quantum algorithms
like QAOA [49] and RotoSolve [271, 272, 217, 216]. Finally, in [119], the computational
cost of a variety of different gates is investigated in detail and the variance across the
parameter regime is studied.

Instead of focusing on specific instances of the generator Ωl(θ), we make a more general
observation about the computational complexity of parameter-shift gradient rules. In
general, Ωl(θ) has full support on su(N), since the consecutive applications of adA(θ) in
Equation (3.33) typically generate all of su(N) [7]. However, for specific choices of A(θ),
the application of adA(θ)p to ∂θlA(θ) closes to form a subalgebra, called the dynamical Lie
algebra of A(θ), that is contained in su(N). These algebras are well-known in the context
of quantum optimal control [219, 27], and have recently been studied in the context of
variational quantum algorithms [227, 230].
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Ē

` = 1

` = 3

` = 5

(a)

0 2000 4000 6000 8000 10000
Step

0.2

0.3

0.4

0.5

Ē
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Figure 3.13: Comparison of decomposed gates versus SU(N) gates in bricklayer
circuits for random 10-qubit Hamiltonians and various depths. (a) We consider
the bricklayer circuit indicated with ℓ = 2 in the inset, with general two-qubit gates
acting on the even and odd qubits in each layer. The decomposed gate is the SU(4)
parameterization of [238], which is optimal in the number of CNOTs required. For each
instance, we sample a Hamiltonian from the Gaussian unitary ensemble and minimize
the cost in Equation (3.38) via standard gradient descent. We show the difference of the
relative errors in energy Ē = (E − Emin)/(Emax − Emin) between the decomposed gates
and the SU(N) gates, that is ∆Ē = ĒSU(N) − ĒDecomp.. The plotted lines are the mean
Ē, averaged over 50 random Hamiltonians for each circuit depth ℓ. We see that for all
depths ∆Ē < 0 at all points during the optimization, hence the bricklayer circuit with the
SU(N) gates outperforms the circuit where the two-qubit interactions are parametrized as
a gate composition. (b) We show the trajectories from the optimizations in Figure 3.13a
for 50 random 10-qubit Hamiltonians sampled from the Gaussian unitary ensemble and an
ℓ = 5 bricklayer circuit of 2-qubit building blocks. We compare the relative error energy
(see Figure 3.13a for the definition of Ē) when using a standard gate composition to that
when using SU(4) gates as building blocks. The optimization is performed with vanilla
gradient descent using a learning rate of η = 10−3. The SU(4) gate consistently leads to
faster optimization and better approximations of the ground state energy throughout all
105 optimization steps.
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Here, we define the dynamical Lie algebra (DLA) ⟨A(θ)⟩Lie as the subalgebra formed
under the closure of the non-zero terms in A(θ) under the commutator:

⟨A(θ)⟩Lie := span
{

adGi1
· · · adGir

(Gj)
∣∣Gi1 , . . . , Gir , Gi ∈ {Gm} if θm ̸= 0

}
.

Ignoring global phases, this will always result in a subalgebra a ⊆ su(N). For example,
given A(θ) = i(aX + bY ), ∀a, b ∈ R, we have ⟨{iX, iY }⟩Lie = span{iX, iY, iZ}, since
adX(Y ) = [X, Y ] = iZ and successive commutators generate no new contributions. Note
that for this example the DLA equals the full Lie algebra su(2). Explicit constructions of
DLAs that span so(N) and sp(N) are given in [220]. In a more recent work, the DLAs
of several typical quantum many-body Hamiltonians are studied and their properties are
used to prepare efficient time-evolution circuits [228]. In one dimension, the DLAs that
are generated by Pauli strings have recently been classified [6], and we will discuss this
classification in detail in Chapter 4.

Interestingly, if the DLA is maximal, i.e., there exists no smaller non-trivial subalgebra
within a, then the roots of the Lie algebra can be related directly to the computational
cost of estimating the gradients in Equation (3.39). We formally establish this connection
with the following theorem:

Theorem 3.3.2. The number of unique spectral gaps R of Ωl(θ) is upper bounded by the
number of roots |Φ| of any maximal semisimple DLA,

R ≤ |Φ|/2.

We provide the proof of Theorem 3.3.2 in Appendix F.8. We make use of the fact
that any semisimple Lie algebra can be written as a direct sum of its weight spaces,
which can be identified with its root system [273]. The number of roots |Φ| can then
be used to bound the total number of unique spectral gaps of Ωl(θ). We can thus use
Theorem 3.3.2 to assess the run time of Algorithm 2. We give several examples of SU(N)
gates in Appendix F.8 together with the corresponding values of R. Depending on the
physical system or hardware that we are working with, we have to choose a representation
for su(N), which is a map su(N) → gl(N,C). We chose this representation to be the
tensor product of the fundamental representation, i.e., Pauli monomials Pn times i. Note
however, that Equation (3.39) and Theorem 3.3.2 hold for any irreducible representation
of su(N).

Additionally, by connecting the spectral gaps to the root system of the DLA, we can
make use of a beautiful result in representation theory: the classification of all maximal
subalgebras of the classical Lie algebras [274]. Each root system can be uniquely identified
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with a particular subalgebra of a Lie algebra and it can be shown that there exist a finite
number of root systems. Since a DLA is a subalgebra of su(N), we can identify all possible
DLAs and by extension all possible families of SU(N) gates. We provide examples of this
procedure in Appendix F.8.

3.3.6 Conclusion

We have proposed an alternative parameterization of general SU(N) gates and a method of
optimizing these gates in prototypical variational quantum algorithms. We have shown that
in toy example settings, our gates are more powerful, and motivated why we believe this is
the case based on quantum speed-limit arguments. A natural extension of our work would
be to test our method in experimental settings, both on gate-based quantum computers or
quantum simulators [12, 275, 276]. With regard to the latter, several methods have been
investigated that could provide pulse-level optimization of energy cost functions [277, 278].
This would obviate the need for a gate-based model of quantum computing to prepare
specific states on quantum hardware. Instead, we work on the Hamiltonian level and
control the system directly. Our algorithm could be applied to this setting as well, since
we’re effectively learning the parameters of some fixed Hamiltonian. An interesting future
direction would be to see how truncating the support of the gradient affects the accuracy
of the final gradient. We briefly explore this in Appendix F.9.

Additionally, our approach could be used for the purpose of unitary design. In [279],
we study the problem of finding a time-independent Hamiltonian that implements some
unitary operation U . To avoid getting stuck in local minima, we use the gradient method
presented in Section 3.3.2 to follow the geodesic to the optimal gate Hamiltonian given the
experimental constraints.

We have shown that the SU(N) gate in a circuit outperforms a decomposed gate. The
number of parameters in our proposed gate equals 4n, hence SU(N) gates acting on a large
number of qubits will be impractical. Additionally, it is not clear for which problems one
would rather have a deeper circuit with simple gates as opposed to a shallow circuit with
more powerful gates. This also begs another question: will our gates suffer from barren
plateaus [35]? It is likely that a circuit of 2-qubit SU(N) gates that has linear depth in N
will lead to a circuit that forms an approximate 2-design, which will suffer from vanishing
gradients. However, appropriate choices of the generators A(θ) of our gate could keep
the circuit in a polynomially scaling DLA of the entire circuit, which can avoid barren
plateaus [227, 230]. Additionally, we can consider parameter initialization strategies that
can improve the optimization [68, 123].
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With regard to the connections with DLAs, recent work has explored the use of the ad-
joint representation of a Lie algebra to efficiently simulate polynomially-sized DLAs [280,
281]. With this in mind, it should be possible to perform the gradient method of Sec-
tion 3.3.2 in the adjoint representation, which is explored in a recent work [282].

Finally, we believe that the connections between variational quantum circuits and rep-
resentation theory merit further investigation. We connected the classification of all SU(N)
gates with the classification of semisimple Lie algebras. However, this could possibly be
extended to a classification of all variational quantum circuits based on the DLA of an
ansatz. It seems that the tools to provide such a classification are available and could
provide one with a method to assess the trainability and expressivity of variational circuits
without explicitly referring to specific ansätze. We study this problem in Chapter 4.
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Chapter 4

A Lie algebra perspective of
Variational Quantum Computing

We have already sporadically encountered DLA in previous sections. After our work in
[1], subsequent investigation revealed that overparameterization phenomena and barren
plateaus were intricately related to the DLA of a variational quantum circuit [227, 230].
In Section 3.2, we referred to the idea of a Riemannian gradient flow in the dynamical
Lie algebra of a circuit (see Appendix E.1) and in Section 3.3 we encountered the DLA in
our resource estimation of the gradient estimation procedure of the SU(N) gate. In this
section, we dive deeper into the world of DLAs by classifying these objects for a large class
of Hamiltonians and quantum circuits. Although we have mentioned Lie algebras and its
properties before, we will here discuss them from more mathematical point of view, since
this will be required to understand the results in Section 4.2.

4.1 Lie algebras

The purpose of this section is to review some standard terminology concerning Lie algebras,
especially su(N), so(N), and sp(N).

The set CN×N of N × N matrices with complex entries is a vector space over C, as
matrices can be added or multiplied by complex scalars. If we equip CN×N with a matrix
product ab, it becomes an associative algebra, i.e., ab is bilinear (depends linearly on both
a or b) and associative: a(bc) = (ab)c. Under the commutator bracket [a, b] = ab− ba, we
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get a complex Lie algebra denoted as gl(N,C), which is known as the general linear Lie
algebra.

In general, a Lie algebra is defined as a vector space g (over C), equipped with a bilinear
operation [a, b] ∈ g for a, b ∈ g, which satisfies the following skew-symmetry and Jacobi
identity:

[a, b] = −[b, a] (4.1)

[a, [b, c]] = [[a, b], c] + [b, [a, c]]. (4.2)

It is convenient to use the notation ada(b) := [a, b] for a, b ∈ g. Then ada is a linear
operator on g for every a ∈ g. This is straightforward to see, since

ada = [a, .] (4.3)

ada(b+ c) = [a, b+ c] = ada(b) + ada(c). (4.4)

In fact, since the Lie algebra is closed under the commutator, ada is an endomorphism
on g: a linear map from a vector space onto itself. Remember that we encountered this
map (and its group equivalent) already in Section 3.1.8 when we were studying the Baker-
Campbell-Hausdorff formula as the adjoint operator. A trivial example of a Lie algebra is
any vector space g with the zero bracket [a, b] = 0 for all a, b ∈ g; such Lie algebras are
called Abelian.

A subalgebra s of a Lie algebra g is a subspace (i.e., closed under vector addition and
scalar multiplication), which is also closed under the bracket: a, b ∈ s ⇒ [a, b] ∈ s. For
example, the set sl(N,C) of all N × N complex matrices with trace 0 is a subalgebra of
gl(N,C). This is straightforward to show if we take c = [a, b] with a, b ∈ sl(N,C)

Tr{[a, b]} = Tr{ab− ba} = Tr{ab} − Tr{ba} = 0, (4.5)

by linearity and cyclicity of the trace. Hence, sl(N,C) is itself a Lie algebra. We could
have also realized that the commutator is skew-symmetric, hence it must always produce
a traceless object.

An ideal in a Lie algebra g is a subspace s such that a ∈ g, b ∈ s ⇒ [a, b] ∈ s. Hence,
any element in g gets projected back into s under the commutation with an element in s.
For example, both sl(N,C) and CIN (where IN is the N ×N identity matrix) and z ∈ C
are ideals of gl(N,C). For CIN , every element in g gets sent to 0 under commutation:

[a, b] = 0,∀a ∈ g, b ∈ CIN , (4.6)
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and since a Lie algebra is a vector space it always contains the zero element, hence 0 ∈ s.
The space CIN is the center Z(g) of g = gl(N,C), i.e., the set of all c ∈ g such that
[c, a] = 0 for all a ∈ g. We can think of the center as the kernel of the adjoint map ad.

From Equation (4.5) it should be clear that [a, b] ∈ sl(N,C) for all a ∈ g and all
b ∈ sl(N,C). Furthermore, we note that

gl(N,C) = sl(N,C)⊕ CIN

is a direct sum of not just subspaces but of commuting subalgebras and ideals. When we
write a direct sum of Lie algebras, we will always mean that the summands are subalgebras
that commute with each other.

4.1.1 The Lie algebras su(N), so(N), and sp(N)

The Lie algebra sl(N,C) is simple, which means that it is not Abelian and has no ideals
other than the trivial {0} and the whole algebra. The absence of ideals turns simple Lie
algebras into the elementary objects of study, since they contain no subspaces that act in a
non-trivial way on elements of the algebra. If we take a direct sum of simple Lie algebras,
we obtain a semisimple Lie algebra.

Other examples of simple Lie algebras over C are provided by the orthogonal Lie al-
gebras so(N,C) and the symplectic Lie algebras sp(2N,C). Let us recall that so(N,C) is
defined as the set of all complex skew-symmetric matrices (i.e., such that aT = −a), and
it is a subalgebra of sl(N,C). Consider the 2N × 2N matrix

J2N :=

(
0 IN
−IN 0

)
.

Then sp(2N,C) is defined as the set of all a ∈ gl(2N,C) such that aTJ2N = −J2Na; this is
a subalgebra of sl(2N,C).

Up to this point, we have considered complex Lie algebras, and we will now consider
their real counterparts; Lie algebras over R.

The set of all skew-Hermitian matrices (i.e., satisfying a† = −a) is a real vector space,
and is closed under the commutator; hence, it is a real Lie algebra, denoted u(N). Imposing
that the trace of the matrix is 0, we get the Lie algebra su(N).

su(N) :=
{
a ∈ sl(N,C)

∣∣ a† = −a
}
. (4.7)
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If a matrix has real entries, then it is skew-Hermitian if and only if it is skew-symmetric.
Thus, we have the subalgebra

so(N) := so(N,R) =
{
a ∈ su(N)

∣∣ aT = −a
}
⊂ su(N). (4.8)

On the other hand, the Lie algebra of real symplectic matrices sp(2N,R) is not a subalgebra
of su(2N). Instead of it, the relevant subalgebra is

sp(N) := sp(2N,C) ∩ su(2N) =
{
a ∈ su(2N)

∣∣ aTJ2N = −J2Na
}
⊂ su(2N). (4.9)

The Lie algebras su(N), so(N), sp(N) are simple and compact (they are Lie algebras of
compact Lie groups). One way to understand compactness is through the corresponding
Lie group it generates. When a Lie algebra g is compact and simple Lie algebra, one can
associate to it a compact Lie group G via the exponential map G = eg. For our purposes,
the specifics of compactness are not that important, we can understand it as a topological
property of the generated Lie group that makes it “nice”.

The dimensions of these Lie algebras over R are given by:

dim su(N) = N2 − 1, dim so(N) =
1

2
N(N − 1), dim sp(N) = N(2N + 1). (4.10)

There are five other Lie algebras called the exceptional Lie algebras that will be of little
importance to us, since they will not arise naturally in the setting of Section 4.2. It is
known (see e.g. [283, 27]) that any subalgebra of u(N) is either Abelian or a direct sum of
a center (which could be {0}) and Lie algebras isomorphic to one of su, so, sp or to one
of five exceptional compact simple Lie algebras. For completeness, we provide the proof of
this important fact here.

Proposition 4.1.1. Any subalgebra of u(N) is either Abelian or a direct sum of compact
simple Lie algebras and a center.

Proof. First, recall that the trace form Tr{ab} is negative definite on u(N). Indeed, one
can see that

Tr
{
H2
}

=
N∑

j=1

λ2j > 0

for any nonzero Hermitian matrix H ∈ iu(N) with eigenvalues λ1, . . . , λN , because all λj
are real. Second, the trace is bilinear, symmetric and invariant; the latter meaning that

Tr{[a, b], c} = −Tr{b, [a, c]}, a, b, c ∈ u(N).
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All of these follow easily from the properties of the trace.

Now let g be a subalgebra of u(N). Then the same proof as in [284], Corollary 4.25,
shows that g is reductive, i.e., it is a direct sum of simple or Abelian ideals. Indeed, for
any ideal s of g, we have an orthogonal direct sum

g = s⊕ s⊥,

due to the definiteness of the trace form. Furthermore, the invariance of the trace form
implies that s⊥ is itself an ideal of g. As both s and s⊥ are ideals, they must commute:
[s, s⊥] ⊆ s∩s⊥ = {0}. Thus, g is a direct sum of commuting ideals. Suppose that dim s > 1
and s is not simple as a Lie algebra. Then s has a nonzero proper ideal t. From [t, s] ⊆ t
and [t, s⊥] = {0}, we get that [t, g] ⊆ t, so t is an ideal of g. Hence, we can proceed by
induction on dim g and break g into a direct sum of commuting ideals, each of which is
either simple or 1-dimensional (Abelian).

Finally, we note that any simple subalgebra g of u(N) is compact, i.e., the Lie group eg

is compact as a closed subgroup of the compact Lie group U(N) (see e.g. [284], Proposition
4.27, whose proof still applies). The classification of all compact simple Lie algebras is due
to Cartan, and can be found in standard textbooks; for example in [284], Chapter VI.

Let now N = 2n where n is the number of qubits. Then a basis for u(2n) is given by
the Pauli strings iPn (see Appendix A.1). To get a basis for su(2n), we just have to remove
iI⊗n, since I⊗n = IN is the identity matrix.

Similarly, a basis for so(2n) consists of all ia where a ∈ Pn is a Pauli string containing
an odd number of Y ’s, since this ensures that they are skew-symmetric instead of skew-
Hermitian.

Finally, to describe the subalgebra sp(2n−1) ⊂ su(2n), we observe that

Y1 = Y ⊗ I⊗(n−1) = −i
(

0 IN
2

−IN
2

0

)
= −iJN .

Therefore,
sp(2n−1) =

{
a ∈ su(2n)

∣∣ aT · Y1 = −Y1 · a
}
. (4.11)

4.1.2 Dynamical Lie Algebras

We now give a formal definition of a dynamical Lie algebra that we will use throughout
the rest of this thesis.
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Definition 4.1.1. For a Lie algebra g and a subset A ⊂ g, we define ⟨A⟩Lie to be the
minimal (under inclusion) subalgebra of g that contains A. We say that ⟨A⟩Lie is the
subalgebra generated by A, and that A is a set of generators of ⟨A⟩Lie. In the case when
A ⊂ Pn is a set of Pauli strings, we will slightly abuse the notation and write ⟨A⟩Lie for
the subalgebra of su(2n) generated by the subset iA ⊂ su(2n).

More explicitly, it follows from the Jacobi identity that ⟨A⟩Lie is the set of all linear
combinations of all nested commutators of the form

ada1ada2 · · · adar(ar+1) = [a1, [a2, [· · · [ar, ar+1] · · · ]]], aj ∈ A, r ≥ 0, (4.12)

where r = 0 corresponds to an empty commutator = a1. In the context of Proposition 4.1.1,
this means that any dynamical Lie algebra will be a subalgebra of u(2n) that is either
Abelian or a direct sum of compact simple Lie algebras and a center. Since these objects
have been classified, we can therefore always express a DLA in terms of these known
constituents.

The following observation will be useful.

Lemma 4.1.1. For any subset A ⊂ Pn, the Lie algebra ⟨A⟩Lie ⊆ su(2n) generated by iA
has a basis consisting of Pauli strings times i. In other words,

⟨A⟩Lie = spanR
(
iPn ∩ ⟨A⟩Lie

)
.

Proof. By definition, ⟨A⟩Lie is linearly spanned over R by all elements of the form Equa-
tion (4.12) with aj ∈ iA ⊂ iPn. All such elements are scalar multiples of Pauli strings, i.e.,
lie in iRPn. From any spanning set, one can choose a subset that forms a basis.

This Lemma will enable us to work with Pauli strings, which have useful algebraic
properties that we can exploit.
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4.2 Classification of dynamical Lie algebras in one di-

mension

Mathematical classifications of the fundamental symmetries of physical systems date back
to the work of Wigner, who proposed three symmetry classes of non-interacting fermionic
Hamiltonians depending on their time-reversal and spin-rotation properties [285]. Three
decades later, Dyson would mathematically solidify this theory and connect the spectral
properties of these different types of Hamiltonians with random matrix theory [286] (see
[287] for a modern treatment). It would take another thirty years before Altland and
Zinbauer extended these results to ten symmetry classes [288], each of which correspond
to a symmetric space in Cartan’s original classification of these spaces [289, 290]. Further
extensions of these results were made in recent years with regard to topological phases of
matter [291, 292, 293].

The above mathematical classifications in quantum physics rest on the powerful theory
of Lie groups, which provides a framework for describing the continuous symmetries and
transformations that characterize the behavior of quantum systems. The study of Lie
groups, and by extension physical symmetries, can often be simplified by considering the
corresponding Lie algebra of the group. The commutation relations of operators in the
Lie algebra capture the essential features of the underlying symmetries and can be used to
analyze the spectrum, eigenstates, and dynamics of quantum systems.

A Hamiltonian of a finite-dimensional system can be understood as (i times) an element
of some Lie algebra g ⊆ su(N). Here, su(N) is the vector space of all skew-Hermitian N×N
matrices equipped with the standard commutator. Typically, a Hamiltonian is described
by a linear combination of terms that correspond to a certain physical interaction. The
algebra formed by taking all (finite) products and linear combinations of the terms in a
Hamiltonian is called the bond algebra of the Hamiltonian [294, 295, 296]. Bond algebras
have been studied extensively to understand the symmetries and spectra of different classes
of Hamiltonians. More recently, they have been used to study thermalization phenomena
in quantum many-body systems [297, 298]. Instead of studying the algebra formed by
taking products of individual interactions in the Hamiltonian, we can study the Lie algebra
generated by these terms under commutation. The result is called the Hamiltonian algebra
or dynamical Lie algebra (DLA) [299, 300, 301, 302, 303], which is intricately linked to the
unitary dynamics of a quantum system.

Since each DLA is a subalgebra of su(N), a classification of DLAs can be phrased as a
classification of all subalgebras of su(N). Such a classification is intractable, except when
specific constraints are placed on the subalgebras one considers. For example, in the original
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works of Killing and Cartan, all simple Lie algebras were classified [304]; similarly, Dynkin
provided a classification of the maximal subalgebras of simple Lie algebras [305, 306].
We follow a different approach: instead of adding algebraic constraints such as simplicity
or maximality, we make use of the fact that any Lie algebra can be described by a set
of generators, and we consider the Lie algebras that arise by using the terms of specific
Hamiltonians as the generators. In contrast with the previously-mentioned classifications
of [285, 286, 288], this approach covers interacting quantum many-body systems.

Specifically, we consider the class of Hamiltonians that correspond to 1-dimensional 2-
local spin chains, and provide a classification of the Lie algebras that are generated under
commutation by the individual Pauli terms of the Hamiltonian. Much about these systems
is well-understood, from their entanglement properties [76], their phases [307] and their
integrability [308, 309]. Additionally, they show up in the study of bond algebras [294, 298].
However, to the best of our knowledge, the Lie algebraic properties of these Hamiltonians
have not yet been explored in full. It is thus reasonable to ask, given our comprehensive
knowledge of the physics governing these systems, what more can be learned from the
Lie algebra? We provide an answer to this question by classifying all unique dynamical
Lie algebras of linear, circular and permutation invariant spin systems generated by 2-local
Pauli operators. We discuss how our classification has bearing on areas of quantum control,
variational quantum computing, and quantum dynamics and thermodynamics.

For variational quantum computing, one is not interested in representing the whole
unitary group, but in using a parameterized subgroup in order to generate a state that
maximizes a given objective function. Understanding what subgroup a particular quantum
circuit parameterizes can give insight into its representational power. For example, one
can connect the dimension of the DLA to a phenomenon called overparameterization [74,
1, 231, 230]. Additionally, DLAs can be used to understand barren plateaus [227] — flat
areas in the cost landscape of a variational quantum algorithm that hinder optimization
[35, 38]. Finally, a recent work uses knowledge of the DLA to perform efficient classical
simulations of several quantum algorithms [281]. We discuss these results by showing that
barren plateau and overparameterization phenomena show for several examples found in
our classification as expected, which highlights the usefulness of classifying sets of quantum
circuits by their Lie algebraic properties.

In quantum control, the DLA of a dynamical quantum system can be related to the set
of reachable states of that system. In particular, DLAs can be used to define a notion of
controllability of a quantum system [220, 310, 311], which is highly relevant when it comes
to designing unitary operations for quantum simulators and quantum computers. One is
typically interested in Hamiltonians that can generate an arbitrary unitary operator, while
the existence of symmetries can inhibit the control of a physical system [283].
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Finally, one can use the knowledge of the DLA to provide insights into the dynamics of
physical systems. Here, it should be noted that the physical properties of models described
by the Hamiltonian whose terms generate the DLA strongly depend on the coefficients
of said terms. Our classification, which neglects the coefficients, is thus limited to the
properties that belong to the entire class of models described by the same terms. While
this is a coarse classification, we can nevertheless make quite general observations from just
the study of the DLA. For example, one can construct constant-depth quantum circuits
for the dynamical simulation of a specific quantum system [228, 312, 313, 312], or state
preparation via adiabatic state preparation [312, 312], or implement Hartree–Fock [99].
The dimension of the DLA is directly related to the quantum circuit depth needed to
capture the full dynamics [228]. Additionally, Non-Abelian commutants describe non-
Abelian symmetries.

This section is structured as follows. We end the introduction with a summary of our
main mathematical results. Then, in Section 4.3, we establish our notation and introduce
the necessary mathematical preliminaries. We discuss the method of our classification in
Section 4.4 and present the main results in Section 4.5. Finally, we discuss the implications
of our results in Section 4.6. In the Appendix we review preliminaries present the full details
of the proofs of the main results.

4.2.1 Summary of the main results

Here, we give a brief summary of our main results, which include the classification of all
DLAs generated by 2-local spin Hamiltonians of length n in one dimension. We emphasize
that our method is not limited to one-dimensonal topologies, but can be extend to other
graphs, which we will explore in a follow-up work [314]. Recall that a Lie algebra can be
constructed by a set of generators so that it is closed under linear combinations and under
the Lie bracket. In our case, the Lie bracket is the standard commutator [A,B] = AB−BA.
We now choose the generators of our Lie algebra to be (i times) the terms of a 2-local spin
chain Hamiltonian generated by Pauli strings. Since a Hamiltonian is always a Hermitian
operator, we can understand it as (i times) an element of the Lie algebra u(2n). Therefore,
we can limit ourselves to the study of DLAs that are subalgebras of u(2n), for which
we have the following useful fact. Although this result is known (see e.g. [283, 27]), for
completeness, we provide its proof and review the necessary definitions in Section 4.1.1.

Proposition 4.2.1. Any DLA must be either Abelian, isomorphic to su(N ′), so(N ′),
sp(N ′′) (with N ′ ≤ 2n, N ′′ ≤ 2n−1), an exceptional compact simple Lie algebra, or a
direct sum of such Lie algebras. Indeed, any subalgebra of u(N) is either Abelian or a
direct sum of compact simple Lie algebras and a center.
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Note that all simple Lie algebras over the complex and real numbers have been classified
by Killing and Cartan [250]. The above proposition forms the backbone of our classification,
as we know that any DLA generated by our class of Hamiltonians must be of the described
form.

To obtain our classification, we first calculate all DLAs that can be generated by Pauli
strings of length 2. Then we identify the orbits under the symmetries of the Pauli group
and the swap of the two sites, thus reducing the number of unique Lie algebras to 27.
Next, we find several isomorphisms between some of the sets of generators, reducing the
set of unique structures even further. Finally, we determine how these Lie algebras scale
with system size as the number of spins grows beyond 2 sites. In this final step, we take
the boundaries of the spin chain into account, since the Lie algebra will behave differently
for open or periodic boundary conditions of the chain. The following is our main result.

Result 4.2.1 (Classification of spin chain DLAs). We provide a classification of all dy-
namical Lie algebras of 2-local spin Hamiltonians in one dimension. For both open and
closed spin chains, there are 17 unique Lie algebras that can be generated by a spin chain
Hamiltonian.

The formal statement of this result is presented in the main text with Theorems 4.5.1
and 4.5.2 along with a sketch of the proof.

The dimension of a DLA can be related to the trainability of variational quantum
circuits, and may therefore be of high interest. Since we know the dimensions of all simple
Lie algebras, a direct corollary of our result is the following.

Result 4.2.2 (Dimension scaling of DLAs). The dimension of any dynamical Lie algebra
of a 2-local spin chain Hamiltonian of length n will scale as either O(4n), O(n2) or O(n).

To illustrate this, we plot the dimensions of the open DLAs in our classification in
Figure 4.1.

Our proof technique also applies to the case of a permutation-invariant graph, where
each site is interacting with every other site via at most 2-local interactions; in other words,
all-to-all connected. We therefore also include this topology in our classification.

Result 4.2.3 (Classification of permutation invariant DLAs). We provide a classification
of all dynamical Lie algebras of 2-local permutation-invariant spin Hamiltonians. There
are 8 unique Lie algebras that can be generated by such a spin chain Hamiltonian.
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Figure 4.1: Scaling of the DLAs of spin chains with open boundary conditions.
The exponentially scaling DLAs are denoted in red, the quadratically scaling ones in blue,
and the linearly scaling algebras are denoted in green. The full and dashed line denote the
smallest and largest scaling algebra in our classification, respectively.

We present the formal statement of this result in Theorem 4.5.3. Similarly to Re-
sult 4.2.2, we find DLAs with linear, quadratic and exponentially scaling dimensions.

In addition to the classification of unique Lie algebraic structures, we also provide an
explicit list of Hamiltonians that generate them in Table G.1. Some of the generators in
our classification show up in well-known models such as the transverse-field Ising model
or the Heisenberg model, whereas other Hamiltonians we find are perhaps not realizable
in nature. However, some of these more exotic models may be of interest due to their
properties. For instance, we find a class of Hamiltonians with globally non-commuting
charges.
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4.3 Background

4.3.1 Preliminaries

We assume knowledge of finite-dimensional Lie algebras (for a formal treatment, see e.g.
Refs. [290, 250]), but will review some essential concepts here. A Lie algebra g is a vector
space equipped with a Lie bracket [·, ·] : g × g → g satisfying certain axioms (which are
reviewed in Section 4.1.1). The Lie bracket defines the adjoint endomorphism ada : g→ g
where ada(b) = [a, b]. For our purposes, the Lie bracket is the standard commutator of
linear operators on a vector space: [a, b] = ab−ba. When g is a compact simple Lie algebra
(cf. Section 4.1.1 and Proposition 4.2.1), one can associate to it a compact Lie group G
via the exponential map G = eg.

Consider a set of generators A = {a1, a2, . . . , aM} with ak ∈ g. We first define the
nested commutator,

adai1
· · · adair

(aj) = [ai1 , [ai2 , [· · · [air , aj] · · · ]]], (4.13)

which is just aj in the special case r = 0. The linear span of all nested commutators

⟨A⟩Lie := spanR
{

adai1
· · · adair

(aj)
∣∣ ai1 , . . . , air , aj ∈ A

}

is then called a dynamical Lie algebra (DLA) [27, 299]. This is the minimal (under in-
clusion) subalgebra of g that contains the set A. The depth r of the nested commutator
is finite and will depend on the size of the DLA, which we typically do not know before-
hand. In practice, the DLA of a given set of generators A can be obtained recursively with
Algorithm 3.

Algorithm 3: Calculating the DLA

Input: Set of generators A
for ai ∈ A do

for aj ∈ A do
ak = [ai, aj]
if ak /∈ span(A) then
A ← A∪ {ak}

⟨A⟩Lie ← span(A)
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Remark 4.3.1. We are interested in the case where the generators A are Pauli strings.
Then, since the commutator of two Pauli strings is up to a scalar again a Pauli string,
Algorithm 3 can be simplified by replacing the condition ak /∈ span(A) with ak /∈ A ∪ {0}.
Moreover, as different Pauli strings are linearly independent, the final set A will be a basis
for the DLA ⟨A⟩Lie.

4.3.2 2-local spin systems in one dimension

Due to Proposition 4.2.1, we know what form the subalgebras of su(N) must take. Our
goal is to find which of these direct sums of simple or Abelian Lie algebras can be generated
by a physically inspired set of generators.

In particular, we are interested in the subalgebras of su(2n) that are generated by the
terms of 1-dimensional 2-local Hamiltonians. By this we mean that we consider operators
that couple up to two neighboring sites and where the interactions between neighboring
sites is the same, but the interaction strength may vary per interaction, and could po-
tentially depend on time due to an external field allowing control over the system. We
consider a spin system with a complex Hilbert space (C2)⊗n Hamiltonian H, which is a
Hermitian operator on (C2)⊗n of the form

H =
n−1∑

k=1

∑

a⊗a′∈A
Jk,a,a′ak ⊗ a′k+1, (4.14)

where Jk,a,a′ are arbitrary real coefficients, and

ak ⊗ a′k+1 := I⊗(k−1) ⊗ a⊗ a′ ⊗ I⊗(n−k−1), (4.15)

with a⊗ a′ ∈ A and I is the 2× 2 identity matrix. We consider a, a′ ∈ P1 := {I,X, Y, Z}
(Pauli matrices), and

The generating set A ⊆ P2 := P⊗2
1 defines a specific set of 2-local operators that make

up the Hamiltonian H; in the parlance of quantum computing and physics, this is a 2-
local Hamiltonian corresponding to a spin chain. Note that physical models come with
coefficients Jk,a,a′ in front of each ak ⊗ a′k+1 term that determine the equilibrium and non-
equilibrium physics of the model. Here, we are only concerned with the algebraic properties
of the Hamiltonian H on the Lie algebra level, and we will not consider any spectral
properties of H. Additionally, we note that we are considering a directed interaction graph,
since we allow terms like X ⊗ Y , which do not act symmetrically between neighboring
qubits.
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Continuing, we note that Pauli matrices iP1 \ {iI} form a basis of su(2), and the
tensor products iP2 \ {iI⊗2} form a basis of su(4). Hence, span(A) ⊆ su(4) (recall that
span = i spanR). In the following, we will suppress the tensor product between Pauli
operators and identities for clarity, and we denote a ⊗ a′ = aa′. We now give some
examples to illustrate how several well-known spin chains can be written in this notation.

Example 4.3.1. Random field Ising model . The Hamiltonian of the TFIM in one dimen-
sion with open boundary conditions and random transverse field is given by

HTFIM = J

n−1∑

i=1

ZiZi+1 +
n∑

i=1

giXi,

where J, gi ∈ R. As it was stated before, we only consider the Pauli strings in this
Hamiltonian. Thus, we consider its generating set of Pauli strings, which is the following

ATFIM := {ZZ,XI, IX}.
Example 4.3.2. XXZ chain. For the 1-dimensional XXZ chain with open boundary
conditions, the Hamiltonian is given by

HXXZ =
n−1∑

i=1

(XiXi+1 + YiYi+1 + ∆ZiZi+1),

which has generators

AXXZ := {XX, Y Y, ZZ}.
Example 4.3.3. Spinless fermionic Gaussian state. A free fermion Hamiltonian chain in
one dimension with periodic boundary conditions can be built from the generators on two
sites:

c†1c
†
2, c

†
1c1, c

†
2c2, c

†
1c2, c

†
2c1, c1c2,

where c† and c are fermionic raising and lowering operators, respectively. The correspond-
ing Hamiltonian is

HFF =
n−1∑

i=1

(c†ic
†
i+1 + c†ici+1 + cic

†
i+1 + cici+1).

The fermionic raising and lowering operators may be translated to Pauli string form via
a number of transformations. If we use the common Jordan–Wigner transformation, the
resulting set of Pauli generators is

AFF := {XX,ZI, IZ, Y Y,XY, Y X} .
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4.3.3 Growing the dynamical Lie algebras

Since we are only interested in the algebraic structure of the class of Hamiltonians, we will
focus on the structure of the generators and ignore the coefficients in front of the individual
Pauli terms. On a 2-qubit system, these terms will generate a Lie algebra ⟨A⟩Lie = a that
is a subalgebra of su(4). We now investigate the structure of these algebras as we add
terms that have been translated by one site. Starting from a subalgebra a ⊆ su(4), let
a(n) be the subalgebra of su(2n) generated by the set

⋃

1≤k≤n−1

I⊗(k−1) ⊗ a⊗ I⊗(n−k−1).

In particular, a(2) = a. By construction, we have a Lie algebra embedding a(n) ↪→
a(n+ 1), given by appending I to the last qubit (see Figure 4.2).

Example 4.3.4. Consider the generating set A = {XY } on 2 qubits. The DLA is given
by

⟨A⟩Lie = span{XY },

which is an Abelian Lie algebra isomorphic to u(1). Constructing the generators of a(3)
according to the procedure above gives

a(3) = ⟨XY I, IXY ⟩Lie = span{XY I, IXY,XZY }.

It is easy to confirm that a(3) ∼= so(3). We see that going from n = 2 to n = 3, the DLA
changes from u(1) to so(3).

Figure 4.2: Growing a Lie algebra by adding a site to the chain. Increasing the
system size from 2 sites to 3 sites changes the DLA from a(2) to a(3) within su(4) and
su(8), respectively. The goal of our classification is to describe the behavior for any n ≥ 3.
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The above example illustrates that the algebraic structure of a DLA can change as
we increase the system size. Additionally, when we extend the number of sites to n > 2,
we need to take into account what happens at the edge of the chain. For 1-dimensional
systems, this leads to two cases: open boundary conditions (operators on a line) and
periodic boundary conditions (operators on a circle). We will denote the resulting DLAs
of these two cases with a(n) and a◦(n), respectively.

4.4 Method

We can now state the central question of our work. Given a Hamiltonian of the form Equa-
tion (4.14), we seek a classification of all DLAs generated by the terms of the Hamiltonian,
for n ≥ 3 with both open and periodic boundary conditions.

4.4.1 The power sets

First, for the generators of a-type Lie algebras, we note that there are 9 Pauli strings that
consist of two Pauli operators. Hence, the power set of the possible generators A contains
29 − 1 = 511 elements. Similarly, for the b-type Lie algebras, there are 15 Pauli strings,
which results in a power set of 215−1 = 32767 possible sets of generators. Clearly, the sets
of generators of the a-type are included in the b-type power set. We thus only report the
b-type Lie algebras that are not also a-types. Within the b-type set, there is a third class
of Lie algebras, the c-type Lie algebras, which are an edge case where there are generators
which Pauli strings of the form a⊗ I, but not the corresponding term I⊗a. The structure
of these Lie algebras is captured by the b-type Lie algebras, except for a small boundary
effect at the last site in the chain. We therefore exclude the c-type Lie algebras from our
classification (see Figure 4.3).

We proceed by going through all sets of generators A (of either a or b-type) and use
Algorithm 3 (in the simplified form from Remark 4.3.1) to perform the nested commutators
in Equation (4.13). We then store only the unique subalgebras generated by this procedure,
and we obtain only 127 and 19 generating sets for a-type and b-type, respectively. Since
the largest power set we consider has only 32767 elements, this procedure can be performed
numerically with ease. We provide the code to reproduce this at [267].

Example 4.4.1. Consider the generating sets:

A1 = {XY,XZ},
A2 = {IX,XY }.
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Figure 4.3: The three types of Lie algebras in the classification. The a-type Lie
algebras can be generated only by nearest neighbor 2-Pauli interactions. The b-type Lie
algebras are generated by nearest neighbor 2-Pauli interactions and 1-Pauli operators acting
on every qubit; for c-type Lie algebras the 1-Pauli operators act differently on the boundary.

Note that A1 is of a-type and A2 is of c-type. After running Algorithm 3, we find:

⟨A1⟩Lie = span{XY,XZ, IX},
⟨A2⟩Lie = span{IX,XY,XZ}.

We see that A1 and A2 generate the same Lie algebra; hence, this Lie algebra is counted
among the a-type Lie algebras.

Example 4.4.2. Consider the generating sets of a-type:

A1 = {XX, Y Y },
A2 = {XX, Y X}.

After running Algorithm 3, we find:

⟨A1⟩Lie = span{XX, Y Y },
⟨A2⟩Lie = span{XX, Y X,ZI}.

Hence, A1 and A2 generate distinct Lie algebras, both of a-type.
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Example 4.4.3. The set of b-type

A = {XY,XI, IX}

generates the Lie algebra

⟨A⟩Lie = span{XY,XZ,XI, IX}.

