
Optimization, Model Uncertainty,

and Testing in Risk and Insurance

by

Zhanyi Jiao

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2024

© Zhanyi Jiao 2024



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Steven Vanduffel

Professor, Solvay Business School,

Vrije Universiteit Brussel

Supervisor: Jun Cai

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Supervisor: Ruodu Wang

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Internal Member: Mario Ghossoub

Associate Professor, Dept. of Statistics and Actuarial Science,

University of Waterloo

Internal Member: Fangda Liu

Associate Professor, Dept. of Statistics and Actuarial Science,

University of Waterloo

Internal-External Member: Qi-Ming He

Professor, Department of Management Science and Engineering,

University of Waterloo

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

This thesis focuses on three important topics in quantitative risk management and

actuarial science: risk optimization, risk sharing, and statistical hypothesis testing in risk.

For the risk optimization, we concentrate on risk optimization under model uncertainty

where only partial information about the underlying distribution is available. One key

highlight, detailed in Chapter 2, is the development of a novel formula named the reverse

Expected Shortfall (ES) optimization formula. This formula is derived to better facili-

tate the calculation of the worst-case mean excess loss under two commonly used model

uncertainty sets – moment-based and distance-based (Wasserstein) uncertainty sets. Fur-

ther exploration reveals that the reverse ES optimization formula is closely related to the

Fenchel-Legendre transforms, and our formulas are generalized from ES to optimized cer-

tainty equivalents, a popular class of convex risk measures. Chapter 3 considers a different

approach to derive the closed-form worst-case target semi-variance by including distribu-

tional shape information, crucial for finance (symmetry) and insurance (non-negativity)

applications. We demonstrate that all results are applicable to robust portfolio selection,

where the closed-form formulas greatly simplify the calculations for optimal robust portfolio

selections, either through explicit forms or via easily solvable optimization problems.

Risk sharing focuses on the redistribution of total risk among agents in a specific way.

In contrast to the traditional risk sharing rules, Chapter 4 introduces a new risk shar-

ing framework - anonymized risk sharing, which requires no information on preferences,

identities, private operations, and realized losses from the individual agents. We establish

an axiomatic theory based on four axioms of fairness and anonymity within the context

of anonymized risk sharing. The development of this theory provides a solid foundation

for further explorations on decentralized and digital economy including peer-to-peer (P2P)

insurance, revenue sharing of digital contents and blockchain mining pools.

Hypothesis testing plays a vital role not only in statistical inference but also in risk

management, particularly in the backtesting of risk measures. In Chapter 5, we address

the problem of testing conditional mean and conditional variance for non-stationary data

using the recent emerging concept of e-statistics. We build e-values and p-values for four
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types of non-parametric composite hypotheses with specified mean and variance as well as

other conditions on the shape of the data-generating distribution. These shape conditions

include symmetry, unimodality, and their combination. Using the obtained e-values and

p-values, we construct tests via e-processes, also known as testing by betting, as well as

some tests based on combining p-values for comparison. To demonstrate the practical

application of these methodologies, empirical studies using financial data are conducted

under several settings.

v



Acknowledgments

First, I would like to express my sincere gratitude to my Ph.D. supervisors Dr. Jun Cai

and Dr. Ruodu Wang. Dr. Cai is the kindest and most supportive professor I have ever

met, always encouraging me without ever making me feel pressured, and his dedication to

academia have greatly inspired me. Dr. Wang is the smartest and most knowledgeable,

caring person I have ever met. He has provided invaluable insights into both academia

and professional for me. His rigorous approach, meticulousness, and sincerity have shown

me what it truly means to be a great scholar. I am always grateful and feel lucky that

they were willing to take me on as a student four years ago, a decision that has changed

my life. Without their guidance, I could never have experienced the wonderful journey I

always dreamed of.

My sincere thanks also goes to the members of my thesis committee, Dr. Mario Ghos-

soub, Dr. Qi-Ming He, Dr. Fangda Liu and Dr. Steven Vanduffel for their valuable time

and insightful comments.

I would like to thank Dr. Yuanying (Michelle) Guan, Dr. Steven Kou, Dr. Yang

Liu, and Yixuan Fan for their insightful discussions on research. Special thanks go to Dr.

Tiantian Mao and Dr. Qiuqi Wang for their supportive guidance on research, valuable

advice for my academic career, and constant encouragement. I am also grateful to Dr.

Lisa Gao, Dr. David Landriault, and my best academic brothers and sisters Dr. Yuyu

Chen, Dr. Haiyan Liu and Dr. Yunran Wei for their valuable advice and encouragement

during my job search. I would like to thank all the friends I met at the University of

Waterloo, especially Meixi Chen, Liyuan Lin, Zhiqiao Song, Dr. Qinyu Wu, Dr. Mingren

Yin, Jiayue Zhang, Yuanyuan Zhang, and Michael (Boyuan) Zhu, among others, for the

unforgettable memories we shared. Additionally, I extend my gratitude to Ms. Mary Lou

Dufton and Mr. Greg Preston for their indispensable supports with administrative issues

during my Ph.D. studies.

On a personal note, I would like to thank my parents: Shuguang Jiao and Fen Liu,

whose love and guidance are with me in whatever I pursue. They are the backbone of

my success and gave me unconditional support throughout my life journey. Without their

encouragement and understanding, it would have been impossible to complete this work.

vi



Dedication

Dedicated to my family.

vii



Table of Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Risk measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Risk optimization under model uncertainty . . . . . . . . . . . . . . . . . . 3

1.3 Risk sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Hypothesis testing in risk management . . . . . . . . . . . . . . . . . . . . 8

2 A reverse ES (CVaR) optimization formula 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A reverse ES optimization formula . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Symmetries between ES optimization formula and reverse formula . . . . . 15

2.4 Worst-case risk under model uncertainty . . . . . . . . . . . . . . . . . . . 17

2.4.1 Uncertainty sets induced by moment information . . . . . . . . . . 20

2.4.2 Uncertainty sets induced by Wasserstein metrics . . . . . . . . . . . 21

2.5 Empirical analysis for insurance data . . . . . . . . . . . . . . . . . . . . . 25

viii



2.6 Optimized certainty equivalents . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Related Fenchel-Legendre transforms . . . . . . . . . . . . . . . . . . . . . 32

2.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Worst-case values of target semi-variances with applications to robust

portfolio selection 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Preliminary and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Worst-case target semi-variances with symmetric distributions . . . . . . . 44

3.4 Applications to robust portfolio selection . . . . . . . . . . . . . . . . . . . 53

3.5 Numerical experiments with real financial data . . . . . . . . . . . . . . . . 60

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Appendix: Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 An axiomatic theory for anonymized risk sharing 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Risk sharing rules: Definition and examples . . . . . . . . . . . . . . . . . 74

4.3 Four axioms for anonymized risk sharing . . . . . . . . . . . . . . . . . . . 76

4.4 Two axiomatic characterizations of CMRS . . . . . . . . . . . . . . . . . . 81

4.4.1 An axiomatic characterization with four axioms . . . . . . . . . . . 81

4.4.2 Another axiomatic characterization . . . . . . . . . . . . . . . . . . 85

4.5 Other properties and their connection to the four axioms . . . . . . . . . . 86

4.5.1 Universal improvement in terms of convex order . . . . . . . . . . . 86

4.5.2 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.3 Comonotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



4.5.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Equilibrium analysis and optimality . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Generalized risk sharing rules with target information . . . . . . . . . . . . 94

4.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8.1 Blockchain mining rewards . . . . . . . . . . . . . . . . . . . . . . . 96

4.8.2 Revenue sharing of digital content . . . . . . . . . . . . . . . . . . . 101

4.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.10 Appendix: Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10.1 Proofs in Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10.2 Proofs in Section 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10.3 Proofs in Section 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10.4 Proofs in Section 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Testing mean and variance by e-processes 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Hypotheses to test . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.2 P-variables and e-variables . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Best p- and e-variables for one data point . . . . . . . . . . . . . . . . . . . 120

5.3.1 Two technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Testing the null hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.1 Constructing e-processes . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.2 Some other methods . . . . . . . . . . . . . . . . . . . . . . . . . . 129

x



5.4.3 Two-sided e-values testing the mean given variance . . . . . . . . . 131

5.4.4 Power of the e-values with fixed mean and growing variance . . . . 132

5.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5.1 A comparison of different e-combining methods . . . . . . . . . . . 133

5.5.2 A comparison with the GRAPA method . . . . . . . . . . . . . . . 135

5.5.3 A comparison with exponential test supermartingale . . . . . . . . 138

5.6 Empirical study with financial data . . . . . . . . . . . . . . . . . . . . . . 141

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.8 Appendix: Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Conclusions and future research 154

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Future research and open questions . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Several distributionally robust reinsurance problems . . . . . . . . . 156

6.2.2 Standard and comparative e-backtests based on elicitability . . . . 157

6.2.3 Elicitability and e-test of Gini indices . . . . . . . . . . . . . . . . . 159

References 163

xi



List of Figures

2.1 Worst-case mean excess loss with moment conditions in Lp(0, 1) . . . . . . 22

2.2 Worst-case mean excess loss with Wasserstein uncertainty . . . . . . . . . . 24

2.3 Empirical results on the hurricane loss data . . . . . . . . . . . . . . . . . 26

2.4 Empirical results on the fire loss data . . . . . . . . . . . . . . . . . . . . . 27

2.5 Values of the ratios r(δ0, t) and r̂(δ0, t) for the hurricane loss data, where

Q1, Q2 and Q3 represent the 1st, 2nd and 3rd quartiles of the data . . . . . 29

2.6 Values of the ratios r(δ0, t) and r̂(δ0, t) for the fire loss data, where Q1, Q2

and Q3 represent the 1st, 2nd and 3rd quartiles of the data . . . . . . . . . 30

3.1 Histograms of daily losses of the stocks of Apple (AAPL), Bank of America

(BAC), Johnson & Johnson (JNJ) and Tesla (TSLA). The data used for this

figure covers a four-year period from January 2, 2019, to January 2, 2023,

and includes 1007 observations of daily losses from Yahoo! Finance. . . . . 39

3.2 Cumulative wealth comparison across portfolio rebalancing strategies based

on models (a)-(c). The target return t = −0.003 for all the TSV-based

models; risk level ν = −0.001 for the M-V and M-TSV-S models. . . . . . 63

4.1 Risk sharing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 An illustration of a Bitcoin mining pool of 3 miners . . . . . . . . . . . . . 99

xii



5.1 Rejection rates for all methods for testing H(0, 1) with sample size n = 100

over 1000 runs using the threshold 20. . . . . . . . . . . . . . . . . . . . . 135

5.2 Rejection rates for the GRAPA, the e-GREE, the e-mixture and the two-

sided e-GREE-2s and the e-mixture-2s methods over 1000 runs using the

threshold 20 and µ = 0.35. Data are generated from Beta(ν, σ2) with sample

size n = 20, where ν ⩾ 0.35 and σ ∈ {0.05, 0.1, 0.3}. . . . . . . . . . . . . . 138

5.3 Average logarithmic e-processes for the GRAPA, the e-GREE, the e-mixture

and the two-sided e-GREE-2s and the e-mixture-2s methods with varying

sample size and µ = 0.35. Data are generated from Beta(ν, σ2) where σ ∈
{0.05, 0.1, 0.3} and ν = µ+ σ. . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Rejection rates for methods (a), (b) and (f)-(j) for testing H(0, 1) with

sample size n = 100 over 1000 runs using the threshold 20. . . . . . . . . . 141

5.5 Sample path and logarithmic e-process using the e-GREE and the e-mixture

methods testing of H(µ̂, σ̂) for Simon Property (SPG) stock from January

2007 to January 2008, where µ̂ = −0.001028 and σ̂ = 0.012123 are the

sample mean and variance estimated from historical data for stock SPG

from January 1, 2001 to December 31, 2006. . . . . . . . . . . . . . . . . . 143

5.6 Sample paths for the stock price of Bank of America Corp. (BAC), Morgan

Stanley (MS), Texas Pacific Land Corp. (TPL), Walmart Inc. (WMT),

PepsiCo Inc. (PEP), Microsoft Corp. (MSFT) from January 1, 2001 to

December 31, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xiii



List of Tables

2.1 Values of δ0 for the lognormal, Weibull and Gamma distributions and for

the hurricane loss and fire loss datasets. The level δ0 is the Wasserstein

metric with p = 2 between the empirical and the fitted distributions . . . . 26

2.2 Values of r(δ, t0) for the hurricane loss and the fire loss datasets. The thresh-

old level t0 is the first quartile of the benchmark distribution and the pa-

rameter δ0 is the Wasserstein metric between the empirical and the fitted

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Formulas for p-variables and e-variables . . . . . . . . . . . . . . . . . . . . 126

5.2 Rejection rates of testing H, HS, HU and HUS with n = 100 data generated

from the model NL(0.5, 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 The number of trading days taken to detect evidence against H(µ̂, σ̂) using

the e-GREE method and the e-mixture method for different stocks from

January 1, 2007 to December 31, 2010; “–” means no detection is observed

till December 31, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



Chapter 1

Introduction

1.1 Risk measure

Risk is often described as “the potential for adverse consequences,” but this definition

only captures part of the risk. Risk is also opportunity particularly when it is effectively

managed and exploited. As Peter Drucker, one of the most influential risk management

thinkers, famously stated, “If you cannot measure the risk, you cannot manage the risk.”

This highlights that measuring risk is an essential aspect of risk management, serving as

the foundational step towards understanding and controlling the potential outcomes, both

negative and positive, associated with risk-taking activities.

Value-at-Risk (VaR) and Expected Shortfall (ES) (also known as Conditional Value-

at-Risk (CVaR), Tail Value-at-Risk (TVaR) and Average Value-at-Risk (AVaR)) are the

two most important risk measures in banking and insurance, and they are widely employed

in regulatory capital computation, decision making, performance analysis, and risk man-

agement. In particular, ES is the standard risk measure in the current Basel Accords (see

BCBS (2019)) as well as the Swiss Solvency Test, and VaR is standard in the insurance

regulatory framework of Solvency II. We assume X to be the set of integrable random

variables in a probability space (Ω,F ,P). For X ∈ X with a probability level α ∈ [0, 1],1

1Throughout this thesis, positive values of the random variable X represent losses, while negative
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VaR is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ α}. (1.1)

ES is generally calculated as the average of the tail values that are worse than VaR at

probability level α and is defined as

ESα(X) =
1

1− α

∫ 1

α

VaRβ(X)dβ. (1.2)

There has been extensive research on VaR, ES and their properties and applications in

quantitative risk management. For comprehensive discussions and analyses of these two

common risk measures, we refer McNeil et al. (2015) and Föllmer and Schied (2016), which

provide detailed insights into their significance in the field.

Another important and commonly used risk measure in finance and actuarial science is

the partial moment, also known as the one-sided moment. Partial moments are measures

of risk that focus on either the lower or upper part of a distribution. Since, in this thesis, X

represents the random loss, we are mainly interested in the upper partial moment, which

measures the downside risk over a given threshold t. It is defined as follows:

E[(X − t)k+] =

∫ ∞

t

(x− t)kdF (x). (1.3)

where F is the distribution of X, and k represents the order of the upper partial moment.

The first-order upper partial moment E[(X − t)+] measures the expected loss above a

threshold t. This measure is also referred to as the expected regret or target shortfall

in finance (see, e.g., Testuri and Uryasev (2004)), and as the mean excess function in

insurance, which is particularly useful in stop-loss insurance and reinsurance, where policies

take effect after claims exceed a certain threshold (see, e.g., De Vylder and Goovaerts

(1982)).2 We provide a deeper insight of mean excess function and its application in

insurance in Chapter 2.

The second-order upper partial moment E[(X − t)2+], also known as the target semi-

variance (see, e.g., Rohatgi (2011)), quantifies the dispersion of all values that exceed a

values represent gains, unless otherwise stated.
2In this thesis, we distinguish between the term “mean excess function” as a function of t and “mean

excess loss” as a function of X. More detailed will be discussed in the Section 2.3 of Chapter 2.
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target t. When t = E[X], the target semi-variance reduces to the well-known semi-variance.

The target semi-variance is particularly useful for assessing downside risk, serving as a

suitable alternative to variance in the traditional mean-variance portfolio selection problem,

where investors and risk managers are more concerned about the downside fluctuations.

More details about the target semi-variance will be discussed in Chapter 3.

There is an interesting connection between VaR, ES and the first-order upper partial

moment (mean excess function) first derived by Rockafellar and Uryasev (2000). For

α ∈ (0, 1) and X ∈ X , we have

ESα(X) = VaRα(X) +
1

1− α
E[(X − VaRα(X))+]. (1.4)

This formula indicates that ES at a fixed probability level can be calculated as a linear

combination of VaR and a scaled mean excess function, with VaR serving as the threshold.3

This relationship is foundational in risk management and financial engineering, particu-

larly useful in ES optimization problems. For a comprehensive review, see Rockafellar and

Uryasev (2013) and references therein. In Chapter 2, we derive another intriguing con-

nection between the mean excess function and ES, where the mean excess function can be

expressed through an optimization formula of ES.

E[(X − t)+] = max
α∈[0,1]

{(1− α) (ESα(X)− t)} . (1.5)

Furthermore, the above newly derived formula can be generalized from ES to optimized

certainty equivalents (OCE), a widely used class of convex risk measures. In Chapter 2,

we also show that the new formula (1.5) is particularly useful for risk optimization under

model uncertainty.

1.2 Risk optimization under model uncertainty

A good and appropriate risk measure facilitates better risk management and decision-

making processes. However, a risk measure alone is merely a tool for understanding and

3A more rigorous formula is provided in Section 2.1 of Chapter 2.
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managing risk. Optimal decision-making arises when risk-taking is strategically optimized,

enabling businesses and individuals to address emerging marketplace challenges effectively

and enhance financial security. Risk optimization based on VaR, ES and upper partial

moments is extensively studied in the contexts of optimal insurance/reinsurance and port-

folio selection problems. In the insurance and reinsurance context, the focus primarily lies

on minimizing the target risk measure of a loss function across a set of possible contracts

(see e.g. Cai and Tan (2007), Chi and Tan (2011), Cai and Chi (2020), Ghossoub et al.

(2023) and the references therein). In the portfolio selection context, the goal is to min-

imize the target risk measure of a loss function over a set of possible portfolio positions

(see e.g., Rockafellar and Uryasev (2000, 2002), Alexander and Baptista (2002, 2004) and

the references therein).

Most classical optimal insurance and portfolio selection models assume that the loss

distribution is completely known. In reality, however, the loss distribution is estimated

from historical data, expert opinions, past experiences, and prior beliefs. This leads to a

gap between the true distribution and the estimated distribution due to insufficient data,

prediction errors, or incorrect judgments. Considering such gap can be detrimental to the

risk optimization and decision-making process, it drives us to consider model uncertainty

where we only know the partial information of this underlying distribution and consider

the worst-case scenario. The risk optimization over the uncertainty set L can be generally

formulated as follows

sup
F∈L

ρF (f(X)), (1.6)

where ρ : X → R is risk measure, which can be VaR, ES or partial moments defined

in Section 1.1, and f is a loss/cost function defined on R. This modeling framework is

commonly known as distributionally robust optimization (DRO). It has been widely applied

in decision-making theory since the pioneering work of Ben-Tal and Nemirovski (1998). For

applications in portfolio selection, refer to Ghaoui et al. (2003), Natarajan et al. (2008),

Zhu and Fukushima (2009), Chen et al. (2011), and Blanchet et al. (2021). For applications

in insurance and reinsurance, see Pflug et al. (2017), Liu and Mao (2022), Bernard et al.

