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Abstract

In most settings where data-driven decisions are made, these decisions are informed by
two-group comparisons. Characteristics – such as median survival times for two cancer
treatments, defect rates for two assembly lines, or average satisfaction scores for two con-
sumer products – quantify the impact of each choice available to decision makers. Given
estimates for these two characteristics, such comparisons are often made via hypothesis
tests. This thesis focuses on sample size determination for hypothesis tests with interval
hypotheses, including standard one-sided hypothesis tests, equivalence tests, and noninfe-
riority tests in both frequentist and Bayesian settings.

To choose sample sizes for nonstandard hypothesis tests, simulation is used to esti-
mate sampling distributions of e.g., test statistics or posterior summaries corresponding
to various sample sizes. These sampling distributions provide context as to which esti-
mated values for the two characteristics are plausible. By considering quantiles of these
distributions, one can determine whether a particular sample size satisfies criteria for the
operating characteristics of the hypothesis test: power and the type I error rate.

It is standard practice to estimate entire sampling distributions for each sample size
considered. The computational cost of doing so impedes the adoption of non-simplistic
designs. However, only quantiles of the sampling distributions must be estimated to as-
sess operating characteristics. To improve the scalability of simulation-based design, we
could focus only on exploring the segments of the sampling distributions near the relevant
quantiles. This thesis proposes methods to explore sampling distribution segments for var-
ious designs. These methods are used to determine sample sizes and decision criteria for
hypothesis tests with orders of magnitude fewer simulation repetitions. Importantly, this
reduction in computational complexity is achieved without compromising the consistency
of the simulation results that is guaranteed when estimating entire sampling distributions.

In parametric frequentist hypothesis tests, test statistics are often constructed from ex-
act pivotal quantities. To improve sample size determination in the absence of exact pivotal
quantities, we first propose a simulation-based method for power curve approximation with
such hypothesis tests. This method leverages low-discrepancy sequences of sufficient statis-
tics and root-finding algorithms to prompt unbiased sample size recommendations using
sampling distribution segments.

We also propose a framework for power curve approximation with Bayesian hypothesis
tests. The corresponding methods leverage low-discrepancy sequences of maximum like-
lihood estimates, normal approximations to the posterior, and root-finding algorithms to
explore segments of sampling distributions of posterior probabilities. The resulting sample

v



size recommendations are consistent in that they are suitable when the normal approxi-
mations to the posterior and sampling distribution of the maximum likelihood estimator
are appropriate.

When designing Bayesian hypothesis tests, practitioners may need to specify various
prior distributions to generate and analyze data for the sample size calculation. Specifying
dependence structures for these priors in multivariate settings is particularly difficult. The
challenges with specifying such dependence structures have been exacerbated by recom-
mendations made alongside recent advances with copula-based priors. We prove theoretical
results that can be used to help select prior dependence structures that align with one’s
objectives for posterior analysis.

We lastly propose a comprehensive method for sample size determination with Bayesian
hypothesis tests that considers our recommendations for prior specification. Unlike our
framework for power curve approximation, this method recommends probabilistic cutoffs
that facilitate decision making while controlling both power and the type I error rate. This
scalable approach obtains consistent sample size recommendations by estimating segments
of two sampling distributions – one for each operating characteristic. We also extend our
design framework to accommodate more complex two-group comparisons that account for
additional covariates.
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Chapter 1

Introduction

1.1 Design with Sampling Distributions

1.1.1 Interval Hypothesis Specification

Hypothesis tests allow practitioners to compare scalar quantities θ1 and θ2, where the char-
acteristic θj describes a comparison (j = 1) or reference (j = 2) group. These comparisons
are typically facilitated using the difference between the characteristics: θ = θ1 − θ2. The
comparison can also be made with a ratio-based metric θ > 0 (e.g., θ = θ1/θ2), but even
such metrics can be expressed as differences on the logarithmic scale. While this thesis
generally considers comparisons with two groups of independent data, these hypothesis
testing methods can also be simplified to consider a characteristic θ that describes a single
group.

Null hypothesis significance tests (NHSTs) often assess whether θ is equal to a fixed
constant θ0. In those situations, the null hypothesis H0 : θ = θ0 and alternative hypothesis
H1 : θ ̸= θ0 are compared. The use of frequentist NHSTs to assess point null hypothe-
ses has generated substantial discourse in the statistical community over the past decade.
In part, this discourse can be attributed to two recent publications. The first is an offi-
cial statement released by the American Statistical Association (ASA) in response to the
replication crisis (Ioannidis, 2005). This statement challenged the statistical community
to develop alternatives to, and extensions of, the traditional hypothesis testing framework
(Wasserstein and Lazar, 2016). The second publication is a special issue of The American
Statistician comprising 43 articles that explored the shortcomings of traditional hypothesis
testing and discussed “moving to a world beyond p < 0.05” (Wasserstein et al., 2019).
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Both publications emphasized the relationship between power and the sample size n
when testing point null hypotheses. The term power will be precisely defined in various
contexts throughout the thesis. Generally, this relationship implies that when the true
value of θ is θ0 + ϵ for any |ϵ| > 0, the probability of rejecting H0 approaches 1 as n→∞.
Hence, there is limited value in testing point null hypotheses with extremely large data
sets: H0 will almost certainly be rejected even if ϵ ≈ 0 and θ does not practically differ from
θ0. Given the current availability of big data, we should reconsider how hypothesis testing
can meaningfully support decision making. In Bayesian settings, θ is often considered to
be a continuous random variable. Bayesian hypothesis tests therefore rarely assess point
null hypotheses since the probability of a continuous random variable equaling a constant
is zero (Gelman et al., 2020).

Since point null hypotheses have shortcomings in frequentist settings and are implausi-
ble in most Bayesian ones, this thesis considers hypotheses of the form H0 : θ1 − θ2 /∈
(δL, δU), where −∞ ≤ δL < δU ≤ ∞. The alternative hypothesis that we wish to
support is therefore H1 : θ1 − θ2 ∈ (δL, δU). The interval (δL, δU) accommodates the
context of comparison. Assuming larger θj values are preferred, the intervals (δL, δU) =
{(0,∞), (−δ, δ), (−δ,∞)} for some equivalence margin δ > 0 may be used to respectively
assess whether θ1 is superior, practically equivalent, or noninferior to θ2 (Wellek, 2010;
Walker and Nowacki, 2011; Spiegelhalter et al., 1994, 2004).

This thesis emphasizes the design of studies in which hypothesis tests are used to analyze
data. In this thesis, we refer to the process of choosing sample sizes and decision criteria
for these tests as hypothesis test design. By supporting scalable design for a broad suite of
hypothesis tests, this thesis extends the traditional hypothesis testing framework as called
for by the ASA in their official statement (Wasserstein and Lazar, 2016). We introduce an
example in Section 1.1.2 to preview the comprehensive scope of the parametric frequentist
and Bayesian hypothesis tests that our design methods accommodate.

1.1.2 Illustrative Example

The Jackson Laboratory recently investigated the impact of diet composition on physiology
and liver gene expression in outbred mice (Gatti et al., 2017). In this experiment, mice
were fed either a standard chow diet or a high-fat diet from weaning to age 26 weeks.
The associated data set is available in the dslabs package in R (Irizarry and Gill, 2023).
Here, we consider the datum yij collected for each mouse i = 1, ..., nj, j = 1, 2 to be their
body weight in grams (g) measured at 19 weeks. The scalar observations in group j are
collectively denoted as yj = (y1j, y2j, . . . , ynjj)

T in this chapter. When considering mice
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Figure 1.1: Density plots of body weight (in grams) for all generations of mice split by
diet.

from all generations bred for this experiment, there are n1 = 386 and n2 = 394 observations
in the high-fat (j = 1) and chow (j = 2) diet groups. We estimated the distribution of
the body weight in each group using nonparametric density estimation (Wand and Jones,
1994). These distributions are visualized in Figure 1.1, which informally demonstrate that
mice fed the high-fat diet generally have greater body weights than those fed the standard
chow one. If we expect diet composition to impact body weight, it could be natural to
compare the typical body weights for the two diets using a superiority or noninferiority
test.

Our design framework also accommodates comparisons based on practical equivalence.
The generations of mice bred for the experiment are composed of two litters, where roughly
half the mice per litter are assigned to each of the two diets. As such, the body weights
should not differ substantially in each of the two litters. To confirm this intuition, we
also consider the subset of mice bred in generation 11. This prompts n1 = 100 and
n2 = 98 observations in the groups for the first (j = 1) and second (j = 2) litters. The
density estimates for these two body weight distributions are given in Figure 1.2. These
distributions appear to be more similar than those in Figure 1.1. We use this example
to provide a context to overview design with sampling distributions for frequentist and
Bayesian hypothesis testing methods in Sections 1.1.3 and 1.1.4, respectively.
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Figure 1.2: Density plots of body weight (in grams) for mice in generation 11 split by
litter.

1.1.3 Frequentist Design

For parametric hypothesis tests, the characteristic of interest θj for group j is typically
specified as a function g(·) of the (potentially) multivariate parameter ηj that parameterizes
the data distribution. That is, θj = g(ηj) for j = 1, 2. Various specifications of the
function g(·) will be considered throughout this thesis. In frequentist settings, θ1 and
θ2 are typically group means or variances. Hypothesis tests that compare proportions
can be viewed as a special case of those that consider means. Alternative characteristics
are typically compared using nonparametric hypothesis tests (see e.g., Pitman (1937);
Wilcoxon (1992)), which are not the focus of this thesis.

When data yij ∼ N (µj, σ
2
j ), the model parameters are ηj = (µj, σ

2
j ). For normal

data, means θ1 = g(η1) = µ1 and θ2 = g(η2) = µ2 are often compared using t-tests
(Student, 1908; Welch, 1938). For large sample sizes n1 and n2, Z-tests based on the
central limit theorem (Lehmann and Casella, 1998) facilitate such comparisons in most
scenarios with non-normal data. Frequentist hypothesis tests also commonly compare two
normal variances θ1 = g(η1) = σ2

1 and θ2 = g(η2) = σ2
2 using F -tests (Snedecor and

Cochran, 1989).

To assess whether the mean body weight for the high-fat diet (θ1) is greater than that
for the chow diet (θ2), we consider the hypotheses H0 : θ /∈ (0,∞) and H1 : θ ∈ (0,∞)
that are based on the difference θ = θ1 − θ2. When using a Student’s t-test to conduct
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this hypothesis test, we obtained a p-value that was less than 2.2× 10−16. The hypothesis
H0 is rejected when the p-value does not exceed a significance level α ∈ (0, 1) chosen to
bound the probability of making a type I error. Type I errors occur when the hypothesis
H0 : θ /∈ (δL, δU) is incorrectly rejected. For the popular choice of α = 0.05, we would
reject H0 : θ /∈ (0,∞) and conclude that θ1 − θ2 ∈ (0,∞).

We suppose there is interest in designing this straightforward hypothesis test to illus-
trate how sampling distributions are used to design frequentist superiority and noninferi-
ority tests. We consider the sampling distribution of the t-test statistic:

t =

(
θ̂1 − θ̂2

)
− θ0

σ̂
√

1
n1

+ 1
n2

, (1.1)

where σ̂ is the estimate for the pooled variance of the two groups and θ0 is some fixed value
for θ = θ1−θ2 corresponding to H0. To consider the sampling distribution of (1.1), we must
choose sample sizes n1 and n2. Here, we select n = n1 = n2 = 25 and consider imbalanced
sample size determination where n1 ̸= n2 later in the thesis. Designing hypothesis tests
based on Student’s t-test also requires an anticipated value for the common population
variance σ2 in both groups. We let the anticipated value for σ2 be 58.81, the pooled
variance informed by the sample estimates σ̂2

1 = 74.49 and σ̂2
2 = 43.13, for illustrative

purposes. These variability estimates are typically informed by previous studies.

We must consider two sampling distributions to design this t-test. The first sampling
distribution we consider is that of (1.1) for the parameter values that maximize type I error
under H0. In this case, type I error is maximized when the two population means are the
same. The grey curve in Figure 1.3 visualizes the sampling distribution for (1.1) under H0

when the population means θ1 and θ2 are equal and when θ0 = 0. The 5% probability of
making a type I error is depicted by the shaded grey area to the right of the vertical black
line at the 0.95-quantile of this sampling distribution.

The second sampling distribution we consider is that of (1.1) for the parameter values
that characterize the minimum effect size we would like to detect. This effect size corre-
sponds to a positive value for θ1 − θ2, but θ0 = 0 once again. For illustration, we choose
this effect size to be equal to the observed effect size: θ̂1 − θ̂2 = 36.67 − 31.54 = 5.13
grams. The relevant sampling distribution of (1.1) under H1 is visualized by the pink
curve in Figure 1.3. The 24.53% probability of making a type II error is represented by the
pink shaded area. Type II errors occur when a false null hypothesis is not rejected. The
power of a hypothesis test is 1 − β, where β is the probability of making a type II error.
While the type I error rate is controlled by the significance level α, the type II error rate is
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Figure 1.3: Sampling distributions for the t-test statistic under H0 and H1 when n = 25.
The black line denotes the 0.95-quantile of the Student’s t-distribution with 2n − 2 = 48
degrees of freedom. The type I and II error rates are respectively depicted by the grey and
pink shaded areas.

bounded by choosing a sufficiently large sample size. To design hypothesis tests, a target
value for power is selected. A popular choice for the target power is 1−β = 0.8. Sampling
distributions similar to those depicted in Figure 1.3 must be considered for various sample
sizes n until the minimum sample size that achieves the target power is found. For this
t-test, n = 29 is the smallest sample size that yields 80% power.

When using Student’s t-tests, the sampling distributions for (1.1) follow known t-
distributions under H0 and H1. We therefore do not require simulation to estimate the
sampling distributions in this straightforward case. Nevertheless, we do not require full
estimation of the sampling distributions under H0 and H1 to determine whether a sample
size n achieves the target power. We only need to accurately estimate particular quantiles
of these distributions since the target power is attained when the (1 − α)-quantile of the
sampling distribution under H0 does not exceed the β-quantile of the sampling distribution
under H1. In Figure 1.3, a target power of 80% was not achieved for n = 25 since the
0.95-quantile of the sampling distribution under H0 (1.677) exceeded the 0.2-quantile of
that under H1 (1.524). This straightfoward example with Student’s t-tests illustrates that
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design with sampling distribution segments near the relevant quantiles would be useful in
more complex settings.

For illustration, we suppose that the equivalence margin δ is 3 grams. This choice
suggests that an absolute difference of less than 3 grams between the mean body weights
on the two diets is not of practical importance. To conduct frequentist equivalence tests
that assess the hypotheses H0 : θ /∈ (−δ, δ) and H1 : θ ∈ (−δ, δ), we use two one-sided
hypothesis tests (Schuirmann, 1987). We conclude that θ1 − θ2 ∈ (δL, δU) if we reject the
following two hypotheses on the basis of each of their p-values: H0L : θ ∈ (−∞, δL] and
H0U : θ ∈ [δU ,∞). We now consider the subset of mice from generation 11, where θ1 and θ2
are respectively the mean body weights from litter 1 and 2. When using Student’s t-tests
to assess H0L and H0U , both p-values were less than 0.021. We can therefore conclude that
θ1 − θ2 ∈ (−3, 3) at the 5% significance level. With interval hypothesis tests, our ability
to conclude whether θ ∈ (δL, δU) depends on the choices for the interval endpoints. For
instance, the p-value for H0U would be 0.055 if we chose δ = 2.5 grams. Thus, we do not
have sufficient evidence to conclude that θ1 − θ2 ∈ (−2.5, 2.5) at the 5% significance level.
In practice, we should consider a single value of δ that is chosen by subject matter experts
to account for the context of the comparison.

We now suppose there is interest in designing this straightforward comparison to il-
lustrate how sampling distributions are used to design frequentist equivalence tests. We
consider the joint sampling distribution of the following t-test statistics:

tL =

(
θ̂1 − θ̂2

)
− δL

σ̂
√

1
n1

+ 1
n2

and tU =
δU −

(
θ̂1 − θ̂2

)
σ̂
√

1
n1

+ 1
n2

, (1.2)

For illustration, we select n = n1 = n2 = 100 and choose the anticipated effect size to be
equal to the observed effect size between the two litters: θ̂1 − θ̂2 = 35.34 − 34.60 = 0.74
grams. This effect size should be less than δ in absolute value for an equivalence test. To
design this equivalence test, we let the anticipated value for σ2 be 59.49 for illustrative
purposes. This value is the pooled variance informed by generation 11’s sample estimates
σ̂2
1 = 68.58 and σ̂2

2 = 50.41.

We must consider three sampling distributions to design this equivalence test. The first
two sampling distributions are those of tL and tU for the parameter values that maximize
type I error under H0. For tL, type I error is maximized when θ1− θ2 = δL. Type I error is
maximized when θ1 − θ2 = δU for tU . The grey curves in the left and right plots of Figure
1.4 visualize these sampling distributions for tL and tU . The 5% probability of making a
type I error in either case is depicted by the shaded grey area to the right of the solid black
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Figure 1.4: Sampling distributions for tL (left) and tU (right) when n = 100. The solid
black lines denote the 0.95-quantiles of the null distributions. The type I and II error rates
for each test are respectively depicted by the grey and pink shaded areas. The overall type
II error rate is the proportion of the pink distributions to the left of the dotted black lines.

line at the 0.95-quantile of Student’s t-distribution with n1 + n2 − 2 degrees of freedom.

The third sampling distribution we consider is the joint sampling distribution for tL
and tU under the parameter values that characterize the anticipated difference for θ1−θ2 ∈
(δL, δU), which is 0.74 grams here. The relevant joint sampling distribution is a bivariate,
non-central t-distribution with singular covariance matrix. The corresponding marginal
sampling distributions for tL and tU are visualized by the pink curves in Figure 1.4. The
3.82% probability of making a type II error with respect to H0L is represented by the pink
shaded area in the left plot. The probability of making a type II error with respect to H0U

is 33.74%, corresponding to the pink shaded area in the right plot.

For frequentist equivalence tests, the overall type II error rate that jointly accounts for
tL and tU is bounded below by the maximum type II error rate for H0L and H0U . For the
design in Figure 1.4, the overall type II error rate is 37.23%. This type II error rate is
visualized by the proportion of the sampling distributions under H1L and H1U that are to
the left of the dotted black lines. The power of this equivalence test is therefore 62.77%.
All sampling distributions in Figure 1.4 follow known t-distributions, and analytical design
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methods are suitable when using Student’s t-tests. In Chapter 2, we demonstrate that
analytical approaches to design such equivalence tests are unstable when relaxing the equal
variance constraint that Student’s t-tests impose. Simulation can be used to estimate the
relevant sampling distributions in that event. Since the design of equivalence tests is
predicated on quantiles of those sampling distributions, methods that consider sampling
distribution segments would be efficient.

1.1.4 Bayesian Design

Bayesian methods (Gelman et al., 2020) for statistical inference treat the parameter ηj as
a random variable for group j = 1, 2. As in Section 1.1.3, the characteristic θj is a function
of the parameter(s) ηj: θj = g(ηj). Bayesian inference employs Bayes’ theorem to update
the beliefs about the random variable ηj as more information becomes available via the
observed data. Bayesian methods also require the specification of a prior distribution for
the parameter(s) ηj, denoted by p(ηj). This distribution characterizes the beliefs about
ηj prior to observing any data. For a particular statistical model, we let L(ηj; yj) be
the relevant likelihood function for the parameter(s) ηj with respect to the observed data
yj. Bayesian methods for statistical inference are facilitated via the posterior distribution
of ηj, denoted by p(ηj |yj). This distribution communicates the values of ηj that are
plausible given the observed data and prior beliefs. By Bayes’ Theorem, we have that

p(ηj |yj) =
L(ηj; yj)p(ηj)∫
L(ηj; yj)p(ηj)dηj

∝ L(ηj; yj)p(ηj). (1.3)

The posterior on ηj induces a posterior on the characteristic θj through the function g(·).

Several Bayesian interval hypothesis testing methods exist, including approaches with
posterior probabilities, Bayes factors, and credible intervals. While hypothesis testing
with Bayes factors and credible intervals will be introduced later in this subsection, the
Bayesian design methods developed in this thesis emphasize hypothesis tests with posterior
probabilities. Testing methods based on posterior probabilities have been introduced in
various settings (see e.g., Berry et al. (2011); Brutti et al. (2014); Stevens and Hagar
(2022)). Given data observed from two groups, the posterior probability that H1 is true
for a difference-based comparison is as follows:

Pr(δL < θ1 − θ2 < δU | y1,y2). (1.4)

The Bayesian paradigm readily accommodates ratio-based comparisons, and we con-
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trast comparisons based on differences and ratios after introducing all three methods
for Bayesian hypothesis testing. For positive characteristics θ1 and θ2, the posterior
of θ1/θ2 facilitates two-group comparisons via percentage increases with the hypothesis
H1 : θ1/θ2 ∈ (δL, δU). Given data observed from both groups, the relevant posterior prob-
ability is

Pr
(
δL < θ1/θ2 < δU

∣∣ y1,y2

)
. (1.5)

For ratio-based comparisons, the intervals (δL, δU) = {(1,∞), (δ−1, δ)} for some δ > 1 may
be used to respectively assess whether θ1 is superior or practically equivalent to θ2.

The probability in (1.4) or (1.5) is compared to a critical value 0.5 ≤ γ < 1. If that
probability is greater than γ, one should conclude θ ∈ (δL, δU) for θ = θ1− θ2 or θ = θ1/θ2.
Larger values of γ allow one to draw conclusions with more conviction. In contrast to
hypothesis testing with p-values, there is not a widely accepted threshold for decision
making with posterior probabilities. More guidance for determining a critical value γ will
be provided in Chapter 5.

Accommodating a wider variety of distributional assumptions and characteristics θ1
and θ2 is often more straightforward in Bayesian settings. To illustrate this, we reconsider
the mice example from Section 1.1.2 under different distributional assumptions. We now
assume that the body weights in litter j of generation 11 are independently distributed such
that yij ∼ GAMMA(αj, λj) with shape parameter αj and rate parameter λj for i = 1, ..., nj.
We also summarize the body weight distributions via their medians: θj = g(ηj), where
g(·) is an implicit function of the gamma model parameters ηj = (αj, λj). The sample

medians for these data are θ̂1 = 35.34 grams and θ̂2 = 34.60 grams as visualized in Figure
1.2. We independently assign uninformative GAMMA(2, 0.25) priors to the shape αj and
rate λj parameters for all posterior analyses in this subsection. We use an equivalence test
with θ = θ1 − θ2, (δL, δU) = (−3, 3), and a critical value of γ = 0.9 to illustrate hypothesis
testing with posterior probabilities. Using computational methods described in Section
1.3.1, we estimate Pr(θ ∈ (−3, 3) | y1,y2) as 0.9841. Because 0.9841 > 0.9, we conclude
the two median weights are practically equivalent when δ = 3 grams.

We now suppose there is interest in designing this hypothesis test with posterior prob-
abilities to illustrate how sampling distributions are used to design Bayesian hypothesis
tests. The relevant posterior probabilities for such hypothesis tests can be viewed as test
statistics. Unlike most frequentist test statistics, the sampling distributions of posterior
probabilities do not have known parametric forms. We must estimate these sampling
distributions by simulating data under various generation processes and computing the
corresponding posterior probabilities Pr(H1 | y1,y2).

Bayesian equivalence tests are considered via a single set of hypotheses H0 and H1. In
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Figure 1.5: Example sampling distributions for Pr(H1 | y1,y2) under H1 and H0 when
n = 100. The solid black lines denote γ = 0.9. The type I and II error rates are respectively
depicted by the grey and pink shaded areas.

the Bayesian paradigm, design for equivalence tests and design for one-sided hypothesis
tests similarly leverage sampling distributions. When designing Bayesian hypothesis tests,
practitioners might only be concerned with bounding the type II error rate. In that event,
mice body weights would be simulated from gamma models with parameter values that
align with H1. More detail regarding how these data could be generated is provided in
Chapters 3 and 5. In this case, we need only consider the sampling distribution of posterior
probabilities under H1 to assess the power of a test with respect to a critical value γ.

An example of one such sampling distribution is given by the pink curve in the left
plot of Figure 1.5 for the sample size n = n1 = n2 = 100. The 18.37% probability of
making a type II error is represented by the pink shaded area to the left of the black line
at γ = 0.9. When n = 100, a target power of 1 − β = 0.8 would be achieved. However,
precisely estimating the right tail of the pink distribution does not help us determine
whether n = 100 is a suitable sample size. We need only determine whether the β-quantile
of the sampling distribution of posterior probabilities under H1 exceeds γ = 0.9. Thus, it
would be beneficial if we could efficiently estimate the 0.2-quantile of the pink sampling
distribution without estimating the sampling distribution in its entirety.

11



If practitioners want to bound both the type I and II error rates of a Bayesian hypothesis
test, a second sampling distribution of posterior probabilities must also be considered. For
this example, that sampling distribution would leverage mice body weights simulated from
gamma models with parameter values that align with H0. While the data align with H0,
the relevant posterior probability is still Pr(H1 | y1,y2). The grey curve in the right plot of
Figure 1.5 depicts an example sampling distribution under H0 for n = 100. When γ = 0.9,
the 8.91% probability of making a type I error is represented by the grey shaded area. It
follows that the (n, γ) combination of (100, 0.9) would attain a target power of 0.8 but not
achieve a type I error rate of α = 0.05. In practice, the sample size n and critical value γ
could be chosen jointly to satisfy criteria for power and the type I error rate.

Precise estimation of the left tail of the grey sampling distribution does not help us
determine whether a sample size is suitable with respect to type I error. To determine a
(n, γ) combination such that criteria for both power and the type I error rate are satisfied,
we need only discern whether the (1 − α)-quantile of the sampling distribution under
H0 exceeds the β-quantile of that under H1. In the right plot of Figure 1.5, the 0.95-
quantile of the sampling distribution under H0 (0.9423) exceeds the 0.2-quantile of that
under H1 (0.9035). It is computationally intensive to estimate two sets of entire sampling
distributions of posterior probabilities for various sample sizes. Design with sampling
distribution segments would therefore make Bayesian hypothesis testing more accessible.

We now briefly introduce alternative methods for Bayesian interval hypothesis testing
that involve Bayes factors and credible intervals. In Chapter 3, we demonstrate that design
for these hypothesis tests can also be considered using a framework based on sampling
distributions of posterior probabilities. Thus, we will consider the sampling distributions
associated with these hypothesis testing methods more thoroughly in that chapter. Morey
and Rouder (2011) proposed the nonoverlapping hypotheses (NOH) approach to assess the
plausibility of interval hypotheses with Bayes factors (Jeffreys, 1935; Kass and Raftery,
1995). This approach directly assigns a prior distribution to the effect size considered via
the hypothesis test, which is θ = θ1 − θ2 or θ = θ1/θ2 in this case. The NOH Bayes factor
is the ratio of the posterior odds of the complementary hypotheses H1 : θ ∈ (δL, δU) and
H0 : θ /∈ (δL, δU) to their prior odds:

Pr(δL < θ < δU | y1,y2)

1− Pr(δL < θ < δU | y1,y2)
÷ Pr(δL < θ < δU)

1− Pr(δL < θ < δU)
. (1.6)

The NOH Bayes factor provides support for H1 over H0 when its value is greater than a
predetermined threshold K ≥ 1.

Hypothesis testing methods with credible intervals have also been proposed (Gubbiotti
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and De Santis, 2011; Brutti et al., 2014; Kruschke, 2018). These methods compare the
credible interval for the posterior of a univariate parameter θ = θ1 − θ2 or θ = θ1/θ2 to
the interval (δL, δU). A credible interval (Lθ,1−α, Uθ,1−α) has coverage of 1 − α if Pr(θ ∈
(Lθ,1−α, Uθ,1−α) | y1,y2) = 1−α. Since this interval is not uniquely defined, the equal-tailed
credible interval or highest density interval (HDI) is often considered. The equal-tailed
interval is defined such that Pr(θ < Lθ,1−α | y1,y2) = Pr(θ > Uθ,1−α | y1,y2) = 1− α/2,
and the HDI is the narrowest credible interval with coverage 1− α. If (Lθ,1−α, Uθ,1−α) lies
entirely within (δL, δU), one should conclude θ ∈ (δL, δU).

Lastly, we contrast the conclusions prompted by Bayesian hypothesis tests based on
differences with the conclusions prompted by those based on ratios. First, posterior proba-
bilities are invariant to monotonic transformations, so the probability in (1.5) is equivalent
to that from (1.4) when logarithmic transformations are applied to θ1, θ2, and the in-
terval endpoints. We would therefore draw the same conclusions using hypothesis tests
with (1.4) and (1.5) given appropriate logarithmic transformations. NOH Bayes factors
and equal-tailed credible intervals are also invariant to monotonic transformations, but
posterior HDIs are not. Thus, hypothesis tests with posterior HDIs are not guaranteed to
yield the same conclusions when considering a ratio and its corresponding difference on
the logarithmic scale. Ratio-based comparisons and their sampling distributions will be
considered more thoroughly in Chapter 3.

1.2 Simulation-Based Design

1.2.1 The Unit Hypercube

To design studies that use flexible and realistic statistical models, computer simulation
is generally required. These approaches to study design involve simulating hypothetical
samples of data under various data generation processes to estimate sampling distribu-
tions. The type of data is dictated by the context for the study. For instance, these data
may be nonnegative survival times for cancer treatments, binary indicators that dictate
whether products from assembly lines are defective, or integer customer satisfaction scores
for consumer goods.

Regardless of the data type, each observation is generated using at least one number
in the interval [0, 1]. These data are typically generated from a distribution with a known
inverse cumulative distribution function (CDF): F−1(u) for u ∈ [0, 1]. In such scenarios,
only one number ui ∈ [0, 1] is required to generate an observation yi = F−1(ui) (Kroese
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et al., 2013). More than one number between 0 and 1 may be required to simulate each
observation in more complex settings that are not the focus of this thesis (see e.g., Casella
et al. (2004)).

Simulation-based design is therefore predicated on sequences {ur}mr=1 ∈ [0, 1]d, where
m is the number of simulation repetitions and d is the dimension of the simulation. The
unit hypercube [0, 1]d is a closed, compact, convex hull that encompasses all possible com-
binations of d numbers between 0 and 1 (Balas and Jeroslow, 1972). When CDF inversion
is used, the dimension d is often a function of the sample size n for the study. For each
simulation repetition r, the point ur yields a sample to be investigated via a hypothetical
study. Many hypothetical studies – and hence large m – are required to reliably estimate
the relevant sampling distributions. The computational cost of this computer simulation
impedes the adoption of non-simplistic designs. In this thesis, we explore the unit hyper-
cube [0, 1]d as a conduit for the data space to develop general methods for study design.
The remainder of this subsection overviews several approaches to generate points {ur}mr=1

from [0, 1]d.

1.2.2 Monte Carlo Simulation

Monte Carlo methods broadly leverage repeated random sampling to estimate determinis-
tic quantities (Metropolis and Ulam, 1949). Random number generation can be facilitated
using the results from physical experiments (Schindler, 2009); however, Monte Carlo sim-
ulation typically leverages deterministic pseudorandom number generators (Gentle, 2003)
to construct sequences from the unit hypercube. Pseudorandom number generators aim to
output sequences {ur}mr=1 ∈ [0, 1]d that are approximately independently and identically
distributed (i.i.d.) over the unit hypercube.

Pseudorandom sequences are often created using linear congruential generators (Fish-
man and Moore, 1986). The quality of the approximately i.i.d. sequences output by pseudo-
random number generators can be quantified using various theoretical and statistical tests,
such as the spectral test (Knuth, 2014) and serial tests (L’Écuyer et al., 2002; Knuth,
2014). The Mersenne Twister (Matsumoto and Nishimura, 1998) is the default pseudoran-
dom number generator in R, and certain alternative generators (see e.g., L’Écuyer (1999))
can also safely be used. More details on pseudorandom number generators that poorly ap-
proximate i.i.d. sequences can be found elsewhere (Entacher, 1998; L’Écuyer, 2001). Figure
1.6 visualizes an example pseudorandom sequence in two dimensions with m = 64 points
generated using the Mersenne Twister. These points appear to reasonably approximate
random scatter throughout the unit square.
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Figure 1.6: Pseudorandom sequence in [0, 1]2 with m = 64 points.

To prove theoretical results with satisfactory pseudorandom number generators, each
point in the constructed sequence is assumed to be i.i.d. over the unit hypercube. That is,

U r
i.i.d.∼ U

(
[0, 1]d

)
for r = 1, ...,m. It follows that pseudorandom sequences can be used in

Monte Carlo simulation to prompt unbiased estimators via empirical means:

E

(
1

m

m∑
r=1

Ψ(U r)

)
=

∫
[0,1]d

Ψ(u)du, (1.7)

for some function Ψ(·) such that the expectation in (1.7) is finite. As discussed in various
contexts throughout this thesis, we take the function Ψ(·) to define power or the type I
error rate. The unbiasedness in (1.7) makes generating data with pseudorandom sequences
standard practice in simulation-based design. For design purposes, entire sampling distri-
butions are estimated when using pseudorandom sequences. In the following subsection,
we argue that exploring the unit hypercube [0, 1]d and corresponding data space with
pseudorandom sequences is computationally inefficient.
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1.2.3 Quasi-Monte Carlo Methods

Low-discrepancy sequences are created to induce negative dependence between the points
U 1, ...,Um. Low-discrepancy sequences are regularly incorporated into quasi-Monte Carlo
methods (Lemieux, 2009). These methods are frequently used in the financial sector but
underutilized in experimental design. There are two main families of constructions used
to create low-discrepancy sequences: lattices and digital sequences. Lattices construct se-
quences by taking select linear combinations of basis vectors (Korobov, 1959; Hickernell
et al., 2000; Hickernell and Niederreiter, 2003). Digital sequences are constructed by lever-
aging integer expansion in particular bases (Halton, 1960; Sobol’, 1967; Faure, 1982). The
notion of discrepancy refers to the distance between the empirical distribution induced by
a sequence and the uniform distribution over [0, 1]d. This discrepancy and the quality of
the low-discrepancy sequence is often assessed using the star discrepancy (Niederreiter,
1992). Alternative evaluation metrics have also been proposed for lattice rules (see e.g.,
L’Écuyer and Lemieux (2000)) and digital sequences (see e.g., Wiart et al. (2021)).

Low-disrepancy sequences can be randomized to yield estimators with better consis-
tency properties than those created using purely deterministic sequences. Sequences cre-
ated using lattice rules are often randomized using random shifts or rotation sampling
(Cranley and Patterson, 1976). The randomization of digital sequences can be carried
out via a digital shift (Lemieux, 2009). For appropriately randomized low-discrepancy se-
quences, each point in the sequence is such that U r ∼ U

(
[0, 1]d

)
for r = 1, ...,m. These

sequences are not i.i.d. over the unit hypercube since the points are not independent. Ran-
domization approaches for low-discrepancy sequences should inject enough randomness to
ensure {U r}mr=1 ∼ U

(
[0, 1]d

)
but not too much variability to compromise the equidistribu-

tion properties.

We emphasize that quasi-Monte Carlo methods do not accurately estimate entire sam-
pling distributions due to the negative dependence between the points in low-discrepancy
sequences. However, the result in (1.7) holds for appropriately randomized low-discrepancy
sequences since {U r}mr=1 ∼ U

(
[0, 1]d

)
. These sequences can therefore be used similarly to

pseudorandom sequences in Monte Carlo simulation to prompt unbiased estimators based
on empirical means. Throughout this thesis, we demonstrate how the operating charac-
teristics of hypothesis tests can be estimated using empirical means like the one in (1.7).
The result in (1.7) therefore justifies the use of quasi-Monte Carlo methods in this the-
sis. Throughout this thesis, we state that we explore – instead of estimate – sampling
distributions when using low-discrepancy sequences.

Due to the negative dependence between the points, the variance of the estimator in
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(1.7) is typically reduced by using randomized low-discrepancy sequences. We have that

Var

(
1

m

m∑
r=1

Ψ(U r)

)
=

Var (Ψ(U r))

m
+

2

m2

m∑
r=1

m∑
t=r+1

Cov (Ψ(U r),Ψ(U t)) , (1.8)

where the the first term on the right side of (1.8) is the variance of the corresponding esti-
mator based on pseudorandom sequences of approximately i.i.d. points. Low-discrepancy
sequences give rise to effective variance reduction methods when the dimension of the sim-
ulation is moderate (Kocis and Whiten, 1997). However, high-dimensional low-discrepancy
sequences may have poor low-dimensional projections, which can lead to a deterioration
in performance (see e.g., Braaten and Weller (1979); Fox (1986)). Substantial work on
quasi-Monte Carlo methods has targeted suitable performance for d ≤ 32 (L’Écuyer and
Lemieux, 2000; Lemieux, 2009). By (1.8), randomized low-discrepancy sequences reduce
the number of simulation repetitionsm required to precisely and consistently estimate (1.7)
and hence power and the type I error rate compared to using pseudorandom alternatives.

When implementing quasi-Monte Carlo methods, this thesis uses a particular class
of low-discrepancy sequences called Sobol’ sequences (Sobol’, 1967) that are based on
integer expansion in base 2. We use Sobol’ sequences because they are well studied and
can be constructed using existing software in popular programming languages. Moreover,
subsequences of the Sobol’ sequence are also low discrepancy, and this property will be
exploited in Chapter 5. However, the methods proposed in this thesis could be implemented
with various types of low-discrepancy (and pseudorandom) sequences. Sobol’ sequences can
be generated and randomized in R using the qrng package (Hofert and Lemieux, 2020).
Figure 1.7 compares pseudorandom and Sobol’ sequences in two dimensions with m = 64
points. The red points from the Sobol’ sequence appear to be more evenly distributed
throughout the unit square than the blue ones from the pseudorandom sequence.

Since low-discrepancy sequences are comprised of dependent points and may perform
poorly in high-dimensional settings, this thesis will not use them to directly explore the data
space. Low-discrepancy sequences will instead be used to explore lower-dimensional hyper-
cubes prompted by data summaries. Both pseudorandom and low-discrepancy sequences
thoroughly explore the unit hypercube for each potential design, but this thorough explo-
ration is computationally inefficient in many design settings. In Section 1.3.2, we introduce
a general framework to explore the unit hypercube in a nonuniform, targeted manner. This
framework will be used to expedite simulation-based design by way of exploring sampling
distribution segments.
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Figure 1.7: Pseudorandom (left) and Sobol’ (right) sequences in [0, 1]2 withm = 64 points.

1.3 Barriers to Scalable Design

1.3.1 Computationally Complex Simulation Repetitions

The nature of the computational complexity associated with each simulation repetition
r = 1, ...,m is different in frequentist and Bayesian settings. Design methods for frequentist
studies are generally less computationally intensive. For each simulation repetition, data
yj = (y1j, y2j, . . . , ynjj)

T for each group (j = 1, 2) are typically generated under H1 using
a point u ∈ [0, 1]n1+n2 . The data are summarized by sufficient statistics or maximum
likelihood estimates that are used to compute the relevant test statistic. Based on the
value of this test statistic, we decide whether or not to reject H0. The proportion of the
m simulation repetitions in which H0 is rejected estimates the power of a potential design.

It can be cumbersome to generate, store, and summarize the data y1 and y2 when
n1 and n2 are large. In this thesis, we therefore simulate sufficient statistics or maximum
likelihood estimates directly. This practice is advantageous in that the dimension of the unit
hypercube is reduced. If the statistical model for group j is parameterized by ηj ∈ Rd, we
can typically generate the sufficient statistics or maximum likelihood estimates for both
groups using a point u ∈ [0, 1]2d. The dimension of the parameter space d is generally
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such that 2d << n1 + n2. This dimension reduction allows for greater incorporation of
quasi-Monte Carlo methods into our design framework. We can often readily find a suitable
low-discrepancy sequence of dimension 2d, but it may be challenging to find an appropriate
sequence of dimension n1 + n2 for large sample sizes.

As demonstrated in Chapter 3, the test statistics for most Bayesian hypothesis tests can
be expressed as posterior probabilities. Unlike for parametric frequentist hypothesis tests,
these test statistics usually cannot be computed as an explicit function of the sufficient
statistics or maximum likelihood estimates. Given y1 and y2 and the joint posterior
p(η1,η2 | y1,y2), the posterior probability may be calculated as∫∫

R

p(η1,η2 | y1,y2)dη1dη2, (1.9)

where R is the region corresponding to H1 (i.e., δL ≤ θ1− θ2 ≤ δU or δL ≤ θ1/θ2 ≤ δU) for
the posterior probabilities in (1.4) and (1.5), respectively. When conjugate priors are used,
the integral in (1.9) can be evaluated analytically. For flexible study design, computational
methods can be used to approximate the posterior p(η1,η2 | y1,y2) by way of generating
posterior draws.

The most popular computational method for posterior approximation is Markov chain
Monte Carlo (MCMC) simulation (Gelman et al., 2020). Where applicable, this thesis im-
plements MCMC via Gibbs sampling (Geman and Geman, 1984) with the rjags package
in R (Plummer, 2019). Gibbs sampling allows us to sample from joint posterior distri-
butions using simpler conditional posteriors. We typically generate M observations from
each relevant Markov chain, which yields draws θ1,1, θ1,2, ..., θ1,M and θ2,1, θ2,2, ..., θ2,M . We
can use these posterior draws to estimate relevant posterior probabilities. For instance,
the posterior probability from (1.4) can be estimated as

1

M

M∑
k=1

I(δL < θ1,k − θ2,k < δU). (1.10)

Sampling-resampling methods can also be used to obtain an approximate sample from a
continuous posterior distribution p(ηj|yj). One such method is the sampling-importance-
resampling (SIR) algorithm (Rubin, 1987, 1988; Smith and Gelfand, 1992). In this setting,
a sample can be readily generated from a continuous proposal distribution c(x). However,
we want to sample from a distribution d(x) such that c(x) = 0 implies that d(x) = 0
for all x. We also require a function b(x) such that d(x) ∝ b(x). Because p(ηj |yj) ∝
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L(ηj; yj)p(ηj) by Bayes’ Theorem, natural choices exist for the function b(x) required to
implement the SIR algorithm. Even so, choosing a suitable proposal distribution c(x) that
resembles p(ηj|yj) = d(x) is less straightforward. We therefore prefer MCMC methods
over sampling-resampling approaches, but we use the SIR algorithm in Chapters 4 and 5
when MCMC methods are difficult to implement.

Although we prefer MCMC methods to the SIR algorithm, neither computational ap-
proach is ideal when we must conduct a large number of simulation repetitions m for each
potential design explored. We instead recommend using large-sample normal approxima-
tions to the posterior of ηj, such as those based on the Bernstein-von Mises (BvM) theorem
(van der Vaart, 1998) or the Laplace approximation (Gelman et al., 2020). These analyt-
ical approximations to the posterior will be formally introduced later in this thesis. We
will also discuss strategies to improve the quality of these large-sample normal approxima-
tions for moderate n. These analytical approximation methods mitigate the computational
complexity associated with each simulation repetition in Bayesian design.

1.3.2 Inefficient Estimation of Sampling Distributions

Thorough exploration of [0, 1]2d prompts the estimation of test statistics from throughout
the relevant sampling distributions. This standard practice is often wasteful due to the
repetitive nature of simulation-based design. These simulations investigate how various
design inputs impact the operating characteristics of a hypothesis test. Potential design
inputs include minimum detectable effect sizes, variability estimates, parametric statis-
tical distributions, and sample sizes. For each combination of design inputs considered,
simulation is used to carry out a hypothetical study. The same procedure is used to imple-
ment each simulation repetition, and the only differences between simulation repetitions
are driven by the generated data. This process is repeated for each combination of design
inputs that are investigated.

Quasi-Monte Carlo methods allow us to reduce the number of simulation repetitions
m required to estimate the operating characteristics of a hypothesis test. However, com-
putational resources are still wasted by estimating test statistics from throughout the
relevant sampling distributions for unsuitable sample sizes. Algorithmic methods are often
employed to explore the sample size space. For instance, Wang and Gelfand (2002) rec-
ommended using bisection methods or grid searches to find a suitable sample size n. If we
develop sound design procedures that only use points from subspaces of [0, 1]2d to explore
each sample size, we can consider sampling distribution segments and further improve the
computational savings prompted by using quasi-Monte Carlo methods alone.
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Figure 1.8: Illustration of targeted hypercube exploration.

This thesis emphasizes methods for sample size determination. In this context, uniform
exploration of [0, 1]2d is inefficient because similar points ur and ur′ respectively used to
consider sample sizes nA and nB should prompt studies with similar results when nA ≈ nB.
Much smaller m could be used if the points {ur}mr=1 selected for each sample size n were
concentrated in interesting subspaces of [0, 1]2d. In this thesis, interesting subspaces of
[0, 1]2d correspond to segments of sampling distributions near the quantiles that define the
operating characteristics of a hypothesis test. Figure 1.8 illustrates the notion of exploring
the unit hypercube in a targeted manner. For the sample size nA, only the green points in
Figure 1.8 may be of interest, whereas perhaps the purple points prompt more interesting
studies for the sample size nB. With targeted exploration approaches, we may not need to
carry out studies corresponding to uninteresting regions of [0, 1]2d to assess the operating
characteristics of a hypothesis test.

By reducing the number of repetitions m, such approaches would vastly improve the
accessibility of simulation-based design. However, these approaches are very rarely imple-
mented for two reasons. First, it is often unclear which [0, 1]2d-subspaces should be priori-
tized for arbitrary designs. Second, care must be taken to not compromise the simulation
consistency since the unbiasedness in (1.7) relies on uniform exploration of the unit hyper-
cube. The methods proposed in this thesis should therefore automate the [0, 1]2d-subspace
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selection process for arbitrary designs. The simulation dimension 2d is not related to the
sample size n, so the unit hypercube [0, 1]2d is the same for all sample sizes (and other
design inputs) considered.

Existing work on simulation with subspaces of the unit hypercube that correspond to
segments of sampling distributions is limited. Thus, this thesis develops a new framework
for scalable design. The contributions of this thesis are directed toward two main objectives.
First, we aim to propose methods that are straightforward for practitioners to implement.
We also intend to mathematically prove that simulation consistency can be maintained
while ignoring certain subspaces of the unit hypercube – and the corresponding sampling
distribution segments – under various conditions.

1.4 Contributions

The remainder of this chapter outlines the contributions of this thesis and the structure
of this document. Chapter 2 illustrates how design with sampling distribution segments
prompts power analysis in nonstandard frequentist design settings. Power analyses are
typically carried out using integration when the null distributions have known parametric
forms based on pivotal quantities. When the relevant test statistics cannot be constructed
from pivotal quantities, their sampling distributions are approximated via repetitive, time-
intensive computer simulation. We propose a novel simulation-based method to quickly
approximate the power curve for many such hypothesis tests by efficiently exploring seg-
ments of the relevant sampling distributions. Despite not estimating the entire sampling
distribution, this approach prompts unbiased sample size recommendations. We illustrate
this method using two-group equivalence tests with unequal variances and overview its
broader applicability in simulation-based design.

Chapter 3 describes a comprehensive framework for power curve approximation with
Bayesian hypothesis tests conducted via posterior probabilities, Bayes factors, and credible
intervals. We propose a framework for power curve approximation with such hypothesis
tests that assumes data are generated using statistical models with known, fixed parameters
for the purposes of sample size determination. When the conditions for the Bernstein-von
Mises theorem are satisfied, we propose an approach to explore segments of the approximate
sampling distribution of posterior probabilities for each sample size considered. These
sampling distributions are used to construct power curves for various types of posterior
analyses. Our resulting method for power curve approximation is orders of magnitude faster
than conventional power curve estimation for Bayesian hypothesis tests. We also prove the
consistency of the corresponding power estimates and sample size recommendations under
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certain conditions. In this chapter, we only consider criteria for the power of the hypothesis
test and ignore the notion of type I error.

Chapter 4 prepares the eventual relaxation of the fixed-parameter assumption for the
data generation process considered in Chapter 3 by means of prior specification. In fully
Bayesian analyses, prior distributions are specified before observing data. Prior elicitation
methods transfigure prior information into quantifiable prior distributions. Recently, meth-
ods that leverage copulas have been proposed to accommodate more flexible dependence
structures when eliciting multivariate priors. We prove that under broad conditions, the
posterior cannot retain many of these flexible prior dependence structures in large-sample
settings. We also overview several objectives for prior specification to help practitioners
select prior dependence structures that align with their objectives for posterior analysis.
Because correctly specifying the dependence structure a priori can be difficult, we consider
how the choice of prior copula impacts the posterior distribution in terms of asymptotic
convergence of the posterior mode. Our resulting recommendations streamline the prior
elicitation process and are considered when implementing the design methods in Chapter
5.

Chapter 5 proposes a framework for design that serves as an alternative to the ap-
proach explored in Chapter 3. Unlike in Chapter 3 where we consider design for fixed
parameter values, this comprehensive framework accounts for uncertainty in the parame-
ter values used to generate the data. To design trustworthy Bayesian studies using this
approach, criteria for power and the type I error rate are defined. These posterior-based
operating characteristics are typically assessed by exploring entire sampling distributions
of posterior probabilities via simulation. In this chapter, we propose a scalable method
to determine optimal sample sizes and decision criteria that maps posterior probabilities
to low-dimensional conduits for the data. Our method leverages this mapping and large-
sample theory to consider sampling distribution segments in a targeted manner. This
approach prompts consistent sample size recommendations with fewer simulation repeti-
tions than standard methods. We repurpose the posterior probabilities computed in that
approach to efficiently investigate various sample sizes and decision criteria using contour
plots.

Chapter 6 concludes this thesis and discusses extensions for future work.
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Chapter 2

Power Curves without Pivotal
Quantities

2.1 Preamble

This chapter illustrates an initial application of design with sampling distribution segments
in frequentist settings. Chapter 2 is the only chapter of this document that pertains to
frequentist analyses. The inclusion of this contribution in the thesis underscores that the
benefits of design with sampling distribution segments transcend paradigmatic differences
in the field of statistics. The main design scenario in this chapter relaxes the equal variance
assumption imposed on the equivalence test from Section 1.1.3 facilitated via Student’s t-
tests. Relaxing this assumption does not greatly complicate the analysis of observed data
with a single equivalence test, but this relaxation creates legitimate issues for standard
methods used to design such tests as detailed in this chapter. Throughout this chapter,
we also emphasize how the proposed approaches based on sampling distribution segments
can provide material benefit over standard methods for more complex designs. In terms of
notation, we emphasize that d̄ used in this chapter to denote the difference between two
sample means is not related to the simulation dimension. This simulation dimension is
generally referred to as d in this chapter instead of 2d as mentioned in Section 1.3.