If we try to generate it from the a-type subset {XY,XZ}, we find the strictly smaller
subalgebra

⟨XY,XZ⟩Lie = span{XY,XZ, IX}.

4.4.2 Symmetries of the power sets

There are certain symmetries that can be exploited to reduce the number of subalgebras
of su(4) in the above power sets. To start, we note that the Pauli matrices satisfy the
following algebraic relations:

[σα, σβ] = 2i
3∑

γ=1

ϵαβγσ
γ,

where ϵαβγ is the Levi-Civita tensor and α, β, γ ∈ {1, 2, 3}, respectively (see Appendix A.1
for more details). We will ignore the factor 2i, since we only care about the linear span of
nested commutators. Note that the above relation is independent of how we assign X, Y, Z
to σα. In other words, we can relabel the Paulis and retain the algebraic structure of the
subalgebras, which together with ignoring the prefactors formally corresponds to an S3

permutation symmetry.

In addition to relabelling, we consider the exchange of location of the two Pauli terms,
since the order of such terms is an arbitrary choice that does not impact the structure of
the resulting Lie algebras. This location exchange corresponds to a Z2 symmetry. Hence,
the symmetry group of the Pauli algebra for n = 2 is S3 × Z2. Subalgebras of su(4) that
are in the same orbit of this symmetry group are considered equivalent, which allows us to
reduce the number of subalgebras significantly.

Example 4.4.4. We have that {XX, Y Z} ≡ {Y Y, ZX} under relabeling X → Y → Z →
X. On the other hand, {XX, Y Z} and {XX, Y Y } are not equivalent.
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In order to determine the orbits of the symmetry group S3×Z2 on the set of subalgebras
of su(4), we introduce their invariants s, p, e, d, defined as follows. These enumerate the
number of single Paulis (such as XI) in the basis of the Lie algebra, the number of single
Pauli pairs (such as XI, IX), the number of double equal Paulis (such as XX) and the
number of double different Paulis (such as XY ), respectively. Since all these quantities
are invariant under the action of the symmetry group, two subalgebras are not equivalent
if they have different invariants.

Example 4.4.5. Consider the following bases of subalgebras and their invariants:

A1 = {ZZ, Y X,XY } → (0, 0, 1, 2),

A2 = {XX, Y Z,ZY } → (0, 0, 1, 2),

A3 = {Y Y, ZX,XZ} → (0, 0, 1, 2).

We see that A1 ≡ A2 under Z ⇌ X. Similarly, A2 ≡ A3 under X ⇌ Y and A3 ≡ A1

under Y ⇌ Z.

Example 4.4.6. Consider the following bases of subalgebras and their invariants:

A1 = {XX,XZ, IY } → (1, 0, 1, 1),

A2 = {XY,XZ, IX} → (1, 0, 0, 2).

We see that A1 ̸≡ A2, since they have different invariants.

Example 4.4.7. Even though the two bases

A1 = {XY, Y X} → (0, 0, 0, 2),

A2 = {XY, Y Z} → (0, 0, 0, 2)

have the same invariants, they are not equivalent under the symmetry group S3 × Z2.

Carrying out this procedure exhaustively for the 127 and 19 subalgebras of a-type and b-
type gives us 23 and 5 inequivalent Lie algebras, respectively. We denote these subalgebras
by ak (0 ≤ k ≤ 22) and bl (0 ≤ l ≤ 4). For the full list of invariants, see Table G.1
in the Supplemental Materials. In particular, it turns out that the only case in which
the invariants (s, p, e, d) cannot distinguish inequivalent subalgebras is that presented in
Example 4.4.7.

By Proposition 4.2.1, we can identify these subalgebras by inspection with direct sums
of simple Lie algebras plus a center.
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Example 4.4.8. The set

A = {XX, Y Y, ZZ, ZY }

generates the Lie algebra

a20 := ⟨A⟩Lie = span{XX, Y Y, ZZ, Y Z, ZY,XI, IX}
= span{Y Y + ZZ, Y Z + ZY,XI + IX}
⊕ span{Y Y − ZZ, Y Z − ZY,XI − IX} ⊕ span{XX}
∼= su(2)⊕ su(2)⊕ u(1).

At this point, we have reduced the number of possible DLAs significantly by taking
into account the symmetries of the Pauli group. As a final step, we now generate all ak(n),
bk(n), a◦k(n) and b◦k(n) up to n = 8 with Algorithm 3 and Remark 4.3.1. Inspired by this
list of Lie algebras we construct formal proofs to determine them for all n ≥ 3, which is
discussed in the next section.

4.5 Results

4.5.1 Main theorem

We state the main theorem of our work below, and tabulate the generators of the Lie
algebras of our classification in Table 4.1. For convenience, we recall our definition of
dynamical Lie algebras of types a and b. A DLA of a-type on an open spin chain of length
n is a Lie algebra of the form a(n) (cf. Section 4.3.3), where a = ⟨A⟩Lie for some generating
set of 2-site Pauli strings A ⊆ {X, Y, Z}⊗2. Explicitly, a(n) = ⟨A(n)⟩Lie where

A(n) = {AiBi+1 |AB ∈ A, 1 ≤ i ≤ n− 1}, (4.16)

with AB denoting 2-site Pauli strings. A b-type DLA on an open spin chain of length n is
one that cannot be expressed as a-type and has the form b(n) = ⟨A(n)∪B(n)⟩Lie for some
A ⊆ {X, Y, Z}⊗2, a non-empty set of Paulis B ⊆ {X, Y, Z}, and

B(n) = {Bi |B ∈ B, 1 ≤ i ≤ n}. (4.17)

Theorem 4.5.1 (Classification of Open DLAs). Every dynamical Lie algebra of type a or
b on an open spin chain of length n ≥ 3 is isomorphic to one of the following:

a0(n) ∼= u(1)⊕(n−1),
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a1(n) ∼= so(n),

a2(n) ∼= a4(n) ∼= so(n)⊕ so(n),

a3(n) ∼=





so(2n−2)⊕4, n ≡ 0 mod 8,

so(2n−1), n ≡ ±1 mod 8,

su(2n−2)⊕2, n ≡ ±2 mod 8,

sp(2n−2), n ≡ ±3 mod 8,

sp(2n−3)⊕4, n ≡ 4 mod 8,

a5(n) ∼=





so(2n−2)⊕4, n ≡ 0 mod 6,

so(2n−1), n ≡ ±1 mod 6,

su(2n−2)⊕2, n ≡ ±2 mod 6,

sp(2n−2), n ≡ 3 mod 6,

a6(n) ∼= a7(n) ∼= a10(n)

∼=
{
su(2n−1), n odd,

su(2n−2)⊕4, n ≥ 4 even,

a8(n) ∼= so(2n− 1),

a9(n) ∼= sp(2n−2),

a11(n) = a16(n) = so(2n), n ≥ 4,

ak(n) = su(2n), k = 12, 17, 18, 19, 21, 22, n ≥ 4,

a13(n) = a20(n) ∼= a15(n) ∼= su(2n−1)⊕2,

a14(n) ∼= so(2n),

b0(n) ∼= u(1)⊕n,

b1(n) ∼= u(1)⊕(2n−1),

b2(n) ∼= sp(2n−2)⊕ u(1),

b3(n) ∼= su(2)⊕n,

b4(n) ∼= su(2n−1)⊕ su(2n−1)⊕ u(1).

The following corollary immediately follows from Theorem 4.5.1 and knowledge of the
dimensions of su, so and sp (see SM Equation (4.10)). As can be seen from Theorem 4.5.2
below, it holds for both open and closed spin chains.

Corollary 4.5.1 (Dimension scaling of DLAs). The dimensions of all non-trivial dynam-
ical Lie algebras of 2-local spin chains of length n in one dimension scale as either O(4n),
O(n2) or O(n).
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We thus see that the DLAs can be separated in three classes based on the scaling of
their dimensions.

4.5.2 Sketch of the proof

The complete proof of Theorem 4.5.1 is presented in the Supplemental Materials. Here is a
brief sketch of the proof; we refer to Appendix G.3.1 for a more detailed outline. We divide
the set of Lie algebras ak(n), bl(n) into three classes: linear, quadratic, and exponential,
according to the anticipated growth of their dimension. The linear class consists of a0(n)
and bl(n) with l = 0, 1, 3, and their treatment is obvious. The quadratic class contains
ak(n) with k = 1, 2, 4, 8, 14. These Lie algebras are determined by using the frustration
graphs of their generators in Appendix G.3.3. For the exponential class, we first observe
that b2(n) = a9(n)⊕span{X1} and b4(n) = a15(n)⊕span{X1}. Next, we identify the cases
when ak(n) = su(2n); see Appendix G.2.4 for details. We also find isomorphisms that are
obtained by relabeling of the Pauli matrices among some of the algebras (Appendix G.3.2).

The strategy in the remaining exponential cases is as follows.

1. For each of our Lie subalgebras s = ak(n) ⊆ su(2n), we find its stabilizer St(s), which
is defined as the set of all Pauli strings ∈ Pn that commute with every element of
s. This can be done explicitly, because the stabilizer is determined only from the
generators of s (see Proposition G.3.3).

2. By definition, s commutes with all elements of its stabilizer St(s); hence, it is con-
tained in the centralizer of St(s) in su(2n), which we denote su(2n)St(s). We can
reduce the Lie subalgebra su(2n)St(s) further by factoring all elements of the center
of St(s), which will become central in it, because we have shown that s has a trivial
center (Lemma G.3.11). This results in a Lie algebra denoted gk(n) when s = ak(n).

3. By the above construction, we have ak(n) ⊆ gk(n). In the case of associative algebras,
we would get equality due to (a finite-dimensional version of) von Neumann’s Double
Commutant Theorem (see e.g. [315], Theorem 6.2.5). However, in the Lie case, we
might have a strict inclusion. We improve the upper bounds for ak(n) by finding
involutions θk of gk(n) such that all elements of ak(n) are fixed under θk. The last
condition can be checked only on the generators of ak(n) (see Appendix G.3.5).

4. We prove by induction on n that the upper bound is exact, that is ak(n) = gk(n)θk

(see Appendix G.3.6). First we note that both ak(n) and gk(n)θk are linearly spanned
by the Pauli strings contained in them. We start with an arbitrary Pauli string
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a ∈ iPn∩gk(n)θk and want to show that it is in ak(n). The main idea is to use suitable
commutators of a with elements of ak(n) to produce a Pauli string b ∈ iPn ∩ gk(n)θk

with I in one of its positions. Erasing the I in b gives an element of gk(n − 1)θk ,
which by induction is in ak(n− 1).

5. Finally, we identify the Lie algebras gk(n)θk with those from Theorem 4.5.1 (see
Appendix G.3.7). This is accomplished by applying in each case a suitable uni-
tary transformation that brings the stabilizer St(s) to a more convenient form (cf.
Appendix G.1).

4.5.3 Example: a9(n)

Consider the example of a9 = ⟨XY,XZ⟩Lie, which produces the subalgebra a9(n) ⊆ su(2n)
generated by:

X1Y2, X1Z2, X2Y3, X2Z3, . . . , Xn−1Yn, Xn−1Zn. (4.18)

Let us sketch the above steps in the strategy of the proof of Theorem 4.5.1 in the case
s = a9(n).

1. The stabilizer St(s) is the set of all Pauli strings P ∈ Pn such that [a, P ] = 0 for
every a ∈ s. It is enough to check this for all a in the list of generators Equa-
tion (4.18), which means that the substring of P in positions j, j + 1 commutes
with XY and XZ for all 1 ≤ j ≤ n − 1. By inspection, we find St(XY,XZ) =
{II,XI, Y X,ZX}, so these are the only possible such substrings of P . This gives
St(s) = {I⊗n, X1, Y1X2, Z1X2}.

2. The centralizer su(2n)St(s) is the set of all a ∈ su(2n) such that [a, P ] = 0 for every
P ∈ St(s); hence it contains s. As the center of St(s) is trivial, we have g9(n) =
su(2n)St(s). To illustrate this last step, we mention that St(a15(n)) = {I⊗n, X1}. In
this case, X1 ∈ su(2n)X1 is central and we have to quotient by it to obtain g15(n) =
su(2n)X1/span{X1}.

3. We saw above that s ⊆ g9(n). Now we find an involution θ9 of g9(n) such that
s ⊆ g9(n)θ9 , the set of fixed points under θ9. Since θ9 respects the Lie brackets, it is
enough to check θ9(a) = a only for the generators Equation (4.18). Explicitly, we let
θ9(a) = −Q9a

TQ9 where Q9 = IY ZZ · · ·Z.

4. We prove by induction on n that a9(n) = g9(n)θ9 . To show that any a ∈ iPn∩g9(n)θ9

with n ≥ 4 is in a9(n), we first take suitable commutators of a with the generators
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Equation (4.18) to produce b ∈ iPn ∩ gk(n)θk that has I in some position j ≥ 3.
Erasing the I gives an element c ∈ g9(n − 1)θ9 , which by induction is in a9(n − 1).
Inserting I back in j-th place in c gives that b ∈ a9(n).

5. As St(s) ∼= {I⊗n, X1, Y1, Z1}, we can simplify g9(n)θ9 by applying a unitary trans-
formation a 7→ UaU † that takes St(s) to {I⊗n, X1, Y1, Z1}. Explicitly, we take
U = ei

π
4
X1X2 . Then g9(n) ∼= su(2n){X1,Y1,Z1} = I ⊗ su(2n−1) ∼= su(2n−1). The in-

volution θ9(a) = −Q9a
TQ9 gets transformed to −Q̃9a

T Q̃9, where Q̃9 = UQ9U
T in

this case happens to be = Q9. Restricted to su(2n−1), this gives the involution
−QaTQ with Q = Y ZZ · · ·Z, whose fixed points are ∼= sp(2n−2) because QT = −Q.

We conclude that a9(n) ∼= sp(2n−2).

4.5.4 Periodic boundary conditions

In the periodic case, we define a DLA of a◦-type on a closed spin chain of length n as a
Lie algebra of the form a◦(n) = ⟨A◦(n)⟩Lie for some generating set of 2-site Pauli strings
A ⊆ {X, Y, Z}⊗2, where

A◦(n) = {AiBi+1, AnB1 |AB ∈ A, 1 ≤ i ≤ n− 1}. (4.19)

A b◦-type DLA on a closed spin chain of length n is one that cannot be expressed as a◦-type
and has the form b◦(n) = ⟨A◦(n)∪B(n)⟩Lie for some A ⊆ {X, Y, Z}⊗2, a non-empty set of
Paulis B ⊆ {X, Y, Z}, and B(n) given by Equation (4.17).

Theorem 4.5.2 (Classification of Periodic DLAs). Every dynamical Lie algebra of type a◦

or b◦ on a closed spin chain of length n ≥ 3 is isomorphic to one of the following:

a◦0(n) ∼= u(1)⊕n,

a◦1(n) ∼= so(n)⊕2,

a◦2(n) ∼= so(n)⊕4,

a◦3(n) =





a13(n), n odd,

a3(n), n ≡ 0 mod 4,

a6(n), n ≡ 2 mod 4,

∼=





su(2n−1)⊕2, n odd,

so(2n−2)⊕4, n ≡ 0 mod 8,

sp(2n−3)⊕4, n ≡ 4 mod 8,

su(2n−2)⊕4, n ≡ 2 mod 4,
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a◦4(n) ∼=
{
so(2n), n odd,

so(n)⊕4, n even,

a◦5(n) =

{
a16(n), n ≡ ±1 mod 3,

a5(n), n ≡ 0 mod 3,

∼=





so(2n), n ≡ ±1 mod 3,

so(2n−2)⊕4, n ≡ 0 mod 6,

sp(2n−2), n ≡ 3 mod 6,

a◦6(n) =

{
a13(n) ∼= su(2n−1)⊕2, n odd,

a6(n) ∼= su(2n−2)⊕4, n even,

a◦k(n) = ak(n), k = 7, 13, 16, 20,

a◦8(n) ∼= so(2n)⊕2,

a◦9(n) ∼= so(2n), n ≥ 4,

a◦10(n) =

{
su(2n), n ≡ ±1 mod 3,

a10(n), n ≡ 0 mod 3,

∼=





su(2n), n ≡ ±1 mod 3,

su(2n−2)⊕4, n ≡ 0 mod 6,

su(2n−1), n ≡ 3 mod 6,

a◦11(n) = so(2n), n ≥ 4,

a◦k(n) = su(2n), k = 12, 15, 17, 18, 19, 21, 22,

a◦14(n) ∼= so(2n)⊕2,

b◦0(n) = b0(n) ∼= u(1)⊕n,

b◦1(n) ∼= u(1)⊕2n,

b◦2(n) ∼= so(2n), n ≥ 4,

b◦3(n) = b3(n) ∼= su(2)⊕n,

b◦4(n) = su(2n).

The proof of this theorem is given in Appendix G.3.8. The proof strategy is different
from that of Theorem 4.5.1 because, unlike the open case, the periodic Lie algebras a◦k(n)
are not generated inductively from a◦k(n− 1). Instead, we use that a◦k(n) is generated from
ak(n) and its cyclic shifts, and we utilize the explicit description ak(n) = gk(n)θk (see Part
4. in Section 4.5.2, and for more details Appendix G.3.6).
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4.5.5 Permutation-invariant subalgebras

The strategies employed for periodic boundary conditions can also be used to classify the
DLAs in the case when the Hamiltonian is defined on a complete graph. For this, we have
to adapt the definition of Equation (4.14) so that each spin is connected to each other spin
via 2-local interactions given by Pauli strings. In more detail, we define a DLA of aπ-type
as a Lie algebra of the form aπ(n) = ⟨Aπ(n)⟩Lie for some generating set of 2-site Pauli
strings A ⊆ {X, Y, Z}⊗2, where

Aπ(n) = {AiBj |AB ∈ A, 1 ≤ i ̸= j ≤ n}. (4.20)

A bπ-type DLA is one that cannot be expressed as aπ-type and has the form bπ(n) =
⟨Aπ(n) ∪ B(n)⟩Lie for some A ⊆ {X, Y, Z}⊗2, a non-empty set of Paulis B ⊆ {X, Y, Z},
and B(n) given by Equation (4.17).

Theorem 4.5.3 (Classification of Permutation Invariant DLAs). For n ≥ 3, every dy-
namical Lie algebra of type aπ or bπ is isomorphic to one of the following:

aπk(n) = ak(n), k = 7, 16, 20, 22,

aπ0 (n) ∼= u(1)⊕n(n−1)/2,

aπ2 (n) = so(2n)Z···Z ∼= so(2n−1)⊕2,

aπ4 (n) = a7(n) ∼=
{
su(2n−1), n odd,

su(2n−2)⊕4, n ≥ 4 even,

aπ6 (n) = a20(n) ∼= aπ14(n) ∼= su(2n−1)⊕2,

bπ0 (n) = b0(n) ∼= u(1)⊕n,

bπ1 (n) ∼= u(1)⊕n(n+1)/2,

bπ3 (n) = b3(n) ∼= su(2)⊕n.

The proof of this theorem is given in Appendix G.3.9.

4.6 Discussion

In the previous section, we have classified the dynamical Lie algebras generated by the Pauli
terms of 2-local spin chain Hamiltonians, both for open and closed boundary conditions
and on complete graphs. In this section, we discuss the importance of this classification
for various fields in physics.
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4.6.1 Relevance for variational quantum computing

As we saw in Equation (2.3), a quantum circuit can be described as a product of unitaries

U =
←−∏L

l Ul. We can write Ul = eal where al is a 1- or 2-local operator. For a set of
generators A = {al} with a corresponding DLA a = ⟨A⟩Lie, we have that

ea =
{
eal1 t1eal2 t2 · · · ealr tr

∣∣ ti ∈ R, ali ∈ A
}
. (4.21)

In other words, any element in the Lie group ea generated by the DLA can be reached by a
finite product of unitaries in that group (see [27], Corollary 3.2.6). In quantum computing,
if ea = SU(2n), then the gate set {eak} is called universal [7]. It is known that almost any
combination of unitaries is universal [316, 317]. However, we can make specific choices for
the generators {al} that correspond to a non-universal gate set, which instead will generate
a proper subgroup of SU(2n). This is especially relevant for a class of quantum algorithms
called variational quantum algorithms [24, 25].

If limited to 1-dimensional topology, the generators in our classification will produce
a circuit that is an element of the Lie group ea. This notion can be used to construct
specific quantum algorithms that always act within a subgroup of SU(2n). For example, if
we consider a variational circuit of the form

U(θ) = U1(θ1)U2(θ2) · · ·UL(θL),

with

Uk(θk) = eθkak . (4.22)

The gate parameters θ = (θ1, . . . , θL) are real parameters that we can optimize with VQE
(see Section 2.1.1). We restate the cost function for clarity,

E(θ) = Tr
{
U(θ)ρ0U

†(θ)Hc

}
, (4.23)

where Hc is a Hermitian operator and ρ0 = |ψ0⟩⟨ψ0| is the initial state of the system.
Crucial to the success of these algorithms is the choice of a circuit ansatz U(θ) and the
properties of the cost function Equation (4.23).

VQE ansätze

A large class of variational circuits consist of L repeating layers of unitary blocks [32, 49,
39, 40, 318, 228, 319, 320, 321] and we have seen these used in Chapter 2. In this section,
we will give some examples of these circuits and how our classification relates to them.
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Example 4.6.1. Hamiltonian Variational Ansatz. The Hamiltonian Variational Ansatz
circuit is obtained by Trotterizing the exponential of a Hamiltonian [39, 40]. Consider the
Hamiltonian HXY =

∑n−1
i=1 XiYi+1, which has a1(n) as its DLA. Exponentiation of H and

the application of the Trotter–Suzuki formula then gives:

U(θ) =

←−
L∏

l=1

(←−−∏

even k

eiθ
(l)
k XkYk+1

←−−∏

odd k

eiθ
(l)
k XkYk+1

)
,

where we grouped the odd and even terms together due to the structure imposed by the
1- and 2-qubit gates available on the quantum computer. Due to Equation (4.21) and the
knowledge that a1(n) ∼= so(n), we know that the above circuit must be a parameterization
of a unitary operator U(θ) ∈ SO(n).

Similarly, we can take the DLA a9(n) with generators {XY,XZ}, which gives a circuit
within Sp(2n−2):

U(θ,ϕ) =

←−
L∏

l=1

(←−−∏

even k

eiθ
(l)
k XkYk+1

←−−∏

odd k

eiθ
(l)
k XkYk+1

←−−∏

even k

eiϕ
(l)
k XkZk+1

←−−∏

odd k

eiϕ
(l)
k XkZk+1

)
.

We illustrate these circuits schematically in Figure 4.4.

Example 4.6.2. ADAPT-VQE. In ADAPT-VQE, one dynamically grows the circuit using
a predetermined operator pool, so that each gate lowers the cost function by the largest
amount [113]. This class of dynamical circuit ansätze can be understood as a Riemannian
gradient flow over a specific subgroup [4]. This heuristic is popular in quantum chemistry
for circuit design, where specific operator pools are considered that are tailored to fermionic
Hamiltonians [324, 223, 221]. The operator pool can be seen as a set of generators, with a
corresponding DLA. In the context of our classification, we can thus determine the resulting
subgroup of the dynamically grown circuit ansatz based on the generators in the operator
pool.

Example 4.6.3. Permutation-invariant circuits. Instead of a 1-dimensional topology, one
can consider a Hamiltonian with a fully connected topology (see Figure 4.6):

H =
∑

1≤i ̸=j≤n

AiBj.

This topology is common in ion trap quantum computers [325] and also shows up in the
context of quantum Boltzmann machines [326, 327], which are the quantum equivalent
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UXY

UXY

UXY

...
(a) a1(n)

...

UXY UXZ

UXY UXZ

UXY UXZ

...
(b) a9(n)

Figure 4.4: Examples of brick layer circuits that fall within our classification. (a)
Hamiltonian Variational Ansatz circuit for the Hamiltonian HXY =

∑n−1
i=1 XiYi+1, which

parameterizes an element of the group SO(n). (b) Variational ansatz that parameterizes
a unitary in Sp(2n−2) via products of unitaries generated by terms in a9(n). We note
that these types of brick-layer circuits often show up in the tensor network literature on
quantum compilation [322, 323].

of the Sherrington–Kirkpatrick model with tunable parameters [328]. Closely related are
the so-called permutation-equivariant circuits, which consist of parameterized blocks of
unitaries that are permutation invariant [329]. These circuit ansätze were shown to be
powerful quantum machine learning models for permutation-invariant data sets. Our clas-
sification of permutation-invariant 2-site Hamiltonians in one dimension thus provides a
classification of DLAs for these types of ansätze.

Barren plateaus

A hurdle in minimizing a cost function of the form Equation (4.23) are so-called barren
plateaus we explored in Chapter 2, which are flat areas in the cost landscape of a variational
quantum algorithm. When barren plateaus are present, the variance of gradients with
respect to the gate parameters will decay, on average, exponentially as a function of system
size. Hence, obtaining accurate estimates quickly becomes intractable due to the large
number of shots required. There is a variety of different setups in which barren plateaus
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U1

U6

U1

U8

U10 U6

U6 U4

U1

...

Operator
Pool

Figure 4.5: ADAPT-VQE circuit growing heuristic. We consider a generator pool in
our classification and dynamically grow the circuit.

occur [230, 35, 38, 107, 83, 109, 330]. To mitigate this problem, several recent works are
aimed at finding ways to avoid the regions where optimization is hard [108, 37, 68, 122,
123, 124, 2].

The relevance of our classification for barren plateaus stems from the conjecture of [227],
which states that the variance of the gradients of gate parameters is inversely proportional
to the dimension of the DLA g of the circuit:

Var[∂kE(θ)] ∝ 1

dim g
.

There are some subtleties involved in this conjecture, such as the locality of the cost
function and the choice of initial state, which are discussed in [227, 331]. In the common
case where Hc ∈ ig, an exact formula for the variance was obtained independently in
Refs. [280, 331], which in particular refines and proves the above conjecture. This formula
was interpreted in Ref. [331] in terms of the g-purity [332, 333]

Pg(A) = Tr
{

(A|g)2
}

where A|g denotes the projection of a linear operator A onto the Lie algebra g. The g-purity
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Figure 4.6: Permutation-invariant topology. Permuting sites leaves the Hamiltonian
invariant.

of the initial state ρ0 and the observable Hc are intricately connected to barren plateaus,
underscoring again the crucial role of the DLA.

As an illustration, we compare the barren plateau behavior for two of our Lie algebras,
a◦5(n) and a14(n), whose dimensions scale exponentially and polynomially with n, respec-
tively. We consider the cost function Equation (4.23) with Hc = Z1Z2 and ρ0 = |0⟩⟨0|⊗n.
The circuit ansatz U(θ) consists of unitaries generated by generators in our classification.
The parameters of the circuit are then uniformly sampled between 0 and π. To observe
the barren plateau effect, we take the derivative of the cost function with respect to the
first parameter in the first layer of the circuit, θ

(1)
1 . In Figure 4.7, we then observe the

expected gradient decay as a function of the system size for an exponentially scaling DLA
and a polynomially scaling DLA. In particular, in Figure 4.7(a) we consider the circuit
generated by H =

∑n−1
i=1 (XiYi+1 + YiZi+1) + XnY1 + YnZ1 with periodic boundary condi-

tions, whose DLA a◦5(n) is isomorphic to so(2n), so(2n−2)⊕4 or sp(2n−2) depending on n
(see Theorem 4.5.2). Since dim a◦5(n) = O(4n), we expect the gradients to decay exponen-
tially. Similarly, in Figure 4.7(b) we consider the circuit generated by a14(n) ∼= so(2n),
which is described by the Hamiltonian H =

∑n−1
i=1 (XiXi+1 + YiYi+1 + XiYi+1). Here, we

have dim a14(n) = O(n2); hence, we expect the decay of gradients to be polynomial with
respect to the system size.

According to Corollary 4.5.1, the only circuits free from barren plateaus generated by
Hamiltonians in our classification, which are not composed of only 1-qubit gates, have
to be composed of so(n)-type, since these are the only polynomially scaling DLAs in our
classification.
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Figure 4.7: Barren plateaus in variational quantum circuits. We calculate the
variance of 1000 randomly initialized circuits with θ sampled uniformly in [0, π]. (a) The
Lie algebra a◦5(n) is isomorphic to so(2n), so(2n−2)⊕4 or sp(2n−2) depending on n; hence
we expect exponentially decaying gradients for all n. This is confirmed in the figure above,
since for a linear increase in n, we see an order of magnitude decrease in the gradient
variances. (b) Since a14(n) ∼= so(2n), we find polynomially decaying gradients as a function
of system size.

Overparameterization

Similar to the barren plateaus, we can place our classification in the context of the overpa-
rameterization phenomenon we discovered in Section 2.2.5. Recent works that have made
progress in theoretically understanding this effect in quantum circuits can be connected
to the DLA generated by the circuit ansätze used [230, 231]. In particular, in [230], the
dimension of the DLA can be used to analyze the Hessian around the global minimum
of a typical variational quantum eigensolver cost function [29]. Additionally, the authors
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Figure 4.8: Overparameterization of variational quantum circuits. We plot the
success probability of reaching a state with |E0 − E(θ)| < 5 × 10−4 as a function of the
circuit depth L, where E0 is the lowest energy of the cost Hamiltonian Hc. These results
were obtained by averaging 100 random instances for each L and N . The error bars indicate
one standard deviation σ. A single random instance consists of 3000 optimization steps of
the Adam optimizer [334] with learning rate η = 10−2. A handful of instances converge
to solutions that are further than 5σ from the mean and these outliers are therefore not
included in the final plot. (a) The TFIM on a ring has DLA a◦8(n) ∼= so(2n)⊕2, whose
dimension scales quadratically. We see that for a moderate circuit depth, the probability of
success goes to 1. (b) Since the DLA a11(n) ∼= so(2n), we expect that overparameterization
occurs at depths that are exponential in the system size. Although this is not immediately
clear in here, we see in (d) that the number of parameters indeed scales exponentially in
n. (c) For the Heisenberg chain, which has an exponentially-scaling DLA a7(n), the choice
of initial state ρ0 = |0⟩⟨0|⊗n prevents overparameterization from occurring for odd n. (d)
If we set the threshold for overparameterization to be a success probability of 0.99, we can
plot the required number of parameters to reach this threshold. We see that a11(n) and
a7(n) require an exponentially scaling number of parameters, whereas a◦8(n) only requires
a polynomial number. The dashed line is a guiding line that indicates O(4n) scaling.
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find that the critical number of parameters needed to overparameterize a variational quan-
tum circuit can be directly linked to the dimension of the associated DLA. In [231], the
authors study the optimization dynamics of overparameterized quantum circuit as pertur-
bations of Riemannian gradient flows [185]. The size of the DLA (defined as the effective
dimension in [231]) allows one to bound the number of parameters required to reach the
overparameterization regime.

Corollary 4.5.1 tells us that for quantum circuits constructed from the generators of
1-dimensional spin chains, there are only DLAs whose dimension scales as O(n), O(n2) and
O(4n). Consequently, the linearly and quadratically scaling DLAs are expected to overpa-
rameterize with a non-exponential number of parameters. Additionally, the quadratically
scaling DLAs in our classification correspond to free fermion models, whose dynamics can
be simulated efficiently if ρ0 is an eigenstate of Hc. However, choosing ρ0 to be an arbitrary
quantum state will still be intractable to simulate classically.

As discussed in [231], a requirement for overparameterization is that the initial state has
non-vanishing overlap with the ground state. Similarly, in [335], it is shown that choosing
the initial state in the right symmetry sector is crucial for the quality of the optimization.
We highlight this importance in one of the numerical examples, where we choose an initial
state that prevents overparameterization from occurring for an odd number of sites.

In Figure 4.8, we illustrate the overparameterization phenomenon for three examples in
our classification. In particular, in Figure 4.8(a), we consider the TFIM on a ring, which is
given by the Hamiltonian Hc =

∑n
i=1(ZiZi+1 +Xi) where Zn+1 := Z1. The corresponding

DLA is given by a◦8(n) ∼= so(2n)⊕2, whose dimension scales quadratically in n. We take the
Hamiltonian Variational Ansatz of Hc on even and odd qubits as a circuit ansatz, and take
the initial state to be ρ0 = |+⟩⟨+|⊗n. We observe that the cost landscape quickly becomes
favorable, resulting in almost guaranteed convergence to the lowest energy state.

In Figure 4.8(b), we take the DLA a11(n) ∼= so(2n), and a Hamiltonian Hc ∈ so(2n)
given by a random orthogonal 2n × 2n matrix. The circuit consists of unitaries generated
by the generators of a11 on even and odd qubits, and we take ρ0 = |0⟩⟨0|⊗n. It now takes
much deeper circuits to reach the same success probabilities as in Figure 4.8(a), which is
due to the exponential scaling of the DLA.

Finally, in Figure 4.8(c), we consider a7(n), which corresponds to the Heisenberg chain
with Hc =

∑n−1
i=1 (XiXi+1 + YiYi+1 + ZiZi+1). The circuit is again the Hamiltonian Varia-

tional Ansatz of Hc, and ρ0 = |0⟩⟨0|⊗n. This choice of an initial state only works for an
odd number n of qubits, while it fails to produce the overparameterization phenomenon
for even n, leading to a success probability of 0 (not plotted). Instead, for even n, the op-
timization of deep circuits gets stuck in a local minimum. We still observe the exponential
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scaling of the number of parameters, in accordance with the scaling of the dimension of
a7(n), which is O(4n).

4.6.2 Relevance for quantum control

In quantum control, one is interested in performing a specific unitary evolution by con-
trolling individual terms in a Hamiltonian acting on a small number of qubits. In order to
create any unitary, one requires the system to be controllable, which corresponds to the
DLA being equal to su(2n). The conditions for complete controllability are known [220],
and it is in principle easy to create a controllable system since any real simple Lie algebra
can be generated from 2 elements [336]. If the DLA is a proper subalgebra of su(2n), we say
that the system is uncontrollable. Note that this includes simple Lie algebras like so and sp
[310]. Uncontrollable systems can arise when there are conserved quantities or symmetries
in the physical system one is trying to control. Note that, due to Proposition 4.2.1, the
DLA must split into a direct sum of simple Lie algebras and a center. If this decomposition
has the form su(N1)⊕· · ·⊕ su(Nk) where N1 + · · ·+Nk = 2n, then we say that the system
is subspace controllable [27, Section 4.3.3].

We can contextualize our classification in terms of these definitions. For example, we
know that a12(n) will produce a controllable quantum system for n ≥ 4 since this DLA
is equal to su(2n). Similarly, since a1(n) ∼= so(n), we know that it is uncontrollable.
Finally, there are many examples of uncontrollable systems that consist of direct sums of
su blocks and are subspace controllable. For instance, a◦3(n) for odd n produces a DLA of
the form su(2n−1)⊕2. In addition to the notion of controllability of spin systems, we can
ask what other types of systems we can simulate with our spin chains, e.g., fermionic or
bosonic systems. This question was originally explored for Hamiltonians on cubic lattices
with translation symmetry [337, 338]. In particular, the dynamics of quadratic fermionic
Hamiltonians is described by DLAs of the so(2n) or so(2n + 1) type, which show up in
our classification as a14(n) and a8(n). Similarly, the dynamics of a bosonic quadratic
Hamiltonian with n modes is related to a symplectic DLA [283], which we can identify
with a5(n) for n ≡ 3 mod 6.

4.6.3 Relevance for spin systems

Our classification of Lie algebras arising in one dimension has bearing on other areas of
physics and quantum simulation. The most direct connection is that we have established
a set of models, some of which are traditional spin models [339, 340] studied in physics,
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while others are new (cf. Table G.2). The integrability [307, 53, 308], dynamical Lie algebra,
and symmetry of 1-dimensional spin systems remains an active area of research, and our
result provides a database of models where desired properties can be selected or different
hypotheses tested.

The various properties of physical systems typically arise from the exact Hamiltonian.
As a straightforward example, we can consider the transverse field Ising model; whether
this model is in the paramagnetic or ferromagnetic phase depends on the relative strengths
of the nearest neighbor coupling and applied magnetic field. Here, we have neglected these
parameters in the Hamiltonian, and solely focused on the presence (or absence) of terms
in the Hamiltonian. This coarsening of the problem hides much of the critical detail.
However, here is still a remarkable amount of information that can be gleaned from this
admittedly coarse view.

One example of this is the observation that Hamiltonians with polynomially-scaling
dynamical Lie algebras belong to a special class of integrable models which can be simu-
lated efficiently with Lie algebra-based algorithms [333, 341]. Additionally, the dynamics
of such models can be simulated in less time than the duration of the desired evolution
through a process called fast-forwarding [342]. These algorithms have recently been re-
discovered for the purposes of simulating specific classes of quantum circuits [281, 280].
Interestingly, the number of polynomially-scaling algebras in our classification is relatively
small (a1, a2, a4, a8, a14, a

◦
1, a

◦
2, a

◦
4, a

◦
8, a

◦
14), and they are all of the so type. For example, the

TFIM model, which is known to be integrable, arises in our classification as a7(n), which
is polynomial in size.

The polynomially scaling algebras in principle come with a “maximal set of indepen-
dently commuting quantum operators” [343], which enables the integration in the first
place. Unfortunately, our method does not capture these because the conserved quantities
are not single Pauli strings. However, global symmetries are preserved for some of the
models; these include Z2 (spin flip), SU(2) (global spin rotation) and U(1) (global phase
rotation).

One particular property of note is the presence of non-commuting charges which de-
scribe non-Abelian symmetries — that is, elements of the stabilizer that do not commute.
These are found in a8(n), a9(n) for all n, and in a2(n)−a7(n), a10(n) for odd n only (see
Appendix G.3.4). We emphasize that the non-commuting charges we find are intensive,
as opposed to extensive. The latter consist of a sum of terms that grows with the sys-
tem size, which can be related to a wide range of quantum effects in thermodynamics (see
Ref. [344] for a review). Extensive non-commuting charges have been studied in the context
of bond algebras to understand thermalization and quantum many body scars [345, 298],
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hence our classification could potentially be used in this context. Notably, the presence
of non-commuting charges complicates questions regarding thermalization. Depending on
the context, they either help thermalization (e.g. by increasing entanglement entropy [346])
or hinder it (e.g. by invalidating the Eigenstate Thermalization Hypothesis [347]). Per-
haps more interestingly within the context of quantum computing, non-commuting charges
couple the dynamics between different irreducible representations of the charges, severely
limiting the unitaries that can be implemented [348]. The DLA can also be used in the
path integral formulation of quantum mechanics to study many-body systems [349].

A final point is the appearance of symplectic Lie algebras, which are not as common as
the orthogonal or unitary types. Here they appear from an AIII Cartan decomposition of
a larger Lie algebra; in applications, they come up in the preparation of bosonic quantum
states [338], photonics [350] and Clifford circuits/error correction [351].

4.7 Conclusion

We have provided a classification of the dynamical Lie algebras of 2-local spin systems on
a linear, circular or permutation invariant topology, and have discussed the relevance of
this result in a variety of contexts. We have discovered several new examples beyond the
standard Ising and Heisenberg models; thus increasing dramatically the number of explicit
Hamiltonians available for theoretical investigations. It would be interesting to study in
more detail the thermodynamic properties of these new Hamiltonians, and in particular to
determine all of their symmetries, including the extensive non-commuting charges. This
would require taking the coefficients of the Hamiltonian into account to refine the classifi-
cation from the general form we consider here to a specific physical system. We hope that
our classification can be used to inspire new quantum algorithms and allow researchers to
identify the circuits that they use in practice with the Lie algebras in our classification to
assess their optimization properties. Moreover, the methods that we have developed can
be used to identify the DLA even in cases that fall outside of our classification.