(2024) and Cai et al. (2024).

In a DRO problem, the uncertainty set offers a flexible approach for capturing model

4



uncertainty using information from various sources, such as historical data and expert

insights. This information may include descriptive statistics, distances from a reference

distribution, and structural properties. Specifically, we categorize commonly used uncer-

tainty sets into the following types:

1. Moment-based uncertainty set: This set contains distributions characterized by

their moments, such as the mean and variance, or other higher order moments.

2. Distance-based uncertainty set: This set contains distributions that are close to

a reference distribution in terms of some discrepancy measures.

3. Shape-preserving uncertainty set: This set contains distributions with similar

structural properties, such as symmetry, unimodality, non-negativity, or specific con-

straints.

There are other interesting uncertainty sets that combine the types of uncertainty sets

mentioned above. For example, Bernard et al. (2023) and Cai et al. (2024) consider

uncertainty sets that include both moment and distance information. It is also common

to combine moment information with structural information, see e.g., Li et al. (2018) and

Bernard et al. (2020). For more details on these uncertainty sets and the relevant literature,

refer to Rahimian and Mehrotra (2022) for a comprehensive review of DRO problems. In

this thesis, all the aforementioned types of uncertainty sets are discussed. In Chapter

2, we analyze the worst-case values of the mean excess function using the newly derived

optimization formula

sup
F∈L

EF [(f(X)− t)+] = max
α∈[0,1]

{
(1− α)

(
sup
F∈L

ESα(f(X))− t

)}
, (1.7)

which provides a new methodology to calculate the worst-case mean excess function under

two popular settings of model uncertainty: moment-based and distance-based uncertainty

sets (primarily Wasserstein uncertainty set), since there are existing results on worst-

case ES. In addition, its usefulness further demonstrated through an application using

catastrophic insurance datasets, which is particularly appropriate for model uncertainty

due to the data scarcity issue inherent in such datasets.
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In Chapter 3, we focus on the worst-case target semi-variance under the shape-preserving

uncertainty set. We derive derive the explicit and closed-form expressions for the worst-

case target semi-variance when only the mean and variance of a loss are known and the loss

is symmetric or non-negative. All the results are applicable to robust portfolio selection,

where we can project multivariate uncertainty sets into one-dimensional uncertainty sets.

This projection enables the use of previously derived closed-form formulas, simplifying the

calculation of optimal portfolio selections through either explicit forms or straightforward

and easy solvable optimization problems.

1.3 Risk sharing

Risk optimization assists decision makers in strategically optimizing their risk-taking

behaviors to balance risk and return. In addition to managing risk optimally, it is important

to understand how to appropriately reduce or share risk, leading to another crucial topic

in risk management – risk sharing.

Risk sharing refers to pooling risks from several participants in a group and reallocating

the total risk based on a specific way. Traditional insurance is the most common form of risk

sharing, where the insurer collects the payments from the insureds and provides insurance

coverage to all insureds. A risk sharing scheme also arises in other different forms, such

as tontines, taxation, founders stock, investment profit sharing, and Bitcoin mining pools,

to name a few. In these contexts, either wealth or losses, or both of them, may be shared

among participants.

Specifically, the participants of a risk sharing scheme, such as individual investors, co-

workers, financial institutions, policyholders and an insurer, peer-to-peer (P2P) insureds,

and miners in a Bitcoin mining pool, are generally referred to as agents. Assume n agents

have initial risk contributions X1, X2, . . . , Xn ∈ X (we denote the initial risk vector as

X = (X1, X2, . . . , Xn)), and it will be exchanged to a new position after a risk sharing

scheme A : X n → X n:4

AX = (AX
1 , A

X
2 , . . . , A

X
n ), (1.8)

4In Chapter 4, we will provide a more formal definition of risk sharing and some examples.
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and satisfying the full-allocation property:

n∑
i=1

AX
i =

n∑
i=1

Xi. (1.9)

There are generally two types of setting in the risk sharing, including collaborative

and competitive risk sharing. The key problem is to derive an equilibrium risk sharing

rule. In the collaborative setting, we assume a central planner who knows preferences

of all agents and solves the Pareto equilibrium. In the competitive setting, we require

a trading mechanism (e.g., a market) and individual preferences such that each agent

optimize their objectives individually. In both situations, concrete preference models are

required. The common preference models include expected utility, mean-variance, dual

utility, rank-dependent utility, cumulative prospect theory, risk measures (e.g., quantiles),

robust/variational preferences, etc. Equilibrium risk sharing is studied in the classic work

of Arrow and Debreu (1954) and Borch (1962) among a very rich literature, see the later

work on risk sharing by Barrieu and El Karoui (2005) for convex risk measures, Carlier et

al. (2012) for multivatiate stochastic dominance, Xia and Zhou (2016) for rank-dependent

utilities, Cai et al. (2017) for reinsurance arrangements, and Embrechts et al. (2018) for

quantile-based risk measures.

However, in practice, several challenges hinder the application of the preference frame-

work to risk sharing problems. First, preferences are difficult to elicit or test, as most

agents find it challenging to accurately articulate their preferences. Second, the allocation

for one agent might depend on the preferences of other agents, which complicates the pro-

cess. Additionally, providing false preferences might be advantageous, leading to potential

manipulation.

These limitations drive us to develop a new risk sharing framework, called anonymized

risk sharing, detailed in Chapter 4. The key feature of such framework is that agents do

not need to disclose their preferences, identity, or wealth level, which fits perfectly with

practical situations and the concept of decentralization. More precisely, the allocation to an

agent is determined by the initial risk contributions of all agents, but not the specification

of these agents. For this reason, anonymized risk sharing schemes are desirable in several
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decentralized applications such as P2P insurance, Bitcoin mining pools and tontines. To

better understand a suitable anonymized risk sharing rule, we put forward four simple and

natural axioms: actuarial fairness, risk fairness, risk anonymity, and operational anonymity.

We establish the remarkable fact that the four axioms characterize the conditional mean

risk sharing rule, revealing the unique and prominent role of this popular risk sharing rule

among all others within the decentralized system. Our characterization hence provides

the first axiomatic foundation for conditional mean risk sharing and its applications in

economic theory and decentralized finance and insurance. On the technical side, our work

also lays a foundation for future research on the characterization of multi-dimensional and

random-vector-valued objectives, such as risk sharing rule A in our work.

1.4 Hypothesis testing in risk management

Hypothesis testing plays a crucial role in risk management by enabling organizations

to make informed decisions based on statistical evidence. By setting up hypotheses and

testing them against real-world data, risk managers can assess the likelihood of various risk

scenarios and evaluate their potential impact. In this thesis, we focus on testing the mean

and variance in a sequential setting, which is common in financial practice. In the context of

forecasting and financial risk assessment, hypothesis testing is vital for evaluating the mean

and variance of financial metrics or predictive models. Testing the mean helps determine

whether the expected return or outcome aligns with strategic goals or market benchmarks,

while testing the variance assesses the stability and risk associated with these returns or

outcomes. This process enables financial analysts and risk managers to validate or refute

assumptions, ensuring that investment strategies or forecasts are robust and reliable.

Specifically, in this thesis, we are interested in testing the following null hypothesis H,

where there are sequentially arriving data points X1, X2, . . . , each drawn from unknown

distributions:

H : E[Xi|Fi−1] ⩽ µi and Var(Xi|Fi−1) ⩽ σ2
i , for each i, (1.10)

where Fi is generated by observations before Xi, and µi and σi can be data-dependent on
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past observations. The main issue here is that the data points are not independent and

identically distributed (iid), making it challenging to infer the distributions.

In Chapter 5, we address (1.10) using the emerging concept of e-tests or tests by betting

(see e.g., Shafer (2021) and Vovk and Wang (2021)). E-tests offer several advantages

over classic p-tests (which are based on p-values) when it comes to sequential inference,

robustness to model misspecification, and dependence, among other benefits. For a detailed

discussion of the advantages of e-tests over p-tests, see Wang and Ramdas (2022, Section

2). We construct e-values (and p-values) from a random variable associated with each data

point for the null hypothesis. After obtaining these e-values, we typically combine them by

forming an e-process to test the overall hypothesis. Alternatively, we also combine p-values

using Fisher’s method (Fisher (1925)) and Simes’ method (Simes (1986)), but the power

of these methods is generally weaker than that of e-combining methods.

Another crucial topic in hypothesis testing within risk management is backtesting risk

measures. Backtesting risk measures is vital for financial regulators to evaluate the risk

forecasts reported by financial institutions. For backtesting purposes, we denote the model

space M as a set of distributions on R. We define the functional ψ = (ρ, ϕ1, . . . , ϕd−1):

M → Rd as the collection of available statistical information. Here, ρ is the risk measure

to be tested, and ϕ is the auxiliary statistics containing distributional information of the

underlying random losses. Let T ∈ N be a finite time horizon, and X1, X2, . . . , XT be

losses arriving sequentially up to time T . The risk measures ρ(Xi|Fi−1) and ϕ(Xi|Fi−1)

are predicted by Ri : Ω → R and Zi : Ω → Rd−1, respectively, which are Fi−1-measurable

for i ∈ {1, 2, . . . T}. Depending on different practical situations, the financial institution

and the regulator may care about either the regulatory risk measure ρ or the statistic ϕ.

For standard backtests, regulators are interested in the one-sided test for the following null

hypothesis:

H : Ri ⩾ ρ(Xi|Fi−1) and Zi ∈ ϕ(Xi|Fi−1), for each i ∈ {1, 2, . . . T}. (1.11)

This problem is also compatible with using e-tests due to the non-iid nature of the obser-

vations, the sequential settings, and the challenge of inferring the loss distributions. The

recent work of Wang et al. (2022) discusses detailed model-free procedures for backtesting
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VaR and ES using e-values and e-processes. Clearly, testing mean and variance in Chapter

5 can also be incorporated in such a framework by assuming the risk measure ρ to be

variance and the auxiliary statistic ϕ to be the expectation with one-dimensional setting

(d = 2).

Given that e-tests are still relatively new, there are many intriguing backtesting risk

measure problems based on e-tests yet to be solved. This thesis proposes two potential

future research directions and open questions regarding comparative e-backtests (discussed

in Section 6.2.2 of Chapter 6) and e-backtests of Gini indices (discussed in Section 6.2.3 of

Chapter 6).

To maintain each chapter’s content as self-contained, important concepts such as differ-

ent risk measures, model uncertainty sets, and risk-sharing rules, and some notations will

be reintroduced in the following chapters, potentially with slightly different conventions.
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Chapter 2

A reverse ES (CVaR) optimization

formula

2.1 Introduction

An influential result on VaR and ES is an optimization formula obtained by Rockafellar

and Uryasev (2000, 2002), which is the main motivation for this chapter. We officially

give the definition of VaR and ES. Let X be the set of integrable random variables in a

probability space (Ω,F ,P). At a probability level α ∈ [0, 1], VaR has two versions as the

left- and right-quantiles. For X ∈ X , define

VaR−
α (X) = inf{t ∈ R : P(X ⩽ t) ⩾ α};

VaR+
α (X) = inf{t ∈ R : P(X ⩽ t) > α}.

(2.1)

By definition, VaR−
0 (X) = −∞ and VaR+

1 (X) = ∞. ES at probability level α ∈ [0, 1] is

defined as

ESα(X) =
1

1− α

∫ 1

α

VaR−
β (X)dβ, X ∈ X , α ∈ [0, 1), (2.2)

and ES1(X) = VaR−
1 (X). It is well known that an ES is a coherent risk measure (Artzner

et al. (1999)) and a convex risk measure (Föllmer and Schied (2016)), and it admits an

11



axiomatization based on portfolio diversification (Wang and Zitikis (2021)). Below, we

formally present the celebrated formula of Rockafellar and Uryasev (2002).

Theorem 2.1.1 (ES optimization formula). For X ∈ X and α ∈ (0, 1), it holds

ESα(X) = min
t∈R

{
t+

1

1− α
E[(X − t)+]

}
, (2.3)

and the set of minimizers for (2.3) is [VaR−
α (X),VaR+

α (X)].

Theorem 2.1.1 has been a cornerstone of risk management and financial engineering

since Rockafellar and Uryasev (2000, 2002) and Pflug (2000). This result has been tremen-

dously useful in the optimization of ES (see Rockafellar and Uryasev (2013) for a review)

and it has also been widely taught in actuarial science, see e.g., Denuit et al. (2005, Section

2.4.3) and Kaas et al. (2008, Section 5.6). Among other implications, this formula directly

gives an elementary proof of subadditivity of ES; see Embrechts and Wang (2015) for a

comparison with six other proofs.

In this chapter, we establish a new optimization formula based on ES, which can be seen

as a reverse formula to Theorem 2.1.1. This formula reveals nice symmetries between the

ES curve and the mean excess function, as we discuss in Section 2.3. The mean excess loss,

also known as the stop-loss premium, has a deep root in actuarial science (e.g., De Vylder

and Goovaerts (1982)). In Section 2.4, we apply the new formula to two popular settings

of model uncertainty, one induced by information of mean and a higher moment and the

other induced by a Wasserstein ball. In both settings, the worst-case ES admits an explicit

formula in the recent literature (Pesenti et al. (2020); Liu et al. (2022)) whereas the worst-

case mean excess function does not. Two insurance loss datasets are studied in Section 2.5

to illustrate the obtained results on the mean excess loss under model uncertainty induced

by a Wasserstein ball. We present a few further technical results in Sections 2.6 and 2.7;

more precisely, the reverse ES optimization formula are generalized to the class of optimized

certainty equivalents introduced by Ben-Tal and Teboulle (2007) (Section 2.6), and two

related formulas are obtained via Fenchel-Legendre transforms (Section 2.7). Section 2.8

concludes this chapter.
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2.2 A reverse ES optimization formula

We start from the observation from Theorem 2.1.1 that ESα(X) for a fixed α ∈ (0, 1)

can be obtained through taking the minimum of a function involving E[(X−t)+] over t ∈ R.
Having a mathematical symmetry in mind, a natural question is whether E[(X− t)+] for a

fixed t ∈ R can be obtained through taking the maximum of a function involving ESα(X)

over α ∈ [0, 1]. This leads to the reverse ES optimization formula, the main result of this

chapter. In what follows, we always use the convention 0× x = 0 for x ∈ [−∞,∞].

Theorem 2.2.1 (Reverse ES optimization formula). For X ∈ X and t ∈ R, it holds

E[(X − t)+] = max
α∈[0,1]

{(1− α) (ESα(X)− t)} , (2.4)

and the set of maximizers for (2.4) is [P(X < t),P(X ⩽ t)].

To prove Theorem 2.2.1, we first present a useful lemma which collects some standard

properties of quantiles, which are known to specialists on quantiles. We provide a self-

contained short proof since we could not find this precise formulation in the literature.

Lemma 2.2.1. For α ∈ [0, 1] and any random variable X, the following statements hold:

(i) α > P(X ⩽ t) if and only if VaR−
α (X) > t;

(ii) α < P(X < t) if and only if VaR+
α (X) < t.

Remark 2.2.1. The statements in Lemma 2.2.1 can be equivalently stated in other forms,

such as (i.a) P(X ⩽ t) ⩾ α if and only if VaR−
α (X) ⩽ t; (i.b) P(X > t) ⩽ 1−α if and only

if VaR−
α (X) ⩽ t; (ii.a) P(X < t) ⩽ α if and only if VaR+

α (X) ⩾ t; (ii.b) P(X ⩾ t) ⩾ 1− α

if and only if VaR+
α (X) ⩾ t.

Proof. To show (i), denote by Aα = {t ∈ R : P(X ⩽ t) ⩾ α} . Note that Aα is closed

in R since t 7→ P(X ⩽ t) is upper semicontinuous. This gives VaR−
α (X) = minAα.

Hence, α > P(X ⩽ t) ⇐⇒ t ̸∈ Aα ⇐⇒ VaR−
α (X) > t. To show (ii), denote by

Bα = {t ∈ R : P(X < t) ⩽ α} which is closed in R since t 7→ P(X < t) is lower semi-

continuous. This gives VaR+
α (X) = maxBα. It follows that α < P(X < t) ⇐⇒ t ̸∈

Bα ⇐⇒ VaR+
α (X) < t.
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Proof of Theorem 2.2.1. Let g : [0, 1] → R, α 7→ (1 − α)(ESα(X) − t). Note that for any

α, α′ ∈ [0, 1],

g(α)− g(α′) =

∫ α′

α

(
VaR−

β (X)− t
)
dβ (2.5)

=

∫ α′

α

(
VaR+

β (X)− t
)
dβ. (2.6)

Let [c, d] = [P(X < t),P(X ⩽ t)]. For α ⩽ d, Lemma 2.2.1 (i) and (2.5) imply g(α) ⩽ g(d).

For α < c, Lemma 2.2.1 (ii) and (2.6) imply g(α) < g(c). For α ⩾ c, Lemma 2.2.1 (ii)

and (2.6) imply g(α) ⩽ g(c). For α > d, Lemma 2.2.1 (i) and (2.5) imply g(α) < g(d).

Summarizing the above inequalities, we obtain

g(α1) < g(c) = g(α2) = g(d) > g(α3) for any α1 < c < α2 < d < α3.

Therefore, the set of maximizers for (2.4) is [c, d]. By using Lemma 2.2.1 (i) again,

g(d) =

∫ 1

P(X⩽t)

(
VaR−

β (X)− t
)
dβ =

∫ 1

0

(
VaR−

β (X)− t
)
+
dβ = E[(X − t)+],

thus showing (2.4).

Remark 2.2.2. After the current chapter was published online as a journal paper, we became

aware of earlier results very similar to reverse ES optimization formula (Theorem 2.2.1)

in Ogryczak and Ruszczyński (2002, Theorem 3.1) and Rockafellar and Royset (2014,

Theorem 2). Therefore, this formula should be attributed to them.

From the reverse ES optimization formula, instead of directly calculating E[(X − t)+]

for fixed t ∈ R, we can maximize a quantile-based function α 7→ (1− α)(ESα(X)− t) over

α ∈ [0, 1]. Some implications of this result are discussed in Section 2.3.

The next corollary on a formula for E[X ∧ x] can be obtained from Theorem 2.2.1. To

state this result, we define the left-ES for α ∈ [0, 1] as

ES−
α (X) =

1

α

∫ α

0

VaR−
β (X)dβ, X ∈ X , α ∈ (0, 1], (2.7)

and ES−
0 (X) = VaR+

0 (X).
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Corollary 2.2.1. For t ∈ R and X ∈ X , it holds

E[X ∧ t] = min
α∈[0,1]

{
αES−

α (X) + (1− α)t
}
, (2.8)

and the set of minimizers for (2.8) is [P(X < t),P(X ⩽ t)].