While the Bayesian design methods proposed in the following chapters provide sample
size recommendations that are consistent, the frequentist design methods presented in this
chapter prompt unbiased sample size recommendations. This unbiasedness or consistency
is with respect to repeated implementation of our design methods for a given two-group
comparison using different pseudorandom or low-discrepancy sequences. Ideally, the ex-
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pectation of the sampling distribution of these sample size recommendations is the smallest
sample size that satisfies criteria for operating characteristics of a hypothesis test. When
that result holds true for all possible sample sizes, the sample size recommendation is un-
biased. The sample size recommendations are consistent if that result instead holds true
approximately for sufficiently large sample sizes. We are able to make the stronger claim
of unbiasedness for the methods in this chapter because no large-sample results are used
to generate sufficient statistics or compute test statistics.

2.2 Background

Statistical studies require a substantial investment of time, funding, and human capital.
It is important to ensure these resources are invested into well-designed studies that are
capable of achieving their intended objectives. These objectives often involve establishing
the presence or absence of meaningful effects in observational or experimental settings.
In traditional hypothesis tests and equivalence tests, the study power is respectively the
probability of correctly establishing the presence or absence of such effects (Chow and Liu,
2008). The study power generally increases with the sample size, and a power analysis is
typically used to find the minimum sample size that achieves the desired power for a study.

A power analysis considers the sampling distributions of a relevant test statistic un-
der two hypotheses: the null hypothesis H0 and alternative hypothesis H1. Under the
assumption that H0 is true, this sampling distribution is called the null distribution. For
most parametric frequentist hypothesis tests, the null distribution coincides with a known
statistical distribution that does not depend on the unknown model parameters. The null
distribution does not depend on these parameters because the test statistics can be con-
structed from pivotal quantities (Shao, 2003). In contrast, the sampling distribution of
the test statistic under H1 does depend on the magnitude of the effect size, expressed as
a function of the model parameters. Power is defined as a tail probability in the sampling
distribution under H1, where the threshold for this tail probability is called the critical
value. This tail probability is straightforward to compute via integration when the null
distribution is based on a pivotal quantity, but more complex methods must be used to
perform power analysis otherwise.

The null distribution is not based on pivotal quantities for many studies, particularly
those that leverage the Welch-Satterthwaite equation (Satterthwaite, 1946; Welch, 1947)
to approximate the degrees of freedom for linear combinations of independent sample
variances. This equation is applied to conduct hypothesis tests based on crossover designs
(Lui, 2016), several treatments (Jan and Shieh, 2020), and sequential testing (Tartakovsky
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et al., 2015). Additionally, the most common application of this equation is to compare
two normal population means with unequal population variances via Welch’s t-test (Welch,
1938): the default t-test in R. Even for this most basic use case, the null distribution is not
based on a pivotal quantity. The null distribution for Welch’s t-test approximately coincides
with the standard normal distribution for large sample sizes, but this approximation based
on asymptotic pivotal quantities is of limited utility since t-tests are most useful when the
sample sizes are small.

This chapter presents a general framework for power analysis without the use of piv-
otal quantities that is primarily illustrated via two-group equivalence tests with unequal
variances. We focus on this setting for three reasons. First, these tests commonly assess
average bioequivalence (Chow and Liu, 2008) of two pharmaceutical drugs. Average bioe-
quivalence compares the mean clinical responses for two treatments. Second, this setting
allows for clear visualization of our methodology. Third, existing methods for power anal-
ysis with these designs (see e.g., PASS (NCSS, LLC., 2023)) produce unreliable results as
demonstrated in this chapter. While this chapter emphasizes two-group equivalence tests
with unequal variances, we later illustrate the use of the proposed methods with crossover
designs. The methods are also generally applicable with noninferiority and one-sided hy-
pothesis tests. The methods proposed in this chapter (as well as several extensions) can
all be implemented using the dent package in R (Hagar and Stevens, 2024a).

Power analysis requires practitioners to choose anticipated effect sizes and variability
estimates based on previous studies (Chow et al., 2008). The recommended sample sizes
achieve desired statistical power when the selected response distributions, anticipated ef-
fect sizes, and variability estimates accurately characterize the underlying data generation
process. Empirical power analysis prompts more flexible methods for study design when
the null distribution is not based on pivotal quantities. However, simulation-based methods
for power analysis have computational drawbacks. Standard practice requires simulating
many samples of data to reliably approximate the sampling distribution needed to estimate
power for each sample size n considered. This standard practice of estimating entire sam-
pling distributions of test statistics is wasteful because study power is a tail probability in
the sampling distribution under H1 defined by a critical value. It would be more computa-
tionally efficient if we could accurately assess power for a sample size n by only exploring
a segment of the sampling distribution that is near the critical value. The methods for
power analysis proposed in this chapter adopt such an approach.

The remainder of this chapter is structured as follows. In Section 2.3, we present a
method to map sampling distributions of test statistics for two-group equivalence tests
with unequal variances to the unit cube. This mapping prompts unbiased power estimates
given a pseudorandom or low-discrepancy sequence dispersed throughout the unit cube.
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In Section 2.4, we propose a novel simulation-based method that combines the mapping
from Section 2.3 with root-finding algorithms to quickly facilitate power curve approxima-
tion. This approach is fast because for a given sample size, we only explore test statistics
corresponding to subspaces of the unit cube – and hence only consider a segment of the
sampling distribution. Even without estimating entire sampling distributions, this method
yields unbiased sample size recommendations. To illustrate the wide applicability of the
proposed methodology, we extend this approach for use with hypothesis tests based on
crossover designs in Section 2.5. Throughout the chapter, we also describe how the meth-
ods can be applied with more complex study designs. We provide concluding remarks and
a discussion of extensions to this work in Section 2.6.

2.3 Mapping the Sampling Distribution to the Unit

Cube

2.3.1 Three-Dimensional Simulation Repetitions

The results in this section are used to approximate power curves with segments of the
relevant sampling distributions in Section 2.4. In this section, we describe how to map the
sampling distribution of test statistics for two-group equivalence tests to [0, 1]d with low
dimension d. This mapping allows us to implement power analyses without necessitating
the high-dimensional simulation associated with repeatedly generating data. We consider
a context which prompts a three-dimensional simulation corresponding to the unit cube
for illustration. In particular, suppose we collect data yij, i = 1, ..., nj, j = 1, 2 from the
ith subject in group j. We assume for illustration that the data yj = {yij}

nj

i=1 for group
j = 1, 2 are generated independently from a N (µj, σ

2
j ) distribution where σ2

1 ̸= σ2
2. Here,

ηj = (µj, σ
2
j ) and θj = g(ηj) = µj. Interest lies in comparing θ1 and θ2 while accounting

for unequal variances.

Given interval endpoints δL and δU , we aim to conclude that θ1 − θ2 ∈ (δL, δU) by
rejecting the composite null hypothesis H0 : θ1 − θ2 ∈ (−∞, δL] ∪ [δU ,∞) in favour of
the alternative hypothesis H1 : θ1 − θ2 ∈ (δL, δU). The interval is often chosen such that
(δL, δU) = (−δ, δ) for some equivalence margin δ > 0 described in Section 1.1.3. However,
the methods in this section accommodate any real −∞ < δL < δU <∞. For such analyses,
Schuirmann (1981) and Dannenberg et al. (1994) respectively proposed two one-sided test
(TOST) procedures based on Student’s and Welch’s t-tests, with the Welch-based TOST
procedure performing better than the standard version in the presence of unequal variances
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(Gruman et al., 2007; Rusticus and Lovato, 2014). We henceforth refer to the Welch-based
TOST procedure as the TOST procedure.

The TOST procedure decomposes the interval null hypothesis H0 into two one-sided
hypotheses. These hypotheses are H0L : θ1 − θ2 ≤ δL vs. H1L : θ1 − θ2 > δL and
H0U : θ1 − θ2 ≥ δU vs. H1U : θ1 − θ2 < δU . To conclude θ1 − θ2 ∈ (δL, δU), both H0L

and H0U must be rejected at the nominal level of significance α. With Welch’s t-tests, we
therefore require that

tL =
(ȳ1 − ȳ2)− δL√
s21/n1 + s22/n2

≥ t1−α(ν) and tU =
δU − (ȳ1 − ȳ2)√
s21/n1 + s22/n2

≥ t1−α(ν),

where s2j is the sample variance for group j = 1, 2 and t1−α(ν) is the upper α-quantile of
the t-distribution with ν degrees of freedom. The degrees of freedom for both t-tests are

ν =

(
s21
n1

+
s22
n2

)2

×
(

s41
n2
1(n1 − 1)

+
s42

n2
2(n2 − 1)

)−1

. (2.1)

The sample variances s21 and s
2
2 are unknown at the design stage. Because ν is a function

of the sample variances, the null distribution of the test statistic is also unknown a priori
and therefore is not based on exact pivotal quantities. The critical value t1−α(ν) for the
test statistics tL and tU then depends on the to-be-observed data, which complicates an
analytical power analysis that uses integration. Jan and Shieh (2017) considered analytical
power analysis for the TOST procedure with unequal variances by expressing the test
statistics in terms of simpler normal, chi-square, and beta random variables. However,
the consistency of their power estimates depends on the numerical integration settings as
demonstrated in Appendix A.2.

We instead use simulation to obtain consistent power estimates. To compute the test
statistics tL and tU , we need only simulate three sample summary statistics: ȳ1 − ȳ2, s21,
and s22. When the data are indeed generated from the anticipated N (µj, σ

2
j ) distribu-

tions, these independent sample summary statistics are sufficient and can be expressed in
terms of known normal and chi-square distributions. Although each normal distribution
is comprised of d = 2 parameters, we can use three-dimensional (3D) simulation since ȳ1
and ȳ2 need not be generated separately. We generate these summary statistics using 3D
randomized Sobol’ sequences of length m: ur = (u1r, u2r, u3r) ∈ [0, 1]3 for r = 1, ...,m.
As detailed in Section 1.2.3, we can use fewer simulation repetitions m to obtain unbiased
power estimates with Sobol’ sequences in lieu of pseudorandom alternatives.

Algorithm 2.1 outlines our procedure for unbiased empirical power estimation at sample

28



sizes n1 and n2 using a Sobol’ sequence of length m and significance level α for each t-test.
For each of the m points from the 3D Sobol’ sequence, we obtain values for the summary
statistics ȳ1 − ȳ2, s21, and s22 using cumulative distribution function (CDF) inversion. We
let F (·; ν) and Φ−1(·) be the inverse CDFs of the χ2

(ν) and standard normal distributions,
respectively. Given these summary statistics, we determine whether the sample for a given
simulation repetition corresponds to the equivalence test’s rejection region. The proportion
of the m Sobol’ sequence points for which this occurs estimates the power of the test. The
test statistic for each t-test is comprised of two random components: (1) d̄ = ȳ1 − ȳ2 in
the numerator and (2) se =

√
s21/n1 + s22/n2 in the denominator. The rejection region

for the TOST procedure is a triangle in the (d̄, se)-space with vertices (δL, 0), (δU , 0),
and (0.5(δL + δU), 0.5(δU − δL)/t1−α(ν)). The procedure in Algorithm 2.1 along with this
rejection region is visualized in Figure 2.1.

Algorithm 2.1 Procedure to Compute Empirical Power

1: procedure EmpiricalPower(θ1 − θ2, σ1, σ2, δL, δU , α, n1, n2,m)
2: reject ← null
3: Generate a Sobol’ sequence of lengthm: ur = (u1r, u2r, u3r) ∈ [0, 1]3 for r = 1, ...,m.
4: for r in 1:m do
5: Let s2jr = (nj − 1)−1σ2

jF (ujr;nj − 1) for j = 1, 2

6: Let d̄r = (θ1 − θ2) + Φ−1(u3r)
√
σ2
1/n1 + σ2

2/n2

7: Use s21r and s
2
2r to compute ser and νr via (2.1)

8: reject[w] ← ifelse(t1−α(νr)ser < min{d̄r − δL, δU − d̄r}, 1, 0)

9: return mean(reject) as empirical power

More generally, sampling distributions for hypothesis tests can be mapped to the unit
hypercube [0, 1]d, where d is the number of sufficient statistics required to compute the
relevant test statistics. These mappings can also be implemented via CDF inversion with
conditional univariate distributions when the sufficient statistics are not mutually indepen-
dent. In Chapter 3, we will leverage maximum likelihood estimates when low-dimensional
sufficient statistics do not exist or are difficult to generate. Those methods rely on large-
sample results but could be applied in frequentist settings.

The simulation dimension d may be large if using these mappings to design sequential
tests with many interim analyses or facilitate extensive multi-group comparisons. If d ≥ 32,
we recommend verifying the performance of quasi-Monte Carlo methods with additional
simulation. High-dimensional low-discrepancy sequences may have poor low-dimensional
projections, which can lead to a deterioration in performance depending on the effective
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Figure 2.1: Left: Example point (0.785, 0.009, 0.694) ∈ [0, 1]3. Center: Mapping from this
point to sufficient statistics. Right: The rejection region for the TOST procedure.

dimension of the simulation (Lemieux, 2009). Pseudorandom sequences could instead be
used to implement such large-dimensional mappings.

For two-group equivalence tests, power analysis could be implemented by estimating
power via Algorithm 2.1 at various sample sizes until the desired study power of 1 − β
is achieved for some type II error rate β. However, that approach would be inefficient
since we would need to thoroughly explore [0, 1]3 – and hence consider the entire sampling
distribution – at each combination of sample sizes considered. Low-discrepancy sequences
already allow us to obtain precise power estimates using fewer points from [0, 1]3 than pseu-
dorandom sequences. We can further improve this efficiency by only exploring subspaces
of [0, 1]3 that help us estimate power. We develop a methodology for this in Section 2.4.
But first, we introduce an illustrative example that will be used to assess the performance
of our method for power curve approximation proposed later. We illustrate the use of
Algorithm 2.1 in this context.

2.3.2 Illustrative Example

This illustrative example is adapted from PASS 2023 documentation (NCSS, LLC., 2023).
PASS is a paid software solution that facilitates power analysis and sample size calculations
for two-group equivalence tests with unequal variances. The illustrative example seeks to
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Estimated Power
n PASS Algorithm 2.1 Näıve Simulation
3 0.1073 0.0414 (1.43× 10−4) 0.0414 (7.85× 10−4)
5 0.1778 0.1283 (1.70× 10−4) 0.1282 (1.27× 10−3)
8 0.4094 0.3801 (2.60× 10−4) 0.3800 (2.03× 10−3)
10 0.5527 0.5366 (2.68× 10−4) 0.5368 (2.03× 10−3)
15 0.7723 0.7699 (1.49× 10−4) 0.7700 (1.88× 10−3)
20 0.8810 0.8815 (1.65× 10−4) 0.8816 (1.39× 10−3)
30 0.9679 0.9687 (9.32× 10−5) 0.9688 (6.66× 10−4)
40 0.9924 0.9922 (5.28× 10−5) 0.9922 (3.24× 10−4)
50 0.9982 0.9982 (3.45× 10−5) 0.9982 (1.67× 10−4)
60 0.9996 0.9996 (2.10× 10−5) 0.9996 (7.22× 10−5)

Table 2.1: Power estimates presented in the PASS documentation along with the mean
of 100 empirical power estimates obtained via Algorithm 2.1 and simulating normal data
(Näıve Simulation). Standard deviations of the 100 empirical power estimates are given in
parentheses.

compare the impact of two drugs on diastolic blood pressure, measured in mmHg (millime-
ters of mercury). The mean diastolic blood pressure is known to be roughly θ2 = µ2 = 96
mmHg with the reference drug (j = 2), and it is hypothesized to be about θ1 = µ1 = 92
mmHg with the test drug (j = 1). Subject matter experts use past studies to hypothesize
within-group diastolic blood pressure standard deviations of σ1 = 18 mmHg and σ2 = 15
mmHg, respectively. The interval endpoints for the study are δU = 19.2 and δL = −δU
to comply with guidance from the United States Food and Drug Administration (FDA,
2006). The significance level for the test is α = 0.05.

The PASS documentation considers power for the illustrative example at n = n1 =
n2 = {3, 5, 8, 10, 15, 20, 30, 40, 50, 60}. For each sample size n, we estimated power 100
times using Algorithm 2.1 with randomized Sobol’ sequences of length m = 216 = 65536.
We also obtained 100 empirical power estimates for each sample size n by generating
m samples of size n from the N (µ1, σ

2
1) and N (µ2, σ

2
2) distributions and recording the

proportion of samples for which we concluded that θ1−θ2 ∈ (δL, δU). Table 2.1 summarizes
these numerical results and the power estimates presented in the PASS documentation.1

The two simulation-based approaches provide unbiased power estimates. However,
Table 2.1 shows that the power estimates obtained via Algorithm 2.1 are much more precise

1In recognition of their licensing agreement, PASS software was not used nor accessed to confirm these
power estimates.
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than those obtained via näıve simulation with pseudorandom sequences. Moreover, each
power estimate was obtained in roughly a quarter of a second when using Algorithm 2.1.
It took between 20 and 30 seconds to obtain each power estimate using näıve simulation.
This occurs because – regardless of the sample size n considered – Algorithm 2.1 reduces
the power calculation to a three-dimensional problem that can be efficiently vectorized.
We must use for loops to estimate power when directly generating the higher-dimensional
data y1 and y2. Moreover, the power estimates presented in the PASS documentation do
not coincide with those returned via simulation for sample sizes less than 15, suggesting
that it is valuable to develop more accurate methods for power analysis when the null
distribution is not based on pivotal quantities.

2.4 Power Curve Approximation with Sampling Dis-

tribution Segments

2.4.1 An Efficient Approach to Power Analysis

In this section, we leverage the mapping between the unit cube and the test statistics pre-
sented in Section 2.3 to facilitate power curve approximation while exploring only segments
of the sampling distribution. For given sample sizes n1 and n2, we previously mapped each
Sobol’ sequence point ur (r = 1, ...,m) to a mean difference, standard error, and degrees
of freedom for its test statistic: d̄r, ser, and νr. To compute empirical power in Algorithm
2.1, we fixed the sample sizes n1 and n2 and allowed the Sobol’ sequence point to vary. We
now specify a constant q > 0 such that n = n1 = qn2 to allow for imbalanced sample sizes.
When approximating the power curve, we fix the Sobol’ sequence point ur and let the
sample size n vary. We introduce the notation d̄(n,q)

r , se(n,q)
r , and ν(n,q)

r to make this clear.
For fixed q and r, these quantities are only functions of the sample size n. As n → ∞,
d̄(n,q)
r , se(n,q)

r , and ν(n,q)
r approach θ1 − θ2, 0, and ∞, respectively.

We consider the behaviour of these functions when H1 is true, i.e., when θ1 − θ2 ∈
(δL, δU). The upper vertex of the triangular rejection region for the TOST procedure is(
0.5(δL+ δU), 0.5(δU − δL)/t1−α(ν

(n,q)
r )

)
. First, ν(n,q)

r almost always increases for fixed r and
q as n increases. Thus as n → ∞, the vertical coordinate of this rejection region vertex
increases to 0.5(δU − δL)/Φ−1(1− α), and the remaining two vertices do not change. The
rejection region then defines a threshold for the standard error se(n,q)

r : Λ(n,q)
r = min{d̄(n,q)

r −
δL, δU − d̄(n,q)

r }/t1−α(ν
(n,q)
r ). We conclude θ1 − θ2 ∈ (δL, δU) if and only if se(n,q)

r does not
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exceed this threshold. For fixed r and q, this threshold is also a function of n:

Λ(n,q)
r :=



(θ1 − θ2)− δL
t1−α(ν

(n,q)
r )

+
Φ−1(u3r)

√
σ2
1 + σ2

2/q√
nt1−α(ν

(n,q)
r )

if δL < d̄(n,q)
r ≤ 0.5(δL + δU)

δU − (θ1 − θ2)
t1−α(ν

(n,q)
r )

− Φ−1(u3r)
√
σ2
1 + σ2

2/q√
nt1−α(ν

(n,q)
r )

if 0.5(δL + δU) < d̄(n,q)
r < δU

0 otherwise.

(2.2)

We suppose that a given point ur yields se(n,q)
r ≤ Λ(n,q)

r , which corresponds to the
rejection region of the TOST procedure. In Section 2.4.2, we discuss why se(n+1,q)

r ≤ Λ(n+1,q)
r

generally also holds true for the same point ur. In light of this, our method to approximate
the power curve generates a single Sobol’ sequence of length m. We use root-finding
algorithms (Brent, 1973) to find the smallest value of n such that se(n,q)

r ≤ Λ(n,q)
r for each

point r = 1, ...,m. We then use the empirical CDF of these m sample sizes to approximate
the power curve as described in Algorithm 2.2.

Algorithm 2.2 Procedure for Power Curve Approximation

1: procedure PowerCurve(θ1 − θ2, σ1, σ2, δL, δU , α, β, q, m)
2: sampSobol ← null
3: for r in 1:m do
4: Generate Sobol’ sequence point ur

5: Let sampSobol[r] solve se(n,q)
r − Λ(n,q)

r = 0 in terms of n

6: Let n∗ be the (1− β)-quantile of sampSobol
7: for r in 1:m do
8: if sampSobol[r] ≤ n∗ then
9: if se(n∗,q)

r > Λ(n∗,q)
r then

10: Repeat Line 5, initializing the root-finding algorithm at n∗

11: else
12: if se(n∗,q)

r ≤ Λ(n∗,q)
r then

13: Repeat Line 5, initializing the root-finding algorithm at n∗

14: powerCurve← empirical CDF of sampSobol
15: Let n∗ be the (1− β)-quantile of sampSobol
16: return powerCurve, n1 = ⌈n∗⌉ and n2 = ⌈qn∗⌉ as the recommended sample sizes

We now elaborate on several of the steps in Algorithm 2.2. Lines 2 to 6 describe
a process that would yield an unbiased power curve and sample size recommendation if
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se(n,q)
r = Λ(n,q)

r were guaranteed to have a unique solution in terms of n for fixed r and q.
However, se(n,q)

r and Λ(n,q)
r may infrequently intersect more than once. Given the reasoning

in Section 2.4.2 and the numerical studies in Appendix A.1, these multiple intersections
do not occur frequently enough to deter us from using root-finding algorithms to explore
sample sizes. With root-finding algorithms, we explore only subspaces of [0, 1]3 for each
sample size investigated since different values of n are considered for each point ur in Line
4. Root-finding algorithms therefore give rise to computational efficiency as the entire
sampling distribution is not estimated when exploring sample sizes n. In particular, the
root-finding algorithm computes test statistics corresponding to O(log2B) points from
[0, 1]3, where B is the maximum sample size considered for the power curve. We would
require O(B) such points to explore a similar range of sample sizes using power estimates
from Algorithm 2.1. When B ≥ 59, this approach reduces the number of test statistics
we must estimate by at least an order of magnitude because O(log2B) < O(B)/10. Using
low-discrepancy sequences instead of pseudorandom ones further reduces the number of
test statistics we must estimate as demonstrated in Section 2.4.3.

If we skipped Lines 7 to 14 of Algorithm 2.2, the unbiasedness of the sample size rec-
ommendation in Line 16 is not guaranteed due to the potential for multiple intersections
between se(n,q)

r and Λ(n,q)
r . To ensure our sample size recommendations are unbiased de-

spite using subspaces of [0, 1]3 to consider sample sizes, we estimate the entire sampling
distribution of test statistics at the sample size n = n∗ in Lines 7 to 13. If the statements
in Lines 9 or 12 are true, this implies that se(n,q)

r = Λ(n,q)
r for at least two distinct sample

sizes n. For these points ur, we can reinitialize the root-finding algorithm at n∗ to obtain
a solution for each point that will make the power curve unbiased at n∗. The resulting
sample size recommendation under repeated implementation of Algorithm 2.2 is therefore
also unbiased.

Our numerical studies in Section 2.4.3 show that the if statements in Lines 9 and 12 are
very rarely true for any point ur ∈ [0, 1]3. In those situations, n∗ = n∗ and both the power
estimate at n∗ and the sample size recommendations ⌈n∗⌉ and ⌈qn∗⌉ are unbiased. It is
incredibly unlikely that n∗ and n

∗ would differ substantially, but Lines 7 to 13 of Algorithm
2.2 could be repeated in that event, where the root-finding algorithm is initialized at n∗

instead of n∗. Even when se(n,q)
r and Λ(n,q)

r intersect more than once, the power curves from
Algorithm 2.2 are unbiased near the target power 1− β, but their global unbiasedness at
all sample sizes n is not strictly guaranteed. Nevertheless, our numerical studies in Section
2.4.3 highlight good global estimation of the power curve.

The methods we leveraged to select subspaces of [0, 1]3 for two-group equivalence tests
are tailored to the functions se(n,q)

r and Λ(n,q)
r . However, these methods rely more generally

on the weak law of large numbers since most sufficient statistics are based on sample means.
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Upon mapping the unit hypercube [0, 1]d to sufficient statistics, the behaviour of the test
statistics as a function of the sample size n can generally be studied to develop analogues
to Algorithm 2.2 for other tests and designs. Root-finding algorithms are generally useful
when the rejection region is convex. Rejection regions for the TOST procedure in Figure
2.1, other equivalence tests, and one-sided hypothesis tests are typically convex, whereas
hypothesis tests with point null hypotheses often have non-convex rejection regions.

2.4.2 Justification for Using Root-Finding Algorithms

Here, we discuss why using root-finding algorithms to approximate the power curve yields
suitable results – even though se(n,q)

r and Λ(n,q)
r can (although infrequently) intersect more

than once. The threshold Λ(n,q)
r approaches Λ∗ = min{(θ1 − θ2) − δL, δU − (θ1 − θ2)}/

Φ−1(1− α) > 0 as n increases. The standard error se(n,q)
r generally decreases as n → ∞,

but it is not necessarily a strictly decreasing function of n. We first consider the case where
se(n,q)

r does strictly decrease as n increases. For small sample sizes, Λ(n,q)
r is typically an

increasing function of n due to the decrease in t1−α(ν
(n,q)
r ). Every other Sobol’ sequence

point ur is such that sign(u3r−0.5) = sign((θ1−θ2)−0.5(δL+δU)). In this case, Λ(n,q)
r is also

an increasing function of n for large sample sizes. This occurs because d̄(n,q)
r is never closer

than θ1− θ2 to the horizontal center of the rejection region at d̄ = 0.5(δL+ δU). Therefore,
the increasing Λ(n,q)

r and decreasing se(n,q)
r typically intersect once. If sign(u3r − 0.5) ̸=

sign((θ1−θ2)−0.5(δL+δU)), then Λ(n,q)
r is a decreasing function of n for large sample sizes.

This occurs because d̄(n,q)
r approaches θ1 − θ2 from the horizontal center of the rejection

region. However, Λ(n,q)
r decreases to a nonzero constant Λ∗, while se(n,q)

r decreases to 0 as
n→∞. Again, the functions Λ(n,q)

r and se(n,q)
r typically intersect only once.

We next consider the case where se(n,q)
r is not a strictly decreasing function of n. Line

5 of Algorithm 2.1 prompts the first line of (2.3):

se(n,q)
r =

1√
n

[
σ2
1

n− 1
F (u1r;n− 1) +

σ2
2

q(qn− 1)
F (u2r; qn− 1)

]1/2
(2.3)

≈ 1√
2n

[
σ2
1

n− 1

(
Φ−1(u1r) +

√
2(n− 1)

)2
+

σ2
2

q(qn− 1)

(
Φ−1(u2r) +

√
2(qn− 1)

)2]1/2
.

Because quantiles from the chi-squared distribution do not have closed forms, the second
line of (2.3) leverages the approximation from Fisher (1934) for illustrative purposes. When
Φ−1(u1r) ∈ (−

√
2(n− 1) ± 1) or Φ−1(u2r) ∈ (−

√
2(qn− 1) ± 1), the square function

respectively makes the (Φ−1(u1r)+
√

2(n− 1))2 or (Φ−1(u2r)+
√
2(qn− 1))2 term in (2.3)
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smaller. As n increases in those situations, the relative increase in the squared terms
may offset the decreasing impact of the terms in the denominators of (2.3). However, this
increasing trend cannot persist as se(n,q)

r is O
(
n−1/2

)
and Pr(Φ−1(u1r) ∈ (−

√
2(n− 1) ±

1)) and Pr(Φ−1(u2r) ∈ (−
√
2(qn− 1) ± 1)) both approach 0 as n → ∞. We show via

simulation in Appendix A.1 that this increasing trend is rare for n > 5. For n ≤ 5, Λ(n,q)
r

is generally also an increasing function of n as mentioned in Section 2.4.1.

If Λ(n,q)
r is a decreasing function of n, it follows from (2.2) that d̄(n,q)

r = 0.5(δL + δU)
when

n =
(Φ−1(u3r))

2(σ2
1 + σ2

2/q)

(0.5(δL + δU)− (θ1 − θ2))2
. (2.4)

The threshold Λ(n,q)
r should therefore not be decreasing for sample sizes smaller than n

given in (2.4). By (2.3), se(n,q)
r approximates n− 1

2

√
σ2
1 + σ2

2/q for large sample sizes n. It
follows by (2.2) that

Λ(n,q)
r ≈ Λ∗ +

|Φ−1(u3r)|
Φ−1(1− α)

se(n,q)
r , (2.5)

when sign(u3r − 0.5) ̸= sign((θ1 − θ2)− 0.5(δL + δU)) for large n. We note that Λ(n,q)
r and

se(n,q)
r may intersect for a value of n that is smaller than the one given in (2.4). If se(n,q)

r

is instead larger than Λ(n,q)
r over the entire range of n values for which Λ(n,q)

r increases,
then (2.5) suggests that Λ(n,q)

r and se(n,q)
r are likely to intersect only once when Λ(n,q)

r is
decreasing. The functions se(n,q)

r and Λ(n,q)
r therefore typically have one intersection for all

cases discussed here, but we illustrate an occurrence of multiple intersections below.

To do so, we reconsider the illustrative example from Section 2.3.2 with q = 1. In
Figure 2.2, we show that se(n,q)

r and Λ(n,q)
r intersect more than once for the Sobol’ se-

quence point ur = (u1r, u2r, u3r) = (0.184, 0.231, 0.449). We note that both Φ−1(0.184) ∈
(−
√

2(n− 1) ± 1) and Φ−1(0.231) ∈ (−
√

2(n− 1) ± 1) when n = 2; se(n,q)
r is therefore

small for n = 2 and increases until n = 4 before decreasing to 0. This trend is evident
in the right plot of Figure 2.2, which displays the functions for sample sizes n between 2
and 10. This plot shows that se(n,q)

r and Λ(n,q)
r intersect twice: once between n = 2 and

3 and again between n = 3 and 4. This means that for this point ur, d̄
(n,q)
w , se(n,q)

r , and
ν(n,q)
r correspond to the rejection region of the TOST procedure for n = 2 and n ≥ 4, but
not for n = 3. The scenario visualized in Figure 2.2 arose from using a Sobol’ sequence of
length m = 1024. Of these 1024 Sobol’ sequence points, there was only one other point
where se(n,q)

r and Λ(n,q)
r intersected more than once. The intersections for this other point

were also between n = 2 and 3 and between n = 3 and 4.
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Figure 2.2: Visualization of Λ(n,q)
r and se(n,q)

r as functions of n for the illustrative example
with ur = (0.184, 0.231, 0.449) and q = 1. Left: Sample sizes 2 to 100. Right: Sample sizes
2 to 10.

2.4.3 Numerical Study with the Illustrative Example

We now consider the illustrative example from Section 2.3.2 to illustrate the reliable per-
formance of our efficient method for power curve approximation. For this example, we
approximated the power curve 1000 times with q = 1 (i.e., n = n1 = n2). Each of the 1000
power curves were approximated using Algorithm 2.2 with a target power of 1 − β = 0.8
and a Sobol’ sequence of length m = 210 = 1024. We recommend using shorter Sobol’
sequences when approximating the power curve than when computing empirical power for
a specific (n1, n2) combination (m = 65536 was used in Section 2.3.2). Whereas all com-
putations in Algorithm 2.1 can be vectorized, we must use a for loop to implement the
root-finding algorithm for each Sobol’ sequence point.

Although not incorporated into Algorithm 2.2, the number of points in {ur}mr=1 could
be chosen to satisfy a criterion for the precision of a confidence interval for power or
n∗, the sample size recommendation prior to rounding or reimplementing the root-finding
algorithm. In that case, we would require M i.i.d. copies of shorter Sobol’ sequences
with length M0 such that M ×M0 = m. Each i.i.d. copy of the Sobol’ sequence would
prompt an independently obtained estimate for power or n∗. These estimates could be
used to construct a confidence interval for the relevant unknown quantity (Lemieux, 2009).
Since Sobol’ sequences can be augmented with additional points (Sobol’, 1967), we could
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incrementally increaseM0 for each shorter Sobol’ sequence until the confidence interval for
power or n∗ is precise enough. The approach proposed in this paragraph would be roughly
as computationally efficient as Algorithm 2.2 if the Sobol’ sequences were augmented prior
to obtaining the confirmatory power estimates in Lines 7 to 13 of Algorithm 2.2. However,
using one longer Sobol’ sequence of length m typically yields greater variance reduction
than using m points from M i.i.d. shorter Sobol’ sequences.

We compare the 1000 generated power curves to the unbiased power estimates from
Algorithm 2.1 in Table 2.1. The left plot of Figure 2.3 demonstrates that Algorithm
2.2 yields suitable global power curve approximation when comparing its results to these
power estimates. Each power curve was approximated without estimating the entire sam-
pling distribution for all sample sizes n1 and n2 explored as emphasized in Section 2.4.4.
To further investigate the performance of Algorithm 2.2, we repeated the process from
the previous paragraph to estimate 1000 power curves for the illustrative example with
1 − β = {0.2, 0.3, . . . , 0.7, 0.9}. In total, we approximated 8000 power curves for this ex-
ample. Using the root-finding algorithm to explore the sample size space did not lead to
performance issues. We did not need to reinitialize the root-finding algorithm in Lines 7
to 13 of Algorithm 2.2 for any of the 8.192×106 points used to generate these 8000 curves.
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Figure 2.3: Left: 1000 power curves estimated for the illustrative example (grey) and
the power estimates obtained via Algorithm 2.1 (red). Right: Endpoints of the centered
95% confidence intervals for power obtained with Sobol’ (m = 1024) and pseudorandom
(PRNG) sequences (m = 1024, 104).
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The suitable performance of Algorithm 2.2 is corroborated by more extensive numerical
studies detailed in Appendix A.1.

To assess the impact of using Sobol’ sequences with Algorithm 2.2, we approximated
1000 power curves for the illustrative example using root-finding algorithms with 1−β = 0.8
and sequences from a pseudorandom number generator. We then used the 1000 power
curves corresponding to each sequence type (Sobol’ and pseudorandom) to estimate power
for the sample sizes considered in Section 2.3.2: n = {3, 5, 8, 10, 15, 20, 30, 40, 50, 60}. For
each sample size and sequence type, we obtained a 95% confidence interval for power using
the percentile bootstrap method (Efron, 1982). We then created centered confidence inter-
vals by subtracting the power estimates produced by Algorithm 2.1 from each confidence
interval endpoint. The right plot of Figure 2.3 depicts these results for the 10 sample sizes
n and two sequence types considered. Figure 2.3 illustrates that the Sobol’ sequence gives
rise to much more precise power estimates than pseudorandom sequences – particularly
when power is not near 0 or 1. We repeated this process to generate 1000 power curves
via Algorithm 2.2 with pseudorandom sequences of length m = 104. The power estimates
obtained using Sobol’ sequences with length m = 1024 are roughly as precise as those
obtained with pseudorandom sequences of length m = 104. Using Sobol’ sequences there-
fore allows us to estimate power with the same precision using approximately an order of
magnitude fewer points from [0, 1]3. Each power curve for this example with m = 1024
took just under one second to approximate. It would take roughly 10 times as long to
approximate the power curve with the same precision using pseudorandom points in lieu
of Sobol’ sequences.

2.4.4 Exploring Subspaces of the Unit Cube

We next demonstrate how segments of the sampling distribution are considered by explor-
ing only subspaces of the unit cube [0, 1]3 for most sample sizes considered. The left plot
of Figure 2.4 decomposes the results of the root-finding algorithm for one approximated
power curve from Section 2.4.3 with 1 − β = 0.8 for the illustrative example. Even when
the root-finding algorithm is initialized at the same sample size for all {ur}mr=1, different
n are considered for each point ur when determining the solution to se(n,q)

r = Λ(n,q)
r . The

value of n is noninteger in most iterations of the root-finding algorithm, and the colours
in the left plot of Figure 2.4 indicate which points from the unit cube were considered for
various ranges of n. For instance, the purple points were such that their test statistics cor-
responded to the rejection region for the smallest possible sample size of n = 2. Moreover,
only the blue points in [0, 1]3 were used to estimate test statistics for at least one sample
size n ∈ (2, 8) when exploring values of n via the root-finding procedure.
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Figure 2.4: Left: Visualization of which points in [0, 1]3 were used to explore at least one n
value in the various sample size ranges via the root-finding algorithm. Right: Violin plots
for segments of the sampling distribution of p-values when n = 8. The dotted vertical line
is at α = 0.05.

The points that were used to explore the smallest sample sizes generally have moderate
u3r values and smaller u1r and u2r values. The mean difference d̄(n,q)

r is therefore small
in absolute value and the sample variances for groups 1 and 2 are small, which implies
that the numerators of the test statistics tL and tU are large and their denominators are
small. The points used to explore larger sample sizes generally have more extreme u3r
values, so d̄(n,q)

r may not substantially differ from one of δL or δU for small sample sizes.
While the pattern in the left plot of Figure 2.4 depends on the inputs for Algorithm 2.2,
the root-finding algorithm correctly identifies and prioritizes subspaces of [0, 1]3 such that
se(n,q)

r ≈ Λ(n,q)
r for a given sample size n with an arbitrary design. Our methods can be

extended to more complex designs, but it is difficult to visualize the prioritized subspaces
of the unit hypercube when the simulation dimension d is greater than 3.

The right plot of Figure 2.4 visualizes segments from the sampling distribution of p-
values for n = n1 = n2 = 8 conditional on the categorizations from the left plot. For the
TOST procedure, the p-value is the maximum of the p-values corresponding to tL and tU .
This p-value does not exceed the significance level α if and only if se(n,q)

r ≤ Λ(n,q)
r . This plot

demonstrates why it is wasteful to use the purple points to consider n ≈ 8 because those
points satisfy se(n,q)

r ≤ Λ(n,q)
r for n = 2. It follows from Section 2.4.2 that se(n,q)

r ≤ Λ(n,q)
r

40



generally holds true for n ≈ 8 with those points, and the corresponding p-values are hence
smaller than α = 0.05. By similar logic, it is wasteful to consider the red points for n ≈ 8
since the p-values for those points will be much larger than α. Although these coloured
categorizations are not used in Algorithm 2.2, they illustrate the targeted nature of how
we consider sample sizes n with segments of the relevant sampling distributions.

2.5 Efficient Power Analysis for Crossover Designs

The method for power curve approximation in Algorithm 2.2 was tailored to a standard
parallel study with unequal variances. However, the underlying ideas generalize to other
study designs. In particular, we overview here how to extend Algorithm 2.2 for use with
crossover designs. Power analysis for crossover designs is of particular interest because
regulatory agencies often recommend using them to conclude average bioequivalence (FDA,
2006). In crossover designs, each subject receives a different clinical treatment during
different study periods (Chow and Liu, 2008). This is advantageous in that inter-subject
variability is removed from between-treatment comparisons. We describe how to use our
design methods based on sampling distribution segments with two-sequence, two-period
(2× 2) crossover designs in Appendix A.3.

For the 2× 2 crossover design, we also highlight discrepancies (of up to 33%) between
the sample sizes recommended by the power curves from Algorithm 2.2 and those endorsed
in popular textbooks on bioequivalence study design (Chow and Liu, 2008). These dis-
crepancies further motivate the need for our design methods. The implementation of such
extensions for these and other crossover designs is supported in the dent package developed
in conjunction with this chapter. Furthermore, our method for power analysis is flexible
and could readily accommodate additional designs not discussed in this chapter.

2.6 Discussion

In this chapter, we developed a framework for power analysis when null distributions cannot
be expressed in terms of exact pivotal quantities. This framework maps the unit hyper-
cube [0, 1]d to sufficient statistics and leverages this mapping to estimate power curves
using segments of sampling distributions. Using segments of sampling distributions im-
proves the scalability of our simulation-based design procedures without compromising
the unbiasedness of the sample size recommendations. Our framework is illustrated with
three-dimensional simulation for two-group equivalence tests with unequal variances, but
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we described how to apply our methods more generally throughout the chapter and now
elaborate on several additional extensions.

Future work could apply the framework proposed in this chapter to compare more than
two groups. In that case, the simulation dimension d would need to be increased, and
the multiple comparisons problem would need to be considered. We could also apply this
framework to efficiently design sequential analyses that allow for early termination of the
study. In sequential settings, we would likely need to define analogues to se(n,q)

r and Λ(n,q)
r

for each interim analysis and synthesize the results for each point ur. However, it is not
trivial to create a mapping between points in [0, 1]d and sufficient statistics that maintain
the desired level of dependence between interim analyses for arbitrary sample sizes. We
elaborate on this extension in Section 6.2.1.

Finally, we could explore how this framework might be applied to quickly and reliably
recommend sample sizes for nonparametric testing methods. The exact null distributions
for those tests are not based on pivotal quantities, and it is not possible to generate
sufficient statistics in nonparametric settings. Sample size determination for these studies
typically utilizes näıve simulation. In nonparametric settings, we may be able to map
the unit hypercube [0, 1]d to insufficient statistics, such as sample totals, and use low-
discrepancy sequences to improve the scalability and precision of empirical power analysis.
This extension is discussed in Section 6.2.2.
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Chapter 3

Power Curves for Posterior Analyses

3.1 Preamble

This chapter extends design with sampling distribution segments to Bayesian settings.
The approaches used to analyze data via interval hypothesis tests in this chapter are fully
Bayesian. However, the design framework proposed in Chapter 3 is predominantly based
on choices that are commonplace in frequentist design. For instance, the methods in this
chapter assume that data are generated from statistical models with fixed parameter values
for the purposes of sample size determination. Practitioners who design frequentist studies
should already be accustomed to choosing these fixed parameter values. The methods from
this chapter therefore provide an accessible point of entry for users who are designing their
first Bayesian studies.

Since we impose restrictions on the data generation process in this chapter, we empha-
size the broad applicability of our methods with posterior analyses facilitated via posterior
probabilities, Bayes factors, and credible intervals. As discussed in this chapter, the sample
size recommendations prompted by these methods are consistent – not unbiased. These
recommendations are consistent in that they are suitable when normal approximations to
the relevant posteriors and sampling distributions of the maximum likelihood estimator
are appropriate. This lack of unbiasedness is a consequence of considering more complex
design settings, where it is more difficult or even impossible to generate low-dimensional
sufficient statistics.

The methods proposed in this chapter will be extended later to accommodate more
flexible data generation processes using content from Chapters 4 and 5. Moreover, the
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approaches in Chapter 3 do not formally consider Bayesian analogues to type I error.
Those analogues will also be incorporated into Chapter 5. This chapter of the thesis is also
the one that emphasizes the intricacies of ratio-based comparisons in most detail.

3.2 Background

Power-based approaches to Bayesian sample size determination aim for pre-experimental
probabilistic control over testing procedures for a characteristic of interest θ. For two-group
comparisons, θ = h(θ1, θ2) for some function h(·). This chapter considers h(θ1, θ2) = θ1−θ2
and h(θ1, θ2) = θ1/θ2. The case where θ = log(θ1)−log(θ2) can be viewed as a generalization
of h(θ1, θ2) = θ1 − θ2. In pre-experimental settings, the data have not been observed and
are random variables. Data from a random sample are represented by Y (n) , consisting of
observations {yi1}ni=1 from group 1 and observations {yi2}ni=1 from group 2. Imbalanced
sample size determination in Bayesian settings will be considered in Chapter 5.

A design prior pD(η) (De Santis, 2007; Berry et al., 2011; Gubbiotti and De Santis,
2011) models uncertainty regarding the model parameters η = (η1,η2) from each group in
pre-experimental settings. Following the convention from Chapter 1, the characteristic of
interest θj for group j is specified as a function g(·) of the model parameters: θj = g(ηj) for
j = 1, 2. Since the (informative) design prior is concentrated on θ values that are relevant
to the objective of the study, it is usually different from the analysis prior used to analyze
the observed data. The analysis prior is specified for the model parameters ηj as detailed
in Section 1.1.4. The design prior gives rise to the prior predictive distribution of Y (n) :

p(y(n)) =

∫ n∏
i=1

f(yi1;η1)
n∏

i=1

f(yi2;η2)pD(η)dη,

where f(y;ηj) is the model for group j = 1, 2. The relevant power criteria defined for the
Bayesian inferential methods are considered when the data are generated from this prior
predictive distribution.

Gubbiotti and De Santis (2011) defined two methodologies for choosing the sampling
distribution of Y (n) : the conditional and predictive approaches. The conditional approach
fixes design values η1,0 and η2,0 for the model parameters. The power criteria are then
based on the probability density or mass functions f(y;η1,0) and f(y;η2,0). The conditional
approach is typically used in frequentist sample size calculations. The predictive approach
uses a (nondegenerate) design prior pD(η), which is arguably more consistent with the
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Bayesian framework. However, this chapter discusses advantages to using the conditional
approach that may outweigh its weaknesses for certain practitioners.

Bayesian methods for power analysis have been proposed in a variety of contexts (Berry
et al., 2011; Gubbiotti and De Santis, 2011; Brutti et al., 2014). We describe here how to
control power when analyses are carried out via the methods described in Section 1.1.4.
In these contexts, one aims to select a sample size n to ensure the probability of correctly
concluding that H1 : θ ∈ (δL, δU) is true is at least 1−β for some target power 1−β ∈ (0, 1).
For hypothesis tests with posterior probabilities, the selected sample size ensures that

E [I{Pr(H1 |Y (n)) ≥ γ}] ≥ 1− β, (3.1)

for some critical value γ ∈ [0.5, 1). When Y (n) ∼ p(y(n)), pD(H1) provides an upper bound
for the attainable target power. Power analyses for hypothesis tests with Bayes factors are
related. It follows from (1.6) that the NOH Bayes factor exceeds K if and only if

Pr(H1 | y(n)) >
K × Pr(H1)

1− (K − 1)× Pr(H1)
. (3.2)

The power criterion for NOH Bayes factors with threshold K ≥ 1 is therefore a special
case of (3.1) when the critical value γ equals the right side of (3.2).

For hypothesis tests with credible intervals, the quantity in (3.1) is replaced with

E [I{Lθ,1−α(Y (n)) > δL ∩ Uθ,1−α(Y (n)) < δU}] ≥ 1− β, (3.3)

where the endpoints of the credible interval are henceforth denoted Lθ,1−α(Y (n)) and
Uθ,1−α(Y (n)) to emphasize their dependence on the data. If the posterior credible interval
is equal tailed, the power criterion in (3.3) simplifies to

E [I{Pr(θ < δL|Y (n)) < α/2 ∩ Pr(θ > δU |Y (n)) < α/2}] ≥ 1− β. (3.4)

When 1 − α = γ, (3.3) and (3.4) impose stricter criteria than (3.1). At least 100 × γ%
of the posterior for θ must lie within the interval (δL, δU) for (Lθ,1−α(Y (n)), Uθ,1−α(Y (n)))
to also be contained in this interval. The plot of the quantity in (3.1), (3.3), or (3.4) as a
function of the sample size n is called the power curve.

Minimum sample sizes that satisfy power criteria can be found analytically in certain
situations where conjugate priors are used (see e.g., Spiegelhalter et al. (1994); Gubbiotti
and De Santis (2011)). However, to support more flexible study design, sample sizes that
satisfy power criteria can be found using simulation. Most simulation-based procedures
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for power analysis with design priors follow a similar process (Wang and Gelfand, 2002).
First, a sample size n is selected. Second, a value η∗ is drawn from the design prior pD(η).
Third, data y(n)

∗ are generated according to the model f(y;η∗). Fourth, the posterior of θ
given y(n)

∗ is approximated to compute Pr(H1 |y(n)
∗ ). This process is repeated many times

to estimate a sampling distribution of posterior probabilities, which is used to determine
whether the power criterion is satisfied with probability 1− β for the selected sample size
n.

These simulation-based approaches can be very computationally intensive as many
posteriors must be approximated to estimate the sampling distribution for each sample
size n considered. Wang and Gelfand (2002) recommended using bisection methods or
grid searches to streamline the exploration of sample sizes. Yet even when such methods
circumvent the need for practitioners to choose which sample sizes n to explore, time is still
wasted considering sample sizes that are excessively large or much too small to satisfy the
power criterion. This computational inefficiency is compounded over all combinations of
the design inputs that practitioners wish to consider when designing Bayesian hypothesis
tests – including the critical value γ, interval (δL, δU), target power 1− β, and design and
analysis priors. A fast framework for power curve approximation with posterior analyses
based on sampling distribution segments would mitigate this issue and expedite study
design.

The remainder of this chapter is structured as follows. We describe a food expenditure
example involving the comparison of gamma tail probabilities in Section 3.3. This example
is referenced throughout the chapter to motivate the proposed methods. In Section 3.4,
we propose a method to map the sampling distribution of posterior probabilities to low-
dimensional hypercubes under the conditional approach. We also prove that the resulting
approximation to the sampling distribution gives rise to consistent power estimates under
certain conditions. In Section 3.5, we exploit this mapping to quickly approximate power
curves with low-discrepancy sequences. This approach is fast because for a given sample
size, we consider only a segment of the approximate sampling distribution of posterior
probabilities. Even without estimating entire sampling distributions, this method prompts
consistent sample size recommendations. In Section 3.6, we conduct numerical studies to
explore the performance of our power curve approximation method in several settings. We
conclude with a discussion of extensions to this work in Section 3.7.
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3.3 Motivating Example with the Gamma Model

Mexico’s National Institute of Statistics and Geography conducts a biennial survey to
monitor household income and expenses along with sociodemographic characteristics. We
refer to this survey by its Spanish acronym ENIGH. In the ENIGH 2020 survey (INEGI,
2021), each surveyed household was assigned a socioeconomic class: lower, lower-middle,
upper-middle, and upper. We use data from the lower-middle income households (the most
populous class) in the Mexican state of Aguascalientes. We split the households into two
groups based on the sex of the household’s main provider. Each household has a weighting
factor used to include its observation between one and four times in our data set. The
datum yij collected for each household i = 1, ..., nj, j = 1, 2 is its quarterly expenditure on
food per person measured in thousands of Mexican pesos (MXN $1000). We exclude the
0.41% of households that report no quarterly food expenditure to accommodate the gamma
model’s positive support. This respectively yields n1 = 759 and n2 = 1959 observations
in the female (j = 1) and male (j = 2) provider groups that are visualized in Figure 3.1.
We collectively refer to these data as y1 = {yi1}n1

i=1 and y2 = {yi2}n2
i=1 instead of y(n) since

n1 ̸= n2.