In fact, we have been able to extend the classification presented in here from 2-local one-
dimensional topologies to arbitrary graphs. At the basis of these results are the results on
permutation-invariant graphs, which serve as an upper bound for the DLA of an arbitrary
graph [314]. Further extensions to 3-local Hamiltonians may be possible, but the initial set
of Hamiltonians (263−1) would have to be reduced beforehand to make a full enumeration
tractable. Additionally, we would like to investigate how the coefficients of the Hamiltonian
affect the DLA, which would require extending our method to the case where the generators
are linear combinations of Pauli strings.
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Another future direction would be to consider other types of systems. For example,
instead of spin systems, we could consider fermionic or bosonic Hamiltonians. Such a
classification already exists for nearest-neighbor, quadratic Hamiltonians on cubic lattices
[338, 352], so this question would have to be explored in the context of non-cubic graphs.
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Label Generating set Example Model
a0 XX Ising model
a1 XY Kitaev chain
a2 XY, Y X Massless free fermion +

magnetic field
a3 XX, Y Z Kitaev chain + Coulomb
a4 XX, Y Y XY-model
a5 XY, Y Z
a6 XX, Y Z,ZY Massless free fermion +

magnetic field + Coulomb
a7 XX, Y Y, ZZ Heisenberg chain
a8 XX,XZ Ising model + transverse field
a9 XY,XZ Kitaev chain +

longitudinal field
a10 XY, Y Z, ZX Heisenberg
a11 XY, Y X, Y Z XY-model + longitudinal field
a12 XX,XY, Y Z
a13 XX, Y Y, Y Z XY-model + longitudinal field
a14 XX, Y Y,XY XY-model + transverse field
a15 XX,XY,XZ Ising model + arbitrary field
a16 XY, Y X, Y Z, ZY Kitaev chain

+ longitudinal field
a17 XX,XY,ZX Ising model + arbitrary field
a18 XX,XZ, Y Y, ZY XY-model + arbitrary field
a19 XX,XY,ZX, Y Z
a20 XX, Y Y, ZZ, ZY Heisenberg chain +

magnetic field
a21 XX, Y Y,XY, ZX XY-model + arbitrary field
a22 XX,XY,XZ, Y X,ZX Ising model + arbitrary field
b0 XI, IX Uncoupled spins
b1 XX,XI, IX Ising model
b2 XY,XI, IX Kitaev chain +

longitudinal field
b3 XI, Y I, IX, IY Uncoupled spins
b4 XX,XY,XI, IX Ising model + arbitrary field

Table 4.1: List of generators of the DLAs in Theorem 4.5.1 and examples of
conventional spin models that have the equivalent DLA.
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Chapter 5

Conclusion

In this thesis we explored the use of variational quantum algorithms from three different
perspectives. Then, in Chapter 2, we numerically investigated VQE optimization schemes
and ways to improve them. In Chapter 3, we took a more geometric to variational optimiza-
tion and incorporated ideas from differential geometry and Riemannian optimization into
the current VQE paradigm. We concluded with a more mathematical approach in Chap-
ter 4 to classify objects called dynamical Lie algebras, which are related to the trainability
of variational quantum circuits.

At the moment, the field of variational quantum computing is in an interesting state.
From a theoretical point of view, the results in Chapter 4 and [314], combined with the
most recent iteration of barren plateau results in [331] paint a bleak picture: Most circuits
one will have exponentially-sized DLAs which will have barren plateaus and can there-
fore not be optimized. Furthermore, the small known set of variational quantum circuits
with polynomially-sized DLAs are known to be efficiently simulatable [333, 341], and fast-
forwardable [342], leaving little room for overparameterization phenomena of Section 2.2
that makes optimizing circuits efficient. Additionally, it seems that the current levels of
noise in quantum hardware further reduce the trainability of variational quantum circuits
[83], which will likely make applying the ideas of Section 2.3 and Chapter 3 challenging in
practice.

The problem is that it is hard to challenge these theoretical results due to the absence of
quantum computers (with reasonable error rates). Since one can only classically simulate
systems around 20 qubits, where barren plateau issues might not be that prohibitive,
there is no real way of testing the wide variety of training heuristics and initialization
strategies to reliably train variational quantum circuits [113, 108, 37, 335, 2]. The field is
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therefore in the opposite state of modern Deep Learning, where the neural networks which
have effectively solved computer vision and natural language rely on many heuristics for
training [353, 354, 355], while their training dynamics are not well understood. In fact,
from a complexity theory point of view, training neural networks can be NP-Complete
or NP-Hard [356, 357, 358], depending on the choice of neural network. Additionally,
vanishing gradients also plagued machine learning approaches for a while, until we found
suitable initialization strategies[359] and architectures to circumvent those [360]. Similarly,
tailored initialization strategies can help with the convergence of DMRG algorithms [361].

These may be false equivalences. Perhaps the optimization problems that plague vari-
ational quantum algorithms are indeed as bad as the theory makes them out to be, and we
should not compare them to heuristics in other numerical methods that are crucial to get
stable performance. However, until we can test variational quantum algorithms at scale
they merit further investigation. Luckily, quantum hardware is continuously improving,
and we are getting closer to meso-scale devices with low enough error rates that we may
be able to test these algorithms in the wild.
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[93] Alberto Biella and Marco Schiró. Many-Body Quantum Zeno Effect and
Measurement-Induced Subradiance Transition. Quantum, 5:528, August 2021.

[94] Xhek Turkeshi, Alberto Biella, Rosario Fazio, Marcello Dalmonte, and Marco Schiró.
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[102] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav
Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747):209–212, 3 2019.

[103] Maria Schuld and Nathan Killoran. Quantum Machine Learning in Feature Hilbert
Spaces. Phys. Rev. Lett., 122(4):040504, Feb 2019.

[104] Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric
quantum classifiers. Phys. Rev. A, 101(3):032308, Mar 2020.

[105] Hyungwon Kim and David A. Huse. Ballistic Spreading of Entanglement in a Diffu-
sive Nonintegrable System. Phys. Rev. Lett., 111(12):127205, Sep 2013.

[106] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah. Quantum
Entanglement Growth under Random Unitary Dynamics. Phys. Rev. X, 7(3):031016,
Jul 2017.
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[366] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac. Matrix Product Density Opera-
tors: Simulation of Finite-Temperature and Dissipative Systems. Phys. Rev. Lett.,
93(20):207204, Nov 2004.

[367] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. Monte carlo calculations of
coupled boson-fermion systems. i. Phys. Rev. D, 24:2278–2286, Oct 1981.

[368] Benjamin Russell and Susan Stepney. Geometric Methods for Analysing Quantum
Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Con-
trol Functions. In Giancarlo Mauri, Alberto Dennunzio, Luca Manzoni, and Anto-
nio E. Porreca, editors, Unconventional Computation and Natural Computation, vol-
ume 7956 of Lecture Notes in Computer Science, pages 198–208, Berlin, Heidelberg,
7 2013. Springer.

[369] James E Humphreys. Introduction to Lie algebras and representation theory, vol-
ume 9. Springer Science & Business Media, 2012.

[370] Shalin Parekh. The KPZ limit of ASEP with boundary. Communications in Mathe-
matical Physics, 365:569–649, 1 2019.

[371] Rodney J Baxter. Exactly solved models in statistical mechanics. Elsevier, 1982.

[372] Adrian Chapman and Steven T Flammia. Characterization of solvable spin models
via graph invariants. Quantum, 4:278, 6 2020.

[373] Yosi Atia and Dorit Aharonov. Fast-forwarding of Hamiltonians and exponentially
precise measurements. Nature communications, 8(1):1–9, 11 2017.

[374] Lindsay Bassman Oftelie, Roel Van Beeumen, Ed Younis, Ethan Smith, Costin Iancu,
and Wibe A. de Jong. Constant-depth circuits for dynamic simulations of materials
on quantum computers. Materials Theory, 6(1):13, 3 2022.

183



APPENDICES

184



Appendix A

Quantum computing preliminaries

A.1 Pauli strings and su(2n)

Length-n Pauli strings, when multiplied with the imaginary unit i, form a natural basis
for the Lie algebra u(2n) of skew-Hermitian matrices.

In this section, we review the notation and basic properties of Pauli strings.

Throughout the paper, we work with the Pauli matrices

σ0 = I =

(
1 0
0 1

)
, σ1 = X =

(
0 1
1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
,

including the identity matrix I, which form a basis for the real vector space of 2× 2 Her-
mitian matrices. We will denote by AT the transpose of a matrix, and by A† its Hermitian
conjugate (which is obtained from AT by taking complex conjugates of all entries). Thus,
A† = A for all A ∈ P1 := {I,X, Y, Z}. On the other hand, we have

Y T = −Y, AT = A for A = I,X, Z.

Fix a positive number n. Length-n Pauli strings are tensor products of n Pauli matrices
of the form

a = A1 ⊗ A2 ⊗ · · · ⊗ An, Aj ∈ P1. (A.1)

We denote the set of all such Pauli strings by Pn := {I,X, Y, Z}⊗n. Every a ∈ Pn is a
linear operator on the Hilbert space (C2)⊗n of n qubits, so a can be represented as a matrix
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of size 2n×2n (by the Kronecker product). In particular, I⊗n is the 2n×2n identity matrix.
The Hermitian conjugate and transpose of a Pauli string are done component-wise:

a† = (A1)† ⊗ (A2)† ⊗ · · · ⊗ (An)† = a,

aT = (A1)T ⊗ (A2)T ⊗ · · · ⊗ (An)T = (−1)#{Aj=Y }a.

All Pauli strings are Hermitian, and Pn is a basis (over R) of the vector space of 2n × 2n

Hermitian matrices.

To shorten the notation, we will often omit the tensor product signs in Pauli strings,
so Equation (2.6) will be written as a = A1A2 · · ·An. For example, we will write

XX = X ⊗X, XY = X ⊗ Y, Z · · ·Z = Z⊗n, etc.

For A ∈ P1 and 1 ≤ j ≤ n, we will denote by

Aj := I⊗(j−1) ⊗ A⊗ I⊗(n−j) (A.2)

the linear operator A acting on the j-th qubit. For example, for n = 3,

X1 = XII = X⊗I⊗I, Z2 = IZI = I⊗Z⊗I, X1Z2Y3 = XZY = X⊗Z⊗Y, etc.

With this notation, we distinguish

A1A2 · · ·An = AA · · ·A = A⊗ A⊗ · · · ⊗ A = A⊗n

from Equation (2.6), where in the latter the tensor factors A1, . . . , An are allowed to be
different.

When there is a danger to confuse the tensor product and the matrix product, we will
use · for the product of matrices. We have:

X · Y = iZ = −Y ·X, Y · Z = iX = −Z · Y, Z ·X = iY = −X · Z,

and each Pauli matrix squares to the identity:

X ·X = Y · Y = Z · Z = I.

The matrix product of Pauli strings is done component-wise:

(A1 ⊗ · · · ⊗ An) · (B1 ⊗ · · · ⊗Bn) = (A1 ·B1)⊗ · · · ⊗ (An ·Bn).

From here, it is easy to deduce the following important properties of Pauli strings.
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Lemma A.1.1. For any a, b ∈ Pn, we have a · a = I⊗n and a · b = ±b · a. Hence, any two
Pauli strings either commute or anticommute.

Notice that the product of two Pauli strings is again a Pauli string, up to a multiple of
±1,±i. Thus, the set {±a,±ia | a ∈ Pn} is a group under the matrix product, called the
Pauli group. The following corollary of Lemma A.1.1 will be useful in the future.

Corollary A.1.1. For any a, b ∈ Pn, if [a, b] := a · b− b · a ̸= 0, then [a, [a, b]] = 4b.

Proof. When [a, b] ̸= 0, we have [a, b] = 2a · b and [a, [a, b]] = 4a · a · b = 4b.

Another important consequence of Lemma A.1.1 is Euler’s formula

eiθa = (cos θ)I⊗n + i(sin θ)a, a ∈ Pn, θ ∈ R. (A.3)

A useful special case is θ = π/2; then

ei
π
2
a = ia, a ∈ Pn, (A.4)

which we also saw more generally defined in Equation (2.11) for idempotent matrices. Note
that any a ∈ Pn is Hermitian (i.e., a† = a), ia is skew-Hermitian (i.e., (ia)† = −ia), and
U = eiθa is unitary (i.e., UU † = I⊗n). We will also need the following corollary of Euler’s
formulas Equation (A.3), Equation (A.4).

Corollary A.1.2. For any anticommuting a, b ∈ Pn and a real number θ, we have

eiθa · b = b · e−iθa. (A.5)

In particular,
ei

π
4
a b e−iπ

4
a = ia · b. (A.6)

A.2 Projective measurements

Measurable quantities in quantum physics are given by observables, which are represented
by linear, self-adjoint operators acting on a complex Hilbert spaceH. The spectral theorem
states that a self-adjoint operator O can be decomposed into a linear combination of
eigenspace projectors and eigenvalues (we restrict ourselves to the case where H is finite).
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Let {|ψn⟩} be an eigenbasis of O such that O |ψn⟩ = rn |ψn⟩ with rn ∈ R. We can write
down orthonormal projectors onto the eigenspace of O

Πn = |ψn⟩⟨ψn| ,
so that

O =
∑

n

rnΠn,

where we assume O to have a non-degenerate spectrum. Note that Πn is idempotent, i.e.
Π2 = Π, and we have

Tr{ΠnΠm} = δmn, (A.7)

hence the projectors form an orthonormal basis.

Our interaction with a quantum system as observers come from the action of measure-
ment. Formally, this means that if we want to measure observable O on a state |ϕ⟩, the
probability of seeing eigenvalue

rm = Tr{ΠmO}, (A.8)

given a quantum state ϕ on our detector is given by the Born rule

p(rm) = ⟨ϕ|Πm |ϕ⟩ = |⟨ψm|ϕ⟩|2,
or in terms of a density matrix

p(rm) = Tr{Πρ}.
A projective measurement transforms a state as

|ψ⟩ 7→ Π |ψ⟩
⟨ψ|Π |ψ⟩ ,

or

ρ 7→ ΠρΠ

Tr{Πρ} ,

Given a measurement, we can estimate the average value of an observable under the dis-
tribution p(r)

⟨O⟩ = ⟨ϕ|O |ϕ⟩
=
∑

n

rn ⟨ϕ|Πn |ϕ⟩ =
∑

n

rnp(rn).
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We can also estimate the variance,

Var[O] = ⟨ψ|O2 |ψ⟩ − ⟨ψ|O |ψ⟩2 .

To estimate observables we define an estimator for the expectation value based on the
measurements we obtain. The sample mean estimator

f(O) =
1

Ns

Ns∑

i

r(i), r(i) ∼ p(r),

is an unbiased estimator of E[X] with p(r) the probability distribution over all eigenvalues
of O.

On a quantum computer, we typically only have access to a specific set of measurements,
which are given by the projectors {|0⟩⟨0| , |1⟩⟨1|} onto the eigenvectors of the Pauli Z ∈ P1

operator, with eigenvalues rn = ±1 respectively. A finite-size estimator would then be

⟨Z1⟩ ≈
1

Ns

Ns∑

i

r(i),

with p(r) = {|⟨ϕ|0⟩|2, |⟨ϕ|1⟩|2}.
Multi-qubit observables are often described with tensor products of operators, such as

Pauli strings (see Equation (A.2)). Consider ⟨Z1Z2⟩. We can decompose the operator Z1Z2

as

Z1 ⊗ Z2 =

(∑

n

rnΠn

)
⊗
(∑

m

r′mΠm

)

=
∑

n,m

rnr
′
mΠn ⊗ Πm,

which gives for the expectation value

⟨Z1Z2⟩ =
∑

n,m

rnr
′
m ⟨ϕ|Πn ⊗ Πm |ϕ⟩ =

∑

n,m

rnr
′
mp(rn, rm).

Hence, the final estimator is an estimator for the product of eigenvalues rnrm

⟨Z1Z2⟩ ≈
1

Ns

Ns∑

i

r(i)r′(i) ·mj,2.
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If we look at the variance of this estimator

Var(Z1Z2) = ⟨ψ| (Z1Z2)
2 |ψ⟩ − ⟨ψ|Z1Z2 |ψ⟩2

= 1− ⟨Z1Z2⟩2 ,
because (Z1Z2)

2 = I and ⟨ψ|ψ⟩ = 1.

In order to measure in a basis different from the computational basis, we need to
appropriately transform the states prior to measurement to gather statistics. For measuring
Z1 we do not need to do anything:

|0⟩⊗n
U

To measure X and Y , we need to transform the basis vectors of Z, to the eigenbases
of X and Y , respectively. These are given by

vX1 =

{
1√
2

(|0⟩+ |1⟩), 1√
2

(|0⟩ − |1⟩)
}
≡ {|+⟩ , |−⟩}

vY1 =

(
1√
2

(|0⟩+ i |1⟩), vY2 =
1√
2

(|0⟩ − i |1⟩)
)
.

We see that applying the Hadamard gate H to the basis of Z gives

H |0⟩ = |+⟩
H |1⟩ = |−⟩ ,

which produces the eigenbasis vectors of X

|0⟩⊗n
U

H

For Y , we need to apply a phase gate S† in addition to Hadamard gate:

S†H |0⟩ = S† |+⟩ =
1√
2

(|0⟩+ i |1⟩)

S†H |1⟩ = S† |−⟩ =
1√
2

(|0⟩ − i |1⟩),
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where

S =

(
1 0
0 i

)
.

This gives the circuit

|0⟩⊗n
U

H S†

A.3 Informationally Complete POVMs

Determining what quantum state one has prepared on a device, a process known as quan-
tum tomography, is a crucial task in building a functional quantum computer. In order to
reconstruct a state, we need to measure it and one can use a particular set of measurements
called positive operator valued measure to fully reconstruct a state.

A POVM is a set of operators {Ma}a with Ma ≥ 0 that satisfies the condition
∑

a

Ma = I.

A POVM is informationally complete if {Ma}a spans L(HS). As opposed to the projective
measurements in Appendix A.2, the measurements Ma are not necessarily orthogonal,

∑

a,a′

Tr {MaMa′} ≠ δaa′I,

in contrast with Equation (A.7).

Let {Mai}ai be a POVM that acts on a single-qubit Hilbert space. We can define a
factorable POVM as a tensor product of single-qubit POVM elements as

Ma = Ma1 ⊗ . . .⊗MaN ,

for a := (a1, . . . aN). Clearly, if all Mai are informationally complete, then so is Ma. An
example of an informationally complete POVM is the Pauli-6 POVM, which is defined as

{Ma}Pauli-6a :=
⋃

i=x.y,z

{
1

3
|↑i⟩⟨↑i| ,

1

3
|↓i⟩⟨↓i|

}
,
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where the vectors |↑i⟩ , |↓i⟩ correspond to the eigenvectors of the Pauli operators with eigen-
value ±1 respectively. We can implement this POVM by rotating to the Pauli basis with
probability 1/3. For the {X, Y, Z} Paulis this means applying the gates {H,HS, I} where
H is a Hadamard, S is a Z-phase and I the identity gate, respectively (see Appendix A.2).
Measuring in the computational basis, then produces outcomes a according to the Pauli-6
POVM.
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Appendix B

Additional details for the
Hamiltonian Variational Ansatz

B.1 Computational Details

For the implementation of our quantum circuits, we use Zyglrox [362], a powerful TensorFlow-
based quantum simulator. For the classical optimization process, we use Adam (adaptive
moment estimation) [334], a gradient descent-based optimizer, which is widely used in the
machine learning community. Compared to vanilla gradient descent and its other variants,
Adam updates the learning rates adaptively on a per-parameter basis by using estimates
of the first and second moments of the gradients. In our own investigation for solving the
ground energy problem with HVA, Adam outperformed all the other optimizers available
in TensorFlow, with respect to fidelity and convergence times.

Unless stated otherwise, the stopping criterion for our optimization is defined as

|E(θt)− E(θt+1)| < 10−13,

where t is the iteration number. The maximum number of iterations is set to 15000. We
use an initial learning rate r = 0.01 for Adam which gives reasonably consistent results
across all the models. Through our own investigation into initial Adam learning rates, we
found a learning rate 10−3 ≤ r ≤ 4 × 10−2 to be a good choice for the optimization for
both the TFIM and the XXZ models, as it balances optimization accuracy and convergence
speed.
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B.2 Dynamics of Entanglement Entropy during Op-

timization

To further elucidate the difference in initialization strategies we qualitatively study the
dynamics of the entanglement entropy during optimization. In Figures B.1 and B.2, we
calculate the entanglement entropy of ρA at each layer of the circuit during the optimiza-
tion. Although not much can be said about the intermediate states for the random state
initialization, except that they are highly entangled, the entanglement entropy dynamics
for the identity initialization have a distinct structure that is consistent as we increase the
system size. In Figure B.3, we compare the scaling of the entanglement entropy for the
identity start halfway through the circuit for different system sizes.
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Figure B.1: Dynamics of entanglement entropy at each layer during optimization
(TFIM). Each separate line indicates the entanglement entropy of the state in layer l. The
gray dashed line denotes the maximum possible entanglement and the purple line gives the
Page entropy. For all figures, the final state is a > 99.9% fidelity state. (a) Identity
initialization for an 8-qubit TFIM with g = 1.0 and L = 4. (b) Same TFIM with a
random-state initialization and overparameterization L = 8.
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(b) XXZ model L = 8

Figure B.2: Dynamics of entanglement entropy at each layer during optimization
(XXZ). Each separate line indicates the entanglement entropy of the state in layer l. The
gray dashed line denotes the maximum possible entanglement and the purple line gives the
Page entropy. For all figures, the final state is a > 99.9% fidelity state. (a) Random-state
initialization for an 8-qubit XXZ model with ∆ = 1.0 and L = 4. (b) Typical XXZ model
dynamics for a random-state initialization and overparameterization L = 8.

196



5.0 7.5 10.0 12.5 15.0
n

0.6

0.8

1.0

S
(ρ
A

)

Layer = L/2

Layer = L

(a) TFIM g = 1.0

5.0 7.5 10.0 12.5 15.0
n

1.0

1.5

2.0

2.5

S
(ρ
A

)

Layer = L/2

Layer = L

(b) TFIM g = 0.5

5.0 7.5 10.0 12.5 15.0
n

0.6

0.8

1.0

1.2

S
(ρ
A

)

Layer = L/2

Layer = L

(c) XXZ model ∆ = 0.5

5.0 7.5 10.0 12.5 15.0
n

0.6

0.8

1.0

1.2

S
(ρ
A

)

Layer = L/2

Layer = L

(d) XXZ model ∆ = 1.0

Figure B.3: Scaling of the entanglement entropy of the converged state after
L/2 and L layers. (a) For the TFIM at the critical point, the ground state entangle-
ment entropy has a logarithmic correction with increasing n. The entanglement halfway
through the circuit is larger than in the final layer. (b) For a non-critical point, the ground
state entanglement entropy is constant, but the entanglement entropy halfway through the
circuit scales linearly with system size. (c)-(d) For the XXZ model, in addition to the log-
arithmic scaling of the entanglement entropy, the final layer entanglement is consistently
higher than in the L/2 depth layer.

197



Appendix C

Additional details for
measurement-induced entanglement
phase transitions in quantum
gradients

C.1 Finite-scaling analysis and data collapse

The correlation length ξ of a system quantifies the length scale over which parts of a system
are correlated. When a system undergoes a continuous phase transition, the correlation
length diverges. Phase transitions only occur in the thermodynamic limit, and hence
simulations of finite-sized systems will contain artifacts that have to be accounted for in
order to capture the correct behavior [363]. In particular, for a finite system the correlation
length ξ cannot become infinite and is cut off at ld, the volume of a finite d-dimensional
hypercube with edges of length l. To account for this effect, we can perform a finite-scaling
analysis.

The entanglement entropy as a function of measurement rate is conjectured to follow
a volume law for p < pc, a constant plus logarithmic correction at p = pc and area law for
p > pc [85, 86, 89]. We can therefore construct a scaling form of the entanglement entropy
as

S(n, p, ν) = S(n, pc, ν) + f(n1/ν(p− pc)), (C.1)
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where S(n, p, ν) denotes the von Neumann entropy at measurement rate p and f is a scaling
function. The critical exponent ν determines the scaling of the entanglement entropy near
pc. If this scaling form is correct, we should be able to account for finite-size effects and
all the data can be appropriately rescaled to match a single curve representing f with a
proper choice of ν.

To determine the critical exponents, we fit a 5th-degree polynomial g to our data using
a Nelder-Mead optimization [364] and minimize the χ2-statistic

χ2 =
∑

i

(S(ni, pi, ν)− S̃(ni, pi, ν))2

∆S
.

Here, S̃(ni, pi, ν) is estimated from the data and S(ni, pi, ν) is the proposed scaling form
from Equation (C.1). ∆S is the standard deviation of the von Neumann entropies which
arises due to the fluctuations induced by the randomized measurements and their outcomes.
From the unscaled data, we determine a set of potential critical points pc and fit the above
χ2-statistic to determine ν. We then report the values of pc and ν that provided the best
fit.

To verify the stability of the fit, we perform a statistical bootstrapping procedure to
estimate the error bars on the fitted critical exponent ν. We take Kboot = 100, where each
data set consists of K samples obtained by sampling from the entire data set of 3 × 103

data points with replacement. The final obtained error bars on ν are ≈ 0.01.

We can extrapolate our result to the thermodynamic limit by fitting the data for n′ =
nmax/2 to n′ = nmax and plotting the resulting values for ν against 1/n′ [85]. By doing a
linear fit on the resulting data, we obtain

ν̃(n′) = a
1

n′ + b,

and so the intercept b corresponds to the value of ν in the thermodynamic limit, since
limn′→∞ 1/n′ = 0. When fitting the data, we weigh the errors by the standard errors
obtained in the statistical bootstrap described above.
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C.2 Mutual information

The quantum mutual information can be used to quantify subsystem correlations, and sub-
sequently detect phase transitions since we expect correlations to divergence at criticality
[85, 86, 88]. As additional confirmation that the critical values pc estimated from the prior
analysis are correct, we calculate the quantum mutual information as,

I(A,B) = SA(n, p) + SB(n, p)− SA∪B(n, p).

Here, we take the same approach as in [86], and take A and B to be two single qubit
subsystems |A| = 1 and |B| = 1. We then vary the distance r between qubit A and B,
to determine the effect of the distance on the subsystem correlations. In Figure C.1, we
observe two broad peaks around the previously found values pc ≈ 0.25 and pc ≈ 0.5 for
the XXZ-HVA and HAA, respectively.
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Figure C.1: Quantum mutual information between two qubits A and B separated
by a distance r on a chain of length 16. The mutual information is averaged over
3×103 samples, where each sample corresponds to a random circuit realization, as described
in the main text.
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C.3 Projective gradients

We consider the parameterized quantum circuit of Equation (2.5),

|ψ(θ)⟩ =

←−
L∏

l=1

Ul(θl) |0⟩ ,

where we take θl ∈ R without loss of generality. Additionally, we consider the case where
after each layer Ul(θk) we apply a projective measurement Πl, where Πl = Πl,0 ⊗ . . . ⊗
Πl,n with Πl,i ∈ {|0⟩⟨0| , |1⟩⟨1| , I}. We denote by ρL the state resulting from applying L
projectors Π to the circuit. Similarly, we denote by pL the probability of obtaining the
state ρL (see Appendix A.2).

Consider an initial state ρ0 = |0⟩⟨0|⊗n, to which we apply the unitary U1(θ1) followed
by a projective measurement Π1,

ρ1(θ1) =
Π1U1(θ1)ρ0U

†
1(θ1)Π1

Tr
{

Π1U1(θ1)ρ0U
†
1(θ1)Π1

}

=
Π1U1(θ1)ρ0U

†
1(θ1)Π1

p1(θ1)
.

Next, we add a unitary and measurement,

ρ2(θ1, θ2) =
Π2U2(θ2)ρ1(θ1)U

†
2(θ2)Π2

Tr
{

Π2U2(θ2)ρ1(θ1)U
†
2(θ2)Π2

}

=
Π2U2(θ2)Π1U1(θ1)ρ0U

†
1(θ1)Π1U

†
2(θ2)Π2

Tr
{

Π2U2(θ2)Π1U1(θ1)ρ0U
†
1(θ1)Π1U

†
2(θ2)Π2

} × p1(θ1)

p1(θ1)

=
Π2U2(θ2)Π1U1(θ1)ρ0U

†
1(θ1)Π1U

†
2(θ2)Π2

p2(θ1, θ2)
.

Note how the normalization constant of ρ1(θ1) cancels. Generalizing this to L projectors,
we get the general form

ρL(θ1, . . . , θL) =



←−
L∏

l=1

ΠlUl(θl)


 ρ0



−→
L∏

l=1

U †
l (θl)Πl


 p−1

L (θ1, . . . , θL)

= ρ̃L(θ1, . . . , θL)p−1
L (θ1, . . . , θL),
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where

ρ̃L(θ1, . . . , θL) =



←−
L∏

l=1

ΠlUl(θl)


 ρ0



−→
L∏

l=1

U †
l (θl)Πl


 ,

pL(θ1, . . . , θL) = Tr {ρ̃L(θ1, . . . , θL)} ,

are the unnormalized state and its normalization constant, respectively. To simplify the
notation, we will write θ ≡ (θ1, . . . , θL).

We are interested in the derivative of the variational energy of Equation (2.9)

E(θ) = Tr {ρL(θ)H} ,

where H is a Hermitian operator. We write the state as the product of an unnormalized
state and its normalization constant

Tr {ρL(θ)H} = Tr
{
ρ̃L(θ)p−1

L (θ)H
}
.

Hence, the derivative consists of two parts via the product rule

∂θkE(θ) =

(i)︷ ︸︸ ︷
Tr
{
∂θk (ρ̃L(θ)) p−1

L (θ)H
}

+

(ii)︷ ︸︸ ︷
Tr
{
ρ̃L(θ)∂θk

(
p−1
L (θ)

)
H
}
.

(i) For the derivative of the unnormalized state, we get

Tr {(∂θk ρ̃L(θ))H} = ⟨0|



−→
L∏

l=1

U †
l (θl)Πl


H



←−−

L∏

l=k+1

ΠlUl(θl)


Πk∂θkUk(θk)



←−
k−1∏

l=1

ΠlUl(θl)


 |0⟩

+ ⟨0|



−→
k−1∏

l=1

U †
l (θl)Πl


 ∂θkU

†
k(θk)Πk



−−→

L∏

l=k+1

U †
l (θl)Πl


H



←−
L∏

l=1

ΠlUl(θl)


 |0⟩

=
〈
ψ̃0

∣∣∣U †
k(θk)H̃∂θkUk(θk)

∣∣∣ψ̃0

〉
+
〈
ψ̃0

∣∣∣ ∂θkU †
k(θk)H̃Uk(θk)

∣∣∣ψ̃0

〉
,

where

∣∣∣ψ̃0

〉
=



←−
k−1∏

l=1

ΠlUl(θl)


 |0⟩ , (C.2)
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is an unnormalized state and

H̃ = Πk



−−→

L∏

l=k+1

U †
l (θl)Πl


H



←−−

L∏

l=k+1

ΠlUl(θl)


Πk. (C.3)

If U(θk) is generated by a Pauli string A (see Appendix A.1), then ∂θkUk(θk) = − i
2
AUk(θk)

and so we can use the parameter-shift rule [30, 31]

− i
2

〈
ψ̃0

∣∣∣
[
A,U †

k(θk)H̃Uk(θk)
] ∣∣∣ψ̃0

〉
=

1

2

〈
ψ̃0

∣∣∣U †(θk +
π

2
)H̃U(θk +

π

2
)− U †(θk −

π

2
)H̃U(θk −

π

2
)
∣∣∣ψ̃0

〉
,

(C.4)

which we derived in Equation (2.12).

If the expectation values in Equation (C.4) were with respect to properly normalized
states, then this would provide a strategy for measuring the projective gradient. Hence, we
need to first normalize the state in order to be able to perform the gradient calculation on
the device. The normalization constants for the plus and minus shifted circuits are given
by

p±,k
L ≡

〈
ψ̃0

∣∣∣U †(θk ±
π

2
)Π̃U(θk ±

π

2
)
∣∣∣ψ̃0

〉
, (C.5)

where

Π̃ = Πk



−−→
k−1∏

l=k+1

U †
l (θl)Πl


U †

L(θL)ΠLUL(θL)



←−−
k−1∏

l=k+1

ΠlUl(θl)


Πk,

is obtained by setting H → I in Equation (C.3). If we multiply with the identity

Tr {(∂θk ρ̃L(θ))H} =
1

2

〈
ψ̃0

∣∣∣
(
U †(θk +

π

2
)H̃U(θk +

π

2
)× p+,k

L

p+,k
L

− U †(θk −
π

2
)H̃U(θk −

π

2
)× p−,k

L

p−,k
L

) ∣∣∣ψ̃0

〉
(C.6)

=
1

2

(
E(θ)+,kp+,k

L − E(θ)−,kp−,k
L

)
. (C.7)

Here, E(θ)±,k is the expectation value of the observableH after the measurements {Π1, . . . ,ΠL}
have been applied and parameter θk has been shifted by ±π/2.
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(ii) For the gradient of the inverse of the normalization constant, we get

Tr
{
ρ̃L(θ)

(
∂θkp

−1
L (θ)

)
H
}

= −E(θ)p−1
L (θ)∂θkpL(θ),

where we used the normalization constant to write Tr
{
ρ̃L(θ)p−1

L (θ)H
}

= E(θ), the ex-
pectation value of H with respect to the measured circuit. The final step is to calculate
∂θkpL(θ):

∂θkpL(θ) = Tr {∂θk ρ̃L(θ)}

= ⟨0|



−→
L−1∏

l=1

U †
l (θl)Πl


U †

L(θL)ΠLUL(θL)



←−−
L−1∏

l=k+1

ΠlUl(θl)


Πk∂θkUk(θk)

×



←−
k−1∏

l=1

ΠlUl(θl)


 |0⟩+ ⟨0|



−→
k−1∏

l=1

U †
l (θl)Πl


 ∂θkU

†
k(θk)Πk



−−→
L−1∏

l=k+1

U †
l (θl)Πl




× U †
L(θL)ΠLUL(θL)



←−
L−1∏

l=1

ΠlUl(θl)


 |0⟩

=
〈
ψ̃0

∣∣∣U †
k(θk)Π̃L∂θkUk(θk)

∣∣∣ψ̃0

〉
+
〈
ψ̃0

∣∣∣ ∂θkU †
k(θk)Π̃LUk(θk)

∣∣∣ψ̃0

〉
,

where

Π̃L = Πk



−−→
k−1∏

l=k+1

U †
l (θl)Πl


U †

L(θL)ΠLUL(θL)



←−−
k−1∏

l=k+1

ΠlUl(θl)


Πk,

and
∣∣∣ψ̃0

〉
is the same as in Equation (C.2). Again, we can apply the parameter-shift rule

to obtain

∂θkpL(θ) =
1

2

(〈
ψ̃0

∣∣∣U †(θk +
π

2
)Π̃LU(θk +

π

2
)− U †(θk −

π

2
)Π̃LU(θk −

π

2
)
∣∣∣ψ̃0

〉)
.

But these expectation values are simply the normalization constants p±,k
L of Equation (C.5),

hence the final result becomes

Tr
{
ρ̃L(θ)

(
∂θkp

−1
L (θ)

)
H
}

= −E(θ)
1

2

(
p+,k
L

pL
− p−,k

L

pL

)
.
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Combining (i) and (ii) we finally obtain the projective gradient:

∂θkE(θ) =
1

2

(
(
E(θ)+,k − E(θ)

) p+,k
L

pL
−
(
E(θ)−,k − E(θ)

) p−,k
L

pL

)
.

To calculate these projective gradients and produce Figure 2.13 in the main text, we use
the TensorFlow-based quantum simulator Zyglrox [362]. Note that in practice, estimating
these gradients will be exponentially difficult due to the ratio p−,k

L /pL.

C.4 A practical optimization algorithm with projec-

tive measurements

Any state ρL(θ) is weighted by two probabilities: a classical and quantum probability. The
former is the result of flipping a coin with probability p after each layer for each qubit, which
results in a measurement configuration. The latter is the quantum probability (obtained
via the Born rule) of measuring an outcome of the particular measurement configuration,
which we’ve denoted by pL(θ).

We can denote the classical probability of a measurement configuration in layer l with

s
(cl)
l =

n∏

j=1

pI(cl,j=0) (1− p)I(cl,j=1),

where cl,j = 0 indicates that we perform a measurement and cl,j = 1 indicates that we
do not. The tuple cl = (cl,1, . . . , cl,n) thus labels a measurement setting in layer l. The
total probability over all layers is then given by the product of these individual layer-wise
probabilities:

s(c) =
L∏

l=1

s
(cl)
l .

The tuple c = (c1, . . . , cL) then labels a possible measurement setting.

After choosing a measurement setting, we run the circuit and perform the measure-
ments. This results in a set of outcomes i = (i1, . . . , iL), where il = (il,1, . . . , il,n) indicates
the outcomes per layer. The integer il,j ∈ {0, 1, 2} with j = 1, . . . , n indicates the measure-
ment of |0⟩⟨0|, |1⟩⟨1| and the identity operator, respectively. We now explicitly denote with

205



ρL(i, c,θ) the state resulting from a particular measurement setting, and with pL(i|θ; c)
the probability of obtaining a particular outcome i, given a measurement setting c.

If we remix the resulting pure states ρL(i, c,θ) according to the classical probability
s(c) and quantum probability pL(i|θ; c) into a single density matrix, we obtain

ρ =
∑

i,c

s(c)pL(i|θ; c)(θ)ρL(i, c,θ).

We can calculate a variational energy with respect to this density matrix as

Eint(θ) =
∑

i,c

s(c)pL(i|θ; c)(θ)Tr {ρL(i, c,θ)H} , (C.8)

where H is a Hermitian operator. Clearly Eground ≤ Eint(θ). Calculating the gradient of
Equation (C.8) involves calculating the gradient for all individual states in the mixture.
Note that the mixture in Equation (C.8) can be written as a sum of unnormalized states

Eint(θ) =
∑

i,c

s(c)pL(i|θ; c)(θ)Tr
{
ρ̃L(i, c,θ)p−1

L (i|θ; c)H
}

=
∑

i,c

s(c)Tr {ρ̃(i, c,θ)H} .

From Equation (C.7) we then see immediately that the gradient of the mixed state is then
given by

Tr {(∂θkρ)H} =
∑

i,c

s(c)

2

(
E(θ)+,lp+,l

L (i|θ; c)− E(θ)−,lp−,l
L (i|θ; c)

)
. (C.9)

Hence, the estimator for the gradient corresponds to the average expectation value over
intermediate measurements done on parameter-shifted circuits weighted by p±,l

L (i|θ; c) and
the classical probability s(c). Therefore, the projective gradients can be estimated by
obtaining statistics from the measurements done on the parameter-shifted circuits. Given
a number of shots Ns, the gradient of Equation (C.9) can be obtained with Algorithm 4.
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Algorithm 4: Algorithm to obtain the gradient of Equation (C.9)

Input: ρ0, U(θ),H, p, Ns, θk
h+,k ← 0
h−,k ← 0
for n ∈ (1, . . . , Ns) do

Create measurement configuration for l ∈ (1, . . . , L) do
for j ∈ (1, . . . , n) do

cl,j ∼ Ber(p)

θk ← θk + π/2
Run U(θ) with measurement setting c, obtain outcomes i and ρ+,l

L (i|θ; c).
Measure H and obtain eigenvalue h
h+,k ← h+,k + h
θk ← θk − π
Run U(θ) with measurement setting c, obtain outcomes i′ and ρ−,k

L (i′|θ; c).
Measure H and obtain eigenvalue h′

h−,k ← h−,k + h′

Output: 1
2
(h+,k − h−,k)
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C.5 Data collapse of the projective gradients

To observe the phase transition in the variance of the projective gradients of Figure C.2,
we perform a data collapse of the following quantity:

log

(
Var

[
∂ZZ

∂θ0

] ∣∣∣∣
n,p

)
= log

(
Var

[
∂ZZ

∂θ0

] ∣∣∣∣
n,pc

)
+ g(n1/ν(p− pc)).

We use the same method as in Appendix C.1. The resulting data collapse can be seen in
Figure 2.13.
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Figure C.2: Data collapse for the projective gradients at pc = 0.25 and pc = 0.5 for
the XXZ-HVA and HAE circuits, respectively. Since the data shown in Figure 2.13
is noisy, the data collapse is not as clean, especially for the XXZ-HVA circuit. However,
we still find critical exponents that are close to the ones obtained from the entanglement
entropy scaling collapse, with ν ≈ 1.31 and ν ≈ 1.5, respectively.
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Appendix D

Additional details for
Quantum-Classical-Quantum
interfaces

D.1 Interfaces for hybrid classical-quantum circuits

with Frames

Here we give a more formal presentation of the mathematical background of our algorithm
in the language of frames.