Proof. The formula (2.4) directly leads to

E[X ∧ t] = E[X]− max
α∈[0,1]

{(1− α)(ESα(X)− t)}

= E[X] + min
α∈[0,1]

{(1− α)(t− ESα(X))}

= min
α∈[0,1]

{(1− α)t+ E[X]− (1− α)ESα(X)}

= min
α∈[0,1]

{
(1− α)t+ αES−

α (X)
}
.

The corresponding statement on optimizers is the same as that in Theorem 2.2.1.

2.3 Symmetries between ES optimization formula and

reverse formula

The function t 7→ E[(X − t)+] is called the mean excess function of X according to

McNeil et al. (2015), and the function α 7→ ESα(X) will be called the ES profile of X

according to Burzoni et al. (2022). The ES profile also relates to the Lorenz curve (see

e.g., Gastwirth (1971)), which can be written as α 7→ αES−
α (X)/ES0(X) for a non-negative

random variable X representing the wealth distribution of a population. For clarity, we

distinguish between the terms “mean excess function” (as a function of t) and “mean excess

loss” (as a function of X), and analogously between the terms “ES profile” and “ES”.

To appreciate Theorem 2.2.1 and contrast it with Theorem 2.1.1, we need to understand

the roles of the mean excess function and the ES profile. The reason why Theorem 2.2.1

has not been explored in the literature is perhaps due to the perception that the ES profile

is harder to obtain or to optimize than the mean excess function. Based on this reasoning,
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it seems that using the mean excess function to compute ES is more natural than using

the ES profile to compute the mean excess function. However, in theory, there is no such

asymmetry: For a given random variable X, its mean excess function and its ES profile

have perfectly symmetric roles, as we discuss below. Indeed, we shall see in Section 2.4

that in relevant applications, useful formulas for the mean excess function can be obtained

from the ES profile via Theorems 2.2.1.

1. Functional properties on X . Both the mean excess loss and ES have nice prop-

erties, symmetric to each other, as mappings on X .

(a) For a fixed t ∈ R, the mapping X 7→ E[(X−t)+] is linear in the distribution of X

and convex in the quantile of X. Indeed, this mapping satisfies the independence

axiom of von Neumann and Morgenstern (1947).

(b) For a fixed α ∈ (0, 1), the mapping X 7→ ESα(X) is linear in the quantile of

X and concave in the distribution of X (e.g., Wang et al. (2020)). Indeed, this

mapping satisfies the dual independence axiom of Yaari (1987).

2. Optimization problems. As for the optimization problems (2.3) and (2.4), we

have the following symmetry.

(a) In the minimization (2.3) over t ∈ R, the function t 7→ t + 1
1−αE[(X − t)+] is

convex in t.

(b) In the maximization (2.4) over α ∈ [0, 1], the function α 7→ (1− α)(ESα(X)− t)

is concave in α.

3. Solutions to the optimization problems. The optimizers to the optimization

problems (2.3) and (2.4) also admit nice symmetry, as one is the quantile interval,

and the other one is the probability interval.

4. Parametric forms. For commonly used distributions in risk management and ac-

tuarial science, if one of the mean excess loss and ES has an explicit formula, then

so is the other one (e.g., Pareto distributions; see Example 2.4.1 below). Moreover,

each of the two curves determines the whole distribution of the random variable.
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To summarize, writing one as a minimum or maximum of the other as in Theorems

2.1.1 and 2.2.1 leads to the following implications for optimization:

(a) Theorem 2.1.1 allows one to transform the non-linear (in distribution) objective ESα(X)

as the minimum over t of linear (in distribution) functions convex in t.

(b) Theorem 2.2.1 allows one to transform the non-linear (in quantile) objective E[(X−t)+]
as the maximum over α of linear (in quantile) functions concave in α.

Due to the above discussed symmetries, Theorem 2.2.1 serves as a natural dual formula

to Theorem 2.1.1. Indeed, Theorems 2.1.1 and 2.2.1 are closely related to Fenchel-Legendre

transformations, which we will discuss in Section 2.7.

2.4 Worst-case risk under model uncertainty

As discussed in Section 2.3, one of the greatest advantages of the ES optimization

formula in Theorem 2.1.1 is that it allows us to translate optimization problems of ES to

those of the mean excess function. More precisely, for a set of actions A and a loss function

f : A× Rd → R, Theorem 2.1.1 implies

min
y∈A

ESα(f(y,X)) = min
t∈R

{
t+

1

1− α
min
y∈A

E[(f(y,X)− t)+]

}
,

and thus, for the minimization of ES, it suffices to minimize the mean excess loss E[(f(y,X)−
t)+] for each t ∈ R, which is more convenient in many specific settings; see the review in

Rockafellar and Uryasev (2013).

In contrast, Theorem 2.2.1 has a maximum operator in its formula (2.4), and it is useful

in maximization problems. Moreover, even though risk often needs to be minimized, a

maximum naturally appears in the presence of model uncertainty, which is often addressed

via a worst-case approach. The worst-case risk evaluation under uncertainty appears in,

e.g., Gilboa and Schmeidler (1989) and Maccheroni et al. (2006) in the context of decision

making, Ghaoui et al. (2003) and Zhu and Fukushima (2009) in the context of optimization,
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and Embrechts et al. (2013) in the context of risk aggregation. More precisely, suppose that

there is uncertainty about a random vector X, assumed to be in a set U , and f : Rd → R
is a loss function. Theorem 2.2.1 implies that the worst-case mean excess loss can be

computed by (recall that the convention is 0 × ∞ = 0), via exchanging the order of two

suprema,

sup
X∈U

E[(f(X)− t)+] = max
α∈[0,1]

{
(1− α)

(
sup
X∈U

ESα(f(X))− t

)}
, (2.9)

which allows us to use rich existing results on worst-case ES.

Moreover, the maximization over α ∈ [0, 1] is attainable under a condition of uniform

integrability, as we show below.

Proposition 2.4.1. Let Y be a set of random variables and t ∈ R. If Y is uniformly

integrable, then

sup
Y ∈Y

E[(Y − t)+] = max
α∈[0,1]

{
(1− α)

(
sup
Y ∈Y

ESα(Y )− t

)}
. (2.10)

In particular, if there exists p > 1 such that supY ∈Y E[|Y |p] < ∞, then Y is uniformly

integrable and (2.10) holds.

Proof. We first show that uniform integrability of Y implies, for any α ∈ [0, 1],

lim
α′→α

sup
Y ∈Y

∫ α′

α

|VaRβ(Y )|dβ → 0, (2.11)

where the limit is one-sided if α = 0 or α = 1. Suppose that (2.11) does not hold,

and without loss of generality we consider α′ ↓ α (in this case, α < 1). It follows that

there exists m > 0 such that, for any ε ∈ (0, 1 − α), there exists Yε ∈ Y satisfying∫ α+ε
α

|VaRβ(Yε)|dβ > m. Since VaRα is monotone in α, we have

m <

∫ α+ε

α

|VaRβ(Yε)|dβ ⩽
∫ ε

0

|VaRβ(Yε)|dβ +

∫ 1

1−ε
|VaRβ(Yε)|dβ.
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For any K > 0, let ε > 0 be such that 4Kε < m. It follows that

E
[
|Yε|1{|Yε|>K}

]
⩾ E[(|Yε| −K)+]

=

∫ 1

0

(|VaRβ(Yε)| −K)+dβ

⩾
∫ ε

0

(|VaRβ(Yε)| −K)+dβ +

∫ 1

1−ε
(|VaRβ(Yε)| −K)+dβ

⩾
∫ ε

0

|VaRβ(Yε)|dβ +

∫ 1

1−ε
|VaRβ(Yε)|dβ − 2εK > m/2.

Hence, supY ∈Y E[|Y |1{|Y |>K}] > m/2, contradicting uniform integrability. Therefore, (2.11)

holds.

Let g : [0, 1] → R, α 7→ supY ∈Y(1 − α)(ESα(Y ) − t). Note that for any α, α′ ∈ [0, 1],

using (2.11),

|g(α)− g(α′)| =

∣∣∣∣∣supY ∈Y

∫ α′

0

(
VaR−

β (Y )− t
)
dβ − sup

Y ∈Y

∫ α

0

(
VaR−

β (Y )− t
)
dβ

∣∣∣∣∣
⩽

∣∣∣∣∣supY ∈Y

∫ α′

α

(
VaR−

β (Y )− t
)
dβ

∣∣∣∣∣ ⩽ sup
Y ∈Y

∫ α′

α

|VaR−
β (Y )|dβ + |(α′ − α)t|,

which converges to 0 as α′ → α. This shows that g is continuous on [0, 1], and hence the

maximum in (2.10) is attained. The last statement that boundedness of E[|Y |p] implies

uniformly integrability can be found in Exercise 5.5.1 of Durrett (2010).

In two settings of uncertainty based on moment information and the Wasserstein metric

which we study below, explicit formulas for the worst-case ES are available in Pesenti et

al. (2020) and Liu et al. (2022), whereas the worst-case mean excess loss does not have an

explicit formula. In the popular case that f is a portfolio loss function (i.e., f(x) = w⊤x

for some w ∈ Rd), the multi-dimensional uncertainty sets reduce to one-dimensional sets

of the same type; see Mao et al. (2022, Section 6). For this reason, we will focus on the

one-dimensional uncertainty sets.
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2.4.1 Uncertainty sets induced by moment information

We first study the uncertainty set induced by mean and a higher moment. For p > 1,

µ ∈ R and σ ⩾ 0, denote by

Lp(µ, σ) = {X ∈ X : E[X] = µ, E[|X − µ|p] ⩽ σp},

that is, the set of all random variables with given mean µ and a p-th centralized absolute

moment at most σp. We are interested in the worst-case value of a functional over Lp(µ, σ).
The special case of this problem when p = 2, i.e., the setting with mean and variance

information, has been the most popular; see e.g., Ghaoui et al. (2003), Li (2018) and Liu

et al. (2020) on various risk measures.

Let ρ : Lp → R be a mapping where Lp is the set of all random variables with finite

p-th moment. Note that the problem of supX∈Lp(µ,σ) ρ(X) is better suited for ρ = ESα or

some other risk measures than for the mean excess loss ρ : X 7→ E[(X−t)+], because many

risk measures, including VaRα and ESα, satisfy some simple properties which yield

sup
X∈Lp(µ,σ)

ρ(X) = µ+ σ sup
X∈Lp(0,1)

ρ(X).

Therefore, we can convert the original problem to an optimization over Lp(0, 1). Such a

relationship does not hold for the mean excess loss ρ : X 7→ E[(X − t)+].

The problem of the worst-case mean excess loss with moment conditions has a long

history; see e.g., De Vylder and Goovaerts (1982) in actuarial science and Jagannathan

(1977) in operations research. Pesenti et al. (2020, Corollary 1) obtained a closed-form

formula for the worst-case ESα over Lp(µ, σ), that is,

sup
X∈Lp(µ,σ)

ESα(X) = µ+ σα(αp(1− α) + (1− α)pα)−1/p. (2.12)

In particular, in case p = 2, it becomes supX∈L2(µ,σ) ESα(X) = µ+σ( α
1−α)

1/2. By exchanging

the order of two suprema, the problem of worst-case mean excess loss can be obtained by

combining (2.12) and Theorem 2.2.1. In what follows, we use the convention that 1/0 = ∞
and 1/∞ = 0.
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Proposition 2.4.2. For p > 1, µ, t ∈ R and σ ⩾ 0, we have

sup
X∈Lp(µ,σ)

E[(X − t)+] = max
α∈[0,1]

{
(1− α)(µ− t) + σ

(
(1− α)1−p + α1−p)−1/p

}
. (2.13)

Proof. The proposition follows directly from putting together (2.10) and (2.12).

In the most popular case p = 2, Proposition 2.4.2 gives

sup
X∈L2(µ,σ)

E[(X−t)+] = max
α∈[0,1]

{
(1− α)(µ− t) + σ

√
α(1− α)

}
=

1

2

(
µ− t+

√
σ2 + (µ− t)2

)
,

which coincides with Jagannathan (1977, Corollary 1.1). The maximum value in (2.13)

for p ̸= 2 can be computed numerically. We provide a numerical example below by simply

taking µ = 0 and σ = 1. Figure 2.1 shows value of worst-case mean excess loss with respect

to different thresholds t under different moment conditions. We observe that a higher p

leads to a lower value of the worst-case mean excess loss at any threshold level, and this is

because the constraint E[|X − µ|p] ⩽ σp is more stringent with larger p. With Proposition

2.4.2, we can easily identify the worst-case values given a fixed threshold without knowing

the exact distribution of loss.

2.4.2 Uncertainty sets induced by Wasserstein metrics

Next, we consider uncertainty sets induced by Wasserstein metrics (this setting of

uncertainty will be called the Wasserstein uncertainty). Recall that the Wasserstein metric

of order p ⩾ 1 between two distributions F and G on R is defined by

Wp(F,G) = inf
X∼F, Y∼G

(E[|X − Y |p])1/p =
(∫ 1

0

|F−1(x)−G−1(x)|pdx
)1/p

,

whereX ∼ F means that the distribution ofX is F . For a benchmark lossX ∈ X = L1 and

an uncertainty level δ ⩾ 0, the Wasserstein ball around X is {Y : Wp(FX , FY ) ⩽ δ} , where
FX and FY are the distributions of X and Y , respectively. Note that δ = 0 corresponds to
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Figure 2.1: Worst-case mean excess loss with moment conditions in Lp(0, 1)

the case of no model uncertainty. The worst-case value of a risk measure ρ : X → R under

the above uncertainty setting around X is

sup {ρ(Y ) : Wp(FX , FY ) ⩽ δ} .

The worst-case ESα under Wasserstein uncertainty is obtained by Liu et al. (2022, Propo-

sition 4) with the closed-form formula

sup {ESα(Y ) : Wp(FX , FY ) ⩽ δ} = ESα(X) +
δ

(1− α)1/p
. (2.14)

Based on (2.14) and Theorem 2.2.1, we can calculate the worst-case value of ρ(X) =

E[(X − t)+] for t ∈ R, similarly to Proposition 2.4.2.

Proposition 2.4.3. For t ∈ R, p ⩾ 1, δ ⩾ 0 and X ∈ X , we have

sup {E[(Y − t)+] : Wp(FX , FY ) ⩽ δ} = max
α∈[0,1]

{
(1− α)(ESα(X)− t) + δ(1− α)1−1/p

}
.

(2.15)

Proof. The proposition follows directly from putting together (2.10) and (2.14).
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Comparing (2.15) with (2.4) in Theorem 2.2.1, to compute the function E[(Y − t)+]

based on ES, there is an extra term of δ(1 − α)1−1/p in the maximization over α ∈ [0, 1]

to compensate for model uncertainty. As far as we are aware of, both formulas (2.13) and

(2.15) in this section are new.

Example 2.4.1. Let the benchmark lossX follow a Pareto distribution with tail parameter

θ > 1, that is, P(X > x) = x−θ for x ⩾ 1. For simplicity we take θ = 2 and consider

the Wasserstein metric W2. By straightforward calculation, ESα(X) = 2(1 − α)−1/2 for

α ∈ [0, 1). Using (2.15), we get,

sup {E[(Y − t)+] : W2(FX , FY ) ⩽ δ} = max
α∈[0,1]

{
(2 + δ) (1− α)1/2 − (1− α)t

}
=

(1 + δ/2)2

t
1{t>1+δ/2} + (2 + δ − t)1{t⩽1+δ/2}.

(2.16)

Example 2.4.1 also illustrates how the level of model uncertainty affects the evaluation

of the worst-case mean excess loss. Note that for the benchmark loss X,

E[(X − t)+] =

∫ ∞

t

P(X > x)dx =

∫ ∞

t∨1
x−2dx+ (1− t)+ =

1

t
1{t>1} + (2− t)1{t⩽1}.

(2.17)

If δ = 0, then there is no model uncertainty, and (2.16) and (2.17) coincide. If δ > 0,

then for t > 1+ δ/2, the worst-case value (2.16) of the mean excess loss increases from the

benchmark value (2.17) by a factor of (1+ δ/2)2 > 1; for t ⩽ 1, the worst-case value (2.16)

increases from the benchmark value (2.17) by a constant δ > 0. We observe from (2.14)

that for ESα with a fixed α ∈ [0, 1), the level of model uncertainty δ always affects the

worst-case risk evaluation linearly; this also holds for any coherent distortion risk measures

as shown by Liu et al. (2022). In contrast, for the mean excess loss, the effect of δ is no

longer linear in the interesting domain where t is large.

Example 2.4.2. Let the benchmark loss X follow a normal distribution with mean µ and

standard deviation σ. We can calculate ESα(X) = µ + σ ϕ(Φ
−1(α))
1−α for α ∈ [0, 1), where
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where ϕ and Φ−1 represent the density function and quantile function of the standard

normal distribution, respectively. Using (2.15), we get

sup {E[(Y − t)+] : Wp(FX , FY ) ⩽ δ} = max
α∈[0,1]

{
σϕ(Φ−1(α)) + (µ− t)(1− α) + δ(1− α)1−1/p

}
.

Although the above expression is not explicit, it can be easily computed numerically.

For a better understanding of Proposition 2.4.3, we provide another numerical example.

In Figure 2.2 (a), by choosing the parameter p = 2 and the uncertainty level δ = 0.1, we

show how the worst-case values of the mean excess loss vary with the threshold t under

different distributions, including Pareto, exponential, normal and t distributions. The

obtained curves are similar to those in Figure 2.1. In Figure 2.2 (b), by taking p = 2

and t = 2, we report the worst-case values of the mean excess loss increases with the

uncertainty level δ. As we can see, the effect of δ on the worst-case value of mean excess

loss is non-linear, as we discussed in Example 2.4.1 for a Pareto distribution.
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Figure 2.2: Worst-case mean excess loss with Wasserstein uncertainty
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2.5 Empirical analysis for insurance data

In this section, we use insurance data to calculate the worst-case mean excess loss under

uncertainty governed by the Wasserstein metric with p = 2. In addition, we check how the

uncertainty level δ and the threshold level t may influence the value of worst-case mean

excess loss compared to the one without uncertainty, and see their different performances

in different datasets.

We choose two univariate datasets from the R package CASdatasets: normalized hur-

ricane damages (ushurricane, 1900-2005) and normalized French commercial fire losses

(frecomfire, 1982-1996) pooled by each month. Both datasets have around 180 observa-

tions and the distributions are highly right-skewed. We shall use R to fit the data with

lognormal, Gamma and Weibull distributions as our benchmark distributions.

In the first part of the empirical analysis, we fix the threshold level t and let the

uncertainty level δ vary to visualize how the worst-case mean excess loss varies. Since the

two datasets are quite different, it is important to calibrate t and δ to make two datasets to

be comparable. In particular, δ should be chosen in a statistically relevant range; see e.g.,

Blanchet et al. (2021) for a discussion on this point. Generally, if the uncertainty level δ is

too large, then the data become less relevant; if δ is too small, we are not protected against

model uncertainty, thus losing the desired robustness. For a meaningful comparison, we

make the following heuristic choices. For each benchmark distribution, we let δ vary in

[δ0, 2δ0], where δ0 is the Wasserstein distance (metric) between the fitted distribution and

the empirical distribution. This choice ensures that the empirical distribution is inside the

Wasserstein ball around the fitted distribution; intuitively, a poorly fitted distribution is

associated with a larger δ0, thus requiring a higher uncertainty level to be considered as

robust. Moreover, δ0 is of the order n
−1/2 if the estimation is n−1/2-efficient, where n is the

sample size. Table 2.1 shows the values of δ0.