Here, we compare tail probabilities for each distribution such that θj = Pr(yij > κ),
where κ is a scalar value from the support of distribution j = 1, 2. The threshold of κ = 4.82
for this example is the median quarterly food expenditure per person (in MXN $1000) for
upper income households in Aguascalientes after accounting for weighting factors. Thus,
we use the ratio θ1/θ2 to compare the probabilities that lower-middle income households
with female and male providers spend at least as much on food per person as the typical
upper income household. The observed proportions of households that spend at least
$4820 MXN on food per person are θ̂1 = 0.175 and θ̂2 = 0.186. We assign uninformative
GAMMA(2, 0.25) priors to both the shape αj and rate λj parameters of the gamma model
for group j = 1, 2. The gamma distribution is particularly well suited for design with
sampling distribution segments because it is a popular statistical model that does not
have a readily available conjugate prior. We let ηj = (αj, λj) for j = 1, 2. We obtain
105 posterior draws for η1 and η2 using MCMC methods, which yields draws from the
posterior of θ1/θ2. The gamma distributions characterized by the posterior means for η1

and η2 are superimposed on the histograms in Figure 3.1.

For illustration, we demonstrate two comparisons with posterior probabilities using a
critical value of γ = 0.8. Figure 3.1 indicates that Pr(θ1/θ2 ∈ (1,∞) | y1,y2) = 0.5429.
Because 0.5429 < 0.8, we do not have convincing evidence that households with female
providers are at least as likely to spend ≥ $4820 MXN on food per person as those with
male providers. We now suppose that a 10% relative increase or decrease in the gamma

47



0.0

0.1

0.2

0.3

0 5 10 15 20 

Food Expenditure per Person (MXN $1000)

n1 = 759, Tail Probability (θ̂1) = 0.175

D
en

si
ty

Female Household Provider 

0

2

4

6

0.8 1.0 1.2

 Posterior pdf of  θ1 ÷ θ2

 

Pr( θ1 > θ2 | y 1, y 2) = 0.5429

0.0

0.1

0.2

0.3

0 5 10 15 20 

Food Expenditure per Person (MXN $1000)

n2 = 1959, Tail Probability (θ̂2) = 0.186

D
en

si
ty

Male Household Provider 

0

2

4

6

0.8 1.0 1.2

 Posterior pdf of  θ1 ÷ θ2

 

Pr( 1.1−1 < θ1 ÷ θ2 < 1.1 | y 1, y 2) = 0.8349

Figure 3.1: Group-specific summaries for quarterly food expenditure per person. Left:
Food expenditure distributions. Right: Visualizations of the posterior probabilities.

tail probability is not of practical importance. Figure 3.1 also illustrates that Pr(θ1/θ2 ∈
(1.1−1, 1.1) | y1,y2) = 0.8349 > 0.8. Thus, households with female providers are practically
as likely to spend ≥ $4820 MXN on food per person as those with male providers.
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3.4 Sampling Distributions of Posterior Probabilities

3.4.1 Analytical Approximations to the Posterior

Traditional approaches to power curve approximation for posterior analyses require that
we estimate the sampling distribution of posterior probabilities for various sample sizes n.
These approaches are slow because we wastefully estimate entire sampling distributions
for sample sizes that are much too large or small when searching for a suitable sample size
n. To map posterior probabilities to low-dimensional hypercubes and explore segments of
sampling distributions, we leverage normal approximations to the posterior of θ based on
limiting results. In this subsection, we overview several analytical posterior approximation
methods and conditions that must hold for these approximations to be suitable.

The first normal approximation to the posterior that we consider follows from the
Bernstein-von Mises (BvM) theorem (van der Vaart, 1998). We now describe how our
framework for power curve approximation satisfies the conditions for the BvM theorem.
Our framework assumes that data {yi1}ni=1 and {yi2}ni=1 are to be collected independently,
where the data generation process for group j is characterized by the model f(y;ηj,0)
parameterized by ηj ∈ Rd. Here, η1,0 and η2,0 are (fixed) user-specified design values
for the distributional parameter(s). These distributions are herein referred to as design
distributions. The design values ηj,0 are different from the random variables ηj that
parameterize the model for groups j = 1, 2 in Bayesian settings. When specifying the
models f(y;ηj,0), we also specify fixed values θj,0 for the random variables θj: θj,0 = g(ηj,0).
We require that g(ηj) is differentiable at ηj = ηj,0 for j = 1, 2. A fixed value for the
univariate characteristic θ0 = h(θ1,0, θ2,0) is also specified, where h(θ1, θ2) is a differentiable
function at θ1 = θ1,0 and θ2 = θ2,0. These derivatives of g(·) and h(·) must be nonzero.

The four assumptions that must be satisfied to invoke the BvM theorem (van der
Vaart, 1998) are detailed in Appendix B.1.1. The first three assumptions involve the
models f(y;η1,0) and f(y;η2,0); they are weaker than the regularity conditions for the
asymptotic normality of the maximum likelihood estimator (MLE) (Lehmann and Casella,
1998), which are listed in Appendix B.1.2. The final assumption for the BvM theorem
regards prior specification for the random variables. For our purposes, η1 and η2 are the
random variables for which we explicitly or implicitly assign prior distributions. We require
that the prior distribution of ηj be continuous in a neighbourhood of ηj,0 with positive
density at ηj,0 for j = 1, 2. This condition ensures that the posterior of θ converges to a
neighbourhood of θ0 = h(g(η1,0), g(η2,0)). This convergence is required for our method for
power curve approximation introduced in Section 3.5.
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Under the conditions for the BvM theorem, the posterior of θ converges to the
N (θ0, I(θ0)−1/n) distribution in the limit of infinite data (van der Vaart, 1998), where
I(θ0) is the Fisher information for θ evaluated at θ0. In practice, θ0 is estimated from
the to-be-observed data Y (n) using the MLE θ̂n or the posterior mode θ̃n. In the limiting
case, it does not matter which estimator for θ is used because both θ̂n and θ̃n converge in
probability to θ0 when the conditions for the BvM theorem are satisfied. We use the MLE
instead of the posterior mode for reasons discussed in Section 3.4.2. We therefore consider
the following normal distribution based on the BvM theorem as one option to approximate
the posterior of θ:

N

(
h(g(η̂1,n), g(η̂2,n)),

1

n

2∑
j=1

[
∂h

∂θj

]2
θj=g(η̂j,n)

[
∂g

∂η

T

I(η)−1 ∂g

∂η

]
η=η̂j,n

)
. (3.5)

To find I(η)−1, we find the limiting distributions for
√
n(η̂j,n − ηj,0), j = 1, 2. The

multivariate delta method prompts the distribution in (3.5) since θ̂n = h(g(η̂1,n), g(η̂2,n))

is a function of the MLEs η̂1,n and η̂2,n. We note that the variance in (3.5) is I−1(θ̂n)/n.
While it does not account for the priors, the approximation in (3.5) is useful because it
prompts theoretical results about the limiting behaviour of the sampling distribution of
posterior probabilities in Section 3.4.4.

We also consider the Laplace approximation to the posterior of θ that does account for
the priors. This is useful when the sample size n is large enough to ensure the posterior
is approximately normal but not large enough to guarantee the relevant priors have no
substantial impact on the posterior mean and variance. For groups j = 1 and 2, the
Laplace approximation is based on the Taylor series expansion of log(pj(ηj |data)) centered
at the posterior mode η̃j,n = argmaxηj

pj(ηj |data) (Gelman et al., 2020). We henceforth
consider the posteriors of ηj, θj, and θ conditional on the general vector or matrix data
instead of conditioning on y(n) , y1, or y2. We make this change in notation because our
methods generate conduits for the data y(n) as detailed in Section 3.4.2. This choice allows
us to consider posterior probabilities prompted by conduits for the data and those produced
by generating samples y(n) using unified notation.

The multivariate delta method and the Laplace approximation prompt the following
normal approximation to the posterior of θ that accounts for the priors p1(η1) and p2(η2):

N

(
h(g(η̃1,n), g(η̃2,n)),

2∑
j=1

[
∂h

∂θj

]2
θj=g(η̃j,n)

[
∂g

∂η

T

Jj(η)
−1 ∂g

∂η

]
η=η̃j,n

)
, (3.6)
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where Jj(η) = −
∂2

∂η2
log(pj(η|data)).

We generally recommend using Laplace approximations with our framework for power
curve approximation, but the approximation in (3.6) is computationally burdensome and
suboptimal in certain situations as explained in Section 3.4.3.

3.4.2 Mapping Posteriors to Low-Dimensional Hypercubes

We next propose methods to map posteriors to low-dimensional hypercubes when using
normal approximations to the posterior that do not and do account for the priors in this
subsection and Section 3.4.3, respectively. The methods presented in the remainder of this
section allow us to consider sampling distribution segments in Section 3.5. To generate
samples of size n from each design distribution f(y;η1,0) and f(y;η2,0), one typically uses
a pseudorandom sequence u1,u2, ...,um ∈ [0, 1]2n with length m. However, the approx-
imation in (3.5) does not directly use the observations from the generated sample y(n) .
Instead, y(n) is used to compute maximum likelihood estimates η̂1,n and η̂2,n, which yield

θ̂n = h(g(η̂1,n), g(η̂2,n)). As such, we do not need to simulate data Y (n) from the prior
predictive distribution for a given sample size n. We instead recommend simulating from
the approximate distributions for the MLEs of η1 and η2. This reduces the dimension of
the simulation from 2n to 2d (since d << n).

For sufficiently large n, the MLEs η̂j,n for groups j = 1, 2 approximately and inde-
pendently follow N (ηj,0, I−1(ηj,0)/n) distributions. The MLE – and not the posterior
mode – is used with the approximation in (3.5) because we can easily simulate from its
limiting distribution. Both η̂1,n and η̂2,n have dimension d, so their joint limiting distri-
bution has dimension 2d. When using pseudorandom number generation, we now require
a sequence u1,u2, ...,um ∈ [0, 1]2d. Algorithm 3.1 details how we map a single point
u = (u1, u2, ..., u2d) ∈ [0, 1]2d to the posterior approximation based on the BvM theorem in
(3.5), where η̂(k)

j,n and η(k)

j,0 denote the kth component of these vectors.

In practice, we may require fewer observations for the sampling distributions of the
MLEs to be approximately normal if we consider some transformation of ηj. For the gamma
model, both parameters in ηj = (αj, λj) must be positive, but the N (ηj,0, I−1(ηj,0)/n)
distribution could admit nonpositive values for small n. To obtain a sample of positive
η̂1,n and η̂2,n values for any sample size n with the gamma model, we exponentiate a sample
of approximately normal MLEs of log(η1) and log(η2). For an arbitrary model, appropriate
transformations could similarly be applied to any parameters in ηj that do not have support
on R. Similarly, the posterior of a monotonic transformation of θ may need to be considered
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Algorithm 3.1 Mapping Posteriors to [0, 1]2d with the BvM Theorem

1: procedure MapBvM(f(y;η1,0), f(y;η2,0), g(·), h(·), n, u)
2: for j in 1:2 do
3: for k in 1:d do
4: Generate η̂j,n(u)(k) as the u(j−1)d+k-quantile of the conditional normal CDF

of η̂j,n(u)(k) | {η̂j,n(u)(l)}k−1
l=0 where η̂j,n(u) ∼ N (ηj,0, I(ηj,0)

−1/n).

5: Use η̂1,n(u), η̂2,n(u), and the partial derivatives of g(·) and h(·) to obtain (3.5).

for the normal approximation in (3.5) to be suitable for moderate n. For instance, the
posterior of log(θ1) − log(θ2) may be better approximated by a normal distribution than
that of θ1/θ2. Rather than introduce new notation for these untransformed and transformed
variables, we assume that η1, η2, and θ are specified to improve the quality of the relevant
normal approximations in (3.5) and (3.6). Because priors are typically specified for η1 and
η2 before making such transformations, relevant Jacobians must be considered when using
normal approximations to the posterior that account for the prior distributions.

3.4.3 Mapping Posteriors with Prior Information

The method for mapping posteriors to [0, 1]2d proposed in Section 3.4.2 does not account
for the prior distributions. The Laplace approximation to the posterior of θ in (3.6) that
accounts for the priors requires an observed sample y(n) – not just the maximum likelihood
estimates η̂1,n and η̂2,n. In this subsection, we present two methods for posterior mapping
that account for the priors. The first method is ideal when the design distributions belong
to the exponential family (Lehmann and Casella, 1998), whereas the second method allows
for more flexibility when specifying the models f(y;η1,0) and f(y;η2,0).

When the design distributions belong to the exponential family, the relevant probability
mass or density function takes the form

f(y;ηj) = exp

[
d∑

s=1

Cs(ηj)Ts(y)− A(ηj) +B(y)

]
,

where A(ηj), B(y), Cs(ηj), and Ts(y) are known functions for s = 1, ..., d. For group j,
Tj†(y(n)) = (

∑n
i=1 T1(yij), ...,

∑n
i=1 Td(yij)) are called sufficient statistics that provide as

much information about the parameter ηj as the entire sample. The first derivative of the
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log-likelihood with respect to the kth component of ηj is then

∂

∂η(k)

j

l(ηj;y
(n)) = −n ∂

∂η(k)

j

A(ηj) +
d∑

s=1

∂

∂η(k)

j

Cs(ηj)
n∑

i=1

Ts(yij). (3.7)

At the maximum likelihood estimate η̂j,n for an observed sample y(n) , all d partial deriva-
tives in (3.7) equal 0. A d-parameter model in the exponential family has d nonredundant
sufficient statistics, so all components of Tj†(y(n)) can be recovered by substituting the
maximum likelihood estimate η̂j,n into the system of linear equations in (3.7). Algorithm
3.2 details how we map a single point u ∈ [0, 1]2d to the posterior approximation in (3.6)
based on Laplace’s method. For models f(y;η1,0) and f(y;η2,0) in the exponential family,
we emphasize that pj(ηj|data) = pj(ηj|Tj†(y(n))) for j = 1, 2.

Algorithm 3.2 Mapping Posteriors to [0, 1]2d with Laplace’s Method

1: procedure MapLaplace(f(y;η1,0), f(y;η2,0), g(·), h(·), n, u, p1(η1), p2(η2))
2: Generate η̂1,n(u) and η̂2,n(u) using Lines 2 to 4 of Algorithm 3.1.
3: for j in 1:2 do
4: Equate the system of equations in (3.7) to 0 with ηj = η̂j,n(u) to solve for

Tj†(y(n)).
5: Use Tj†(y(n)) to obtain the posterior mode η̃j,n via optimization.

6: Use η̃1,n(u), η̃2,n(u), T1†(y(n)), and T2†(y(n)) along with the partial derivatives
of g(·) and h(·) to obtain (3.6).

We note that Algorithm 3.2 may not provide a serviceable approach when the design
distributions are not members of the exponential family. For instance, this method could
not be applied if a Weibull model were chosen for the motivating example in Section 3.3
in lieu of the gamma distribution. When the shape parameter of the Weibull distribution
is unknown, its minimal sufficient statistic consists of the entire sample: {yij}ni=1 for j =
1, 2. We therefore develop a hybrid approach to posterior mapping that accounts for the
priors when low-dimensional sufficient statistics cannot be recovered from the maximum
likelihood estimates η̂1,n and η̂2,n.

This hybrid approach leverages the following result, which holds true when ηj ≈ η̂j,n

for sufficiently large n:

log(pj(ηj|y(n))) ≈ l(η̂j,n; y
(n))− n

2
(ηj − η̂j,n)

TI(η̂j,n)(ηj − η̂j,n) + log(pj(ηj)). (3.8)

This result follows from the second-order Taylor approximation to the log-posterior of
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ηj around η̂j,n, where the observed information is replaced with the (expected) Fisher
information. The approximation to the log-likelihood function does not have a first-order
term because the score function is 0 at η̂j,n. We note that although the first term on the
right side of (3.8) depends on the data y(n) , it is a constant. An approximation to the
posterior mode is the value that maximizes the right side of (3.8): η∗

j,n. We consider the
following normal approximation to the posterior of θ:

N

(
h(g(η∗

1,n), g(η
∗
2,n)),

2∑
j=1

[
∂h

∂θj

]2
θj=g(η∗

j,n)

[
∂g

∂η

T

J ∗
j (η)

−1 ∂g

∂η

]
η=η∗

j,n

)
, (3.9)

where J ∗
j (η) = nI(η)− ∂2

∂η2
log(pj(η)).

The observed information is again replaced with the Fisher information in J ∗
j (η) of (3.9)

since we do not generate samples y(n) . Algorithm 3.3 details how we map a single point
u ∈ [0, 1]2d to the posterior approximation in (3.9).

Algorithm 3.3 Mapping Posteriors to [0, 1]2d with a Hybrid Method

1: procedure MapHybrid(f(y;η1,0), f(y;η2,0), g(·), h(·), n, u, p1(η1), p2(η2))
2: Generate η̂1,n(u) and η̂2,n(u) using Lines 2 to 4 of Algorithm 3.1.
3: for j in 1:2 do
4: Obtain η∗

j,n as argmaxηj
of the right side of (3.8) anchored at ηj,n = η̂j,n(u).

5: Use η∗
1,n, η

∗
2,n, and the partial derivatives of g(·) and h(·) to obtain (3.9).

3.4.4 Theoretical Properties of the Power Estimates

Now that we have developed three algorithms to reduce the simulation dimension in a
variety of settings, we consider the theoretical properties of the resulting power estimates.
We introduce general notation to define power estimates for the simulation method ζ,
where ζ is Algorithm 3.1, 3.2, or 3.3. We let N (θ(n)

r , τ (n)
r ) denote the relevant normal

approximation to the posterior of θ corresponding to the point ur ∈ [0, 1]2d and sample
size n for r = 1, ...,m. This approximation is respectively (3.5) for Algorithm 3.1, (3.6)
for Algorithm 3.2, and (3.9) for Algorithm 3.3. We incorporate the sample size n into this
notation because the mean θ(n)

r depends on the sample size of the joint limiting distribution
for η̂1,n and η̂2,n. The variance τ (n)

r is also an explicit function of n in (3.5) and (3.9) and
an implicit function of the sample size in (3.6).
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The estimate for the posterior probability Pr(θ < δ | data) is then

pδn,ur,ζ = Φ

(
δ − θ(n)

r√
τ (n)
r

)
, (3.10)

where Φ(·) is the the CDF of the standard normal distribution. The estimates from (3.10)
can be used to determine whether the criterion inside the indicator function from (3.1) or
(3.4) is satisfied for a particular posterior approximation N (θ(n)

r , τ (n)
r ). For a given sample

size n, the proportion of the m approximate posteriors corresponding to u1, ...,um for
which the relevant criterion is satisfied estimates power. Because the limiting posterior of
θ is normal when the conditions for the BvM theorem hold, power for hypothesis testing
with HDIs defined in (3.3) should be approximated by power defined in (3.4) for sufficiently
large n.

No matter which of our three algorithms are used, the accuracy of these power estimates
depends on the quality of the approximation to the sampling distribution of posterior prob-
abilities. If data Y (n) are generated from the design distributions and the assumptions for
the BvM theorem hold true, the normal approximations to the posterior of θ given in (3.5)
and (3.6) are well established. Theorem 3.1 compares the sampling distributions of poste-
rior probabilities induced by (3.5) and (3.6) with data Y (n) to the sampling distribution
prompted by Algorithm 3.1 with pseudorandom sequences as n→∞.

Theorem 3.1. Let f(y;η1,0) and f(y;η2,0) satisfy the regularity conditions from Appendix
B.1.2. Let the prior pj(ηj) be continuous in a neighbourhood of ηj,0 with positive density
at ηj,0 for j = 1, 2. Let g(η) and h(θ1, θ2) be respectively differentiable at ηj,0 and θj,0 =

g(ηj,0) for j = 1, 2 with nonzero derivatives. Let U
i.i.d.∼ U([0, 1]2d) and Y (n) be generated

independently from f(y;η1,0) and f(y;η2,0). Let Pδ
n,Π,ζ denote the sampling distribution

of posterior probabilities for Pr(θ < δ | data) given sample size n produced using input Π
with method ζ. Let ∥Q1 − Q2∥TV be the total variation distance between two probability
measures Q1 and Q2. Then,

(a) ∥Pδ
n,Y (n) ,(3.5)

− Pδ
n,U ,Alg.3.1∥TV

P−→ 0.

(b) ∥Pδ
n,Y (n) ,(3.6)

− Pδ
n,U ,Alg.3.1∥TV

P−→ 0.

The proof of Theorem 3.1 is given in Appendix B.1.3. While the approximations in
(3.6) and (3.9) should better account for the prior distributions for moderate sample sizes
n, they do not differ from the approximation in (3.5) in the limit of infinite data. Likewise,
∥Pδ

n,U ,Alg.3.2−Pδ
n,U ,Alg.3.1∥TV and ∥Pδ

n,U ,Alg.3.3−Pδ
n,U ,Alg.3.1∥TV will converge to 0 as n→∞
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under the conditions for Theorem 3.1. This result is straightforward because η̃j,n − η̂j,n

and η∗
j,n − η̂j,n converge in probability to 0, and Jj(η̃j,n)/n and J ∗

j (η
∗
j,n)/n converge in

probability to I(ηj,0) given results from Appendix B.1.3. These results prompt Corollary
3.1, which follows from Theorem 3.1.

Corollary 3.1. Let pδn,ur,ζ
from (3.10) be the estimate for Pr(θ < δ | data) corresponding

to sample size n, method ζ, and point ur ∈ [0, 1]2d. Under the conditions for Theorem 3.1,
power in (3.1) and (3.4) is consistently estimated by

1

m

m∑
r=1

I{pδUn,ur,ζ
− pδLn,ur,ζ

≥ γ} and
1

m

m∑
r=1

I{pδLn,ur,ζ
< α/2 ∩ 1− pδUn,ur,ζ

< α/2},

respectively, when ζ is Algorithm 3.1, 3.2, or 3.3 and U r
i.i.d.∼ U([0, 1]2d) for r = 1, ...,m as

n→∞.

Corollary 3.1 ensures that our three algorithms give rise to consistent power estimates
as n→∞; however, it does not guarantee that these estimators are unbiased for finite n.
When the assumptions for Theorem 3.1 are satisfied, our power estimates are suitable for
sufficiently large n. To optimize the performance of these design methods for moderate n,
one should consider transformations of θ or certain components in η1 and η2 to improve
the normal approximations to the relevant posterior and MLE distributions.

3.5 Fast Power Curve Approximation for Posterior

Analyses

3.5.1 Power Estimates with Fewer Posteriors

This section details how we leverage the mappings between posterior probabilities and
[0, 1]2d to expedite power curve approximation for posterior analyses. The novelty of this
computational efficiency stems from using sampling distribution segments to approximate
the power curve, and our approach for power curve approximation described in Algorithm
3.4 is the main contribution of this chapter. Before introducing that approach, we justify
why low-discrepancy sequences can be used instead of pseudorandom ones to reduce the
number of posteriors required for precise power estimates.

In Section 1.2.3, we explained that each point in an appropriately randomized low-
discrepancy sequence is such that U r ∼ U

(
[0, 1]2d

)
for r = 1, ...,m. We use randomized
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Sobol’ sequences (Sobol’, 1967) to estimate power in this chapter. Based on the discussion
in Section 1.2.3, randomized Sobol’ sequences prompt consistent estimators for power:

E

(
1

m

m∑
r=1

Ψ(U r)

)
=

∫
[0,1]2d

Ψ(u)du, (3.11)

where either indicator function in Corollary 3.1 is the relevant function Ψ(·). Corollary 3.2
formalizes this result.

Corollary 3.2. Under the conditions for Theorem 3.1, using a randomized low-discrepancy

sequence U 1, ...,Um in lieu of a sequence U r
i.i.d.∼ U([0, 1]2d) for r = 1, ...,m does not impact

the consistency of the power estimates from Corollary 3.1 as n→∞.

Due to the negative dependence between the points, the variance of the estimator
in (3.11) is typically reduced by using low-discrepancy sequences. By (1.8), randomized
Sobol’ sequences reduce the number of posteriors for θ that we must approximate to obtain
precise, consistent power estimates. We leveraged similar results in Chapter 2 to reduce
the number of simulation repetitions required for frequentist power estimation. Corollary
3.2 will be applied later to ensure the consistency of our sample size recommendations
based on segments of approximate sampling distributions of posterior probabilities.

3.5.2 Selection of Sampling Distribution Segments

For a given sample size n, we could obtain power estimates using the formulas in Corollary
3.1 with randomized Sobol’ sequences. Sample size determination could be conducted by
repeating this process for various values of n until a suitable sample size is found. However,
such a process would waste computational resources thoroughly exploring sampling distri-
butions for unsuitable sample sizes in order to obtain an appropriate one. We note that
the (θ1, θ2)-space such that θ = h(θ1, θ2) ∈ (δL, δU) is convex when θ = θ1−θ2 or θ = θ1/θ2.
If we appeal to this convexity, we argue that consistent power estimates for a given sample
size n can often be obtained with only a subset of the points ur ∈ [0, 1]2d, r = 1, ...,m. By
using only a subset of points to explore most sample sizes, we consider only segments of
the relevant sampling distributions.

In each of our algorithms, the approximately normal posterior N (θ(n)
r , τ (n)

r ) and corre-
sponding posterior probabilities pδn,ur,ζ

depend on the design distributions, the sample size
n, and the Sobol’ sequence point ur, r = 1, ...,m. We have previously fixed the sample
size n and allowed the point ur ∈ [0, 1]2d to vary when estimating power. We now fix the
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point ur and let the sample size n vary. When the point ur and design distributions are
fixed, pδn,ur,ζ

is a deterministic function of n. Lemma 3.1 motivates our approach to choose

subsets of points ur ∈ [0, 1]2d for each sample size n explored.

Lemma 3.1. Let the conditions for Theorem 3.1 be satisfied. For a given point ur =
(u1, ..., u2d) ∈ [0, 1]2d, we have that Algorithms 3.1, 3.2, and 3.3 prompt

(a) η̂1,n(ur)(k) = η(k)

1,0 +
ωk(u1, ..., uk)√

n
and η̂2,n(ur)(k) = η(k)

2,0 +
ωd+k(ud+1, ..., ud+k)√

n
for

k = 1, ..., d, where ωk(·) and ωd+k(·) are functions that do not depend on n.

(b) h(g(η̂1,n(ur)), g(η̂2,n(ur))) ≈ h(g(η1,0), g(η2,0)) +
ω†(u1, ..., u2d)√

n
for sufficiently large

n, where ω†(·) is a function that does not depend on n.

(c) pδn,ur,ζ
≈ Φ (a(δ, θ0)

√
n+ b(ur)) for sufficiently large n, where θ0 is the design value

for θ and a(·) and b(·) are functions that do not depend on n.

(d) When θ0 ∈ (δL, δU), p
δU
n,ur,ζ

− pδLn,ur,ζ
is a increasing function of n for sufficiently large

sample sizes.

We prove Lemma 3.1 in Appendix B.2 and now consider its implications on the posterior
probability of interest pδUnA,ur,ζ

−pδLnA,ur,ζ
when θ0 ∈ (δL, δU) for a given point ur. If p

δU
nA,ur,ζ

−
pδLnA,ur,ζ

≥ γ, then pδUnB ,ur,ζ
− pδLnB ,ur,ζ

≥ γ for sufficiently large nA < nB. The (θ1, θ2)-space
such that θ = h(θ1, θ2) ∈ (δL, δU) is convex, which limits the potential for decreasing
behaviour of pδUn,ur,ζ

−pδLn,ur,ζ
as a function of n for small and moderate sample sizes. In light

of this, our method to approximate the power curve generates a single Sobol’ sequence of
length m. For hypothesis tests with posterior probabilities, we use root finding algorithms
(Brent, 1973) to find the value for n such that pδUn,ur,ζ

− pδLn,ur,ζ
−γ = 0 for r = 1, ...,m. The

empirical CDF of these m sample sizes approximates the power curve. As demonstrated
in Section 3.5.3, this root-finding approach facilitates targeted exploration of [0, 1]2d based
on the sample size n. Since the posterior probabilities in Corollary 3.1 are mapped to
ur ∈ [0, 1]2d, this approach also allows us to consider segments of the approximate sampling
distribution of posterior probabilities.

3.5.3 Power Curves with Sampling Distribution Segments

Algorithm 3.4 formally describes our method for power curve approximation with sampling
distribution segments for analyses facilitated via posterior probabilities and Bayes factors.
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We later discuss the necessary modifications for analyses with credible intervals. To imple-
ment this approach, we must choose a parametric statistical model f(y;η), functions g(·)
and h(·), priors p1(η1) and p2(η2), and design values η1,0 and η2,0. We recommend using
visualization techniques to choose the design values, and the literature on prior elicitation
could be of use when specifying the design distributions (Chaloner, 1996; Garthwaite et al.,
2005; Johnson et al., 2010). We must also select an interval (δL, δU), a critical value γ,
a target power 1 − β, a method ζ consisting of one of the three algorithms proposed in
Section 3.4, and the length of the Sobol’ sequence m. We use m = 1024 to balance the
computational efficiency and precision of the approximation to the power curve.

Algorithm 3.4 Procedure for Power Curve Approximation with Posterior Probabilities

1: procedure PowerCurve(f(y;η1,0), f(y;η2,0), g(·), h(·), pj(ηj), (δL, δU), γ, β, ζ, m)

2: Let n0 equate the left side of (3.1) to 1− β when p(θ | data) ≈ N (θ̂n, I(θ0)−1/n)
3: sampSobol ← null
4: for r in 1:m do
5: Generate Sobol’ sequence point ur

6: Let sampSobol[r] solve pδUn,ur,ζ
− pδLn,ur,ζ

− γ = 0 in terms of n, initializing
the root-finding algorithm at ⌈n0⌉

7: powerCurve← empirical CDF of sampSobol
8: Let n∗ be the (1− β)-quantile of sampSobol
9: for r in 1:m do
10: if sampSobol[r] ≤ n∗ then
11: if pδUn∗,ur,ζ

− pδLn∗,ur,ζ
− γ < 0 then

12: Repeat Line 6, initializing the root-finding algorithm at n∗

13: else
14: if pδUn∗,ur,ζ

− pδLn∗,ur,ζ
− γ ≥ 0 then

15: Repeat Line 6, initializing the root-finding algorithm at n∗

16: powerCurveFinal← empirical CDF of sampSobol
17: Let n∗ be the (1− β)-quantile of sampSobol
18: return powerCurveFinal, ⌈n∗⌉ as recommended sample size

Line 2 of Algorithm 3.4 uses the normal approximation in (3.5) with known variance to
obtain a starting point n0 for the root-finding algorithm. We can obtain this starting point
in a fraction of a second under the assumption that θ̂n ∼ N (θ0, I(θ0)−1/n), and it should
be close to the final sample size recommendation if uninformative priors are used. Since
the root-finding algorithm is initialized at ⌈n0⌉ for all points ur, r = 1, ...,m, the entire
sampling distribution of posterior probabilities is explored for that sample size. In Lines
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4 to 6, the root-finding algorithm then facilitates targeted exploration of the approximate
distribution of posterior probabilities for all other sample sizes considered. We complete
the power curve approximation procedure by exploring the entire sampling distribution of
posterior probabilities at the sample size n∗ in Lines 9 to 15. If the statements in Lines
11 or 14 are true, this implies that pδUn,ur,ζ

− pδLn,ur,ζ
= γ for at least two distinct sample

sizes n. For these points ur, we can reinitialize the root-finding algorithm at n∗ to obtain
a solution for each point that will make the power curve consistent at n∗. This consistency
is a direct consequence of Corollary 3.2.

In Section 3.6, we conduct numerical studies to demonstrate the suitability of the power
curves obtained by Algorithm 3.4 in various settings. These numerical results show that the
if statements in Lines 11 and 14 are very rarely true for any point ur ∈ [0, 1]2d when sample
sizes are large enough for the BvM theorem to hold. In those situations, n∗ = n∗ and both
the power estimate at n∗ and the sample size recommendation ⌈n∗⌉ are consistent. It is
incredibly unlikely that n∗ and n

∗ would differ substantially, but Lines 9 to 15 of Algorithm
3.4 could be repeated in that event, where the root-finding algorithm is initialized at n∗

instead of n∗.

These consistent sample size recommendations are not guaranteed to be unbiased since
the normal approximation to the relevant posterior and MLE distributions may introduce
noticeable bias for finite n. To efficiently verify the suitability of the sample size recom-
mendation, we could simulate various samples of size ⌈n∗⌉. These samples could be used
to compare (i) the empirical sampling distributions of η̂1,n and η̂2,n with their normal ap-
proximations and (ii) the posterior of θ with its normal approximation. Even though the
power curves from Algorithm 3.4 are consistent near the target power 1 − β, their global
consistency at all sample sizes n is not guaranteed because part (b) of Lemma 3.1 and
the BvM theorem are large-sample results. Nevertheless, our numerical studies in Section
3.6 highlight good global estimation of the power curve, particularly when the posterior
approximation method ζ accounts for the priors.

We discuss how to generalize Algorithm 3.4 for analyses with credible intervals below.
If one of δL or δU is not finite, Algorithm 3.4 can be used without modification where
γ = 1 − α. Otherwise, the initial value for the root-finding algorithm n0 found in Line 3
is based on (3.4) instead of (3.1). In Line 6, sampSobol[r] is modified to be the maximum
of the two solutions for 1− pδLn,ur,ζ

− (1− α/2) = 0 and pδUn,ur,ζ
− (1− α/2) = 0. We lastly

modify how the sampling distribution of posterior probabilities at the sample size n∗ is
explored. To do so, we confirm that both 1− pδLn∗,ur,ζ

− (1− α/2) and pδUn∗,ur,ζ
− (1− α/2)

are not less than or at least 0 in Lines 11 and 14, respectively. Effectively, power curve
approximation with equal-tailed credible intervals requires us to consider two hypothesis
tests with posterior probabilities and intervals (δL,∞) and (−∞, δU).
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The root-finding algorithm from Lines 4 to 6 of Algorithm 3.4 approximates posteriors
corresponding to O(log2B) points from [0, 1]2d, where B is the maximum sample size con-
sidered for the power curve. We would require O(B) such points to explore a similar range
of sample sizes by thoroughly exploring sampling distributions via Corollary 3.1 with ran-
domized Sobol’ sequences. When B ≥ 59, our approach prompts at least an order of mag-
nitude reduction in the number of posterior approximations because O(log2B) < O(B)/10.
Moreover, using randomized Sobol’ sequences in lieu of pseudorandom ones has generally
allowed us to estimate power curves with similar precision using about an order of mag-
nitude fewer points from [0, 1]2d. We visualize the insights from this paragraph using a
simpler example than the four-dimensional one with gamma tail probabilities in Section
3.5.4.

3.5.4 Visualization of Computational Efficiency

The motivating example with gamma tail probabilities from Section 3.3 has dimension of
2d = 4 since we consider the posteriors of ηj = (αj, λj) for j = 1, 2. Here, we consider a
two-dimensional example involving the comparison of Bernoulli proportions that is easier
to visualize. Even though this model has a conjugate prior, it is considered for illustrative
purposes. We let θj be the Bernoulli success probability for model j = 1, 2. For this exam-
ple, we let ηj = log(θj)− log(1−θj) to improve the quality of the normal approximations to
the posterior for ηj and the sampling distribution of its MLE. This simple transformation
is based on the canonical form of the standard Bernoulli model (Lehmann and Casella,
1998).

We compare the Bernoulli probabilities via their difference: θ1 − θ2. Because θ1 − θ2 ∈
(−1, 1), we similarly consider the posterior distribution of log(θ1− θ2+1)− log(1− θ1+ θ2)
to improve the quality of the normal approximations for moderate n. The selected trans-
formation for θ is a straightforward generalization of the transformation applied to each ηj
parameter. An alternative monotonic transformation could have been chosen to minimize
the Kullback-Leibler divergence (Gelman et al., 2020) for the normal approximation to the
posterior. However, the optimal transformation likely depends on the sample size and the
data generated from the design distributions. Any transformations such that η1 and η2

have support over Rd and θ has support over the entire real line are suitable in the limiting
case. To streamline our methods, we suggest using visualization techniques to compare the
suitability of several candidate monotonic transformations if necessary.

We choose design values of θ1,0 = 0.15 and θ2,0 = 0.14, which gives rise to design values
η1,0 and η2,0 on the logit scale. We specify informative priors for the Bernoulli parameters:
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BETA(3.75, 21.25) for θ1 and BETA(3.50, 21.50) for θ2. These beta distributions have
modes that roughly align with the design values θ1,0 and θ2,0, and these beta priors induce
priors on the variables η1 and η2. We consider power curve approximation for analyses with
posterior probabilities, where (δL, δU) = (−0.05, 0.05) on the probability scale, γ = 0.8,
and 1− β = 0.6. For concision, we only consider the method to map posteriors to [0, 1]2d

from Algorithm 3.2 with m = 1024.

The left plot of Figure 3.2 decomposes the results of the root-finding algorithm for one
approximated power curve for this Bernoulli example. For instance, only the pink points in
the lower left corner assessed power for at least one sample size n ∈ (2, 150) when input into
the root-finding procedure. We note that in most iterations of the root-finding algorithm,
the sample size n is noninteger, which does not present issues for our method. This
targeted exploration approach allows us to prioritize segments of the sampling distribution
of posterior probabilities based on the sample size n. Only the blue points from [0, 1]2

considered at least one sample size n ∈ (175, 225). These are the points for which the
posterior probability in (3.1) is close to the critical value γ = 0.8. For reference, the final
sample size recommendation for this example was ⌈n∗⌉ = 269.

The right plot of Figure 3.2 visualizes segments from the sampling distribution of pos-
terior probabilities for n = 200 conditional on the categorizations from the left plot. It
is wasteful to use the pink points to consider n ∈ (175, 225) because those points satisfy
pδUn,ur,ζ

− pδLn,ur,ζ
= γ for some sample size n ∈ (2, 150). Lemma 3.1 can be invoked for the

largest sample sizes in this interval. Based on Lemma 3.1, the posterior probabilities for
the pink points for n ∈ (175, 225) should therefore be much larger than γ. This result
is confirmed by comparing the pink density to the dotted vertical line at γ = 0.8. By
similar logic, it is wasteful to consider the red points for n ∈ (175, 225) since the posterior
probabilities for those points will be much smaller than γ.

In Figure 3.2, the sample size categories were created to exclude most sample sizes from
the first few iterations of the root-finding algorithm. This categorization limits the number
of points in [0, 1]2 that belong to more than one of the seven categories for clearer visualiza-
tion. We emphasize that these categories are not used in our power curve approximation
method. Instead, they illustrate the targeted nature of how we explore the approximate
sampling distribution of posterior probabilities for each sample size n considered.

We now assess the impact of using Sobol’ sequences with our power curve approximation
method. To do so, we approximated 1000 power curves for this Bernoulli example using
Algorithm 3.4 with sequences from a pseudorandom number generator of length m =
1024. As before, only the method for posterior mapping in Algorithm 3.2 was considered.
We then repeated this process using Algorithm 3.4 with Sobol’ sequences of length m =
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Figure 3.2: Left: Visualization of which points in [0, 1]2 are used to explore at least one
n value in the various sample size ranges via the root-finding algorithm. Right: Violin
plots for segments of the sampling distribution of posterior probabilities when n = 200;
the vertical line is at γ = 0.8.

1024. We used the 1000 power curves corresponding to each sequence type (Sobol’ and
pseudorandom) to estimate power for the following sample sizes: n = {80, 160, ..., 2000}.
For each sample size and sequence type, we obtained a 95% confidence interval for power
using the percentile bootstrap method (Efron, 1982). We then created centered confidence
intervals by subtracting the mean of the 1000 power estimates from each confidence interval
endpoint. Figure 3.3 depicts these results for the sample sizes n and two sequence types
considered.

Figure 3.3 illustrates that the Sobol’ sequence gives rise to much more precise power
estimates than pseudorandom sequences – particularly for sample sizes where power is
not near 0 or 1. We repeated the process detailed in the previous paragraph to generate
1000 power curves via Algorithm 3.4 with pseudorandom sequences of length m = 104.
The power estimates obtained using Sobol’ sequences with length m = 1024 are roughly
as precise as those obtained with pseudorandom sequences of length m = 104. Similar
results were observed for more extensive numerical studies as detailed in the remainder of
this chapter. Using Sobol’ sequences therefore allows us to estimate power with the same
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Figure 3.3: Endpoints of the centered 95% confidence intervals for power obtained with
Sobol’ and pseudorandom (PRNG) sequences of various lengths.

precision using approximately an order of magnitude fewer points.

To conclude this subsection, we concretely detail the magnitude of the gains in com-
putational efficiency that are attributable to the use of (i) sampling distribution segments,
(ii) Sobol’ sequences, and (iii) both. The following runtimes for this Bernoulli example
were measured on a standard laptop without parallelization. When using Algorithm 3.4
with Sobol’ sequences of length m = 1024, it took just under 0.3 seconds to approximate
the power curve. The 0.99-quantile of this power curve is roughly n = 1620. It took about
25 seconds to construct a power curve by obtaining power estimates with a single Sobol’
sequence (m = 1024) at n = {2, 3, . . . , 1620}. For this example, using sampling distribu-
tion segments to approximate the power curve is roughly 83 times more computationally
efficient than considering entire sampling distributions. That is, we approximate the power
curve (83− 1)× 100 = 8200% faster.

When using Algorithm 3.4 with pseudorandom sequences of length m = 104 as in-
formed by Figure 3.3, it took roughly 2.6 seconds to approximate the power curve. These
pseudorandom sequences are 9.77 times longer than the Sobol’ sequences considered in the
previous paragraph. Yet, the use of Sobol’ sequences with this example only reduces the
runtime by a factor of roughly 9 (or by roughly 800%) since there is computational overhead
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associated with choosing the initial sample size n0 in Line 2 of Algorithm 3.4. Moreover,
it took just over 4 minutes to construct a power curve by obtaining power estimates with
a single pseudorandom sequence (m = 104) at n = {2, 3, . . . , 1620}. We therefore reduced
the runtime by a factor of 800 when combining the use of sampling distribution segments
and Sobol’ sequences.

We emphasize that the gains in computational efficiency detailed above are specific to
the example in this subsection. In general, the extent of the computational savings de-
pends on the statistical models, design inputs, and the magnitude of the sample sizes that
correspond to high study power. Furthermore, this discussion surrounding efficiency gains
did not account for the computational savings that arise from using analytical posterior
approximation instead of computational approximation methods. Those computational
savings are discussed for statistical models that do not have conjugate priors in our nu-
merical studies in Section 3.6.

3.6 Numerical Studies

3.6.1 Power Curve Approximation with the Gamma Distribution

We now compare the performance of our power curve approximation procedure across sev-
eral scenarios. For each scenario, we specify design values for the gamma tail probability
example from Section 3.3. Because the ENIGH survey is conducted biennially, we choose
design values for both gamma distributions using data from the ENIGH 2018 survey (IN-
EGI, 2019). We repeat the process detailed in Section 3.3 to create a similar data set of
2018 quarterly food expenditure per person. We adjust each expenditure to account for
inflation, compounding 2% annually, between 2018 and 2020. We find the posterior means
for the gamma shape and rate parameters to be ᾱ1 = 2.11 and λ̄1 = 0.69 for the female
provider group and ᾱ2 = 2.43 and λ̄2 = 0.79 for the male provider group. These posterior
means comprise the design values η1,0 and η2,0. After accounting for inflation, the 2018
estimate for the median quarterly food expenditure per person in upper income households
is 4.29 (MXN $1000). For the purposes of sample size determination, we use κ0 = 4.29 as
the threshold for the gamma tail probabilities.

The scenarios we consider are based on two sets of prior distributions. For the first
set, we specify uninformative GAMMA(2, 0.25) priors for the gamma parameters αj and
λj for group j = 1, 2. To choose the second set of priors, we reconsider the approximately
gamma distributed posteriors used to obtain design values for α1, λ1, α2, and λ2. To
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incorporate prior information, we consider gamma distributions that have the same modes
with variances that are larger by a factor of 10. In comparison to the GAMMA(2, 0.25)
prior, these distributions are quite informative. These distributions – which we use as the
set of informative priors – are GAMMA(34.23, 15.85) for α1, GAMMA(27.20, 38.15) for λ1,
GAMMA(105.31, 42.96) for α2, and GAMMA(85.49, 106.58) for λ2.

For each prior specification, we first consider the quality of power curve estimation for
analyses with posterior probabilities. We consider three ((δL, δU), γ, 1 − β) combinations:
{a, b, c} = {((1.25−1, 1.25), 0.5, 0.6), ((1.3−1,∞), 0.9, 0.7), ((1.15−1, 1.15), 0.8, 0.8)}. The
first combination explores moderate sample sizes. The second combination considers a
one-sided noninferiority hypothesis for θ1.

2 The third combination explores larger sample
sizes. This gives rise to six settings, each consisting of a prior specification (Setting 1 =
uninformative, Setting 2 = informative) and ((δL, δU), γ, 1− β) combination.

For each setting, we generated 100 power curves using Algorithm 3.4 with ζ = {Alg. 3.1,
Alg. 3.2}. We do not consider Algorithm 3.3 for this example because the gamma model
belongs to the exponential family. We used the following transformations to improve the
quality of the normal approximations for moderate n: θ = log(θ1) − log(θ2) and ηj =
(log(αj), log(λj)) for j = 1, 2. We then selected an appropriate array of sample sizes n.
For each value of n, we generated 10000 samples of that size from f(y;η1,0) and f(y;η2,0).
We approximated the corresponding posterior of θ = θ1/θ2 using MCMC methods and
determined whether 100 × γ% of the posterior was contained within (δL, δU). For each
n explored, we computed the proportion of the 10000 samples in which this occurred to
approximate the power curve based on entire sampling distributions. Figure 3.4 depicts
these results.

For all settings considered, the alignment between the blue and red curves in Figure 3.4
indicates that the power curves generated by our method with Algorithm 3.2 perform well.
Considering sampling distribution segments via the root-finding algorithm has not led to
performance issues – even with moderate sample sizes. In total, we approximated 2800
power curves for the gamma tail probability example in this section and Appendix B.3. We
did not need to reinitialize the root-finding algorithm in Lines 9 to 15 of Algorithm 3.4 for
any of the 2.867× 106 points used to generate these 2800 curves. Moreover, we considered
the precision of power estimation with Sobol’ and pseudorandom sequences for setting 2a
with this gamma example using the process to create Figure 3.3. The results from that
numerical study suggested the power estimates obtained using Sobol’ sequences with length

2We do not use the interval (δL, δU ) = (1,∞) corresponding to the superiority of θ1 from Section 3.3.
The design values are such that θ1,0 = 0.174 ≈ θ2,0 = 0.168, so we would require an impractically large
sample to support the hypothesis H0 : θ1/θ2 ∈ (1,∞).
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Figure 3.4: 100 power curves obtained via Algorithms 3.1 (yellow) and 3.2 (blue), power
curve estimated via simulated data (red), and target power 1 − β (dotted line) for each
setting with hypothesis tests facilitated via posterior probabilities.

m = 1024 are roughly as precise as those obtained with pseudorandom sequences of length
m = 104.

The power curves obtained using our method with Algorithm 3.1 require large sample
sizes n or uninformative priors to yield good performance. This is evident as the yellow
curves do not approximate the red curves for the settings with informative priors. Even in
Setting 1a with uninformative priors and moderate sample sizes, the yellow power curves
are noticeably shifted to the left. The bias is a result of the approximation in (3.5) not
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accounting for the priors and not the root-finding algorithm. Algorithm 3.2 also performs
better for smaller sample sizes in Setting 1b as the sample sizes corresponding to low power
are too small for the BvM theorem to be invoked. For Setting 1c, neither the blue nor
yellow power curves differ substantially from the red curve. This is a direct consequence
of the BvM theorem.

Each yellow power curve in Figure 3.4 was estimated in 2 to 3 seconds without par-
allelization, whereas each blue curve took roughly 5 seconds to approximate without par-
allelization. Each red curve took between 2 and 4 hours to estimate using heavy paral-
lelization with 72 cores. This longer runtime for the red curves even takes into account
not estimating power at every sample size n and an efficient implementation of MCMC
methods for the gamma distribution that is mentioned in Section 6.2.4. The blue curves
take slightly longer to estimate than the yellow ones because we must find the posterior
modes η̃1,n and η̃2,n using optimization methods. We therefore recommend using Algo-
rithm 3.4 with the posterior approximation method from Algorithm 3.2 whenever possible
since this method accounts for the prior distributions without a substantial increase in
runtime. With the same computational resources for this example, we can approximate
a handful of posteriors using standard computational methods. This is not sufficient to
produce even a crude power estimate for a single sample size n on the red power curve.

Because power curve approximation for hypothesis tests with Bayes factors just requires
that we choose γ to align with the right side of (3.2), we consider the performance of our
method for such analyses in Appendix B.3.1. We now reconsider Settings 1a and 2a with
analyses facilitated via equal-tailed credible intervals. We choose α = 1− γ = 0.4 for this
analysis. We again implemented Algorithm 3.4 with ζ = {Alg. 3.1,Alg. 3.2} to obtain
100 power curves with each method. When approximating the power curve by simulating
data to estimate entire sampling distributions, we computed power as the proportion of
simulation repetitions in which 100×(1−α/2)% of the posterior for θ = θ1/θ2 was contained
within each of the following intervals: (δL,∞) and (−∞, δU). These results for Settings 1a
and 2a are visualized in Figure 3.5.

For analyses with credible intervals, we draw similar conclusions about the performance
of our approach with Algorithms 3.1 and 3.2 as in Figure 3.4. Each blue curve in Figure
3.5 took roughly 7 seconds to estimate since we must examine the intervals corresponding
to two one-sided tests with posterior probabilities as discussed in Section 3.5.3. Because
sufficient statistics can be readily computed for this example, we did not consider the per-
formance of our approach to power analysis with the approximation method in Algorithm
3.3. We consider the performance of that approach in Section 3.6.2.
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Figure 3.5: 100 power curves obtained via Algorithms 3.1 (yellow) and 3.2 (blue), power
curve estimated via simulated data (red), and target power 1−β (dotted line) for Settings
1a and 2a with hypothesis tests facilitated via credible intervals.