Preliminaries

We consider an n-qubit system S of Hilbert space HS , and denote the space of bounded,
linear operators on HS by L(HS). We now consider the notion of a frame, which gener-
alizes the notion of basis [141, 142]. For our purposes, a frame FS for L(HS is any set
FS := {Ma}a of Hermitian operators Ma that spans L(HS). Such a (in general linearly-
dependent) spanning set is sometimes referred to as over-complete basis of L(HS). In turn,
a frame DS := {M̃a}a s.t.

I =
∑

a

∣∣∣M̃a

)
(Ma| , (D.1)
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where I is the identity map on L(HS), is called dual to FS (and we then refer to FS as the
primal to DS). In Equation (D.1), the identity channel is written in the so-called Liouville
or transfer matrix representation. That is, the round kets and bras denote 22N -dimensional
column and row vectors, respectively, representing operators in L(HS) and their Hermi-
tian adjoints. Accordingly, (A| B) denotes the Hilbert-Schmidt inner product Tr[A†B] in
L(HS). This is a popular notation in quantum information [365, 141, 142] that will be
used here interchangeably with the (more usual) operator notation upon convenience.

We take throughout Ma ≥ 0 for all a and
∑

aMa = IS , with IS the identity operator
on HS , so that FS is a positive operator-valued measure (POVM) on HS . POVMs define
generalized (i.e. beyond von Neumann) measurements [28, 152]. This, together with
Equation (D.1), allows us to express any density operator ρ ∈ L(HS) as

|ρ) =
∑

a

Pρ(a)
∣∣∣M̃a

)
, (D.2)

where Pρ(a) := (Ma| ρ) is the probability of measurement outcome a on ρ. Equation (D.2)
is the basis of classical-shadow tomography, a powerful technique to get compact classical
representations of states from measurements [153, 140].

Note that Ma ≥ 0 for all a implies M̃a ≱ 0 in general [141, 142]. In addition, it will be
useful to express the dual frame elements as affine combination of elements of FS ,

∣∣∣M̃a

)
=
∑

a′

Ta,a′ |Ma′) ,∀a, (D.3)

for some adequately chosen T. With this parametrization, the primal- and dual-frame over-

lap matrices T and T̃ , respectively defined as Ta,a′ := (Ma|Ma′) and T̃a,a′ :=
(
M̃a

∣∣∣ M̃a′

)
,

are related as T̃ = TT T.

An experimentally convenient choice of FS and DS is Ma = Ma1 ⊗ . . . ⊗ Man and
M̃a = M̃a1 ⊗ . . . ⊗ M̃an , for a := (a1, . . . an). Here, Maj is the j-th element of a single-

qubit POVM frame and M̃aj that of the corresponding dual frame. We refer to these as
factorable frames. By virtue of Eqs. (D.2) and (D.3), these allow one to express any ρ
as an affine combination of product states σa := Ma/ta, where ta := Tr[Ma] [46]. This
fact has been used to reconstruct quantum states [46], processes [155], and overlaps [156]
from single-qubit measurements. Additionally, this has been used to simulate quantum
circuits [157] with generative machine learning models, where T was taken as the canonical
pseudo-inverse of T . However, other choices of T are possible. It can be seen (see App.
Appendix D.1.1) that Equation (D.3) defines a dual to FS iff Ta,a′ ∈ R,

∑
a Ta,a′ = 1, and

T = T TT. (D.4)
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In general, the elements of T can be positive or negative. As shown below, the negativity
of T governs the sample complexity of Monte Carlo estimations of expectation values
of observables. Finally, note also that if T fulfills Equation (D.4), necessarily so does
T̃ = TT T (T̃ and T collapsing to each other for the canonical choice of T being a pseudo-
inverse of T ).

Interfaces for hybrid classical-quantum circuits

Our goal is to simulate quantum circuits using hybrid classical-quantum ones. More pre-
cisely, we are given an observable O, an n-qubit input state ρ0 := |0⟩⟨0|, and a target
circuit C := {Uk}k∈[f ], with f ∈ N single- or two-qubit unitary gates Uk. We denote by
sk ⊂ S the subset of qubits on which Uk acts, and by ask a corresponding sub-string of
measurement outcomes on sk. In addition, we use the shorthand notations sk := S \ sk for
the qubits on which Uk does not act and Isk for the identity on Hsk . From the f gates,
l < f are particularly experimentally demanding for NISQ implementations, and they are
marked by the set of labels L := {k1, k2, . . . kl}. The case we explicitly study below is that
of two-qubit gates on qubits far apart in the connectivity graph in question. However,
other relevant cases may be due to error mitigation convenience or other hardware-specific
limitations, e.g. Either way, our goal is to estimate the expectation value Tr[ρK O] of O
on the output state ρK := Uf . . . U1 ρ0 U

†
1 . . . U

†
f by substituting every Uk with k ∈ L by a

classical simulation of it.

Our main tool to achieve this are interfaces between quantum objects and their (clas-
sical) frame representations. The first one is based on Equation (D.2).

Definition D.1.1 (Quantum-classical interfaces). We refer as a QC interface on sk to the
assignment of a classical snapshot M̃ask

to sk according to the measurement outcome ask

of a factorable POVM frame Fsk on a state ρ ∈ HS , occurring with probability Pρ(ask) =
(Isk |(Mask

|ρ).

The second one is the reverse interface, which simulates M̃ask
as a linear combination

of states σbsk := Mbsk
/tbsk . This is done by importance-sampling bsk from T̃ (Isk ), given

ask , with T̃ (Isk ) the dual-frame overlap matrix on sk. To see this, we apply on |M̃ask
) the

Hermitian conjugate of Equation (D.1) and get |M̃ask
) =

∑
bsk

T̃
(Isk )
ask

,bsk
tbsk |σbsk ). Then,

using a standard trick, we rewrite

T̃
(Isk )
ask

,bsk
=:
∥∥∥T̃ (Isk )

ask

∥∥∥
1
PIsk (bsk |ask) sgn

(
T̃

(Isk )
ask

,bsk

)
, (D.5)
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where T̃
(Isk )
ask

is a shorthand notation for the vector given by the ask-th row of T̃ (Isk ),∥∥∥T̃ (Isk )
ask

∥∥∥
1

:=
∑

bsk

∣∣T̃ (Isk )
ask

,bsk

∣∣ its l1-norm, and PIsk (bsk |ask) :=
∣∣∣T̃ (Isk )

ask
,bsk

∣∣∣/
∥∥∥T̃ (Isk )

ask

∥∥∥
1
.

By construction, PIsk (◦|ask) is a valid probability distribution, from which bsk can be

sampled. This can be used to quantum Monte Carlo simulate M̃ask
[145].

Definition D.1.2 (Classical-quantum interface). We refer as CQ interface on sk to the
repreparation of sk in the state σbsk , with probability PIsk (bsk |ask), given a classical snap-

shot M̃ask
. Each sampled duple (ask , bsk) is assigned the value

∥∥∥T̃ (Isk )
ask

∥∥∥
1
tbsk sgn

(
T̃

(Isk )
ask

,bsk

)
.

The third and final ingredient integrates QC and CQ interfaces with a classical sim-
ulation of Uk. We denote by Uk the superoperator representing the action of the unitary
Uk on L(HS). Multiplying Uk from the right by Equation (D.1) and from the left by the

Hermitian conjugate of Equation (D.1), we get Uk =
∑

ask
,bsk
|Mbsk

) T̃
(Uk)
bsk ,ask

(Mask
|, where

T̃
(Uk)
bsk ,ask

:= (M̃bsk
| Uk |M̃ask

). With this, we get

Uk |ρk−1) =
∑

a,a′

T̃
(Uk)
ask

,bsk
tbsk |σbsk ) (Mask

|ρk−1), (D.6)

where ρk−1 = Uk−1 . . . U1 ρ0 U
†
1 . . . U

†
k−1. That is, the action of Uk is absorbed into the

repreparation by sampling from T̃ (Uk) instead of T̃ (Isk ). This leads to:

Definition D.1.3 (Quantum-classical-quantum interface). We refer as a QCQ interface
for Uk on sk to the measurement of Fsk , with outcome ask , followed by the repreparation

of σbsk with probability PUk
(bsk |ask) :=

∣∣∣T̃ (Uk)
ask

,bsk

∣∣∣/
∥∥∥T̃ (Uk)

ask

∥∥∥
1
. Each sampled duple (ask , bsk)

is assigned the value vask
,bsk

:=
∥∥∥T̃ (Uk)

ask

∥∥∥
1
tbsk sgn

(
T̃

(Uk)
ask

,bsk

)
; and the corresponding inter-

face realized in such experimental run is thus mathematically represented by the operator
Vk(ask , bsk) := vask

,bsk
|σbsk )(Mask

|.

Our hybrid-circuit simulation then applies on ρk−1 the gate Uk if k /∈ L, but a QCQ
interface for Uk instead if k ∈ L. Introducing the terminology

Wk(ask , bsk) =

{
Uk, if k /∈ L,
Vk(ask , bsk), if k ∈ L, (D.7)
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and using the fact thatO is Hermitian, we can express the target expectation value Tr[ρK O]
as

(O| ρK) =
∑

αsL

(O|
f∏

k=1

Wk(ask , bsk)|ρ0), (D.8)

with the shorthand notation αsL := (askl
, bskl , . . . ask1

, bsk1 ).

Equation (D.8) can be experimentally estimated through an average O∗
Ms

over Ms ∈ N
runs. Ms is chosen to guarantee that the statistical error and significance level (failure
probability) of the estimation are respectively given by target values ε and δ. We refer to
Ms as sample complexity of the protocol and its explicit value is given in Theorem 2.4.1
below.

The procedure is sketched by the following pseudocode.

Algorithm 5: Hybrid classical-quantum simulation with QCQ interfaces.

Input: ρ0, C, O, ε, δ
Output: O∗

Ms
s.t.

∣∣O∗
Ms
− Tr

[
O ρK

]∣∣ ≤ ε with probability at least 1− δ.
Initialize O∗

Ms
= 0, v = 1, and Ms as in Equation (D.10).

for m ∈ (1, . . . ,Ms) do
for k ∈ (1, . . . , f) do

if k ∈ L then
Apply a QCQ interface for Uk on qubits sk, obtaining the duple
(ask , bsk);
v ← v × vask

,bsk
, with vask

,bsk
as in Definition D.1.3.

else
Apply the gate Uk on qubits sk.

Measure O, obtaining the measurement outcome (eigenvalue of O) o;
O∗

Ms
← O∗

Ms
+ o× v.

O∗
Ms
← O∗

Ms

Ms
.

To quantify the runtime of the algorithm, we define the interface negativity of the gate
Uk and the total forward interface negativity of the entire circuit C respectively as

NUk
:= max

ask
,bsk

∥∥∥T̃ (Usk
)

ask

∥∥∥
1
tbsk and N→ :=

∏

k∈L
NUk

. (D.9)

This allows us to state the following theorem.
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Theorem D.1.1. [Correctness and sample complexity] The finite-statistics average O∗
Ms

of Algorithm 5 is an unbiased estimator of Tr[ρK O] (See Appendix D.2). Moreover, if

M ≥ N 2
→ ×

2 ∥O∥2 log (2/δ)

ε2
, (D.10)

with ∥O∥ the operator norm of O, then, with probability at least 1− δ, the statistical error
of O∗

Ms
is at most ε.

The proof follows straightforwardly from the Hoeffding bound. We note that the fac-

tor 2 ∥O∥2 log (2/δ)
ε2

in Equation (D.10) is the equivalent sample complexity bound one would
obtain if Tr[ρK O] was estimated from measurements on the actual state ρK . Hence, N 2

→
quantifies the runtime overhead introduced by the interfaces. In that regard, the inter-
face negativities play the same role in our hybrid classical-quantum simulation as the
negativities of Ref. [145] in fully classical simulations with quasi-probability representa-
tions. An innovative and advantageous feature of Equation (D.9) is the presence of the
POVM-element trace tbsk in NUk

, which comes from the state repreparation. Indeed, since
tbsk < 1, the NUk

’s (and therefore also N→) are significantly smaller than their counter-
parts for fully classical simulations [145]. This is consistent with the intuition that hybrid
classical-quantum Monte Carlo simulations should cause lower sample-complexity increases
than fully classical ones.

Either way, the most relevant property for our purposes is that N 2
→ (and therefore also

Ms) is independent not only of the numbers of gates f or qubits n but also, and most
importantly, of the connectivity-graph distance between the qubits on which the interfaces
act. In other words, for a fixed budget of measurement runs, simulating a gate Uk with a
QCQ interface increases the statistical error at most by a constant factor NUk

, regardless
how far apart in the circuit the qubits sk are. In contrast, experimentally synthesizing Uk

with noisy nearest-neighbor gates would give a systematic error due to infidelity accumu-
lation that grows linearly with the distance between those qubits. Clearly, the drawback
is that N 2

→ grows exponentially with the number l of interfaces used. However, for a many
circuits, Algorithm 5 constitutes a better alternative than the bare NISQ implementation.
We study relevant exemplary circuits with such trade-offs in the next sections.

Finally, note that N 2
→ is frame-dependent. This is crucial to the efficiency of classical

simulations [146, 147, 148]. For instance, in quantum Monte Carlo, it is known that
the statistical overhead due to negative (quasi-)probabilities can be ameliorated [151] or
even removed [150] by local base changes. Something similar applies here: the interface
negativities depend not only on the primal frame but also on the choice of dual to it.
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D.1.1 Dual frame decomposition

Here, we show that Equation (D.3) defines a dual frame with respect to FS if Equation (D.4)
holds. For the forward direction of this statement, we start with Equation (D.1) and plug
in Equation (D.3) to obtain

I =
∑

a,b

Ta,b |Mb) (Ma| . (D.11)

Applying (Mc| and |Md) to the left and right of Equation (D.11) then gives

(Mc|Md) =
∑

a,b

Ta,b (Mc|Mb) (Ma|Md) ,

therefore we see that T = TTT as required.

For the converse direction, we start with a map J on L(HS),

J =
∑

a,b

Ta,b |Mb) (Ma| . (D.12)

Applying (Mc| and |Md) to the left and right of Equation (D.12) then gives

(Mc| J |Md) =
∑

a,b

Ta,b (Mc|Mb) (Ma|Md) .

If we then plug in Equation (D.4) we find

(Mc| J |Md) = (Mc|Md) ,

from which we conclude that J ≡ I, i.e. J equals the identity map and so Equation (D.1)
holds.

D.2 Finite statistics estimator

Let O be a generic observable we wish to measure, with support on an arbitrary subset of S
and with arbitrary spectral norm ∥O∥sp := omax. Hence, it admits a spectral decomposition
as |O) =

∑
λ oλ |λ), where oλ and |λ) are respectively its λ-th eigenvalue and eigenvector
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projector, with |oλ| ≤ omax for all λ. Using Equation (D.8), we write the finite statistics
estimator of the expectation value ⟨O⟩ := Tr[O ρf ] of O as

O∗
M :=

1

M

M∑

i=1

o
λ(i),α

(i)
sL

∏

k∈L
v
a
(i)
sk

,b
(i)
sk

, (D.13)

where o
λ(i),α

(i)
sL

is the eigenvalue obtained from the single-shot i obtained from a state that

is measured and reprepared according to α
(i)
sL . The probability of observing o

λ(i),α
(i)
sL

is given

by

P (o
λ(i),α

(i)
sL

) = (λ(i)|
f∏

k=1

Wk(a(i)
sk
, b(i)sk

)|ρ0), (D.14)

with a
(i)
sk ∼ Pρk−1

(ask) and b(i)sk
∼ PUk

(bsk |ask) where

|ρk−1) =
l−1∏

k=1

Wl(a
(i)
sl
, b(i)sl

)|ρ0). (D.15)

Importantly, O∗
M is an unbiased estimator.

D.3 Locally Purified Density Operators

Numerical simulations with the full density matrix of size 2n×2n quickly become prohibitive
due to the large memory requirements. Hence, we have to resort to tensor networks to find
efficient representations of mixed quantum states. The canonical choice for representing
operators with tensor networks are matrix product operators (MPO) [366]. A drawback
of this approach is that applying completely positive maps to the state can still lead to
the MPO becoming non-positive due to truncation errors. The Locally Purified Density
Operator tensor network solves this issue by representing the state as ρ = χχ†, where the
purification operator χ is given by a tensor network

[χ]p1,...,pnκ1,...,κn
=

∑

b1,...,bn−1

A
[1]p1,κ1

b1
A

[2]p2,κ2

b1,b2
. . . A

[n]pnκn

bn−1
,

with 1 ≤ pl ≤ P , 1 ≤ κl ≤ κ and 1 ≤ bl ≤ D [159]. Here, P is called the physical
dimension, κ is the Kraus dimension and D is the bond dimension.

216



Analogous to the bond dimension truncation in MPOs, truncating the Kraus dimension
after applying a channel leads to errors in our state representation that can affect the
accuracy of numerical simulations. However, we can control the accuracy of the simulation
by increasing D and κ and keeping track of a runtime lower bound estimate of the state
fidelity. Let ρ = χ†χ, σ = η†η, then the fidelity is given by

F (ρ, σ) = Tr

√√
σρ
√
σ.

From Lemma 1 in [159] we know that,

F (ρ, σ) ≥ 1

2

(
2− ∥χ− η∥22

)
.

Let χ be a locally purified description of a quantum state with local tensors {A[n]} that
is in mixed canonical form with respect to a local tensor A[lcp]. If a single tensor A[l] is
compressed by discarding singular values in either the Kraus or bond dimensions, then by
Lemma 6 of [159] we know that

δ :=

( ∑

i,discarded

s2i

) 1
2

,

and subsequently

∥χ− χ′∥22 = 2(1−
√

1− δ2),
where χ′ is the compressed tensor. By the triangle inequality, the two norm errors intro-
duced by the discarded weights can at most sum up. Hence, the true operator norm is
lower bounded by the sum of all discarded weight errors

∥ρexact − ρtruncated∥2 ≤
∑

d

√
2(1−

√
1− δ2d).

With d the number of truncations and δk the discarded weights. This brings the final
runtime fidelity estimate to

F (ρ, σ) ≥ 1

2

(
2− ∥χ− η∥22

)
(D.16)

≥ 1

2


2−

(∑

d

√
2(1−

√
1− δ2d)

)2

 . (D.17)
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In all our experiments, we apply depolarizing channels to both qubits only after applying
a two qubit gate, since single qubit gate noise tends to be small in experimental settings.
The single-qubit depolarizing channel is given by

ρ =
M∑

m=1

KmρK
†
m,

where {Km} is a set of Kraus operators with

K1 =

√
(4− 3λ)

4
I, K2 =

√
λ

4
X

K3 =

√
λ

4
Y, K4 =

√
λ

4
Z.

Here, {X, Y, Z} ∈ P1 are the Pauli matrices and I is the identity. The scalar λ ∈ [0, 1]
controls the strength of the depolarization. With these channels, illustrate the bound
of Equation (D.17) by comparing the final state overlap of an exact full density matrix
simulation and a LPDO simulation for a random 4 qubit circuit with a varying number of
CNOT gates. In Figure D.1, we see that the runtime estimate of the fidelity is about two
orders of magnitude above the true fidelity.

D.4 Circuit cutting via the Hubbard-Stratonovich trans-

formation

In [166], a method is proposed to simulate a sequence of unitaries via Auxiliary MCMC.
Consider a quantum gate

U(α) = exp{−iαAB}, [A,B] = 0, (D.18)

In addition, we require that A = A1 ⊗ I and B = I ⊗B2. For example, a CNOT gate can
be constructed from

ACNOT
1 = I − Z, BCNOT

2 = I −X, α = π/4,

where I2 = I ⊗ I.

The Hubbard-Stratonovich transformation is used in field theory to linearize a quadratic
field in an exponent. This is achieved by completing the square, integrating and shifting
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Figure D.1: Illustration of the lower bound of Equation (D.17). The circuit consists
of an initial state |+⟩⊗4 to which we apply a varying number of CNOT gates with random
control and target qubits. We set the noise to λ = 0.005 and take D = 4 and κ = 16.
The red line indicates the true accuracy of the LPDO simulation by comparing with the
exact full density matrix simulation. The orange line gives the runtime fidelity estimate.
We see that the accuracy of the simulation degrades as we add more two-qubit gates
and depolarizing channels. The runtime fidelity gives an estimate two orders of magnitude
above the exact error, indicating that for this example, the bound is a conservative estimate
of the simulation error.

the integration variables. Let, x be a scalar field, then by completing the square and
introducing the auxiliary field µ, we obtain

−ax2 = −a(x− µ)2 + aµ2 − 2aµx

−ax2 + a(x− µ)2 = aµ2 − 2aµx

exp
{
−ax2 + a(x− µ)2

}
= exp

{
aµ2 − 2aµx

}
∫ ∞

−∞
dµ exp

{
−ax2 + a(x− µ)2

}
=

∫ ∞

−∞
dµ exp

{
aµ2 − 2aµx

}
.
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By shifting the integration on the right side with µ→ µ′ + x, dµ→ dµ′, we find

exp
{
−ax2

}∫ ∞

−∞
dµ′ exp

{
a(−µ′)2

}
=

∫ ∞

−∞
dµ exp

{
aµ2 − 2aµx

}

exp
{
−ax2

}
=

√
a

π

∫ ∞

−∞
dµ exp

{
aµ2 − 2aµx

}
,

where in the last line we used the Gaussian integral

∫ ∞

−∞
dx exp

{
−ax2

}
=

√
π

a
.

We now apply the same idea to Equation (D.18). We have the identity,

iαAB = iα((A− τ)(B − φ) + φA+ τB − τφ)

iα(AB − (A− τ)(B − φ)) = iα(φA+ τB − τφ),

where τ and φ are real auxiliary fields. Integrating and shifting the integration variables
then gives

exp{−iαAB} =
|α|
π

∫ ∞

−∞

∫ ∞

−∞
dτdφ exp{−iα(φA+ τB − τφ)}.

We introduce the measure

Dσ =
|α|
π
dτdφ,

and the gates

V (τ) = exp{−iατA}
W (φ) = exp{−iαφB}
P [σ] = V (φ)W (τ),

where σ = (τ, φ). We can therefore represent the gate U(α) as

U(α) =

∫ ∞

−∞
Dσ P [σ]eiS(α,τ,φ),

where iS(α, τ, φ) = iατφ is a complex action.
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Consider the evolution of a state ρ under given this gate representation,

U(α)ρU †(α) =

∫ ∞

−∞
Dσ

∫ ∞

−∞
Dσ′eiS(α,τ,φ)+iS(α,τ ′,φ′) P [σ]ρP †[σ′]

=

∫ ∞

−∞
Dσ

∫ ∞

−∞
Dσ′eiS̃(α,σ,σ

′) P [σ]ρP †[σ′],

where we defined iS̃(α, σ, σ′) = iS(α, τ, φ) + iS(α, τ ′, φ′). We can calculate an expectation
value given some Hermitian operator H as

TrU(α)ρU †(α)H =

∫ ∞

−∞
Dσ

∫ ∞

−∞
Dσ′eiS̃(α,σ,σ

′) TrP [σ]ρP †[σ′]H.

This quantity can be estimated via the auxiliary quantum Monte Carlo method [367].
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Appendix E

Additional details Riemannian
gradient flow

E.1 Dynamical Lie algebra gradient flow

Given a Hamiltonian H =
∑

nOn, let g denote the set of operators spanned by consecutive
applications of the Lie bracket to the set {On}, i.e. the closure of {On} under commutation
(see Equation (4.1) and Chapter 4). The resulting dynamical Lie algebra is a subalgebra of
su(2n) and determines the set of states that can be reached by applying unitaries generated
by elements of g [219, 220, 228]. Let H ∈ g and

ρ0 =
1

2n
I +

∑

l

Pl, ∀Pl ∈ g.

We then find that the commutator

[ρ0, H] =
1

2n
[I,H] +

∑

l

[Pn, H]

=
∑

i

[Pn, H],

is also an element of g because g is closed under commutation. Since g is a subalgebra,
there is a corresponding subgroup G whose elements are generated by exponentiation of
elements in g. Hence,

U = exp{ϵ[ρ0, H]},
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Figure E.1: Comparison of Riemannian gradient optimization versus gradient-
based VQE for the 4-qubit transverse field Ising-model. The Riemannian gradient
circuit is initialized the with the identity. The VQE circuit is initialized in the same way as
in Figure 3.6 in the main text. The available directions for the Riemannian optimizer are
the Pauli strings in the dynamical Lie algebra: g := {Xi, ZiZj, YiZj, ZiYj, YiYj|1 ≤ i, j ≤
N, i < j}, where Xi, Yi, Zi are Paulis on location i [228]. Even though the gradient flow
stays within the dynamical Lie algebra at every step during the optimization, we see that
the ground state is still unreachable and the optimization gets stuck in a local minimum.

is an element of the subgroup G. But then

Uk+1 = exp{ϵ[ρ0, H]}Uk,

will stay in the group G as long as U0 is an element of G. We therefore see that an
appropriate choice of ρ0 and U0 will keep the Riemannian gradient flow within the subgroup
G. Unfortunately, it is possible that H cannot be diagonalized by elements of G and so
the ground state may be unreachable for a flow that stays in the dynamical Lie algebra,
see Figure E.1.
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Appendix F

Additional details here comes the
SU(N)

F.1 The generalized parameter-shift rule

When using our SU(N) gate in an application that involves gradient-based optimization,
like demonstrated in the numerical experiments in this work, we require calculating the par-
tial derivatives in Equation (3.39). Here we provide the details for how this can be achieved
in practice via the generalized parameter-shift rule (GPSR) [116, 118, 119]. Without loss
of generality, we rewrite the cost function in Equation (3.38) as

E(t) = Tr
{
H̃etΩρ̃e−tΩ

}
, (F.1)

where we absorbed the rest of the circuit into ρ̃, H̃ and fixed any other parameters in the
circuit. Computing the derivative of Equation (F.1) with respect to t is equivalent to the
problem of finding the gradient in Equation (3.39) at t = 0. For the numerical experiments
in this paper we make use of the particular implementation of the GPSR in [119] as well
as the alternative method outlined in Appendix F.5.

The skew-Hermitian operator Ω in Equation (F.1) has (possibly degenerate) eigenvalues
{iλj}. We define the set of unique spectral gaps as Γ = {|λj − λj′|} where j′ > j. Note
that for d distinct eigenvalues, the number of unique spectral gaps R is bounded via
R ≤ d(d−1)/2. We relabel every unique spectral gap with an integer, i.e. we write ∆r ∈ Γ,
and define the corresponding vector ∆ = (∆1, . . . ,∆R). We pick a set of parameter shifts
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that are equidistant and create a vector of R shifts δ = (δ1, . . . , δR) where

δn =
(2n− 1)π

4R
, n = 1, . . . , R.

Next, we create the length R cost vector c and the R×R matrix M

c =




E(δ1)− E(−δ1)
E(δ2)− E(−δ2)

...
E(δR)− E(−δR)


 , M(δ) =




2 sin(δ1∆1) . . . 2 sin(δ1∆R)
2 sin(δ2∆1) . . . 2 sin(δ2∆R)

...
...

...
2 sin(δR∆1) . . . 2 sin(δR∆R)


 .

We then calculate the coefficient vector as

r = (M(δ))−1 · c,

which finally gives the gradient

dE(x)

dt

∣∣∣∣
t=0

= ∆ · r.

Since the final gradient is exact, finite shot estimates of all c(δn)’s will produce an unbiased
estimate of dC(x)/dt,

dE(x)

dt

∣∣∣∣
t=0

= ∆ · (M(δ))−1 · E [c] ,

where we pulled out ∆ and (M(δ))−1 since they are constant. The difficulty of obtaining
an accurate estimate of the gradient is determined by the variance of this estimator, which
is given by

Var

[
dE(x)

dt

∣∣∣∣
t=0

]
= (∆ · (M(δ))−1)⊙2 ·

(
E
[
c⊙2
]
− E [c]⊙2) ,

where we used⊙2 to emphasize that the squares are taken elementwise. We assume that the
estimates for each shifted circuit obey normal statistics and so since these are independent,
we can write

E
[
c⊙2
]
− E [c]⊙2 ≈ 1

Nshots




σ2(δ1) + σ2(−δ1)
σ2(δ2) + σ2(−δ2)

...
σ2(δR) + σ2(−δR)


 ,
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where σ2(±δn) is the variance of the cost for each shifted circuit. If we assume that the
dependence of σ on the shifts is mild, i.e., σ(δ) ≈ σ0 then the total variance will only
depend on the prefactor. Setting the estimate E [c⊙2] − E [c]⊙2 = (σ2

0, σ
2
0, . . . , σ

2
0) then

finally gives

Var

[
dE(x)

dt

∣∣∣∣
t=0

]
≈ 2σ2

0

(∑

n

∆nM−1
nm(δ)

)2

.

One can minimize this quantity with respect to δ to find the optimal set of shifts for the
gradient estimation [119].

F.2 Alternative differentiation of SU(N) gates

In this section we summarize a number of alternative differentiation techniques that may be
applied to the presented SU(N) gates. In particular, we discuss the stochastic parameter-
shift rule, which was created for multi-parameter gates, finite differences as a standard tool
in numerical differentiation, as well as an alternative to the general parameter-shift rule
above which also exploits the notion of effective generators.

F.3 The Stochastic parameter-shift rule

The stochastic parameter-shift rule [233] relies on the following operator identity [258]

∂eZ(x)

∂x
=

∫ 1

0

ds esZ(x)∂Z(x)

∂x
e(1−s)Z(x),

for any bounded operator Z(x). We now fix all parameters θm for m ̸= l and rewrite the
cost in Equation (3.38) as

c(x) = Tr
{
Hei(xGl+A′)ρe−i(xGl+A′)

}
, A′ ≡

∑

m ̸=l

θmGm. (F.2)

Then, if we take Z(x) to be the operator Z(x) = i(xGl +A′) we can construct the gradient
of Equation (F.2) as

∂c(x)

∂x
=

∫ 1

0

ds (C+(x, s)− C−(x, s)) , (F.3)
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where

C±(x, s) = Tr
{
HV±(x)ρV †

±(x)
}

V±(x) = eis(xGl+A′)e±
π
4
Glei(1−s)(xGl+A′).

Hence, similar to our method, the gradient evaluation requires adding gates to the cir-
cuit and evaluating the new circuit. However, the stochastic parameter-shift rule comes
at a significant cost: the evaluation of the integral in Equation (F.3). In practice, one
approximates this integral by sampling values of s uniformly in the interval (0, 1) and
then calculating the costs C±(x, s) with a finite-shot estimate. Although this produces
an unbiased estimator, we find that the variance of this estimator is larger than ours, see
Figure 3.10. In addition, this method leads to a bigger number of unique circuits to com-
pute the derivative, increasing the compilation overhead for both hardware and simulator
implementations.

F.4 Finite differences

Finite differences are widely used to differentiate functions numerically. We briefly discuss
this method in the context of variational quantum computation (VQC) and refer the reader
to recent works comparing and optimizing differentiation techniques for VQC [117, 266].

In particular, we consider the central difference recipe

∂FD,θjE(θ) =
1

δ

[
E

(
θ +

δ

2
ej

)
− E

(
θ − δ

2
ej

)]
, (F.4)

where δ is a freely chosen shift parameter and ej is the jth canonical basis vector. This
recipe is an approximation of ∂θjE(θ), making the corresponding estimator on a shot-based
quantum computer biased. This bias, which depends on δ, has to be traded off against the
variance of the estimator, which grows approximately with δ−2.

In classical computations, the numerical precision cutoff plays the role of the variance.
Due to the high precision in classical computers, this leads to optimal shifts δ ≪ 1, which
allows treating the bias to leading order in δ and thus enables rough estimates of the
optimal δ∗ in advance. On a quantum computer, however, the variance typically is more
than ten orders of magnitude larger, leading to a very different δ∗, which furthermore
depends on the function and derivative values. As a consequence, shifts of O(1) become a
reasonable choice, highlighting the similarity of the central difference recipe to the two-term
parameter-shift rule [117].
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As a demonstration of the above, and in preparation for the numerical experiments
shown in Figures 3.9 and 3.10, we compute the central difference gradient for a ran-
dom single-qubit Hamiltonian, a single SU(2) gate U(θ) = exp(iaX + ibY ) and δ ∈
{0.5, 0.75, 1.0}. For this, we evaluate the mean and standard error 50 times and show
the difference to the exact derivative in Figure F.1. As expected, we observe that the bias
increases with δ and that the variance is suppressed with larger δ. We determine δ = 0.75
to be a reasonable choice for the purpose of the demonstration in Figures 3.9 and 3.10,
but stress that for any other circuit, qubit count, Hamiltonian, and even for a different
parameter position θ for this circuit, the optimal shift size needs to be determined anew.

Figure F.1: Error of the central difference gradients with δ = 0.5, 0.75, 1.0 for the
single-qubit example from Figures 3.9 and 3.10. The value of the second parameter
again is fixed to b = 0.5, 1.0, 2.0 in the panels (from left to right). The shift parameter
δ influences the strengths of bias and variance, leading to a trade-off. For smaller δ, the
variance is enhanced due to the coefficients in Equation (F.4) that scale with δ−1. For
larger δ, the bias based on the approximate nature of Equation (F.4) is increased. We find
δ = 0.75 to be a reasonable choice for this particular circuit, Hamiltonian and parameter
position θ.
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F.5 Decomposing effective generators for differentia-

tion

In Algorithm 2 we suggested using the generalized parameter-shift rule [118, 116, 119]
in order to compute the partial derivatives ∂

∂θl
E(θ) independently. In addition, Theo-

rem 3.3.2 bounds the number of frequencies occurring in the univariate auxiliary cost func-
tion E(t) = Tr

{
U(θ)etΩl(θ)ρe−tΩl(θ)U †(θ)H

}
and the corresponding number of parameter

shifts required during differentiation.

Realizing the shift rule requires us to implement not only U(θ)—which is necessary to
compute E(θ) itself—but also the gate etrΩl(θ) for 2R shift values tr and each Ωl separately.
Alternatively, we may follow the approach to decompose all effective generators Ωl and
compute the derivative as a linear combination of the derivatives for simpler auxiliary
gates, similar to [118]. In particular, we again choose the Pauli basis Pn of su(N) for this
decomposition.

Decompose the effective generators Ωl(θ) as

Ωl(θ) =
∑

m

ωlm(θ)Gm, ωlm(θ) =
1

N
Tr {GmΩl(θ)} .

Note that the coefficients are purely imaginary due to the skew-Hermiticity of Ωl(θ). The
partial derivative we are interested in can then be written as

∂

∂θl
E(θ) = Tr

{
HU(θ)

[
d∑

m=1

ωlm(θ)Gm, ρ

]
U †(θ)

}

=
∑

m

ωlm(θ)Tr
{
HU(θ)[Gm, ρ]U †(θ)

}

=
∑

m

ωlm(θ)2i
d

dt
Tr

{
HU(θ)

[
exp

{
−i t

2
Gm

}
, ρ

]
U †(θ)

} ∣∣∣∣
t=0

=
∑

m

ω̃lm(θ)
d

dt
CGm(θ, t)

∣∣
t=0
.

Here we abbreviated ω̃lm(θ) = 2iωlm(θ) and wrote CGm(θ, t) for the cost function with
a rotation gate with parameter −t/2 about Gm inserted before U(θ). This modified cost
function can be differentiated with respect to t using the original two-term parameter-shift
rule, as the inserted gate is generated by (the multiple of) a Pauli string.
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The above linear combination of Pauli rotation derivatives can be reused for all partial
derivatives, so that the full gradient for one SU(N) gate is given by

∇E(θ) = ω̃(θ) · dE,

dE =




d
dt
CG1(θ, t)

∣∣
t=0

...
d
dt
CGd

(θ, t)
∣∣
t=0


 .

So far we did not discuss the number of Pauli strings occurring in the decomposition of
the generators Ωl. As can be seen from Equation (3.36) and our definition of the DLA in
Section 3.3.5, this number is bounded by the size of the DLA, and we again remark that
this bound will be saturated for most values of θ. As two shifts are required for each Pauli
rotation, the gradient ∇E(θ) can thus be computed using 2 dim⟨A(θ)⟩Lie circuits, using
Pauli rotations from the DLA and, e.g., shift angles ±π

2
.

Since we only required a linear decomposition of Ωl, any other basis for the DLA may
be used as well, potentially allowing for fewer shifted circuits or different inserted gates
that may be more convenient to realize on hardware.

F.6 Gate speed limit

The following Lemmas are used in Section 3.3.4.

Lemma F.6.1. For Hamiltonians of the form H =
∑

m θmGm, where Gm are strings of
log2N Pauli operators, Tr {H2} = N

∑
m θ

2
m.

Proof. All Pauli strings Gm ∈ Pn are orthonormal with respect to the trace inner product,
Tr(G†

mGn) = δn,mN . Using this gives

Tr
{
H2
}

=
∑

m,n

θmθnTr{GmGn}

= N
∑

m,n

θmθnδn,m

= N
∑

m

θ2m.
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Lemma F.6.2. The length of a smooth curve on the Riemannian manifold SU(N), with
metric g(x, y) = Tr{x†y}, for a time-independent Hamiltonian H after a fixed time τ only
depends on the norm of H and τ .

Proof. The unitary evolution of U(θ; t), parameterized by t, corresponds to a smooth
curve on SU(N) with length according to the Riemannian metric, g(x, y) = Tr{x†y} [368].
Integrating over the metric norm through the tangent spaces from t = 0 to final time τ
gives the path length,

L[U(θ; t), τ ] =

∫ τ

t=0

ds

=

∫ τ

0

√
g(U̇(θ; t), U̇(θ; t))dt

=

∫ τ

0

√
Tr
{
U̇ †(θ; t)U̇(θ; t)

}
dt,

where U̇ = dU
dt

. From Schrödinger evolution,

dU(θ; t)

dt
= −iHU(θ; t), (F.5)

we find
L[U(θ; t), τ ] = τ

√
Tr {H2}, (F.6)

for time-independent Hamiltonians. Therefore, for all Hamiltonians with fixed norm
Tr{H2}, the path distance travelled after time τ is the same regardless of the specific
unitary evolution.

Lemma F.6.3. The minimal path between the identity element I and a point V on the
Riemannian manifold of SU(N), with metric g(x, y) = Tr{x†y}, is a geodesic curve γ(t) =
eXt with X ∈ su(N).

Proof. From Proposition 3.10 [201], the geodesics of SU(N) are the one-parameter sub-
groups, given by γ(t) = eXt. In general, multiple geodesics curves can give V from the
identity. The minimal path is the curve with the minimum length. Since geodesic curves
are the extrema of the path length functional [290, Lemma 9.3], there must exist a geodesic,
which is of the form γ(t) = eXt, that is the minimal path to V .
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F.7 Proof of Theorem 3.3.1

We restate Theorem 3.3.1 again for convenience.

Theorem F.7.1. For unitary gates generated by normalized time-independent Hamilto-
nians, consider a general circuit decomposition of two gates U(ϕ(2); t2)U(ϕ(1); t1). There
exists an equivalent evolution with an SU(N) gate U(θ; tg) = U(ϕ(2); t2)U(ϕ(1); t1), with
evolution time tg, such that

tg ≤ t1 + t2,

with equality if ϕ(1) + ϕ(1) = θ.

Proof. The product U(ϕ(2); t2)U(ϕ(1); t1) corresponds to a specific point V on the manifold
SU(N). By Lemma F.6.3, there exists a geodesic between the identity I and V , given by
the curve eXt that is of minimal length. We can parameterize this geodesic as U(ϕ(2); tg) =
exp
{
Ā(θ)tg

}
, which is always possible since A(θ) parameterizes an arbitrary point in su(N)

and is an SU(N) gate. By Lemma F.6.2, the length of this path only depends on the norm
of Ā(θ), which is 1, and on tg, which gives

tg = L[U(θ; t), tg)].

Since this path is minimal, we have

tg ≤ t1 + t2

with equality if ϕ(1) + ϕ(1) = θ.