We are interested in the ratio r(t, δ) of the worst-case mean excess loss to that of the

benchmark distribution, defined by

r(δ, t) =
sup{E[(Y − t)+] : W2(FX , FY ) ⩽ δ}

E[(X − t)+]
,
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Lognormal Weibull Gamma

Hurricane loss 43.83 37.99 47.45

Fire loss 186.69 248.99 244.24

Table 2.1: Values of δ0 for the lognormal, Weibull and Gamma distributions and for the

hurricane loss and fire loss datasets. The level δ0 is the Wasserstein metric with p = 2

between the empirical and the fitted distributions
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Figure 2.3: Empirical results on the hurricane loss data

where X follows one of the benchmark distributions (3 choices for each dataset). We

first fix the threshold level t as the first quartile (25% quantile) t0 of its corresponding

benchmark distribution and let δ vary (Figures 2.3 and 2.4), and then we fix δ = δ0 and

let t vary (Figures 2.5 and 2.6).

Figure 2.3 (a) and (b) present goodness-of-fit plots for the fitted lognormal, Weibull and

Gamma distributions to the hurricane data. We observe that the lognormal and Weibull

distributions fit better to this dataset than the Gamma distribution. In Figure 2.3 (c),

the Gamma model is penalized more for model uncertainty. We note that the curves

δ 7→ r(δ, t0) are almost linear in δ. The numerical values of r(δ, t0) in Table 2.2 show that
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Figure 2.4: Empirical results on the fire loss data

r(δ, t0) is actually convex in δ, implying that the worst-case mean excess loss becomes more

sensitive to δ for large values of δ, consistent with the numerical analysis in Section 2.4.

Figure 2.4 based on the fire loss data exhibits similar patterns to the hurricane loss data.

The lognormal distribution fits better to the fire loss than other two distributions so that

the mean excess loss will be less affected by the Wasserstein uncertainty.

Comparing the curves r(δ, t0) for two datasets, we can notice that the values of r(δ, t0)

for the hurricane data are much higher than the ones for the fire data, which means

the hurricane loss is more severely affected by model uncertainty than fire loss. It may be

explained by the fact that the hurricane losses are more catastrophic and right-skewed than

fire losses so that more penalties should be added to hurricane case if model uncertainty

is a concern.

In an insurance pricing context, the mean excess loss can be used to price the stop-

loss premium where the threshold t can be seen as a deductible, and our method can be

used to analyze the sensitivity of the stop-loss premium to the Wasserstein uncertainty.

Taking the lognormal distribution as an example in Table 2.2, if we use δ = δ0 and t = t0

for pricing a hurricane insurance, the stop-loss premium will increase 70.8% compared to

the one without considering model uncertainty. For the same choice δ = δ0 and t = t0
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δ0 1.2δ0 1.4δ0 1.6δ0 1.8δ0 2δ0

Hurricane loss

Lognormal 1.708 1.839 1.985 2.132 2.279 2.425

Weibull 1.853 2.012 2.193 2.352 2.534 2.715

Gamma 1.964 2.149 2.334 2.539 2.724 2.950

Fire loss

Lognormal 1.358 1.431 1.505 1.582 1.657 1.735

Weibull 1.400 1.481 1.564 1.649 1.733 1.819

Gamma 1.456 1.548 1.644 1.740 1.837 1.937

Table 2.2: Values of r(δ, t0) for the hurricane loss and the fire loss datasets. The threshold

level t0 is the first quartile of the benchmark distribution and the parameter δ0 is the

Wasserstein metric between the empirical and the fitted distributions

(although both t0 and δ0 depend on the dataset), the stop-loss premium will only increase

35.8% when pricing the fire insurance. It intuitively means that the hurricane insurance

pricing is more sensitive to the Wasserstein uncertainty than the fire insurance pricing.

Next, we investigate how different threshold levels t may influence the mean excess loss

with and without the Wasserstein uncertainty. The uncertainty level δ is fixed as δ0 in this

experiment and we look at r(δ0, t) as t varies. Figures 2.5 and 2.6 report the ratio r(δ0, t)

in these settings, as well as the ratio

r̂(δ0, t) =
sup{E[(Y − t)+] : W2(FX , FY ) ⩽ δ0}

E[(X̂ − t)+]
,

where X̂ follows the empirical distribution of the data. Note that r̂(δ0, t) ⩾ 1 since δ0

is chosen such that the empirical distribution is inside the Wasserstein ball. For both

datasets, we let the threshold level t vary between the first quartile and the third quartile

of the loss data. We observe from Figure 2.5 that the ratio r(δ0, t) for the hurricane loss

data is relatively stable with respect to the threshold level t, whereas Figure 2.6 shows that

the ratio r(δ0, t) for the fire loss data increases with the threshold level t in all selected

benchmark distributions. Hence, compared to hurricane loss, the mean excess loss of

fire loss data is more sensitive to model uncertainty with larger threshold levels. This

28



observation is less pronounced for the better fitted lognormal distribution in Figure 2.6

(a). The other ratio r̂(δ0, t) is quite stable for the fire loss data and it shows a decreasing

trend in t for the hurricane loss data.
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Figure 2.5: Values of the ratios r(δ0, t) and r̂(δ0, t) for the hurricane loss data, where Q1,

Q2 and Q3 represent the 1st, 2nd and 3rd quartiles of the data

2.6 Optimized certainty equivalents

We proceed to offer some more theoretical results and discussions on the reverse ES

optimization formula. It would be interesting to see whether Theorem 2.2.1 can be gen-

eralized to other risk measures than the class ESα. Note that ESα belongs to the class

of optimized certainty equivalents (OCE) of Ben-Tal and Teboulle (2007). The class of

OCE includes ES and the entropic risk measures (Föllmer and Schied (2016)) as special

cases. In this section, we work with the set XB of essentially bounded random variables to

avoid integrability issues. Let V be the set of increasing and convex functions v : R → R
satisfying v(0) = 0, v̄ ⩾ 1 and limt→∞ v′+(−t) = 0 where v̄ = supx∈R v

′
+(x) and v

′
+ is the
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Figure 2.6: Values of the ratios r(δ0, t) and r̂(δ0, t) for the fire loss data, where Q1, Q2 and

Q3 represent the 1st, 2nd and 3rd quartiles of the data

right derivative of v. An OCE is a risk measure R defined by

R(X) = inf
t∈R

{t+ E[v(X − t)]} , X ∈ XB.

The finiteness of R is guaranteed if v′−(x) ⩽ 1 ⩽ v′+(y) for some x, y ∈ R which is satisfied

by v ∈ V if v̄ > 1. If R is finite, then it is a convex risk measure in the sense of Föllmer

and Schied (2016). In particular, if v(x) = x+/(1 − α) for α ∈ [0, 1), then R is ESα as in

Theorem 2.1.1. Moreover, under a continuity condition, ESα is the only class of coherent

risk measures in the class of OCE (Theorem 3.1 of Embrechts et al. (2021)).

Inspired by Theorem 2.2.1, we define a parametric family of OCE risk measures. For

v ∈ V and β ∈ (0, v̄], let

Rv
β(X) = inf

t∈R

{
t+

1

β
E[v(X − t)]

}
, X ∈ XB.

Here, the convention is 1/∞ = 0. If v(x) = x+, then v̄ = 1 and Rv
β = ES1−β for β ∈ (0, 1].

The next result gives a reverse optimization formula for OCE, which includes the formula
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(2.4) as a special case. This result is related to the Fenchel-Legendre transformation as we

discuss in Section 2.7.

Theorem 2.6.1 (Reverse OCE optimization formula). For X ∈ XB, t ∈ R and v ∈ V , it

holds

E[v(X − t)] = sup
β∈(0,v̄]

{
β(Rv

β(X)− t)
}
. (2.18)

Proof. Let f : R → R be defined by f(t) = E[v(X + t)], which is an increasing convex

function on R. As a convex function on R, f is automatically continuous. Its Fenchel-

Legendre transform f ∗, called the conjugate function of f , is given by

f ∗(β) = sup
t∈R

{tβ − f(t)} , β ∈ R, (2.19)

which is not necessarily finite.

If β < 0, then letting t → −∞ gives supt∈R{tβ − f(t)} = ∞ since f is increasing.

On the other hand, if β > v̄, then, since v′+(x) ⩽ v̄ for x ∈ R, letting t → ∞ gives

supt∈R{tβ − f(t)} = ∞.

Let s ∈ R be such that f ′
+(s) > v̄/2; such s exists since limt→∞ f ′

+(t) = v̄. For

β ∈ (0, v̄/2], we have

f ∗(β) = sup
t∈(−∞,s]

{tβ − f(t)} ⩽ sβ + sup
t∈R

{−f(t)} = sβ + f ∗(0).

Hence,

lim sup
β↓0

f ∗(β) ⩽ f ∗(0). (2.20)

Summarizing the above observations, for a fixed t ∈ R,

sup
β∈R

{−tβ − f ∗(β)} = sup
β∈[0,v̄]

{−tβ − f ∗(β)} = sup
β∈(0,v̄]

{−tβ − f ∗(β)} , (2.21)

where the last equality is due to (2.20). For β ∈ (0, v̄],

−f ∗(β)

β
= inf

t∈R

{
−t+ 1

β
f(t)

}
= inf

t∈R

{
t+

1

β
f(−t)

}
= Rv

β(X).
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Thus, f ∗(β) = −βRv
β(X). The Fenchel-Legendre theorem in the form of Proposition A.9

of Föllmer and Schied (2016) gives f ∗∗ = f . Therefore, using (2.21),

f(−t) = sup
β∈(0,v̄]

{−tβ − f ∗(β)} = sup
β∈(0,v̄]

{
−tβ + βRv

β(X)
}
= sup

β∈(0,v̄]

{
β(Rv

β(X)− t)
}
,

and hence (2.18) holds.

As we can see from Theorem 2.6.1, the symmetry between the ES optimization formula

(2.3) and the reverse formula (2.4) can be seen as a consequence of the Fenchel-Legendre

transform mechanism.

2.7 Related Fenchel-Legendre transforms

As mentioned above, the reverse ES optimization formula and reverse OCE optimization

formula is closely related to the Fenchel-Legendre transformation (e.g., Definition A.8 of

Föllmer and Schied (2016)). In this section, we give two pairs of conjugate functions related

to Theorem 2.2.1.

The Fenchel-Legendre transformation converts convex functions to their conjugate. For

a convex function f : R → R, its Fenchel-Legendre transform is the function f ∗ on R defined

by

f ∗(β) = sup
t∈R

{tβ − f(t)} , β ∈ R,

where β may be constrained to a subset of R such that f ∗ is real.

As we have seen in Theorem 2.6.1, Fenchel-Legendre transforms are closely related to

our reverse ES optimization formula, as Theorems 2.1.1 and 2.2.1 can be expressed from

each other via a Fenchel-Legendre transform. Below, we identify two other pairs of conju-

gate functions, one being quantile-based and one being expectation-based, analogously to

the case of ES and the mean excess function.

Proposition 2.7.1. Fix X ∈ X .
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(i) The Fenchel-Legendre transform of the convex quantile-based function f1 : [0, 1] → R,

f1(α) = −(1− α)ESα(X),

is given by

f ∗
1 (t) = max

α∈[0,1]
{αt− f1(α)} = E[X ∨ t].

(ii) The Fenchel-Legendre transform of the convex quantile-based function f2 : [0, 1] → R,

f2(α) = αES−
α (X),

is given by

f ∗
2 (t) = max

α∈[0,1]
{αt− f2(α)} = E[(t−X)+].

Moreover, the set of maximizers for both maximization problems is [P(X < t),P(X ⩽ t)].

Proof. For the first statement, it is straightforward to identify that the quantile-based

function f1 : α 7→ −(1− α)ESα(X) is convex by taking a derivative with respect to α. By

definition of the Legendre-Fenchel transformation, we have

f ∗
1 (t) = sup

α∈[0,1]
{αt+ (1− α)ESα(X)}

= sup
α∈[0,1]

{(α− 1)t+ (1− α)ESα(X)}+ t

= sup
α∈[0,1]

{(1− α)(ESα(X)− t)}+ t.

By the reverse ES optimization formula in Theorem 2.2.1, we know that α ∈ [P(X < t),P(X ⩽ t)]

is a maximizer of function α 7→ (1 − α(ESα(X) − t)), and hence the supremum above is

attainable. Thus, we can conclude that

f ∗
1 (t) = E[(X − t)+] + t = E[X ∨ t].
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The proof of the second Fenchel-Legendre transform follows the same routine. We apply

the Fenchel-Legendre transform to the convex function f2(α) = αES−
α (X). Then we have

f ∗
2 (t) = sup

α∈[0,1]

{
αt− αES−

α (X)
}

= sup
α∈[0,1]

{
αt− E(X) +

∫ 1

0

VaR−
β (X)dβ −

∫ α

0

VaR−
β (X)dβ

}
= sup

α∈[0,1]
{(1− α)(ESα(X)− t)}+ t− E[X].

By Theorem 2.2.1, we conclude that

f ∗
2 (t) = E[(X − t)+] + t− E[X] = E[(t−X)+].

We can check that both f ∗
1 : t 7→ E[X∨t] and f ∗

2 : t 7→ E[(t−X)+] are convex functions.

By applying Legendre-Fenchel transform mechanism to the convex functions f ∗
1 : t 7→ E[X ∨ t]

and f ∗
2 : t 7→ E[(t −X)+], one obtains the corresponding quantile-based functions f1 and

f2 in Proposition 2.7.1 as their conjugate functions.

2.8 Concluding remarks

The reverse ES optimization formula obtained in Theorem 2.2.1 serves as a dual for-

mula to the celebrated ES optimization formula of Rockafellar and Uryasev (2000, 2002),

and they are connected via the Fenchel-Legendre transforms. This new formula reveals

profound symmetries between these two formulas regarding to their functional properties,

parametric forms, optimization problems and the solutions to the optimization problems,

and it can be generalized for the class of OCE of Ben-Tal and Teboulle (2007). The reverse

ES optimization formula is particularly useful when directly calculating the mean excess

loss is cumbersome, and this is illustrated by two settings of model uncertainty. The new

formulas are applied to settings of model uncertainty and two insurance datasets.

The new formula may appear simple to risk experts, although we could not find it in

the literature. The reason why such a natural formula has not been studied could partially
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be explained by the fact that the need for utilizing existing ES results to compute the mean

excess loss mainly arises in the recent years, when model uncertainty is actively studied in

quantitative risk management, as we discuss in Sections 2.4 and 2.5.

The main purpose of this chapter is to introduce the new formula and discuss its direct

implications. Given the importance of both the mean excess function and ES in actuarial

science and risk management, we are optimistic about other potential applications of the

formula, which will need future exploration.
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Chapter 3

Worst-case values of target

semi-variances with applications to

robust portfolio selection

3.1 Introduction

Assume thatX is a random variable denoting the loss of an investment portfolio. Hence,

the larger the value of X is, the worse the portfolio is. The manager of an investment port-

folio often has a target return −t or equivalently a threshold loss t. Thus, the loss function

(X− t)+ represents the downside risk/loss of the portfolio, while (−X− (−t))+ = (X− t)−
denotes the excess profit of the portfolio over the target return. Here and throughout this

chapter, (x)+ = max{x, 0} and (x)− = max{−x, 0} for any x ∈ R = (−∞,∞). Two

important quantities of the downside risk (X − t)+ are the first moment E[(X − t)+] that

measures the expected loss above the threshold loss t and the second moment E[(X − t)2+]

that quantifies the dispersion of the loss that exceeds the threshold loss t. In the literature,

the two moments are often called the first-order and second-order upper partial moments,

respectively. In addition, the first moment E[(X−t)+] is also referred to as the expected re-

gret or target shortfall (see, e.g, Testuri and Uryasev (2004), Krokhmal et al. (2011)) while
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the second moment E[(X − t)2+] is also referred to as the target semi-variance (see, e.g.,

Rohatgi (2011)). If the target return is equal to the expected return, namely, t = E[X], the

target semi-variance E[(X −E[X])2+] is called the semi-variance of the loss X. Both of the

expected regret and the target semi-variance are important risk measures of the downside

risk and have been extensively used in finance, insurance, operations research, and many

other fields. It is well known that the expected regret is connected to the second-order

stochastic dominance which coincides with all risk-aversion functions within expected util-

ity framework. While the target semi-variance is consistent with third-order stochastic

dominance, which aligns with all risk-averse and skewness-loving functions within the von

Neumann-Morgenstern expected utility theory, and thus reflects the investor’s actual risk

perception.1 For more detailed discussion of the relationship between the target semi-

variance and stochastic dominance under the expected utility framework, see Bawa (1975),

Porter (1974), Ogryczak and Ruszczyński (2001), and the references therein.

If the ‘true’ distribution of the loss X is known, the expected regret E[(X−t)+] and the

target semi-variance E[(X − t)2+] can be calculated analytically or numerically. However,

in practice, the ‘true’ distribution of X is often unknown. A decision maker may have only

partial information on X such as the mean and variance of X. If only partial information

on X is available and the possible distributions of X belong to a distribution set L, called
an uncertainty set for X, a decision maker is often interested in supF∈L EF [(X − t)+]

and supF∈L EF [(X − t)2+], which are respectively called the worst-case expected regret and

the worst-case target semi-variance over the uncertainty set L. Here and throughout this

chapter, for a function h defined on R and a risk measure ρ, such as expectation E, variance
Var, and conditional value-at-risk CVaR, ρF [h(X)] means that the risk measure of ρ(h(X))

is calculated under the distribution F if the distribution of X is F . In the literature, for a

random variable X and a loss/cost function h, when the ‘true’ distribution of X is unknown

or uncertain but is assumed to be in an uncertainty set L, the optimization problem of

sup
F∈L

ρF [h(X)] (3.1)

is called a distributionally robust optimization (DRO) problem and if there exists a dis-

1Risk-averse and skewness-loving refer to decreasing absolute risk averse among investors, which means

they will choose to increase investments in risky assets as their wealth increases.
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tribution F ∗ ∈ L such that supF∈L ρ
F [h(X)] = ρF

∗
[h(X)], such a distribution is called a

worst-case distribution. The DRO problem (3.1) and its applications have been extensively

studied in the literature of finance, insurance, operations research, and many other fields.