3.6.2 Power Curve Approximation with the Weibull Distribution

To further explore the performance of our power curve approximation procedure, we recon-
sider the food expenditure example with Weibull distributions. We find design values for
the Weibull distributions using the data from the ENIGH 2018 survey processed in Section
3.6.1. We find the posterior means for the Weibull shape (νj) and scale (ιj) parameters
to be ν̄1 = 1.41 and ῑ1 = 3.39 for the female provider group and ν̄2 = 1.49 and ῑ2 = 3.42
for the male provider group, where GAMMA(2, 1) priors were assigned to each parameter.
These posterior means comprise the new design values η1,0 and η2,0. As in Section 3.6.1,
a threshold of κ0 = 4.29 defines the Weibull tail probabilities.

We again consider two sets of prior distributions. For the first set, we specify unin-
formative GAMMA(2, 1) priors for the Weibull parameters νj and ιj for group j = 1, 2.
To choose the second set of priors, we reconsider the approximately gamma distributed
posteriors used to obtain design values for ν1, ι1, ν2, and ι2. To incorporate prior infor-
mation, we consider gamma distributions that have the same modes with variances that
are larger by a factor of 100. These distributions prompt the following informative priors:
GAMMA(12.73, 8.28) for ν1, GAMMA(11.81, 3.20) for ι1, GAMMA(38.35, 25.09) for ν2,
and GAMMA(37.91, 10.79) for ι2.

For each prior specification, we consider power curve estimation for analyses facilitated
via posterior probabilities with Settings 1a and 2a from Section 3.6.1, where ((δL, δU), γ, 1−
β) = ((1.25−1, 1.25), 0.5, 0.6). For each setting, we generated 100 power curves using Algo-
rithm 3.4 with ζ = {Alg. 3.1,Alg. 3.3}. We used the following transformations to improve
the quality of the normal approximations: θ = log(θ1)− log(θ2) and ηj = (log(νj), log(ιj))
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Figure 3.6: 100 power curves obtained via Algorithms 3.1 (yellow) and 3.3 (blue), power
curve estimated via simulated data (red), and target power 1−β (dotted line) for Settings
1a and 2a with hypothesis tests using the Weibull distribution.

for j = 1, 2. As in Section 3.6.1, we also estimated the power curves by generating data
from the design distributions and approximating the posterior of θ = θ1/θ2 via MCMC
methods. Figure 3.6 depicts these results. Following the process to create Figure 3.3, we
also considered the precision of power estimation with Sobol’ and pseudorandom sequences
for setting 1a with this Weibull example. The results from that numerical study suggested
the power estimates obtained using Sobol’ sequences with length m = 1024 are roughly as
precise as those obtained with pseudorandom sequences of length m = 6× 103.

For Settings 1a and 2a in Figure 3.6, we draw similar conclusions for the blue and yellow
power curves as in Figure 3.4 with the gamma model. Algorithm 3.3 therefore yields
suitable performance for this example when low-dimensional sufficient statistics cannot
be calculated. Each yellow and blue power curve in Figure 3.6 was estimated in less
than five seconds without parallelization. For this example with the Weibull model, we
cannot approximate a single posterior of θ using the same computing resources. Each
red power curve took over 12 hours to estimate using parallelization with 72 cores. More
computational resources are required to approximate the red power curves for the Weibull
distribution than for the gamma distribution because implementing MCMC methods with
Weibull data is more costly. While our power curve approximation method does not require
parallel computing for fast performance, all yellow and blue power curves in our numerical
studies could be estimated in a second or two if parallelized on a standard laptop with
four cores. As such, our method for power curve approximation allows users to quickly
explore potential designs for their study in real time, expediting communication between
stakeholders of the study.
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3.7 Discussion

In this chapter, we developed a framework for fast power curve approximation with hypoth-
esis tests facilitated via posterior probabilities, Bayes factors, and credible intervals. The
computational efficiency of this framework stems from exploring segments of the sampling
distribution of posterior probabilities for each sample size considered when the conditions
for the BvM theorem are satisfied. The numerical studies conducted show that our fast
method yields suitable power curve approximation for moderate and large sample sizes.
While this method is not appropriate for small sample sizes, it informs practitioners when
their required sample sizes are small. More traditional simulation-based design methods
can be used in these scenarios since they are often less cumbersome to implement with
small sample sizes.

In Chapter 5, we make this framework more flexible by extending it to the predictive
approach for choosing the sampling distribution of Y (n) . This extension prevents us from
directly applying the BvM theorem. However, the results from the BvM theorem (where
we treat a draw from the design prior as the fixed parameter ηj,0) are still combined with
targeted exploration of sampling distributions to yield fast sample size recommendations.
This framework is also extended to accommodate multiple study objectives. For instance,
we may require an (n, γ) combination that both satisfies a power criterion and bounds a
type I error or false discovery rate. If the critical value γ were chosen algorithmically to
bound the type I error rate, we would not be able to use root-finding algorithms as in this
chapter to select sampling distribution segments. As such, Chapter 5 considers alternative
methods to select these segments.

Moreover, the framework presented in the main portion of this chapter does not support
imbalanced two-group sample size determination (i.e., where n2 = qn1 for some constant
q > 0). It may be inefficient or impractical to force q = 1 when prior information for one
group is much more precise, when it is more difficult to sample from one of the groups,
or in scenarios where one treatment is much riskier. In Appendix B.3.2, we extend this
framework to settings where practitioners specify this constant q. Imbalanced sample size
determination for Bayesian hypothesis tests is also considered more thoroughly in Chapter
5.
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Chapter 4

Posterior Ramifications of Prior
Dependence Structures

4.1 Preamble

In Chapter 3, we developed methods to design Bayesian hypothesis tests facilitated via
posterior probabilities, Bayes factors, and credible intervals. For design purposes, these
methods assume data are generated from statistical models with known, fixed parame-
ter values. This simplifying assumption allowed us to bypass specifying a design prior
for the relevant parameter(s). However, methods for Bayesian analysis incorporate un-
certainty about the parameter values used to generate the data. To promote better co-
herence between experimental design and analysis, we develop methods for study design
that incorporate such uncertainty in Chapter 5. This development requires us to specify
nondegenerate design priors that yield prior predictive distributions for the to-be-observed
data in pre-experimental settings.

Specifying such priors is not a trivial task, particularly when the parameter is multi-
variate because we must consider the dependence structure between its components. The
extent of the effort required to specify these priors suggests that the simpler design proce-
dures proposed in Chapter 3 may be ideal for certain practitioners. In this thesis chapter
only, we use θ ∈ Rd instead of η to denote the (possibly multivariate) parameter(s) for
which we assign a prior distribution – which may not coincide with the characteristic(s) of
interest. This notation promotes better alignment with the standard nomenclature used
in the prior elicitation literature. The notation for the posterior mode also differs in this
chapter as detailed later.
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In this chapter, we explore recent advances to elicit multivariate prior distributions us-
ing copula models. Under broad conditions, we demonstrate that the posterior of θ cannot
retain many of these flexible prior dependence structures in large-sample settings. We also
overview several objectives for prior specification to help practitioners determine whether
the inability to retain the prior dependence structure presents practical issues for their
posterior objectives. Our resulting recommendations for prior dependence specification
are generally useful for Bayesian analyses, and they will be referenced when reconsidering
design with sampling distribution segments in Chapter 5.

4.2 Background

4.2.1 Overview of Prior Elicitation

Statistical methods leverage data to infer properties about an unobservable, possibly mul-
tivariate parameter θ = (θ1, ..., θd). Bayesian methods for statistical inference (see e.g.,
Gelman et al. (2020)) require the specification of a prior distribution for the parameter θ,
denoted by p(θ) in this chapter. This distribution characterizes the beliefs about θ prior
to observing any data. For a particular statistical model, L(θ; y) denotes the relevant
likelihood function for the parameter θ with respect to the observed data, now referred
to as the vector or matrix y. In the Bayesian paradigm, inference is facilitated via the
posterior distribution of θ, denoted by p(θ |y) in this chapter. By Bayes’ Theorem, we
have that

p(θ |y) = L(θ; y)p(θ)∫
L(θ; y)p(θ)dθ

∝ L(θ; y)p(θ). (4.1)

To implement fully Bayesian analyses, prior distributions must be specified before ob-
serving data. This is in contrast to empirical Bayes methods that set the parameters for
the prior distributions to their most likely values given the observed data (Casella, 1985;
Carlin and Louis, 2000). In the absence of prior information, uninformative or diffuse priors
are often used. When relevant prior information from subject matter experts or previous
statistical analyses is available, it rarely takes the form of quantifiable prior distributions
on the unobservable parameters of a statistical model. Prior elicitation procedures are used
to transfigure prior information into quantifiable prior distributions.

Winkler (1967) conducted some of the initial work on prior elicitation, citing the siloed
nature of prior specification and posterior analysis. Most previous Bayesian research had
investigated how to leverage sample information from the likelihood function to obtain the
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posterior from the prior distribution, which was assumed to have been already assessed.
Winkler (1967) explored elicitation methods for Bernoulli processes, two of which involved
directly asking questions about the prior CDF or probability distribution function (PDF)
for the Bernoulli parameter. These elicitation methods were for univariate priors, yet
Winkler (1967) acknowledged that the assessment of prior distributions in multivariate
contexts was an important and nontrivial problem.

Decades later, Chaloner (1996) overviewed methods for subjective prior specification
with an emphasis on methods for clinical trials. In this context, Freedman and Spiegel-
halter (1983) elicited a prior on the difference in cancer recurrence probability between
treatment groups by asking experts about the mode and likely lower and upper bounds
for this difference. This prior was not combined with observed data and instead used for
design purposes to choose the number of interim analyses in a sequential trial. Other con-
tributions in clinical settings advocated for soliciting prior beliefs from several experts to
form a community of prior distributions and basing inference on a consensus of posterior
conclusions (Kadane, 1986; Chaloner et al., 1993). To reduce cognitive and computational
complexity, most elicitation methods overviewed by Chaloner (1996) relied on parametric
assumptions and solicited information about potentially observable conduits for the unob-
servable parameter θ that are easier to conceptualize. For instance, priors for Bayesian
regression model coefficients were elicited using information about quantiles of predictive
distributions (Kadane et al., 1980) and survival probabilities (Chaloner et al., 1993).

Additional reviews of prior elicitation methods have since been conducted. Garthwaite
et al. (2005) divided the elicitation process into four stages: setup, elicitation, fitting, and
adequacy. These stages involve preparing the expert for elicitation, eliciting distributional
summaries of expert knowledge, fitting a probability distribution to these summaries, and
assessing the adequacy of elicitation. O’Hagan et al. (2006) focused on elicitation of subjec-
tive probabilities and noted that experts tend to characterize events as impossible instead
of assigning them small probabilities. Because this gives rise to hard boundaries in the sup-
port of the elicited priors, O’Hagan et al. (2006) overviewed methods to correct for expert
overconfidence. Johnson et al. (2010) conducted a systematic review of prior elicitation
methods with an emphasis on the feasibility of the process in terms of the required time,
cost, personnel, and equipment. They found that although expert fatigue and lack of un-
derstanding compromise the reliability of elicitation procedures (Winkler, 1971; Garthwaite
et al., 2005), the reviewed methods were rarely formally evaluated on their feasibility.

Recent contributions have aimed to reduce expert fatigue and improve understanding
by developing iterative elicitation procedures that provide experts with instant feedback via
a graphical interface (Jones and Johnson, 2014; Casement and Kahle, 2018; Williams et al.,
2021; Casement and Kahle, 2023). Prior elicitation procedures have also been developed
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for more complex settings – including methods for rank analysis (Crispino and Antoniano-
Villalobos, 2023), nonparametric models (Seo and Kim, 2022), sequential analysis (Santos
and Costa, 2019), power priors (Ye et al., 2022), and mixture models (Fúquene et al., 2019;
Feroze and Aslam, 2021). One such area of research involves using copulas to accommo-
date more flexible dependence structures when eliciting multivariate priors (Elfadaly and
Garthwaite, 2017; Wilson, 2018; Wilson et al., 2021). These contributions are novel given
that the dependence structure is an afterthought in many recent prior elicitation methods.
In particular, many recent methods consider elicitation for univariate parameters (Case-
ment and Kahle, 2018, 2023), fix the dependence structure to leverage conjugacy (Santos
and Costa, 2019; Srivastava et al., 2019), or assume that the components of θ are indepen-
dent a priori (Garthwaite et al., 2013; Jones and Johnson, 2014; Fúquene et al., 2019; Seo
and Kim, 2022). Prominent recent advances with copula-based priors are overviewed in
Section 4.2.3. Copula-based priors are the focus of this chapter, and a primer on copulas
is provided in Section 4.2.2.

4.2.2 Background on Copula Models

The behaviour of random variables X = {Xj}dj=1 is often characterized by their joint
distribution functionH(x). Each component ofX also has a marginal distribution function
Fj(xj) = Pr(Xj ≤ xj), j = 1, . . . , d. Copulas flexibly allow for the dependence structure of
X to be considered separately from its marginals when eliciting multivariate distributions.
Let U1, U2, . . . , Ud be uniformly-distributed random variables over the unit interval [0, 1].
The distribution function

C(u1, . . . , ud) = Pr(U1 ≤ u1, . . . , Ud ≤ ud)

is such that C : [0, 1]d → [0, 1] is a copula (Nelsen, 2006). Sklar’s theorem (Sklar, 1959;
Schweizer and Sklar, 2011) explicates the relationship between the copula C, the mul-
tivariate joint distribution function H(x), and the univariate marginal CDFs Fj(xj) for
j = 1, . . . , d:

H(x) = C(F1(x1), . . . , Fd(xd)),

where x = (x1, . . . , xd) ∈ X ⊆ Rd. Copulas are therefore incorporated into multivariate
distributions even if they are not explicitly defined. If F1, . . . , Fd are continuous, the copula
C is unique.

A copula C can be represented as the sum of its absolutely continuous component AC
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and singular component SC (Nelsen, 2006). For u = (u1, . . . , ud) ∈ [0, 1]d,

AC(u) =

∫ u1

0

· · ·
∫ ud

0

∂d

∂t1 · · · ∂td
C(t1, . . . , td)dtd · · · dt1,

and SC(u) = C(u) − AC(u). If C = AC on [0, 1]d, the copula C is absolutely continuous
and admits a density function

c(u) =
∂d

∂u1 · · · ∂ud
C(u1, . . . , ud).

Moreover, if the support of C is [0, 1]d, the copula is deemed to have full support (Nelsen,
2006). All copulas considered in this chapter adhere to this definition.

Copulas can be defined using common probability distributions. For instance, the
Gaussian copula (Clemen and Reilly, 1999) with correlation matrix R is defined such that

CGa
R (u) = ΦR(Φ

−1(u1), . . . ,Φ
−1(ud)),

where Φ is the CDF of the N (0, 1) distribution and ΦR : Rd → [0, 1] is the CDF of the d-
dimensional N (0,R) distribution with correlation and covariance matrix R. The t-copula
(Demarta and McNeil, 2005) can be similarly defined given a multivariate t-distribution
with correlation matrix R and degrees of freedom ν. In contrast, Archimedean copulas are
a commonly used class of copulas that are efficiently parameterized via generator functions
(Nelsen, 2006). This chapter focuses on parametric copula models, but copulas can also
be leveraged in a nonparametric framework (Wong and Ma, 2010; Wu et al., 2015; Ning
and Shephard, 2018; Barone and Dalla Valle, 2023).

For d = 2 dimensions, Figure 4.1 visualizes samples from two copulas. In the left plot,
the blue points are generated from an Archimedean Clayton copula that characterizes
positive dependence with dependence parameter ϕ ≥ 0, set to ϕ = 3. The extent of the
dependence between two random quantities is constrained by the Fréchet-Hoeffding bounds
(Nelsen, 2006). The dotted line in the left plot of Figure 4.1 is the upper Fréchet-Hoeffding
bound. This bound characterizes dependence for comonotonic variables. In the right plot,
the blue points are generated from a Gaussian copula parameterized by Pearson’s ρ =
−0.8. The dotted line in the right plot is the lower Fréchet-Hoeffding bound. This bound
characterizes dependence for countermonotonic variables. As the strength of the positive
(negative) dependence between two variables increases, their (u1, u2) combinations tend
to cluster around the upper (lower) Fréchet-Hoeffding bound. The dependence structure
between two independent random variables is characterized by the independence copula:

76



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

 u1 = F1(X1)

u
2 

=
 F

2(
X

2)
 

Positive Dependence

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

 u1 = F1(X1)

u
2 

=
 F

2(
X

2)
 

Negative Dependence

Figure 4.1: Samples of 1000 points from a Clayton copula with ϕ = 3 (left) and a Gaussian
copula with Pearson’s ρ = −0.8 (right). The upper and lower Fréchet-Hoeffding bounds
are given by the dotted lines.

c(u) = 1 for u ∈ [0, 1]2. In two dimensions, a sample from this copula approximates
random scatter over [0, 1]2.

The upper Fréchet-Hoeffding bound for positive dependence generalizes to settings with
more than two dimensions. However, negative dependence in higher dimensions is more
complicated since many random variables cannot exhibit strong mutual negative depen-
dence. In addition to characterizing the strength and direction of dependence between
random variables, copula models also account for symmetry and tail dependence. For in-
stance, the Clayton copula accounts for lower tail dependence since the points in the left
plot of Figure 4.1 are tightly clustered in the bottom left corner.

4.2.3 Recent Developments with Copula-Based Priors

Copulas can be incorporated into the prior elicitation process as illustrated in recent de-
velopments for the multinomial model. Elfadaly and Garthwaite (2017) proposed one such
method to elicit Gaussian copula prior distributions. The standard multinomial model
assumes that data yi ∈ {1, 2, . . . , w}, i = 1, . . . , n are collected independently and that the
outcome v occurs with probability 0 < pv < 1 for v = 1, . . . , w such that

∑w
v=1 pv = 1. The

multinomial model is parameterized by p = (p1, . . . , pw). However, Elfadaly and Garth-
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waite (2017) did not directly assign a Gaussian copula to the multinomial probabilities
since that approach would not enforce the unit-sum constraint. Instead, they defined new
variables Z1, . . . , Zw such that

Z1 = p1, Zv =
pv

1−
∑v−1

t=1 pt
for v = 2, . . . , w − 1, and Zw = 1. (4.2)

The corresponding inverse transformations are given by

p1 = Z1 and pv = Zv

v−1∏
t=1

(1− Zt) for v = 2, . . . , w. (4.3)

The variable Zv represents the probability that an observation is assigned to category
v given that it has not been assigned to categories 1, . . . , v − 1. Elfadaly and Garthwaite
(2017) assigned marginal BETA(αv, βv) priors to Zv, v = 1, . . . , w − 1. A joint prior for
θ = Zw−1 = (Z1, . . . , Zw−1) that satisfies the unit-sum constraint was created by joining
the marginal beta priors with a Gaussian copula. If Z1, . . . , Zw−1 are independent, pw

follows a generalized Dirichlet distribution (Connor and Mosimann, 1969). In this scenario,
Gaussian copulas were leveraged to construct priors that were more flexible than standard
alternatives.

Elfadaly and Garthwaite (2017) constructed marginal beta distributions for Zv, v =
1, . . . , w − 1 by soliciting estimates for the quartiles of each variable. For each variable,
the three quartile estimates were reconciled into a two-parameter beta distribution using
least-squares optimization. They formed the correlation matrix R for the Gaussian copula
by soliciting further estimates. For v = 2, . . . , w − 1, experts were asked to update their
estimate for the median of pv under the assumption that the median of pv−1 was equal to
the lower quartile specified in the previous step. These additional estimates were used in
conjunction with a method from Kadane et al. (1980) to ensure R was positive definite.

If the prior must admit a density function, only absolutely continuous copulas should
be considered during the elicitation process. Unless certain combinations of the variables
in θ are invalid, the candidate copulas should have full support so as to not inadvertently
restrict the domain of the parameter space Θ a priori. When R has full rank, the Gaussian
copula is absolutely continuous with full support.

Wilson (2018) extended this method for use with vine copulas (Joe, 1996; Bedford and
Cooke, 2002; Joe and Kurowicka, 2011), using a similar process as Elfadaly and Garthwaite
(2017) to elicit marginal beta distributions for Zv, v = 1, . . . , w−1. This extended method
leveraged D-vines (Kurowicka and Cooke, 2005) to incorporate more flexibility into the
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Figure 4.2: The structure of a general D-Vine on d variables.

prior dependence structure than the Gaussian copula can accommodate. For a model with
d variables, D-vines utilize the graphical structure in Figure 4.2 to characterize dependence
between the variables in θ = (θ1, . . . , θd) using d − 1 trees: T1, . . . , Td−1. T1 consists of a
node set N1 = {1, 2, . . . , d} and an edge set E1 = {(1, 2), (2, 3), . . . , (d − 1, d)}, where the
integers in the node and edge sets refer to indices in θ. For j = 2, 3, . . . , d − 1, the node
set of Tj is Nj = Ej−1, and two edges in Ej−1 are connected with an edge in Tj only if they
share a common node. D-vines characterize dependence in higher-dimensional settings
using (un)conditional bivariate copulas. Each edge e in the edge set E(V) = ∪d−1

j=1Ej

considers the dependence between two variables in θ, denoted e1 and e2, conditional on
the variables in a potentially empty set De ⊂ {1, 2, . . . , d}.

Wilson (2018) proposed considering Gaussian and t-copulas as candidate copulas, along
with several Archimedean copulas that are absolutely continuous with full support. These
bivariate copulas were selected by soliciting estimates for the conditional quartiles of the pv
and Zv variables. Across all candidate copula families considered, the best-fitting copula
was parameterized to minimize least squares between solicited and induced prior quantiles
on the Zv variables.

4.2.4 Contributions

This chapter provides general guidance for prior dependence specification in multivariate
settings. These recommendations are topical given that recent advances in copula-based
priors allow for the incorporation of unprecedented flexibility into the prior dependence
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structure. While this additional flexibility could give rise to priors that more accurately
characterize real-life phenomena, practitioners may be subject to choice overload when
deciding between the vast number of potential dependence structures. We argue that
this additional flexibility is only useful in certain contexts. Our recommendations help
practitioners discard prior dependence structures that do not align with their objectives
for posterior analysis – simplifying the prior specification process. These recommendations
also clarify how the prior dependence structure can impact the posterior distribution. Our
recommendations are illustrated using several models for which copula-based priors have
been proposed. Unlike situations that require the specification of a community of prior
distributions, we restrict our discussion to the case where a single prior is elicited.

The remainder of this chapter is structured as follows. In Section 4.3, we define general
conditions under which the prior dependence structure is incompatible with that induced
by the likelihood function and unable to be retained by the posterior distribution as data
are observed. We formally prove this large-sample result and demonstrate that priors
elicited using the methods proposed by Elfadaly and Garthwaite (2017) and Wilson (2018)
are generally incompatible with standard likelihood functions. We discuss small-sample
scenarios where this additional flexibility in the prior dependence structure is nevertheless
useful in Section 4.4. In Section 4.5, we prove asymptotic results about the impact of the
prior dependence structure on the convergence of the posterior mode, which we contrast
with previous work on copula-based priors (Michimae and Emura, 2022). We then conduct
numerical studies with both small and large sample sizes to contextualize these theoretical
results. These simulations prompt further recommendations regarding choosing a prior de-
pendence structure for posterior analysis. We provide concluding remarks and a discussion
of extensions to this work in Section 4.6.

4.3 Retention of Prior Dependence

4.3.1 Background

In this section, we examine situations where the prior dependence structure cannot carry
over into the posterior distribution as data are collected. It is unrealistic to expect the prior
dependence structure for θ to be perfectly specified, but we should be mindful of whether
the prior dependence structure can be retained a posteriori before using the posterior of
θ to draw conclusions about its dependence structure. Otherwise, we may draw different
conclusions about the dependence structure given small and large samples generated from
the same data generation process. Drawing such conclusions in an uninformed way presents
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practical issues and complicates the consideration of the posterior of a function of several
parameters in θ.

The concept of chronic rejection (Libby and Pober, 2001; Vos et al., 2011) frames
this section’s main result. The term chronic rejection describes the process in which a
transplanted organ is rejected by the recipient’s immune system over a long period of time.
The recipient’s persistent immune response against the transplanted organ causes gradual
damage. Similar to screening an organ donor, we argue that one should consider whether
the prior dependence structure for θ is compatible with that induced by the likelihood
function. Such incompatibilities imply that the prior dependence structure cannot be
retained a posteriori – and the prior dependence structure is hence a chronically rejected
one. We emphasize that the term rejection as used in this chapter does not imply the
formal rejection of a statistical hypothesis test. In Section 4.3.2, we define the notion
of chronically rejected prior dependence structures. We illustrate this definition using
simulation in Section 4.3.3. Section 4.4 discusses situations where using chronically rejected
prior dependence structures may be sensible, so practitioners should consider their posterior
objectives before choosing a prior dependence structure.

4.3.2 Chronically Rejected Prior Dependence Structures

Here, we define general conditions under which prior dependence structures cannot be re-
tained by the posterior with enough data. These sufficient conditions can be readily verified
prior to observing data. When planning posterior analyses, practitioners can discard prior
dependence structures that satisfy these conditions for certain posterior objectives. This
simplification reduces the number of potential dependence structures and hence streamlines
the prior elicitation process.

We consider the limiting behaviour of the posterior distribution for θ. Because we
consider this behaviour under various data generation processes, the data are random
variables. Data from a random sample of size n are represented by Y (n) . Realizations
of these samples are denoted by y(n) . Much of the work on limiting posteriors (see e.g.,
Ghosal et al. (1995), Le Cam and Yang (2000), Gao et al. (2020), or Schillings et al. (2020))
appeals to the Bernstein-von Mises theorem (van der Vaart, 1998). We let m( ·|θ) be the
statistical model corresponding to the likelihood function in (4.1). When data Y (n) are
generated independently and identically from m( ·|θ0), the BvM theorem dictates that the
posterior for θ converges to the N (θ0, I(θ0)

−1/n) distribution in the limit of infinite data,
where I(·) is the Fisher information.

In addition to the independently and identically distributed assumption, there are three
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conditions that must be satisfied to invoke the BvM theorem. The first two conditions
involve the model m( ·|θ0), and they are collectively weaker than the conditions for the
asymptotic normality of the maximum likelihood estimator (MLE) (Lehmann and Casella,
1998). Condition 1 ensures the model m( ·|θ0) is differentiable in quadratic mean with
nonsingular I(θ0). Condition 2 requires that there exist a sequence of uniformly consistent
tests for H0 : θ = θ0 vs. H1 : ∥θ − θ0∥2 ≥ ε for every ε > 0. Condition 3 concerns the
prior distribution p(θ) used to analyze the observed data. This prior must be absolutely
continuous in a neighbourhood of θ0 with p(θ0) > 0. We consider priors defined such that

p(θ) = c(F1(θ1), . . . , Fd(θd))×
d∏

j=1

fj(θj), (4.4)

where c(u1, . . . , ud) is the copula density function for an absolutely continuous copula C
and Fj(θj) and fj(θj) are respectively the marginal prior CDF and PDF for θj, j = 1, . . . , d.

To directly apply the BvM theorem, a single value of θ0 ∈ Θ must be selected. It may
not be realistic to expect practitioners to correctly identify this value for θ0 a priori. As
such, our results incorporate uncertainty about the value of θ0 used to generate Y (n) . We
do so by introducing a prior pD(θ) that defines the prior predictive distribution of Y (n) :

p(y(n)) =

∫ n∏
i

m(yi |θ)pD(θ)dθ. (4.5)

In (4.5), data Y (n) are generated independently and identically from m( ·|θ0) given
θ0 ∼ pD(θ). This data generation process allows us to compare various objectives for
prior specification using repeated simulation in Section 4.4. The prior in (4.5) may or may
not be the same prior as p(θ) used to analyze the observed data in (4.4), which is often
called the analysis prior. To explore the limiting behaviour of the posterior when data are
generated via (4.5), we note that the BvM theorem considers a special case of p(y(n)) in
which the prior pD(θ) is degenerate. That is, pD(θ0) = 1 for a particular θ0 ∈ Θ, and 0
otherwise. In light of this, we emphasize that the prior that must satisfy condition 3 for
the BvM theorem is the analysis prior p(θ). Theorem 4.1 generalizes results from the BvM
theorem to nondegenerate priors pD(θ) under certain conditions.

Theorem 4.1. Let Θ∗ be the set of interior points in Θ. Suppose conditions 1, 2, and 3
for the BvM theorem are satisfied for all θ ∈ Θ∗. Let data Y (n) be generated via (4.5) such
that θ0 ∼ pD(θ) and pD(θ) = 0 for all θ /∈ Θ∗. The posterior dependence structure of θ

given observed y(n)
d−→ CGa

R (·) corresponding to the covariance matrix I(θ0)
−1 as n→∞.
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Proof of Theorem 4.1. When the conditions for Theorem 4.1 hold, p(θ |y(n))
d−→

N (θ0, I(θ0)
−1/n). The posterior dependence structure of θ is hence reasonably character-

ized by a Gaussian copula with correlation matrix R corresponding to I(θ0)
−1 for large

enough n. This result follows by the BvM theorem because we restrict the value of θ0 to
be contained in Θ∗; the BvM theorem is applicable when θ0 is not a boundary point of
the parameter space Θ.

Under the conditions in Theorem 4.1, the posterior copula for θ is approximately Gaus-
sian for large samples. However, we may not collect nearly enough data for this copula to
be Gaussian in practice. Because it is unrealistic to expect the prior dependence structure
of θ to be perfectly specified, we consider a partial characterization of this prior (and pos-
terior) dependence structure using D-vines in Corollary 4.1. Even if the copula in (4.4)
is not specified using a D-vine, such a structure can be induced. D-vines are often spec-
ified via the set of Kendall’s τ (Kendall, 1938) values for each of the D-vine’s bivariate
copulas (Kurowicka and Cooke, 2005). Kendall’s τ measures rank correlation in terms
of how similar the orderings of bivariate data are when ranked by each quantity. We let
{τ pe1,e2|De

}e∈E(V) characterize the magnitude and direction of the prior dependence structure
on θ.

Corollary 4.1. Under the conditions for Theorem 4.1, let {τ pe1,e2|De
}e∈E(V) describe prior

dependence on θ. Suppose no θ0 with pD(θ0) > 0 is such that CGa
R (·) corresponding to the

covariance matrix I(θ0)
−1 induces a dependence structure {τ(θ)e1,e2|De}e∈E(V) such that

τ(θ0)e1,e2|De = τ pe1,e2|De
for all e ∈ E(V). Then, the posterior of θ |Y (n) cannot retain the

magnitude and direction of prior dependence as n→∞.

Corollary 4.1 follows directly from Theorem 4.1. We suppose there is no θ0 with
pD(θ0) > 0 such that the Gaussian copula corresponding to the covariance matrix I(θ0)

−1

induces a dependence structure characterized by {τ pe1,e2|De
}e∈E(V). It follows that the mag-

nitude and direction of the dependence structure for p(θ |y(n)) cannot be characterized
by {τ pe1,e2|De

}e∈E(V) for sufficiently large n. We emphasize that considering dependence
structures via Kendall’s τ on the D-vine structure of the copula does not fully specify the
dependence structure. This allows for more flexibility in the choices for the copula families;
it also facilitates the consideration of prior dependence for subvectors of θ, which is useful
because it may require too much cognitive complexity to assess the full prior dependence
structure. However, two bivariate copulas may have the same Kendall’s τ but different
properties in terms of symmetry and tail dependence. We focus on the magnitude and
direction of dependence to present generally applicable guidance for prior specification.

Corollary 4.1 therefore provides a straightforward result that can be used to discard
potential dependence structures for θ that cannot be retained as data y(n) are observed.
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We refer to prior dependence structures that satisfy the conditions for Corollary 4.1 as
chronically rejected dependence structures. The conditions for Corollary 4.1 are sufficient
in that there is no value for θ0 with pD(θ0) > 0 such that these dependence structures
will be retained as data are generated via (4.5). However, it is not guaranteed that the
prior dependence structure will be retained when the conditions for Corollary 4.1 are
not satisfied. That is, the true value of θ0 might not be one of those that prevent the
conditions for Corollary 4.1 from being satisfied. Thus, a prior dependence structure that
is not retained is not necessarily a chronically rejected one. In this chapter, the notion of
chronic rejection defines a specific class of prior dependence structures, whereas retention
of the prior dependence structure is viewed more generally as a posterior outcome.

4.3.3 Illustration with Copula-Based Priors for the Multinomial
Model

We now apply Corollary 4.1 with the multinomial model. In Appendix C.1, we show
that the inverse Fisher information matrix for the multinomial model parameterized in
terms of θ = (Z1, Z2, . . . , Zw−1) from (4.2) is diagonal for all possible (Z1, Z2, . . . , Zw−1) ∈
(0, 1)w−1. If p(θ) incorporates any positive or negative dependence between the conditional
multinomial probabilities, this dependence structure is therefore a chronically rejected one.

For w = 3 categories, we illustrate this phenomenon when combining such priors with
the standard multinomial likelihood, which is parameterized by conditional probabilities
θ = (Z1, Z2). We specify p(θ) as in (4.4) where the marginal prior for Z1 is BETA(20, 40),
the marginal prior for Z2 is BETA(30, 30), and these marginal priors are joined using a
Gaussian copula parameterized with Pearson’s ρ = −0.9. This prior distribution conveys
that we expect the multinomial probabilities to be roughly equal for all three categories.
This prior specification could be facilitated using either of the methods by Elfadaly and
Garthwaite (2017) or Wilson (2018). We note that the prior copula gives rise to a value
for Kendall’s τ of 2sin−1(−0.9)/π = −0.713.

For each of 10000 simulation repetitions, we generated θ0 = (Z1,0, Z2,0) from the prior
specified in the previous paragraph. We generated Y (n) for n = 10 from the multinomial
model parameterized by θ0. For each sample, we approximated the posterior of θ |y(n)

using sampling-resampling methods (Rubin, 1988), where the proposal distribution was
the posterior of θ |y(n) obtained by independently joining the marginal priors for Z1 and
Z2. For each posterior sample, we estimated Kendall’s τ for Z1 and Z2. This process
was repeated for n = {102, 103, 104, 105}. The range of Kendall’s τ values observed in this
numerical study is summarized in Table 4.1.
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Table 4.1: Kendall’s τ values for 10000 posteriors of Z1 and Z2 across various sample sizes
n.

Kendall’s τ

n Minimum Median Maximum
101 -0.7128 -0.6806 -0.6638
102 -0.5488 -0.5049 -0.4815
103 -0.2103 -0.1611 -0.1288
104 -0.0464 -0.0214 0.0062
105 -0.0326 -0.0022 0.0247

This table shows that the posterior cannot retain the negative dependence structure
present in the prior as data are observed from the prior predictive distribution. Even though
the analysis prior p(θ) coincides with that used to define the prior predictive distribution of
Y (n) , the multinomial likelihood function cannot accommodate this dependence between
Z1 and Z2. As the sample size increases, we observe that the impact of the likelihood
function on the posterior overwhelms that of the prior, and the prior dependence structure
will eventually not be retained when the conditions for Corollary 4.1 hold.

The copula-based priors proposed by Elfadaly and Garthwaite (2017) andWilson (2018)
define valid posteriors for θ when combined with the multinomial likelihood, but Table 4.1
corroborates that we would draw vastly different conclusions about the posterior depen-
dence structure of θ for small and large samples. Elfadaly and Garthwaite (2017) provided
R code to combine their priors with the multinomial likelihood function, and Wilson et al.
(2021) stated that these priors could be used for Bayesian analysis. However, neither con-
tribution clearly disclosed that these more flexible prior dependence structures cannot be
retained as multinomial data are collected. Given a candidate prior dependence struc-
ture, Corollary 4.1 helps assess whether this dependence structure for θ can be retained
a posteriori. We elaborate on how to determine whether the inability to retain the prior
dependence structure presents practical issues in Section 4.4.

4.4 Objectives for Dependence Structure Specifica-

tion

This section outlines several objectives that practitioners may wish to achieve when spec-
ifying prior distributions and their dependence structures. For each objective, we discuss
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whether retention of the prior dependence structure as defined in Corollary 4.1 is impor-
tant. This knowledge can be used to assess the adequacy of an elicited prior distribution.

4.4.1 Supplementation of Small Samples

Even if a prior dependence structure cannot be retained as the sample size n increases,
it may be used to supplement information from small samples. The following example
that illustrates the utility of chronically rejected dependence structures for small samples
was helpfully provided by a reviewer of the paper associated with this chapter (Hagar and
Stevens, 2024b (under review)). We suppose that a practitioner aims to model the heights
of a new animal species with a N (µ, σ2) distribution. The practitioner does not know the
typical heights for members of this species, but it is reasonable to expect that µ and σ are
on the same scale. Hence, positive prior dependence between µ and σ2 is sensible. Upon
observing a single member of this species, the practitioner can estimate µ – even though
the single observation does not directly provide information about σ2. If µ and σ2 were
positively correlated a priori, the posterior could convey that a value of one nanometer for
σ would be unlikely given an observed height of one meter.

For this model with θ = (µ, σ2), the inverse Fisher information matrix I(θ)−1 is diago-
nal for all possible values of µ ∈ R and σ2 ∈ R+. It follows by Corollary 4.1 that the joint
posterior of µ and σ2 cannot retain a prior dependence structure for which Kendall’s τ is
not 0. Under the conditions for Corollary 4.1, any attempt to inject positive or negative
dependence into this posterior will be unsuccessful in the limit of infinite data. That is,
once both µ and σ2 are precisely estimated from the data, there will be no practical corre-
lation between their estimates. However, imposing prior dependence is nevertheless useful
for small sample sizes.

While chronically rejected dependence structures can supplement information from
small samples, it would be ideal if the source of posterior dependence for θ were transpar-
ent. Corollary 4.1 can be used to determine whether the prior or likelihood function gives
rise to this dependence. This knowledge would provide additional context with which to
interpret posterior analyses. This example also suggests that it is not worthwhile to spend
time eliciting complicated prior dependence structures that cannot be retained when col-
lecting large samples.

The use of informative priors to improve model identifiability is related to supple-
menting small samples with prior information. Although unidentifiability arises in other
contexts, the sample size is often small with respect to the complexity of models that
cannot be fully identified. Previous contributions detailed how using informative priors to
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enhance model identifiability impacts model interpretation and the convergence of Markov
chain Monte Carlo methods (Gelfand and Sahu, 1999; Eberly and Carlin, 2000; Gustafson,
2005). These contributions mainly considered informative marginal priors, and discussion
of informative prior dependence structures was limited.

4.4.2 Coverage of Credible Sets

Prior dependence structures may also be specified to calibrate Bayesian credible sets. In
this context, Gustafson (2012) referred to the data generating prior as “nature’s” prior.
The data generation prior in our framework is pD(θ) from (4.5). If the analysis prior p(θ)
coincides with “nature’s” prior and the model m( ·|θ) is correctly specified, credible sets
attain their nominal coverage (Gustafson, 2012). We let Jθ,1−α(y(n)) denote a credible set
for θ given the observed data y(n) with coverage 1− α. A popular choice for the credible
set is that of highest posterior density (HPD). Credible sets attain their nominal coverage
when

Pr(θ0 ∈ Jθ,1−α(Y (n))) = 1− α, (4.6)

where Y (n) ∼ m(·|θ0) such that θ0 is drawn from pD(θ). The probabilistic statement
in (4.6) is therefore made with respect to repeated sampling from the prior predictive
distribution of Y (n) . Once y(n) is observed, the credible set is not random and either
contains or does not contain a given value θ0.

We now investigate how the prior dependence structure impacts the calibration of
credible sets for the multinomial example from Section 4.3.3. We used the same prior
predictive distribution of Y (n) for this numerical study, joining the BETA(20, 40) prior
for Z1 and BETA(30, 30) prior for Z2 with a Gaussian copula parameterized with Pear-
son’s ρ = −0.9. For each of 10000 simulation repetitions, we approximated the posterior
of θ |y(n) as described in Section 4.3.3 with “nature’s” analysis prior. For each poste-
rior, we approximated its 95% HPD set for Z1 and Z2 using two-dimensional kernel den-
sity estimation (Ripley, 2002). Empirical coverage was estimated as the proportion of
simulation repetitions for which the parameter value θ0 = (Z1,0, Z2,0) used to generate
the multinomial data was contained in this HPD set. We implemented this process for
n = {101, 102, 103, 104, 105}. We then repeated this process for analysis priors p(θ) that
joined the marginal beta priors from “nature’s” prior with a Gaussian copula parameter-
ized by Pearson’s ρ = {−0.95,−0.85,−0.80, . . . , 0.95}. The results from this numerical
study are visualized in Figure 4.3.

The fact that all five coloured curves in Figure 4.3 roughly intersect the horizontal
dotted line when ρ = −0.9 confirms the result in (4.6). For small sample sizes n, empirical
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Figure 4.3: Empirical coverage of 95% HPD sets for the multinomial parameter θ =
(Z1, Z2) across 10000 posteriors. The horizontal dotted line denotes the nominal coverage,
and the vertical one denotes “nature’s” prior.

coverage generally deviated from the nominal coverage when ρ ̸= −0.9. These deviations
resulted in worse coverage when p(θ) was specified such that the magnitude of the negative
dependence between Z1 and Z2 was overstated or when the direction of the dependence
was inaccurate. The empirical coverage was greater than the nominal coverage when p(θ)
incorporated slightly weaker negative dependence between Z1 and Z2 than “nature’s” prior.
For those settings, the copula density function for p(θ) is flatter on [0, 1]2 than the copula
density function that defines “nature’s” prior. The resulting credible sets cover a greater
range of θ values but still account for the correct direction of dependence between Z1 and
Z2.

As the sample size n increases, the impact of prior dependence is reduced and the
empirical coverage approaches the nominal coverage for all ρ values considered. This con-
clusion is to be expected given the asymptotic theory discussed in Section 4.3. The insights
drawn from Figure 4.3 are not solely applicable to chronically rejected prior dependence
structures. We observed similar results for a numerical study with the gamma model in-
volving analysis priors that do not satisfy the conditions for chronic rejection in Corollary
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4.1. Those results are detailed in Appendix C.2.

Given the results from this subsection, we suggest erring on the side of understating the
strength of dependence structures a priori. This recommendation is not made to encourage
practitioners to engineer credible sets with coverages that exceed their nominal values. This
excess coverage may not be desirable and cannot persist as the sample size increases. We
instead make this recommendation to mitigate the potential ramifications of overstating
the strength of dependence structures on the calibration of credible sets. The notion of
harmful priors has been discussed elsewhere (see e.g., Reimherr et al. (2021)). However,
priors that are harmful to the calibration of credible sets are not necessarily harmful priors
in alternative contexts.

4.4.3 Inference Regarding Dependence Structures

One may also conduct posterior analyses to draw conclusions about the dependence struc-
ture of θ. The dependence structure is also relevant when considering the posterior of a
function of several parameters in θ. To achieve these objectives with posterior analysis,
we recommend using Corollary 4.1 to determine whether the prior dependence structure
can be retained. Per Table 4.1, we may draw vastly different conclusions about chroni-
cally rejected dependence structures given small and large samples obtained from the same
data generation process. Corollary 4.1 provides context to help gauge the reliability of our
conclusions for small samples. For large samples, Corollary 4.1 dictates if time should be
invested eliciting a dependence structure based on whether it can be retained a posteriori.

Corollary 4.1 could also be used to determine whether it is sensible to make inferences
about dependence structures. While copula-based priors may be able to accommodate
flexible dependence structures, the statistical models chosen for the likelihood function
may not have this capability. For the multinomial model, there is a single component for
each observation of y(n) = {yi}ni=1. It would be difficult to specify a likelihood function that
could accommodate complex dependence structures between the conditional multinomial
probabilities given the available data. As such, Corollary 4.1 could diagnose philosophical
issues with objectives for posterior analyses.

If each observation of y(n) is comprised of multiple components, incorporating a copula
into the likelihood function may promote greater coherence between the prior and posterior
dependence structures. For illustration, we suppose that y(n) = {(yi, y∗i )}ni=1, where yi ∼
EXP(κ), y∗i ∼ EXP(κ∗), and κ and κ∗ are rates. The likelihood function for this example
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is such that

L(θ; y(n)) ∝
n∏

i=1

κe−κyi × κ∗e−κ∗y∗i × c(1− e−κyi , 1− e−κ∗y∗i ;υ), (4.7)

where the copula density function is parameterized by υ and θ = (κ, κ∗,υ). If c(u1, u2;υ)
corresponds to the independence copula, the posterior correlation between κ and κ∗ based
on the inverse Fisher information will approach 0 as n → ∞. More flexible dependence
structures for κ and κ∗ could be accommodated a posteriori given different choices for
c(u1, u2;υ). In those settings, eliciting dependence structures for κ and κ∗ could be worth-
while – even for large samples since the dependence structure might be retained.

4.4.4 Design Priors

Not all prior distributions are elicited with the intent of defining a posterior. Prior dis-
tributions are regularly used for design purposes. For instance, priors might be used to
summarize expert opinion to choose inputs for a decision model (Garthwaite et al., 2005).
Design priors are also used in experimental settings to conduct sample size determination
(De Santis, 2007; Berry et al., 2011; Gubbiotti and De Santis, 2011). In these settings,
design priors are often informative and concentrated on θ values that are relevant to the
objective of the study. Data generated according to the design prior are often combined
with an uninformative analysis prior to assess whether a posterior criterion is satisfied.
Design priors will be used for this purpose in Chapter 5. In the context of this chapter,
the prior pD(θ) from (4.5) could be considered as a design prior.

Design priors are not directly combined with a likelihood function. It is therefore
not an issue if the dependence structure in the design prior satisfies the conditions for
chronic rejection outlined in Corollary 4.1. Generally, we do not need to make separate
considerations for small and large samples when using design priors. It is possible that the
design prior might coincide with an analysis prior p(θ) that defines a posterior of θ. In that
event, the design prior is subject to the previous recommendations in this section. The
discussion on the coverage of credible sets in Section 4.4.2 may be relevant if the design
and analysis priors do not coincide. We detail additional considerations for design prior
specification when reconsidering design with sampling distribution segments in Chapter 5.
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4.4.5 Posterior Concentration

Recent work has suggested that the choice of prior dependence structure can expedite the
convergence of the posterior around a fixed parameter value θ0. In particular, Michimae
and Emura (2022) suggested that joint priors with vine structures based on Archimedean
copulas lead to more accurate and concentrated posterior distributions in the context of
Bayesian ridge regression. The accuracy and concentration of the posterior of θ were
considered via the total mean absolute error between the posterior median and a fixed
parameter value θ0. Michimae and Emura’s (2022) numerical studies showed that the
posterior was more concentrated around θ0 when the marginal priors for the regression
coefficients were joined using (Archimedean) Clayton and Gumbel copulas (Nelsen, 2006)
instead of more standard Gaussian copulas.

The asymptotic theory presented in Section 4.3 indirectly suggests the choice of prior
dependence structure cannot give rise to increased posterior concentration for large sam-
ples. For small samples, further investigation into how the prior dependence structure
prompts increased posterior concentration is required. This investigation would disclose
whether improving posterior concentration is a sensible objective for prior dependence
specification. These recent recommendations serve as one source of motivation to study
the impact of the prior copula on the posterior distribution, which we do in Section 4.5.

4.5 Impact of the Prior Copula on the Posterior

4.5.1 Convergence of the Posterior Mode

For an arbitrary model, it may be challenging to correctly specify the dependence structure
a priori. As such, we consider how the choice of copula for the prior distribution impacts
the posterior. We suppose that two potential priors for θ, denoted p1(θ) and p2(θ), are
defined as in (4.4) using the same marginal distributions F1, . . . , Fd but different copula
density functions c1(u) and c2(u). We require that both copula density functions are
absolutely continuous and twice differentiable with respect to u = (u1, . . . , ud). To ensure
the domain of the parameter space is not inadvertently restricted, the priors should be
chosen such that p1(θ) > 0 and p2(θ) > 0 for all θ ∈ Θ.

We define posteriors p1(θ |y(n)) and p2(θ |y(n)) by combining the likelihood L(θ; y(n))
for the model m(y(n) |θ) with p1(θ) and p2(θ), respectively. We summarize each posterior
via its posterior mode for θ, denoted by θ̃

(k)
= argmaxθ pk(θ |y(n)) for k = 1, 2. In this

section, we consider the convergence of the posterior mode to a fixed value θ0. For a given
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sample y(n) , we compare the Euclidean distance between θ0 and each posterior mode,
denoted by Dk = ∥θ̃(k) − θ0∥2 for k = 1, 2. In contrast to Michimae and Emura (2022),
Theorem 4.2 indicates that we generally do not expect the choice of prior copula to impact
whether the posterior mode is closer to θ0 for large sample sizes n.

Theorem 4.2. Let Y (n) be generated independently from m( ·|θ0) such that all conditions
for the BvM theorem hold. Let priors p1(θ) and p2(θ) be defined as in (4.4) with the same
marginals F1, . . . , Fd but different copula density functions c1(·) and c2(·) that are absolutely
continuous and twice differentiable. Suppose p1(θ) > 0 and p2(θ) > 0 for all θ ∈ Θ. Given
y(n), define posteriors pk(θ |y(n)) ∝ L(θ; y(n))pk(θ) with posterior mode θ̃

(k)
for k = 1, 2.

Let u0 = (F1(θ1,0), . . . , Fd(θd,0)) and Dk = ∥θ̃(k) − θ0∥2 for k = 1, 2.

(a) If ∇u

[
log(c2(u))− log(c1(u))

]
u=u0

̸= 0, then limn→∞ Pr(D2 ≤ D1) = 0.5.

(b) If u0 is a local maximum of log(c2(u))− log(c1(u)), then limn→∞ Pr(D2 ≤ D1) = 1.

Theorem 4.2 explains that whether the choice of prior copula gives rise to faster con-
vergence depends on the function log(c2(u)) − log(c1(u)). The posterior mode θ̃

(k)
max-

imizes the logarithm of pk(θ |y(n)) for k = 1, 2. The log-posteriors log [p1(θ |y(n))] and
log [p2(θ |y(n))] differ only by their prior copula log-density functions. Differences in θ̃

(1)

and θ̃
(2)

are therefore driven by differences in log(c1(u)) and log(c2(u)). Each copula log-
density function prompts an additive contribution to the log-posterior. We suppose that
u0 is not a stationary point of log(c2(u)) − log(c1(u)) in part (a). As n increases, the
contribution from log(c2(u)) will not uniformly force its posterior mode closer to (or fur-
ther from) θ0 for all samples y(n) than that from log(c1(u)). When u0 is instead a local
maximum of log(c2(u))− log(c1(u)), the contribution from log(c2(u)) will force θ̃

(2)
closer

to θ0 than θ̃
(1)

for all samples y(n) as n increases. This case is considered in part (b).