F.7.1 Special case of SU(2)

In the following we give the additional time for decomposing an optimal SU(2) gate into
two gates. By optimal, we refer to the geodesic along the minimal path length curve –
see Lemma F.6.3.

We consider the optimal SU(2) gate U(θ; tg) with geodesic evolution time tg together

with a decomposition U(ϕ(2); t2)U(ϕ(1); t1) = U(θ; tg). The decomposed circuit is given

by two unitary evolutions. Each individual evolution U(ϕ̃
(ν)

; tν) is a U(1) rotation such
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that only a single basis element is required. With two rotations, the overall evolution is an
element of SU(2). The corresponding su(2) algebra is spanned by three basis elements—
the three Pauli matrices for example. The two rotations can be represented as lying on
a Bloch sphere. A unitary transformation, K ∈ SU(N), can therefore be applied to the

evolution such that U(ϕ̃
(ν)

; tν) = KU(ϕ(ν); tν)K† for

ϕ̃
(ν)

=




sin(αν) cos(βν)
sin(αν) sin(βν)

cos(αν)


 ,

where ν = 1, 2, with αν and βν parameterizing the rotations. By construction ϕ̃
(ν) ·ϕ̃(ν)

= 1
is normalized for all parameters αν and βν . The same transformation K defines U(θ̃; tg) =

KU(θ; tg)K
† and gives the same relationship U(θ̃; tg) = U(ϕ̃

(2)
; t2)U(ϕ̃

(1)
; t1). This is

straightforward to show

U(θ̃; tg) = KU(θ; tg)K
†

= KU(ϕ(2); t2)U(ϕ(1); t2)K
†

= KU(ϕ(2); t2)K
†KU(ϕ(1); t2)K

†

= U(ϕ̃
(2)

; t2)U(ϕ̃
(1)

; t1).

We have

Ā(ϕ̃
(ν)

) = sin(αν) cos(βν)G1 + sin(αν) sin(βν)G2 + cos(αν)G3,

where we choose G1 = iX, G2 = iY , and G3 = iZ. These basis elements of su(2) generate
the group SU(2). We also define the basis vector G = (G1, G2, G3). Exponentiation
therefore gives the closed-form expression

exp
{
Ā(ϕ̃

(ν)
)tν

}
= exp

{(
ϕ̃

(ν) ·G
)
tν

}

= cos(tν)I⊗Nqubits + sin(tν)ϕ̃
(ν) ·G.

By the group composition law of SU(2), the product of two exponentials in SU(2) also
gives a closed-form expression,

exp
{
Ā(ϕ̃

(2)
)t2

}
exp
{
Ā(ϕ̃

(1)
)t1

}
=
(

cos(t2)I
⊗Nqubits + sin(t2)ϕ̃

(2) ·G
)(

cos(t1)I
⊗Nqubits + sin(t1)ϕ̃

(1) ·G
)
.
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Collecting terms gives

exp
{
Ā(ϕ̃

(2)
)t2

}
exp
{
Ā(ϕ̃

(1)
)t1

}
=
(

cos(t1) cos(t2)− ϕ̃
(1) · ϕ̃(2)

sin(t1) sin(t2)
)
I⊗Nqubits

+
(

cos(t2) sin(t1)ϕ̃
(1)

+ cos(t1) sin(t2)ϕ̃
(2)

+ i sin(t1) sin(t2)ϕ̃
(1) × ϕ̃

(2)
)
·G. (F.7)

The total evolution is

exp
{
Ā(ϕ̃

(2)
)t2

}
exp
{
Ā(ϕ̃

(1)
)t1

}
= exp

{
Ā(θ̃)tg

}
(F.8)

= cos(tg)I
⊗Nqubits + sin(tg)θ̃ ·G. (F.9)

By comparison of Equations F.7 and F.9, we find

θ̃ =
1

sin(tg)

(
cos(t2) sin(t1)ϕ̃

(1)
+ cos(t1) sin(t2)ϕ̃

(2)
+ i sin(t1) sin(t2)ϕ̃

(1) × ϕ̃
(2)
)
,

and

cos(tg) = cos(t1) cos(t2)− ϕ̃
(1) · ϕ̃(2)

sin(t1) sin(t2).

The additional evolution time is ∆t = td − tg, with td = t1 + t2 the total decomposed

unitary evolution time. Due to the invariance of the scalar product, ϕ̃
(1) · ϕ̃(2)

= ϕ(1) ·ϕ(2),
the additional time ∆t = td − tg required by the decomposition is then given by

∆t = td − arccos
(

cos(t1) cos(t2)− ϕ(1) · ϕ(2) sin(t1) sin(t2)
)
≥ 0.

F.8 Unique spectral gaps of Dynamical Lie Algebras

F.8.1 Proof of Theorem 3.3.2

We restate Theorem 3.3.2 here for convenience.

Theorem F.8.1. The number of unique spectral gaps R of Ωl(θ) is upper bounded by the
number of roots |Φ| of any maximal semisimple DLA,

R ≤ |Φ|/2.
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In the following we set g to be a semisimple Lie algebra. A subspace a ⊆ g is called a
subalgebra if it is closed under the Lie bracket, i.e., if [a1, a2] ∈ a, ∀a1, a2 ∈ a. Since g is
a semisimple Lie algebra, it always contains a subalgebra called a Cartan subalgebra [250]
(Chapter 7, Definition 7.10).

Definition F.8.1. A Cartan subalgebra h of g is a subalgebra that satisfies the following
conditions:

1. For all h1, h2 ∈ h, [h1, h2] = 0.

2. For all x ∈ g, if [h, x] = 0 for all h ∈ h, then x ∈ h.

The first condition tells us that h is a commutative subalgebra of g, while the second
condition says that h is maximal, i.e., there is no larger commutative subalgebra. The first
step in proving Theorem 3.3.2 is to make use of the following result:

Theorem F.8.2. [273, Chapter VI, Theorem 1]. If g is a semisimple Lie algebra, we can
write g as a direct sum of the root spaces gα:

g =
⊕

α

gα,

where

gα∈h∗ = {x ∈ g|adh(x) = α(h)x, ∀h ∈ h},

and α ∈ h∗ are functionals on h. That is, a root space is a subspace of g on which the action
of the adjoint representation of h is described by a functional (and scalar multiplication).

The above decomposition is called a root space decomposition, which is an essential
tool in classifications of Lie algebras [274, 273]. Since

g0 = {x ∈ g|adh(x) = 0,∀h ∈ h},

we find that h = g0 and hence

g = h⊕
⊕

α ̸=0

gα.

We then immediately see that

dim g = dim h +
∑

α ̸=0

dim gα.
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We can thus relate the dimensionality of a Lie algebra to the dimensionality of its Cartan
subalgebra and its weight spaces. The second step of the proof relies on identifying the
unique spectral gaps of Ωl(θ) with the weight spaces gα. To achieve this, we will construct
the linear operator adh and apply it to the eigenbasis of Ωl(θ) to show that the maps α
can be identified with the spectral gaps of Ωl(θ).

Consider an element Ω ∈ g, where g ⊆ su(N) is a non-trivial subalgebra and h is a
Cartan subalgebra of g. Since h is the Lie algebra of a maximally Abelian group, we can
represent elements of h by diagonal matrices. Since Ω is skew-Hermitian, there exists a
unitary V ∈ SU(N) that diagonalizes Ω, i.e., V †ΩV = h with h ∈ h. Here, V is the matrix
with columns equal to the eigenvectors vk of Ω with corresponding eigenvalues λk. We can
thus always choose a basis for g such that Ω is diagonal. If Ω is non-degenerate, then it
must be full rank, and therefore an element of h. All Cartan algebras are equivalent up
to conjugacy, hence we can choose the matrix h to be the diagonal matrix containing the
eigenvalues of Ω to represent the Cartan subalgebra h. We now take Enm to be the matrix
with entries (n,m) equal to 1 and all other entries to 0. Define the operator

enm = V †EnmV,

and apply adh to it:

adh(enm) = henm − enmh
= V †ΩEnmV − V †EnmΩV

= V †hEnmV − V †EnmhV

= (λn − λm)enm.

This means that adh has the eigenvectors enm with corresponding eigenvalues αnm(h) =
λn − λm [369], and so we have identified the eigenvalue differences with the roots of the
Lie algebra. We define the set of all roots as

Φ = {λn − λm, n ̸= m = 1, . . . , N}.

Since the dimensionality of each weight space is one [273, Chapter VI, Theorem 2(a)], we
can see that

∑

α ̸=0

dim gα = |Φ|.

Therefore,

dim g = dim h + |Φ|.
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We now set g = ⟨A(θ)⟩Lie. If we take the absolute value of the elements of Φ, we can
identify R = |Φ|/2, where the factor 1/2 is to account for double the counting of the
spectral gaps. Since Ω can be degenerate in general, we obtain the inequality R ≤ |Φ|/2.
With this, the proof of Theorem 3.3.2 is completed.

F.8.2 Examples

Here, we give several examples of maximal DLAs and their corresponding value of |Φ|/2.
Analogous to the main text, we choose the Pauli representation, but these results should
hold for any irreducible representation of su(N).

1. su(2): For a 1-qubit system, there are no non-trivial subalgebras, hence we can only
look at the full special unitary Lie algebra su(2). Any A(θ) that consists of two Pauli
operators will generate this algebra, e.g.,

A(θ) = i(θ1X + θ2Y )

will give ⟨A(θ)⟩Lie = su(2). A Cartan subalgebra of su(2) is given by h = spanZ.
We therefore find that dim g = 3 and dim h = 1 and so |Φ| = 2. Hence, we have
R ≤ 1 and need 2R ≤ 2 shifts. This matches the result in [31], where the parameter-
shift rule was generalized from single Pauli matrices to Hermitian operators with two
unique eigenvalues.

2. TFIM: A DLA that has been studied before [227, 228] is the 1D transverse field
Ising-Model (TFIM) Hamiltonian:

A(θ) = i(θ1X ⊗ I + θ2I ⊗X + θ3Z ⊗ Z),

with ⟨A(θ)⟩Lie = spanX ⊗ I, I ⊗X, Y ⊗ Y, Z ⊗ Z,Z ⊗ Y, Y ⊗ Z. We can take h =
spanX ⊗ I, I ⊗X as a Cartan subalgebra and so dim g = 6 and dim h = 2, which
gives |Φ| = 4. Hence, we need (at most) 4 shifts to obtain the gradient of an operator
in the DLA of the TFIM, which corresponds to so(4).

3. su(4): The full Lie algebra of su(4) is spanned by

A(θ) =
∑

m

θmGm,

where the Gm are the tensor products of Pauli P2 multiplied by i. A Cartan subal-
gebra of su(4) is given by h = {Z ⊗ I, I ⊗ Z,Z ⊗ Z}. This means that dim g = 15
and dim h = 3, which gives |Φ| = 12. Hence, we have R = 6 and need 12 shifts to
obtain the gradient for a general operator in su(4).
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In the above examples, we have only been concerned with the dimensionality of the
root system. We could go one step further and look at the structure of the root systems. It
turns out that there exists only a finite set of root systems, which leads to the classification
of all semisimple Lie algebras (such a program was originally carried out by Dynkin [274]
and is explained in most textbooks on Lie algebras [176, 369, 250]). This allows us to make
the following observation about DLAs and the SU(N) gates in our work: there is a finite
number of families of SU(N) gates for each N , given by the possible DLAs. Again, we
emphasize that this is independent of the representation of the algebra. We summarize
the above results together with the identification of the corresponding classical group in
Table F.1 [176] (Chapter 3, Table 3.4).

Name dim(g) dim(h) |Φ| Classical group
su(2) 3 1 2 A1

so(4) 6 2 4 A1 × A1
∼= D2

su(4) 15 3 12 A2

Table F.1: Examples of DLAs and the size of the root spaces. Each root system
Φ can be identified with a Lie algebra of one of the classical groups An, Bn, Cn, Dn. The
classical group D2 corresponds to SO(4), with the corresponding Lie algebra so(4) which
has dimension N(N − 1)/2.

F.9 Errors due to truncation

Let θ, θ′ ∈ RN2−1 and θ − θ′ = δ. We can consider the case where the difference (due to
truncating the support) δ is small. This could save the number of gradient evaluations by
discarding irrelevant directions in Ωl(θ).

Take {Gm} to be a basis for su(N) and G = (G1, . . . , GN). Define A ≡ θ ·G. Then,

Tr{A2} =
1

N
Tr

{
N2−1∑

i,j=1

θiθjGiGj

}
(F.10)

=
1

N

N2−1∑

i,j=1

θiθjTr {GiGj} (F.11)

=
N2−1∑

i,j=1

θiθjδij = ∥θ∥22 (F.12)
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Given the above parameterization, we are interested in bounding the difference between
the two generated unitaries as a function of ∥δ∥. The following is due to [370]. Let
γ : [0, 1]→ Cn×n be a smooth curve and f a function that has a derivative. Then

f(γ(1))− f(γ(0)) =

∫ 1

0

Df(γ(t))γ′(t)dt

where Df(x) is the Frechet derivative. Given the curve γ(t) = (1 − t)a + tb for t ∈ [0, 1]
we find

∥f(b)− f(a)∥ =

(
sup
x∈[a,b]

Df(x)

)
∥b− a∥

We now consider the function f(X) = exp{X} ∈ SU(N). We consider the curve γ(t) =
(1− t)X + tY . Clearly we have

γ(0) = X, γ(1) = X, γ̇(t) = −X + Y ≡ H

Hence we see that γ(t) = X + tH Using the fact that

Df(X)(H) =
d

dt
(f ◦ γ)(t)

∣∣∣∣
t=0

for γ(0) = X and γ̇(0) = H we find

Df(X)(H) =
d

dt
eX+tH

∣∣∣∣
t=0

Let H ∈ TXsu(N). We use the integral identity of [258] (see also Appendix F.3). Consider
the function

g(s) = e−sX ∂

∂t
es(X+tH)

∣∣∣∣
t=0

Taking the partial derivative with respect to s, we find

g′(s) = −Xe−sX ∂

∂t
es(X+tH)

∣∣∣∣
t=0

+ e−sX ∂

∂t
(X + tH)es(X+tH)

= −Xe−sX ∂

∂t
es(X+tH)

∣∣∣∣
t=0

+Xe−sX ∂

∂t
es(X+tH)

∣∣∣∣
t=0

+ e−sXHesX + e−sXtH
∂

∂t
es(X+tH)

∣∣∣∣
t=0

= e−sXHesX
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Using the fundamental theorem of calculus,

g(1)− g(0) =

∫ 1

0

ds g′(s)

where

g(0) = 0, g(1) = e−X ∂

∂t
eX+tH

We then find

e−X d

dt
eX+tH

∣∣∣∣
t=0

=

∫ 1

0

ds e−sXHesX

so

Df(X)(H) =

∫ 1

0

ds e(1−s)XHesX

If we take the velocity H = I and use the Cauchy-Schwarz inequality, we get

∥Df(X)(I)∥ ≤
∫ 1

0

ds
∥∥e(1−s)X

∥∥∥∥esX
∥∥

by bringing the norm into the integral. Using the fact that iX is self-adjoint, we find

∥∥esX
∥∥ ≤ esα

where α is the largest eigenvalue of X and Y (Note that α is maximal at the end points
of the curve γ(t)). Plugging this into the integral, we get

∥Df(X)(I)∥ ≤ eα

Hence

∥∥eX − eY
∥∥ ≤ eα∥X − Y ∥

Plugging in our equations then gives

∥∥eθG+δG − eθG
∥∥ ≤ eα∥δ∥

Hence for small perturbations δ the loss of unitary fidelity is manageable.

240



Appendix G

Additional details DLA classification

G.1 Involutions of su(2n)

In this subsection, we explain how we can describe subalgebras of su(2n) as fixed points of
involutions. We start more generally by recalling that an isomorphism from a Lie algebra g
to another Lie algebra g1 is an invertible linear transformation φ : g→ g1 that is compatible
with the bracket, i.e., φ([a, b]) = [φ(a), φ(b)] for all a, b ∈ g. We write g ∼= g1 to indicate
that g is isomorphic to g1. An automorphism of g is an isomorphism φ : g→ g. The set of
fixed points of φ is defined as:

gφ =
{
a ∈ g

∣∣φ(a) = a
}
. (G.1)

It is easy to check that gφ is a subalgebra of g, called the fixed-point subalgebra. An
involution on g is an automorphism θ : g → g with the property that θ(θ(a)) = a for all
a ∈ g, i.e., θ−1 = θ.

Later, we will need to understand how, for an involution θ, the fixed-point subalgebra
gθ transforms under another automorphism φ of g. The answer is given in the following
lemma.

Lemma G.1.1. Let φ be an automorphism of a Lie algebra g, and θ be an involution of
g. Then φθφ−1 is an involution of g, and we have φ(gθ) = gφθφ

−1
.

Proof. Note that φθφ−1 is an automorphism of g, since the composition of isomorphisms
is again an isomorphism. It is an involution of g, because (φθφ−1)−1 = φθ−1φ−1 = φθφ−1.
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To check the claim about the fixed points, suppose that a ∈ gθ, i.e., θ(a) = a. Then

(φθφ−1)φ(a) = φ(θ(a)) = φ(a) ⇒ φ(a) ∈ gφθφ
−1

.

Conversely, if b ∈ gφθφ
−1

, then the above calculation shows that a = φ−1(b) ∈ gθ.

Now we will discuss how to construct automorphisms and involutions of su(N).

Lemma G.1.2. Suppose that U and Q are unitary N ×N matrices, and QT = ±Q. Then
the formulas

φ(a) = UaU †, θ(a) = −QaTQ†, a ∈ su(N),

define an automorphism φ and an involution θ of su(N). Moreover, we have

(φθφ−1)(a) = −(UQUT )aT (UQUT )†, a ∈ su(N).

Proof. First, note that φ is invertible with φ−1(a) = U †aU . It is clear that φ([a, b]) =
[φ(a), φ(b)], because

φ(a)φ(b) = UaU †UbU † = UabU † = φ(ab)

for any two matrices a, b. (This means that φ is an automorphism of the associative algebra
CN×N .)

To check that θ is an involution, we calculate

θ(θ(a)) = θ(−QaTQ†) = Q(Q†)T (aT )TQTQ† = Q(±Q†)a(±Q)Q† = a,

where we used that (Q†)T = (QT )†. Next, we have

θ(ab) = −Q(ab)TQ† = −QbTaTQ† = −QbTQ†QaTQ† = −θ(b)θ(a).

This implies that θ([a, b]) = [θ(a), θ(b)] and proves that θ is an involution of su(N).

Finally, we find

(φθφ−1)(a) = φ
(
θ(U †aU)

)

= −φ
(
QUTaT (U †)TQ†)

= −UQUTaT (U †)TQ†U †

= −(UQUT )aT (UQUT )†,

as claimed.
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Example G.1.1. The subalgebra so(N) ⊂ su(N) is the fixed-point subalgebra of the
involution a 7→ −aT (see Equation (4.8)). Similarly, we see from Equation (4.9) that
sp(N) = su(2N)θ, where θ(a) = −QaTQ† as in Lemma G.1.2, with Q = −iJ2N .

It is well known, in general, that for an involution θ(a) = −QaTQ† as in Lemma G.1.2,
the fixed-point subalgebra su(N)θ ∼= so(N) when QT = Q, and su(N)θ ∼= sp(N/2) when
QT = −Q (in which case N must be even). For completeness, we will present the proof of
these facts in the special case of interest to us: when N = 2n and Q ∈ Pn is a length-n
Pauli string. Note that all Pauli strings Q satisfy Q = Q† = Q−1 and QT = ±Q.

Lemma G.1.3. For any Pauli string Q ∈ Pn, there exists a unitary 2n×2n matrix U such
that

UQUT =

{
I⊗n, if QT = Q,

Y1, if QT = −Q.

Proof. In the case QT = Q, we let U = ei
π
4
Q. Then

UQUT = UQU = U2Q = ei
π
2
QQ = iQ ·Q = iI⊗n,

where we used Euler’s formula Equation (A.4). The superfluous phase i can be eliminated
by applying the unitary transformation V = e−iπ

4
I⊗n

, which satisfies V T = V and V 2 =
−iI⊗n.

Suppose now that QT = −Q, which means that Q contains an odd number of Y ’s. If
Q has a Y in j-th position, let P = Yj ·Q and U = ei

π
4
P . Note that

P = Yj ·Q = Q · Yj ⇒ P ·Q = Q · P = Yj

and
P T = QT · Y T

j = (−Q) · (−Yj) = Q · Yj = P.

Hence, as above, we find:

UQUT = UQU = U2Q = ei
π
2
PQ = iP ·Q = iYj.

If j = 1, we are done (after eliminating the phase i). If j ̸= 1, we apply the unitary
transformation e−iπ

4
Y1Yj and obtain:

e−iπ
4
Y1Yj(iYj)(e

−iπ
4
Y1Yj)T = e−iπ

2
Y1Yj(iYj) = −iY1Yj · (iYj) = Y1,

completing the proof.
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Corollary G.1.1. Any Pauli string Q ∈ Pn defines an involution θ of su(2n) given by
θ(a) = −QaTQ. The fixed-point subalgebra of this involution is:

su(2n)θ ∼=
{
so(2n), if QT = Q,

sp(2n−1), if QT = −Q.

G.2 Statement of Results

G.2.1 Subalgebras of su(4) up to symmetry

Recall that su(4) has a basis over R consisting of all possible tensor products iAB, where
A,B ∈ {I,X, Y, Z}, AB ̸= II. As a first step, we found that there are 202 subalgebras
of su(4), which are generated by subsets of this basis. The symmetry group S3 × Z2 acts
on su(4) as follows: the symmetric group S3 permutes simultaneously all {X, Y, Z}, while
the non-identity element of Z2 acts as the flip AB ⇌ BA. We examined the orbits of
the action of S3 × Z2 on the 202 subalgebras, and found that there are 36 orbits, which
are listed in Table G.1 below. The full list of all 202 subalgebras is presented in the next
subsection.

The numbers s, p, e, d are equal to the numbers of: single Paulis (such as XI), single
Pauli pairs (such as XI, IX), double equal Paulis (such as XX), and double different Paulis
(such as XY ), respectively, in the basis of the subalgebra. These are invariant under the
action of the symmetry group; hence, subalgebras of su(4) with different invariants are not
equivalent to each other. It turns out that the only two non-equivalent subalgebras with
the same invariants are a2 and a5.

We distinguish between three types of subalgebras. The a-type Lie algebras are gen-
erated by products of two Paulis both different from the identity, whereas the b-type can
be generated by Pauli strings that contain the identity. The c-type Lie algebras are an
edge case where the generators contain some Pauli strings of the form a ⊗ I without the
corresponding term I ⊗ a. These Lie algebras will behave like the b-type Lie algebras but
include a boundary effect at the last site in the chain. In particular, note that all single
Pauli generators come in pairs such as XI, IX or Y I, IY or ZI, IZ due to the translation
invariance; hence we exclude the Lie algebras c0, . . . , c7 from our classification. However,
we include them in the following tables for completeness.
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Label Basis dim Stabilizer Orbit (s, p, e, d)
a0 XX 1 4 3 (0,0,1,0)
a1 XY 1 2 6 (0,0,0,1)
a2 XY, Y X 2 4 3 (0,0,0,2)
a3 XX, Y Z 2 2 6 (0,0,1,1)
a4 XX, Y Y 2 4 3 (0,0,2,0)
a5 XY, Y Z 2 2 6 (0,0,0,2)
a6 XX, Y Z,ZY 3 4 3 (0,0,1,2)
a7 XX, Y Y, ZZ 3 12 1 (0,0,3,0)
a8 XX,XZ, IY 3 1 12 (1,0,1,1)
a9 XY,XZ, IX 3 2 6 (1,0,0,2)
a10 XY, Y Z, ZX 3 6 2 (0,0,0,3)
a11 XY, Y X, Y Z, IY 4 1 12 (1,0,0,3)
a12 XX,XY, Y Z, IZ 4 1 12 (1,0,1,2)
a13 XX, Y Y, Y Z, IX 4 1 12 (1,0,2,1)
a14 XX, Y Y,XY, Y X,ZI, IZ 6 4 3 (2,1,2,2)
a15 XX,XY,XZ, IX, IY, IZ 6 2 6 (3,0,1,2)
a16 XY, Y X, Y Z, ZY, Y I, IY 6 4 3 (2,1,0,4)
a17 XX,XY,ZX,ZY, Y I, IZ 6 2 6 (2,0,1,3)
a18 XX, Y Y,XZ,ZY,XI, IY 6 2 6 (2,0,2,2)
a19 XX,XY,ZX,ZY, Y Z, Y I, IZ 7 2 6 (2,0,1,4)
a20 XX, Y Y, ZZ, Y Z, ZY,XI, IX 7 4 3 (2,1,3,2)
a21 XX, Y Y,XY, Y X,ZX,ZY,XI, Y I, ZI, IZ 10 2 6 (4,1,2,4)
a22 all Paulis except II 15 12 1 (6,3,3,6)
b0 XI, IX 2 4 3 (2,1,0,0)
b1 XX,XI, IX 3 4 3 (2,1,1,0)
b2 XY,XZ,XI, IX 4 2 6 (2,1,0,2)
b3 XI, Y I, ZI, IX, IY, IZ 6 12 1 (6,3,0,0)
b4 XX,XY,XZ,XI, IX, IY, IZ 7 2 6 (4,1,1,2)
c0 XI 1 2 6 (1,0,0,0)
c1 XY,XI 2 1 12 (1,0,0,1)
c2 XX,XI 2 2 6 (1,0,1,0)
c3 XI, IY 2 2 6 (2,0,0,0)
c4 XY,XI, IY 3 2 6 (2,0,0,1)
c5 XI, Y I, ZI 3 6 2 (3,0,0,0)
c6 XX,XY,XI, IZ 4 1 12 (2,0,1,1)
c7 XI, IX, Y I, ZI 4 2 6 (4,1,0,0)

Table G.1: List of all subalgebras of su(4) up to symmetry S3 × Z2. For each
subalgebra, we have listed: a basis (over R, after multiplication by i), its dimension, the
order of the stabilizer, the order of the orbit under the action of S3×Z2, and the invariants
s, p, e, d. Note that the orders of all orbits add up to 202.
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For each subalgebra of su(4), we list below a minimal set of generators and the isomor-
phism class of the Lie algebra. Commuting direct summands are denoted with ⊕. Note
also that so(4) ∼= su(2)⊕ su(2).

a0 = ⟨XX⟩Lie ∼= u(1),

a1 = ⟨XY ⟩Lie ∼= u(1),

a2 = ⟨XY, Y X⟩Lie ∼= u(1)⊕ u(1),

a3 = ⟨XX, Y Z⟩Lie ∼= u(1)⊕ u(1),

a4 = ⟨XX, Y Y ⟩Lie ∼= u(1)⊕ u(1),

a5 = ⟨XY, Y Z⟩Lie ∼= u(1)⊕ u(1),

a6 = ⟨XX, Y Z,ZY ⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

a7 = ⟨XX, Y Y, ZZ⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

a8 = ⟨XX,XZ⟩Lie ∼= su(2),

a9 = ⟨XY,XZ⟩Lie ∼= su(2),

a10 = ⟨XY, Y Z, ZX⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

a11 = ⟨XY, Y X, Y Z⟩Lie ∼= su(2)⊕ u(1),

a12 = ⟨XX,XY, Y Z⟩Lie ∼= su(2)⊕ u(1),

a13 = ⟨Y Y, Y Z,XX⟩Lie ∼= su(2)⊕ u(1),

a14 = ⟨XX, Y Y,XY ⟩Lie = so(4),

a15 = ⟨XX,XY,XZ⟩Lie ∼= su(2)⊕ su(2),

a16 = ⟨XY, Y X, Y Z, ZY ⟩Lie = so(4),

a17 = ⟨XX,XY,ZX⟩Lie ∼= su(2)⊕ su(2),

a18 = ⟨XX,XZ, Y Y, ZY ⟩Lie ∼= su(2)⊕ su(2),

a19 = ⟨XX,XY,ZX, Y Z⟩Lie ∼= su(2)⊕ su(2)⊕ u(1),

a20 = ⟨XX, Y Y, ZZ, ZY ⟩Lie ∼= su(2)⊕ su(2)⊕ u(1),

a21 = ⟨XX, Y Y,XY, ZX⟩Lie ∼= sp(2),

a22 = ⟨XX,XY,XZ, Y X,ZX⟩Lie = su(4),

b0 = ⟨XI, IX⟩Lie ∼= u(1)⊕ u(1),

b1 = ⟨XX,XI, IX⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

b2 = ⟨XY,XI, IX⟩Lie ∼= su(2)⊕ u(1),

b3 = ⟨XI, Y I, IX, IY ⟩Lie ∼= su(2)⊕ su(2),
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b4 = ⟨XX,XY,XI, IX⟩Lie ∼= su(2)⊕ su(2)⊕ u(1),

c0 = ⟨XI⟩Lie ∼= u(1),

c1 = ⟨XY,XI⟩Lie ∼= u(1)⊕ u(1),

c2 = ⟨XX,XI⟩Lie ∼= u(1)⊕ u(1),

c3 = ⟨XI, IY ⟩Lie ∼= u(1)⊕ u(1),

c4 = ⟨XY,XI, IY ⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

c5 = ⟨XI, Y I, ZI⟩Lie ∼= u(1)⊕ u(1)⊕ u(1),

c6 = ⟨XX,XY,XI⟩Lie ∼= su(2)⊕ u(1),

c7 = ⟨XI, Y I, IX⟩Lie ∼= su(2)⊕ u(1).

Finally, note that

b2 = a9 ⊕ span{XI},
b4 = a15 ⊕ span{XI},

are central extensions of a-type subalgebras.
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G.2.2 List of all 202 subalgebras of su(4)

Here, we group the 202 subalgebras of su(4) into orbits of the symmetry group S3 × Z2.
For each orbit, we provide its label and its size.

a0 : 3, {XX}, {Y Y }, {ZZ};
a1 : 6, {XY }, {XZ}, {Y X}, {Y Z}, {ZX}, {ZY };
a2 : 3, {XY, Y X}, {XZ,ZX}, {Y Z,ZY };
a3 : 6, {XX, Y Z}, {XX,ZY }, {Y Y,XZ}, {Y Y, ZX}, {ZZ,XY }, {ZZ, Y X};
a4 : 3, {XX, Y Y }, {XX,ZZ}, {Y Y, ZZ};
a5 : 6, {XY, Y Z}, {XZ,ZY }, {Y X,XZ}, {Y Z,ZX}, {ZX,XY }, {ZY, Y X};
a6 : 3, {XY, Y X,ZZ}, {XZ,ZX, Y Y }, {Y Z,ZY,XX};
a7 : 1, {XX, Y Y, ZZ};
a8 : 12, {XX,XY, IZ}, {XX,XZ, IY }, {XX, Y X,ZI}, {XX,ZX, Y I},

{Y Y, Y X, IZ}, {Y Y, Y Z, IX}, {Y Y,XY, ZI}, {Y Y, ZY,XI},
{ZZ,ZX, IY }, {ZZ,ZY, IX}, {ZZ,XZ, Y I}, {ZZ, Y Z,XI};

a9 : 6, {XY,XZ, IX}, {Y X, Y Z, IY }, {ZX,ZY, IZ},
{Y X,ZX,XI}, {XY,ZY, Y I}, {XZ, Y Z,ZI};

a10 : 2, {XY, Y Z, ZX}, {XZ,ZY, Y X};
a11 : 12, {XY, Y X,XZ, IX}, {XZ,ZX,XY, IX}, {XY, Y X,ZX,XI}, {XZ,ZX, Y X,XI},

{Y X,XY, Y Z, IY }, {Y Z,ZY, Y X, IY }, {Y X,XY,ZY, Y I}, {Y Z,ZY,XY, Y I},
{ZX,XZ,ZY, IZ}, {ZY, Y Z, ZX, IZ}, {ZX,XZ, Y Z, ZI}, {ZY, Y Z,XZ,ZI};

a12 : 12, {XX,XY, Y Z, IZ}, {XX,XZ,ZY, IY }, {XX, Y X,ZY, ZI}, {XX,ZX, Y Z, Y I},
{Y Y, Y X,XZ, IZ}, {Y Y, Y Z, ZX, IX}, {Y Y,XY, ZX,ZI}, {Y Y, ZY,XZ,XI},
{ZZ,ZX,XY, IY }, {ZZ,ZY, Y X, IX}, {ZZ,XZ, Y X, Y I}, {ZZ, Y Z,XY,XI};

a13 : 12, {XX, Y Y, Y Z, IX}, {XX, Y Y,XZ, IY }, {XX, Y Y, ZY,XI}, {XX, Y Y, ZX, Y I},
{XX,ZZ,ZY, IX}, {XX,ZZ,XY, IZ}, {XX,ZZ, Y Z,XI}, {XX,ZZ, Y X,ZI},
{Y Y, ZZ,ZX, IY }, {Y Y, ZZ, Y X, IZ}, {Y Y, ZZ,XZ, Y I}, {Y Y, ZZ,XY, ZI};

a14 : 3, {XX, Y Y,XY, Y X,ZI, IZ}, {XX,ZZ,XZ,ZX, Y I, IY }, {Y Y, ZZ, Y Z, ZY,XI, IX};
a15 : 6, {XX,XY,XZ, IX, IY, IZ}, {Y Y, Y X, Y Z, IX, IY, IZ}, {ZZ,ZX,ZY, IX, IY, IZ},

{XX, Y X,ZX,XI, Y I, ZI}, {Y Y,XY, ZY,XI, Y I, ZI}, {ZZ,XZ, Y Z,XI, Y I, ZI};
a16 : 3, {XY, Y X,XZ,ZX,XI, IX}, {Y X,XY, Y Z, ZY, Y I, IY }, {ZX,XZ,ZY, Y Z, ZI, IZ};
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a17 : 6, {XX,XY,ZX,ZY, Y I, IZ}, {Y Y, Y X,ZY, ZX,XI, IZ}, {ZZ,ZX, Y Z, Y X,XI, IY },
{XX, Y X,XZ, Y Z, IY, ZI}, {Y Y,XY, Y Z,XZ, IX,ZI}, {ZZ,XZ,ZY,XY, IX, Y I};

a18 : 6, {XX, Y Y,XZ,ZY,XI, IY }, {XX,ZZ,XY, Y Z,XI, IZ}, {Y Y, ZZ, Y X,XZ, Y I, IZ},
{XX, Y Y, ZX, Y Z, IX, Y I}, {XX,ZZ, Y X,ZY, IX,ZI}, {Y Y, ZZ,XY, ZX, IY, ZI};

a19 : 6, {XX,XY,ZX,ZY, Y Z, Y I, IZ}, {XX, Y X,XZ, Y Z, ZY, IY, ZI},
{Y Y, Y X,ZY, ZX,XZ,XI, IZ}, {Y Y,XY, Y Z,XZ,ZX, IX,ZI},
{ZZ,ZX, Y Z, Y X,XY,XI, IY }, {ZZ,XZ,ZY,XY, Y X, IX, Y I};

a20 : 3, {XX, Y Y, ZZ,XY, Y X,ZI, IZ}, {XX, Y Y, ZZ,XZ,ZX, Y I, IY },
{XX, Y Y, ZZ, Y Z, ZY,XI, IX};

a21 : 6, {XX, Y Y,XY, Y X,ZX,ZY,XI, Y I, ZI, IZ}, {XX, Y Y,XY, Y X,XZ, Y Z, IX, IY, ZI, IZ},
{XX,ZZ,XZ,ZX, Y X, Y Z,XI, ZI, Y I, IY }, {XX,ZZ,XZ,ZX,XY, ZY, IX, IZ, Y I, IY },
{Y Y, ZZ, Y Z, ZY,XY,XZ, Y I, ZI,XI, IX}, {Y Y, ZZ, Y Z, ZY, Y X,ZX, IY, IZ,XI, IX};

a22 : 1, {XX, Y Y, ZZ,XY, Y X,XZ,ZX, Y Z, ZY,XI, IX, Y I, IY, ZI, IZ};
b0 : 3, {XI, IX}, {Y I, IY }, {ZI, IZ};
b1 : 3, {XX,XI, IX}, {Y Y, Y I, IY }, {ZZ,ZI, IZ};
b2 : 6, {XY,XZ,XI, IX}, {Y X, Y Z, Y I, IY }, {ZX,ZY, ZI, IZ},

{Y X,ZX,XI, IX}, {XY,ZY, Y I, IY }, {XZ, Y Z,ZI, IZ};
b3 : 1, {XI, Y I, ZI, IX, IY, IZ};
b4 : 6, {XX,XY,XZ,XI, IX, IY, IZ}, {XX, Y X,ZX, IX,XI, Y I, ZI},

{Y Y, Y X, Y Z, Y I, IY, IX, IZ}, {Y Y,XY, ZY, IY, Y I,XI, ZI},
{ZZ,ZX,ZY, ZI, IZ, IX, IY }, {ZZ,XZ, Y Z, IZ, ZI,XI, Y I};

c0 : 6, {XI}, {Y I}, {ZI}, {IX}, {IY }, {IZ};
c1 : 12, {XY,XI}, {XZ,XI}, {Y X, Y I}, {Y Z, Y I}, {ZX,ZI}, {ZY,ZI},

{Y X, IX}, {ZX, IX}, {XY, IY }, {ZY, IY }, {XZ, IZ}, {Y Z, IZ};
c2 : 6, {XX,XI}, {XX, IX}, {Y Y, Y I}, {Y Y, IY }, {ZZ,ZI}, {ZZ, IZ};
c3 : 6, {XI, IY }, {XI, IZ}, {Y I, IX}, {Y I, IZ}, {ZI, IX}, {ZI, IY };
c4 : 6, {XY,XI, IY }, {Y Z, Y I, IZ}, {ZX,ZI, IX},

{Y X, Y I, IX}, {ZY,ZI, IY }, {XZ,XI, IZ};
c5 : 2, {XI, Y I, ZI}, {IX, IY, IZ};
c6 : 12, {XX,XY,XI, IZ}, {XX,XZ,XI, IY }, {XX, Y X, IX,ZI}, {XX,ZX, IX, Y I},

{Y Y, Y X, Y I, IZ}, {Y Y, Y Z, Y I, IX}, {Y Y,XY, IY, ZI}, {Y Y, ZY, IY,XI},
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{ZZ,ZX,ZI, IY }, {ZZ,ZY, ZI, IX}, {ZZ,XZ, IZ, Y I}, {ZZ, Y Z, IZ,XI};
c7 : 6, {XI, IX, Y I, ZI}, {Y I, IY,XI, ZI}, {ZI, IZ,XI, Y I},

{XI, IX, IY, IZ}, {Y I, IY, IX, IZ}, {ZI, IZ, IX, IY }.

Adding up the orders of the orbits, we obtain a total of 127 Lie algebras of type a, 19
of type b, and 56 of type c.
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G.2.3 Identifying the subalgebras with known spin systems

In Table G.2 below, we identify some of our Lie algebras with the DLAs of known spin
models. The listed generating sets are from Appendix G.2.1. However, these generating
sets are not unique, and they can be replaced with alternative generators that are used to
generate the terms of the Hamiltonian; we call those conventional generators.