For instance, Jagannathan (1977) investigates problem (3.1) when ρ = E, h(x) = (x− t)+,

L is a set containing distributions with the given first two moments, and X is an arbitrary

or symmetric or non-negative random variable. Zuluaga et al. (2009) considers problem

(3.1) when ρ = E, h(x) = (x− t)+, L is a set containing distributions with the given first

three moments. Chen et al. (2011) studies problem (3.1) when ρ = E, h(x) = (x − t)2−,

and L is a set containing distributions with the given first two moments. Tang and Yang

(2023) discusses problem (3.1) when h(x) = xm or (x − t)m+ , m = 1, 2, ..., and L is a set

containing distributions satisfying a distance constraint to a reference distribution. Cai et

al. (2024) studies problem (3.1) when ρ is a distortion risk measure, h(x) = (x− t)+, and L
is a set containing distributions satisfying a distance constraint to a reference distribution

and constraints on first two moments. For the studies and applications of the DRO prob-

lem (3.1) with other forms of the function h and the risk measure ρ, we refer to Ben-Tal

and Nemirovski (1998), Bertsimas and Popescu (2002), Ghaoui et al. (2003), Hürlimann

(2005), Natarajan et al. (2008), Zhu and Fukushima (2009), Zhu et al. (2009), Asimit et

al. (2017), Pflug et al. (2017), Li (2018), Kang et al. (2019), Liu and Mao (2022), Bernard

et al. (2023), Cai et al. (2023), and the references therein.

In many DRO problems, it is assumed that the mean and variance or second moment

of a random variable X are the only known information on the distribution of X. This

assumption is consistent with the fact that the mean and variance of a random variable X

are two quantities that can be estimated easily from the observed data of X. In fact, the

following uncertainty set

L(µ, σ) =
{
F ∈ F(R) :

∫ ∞

−∞
x dF (x) = µ,

∫ ∞

−∞
x2 dF (x) = µ2 + σ2

}
=
{
F ∈ F(R) : EF [X] = µ, EF [X2] = µ2 + σ2

}
, (3.2)

is one of the popular uncertainty sets used in the study of DRO problems, where F(R)
is the set of all the distributions defined on R. In practice, a decision maker may have

additional information on the distribution of X besides its mean and variance. In finance,
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Figure 3.1: Histograms of daily losses of the stocks of Apple (AAPL), Bank of America

(BAC), Johnson & Johnson (JNJ) and Tesla (TSLA). The data used for this figure covers a

four-year period from January 2, 2019, to January 2, 2023, and includes 1007 observations

of daily losses from Yahoo! Finance.

a decision maker may notice that the loss data have the symmetric features. For instance,

Figure 3.1 displays the histograms of daily losses of the stocks of Apple, Netflix, Alphabet

(Google) and eBay. The daily losses of these stocks exhibit a high degree of symmetry.

If fact, in many portfolio selection researches, the daily/monthly/quarterly losses of
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the underlying assets are assumed to have multivariate symmetric distributions such as

multivariate normal distributions, multivariate t-distributions, multivariate elliptical dis-

tributions, and so on, we refer Owen and Rabinovitch (1983), Buckley et al. (2008), Hu

and Kercheval (2010), Fang (2018), and references therein.

In addition, in insurance, loss random variables often are the amounts and numbers

of insurance claims that are non-negative random variables. Hence, the following two

uncertainty sets

LS(µ, σ) =
{
F ∈ L(µ, σ) : F is symmetric

}
, (3.3)

L+(µ, σ) =
{
F ∈ L(µ, σ) : F (0−) = 0

}
, (3.4)

are also interesting in the study of DRO problems. In this chapter, the formal definitions

of symmetric distributions are given in Definitions 3.2.1 and 3.4.1, and a non-negative

distribution means that F (0−) = P{X < 0} = 0 or F is a distribution of a non-negative

random variable X.

The explicit and closed-form expressions for supF∈L E[(X − t)+] have been derived

in Jagannathan (1977) when L is one of the three uncertainty sets L(µ, σ), LS(µ, σ), and
L+(µ, σ). The explicit and closed-form expression for supF∈L E[(X−t)2−] has been obtained

in Chen et al. (2011) when L = L(µ, σ). To the best of our knowledge, the worst-case values
of E[(X − t)2+] over the uncertainty sets LS(µ, σ) and L+(µ, σ) have not been solved. As

discussed in this chapter later, the methods and proofs used in Jagannathan (1977) and

Chen et al. (2011) do not apply for the worst-case values of E[(X−t)2+] over the uncertainty
sets LS(µ, σ) and L+(µ, σ).

In this chapter, first, we complement the study of Chen et al. (2011) on worst-case

values of the target semi-variance and obtain the explicit and closed-form expressions

for the worst-case values of the target semi-variance over the uncertainty sets LS(µ, σ)
and L+(µ, σ). Second, motivated by the classical mean-variance (M-V) portfolio selection

model, in this chapter, we discuss the applications of the worst-case target semi-variance

in portfolio selection problems.

The uncertainty sets LS(µ, σ) and L+(µ, σ) have more constraints than L(µ, σ). Finding
the worst-case values of E[(X − t)2+] over the uncertainty sets LS(µ, σ) and L+(µ, σ) is a
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challenging question, in particular, over the uncertainty sets LS(µ, σ). Our methods are

different from those used in Jagannathan (1977) and Chen et al. (2011). The main method

used in this chapter for finding these worst-case values is to reformulate these infinite-

dimensional optimization problems to finite-dimensional optimization problems and then

solve the finite-dimensional optimization problems to obtain the explicit and closed-form

expressions for the worst-case values.

The rest of this chapter is structured as follows. In Section 3.2, we give the preliminaries

of the worst-case values of the expected regret and target semi-variance and describe our

motivation for studying the worst-case target semi-variance. In Section 3.3, we derive

the explicit and close-form expressions for the worst-case target semi-variance over the

uncertainty set LS(µ, σ). In Section 3.4, we propose robust portfolio selection models that

minimize the target semi-variance under the different uncertainty sets discussed above. In

Section 3.5, we use the real finance data to compare the investment performances of our

portfolio selection methods with several existing portfolio selection models related to the

models proposed in this chapter. Finally, in Section 3.6, we give concluding remarks.

3.2 Preliminary and motivation

Definition 3.2.1. The distribution F of a random variable X is said to be symmetric if

there exists a constant a such that P(X−a > x) = P(X−a < −x), under the distribution
F , for all x ∈ R. If such a constant a exists, random variable X or its distribution is said

to be symmetric about a.

Intuitively, random variable X is symmetric about a if and only if X − a is symmetric

about the origin of R. Examples of the continuous symmetric distributions include the

Cauchy distribution, normal distributions, t-distributions, uniform distributions, logistic

distributions, and many others. Examples of the discrete symmetric distributions include

discrete uniform distributions, k-point symmetric distributions (where k ⩾ 2 is an integer),

and many others. In addition, a degenerate distribution is also symmetric according to

Definition 3.2.1.
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To give a detailed review of the known results about the worst-case values supF∈L EF [(X−
t)+] and supF∈L EF [(X− t)2+] and illustrate our motivation for studying the worst-case tar-

get semi-variance, we state the results of Jagannathan (1977) and Chen et al. (2011) about

these worst-case values and give remarks on these results and their proofs below.

Proposition 3.2.1. (Jagannathan (1977)) For any µ, t ∈ R and σ ∈ R+ = (0,∞), if the

uncertainty set of random variable X is L(µ, σ), then

sup
F∈L(µ,σ)

EF [(X − t)+] =
1

2

(
µ− t+

√
σ2 + (µ− t)2

)
. (3.5)

If the uncertainty set of X is LS(µ, σ), then

sup
F∈LS(µ,σ)

EF [(X − t)+] =


8(µ−t)2+σ2

8(µ−t) , t < µ− σ
2
,

1
2
(µ+ σ − t), µ− σ

2
⩽ t < µ+ σ

2
,

σ2

8(t−µ) , t ⩾ µ+ σ
2
.

(3.6)

If the uncertainty set of X is L+(µ, σ) and µ > 0, then

sup
F∈L+(µ,σ)

EF [(X − t)+] =


µ− t, t < 0,

µ− µ2t
σ2+µ2

, 0 ⩽ t < σ2+µ2

2µ
,

1
2

(
µ− t+

√
σ2 + (µ− t)2

)
, t ⩾ σ2+µ2

2µ
.

(3.7)

Remark 3.2.1. The main idea of Jagannathan (1977)’s proof for Proposition 3.2.1 is first

to apply Cauchy-Schwarz’s inequality for E[(X − t)+] with

(E[(X − t)+])
2 =

(∫ ∞

t

(x− t) dF (x)

)2

⩽
∫ ∞

t

dF (x)

∫ ∞

t

(x− t)2 dF (x)

and obtain the sharp upper bound for supF∈L
∫∞
t

dF (x)
∫∞
t
(x− t)2 dF (x), and then verify

that the upper bound is also the sharp bound for supF∈L EF [(X − t)+]. We point out that

the arguments and proofs used in Jagannathan (1977) for Proposition 3.2.1 do not work

for the worst-case values of supF∈L EF [(X − t)2+] when L is any of the uncertainty sets

L(µ, σ), LS(µ, σ), and L+(µ, σ). If fact, if one applies Cauchy-Schwarz’s inequality to

(E[(X − t)2+])
2, one obtains

(E[(X − t)2+])
2 =

(∫ ∞

t

(x− t)2 dF (x)

)2

⩽
∫ ∞

t

dF (x)

∫ ∞

t

(x− t)4 dF (x).
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However, the upper bound
∫∞
t

dF (x)
∫∞
t
(x− t)4 dF (x) does not provide any useful infor-

mation for (E[(X − t)2+])
2 since

∫∞
t
(x− t)4 dF (x) may be equal to ∞ when F is in any of

the sets L(µ, σ), LS(µ, σ), and L+(µ, σ).

Remark 3.2.2. Indeed, Jagannathan (1977) reformulate the supremums of EF [(X−t)+] over
L(µ, σ), LS(µ, σ), and L+(µ, σ) to the supremums of EF [(X − t)+] over the corresponding

uncertainty sets with finite point distributions (usually two-point or three-point distribu-

tions). However, Jagannathan (1977) does not explain why the supremums of EF [(X−t)+]
over those infinite-dimensional uncertainty sets can be reduced to the finite-dimensional

uncertainty sets. We provide detailed proofs of such technique in the Appendix 3.7.

Note that for any x ∈ R, (x)+ − (x)− = x, (x)2+ + (x)2− = x2, and (x)+ = (−x)−.
Hence, for any t ∈ R, if L∗(µ, σ) ⊂ F(R) is a set of distributions satisfying that for any

F ∈ L∗(µ, σ), EF [X] = µ and EF [X2] = µ2 + σ2, then

sup
F∈L∗(µ,σ)

EF [(X − t)+] = sup
F∈L∗(µ,σ)

EF [(X − t)−] + µ− t, (3.8)

inf
F∈L∗(µ,σ)

EF [(X − t)+] = inf
F∈L∗(µ,σ)

EF [(X − t)−] + µ− t, (3.9)

sup
F∈L∗(µ,σ)

EF [(X − t)2+] = σ2 + (t− µ)2 − inf
F∈L∗(µ,σ)

EF [(X − t)2−], (3.10)

inf
F∈L∗(µ,σ)

EF [(X − t)2+] = σ2 + (t− µ)2 − sup
F∈L∗(µ,σ)

EF [(X − t)2−]. (3.11)

In addition, for random variable X, the conditions of E[X] = µ and E[X2] = µ2 + σ2 are

equivalent to the conditions of E[−X] = −µ and E[(−X)2] = µ2 + σ2, and the condition

that X is symmetric about µ is equivalent to the condition that −X is symmetric about

−µ. Hence, if L0(µ, σ) is one of the sets L(µ, σ) and LS(µ, σ), then for k = 1, 2,

sup
F∈L0(µ,σ)

EF [(X − t)k+] = sup
F∈L0(−µ,σ)

EF [(X − (−t))k−)], (3.12)

inf
F∈L0(µ,σ)

EF [(X − t)k+)] = inf
F∈L0(−µ,σ)

EF [(X − (−t))k−)]. (3.13)

We also point out that the downside risk of an investment portfolio is (t−X)+ = (X− t)−

if X represents the return or gain of the portfolio and t is the target return.
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Proposition 3.2.2. (Chen et al. (2011)) For any µ, t ∈ R and σ ∈ R+, if the uncertainty

set of random variable X is L(µ, σ), then

sup
F∈L(µ,σ)

EF [(X − t)2−] = σ2 + (t− µ)2+, (3.14)

sup
F∈L(µ,σ)

EF [(X − t)2+] = σ2 + (µ− t)2+. (3.15)

Remark 3.2.3. Formula (3.14) was proved by Chen et al. (2011) by the following idea:

For F ∈ L(µ, σ), (i) yield a lower bound for E[(X − t)2+] by using Jensen’s inequality

and then obtaining an upper bound for E[(X − t)2−] by using the equation E[(X − t)2−] =

E[(X − t)2]− E[(X − t)2+] = σ2 + (µ− t)2 − E[(X − t)2+], and (ii) verify the upper bound

for E[(X − t)2−] is sharp for supF∈L(µ,σ) EF [(X − t)2−]. Formula (3.15) follows directly by

applying (3.12) to (3.14). Following the proof of Chen et al. (2011) for (3.14), we can

show that supF∈L(µ,σ) EF [(X − t)2+] = supF∈L+(µ,σ) EF [(X − t)2−], which we present in the

following corollary.

Corollary 3.2.1. For t ∈ R, µ > 0, and σ > 0, we have

sup
F∈L+(µ,σ)

EF [(X − t)2+] = sup
F∈L(µ,σ)

EF [(X − t)2+] = σ2 + (µ− t)2+. (3.16)

However, the proofs used in Chen et al. (2011) for the worst-case value supF∈L(µ,σ) EF [(X−
t)2−] do not work for the worst-case values supF∈LS(µ,σ)

EF [(X− t)2+] since Jensen’s inequal-
ity cannot yield tight upper bound for supF∈LS(µ,σ)

EF [(X − t)2+]. In Theorem 3.3.1 of this

chapter, we derive the closed-form expression for supF∈LS(µ,σ)
EF [(X − t)2+] by a method

different from those used in Jagannathan (1977) and Chen et al. (2011).

3.3 Worst-case target semi-variances with symmetric

distributions

In this section, we solve the worst-case target semi-variance over the uncertainty set

(3.3) with symmetric distributions, which is the following optimization problem:

sup
F∈LS(µ,σ)

EF [(X − t)2+]. (3.17)
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Problem (3.17) is an infinite-dimensional optimization problem. In this section, we first

show problem (3.17) can be reformulated as a finite-dimensional optimization problem and

then derive the explicit and closed-form expression for the worst-case target semi-variance.

To do so, we introduce the definition and notation for a k-point (discrete) distribution.

Definition 3.3.1. Let [x1, p1; . . . ;xk, pk] denote the probability function of a k-point ran-

dom variable X, where P(X = xi) = pi, 0 ⩽ pi < 1, i = 1, . . . , k,
∑k

i=1 pk = 1, k ⩾ 2, and

there exists at least a pair (i, j) such that 0 < pi < 1, 0 < pj < 1, and 1 ⩽ i < j ⩽ k, which

means that a k-point distribution may be a l-point distribution in this chapter, where

2 ⩽ l < k and k ⩾ 3.

Furthermore, for k = 2, 3, ..., we define the subsets of L(µ, σ), LS(µ, σ), L+(µ, σ) with

k-point distributions as

Lk(µ, σ) = {F ∈ L(µ, σ) : F is a k-point distribution},

Lk,S(µ, σ) =
{
F ∈ LS(µ, σ) : F is a k-point symmetric distribution},

L+
k (µ, σ) =

{
F ∈ L+(µ, σ) : F is a k-point non-negative distribution}.

According to Definition 3.3.1, when k ⩾ 3, a k-point distribution may also be a l-point

(discrete) distribution, where 2 ⩽ l ⩽ k. Hence, L∗
k(µ, σ) ⊂ L∗

k+1(µ, σ) for k ⩾ 2, where

L∗
k(µ, σ) is one of the sets Lk(µ, σ), Lk,S(µ, σ), L+

k (µ, σ). To solve problem (3.17), we need

the following lemma:

Lemma 3.3.1. For any F ∈ L(µ, σ) with σ > 0, there exists a two-point distribution

F ∗ ∈ L2(µ, σ) such that the support of F ∗ belongs to [ess-inf F, ess-supF ].

Proof. Denote F = ess-inf F and F = ess-supF . We consider the following two cases:

Case (i): Assume that F , F ∈ R. For any F ∈ L(µ, σ), there exists p = 1− q ∈ (0, 1)

such that pF+q F = µ as µ ∈ (F , F ). Let G = [F , p;F , q] that is a two-point distribution.

Clearly, EG[X] = pF + q F = µ. In addition, note that the number of the sign changes

of F − G is one. By Theorem 3.A.44 of Shaked and Shanthikumar (2007), we have that
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F ⩽cx G and thus, VarG(X) ⩾ σ2. For any ε ⩾ 0, define the two-point distribution Gε as

Gε = [F + εq, p; F − εp, q]. We have EGε [X] = p (F + εq) + q (F − εp) = µ and

VarGε(X) = p (F + εq)2 + q (F − εp)2 − µ2 = pqε2 − 2pq(F − F )ε+ pF 2 + qF
2 − µ2.

Thus, VarGε(X) is a quadratic function of ε with VarG0(X) = pF 2+qF
2−µ2 = VarG(X) ⩾

σ2 and VarGε0 (X) = 0, where ε0 = −−2pq(F−F )
2pq

= F −F . Since VarGε(X) is continuous and

decreasing in ε ∈ [0, ε0], there must exist εσ ∈ [0, ε0) such that VarGεσ (X) = σ2. Therefore,

Gεσ ∈ L2(µ, σ) and the support of Gεδ belongs to [F , F ] as F ⩽ F + εσ q ⩽ F + ε0q =

F + (F − F )q < F and F ⩾ F − εσ p ⩾ F − ε0 p = F − (F − F ) p > F .

Case (ii): Assume that F = −∞ or F = ∞. In this case, it suffices to show that we

can find a distribution F0 ∈ L(µ, σ) with bounded support satisfying [F 0, F 0] ⊆ [F , F ].

To see it, we only give the proof of the case that F ∈ R and F = ∞ as the other cases can

be proved easily by using the similar arguments for the case that F ∈ R and F = ∞. For

the case F ∈ R and F = ∞, note that µ > F . For α ∈ (0, 1), define two-point random

variable Xα with the following probability function:

P

(
Xα = µ− σ

√
1− α

α

)
= α = 1− P

(
Xα = µ+ σ

√
α

1− α

)
.

We have E[Xα] = µ and Var(Xα) = σ2 for any α ∈ (0, 1). There exists α0 ∈ (0, 1) such

that µ− σ
√

1−α0

α0
> F as µ > F . Thus, the distribution of Xα0 is the desired distribution

F0. Therefore, we complete the proof of Lemma 3.3.1.

Remark 3.3.1. For any F ∈ LS(µ, σ), if F = ess-inf F ∈ R and F = ess-supF ∈ R, it
holds that F − µ = µ− F . In this case, in the proof of Lemma 3.3.1 for case (i), it holds

that p = q = 1/2 and the two-point distribution Gε = [F + εq, p; F − εp, q] is symmetric

about µ. Hence, there exists a two-point symmetric distribution F ∗ ∈ L2,S(µ, σ) such that

the support of F ∗ belongs to [ess-inf F, ess-supF ]. Moreover, If µ = 0, then F = −F and

F ∗ = 0.5 δx+0.5 δ−x for some x ∈ (0, ess-supF ], where δx means a degenerate distribution

at x.