While c1(·) and c2(·) are functions of θ because u = (F1(θ1), . . . , Fd(θd)), we consider
the partial derivatives of the copula log-density functions with respect to u instead of θ.
For j = 1, . . . , d, it follows by the chain rule that

∂

∂θj

[
log(c2(u))− log(c1(u))

]
= fj(θj)

∂

∂uj

[
log(c2(u))− log(c1(u))

]
. (4.8)

We can factor out the fj(θj) term because p1(θ) and p2(θ) are defined using the same
marginals. The priors were also defined such that p1(θ) > 0 and p2(θ) > 0 for all θ ∈ Θ.
Therefore, fj(θj) must be positive, and the partial derivative in (4.8) with respect to
θj is 0 if and only if the partial derivative with respect to uj is 0. This correspondence
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ensures the results from Theorem 4.2 generalize over different specifications for the marginal
distributions.

We prove Theorem 4.2 in Appendix C.3. We note that if u0 is a local minimum of
log(c2(u))− log(c1(u)), then limn→∞ Pr(D2 ≤ D1) = 0. This follows directly from part (b)
of Theorem 4.2 by switching the labels on c1(·) and c2(·). The case where u0 is a saddle
point of log(c2(u)) − log(c1(u)) is excluded from both parts (a) and (b). In that case,
Pr(D2 ≤ D1) may converge to a constant that is not 0.5 or 1. We explore the results from
Theorem 4.2 via simulation and explain their practical implications in Section 4.5.2.

4.5.2 Practical Implications

Here, we conduct simulations to consider Theorem 4.2 in practice. To do so, we consider
an example adapted from Michimae and Emura (2022) since their recommendations are
inconsistent with the results of Theorem 4.2. They considered a ridge regression model with
three regression coefficients in the presence of multicollinearity, where the parameters of the
relevant prior copulas were random variables specified using a hierarchical framework. The
simplified example for our numerical study adapts aspects of their model for illustrative
purposes. Note that we contrast our results with Michimae and Emura’s (2022) findings
in Section 4.5.3.

Our simplified example considers the following linear regression model for the outcome
yi and predictors xi1 and xi2:

yi = β1xi1 + β2xi2 + εi,

where εi ∼ N (0, 5) independently for i = 1, . . . , n. The assumptions that the linear
equation has an intercept of zero and the error terms have known variance reduce the
dimensionality of the problem for illustration. That is, θ = (β1, β2). We specify standard
normal marginal priors for both β1 and β2.

We join these marginal priors with two prior copulas in this numerical study: c1(u) = 1
for u ∈ [0, 1]2 corresponds to the independence copula and c2(u) corresponds to a two-
dimensional t-copula with ν = 4 degrees of freedom and a diagonal correlation matrix R.
We select the first copula because it is often assumed that the regression coefficients are
independent a priori in Bayesian regression models. The corresponding joint prior for β1
and β2 is therefore a standard bivariate normal distribution with diagonal R. The choice
for the second copula is motivated by c2(u) having a local maximum and saddle points to
illustrate the results from Theorem 4.2. Figure 4.4 visualizes the logarithm of this copula
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Figure 4.4: The logarithm of the t-copula density function with diagonal R and ν = 4.
The local maximum at u = (0.5, 0.5) and saddle point at u = (0.813, 0.813) are given by
the blue and pink points, respectively.

density function. The selected t-copula does not accommodate strong negative or positive
dependence between β1 and β2, but it reflects a greater likelihood of observing extreme
values for both β1 and β2 relative to their marginal priors. For instance, this might occur
if both marginal priors were misspecified.

We consider six values for θ0 to define the data generation process for Y (n) . These
six values are meant to illustrate the convergence of the posterior mode in a variety of
settings. Because u0 = (F1(θ1,0), F2(θ2,0)), we can readily convert between θ0 and u0 given
the specified N (0, 1) marginals. The marginal priors for β1 and β2 were chosen to be rather
informative so that we observe a range of behaviour for the settings corresponding to part
(a) of Theorem 4.2.

For each θ0 value, we generated 10000 samples of size n for various sample sizes between
5 and 105. Each observation was simulated independently as yi = β1,0xi1+β2,0xi2+εi, where
(xi1, xi2) ∼ N (0, I2) and εi ∼ N (0, 5) for i = 1, . . . , n. For each of these 10000 samples, we
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found both posterior modes θ̃
(1)

and θ̃
(2)

using calculus. We then estimated Pr(D2 ≤ D1)
as the proportion of samples for which θ̃

(2)
, corresponding to the t-copula, was closer to θ0

than θ̃
(1)
. To consider the practical impact of Theorem 4.2, we also computed the mean

absolute difference between D2 and D1 for each sample size n. Figure 4.5 visualizes these
results for each of the six scenarios, which we now describe.

We first consider case 1, where u0 = (0.5, 0.5). This point is a local maximum of c2(u)
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Case 3: (u1,0,u2,0) = (0.813,0.813)
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Case 5: (u1,0,u2,0) = (0.85,0.9)
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Case 2: (u1,0,u2,0) = (0.495,0.495)
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Case 4: (u1,0,u2,0) = (0.5,0.99)
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Case 6: (θ1,0,θ2,0) = (− 5,8)

Figure 4.5: Estimated probability that θ̃
(2)

is closer to θ0 than θ̃
(1)

(solid red) and mean
absolute difference between D2 and D1 (dashed blue) as a function of n on the logarithmic
scale (base 10) for six θ0 values.
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and therefore also a local maximum of log(c2(u))− log(c1(u)) = log(c2(u)). As indicated
by Theorem 4.2, the probability that θ̃

(2)
is closer to θ0 than θ̃

(1)
approaches 1 as n→∞.

Even though D2 is less than D1, their absolute difference is practically negligible for large
sample sizes n. Case 2 considers a point u0 = (0.495, 0.495) that is extremely close to
the local maximum. The plot for case 2 is similar to the previous one for small n, but the
estimate for Pr(D2 ≤ D1) slowly decreases as n → ∞. The estimated probability is still
0.673 for n = 105. For n = 5× 106 (not pictured), we estimated Pr(D2 ≤ D1) to be 0.521.
While Pr(D2 ≤ D1) approaches 0.5 in theory, it may not be 0.5 in practice if the sample
size must be prohibitively large for the asymptotic result to hold. Case 3 examines a saddle
point at u0 = (F̃ (1; 4), F̃ (1; 4)), where F̃ (·; 4) is the CDF of the Student’s t-distribution
with ν = 4 and F̃ (1; 4) ≈ 0.813. This setting is noteworthy because Pr(D2 ≤ D1) does
not approach 0.5 or 1. The probability for this scenario instead approaches 0.563, and we
confirmed this limiting probability using samples of size n = 5× 106.

Case 4 considers a point u0 = (0.5, 0.99) where the independence copula performs better
for smaller sample sizes in that the estimated probability approaches 0.5 from below. We
note that c2(u0) = 0.533 < 1 = c1(u0), which occurs because this bivariate t-copula deems
scenarios where only one of β1 or β2 is extreme relative to their marginal priors as more
rare than the independence copula. If c2(u0) is less (greater) than c1(u0), Pr(D2 ≤ D1)
often approaches 0.5 from below (above). However, this behaviour is not guaranteed.
Case 5 examines a point u0 = (0.85, 0.9) at which the estimated probability approaches
0.5 from above. Here, c2(u0) = 1.047 > 1, but the estimate for Pr(D2 ≤ D1) is less
than 0.5 for sample sizes less than n = 20. Lastly, case 6 is defined in terms of its
value for θ0 = (β1,0, β2,0) = (−5, 8) because the corresponding u0 value of (2.87 × 10−7,
1−6.22×10−16) is quite extreme. For this setting, c2(u0) = 5054.68 >> 1, andD2 is roughly
0.8 smaller than D1 on average for n = 10. Yet, the estimated probability approaches 0.5
from below for large sample sizes. This likely occurs because c2(u) is volatile near u0.

For each case and prior combination, we also estimated empirical coverage as the pro-
portion of the 10000 posteriors for which the 95% HPD set included the parameter value
θ0 when n = {101, 102, 103, 104, 105}. The HPD sets were again estimated using two-
dimensional kernel density estimation on posterior draws obtained via sampling-resampling
methods. The empirical coverage results are summarized for both prior copulas in Table
4.2. Per Table 4.2, the empirical coverage is similar for both prior copulas at all samples
sizes considered in cases 1, 2, 3, and 5. For small sample sizes, the empirical coverage
exceeds the nominal value of 95% in cases 1, 2, and 3. Since this trend is observed for
both prior copulas, it is caused by the informative nature of the relatively well-specified
marginal priors for β1 and β2. These marginal priors are misspecified in cases 4 and 6,
so the empirical coverage is less than 95% for both prior copulas when the sample size is
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Table 4.2: Empirical coverage of 95% HPD sets for θ = (β1, β2) across 10000 posteriors
defined using both prior copulas.

Case for Independence Copula

n 1 2 3 4 5 6
101 0.9928 0.9916 0.9685 0.8723 0.9465 0.0023
102 0.9574 0.9575 0.9558 0.9387 0.9479 0.5698
103 0.9510 0.9550 0.9515 0.9509 0.9504 0.9181
104 0.9519 0.9525 0.9517 0.9546 0.9542 0.9452
105 0.9546 0.9501 0.9507 0.9523 0.9473 0.9508

Case for t-Copula

n 1 2 3 4 5 6
101 0.9939 0.9938 0.9683 0.7769 0.9465 0.0002
102 0.9583 0.9603 0.9570 0.9234 0.9503 0.5148
103 0.9509 0.9558 0.9532 0.9481 0.9507 0.9162
104 0.9515 0.9532 0.9524 0.9512 0.9553 0.9451
105 0.9539 0.9503 0.9518 0.9516 0.9479 0.9524

small. The empirical coverage is better when using the independence copula for small n in
both cases – even though θ̃

(2)
was generally closer to θ0 than θ̃

(1)
for case 6 when n was

small in Figure 4.5.

4.5.3 Connections to Other Work

Our simulations demonstrate the value in considering the copula density functions c1(u)
and c2(u) when choosing between two prior dependence structures. In particular, we may
want to consider the local optima for the copula densities. This numerical study also sug-
gests that copulas have limited ability to reliably prompt more accurate and concentrated
posterior distributions around a fixed parameter value θ0. The true value of u0 is unknown
in practice. And even if u0 is such that c2(u0) > c1(u0), it does not guarantee that θ̃

(2)

will be closer to θ0 than θ̃
(1)

for small or large sample sizes. Regardless of whether the
prior dependence structure is a chronically rejected one, choosing a prior copula to improve
posterior concentration does not appear to be a sensible objective.

We now contrast our conclusions with Michimae and Emura’s (2022) recommendations.
Their numerical studies considered several levels of multicollinearity between the regression
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covariates for a single θ0 value. The joint prior for their three regression coefficients
leveraged a vine structure with three bivariate copulas. For each bivariate copula, the
corresponding u0 value lies directly on the upper Fréchet-Hoeffding bound. Each u0 value
does not necessarily correspond to a local maximum of the Clayton or Gumbel copula
density functions they considered. However, the Clayton and Gumbel families of copulas
accommodate positive prior dependence and their density functions are generally largest
near the upper Fréchet-Hoeffding bound. Their single θ0 value is therefore similar to that
used in case 2 of our study. They also considered relatively small sample sizes ranging
from n = 20 to 200. Given the results for case 2 in Figure 4.5, it is not surprising that
their normal posterior medians for the regression coefficients were generally closer to their
θ0 values when using Clayton and Gumbel copulas. Our numerical results suggest that it
is pertinent to consider a variety of θ0 values and sample sizes n before making general
statements about the impact of the prior copula on the posterior distribution.

We acknowledge that Michimae and Emura (2022) considered a more complicated
model, which leveraged a hierarchical framework to specify the prior copula. Although
not the focus of this chapter, Monte Carlo simulation could likely be used to explore the
local optima of such prior copula density functions and extend the results from Theorem
4.2 to a hierarchical framework. This extension is one of several possible generalizations
that could be made to how the analysis prior in (4.4) is defined.

4.6 Discussion

In this chapter, we proposed a framework to consider whether prior dependence structures
can be retained a posteriori. This framework improves transparency when making inference
about posterior dependence structures and helps discard chronically rejected dependence
structures for a parameter θ that cannot be retained as data are observed. Discarding
such dependence structures simplifies the prior specification process, particularly when
practitioners aim to collect large samples. We also discussed small-sample objectives for
prior specification to clarify whether the inability to retain the prior dependence structure
presents practical issues for a given posterior analysis. This chapter emphasized copula-
based priors, but the notion of chronically rejected dependence structures is still applicable
to multivariate prior distributions that are not explicitly defined using copulas, such as
multivariate normal priors.

Since correctly specifying the dependence structure a priori for an arbitrary model may
be difficult, we examined how the choice of prior copula impacts the posterior distribution.
We proved asymptotic results regarding how this choice of copula impacts the convergence
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of the posterior mode to a fixed parameter value θ0. While examining the local optima
of candidate copula density functions is valuable, our numerical studies showed that prior
copulas should not be selected to improve the posterior’s ability to recover θ0. These
results contradicted past recommendations that suggested the choice of prior copula could
reliably improve posterior concentration.

Future work could extend the results from this chapter to hierarchical settings, in which
the hyperparameters of the prior copula are themselves random variables. Moreover, the
theoretical results in this chapter are based on the standard BvM theorem. To broaden the
applicability of this framework, we could consider nonparametric methods for specifying
prior dependence. We could also consider chronically rejected prior dependence structures
in the presence of model misspecification (i.e., when L(θ; y) that defines the posterior does
not coincide withm(·|θ) used to generate the data). In that case, we require more complex
characterizations of prior dependence than I(θ0)

−1 for large samples.
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Chapter 5

Design with Posterior-Based
Operating Characteristics

5.1 Preamble

In this chapter, we propose a design framework that boasts several advantages over the
methodology for Bayesian hypothesis tests presented in Chapter 3. First, we relax the
design assumption that data are generated from statistical models with known, fixed pa-
rameter values and can use the guidance for prior elicitation provided in Chapter 4 to
specify nondegenerate design priors. Second, we aim to formally incorporate an analogue
to type I error into these designs by allowing the critical value γ to vary as a context-
specific probabilistic cutoff. The approach from Chapter 3 is aligned with power criteria,
but the notion of type I error would need to be explored via additional simulation. More-
over, designs that control posterior-based operating characteristics for both type I and II
errors may better comply with requirements of certain regulating bodies. This chapter also
considers imbalanced sample size determination in more detail than Chapter 3. Lastly, the
work in this chapter accommodates two-group comparisons that account for additional
covariates and scenarios where the normal approximation to the sampling distribution of
the MLE is poor for moderate sample sizes.

Despite these advantages, the methodology from Chapter 3 is still useful due to its
computational efficiency and accessibility to practitioners who have limited experience
with Bayesian statistics. While this thesis chapter borrows most notation from Chapter 3,
there are a few differences that we highlight here. In this chapter, (fixed) parameter values
drawn from a design prior are denoted by η∗

j instead of ηj,0 for reasons described later.
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Because η∗
j,n was used to denote approximations to the posterior mode η̃j,n in Chapter 3,

these approximations are denoted by η̈j,n in this chapter.

5.2 Background

In recent decades, Bayesian methods for data-driven decision making have become in-
creasingly popular. Two-group comparisons have long been a cornerstone of statistical
analysis. Posterior analyses that compare scalar quantities θ1 and θ2 are often of in-
terest, where the characteristic θj describes a comparison (j = 1) or reference (j = 2)
group. This chapter emphasizes two-group comparisons facilitated via the posterior of
θ = θ1 − θ2, including those made with ratio-based metrics θ > 0 that can be expressed
as a difference on the logarithmic scale. For such analyses, interval hypotheses of the
form H1 : θ ∈ (δL, δU) are routinely considered, where −∞ ≤ δL < δU ≤ ∞. The interval
(δL, δU) accommodates the context of comparison. Assuming larger θj values are preferred,
the intervals (δL, δU) = {(0,∞), (−δ, δ), (−δ,∞)} for an equivalence margin δ > 0 may be
used to respectively assess whether θ1 is superior, practically equivalent, or noninferior to
θ2 (Spiegelhalter et al., 1994, 2004).

Decision-making methods with posterior probabilities have been proposed in a variety
of settings (see e.g., Berry et al. (2011); Brutti et al. (2014); Stevens and Hagar (2022)).
Given data y1 and y2 observed from two groups, the posterior probability Pr(H1 | y1,y2) is
compared to a critical value 0.5 ≤ γ < 1. If that probability is greater than γ, one should
conclude θ ∈ (δL, δU). When comparing complementary hypotheses H1 : θ ∈ (δL, δU)
and H0 : θ /∈ (δL, δU), decision-making methods with Bayes factors (Jeffreys, 1935; Kass
and Raftery, 1995; Morey and Rouder, 2011) were demonstrated to be a special case of
those with posterior probabilities in (3.2). This chapter therefore focuses on posterior
probabilities, though the methods extend to the use of Bayes factors. Unlike in Chapter 3,
hypothesis tests with credible intervals are not addressed with this methodology, but this
accommodation could be made in future work.

In clinical trials, regulatory agencies require that Bayesian designs are assessed with
respect to frequentist operating characteristics (FDA, 2019). Decision makers in industrial
and corporate settings may also want to control the power and type I error rate of Bayesian
designs to justify funding studies and using them to draw trustworthy conclusions. Since
these design procedures leverage theory from Bayesian and frequentist statistics, they are
often called hybrid approaches to sample size determination (Berry et al., 2011). These
hybrid approaches involve exploring the sampling distribution of posterior probabilities
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under various data generation processes. These sampling distributions are often explored
by approximating posteriors corresponding to many hypothetical samples.

In design settings, the data have not been observed and are random variables. In this
chapter, data from a random sample are represented by Y (n,q) , consisting of observations
{yi1}ni=1 from group 1 and observations {yi2}⌊qn⌉i=1 from group 2 for some constant q > 0. A
design prior pD(η) (De Santis, 2007; Berry et al., 2011; Gubbiotti and De Santis, 2011)
models uncertainty regarding the model parameters η = (η1,η2) from each group in pre-
experimental settings. As in Chapter 3, the characteristic of interest θj for group j is
typically specified as a function g(·) of the model parameters: θj = g(ηj) for j = 1, 2.
Since the (informative) design prior is concentrated on θ values that are relevant to the
objective of the study, it is usually different from the analysis prior used to analyze the
observed data. The design prior gives rise to the prior predictive distribution of Y (n,q) :

p(y(n,q)) =

∫ n∏
i=1

f(yi1;η1)

⌊qn⌉∏
i=1

f(yi2;η2)pD(η)dη, (5.1)

where f(y;ηj) is the model for group j = 1, 2. Gubbiotti and De Santis (2011) defined
the conditional and predictive approaches for specifying the prior predictive distribution
of Y (n,q) . The conditional approach assigns all prior weight in pD(η) to a design value η∗,
whereas the predictive approach uses a nondegenerate design prior.

Various methods have been proposed to control posterior-based operating characteris-
tics (Berry et al., 2011; Gubbiotti and De Santis, 2011; Brutti et al., 2014). To control both
power and the type I error rate for a posterior analysis, it is often necessary to specify two
prior predictive distributions for Y (n,q) . One defines the power criterion under the assump-
tion that the hypothesis H1 is true. The selected sample size n ensures the probability of
concluding that H1 is true is at least 1− β for some target power 1− β ∈ (0, 1):

E
[
I{Pr(H1 |Y (n,q)

1 ) ≥ γ}
]
≥ 1− β, (5.2)

for some critical value γ ∈ [0.5, 1). The criterion in (5.2) is considered when Y (n,q)

1 ∼
p1(y

(n,q)

1 ) as defined in (5.1) with a design prior pD1(η) such that pD1(H1) = 1.

In contrast, a criterion for the type I error rate is defined by assuming that H1 is false.
To bound the type I error rate, the selected critical value γ ensures the probability of
concluding that H1 is true is at most α for some significance level α ∈ (0, 1):

E
[
I{Pr(H1 |Y (n,q)

0 ) ≥ γ}
]
≤ α. (5.3)
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The criterion in (5.3) is considered when Y (n,q)

0 ∼ p0(y
(n,q)

0 ) as defined in (5.1) with a
design prior pD0(η) such that pD0(H1) = 0. For design with posterior-based operating
characteristics, the choice of critical value γ ∈ [0.5, 1) is not purely dictated by the upper
bound α for the type I error rate. With a degenerate design prior pD0(η) such that
θ∗ = g(η∗

1) − g(η∗
2) equals δL or δU , the sampling distribution of Pr(H1 |Y (n,q)

0 ) converges
to a uniform distribution as n → ∞ under weak conditions (Golchi and Willard, 2023).
In such cases, choosing γ ≈ 1 − α will satisfy the criterion in (5.3) for large sample sizes.
However, the optimal choice for γ may differ substantially from 1−α for moderate sample
sizes or when nondegenerate design priors are used to define the prior predictive distribution
of Y (n,q)

0 . Although not pursued in this chapter, the proposed methodology can be trivially
extended to control the false discovery rate (FDR) by taking α = (1− β) / (1/FDR− 1).

To support flexible study design, (n, γ) combinations that control posterior-based oper-
ating characteristics can be found using simulation. Most simulation-based procedures to
evaluate the power criterion in (5.2) with design priors follow a similar process (Wang and
Gelfand, 2002). First, an (n, γ) combination is selected. Second, a value η∗ is drawn from
the design prior pD1(η).

3 Third, data y(n,q)

∗1 are generated according to the model f(y;η∗).
Fourth, the posterior of θ given y(n,q)

∗1 is approximated to check if Pr(H1 |y(n,q)

∗1 ) > γ. This
process is repeated many times to determine whether the power criterion is satisfied with
probability at least 1− β for the selected (n, γ) combination.

A similar process can be repeated to evaluate whether the criterion in (5.3) is satisfied
for a given (n, γ) combination with the design prior pD0(η), samples y(n,q)

∗0 , and significance
level α. To find a suitable design, time is wasted considering (n, γ) combinations that are
suboptimal. This computational inefficiency is compounded over all combinations of the
design inputs that practitioners wish to investigate – including the interval (δL, δU), design
and analysis priors, and values for α, β, and q. A fast framework to determine the (n, γ)
combination that minimizes the sample size n while satisfying criteria for both posterior-
based operating characteristics would mitigate this issue and expedite collaborative study
design.

Recently, several strategies have been employed to reduce the computational burden
associated with controlling posterior-based operating characteristics in Bayesian study de-
sign. Certain strategies are tailored to specific statistical models. For instance, Shi and Yin
(2019) exploited the monotonicity of posterior probabilities as a function of the number
of successful Bernoulli trials to find optimal critical values that maintained type I error

3The draw η∗ from the design prior is akin to η0 from Chapter 3. However, we do not use zeros to
denote fixed parameter values in this chapter since “0” and “1” are used to distinguish between sampling
distributions under H0 and H1.
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rates in sequential designs. Other approaches accommodate a variety of statistical models.
One such general strategy imposes parametric assumptions on the sampling distribution
of posterior probabilities. Golchi (2022) fit beta distributions to approximate such sam-
pling distributions for various design values η∗ using Gaussian processes that exploited
spatial correlation between similar design inputs. Golchi and Willard (2023) presented an
alternative method to fit those beta distributions using asymptotic theory.

An alternative general strategy that we propose here involves exploring segments of sam-
pling distributions of posterior probabilities. In Chapter 3, we proposed such a method for
power curve approximation with posterior analyses. That method prioritizes exploring pos-
terior probabilities such that Pr(H1 |data) ≈ γ without imposing parametric assumptions
on the sampling distribution of Pr(H1 |data). That approach is useful but its simplifying
assumptions may be impractical in complex design scenarios. First, we only considered the
prior predictive distribution of Y (n,q) under degenerate design priors. Second, our method
from Chapter 3 did not jointly explore the (n, γ)-space and required complete reimple-
mentation to consider various, user-specified γ values. Finally, we did not consider type I
error rates, so the impact of the analysis priors on such rates was not well studied. Here,
we overcome these limitations from Chapter 3 by generalizing our design methods with
sampling distribution segments to facilitate scalable design with posterior-based operating
characteristics.

The remainder of this chapter is structured as follows. We describe an example with
genetically modified crops that involves the comparison of ordinal means in Section 5.3.
This example is referenced throughout the chapter to illustrate the proposed methods. In
Section 5.4, we present a general framework to define nondegenerate design priors under
the assumption that H1 is true or false, and we choose design priors for the illustrative
example. In Section 5.5, we propose a method to determine which (n, γ) combination
minimizes the sample size n while satisfying the criteria in (5.2) and (5.3). This procedure
explores segments of sampling distributions of posterior probabilities using theoretical re-
sults that we prove in this chapter. In Section 5.6, we repurpose the posterior probabilities
used to find the optimal (n, γ) combination to create contour plots that facilitate the inves-
tigation of various n and γ values; this process is illustrated for the example with ordinal
data. We conclude with a summary and discussion of extensions to this work in Section
5.7. Additional theoretical results and numerical studies are provided in Appendix D. To
streamline the discussion in the main portion of this chapter, our design framework for
two-group comparisons with additional covariates is also proposed in that appendix.
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5.3 Illustrative Example

Since malnutrition caused by nutrient intake deficiencies is a serious concern in the African
country of Malawi, the investigation of genetically modified maize (corn) varieties is preva-
lent. These varieties contain more provitamin A carotenoids that are converted into vitamin
A during the digestion process than standard varieties. Munkhuwa et al. (2022) recently
conducted a study at the Lilongwe University of Agriculture and Natural Resources (LUA-
NAR) to compare an existing maize variety (MH43 A, provitamin A level: 9.3 µg/g) with a
newer one (MH44 A, provitamin A level: 9.6 µg/g). While the newer maize variety boasts
a higher provitamin A level, this increase will not lead to more vitamin A production if
there are substantial aversions to the newer variety compared to existing ones.

The LUANAR study characterized how much children between 6 and 24 months of
age enjoyed a porridge sample made with one of the two maize varieties using a Likert
scale (Likert, 1932) with w = 5 categories. Scores of 1 and 5 respectively indicated that
the child was very dissatisfied and very satisfied with the porridge sample, prompting an
observation yij ∈ {1, 2, 3, 4, 5} for each child i = 1, ..., nj, j = 1, 2. In total, n1 = 108 and
n2 = 137 children were given porridge samples made with the MH44 A (j = 1) and MH43
A (j = 2) varieties, respectively. For group j, the multinomial distribution assumes that
each participant is assigned Likert response v with probability 0 < pjv < 1 for v = 1, ..., w
such that

∑w
v=1 pjv = 1. Our metric of interest is θj = E(yij) =

∑w
v=1 vpjv for group

j = 1, 2. We consider the new maize variety to be noninferior to the existing one when
θ = θ1 − θ2 ∈ (−0.5,∞), where δL = −0.5 was chosen for illustration to reflect half of the
distance between consecutive categories on this ordinal scale.

The observed sample means for the Likert data are θ̂1 = 4.18 and θ̂2 = 4.38. The
distribution of Likert responses for each maize variety is visualized in the left plot of
Figure 5.1. We assign uninformative Dirichlet DIR(0.8, 0.8, 0.8, 0.8, 0.8) priors to ηj =
pj = (pj1, pj2, ..., pj5) for j = 1, 2. We obtain 105 posterior draws for p1 and p2 using
MCMC methods to approximate the posterior of θ = θ1 − θ2 given y1 = {yi1}n1

i=1 and
y2 = {yi2}n2

i=1, which is illustrated in the right plot of Figure 5.1. The posterior probability
Pr(θ > −0.5 | y1,y2) = 0.9877 is larger than most conventional critical values γ ∈
[0.5, 1), suggesting that the new maize variety is noninferior to the old. Nevertheless,
design methods that prescribe γ to control posterior-based operating characteristics prior
to observing data provide a valuable framework to draw informed conclusions based on
such posterior probabilities.
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Figure 5.1: Left: Distribution of Likert data for each maize variety. Right: Visualization
of the posterior for the difference between the ordinal means.

5.4 A Framework for Design Prior Specification

5.4.1 Design Prior Specification and Segmentation

Our framework for prior specification directly elicits priors for the model parameters η1 and
η2 and indirectly induces priors on the characteristics θ1, θ2, and θ. Prior specification for
the model parameters corresponding to a single group of data was considered in Chapter 4.
For two-group comparisons, existing knowledge of the reference group (j = 2) can often be
used to choose a prior pD(η2) and induce a prior pD(θ2) on θ2 = g(η2). Interactive graphical
interfaces are commonly used to facilitate iterative prior elicitation procedures (Chaloner,
1996; Williams et al., 2021). These interfaces provide instant feedback regarding how
changes to the directly specified prior pD(ηj) impact the induced prior pD(θj). In Section
5.4.2, we demonstrate the utility of such procedures for the illustrative example. Prior
specification for η1 and θ1 in the comparison group (j = 1) is typically more difficult.
However, we can often use visualization techniques along with the anticipated effect size
for θ = θ1 − θ2 and the prior pD(η2) to ensure the priors pD(η1) and pD(θ1) are suitable.

We aim to reduce the cognitive burden associated with specifying separate design priors
pD1(η) and pD0(η) for the criteria in (5.2) and (5.3), respectively. To do so, we specify a
design prior pD(η) for η = (η1,η2) that is diffuse enough to ensure that the induced prior
pD(θ) assigns nonneglible prior weight to the interval (δL, δU) and its neighbouring regions.
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We respectively define pD1(η) and pD0(η) for the power and type I error rate criteria by
segmenting the prior pD(η). For design purposes, we define two regions in the θ-space to
carry out this segmentation. The first region G = {(GL, GU) : δL ≤ GL < GU ≤ δU}
pertains to the power criterion in (5.2), where θ ∈ G ensures that H1 : θ ∈ (δU , δL) is true.
The second region R = {(R1L, R1U ] ∪ [R2L, R2U) : R1L < R1U ≤ δL < δU ≤ R2L < R2U}
pertains to the criterion for the type I error rate in (5.3). The region R is defined to
accommodate interval hypotheses based on practical equivalence where both θ < δL and
θ > δU are undesirable outcomes. When either δL or δU is not finite, the region R can be
expressed as a single region R = {(RL, RU ] : RL < RU ≤ δL ∨ [RL, RU) : δU ≤ RL < RU}.
For either scenario, the hypothesis H1 is false when θ ∈ R. In this work, we refer to the
regions G and R as the green and red regions of the θ-space, respectively. Further details
concerning the definition of these regions are provided in Section 5.4.2.

One method to define the design priors pD1(η) and pD0(η) involves truncating the
more diffuse prior pD(η) according to the regions G and R such that pD1(η) ∝ pD(η)I(θ ∈
G) and pD0(η) ∝ pD(η)I(θ ∈ R). Since we can readily sample from pD(η), rejection
sampling methods (Casella et al., 2004) allow us to obtain samples from pD1(η) and pD0(η).
Alternatively, we could define design priors such that pD1(η) ∝ pD(η |θ ∼ U(G)) and
pD0(η) ∝ pD(η |θ ∼ U(R)), where U(·) indicates that θ is uniformly distributed over
that region. These design priors provide a mechanism for obtaining parameter values η
corresponding to particular regions of the θ-space that de-emphasizes the shape of the
induced prior pD(θ). For these design priors, we can use sampling-resampling methods
(Rubin, 1988; Smith and Gelfand, 1992) to obtain a sample from pD1(η) or pD0(η) given
a sample from pD(η). This sampling-resampling approach is the one we employ in this
chapter, but a host of other methods could also be used to choose the design priors pD1(η)
and pD0(η). We recommend consulting the literature on prior elicitation if alternative prior
specification methods are required (Chaloner, 1996; Garthwaite et al., 2005).

With respect to the objectives for prior specification from Chapter 4, it typically does
not matter whether the design prior dependence structure of pD1(η) or pD0(η) can be
retained a posteriori. The design priors will not be combined with the relevant likelihood
functions, so it could be worthwhile to invest time eliciting a complicated dependence
structure that would not be retained upon collecting enough data. We generally advocate
for simplifying design prior specification where possible to ensure this process is feasible,
but the extensiveness of this process should be dictated by the stakeholders of a study.
Lastly, we note that our framework can be simplified to accommodate the conditional
approach to define prior predictive distributions for Y (n,q)

1 and Y (n,q)

0 given a pair of design
values η∗

G and η∗
R corresponding to θ values in G and R, respectively.
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5.4.2 Design Priors for the Illustrative Example

For the multinomial model used in Section 5.3, it is not trivial to choose an informative
prior for ηj = pj that enforces the unit-sum constraint

∑w
v=1 pjv = 1. We instead assign

a joint prior to variables obtained with the invertible transformation from Elfadaly and
Garthwaite (2017) discussed in Chapter 4:

Zj1 = pj1, Zjv =
pjv

1−
∑v−1

t=1 pjt
for v = 2, ..., w − 1, and Zjw = 1, (5.4)

for groups j = 1, 2. This transformation was previously considered in Section 4.2.3 for
a single group of data. The variable Zjv represents the probability that an observation
from group j is assigned to category v given that it has not been assigned to categories
1, ..., v − 1. We assign marginal BETA(αjv, βjv) priors to Zjv, v = 1, ..., w − 1 to induce a
joint prior on pj that satisfies the unit-sum constraint. We join the marginal beta priors

with an independence copula for illustration. If {Zjv}w−1
v=1 are independent, pj follows a

standard Dirichlet distribution when βv = αv+1+βv+1 for v = 1, ..., w−2, and a generalized
Dirichlet distribution (Connor and Mosimann, 1969) otherwise.

The following interactive graphical interface was developed and used to specify de-
sign priors for the illustrative example: https://luke-hagar.shinyapps.io/Ordinal_

Priors/. To use this interface to specify pD(ηj), practitioners input point estimates
p̂j1, ..., p̂jw such that

∑w
v=1 p̂jv = 1. For the reference group (j = 2), we used point esti-

mates informed by the Likert data: (p̂21, ..., p̂25) = (0.015, 0.015, 0.102, 0.314, 0.554). Initial
estimates for the medians of {Zjv}w−1

v=1 are populated via (4.2). Progressing from v = 1 to
w− 1, practitioners consider the ξ-quantiles of each Zjv variable for some 0 < ξ ̸= 0.5 < 1.
These estimates for the median and ξ-quantile uniquely define marginal beta priors for each
Zjv variable. We used this process with ξ = 0.95 to specify the following marginal priors:
BETA(2.20, 123.29) for Z21, BETA(2.15, 118.50) for Z22, BETA(3.43, 29.87) for Z23, and
BETA(6.67, 12.16) for Z24. These priors jointly induce a design prior on θ2 that is visual-
ized in the center plot of Figure 5.2. The prior median of 4.38 coincides with the observed
ordinal mean for the reference group.

To specify pD(η1) for the comparison group, we consider the reference data and observed
effect size of −0.2, which serves as an anticipated effect size for this illustration. The point
estimates (p̂11, ..., p̂15) = (0.029, 0.040, 0.138, 0.305, 0.488) were obtained by systematically
shifting probability mass to lower ordinal categories until the point estimate for the ordinal
mean was 4.18. We repeated the process detailed above to specify the following marginal
priors: BETA(1.99, 56.22) for Z11, BETA(3.16, 66.19) for Z12, BETA(5.61, 34.18) for Z13,
and BETA(11.66, 19.45) for Z14. The induced design prior on θ1 with prior median of
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Figure 5.2: Induced design priors for θ1 (left), θ2 (center), and θ (right). The green and
red regions of the θ-space are visualized on the right plot.

4.18 is visualized in left plot of Figure 5.2. Under the assumption that η1 and η2 are
independent, the induced prior on θ is depicted in the right plot of Figure 5.2.

We now provide general guidance for choosing the regions G and R, and we overview
how the recommended (n, γ) combination depends on these choices. We focus on the case
where one of δL or δU is not finite, but this guidance can be extended to settings where
−∞ < δL < δU <∞. First, we advise that G and R be chosen as noncontiguous regions so
that the study aims to detect meaningful effects. If GL = RU + ϵ or RL = GU + ϵ for some
small ϵ > 0, then impractically large sample sizes n may be required to discern miniscule
differences between θ ∈ R and θ ∈ G. We recommend choosing R to be contiguous with
the interval (δL, δU). We recommend centering G around an anticipated or meaningful
value for θ ∈ (δL, δU) such that discerning differences between θ ∈ G and θ /∈ (δL, δU) is
important, where there is sufficient distance between the endpoints of G and (δL, δU).

If RL << RU < δL or RU >> RL > δU , the optimal critical value γ typically approaches
0.5 as the sample size n increases because Pr(H1 |Y (n,q)

1 )→ 1 and Pr(H1 |Y (n,q)

0 )→ 0. With
smaller values for γ ∈ [0.5, 1), we require less evidence to support H1; however, specifying
a wide interval for R will lead to an inflated type I error rate if we are truly only concerned
with controlling type I error for θ values that are just outside the interval (δL, δU). As
such, we generally recommend specifying R to be a narrow interval that is contiguous
with (δL, δU). These recommendations are applied with the illustrative example in Section
5.3: the region G = (−0.3,−0.1) is centered at the anticipated effect size of −0.2, and
R = (−0.55,−0.5) is contiguous with the interval (δL, δU) = (−0.5,∞) defined previously.
These red and green regions are depicted on the prior for θ in the right plot of Figure 5.2.
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5.5 Design with Multiple Operating Characteristics

5.5.1 Mapping the Sampling Distribution of Posterior Probabil-
ities to Low-Dimensional Hypercubes

Design methods with posterior-based operating characteristics typically require that we
estimate sampling distributions of posterior probabilities for various sample sizes n. Here,
we extend methods from Chapter 3 to improve computational complexity by mapping these
sampling distributions to low-dimensional hypercubes [0, 1]2d, where the model f(y;ηj) is
parameterized by ηj ∈ Rd. Given parameter values η∗

1 and η∗
2, each observation in y(n,q) is

typically simulated using CDF inversion with one coordinate of the point u ∈ [0, 1]n1+n2 .
We typically have that 2d << n1 + n2, and this dimension reduction allows us to estimate
posterior-based operating characteristics using only a subspace of [0, 1]2d in Section 5.5.2.

Our design framework assumes that data {yi1}n1
i=1 and {yi2}n2

i=1 are to be collected
independently, where the data generation process for samples of size n1 = n and n2 = ⌊qn⌉
is characterized by the procedure detailed in Section 5.2. That is, data from group j
are generated from the model f(y;η∗

j), where the parameter values η∗ = (η∗
1,η

∗
2) are

drawn from the relevant design prior. These parameter values specify anticipated values
θ∗j = g(η∗

j) for the characteristics of interest and their difference θ∗ = θ∗1 − θ∗2.
To broadly map posterior probabilities to low-dimensional hypercubes, we can generate

maximum likelihood estimates η̂1,n1
and η̂2,n2

instead of data y(n,q) . For sufficiently large
sample sizes, the MLEs η̂j,nj

approximately and independently follow N (η∗
j , I−1(η∗

j)/nj)

distributions, j = 1, 2. We require a sequence of m points {ur}mr=1 ∈ [0, 1]2d to simulate
from the joint limiting distribution of η̂1,n1

and η̂2,n2
, where each point corresponds to

a simulation repetition. We can use these maximum likelihood estimates for posterior
approximation when the models f(y;η1) and f(y;η2) belong to the exponential family
(Lehmann and Casella, 1998). We accommodate posterior approximation for models that
are not in the exponential family in Appendix D.4.

For models f(y;ηj) in the exponential family, the first derivative of the log-likelihood
with respect to ηj,k, the k

th component of ηj, takes the form

∂

∂ηj,k
log

[
nj∏
i=1

f(yij;ηj)

]
= −n ∂

∂ηj,k
A(ηj) +

d∑
s=1

∂

∂ηj,k
Cs(ηj)

nj∑
i=1

Ts(yij), (5.5)

where A(ηj), Cs(ηj), and Ts(y) are known functions for s = 1, ..., d. The result in (5.5)
is the same result as that stated in (3.7) of Chapter 3. As in Chapter 3, Tj†(y(n,q)) =
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(
∑nj

i=1 T1(yij), ...,
∑nj

i=1 Td(yij)) are sufficient statistics for group j that provide as much in-
formation about the parameter ηj as the entire sample y(n,q) . Given a maximum likelihood
estimate η̂j,nj

, all components of Tj†(y(n,q)) can be recovered by substituting η̂j,nj
into the

linear system that arises from equating all components of (5.5) to 0.

Given analysis priors p1(η1) and p2(η2), we use the Laplace approximation (Gelman
et al., 2020) to the posteriors of η1 and η2 along with the multivariate delta method to
obtain the following large-sample approximation to the posterior of θ:

N

g(η̃1,n1
)− g(η̃2,n2

),
2∑

j=1

[
∂g

∂η

T

Jj(η)
−1 ∂g

∂η

]
η=η̃j,nj

 for Jj(η) = −
∂2

∂η2
log(pj(η|data)),

(5.6)
where η̃j,nj

= argmaxηj
pj(ηj |data) is the posterior mode for groups j = 1 and 2. As in

Chapter 3, we henceforth consider the relevant posteriors conditional on the general vector
or matrix data instead of conditioning on y(n,q) , y1, or y2. This choice again allows us
to consider posterior probabilities prompted by conduits for the data and those produced
by generating samples y(n,q) using unified notation. The approximation to the posterior of
θ in (5.6) is the same as that from (3.6) if the function h(θ1, θ2) is θ = θ1 − θ2. In this
chapter, we emphasize such two-group comparisons based on differences.

Algorithm 5.1 details how we map a single point u ∈ [0, 1]2d to the posterior approx-
imation in (5.6), where η̂j,nj ,k and η∗j,k denote the kth component of their vectors. As in
Chapter 3, we require that the conditions for the BvM theorem hold to ensure the process
to generate maximum likelihood estimates in Algorithm 5.1 is valid. The four necessary
assumptions to invoke the BvM theorem (van der Vaart, 1998) are detailed in Appendix
B.1.1. The first three assumptions are weaker than the regularity conditions for the asymp-
totic normality of the MLE (Lehmann and Casella, 1998), which are listed in Appendix
B.1.2. The final assumption for the BvM theorem requires that the prior distribution of
ηj be continuous in a neighbourhood of η∗

j with positive density for j = 1, 2.

Algorithm 5.1 is effectively the same mapping process as Algorithm 3.2, where we now
accommodate imbalanced sample size determination. In Appendix D.3.1, we propose an
alternative method to obtain T1†(y(n,q)) and T2†(y(n,q)) from u ∈ [0, 1]2d that is useful when
the distributions of η̂1,n1

and η̂2,n2
are not approximately normal for moderate sample

sizes. That method is based on linear approximations to the CDF of Tj†(y(n,q)) for discrete
models in the exponential family. As such, the illustrative example from Section 5.3 is
useful since it allows us to explore and overcome departures from asymptotic normality
with finite sample sizes.

For concision, we let N (θ(n,q)
r , τ (n,q)

r ) denote the approximation to the posterior of θ in
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Algorithm 5.1 Mapping Posteriors to [0, 1]2d with Imbalanced Sample Sizes

1: procedure MapImbalanced(f(y;η∗
1), f(y;η

∗
2), g(·), n, q, u, p1(η1), p2(η2))

2: for j in 1:2 do
3: for k in 1:d do
4: Let η̂j,nj ,k(u) be the u(j−1)d+k-quantile of the conditional normal CDF of

η̂j,nj ,k(u) | {η̂j,nj ,l(u)}k−1
l=0 where η̂j,nj

(u) ∼ N (η∗
j , I(η∗

j)
−1/nj).

5: Equate the system of equations in (5.5) to 0 with ηj = η̂j,nj
(u) to solve for

Tj†(y(n,q)).
6: Use Tj†(y(n,q)) to obtain the posterior mode η̃j,nj

via optimization.

7: Use η̃1,n1
(u), η̃2,n2

(u), T1†(y(n,q)), T2†(y(n,q)), and g(·) to obtain (5.6).

(5.6) corresponding to the point ur ∈ [0, 1]2d and sample sizes n1 = n and n2 = ⌊qn⌉ for
r = 1, ...,m. The mean θ(n,q)

r and variance τ (n,q)
r of this approximation are implicit functions

of n. These posteriors can be mapped to posterior probabilities Pr(θ < δ | data) as follows:

pδn,q,ur
= Φ

(
δ − θ(n,q)

r√
τ (n,q)
r

)
, (5.7)

where Φ(·) is the the CDF of the standard normal distribution. The estimates from (5.7)
comprise the sampling distributions of posterior probabilities after mapping to [0, 1]2d.
These distributions should accurately approximate the exact sampling distribution of pos-
terior probabilities; Theorem 5.1 demonstrates that the total variation distance between the
sampling distribution of posterior probabilities induced by (5.6) with data Y (n,q) and that
prompted by Algorithm 5.1 with pseudorandom sequences converges to 0 as n → ∞. We
emphasize that Theorem 5.1 applies to the sampling distribution of posterior probabilities
when η∗ ∼ pD1(η) as in (5.2) or when η∗ ∼ pD0(η) as in (5.3).

Theorem 5.1. Let η∗ = (η∗
1,η

∗
2) ∼ pD(η) for some design prior pD(η) such that the

following conditions hold for all η∗ with pD(η
∗) > 0. Let f(y;η∗

1) and f(y;η
∗
2) satisfy the

regularity conditions from Appendix B.1.2. Let the prior pj(ηj) be continuous in a neigh-
bourhood of η∗

j with positive density for j = 1, 2. Let g(η) be differentiable at η∗
j for j = 1, 2

with nonzero derivatives. Let U
i.i.d.∼ U([0, 1]2d) and Y (n,q) be generated independently from

f(y;η∗
1) and f(y;η

∗
2). Let Pδ

n,q,Π,ζ denote the sampling distribution of posterior probabilities
for Pr(θ < δ | data) given sample sizes n1 = n and n2 = ⌊qn⌉ produced using input Π
with method ζ. Let ∥Q1 − Q2∥TV be the total variation distance between two probability

measures Q1 and Q2. Then, ∥Pδ
n,q,Y (n,q) ,(5.6)

− Pδ
n,q,U ,Alg.5.1∥TV

P−→ 0.
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The proof of Theorem 5.1 is given in Appendix D.1.1. Strictly speaking, the exact
sampling distribution of posterior probabilities Pδ

n,q,Y (n,q) ,(5.6)
converges in distribution to

a sampling distribution of posterior probabilities based on pseudorandom sequences and
an analogue to Algorithm 3.1 that accounts for imbalanced sample sizes. Algorithm 5.1
is an analogue to Algorithm 3.2 that is based on the Laplace approximation instead
of the approximation prompted by the BvM theorem. In Chapter 3, we showed that

∥Pδ
n,U ,Alg.3.2 − Pδ

n,U ,Alg.3.1∥TV
P−→ 0 as defined in Theorem 3.1. Since this result holds true

and we recommend using Algorithm 3.2 over Algorithm 3.1 in Chapter 3, we only focus on
the Laplace approximation to the posterior in this chapter for simplicity.

We can improve upon this procedure by using randomized low-discrepancy sequences
instead of pseudorandom ones (as suggested in Theorem 5.1) to estimate power and the
type I error rate more precisely. We use randomized Sobol’ sequences (Sobol’, 1967) for
this purpose as in Chapter 3. Based on the discussion in Section 1.2.3, randomized Sobol’
sequences prompt consistent estimators for power and the type I error rate:

E

(
1

m

m∑
r=1

Ψ(U r)

)
=

∫
[0,1]2d

Ψ(u)du, (5.8)

for the function Ψ(·) defined in Corollary 5.1. Due to the negative dependence between
the points in randomized low-discrepancy sequences, the variance of the estimator in (5.8)
is typically reduced compared to estimators informed by pseudorandom sequences. With
Sobol’ sequences, we can therefore use fewer simulation repetitionsm to estimate posterior-
based operating characteristics as detailed in Corollary 5.1. This corollary follows directly
from Theorem 5.1 and (5.8).

Corollary 5.1. Let pδn,q,ur
from (5.7) be the estimate for Pr(θ < δ | data) corresponding

to sample sizes n1 = n and n2 = ⌊qn⌉ and point ur ∈ [0, 1]2d. Let pδU−δL
n,q,ur

= pδUn,q,ur
− pδLn,q,ur

for δL < δU . Under the conditions for Theorem 5.1 as n→∞, power in (5.2) and the type
I error rate in (5.3) are consistently estimated by

1

m

m∑
r=1

I(pδU−δL
n,q,ur

≥ γ),

when {U r}mr=1 are generated using pseudorandom or randomized Sobol’ sequences.

Corollary 5.1 ensures that Algorithm 5.1 with randomized Sobol’ sequences gives rise
to consistent estimators for power and the type I error rate as n→∞ when the hypercube
[0, 1]2d is thoroughly explored with all points from such sequences. However, it does not
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guarantee that these estimators are unbiased for finite n. As in Chapter 3, we may require
fewer observations for the approximate distributions of the MLEs to be approximately
normal if we consider some transformation of ηj, particularly if any of its parameters do
not have support on R. Similarly, the posterior of a monotonic transformation of θ may
need to be considered for the normal approximation in (5.6) to be suitable for moderate n.
Rather than introduce new notation for these untransformed and transformed variables, we
assume that η1, η2, and θ are specified to improve the quality of the normal approximation
in (5.6).

5.5.2 Estimating Operating Characteristics with Sampling Dis-
tribution Segments

We now propose a method to explore segments of sampling distributions of posterior proba-
bilities. The novel method presented in Algorithm 5.2 allows us to estimate posterior-based
operating characteristics without the need to explore points from throughout [0, 1]2d to es-
timate entire sampling distributions of posterior probabilities. This method is the main
contribution of this chapter, and we use it to consistently explore (n, γ) combinations with
only a subset of the points ur ∈ [0, 1]2d+1, r = 1, ...,m. As described later in Algorithm 5.2,
we add an extra dimension to the hypercube so that we can sample η∗ from the relevant
design prior pD(η). It is using only a subset of such points – and corresponding sampling
distribution segments – to explore most designs that greatly enhances the scalability of our
method.

The mapped posterior probabilities pδn,q,ur
depend on the models f(y;η∗

1) and f(y;η
∗
2),

the sample size n, and the Sobol’ sequence point ur, r = 1, ...,m. Standard practice fixes
the sample size n and varies the point ur ∈ [0, 1]2d+1 to estimate power and the type I
error rate. We now fix the point ur and let the sample size n vary. When the point ur and
models f(y;η∗

j) are fixed, p
δ
n,q,ur

is a deterministic function of n. Lemma 5.1 motivates our
approach to explore [0, 1]2d+1 in a targeted manner for each sample size n considered. This
lemma is written more generally than Lemma 3.1 from Chapter 3; this generality allows
us to accommodate two-group comparisons with additional covariates in Appendix D.5.