Label Generating set Conventional generators Example Model
a0 XX ZZ Ising model [371]
a1 XY XY Kitaev chain
a2 XY, Y X Massless free fermion in a magnetic field
a3 XX, Y Z ZZ,XY Kitaev chain with

nearest neighbor Coulomb interaction
a4 XX, Y Y XY-model [53] / Massless free fermion
a5 XY, Y Z
a6 XX, Y Z,ZY ZZ,XY, Y X Massless free fermion in a magnetic field with

nearest neighbor Coulomb interaction
a7 XX, Y Y, ZZ Heisenberg model / XXZ Chain [53]
a8 XX,XZ ZZ, IX Transverse-field Ising model [53]
a9 XY,XZ XY, IX Kitaev chain in an X field
a10 XY, Y Z, ZX Heisenberg model
a11 XY, Y X, Y Z XX, Y Y, IY XY model in a Y field
a12 XX,XY, Y Z
a13 XX, Y Y, Y Z XX, Y Y, IX XY-model in a longitudinal field [53]
a14 XX, Y Y,XY Transverse-field XY / Ising model [53]
a15 XX,XY,XZ ZZ, IX, IY, (IZ) Ising model in an arbitrary magnetic field
a16 XY, Y X, Y Z, ZY XY, Y X, IY, Y I Kitaev chain in a Y field
a17 XX,XY,ZX ZZ, IX, IY, (IZ) Ising model in an arbitrary magnetic field
a18 XX,XZ, Y Y, ZY XX, Y Y, IY,XI, (ZI) XY model in an arbitrary field
a19 XX,XY,ZX, Y Z
a20 XX, Y Y, ZZ, ZY XX, Y Y, ZZ, IX,XI XXZ chain in an X field [53]
a21 XX, Y Y,XY, ZX XX, Y Y, IZ, Y I, (IX) XY model in an arbitrary field
a22 XX,XY,XZ, Y X,ZX ZZ,XI, IY, IZ, Y I Ising model in an arbitrary field
b0 XI, IX ZI, IZ Uncoupled spins
b1 XX,XI, IX ZZ,ZI, IZ Ising model [371]
b2 XY,XI, IX Kitaev chain in an X field
b3 XI, Y I, IX, IY Uncoupled spins
b4 XX,XY,XZ,XI, IX, IY, IZ ZZ, IX, IY, IZ, ZI Ising model in an arbitrary field

Table G.2: Conventional spin models corresponding to the dynamical Lie alge-
bras discussed in the main text. Terms in parentheses do not appear explicitly in the
set of generators, but are generated from them.
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G.2.4 Extending subalgebras of su(4) to su(2n)

Starting from a subalgebra a ⊆ su(4), let a(n) be the subalgebra of su(2n) generated by
the set ⋃

0≤k≤n−2

I⊗k ⊗ a⊗ I⊗(n−2−k). (G.2)

In particular, a(2) = a. By construction, we have two Lie algebra embeddings a(n) →
a(n+ 1), given by appending I in the last or first qubit, and a(n+ 1) is generated as a Lie
algebra by the union of the two images:

a(n+ 1) = ⟨(a(n)⊗ I) ∪ (I ⊗ a(n))⟩Lie. (G.3)

This allows us to determine the sequence of Lie algebras a(2), a(3), . . . inductively. In
particular, if a(n) = su(2n) for some n = n0, then this is true for all n ≥ n0. For instance,
since

a18(3) = a19(3) = a21(3) = a22(3) = su(8), a12(4) = a17(4) = su(16), (G.4)

we obtain that

ak(n) = su(2n), k = 12, 17, 18, 19, 21, 22, n ≥ 4. (G.5)

We also consider periodic boundary conditions. For each n ≥ 2, define the subalgebra
of su(2n):

a◦(n) = ⟨{AiBi+1, B1An |AB ∈ a, 1 ≤ i ≤ n− 1}⟩Lie. (G.6)

Since
a(n) = ⟨{AiBi+1 |AB ∈ a, 1 ≤ i ≤ n− 1}⟩Lie, (G.7)

it is obvious that a(n) ⊆ a◦(n). Introduce the cyclic shift operator τn : su(2n) → su(2n),
which acts on Pauli strings as

τn(P 1 ⊗ P 2 ⊗ · · · ⊗ P n) = P 2 ⊗ · · · ⊗ P n ⊗ P 1, P j ∈ {I,X, Y, Z} (G.8)

(where the superscipts are indices not powers). Then τn is a Lie algebra automorphism, and
τna

◦(n) = a◦(n). In particular, this implies that τna(n) ⊆ a◦(n). Note that, by definition,
a◦(n) is generated as a Lie algebra by the union of a(n) and τna(n):

a◦(n) = ⟨a(n) ∪ τna(n)⟩Lie. (G.9)

252



Another case we will investigate is when our subalgebras of su(2n) are permutation
invariant, i.e., invariant under the action of the symmetric group Sn that permutes the n
qubits. We define

aπ(n) = ⟨{AiBj |AB ∈ a, 1 ≤ i ̸= j ≤ n}⟩Lie. (G.10)

Note that, in particular, a◦(n) ⊆ aπ(n). Moreover, without loss of generality, we can
assume that the generating subalgebra a ⊆ su(4) is itself invariant under S2, i.e., under
the flip of the two qubits. In other words, we have:

aπ1 (n) = aπ2 (n),

aπ3 (n) = aπ6 (n),

aπ5 (n) = aπ11(n) = aπ16(n),

aπ8 (n) ∼= aπ14(n),

aπ9 (n) = bπ2 (n) ∼= aπ16(n),

aπ13(n) = aπ20(n),

aπk(n) = bπ4 (n) = su(2n), k = 10, 12, 15, 17, 18, 19, 21, 22.

Thus, we only need to determine aπk(n) for k = 0, 2, 4, 6, 7, 14, 16, 20 and bπl (n) for l = 0, 1, 3.

G.2.5 Subalgebras of su(8)

For completeness and for later use, we list a linear basis (over R, after multiplication by i)
for each of the following subalgebras of su(8).

Open case:

a0(3) : {IXX,XXI},
a1(3) : {IXY,XY I,XZY },
a2(3) : {IXY, IY X,XY I,XZY, Y XI, Y ZX},
a3(3) : {IXX, IY Z,XXI,XZZ, Y IY, Y XZ, Y Y X, Y ZI, ZIZ, ZXY },
a4(3) : {IXX, IY Y,XXI,XZY, Y Y I, Y ZX},
a5(3) : {IXY, IY Z,XY I,XZY, Y IX, Y XZ, Y Y Y, Y ZI, ZIY, ZY X},
a6(3) : {IXY, IY X, IZZ,XIX,XXZ,XY I,XZY, Y IY, Y XI, Y Y Z, Y ZX,ZIZ, ZXX,ZY Y, ZZI},
a7(3) : {IXX, IY Y, IZZ,XIX,XXI,XY Z,XZY, Y IY, Y XZ, Y Y I, Y ZX,ZIZ, ZXY,ZY X,ZZI},
a8(3) : {IIY, IXX, IXZ, IY I, IZX, IZZ,XXI,XY X,XY Z,XZI},
a9(3) : {IIX, IXI, IXY, IXZ,XY I,XY Y,XY Z,XZI,XZY,XZZ},
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a10(3) : {IXY, IY Z, IZX,XIZ,XXX,XY I,XZY, Y IX, Y XZ, Y Y Y, Y ZI, ZIY, ZXI, ZY X,ZZZ},
a11(3) : {IIX, IXI, IXY, IXZ, IY X, IZX,XIY,XIZ,XXX,XY I,XY Y,XY Z,XZI,XZY,

XZZ, Y XI, Y Y X, Y ZX,ZIX,ZXY,ZXZ},
a12(3) : {IIX, IIY, IIZ, IXX, IXY, IXZ, IY X, IY Y, IY Z, IZI,XII,XXI,XY I,XZX,XZY,

XZZ, Y IX, Y IY, Y IZ, Y XX, Y XY, Y XZ, Y Y X, Y Y Y, Y Y Z, Y ZI, ZIX,ZIY, ZIZ, ZXX,

ZXY,ZXZ,ZY X,ZY Y, ZY Z,ZZI},
a13(3) : {IIX, IXI, IXX, IY Y, IY Z, IZY, IZZ,XII,XIX,XXI,XY Y,XY Z,XZY,XZZ, Y IY,

Y IZ, Y XY, Y XZ, Y Y I, Y Y X, Y ZI, Y ZX,ZIY, ZIZ, ZXY,ZXZ,ZY I, ZY X,ZZI, ZZX},
a14(3) : {IIZ, IXX, IXY, IY X, IY Y, IZI,XXI,XY I,XZX,XZY, Y XI, Y Y I, Y ZX, Y ZY, ZII},
a15(3) : {IIX, IIY, IIZ, IXI, IXX, IXY, IXZ, IY I, IY X, IY Y, IY Z, IZI, IZX, IZY, IZZ,XIX,

XIY,XIZ,XXI,XXX,XXY,XXZ,XY I,XY X,XY Y,XY Z,XZI,XZX,XZY,XZZ},
a16(3) : {IIX, IXI, IXY, IXZ, IY X, IZX,XII,XIY,XIZ,XXX,XY I,XY Y,XY Z,XZI,

XZY,XZZ, Y IX, Y XI, Y XY, Y XZ, Y Y X, Y ZX,ZIX,ZXI, ZXY,ZXZ,ZY X,ZZX},
a17(3) : {IIZ, IXI, IXX, IXY, IY I, IY X, IY Y, IZI, IZX, IZY,XIZ,XXI,XXX,XXY,

XY I,XY X,XY Y,XZI,XZX,XZY, Y II, Y IX, Y IY, Y XZ, Y Y Z, Y ZZ,ZIZ, ZXI,

ZXX,ZXY,ZY I, ZY X,ZY Y, ZZI, ZZX,ZZY },
a20(3) : {IIZ, IXX, IXY, IY X, IY Y, IZI, IZZ,XIX,XIY,XXI,XXZ,XY I,XY Z,XZX,XZY,

Y IX, Y IY, Y XI, Y XZ, Y Y I, Y Y Z, Y ZX, Y ZY, ZII, ZIZ, ZXX,ZXY,ZY X,ZY Y, ZZI}.

Periodic case:

a◦0(3) : {IXX,XIX,XXI},
a◦1(3) : {IXY,XY I,XZY, Y IX, Y XZ,ZY X},
a◦2(3) : {IXY, IY X,XIY,XY I,XY Z,XZY, Y IX, Y XI, Y XZ, Y ZX,ZXY,ZY X},
a◦3(3) : {IIX, IXI, IXX, IY Y, IY Z, IZY, IZZ,XII,XIX,XXI,XY Y,XY Z,XZY,XZZ, Y IY,

Y IZ, Y XY, Y XZ, Y Y I, Y Y X, Y ZI, Y ZX,ZIY, ZIZ, ZXY,ZXZ,ZY I, ZY X,ZZI, ZZX},
a◦4(3) : {IXX, IY Y, IZZ,XIX,XXI,XY Z,XZY, Y IY, Y XZ, Y Y I, Y ZX,ZIZ, ZXY,ZY X,ZZI},
a◦6(3) : {IIZ, IXX, IXY, IY X, IY Y, IZI, IZZ,XIX,XIY,XXI,XXZ,XY I,XY Z,XZX,XZY,

Y IX, Y IY, Y XI, Y XZ, Y Y I, Y Y Z, Y ZX, Y ZY, ZII, ZIZ, ZXX,ZXY,ZY X,ZY Y, ZZI},
a◦8(3) : {IIY, IXX, IXZ, IY I, IY Y, IZX, IZZ,XIX,XIZ,XXI,XXY,XY X,XY Z,XZI,XZY,

Y II, Y IY, Y XX, Y XZ, Y Y I, Y ZX, Y ZZ,ZIX,ZIZ, ZXI, ZXY,ZY X,ZY Z,ZZI, ZZY },
a◦9(3) : {IIX, IXI, IXY, IXZ,XII,XY I,XY Y,XY Z,XZI,XZY,XZZ, Y IX, Y XY, Y XZ, Y Y X,
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Y ZX,ZIX,ZXY,ZXZ,ZY X,ZZX},
a◦11(3) : {IIX, IXI, IXY, IXZ, IY X, IZX,XII,XIY,XIZ,XXX,XY I,XY Y,XY Z,XZI,XZY,

XZZ, Y IX, Y XI, Y XY, Y XZ, Y Y X, Y ZX,ZIX,ZXI, ZXY,ZXZ,ZY X,ZZX},
a◦14(3) : {IIZ, IXX, IXY, IY X, IY Y, IZI, IZZ,XIX,XIY,XXI,XXZ,XY I,XY Z,XZX,XZY,

Y IX, Y IY, Y XI, Y XZ, Y Y I, Y Y Z, Y ZX, Y ZY, ZII, ZIZ, ZXX,ZXY,ZY X,ZY Y, ZZI}.

Moreover,
a◦k(3) = ak(3), k = 5, 7, 10, 13, 16, 20,

and
a◦12(3) = a◦15(3) = a◦17(3) = su(8).

G.2.6 Subalgebras of su(2n)

For convenience, here we repeat the statement of Theorem 4.5.1, with the additional in-
formation of the dimensions of the Lie algebras (cf. Equation (4.10)). The proof of the
theorem is given in Appendix G.3 below.

a0(n) = span{XjXj+1}1≤j≤n−1
∼= u(1)⊕(n−1), dim = n− 1,

a1(n) = span{XiZi+1 · · ·Zj−1Yj}1≤i<j≤n
∼= so(n), dim =

n(n− 1)

2
,

a2(n) = span{XiZi+1 · · ·Zj−1Yj}1≤i<j≤n ⊕ span{YiZi+1 · · ·Zj−1Xj}1≤i<j≤n

∼= so(n)⊕ so(n), dim = n(n− 1),

a3(n) ∼=





so(2n−2)⊕4, dim = 2n−1(2n−2 − 1), n ≡ 0 mod 8,

so(2n−1), dim = 2n−2(2n−1 − 1), n ≡ ±1 mod 8,

su(2n−2)⊕2, dim = 22n−3 − 2, n ≡ ±2 mod 8,

sp(2n−2), dim = 2n−2(2n−1 + 1), n ≡ ±3 mod 8,

sp(2n−3)⊕4, dim = 2n−1(2n−2 + 1), n ≡ 4 mod 8,

a4(n) ∼= a2(n),

a5(n) ∼=





so(2n−2)⊕4, dim = 2n−1(2n−2 − 1), n ≡ 0 mod 6,

so(2n−1), dim = 2n−2(2n−1 − 1), n ≡ ±1 mod 6,

su(2n−2)⊕2, dim = 22n−3 − 2, n ≡ ±2 mod 6,

sp(2n−2), dim = 2n−2(2n−1 + 1), n ≡ 3 mod 6,

255



a6(n) ∼= a7(n) ∼= a10(n) ∼=
{
su(2n−1), dim = 22n−2 − 1, n odd,

su(2n−2)⊕4, dim = 22n−2 − 4, n ≥ 4 even,

a8(n) ∼= so(2n− 1), dim = (n− 1)(2n− 1),

a9(n) ∼= sp(2n−2), dim = 2n−2(2n−1 + 1),

a11(n) = a16(n) = so(2n), dim = 2n−1(2n − 1), n ≥ 4,

ak(n) = su(2n), dim = 22n − 1, k = 12, 17, 18, 19, 21, 22, n ≥ 4,

a13(n) = a20(n) ∼= a15(n) ∼= su(2n−1)⊕ su(2n−1), dim = 22n−1 − 2,

a14(n) ∼= so(2n), dim = n(2n− 1),

b0(n) = span{Xi}1≤i≤n
∼= u(1)⊕n, dim = n,

b1(n) = span{Xi, XjXj+1}1≤i≤n, 1≤j≤n−1
∼= u(1)⊕(2n−1), dim = 2n− 1,

b2(n) = a9(n)⊕ span{X1} ∼= sp(2n−2)⊕ u(1), dim = 2n−2(2n−1 + 1) + 1,

b3(n) = span{Xi, Yi, Zi}1≤i≤n
∼= su(2)⊕n, dim = 3n,

b4(n) = a15(n)⊕ span{X1} ∼= su(2n−1)⊕ su(2n−1)⊕ u(1), dim = 22n−1 − 1.
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G.3 Proofs

This section contains detailed proofs of Theorems 4.5.1, 4.5.2, and 4.5.3. The proof of
Theorem 4.5.1 occupies Appendix G.3.2–G.3.7; its plan is outlined in Appendix G.3.1
below. The proofs of Theorems 4.5.2 and 4.5.3 utilize the results of Theorem 4.5.1, and
are given in Appendix G.3.8 and G.3.9, respectively. For an index of each proof for each
algebra, see Table G.3.

Label Generators Scaling Isomorphism Reason

a0 XX O(n) u(1)⊕(n−1) Appendix G.3.1
a1 XY O(n2) so(n) Appendix G.3.3, frustration graph
a2 XY, Y X O(n2) so(n)⊕ so(n) Appendix G.3.3, frustration graph
a3 XX, Y Z O(n) n-dependent Lemmas G.3.29, G.3.31
a4 XX, Y Y O(n2) a2 Appendix G.3.2, inclusion
a5 XY, Y Z O(4n) n-dependent Lemmas G.3.30, G.3.32
a6 XX, Y Z,ZY O(4n) a7 Appendix G.3.2, inclusion
a7 XX, Y Y, ZZ O(4n) a6 Lemma G.3.28
a8 XX,XZ O(n2) so(2n− 1) Appendix G.3.3, frustration graph
a9 XY,XZ O(4n) sp(2n−2) Lemma G.3.27, fixed point under involution
a10 XY, Y Z, ZX O(4n) a6 Appendix G.3.2, inclusion
a11 XY, Y X, Y Z O(4n) a16 Appendix G.3.2, inclusion
a12 XX,XY, Y Z O(4n) su(2n) Appendix G.2.4, explicit for n = 4
a13 XX, Y Y, Y Z O(4n) a20 Lemma G.3.26, fixed point under involution
a14 XX, Y Y,XY O(n2) so(2n) Appendix G.3.3, frustration graph
a15 XX,XY,XZ O(4n) a13 Lemma G.3.26, fixed point under involution
a16 XY, Y X, Y Z, ZY O(4n) so(2n) Lemma G.3.24, fixed point under involution
a17 XX,XY,ZX O(4n) su(2n) Appendix G.2.4, explicit for n = 4
a18 XX,XZ, Y Y, ZY O(4n) su(2n) Appendix G.2.4, explicit for n = 3
a19 XX,XY,ZX, Y Z O(4n) su(2n) Appendix G.2.4, explicit for n = 3
a20 XX, Y Y, ZZ, ZY O(4n) a13 Appendix G.3.2, inclusion
a21 XX, Y Y,XY, ZX O(4n) su(2n) Appendix G.2.4, explicit for n = 3
a22 XX,XY,XZ, Y X O(4n) su(2n) Appendix G.2.4, explicit for n = 3
b0 XI, IX O(n) u(1)⊕n Appendix G.3.1

b1 XX,XI, IX O(n) u(1)⊕(2n−1) Appendix G.3.1
b2 XY,XI, IX O(4n) sp(2n−2)⊕ u(1) Appendix G.3.1, central extension
b3 XI, Y I, IX, IY O(n) su(2)⊕n Appendix G.3.1
b4 XX,XY,XZ,XI, IX, IY, IZ O(4n) su(2n−1)⊕ su(2n−1)⊕ u(1) Appendix G.3.1, central extension

Table G.3: Proofs and where to find them.

G.3.1 Plan of the proof of Theorem 4.5.1

Our starting point is the list of subalgebras of su(4) from Appendix G.2.1:

ak, bl ⊆ su(4), 0 ≤ k ≤ 22, 0 ≤ l ≤ 4, (G.11)
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and the goal is to determine (up to isomorphism) their extensions as subalgebras of su(2n):

ak(n), bl(n) ⊆ su(2n), 3 ≤ n, 0 ≤ k ≤ 22, 0 ≤ l ≤ 4, (G.12)

which are defined in Appendix G.2.4. The answer is presented in Theorem 4.5.1, and
in more detail, in Appendix G.2.6 above. Here we outline the proof, which consists of
multiple parts. We divide the set of Lie algebras Equation (G.12) into three classes: linear,
quadratic, and exponential, according to the anticipated growth of their dimension.

Linear case: a0(n), bl(n) (l = 0, 1, 3). The linear case is obvious. Indeed, the
Lie algebras a0(n), b0(n), and b1(n) are Abelian (i.e., have identically zero Lie brackets),
because all of their generators commute with each other. The Lie algebra b3(n) ∼= su(2)⊕n

is a direct sum of n commuting copies of su(2), since its generators split into n groups
commuting with each other (acting independently on each qubit).

Quadratic case: ak(n) (k = 1, 2, 4, 8, 14). These Lie algebras are determined by using
the frustration graphs of their generators; see Appendix G.3.3 and especially Lemma G.3.6.
Note that a2(n) ∼= a4(n) by Lemma G.3.3.

Exponential case: ak(n), bl(n) (k = 3, 5, 6, 7, 9−13, 15−22, l = 2, 4). First, recall
that in Appendix G.2.4, we have already found that

ak(n) = su(2n), k = 12, 17, 18, 19, 21, 22, n ≥ 4. (G.13)

Second, we observe that b2(n) = a9(n)⊕span{X1} and b4(n) = a15(n)⊕span{X1}, because
their generators consist of a central element X1 (commuting with all other generators) and
the generators of a9(n) or a15(n), respectively. Third, in Appendix G.3.2, we find equalities
and isomorphisms among some of the Lie algebras ak(n). Namely,

a6(n) ∼= a7(n) ∼= a10(n), a11(n) = a16(n), a13(n) = a20(n), n ≥ 4. (G.14)

Thus, we are left to investigate the Lie algebras ak(n) for k = 3, 5, 7, 9, 13, 15, 16.

Strategy for ak(n) (k = 3, 5, 7, 9, 13, 15, 16). The strategy in the remaining exponen-
tial cases is as follows.

1. For each of our Lie algebras s = ak(n), we find its stabilizer St(s), which is defined
as the set of all Pauli strings ∈ Pn that commute with every element of s. This can
be done explicitly, because the stabilizer is determined only from the generators of
s; see Proposition G.3.3 in Appendix G.3.4.
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2. By definition, s commutes with all elements of its stabilizer St(s); hence, it is con-
tained in the centralizer of St(s) in su(2n), which we denote su(2n)St(s). We can
reduce the Lie subalgebra su(2n)St(s) further by factoring all elements of the center of
St(s), which will become central in it, because s has a trivial center by Lemma G.3.11.
This results in a Lie algebra denoted gk(n) when s = ak(n); these are listed explicitly
in Equation (G.35)–Equation (G.41).

3. By the above construction, we have s ⊆ gk(n). However, equality does not hold in all
cases. We improve the upper bound for s by finding an involution θk of gk(n) such that
all elements of s are fixed under θk, i.e., θk(a) = a for all a ∈ s (see Appendix G.1 for
a refresher on involutions). The last condition can be checked only on the generators
of s, and the details are carried out in Appendix G.3.5 (Theorem G.3.1 and Lemmas
G.3.13, G.3.14, G.3.15). Thus, we have the upper bound s ⊆ gk(n)θk , where the
superscript θk indicates fixed points under θk.

4. Then, in Appendix G.3.6, we establish a lower bound for s, i.e., we prove that the
upper bound is exact: ak(n) = gk(n)θk . The main idea is to start with an arbitrary
Pauli string ∈ iPn ∩ gk(n)θk and use suitable commutators with elements of ak(n) to
produce a Pauli string ∈ iPn ∩ gk(n)θk with I in one of its positions. Erasing the
I gives an element of gk(n − 1)θk , which by induction is in ak(n − 1). The specific
details are broken into a sequence of lemmas. The cases k = 3, 5, 7, k = 9, k = 13,
k = 15, and k = 16 are treated in Lemmas G.3.20, G.3.22, G.3.23, G.3.25, and
G.3.24, respectively. As a consequence, since g16(n) = su(2n) by Equation (G.40),
and θ16(g) = −gT by Equation (G.46), we obtain that a16(n) = so(2n).

5. Finally, in Appendix G.3.7, we identify the Lie algebras gk(n)θk with those from
Theorem 4.5.1. The idea is to apply a suitable unitary transformation that brings
the stabilizer St(s) to a more convenient form (such transformations and their effect
on the fixed points of involutions are reviewed in Appendix G.1). For example,
St(a13(n)) = {I⊗n, X⊗n} and we can bring X⊗n to X1 with a unitary transformation,
after which it is easy to determine the centralizer su(2n)X1 . This is carried out in
Lemmas G.3.26, G.3.27, and G.3.28 for k = 13, 15, k = 9, and k = 7, respectively.
The more complicated cases k = 3 and k = 5 are further broken down to n odd and n
even; see Lemmas G.3.29, G.3.31, G.3.30, G.3.32. Taken all together, this completes
the proof of Theorem 4.5.1.
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G.3.2 Inclusions and isomorphisms

There are several obvious inclusions among the Lie algebras ak (k = 0−11, 13−16, 20),
which extend to the corresponding subalgebras of su(2n) due to the following trivial ob-
servation.

Lemma G.3.1. If a ⊂ b ⊆ su(4), then a(n) ⊆ b(n), a◦(n) ⊆ b◦(n) and aπ(n) ⊆ bπ(n) for
all n ≥ 2. Furthermore, if a(n0) = b(n0) for some n0, then a(n) = b(n) for all n ≥ n0.

Proof. The first claim follows from the definitions of the Lie algebras a(n), a◦(n), and aπ(n);
see Equation (G.7), Equation (G.6), Equation (G.10), respectively. The second claim
follows from the inductive construction of the Lie algebras a(n); see Equation (G.3).

For the rest of this subsection, we focus on the open case; we will treat the periodic
(closed) case and the permutation-invariant case later. By comparing the bases of the
subalgebras ak ⊂ su(4) listed in Appendix G.2.1, we note the following inclusions:

a0 ⊂ a3 ⊂ a6 ⊂ a20, a1 ⊂ a2 ⊂ a11 ⊂ a16,

a0 ⊂ a4 ⊂ a7, a1 ⊂ a2 ⊂ a14,

a0 ⊂ a4 ⊂ a13 ⊂ a20, a1 ⊂ a5 ⊂ a10, and a1 ⊂ a5 ⊂ a16,

a0 ⊂ a8 ⊂ a15, a1 ⊂ a9 ⊂ a15.

The above chains of inclusions are maximal, i.e., cannot be extended further. For any
pair ak ⊂ al, we get an inclusion ak(n) ⊆ al(n) for all n ≥ 3. However, even though
a5 = a10 ∩ a16, we only have a5(n) ⊆ a10(n) ∩ a16(n) and not necessarily an equality. In
fact, one checks that IZX ∈ a10(3) ∩ a16(3) but IZX /∈ a5(3). In the next lemma, we
present two consequences of the above inclusions.

Lemma G.3.2. We have:

a11(n) = a16(n), n ≥ 4, (G.15)

a13(n) = a20(n), n ≥ 3. (G.16)

Proof. Since a11 ⊂ a16, we have a11(n) ⊆ a16(n) for all n. But because dim a11(4) =
dim a16(4) = 120, we obtain that a11(4) = a16(4), which implies Equation (G.15). Similarly,
from a13 ⊂ a20, we get a13(n) ⊆ a20(n) for all n. But because dim a13(3) = dim a20(3) = 30,
we have a13(3) = a20(3).

260



There are other inclusions among the Lie algebras ak after we relabel some of the Paulis.
Such relabelings act as automorphisms of the Lie algebra su(2n), i.e., they are invertible
linear operator that respects the Lie bracket (see Appendix G.1). We will express them in
the form φ(a) = UaU † (a ∈ su(2n)) for some fixed unitary matrix U , as in Lemma G.1.2.

As a first example, consider the linear operator ψ on C2×2, defined by ψ(A) = V AV †

where V = ei
π
4
Z . Using Equation (A.6), we find:

ψ(I) = I, ψ(X) = iZ ·X = −Y, ψ(Y ) = iZ · Y = X, ψ(Z) = Z.

We extend it to an automorphism ψn of su(2n) by:

ψn := ψ0 ⊗ ψ1 ⊗ · · · ⊗ ψn−1,

where ψj denotes the j-th power of ψ. Note that, up to an overall sign, ψn swaps X ⇌ Y
on all even qubits. It can be represented as a unitary transformation:

ψn(a) = UaU †, with U = V 1 ⊗ V 2 ⊗ · · · ⊗ V n = exp
(
i
π

4

n∑

j=1

(j − 1)Zj

)
. (G.17)

Lemma G.3.3. The map ψn, defined by Equation (G.17), restricts to an isomorphism
a2(n) ∼= a4(n).

Proof. Since ψn is an automorphism of su(2n), it is in particular injective and respects the
Lie bracket. The same is true for the restriction of ψn to a2(n). In order to prove that
ψn is an isomorphism from a2(n) to a4(n), it remains to show that it is surjective, i.e.,
ψna2(n) = a4(n). Note that ψna2(n) is a subalgebra of a4(n). We will show that ψna2(n)
contains all generators of a4(n), which would imply that it is equal to it.

Indeed, ψn acts as follows on the generators of a2(n):

ψn(XiYi+1) = (ψi−1(X))i(ψ
i(Y ))i+1 = (ψi−1(X))i(ψ

i−1(X))i+1,

ψn(YiXi+1) = (ψi−1(Y ))i(ψ
i(X))i+1 = −(ψi−1(Y ))i(ψ

i−1(Y ))i+1.

Hence, up to a sign, ψn sends the generators of a2(n) to the generators XiXi+1, YiYi+1 of
a4(n). Therefore, ψna2(n) = a4(n), which completes the proof of the lemma.

As another similar example, consider the linear operator φ on C2×2, defined by

φ(A) := ei
π
4
XAe−iπ

4
X ⇒ φ(I) = I, φ(X) = X, φ(Y ) = −Z, φ(Z) = Y. (G.18)
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We extend it to an automorphism of su(2n) by

φn := φ0 ⊗ φ1 ⊗ · · · ⊗ φn−1, (G.19)

which, up to a sign, swaps Y ⇌ Z on all even qubits. As in Equation (G.17), we have

φn(a) = UaU †, with U = exp
(
i
π

4

n∑

j=1

(j − 1)Xj

)
. (G.20)

Lemma G.3.4. The map φn, defined by Equation (G.18), Equation (G.19), restricts to
an isomorphism a6(n) ∼= a7(n).

Proof. As in the proof of Lemma G.3.3, we find that φn acts on the generators of a6(n) as
follows:

φn(XiXi+1) = XiXi+1,

φn(YiZi+1) = (φi−1(Y ))i(φ
i−1(Y ))i+1,

φn(ZiYi+1) = −(φi−1(Z))i(φ
i−1(Z))i+1.

Up to a sign, the images are exactly the generators XiXi+1, YiYi+1, ZiZi+1 of a7(n). Hence,
φna6(n) = a7(n).

Now consider the composition γ := φψ, which acts as a cyclic rotation X 7→ Z 7→ Y 7→
X:

γ(I) = I, γ(X) = Z, γ(Y ) = X, γ(Z) = Y. (G.21)

We extend it to automorphism of su(2n) as follows:

γn := γ1 ⊗ γ2 ⊗ γ3 ⊗ · · · ⊗ γn. (G.22)

Since S := (X+Y +Z)/
√

3 satisfies S ·S = I, we can apply Euler’s formula Equation (A.3)
to show that

γ(A) = ei
π
4
Xei

π
4
ZAe−iπ

4
Ze−iπ

4
X = ei

π
3
SAe−iπ

3
S.

Hence, similarly to Equation (G.17), Equation (G.20), we can express γn as

γn(a) = UaU †, with U = exp
(
i
π

3
√

3

n∑

j=1

j(Xj + Yj + Zj)
)
. (G.23)
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Lemma G.3.5. The map γn, defined by Equation (G.21), Equation (G.22), restricts to
an isomorphism a10(n) ∼= a7(n).

Proof. We find that γn acts on the generators of a10(n) as follows:

γn(XiYi+1) = (γi(X))i(γ
i+1(Y ))i+1 = (γi(X))i(γ

i(X))i+1,

γn(YiZi+1) = (γi(Y ))i(γ
i+1(Z))i+1 = (γi(Y ))i(γ

i(Y ))i+1,

γn(ZiXi+1) = (γi(Z))i(γ
i+1(X))i+1 = (γi(Z))i(γ

i(Z))i+1.

The images are exactly the generators XiXi+1, YiYi+1, ZiZi+1 of a7(n); hence, γna10(n) =
a7(n).

G.3.3 Frustration graphs

(a) a1(4) (b) a2(4) (c) a◦2(4)

Figure G.1: Frustration graphs for several examples in our classification for n = 4. (a) A
frustration graph given by a line. (b) A frustration graph consisting of two disjoint lines.
(c) A circular frustration graph.

In this subsection, we review the notion of frustration graph, which is a useful visualiza-
tion tool; see e.g. [372, 373, 342]. We determine the DLA in the cases when the frustration
graph is a line or a circle, and apply these results to identify several of our Lie algebras,
namely, ak(n) and a◦k(n) for k = 1, 2, 4, 8, 14.

Definition G.3.1. Given a set of Pauli strings A ⊂ Pn, its frustration graph is the
graph with a set of vertices A and edges connecting all pairs of vertices a, b ∈ A such that
[a, b] ̸= 0.
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The frustration graph makes it especially easy to determine when two subsets of the
generating set A commute with each other: it means that they are disconnected from each
other in the frustration graph. Suppose that A = A1 ⊔ A2 is a disjoint union of subsets
with disconnected frustration graphs. Then

⟨A1 ⊔ A2⟩Lie = ⟨A1⟩Lie ⊕ ⟨A2⟩Lie (G.24)

is a direct sum of commuting subalgebras. This is illustrated in Figure G.1.

In the next proposition, we determine the DLA of a line frustration graph.

Proposition G.3.1. Suppose that the frustration graph of A = {a1, . . . , aN} ⊂ Pn is a
line, so that [aj, ak] ̸= 0 for 1 ≤ j < k ≤ N if and only if k = j + 1. Then

⟨A⟩Lie ∼= so(N + 1),

and a basis for it is given by {ik−jLj,k}1≤j<k≤N+1, where i is the imaginary unit and

Lj,k := aj · aj+1 · · · ak−1 (1 ≤ j < k ≤ N + 1) (G.25)

are products over line segments.

Proof. Recall that ⟨A⟩Lie is the subalgebra of su(2n) generated by the subset iA ⊂ su(2n)
(see Definition 4.1.1). First, let us prove that all ik−jLj,k are in ⟨A⟩Lie. For k = j + 1, we
have iLj,j+1 := iaj ∈ iA ⊆ ⟨A⟩Lie. Suppose, by induction on k − j, that ik−jLj,k ∈ ⟨A⟩Lie
for some 1 < j < k ≤ N + 1; then we will show that ik−j+1Lj−1,k ∈ ⟨A⟩Lie. By definition,

Lj−1,k = aj−1 · aj · aj+1 · · · ak−1 = aj−1 · Lj,k,

and by assumption, aj−1 anticommutes with aj and commutes with aj+1, . . . , ak−1. Hence,
aj−1 anticommutes with Lj,k, which implies that

2ik−j+1Lj−1,k = 2ik−j+1aj−1 · Lj,k = ik−j+1[aj−1, Lj,k] = [iaj−1, i
k−jLj,k] ∈ ⟨A⟩Lie.

This proves the claim that ik−jLj,k ∈ ⟨A⟩Lie for all 1 ≤ j < k ≤ N + 1.

Similarly to above, one can check that (1 ≤ j < k < l ≤ N + 1):

[ik−jLj,k, i
l−kLk,l] = 2il−jLj,l, [il−kLk,l, i

l−jLj,l] = 2ik−jLj,k, [il−jLj,l, i
k−jLj,k] = 2il−kLk,l,

(G.26)
and all other commutators (not following from skewsymmetry) are zero. In particular, the
real linear span of all ik−jLj,k is closed under the bracket, i.e., is a subalgebra of su(2n).
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Since ⟨A⟩Lie is the minimal (under inclusion) subalgebra of su(2n) containing iA, it follows
that

⟨A⟩Lie = span{ik−jLj,k}1≤j<k≤N+1.

Recall that so(N + 1) = so(N + 1,R) is the Lie algebra of all skewsymmetric (N + 1)×
(N + 1) real matrices; see Equation (4.8). Consider the standard basis {Ej,k}1≤j,k≤N+1 of
gl(N + 1,R), where Ej,k is the matrix with (j, k)-entry = 1 and all other entries = 0. Then
a basis for so(N + 1) is {Fj,k := Ej,k − Ek,j}1≤j<k≤N+1. Using that

[Ej,k, El,m] = δk,lEj,m − δj,mEl,k,

it is easy to see that

[Fj,k, Fk,l] = Fj,l, [Fk,l, Fj,l] = Fj,k, [Fj,l, Fj,k] = Fk,l, for 1 ≤ j < k < l ≤ N + 1.

Hence, the matrices 2Fj,k satisfy the same commutation relations as ik−jLj,k given in
Equation (G.26). This means that the map so(N+1)→ ⟨A⟩Lie that sends 2Fj,k to ik−jLj,k

is a Lie algebra homomorphism. Its kernel is an ideal in so(N + 1), but since so(N + 1) is
simple, it has no non-zero proper ideals. Therefore, this map is an isomorphism.

Remark G.3.1. One can see from the above proposition that, for linear frustration graphs,
the dimension of the DLA scales quadratically with the number of generators. This was
observed for free fermionic models in [374, 228, 312, 313, 312], where the number of gen-
erators is proportional to the system size and the circuit gate complexity is quadratic with
respect to the system size. These models are fast-forwardable along with the other Hamil-
tonians given in [372, 373, 342], and the fundamental reason for this is the polynomial
scaling of the DLA.

After a Jordan–Wigner transformation, it can be shown that the algebra of free fermions
on n sites can be generated by {Z1, X1X2, Z2, X2X3, Z3, . . . , Xn−1Xn, Zn}, which will be
shown to be equivalent to a14(n) in Lemma G.3.6. These generators have a linear frustra-
tion graph with 2n− 1 vertices; hence, its DLA is so(2n).

Next, we consider the case when the frustration graph is a circle.

Proposition G.3.2. Suppose that the frustration graph of A = {a1, . . . , aN} ⊂ Pn is a
circle with N ≥ 3, so that [aj, ak] ̸= 0 for 1 ≤ j < k ≤ N if and only if k = j + 1 or j = 1,
k = N . Then

⟨A⟩Lie ∼= so(N)⊕ so(N),

and it has a basis {ik−jLj,k, i
N+k−jC ·Lj,k}1≤j<k≤N , where i is the imaginary unit, Lj,k are

defined in Equation (G.25), and

C := a1 · a2 · · · aN−1 · aN . (G.27)
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Proof. First, notice that [C, aj] = 0 for all 1 ≤ j ≤ N , because aj does not commute
only with its two neighboring vertices in the circle frustration graph. Moreover, using that
aj · aj = I⊗n (cf. Lemma A.1.1), we get C · C = (−1)NI⊗n. From here, we deduce that

[iNC, ik−jLj,k] = 0, (iNC) · (iNC) = I⊗n. (G.28)

If we remove any vertex from the frustration graph of A, we obtain a line frustration
graph. By Proposition G.3.1, we know that

ik−jLj,k ∈ ⟨a1, . . . , aN−1⟩Lie ⊆ ⟨A⟩Lie, 1 ≤ j < k ≤ N,

and these elements form a basis for the subalgebra ⟨a1, . . . , aN−1⟩Lie ∼= so(N). In particular,
we have

{ia1, . . . , iaN−1} ⊂ ⟨a1, . . . , aN−1⟩Lie = spanR{ik−jLj,k}1≤j<k≤N .

Similarly, the set A \ {ak−1} = {ak, ak+1, . . . , aN , a1, . . . , ak−2} has a line frustration
graph and its subset {ak, ak+1, . . . , aN , a1, . . . , aj−1} is a line segment for 1 ≤ j < k ≤ N .
Hence, again by Proposition G.3.1,

iN+k−jC·Lj,k = ±iN−k+jak·ak+1 · · · aN ·a1 · · · aj−1 ∈ ⟨A\{ak−1}⟩Lie ⊆ ⟨A⟩Lie, 1 ≤ j < k ≤ N.

In particular, the choice j = 1, k = N gives

iN+N−1C · L1,N = ±iaN .

The above discussion implies that

iA ⊂ L := spanR{ik−jLj,k, i
N+k−jC · Lj,k}1≤j<k≤N ⊆ ⟨A⟩Lie.

We claim that the vector space L is closed under the Lie bracket. Indeed, we already know
that spanR{ik−jLj,k} is closed. For the other brackets, we use that from Equation (G.28),
we have:

[ik−jLj,k, i
N+m−lC · Ll,m] = iNC · [ik−jLj,k, i

m−lLl,m],

[iN+k−jC · Lj,k, i
N+m−lC · Ll,m] = [ik−jLj,k, i

m−lLl,m].