Remark 3.3.2. Let L∗(µ, σ) be one of the sets L(µ, σ), LS(µ, σ), and L⩽λ(µ, σ). Note

that for any F with X ∼ F , E[X] = µ, Var(X) = σ2, it holds that E[X − µ] = 0,
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Var(X − µ) = σ2, F is a symmetric distribution if and only if X − µ is symmetric about

0, and X − t = X − µ− (t− µ). Hence, if

sup
F∈L∗(0,σ)

EF [h(X − t)] = U(t, σ), inf
F∈L∗(0,σ)

EF [h(X − t)] = L(t, σ),

then

sup
F∈L∗(µ,σ)

EF [h(X − t)] = U(t− µ, σ), inf
F∈L∗(µ,σ)

EF [h(X − t)] = L(t− µ, σ), (3.18)

where h is a function defined on R and t ∈ R. Therefore, without loss of generality, we

can assume µ = 0 in the sets L(µ, σ), LS(µ, σ), and L⩽λ(µ, σ) when solving optimization

problems supF∈L∗(µ,σ) EF [h(X − t)] and infF∈L∗(µ,σ) EF [h(X − t)].

Theorem 3.3.1. For µ, t ∈ R and σ ∈ R+, we have

sup
F∈LS(µ,σ)

EF [(X − t)2+] =


σ2 + (t− µ)2, t ⩽ µ− σ,

1
2
(µ− t+ σ)2, µ− σ < t ⩽ µ,

σ2

2
, t > µ.

(3.19)

Proof. According to Remark 3.3.2, we assume µ = 0 in the following proof. We consider

the three cases that (i) t ⩾ 0; (ii) t ⩽ −σ; and (iii) −σ < t < 0 below.

Case (i): Assume t ⩾ 0. In this case, it must hold that 0 ⩽ P(X > t) = EF [1{X>t}] <
1 for any F ∈ LS(0, σ). If P(X > t) = EF [1{X>t}] = 0 for an F ∈ LS(0, σ), then

EF [(X − t)2+] = 0 for this F . Hence, to determine supF∈LS(0,σ)
EF [(X − t)2+], we only need

to consider those distributions F in LS(0, σ) satisfying 0 < P(X > t) = EF [1{X>t}] < 1.

For such a distribution F in LS(0, σ) satisfying 0 < P(X > t) = EF [1{X>t}] < 1, let

p = P(X > t) = P(X < −t) ∈ (0, 1/2], and let Gt be the distribution of the (conditional)

random variable [X|X > t], then

Gt(x) = P(X ⩽ x|X > t) =

0, x ⩽ t,

F (x)−F (t)
1−F (t)

, x > t.

Note that ess-infGt ⩾ t and ess-supGt = ess-supF . Denote the mean and variance of

Gt by µt and σ2
t , we have µt = E[X|X > t] and µ2

t + σ2
t = E[X2|X > t]. By applying
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Lemma 3.3.1 to the distribution Gt, we know that there exists a two-point distribution

Ft ∈ L2(µt, σt) such that EFt [Xt] = µt, EFt [X2
t ] = µ2

t + σ2
t , and the support of Ft belongs

to [ess-infGt, ess-supGt] ⊂ [t, ess-supF ], where Xt ∼ Ft. Note that Xt ⩾ t ⩾ 0.

Denote the probability function of Xt by [x1,t, p1,t; x2,t, p2,t], where 0 < pi,t < 1, i = 1, 2,

and p1,t + p2,t = 1. For any ε ⩾ 0, define a random variable X∗
ε , with distribution F ∗

ε , as

X∗
ε = (Xt + ε)1{U>1−p} + 01{p⩽U⩽1−p} − (Xt + ε)1{U<p}, (3.20)

where U ∼ U[0, 1] is a uniform random variable independent of Xt. Thus, X
∗
ε is a five-point

random variable valued on {−x2,t − ε, −x1,t − ε, 0, x1,t + ε, x2,t + ε}. For any x ⩾ 0, it

holds that

P(X∗
ε > x) = P((Xt + ε)1{U>1−p} > x) = P(Xt + ε > x, U > 1− p) = pP(Xt + ε > x)

= pP(−Xt − ε < −x) = P(−(Xt + ε)1{U<p} < −x) = P(X∗
ε < −x),

where the third equality follows from the independence of Xt and U . Similarly, for any

x < 0, it holds that

P(X∗
ε > x) = P((U > 1− p) ∪ (p ⩽ U ⩽ 1− p) ∪ (−(Xt + ε)1{U<p} > x))

= p+ 1− 2p+ P(−(Xt + ε)1{U<p} > x)

= 1− p+ P(Xt + ε < −x, U < p) = 1− p+ pP(Xt + ε < −x)

= P((U < p) ∪ (p ⩽ U ⩽ 1− p) ∪ ((Xt + ε)1{U>1−p} < −x)) = P(X∗
ε < −x).

Therefore X∗
ε is a symmetric random variable at 0 and E[X∗

ε ] = 0. Moreover, note that

Xt ⩾ t ⩾ 0. Thus, for any ε ⩾ 0, we have

E[(X∗
ε − t)2+] = E[

(
(Xt + ε)1{U>1−p} − t

)2
] = E[(Xt + ε− t)21{U>1−p}]

= E[(Xt + ε− t)2]P(U > 1− p)

⩾ pE[(Xt − t)2]

= P(X > t)
(
E[X2

t ]− 2tE[Xt] + t2
)

= P(X > t)
(
E[X2|X > t]− 2tE[X|X > t] + t2

)
= P(X > t)EF [(X − t)2|X > t] = EF [(X − t)2+],
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where the inequality follows from Xt + ε− t ⩾ Xt − t ⩾ 0. In addition,

Var(X∗
0 ) = E[(X∗

0 )
2] = E[X2

t 1{U>1−p} +X2
t 1{U<p}] = 2pE[X2

t ] = 2pE[X2|X > t]

= 2E[X21{X>t}] = E[X21{X>t}∪{X<−t}] ⩽ E[X2] = σ2,

where the second equality follows from the independence between Xt and U , the forth

equality follows from p = P(X > t), and the fifth equality follows from that X is symmetric

at 0.

Clearly, Var(X∗
ε ) = E[(Xt + ε)2 1{X>t} + (Xt + ε)2 1{X<−t}] is a quadratic function of ε

with Var(X∗
ε ) → ∞ as ε → ∞. There exists εδ ⩾ 0 such that Var(X∗

εδ
) = σ2. Hence, the

distribution of X∗
εδ

belongs to LS(0, σ) and EF [(X − t)2+] ⩽ EF [(X∗
εδ
− t)2+], where X

∗
εδ

has

a five-point symmetric distribution about 0. Therefore, for t > 0, supF∈LS(0,σ)
EF [(X −

t)2+] = supF∈L5,S(0,σ)
EF [(X − t)2+]. Note that the probability function of the five-point

symmetric random variable X∗
εδ

has the expression [−x2, p2; −x1, p1; 0, p0; x1, p1; x2, p2],
where 0 ⩽ t ⩽ x1 ⩽ x2, 0 < p1 + p2 ⩽ 1/2, 0 ⩽ p1 < 1/2, 0 ⩽ p2 < 1/2, and 0 ⩽ p0 < 1.

Thus, the problem supF∈LS(0,σ)
EF [(X − t)2+] is equivalent to the problem

sup
(p1,p2,x1,x2)∈[0, 12 ]2×R2

+

p1(x1 − t)2 + p2(x2 − t)2, (3.21)

s.t. t ⩽ x1 ⩽ x2, 0 < p1 + p2 ⩽ 1/2, p1 x
2
1 + p2 x

2
2 = σ2/2.

One can verify that the supremum of problem (3.21) is equal to σ2/2. To see it, note that

for any feasible solution of the problem (3.21), it holds that

p1(x1 − t)2 + p2(x2 − t)2 = p1x
2
1 + p2x

2
2 + (p1 + p2)t

2 − 2t(p1x1 + p2x2)

=
σ2

2
+ t [(p1 + p2)t− 2(p1x1 + p2x2)] ⩽

σ2

2
,

where the inequality follows from that (p1 + p2)t − 2(p1x1 + p2x2) ⩽ 0 as x1, x2 ⩾ t. On

the other hand, for ε > 0 small enough, take p1 = 0, p2 = ε, x1 = t, x2 =
√

σ2

2ε
. We

have the objective function in (3.21) is

p1(x1 − t)2 + p2(x2 − t)2 = ε

(√
σ2

2ε
− t

)2

=

(√
σ2

2
−

√
εt

)2

→ σ2

2
as ε→ 0.
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Note that for any F ∈ LS(0, σ),

EF [(X − t)2+] =
EF [(X − t)2+] + EF [(X + t)2−]

2
<

E[X2]

2
=
σ2

2
,

where the first equality follows from the symmetry of F at 0, and the inequality follows

from E[X2] = (E[X2
+] + E[X2

−])/2 and EF [(X − t)2+] + EF [(X + t)2−] is strictly decreasing

in t ⩾ 0. The supremum σ2/2 of problem (3.21) is the limit of EFε[(X − t)2+] as ε → 0,

where Fε is the following three-point symmetric distribution:[
µ−

√
σ2

2ε
, ε; µ, 1− 2ε; µ+

√
σ2

2ε
, ε

]
.

Case (ii): For t ⩽ −σ, on one hand, note that for any F ∈ LS(0, σ), we have

EF [(X − t)2+] ⩽ EF [(X − t)2+] + EF [(X − t)2−] = EF [(X − t)2] = σ2 + t2.

On the other hand, takeX ∼ F as P(X = −σ) = P(X = σ) = 1/2.We haveX ⩾ t a.s., and

E[(X−t)2+] = 1
2
(−σ−t)2+ 1

2
(σ−t)2 = σ2+t2. Therefore, we have supF∈LS(0,σ)

EF [(X−t)2+] =
σ2 + t2.

Case (iii): For −σ < t < 0, We first show that for any F ∈ LS(0, σ), there exists a

six-point distribution G ∈ LS(0, σ) such that EF [(X − t)2+] ⩽ EG[(X − t)2+]. Note that

in the case that −σ < t < 0, we must have P(t ⩽ X ⩽ −t) < 1 as otherwise ∥X∥ ⩽ −t
a.s. which yields a contradiction with σ > −t. We then have p := P(X > −t) > 0,

and P(X < t) = p > 0 by symmetry. Applying Lemma 3.3.1 to the distribution of

[X|X > −t], we see that there exists a two-point distribution Ft with support on [−t,∞),

such that EFt [Xt] = EF [X|X > −t] and EFt [X2
t ] = EF [X2|X > −t], where Xt ∼ Ft and

Xt ⩾ −t > 0.

If p < 1/2, then P(t ⩽ X ⩽ −t) > 0, and by applying Remark 3.3.1 to [X|t ⩽ X ⩽ −t],
we see that there exists x ∈ (0,−t] such that EGx [Y 2

t ] = E[X2|t ⩽ X ⩽ −t], where

Gx = δx/2 + δ−x/2 and Yt ∼ Gx. Define

X∗
ε = (Xt + ε)1{U>1−p} + x1{1/2<U⩽1−p} − x1{p⩽U⩽1/2} − (Xt + ε)1{U<p}, (3.22)
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where x ∈ (0,−t], ε ⩾ 0, and U ∼ U[0, 1] is independent from Xt and p = P(X > −t) ∈
(0, 1/2]. Otherwise, if p = 1/2, we still employ the definition of the random variable X∗

ε

by (3.22), which reduces to

X∗
ε = (Xt + ε)1{U>1−p} − (Xt + ε)1{U<p}.

In both cases, X∗
ε is a six-point random variable valued on {−x2,t−ε, −x1,t−ε, −x, x, x1,t+

ε, x2,t + ε}, where x ∈ (0,−t] and −t ⩽ x1,t < x2,t.

Similar to Case (i), we can verify that the distribution of X∗
ε is symmetric about 0 and

that E[X∗
ε ] = 0 and E[(X∗

ε − t)2+] ⩾ EF [(X − t)2+] for any ε ⩾ 0, and Var[(X∗
0 )] ⩽ σ2 for

ε = 0. Moreover, one can verify that Var[(X∗
ε )] is a quadratic function of ε ⩾ 0. There

exists εδ ⩾ 0 such that the distribution ofX∗
εδ
belongs to LS(0, σ). Denote the set L∗

6,S(0, σ)

by

L∗
6,S(0, σ) = {[−x3, p3; −x2, p2; −x1, p1; x1, p1;x2, p2; x3, p3] :

0 < x1 ⩽ −t ⩽ x2 < x3, p1 + p2 + p3 = 1/2, 0 ⩽ pi ⩽ 1/2, for i = 1, 2, 3}.

Then, L∗
6,S(0, σ) ⊂ L6,S(0, σ) and the distribution of X∗

εδ
belongs to L∗

6,S(0, σ). Hence, it

holds that supF∈LS(0,σ)
EF [(X − t)2+] = supF∈L∗

6,S(0,σ)
EF [(X − t)2+]. Note that EF [(X −

t)2+] + E[(X − t)2−] = σ2 + t2 is fixed for any F ∈ L(0, σ). Thus, we have

sup
F∈L∗

6,S(0,σ)

EF [(X − t)2+] = σ2 + t2 − inf
F∈L∗

6,S(0,σ)
EF [(X − t)2−]. (3.23)

Note that the problem infF∈L∗
6,S(0,σ)

EF [(X − t)2−] is equivalent to the problem

inf
(p1,p2,p3,x1,x2,x3)∈[0,1/2]3×R3

+

p2(x2 + t)2 + p3(x3 + t)2, (3.24)

s.t. 0 < x1 ⩽ −t ⩽ x2 ⩽ x3, p1 + p2 + p3 = 1/2,

p1x
2
1 + p2x

2
2 + p3x

2
3 = σ2/2,

as (−x)− = (x)+, x2 + t ⩾ 0, and x3 + t ⩾ 0.

By −t < σ, we know that the constraints in problem (3.24) can not be satisfied at x2 =

x3 = −t. Note that for any feasible solution of the problem (3.24), (p1, p2, p3, x1, x2, x3), if
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x1 < −t, then take δ ∈ (0,−t− x1) and (p1, p2, p3, x1 + δ, x2 − δ1, x3 − δ2), where δ1, δ2 ⩾ 0

satisfy −t ⩽ x2− δ1 ⩽ x3− δ2 and p1(x1+ δ)
2+ p2(x2− δ1)

2+ p3(x3− δ2)
2 = σ2/2. It holds

that the value of the objective function at the new feasible solution (p1, p2, p3, x1 + δ, x2 −
δ1, x3 − δ2) is strictly smaller than that at (p1, p2, p3, x1, x2, x3). Therefore, the infimum of

problem (3.24) is attainable at x1 = −t, which implies that problem (3.24) is equivalent to

min
(p1,p2,p3,x2,x3)∈[0,1/2]3×R2

+

p2(x2 + t)2 + p3(x3 + t)2,

s.t. − t ⩽ x2 ⩽ x3, p1 + p2 + p3 = 1/2, (3.25)

p1t
2 + p2x

2
2 + p3x

2
3 = σ2/2,

which, together with EF [(X − t)2+] + E[(X − t)2−] = σ2 + t2 and (3.18), implies that the

problem supF∈LS(µ,σ)
EF [(X − t)2+] is equivalent to the following problem

σ2 + (µ− t)2 − min
(p1,p2,p3,x2,x3)∈[0,1)3×R2

+

p2(x2 + t− µ)2 + p3(x3 + t− µ)2, (3.26)

s.t. − (t− µ) ⩽ x2 ⩽ x3, p1 + p2 + p3 = 1/2,

p1t
2 + p2x

2
2 + p3x

2
3 = σ2/2,

One can verify that for any feasible solution of (3.25), it holds that

p2(x2 + t)2 + p3(x3 + t)2 = p1(x1 + t)2 + p2(x2 + t)2 + p3(x3 + t)2

= p1x
2
1 + p2x

2
2 + p3x

2
3 + (p1 + p2 + p3)t

2 + 2t(p1x1 + p2x2 + p3x3)

=
σ2

2
+
t2

2
+ 2t(p1x1 + p2x2 + p3x3).

Noting that t < 0, the problem (3.25) is equivalent to

max
(p1,p2,p3,x2,x3)∈[0,1/2]3×R2

+

2p1x1 + 2p2x2 + 2p3x3,

s.t. − t ⩽ x2 ⩽ x3, 2p1 + 2p2 + 2p3 = 1, (3.27)

2p1t
2 + 2p2x

2
2 + 2p3x

2
3 = σ2,

For any feasible solution, we have 2p1x1 + 2p2x2 + 2p3x3 ⩽
√
2p1t2 + 2p2x22 + 2p3x23 = σ.

On the other hand, take p1 = 0, p2 = 0, x1 = x2 = −t, p3 = 1/2, x3 = σ > −t. We have
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2p1x1 + 2p2x2 + 2p3x3 = σ. Therefore, we have the supremum of problem (3.27) is σ, and

thus, the infimum of problem (3.25) is σ2

2
+ t2

2
+ tσ = (σ+t)2

2
. It thus follows from (3.23) that

the supremum of the objective function in problem (3.26) is σ2 + t2 − (σ+t)2

2
= (σ−t)2

2
.

3.4 Applications to robust portfolio selection

In this section, we consider the applications of the worst-case target semi-variances

derived in Sections 3.3 to robust portfolio selection problems.

Let X⊤ = (X1, ..., Xd) ∈ Rd be a random vector representing the loss vector in an

investment portfolio with Xi being the loss in investing in an asset i, i = 1, ..., d. The

loss of the portfolio is w⊤X =
∑d

i=1wiXi, where w = (w1, ..., wd) ∈ Rd with wi being the

allocation/selection on asset i. Without loss of generality, we assume the total wealth of an

investor to be 1 so that w⊤e = 1, where e⊤ = (1, ..., 1) is a d-dimensional unit vector. Here

we denote the set of portfolios that allows for short-selling as W = {w ∈ Rd : w⊤e = 1}.

In the classical mean-variance (M-V) model, the mean vector µ and covariance matrix

Σ of the loss vector X are assumed to be known, which essentially assume that the

‘true’ (joint) distribution G of loss vector X is unknown and only the mean vector µ and

covariance matrix Σ of the loss vector X are available. In other words, the possible (joint)

distribution G of loss vector X is assumed to belong to the following set of distributions:

M(µ,Σ) =
{
G ∈ F(Rd) : E[X] = µ, Cov[X] = Σ

}
, (3.28)

where F(Rd) is the set of all d-dimensional distributions defined on Rd. For any G ∈
M(µ,Σ), EG[w⊤X] = w⊤µ and VarG(w⊤X) = w⊤Σw of the portfolio loss X = w⊤X

are deterministic functions of w. The M-V portfolio selection model can be formulated as

min
w∈W

sup
G∈M(µ,Σ)

VarG(w⊤X) = min
w∈W

w⊤Σw

s.t. EG[w⊤X] = w⊤µ ⩽ ν,

(3.29)

where EG[w⊤X] = w⊤µ ⩽ ν is equivalent to EG[−w⊤X] = −w⊤µ ⩾ −ν that represents

a constraint on the expected return of the portfolio. However, if the distribution G of X
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is uncertain and belongs to M(µ,Σ), then the expected downside loss or expected regret

EG[(w⊤X − t)+] and the target semi-variance EG[(w⊤X − t)2+] are also uncertain. To

incorporate the symmetric information of loss vectors and minimize the worst-case target

semi-variance of the portfolio loss, we propose the following target semi-variance (TSV)-

based robust portfolio selection models: The mean-target semi-variance with symmetric

information (M-TSV-S) robust portfolio selection model, which is formulated as

min
w∈W

sup
G∈MS(µ,Σ)

EG[(w⊤X − t)2+]

s.t. EG[w⊤X] = w⊤µ ⩽ ν,

(3.30)

where

MS(µ,Σ) =
{
G ∈ M(µ,Σ) : G is symmetric

}
(3.31)

and ν is a risk level or equivalently −ν is a desirable minimum level for the expected return.