Lemma 5.1. Let the conditions for Theorem 5.1 be satisfied and define logit(x) = log(x)−
log(1 − x). For a given point ur = (u1, ..., u2d+1) ∈ [0, 1]2d+1, conditional generation of
normal conduits for the data η̂n = (η̂1,n, η̂2,qn) using the ur-quantiles prompts the following
results:

(a) η̂n,k(ur) = η∗k +
ωk(u1, ..., uk)√

n
for k = 1, ..., 2d, where ωk(·) are functions that do not

depend on n.
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(b) θ̂n = g∗(η̂n(ur)) ≈ g∗(η
∗) +

ω†(u1, ..., u2d)√
n

for sufficiently large n, where g∗(·) and

ω†(·) are functions that do not depend on n.

(c) pδn,q,ur
≈ Φ (a(δ, θ∗)

√
n+ b(ur)) for sufficiently large n, where θ∗ = g∗(η

∗) and a(·)
and b(·) are functions that do not depend on n.

(d) limn→∞
d

dn
logit [Φ (a(δU , θ

∗)
√
n+ b(ur))− Φ (a(δL, θ

∗)
√
n+ b(ur))] is min{a(δU , θ∗)2,

a(δL, θ
∗)2}/2 when θ∗ ∈ [δL, δU ] and −min{a(δU , θ∗)2, a(δL, θ∗)2}/2 otherwise.

We prove Lemma 5.1 in Appendix D.2. Here, we describe how the more general notation
in this lemma maps to the notation from Algorithm 5.1. In Algorithm 5.1, the maximum
likelihood estimates η̂1,n1

and η̂2,n2
serve as conduits for the data. While Algorithm 5.1

generates η̂1,n1
and η̂2,n2

independently, this process is equivalent to generating η̂n =
(η̂1,n1

, η̂2,n2
) ∈ R2d from a normal distribution where the covariance matrix has a 2 × 2

block structure with 0 matrices on the off-diagonals. For part (b) of Lemma 5.1, the
difference between the characteristics θ can be expressed as a function g∗ of η̂n: θ =
g∗(η̂n) = g(η̂1,n1

) − g(η̂2,n2
). The remaining notation in Lemma 5.1 aligns with that

in Algorithm 5.1, and further modifications to the notation for posterior analyses with
additional covariates are detailed in Appendix D.5.

We now consider the practical implications of Lemma 5.1. This lemma suggests that
the linear approximation to logit(pδU−δL

n,q,ur
) as a function of n is a good global approximation

for sufficiently large sample sizes. Moreover, this linear approximation should be locally
suitable for a range of sample sizes. These linear approximations disclose which points
ur ∈ [0, 1]2d+1 correspond to posterior probabilities that are in a neighbourhood of the β-
quantile of the sampling distribution for the design prior pD1(η) specified in (5.2). Likewise,
those approximations reveal which points ur ∈ [0, 1]2d+1 correspond to posterior probabil-
ities that are in a neighbourhood of the (1 − α)-quantile of the sampling distribution for
pD0(η) specified in (5.3). This knowledge allows us to explore segments of the sampling
distributions of posterior probabilities in a targeted manner. Lemma 5.1 is original to this
chapter. In Chapter 3, we proved that pδU−δL

n,q,ur
was increasing for sufficiently large n when

θ∗ ∈ (δL, δU). We used that fact to prioritize exploring posterior probabilities such that
Pr(H1 |data) ≈ γ. However, that approach to select sampling distribution segments based
on root-finding algorithms is of limited use when the critical value γ is not predetermined.

Algorithm 5.2 allows users to jointly explore the (n, γ)-space in a targeted manner to
find the (n, γ) combination that minimizes the sample size while satisfying the criteria
in (5.2) and (5.3). This flexibility is crucial for design with posterior-based operating
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characteristics. Our approach generates independent Sobol’ sequences {u(h)
r }mr=1 for each

hypothesis Hh, h = 0, 1. To implement our approach, we must choose a Sobol’ sequence
length m and a constant m0 << m. We use m = 8192 and m0 = 512 to balance the
computational efficiency and precision of the estimates for the operating characteristics.
Algorithm 5.2 leverages order statistics, and we herein abbreviate the term order statistic
as OS. Our approach involves thorough exploration of sampling distributions of posterior
probabilities at three sample sizes – n(0) , n(1) , and n(2) – and exploration of sampling
distribution segments for all other values of n.

Algorithm 5.2 Procedure to Determine Optimal Sample Size and Critical Value

1: procedure Optimize(f(y;η), g(·), pj(ηj), pD1(η), pD0(η), (δL, δU), q, β, α, m, m0)
2: for h in 0:1 do
3: Generate a sample η∗(h) ∼ pDh

(η) of size m and Sobol’ sequence {u(h)
r }mr=1

4: Reorder η∗(h) so its rth realization prompts the
⌈
mu(h)

r,1

⌉th
OS of g(η

∗(h)
1 )−g(η∗(h)

2 )

5: Use Algorithm 5.1 with {u(1)
r }m0

r=1 and {u
(0)
r }m0

r=1 to obtain the smallest n(0) such that
the ⌊m0β⌋th OS of pδU−δL

n(0) ,q,u
(1)
r

≥ the ⌈m0(1−α)⌉th OS of pδU−δL

n(0) ,q,u
(0)
r

via binary search

6: Compute pδU−δL

n(0) ,q,u
(1)
r

for {u(1)
r }mr=m0

and pδU−δL

n(0) ,q,u
(0)
r

for {u(0)
r }mr=m0

via Algorithm 5.1

7: n(1) ←
⌊
0.9n(0)+0.2n(0) I

(
⌊mβ⌋th OS of pδU−δL

n(0) ,q,u
(1)
r

≥ ⌈m(1−α)⌉th OS of pδU−δL

n(0) ,q,u
(0)
r

)⌉
8: for r in 1:m do
9: for h in 0:1 do
10: Compute pδU−δL

n(1) ,q,u
(h)
r

to approximate logit(pδU−δL

n,q,u
(h)
r

) as a linear function of n

11: Find the smallest n(2) such that the ⌊mβ⌋th OS of pδU−δL

n(2) ,q,u
(1)
r

≥ the ⌈m(1 − α)⌉th

OS of pδU−δL

n(2) ,q,u
(0)
r

via binary search, where each n value is considered with only the

m0 points from {u(h)
r }mr=1 such that p̂δU−δL

n,q,u
(h)
r

from Line 10 is nearest to the relevant

OS
12: for r in 1:m do
13: Compute pδU−δL

n(2) ,q,u
(1)
r

and pδU−δL

n(2) ,q,u
(0)
r

via Algorithm 5.1 if not computed in Line 11

14: return n(2) as recommended n and the ⌈m(1− α)⌉th OS of pδU−δL

n(2) ,q,u
(0)
r

as γ

We now elaborate on several of the steps in Algorithm 5.2. In Line 4, we use the first
coordinate of each point u(h)

r,1 to reorder the draws in η∗(0) and η∗(1) with respect to the
anticipated value for θ = g(η1) − g(η2). This reordering is beneficial because we utilize
only the first m0 points from {u(h)

r }mr=1, h = 0, 1 to find an initial sample size n(0) in Line
5. Because subsequences of the Sobol’ sequence are also low discrepancy, this reordering
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guarantees that the anticipated values for θ corresponding to the first m0 points are evenly
distributed over G and R. For the rth point in the sequence for hypothesis h, we obtain the
posterior approximation for (5.7) via Algorithm 5.1, where the inputs η∗ and u ∈ [0, 1]2d are
respectively the rth realization of η∗(h) and the final 2d components of u(h)

r . The inequality
for the order statistics of the two sampling distributions in Line 5 must hold true for there
to exist a critical value γ such that the criteria in both (5.2) and (5.3) are satisfied.

We approximate logit(pδU−δL

n,q,u
(h)
r

) as a linear function of n to efficiently explore sample

sizes. To obtain this approximation for finite n, we do not use the first derivatives from part
(d) of Lemma 5.1 prompted by limiting results. We instead construct this approximation
by estimating the probabilities that correspond to {u(0)

r }mr=1 and {u(1)
r }mr=1 for the sample

size n(1) . This integer sample size is chosen to be larger or smaller than n(0) depending
on the indicator function in Line 7. The linear approximations are obtained in Lines 8 to
10 as the lines that respectively pass through logit(pδU−δL

n(0) ,q,u
(h)
r

) and logit(pδU−δL

n(1) ,q,u
(h)
r

) at the

sample sizes n(0) and n(1) . Once these linear approximations are obtained for each point
u(h)

r , we find the optimal (n, γ) combination in Line 11. We find the optimal design by
exploring sample sizes with binary search. However, we leverage Lemma 5.1 to determine
whether a value for n is suitable using a subset of m0 points from each of {u(0)

r }mr=1 and
{u(1)

r }mr=1.

Unlike in Line 5, we choose these points in a targeted way from each sequence to corre-
spond to sampling distribution segments. For each sample size n we consider, we estimate
each posterior probability (and their order statistic) using the linear approximations on
the logit scale: p̂δU−δL

n,q,u
(h)
r

for r = 1, ...,m and h = 0, 1. We use Algorithm 5.1 to approxi-

mate pδU−δL

n,q,u
(1)
r

for points in {u(1)
r }mr=1 that correspond to relevant order statistics of p̂δU−δL

n,q,u
(1)
r

near ⌊mβ⌋. If 2mβ < m0, these order statistics are the smallest m0 ones; otherwise, we
consider the order statistics ranging from ⌊mβ⌋−m0/2+1 to ⌊mβ⌋+m0/2. Similarly, we
only approximate pδU−δL

n,q,u
(0)
r

for points in {u(0)
r }mr=1 that correspond to relevant order statis-

tics of p̂δU−δL

n,q,u
(0)
r

near ⌈m(1 − α)⌉. If 2mα < m0, these order statistics are the largest m0

ones; otherwise, we consider the order statistics ranging from ⌊m(1 − α)⌋ −m0/2 + 1 to
⌊m(1 − α)⌋ + m0/2. When computing power and the type I error rate, we assume the
pδU−δL

n,q,u
(h)
r

values for the remaining points do not differ enough from their estimates p̂δU−δL

n,q,u
(h)
r

to impact the order statistics in Line 11. This approach allows us to accommodate mi-
nor discrepancies between pδU−δL

n,q,u
(h)
r

and p̂δU−δL

n,q,u
(h)
r

without exploring all points {u(0)
r }mr=1 and

{u(1)
r }mr=1.

Algorithm 5.2, however, allows us to obtain the same level of simulation precision as if
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we were to use all m points from each sequence to explore every sample size considered.
Our method requires that we consider these 2m points for only three sample sizes: n(0) , n(1) ,
and n(2) . In Lines 12 and 13, we consistently estimate power and the type I error rate at
the optimal sample size n(2) . The optimal critical value is the ⌈m(1−α)⌉th order statistic of
pδU−δL

n(2) ,q,u
(0)
r

. We investigate the performance and computational efficiency of this approach

when considering study design for the illustrative example in Section 5.5.3.

5.5.3 Scalable Design for the Illustrative Example

We made most choices required to design a study for the illustrative example in previous
sections. In Section 5.4.2, we specified design priors pD(η1) and pD(η2) for the conditional
multinomial probabilities defined in (5.4) to obtain a prior pD(η) = pD(η1) × pD(η2) for
η = (η1,η2). We also chose the interval (δL, δU) = (−0.5,∞) in Section 5.3 along with
DIR(0.8, 0.8, 0.8, 0.8, 0.8) analysis priors for pj, j = 1, 2. This Dirichlet prior assumes that

the variables {Zjv}w−1
v=1 defined in (5.4) are independent a priori. Based on Chapter 4, we

know the posterior of {Zjv}w−1
v=1 cannot retain positive or negative dependence given enough

data, so this choice is sensible.

Furthermore, the regions G = (−0.3,−0.1) and R = (−0.55,−0.5) were selected in
Section 5.4.2 in recognition of the interval (δL, δU) and the anticipated effect size for the
study. We define design priors for Algorithm 5.2 of pD1(η) ∝ pD(η |θ ∼ U(G)) and pD0(η) ∝
pD(η |θ ∼ U(R)). We described how to sample from those priors in Section 5.4.1. We
use m = 8192 and m0 = 512 as recommended in Section 5.5.2. To define operating
characteristics, we choose α = 0.05 and β = 0.2 for illustration. We consider q = 1.25
to reflect the reference group (j = 2) having roughly 25% more observations than the
comparison group (j = 1) in Section 5.3. With Algorithm 5.2, we used the modified
version of Algorithm 5.1 presented in Appendix D.3.1 that accommodates departures from
the approximate normality of η̂1,n1

and η̂2,n2
.

For these inputs, Algorithm 5.2 returned an optimal design characterized by (n, γ) =
(111, 0.9341). Figure 5.3 visualizes the distributions of the m = 8192 logits of pδU−δL

n,q,u
(1)
r

and pδU−δL

n,q,u
(0)
r

respectively used to compute confirmatory estimates for power (green) and

the type I error rate (red) at n = 111. We visualize the distributions of the logits of
the posterior probabilities since many of the posterior probabilities from the green region
are very close to 1. We note that the green and red curves do not precisely estimate
sampling distributions of posterior probabilities since randomized Sobol’ sequences induce
negative dependence between points in the unit hypercube. However, we can use the
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Figure 5.3: Distributions of the m = 8192 logits of pδU−δL
n,q,ur

for the confirmatory estimates
of power (green) and the type I error rate (red) at n = 111. The m0 = 512 logits of pδU−δL

n,q,ur

used to assess n = 111 are plotted with jitter. The dotted line denotes the logit of the
recommended γ = 0.9341.

posterior probabilities depicted in Figure 5.3 to compute power and the type I error rate
as discussed in Section 1.2.3. The m0 = 512 logits of pδU−δL

n,q,u
(1)
r

and pδU−δL

n,q,u
(0)
r

used to assess the

operating characteristics for n = 111 are depicted as jittered points in Figure 5.3. These
points visualize the segmented nature of how we explore sampling distributions of posterior
probabilities in Algorithm 5.2.

For validation purposes, we repeated the sample size calculation from the previous
paragraph with a modified version of Algorithm 5.2. This modified version uses binary
search to explore entire sampling distributions for each sample size n considered with
all points from the same Sobol’ sequences used in the previous calculation. We obtained
the same optimal design when thoroughly exploring the sampling distributions of posterior
probabilities using that nontargeted approach. We repeated the process of determining the
optimal design for the illustrative example with both methods 1000 times using different
Sobol’ sequences {u(1)

r }mr=1 and {u
(0)
r }mr=1. We obtained the exact same optimal design using

both methods in each of the 1000 repetitions.

Algorithm 5.2 took roughly 30 seconds with one core on a standard laptop to return
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an optimal design for the illustrative example. The modified version of Algorithm 5.2
that explored entire sampling distributions of posterior probabilities took approximately
95 seconds to obtain the same results. The discrepancy in runtime between design methods
with sampling distribution segments and those that consider entire sampling distributions
increases with the recommended sample size n. To consider a range of B consecutive
sample sizes with standard binary search, we need to thoroughly explore the sampling
distributions of posterior probabilities atO(log2B) values of n. Regardless of the magnitude
of the sample size recommendation, Algorithm 5.2 only requires that we thoroughly explore
the sampling distributions at three samples sizes – the final of which is used to obtain
confirmatory estimates for power and the type I error rate. In Appendix D.3.2, we also
illustrate that using Sobol’ sequences instead of pseudorandom ones allows us to estimate
the optimal (n, γ) combination with the same precision using three times fewer simulation
repetitions.

5.6 Contour Plots for Design Criteria Exploration

Although Algorithm 5.2 returns the (n, γ) combination that minimizes the sample size n
while satisfying the criteria in (5.2) and (5.3), practitioners may want to explore multi-
ple designs that are similar to the optimal one. The sampling distributions of posterior
probabilities corresponding to pD1(η) and pD0(η) are thoroughly explored at three sample
sizes in Algorithm 5.2: n(0) , n(1) , and n(2) . These sample sizes can be ordered such that
n((0)) < n((1)) < n((2)) . We approximate the sampling distributions for sample sizes less than
n((1)) using the linear approximations to logit(pδU−δL

n,q,u
(h)
r

) informed by the posterior probabil-

ities estimated at the sample sizes n((0)) and n((1)) . For sample sizes greater than n((1)) , we
use linear approximations informed by the estimated probabilities at n((2)) instead of n((0)) .
We use contour plots to synthesize these approximations to the sampling distributions.
These plots visualize how changes to n and the critical value γ impact power and the type
I error rate. If it is not feasible to collect a sample of the recommended size, we can use
these plots to inform the choice of an alternative (n, γ) combination.

The left column of Figure 5.4 illustrates the contour plots with respect to the type I
error rate and power for the sample size calculation in Section 5.5.3. These contour plots
are available with a single application of our methodology. To assist with interpretation,
the green contour corresponding to power of 1 − β and the red contour corresponding to
a type I error rate of α are depicted on both plots. The criteria in (5.2) and (5.3) are
respectively satisfied for the regions of the (n, γ)-space that are below the green contour
and above the red contour. The optimal design characterized by (n, γ) = (111, 0.9341) is
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Figure 5.4: Left: Contour plots for the type I error rate and power for one sample size
calculation with the optimal (n, γ) combination in grey. Center: Averaged contour plots
from 1000 sample size calculations. Right: Contour plots estimated by simulating data.

depicted by the grey point. The optimal sample size of n = 111 is the smallest n ∈ Z+

that is to the right of the intersection of the red and green contours.

To gain insight into how our method performs under repeated simulation, we averaged
contour plots corresponding to the 1000 repetitions of the sample size calculation from
Section 5.5.3. These plots are given in the center column of Figure 5.4, but they take 1000
times as long to generate as the left plots and are not feasible to create in practice. Based
on these plots, the smallest n ∈ Z+ to the right of the intersection of the green and red
contours is 109. This discrepancy between n = 111 and 109 highlights that the optimal
design differs slightly for each simulation repetition. The contour plots in the right column
of Figure 5.4 were created by simulating m = 81920 samples from the prior predictive
distributions for n = {100, 101, ..., 120} following the process detailed in Section 5.2. The
contours in the right plots are jagged since q = 1.25 /∈ Z. The linear approximations to
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logit(pδU−δL

n,q,u
(h)
r

) used to create the first two columns of plots in Figure 5.4 do not ensure

that n2 ∈ Z when n /∈ {n((0)) , n((1)) , n((2))}. Nevertheless, the plots in the center and right
columns are similar, which is a direct consequence of Lemma 5.1 and the consistency of
the power and type I error rate estimates at n((0)) , n((1)) , and n((2)) via Corollary 5.1. The
smallest n ∈ Z+ to the right of the intersection of the green and red contours in the right
plots is also n = 109. Moreover, the fact that the center and right columns of Figure 5.4
do not differ much from the left column builds confidence in the single-application contour
plots. In Appendix D.3.3, we illustrate why the modified version of Algorithm 5.1 used
here yields superior performance for the illustrative example.

5.7 Discussion

In this chapter, we developed a framework for scalable design with posterior-based oper-
ating characteristics – namely power and the type I error rate – that determines optimal
sample sizes and decision criteria. The scalability of this framework stems from mapping
posterior probabilities to low-dimensional hypercubes and using this mapping to explore
segments of sampling distributions of posterior probabilities at most sample sizes consid-
ered. That targeted exploration approach substantially reduces the number of simulation
repetitions required to design posterior analyses, making them much more attractive and
accessible to practitioners who want to control type I and II error. The posterior probabili-
ties used to determine the optimal sample size and decision criteria can also be repurposed
to efficiently and helpfully investigate various sample sizes and decision criteria using con-
tour plots.

Our proposed methods are broadly applicable and could radically reframe how (conduits
for) data are simulated in efficient study design. They could be extended in many aspects
to accommodate more complex designs, including generalizations of the design framework
with additional covariates presented in Appendix D.5. Furthermore, future work could
consider design methods with sampling distribution segments that account for sequential
analyses allowing for early termination or the multiple comparisons problem more generally.
It may also be of interest to use these methods to design studies based on the precision of
an interval estimate (as overviewed in Section 6.2.3) or maximizing the expectation of a
utility function. In any of these settings, it would be pertinent to determine whether low-
discrepancy sequences could be combined with targeted exploration approaches to prompt
scalable design methods. Work on targeted exploration of the unit hypercube could even
be applied to make simulation-based methods more accessible in non-design settings.
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Chapter 6

Discussion

6.1 Summary

The purpose of this thesis was to develop a broad suite of methods for the scalable de-
sign of two-group comparisons. Two-group comparisons are routinely conducted in many
settings including clinical, manufacturing, and corporate contexts. These comparisons are
carried out using both frequentist and Bayesian statistical methods. The design methods
proposed in this thesis accommodate comparisons that assess superiority, noninferiority,
and practical equivalence. These comparisons can be based on differences or ratios, and
our proposed methods can be simplified to design studies with a single group of data.

The design methods proposed in this thesis are unified by their efficient use of sampling
distribution segments. The novelty and computational efficiency of design with sampling
distribution segments is practically important. Standard design methods with flexible sta-
tistical models use simulation to assess the operating characteristics of hypothesis tests
by estimating entire sampling distributions. However, we need only estimate particular
quantiles of sampling distributions to determine whether a given sample size prompts a
suitable study power and type I error rate. The research in this thesis was directed toward
two objectives. First, we needed to automate the process to select sampling distribution
segments for arbitrary designs. Second, we needed to ensure that the operating characteris-
tics for given sample sizes were reliably assessed using sampling distribution segments. We
achieved these objectives in several contexts, each of which required tailored methodology.

In Chapter 2, we applied design with sampling distribution segments in frequentist
settings. Such sampling distribution segments expedited power analysis for designs where
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exact pivotal quantities do not exist, with an emphasis on two-group equivalence tests with
unequal variances. The goal of the work in this chapter was to provide a straightforward
context in which sufficient statistics could be mapped to the unit hypercube. By leveraging
root-finding algorithms for points in the unit hypercube, we automated the process of
selecting sampling distribution segments. The rejection regions for these hypothesis tests
bound the type I error rate. Formal investigation of the test statistics as a function of
the sample size justified that power could be reliably assessed with sampling distribution
segments – prompting unbiased sample size recommendations.

Chapter 3 extended design with sampling distribution segments to Bayesian settings
in a preliminary context that mirrored frequentist power analysis. In that context, it was
assumed that data were generated from statistical models with known, fixed parameter
values for design purposes. The purpose of this work was to provide realistic scenarios
where it was sensible to map maximum likelihood estimates that may or may not be suf-
ficient statistics to the unit hypercube. Root-finding algorithms were again used to select
sampling distribution segments. Since the posterior probabilities prompted by our map-
pings were generally increasing functions of the sample size, we could reliably assess power
with sampling distribution segments. Our sample size recommendations were therefore
consistent under the conditions for the BvM theorem, and our method for power curve
approximation was orders of magnitude faster than conventional power curve estimation
for Bayesian hypothesis tests. The type I error rate was not considered in this work, but
this limitation was addressed with the methodology in Chapter 5.

In Chapter 4, we considered how prior dependence structures impact posterior distri-
butions. We proved that under broad conditions, the posterior cannot retain many flexible
prior dependence structures that arise from leveraging copula models in large-sample set-
tings. We also clarified how the choice of prior copula can and cannot impact the posterior
distribution in terms of asymptotic convergence of the posterior mode. The objective of
this work was to help practitioners determine whether eliciting complicated prior depen-
dence structures aligns with their objectives for posterior analysis. Many Bayesian design
settings require that we specify different priors to generate and analyze data, so the ob-
jective of this work is relevant when applying design with sampling distribution segments.
To achieve this objective, we contextualized our theoretical results by discussing various
goals for prior specification.

Chapter 5 generalized Bayesian design with sampling distribution segments to more
comprehensive settings. The goal of this work was to account for uncertainty in the pa-
rameter values used to generate the data while formally considering type I error rates.
This framework considered two sampling distributions of posterior probabilities to select a
sample size and critical value for the hypothesis test. This design framework is more com-
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prehensive than the one from Chapter 3 but requires that practitioners make additional
choices. We selected sampling distribution segments using linear approximations to the
logits of the posterior probabilities prompted by our mappings to the unit hypercube. We
proved that these linear approximations are theoretically valid in large-sample settings, so
power and the type I error rate can be reliably assessed using the resulting sampling dis-
tribution segments. We repurposed the posterior probabilities computed in that approach
to efficiently investigate various sample sizes and decision criteria using contour plots.

6.2 Extensions

6.2.1 Design of Sequential Analyses

The work in Chapters 2, 3, and 5 can be extended to accommodate sequential experiments
that allow for early termination. For example, stopping for superiority or futility is common
in adaptive designs for clinical trials. Sequential designs consider the overall power to
reject H0 across all analyses: interim or final. To obtain overall power, we require the joint
sampling distribution of the test statistics across all analyses to aggregate their marginal
powers. For power analysis in Chapters 2 and 3, each point in the unit hypercube was
mapped to sufficient statistics or maximum likelihood estimates via CDF inversion. Since
the CDFs depend on n, we exploited this mapping to obtain the smallest sample size n at
which H0 was rejected using root-finding algorithms. We could multiply the dimension of
each point in the sequence by the maximum number of planned analyses to recommend a
sample size for each potential analysis.

Here, we provide a sketch of how such an approach could be implemented for the two-
group equivalence tests with unequal variances considered in Chapter 2. We suppose that
the study is to consist of one interim and one final analysis for illustration. We use points
from a hypercube of dimension d = 8. We could simulate sample means and variances for
the interim analysis using CDF inversion and the first four coordinates of the hypercube:
ȳ(n,q)

1r,1 , ȳ
(n,q)

2r,1 , s
2 (n,q)

1r,1 , s2 (n,q)

2r,1 . The first component of the subscript denotes the group number,
the second component denotes the point {ur}mr=1, and the third component denotes the
first (interim) analysis. In this case, we would need to generate both components of
d̄(n,q)

r,1 = ȳ(n,q)

1r,1 − ȳ(n,q)

2r,1 . We could use CDF inversion and the last four coordinates of the
hypercube to simulate the sample statistics corresponding to the period between the interim
and final analysis: ȳ(n,q)

1r,2 , ȳ
(n,q)

2r,2 , s
2 (n,q)

1r,2 , s2 (n,q)

2r,2 .

We suppose that we plan to collect the same number of observations in both periods
of the study. With that information, we can calculate summary statistics for the final
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analysis that maintain the desired level of dependence with the interim analysis. The
mean difference d̄(n,q)

r,F is 0.5d̄(n,q)

r,1 +0.5d̄(n,q)

r,2 , where the subscript F denotes that this statistic
corresponds to the final analysis. The sample variance for the final analysis in each group
j = 1 and 2 is

s2 (n,q)

jr,F =
0.5njs

2 (n,q)

jr,1 + 0.5njs
2 (n,q)

jr,2

nj − 1
+

0.25n2
j(ȳ

(n,q)

jr,1 − ȳ
(n,q)

jr,2 )
2

nj(nj − 1)
, (6.1)

where n1 = n and n2 = qn. The variance in (6.1) follows from standard results involving
conditional normal distributions.

Given d̄(n,q)

r,1 , s2 (n,q)

1r,1 , and s2 (n,q)

2r,1 , we could propose a process similar to Algorithm 2.2 to
obtain a sample size recommendation for the interim analysis corresponding to each point
{ur}mr=1. We could similarly leverage d̄(n,q)

r,F , s2 (n,q)

1r,F , and s2 (n,q)

2r,F to obtain sample size recom-
mendations for the final analysis. We note that the triangular rejection regions for the two
analyses may differ substantially if the significance level α1 for the interim analysis differs
from αF used for the final one. We suppose that the m sample size recommendations for
each analysis are stored in the vectors sampInterim and sampFinal. Preliminary simu-
lations suggest that the empirical CDF of pmax(2*sampInterim, sampFinal) accurately
estimates the power curve as a function of the sample size n for the final analysis.

More formal investigation is still required to generalize this process to sequential ex-
periments with more than one interim analysis and analyses where fewer observations are
collected in earlier stages of the experiment. Moreover, we must also consider how to ex-
tend power curve approximation for the Bayesian hypothesis tests from Chapter 3 where
low-dimensional sufficient statistics cannot be generated for each phase of a sequential
analysis. More sophisticated methods to map posterior probabilities to the unit hyper-
cube for models that do not belong to the exponential family in the presence of prior
misspecification are also discussed in Appendix D.4.3. The formalization of such methods
could help extend the design framework with additional covariates from Appendix D.5 to
accommodate Bayesian generalized linear models.

The design of sequential experiments requires that we consider sampling distributions
for each planned analysis. The computational savings associated with using sampling
distribution segments are therefore compounded in these settings. However, it may be
inappropriate to explore the unit hypercube using high-dimensional low-discrepancy se-
quences if we plan to conduct a large number of interim analyses. When we must simulate
many sufficient statistics or maximum likelihood estimates to design such studies, we may
want to consider simulation based on pseudorandom sequences.

The work in Chapter 5 considers both power and the type I error rate. In that chapter,
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each point ur coincides with a posterior probability that dictates whether to reject H0. To
accommodate sequential testing, we could approximate the logit of the posterior probability
for each planned analysis as a linear function of the sample size. This process would prompt
a collection of linear functions corresponding to each point ur. Future work could use these
collections of linear functions to assess the operating characteristics of sequential designs
using sampling distribution segments.

6.2.2 Design in a Nonparametric Framework

Current design methods for nonparametric hypothesis tests are computationally intensive
because they rely on näıve simulation instead of leveraging the structure of the tests.
Analytical power analysis for nonparametric tests in frequentist settings tends to leverage
large-sample normal approximations (Shieh et al., 2007); however, such tests are commonly
used when asymptotic results are unsuitable. Exploring subspaces of the unit hypercube
that correspond to sampling distribution segments could yield fast design methods for
rank-sum tests that account for the exact distributions of the test statistics.

We cannot generate sufficient statistics or maximum likelihood estimates in a nonpara-
metric framework, but we could generate data conditional on low-discrepancy sequences of
sample totals. This data generation process would be fast for the gamma distribution. We
illustrate how to use such a process to obtain a sample {Yi}ni=1 from the GAMMA(α, λ)
model conditional on

∑n
i=1 Yi =

∑n
i=1 yi in Algorithm 6.1, where Lines 3 to 5 leverage

results from Devroye (2006).

Algorithm 6.1 Procedure to Generate Gamma Data Conditional on Sample Totals

1: procedure GenerateGamma(n, α, λ)
2: Generate

∑n
i=1 yi ∼ GAMMA(nα, λ).

3: Generate xi ∼ GAMMA(α, 1) for i = 1, ..., n.
4: for i in 1:n do

5: Let yi = xi

∑n
j=1 yj∑n
j=1 xj

.

6: return {yi}ni=1 as a sample from GAMMA(α, λ) conditional on
∑n

i=1 Yi =
∑n

i=1 yi.

The fast procedure described in Algorithm 6.1 extends to mixture gamma models, which
accommodate multimodality and skewness inherent to nonparametric settings. The sample
totals simulated in Line 2 over repeated implementation of Algorithm 6.1 would exhibit
negative dependence if generated using low-discrepancy sequences. These sample totals are
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insufficient statistics based on CDF inversion with the points {ur}mr=1. Preliminary simu-
lations suggest that this negative dependence is partially retained in test statistics based
on rank sums, reducing the value of m required to estimate power. To make these methods
more scalable, we could investigate approaches to select subspaces of the unit hypercube
– and corresponding sampling distribution segments – in nonparametric contexts.

6.2.3 Design with Precision Criteria

Statistically insignificant study results are scientifically valuable if the confidence or credible
interval for θ1−θ2 is sufficiently narrow. Precision criteria aim to select the smallest sample
size n such that the length of a credible or confidence interval is at most l with probability
at least Γ (Joseph and Belisle, 1997; De Santis and Pacifico, 2004). Precision criteria for
interval estimates do not incentivize researchers to repurpose their data until they obtain a
statistically significant result. These criteria are underused, and the American Statistical
Association’s recent official statement (Wasserstein and Lazar, 2016) underscores their
promotion of sound scientific practice. In past work, we defined an analogue to the power
curve for the length criterion, where the Γ-quantile of this length curve is the smallest
sample size n such that the interval estimate for θ1 − θ2 has length of at most l with
probability at least Γ (Stevens and Hagar, 2022). We observed this length curve to be
approximately normal for large n via simulation in that work.

In Bayesian settings, we have formally proven that the length curve is approximately
normal using the BvM theorem in an unpublished manuscript (Hagar and Stevens, 2023).
This paper was included in the proposal for this thesis, but we decided to focus on design
methods with power and the type I error rate in the final version. We note that the length
curve is also useful for frequentist design. As such, we believe that this work would best be
repurposed as a paper that presents unified methodology for design with precision criteria
in Bayesian and frequentist settings.

Future research on this topic is required because the length curve is not guaranteed to be
a strictly nondecreasing function of n (Hagar and Stevens, 2023). This decreasing behaviour
suggests that we may require simulation to precisely estimate the length curve. Instead of
estimating entire sampling distributions of confidence or credible interval lengths at each
sample size n considered, it would be efficient to leverage sampling distribution segments.
The decreasing behaviour of the length curve also complicates selecting subspaces from
the unit hypercube and sampling distribution segments, but its approximate normality in
large-sample settings could mitigate this complication.
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6.2.4 Design with Computational Posterior Approximation

The work in Chapters 3 and 5 rely on large-sample approximations to the posterior (see
e.g., Gelman et al. (2020)). While monotonic transformations of the relevant parameters
can improve the quality of these approximations for moderate n, these approximations
are not reliable for small sample sizes. Future research could combine the techniques to
select sampling distribution segments from this thesis that are based on analytical pos-
terior approximation with computational approximation methods. For instance, we may
not want to assess posterior-based operating characteristics using analytical posterior ap-
proximations, but we might still use these approximations to select sampling distribution
segments. In that case, we could combine the sufficient statistics or maximum likelihood
estimates mapped to the analytical posteriors with MCMC methods to assess power and
the type I error rate. We could also investigate how the segmentation of sampling dis-
tributions enhances methods that leverage computational posterior approximation to fit
parametric models to sampling distributions of posterior probabilities (Golchi, 2022; Golchi
and Willard, 2023).

6.2.5 Software Development

We developed the dent package in R to implement the methods for empirical power anal-
ysis and power curve approximation proposed in Chapter 2 (Hagar and Stevens, 2024a).
Moreover, the R code to reproduce the numerical studies in this thesis has been made
available on Github at the following links.

• Chapter 2: https://github.com/lmhagar/BioDesignSegments

• Chapter 3: https://github.com/lmhagar/BayesianPower

• Chapter 4: https://github.com/lmhagar/PosteriorRamifications

• Chapter 5: https://github.com/lmhagar/PosteriorBasedOCs

However, we have not formally published any R packages or R Shiny apps to make the
Bayesian design methods with sampling distribution segments proposed in this thesis more
accessible. While we proposed computationally efficient methods in this thesis, our meth-
ods require substantial mathematical overhead to approximate posteriors analytically and
implement the delta method. Practitioners would also require considerable programming
skills to implement our methods. It would therefore be valuable to develop software that
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automates the implementation of the Bayesian design methods proposed in this thesis,
particularly for common statistical models that are members of the exponential family.

Moreover, we developed a method to leverage – and improve upon – Gibbs sampling
with the rjags package in R (Plummer, 2019). That method can be applied with statistical
models that belong to the exponential family. We used that method in Section 3.6.1
when comparing our power curves based on analytical posterior approximation to those
obtained by simulating data and using MCMC methods. As such, we did not thoroughly
discuss that method to improve upon the rjags package in this thesis. Nevertheless, we
could develop that method into a formal R package in future work. This extension would
be relevant to this thesis if implementing the computational extensions for design with
sampling distribution segments detailed in Section 6.2.4.
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Appendix A

Additional Material for Chapter 2

A.1 Further Justification for Using Root-Finding Al-

gorithms

A.1.1 The Potential for Multiple Intersections

Here, we conduct more extensive numerical studies to justify using root-finding algorithms
in our efficient approach to power curve approximation. We reconsider the illustrative
example from Section 2.3.2, originally adapted from PASS 2023 documentation (NCSS,
LLC., 2023). In this example, data were generated independently and identically for groups
j = 1 and 2 according to N (µ1 = 92, σ2

1 = 182) and N (µ2 = 96, σ2
2 = 152) distributions,

respectively. The interval endpoints were (δL, δU) = (−19.2, 19.2). The significance level
for the test was α = 0.05. We now extend this example to admit three scenarios. These
three scenarios are defined by (σ1, σ2) ∈ {(16.5, 16.5), (18, 15), (19.5, 13)}. We considered
each scenario with q = {1, σ2/σ1, σ1/σ2}.

For each scenario and q combination, we now consider sample sizes n1 = {2, 3, ..., 100}.
We require that n1, n2 ≥ 2 to estimate the standard deviation for each group. For the
example from Section 2.3.2, θ1 − θ2 = µ1 − µ2 = −4. We also consider the illustrative ex-
ample where θ1−θ2 = {0,−8,−12,−16} with maximum n1 values of {100, 200, 500, 2500}.
As θ1 − θ2 approaches δL = −19.2, we must consider larger sample sizes to approxi-
mate the entire power curve for those settings. Given values for θ1 − θ2, q, σ1, and σ2,
we generated a Sobol’ sequence ur = (u1r, u2r, u3r) ∈ [0, 1]3 for r = 1, ...,m. We used
m = 1024 for this study. For each Sobol’ sequence point, we computed se(n,q)

r and Λ(n,q)
r at
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all (n1, n2) = (n, ⌊qn⌉) pairs considered with the relevant θ1−θ2 specification. We repeated
this process 1000 times for each θ1 − θ2, q, σ1, and σ2 combination. The results from this
numerical study are detailed in Table A.1. This numerical study allows us to consider (i)
scenarios where se(n,q)

r and Λ(n,q)
r intersect more than once for a given Sobol’ sequence point

ur and (ii) the nondecreasing behaviour of se(n,q)
r as a function of n.

The center section of Table A.1 concerns scenarios where se(n,q)
r = Λ(n,q)

r have nonunique
solutions. The prevalence column indicates the mean percentage of the m = 1024 Sobol’
sequence points that had multiple solutions for se(n,q)

r = Λ(n,q)
r . This percentage is very low,

particularly when θ1 − θ2 is close to the center of the equivalence region 0.5(δU − δL) = 0.
The prevalence of multiple intersections increases as θ1 − θ2 approaches δL = −19.2, but
se(n,q)

r and Λ(n,q)
r intersect only once for roughly 99% of the Sobol’ sequence points when

θ1 − θ2 = −16. For the Sobol’ sequence points with nonunique solutions, the departure
column details the mean value of n such that se(n−1,q)

r < Λ(n−1,q)
r but se(n,q)

r > Λ(n,q)
r . That

is, this column summarizes the mean value at which this Sobol’ sequence point leaves the
rejection region for the TOST procedure. This sample size is very small for all scenarios
considered. In the vast majority of situations, this departure occurs at a sample size of 3
(i.e., ur prompts a sample that is in the rejection region when n = 2 but not when n = 3).

The duration column summarizes the mean value for the smallest ζ ∈ Z+ such that
se(n+ζ,q)

r < Λ(n+ζ,q)
r for the departing sample size n (i.e., the number of sample sizes before

the sample corresponding to ur returns to the TOST rejection region). The mean duration
of these departures increases as θ1 − θ2 approaches δL = −19.2 but so do the sample sizes
n1 and n2 required to achieve the desired target power. For instance, we require n between
roughly 200 and 450 to obtain 80% power for the settings where θ1− θ2 = −16. Therefore,
the mean duration of these departures is small with respect to the recommended sample
sizes.

The right section of Table A.1 concerns the nondecreasing behaviour of se(n,q)
r , which

does not depend on the value for θ1 − θ2. The mean column indicates the average sample
size n at which se(n,q)

r peaks over all simulation repetitions. Because a minimum n value
of 2 is required to estimate σ1 and σ2, se

(n,q)
r is a generally decreasing function of n for

the majority of Sobol’ sequence points. As indicated in the two rightmost columns of
Table A.1, it is uncommon for se(n,q)

r to peak at sample sizes n > 5, and nondecreasing
behaviour of se(n,q)

r is incredibly rare for n > 10. These results are encouraging because the
nondecreasing behaviour of se(n,q)

r drives many of the multiple intersections between se(n,q)
r

and Λ(n,q)
r . Given the results in Table A.1, we conclude that root-finding algorithms are a

suitable mechanism to select sampling distribution segments.
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θ1 − θ2 = 0 Nonunique se(n,q)
r = Λ(n,q)

r argmax n for se(n,q)
r

Scenario q Prevalence Departure Duration Mean n > 5 n > 10

1 1 0.03% 3.00 1.04 2.54 2.25% 0.03%

2
1 0.03% 3.00 1.04 2.55 2.31% 0.03%

1.2−1 0.09% 3.07 1.12 2.89 3.58% 0.07%
1.2 0.01% 3.00 1.00 2.47 1.83% 0.02%

3
1 0.04% 3.00 1.06 2.58 2.58% 0.04%

1.5−1 0.10% 3.01 1.11 2.94 5.84% 0.15%
1.5 0.09% 3.00 1.01 2.48 2.22% 0.04%

θ1 − θ2 = −4 Prevalence Departure Duration Mean n > 5 n > 10

1 1 0.06% 3.00 1.76 2.54 2.25% 0.03%

2
1 0.06% 3.01 1.81 2.55 2.31% 0.03%

1.2−1 0.13% 3.31 1.61 2.89 3.58% 0.07%
1.2 0.05% 3.00 1.71 2.47 1.82% 0.02%

3
1 0.07% 3.01 1.78 2.58 2.58% 0.04%

1.5−1 0.14% 3.31 1.65 2.94 5.84% 0.15%
1.5 0.16% 3.00 1.34 2.48 2.21% 0.04%

θ1 − θ2 = −8 Prevalence Departure Duration Mean n > 5 n > 10

1 1 0.16% 3.14 3.35 2.54 2.25% 0.03%

2
1 0.17% 3.13 3.42 2.55 2.31% 0.04%

1.2−1 0.23% 3.76 3.18 2.89 3.58% 0.07%
1.2 0.15% 3.12 3.27 2.47 1.82% 0.02%

3
1 0.18% 3.14 3.42 2.58 2.56% 0.04%

1.5−1 0.31% 4.08 3.07 2.94 5.84% 0.16%
1.5 0.33% 3.05 2.42 2.48 2.22% 0.03%

θ1 − θ2 = −12 Prevalence Departure Duration Mean n > 5 n > 10

1 1 0.36% 3.46 8.03 2.54 2.25% 0.03%

2
1 0.38% 3.46 8.15 2.55 2.32% 0.03%

1.2−1 0.49% 4.47 7.78 2.89 3.58% 0.07%
1.2 0.38% 3.39 7.34 2.47 1.82% 0.02%

3
1 0.41% 3.48 8.02 2.58 2.57% 0.04%

1.5−1 0.65% 5.06 6.88 2.94 5.84% 0.15%
1.5 0.60% 3.26 5.89 2.48 2.22% 0.04%

θ1 − θ2 = −16 Prevalence Departure Duration Mean n > 5 n > 10

1 1 0.77% 4.33 35.72 2.54 2.25% 0.04%

2
1 0.79% 4.37 35.38 2.55 2.31% 0.04%

1.2−1 1.01% 5.79 33.17 2.89 3.58% 0.07%
1.2 0.84% 4.24 31.50 2.47 1.82% 0.02%

3
1 0.86% 4.36 35.54 2.58 2.57% 0.05%

1.5−1 1.24% 6.66 29.49 2.94 5.85% 0.15%
1.5 1.20% 4.22 25.87 2.48 2.22% 0.04%

Table A.1: Simulation results for 1000 repetitions of all scenario and q combinations for
five θ1 − θ2 values with m = 1024. The center section of the table concerns nonunique
solutions to se(n,q)

r = Λ(n,q)
r . The right section concerns nondecreasing behaviour of se(n,q)

r .
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A.1.2 The Impact of Multiple Intersections on Power Curve Ap-
proximation

As visualized in Section 2.4.4, Algorithm 2.2 approximates power curves without estimating
the entire sampling distribution of test statistics for all sample sizes. The segments of
the relevant sampling distributions are selected using root-finding algorithms under the
assumption that the functions se(n,q)

r and Λ(n,q)
r have a unique solution for each point ur, r =

1, ...,m. Reinitializing the root-finding algorithm in Lines 7 to 13 of Algorithm 2.2 allows us
to obtain an unbiased sample size recommendation in the presence of multiple intersections.
In Section 2.4.3, we conducted a numerical study with 8000 power curves for the illustrative
example in which the root-finding algorithm never needed to be reinitialized. We now
extend that numerical study to the expanded set of scenarios defined in Section A.1.1.

We considered the 35 scenarios from Table A.1. These scenarios detail five values for θ1−
θ2: {0,−4,−8,−12,−16}. For each θ1 − θ2 value, seven (σ1, σ2, q) combinations explored
unequal variances and imbalanced sample sizes: {1 = (16.5, 16.5, 1), 2 = (18, 15, 1), 3 =
(18, 15, 1.2−1), 4 = (18, 15, 1.2), 5 = (19.5, 13, 1), 6 = (19.5, 13, 1.5−1), 7 = (19.5, 13, 1.5)}.
For each of these 35 scenarios, we considered eight values for the target power 1 − β =
{0.2, 0.3, . . . , 0.9}. The remaining inputs for Algorithm 2.2 are α = 0.05, δL = −19.2,
δU = 19.2, and m = 1024 as used in Section 2.4.3. For each of the 35 × 8 = 280 scenario
and target power combinations, we approximated 100 power curves using Algorithm 2.2.

We only needed to reinitialize the root-finding algorithm in Lines 7 to 13 of Algorithm
2.2 for four of the 2.867×107 points used to generate these 28000 curves. Those four points
were used for scenarios where 1−β = 0.2 and θ1−θ2 = −12; two of those points were used
with the first (σ1, σ2, q) combination, and one of those points was used with each of the
third and fifth (σ1, σ2, q) combinations. Those four points prompted multiple intersections
between se(n,q)

r and Λ(n,q)
r , one of which occurred for n ≤ n∗ in Line 6 of Algorithm 2.2

and the other of which occurred for n > n∗. We needed to choose the other intersection
to obtain an unbiased power estimate – even though ⌈n∗⌉ and ⌈n∗⌉ from Algorithm 2.2
were the same for the four power curves created using these points. We therefore very
rarely need to adjust for multiple intersections, especially for high-powered studies since
the root-finding algorithm never needed to be reimplemented for 1 − β ≥ 0.3. However,
we cannot guarantee that it is unnecessary to adjust for multiple intersections with an
arbitrary design, so that is why we incorporated Lines 7 to 13 into Algorithm 2.2 to ensure
unbiased sample size recommendations.
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A.2 Competing Methods for Power Analysis

In this section, we consider alternative methods for power analysis with the Welch-based
TOST procedure. We illustrate that the consistency of the power estimates produced by
such methods depends on the numerical integration settings. For the Welch-based TOST
procedure, Jan and Shieh (2017) proposed an analytical method to compute power given
sample sizes n1 and n2. They accounted for the degrees of freedom being unknown a priori
by expressing the test statistic in terms of simpler normal, chi-square, and beta random
variables. The sum of the sample variances for the two groups is related to a chi-square
distribution, and the proportion of total variability arising from the first group is related
to a beta distribution. Power was computed by integrating with respect to the expectation
of these (independent) chi-square and beta random variables. Shieh et al. (2022) provided
R code to implement exact power calculations for the Welch-based TOST procedure using
two-dimensional quadrature with Simpson’s rule (Süli and Mayers, 2003).

We computed power estimates using Jan and Shieh’s (2017) method for the illustrative
example from Section 2.3.2 with n = {3, 5, 8, 10, 15, 20, 30, 40, 50, 60}. When the numer-
ical integration parameters for Simpson’s rule are properly tuned, these power estimates
coincided with those obtained by Algorithm 2.1 in Table 2.1 to four decimal places. With
n = 2, Jan and Shieh’s (2017) method provided a power estimate of 2.0838 using the
recommended quadrature settings with 5 × 105 points. When using the default settings
with 5× 106, 5× 107, and 2.5× 108 points, their method respectively estimated power to
be 0.2296, 0.0443, and 0.0278. The final estimate took roughly 56 seconds to compute on
a standard laptop. For n = 2, we estimated power 100 times using Algorithm 2.1 with
m = 65536 as done in Table 2.1. This gave rise to an empirical power estimate of 0.0238
and a 95% confidence interval of (0.0236, 0.0240) created using the percentile bootstrap
method (Efron, 1982); this confidence interval does not contain the final estimate returned
by Jan and Shieh’s (2017) method of 0.0278.

When fewer than 5 × 107 points are used with their default settings, power is not
a nondecreasing function of the sample size n for the illustrative example. This occurs
because the quadrature rule has not converged. This lack of convergence is problematic –
even for the smallest possible sample size of n = 2. To find a suitable sample size, power is
often computed successively for n = {2, 3, 4, ...} until the target power 1− β for the study
is achieved. If sample sizes are explored using a bisection method, this process is initialized
by computing power at lower and upper bounds for n. This lower bound is typically n = 2.
Depending on the chosen quadrature settings, using either approach for this example could
lead us to incorrectly conclude that n = 2 is sufficient for a high-powered study.

Alternative numerical integration techniques may also yield unstable results when com-
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bined with Jan and Shieh’s (2017) method. We modify Shieh et al.’s (2022) code to compute
power using two-dimensional numerical integration techniques in R. This requires us to in-
tegrate over a beta variable with domain (0, 1) and a chi-square variable with domain R+.
In practice, we often need to choose a finite upper bound of integration for the chi-square
variable. Figure A.1 illustrates that the estimated power for the illustrative example at var-
ious sample sizes n is sensitive to this choice of upper bound when implementing numerical
integration via R’s pracma package (Borchers, 2021).
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Figure A.1: Estimated power (black) for the illustrative example with n = {5, 8, 10, 15}
and various upper bounds of integration for the chi-square variable. Actual power for these
designs is visualized in red.