As the Lie algebra L contains iA, it must contain ⟨A⟩Lie. Therefore, L = ⟨A⟩Lie.
Using Equation (G.28) again (or from the above brackets), we see that

⟨A⟩Lie = spanR{(I⊗n + iNC) · ik−jLj,k}1≤j<k≤N ⊕ spanR{(I⊗n − iNC) · ik−jLj,k}1≤j<k≤N

is isomorphic as a Lie algebra to a direct sum of two copies of spanR{ik−jLj,k}1≤j<k≤N
∼=

so(N). Therefore, ⟨A⟩Lie ∼= so(N)⊕ so(N).
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Remark G.3.2. A circular frustration graph corresponds to free fermionic evolution con-
trolled with one ancilla, where the ancilla degree of freedom can be readily found as the
operator C defined in Equation (G.27). As expected, this is not the only example. Some
periodic 1-dimensional spin systems such as TFXY, XY and Kitaev models also have DLAs
that are generated from Pauli strings with a circular frustration graph. For those spin mod-
els, C = ZZ · · ·Z.

Applying the results of Propositions G.3.1, G.3.2, in the following lemmas we determine
the Lie algebras ak(n) and a◦k(n) for k = 1, 2, 4, 8, 14. Examples are presented in Figures
G.2 and G.3.

(a) a2(n) (b) a4(n)

Figure G.2: Frustration graphs for a2(n) and a4(n). The red boxes denote a generator
acting on the site (i, i + 1). Both frustrations graphs are given by two disjoint lines for
any n; hence we can conclude that a2(n) ∼= a4(n) (cf. Lemma G.3.3).

Lemma G.3.6. We have:

a1(n) ∼= so(n),

a2(n) ∼= a4(n) ∼= so(n)⊕ so(n),

a8(n) ∼= so(2n− 1),

a14(n) ∼= so(2n).

Proof. The proof is based on the frustration graphs of the generating sets of these Lie
algebras (see Appendix G.2.1, G.2.4).

Generators of a1(n) are XY on each adjacent pair of qubits:

X1Y2, X2Y3, X3Y4, . . . , Xn−1Yn.

These form a linear frustration graph with n − 1 vertices, leading to a1(n) ∼= so(n) (see
Figure G.3(a)).

267



The Lie algebra a2(n) is generated by XY and Y X on adjacent pairs of qubits:

X1Y2, X2Y3, X3Y4, . . . , Xn−1Yn and Y1X2, Y2X3, Y3X4, . . . , Yn−1Xn.

Both of these form linear frustration graphs with n − 1 vertices, and commute with each
other (see Figure G.2). Thus, a2(n) ∼= so(n) ⊕ so(n). Note that a4(n) ∼= a2(n) due to
Lemma G.3.3 (see also Figure G.2).

Since a8 = span{XX,XZ, IY } = ⟨XX, IY ⟩Lie, we can generate a8(n) by:

X1X2, Y2, X2X3, Y3, X3X4, Y4, . . . , Xn−1Xn, Yn. (G.29)

These form a linear frustration graph with 2(n− 1) vertices; hence a8(n) ∼= so(2n− 1) (see
Figure G.3(b)).

Similarly, note that

a14 = span{XX, Y Y,XY, Y X,ZI, IZ} = ⟨XX,ZI, IZ⟩Lie,

because [XX,ZI] = 2iY X, [XX, IZ] = 2iXY , and [XY,ZI] = −2iY Y . Thus, a14(n) is
generated by:

Z1, X1X2, Z2, X2X3, Z3, X3X4, Z4, . . . , Xn−1Xn, Zn, (G.30)

which gives a linear frustration graph with 2n − 1 vertices. Hence, a14(n) ∼= so(2n) (see
Figure G.3(c)).

(a) a1(n) (b) a8(n) (c) a14(n)

Figure G.3: Visualization of the frustration graphs of generators of certain Lie
algebras. The red boxes denote a generator acting on the site (i, i + 1). For the three
cases a1(n), a8(n) and a14(n), we see that the frustration graph is a line for any n. For (a),
the 2-site DLA a1(2) ∼= u(1), but as n grows we find a1(n) ∼= so(n). (b) The frustration
graph is a line with 2n − 2 vertices; hence a8(n) ∼= so(2n − 1). (c) The frustration graph
is a line with 2n− 1 vertices, giving a14(n) ∼= so(2n).
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Lemma G.3.7. We have a◦k(n) ∼= ak(n)⊕2 for k = 1, 2, 14 and n ≥ 3.

Proof. The Lie algebra a◦1(n) is generated by XY applied on adjacent qubits, including
periodic boundary conditions:

X1Y2, X2Y3, X3Y4, . . . , Xn−1Yn, XnY1.

The frustration graph is a circle with n vertices. Therefore, a◦1(n) ∼= so(n)⊕2 ∼= a1(n)⊕2.

The Lie algebra a◦2(n) is generated by XY and Y X applied on adjacent qubits with
periodic boundary conditions:

X1Y2, X2Y3, X3Y4, . . . , Xn−1Yn, XnY1 and Y1X2, Y2X3, Y3X4, . . . , Yn−1Xn, YnX1.

These form two circular frustration graphs with n vertices that are disconnected from each
other. Thus, a◦2(n) ∼= so(n)⊕2 ⊕ so(n)⊕2 ∼= a2(n)⊕2.

Using the generating set Equation (G.30) of a14(n), we see that a◦14(n) can be generated
by:

Z1, X1X2, Z2, X2X3, Z3, X3X4, Z4, . . . , Xn−1Xn, Zn, XnX1.

This leads to a circular frustration graph with 2n vertices, so a◦14(n) ∼= so(2n)⊕2 ∼= a14(n)⊕2.

Lemma G.3.8. We have a◦8(n) ∼= a◦14(n) ∼= so(2n)⊕2 for all n ≥ 3.

Proof. The generating sets Equation (G.29) and Equation (G.30) of a8(n) and a14(n) are
the same after swapping Y ⇌ Z, except that a8(n) does not have Y1. When the periodic
boundary condition is applied, this difference disappears and we obtain that a◦8(n) ∼=
a◦14(n).

Lemma G.3.9. We have a◦4(n) ∼=
{
so(2n)⊕2, n odd,

so(n)⊕4, n even.

Proof. As a4 = ⟨XX, Y Y ⟩Lie, the generators of a◦4(n) are:

X1X2, Y1Y2, X2X3, Y2Y3, . . . , Xn−1Xn, Yn−1Yn, XnX1, YnY1.

For odd n, these generators form a circular frustration graph with 2n vertices:

X1X2, Y2Y3, X3X4, Y4Y5, . . . , Yn−1Yn, XnX1, Y1Y2, X2X3, Y3Y4, X4X5, . . . , Xn−1Xn, YnY1.
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Hence, in this case, a◦4(n) ∼= so(2n)⊕2.

When n is even, the generators form two disjoint circles with n vertices each:

X1X2, Y2Y3, X3X4, . . . , Xn−1Xn, YnY1 and Y1Y2, X2X3, Y3Y4, . . . , Yn−1Yn, XnX1.

In this case, we get a◦4(n) ∼= so(n)⊕2 ⊕ so(n)⊕2.

Remark G.3.3. Notice that, although a2(n) ∼= a4(n) for all n ≥ 3, we have a◦2(n) ̸∼= a◦4(n)
for odd n.

G.3.4 Stabilizers, commutants, and centralizers

For any Pauli string A ∈ Pk, we will use the notation PA = AAA · · · ∈ Pn truncated to
the n-th qubit. For example,

PX = XXX · · · , PY Z = Y ZY Z · · · , PZY = ZY ZY · · · ,
PXY Z = XY ZXY Z · · · , PY ZX = Y ZXY ZX · · · , PZXY = ZXY ZXY · · · ,

where these are viewed as elements of Pn. In particular, PI = I · · · I = I⊗n. Recall that
±Pn ∪ ±iPn is a group under the matrix product, the Pauli group (see Appendix A.1).

For any set of matrices A ⊆ C2n×2n , we define its stabilizer St(A) ⊆ Pn as the set of
all Pauli strings that commute with every element of A. It is clear that St(A) is closed
under multiplication, so after allowing appropriate powers of i it is a group. There are two
related, and essentially equivalent, notions called the commutant and centralizer. All of
these consist of elements commuting with the given set A but differ in where such elements
are and what structure they form: the stabilizer is a subgroup of the Pauli group (up to
factors of ±1,±i); the commutant is a subalgebra of the associative algebra C2n×2n of all
complex matrices; while the centralizer is a subalgebra of the real Lie algebra su(2n). The
precise relations are explained in the following two remarks.

Remark G.3.4. The commutant of a set A ⊆ C2n×2n is defined as the set A′ of all 2n×2n

complex matrices that commute with all elements of A. Then A′ is closed under addition,
multiplication, and multiplication by any complex scalar, i.e., it is an associative algebra
over C. It is easy to see that A′ = spanCSt(A) is the complex linear span of the stabilizer
St(A).

Note that A ⊆ A′′ := (A′)′. By (a finite-dimensional version of) von Neumann’s
Double Commutant Theorem (see e.g. [315], Theorem 6.2.5), A′′ is the associative algebra
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generated by A. In particular, for a complex vector space A, we have A′′ = A + CI⊗n if
and only if A is closed under multiplication.

Remark G.3.5. The centralizer of a set A ⊆ su(2n) is the set su(2n)A ⊆ su(2n) of all
traceless skew-Hermitian 2n × 2n matrices that commute with all elements of A. Then
su(2n)A is closed under addition, commutator, and multiplication by any real scalar, i.e.,
it is a Lie subalgebra of su(2n). It is easy to see that su(2n)A = span(St(A) \ {I⊗n}) is the
real span of i(St(A) \ {I⊗n}).

When s ⊆ su(2n) is a Lie subalgebra, a given Pauli string commutes with all elements
of s if and only if it commutes with all generators of s. In other words, we have

St(⟨A⟩Lie) = St(A). (G.31)

Thus, to determine the stabilizers of our Lie subalgebras of su(2n), it suffices to find the
stabilizers of their generating sets. In the case n = 2, it is easy to find the answer by
inspection, which is given as follows:

St(a0) = {II, IX,XI,XX, Y Y, Y Z, ZY, ZZ},
St(a1) = {II, IY,XI,XY, Y X, Y Z, ZX,ZZ},
St(a2) = {II,XY, Y X,ZZ},
St(a3) = St(a6) = {II,XX, Y Z, ZY },
St(a4) = St(a7) = {II,XX, Y Y, ZZ},
St(a5) = St(a10) = {II,XY, Y Z, ZX},
St(a8) = {II,XI, Y Y, ZY },
St(a9) = {II,XI, Y X,ZX},

St(a11) = {II,XY },
St(a12) = St(a17) = St(a19) = {II, Y Z},
St(a13) = St(a20) = {II,XX},
St(a14) = {II, ZZ},
St(a15) = St(b2) = St(b4) = {II,XI},
St(b0) = St(b1) = {II,XX,XI, IX},
St(ak) = St(b3) = {II}, k = 16, 18, 21, 22.

Using that, we can find the stabilizers of the subalgebras of su(2n).
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Proposition G.3.3. For n ≥ 3, we have the following stabilizers:

St(a0(n)) = {I,X}⊗n ∪ {Y, Z}⊗n,

St(a2(n)) = {PI , PXY , PY X , PZ},
St(a3(n)) = St(a6(n)) = {PI , PX , PY Z , PZY },
St(a4(n)) = St(a7(n)) = {PI , PX , PY , PZ},
St(a5(n)) = St(a10(n)) = {PI , PXY Z , PY ZX , PZXY },
St(a8(n)) = {PI , PY , X1, ZY · · ·Y },
St(a9(n)) = {PI , X1, Y1X2, Z1X2},

St(a13(n)) = St(a20(n)) = {PI , PX},
St(a14(n)) = {PI , PZ},
St(a15(n)) = St(b2(n)) = St(b4(n)) = {PI , X1},
St(b0(n)) = St(b1(n)) = {I,X}⊗n,

St(ak(n)) = St(b3(n)) = {PI}, k = 11, 12, 16−19, 21, 22.

Proof. Recall that, for any subalgebra a ⊆ su(4), the subalgebra a(n) ⊆ su(2n) is generated
by all Pauli strings AiBi+1, where AB ∈ a, 1 ≤ i ≤ n − 1 (see Equation (G.7)). Thus,
a Pauli string P 1 ⊗ · · · ⊗ P n ∈ Pn is in St(a(n)) if and only if P i ⊗ P i+1 ∈ St(a) for all
1 ≤ i ≤ n− 1. Using this observation and the knowledge of all St(a), it is straightforward
to determine St(a(n)).

Let us consider the case of a2 as an illustration. Since St(a2) = {II,XY, Y X,ZZ}, we
want to find all Pauli strings, such that for any two consecutive qubits, we have either II,
XY , Y X, or ZZ. The only possible such strings are I · · · I, XYXY · · · , Y XY X · · · , or
Z · · ·Z.

The answer for St(a1(n)) is given without proof in Remark G.3.6 below, as it is more
complicated but not needed for the rest of the paper. For future use, we will need the
centers of some of the above stabilizers. Let us recall that the center Z(G) of a group G
consists of all z ∈ G that commute with every g ∈ G. In particular, a group G is Abelian
if and only if Z(G) = G.

Lemma G.3.10. For n ≥ 3, we have the following centers:

Z
(
St(a2(n))

)
=

{
{PI , PXY , PY X , PZ}, n even,

{PI}, n odd,
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Z
(
St(a3(n))

)
= Z

(
St(a6(n))

)
=

{
{PI , PX , PY Z , PZY }, n even,

{PI}, n odd,

Z
(
St(a4(n))

)
= Z

(
St(a7(n))

)
=

{
{PI , PX , PY , PZ}, n even,

{PI}, n odd,

Z
(
St(a5(n))

)
= Z

(
St(a10(n))

)
=

{
{PI , PXY Z , PY ZX , PZXY }, n even,

{PI}, n odd,

Z
(
St(a13(n))

)
= Z

(
St(a20(n))

)
= {PI , PX},

Z
(
St(a14(n))

)
= {PI , PZ},

Z
(
St(a15(n))

)
= {PI , X1},

Z
(
St(ak(n))

)
= {PI}, k = 0, 8, 9, 11, 12, 16−19, 21, 22.

Next, we determine the stabilizers in the periodic case.

Proposition G.3.4. For n ≥ 3, we have the following stabilizers:

St(a◦0(n)) = {I,X}⊗n ∪ {Y, Z}⊗n,

St(a◦2(n)) =

{
{PI , PXY , PY X , PZ}, n even,

{PI , PZ}, n odd,

St(a◦3(n)) = St(a◦6(n)) =

{
{PI , PX , PY Z , PZY }, n even,

{PI , PX}, n odd,

St(a◦4(n)) = St(a◦7(n)) = {PI , PX , PY , PZ},

St(a◦5(n)) = St(a◦10(n)) =

{
{PI , PXY Z , PY ZX , PZXY }, n ≡ 0 mod 3,

{PI}, n ≡ ±1 mod 3,

St(a◦8(n)) = {PI , PY },
St(a◦13(n)) = St(a◦20(n)) = {PI , PX},
St(a◦14(n)) = {PI , PZ},
St(b◦0(n)) = St(b◦1(n)) = {I,X}⊗n,

St(a◦k(n)) = St(b◦l (n)) = {PI}, k = 9, 11, 12, 15−19, 21, 22, l = 2, 3, 4.

Proof. For any subalgebra a ⊆ su(4), comparing the definitions of a(n) and a◦(n) (see
Equation (G.6), Equation (G.7)), we see that St(a◦(n)) consists of all Pauli strings P 1 ⊗
· · ·⊗P n ∈ St(a(n)) such that P n⊗P 1 ∈ St(a). Thus, we determine St(a◦(n)) by inspecting
all elements of St(a(n)).
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Remark G.3.6. One can show that St(a1(n)) = St(a◦1(n)), and as a group it is generated
by the elements PZ, Y1X2, Y2X3, . . . , Yn−1Xn. This means that St(a1(n)) consists of
all possible matrix products of these generators. For the center, we have Z

(
St(a1(n))

)
=

{PI , PZ}.

We also find the stabilizers in the permutation-invariant case.

Proposition G.3.5. For n ≥ 3, we have the following stabilizers:

St(aπ0 (n)) = {I,X}⊗n ∪ {Y, Z}⊗n,

St(aπ2 (n)) = St(aπ14(n)) = {PI , PZ},
St(aπ4 (n)) = St(aπ7 (n)) = {PI , PX , PY , PZ},
St(aπ6 (n)) = St(aπ20(n)) = {PI , PX},
St(bπ0 (n)) = St(bπ1 (n)) = {I,X}⊗n,

St(aπ16(n)) = St(bπ3 (n)) = {PI}.

Proof. For any subalgebra a ⊆ su(4), from the definition of aπ(n) (see Equation (G.10)),
we see that St(aπ(n)) consists of all Pauli strings P 1 ⊗ · · · ⊗ P n ∈ Pn such that P i ⊗ P j ∈
St(a) for all i ̸= j. Moreover, as we explained in Appendix G.2.4, a can be assumed
itself invariant under the flip of the two qubits; so we only need to consider aπk(n) for
k = 0, 2, 4, 6, 7, 14, 16, 20 and bπl (n) for l = 0, 1, 3.

We finish this subsection with an important lemma.

Lemma G.3.11. The Lie algebras ak(n) have trivial centers for 1 ≤ k ≤ 22 and n ≥ 3.

Proof. Due to Lemma 4.1.1, ak(n) has a basis B ⊆ iPn ∩ ak(n) consisting of Pauli strings.
Suppose that ak(n) has a central element c ̸= 0, and write c as a linear combination of
basis vectors:

c =
∑

αjcj, αj ∈ R, αj ̸= 0, cj ∈ B.
We claim that all cj in this expression are central too.

Indeed, suppose that [b, cj] ̸= 0 for some index j and a basis vector b ∈ B. Since
b, cj ∈ iPn, we have [b, [b, cj]] = −4cj whenever [b, cj] ̸= 0, by Corollary A.1.1. Hence,

0 = [b, [b, c]] =
∑

αj[b, [b, cj]] = −4
∑′

αjcj,
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where
∑′ denotes the sum over all indices j such that [b, cj] ̸= 0. This contradicts the fact

that all αj ̸= 0 and the vectors cj are linearly independent.

Therefore, without loss of generality, we can take c ∈ B to be itself one of the basis
vectors. One can verify by inspection that the generators of ak(n) are not central for
1 ≤ k ≤ 22 and n ≥ 3; for example, by checking that Z

(
St(ak(n))

)
does not contain any

of the generators of ak(n). Thus, we can write c in the form

c = ada1ada2 · · · adar(ar+1),

for some r ≥ 1 and generators a1, . . . , ar+1. Since all generators aj ∈ iPn, we have a :=
ada2 · · · adar(ar+1) ∈ iPn. Then c = [a1, a] ̸= 0, and from Corollary A.1.1, we get −4a =
[a1, [a1, a]] = [a1, c] = 0, which implies that c = 0, a contradiction.

G.3.5 Upper bounds for ak(n)

In this subsection, we establish upper bounds for the Lie algebras ak(n), i.e., we find certain
subalgebras gk(n)θk ⊆ su(2n) that contain ak(n). Then, in the next subsection G.3.6, we
will prove that these bounds are exact, that is ak(n) = gk(n)θk . While ak(n) is defined
in terms of its generators, gk(n)θk is defined as the set of elements of su(2n) that are
fixed under certain automorphisms and involutions. This will allow us, in the following
subsection G.3.7, to identify the Lie algebras ak(n) as direct sums of su, so, and sp Lie
algebras.

We start by recalling that any Pauli string P ∈ Pn defines an automorphism of su(2n)
by conjugation a 7→ PaP (recall that P = P † = P−1); see Lemma G.1.2. We will denote
by su(2n)P the set of fixed points under this automorphism, i.e., the set of all a ∈ su(2n)
such that PaP = a. The latter is equivalent to Pa = aP ; hence su(2n)P is equal to the
centralizer of P , i.e., the set of all a ∈ su(2n) that commute with P (see Remark G.3.5).
More generally, for a set Φ of automorphisms of a Lie algebra g, we will denote by gΦ the
set of fixed points a ∈ g such that ϕ(a) = a for all ϕ ∈ Φ.

Given a subalgebra s ⊆ su(2n), recall from Appendix G.3.4, that its stabilizer St(s)
consists of all Pauli strings P ∈ Pn such that [a, P ] = 0 for every a ∈ s. On the other hand,
the centralizer su(2n)St(s) of St(s) in su(2n) consists of all a ∈ su(2n) such that [a, P ] = 0
for every P ∈ St(s). Hence, by definition,

s ⊆ su(2n)St(s). (G.32)

This simple observation will be the key to finding upper bounds for our subalgebras ak(n),
because we have already determined their stabilizers in Proposition G.3.3. Here is another
observation, which in some cases will allow us to further reduce the upper bound.
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Lemma G.3.12. For any subalgebra s ⊆ su(2n), we have

St(s) ∩ su(2n)St(s) = Z
(
St(s)

)
\ {I⊗n} ⊆ Z

(
su(2n)St(s)

)
,

where Z(G) denotes the center of a group or an algebra G.

Proof. Elements z ∈ St(s) ∩ su(2n)St(s) satisfy [z, a] = 0 for every a ∈ su(2n)St(s) since
z ∈ St(s), and [z, P ] = 0 for every P ∈ St(s) since z ∈ su(2n)St(s). Hence, such z are
central in both St(s) and su(2n)St(s). However, I⊗n is excluded, because I⊗n ̸∈ su(2n).

As the Lie algebras s = ak(n) for 1 ≤ k ≤ 22, n ≥ 3 have trivial centers (Lemma G.3.11),
for them we can reduce the upper bound su(2n)St(s) if we quotient by the central elements
Z
(
St(s)

)
\ {I⊗n}. Thus, we introduce the notation

gk(n) := su(2n)St(ak(n))
/

span
(
Z
(
St(ak(n))

)
\ {I⊗n}

)
, (G.33)

and from the above discussion, we have

ak(n) ⊆ gk(n), 1 ≤ k ≤ 22, n ≥ 3. (G.34)

Using Proposition G.3.3 and Lemma G.3.10, we can write explicitly:

g3(n) = g6(n) =

{
su(2n){PX ,PY Z ,PZY }/span{PX , PY Z , PZY }, n even,

su(2n){PX ,PY Z ,PZY }, n odd,
(G.35)

g5(n) = g10(n) =

{
su(2n){PXY Z ,PY ZX ,PZXY }/span{PXY Z , PY ZX , PZXY }, n even,

su(2n){PXY Z ,PY ZX ,PZXY }, n odd,
(G.36)

g7(n) =

{
su(2n){PX ,PY ,PZ}/span{PX , PY , PZ}, n even,

su(2n){PX ,PY ,PZ}, n odd,
(G.37)

g9(n) = su(2n){X1,Y1X2,Z1X2}, (G.38)

g11(n) = g16(n) = su(2n), (G.39)

g13(n) = g20(n) = su(2n)PX/span{PX}, (G.40)

g15(n) = su(2n)X1/span{X1}. (G.41)

It turns out that in some cases the inclusions Equation (G.34) are strict, and we need
to reduce the Lie algebras gk(n) further to smaller subalgebras. We do that by finding
suitable involutions and then taking their fixed points (see Appendix G.1).
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Theorem G.3.1. We have

ak(n) = gk(n), k = 6, 7, 10, 13, 15, 20, n ≥ 3. (G.42)

In the remaining cases, there exists an involution θk of gk(n), such that

ak(n) = gk(n)θk , k = 3, 5, 9, 11, 16, n ≥ 3, (G.43)

is the set of fixed points under θk.

In the remainder of this subsection, we will construct the involution θk explicitly, and
will check that ak(n) ⊆ gk(n)θk . The opposite inclusion will be proved in the next subsec-
tion. Then, in Appendix G.3.7, we will identify the Lie algebras gk(n)θk with those from
Theorem 4.5.1. For k = 9, 11, 16, the involution θk will have the form (cf. Lemma G.1.2):

θ(g) = −QgTQ (G.44)

for some given Pauli string Q ∈ Pn.

Lemma G.3.13. For any fixed Pauli string Q ∈ Pn, Equation (G.44) defines an involution
of su(2n), which restricts to an involution of gk(n) for all k.

Proof. We already know from Lemma G.1.2 that θ is an involution of su(2n), so we only
need to check that θ(g) ∈ gk(n) for all g ∈ gk(n). As before, write s = ak(n) for short.
Consider an element g ∈ su(2n)St(s), which means that [g, P ] = 0 for all P ∈ St(s). Then

θ(P ) = −QP TQ = ±P,

because P T = ±P and PQ = ±QP for any two Pauli strings P,Q ∈ Pn (the signs here
are not coordinated). Hence,

[θ(g), P ] = ±[θ(g), θ(P )] = ±θ([g, P ]) = 0,

which implies that θ(g) ∈ su(2n)St(s). Furthermore,

θ(P ) = ±P ∈ span
(
Z
(
St(s)

)
\ {I⊗n}

)
for all P ∈ Z

(
St(s)

)
\ {I⊗n}.

Therefore, θ(g) ∈ gk(n) for g ∈ gk(n).

Let us record the following consequence of the proof of Lemma G.3.13, which will be
useful later.
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Corollary G.3.1. Every element of gk(n)θk is a linear combination of Pauli strings that
are themselves in gk(n)θk , i.e.,

gk(n)θk = spanR
(
iPn ∩ gk(n)θk

)
.

Proof. We saw in the proof of Lemma G.3.13 that θk(P ) = ±P for any Pauli string P ∈ Pn.
Similarly, for any given S ∈ St(ak(n)), we have SPS = ±P . Elements g of gk(n)θk are
determined by the conditions

SgS = g = θk(g) for all S ∈ St(ak(n)).

Writing g ∈ su(2n) as i times a real linear combination of Pauli strings, we see that g
satisfies these conditions if and only if every summand does.

Now we go back to the construction of the involutions θk.

Lemma G.3.14. For k = 9, 11, 16, we define θk(g) = −Qkg
TQk, where the Pauli strings

Qk are given as follows:

Q9 = IY Z · · ·Z, (G.45)

Q11 = Q16 = I · · · I ⇒ θ11(g) = θ16(g) = −gT . (G.46)

Then ak(n) ⊆ gk(n)θk .

Proof. We already know that ak(n) ⊆ gk(n), so we only need to check that θk(g) = g
for all g ∈ ak(n). It is enough to check this only for the generators g of ak(n), because
θk([a, b]) = [θk(a), θk(b)].

For k = 9, we take g = XiYi+1 or g = XiZi+1. In the first case, gT = −g and gQ9 = Q9g;
while in the second case, gT = g and gQ9 = −Q9g. Hence, in both cases we have θ9(g) = g.

For k = 11, the generators are g = XiYi+1, YiXi+1, YiZi+1; while for k = 16, the
generators are g = XiYi+1, YiXi+1, YiZi+1, ZiYi+1. All of them satisfy gT = −g.

The remaining cases k = 3 and k = 5 are a little more complicated. The trick is to
first embed a3(n) and a5(n) as subalgebras of a7(n). Recall from Appendix G.3.2 that
a3(n) ⊆ a6(n) and a6(n) ∼= a7(n) under the automorphism φn of su(2n) that swaps (up
to a sign) Y ⇌ Z on all even qubits (see Equation (G.18), Equation (G.19)). Then
ã3(n) := φna3(n) ⊂ a7(n). Likewise, we have a5(n) ⊆ a10(n) and a10(n) ∼= a7(n) under the
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automorphism γn of su(2n) that applies on the j-th qubit γj, where γ is the cycle X 7→
Z 7→ Y 7→ X (see Equation (G.21), Equation (G.22)). Then ã5(n) := γna5(n) ⊂ a7(n).

We consider the involutions

θ̃k(g) = −Qkg
TQk, k = 3, 5, (G.47)

where

Q3 = PZIY X = (Z1Y3X4)(Z5Y7X8)(Z9Y11X12) · · · , (G.48)

Q5 = PIY Z = (Y2Z3)(Y5Z6)(Y8Z9)(Y11Z12) · · · . (G.49)

Then we define
θ3 := φ−1

n θ̃3φn, θ5 := γ−1
n θ̃5γn. (G.50)

Lemma G.3.15. For k = 3, 5, and θk defined as above, we have ak(n) ⊆ gk(n)θk .

Proof. As we already know that ak(n) ⊆ gk(n), we only need to check that θk(g) = g for
all generators g of ak(n). By conjugation, it is equivalent to check that θ̃k(g) = g for the
generators g of ãk(n). Applying φn to the generators of a3(n), we find that the generators
of ã3(n) are:

X1X2, X2X3, X3X4, X4X5, X5X6, X6X7, X7X8, . . . ,

Y1Y2, Z2Z3, Y3Y4, Z4Z5, Y5Y6, Z6Z7, Y7Y8, . . . .

Similarly, applying γn to the generators of a5(n), we find the generators of ã5(n):

Z1Z2, Y2Y3, X3X4, Z4Z5, Y5Y6, X6X7, Z7Z8, Y8Y9, X9X10, . . . ,

X1X2, Z2Z3, Y3Y4, X4X5, Z5Z6, Y6Y7, X7X8, Z8Z9, Y9Y10, . . . .

We observe that all generators g above satisfy gT = g and gQk = −Qkg; hence, θ̃k(g) =
g.

G.3.6 Lower bounds for ak(n)

In this subsection, we prove that the upper bounds ak(n) ⊆ gk(n)θk established in Ap-
pendix G.3.5 are exact. The proof will rely on the next lemma.

Lemma G.3.16. Let s be a Lie subalgebra of su(2n). If ada1 · · · adar(b) ∈ s \ {0} for some
Pauli strings a1, . . . , ar ∈ iPn ∩ s and b ∈ iPn, then b ∈ s.
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Proof. Using induction on r, it is enough to prove the statement for r = 1. In this case, it
follows from Corollary A.1.1: [a1, b] ∈ s \ {0} implies that b = −4[a1, [a1, b]] ∈ s.

In order to prove that ak(n) = gk(n)θk , we want to show that every element b ∈ gk(n)θk

is in ak(n). Since, by Corollary G.3.1, b is a linear combination of Pauli strings that are
themselves in gk(n)θk , we can assume without loss of generality that b ∈ iPn∩gk(n)θk . Then
the strategy of the proof is to take suitable commutators of b with elements of iPn ∩ ak(n)
to produce a Pauli string c ∈ iPn∩ gk(n)θk that has I in one of its positions. Erasing the I
will give an element of gk(n− 1)θk , which by induction will be in ak(n− 1). From here, we
will obtain that c ∈ ak(n), and then we can conclude that b ∈ ak(n) due to Lemma G.3.16.

In order to realize the above strategy, we will have to do a detailed case-by-case analysis.
We start with the cases k = 3, 5, 7, for which we need the following lemmas.

Lemma G.3.17. We have vector space decompositions:

a3(4) = (I ⊗ a3(3)) + PX · (I ⊗ a3(3)) + PY Z · (I ⊗ a3(3)) + PZY · (I ⊗ a3(3)),

a5(6) = (I ⊗ a5(5)) + PXY Z · (I ⊗ a5(5)) + PY ZX · (I ⊗ a5(5)) + PZXY · (I ⊗ a5(5)),

a7(4) = (I ⊗ a7(3)) + PX · (I ⊗ a7(3)) + PY · (I ⊗ a7(3)) + PZ · (I ⊗ a7(3)),

where · denotes the component-wise matrix product.

Proof. By inspection. Here are all Pauli strings in a3(4) (after multiplication by i):

IIXX, IIY Z, IXXI, IXZZ, IY IY, IY XZ, IY Y X, IY ZI, IZIZ, IZXY,

XIIX, XIY Y, XXII, XXZY, XY IZ, XY XY, XZIY, XZXZ, XZY X, XZZI,

Y IY I, Y IZX, Y XIY, Y XXZ, Y XY X, Y XZI, Y Y XI, Y Y ZZ, Y ZII, Y ZZY,

ZIIY, ZIXZ, ZIY X, ZIZI, ZXY I, ZXZX, ZY XX, ZY Y Z, ZZIX, ZZY Y.

The Pauli strings in a7(4) (after multiplication by i) are:

IIXX, IIY Y, IIZZ, IXIX, IXXI, IXY Z, IXZY, IY IY,

IY XZ, IY Y I, IY ZX, IZIZ, IZXY, IZY X, IZZI,

XIIX, XIXI, XIY Z, XIZY, XXII, XXY Y, XXZZ, XY IZ,

XY XY, XY Y X, XY ZI, XZIY, XZXZ, XZY I, XZZX,

Y IIY, Y IXZ, Y IY I, Y IZX, Y XIZ, Y XXY, Y XY X, Y XZI,

Y Y II, Y Y XX, Y Y ZZ, Y ZIX, Y ZXI, Y ZY Z, Y ZZY,

ZIIZ, ZIXY, ZIY X, ZIZI, ZXIY, ZXXZ, ZXY I, ZXZX,
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ZY IX, ZY XI, ZY Y Z, ZY ZY, ZZII, ZZXX, ZZY Y.

We have: |a5(5)| = 120, |a5(6)| = 480, and there are 120 elements in a5(6) starting with
each of the letters I,X, Y , or Z. The remaining claims were verified using Excel.

For each pair (k, n) = (3, 4), (5, 6), (7, 4), consider the subalgebra s = ak(n) ⊂ su(2n).
Recall from Proposition G.3.3 that the stabilizer St(s) is given by:

St(a3(4)) = {PI , PX , PY Z , PZY },
St(a5(6)) = {PI , PXY Z , PY ZX , PZXY },
St(a7(4)) = {PI , PX , PY , PZ},

and St(s) is an Abelian group under the matrix product ·. We can state Lemma G.3.17
succinctly as

ak(n) = St(ak(n)) · (I ⊗ ak(n− 1)), (k, n) = (3, 4), (5, 6), (7, 4). (G.51)

Lemma G.3.18. Let s = ak(n) for (k, n) = (3, 4), (5, 6), (7, 4). Consider any Pauli string
a ∈ iPn ∩ gk(n) not starting with I in the first qubit. Then there exists a basis vector b ∈ s
such that [a, b] ̸= 0 and [a, b] ∈ I ⊗ su(2n−1).

Proof. Let us write all Pauli strings up to a suitable multiple of i that makes them skew-
Hermitian. Consider the case when a = XA starts with X; the cases when it starts with
Y or Z are similar. If there is b = XB ∈ s such that [A,B] ̸= 0, then [a, b] = I[A,B] ̸= 0
and we are done. By Lemma G.3.17, any b = XB ∈ s can be written in the form
b = C · (ID), where D ∈ ak(n − 1) and C ∈ St(s); explicitly, C = PX , PXY Z , PX for
s = a3(4), a5(6), a7(4), respectively. Similarly, as C ·C = PI , we can write a = C · (IE) for
some E ∈ Pn−1. Suppose that [a, b] = 0. Then [C, a] = [C, b] = 0 imply that [E,D] = 0.
Since this is true for all D ∈ ak(n − 1), it follows that E ∈ St(ak(n − 1)), from where
a = C · (IE) ∈ St(s). This is a contradiction, because such elements are factored out from
gk(n); see Equation (G.33) and Lemma G.3.12.

Lemma G.3.19. Consider (k,m) = (3, 4), (5, 6), (7, 4), and let n ≥ m. Then for any
Pauli string a ∈ iPn ∩ gk(n), there exist basis vectors b1, . . . , br ∈ ak(n), r ≥ 0, such that
adb1 · · · adbr(a) ∈ (I⊗(n−m+1) ⊗ su(2m−1)) \ {0} (with r = 0 corresponding to a).

Proof. The proof is by induction on n, the base n = m being Lemma G.3.18. For the step
of the induction, suppose that n > m and the statement holds for gk(n − 1). Again, let
us write all Pauli strings up to a suitable multiple of i. Take any Pauli string a ∈ gk(n),
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and write it as a = AD where A is the substring consisting of the first m Paulis. Then
A ∈ su(2m)St(ak(m)).

If A ̸∈ St(ak(m)), we can use Lemma G.3.18 to find B ∈ ak(m) such that [B,A] starts
with I. Then [b, a] = IC starts with I for b = BI · · · I ∈ ak(n). After that, we can apply
the inductive assumption for C ∈ gk(n− 1).

If A ∈ St(ak(m)), we repeat the same argument for the substring E of a corresponding
to positions 2, . . . ,m+ 1. When E ̸∈ St(ak(m)), we can make it to start with I, which will
force the substring A ̸∈ St(ak(m)). If both A,E ∈ St(ak(m)), putting them together we
get that the first m+ 1 positions of a are in St(ak(m+ 1)). Continuing this way will give
us a ∈ St(ak(n)), which is a contradiction, because such elements are factored out from
gk(n) (cf. Equation (G.33) and Lemma G.3.12).

Recall that, in Appendix G.3.2, we constructed certain automorphisms φn and γn of
su(2n) such that the images ã3(n) := φna3(n) and ã5(n) := γna5(n) are subalgebras of
a7(n). Note that, after these transformations, their stabilizers become equal:

St(ã3(n)) = St(ã5(n)) = St(a7(n)) = {PI , PX , PY , PZ}. (G.52)

Hence, we have (recall Equation (G.47)–Equation (G.50)):

ãk(n) ⊆ g7(n)θ̃k , k = 3, 5. (G.53)

Lemma G.3.20. We have a7(n) = g7(n) and equalities in Equation (G.53). Consequently,
ak(n) = gk(n)θk for k = 3, 5.

Proof. As before, let (k,m) = (3, 4), (5, 6), (7, 4). In order to include the case k = 7 in
Equation (G.53), we let ã7(n) = a7(n) and θ̃7 be the identity. The statement is true for
all 2 ≤ n ≤ m by inspection. For n ≥ m, we prove it by induction on n. Consider any
a ∈ g7(n)θ̃k . By Lemma G.3.19, we can find b1, . . . , br ∈ ãk(n) such that adb1 · · · adbr(a) =

I · · · ID for some D ∈ su(2m−1) \ {0}. Since bi ∈ ãk(n) ⊆ g7(n)θ̃k , we get that D ∈
g7(m)θ̃k = ãk(m). Therefore, a ∈ ãk(n) due to Lemma G.3.16.

Remark G.3.7. It follows from Lemma G.3.20 that Equation (G.51) holds for all (k, n)
such that: k = 3, n ≡ 0 mod 4; k = 5, n ≡ 0 mod 6; k = 7, n ≡ 0 mod 2. As a
consequence, for such (k, n), we have ak(n) ∼= ak(n− 1)⊕4 as a Lie algebra.

Now that we are done with the cases k = 3, 5, 7, we derive the cases k = 6, 10 from
k = 7 and the isomorphisms a6(n) ∼= a10(n) ∼= a7(n) obtained in Lemmas G.3.4 and G.3.5.
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Lemma G.3.21. We have ak(n) = gk(n) for k = 6, 10.

Proof. Recall from Appendix G.3.2 that we have an isomorphism φn : a6(n) ∼= a7(n) that
up to a sign swaps Y ⇌ Z on every even qubit (see Equation (G.18), Equation (G.19)).
Under φn the stabilizers

St(a6(n)) = {PI , PX , PY Z , PZY },
St(a7(n)) = {PI , PX , PY , PZ}

are sent to each other; hence g6(n) ∼= g7(n). Since a7(n) = g7(n) by Lemma G.3.20, it
follows that a6(n) = g6(n).

Similarly, we have an isomorphism γn : a10(n) ∼= a7(n) given by applying on the j-th
qubit (j = 1, . . . , n) the permutation γj, where γ is the cycle X 7→ Z 7→ Y 7→ X (see
Equation (G.21), Equation (G.22)). Then γn sends

St(a10(n)) = {PI , PXY Z , PY ZX , PZXY }

to St(a7(n)); hence g10(n) ∼= g7(n) and a10(n) = g10(n).

Now we consider the subalgebra a9(n). In this case, we have the involution θ9(g) =
−Q9g

TQ9, where Q9 is given by Equation (G.45).

Lemma G.3.22. We have a9(n) = g9(n)θ9.

Proof. The claim is true for n = 2 and 3 by comparing the dimensions. Suppose by
induction that the statement is true for a9(n− 1), and consider a Pauli string a ∈ g9(n)θ9

for n ≥ 4. Again, we will omit the multiples of i that make Pauli strings skew-Hermitian.