We first give the definition of symmetric random vector or multivariate symmetric

distribution. To do so, denote the set of all Borel measurable sets in Rd by B(Rd). For a

set A ⊂ Rd and a vector a ∈ Rd, denote −A by −A = {x ∈ Rd : −x ∈ A} and denote

A− a by A− a = {x− a ∈ Rd : x ∈ A}.

Definition 3.4.1. The joint distribution G of a random vector X ∈ Rd is said to be

symmetric if there exists a vector a ∈ Rd such that P(X − a ∈ B) = P(X − a ∈ −B)

under the distribution G, for all B ∈ B(Rd). If such a vector a exists, random vector X

or its distribution is said to be symmetric about a.

Intuitively, random vector X is symmetric about a if and only if X − a is symmetric

about the origin of Rd. Examples of the continuous multivariate symmetric distributions

include multivariate normal distributions, multivariate t-distributions, multivariate ellipti-

cal distributions, and many others. In addition, a constant random vector is also symmetric

according to Definition 3.4.1.

Lemma 3.4.1. (i) If random vector X ∈ Rd or its distribution G is symmetric about a,

then for any vector w ∈ Rd, the distribution of w⊤X is symmetric about w⊤a.

(ii) If d-dimensional random vectors X1 and X2 are independent and symmetric about

µ1 and µ2, respectively, then X1 +X2 is symmetric about µ1 + µ2.
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Proof. (i) For any x ∈ R, we have P{w⊤X −w⊤a > x} = P{w⊤(X − a) > x} = P{X ∈
B} = P{X−a ∈ Ba}, where B = {y ∈ Rd : w⊤(y−a) > x} and Ba = B−a = {y−a ∈
Rd : w⊤(y − a) > x} = {x ∈ Rd : w⊤x > x}. Since X is is symmetric around a and

Ba is a Borel measurable set in Rd, we have P{w⊤X −w⊤a > x} = P{X − a ∈ Ba} =

P{X − a ∈ −Ba}, where

−Ba = {x ∈ Rd : −w⊤x > x} = {x ∈ Rd : w⊤x < −x} = {y − a ∈ Rd : w⊤(y − a) < −x}.

Therefore, P{w⊤X − w⊤a > x} = P{X − a ∈ −Ba} = P{w⊤X − w⊤a < −x}, which
means that the distribution of w⊤X is symmetric around w⊤a by Definition 3.2.1.

(ii) Note that for a random variable X is symmetric about µ if and only if X − µ

is symmetric at 0. Without loss of generality, assume that µ1 = µ2 = 0. Thus, for any

measurable set B ∈ B(Rd), it holds that P(X1 + X2 ∈ B) = P(−X1 − X2 ∈ B) =

P(X1+X2 ∈ −B), where the first equality follows that −X1
d
= X1, −X2

d
= X2, and −X1

and −X2 are independent which imply that X1 +X2
d
= −X1 −X2.

Lemma 3.4.1 (i) demonstrates that if X is a random vector with a symmetric multi-

variate distribution, then any linear combination of X has a one-dimensional symmetric

distribution as defined in Definition 3.2.1. In addition, Lemma 3.4.1 (ii) implies that sym-

metric properties of random vectors are preserved under the sum of independent random

vectors.

We now denote the the multivariate mean-covariance uncertainty set with symmetric

distributions by MS(µ,Σ) that is defined in (3.31). Moreover, for a given w ∈ Rd, define

Lw,S(µ,Σ) as the one-dimensional distribution set generated from the distribution ofw⊤X

when the joint distribution of X belongs to MS(µ,Σ), namely

Lw,S(µ,Σ) = {Fw⊤X ∈ F(R) : The joint distribution G of X belongs to MS(µ,Σ)} .
(3.32)

Lemma 3.4.2. If the covariance matrix Σ of the loss random vector X is positive definite

and w ̸= 0, then

Lw,S(µ,Σ) = LS
(
w⊤µ,

√
w⊤Σw

)
(3.33)
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and

sup
G∈MS(µ,Σ)

EG[(w⊤X − t)2+] = sup
F∈LS(w⊤µ,

√
w⊤Σw )

EF [(X − t)2+], (3.34)

where set LS(µ, σ) is defined in (3.3) for any µ ∈ R and any σ ∈ R+, and X is a random

variable with a distribution belonging to LS
(
w⊤µ,

√
w⊤Σw

)
.

Proof. For any distribution Fw⊤X ∈ Lw,S(µ,Σ) with the joint distribution G of X be-

longing to MS(µ,Σ), we have EG[w⊤X] = w⊤µ and CovG[X] = w⊤Σw. In addi-

tion, by Lemma 3.4.1(i), we see that w⊤X is symmetric as X is symmetric. Hence,

Fw⊤X ∈ LS
(
w⊤µ,

√
w⊤Σw

)
. Thus, Lw,S(µ,Σ) ⊆ LS

(
w⊤µ,

√
w⊤Σw

)
. Next, we

prove LS
(
w⊤µ,

√
w⊤Σw

)
⊆ Lw,S(µ,Σ). Similar to the proof of Chen et al. (2011,

Lemma 2.4), for w ̸= 0 ∈ Rd and any distribution F ∈ LS
(
w⊤µ,

√
w⊤Σw

)
, we con-

struct a d-dimensional random vector X∗ as

X∗ =
((w⊤Σw)Σ−Σww⊤Σ)

1
2Z√

w⊤Σw
+

(Y −w⊤µ)Σw

w⊤Σw
+ µ,

where Y is a random variable with the distribution F and Z is a d-dimensional stan-

dard normal random vector independent of Y . Then, w⊤X∗ = Y , E[X∗] = µ, and

Cov[X∗] = Σ. In addition, by Lemma 3.4.1(i) and (ii), we see that X∗ is symmetric

and thus w⊤X∗ = Y is symmetric as well. Hence, the joint distribution of X∗ belongs

to MS(µ,Σ) and the distribution F of w⊤X∗ = Y belongs to Lw,S(µ,Σ), which mean

that LS
(
w⊤µ,

√
w⊤Σw

)
⊆ Lw,S(µ,Σ). Therefore, we conclude that Lw,S(µ,Σ) =

LS
(
w⊤µ,

√
w⊤Σw

)
. It is obvious that

sup
G∈MS(µ,Σ)

EG[(w⊤X − t)2+] = sup
F∈Lw,S(µ,Σ)

EF [(X − t)2+],

which, together with (3.33), implies (3.34).

To better present the optimal portfolio selections derived in this chapter, we introduce

notations u, v0, v1, v2 as follows:

u = (e⊤Σ−1e)(µ⊤Σ−1µ)− (e⊤Σ−1µ)2, v0 =
e⊤Σ−1e

u
, v1 =

e⊤Σ−1µ

u
, v2 =

µ⊤Σ−1µ

u
,

(3.35)
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where w,µ ∈ Rd with w⊤e = 1, and Σ is a d × d positive definite matrix. Note that for

any µ ∈ Rd, it holds u ⩾ 0 since Σ is a positive definite matrix. However, to guarantee

that the optimal solutions exist, we assume that µ and e are not linearly dependent, or

equivalently, assume that for any c ∈ R, µ ̸= c e. This assumption implies u > 0 and is

also used in the classical M-V portfolio selection model.

To present the optimal solution to problem (3.30), we define

hS,t(µ, σ) = sup
F∈LS(µ,σ)

EF [(X − t)2+].

By Theorem 3.3.1, we can write hS,t(µ, σ) as a function of σ with the following expression:

(i) If µ > t, then

hS,t(µ, σ) =

σ2 + (t− µ)2, 0 < σ ⩽ µ− t,

1
2
(µ− t+ σ)2, σ > µ− t.

(3.36)

(ii) If µ ⩽ t, then

hS,t(µ, σ) =
σ2

2
, σ > 0. (3.37)

In addition, define

ξ∗1 = argmin
ξ⩽t

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
, (3.38)

h1S,t(ξ
∗
1) = hS,t

(
ξ∗1 ,
√
v0(ξ∗1)

2 − 2v1ξ∗1 + v2

)
=

1

2

(
v0(ξ

∗
1)

2 − 2v1ξ
∗
1 + v2

)
, (3.39)

ξ∗2 = argmin
t⩽ξ⩽v

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
, (3.40)

h2S,t(ξ
∗
2) = hS,t

(
ξ∗2 ,
√
v0(ξ∗2)

2 − 2v1ξ∗2 + v2

)
. (3.41)

Note that by (3.37),

ξ∗1 = argmin
ξ⩽t

1

2

(
v0ξ

2 − 2v1ξ + v2
)
= min

{
v1
v0
, t

}
. (3.42)

By (3.36), if t < ν, we see that hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
is a continuous function of ξ

on [t, ν]. Thus, there exists ξ∗2 such that

min
t⩽ξ⩽ν

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
= hS,t

(
ξ∗2 ,
√
v0(ξ∗2)

2 − 2v1ξ∗2 + v2

)
= h2S,t(ξ

∗
2).
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Proposition 3.4.1. Assume the covariance matrix Σ of the loss random vector X is

positive definite. Then, problems (3.30) has a unique solution w∗
S,ν,t that has the following

expression:

w∗
S,ν,t = (Σ−1µ, Σ−1e)

(
v0 −v1
−v1 v2

)(
ξ∗

1

)
. (3.43)

Here, ξ∗ in (3.43) has the following expressions:

(i) If t ⩾ ν, then ξ∗ = min
{
v1
v0
, ν
}
.

(ii) If t < ν and h1S,t(ξ
∗
1) ⩽ h2S,t(ξ

∗
2), then ξ

∗ = min
{
v1
v0
, t
}
.

(iii) If t < ν and h1S,t(ξ
∗
1) > h2S,t(ξ

∗
2), then ξ

∗ = ξ∗2 = argmint⩽ξ⩽ν hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
.

Proof. By Lemma 3.4.2, for the positive definite matrix Σ and w ̸= 0, the inner optimiza-

tion problem of (3.30) reduces to the problem

sup
F∈LS(w⊤µ,

√
w⊤Σw)

EF [(X − t)2+] = hS,t

(
w⊤µ,

√
w⊤Σw

)
,

which has been solved in Theorem 3.3.1. Hence, problem (3.30) is equivalent to the fol-

lowing problem:

min
w∈W

hS,t

(
w⊤µ,

√
w⊤Σw

)
,

s.t. w⊤µ ⩽ ν.
(3.44)

Problem (3.44) is equivalent to

min
ξ∈R,w∈W

hS,t

(
ξ,
√
w⊤Σw

)
,

s.t. w⊤µ = ξ ⩽ ν,

which can be expressed as the following problem:

min
ξ∈R

min
w∈Rd,w⊤e=1,w⊤µ=ξ

hS,t

(
ξ,
√
w⊤Σw

)
,

s.t. ξ ⩽ ν.

(3.45)
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By (3.36) and (3.37), it is easy to see that for any ξ ∈ R, hS,t(ξ,
√
σ2) is increasing in σ2.

Therefore,

min
w∈Rd,w⊤e=1,w⊤µ=ξ

hS,t

(
ξ,

√
w⊤Σw

)
= hS,t

(
ξ,
√

min
w∈Rd,w⊤e=1,w⊤µ=ξ

w⊤Σw

)
, (3.46)

which means that

w∗
ξ = argmin

w∈Rd,w⊤e=1,w⊤µ=ξ

hS,t

(
ξ,
√
w⊤Σw

)
= argmin

w∈Rd,w⊤e=1,w⊤µ=ξ

w⊤Σw.

It is well-known that

w∗
ξ = argmin

w∈Rd,w⊤e=1,w⊤µ=ξ

w⊤Σw = (Σ−1µ Σ−1e)

(
v0 −v1
−v1 v2

)(
ξ

1

)
and (w∗

ξ)
⊤Σw∗

ξ = v0ξ
2 − 2v1ξ + v2. Therefore, problem (3.45) is reduced to the following

one-variance optimization problem:

min
ξ⩽ν

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
. (3.47)

(a) If t ⩾ ν, by (3.37), we have minξ⩽ν hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
= minξ⩽ν

1
2

(
v0ξ

2 −
2v1ξ + v2

)
. Let ξ∗ = argminξ⩽ν

1
2

(
v0ξ

2 − 2v1ξ + v2
)
. It is easy to see that ξ∗ =

min
{
v1
v0
, ν
}
.

(b) If t < ν, we have

min
ξ<ν

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
= min

{
min
ξ⩽t

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
, min

t⩽ξ⩽ν
hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)}
,

where by (3.37),

min
ξ⩽t

hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
=

1

2
min
ξ⩽t

v0ξ
2 − 2v1ξ + v2 =

1

2

(
v0(ξ

∗
1)

2 − 2v1ξ
∗
1 + v2

)
,

and ξ∗1 = argminξ⩽t v0ξ
2 − 2v1ξ + v2 = min

{
v1
v0
, t
}
. In addition, by (3.36), we can

notice that hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
is a continuous function of ξ on [t, ν]. Thus,

there exists ξ∗2 such that mint⩽ξ⩽ν hS,t

(
ξ,
√
v0ξ2 − 2v1ξ + v2

)
= hS,t

(
ξ∗2 ,
√
v0(ξ∗2)

2 − 2v1ξ∗2 + v2

)
.
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By combining cases (a) and (b), we complete the proof.

Remark 3.4.1. The optimal portfolio selection w∗
ν to the classical M-V problem (3.29) has

the following expression:

w∗
ν = (Σ−1µ, Σ−1e)

(
v0 −v1
−v1 v2

)(
min

{
v1
v0
, ν
}

1

)
. (3.48)

For the proof of above result, we refer Markowitz (1959) and Markowitz et al. (1993).

Proposition 3.4.1 shows that if an investor is too conservative and sets a very low target

return −t or a very high threshold loss level t, say t ⩾ ν, then ξ∗ = min
{
v1
v0
, ν
}

and

the optimal strategy w∗
S,ν,t is the same as the optimal strategy (3.48) derived from the

classical M-V model (3.29). However, if an investor has a higher return target −t or a

lower threshold loss level t, say t < min{v1
v0
, ν}, then ξ∗ = min

{
v1
v0
, t
}
= t or ξ∗ = ξ∗2 and

the optimal strategy w∗
S,ν,t is different from the optimal strategy (3.48) derived from the

classical M-V model (3.29). As illustrated in the numerical experiments given in Section 3.5

of this chapter, the portfolio performance with the strategy derived from (3.30) outperforms

the portfolio performance with the strategy derived from the classical M-V model (3.29).

3.5 Numerical experiments with real financial data

In this section, we conduct a numerical study using real financial data to calculate

the optimal portfolios derived in Section 3.4 and compare the investment performances

of the optimal portfolios with several existing portfolio selection methods related to the

models proposed in this chapter. For this study, we select 12 stocks from the four largest

sectors (Technology, Health Care, Financials, and Consumer Discretionary) of the S&P

500, choosing three with the highest market capitalizations from each sector.2 We use data

from a four-year period starting from January 1, 2019, to January 1, 2023, which include

1008 observations of daily stock prices. The daily losses are expressed by percentage and

calculated by lt = −(Vt+1 − Vt)/Vt, where Vt is the close price on trading day t. Note that

the positive value represents the loss and negative value represents the gain.

2Selected stocks are AAPL, MSFT, GOOG, JPM, BAC, BRK-B, PFE, JNJ, UNH, HD, TSLA, AMZN
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We aim to compare investment performance across several existing models related to

the models proposed in this chapter, including:

(a) TSV model: Minimizing the target semi-variance of the portfolio loss and formulated

as (see e.g., Chen et al. (2011))

min
w∈W

sup
G∈M(µ,Σ)

EG[(w⊤X − t)2+]. (3.49)

(b) M-TSV-S model: Minimizing the target semi-variance of the portfolio loss, incorpo-

rating the symmetric information of loss vectors and the constraint on the expected

portfolio loss, and proposed in (3.30) and solved in Proposition 3.4.1.

(c) M-V model: The classical mean-variance model formulated in (3.29).

(d) S&P 500 index: Investing all money into S&P 500 index, regarding as a passive

investment strategy.

We construct portfolio rebalancing strategies by solving optimization problems with

models (a)-(g) listed above. The experiment is set up as follows. The initial portfolio w∗
0 is

calculated on January 3, 2020 using the data from January 2, 2019 to January 2, 2020 as

the in-sample dataset (252 trading days).3 We compute the out-of-sample portfolio returns

as −w∗⊤
0 l̂0, where l̂0 represents the daily loss on January 3, 2021. We proceed to optimize

the portfolio selections on a daily basis using a rolling window approach and subsequently

rebalance the portfolio. This involves using the preceding 755 trading days to calculate

the optimal portfolio w∗
t for trading day t, serving as an updated portfolio for each trading

day starting from January 3, 2020. The resulting portfolio returns −w∗⊤
t l̂t for trading

day t are obtained using the out-of-sample return vector l̂t and the rebalanced portfolio

weights w∗
t . In the TSV-based models (a) and (b), the parameters u, v0, v1, and v2 defined

in (3.35) are also updated as the data rolls forward. These parameters rely on sample

mean and sample covariance, which evolve with rebalance process over time. To conduct

the numerical experiment, parameters need to be chosen for models (a)-(c). We give the

3No trading data is available for January 1.
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following general guidelines for selecting parameters: the target return −t in models (a)

and (b), the maximum expected loss level ν in models (b) and (c).

(1) Positive (negative) values of a portfolio loss random variable X represent losses (re-

turns). Initially, it might seem logical for an investor to choose a higher target return

−t or a lower threshold loss level t to expect better investment performance. How-

ever, the expected excess profit E[(X − t)−] increases with t, while the expected

downside risk E[(X − t)+] decreases with t. Thus, opting for a lower threshold loss

level t results in higher expected downside risk. Consequently, a reasonable choice

for the target return −t is to set it slightly larger than the sample mean of the daily

returns of the selected stocks. Equivalently, the threshold loss level t can be set

slightly smaller than the sample mean of the daily losses of the selected stocks.

(2) Note that E[X] ⩽ ν is equivalent to E[−X] ⩾ −ν; where E[−X] represents the

expected return, and −t is the target return. Thus, it is natural to require −t ⩾ −ν
or equivalently ν ⩾ t. Additionally, a high value of ν is not desirable. Therefore, a

reasonable choice for the maximum expected loss level ν is to set it slightly larger

than t.