Thus, the consistency of the power estimates returned by competing methods depends
on the chosen integration bounds or point grid for the quadrature rule. These issues with
consistency can be diagnosed when considering various values for the numerical integration
parameters; however, diagnosing and correcting these issues may be outside the comfort
zone of some practitioners. Jan and Shieh’s (2017) method computes power for fixed sample
sizes n1 and n2, so it is comparable to Algorithm 2.1. Algorithm 2.1’s equivalent of the
numerical integration parameters is the length m of the Sobol’ sequence. We emphasize
that this choice for m only impacts the precision – and not the consistency – of the power
estimates. With the dent package, our methods are therefore easily applied and robust to
these tuning issues.
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A.3 Power Analysis for Crossover Designs

In crossover designs, each subject receives a different formulation of a drug (or nonclin-
cal treatment) during different periods (Chow and Liu, 2008). Each group (or block) of
subjects receives a different sequence of formulations. Crossover designs possess several
advantages over their parallel counterparts. First, each subject can serve as their own
control, which facilitates within-subject comparison between drug formulations. Crossover
designs also remove inter-subject variability from between-formulation comparisons.

Although crossover designs often require fewer subjects to obtain desired power for the
equivalence test, they take longer to implement than parallel designs because each subject
is analyzed over multiple treatment periods. Moreover, there are typically rest periods
between consecutive treatment periods so that the effect of the formulation administered
in one treatment period does not persist in the next. These rest periods are called washout
periods, and they should be long enough for the effect of one formulation to wear off
so that there is no carryover effect in the next treatment period. If the washout period
length is too short relative to the persistence of the formulation effects, we must distinguish
between the effect of the drug being administered in a given period (direct drug effect) and
the carryover effect. First-order carryover effects are those that last a single treatment
period. Generally, higher-order carryover effects that last multiple treatment periods are
not considered in bioequivalence studies.

There are many crossover designs that assess average bioequivalence, the most common
of which is the two-sequence, two-period (2 × 2) crossover design. In the 2 × 2 crossover
design, two drug formulations are compared: an established reference (R) drug and a new
test (T) formulation. Moreover, subjects are assigned to sequence 1 (RT) or 2 (TR) in
this type of design. The acronyms in parentheses denote which order the subjects in that
sequence receive the test and reference formulations. There is a washout period between
the two treatment periods. We consider the statistical model for the 2×2 crossover design
described in Chow and Liu (2008). We let yijk be the response from the ith subject in the
kth sequence at the jth period such that

yijk = µ+ Sik + Pj + F(j,k) + C(j−1,k) + eijk, (A.1)

where i = 1, ..., nk, j = 1, 2, and k = 1, 2. Here, nk is the number of subjects in the kth

sequence, and µ is the overall mean. Sik is the random effect for the ith subject in the
kth sequence, and we assume that these terms are i.i.d. according to a normal distribution
with mean 0 and variance σ2

S. Pj is the fixed effect of the jth period such that P1+P2 = 0.
F(j,k) is the direct fixed effect of the formulation administered to subjects in sequence k
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during the jth period. For the 2× 2 crossover design, we have that F(j,k) = FR if j = k and
FT otherwise. We assume that FT +FR = 0. C(j−1,k) is the fixed first-order carryover effect
of the formulation administered in the (j − 1)th period of sequence k, where C(0,k) = 0 for
k = 1, 2. Furthermore, we have that C(1,1) = CR, C(1,2) = CT , and CT + CR = 0. Finally,
eijk is the within-subject random error, where these terms are assumed to be i.i.d. normal
with mean 0 and variance σ2

T or σ2
R depending on the formulation administered. We further

assume that the Sik and eijk terms are mutually independent.

The 2 × 2 crossover design allows us to consider the presence of carryover effects by
testing the hypothesis that CT − CR = 0 (Chow and Liu, 2008). However, we cannot
uniquely estimate model (A.1) using a 2×2 crossover design if carryover effects are present.
In such scenarios, we also cannot obtain an unbiased estimator for the direct drug effect
F = FT − FR based on data from both periods. If carryover effects are present, only the
data from the first period is typically used. This effectively reverts the design into a parallel
study, and the methods from Chapter 2 can be applied. Here, we assume the absence of
carryover effects (i.e., CT = CR = 0) and consider power analysis with carryover effects in
the dent package. We define period differences for each subject within each sequence as

Dik =
1

2
(yi2k − yi1k), (A.2)

for i = 1, 2, ..., nk and k = 1, 2. In the absence of carryover effects, an unbiased estimator for
the direct drug effect is F̂ = D̄·1−D̄·2. Under model (A.1), σ2

Dk = V ar(Dik) = (σ2
T +σ

2
R)/4

for both sequences k = 1, 2, and the equal variance assumption is theoretically sound.
However, this assumption may be inappropriate if we allow the within-subject random
errors to vary by treatment and sequence (i.e., V ar(eijk) is σ

2
Tk or σ2

Rk depending on the
formulation administered in period j of sequence k). The equal variance assumption may
also be inappropriate for crossover designs that account for carryover effects, such as two-
sequence dual designs (Chow and Liu, 2008).

Thus, it is useful to have Welch-based design methods for crossover studies that allow
for unequal variances. Algorithms 2.1 and 2.2 can readily be extended to serve this purpose.
For parallel designs, an anticipated value for the effect θ1−θ2 is chosen. In the 2×2 crossover
design, a similar input for the sample size calculation is specified for F = FT −FR. Instead
of hypothesizing values for inter-subject standard deviations σ1 and σ2, practitioners guess
values for the standard deviations of the intra-subject differences in sequences 1 and 2: σD1

and σD2. Algorithms 2.1 and 2.2 can be directly applied with the 2×2 crossover design by
substituting θ1−θ2 with F , σ1 with σD1/2, and σ2 with σD2/2. The intra-subject standard
deviations are divided by two due to the factor of 1/2 in (A.2).
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We illustrate the value of this approach using an example from Chow et al. (2008).
This example concerns a clinical trial that compares a test and a reference formulation
of a drug using log-transformed area under the curve (AUC), which measures total drug
exposure across time in pharmacokinetics contexts. The AUC data are assumed to be
normal after this logarithmic transformation. The mean difference of AUC is assumed to be
F = 0.05. The interval endpoints are chosen to be δU = −δL = 0.223 to comply with FDA
requirements (FDA, 2003). Balanced samples are to be collected (n = n1 = n2), and past
studies give rise to anticipated intra-subject standard deviations of σD1 = σD2 = σD = 0.4.
The investigator wants to find the sample size n that achieves 100× (1−β)% = 80% power
at the significance level of α = 0.05. Chow et al. (2008) recommended conservatively
choosing the smallest sample size n that satisfies

n ≥
(tα,2n−2 + tβ/2,2n−2)

2σ2
D

2(δU − |F |)2
. (A.3)

Because (A.3) does not admit an explicit solution for the sample size per sequence, the
desired nmust be found numerically. As such, tables populated with n values corresponding
to various F , β, and σD combinations are often used to select sample sizes. Table 10.2.1 on
page 262 of Chow et al. (2008) recommended a sample size of n = 24 per sequence with this
example. We first implemented Algorithm 2.2 for unequal variances with σD1 = σD2 = 0.4.
For comparison, we also implemented an equal variance version of this approach that uses
two-dimensional Sobol’ sequences and the TOST procedure with Student’s t-tests. Both
the equal and unequal variance versions of our approach returned a recommended sample
size of n = 18. Given that n1 = n2 and σD1 = σD2, it is not surprising that both approaches
recommend the same sample size based on numerical studies from Gruman et al. (2007)
and Rusticus and Lovato (2014). The recommended sample size of n = 24 from (A.3) is
33% larger than n = 18, and a crossover study with 2× 24 = 48 total subjects takes more
resources to conduct than one with 36 subjects.

Chow et al. (2008) acknowledged that (A.3) returns a conservative sample size, but the
degree of conservatism is not transparent. Their sample size recommendation is conserva-
tive when δU − |F | < |δL| as in this example. For this example, using (A.3) to choose a
sample size effectively changes the lower interval endpoint to δL = F − (δU −F ) = −0.123.
Both versions of Algorithm 2.2 with equal and unequal variances align with (A.3) and
recommend n = 24 when (δL, δU) = (−0.123, 0.223). Our approaches therefore better ac-
commodate scenarios where F ̸= 0.5(δL + δU) than certain design methods that leverage
static tables or analytical formulas – even when the equal variance assumption is appropri-
ate. Since our methods leverage sampling distribution segments, this better performance
does not come with a substantial computational cost.
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Appendix B

Additional Material for Chapter 3

B.1 Additional Content for Theorem 3.1

B.1.1 Conditions for the Bernstein-von Mises Theorem

Theorem 3.1 requires that the conditions for the BvM theorem are satisfied. These condi-
tions are described in more detail in van der Vaart (1998), starting on page 140. Conditions
(B0), (B1), and (B2) concern the likelihood component of the posterior distribution for a
parameter θ. (B3) concerns the prior specifications for θ. The fixed parameter value for θ
is denoted as θ0 in Chapter 3 and as θ∗ in Chapter 5.

(B0) The observations are drawn independently and identically from a distribution Pθ0 for
some fixed, nonrandom θ0.

(B1) The parametric statistical model from which the data are generated is differentiable
in quadratic mean.

(B2) There exists a sequence of uniformly consistent tests for testing H0 : θ = θ0 against
H1 : ∥θ − θ0∥ ≥ ε for every ε > 0.

(B3) Let the prior distribution for θ be absolutely continuous in a neighbourhood of θ0
with continuous positive density at θ0.
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B.1.2 Conditions for the Asymptotic Normality of the Maximum
Likelihood Estimator

Theorem 3.1 also requires that the design distributions f(y;η1,0) and f(y;η2,0) satisfy the
regularity conditions for the asymptotic normality of the maximum likelihood estimator.
These conditions are detailed in Lehmann and Casella (1998); they consider a family of
probability distributions P = {Pθ : θ ∈ Ω}, where Ω is the parameter space. Lehmann and
Casella (1998) use θ as the unknown parameter with true fixed value θ0, so we state the
conditions using this notation. However, we use θ = θ1 − θ2 or θ = θ1/θ2 to compare two
characteristics in our framework. For our purposes, the conditions in Lehmann and Casella
(1998) must hold for the design distributions in Chapter 3 (with unknown parameters η1

and η2 and true values η1,0 and η2,0). In Chapter 5, these conditions must hold for the
distributions parameterized by η1 and η2 with values η∗

1 and η∗
2 drawn from a design prior.

Lehmann and Casella (1998) detail nine conditions that guarantee the asymptotic nor-
mality of the maximum likelihood estimator. We provide the following guidance on where
to find more information about these conditions in their text. The first four conditions
– (R0), (R1), (R2), and (R3) – are described on pages 443 and 444 of their text. (R4)
is mentioned as part of Theorem 3.7 on page 447. (R5), (R6), and (R7) are described in
Theorem 2.6 on pages 440 and 441. (R8) is mentioned in Theorem 3.10 on page 449.

(R0) The distributions Pθ of the observations are distinct.

(R1) The distributions Pθ have common support.

(R2) The observations are X = (X1, ..., Xn), where the Xi are identically and indepen-
dently distributed with probability density function f(xi|θ) with respect to a σ-finite
measure µ.

(R3) The parameter space Ω contains an open set ω of which the true parameter value θ0
is an interior point.

(R4) For almost all x, f(x|θ) is differentiable with respect to θ in ω, with derivative f ′(x|θ).

(R5) For every x in the set {x : f(x|θ) > 0}, the density f(x|θ) is differentiable up to
order 3 with respect to θ, and the third derivative is continuous in θ.

(R6) The integral
∫
f(x|θ)dµ(x) can be differentiated three times under the integral sign.
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(R7) The Fisher information I(θ) satisfies 0 < I(θ) <∞.

(R8) For any given θ0 ∈ Ω, there exists a positive number c and a function M(x) (both of
which may depend on θ0) such that |∂3logf(x|θ)/∂θ3| ≤M(x) for all {x : f(x|θ) > 0},
θ0 − c < θ < θ0 + c, and E[M(X)] <∞.

B.1.3 Proof of Theorem 3.1

We first prove part (a) of Theorem 3.1. We extend the notation from (3.10) to estimate
the posterior probabilities that comprise Pδ

n,Y (n) ,(3.5)
and Pδ

n,Y (n) ,(3.6)
when data Y (n) are

generated. For Pδ
n,Y (n) ,(3.5)

, the fraction inside the standard normal CDF of (3.10) converges

to the following normal distribution:

√
n

 δ − θ0√
I(θ̂n)−1

− θ̂n − θ0√
I(θ̂n)−1

 d−→ N

(
δ − θ0√
I(θ0)−1

, 1

)
. (B.1)

This result follows by the asymptotic normality of the MLEs η̂1,n and η̂2,n, the continuous
mapping theorem because g(·) and h(·) are differentiable at the design values, and Slut-

sky’s theorem since I(θ̂n)−1 P−→ I(θ0)−1. When pseudorandom sequences U
i.i.d.∼ U([0, 1]2d)

are input into Algorithm 3.1, the left side of (B.1) for Pδ
n,U ,Alg.3.1 follows the normal distri-

bution on the right side exactly. The CDFs of the sampling distributions Pδ
n,Y (n) ,(3.5)

and

Pδ
n,U ,Alg.3.1 then converge pointwise as n → ∞ by a second application of the continuous

mapping theorem with the function Φ(·). We obtain the result in part (a) regarding the
total variation distance by Scheffé’s lemma (Williams, 1991).

To prove part (b) for Pδ
n,Y (n) ,(3.6)

, we note that the approximations in (3.5) and (3.6)

are virtually the same as n → ∞. Under the conditions for Theorem 3.1, the posterior
mode η̃j,n converges in probability to ηj,0 for j = 1, 2. The following result also holds for
Jj(η̃j,n)/n in (3.6):

1

n
Jj(η̃j,n) =

[
− 1

n

n∑
i=1

∂2

∂η2
j

log(f(yij;ηj))−
1

n

∂2

∂η2
j

log(pj(ηj))

]
ηj=η̃j,n

P−→ I(ηj,0). (B.2)

Because η̃j,n− η̂j,n
P−→ 0, the mean and variance of the normal distribution in (3.6) respec-

tively approximate θ̂n and I(θ̂n)−1/n in (3.5) for large sample sizes n by the continuous
mapping theorem. The result in part (b) then follows from part (a).

156



B.2 Proof of Lemma 3.1

To prove part (a) of Lemma 3.1, we only present the proof for group 1 since the proof for
group 2 follows the same process. We use induction on the dimension d of η1 for this proof.
We show the base case corresponding to a model with d = 2. To simplify notation, we let

I(η1,0)
−1 =

[
σ2
11 ρ12σ11σ22

ρ12σ11σ22 σ2
22

]
.

By properties of the bivariate conditional normal distribution, it follows that

η̂1,n(ur)(1) = η(1)

1,0 +
1√
n
Φ−1(u1)σ11 and (B.3)

η̂1,n(ur)(2) = η(2)

1,0 +
1√
n
σ22

[
Φ−1(u1)ρ12 + Φ−1(u2)

√
1− ρ212

]
. (B.4)

The result in part (a) therefore holds true when d = 2, where ω1(u1) and ω2(u1, u2) are
given by the expressions to the right of the 1/

√
n terms in (B.3) and (B.4), respectively.

For the inductive hypothesis, we assume that the result in part (a) of Lemma 3.1
holds true for a model with d = l parameters. For the inductive conclusion, we show
that this implies the result also holds for a model with d = l + 1 parameters. Because
η̂1,n(ur)(1) , ..., η̂1,n(ur)(l) only depend on the components with smaller indices, we just
need to prove that the result in part (a) holds for η̂1,n(ur)(l+1) . That result in conjunction
with the inductive hypothesis proves the inductive conclusion. To prove the inductive
conclusion, we introduce the following block matrix notation:

I(η1,0)
−1 =

[
Σl,l Σl,1

Σ1,l Σl+1,l+1

]
,

where Σl,l is a l × l matrix, Σl,1 is a l × 1 matrix, Σ1,l = ΣT
l,1, and Σl+1,l+1 is scalar.

The marginal distribution of η̂(l+1)

1,n conditional on the already-generated η̂1,n(ur)(k) for
k = 1, ..., l is

N

η(l+1)

1,0 +
1√
n
Σ1,lΣ

−1
l,l

 ω1(u1)
...

ωl(u1, ..., ul)

 ,
1

n

[
Σl+1,l+1 −Σ1,lΣ

−1
l,l Σl,1

] .

157



Therefore, we have that

η̂1,n(ur)(l+1) = η(l+1)

1,0 +
1√
n
Σ1,lΣ

−1
l,l

 ω1(u1)
...

ωl(u1, ..., ul)


+

1√
n
Φ−1(ul+1)

[
Σl+1,l+1 −Σ1,lΣ

−1
l,l Σl,1

]1/2
.

(B.5)

The result from part (a) of Lemma 3.1 holds for η̂1,n(ur)(l+1) if we take ωl+1(u1, ..., ul+1) as
the sum of the two components to the right of the 1/

√
n terms in (B.5). By mathematical

induction, part (a) of Lemma 3.1 is true for an arbitrary model with d parameters.

Part (b) of Lemma 3.1 follows from the first-order Taylor expansion of h(g(η̂1,n(ur)),
g(η̂2,n(ur))) around (η1,0,η2,0). We have that

h(g(η̂1,n(ur)), g(η̂2,n(ur)))− h(g(η1,0), g(η2,0))

≈
2∑

j=1

d∑
k=1

∂h

∂gj

∂gj

∂η(k)

j

∣∣∣∣
(η1,η2)=(η1,0,η2,0)

[
η̂j,n(ur)(k) − η(k)

j,0

]
≈ 1√

n

[
2∑

j=1

d∑
k=1

∂h

∂gj

∂gj

∂η(k)

j

∣∣∣∣
(η1,η2)=(η1,0,η2,0)

ω(j−1)d+k(u(j−1)d+1, ..., u(j−1)d+k)

]
.

(B.6)

Part (b) of Lemma 3.1 follows if we let ω†(·) be the sum on the right side of the 1/
√
n term

in (B.6). However, this Taylor series expansion may only be suitable for large sample sizes
n, i.e., when η̂j,n(ur) is sufficiently near ηj,0 for j = 1, 2. Our simulation procedure for
η̂j,n(ur) ensures this convergence occurs for large n, and the conditions for Theorem 3.1
guarantee that η̂j,n based on the data y(n) also converges in probability to ηj,0.

To prove part (c), we note that the following result holds for sufficiently large n:

δ − θ(n)
r√

τ (n)
r

≈
δ − (h(g(η1,0), g(η2,0)) + ω†(u1, ..., u2d)/

√
n)√

I(θ0)−1/n

=
δ − θ0√
I(θ0)−1

√
n− ω†(u1, ..., u2d)√

I(θ0)−1
.

(B.7)

The approximate equivalence of the numerators in the first line of (B.7) follows from part
(b) of Lemma 3.1 and the fact that η̃j,n − η̂j,n and η∗

j,n − η̂j,n converge in probability to

0. Moreover, τ (n)
r ≈ I(θ0)−1/n for sufficiently large n by the continuous mapping theorem
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for Algorithm 3.1, (B.2) for Algorithm 3.2, and similar logic to (B.2) for Algorithm 3.3.
The second line of (B.7) holds because θ0 = h(g(η1,0), g(η2,0)). The expression in (B.7)
takes the form a(δ, θ0)

√
n + b(ur) since neither fraction in the second line depends on n.

Part (c) of Lemma 3.1 follows by using the normal CDF as in (3.6). We note that the
function a(δ, θ0), which is the fraction to the left of the

√
n term in the second line of (B.7),

must incorporate monotonic transformations applied to the posterior of θ to improve the
suitability of its normal approximation.

Part (d) of Lemma 3.1 follows from taking the derivative of the approximation to
pδUn,ur,ζ

− pδLn,ur,ζ
prompted by part (c) with respect to the sample size n:

d

dn

[
pδUn,ur,ζ

− pδLn,ur,ζ

]
≈ d

dn

[
Φ
(
a(δU , θ0)

√
n+ b(ur)

)
− Φ

(
a(δL, θ0)

√
n+ b(ur)

)]
=
a(δU , θ0)ϕ (a(δU , θ0)

√
n+ b(ur))− a(δL, θ0)ϕ (a(δL, θ0)

√
n+ b(ur))

2
√
n

,

(B.8)

where ϕ(·) is the probability density function (PDF) of the standard normal distribution.
This derivative must be positive for sufficiently large n where the approximation from part
(c) of Lemma 3.1 holds. When θ0 ∈ (δL, δU), a(δU , θ0) is positive and a(δL, θ0) is negative.
Because the normal distribution takes support over the entire real line, ϕ(·) returns a
positive value for any real input. If δL or δU is not finite, then its component of the
difference in the numerator of (B.8) is zero. The remaining component of the numerator
is still positive and so is the derivative in (B.8). Hence, part (d) of Lemma 3.1 is true, and
pδUn,ur,ζ

− pδLn,ur,ζ
is an increasing function for sufficiently large n.

B.3 Additional Numerical Studies

B.3.1 Numerical Studies with Bayes Factors

We now compare the performance of our power curve approximation procedure for several
posterior analyses with Bayes factors. To do so, we modify Settings 1a and 2a from Section
3.6.1. We do not change the target power, interval (δL, δU), or the prior distributions. For
Setting 1a with the uninformative priors, Pr(H1) = 0.0128 for H1 : θ1/θ2 ∈ (δL, δU).
We consider a threshold for the nonoverlapping-hypotheses Bayes factor of K = 100 for
illustration. By (3.2), this corresponds to a critical value of γ = 0.5652. For Setting
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Figure B.1: 100 power curves obtained via Algorithms 3.1 (yellow) and 3.2 (blue), power
curve estimated via simulated data (red), and target power 1−β (dotted line) for Settings
1a and 2a with hypothesis tests facilitated via NOH Bayes factors.

1b with the informative priors, Pr(H1) = 0.2835. We consider a threshold for the NOH
Bayes factor of K = 3 for illustration, which corresponds to a critical value of γ = 0.5428.
This example illustrates the importance of considering the impact of the prior for θ when
choosing a threshold K.

The numerical study in this subsection was otherwise carried out using the same process
as described in Section 3.6.1. For each setting, we obtained 100 approximations to the
power curve using Algorithm 3.4 with ζ = {Alg. 3.1,Alg. 3.2}. The results for Settings
1a (left) and 2a (right) are depicted in Figure B.1. This numerical study supports similar
conclusions as those drawn regarding Settings 1a and 2a for hypothesis tests with posterior
probabilities in Figure 3.4.

B.3.2 Numerical Studies with Imbalanced Sample Sizes

In Section 3.7, we acknowledge that our framework as presented in Chapter 3 does not
support imbalanced sample size determination (i.e., where n2 = qn1 for some constant
q > 0). In this subsection, we describe how to extend our methods to allow for im-
balanced sample size determination. This procedure requires practitioners to choose the
constant q a priori. When n1 ̸= n2, we use the following limiting posteriors for each group:
N (η1,0, I(η1,0)

−1/n) and N (η2,0, I(η2,0)
−1/(qn)). To apply the multivariate delta method

to obtain the limiting posterior of θ = h(g(η1), g(η2)), both the limiting variances of η1

and η2 must be functions of n. We therefore treat I(η2,0)
−1/q as the inverse Fisher infor-

mation for η2 evaluated at the design value η2,0. This modification is also incorporated
into the process to simulate maximum likelihood estimates for η2 in Algorithms 3.1, 3.2,
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Figure B.2: 100 power curves obtained via Algorithms 3.1 (yellow) and 3.2 (blue), power
curve estimated via simulated data (red), and target power 1−β (dotted line) for Settings
1a and 2a with hypothesis tests with imbalanced sample sizes.

and 3.3. That is, the variability in the marginal limiting distribution of η̂2,qn is scaled to
reflect the larger (q > 1) or smaller (0 < q < 1) sample size in the second group. Similar
modifications are also made when taking the normal approximation to the posterior of θ
in (3.5), (3.6), and (3.9). No other modifications are required to account for imbalanced
sample sizes.

Lastly, we evaluate the performance of our power curve approximation procedure with
several scenarios that have imbalanced sample sizes. We reuse Settings 1a and 2a from
Section 3.6.1. The only differences between this numerical study and the one conducted
in Section 3.6.1 are those described in the previous paragraphs. We choose q = 2 (i.e.,
n2 = 2n1) for this numerical study. This reflects the male (j = 2) provider group having
roughly twice as many observations as the female (j = 1) one in the motivating example
from Section 3.3. For each setting, we obtained 100 approximations to the power curve
using Algorithm 3.4 with ζ = {Alg. 3.1,Alg. 3.2}. These results are depicted in Figure
B.2. We again reach similar conclusions as those drawn for Settings 1a and 2a using Figure
3.4. We note that imbalanced sample size determination with Bayesian hypothesis tests is
considered more formally in Chapter 5.
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Appendix C

Additional Material for Chapter 4

C.1 Fisher Information for the Conditional Multino-

mial Model

Lemma C.1. Let θ = (Z1, Z2, ..., Zw−1) be the conditional probabilities defined in (4.2) for
the standard multinomial model with w categories. Then, the inverse Fisher information
matrix I(θ)−1 is diagonal for all possible (Z1, Z2, ..., Zw−1) ∈ (0, 1)w−1.

To prove Lemma C.1, we consider fixed parameters {pw−1,0 = (p1,0, ..., pw,0) : 0 <
p1,0, ..., pw,0 < 1,

∑w
v=1 pv,0 = 1}. The inverse of the Fisher information I(pw−1,0) is given by

I(pw−1,0)
−1 = n−1Σ, where Σs,t = ps,0(1−ps,0) if 1 ≤ s = t ≤ w−1 and −ps,0pt,0 otherwise.

We let p̂v and p̂v′ for 1 ≤ v < v′ ≤ w − 1 be MLEs for the multinomial parameters. We
denote the vector of all such MLEs as p̂w−1 = (p̂1, ..., p̂w−1). We define analogues to the
transformations in (4.2) for the fixed parameter values as (Z1,0, Z2,0, ..., Zw−1,0).

We let Zv,0 = gv(pw−1,0) for v = 1, ..., w − 1, and define Ẑv = gv(p̂w−1). By the
multivariate delta method, the asymptotic covariance ACov(·, ·) between gv(p̂w−1) and
gv′ (p̂w−1) for 1 ≤ v < v′ ≤ w − 1 is

ACov(gv(p̂w−1), gv′ (p̂w−1)) =
1

n

w−1∑
s=1

w−1∑
t=1

∂gv
∂ps,0

∂gv′

∂pt,0
Σs,t. (C.1)

We use induction to show that ACov(gv(p̂w−1), gv′ (p̂w−1)) = 0 for all 1 ≤ v < v′ ≤ w − 1.
We first show that ACov(g1(p̂2), g2(p̂2)) = 0. This base case corresponds to the model
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with w = 3. We have that

∂g1
∂p2,0

=

[
1

0

]
and

∂g2
∂p2,0

=
p2,0

(1− p1,0)2

[
1

(1− p1,0)/p2,0

]
.

Because ∂g1/∂p2,0 = 0, it follows that ACov(Ẑ1, Ẑ2) = 0 for the base case:

n× ACov(g1(p̂2), g2(p̂2)) =
∂g1
∂p1,0

∂g2
∂p1,0

Σ1,1 +
∂g1
∂p1,0

∂g2
∂p2,0

Σ1,2

=
p1,0p2,0

(1− p1,0)2
[1− p1,0 − p2,0(1− p1,0)/p2,0]

= 0.

(C.2)

For the inductive hypothesis, we assume that ACov(gv(p̂l−1), gv′ (p̂l−1)) = 0 for all
1 ≤ v < v′ ≤ l − 1. This implies that the result for the base case holds for an arbitrary
multinomial model with w = l categories. For the inductive conclusion, we show that this
result also holds for an arbitrary model with w = l + 1 categories. With l + 1 categories,
we have that

∂g1
∂pl,0

=

[
1

0l−1

]
,

∂gv
∂pl,0

=
pv,0(

1−
∑v−1

t=1 pt,0
)2
 1v−1(

1−
∑v−1

t=1 pt,0
)
/pv,0

0l−v

 , for v = 2, ..., l − 1,

and
∂gl
∂pl,0

=
pl,0(

1−
∑l−1

t=1 pt,0

)2
[

1l−1(
1−

∑l−1
t=1 pt,0

)
/pl,0

]
. (C.3)

Because of the upper triangular structure of the partial derivatives in (C.3) and the induc-
tive hypothesis, ACov(gv(p̂l), gv′ (p̂l)) = 0 for all 1 ≤ v < v′ ≤ l−1. We therefore just need
to consider ACov(gv(p̂l), gl(p̂l)) for all 1 ≤ v ≤ l − 1. We now derive general expressions
for these asymptotic covariances.
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We first derive the expression for ACov(g1(p̂l), gl(p̂l)). Similar to (C.2), we find

n× ACov(g1(p̂l), gl(p̂l)) =
l∑

s=1

∂g1
∂p1,0

∂gl
∂ps,0

Σ1,s

=
p1,0pl,0(

1−
∑l−1

t=1 pt,0

)2
[(

1−
l−1∑
t=1

pt,0

)
− pl,0

(
1−

l−1∑
t=1

pt,0

)
/pl,0

]

= 0

We now find an expression for ACov(gv(p̂l), gl(p̂l)), v = 2, ..., l − 1. By matrix multiplica-
tion, (C.3), and the expression for Σ, we obtain

n× ACov(gv(p̂l), gl(p̂l)) =
v∑

s=1

l∑
t=1

∂gv
∂ps,0

∂gl
∂pt,0

Σs,t

=
pv,0pl,0(

1−
∑v−1

t=1 pt,0
)2 (

1−
∑l−1

t=1 pt,0

)2
×

{
v−1∑
s=1

ps,0

[(
1−

l−1∑
t=1

pt,0

)
− pl,0

(
1−

l−1∑
t=1

pt,0

)
/pl,0

]
+(

1−
v−1∑
s=1

ps,0

)[(
1−

l−1∑
t=1

pt,0

)
− pl,0

(
1−

l−1∑
t=1

pt,0

)
/pl,0

]}
= 0

Therefore, ACov(gv(p̂l), gv′ (p̂l)) = 0 for all 1 ≤ v < v′ ≤ l. This result holds for arbitrary
pw−1,0. By mathematical induction, ACov(Ẑv, Ẑv′ ) = 0 for all 1 ≤ v < v′ ≤ w − 1 for
an arbitrary multinomial model with {w ∈ N : w ≥ 3} categories. Therefore, I(θ)−1 is
diagonal for all possible (Z1, Z2, ..., Zw−1) ∈ (0, 1)w−1.

C.2 More Simulations for the Calibration of Credible

Sets

Here, we investigate how the prior dependence structure impacts the calibration of Bayesian
credible sets for an example where the prior dependence structure is not a chronically
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rejected one. We consider the standard gamma model parameterized by θ = (α, λ), where
α and λ are respectively the shape and rate parameters. The correlation between α and
λ dictated by the inverse Fisher information matrix is 1/

√
αψ1(α), where ψ1(·) is the

trigamma function. The correlation 1/
√
αψ1(α) is a positive and increasing function for

all α > 0. When the conditions for Theorem 4.1 hold, the joint posterior of θ will be unable
to retain negative dependence structures between α and λ. However, positive dependence
structures between α and λ do not satisfy the conditions for chronic rejection outlined in
Corollary 4.1 – even if the magnitude of the prior dependence is not retained a posteriori.

We define the prior predictive distribution of Y (n) for these simulations by joining
a GAMMA(1000, 5000) prior for α and a GAMMA(1000, 800) prior for λ with a Gaus-
sian copula parameterized with Pearson’s ρ = 0.4. For each of 10000 simulation repeti-
tions, we approximated the posterior of θ |y(n) using sampling-resampling methods (Ru-
bin, 1988) with “nature’s” analysis prior. The proposal distribution was the posterior of
θ |y(n) obtained by independently joining the marginal priors for α and λ, and we sam-
pled from the proposal distribution using Markov chain Monte Carlo methods. For each
posterior, we approximated its 95% HPD set for α and λ using two-dimensional kernel
density estimation (Ripley, 2002). Empirical coverage was estimated as the proportion
of simulation repetitions for which the parameter value θ0 = (α0, λ0) used to gener-
ate the gamma data was contained in this HPD set. We implemented this process for
n = {101, 102, 103, 104, 105}. We then repeated this process for analysis priors p(θ) that
joined the marginal gamma priors from “nature’s” prior with a Gaussian copula parame-
terized by Pearson’s ρ = {0, 0.05, . . . , 0.95} \ {0.4}. The results from this numerical study
are visualized in Figure C.1.

Given the marginal GAMMA(1000, 5000) prior for α that defines pD(θ), the posterior
dependence structure between α and λ should converge to that of a Gaussian copula with
Pearson’s ρ ranging between 0.86 and 0.9. We therefore expect the strength of the positive
dependence between α and λ to increase along with the sample size n for nearly all ρ values
for the analysis prior considered in Figure C.1. As in Figure 4.3, the empirical coverage
in Figure C.1 exceeds the nominal level for small sample sizes n when the strength of the
dependence between the components in θ is slightly understated. As n increases, the impact
of prior dependence is once again reduced and the empirical coverage approaches roughly
95% for all ρ values considered. In general, the results from this numerical study support
the recommendations for prior dependence structure specification provided in Section 4.4.2.
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Figure C.1: Empirical coverage of 95% HPD for the gamma parameter θ = (α, λ) across
10000 posteriors. The horizontal dotted line denotes the nominal coverage, and the vertical
one denotes “nature’s” prior.

C.3 Proof of Theorem 4.2

Proof of Theorem 4.2(a). The posterior mode θ(k) minimizes −log(pk(θ |y(n))) for
k = 1, 2. We have that

− log(p2(θ |y(n)))

= −l(θ; y(n))−
d∑

j=1

log(fj(θj))− log(c1(u)) + (log(c1(u))− log(c2(u))) + A,
(C.4)

where l(θ; y(n)) is the log-likelihood function and the constant A reflects marginal likelihood
term. The first three terms in (C.4) are equal to −log(p1(θ |y(n))). When θ = θ(1) , it follows
that −∇θlog(p1(θ |y(n))) = 0 and −∇θlog(p2(θ |y(n))) = −∇θ

[
log(c1(u)) − log(c2(u))

]
.

For large sample sizes n, the conditions for Theorem 4.2 ensure that the log-posterior
−log(p2(θ |y(n))) converges to its quadratic approximation about θ = θ0. We use θ(1)

as a starting point for the Newton–Raphson method (Nocedal and Wright, 2006) with
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−log(p2(θ |y(n))) to find θ(2) . Because the quadratic approximation is appropriate for large
samples, only one iteration of the Newton–Raphson method is required to approximate
θ(2) . We let J (·) be the observed information. It follows that

θ(2) ≈ θ(1) − J (θ(1))−1∇θ=θ(1)

[
log(c1(u))− log(c2(u))

]
. (C.5)

The conditions for Theorem 4.2 also guarantee that the posterior mode θ(1) is ap-
proximately equal to the approximately normal MLE θ̂

(1)
for large samples y(n) . Because

the MLE is consistent, J (θ(1))−1 ≈ J (θ0)
−1 for sufficiently large samples. By (4.8),

we have that ∇θ=θ0

[
log(c1(u)) − log(c2(u))

]
̸= 0, so log(c1(u)) − log(c2(u)) can be ap-

proximated by a plane (with common gradient) in a neighbourhood of θ0. It follows that
J (θ(1))−1∇θ=θ(1)

[
log(c1(u))− log(c2(u))

]
will be roughly constant for all large samples y(n)

generated from m( ·|θ0). For an arbitrarily large sample y(n) , we have that θ(2) ≈ θ(1) + b
for some constant b that does not depend on y(n) by (C.5). Since the posterior concen-
trates around θ0 as the sample size n increases, this common perturbation b will decrease
in magnitude. θ(1) is approximately normally distributed about θ0 for large samples, so
these small perturbations will shift θ(2) ≈ θ(1) + b closer to θ0 with probability of roughly
0.5 due to the symmetry of the normal distribution.

Proof of Theorem 4.2(b). The results from (C.4) and (C.5) hold true as in part
(a). Because u0 is a local minimum of log(c1(u)) − log(c2(u)), the local linear ap-
proximation of this function is not serviceable at θ = θ0. However, this implies that
−∇θ=θ(1)

[
log(c1(u)) − log(c2(u))

]
should be directed toward θ0 for large samples y(n)

when the quadratic approximation to the log-posterior is appropriate and θ(1) ≈ θ0. We
let the orthonormal basis B be composed of the eigenvectors of J (θ(1))−1. Since J (θ(1))−1

is a positive definite matrix, the angle between −∇θ=θ(1)

[
log(c1(u)) − log(c2(u))

]
and

−J (θ(1))−1∇θ=θ(1)

[
log(c1(u)) − log(c2(u))

]
will be acute. With respect to B, the pertur-

bation from θ(1) to θ(2) induced by the Newton-Raphson method is then directed in the
same orthant of Θ ⊆ Rd that contains θ0. It follows that for large samples, θ(2) cannot be
further from θ0 than θ(1) due to a perturbation in the wrong direction. However, θ(2) could
still be further from θ0 than θ(1) if the magnitude of the perturbation is too large. We
argue that this cannot occur for an arbitrarily large sample y(n) because both p1(θ |y(n))
and p2(θ |y(n)) will concentrate around θ0 and θ0 maximizes log(c2(u)) − log(c1(u)) in
a neighbourhood of this fixed point. If this perturbation is too large for a given sample
y(n) , this behaviour cannot persist as n → ∞. For large samples, these small perturba-
tions by the Newton-Raphson method will therefore shift θ(2) closer to θ0 with probability
approaching 1.
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Appendix D

Additional Material for Chapter 5

D.1 Additional Content for Theorem 5.1

D.1.1 Proof of Theorem 5.1

We prove Theorem 5.1 in two stages. We first prove a simpler version of Theorem 5.1
where the design prior pD(η) is degenerate (i.e., pD(η

∗) = 1 for some η∗ = (η∗
1,η

∗
2) and

0 otherwise). This simpler version of Theorem 5.1 is incorporated into Theorem 3.1 from
Chapter 3. Here, we provide a similar proof to that detailed Appendix B.1.3 because the
notation differs slightly when we accommodate imbalanced sample sizes.

Under the conditions for Theorem 5.1 in the simpler setting, the posterior mode η̃j,nj

converges in probability to η∗
j for j = 1, 2. The following result also holds for Jj(η̃j,n)/nj

in (5.6):

1

nj

Jj(η̃j,nj
) =

[
− 1

nj

nj∑
i=1

∂2

∂η2
j

log(f(yij;ηj))−
1

nj

∂2

∂η2
j

log(pj(ηj))

]
ηj=η̃j,nj

P−→ I(η∗
j). (D.1)

Because η̃j,nj
− η̂j,nj

P−→ 0, the mean and variance of the normal distribution in (5.6)
respectively approximate

θ̂n = g(η̂1,n1
)− g(η̂2,n2

) and
1

n
I(θ̂n)−1 =

2∑
j=1

1

nj

[
∂g

∂η

T

I(η)−1 ∂g

∂η

]
η=η̂j,nj

,
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for large n = n1 = n2/q by the continuous mapping theorem. For simplicity, we do not
incorporate q into the notation for θ̂n in this appendix.

Similar to in Appendix B.1.3, we extend the notation from (5.7) to estimate the
posterior probabilities that comprise Pδ

n,q,Y (n,q) ,(5.6)
when data Y (n,q) are generated. For

Pδ
n,q,Y (n,q) ,(5.6)

, the fraction inside the standard normal CDF of (5.7) converges to the fol-

lowing normal distribution:

√
n

 δ − θ∗√
I(θ̂n)−1

− θ̂n − θ∗√
I(θ̂n)−1

 d−→ N

(
δ − θ∗√
I(θ∗)−1

, 1

)
. (D.2)

This result follows by the asymptotic normality of the MLEs η̂1,n1
and η̂2,n2

, the continuous
mapping theorem because g(·) is differentiable at η∗

1 and η∗
2, and Slutsky’s theorem since

I(θ̂n)−1 P−→ I(θ∗)−1. When psuedorandom sequences U
i.i.d.∼ U([0, 1]2d) are input into

Algorithm 5.1, the maximum likelihood estimates for Pδ
n,q,U ,Alg.5.1 are generated from a

distribution that coincides exactly with the right side of (D.2), and the impact of the prior
is negligible for large n. For the simplified case with degenerate design priors, another
application of the continuous mapping theorem with the function Φ(·) and Scheffé’s lemma

(Williams, 1991) prompt the result ∥Pδ
n,q,Y (n,q) ,(5.6)

− Pδ
n,q,U ,Alg.5.1∥TV

P−→ 0.

We use the previous result to prove Theorem 5.1 for the case with nondegenerate design
priors pD(η). The conditions for Theorem 5.1 ensure that the previous result holds for all
η∗ such that pD(η

∗) > 0. Theorem 5.1 assumes that η∗ ∼ pD(η). For nondegenerate pD(η),
we must integrate with respect to η: Theorem 5.1 holds true by yet another application
of the continuous mapping theorem and Scheffé’s lemma.

D.2 Proof of Lemma 5.1

D.2.1 Proof of Parts (a) to (c)

Parts (a), (b), and (c) of Lemma 5.1 respectively correspond to parts (a), (b), and (c) of
Lemma 3.1. The differences between these results involve notation. Whereas we referred to
the fixed parameter value as θ0 in Chapter 3, we use θ∗ to denote the anticipated value for θ
drawn from the relevant design prior. In Section 5.5.2, we described additional differences
in notation that involve η̂n, η̂1,n1

, and η̂2,n2
along with the functions g(·) and g∗(·). We

therefore proved parts (a), (b), and (c) of Lemma 5.1 in Section B.2.
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D.2.2 Proof of Part (d)

To prove part (d) of Lemma 5.1, we introduce simplified notation, where a(δU , θ
∗) = a

and a(δL, θ
∗) = c. We note that b(ur) = b is the same for both endpoints of the interval

(δL, δU). These simplifications yield the following result:

log(pδU−δL
n,q,ur

)− log
(
1− pδU−δL

n,q,ur

)
≈ log

(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

))
− log

(
1−

(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

)))
.

(D.3)

The first derivative of (D.3) with respect to n is

d

dn

[
log
(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

))
− log

(
1−

(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

)))]
=

aϕ (a
√
n+ b)− cϕ (c

√
n+ b)

2
√
n(Φ (a

√
n+ b)− Φ (c

√
n+ b))

+
aϕ (a

√
n+ b)− cϕ (c

√
n+ b)

2
√
n (1− (Φ (a

√
n+ b)− Φ (c

√
n+ b)))

.

(D.4)

We consider the limit of this derivative as n → ∞ in three cases. In the first case,
we consider θ∗ ∈ (δL, δU). In this setting, Φ (a

√
n+ b) − Φ (c

√
n+ b) → 1 as n → ∞.

Therefore, the limit of the first fraction in (D.4) as n → ∞ is 0. The second fraction can
be written in an indeterminate form, so we consider its limiting behaviour using L’Hopital’s
rule. We have that

lim
n→∞

a√
n
ϕ (a
√
n+ b)− c√

n
ϕ (c
√
n+ b)

2(1− (Φ (a
√
n+ b)− Φ (c

√
n+ b)))

= lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
ϕ (a
√
n+ b)− c

(
c2 +

cb√
n
+

1

n

)
ϕ (c
√
n+ b)

2 (aϕ (a
√
n+ b)− cϕ (c

√
n+ b))

.

(D.5)

We must consider the limiting behaviour of (D.5) in cases. For the points in the green
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region where θ∗ ∈ (δL, δU), a > 0 and c < 0. When |a| < |c|, it follows that

lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
ϕ (a
√
n+ b)− c

(
c2 +

cb√
n
+

1

n

)
ϕ (c
√
n+ b)

2 (aϕ (a
√
n+ b)− cϕ (c

√
n+ b))

= lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
− c

(
c2 +

cb√
n
+

1

n

)
cϕ (c
√
n+ b)

ϕ (a
√
n+ b)

2

(
a− cϕ (c

√
n+ b)

ϕ (a
√
n+ b)

)

= lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
− c

(
c2 +

cb√
n
+

1

n

)
exp

(
−1
2

[(c
√
n+ b)2 − (a

√
n+ b)2]

)
2

(
a− c exp

(
−1
2

[(c
√
n+ b)2 − (a

√
n+ b)2]

))
=
a2

2
.

(D.6)

The last step of (D.6) follows because the limit of the exponential term in the numerator
and denominator is 0 when |a| < |c|. When |a| > |c|, it follows that

lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
ϕ (a
√
n+ b)− c

(
c2 +

cb√
n
+

1

n

)
ϕ (c
√
n+ b)

2 (aϕ (a
√
n+ b)− cϕ (c

√
n+ b))

= lim
n→∞

a

(
a2 +

ab√
n
+

1

n

)
exp

(
−1
2

[(a
√
n+ b)2 − (c

√
n+ b)2]

)
− c

(
c2 +

cb√
n
+

1

n

)
2

(
a exp

(
−1
2

[(a
√
n+ b)2 − (c

√
n+ b)2]

)
− c
)

=
c2

2
.

(D.7)

The last step of (D.7) follows because the limit of the exponential term in the numerator and
denominator is 0 when |a| > |c|. When a = −c, the limit in (D.5) is 0.5×(a3−c3)/(a−c) =
a2/2 = c2/2. Therefore, the limit of the first derivative in (D.4) is min{a2, c2}/2 when
θ∗ ∈ (δL, δU).

In the second case for (D.4), we consider points in the red region, where a and c have
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the same sign. When θ∗ > δU , c < a < 0, and 0 < c < a when θ∗ < δL. In either case,
Φ (a
√
n+ b) − Φ (c

√
n+ b) → 0 as n → ∞. Therefore, the limit of the second fraction in

(D.4) as n → ∞ is 0. The first fraction can be written in an indeterminate form, so we
consider its limiting behaviour using L’Hopital’s rule. We have that

lim
n→∞

a√
n
ϕ (a
√
n+ b)− c√

n
ϕ (c
√
n+ b)

2(Φ (a
√
n+ b)− Φ (c

√
n+ b))

= lim
n→∞

−1×
a

(
a2 +

ab√
n
+

1

n

)
ϕ (a
√
n+ b)− c

(
c2 +

cb√
n
+

1

n

)
ϕ (c
√
n+ b)

2 (aϕ (a
√
n+ b)− cϕ (c

√
n+ b))

.

(D.8)

The limit in (D.8) is just −1 times the limit in (D.5). Therefore, the limit of the first
derivative in (D.4) is −min{a2, c2}/2 when θ∗ /∈ [δL, δU ].

The third and final case for (D.4) is when θ∗ ∈ {δL, δU}. In this scenario, we conclude
that the limit of both fractions in (D.4) is 0 without appealing to L’Hopital’s rule because
Φ (a
√
n+ b)− Φ (c

√
n+ b)→ 0.5 as n→∞. Thus, the limit of (D.4) as n→∞ is 0. We

emphasize that a = 0 if θ∗ = δU and c = 0 if θ∗ = δL. Thus, the limit of the first derivative
in (D.4) is min{a2, c2}/2 = 0 when θ∗ ∈ {δL, δU}.

Putting the three cases together, we obtain part (d) of Lemma 5.1:

lim
n→∞

d

dn

[
log
(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

))
− log

(
1−

(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

)))]

=


min{a2, c2}

2
, if θ∗ ∈ [δL, δU ]

−min{a2, c2}
2

, if θ∗ /∈ [δL, δU ].

(D.9)

D.3 Additional Content for the Multinomial Model

D.3.1 Relaxing the Approximate Normality Assumption for the
MLE

The mappings between posteriors and [0, 1]2d prompted by Algorithm 5.1 are suitable when
the sampling distributions of the MLEs η̂1,n1

and η̂2,n2
are approximately normal. The
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conditions for Theorem 5.1 guarantee that this approximate normality holds in the limiting
case as n → ∞. However, the quality of these normal approximations may be poor for
moderate n with multinomial models where some of the individual probabilities in p are
close to 0 or 1. The illustrative example described in Section 5.3 is one such model: it
is unlikely that children are very dissatisfied with either porridge sample as p̂11 = 0.0278
and p̂21 = 0.0146. Moreover, the design priors pD1(η) and pD0(η) assign substantial prior
weight for p11 and p21 to probabilities that are even closer to 0.

The sufficient statistics for the multinomial model in group j = 1, 2 are Tj†(y(n,q)) =
{Tjv(y(n,q))}wv=1, where Tjv(y(n,q)) =

∑nj

i=1 I(yij = v). Instead of simulating η̂1,n1
and η̂2,n2

from their approximately normal limiting distributions as in Algorithm 5.1, we generate
approximate sufficient statistics using a continuous approximation to the binomial CDF.
When X ∼ BIN(n, p∗), we approximate the discrete binomial variable by a continuous
variable X∗ such that

X∗ ∼


U(0, 0.5), with Pr(X = 0)

U(v − 0.5, v + 0.5), with Pr(X = v) for v = 1, ..., n− 1

U(n− 0.5, n), with Pr(X = n).

(D.10)

It can be shown that

E(X∗) = np∗ +
(1− p∗)n − pn∗

4
and (D.11)

Var(X∗) = np∗(1− p∗) +
1

12
− (1− p∗)n(8np∗ + 1)− pn∗ (8np∗ − 1)

16
.

From (D.11), it follows that for any p∗ ∈ (0, 1) with large n, E(X∗) ≈ E(X) = np∗
and Var(X∗) ≈ Var(X) = np∗(1 − p∗). Sufficient statistics for the multinomial model
in each group could be obtained by iteratively sampling from (discrete) binomial distri-
butions. However, we illustrate that such a solution would prevent us from using linear
approximations to logit(pδU−δL

n,q,ur
) to explore segments of sampling distributions of posterior

probabilities in Appendix D.3.3. Instead, we use the approach to map posteriors to [0, 1]2d

for d = w − 1 presented in Algorithm D.1 along with Algorithm 5.2 to conduct the nu-
merical studies in Sections 5.5 and 5.6. In Algorithm D.1, we refer to X∗ from (D.10) as
X∗(n, p∗) to emphasize the parameters of the binomial distribution being approximated.

The components of X∗(n, p∗) are defined using the draw from the design prior η∗
j . In

Lines 3 to 5 of Algorithm D.1, we account for having a noninteger number of observations
to allocate to the remaining w − v + 1 multinomial categories. If the remaining number
of observations is noninteger, we take the ceiling of this number to be n when considering
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Algorithm D.1 Alternative Mapping of Posteriors to [0, 1]2d for the Multinomial Model

1: procedure MapMultinomial(f(y;η∗
1), f(y;η

∗
2), g(·), n, q, u, p1(η1), p2(η2))

2: for j in 1:2 do
3: for v in 1:(w − 1) do
4: Let Tjv(y(n,q)) be the u(j−1)(w−1)+v-quantile of X∗(nj − ⌊

∑v−1
k=1 Tjv(y

(n,q))⌋,
Zjv∗).