If a ends with I, we can write a = AI for some A ∈ g9(n−1)θ9 and apply the inductive
assumption. Similarly, if a = AIB has an I in the j-th position for some j ≥ 3, we can
delete it and get an element AB ∈ g9(n − 1)θ9 , which by induction is in a9(n − 1). Then
a ∈ a9(n), because a9(4) contains IXIY and IXIZ, which generate elements of a9(n) with
I in the middle.

Suppose that a has no I in positions 3, . . . , n. If a = AXXB contains XX in positions
j, j + 1, then [XjYj+1, a] = −2iAIZB ∈ a9(n). Since XjYj+1 ∈ a9(n), by Lemma G.3.16,
we get that a ∈ a9(n). So, if a ̸∈ a9(n) contains an X, then on the left of it must have
a Y or Z. Then we can use [XZ,XY ] = −2iIX, [XY, Y Y ] = 2iZI, [XY,ZY ] = −2iY I
when a contains a Y , and [XY,XZ] = 2iIX, [XZ, Y Z] = 2iZI, [XZ,ZZ] = −2iY I when
a contains a Z.
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Finally, let us briefly discuss the remaining easier cases, k = 11, 13, 15, 16, 20. Recall
from Equation (G.15), Equation (G.16) that a11(n) = a16(n) for n ≥ 4 and a13(n) = a20(n)
for n ≥ 3. Moreover, g11(n) = g16(n) and g13(n) = g20(n), because they have equal
stabilizers by Proposition G.3.3. Thus, we are left to consider only k = 13, 15, 16.

Lemma G.3.23. We have a13(n) = g13(n) = su(2n)PX/span{PX} for n ≥ 3.

Proof. We know that St(a13(n)) = {PI , PX} and a13(n) ⊆ g13(n). The proof of the opposite
inclusion is similar to the proof of Lemma G.3.22. Consider a Pauli string a ∈ g13(n) for
n ≥ 4. If a = AIB has an I in the j-th position for some 1 ≤ j ≤ n, we can delete it and
get an element AB ∈ g13(n − 1), which by induction is in a13(n − 1). Then a ∈ a13(n),
because a13(3) contains XIX, Y IY, Y IZ, and these generate elements of a13(n) with I in
the middle. If a has no I’s, we can use commutators with the generators of a13(n) to
produce one. Then again we can apply Lemma G.3.16.

Lemma G.3.24. We have a16(n) = su(2n)θ16 = so(2n), where θ16(g) = −gT .

Proof. The same as the proof of Lemma G.3.23, using that AIB ∈ a16(3) for every genera-
torAB of a16. Indeed, one checks that a16 = ⟨XY, Y X, Y Z, ZY ⟩Lie andXIY, Y IX, Y IZ, ZIY ∈
a16(3); see Appendix G.2.5.

Lemma G.3.25. We have a15(n) = g15(n) = su(2n)X1/span{X1}.

Proof. Note that su(2n)X1 is the span of all Pauli strings ̸= I⊗n that start with I or X.
As in the proof of Lemma G.3.23, pick any Pauli string a ∈ g15(n) for n ≥ 3. If a = AIB
has an I in the j-th position for some 2 ≤ j ≤ n, we can delete it and get an element
AB ∈ g15(n−1), which by induction is in a15(n−1). The rest of the proof is the same, using
that a15 = ⟨XX,XY,XZ⟩Lie and XIX,XIY,XIZ ∈ a15(3); see Appendix G.2.5.

Combining the results of Appendix G.3.5 and G.3.6 completes the proof of Theo-
rem G.3.1.

G.3.7 Identifying the Lie algebras gk(n)θk

In this subsection, we finish the proof of Theorem 4.5.1, by identifying the Lie algebras
gk(n)θk from Theorem G.3.1 with the Lie algebras appearing in the right-hand sides in The-
orem 4.5.1. As in Theorem G.3.1, we only consider the cases k = 3, 5, 6, 7, 9, 10, 11, 13, 15, 16, 20.
Moreover, due to the isomorphisms a6(n) ∼= a7(n) ∼= a10(n) and the equalities a11(n) =
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a16(n) and a13(n) = a20(n) (see Lemmas G.3.2, G.3.4, G.3.5), we can omit the cases
k = 6, 10, 11, 20.

The case k = 16 is obvious, because g16(n) = su(2n) and θ16(g) = −gT , leading to
a16(n) = so(2n). Two other easy cases, k = 15 and k = 13, are treated in the next lemma.

Lemma G.3.26. We have:

a15(n) = g15(n) = su(2n)X1/span{X1} ∼= su(2n−1)⊕ su(2n−1),

a13(n) = g13(n) = su(2n)PX/span{PX} ∼= su(2n−1)⊕ su(2n−1).

Proof. Note that
su(2n)X1/span{X1} ∼= spanR{I,X} ⊗ su(2n−1)

has a basis consisting of all Pauli strings ̸= I⊗n, X1 that start with I or X. Consider the
projections P± onto the eigenspaces of X, given by P± := (I ± X)/2. They satisfy the
identities:

P± · P± = P±, P+ · P− = 0, P+ + P− = I.

Then the map
(a, b) 7→ P+ ⊗ a+ P− ⊗ b

is a Lie algebra isomorphism from su(2n−1) ⊕ su(2n−1) to spanR{I,X} ⊗ su(2n−1). This
proves the claim about a15(n).

For the case a13(n), we can replace X1 with PX because there exists a unitary trans-
formation U such that PX = UX1U

†. For example, we can take

U = e−iπ
4
Y1ei

π
4
Y⊗X⊗(n−1)

;

then using Equation (A.6) we check that indeed UX1U
† = X ⊗ X⊗(n−1) = PX . The

automorphism a 7→ UaU † of su(2n) sends su(2n)X1 onto su(2n)PX , and a15(n) onto a13(n).
Therefore, a13(n) ∼= a15(n).

We are left with the cases k = 3, 5, 7, 9, and we consider k = 9 next.

Lemma G.3.27. We have a9(n) = g9(n)θ9 ∼= sp(2n−2).

Proof. Recall that g9(n) = su(2n){X1,Y1X2,Z1X2}. Since span{X1, Y1X2, Z1X2} ∼= su(2), we
can find a unitary transformation that takes this Lie algebra to span{X1, Y1, Z1}. Explicitly,

285



similarly to the proof of Lemma G.3.26, let U = ei
π
4
X1X2 . Then using Equation (A.6), one

easily checks that

UX1U
† = X1, UY1X2U

† = −Z1, UZ1X2U
† = Y1.

Therefore, the map a 7→ UaU † restricts to a Lie algebra isomorphism from g9(n) to

su(2n){X1,Y1,Z1} = I ⊗ su(2n−1) ∼= su(2n−1).

According to Lemmas G.1.1 and G.1.2, under the transformation a 7→ UaU †, the fixed-
point subalgebra g9(n)θ9 is sent to the fixed points of the following involution:

a 7→ −(UQ9U
T )aT (UQ9U

T )†.

Recalling thatQ9 = Y2Z3 · · ·Zn (see Equation (G.45)), we find from UT = U and ei
π
4
XY ei

π
4
X =

Y that
UQ9U

T = Q9.

Hence, the image of g9(n)θ9 under a 7→ UaU † consists of all b ∈ I ⊗ su(2n−1) that are
fixed by θ9. Writing b = I ⊗ c with c ∈ su(2n−1), the condition b = θ9(b) is equivalent
to c = −QcTQ, where Q = Y Z · · ·Z ∈ Pn−1. Since QT = −Q, this determines the Lie
algebra sp(2n−2), due to Corollary G.1.1.

Next we consider the case k = 7.

Lemma G.3.28. We have a7(n) = g7(n) ∼=
{
su(2n−1), n odd,

su(2n−2)⊕4, n ≥ 4 even.

Proof. Recall that St(a7(n)) = {PI , PX , PY , PZ}. Since PX ·PY = inPZ , elements that com-
mute with PX and PY will commute with PZ as well. Hence, su(2n)St(a7(n)) = su(2n){PX ,PY }.
Recall also that [PX , PY ] = 0 if and only if n is even; in that case, su(2n){PX ,PY } has a center
spanned by PX , PY , PZ , and we need to quotient by it to obtain g7(n) (cf. Equation (G.37)).

In order to determine the fixed points under PX and PY , we transform them as in the
proof of Lemma G.3.26. Consider the unitary operator

U =

{
ei

π
4
Z⊗Y ⊗(n−1)

ei
π
4
Y⊗X⊗(n−1)

, n odd,

ei
π
4
X2ei

π
4
I⊗X⊗Z⊗(n−2)

ei
π
4
Y⊗X⊗(n−1)

, n even.
(G.54)

Using Equation (A.6), one checks that

UPXU
† = Z1, UPYU

† = X1 for n odd, (G.55)
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UPXU
† = Z1, UPYU

† = (−1)(n+2)/2Z2 for n even. (G.56)

Indeed, we have

ei
π
4
Y⊗X⊗(n−1)

PXe
−iπ

4
Y⊗X⊗(n−1)

= i(Y ⊗X⊗(n−1)) · PX = Z1.

Since the other factors of U commute with Z1, we obtain that UPXU
† = Z1. The calcu-

lation of UPYU
† is similar. When n is odd, Y ⊗X⊗(n−1) commutes with PY , and we get

from Equation (A.6):

UPYU
† = ei

π
4
Z⊗Y ⊗(n−1)

PY e
−iπ

4
Z⊗Y ⊗(n−1)

= i(Z ⊗ Y ⊗(n−1)) · PY = X1.

When n is even, after applying Equation (A.6) three times, we obtain:

UPYU
† = i3X2 · (I ⊗X ⊗ Z⊗(n−2)) · (Y ⊗X⊗(n−1)) · PY

= in+2X2 · (I ⊗X ⊗ Z⊗(n−2)) · (I ⊗ Z⊗(n−1))

= in+1X2 · Y2 = in+2Z2.

This proves Equation (G.55) and Equation (G.56).

It follows from Equation (G.55) that, for n odd, the map a 7→ UaU † gives a Lie algebra
isomorphism

g7(n) = su(2n){PX ,PY } → su(2n){X1,Z1} = I ⊗ su(2n−1) ∼= su(2n−1).

Now suppose that n is even. Then, by Equation (G.56), the map a 7→ UaU † gives an
isomorphism

su(2n){PX ,PY } → su(2n){Z1,Z2} =
(
spanR{I, Z}⊗spanR{I, Z}⊗su(2n−2)

)
⊕span{Z1, Z2, Z1Z2}.

After we quotient by the center span{Z1, Z2, Z1Z2}, we obtain

g7(n) = su(2n){PX ,PY }/span{PX , PY , PZ} ∼= spanR{I, Z} ⊗ spanR{I, Z} ⊗ su(2n−2).

Again as in the proof of Lemma G.3.26, let P± := (I ± Z)/2, and consider the four
projections

P1 := P+ ⊗ P+, P2 := P+ ⊗ P−, P3 := P− ⊗ P+, P4 := P− ⊗ P−,

which satisfy

Pi · Pi = Pi, Pi · Pj = 0 (i ̸= j),
4∑

i=1

Pi = I ⊗ I.
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Then the linear map

(a1, a2, a3, a4) 7→
4∑

j=1

Pj ⊗ aj (G.57)

is an isomorphism from su(2n−2)⊕4 to spanR{I, Z} ⊗ spanR{I, Z} ⊗ su(2n−2).

In the remaining two cases k = 3, 5, as before we embed a3(n) and a5(n) as subalgebras
of a7(n). We continue to use the notation from Appendix G.3.6 and, as in Lemma G.3.28,
we consider separately the cases when n is odd or even.

Lemma G.3.29. We have a3(n) ∼= ã3(n) = g7(n)θ̃3 ∼=
{
so(2n−1), n ≡ ±1 mod 8,

sp(2n−2), n ≡ ±3 mod 8.

Proof. We apply the transformation a 7→ UaU † from the proof of Lemma G.3.28 that
gives a Lie algebra isomorphism g7(n) → I ⊗ su(2n−1) ∼= su(2n−1), where U is defined by
Equation (G.54) for odd n. Then, by Lemmas G.1.1, G.1.2, the fixed points of θ̃k (see
Equation (G.47)) are sent to the fixed points of the involution

g 7→ −(UQkU
T )gT (UQkU

T )†, k = 3, 5. (G.58)

Recall that Q3 = PZIY X is given by Equation (G.48), and compute

Q̃3 := UQ3U
T = ei

π
4
Z⊗Y ⊗(n−1)

ei
π
4
Y⊗X⊗(n−1)

PZIY Xe
−iπ

4
Y⊗X⊗(n−1)

ei
π
4
Z⊗Y ⊗(n−1)

.

Note that, when n ≡ 1 mod 4, PZIY X anticommutes with Y ⊗ X⊗(n−1). By Equa-
tion (A.6), we have:

ei
π
4
Y⊗X⊗(n−1)

PZIY Xe
−iπ

4
Y⊗X⊗(n−1)

= i(Y1X2X3X4 · · ·Xn−1Xn) · (Z1Y3X4Z5Y7X8 · · ·Xn−1Zn)

= −X1(X2Z3Y5)(X6Z7Y9) · · · (Xn−3Zn−2Yn).

As this anticommutes with ei
π
4
Z⊗Y ⊗(n−1)

, we obtain

Q̃3 = −X1(X2Z3Y5)(X6Z7Y9) · · · (Xn−3Zn−2Yn), n ≡ 1 mod 4.

Hence, restricted to elements g = I ⊗ c with c ∈ su(2n−1), the involution Equation (G.58)
becomes:

c 7→ −PXZIY c
TPXZIY , for n ≡ 1 mod 4.
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For the fixed-point subalgebra, we obtain from Corollary G.1.1:

(PXZIY )T =

{
PXZIY , n ≡ 1 mod 8,

−PXZIY , n ≡ 5 mod 8
⇒ ã3(n) ∼=

{
so(2n−1), n ≡ 1 mod 8,

sp(2n−2), n ≡ 5 mod 8.

Alternatively, when n ≡ 3 mod 4, PZIY X commutes with both Y ⊗ X⊗(n−1) and Z ⊗
Y ⊗(n−1). Hence, in this case,

Q̃3 = ei
π
4
Z⊗Y ⊗(n−1)

PZIY Xe
iπ
4
Z⊗Y ⊗(n−1)

= i(Z1Y2Y3Y4 · · ·Yn−1Yn) · (Z1Y3X4Z5Y7X8 · · ·Xn−3Zn−2Yn)

= iY2(Z4X5Y6)(Z8X9Y10) · · · (Zn−3Xn−2Yn−1).

Thus, restricted to elements g = I ⊗ c with c ∈ su(2n−1), the involution Equation (G.58)
simplifies to:

c 7→ −PY IZXc
TPY IZX , for n ≡ 3 mod 4.

Corollary G.1.1 gives for the fixed-point subalgebra:

(PY IZX)T =

{
PY IZX , n ≡ 7 mod 8,

−PY IZX , n ≡ 3 mod 8
⇒ ã3(n) ∼=

{
so(2n−1), n ≡ 7 mod 8,

sp(2n−2), n ≡ 3 mod 8.

This completes the proof of the lemma.

Lemma G.3.30. We have a5(n) ∼= ã5(n) = g7(n)θ̃5 ∼=
{
so(2n−1), n ≡ ±1 mod 6,

sp(2n−2), n ≡ 3 mod 6.

Proof. The proof is analogous to that of Lemma G.3.29. Recall that U and Q5 = PIY Z are
given by Equation (G.54), Equation (G.49), and compute

Q̃5 := UQ5U
T = ei

π
4
Z⊗Y ⊗(n−1)

ei
π
4
Y⊗X⊗(n−1)

PIY Ze
−iπ

4
Y⊗X⊗(n−1)

ei
π
4
Z⊗Y ⊗(n−1)

.

When n ≡ 3 mod 6, PIY Z = Y2Z3Y5Z6Y8Z9 · · ·Yn−1Zn commutes with Y ⊗X⊗(n−1) and
anticommutes with Z ⊗ Y ⊗(n−1). Hence, by Equation (A.5), Q̃5 = PIY Z . Restricted to
elements g = I ⊗ c with c ∈ su(2n−1), the involution Equation (G.58) simplifies to:

c 7→ −PY ZIc
TPY ZI , for n ≡ 3 mod 6.

Since (PY ZI)
T = −PY ZI , the fixed-point subalgebra is isomorphic to sp(2n−2), by Corol-

lary G.1.1.
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For n ≡ 1 mod 6, PIY Z = Y2Z3Y5Z6 · · ·Yn−2Zn−1 commutes with both Y ⊗X⊗(n−1) and
Z ⊗ Y ⊗(n−1). Hence, in this case,

Q̃5 = i(Z1Y2Y3Y4 · · ·Yn−1Yn) · (Y2Z3Y5Z6 · · ·Yn−2Zn−1)

= i(n+2)/3Z1(X3Y4)(X6Y7) · · · (Xn−1Yn).

The involution induced by Equation (G.58) on c ∈ su(2n−1) is given by

c 7→ −PIXY c
TPIXY , for n ≡ 1 mod 6,

and the fixed-point subalgebra is isomorphic to so(2n−1), because (PIXY )T = PIXY .

Finally, for n ≡ 5 mod 6, using Equation (A.6), we find

ei
π
4
Y⊗X⊗(n−1)

PIY Ze
−iπ

4
Y⊗X⊗(n−1)

= i(Y1X2X3X4X5 · · ·Xn)(Y2Z3Y5 · · ·Zn−2Yn)

= −Y1Z2Y3X4Z5 · · ·Yn−2Xn−1Zn.

Then applying Equation (A.5), we get

Q̃5 = −i(Z1Y2Y3Y4Y5 · · ·Yn) · (Y1Z2Y3X4Z5 · · ·Yn−2Xn−1Zn)

= −iX1X2(Z4X5) · · · (Zn−1Xn).

This induces the involution on su(2n−1) given by

c 7→ −PXIZc
TPXIZ , for n ≡ 5 mod 6,

and the fixed-point subalgebra is isomorphic again to so(2n−1).

Lemma G.3.31. We have a3(n) ∼= ã3(n) = g7(n)θ̃3 ∼=





so(2n−2)⊕4, n ≡ 0 mod 8,

su(2n−2)⊕2, n ≡ ±2 mod 8,

sp(2n−3)⊕4, n ≡ 4 mod 8.

Proof. As in the proof of Lemma G.3.29, we need to compute

Q̃3 := UQ3U
T = ei

π
4
X2ei

π
4
I⊗X⊗Z⊗(n−2)

ei
π
4
Y⊗X⊗(n−1)

PZIY Xe
−iπ

4
Y⊗X⊗(n−1)

ei
π
4
I⊗X⊗Z⊗(n−2)

ei
π
4
X2 .

Using Equation (A.5), Equation (A.6), we find for n ≡ 0 mod 4:

Q̃3 = −Z1(X3Y4Z6)(X7Y8Z10) · · ·Xn−1Yn.
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Via the isomorphism g7(n) ∼= su(2n−2)⊕4 from the proof of Lemma G.3.28 (see Equa-
tion (G.57)), the involution induced from Equation (G.58) on each copy of su(2n−2) is
given by

aj 7→ −PXY IZa
T
j PXY IZ , for 1 ≤ j ≤ 4, n ≡ 0 mod 4.

For the fixed-point subalgebra, we get from Corollary G.1.1:

(PXY IZ)T =

{
PXY IZ , n ≡ 0 mod 8,

−PXY IZ , n ≡ 4 mod 8
⇒ ã3(n) ∼=

{
so(2n−2)⊕4, n ≡ 0 mod 8,

sp(2n−3)⊕4, n ≡ 4 mod 8.

Using Equation (A.5), Equation (A.6), we find for n ≡ 0 mod 4:

Q̃3 = X1X2(Z4X5Y6)(Z8X9Y10) · · · (Zn−2Xn−1Yn).

Consider the unitary operator

V =

{
ei

π
4
Z4X5Y6···Zn−2Xn−1Yn , n ≡ 2 mod 8,

ei
π
4
Z2Z4X5Y6···Zn−2Xn−1Yn , n ≡ 6 mod 8,

and perform the transformation a 7→ V aV † on g7(n). Since V commutes with Z1 and
Z2, this transformation preserves the decomposition g7(n) ∼= su(2n−2)⊕4 given by Equa-
tion (G.57). For n ≡ 2 mod 8, we have V T = V and V commutes with Q̃3. Thus, Q̃3 gets
transformed to

V Q̃3V
T = V 2Q̃3 = i(Z4X5Y6 · · ·Zn−2Xn−1Yn) · Q̃3 = iX1X2.

The involution induced on g7(n) is given by

a 7→ −X1X2a
TX1X2.

Writing a as in Equation (G.57), we note that

X1X2 · P1 ·X1X2 = P4, X1X2 · P2 ·X1X2 = P3.

Hence, a = (a1, a2, a3, a4) is a fixed point of the above involution if and only if a4 = −aT1 ,
a3 = −aT2 . Sending such a to (a1, a2) gives an isomorphism from the fixed-point subalgebra
to su(2n−2)⊕2.

When n ≡ 6 mod 8, we have V T = V −1 and V anticommutes with Q̃3. Thus, Q̃3 gets
transformed to

V Q̃3V
T = V Q̃3V

−1 = V 2Q̃3 = i(Z2Z4X5Y6 · · ·Zn−2Xn−1Yn) · Q̃3 = −X1Y2.

The rest of the proof is similar to the case n ≡ 2 mod 8 above.
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Lemma G.3.32. We have a5(n) ∼= ã5(n) = g7(n)θ̃5 ∼=
{
so(2n−2)⊕4, n ≡ 0 mod 6,

su(2n−2)⊕2, n ≡ ±2 mod 6.

Proof. The proof is very similar to Lemma G.3.31, so we only indicate the differences. We
compute

Q̃5 := UQ5U
T = ei

π
4
X2ei

π
4
I⊗X⊗Z⊗(n−2)

ei
π
4
Y⊗X⊗(n−1)

PIY Ze
−iπ

4
Y⊗X⊗(n−1)

ei
π
4
I⊗X⊗Z⊗(n−2)

ei
π
4
X2 ,

and find that

Q̃5 =





i−n/3Z2(Z4X5)(Z7X8) · · ·Xn−1, n ≡ 0 mod 6,

−Y1Z2(Y3X4Z5)(Y6X7Z8) · · ·Zn, n ≡ 2 mod 6,

PIY Z = (Y2Z3)(Y5Z6)(Y8Z9) · · ·Zn−1, n ≡ 4 mod 6.

For n ≡ 0 mod 6, the involution induced from Equation (G.58) on each copy of su(2n−2)
from the decomposition Equation (G.57) is given by

aj 7→ −PIZXa
T
j PIZX , for 1 ≤ j ≤ 4, n ≡ 0 mod 6.

For n ≡ ±2 mod 6, we use the transformation a 7→ V aV †, where

V =

{
ei

π
4
Z2Y3X4Z5Y6X7Z8···Zn , n ≡ 2 mod 6,

ei
π
4
Z3Y5Z6Y8Z9···Zn−1 , n ≡ 4 mod 6,

which allows us to replace Q̃5 with V Q̃5V
T . This gives the involutions a 7→ −Y1aTY1 and

a 7→ −Y2aTY2 for n ≡ 2 and n ≡ 4 mod 6, respectively.

G.3.8 Periodic boundary conditions

Recall that the subalgebras a◦k(n), b◦l (n) ⊆ su(2n) (0 ≤ k ≤ 22, 0 ≤ l ≤ 4) are defined by
Equation (G.6). In this subsection, we prove Theorem 4.5.2, which we reproduce here for
convenience:

a◦0(n) ∼= u(1)⊕n,

a◦1(n) ∼= so(n)⊕2,

a◦2(n) ∼= so(n)⊕4,
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a◦3(n) =





a13(n), n odd,

a3(n), n ≡ 0 mod 4,

a6(n), n ≡ 2 mod 4,

a◦4(n) ∼=
{
so(2n), n odd,

so(n)⊕4, n even,

a◦5(n) =

{
a16(n), n ≡ ±1 mod 3,

a5(n), n ≡ 0 mod 3,

a◦6(n) =

{
a13(n), n odd,

a6(n), n even,

a◦k(n) = ak(n), k = 7, 13, 16, 20,

a◦8(n) ∼= so(2n)⊕2,

a◦9(n) = b◦2(n) ∼= so(2n), n ≥ 4,

a◦10(n) =

{
su(2n), n ≡ ±1 mod 3,

a10(n), n ≡ 0 mod 3,

a◦11(n) = so(2n), n ≥ 4,

a◦k(n) = b◦4(n) = su(2n), k = 12, 15, 17, 18, 19, 21, 22,

a◦14(n) ∼= so(2n)⊕2,

b◦0(n) = b0(n) ∼= u(1)⊕n,

b◦1(n) ∼= u(1)⊕2n,

b◦3(n) = b3(n) ∼= su(2)⊕n.

We start the proof by observing that due to Equation (G.4), Equation (G.5) and from
dim a◦12(3) = dim a◦17(3) = 63, we have:

a◦k(n) = su(2n), k = 12, 17, 18, 19, 21, 22, n ≥ 3.

Moreover,
a◦15(n) = su(2n), n ≥ 3,

because a15(n) contains (i times) all Pauli strings that start with X or I, except I⊗n. Then,
applying the cyclic shift τn defined in Equation (G.8), we can generate all Pauli strings
̸= I⊗n.

We also note that

a◦k(n) = ak(n), k = 7, 13, 16, 20, n ≥ 3; a◦11(n) = a11(n), n ≥ 4,
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due to Equation (G.15), Equation (G.16) and Lemmas G.3.20, G.3.23, G.3.24, because in
this case τnak(n) ⊆ ak(n).

In Appendix G.3.3, using frustration graphs, we determined the Lie algebras a◦k(n) for
k = 1, 2, 4, 8, 14 (see Lemmas G.3.7, G.3.8, G.3.9). It is also obvious that

b◦0(n) = b0(n), b◦2(n) = a◦9(n),

b◦3(n) = b3(n), b◦4(n) = a◦15(n),

b◦1(n) = span{Xi, X1Xn, XjXj+1}1≤i≤n, 1≤j≤n−1
∼= u(1)⊕2n,

a◦0(n) = span{X1Xn, XjXj+1}1≤j≤n−1
∼= u(1)⊕n.

We discuss the remaining cases a◦k(n) (k = 3, 5, 6, 9, 10) in a sequence of lemmas.

Lemma G.3.33. We have a◦10(n) =

{
su(2n), n ≡ ±1 mod 3,

a10(n), n ≡ 0 mod 3.

Proof. Recall from Theorem G.3.1 that a10(n) = g10(n) where g10(n) is given by Equa-
tion (G.36). When n ≡ 0 mod 3, we have:

τnPXY Z = PY ZX , τnPY ZX = PZXY , τnPZXY = PXY Z ,

which imply that τna10(n) ⊆ a10(n), and hence a◦10(n) = a10(n).

On the other hand, for n ≡ 1 mod 3, we have:

τ−1
n PXY Z = X ⊗ PXY Z = XXY ZXY Z · · ·XY Z,
τ−1
n PY ZX = Y ⊗ PY ZX = Y Y ZXY ZX · · ·Y ZX,
τ−1
n PZXY = Z ⊗ PZXY = ZZXY ZXY · · ·ZXY.

In particular, their centralizer contains the elements

X1X2, Y1Y2, Z1Z2 ∈ τ−1
n a10(n) ⊂ a◦10(n).

From these elements and

X1Y2, Y1Z2, Z1X2 ∈ a10(n) ⊂ a◦10(n),

we can generate all 2-qubit gates: su(4)⊗ I⊗(n−2) ⊂ a◦10(n). Therefore, a◦10(n) = su(2n).

The case n ≡ −1 mod 3 is similar.
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Lemma G.3.34. We have a◦5(n) =

{
a16(n), n ≡ ±1 mod 3,

a5(n), n ≡ 0 mod 3.

Proof. Recall the automorphism γn of su(2n) defined by Equation (G.21), Equation (G.22).

Then, by Lemma G.3.20, γna5(n) = g7(n)θ̃5 , where θ̃5 is given by Equation (G.47), Equa-
tion (G.49), and g7(n) is given by Equation (G.37). From this, we get

γnτna5(n) = (γnτnγ
−1
n )γna5(n) = (γnτnγ

−1
n )g7(n)θ̃5 .

When n ≡ 0 mod 3, we have

(γnτnγ
−1
n )(PX) = PY , (γnτnγ

−1
n )(PY ) = PZ , (γnτnγ

−1
n )(PZ) = PX ,

which imply that (γnτnγ
−1
n )g7(n) ⊆ g7(n). Next, we compute (cf. Equation (G.49)):

(γnτnγ
−1
n )Q5 = (γnτnγ

−1
n )(PIY Z)

= Z1X2Z4X5 · · ·Zn−2Xn−1

= in/3PZ ·Q5 = i−n/3Q5 · PZ .

From this, we deduce that θ̃5 commutes with γnτnγ
−1
n . Indeed, as it commutes with the

trace, we find for g ∈ g7(n):

(γnτnγ
−1
n )θ̃5(g) = −(γnτnγ

−1
n Q5)h

T (γnτnγ
−1
n Q5) = −Q5 · PZh

TPZ ·Q5 = −QhTQ = θ̃5(h),

where we set h := (γnτnγ
−1
n )g and use that h, hT ∈ g7(n). Therefore, γnτna5(n) ⊆ γna5(n),

and hence a◦5(n) = a5(n) for n ≡ 0 mod 3.

Suppose now that n ≡ 1 mod 3. Observe that a◦5(n) ⊆ so(2n) = a16(n) for all n ≥ 2,
because all generators of a◦5(n) have an odd number of Y ’s. On the other hand, we have

X2Xn ∈ g7(n)θ̃5 = γna5(n) ⇒ γ−1
n (X2Xn) = Z2Yn ∈ a5(n) ⇒ τ−1

n (Z2Yn) = Y1Z3 ∈ a◦5(n).

Since Y1X3 ∈ a5(3) (see Appendix G.2.5), we get that Y1X3 ∈ a◦5(n). Hence, [Y1Z3, Y1X3] =
2iY3 ∈ a◦5(n), and cyclic shifts give Y1, Y2 ∈ a◦5(n). Together with a5 = ⟨XY, Y Z⟩Lie, the
elements Y I, IY can generate a16 = ⟨XY, Y X, Y Z, ZY ⟩Lie. Therefore, a◦5(n) ⊇ a16(n),
which proves that a◦5(n) = a16(n).

Similarly, in the case n ≡ −1 mod 3, we have:

X1Xn ∈ g7(n)θ̃5 = γna5(n) ⇒ γ−1
n (X1Xn) = Y1Zn ∈ a5(n) ⇒ τ−1

n (Y1Zn) = Z1Y2 ∈ a◦5(n),

Z1Zn ∈ g7(n)θ̃5 = γna5(n) ⇒ γ−1
n (Z1Zn) = X1Yn ∈ a5(n) ⇒ τ−1

n (X1Yn) = Y1X2 ∈ a◦5(n).

Hence, a◦5(n) contains a16(n), so it must be equal to it.
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Lemma G.3.35. We have a◦9(n) ∼= so(2n) for n ≥ 4.

Proof. First, recall from Lemma G.3.22 that a9(n) = g9(n)θ9 , where g9(n) is given by
Equation (G.38), θ9(g) = −Q9g

TQ9, and Q9 = IY Z · · ·Z is given by Equation (G.45). For
example, g = Y3X4 ∈ a9(n), as gT = −g and g commutes with X1, Y1X2, Z1X2 and Q9 (or
one can check directly that IIY X ∈ a9(4)). Similarly, we check that Z3X4 ∈ a9(n).

Now let us relabel X ⇌ Y , so that a9 = ⟨Y X, Y Z⟩Lie. Then a◦9(n) ⊆ so(2n) = a16(n),
because all generators of a◦9(n) contain an odd number of Y ’s. From above after relabeling,
we have X3Y4, Z3Y4 ∈ a9(n), which after a cyclic shift gives X1Y2, Z1Y2 ∈ a◦9(n). Since
a16 = ⟨XY, Y X, Y Z, ZY ⟩Lie, we obtain that a◦9(n) ⊇ a16(n).

Lemma G.3.36. We have:

a◦6(n) = a6(n), n even, a◦3(n) = a◦6(n) = a13(n), n odd,

a◦3(n) = a6(n), n ≡ 2 mod 4, a◦3(n) = a3(n), n ≡ 0 mod 4.

Proof. First of all, note that a◦3(n) ⊆ a◦6(n) for all n, because a3 ⊂ a6. By Lemma G.3.21,
we have for even n:

a6(n) = g6(n) = su(2n){PX ,PY Z ,PZY }/span{PX , PY Z , PZY }.

In this case,
τn(PX) = PX , τn(PY Z) = PZY , τn(PZY ) = PY Z ,

which implies that τna6(n) ⊆ a6(n), and hence a◦6(n) = a6(n).

Recall the automorphism φn of su(2n) that up to a sign swaps Y and Z on all even
qubits; see Equation (G.18), Equation (G.19). By Lemma G.3.20, we have φna3(n) =

g7(n)θ̃3 , where θ̃3 is given by Equation (G.47), Equation (G.48), and g7(n) is given by
Equation (G.37). Hence,

φnτna3(n) = (φnτnφ
−1
n )φna3(n) = (φnτnφ

−1
n )g7(n)θ̃3 .

When n is even, we have:

(φnτnφ
−1
n )(PX) = PX , (φnτnφ

−1
n )(PY ) = PZ , (φnτnφ

−1
n )(PZ) = PY ,

which implies that (φnτnφ
−1
n )g7(n) ⊆ g7(n). For n ≡ 0 mod 4, we find

(φnτnφ
−1
n )Q3 = (φnτnφ

−1
n )(PZIY X) = PIZXY = PZ ·Q3 = Q3 · PZ .
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Then, as in the proof of Lemma G.3.34, we conclude that in this case a◦3(n) = a3(n).

Next, in the case n ≡ 2 mod 4, one checks that

Y1Yn ∈ g7(n)θ̃3 = φna3(n) ⇒ φ−1
n (Y1Yn) = Y1Zn ∈ a3(n) ⇒ τ−1

n (Y1Zn) = Z1Y2 ∈ a◦3(n).

Hence, a◦3(n) contains all generators of a6(n), proving that a◦3(n) = a6(n).

Finally, consider the case when n is odd. Recall that, by Lemma G.3.23,

a◦3(n) ⊆ a◦6(n) ⊆ a13(n) = su(2n)PX/span{PX}.

In order to prove that these are equalities, it is enough to show that a◦3(n) contains the
generators of a13(n). When n ≡ 1 mod 4, we have

Z1Zn−1 ∈ g7(n)θ̃3 = φna3(n) ⇒ φ−1
n (Z1Zn−1) = −Z1Yn−1 ∈ a3(n) ⇒ τ−2

n (Z1Yn−1) = Y1Z3 ∈ a◦3(n).

Since ZIZ ∈ a3(3), we get that Z1Z3 ∈ a◦3(n) and hence X1 = − i
2
[Y1Z3, Z1Z3] ∈ a◦3(n).

Similarly, when n ≡ 3 mod 4, we have

Z1Zn ∈ g7(n)θ̃3 = φna3(n) ⇒ φ−1
n (Z1Zn) = Z1Zn ∈ a3(n) ⇒ τ−1

n (Z1Zn) = Z1Z2 ∈ a◦3(n).

Then from Y1Z2 ∈ a◦3(n), we get again that X1 ∈ a◦3(n). Therefore, all Xi ∈ a◦3(n), and we
can generate a13(n) from them and the generators XiXi+1, YiZi+1 of a3(n).

The above lemmas complete the proof of Theorem 4.5.2.

G.3.9 Permutation-invariant subalgebras

In this subsection, we classify all permutation-invariant subalgebras of su(2n) that are
generated by single Paulis and products of two Paulis, thus proving Theorem 4.5.3. Recall
that, starting from a subalgebra a ⊆ su(4), we generate the subalgebra aπ(n) ⊆ su(2n),
given by Equation (G.10). Moreover, in Appendix G.2.4, we explained that a can be
assumed itself invariant under the flip of the two qubits; so we only need to consider aπk(n)
for k = 0, 2, 4, 6, 7, 14, 16, 20 and bπl (n) for l = 0, 1, 3. The complete list of such Lie algebras
is presented in Theorem 4.5.3 and reproduced here as follows:

aπk(n) = ak(n), k = 7, 16, 20, 22,

aπ0 (n) ∼= u(1)⊕n(n−1)/2,
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aπ2 (n) = so(2n)PZ ∼= so(2n−1)⊕2,

aπ4 (n) = a7(n),

aπ14(n) ∼= aπ6 (n) = a20(n),

bπl (n) = bl(n), l = 0, 3,

bπ1 (n) ∼= u(1)⊕n(n+1)/2.

To start the proof of the theorem, we first observe that the following subalgebras of
su(2n) are permutation invariant, due to their explicit descriptions (cf. Theorem G.3.1):

a7(n) =

{
su(2n){PX ,PY ,PZ}/span{PX , PY , PZ}, n even,

su(2n){PX ,PY ,PZ}, n odd,

a16(n) = so(2n),

a20(n) = su(2n)PX/span{PX},
a22(n) = su(2n),

b0(n) = span{Xi}1≤i≤n,

b3(n) = span{Xi, Yi, Zi}1≤i≤n.

It is also easy to see that

aπ0 (n) = span{XiXj}1≤i<j≤n,

bπ1 (n) = span{Xk, XiXj}1≤i<j≤n, 1≤k≤n.

Thus, we are left to determine aπk(n) for k = 2, 4, 6, 14. These cases are treated in the next
three lemmas.

Lemma G.3.37. We have aπ2 (n) = so(2n)PZ for all n ≥ 2.

Proof. Note that all generators XiYj (i ̸= j) of aπ2 (n) commute with PZ and are skew-
symmetric, i.e., satisfy aT = −a. Hence, aπ2 (n) ⊆ so(2n)PZ . For the opposite inclusion,
we use the same strategy as in the proof of Lemma G.3.23. Pick an arbitrary Pauli string
a ∈ so(2n)PZ not containing any I’s; then we want to find a Pauli string b ∈ aπ2 (n) such
that [a, b] ̸= 0 and [a, b] has an I in some position. Note that a has an odd number of X’s
and an odd number of Y ’s. In particular, after a permutation, a must start with XY Z,
XXY , or XY Y . Then we let b = X1Y3, X1Z2Y3, or X1Z2Y3, respectively. Here b ∈ aπ2 (n)
because XZY ∈ a2(3); cf. Appendix G.2.5.

Lemma G.3.38. We have aπ14(n) ∼= aπ6 (n) = a20(n) for n ≥ 3.
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Proof. Let us relabel X ⇌ Z in a14. Then a14 ⊂ a20, which implies aπ14(n) ⊆ aπ20(n) =
a20(n) for all n. Similarly, from a6 ⊂ a20, we get aπ6 (n) ⊆ a20(n). To finish the proof of the
lemma, it is enough to show that aπ6 (3) = aπ14(3) = a20(3), because a20(n) is generated from
a20(3) using a process similar to Equation (G.2). The claim now follows from a◦k(3) ⊆ aπk(3)
and

dim a◦6(3) = dim a◦14(3) = dim a20(3) = 30;

see Appendix G.2.5.

Lemma G.3.39. We have aπ4 (n) = a7(n) for n ≥ 3.

Proof. Since a4 ⊂ a7, we have aπ4 (n) ⊆ aπ7 (n) = a7(n) for all n ≥ 3. To prove the opposite
inclusion, it is enough to show that aπ4 (3) = a7(3), because a7(n) is generated from a7(3)
using a process similar to Equation (G.2). From IXX, Y ZX ∈ a4(3), we get ZY X ∈ aπ4 (3)
and [IXX,ZY X] = 2iZZI ∈ aπ4 (3). Then, by permutation invariance, also IZZ ∈ aπ4 (3).
Hence, aπ4 (3) contains all generators of a7(3), so it must be equal to it.

The only thing left to finish the proof of Theorem 4.5.3 is to show that so(2n)PZ ∼=
so(2n−1)⊕2. This follows from the isomorphism su(2n)PZ/span{PZ} ∼= su(2n−1)⊕2 (see
Lemma G.3.26), which is compatible with taking matrix transpose.
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