5: Multiply Tjv(y(n,q)) by (nj −
∑v−1

k=1 Tjv(y
(n,q)))/(nj − ⌊

∑v−1
k=1 Tjv(y

(n,q))⌋).
6: Let Tjw(y(n,q)) be nj −

∑v−1
k=1 Tjw(y

(n,q))
7: Use Tj†(y(n,q)) to obtain the posterior mode η̃j,nj

via optimization.

8: Use η̃1,n1
(u), η̃2,n2

(u), T1†(y(n,q)), T2†(y(n,q)), and g(·) to obtain (5.6).

the continuous approximation to the binomial model X∗. The {Zjv∗}w−1
v=1 terms in Line 4

of Algorithm 5.1 are the anticipated values for the conditional multinomial probabilities
in (5.4). In Line 5, we apply a proportional decrease to the generated sufficient statistic
to account for the noninteger number of remaining observations. While Algorithm D.1 is
tailored to the multinomial model, a similar process could be applied for other discrete
distributions (e.g., the binomial or Poisson models) if the sampling distributions of η̂1,n1

and η̂2,n2
are not approximately normal for moderate sample sizes.

We show that Algorithm D.1 leads to better performance than Algorithm 5.1 for the
illustrative example with moderate sample sizes in Appendix D.3.3. Moreover, Lemma
5.1 still holds true when using Algorithm D.1 instead of Algorithm 5.1. The variable X∗

approximately follows a binomial distribution for large n. For sufficiently large sample
sizes, the binomial distribution approximates the normal distribution. The result in part
(a) of Lemma 5.1 that involves the conduits for the data η̂n is therefore true for large
sample sizes when using Algorithm D.1. In contrast, that result holds for any n1, n2 > 0
when using Algorithm 5.1. The remainder of the proof of Lemma 5.1 in Appendix D.2 can
be applied without modifications when Algorithm D.1 is used.

D.3.2 Benefits of Quasi-Monte Carlo Methods

We now assess the impact of using Sobol’ sequences with our design procedure based on
sampling distribution segments. In Section 5.5.3, we implemented 1000 sample size cal-
culations using Algorithm 5.2 for the illustrative example with Sobol’ sequences of length
m = 8192. Here, we repeated that process using Algorithm 5.2 with pseudorandom se-
quences of length m = 8192. We repeated that process again using pseudorandom se-
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quences of length m = 24000. Given these 1000 sample size calculations, Figure D.1
depicts the density curves for the recommended sample size n (left) and critical value γ
(right) corresponding to each of the three settings considered.
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Figure D.1: Density plots of recommendations for the sample size n (left) and critical
value γ (right) over 1000 simulation repetitions with Sobol’ and pseudorandom (PRNG)
sequences of various lengths m.

Using Sobol’ sequences gives rise to optimal (n, γ) recommendations that are more
precise than those acquired with pseudorandom sequences. The alignment between the
black and orange density curves illustrates that the (n, γ) recommendations obtained us-
ing Sobol’ sequences with length m = 8192 are roughly as precise as those obtained with
pseudorandom sequences of length m = 24000. For this illustrative example, Sobol’ se-
quences therefore allow us to implement simulation-based design with the same level of
precision using approximately one third of the simulation repetitions.

D.3.3 Illustrative Analysis Based on the Approximate Normality
of the MLE

We demonstrate why using Algorithm 5.1 instead of Algorithm D.1 with the illustrative
example yields unsuitable performance. The numerical study from Section 5.5.3 imple-
mented 1000 repetitions of the sample size calculation for the illustrative example using
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Figure D.2: Left: Averaged contour plots for the type I error rate and power from 1000
sample size calculations with Algorithm 5.1. Right: Contour plots estimated by simulating
data.

Algorithm D.1. Here, we repeated this process for the same sample size calculation using
Algorithm 5.1 instead of Algorithm D.1. Following a process similar to that in Section 5.6,
we averaged contour plots corresponding to the 1000 repetitions of this sample size calcu-
lation. The contour plots for the type I error rate and power are given in the left column
of Figure D.2. The contour plots are formatted as those in Section 5.6. Based on these
plots, the smallest n ∈ Z+ to the right of the intersection of the green and red contours
is 129. There is a substantial discrepancy between 129 and the recommendation from the

176



averaged contour plots in Section 5.6 of n = 109. Moreover, the median recommended
critical value was γ = 0.9440 when using Algorithm 5.1 compared to γ = 0.9321 prompted
by Algorithm D.1.

The contour plots in the right column of Figure D.2 were created by simulating m =
81920 samples from the prior predictive distributions for n = {100, 101, ..., 140} following
the process detailed in Section 5.2. Again, the contours in the right plots are jagged since
q = 1.25 /∈ Z. Unlike in Section 5.6 with Algorithm D.1, the plots in the two columns
are not similar when using Algorithm 5.1. This dissimilarity occurs because the sampling
distributions for the relevant MLEs are not approximately normal for the multinomial cat-
egories with small probabilities. When implementing Algorithm 5.1 with the multinomial
example for group j = 1 and 2, we generate maximum likelihood estimates for the logits
of {Zjv}w−1

v=1 defined in (5.4). This process ensures we do not generate maximum likelihood
estimates for any components of pj that are not between 0 and 1. Figure D.3 illustrates
that the sampling distribution of the MLE is not approximately normal for a sample size
of n = 109 with a multinomial model where Z11∗ = p11∗ = 3/108. This anticipated value
for Z11∗ coincides with p̂11: the observed proportion of children that were assigned a Likert
score of 1 in the comparison group for the illustrative example in Section 5.3.

0.0

0.2

0.4

0.6

0.8

−10.0 −7.5 −5.0 −2.5

logit(Z11)

D
en

si
ty

Sampling Distribution of the MLE for logit(Z11)

Approximation  Algorithm 1   Algorithm 3

Figure D.3: Histogram of maximum likelihood estimates for the logit of Z11 according to
the selected binomial distribution. Density curves for the approximations to this distribu-
tion prompted by Algorithms 5.1 (blue) and D.1 (orange) are also provided.
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The histogram in Figure D.3 was created by simulating 106 observations from the
BIN(109, 3/108) distribution. For each binomial sample, we took the mean of the Bernoulli
observations as Ẑ11. To ensure that all the maximum likelihood estimates are finite, the
histogram shows the sampling distribution of logit(max(Ẑ11, 0.0001)). The blue and orange
density curves visualize the approximations to the sampling distribution of the MLE used
by Algorithms 5.1 and D.1, respectively. Algorithm 5.1 cannot accommodate the skewness
of the true sampling distribution for the optimal sample size of n = 109, which is why
Algorithm D.1 yields better performance for the illustrative example. For the BIN(n, p∗)
model, it is standard practice to require that np∗ > 5 to invoke the normal approximation to
the binomial distribution that Algorithm 5.1 relies on. For this example, nZ11∗ was 3.028.
As such, we recommend using Algorithm D.1 instead of Algorithm 5.1 in scenarios where
pD(η

∗) assigns substantial prior weight to multinomial models where any of the categorical
probabilities violate the np∗ > 5 condition. It may even be advisable to consider Algorithm
D.1 in situations where np∗ = 5 + ϵ for some small ϵ > 0.

To conclude this subsection, we demonstrate why Algorithm D.1 is more suitable than
approaches that directly leverage discrete binomial distributions. We selected three Sobol’
sequence points from the green region for the illustrative example. For each of these
points ur ∈ [0, 1]2d+1, we used Algorithm D.1 to estimate the logit of pδU−δL

n,q,ur
at sample

sizes n = {90, 91, ..., 150} for the illustrative example. We then modified this process to
estimate the logits of pδU−δL

n,q,ur
by generating sufficient statistics using CDF inversion on their

exact binomial distributions with the same three points from the Sobol’ sequence. Figure
D.4 visualizes the logit of pδU−δL

n,q,ur
as a function of n for both types of approximations,

where the functions approximated using the discrete binomial distributions are given by
the solid curves. The functions approximated via Algorithm D.1 are depicted using the
dotted curves, and the results for each Sobol’ sequence point are grouped by colour.

We can generate sufficient statistics for the multinomial model using their exact bino-
mial distributions; however, that process prevents the logit of pδU−δL

n,q,ur
from being a smooth

function for moderate n as a result of the binomial distribution’s discreteness. It is there-
fore problematic to use the linear approximations to those functions to select segments
from sampling distributions of posterior probabilities. Algorithm D.1 and Algorithm 5.1
have linear approximations to the logit of pδU−δL

n,q,ur
that are of better quality. Since Algorithm

D.1 yields suitable performance as illustrated in Section 5.6, we recommend that method
over ones that involve discrete distributions.
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Figure D.4: The logits of pδU−δL
n,q,ur

as a function of n for three Sobol’ sequence points from
the green region for the illustrative example. The curves were created using the discrete
binomial model (solid) and Algorithm D.1 (dotted).

D.4 Additional Content for Non-Exponential Family

Models

D.4.1 Alternative Method to Map Posteriors to Hypercubes

Algorithm 5.1 must be adapted when the selected model is not a member of the exponential
family. Here, we extend the hybrid approach for mapping posteriors to [0, 1]2d from Algo-
rithm 3.3 that accounts for the priors when low-dimensional sufficient statistics cannot be
recovered from the maximum likelihood estimates η̂1,n1

and η̂2,n2
. That hybrid approach

leverages the following result, which holds true when ηj ≈ η̂j,nj
for sufficiently large nj:

log(pj(ηj|y(n))) ≈ l(η̂j,nj
; y(n,q))− nj

2
(ηj − η̂j,nj

)TI(η̂j,nj
)(ηj − η̂j,nj

) + log(pj(ηj)).

(D.12)

This result follows from the second-order Taylor approximation to the log-posterior of
ηj around η̂j,nj

, where the observed information is replaced with the (expected) Fisher
information. An approximation to the posterior mode is the value that maximizes the
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right side of (D.12): η̈j,nj
. This approximation to the posterior mode was denoted by η∗

j,nj

in Chapter 3.

We consider the following normal approximation to the posterior of θ:

N

g(η̈1,n1
)− g(η̈2,n2

),
2∑

j=1

[
∂g

∂η

T

J̈j(η)
−1 ∂g

∂η

]
η=η̈j,nj

 , (D.13)

where J̈j(η) = njI(η)−
∂2

∂η2
log(pj(η)).

The observed information is again replaced with the Fisher information in J̈j(η) of (D.13)
since we do not generate samples y(n,q) . Algorithm D.2 details how we map a single point
u ∈ [0, 1]2d to the posterior approximation in (D.13). Algorithm D.2 is effectively the same
mapping process as Algorithm 3.3, where we now accommodate imbalanced sample size
determination such that n1 and n2 may not be equal.

Algorithm D.2 Mapping Posteriors to [0, 1]2d with Hybrid Method when n1 ̸= n2

1: procedure MapHybridUnequal(f(y;η∗
1), f(y;η

∗
2), g(·), n, q, u, p1(η1), p2(η2))

2: Generate η̂1,n1
(u) and η̂2,n2

(u) using Lines 2 to 4 of Algorithm 5.1.
3: for j in 1:2 do
4: Obtain η̈j,nj

as argmaxηj
of the right side of (D.12) anchored at ηj,nj

= η̂j,nj
(u).

5: Use η̈1,n1
, η̈2,n2

, and the partial derivatives of g(·) to obtain (D.13).

The results from Theorem 5.1 and Lemma 5.1 hold true when using Algorithm D.2
instead of Algorithm 5.1. The result in Theorem 5.1 is straightforward because η̈j,nj

− η̂j,nj

converges in probability to 0, and J̈j(η̈j,nj
)/nj converges in probability to I(η∗

j) following
similar logic to (D.1). Parts (a) and (b) of Lemma 5.1 follow from Appendix D.2.1. To
prove the result in part (c) of Lemma 5.1, we argue that τ (n)

r ≈ I(θ∗)−1/n for sufficiently
large n once again by similar logic to (D.1) when Algorithm D.2 is used. No modifications
to Appendix D.2.2 are required to prove part (d) of Lemma 5.1.

D.4.2 Illustrative Analysis with the Weibull Model

We now reconsider the data set from the ENIGH 2020 survey (INEGI, 2021) that was
introduced in Section 3.3. That data set split lower-middle income households from the
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Figure D.5: Distribution of quarterly food expenditure per person in each group.

Mexican state of Aguascalientes into two groups based on the sex of the household’s main
provider. The datum yij collected for each household i = 1, ..., nj, j = 1, 2 is its quarterly
expenditure on food per person measured in thousands of Mexican pesos (MXN $1000).
We again exclude the 0.41% of households that report zero quarterly expenditure on food
to accommodate the Weibull model’s positive support. This respectively yields n1 = 759
and n2 = 1959 observations in the female (j = 1) and male (j = 2) provider groups that
are visualized in Figure D.5.

Unlike in Section 3.3, we compare the 0.9-quantile for each distribution. That is, θj
= F−1

j (0.9), where Fj(·) is the cumulative distribution function for distribution j = 1, 2.
We use the ratio θ1/θ2 to consider whether the 0.9-quantiles of food expenditure in the
female and male provider groups are practically equivalent. The observed 0.9-quantiles of
quarterly food expenditure per person (in MXN $1000) are θ̂1 = 6.255 and θ̂2 = 6.003. We
assign uninformative GAMMA(2, 1) priors to both the shape νj and scale ιj parameters
of the Weibull model for group j = 1, 2. We let ηj = (νj, ιj) for j = 1, 2. We obtain
105 posterior draws for η1 and η2 using MCMC methods. The Weibull distributions
characterized by the posterior means for η1 and η2 are superimposed on the histograms
in Figure D.5. Since the Weibull distribution is a reasonable model for these data, we use
this example to illustrate our extensions for non-exponential family models in this section.

We next choose design and analysis priors for this example. Because the ENIGH survey
is conducted biennially, we choose design priors for η1 and η2 using data from the ENIGH
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Figure D.6: Induced design priors for θ1 (left), θ2 (center), and log(θ) (right). The green
and red regions of the θ-space are visualized on the logarithmic scale on the right plot.

2018 survey (INEGI, 2019). We used the inflation-adjusted data set of food expenditures
from 2018 created in Section 3.6.1. For group j, we obtained posteriors for νj and ιj given
these data and GAMMA(2, 1) priors for each parameter. To define priors, we consider
gamma distributions that have the same modes with variances that are larger by factors of
30 and 100 for groups 1 and 2, respectively. These distributions considered for illustration
are GAMMA(38.07, 26.23) for ν1, GAMMA(34.92, 10.02) for ι1, GAMMA(38.35, 25.09) for
ν2, and GAMMA(37.51, 10.70) for ι2.

We use those gamma distributions to obtain the design priors pD1(η) and pD0(η) for
this example. Figure D.6 visualizes the priors for θ1, θ2, and log(θ) = log(θ1)− log(θ2) that
are induced by those gamma distributions. For illustration, we choose the interval (δL, δU)
to be (1.2−1, 1.2). This choice indicates that a 20% relative increase or decrease in the
0.9-quantile is not of practical importance. We define the region G = (1.05−1, 1.05) to be
centered around 1 on the relative scale. For this example, the region R = (1.225−1, 1.2−1)∪
(1.2, 1.225) is contiguous with both endpoints of the interval (δL, δU). These red and green
regions are depicted on the logarithmic scale in the right plot of Figure D.6. We now
define design priors of pD1(η) ∝ pD(η | log(θ) ∼ U(log(G))) and pD0(η) ∝ pD(η | log(θ) ∼
U(log(R))), where pD(η) is created by independently joining the gamma priors from the
previous paragraph. Here, the conditioning used to define these priors ensures that θ
is uniformly distributed over the red and green regions on the logarithmic scale. We
independently join marginal GAMMA(2, 1) priors for νj and ιj to obtain an analysis prior
pj(ηj) for group j = 1, 2. Our final inputs for Algorithm 5.2 are m = 8192, m0 = 512,
α = 0.1, β = 0.3, q = 1.
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When using Algorithm D.2 to map posteriors to [0, 1]2d, Algorithm 5.2 returned an
optimal design characterized by (n, γ) = (163, 0.8795). For reference, we considered the
precision of the (n, γ) recommendations with Sobol’ and pseudorandom sequences for this
Weibull example using the process to create Figure D.1. The results from that numerical
study suggested the (n, γ) recommendations obtained using Sobol’ sequences with length
m = 8192 are roughly as precise as those obtained with pseudorandom sequences of length
m = 4× 104.
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Figure D.7: Left: Averaged contour plots for the type I error rate and power from 1000
sample size calculations with Algorithm D.2 and the Weibull example. Right: Contour
plots estimated by simulating data.
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As in Section 5.5.3, we repeated the sample size calculation from the previous paragraph
1000 times with different Sobol’ sequences {u(1)

r }mr=1 and {u(0)
r }mr=1. For each repetition,

the optimal design coincided with the (n, γ) recommendation obtained by exploring entire
sampling distributions of posterior probabilities with nontargeted approaches using the
same Sobol’ sequences. For this Weibull example, Algorithm 5.2 took roughly 25 seconds
on a standard laptop without parallelization to return an optimal design for the illustrative
example. The modified version of Algorithm 5.2 that explored entire sampling distributions
of posterior probabilities took approximately 90 seconds. Using the process described in
Section 5.6, we averaged contour plots for the type I error rate and power corresponding
to the 1000 repetitions of the sample size calculation for the Weibull example. These plots
are given in the left column of Figure D.7. Based on these plots, the smallest n ∈ Z+ to
the right of the intersection of the green and red contours is 162.

The contour plots in the right column of Figure D.7 were created by simulating m =
40960 samples from the prior predictive distributions for n = {150, 152, ..., 170} following
the process detailed in Section 5.2. The contours in the right plots are less jagged than those
for the multinomial example since q = 1. However, the contours in the right column are
still more jagged than those in the left column because the left plots consider the sampling
distributions of posterior probabilities with the same points {u(1)

r }mr=1 and {u(0)
r }mr=1 for

each sample size. The sampling distributions of posterior probabilities in the right plots
are estimated independently for each value of n considered. The smallest n ∈ Z+ to the
right of the intersection of the green and red contours in the right plots is n = 163. The
plots in the left and right columns are similar, which illustrates that using Algorithm
D.2 to map posteriors to [0, 1]2d for this non-exponential family example prompts suitable
performance.

D.4.3 Mapping Posteriors with Misspecified Priors

The approximation to the log-posterior of ηj in (D.12) is only valid when ηj ≈ η̂j,nj
for

sufficiently large nj. However, the posterior mode η̃j,nj
= argmaxηj

pj(ηj |y(n,q)) may

not be near the maximum likelihood estimate η̂j,nj
if the prior is misspecified for group

j = 1, 2. In such scenarios, the approximation to the posterior mode η̈j,nj
prompted by

maximizing (D.12) may not be accurate. These concerns were not as relevant when using
Algorithm 3.3 from Chapter 3 with degenerate design priors. In that chapter, we used
Algorithm 3.3 with informative analysis priors for ηj whose modes aligned with the design
values ηj,0. This practice was sensible in that context because it would be philosophically
inconsistent to use informative analysis priors that do not align with our understanding of
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the data generation process. Moreover, Algorithm 3.3 yielded suitable performance with
uninformative analysis priors.

When using informative analysis priors with nondegenerate design priors pD1(η) and
pD0(η), prior misspecification is a near certainty. A particular set of analysis priors p(η1)
and p(η2) cannot support bothH0 andH1. If the induced analysis prior on θ is concentrated
in the green (red) region of the θ-space, the set of analysis priors is misspecified when
generating data under H0 (H1). Furthermore, it is likely that an informative analysis prior
on θ that is concentrated in G (R) is at least slightly misspecified when generating data
under the corresponding hypothesis H1 (H0). For instance, even if the mode of the induced
prior on θ is near the center of G, the design prior pD1(η) will generate η∗

1 and η∗
2 values

from throughout the green region. Given η∗
1 and η∗

2 values from the extremities of G, an
informative analysis prior might still be slightly misspecified.

It is therefore pertinent to have a method to map posteriors to [0, 1]2d that accommo-
dates misspecified priors. For models in the exponential family, the posterior approxima-
tion in (5.6) makes such accommodations because it is centered around the true posterior
mode. The posterior approximation for non-exponential family models in (D.12) is instead
centered around an approximation to the posterior mode that relies on the suitability of
the quadratic approximation to the log-likelihood anchored at the maximum likelihood
estimate η̂j,nj

. Here, we propose a foundation for posterior approximation that accom-
modates prior misspecification without requiring sufficient statistics for non-exponential
family models. This foundation still assumes that the quadratic approximation to the
log-likelihood function l(ηj,nj

; y(n,q)) is suitable; however, we no longer require that this
approximation is anchored around η̂j,nj

.

Since the posterior of ηj will be concentrated around the posterior mode η̃j,nj
for

sufficiently large nj, this framework allows us to anchor the quadratic approximation to the
log-likelihood around a value for ηj that is closer to η̃j,nj

than η̂j,nj
. When this quadratic

approximation is not anchored around η̂j,nj
, we cannot assume that the coefficient for its

linear term is 0. We therefore use the approximation to the log-posterior of ηj provided in

(D.14) that is anchored around ηj = η̈(e)

j,nj
.

log(pj(ηj|y(n))) ≈ l(η̈(e)

j,nj
; y(n,q)) + njE

[
∂

∂ηj

log(f(y;ηj))

]
ηj=η̈

(e)
j,nj

∨η̂j,nj

(ηj − η̈(e)

j,nj
)

− nj

2
(ηj − η̈(e)

j,nj
)TI(η̈(e)

j,nj
)(ηj − η̈(e)

j,nj
) + log(pj(ηj)).

(D.14)
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We will use (D.14) in an iterative manner. That is, the value that maximizes the right side
of (D.14) for a given η̈(e)

j,nj
will be denoted by η̈(e+1)

j,nj
. The final value of η̈(e+1)

j,nj
considered

will serve as η̈j,nj
: the approximation to the posterior mode that is used in (D.13).

Unlike the approximation in (D.12), the approximation in (D.14) does not constrain the
coefficient for the linear term of the quadratic approximation of the log-likelihood to be 0.
Because we cannot obtain sufficient statistics when generating MLEs for non-exponential
family models, we suggest obtaining the coefficient for the linear term as follows. First, we
obtain the expectation of log(f(y;ηj)) as a function of ηj. This function is 0 if the same
value for ηj is used for all occurrences in this equation (which is typical). However, we

substitute η̈(e)

j,nj
into this equation for all occurrences of ηj arising from parameters in the

log-likelihood function; η̂j,nj
is instead substituted into this equation for all occurrences

of ηj arising from integrating over the data. The notation ηj = η̈(e)

j,nj
∨ η̂j,nj

in (D.14)
represents this procedure.

By implementing this procedure, we obtain a coefficient for the linear term that is
not 0 when η̈(e)

j,nj
̸= η̂j,nj

. This procedure may not obtain a perfect approximation to the
log-posterior of ηj, but it is an approximation we can obtain without sufficient statistics.
Algorithm D.3 formalizes how we iteratively use the approximation in (D.14) to map
posteriors to [0, 1]2d in the presence of prior misspecification for non-exponential family
models. We initialize η̈(0)

1,n1
and η̈(0)

2,n2
as their generated maximum likelihood estimates. To

implement Algorithm D.3, we must also choose a tolerance ϵ > 0 to define convergence for
the approximations to the posterior modes η̈1,n1

and η̈2,n2

Algorithm D.3 Iterative Mapping of Posteriors to [0, 1]2d with Misspecified Priors

1: procedure MapIterative(f(y;η∗
1), f(y;η

∗
2), g(·), n, q, u, p1(η1), p2(η2), ϵ)

2: Generate η̂1,n1
(u) and η̂2,n2

(u) using Lines 2 to 4 of Algorithm 5.1.

3: Let η̈(0)

1,n1
= η̂1,n1

(u) and η̈(0)

2,n2
= η̂2,n2

(u).
4: for j in 1:2 do
5: converged← FALSE; e← 0
6: while converged = FALSE do
7: Obtain η̈(e+1)

j,nj
as argmaxηj

of (D.14) anchored at ηj,nj
= η̈(e)

j,nj
.

8: if ∥η̈(e+1)

j,nj
− η̈(e)

j,nj
∥2 ≤ ϵ then

9: converged← TRUE
10: η̈j,nj

← η̈(e+1)

j,nj

11: e← e+ 1

12: Use η̈1,n1
, η̈2,n2

, and the partial derivatives of g(·) to obtain (D.13).
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We now illustrate how the approximation to the log-posterior in (D.14) and Algorithm
D.3 are used with the Bernoulli model. The Bernoulli model is a member of the exponential
family, but the posterior of a single Bernoulli parameter θ has a known beta distribution
when conjugate priors are used. Knowing the exact posterior of θ allows us to compare the
performance of the posterior approximations in (D.12) and (D.14). We focus on a single
group of data here for this simple, informal illustration.

As in Section 3.5.4, we parameterize the Bernoulli model in terms of its canonical
parameter η = log(θ)− log(1− θ) ∈ R to improve the quality of the normal approximation
to the posterior. The corresponding inverse transformation is θ = exp(η) ÷ (1 + exp(η)).
Given this parameterization, we have that

∂

∂η
log(f(y; η)) = y − exp(η)

1 + exp(η)
. (D.15)

We omit the subscript j for the group number when considering η and the sample size n
because we have a single group of data in this setting. Since E(y) = θ = exp(η) ÷ (1 +
exp(η)), the result in (D.15) prompts

E
[
∂

∂η
log(f(y; η))

]
η=η̈

(e)
n ∨η̂n

=
exp(η̂n)

1 + exp(η̂n)
− exp(η̈(e)

n )

1 + exp(η̈(e)
n )

.

We suppose that θ was assigned a BETA(α, β) prior that induces a prior on η. For com-
pleteness, maximizing (D.14) for this illustrative example is equivalent to maximizing

n

[
exp(η̂n)

1 + exp(η̂n)
− exp(η̈(e)

n )

1 + exp(η̈(e)
n )

]
(η − η̈(e)

n )

− nexp(η̈(e)
n )

2(1 + exp(η̈(e)
n ))2

(η − η̈(e)
n )2 + αη + (α + β)log(1 + exp(η)).

(D.16)

The final two terms in (D.16) are equal to the log-prior of η less a normalizing constant.
These final two terms incorporate the Jacobian that arises from converting between η
and θ. It is also not necessary to account for the constant l(η̈(e)

n ; y(n)) from (D.14) when
maximizing (D.16).

We next apply Algorithms D.2 and D.3 to consider posterior approximation for η when θ
is assigned a BETA(20, 80) prior. For illustration, we suppose that u ∈ [0, 1] corresponding
to θ̂100 = 0.35 was input into both algorithms. In this case, the prior mode for θ of 0.1939
differs greatly from θ̂100. The exact posterior of θ given θ̂100 is a BETA(55, 145) distribution.
This beta prior and posterior for θ induce a prior and posterior on η. The induced prior and
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Figure D.8: Left: Induced prior and posterior on η with η̂100 denoted by the dotted line.
Right: Exact posterior of η along with the approximations provided by Algorithms D.2
and D.3.

posterior are visualized in the left plot of Figure D.8. The maximum likelihood estimate
on the η-scale is depicted by the dotted vertical line. There is a clear discrepancy between
the posterior mode η̃100 and maximum likelihood estimate η̂100.

The right plot of Figure D.8 compares the exact posterior of η to the posterior ap-
proximations that result from the mappings in Algorithms D.2 and D.3. The posterior
approximation from Algorithm D.2 exhibits noticeable bias and is shifted to the right of
the true posterior for η. The posterior approximation from Algorithm D.3 was obtained
with ϵ = 10−4. The final value of e when implementing Algorithm D.3 for this example
was 2. Therefore, only one iteration of Algorithm D.3 was required to better approximate
the posterior mode η̃100, and the second iteration was used to confirm convergence. The
results visualized in Figure D.8 informally suggest that iterative procedures can be used
to improve the quality of posterior approximation in the presence of prior misspecification.
It follows that using such posterior approximations may improve the accuracy of our map-
pings between posterior probabilities and [0, 1]2d when the priors are misspecified. The
work in this subsection is preliminary and more formal investigation with models that are
not members of the exponential family is required. Nevertheless, this foundation for future
work attests to the broad applicability of design with sampling distribution segments.
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D.5 Two-Group Comparisons with Additional Covari-

ates

D.5.1 Posterior Mapping with Linear Regression

When Bayesian linear regression is used to account for additional covariates, we propose a
framework to map posteriors of these regression coefficients to the unit hypercube [0, 1]d.
For reasons explained later, we denote the simulation dimension for posterior mapping as
d instead of 2d used in Algorithm 5.1. The simulation dimension d for regression settings
depends on the number of covariates in the linear model, which we denote by k in this
section. We consider linear models of the form

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi, (D.17)

where y is the response variate, x1 = I(Group = 1) is the binary treatment indicator,
and εi ∼ N (0, σ2

ε) are independent error terms for observations i = 1, . . . , n1 + n2. For
illustration, we suppose that the remaining k − 1 covariates are such that xl ∼ N (µl, σ

2
l )

independently for l = 2, 3, . . . , k. The normality assumption for the additional covari-
ates could be relaxed in future work, and we discuss the theoretical implications of that
relaxation in Appendix D.5.2.

For two-group comparisons facilitated via (D.17), the posterior distribution of inter-
est is that of β1. We use a conjugate normal-inverse-gamma prior (Koch, 2007) for
β = (β0, β1, . . . , βk) and the error term variance σ2

ε for simplicity. The normal-inverse-
gamma distribution has a location parameter µ0 along with a matrix parameter λ0, and
two scalar parameters a0 and b0. Under this conjugate prior, the posterior of β1 follows
a 3-parameter t-distribution. We discuss how to consider alternative priors with linear
regression models in Appendix D.5.2. While the sampling distribution for the MLEs of β
and σ2

ε are approximately normal for large sample sizes, the estimated β̂ and σ̂2
ε do not

comprise sufficient statistics for the data {yi, x1i, x2i, . . . , xki}n1+n2
i=1 . We therefore require

an alternative method to Algorithm 5.1 to map posteriors of β1 to [0, 1]d. In this case, the
dimension of the hypercube with the model in (D.17) is d = 0.5k(k + 5), which is not a
multiple of 2 for all k ≥ 2.

We let x0i = 1 for i = 1, . . . , n1+n2. The sufficient statistics for the model in (D.17) are{∑n1+n2

i=1 xlixvi
}
0≤l≤v≤k

and
{∑n1+n2

i=1 xliyi
}
0≤l≤k

. Several of these sufficient statistics are
determined once we select the sample sizes n1 and n2. The remaining sufficient statistics
must be simulated to define the posterior of β1 and compute relevant posterior probabilities.
As mentioned in Appendix D.5.2, there is a one-to-one mapping between the sufficient
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statistics listed earlier in this paragraph and the sample means in groups 1 and 2 for
x2, . . . , xk, ε along with the sample covariance matrix for x2, x3, . . . , xk, ε.

This sample covariance matrix can be drawn according to a Wishart distribution
(Wishart, 1928). We use the Bartlett decomposition (Bartlett, 1934) of a matrix E
from a k-variate Wishart distribution with scale matrix V and n degrees of freedom:
E = LAATLT , where L is the Cholesky factor of V and

A =


c1 0 0 · · · 0
n21 c2 0 · · · 0
n31 n32 c3 · · · 0
...

...
...

. . .
...

nk1 nk2 nk3 · · · ck1

 (D.18)

such that c2l ∼ χ2
n−l+1 and nlv ∼ N (0, 1) independently. The matrix L is determined by the

selected normal distributions for x2, x3, . . . , xk, ε. If the explanatory covariates and error
terms are mutually independent as required by standard linear regression assumptions,
then L is diagonal.

Algorithm D.4 details our procedure to map posteriors of β1 to [0, 1]
d. We now elaborate

on several components of Algorithm D.4. First, Algorithm D.4 requires that we charac-
terize the data generation process by choosing values for the regression coefficients β and
parameters for the normal distributions of x2, . . . , xk, ε. These coefficients and normal pa-
rameters could either take the same values for each simulation repetition as in Chapter
3 or be drawn according to a design prior. We must also specify the parameters for the
normal-inverse-gamma prior: µ0, λ0, a0, and b0.

In Line 2 of Algorithm D.4, we assign qn observations to group 1 and n observations
to group 2. This choice is made to align with the numerical studies in Appendix D.5.3;
however, we emphasize that n observations were assigned to group 1 and qn observations
were assigned to group 2 in the main portion of Chapter 5. This change predominantly
involves notation and does not impact Chapter 5’s theoretical results. Without loss of
generality, the n1 + n2 observations are ordered so that the first n1 = qn observations are
assigned to group 1. In Lines 4 to 8, we generate the group sample means for the k − 1
additional covariates and the error term ε using CDF inversion with quantiles from the
normal distributions selected as inputs for Algorithm D.4. We obtain the overall sample
means for the combined data from both groups using algebra in Line 9.

In Lines 10 to 12, we use the Bartlett decomposition in (D.18) to generate the sample
covariance matrix of x2, . . . , xk, ε for the combined data from both groups using CDF
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Algorithm D.4 Mapping Posteriors to [0, 1]d with Linear Regression

1: procedure MapLinear(β, {µl}kl=2, {σ2
l }kl=2, σ

2
ε , n, q, u, µ0, λ0, a0, b0)

2: Let n1 = qn and n2 = n
3: Let

∑n1+n2

i=1 x1i = n1

4: for l in 2:k do
5: Let n−1

1

∑n1

i=1 xli = µl + Φ−1(u2(l−2)+1)σl/
√
n1

6: Let n−1
2

∑n2

i=n1+1 xli = µl + Φ−1(u2(l−2)+2)σl/
√
n2

7: Let n−1
1

∑n1

i=1 εji = Φ−1(u2k−1)σε/
√
n1

8: Let n−1
2

∑n2

i=n1
εji = Φ−1(u2k)σε/

√
n2

9: Calculate {x̄l}kl=2 using Lines 4 to 6 and ε̄ using Lines 7 and 8
10: for l in (2k + 1):(k2 + 5k)/2 do
11: Going through each row of (D.18) from left to right, generate the (l − 2k)th

nonzero element of A using the ul-quantile of the relevant normal or chi-squared
distribution.

12: Let the sample covariance matrix for x2, x3, . . . , xk+1, ε be E = LAATLT .
13: Obtain the sufficient statistics for the linear model using E, Line 9, and algebra.
14: Use the sufficient statistics and prior hyperparameters µ0, λ0, a0, and b0 to obtain

the 3-parameter t-distribution posterior for β1.

inversion with normal and chi-squared distributions. Given the simulated first moments of
the covariates and error terms from the previous paragraph and the second central moments
generated in Lines 10 to 12, we can calculate the raw second sample moments using algebra.
The raw second sample moments

{∑n1+n2

i=1 xlixvi
}
0≤l≤v≤k

and
{∑n1+n2

i=1 xliyi
}
0≤l≤k

prompt
the posterior of β1, which we obtain in Line 14 of Algorithm D.4 using the specified prior
hyperparameters. After explaining how this algorithm aligns with our theoretical results
from Chapter 5 in the next subsection, we describe how Algorithm D.4 can be used with
a slightly modified version of Algorithm 5.2 in Appendix D.5.3.

D.5.2 Connections to Theoretical Results from Chapter 5

We first discuss the connection between Algorithm D.4 and Theorem 5.1. In Appendix
D.5.1, we assume that the additional k − 1 covariates x2, . . . , xk are normally distributed.
As such, the statistics simulated using CDF inversion in Algorithm D.4 follow the relevant
normal and chi-squared distributions exactly. Algorithm D.4 also uses the exact posterior
of β1, which is a t-distribution, instead of a large-sample normal approximation thereof.
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When using a pseudorandom sequence U
i.i.d.∼ U([0, 1]d) with Algorithm D.4, the sampling

distribution of posterior probabilities Pδ
n,q,U ,Alg.D.4 is therefore the same as Pδ

n,q,(D.17), the
sampling distribution prompted by generating data Y (n,q) andX (n,q) according to the linear
model in (D.17).

However, we would need to consider analogues to Theorem 5.1 for more general linear
regression settings. For instance, if we used a non-conjugate prior for β and σ2

ε , we would
have approximated the posterior of β1 using the Laplace approximation (Gelman et al.,
2020). This approximation to the exact posterior of β1 is suitable for large sample sizes n
under the conditions for the BvM theorem in Appendix B.1.1. Moreover, we may consider
linear regression models where not all k− 1 additional covariates are normally distributed.
The sufficient statistics for the linear model are based on sums of functions of independent
observations regardless of the underlying distributions for x2, . . . , xk.

For large enough n, the joint sampling distribution of these sufficient statistics is ap-
proximately normal. We could therefore generate approximate sufficient statistics using
univariate conditional normal CDF inversion under a variety of distributional assumptions
for the covariates. A hybrid of Algorithms 5.1, D.1, and D.4 could be developed for settings
where the normal approximation to the sampling distribution of discrete covariates is poor
for moderate n. Under the conditions for the BvM theorem, analogues to Algorithm 5.1
regarding the convergence of the sampling distribution of posterior probabilities should
exist for more general linear regression models.

We now discuss the connection between Algorithm D.4 and Lemma 5.1. Part (a) of
Lemma 5.1 involves a normal conduit for the data η̂n. Unlike for the two-group comparisons
facilitated via Algorithms 5.1, D.1, or D.2, several conduits for the data in Algorithm

D.4 pertain to both groups. These data conduits η̂n include
{
x̄l(1)

}k
l=2

and
{
x̄l(2)

)k
l=2

generated in Lines 4 to 6,
{
ε̄(j)
}2
j=1

generated in Lines 7 and 8, and {ŝxl,xv}2≤l≤v≤d and

{ŝxl,ε}2≤l≤d generated in Lines 10 and 11. For the sample means listed above, the subscript
in parentheses denotes the group number j = 1 or 2.

Given the process in Algorithm D.4, we show that all components of η̂n can be generated
using the process outlined in part (a) of Lemma 5.1. The only change in notation that
we must make for this part of the lemma involves the simulation dimension, which is now

d = 0.5k(k + 5) instead of 2d+ 1 for some d ∈ N. The data conduits
{
x̄l(1)

}k
l=2

,
{
x̄l(2)

)k
l=2

,

and
{
ε̄(j)
}2
j=1

are normal sample means. These conduits therefore satisfy the conditions

for part (a) of Lemma 5.1 based on the proof in Appendix B.2.

To explain why the remaining data conduits {ŝxl,xv}2≤l≤v≤d and {ŝxl,ε}2≤l≤d satisfy
the conditions for part (a) of Lemma 5.1, we reconsider the Bartlett decomposition for
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the Wishart distribution from (D.18): E = LAATLT . The matrix AAT is symmetric,
so only the lower-triangular component of this matrix contains unique entries. Going
through the lower-triangular component of AAT from top to bottom in each column, each
successive component only depends on one new normal or chi-squared variable. Since L
is also lower triangular, the top rightmost element of E only depends on c21 from (D.18);
E1,1 is related to the sample variance for x2 in both groups. Given c21, E1,2 (related to the
sample covariance for x2 and x3 in both groups) only depends on n21 from (D.18). Similar
results hold true for all unique components of E, which is the unnormalized covariance
matrix. The chi-squared variables used in (D.18) approximate normal variables as n→∞.
In such settings, each component of {ŝxl,xv}2≤l≤v≤d and {ŝxl,ε}2≤l≤d generated using the
iterative process in Algorithm D.4 depends only on the quantile of a single univariate
normal distribution. Part (a) of Lemma 5.1 is therefore satisfied for all components of η̂n

from Algorithm D.4 for sufficiently large n.

Part (b) of Lemma 5.1 involves an estimate for the characteristic of interest θ̂n. Here,
we let θ̂n = β̂1,n be the MLE for β1 in (D.17) that corresponds to a sample size of n.
Standard results for linear regression prompt the formula for the MLE of the regression
coefficients β: β̂ = (XTX)−1XTY , where X is the covariate matrix for (D.17) and Y
is the vector of response variates. By considering the elements of the matrices XTX and
XTY , we have that

β̂1 = g

({
n1+n2∑
i=1

xlixvi

}
0≤l≤v≤k

,

{
n1+n2∑
i=1

xliyi

}
0≤l≤k

)
. (D.19)

There is a one-to-one mapping between
{∑n1+n2

i=1 xlixvi
}
0≤l≤v≤k

and
{∑n1+n2

i=1 xliyi
}
0≤l≤k

and the components of η̂n:
{
x̄l(1)

}k
l=2

,
{
x̄l(2)

)k
l=2

,
{
ε̄(j)
}2
j=1

, {ŝxl,xv}2≤l≤v≤d , and {ŝxl,ε}2≤l≤d.

From (D.19), it follows that

β̂1 = g∗

({
x̄l(1)

}k
l=2

,
{
x̄l(2)

)k
l=2

,
{
ε̄(j)
}2
j=1

, {ŝxl,xv}2≤l≤v≤d , {ŝxl,ε}2≤l≤d

)
The methods for linear regression presented in Algorithm D.4 satisfy the conditions for
part (b) of Lemma 5.1 since β̂1 = g∗(η̂n) for some function g∗(·) that does not depend on
n. The remainder of the proof for part (b) follows from Appendix B.2.

Part (c) of Lemma 5.1 also holds true for two reasons. First, the conditions for the
BvM theorem are satisfied. Second, Algorithm D.4 uses the exact posterior of β1, which
is a t-distribution where the degrees of freedom increase as n→∞. Further discussion of
this logic is provided in Appendix B.2. Lastly, the proof in Appendix D.2.2 can be used
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to go from part (c) to part (d) of Lemma 5.1 without any modifications. Thus, the linear
approximation to logit(pδU−δL

n,q,ur
) prompted by Algorithm D.4 as a function of n is a good

global approximation for sufficiently large sample sizes.

D.5.3 Illustrative Example with Linear Regression

Here, we consider a two-group comparison with additional covariates that is based on
a recent clinical trial funded by Novo Nordisk (Wilding et al., 2021). This clinical trial
assessed the effectiveness of weekly semaglutide injections for the purpose of weight loss. In
this clinical trial, patients in groups 1 and 2 were respectively given a weekly semaglutide
injection or placebo for 68 weeks. One datum yi that was collected for each patient i =
1, . . . , n1+n2 was their weight loss in kilograms (kg) over the course of the study. In total,
n1 = 1306 and n2 = 655 patients were enrolled in this study. As detailed in Wilding et al.
(2021), the two groups of patients were well balanced with respect to various additional
covariates, and the patients who were given the semaglutide lost an average of 12.4 kg more
than the patients who were given the placebo. This treatment was deemed statistically
significant using p-values.

We now suppose that we want to design a two-group comparison for a phase I clinical
trial of a similar semaglutide medication using information from Wilding et al. (2021). For
illustration, we plan to use a Bayesian linear regression model with one additional covariate
(i.e., k = 2). The regression model that we consider takes the following form:

yi = β0 + β1x1i + β2x2i + εi, (D.20)

where y is weight loss in kg, x1 = I(Group = 1) is the binary treatment indicator, and x2 is
the patient’s baseline waist circumference in centimetres (cm). Baseline waist circumference
was one of several covariates measured by Wilding et al. (2021). We choose to include this
covariate in our linear model because it is reasonable to expect that correlation between
baseline waist circumference and weight loss is nonnegligible. As a continuous covariate,
the baseline waist circumference for all patients could feasibly be normally distributed.

For this comparison, the characteristic of interest is θ = β1, the increased amount
of weight loss (in kg) associated with taking the semiglutide injections. We choose the
interval (δL, δU) = (5,∞) for illustration. This choice implies that we want to support the
hypothesis H1 : β1 > 5. Because various side effects are typically experienced by patients
who receive semaglutide treatments (Wilding et al., 2021), we want to observe a substantial
weight loss of at least 5 kg associated with the semaglutide treatment to offset such side
effects. Wilding et al. (2021) assigned patients to the treatment and control groups at a
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2 to 1 ratio, and we follow this guidance for our hypothetical study. Using the notation
from Algorithm D.4, we have that q = 2, n1 = 2n, and n2 = n.

We adopt a simpler process to define design priors for this example than the framework
proposed in Section 5.4. The approach proposed here illustrates that our framework from
Chapter 5 can be simplified and combined with elements of our approach in Chapter 3. For
this regression example, we specify pD0(η) as a degenerate prior. We must therefore choose
design values for β = (β0, β1, β2) along with design values for the normal distributions of x2
and ε. Here, we choose design values for the regression parameters of β∗ = (−25.75, 5, 0.25).
The design value β∗

1 = 5 = δL is on the boundary of the hypotheses H0 and H1. The choice
for β∗

0 = −25.75 indicates that we expect patients in group 2 who are given the placebo
to lose 3 kg on average. This assumption is reasonable since patients in both groups are
given non-pharmaceutical interventions, such as counselling and diet plans. The design
value β∗

2 = 0.25 reflects a Pearson’s correlation coefficient of roughly 0.3 between baseline
waist circumference in cm and weight loss in kg.

Moreover, we suppose the baseline waist circumference x2 for all patients follows a
N (115, 14.52) distribution and the error terms ε follow a N (0, 10.072) distribution. The
two groups in Wilding et al. (2021) were balanced with respect to various covariates, so
we assume the distributions of x2 and ε are the same in both groups. The choices defined
in the previous two paragraphs define pD0(η), which allows us to generate all conduits for
the data η̂n under H0. According to the notation from Section 5.4, the red region for this
example is R = 5 = δL.

The design prior pD1(η) for this example is a relatively simple nondegenerate prior. We
use the (degenerate) design values from pD0(η) for all data generation parameters except
for β1. In this case, β∗

1 takes a value of 9 or 12 with probability 0.5. The choice illustrates
an alternative way to incorporate uncertainty in the data generation process. Simpler
methods that account for this uncertainty are useful when it is too difficult to specify a
nondegenerate design prior as in Section 5.4, which may occur in settings where there are
many additional covariates. The data generation process in pD1(η) reflects a mixture of two
scenarios: β∗

1 = 12 reflects the previously demonstrated efficacy of semaglutide injections
(Wilding et al., 2021), and β∗

1 = 9 reflects a less optimistic scenario. As discussed shortly,
how we define pD0(η) and pD1(η) for this example requires us to make slight modifications
to Algorithm 5.2. The green region for this example is G = {9, 12} according to the
notation from Section 5.4.

To illustrate the use of our methods with this regression example, an uninformative
conjugate normal-inverse-gamma prior is used for β and σ2

ε with the following parameters:
µ0 = (0, 0, 0), λ0 = 0.01 × I3, a0 = 1, and b0 = 1 such that I3 is the 3 × 3 identity
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matrix. For this example, we select the standard criteria for the operating characteristics
of α = 0.05 and β = 0.2. Unlike in the previous numerical studies for Chapter 5 and
Appendix D, we use m = 4096 and m0 = 128 for Algorithm 5.2. We use a smaller value of
m than the previously used value of 8192 since we average over less variability in the η∗

values prompted by these design priors pD0(η) and pD1(η). The value for m0 is reduced to
reflect this reduction in m.

The dimension of the hypercube is d = 0.5k(k + 5) = 7 for this example. Unlike in
our previous applications of Algorithm 5.2, we do not need to add an additional dimension
to the hypercube to order our draws from the design priors pD0(η) and pD1(η). Since
pD0(η) is degenerate, all draws from this design prior will be identical and do not require
reordering. The design prior pD1(η), however, is nondegenerate. In this case, we can simply
take m/2 draws where β∗

1 = 9 and m/2 draws where β∗
1 = 12. We obtain suitable results

using Algorithm 5.2 if we order these draws to alternate between β∗
1 = 9 and β∗

1 = 12 since
subsequences of the Sobol’ sequence are also low discrepancy (Sobol’, 1967). This fact can
also be leveraged to order draws from more complicated design priors involving discrete
mixtures.

When using Algorithm D.4 to map posteriors to [0, 1]7, Algorithm 5.2 returned an
optimal design characterized by (n, γ) = (40, 0.9554). For reference, we considered the
precision of the (n, γ) recommendations with Sobol’ and pseudorandom sequences for this
regression example using the process to create Figure D.1. The results from that numerical
study suggested the (n, γ) recommendations obtained using Sobol’ sequences with length
m = 4096 are roughly as precise as those obtained with pseudorandom sequences of length
m = 3.5× 104.

As in Section 5.5.3, we repeated the sample size calculation from the previous paragraph
1000 times with different Sobol’ sequences {u(1)

r }mr=1 and {u
(0)
r }mr=1. For each repetition, the

optimal design coincided with the (n, γ) recommendation obtained by always exploring en-
tire sampling distributions of posterior probabilities using the same Sobol’ sequences. For
this regression example, Algorithm 5.2 took roughly 4 seconds on a standard laptop with-
out parallelization to return an optimal design for the illustrative example. The modified
version of Algorithm 5.2 that explored entire sampling distributions of posterior proba-
bilities took approximately 14 seconds using Sobol’ sequences with length m = 4096 and
118 seconds using pseudorandom sequnces with length m = 3.5 × 104. Using the process
described in Section 5.6, we averaged contour plots for the type I error rate and power
corresponding to the 1000 repetitions of the sample size calculation for the regression ex-
ample. These plots are given in the left column of Figure D.9. Based on these plots, the
smallest n ∈ Z+ to the right of the intersection of the green and red contours is 40.
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Figure D.9: Left: Averaged contour plots for the type I error rate and power from 1000
sample size calculations with Algorithm D.4 and the regression example. Right: Contour
plots estimated by simulating data.

The contour plots in the right column of Figure D.9 were created by simulating m =
105 samples from the prior predictive distributions for n = {30, 31, ..., 50} following the
process detailed in Section 5.2. Again, the contours in the right column are more jagged
since the sampling distributions of posterior probabilities in the right plots are estimated
independently for each value of n considered. The smallest n ∈ Z+ to the right of the
intersection of the green and red contours in the right plots is also n = 40. The plots in
the left and right columns are similar, so using Algorithm D.4 to map posteriors to [0, 1]7
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for this regression example prompts suitable performance.

Appendix D.5 introduced a scalable design framework with two-group comparisons
that account for additional covariates. These methods were developed for linear regression
models. For certain generalized Bayesian linear models, sufficient statistics may be difficult
or impossible to generate. Future work could combine the approaches in Appendices D.4
and D.5 to develop design methods with sampling distribution segments that accommodate
more flexible and complex regression models.
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