According to the above guidelines, in this experiment, we choose a target return −t =
0.003 for all the TSV-based models (a)-(c); a maximum expected loss level ν = −0.001 for

models (b) and (c).

Figure 3.2 shows the cumulative wealth of a portfolio comprised of the four selected

stocks under the strategies derived from models (a)-(d) listed above. It is evident that all

the strategies, except for the TSV model, outperform the passive investment strategy of the

S&P 500 index. We can also see from Figure 3.2 that the M-TSV-S model (d) outperforms

all the other models listed above. The additional information regarding the symmetry

of the loss distribution (as indicated Figure 3.1 for several stocks), greatly improves the

practicality of the models proposed in this chapter. Therefore, incorporating symmetric

information into portfolio selection models can improve investment performance when using

the models proposed in this chapter.
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Figure 3.2: Cumulative wealth comparison across portfolio rebalancing strategies based

on models (a)-(c). The target return t = −0.003 for all the TSV-based models; risk level

ν = −0.001 for the M-V and M-TSV-S models.

3.6 Concluding remarks

In this chapter, we explore the worst-case target semi-variance of a random loss within

mean-variance uncertainty sets, considering additional distributional information such as

symmetry and non-negativity of the random loss. The main contribution of this chap-

ter is that we complement the study of Chen et al. (2011), where the worst-case target

semi-variance was derived for an arbitrary random loss. We extend this by deriving the

worst-case target semi-variances for symmetric or non-negative losses, thus obtaining re-

sults corresponding to the worst-case expected regrets investigated in Jagannathan (1977).
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As illustrated in numerical experiments, the investment performance with the optimal

strategies derived from the proposed models outperforms the classical mean-variance strat-

egy and the passive investment strategy (investing S&P 500 index only). We believe the

results and models developed in this chapter have more potential, and we will explore more

applications in future research.

3.7 Appendix: Technical details

Lemma 3.7.1. For any F ∈ L(0, σ) and Borel sets A, B ⊂ R satisfying that A ∩ B = ∅,
denote p = EF [1{X∈B}] = P(X ∈ B), q = EF [1{X∈A}] = P(X ∈ A). If 0 < p < 1, q = 1− p,

let Fε be a two-point distribution of the two-point random variable Xε that is defined as

Xε = (x1 + εp)1{X∈A} + (x2 − εq)1{X∈B}, (3.50)

where x1 = E[X|X ∈ A], x2 = E[X|X ∈ B], and ε ⩾ 0, then there exists a constant εσ ⩾ 0

such that Fεσ ∈ L(0, σ).

Proof. For any F ∈ L(0, σ), it is easy to see that

E[Xε] = E[Xε|X ∈ A] q + E[Xε|X ∈ B] p = (x1 + εp)q + (x2 − εq)p

= x1q + x2p = EF [X|X ∈ A] q + EF [X|X ∈ B] p = EF [X] = 0,

Var(Xε) = E[X2
ε ] = E[X2

ε |X ∈ A] q + E[X2
ε |X ∈ B] p = (x1 + εp)2 q + (x2 − εq)2 p

= x21 q + x22 p+ 2pq(x1 − x2)ε+ pqε2 ≜ g(ε).

Note that for any random variable Y with E[Y ] = µ and Var(Y) = σ2, if 0 < P(Y ∈ A) < 1,

then

(E[Y |Y ∈ A])2 ⩽ E[Y 2|Y ∈ A]. (3.51)

Thus, by (3.51), we have g(0) = x21 q + x22 p ⩽ EF [X2|X ∈ A] q + EF [X2|X ∈ B] p =

EF [X2] = σ2. Since g(ε) is a quadratic function with g(∞) = ∞, there exists an εσ ⩾ 0

such that g(εσ) = Var(Xεσ) = σ2. Therefore, Fεσ ∈ L(0, σ).
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Lemma 3.7.2. For any t ∈ R,

sup
F∈L(0,σ)

EF [(X − t)+] = sup
F∈L2(0,σ)

EF [(X − t)+]. (3.52)

Proof. For any F ∈ L(0, σ), since EF [X] = 0 and VarF (X) = σ2 > 0, there are the

following three possible cases about EF [1{X⩽t}] = P(X ⩽ t).

• Case 1: Assume 0 < P(X ⩽ t) < 1. Let A = (X > t) and B = (X ⩽ t). By

Lemma 3.7.1 and its notations, x1 = EF [X|X > t] ⩾ t, x2 = EF [X|X ⩽ t] ⩽ t,

0 < p = P(X ⩽ t) < 1, q = P(X > t) = 1 − p, and there exists a two-point

distribution Fεσ such that Fεσ ∈ L(0, σ). With this distribution,

EFεσ [(Xεσ − t)+] = (x1 + εσp− t)+ q + (x2 − εσq − t)+ p

= (x1 + εσp− t) q

⩾ (x1 − t) q = EF [(X − t)+]. (3.53)

• Case 2: Assume t > 0 and P(X ⩽ t) = 1. In this case, EF [(X − t)+] = 0 and

let A = (X ⩽ 0) and B = (0 < X ⩽ t). By Lemma 3.7.1 and its notations,

0 < p = P(0 < X ⩽ t) < 1, q = P(X ⩽ 0) = 1 − p, and there exists a two-point

distribution Fεσ such that Fεσ ∈ L(0, σ). With this distribution,

EFεσ [(Xεσ − t)+] ⩾ 0 = EF [(X − t)+]. (3.54)

• Case 3: Assume t < 0 and P(X ⩽ t) = 0. In this case, EF [(X − t)+] = EF (X − t) =

−t as P(X > t) = 1 and let A = (X > 0) and B = (t < X ⩽ 0). By Lemma 3.7.1

and its notations, 0 < p = P(t < X ⩽ 0) < 1, q = P(X > 0) = 1 − p, and there

exists a two-point distribution Fεσ such that Fεσ ∈ L(0, σ). With this distribution

and Jensen’s inequality,

E[(Xεσ − t)+] ⩾ (E[Xεσ ]− t)+ = (0− t)+ = −t = EF [(X − t)+]. (3.55)
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By combining all the three cases (3.53)-(3.55), we see that for any F ∈ L(0, σ), there exists
a two-point distribution Fεσ ∈ L(0, σ) such that E[(Xεσ −t)+] ⩾ E[(X−t)+], which implies

that

sup
F∈L2(0,σ)

EF [(X − t)+] ⩾ sup
F∈L(0,σ)

EF [(X − t)+], (3.56)

Since L2(0, σ) ⊂ L(0, σ), we have supF∈L2(0,σ) E
F [(X − t)+] ⩽ supF∈L(0,σ) EF [(X − t)+],

which, together with (3.56), implies (3.52) holds.

In this chapter, for a set A ∈ R, A > 0 means x > 0 for any x ∈ A and A < 0 means

x < 0 for any x ∈ A. We point out that a two-point symmetric distribution about 0

can as viewed as a degenerated three-point distribution about 0 if the probability mass

function at 0 is 0. In this chapter, a degenerated three-point symmetric distribution about

0 or a two-point symmetric distribution about 0 is also called a three-point symmetric

distribution about 0.

Lemma 3.7.3. For any F ∈ LS(0, σ) and Borel sets A1, A2, A3 ⊂ R satisfying that

A1 > 0, A3 < 0, A1 = −A3, 0 ∈ A2, and A2 is a symmetric set about 0, Ai ∩ Aj = ∅ for

any 1 ⩽ i < j ⩽ 3, denote pi = EF [1{X∈Ai}] = P(X ∈ Ai), i = 1, 2, 3. If p1 + p2 + p3 = 1,

0 < p1 = p3 < 1, 0 ⩽ p2 < 1, let Fε be the three-point symmetric distribution of the

three-point random variable Xε that is is defined as

Xε = (x1 + ε)1{X∈A1} + x21{X∈A2} + (x3 − ε)1{X∈A3}, (3.57)

where xi = E[X|X ∈ Ai] for i = 1, 2, 3, and ε ⩾ 0, then there exists a constant εσ ⩾ 0 such

that the three-point symmetric distribution Fεσ ∈ LS(0, σ).

Proof. Under the assumptions of Lemma 3.7.3, if 0 < p2 < 1, then Xε is a three-point

symmetric random variable about 0; if p2 = 0, then Xε is reduced to Xε = (x1+ε)1{X∈A1}+

(x3− ε)1{X∈A3}, which is a two-point symmetric random variable about 0. In Lemma 3.7.3

and its proof, if p2 = 0, x2 = EF [X|X ∈ A2] is read as 0; if p2 > 0, x2 = EF [X|X ∈ A2] = 0

as X is symmetric random variable about 0. In addition, x1 = −x3 and p1 = p3.
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It is easy to see that for any F ∈ LS(0, σ),

EF [Xε] = (x1 + ε)p1 + x2p2 + (x3 − ε)p3 = x1p1 + x2p2 + x3p3 = EF [X] = 0,

Var(Xε) = EF [X2
ε ] = (x1 + ε)2 p1 + x22 p2 + (x3 − ε)2 p3

= x21 p1 + x22 p2 + x23 p3 + 2(x1p1 − x3p3)ε+ (p1 + p3)ε
2 ≜ g(ε).

Thus, by (3.51), we have g(0) = x21 p1+x
2
2 p2+x

2
3 p3 ⩽ EF [X2] = σ2. Since g(ε) is a quadratic

function with g(∞) = ∞, there exists a constant εσ ⩾ 0 such that g(εσ) = Var(Xεσ) = σ2.

Therefore, Fεσ ∈ L(0, σ).

Lemma 3.7.4. For any t ∈ R,

sup
F∈LS(0,σ)

EF [(X − t)+] = sup
F∈L3,S(0,σ)

EF [(X − t)+]. (3.58)

Proof. We consider the cases t ⩾ 0 and t < 0.

• Case 1: Assume that t ⩾ 0. For any F ∈ LS(0, σ), let X ∼ F , there are the

following two possible cases about P(X > t), P(−t ⩽ X ⩽ t), P(X < −t).

– Case 1.1: Assume 0 < P(X > t) < 1, 0 ⩽ P(−t ⩽ X ⩽ t) < 1, 0 < P(X <

−t) < 1. Let A1 = (X > t) and A2 = (−t ⩽ X ⩽ t), A3 = (X < −t).
Then by Lemma 3.7.3 and its notations, we know that x1 = EF [X|X > t] ⩾ t,

x2 = EF [X| − t ⩽ X ⩽ t] = 0, x3 = EF [X|X < −t] ⩽ 0, and there exists

a three-point symmetric distribution Fεσ such that Fεσ ∈ LS(0, σ). With this

distribution Fεσ ,

EFεσ [(Xεσ − t)+] = (x1 + εσ − t)+ p1 + (x2 − t)+ p2 + (x3 − εσ − t)+ p3

= (x1 + εσ − t) p1

⩾ (x1 − t) p1 = EF [(X − t)+]. (3.59)

– Case 1.2: Assume P{−t ⩽ X ⩽ t} = 1. In this case, EF [(X − t)+] = 0. Let

A1 = (0 < X ⩽ t), A2 = (X = 0), A3 = (−t ⩽ X < 0). Then by Lemma

3.7.3 and its notations, there exists a three-point symmetric distribution Fεσ
such that Fεσ ∈ LS(0, σ), With this distribution Fεσ ,

EFεσ [(Xεσ − t)+] ⩾ 0 = EF [(X − t)+]. (3.60)
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• Case 2: Assume that t < 0. For any F ∈ LS(0, σ), let X ∼ F , there are the following

two possible cases about P(X > −t), P(t ⩽ X ⩽ −t), P(X < t).

– Case 2.1: Assume 0 < P(X > −t) < 1, 0 ⩽ P(t ⩽ X ⩽ −t) < 1, and 0 <

P(X < t) < 1. Let A1 = (X > −t), A2 = (t ⩽ X ⩽ −t), A3 = (X < t). Then

by Lemma 3.7.3 and its notations, we see that x1 = EF [X|X > −t] ⩾ −t > 0,

x2 = EF [X|t ⩽ X ⩽ −t] = 0, x3 = EF [X|X < t] ⩽ t < 0, and there exists a

three-point symmetric distribution Fεσ such that Fεσ ∈ LS(0, σ). With this Fεσ
and noticing that −t > 0, we have

EFεσ [(Xεσ − t)+] = (x1 + εσ − t)+ p1 + (x2 − t)+ p2 + (x3 − εσ − t)+ p3

= (x1 + εσ − t) p1 + (x2 − t) p2

⩾ (x1 − t) p1 + (x2 − t) p2 = EF [(X − t)+]. (3.61)

– Case 2.2: Assume P(t ⩽ X ⩽ −t) = 1. In this case, EF [(X−t)+] = EF [X−t] =
−t. Let A1 = (0 < X ⩽ −t), A2 = (X = 0), A3 = (t ⩽ X < 0). Then by

Lemma 3.7.3 and its notations, we see that 0 ⩽ x1 = EF [X|0 < X ⩽ −t] ⩽ −t,
x2 = EF [X|X = 0] = 0, x3 = EF [X| − t ⩽ X < 0] ⩽ 0, and there exists

a three-point symmetric distribution Fεσ such that Fεσ ∈ LS(0, σ). With this

distribution Fεσ and by Jensen’s inequality, we have

EFεσ [(Xεσ − t)+] ⩾ [(E[Xεσ ]− t)+] = (−t)+ = −t = EF [(X − t)+]. (3.62)

By combing all the four cases (3.59)-(3.62), we see that for any F ∈ LS(0, σ), there
exists a three symmetric distribution Fεσ such that E[(Xεσ − t)+] ⩾ E[(X − t)+],

which implies that

sup
F∈L3,S(0,σ)

EF [(X − t)+] ⩾ sup
F∈LS(0,σ)

EF [(X − t)+]. (3.63)

Since L3,S(0, σ) ⊂ LS(0, σ), we have supF∈L3,S(0,σ)
EF [(X−t)+] ⩽ supF∈L(0,σ) EF [(X−

t)+], which, together with (3.63), implies that (3.58) holds.
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Lemma 3.7.5. For any t ∈ R+,

sup
F∈L+(µ,σ)

EF [(X − t)+] = sup
F∈L+

2 (µ,σ)

EF [(X − t)+]. (3.64)

Proof. It suffices to show that for any F ∈ L+(µ, σ), there exists F ∗ ∈ L+
2 (µ, σ) such that

EF [(X − t)+] ⩽ EF ∗
[(X − t)+]. Note that EF [(X − t)+] ⩾ (µ− t)+ for any F ∈ L+(µ, σ).

We only need to consider the distribution F ∈ L+(µ, σ) with EF [(X − t)+] > (µ − t)+ ⩾

max{µ− t, 0}, that means, PF (X > t) ∈ (0, 1).

Let X ∼ F . Note that for any F ∈ L+(µ, σ), it holds that µ > 0, and let X ∼ F .

Assume that q = P(X > t) ∈ (0, 1) with p = P(X ⩽ t) = 1− q. Define F ∗ as a two-point

distribution of the random variable X that is defined as X = x11{X>t} + x21{X⩽t}, where

x1 = xF1 = EF [X|X > t] > t, 0 ⩽ x2 = xF2 = EF [X|X ⩽ t] ⩽ t as F ∈ L+(µ, σ), and

x1 > x2.

Clearly, EF [X] = x1 q + x2 p = EF [X] = µ. In addition, by (3.51), we have

Var(X) = E[X2]− (E[X])2 = x21 q + x22 p− µ2 ⩽ EF [X2|X > t] q + E[X2|X ⩽ t] p− µ2

= E[X2]− µ2 = Var(X) = σ2.

Define the random variable Xε as

Xε = (x1 + pε)1{X>t} + (x2 − qε)1{X⩽t}, ε ∈ [0, x2/p].

We have E[Xε] = µ, and

Var(Xε) = (x1 + pε)2q + (x2 − qε)2p− µ2 = σ2
0 + 2pq(x1 − x2)ε+ p2qε2 + qp2ε2,

which is continuous and increasing in ε ∈ [0, ε] with ε = x2/q and σ
2
0 = x21q+x

2
2p−µ2. We

next find the desired F ∗ by considering the following two cases.

(1) If Var(Xε) ⩾ σ2, then there exists ε0 ∈ [0, ε] such that Var(Xε0) = σ2. In addition,

noting that for any ε ∈ [0, ε], x1 + pε ⩾ x1 > t ⩾ x2 ⩾ x2 − qε, we have

E[(Xε − t)+] = (x1 + pε− t)q ⩾ (x1 − t)q = EF [(X − t)+],

and thus, the distribution of Xε is the desired distribution F ∗.
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(2) If Var(Xε) < σ2, note that Xε = (x1+pε)1{X>t}+0×1{X⩽t} =: x1{X>t}+0×1{X⩽t},

where x = x1+ pε. For δ ∈ [0, q), let U ∼ U[0, 1], and define random variable Xε,δ as

Xε,δ =
q x

q − δ
1{U⩾p+δ}.

One can verify that E[Xε,δ] = E[Xε] = µ, and

Var(Xε,δ) =
(q x)2

q − δ
− µ2,

which is continuous and increasing in δ ∈ [0, q) and satisfies Var(Xε,0) = Var(Xε) <

σ2 and limδ→q Var(Xε,δ) = ∞. There thus exists δ0 ∈ (0, q) such that Var(Xε,δ0) = σ2,

that is, the distribution of Xε,δ0 belongs to L+
2 (µ, σ). In addition, note that

E[(Xε,δ0 − t)+] =

(
q x

q − δ0
− t

)
(q − δ0)

= q x− t(q − δ0) ⩾ q x− tq ⩾ (x1 − t)q = EF [(X − t)+],

where the two inequalities follow from δ0 ⩾ 0 and x ⩾ x1, respectively. Thus, the

distribution of Xε,δ0 is the desired distribution F ∗.

Combining cases (1) and (2), we complete the proof.

By combining Lemmas 3.7.2, 3.7.4, 3.7.5, we conclude that the proof of Jagannathan

(1977) for Proposition 3.2.1 is correct and that the supremums of EF [(X−t)+] over L(µ, σ),
LS(µ, σ), and L+(µ, σ) can be reformulated as the supremums of EF [(X−t)+] over L2(µ, σ),

L3,S(µ, σ), and L+
2 (µ, σ), respectively.
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Chapter 4

An axiomatic theory for anonymized

risk sharing

4.1 Introduction

Risk sharing, as one of the classical risk management mechanisms, refers to pooling risks

from several participants in a group and reallocating the total risk in a specific way. A

risk sharing scheme arises in many different business practices, such as insurance, tontines,

profit sharing contracts in investment, to name a few. In these contexts, either profits or

losses, or both of them, may be shared among participants. The traditional approach to

study risk sharing is via equilibrium, either Pareto or competitive equilibria, dating back

to the classic work of Arrow and Debreu (1954) and Borch (1962); see, e.g., Starr (2011)

for a general treatment. In either form of equilibria, information on the preferences of

the agents is required to define and compute an equilibrium. Commonly used preferences

include expected utility, rank-dependent utility, cumulative prospect theory, risk measures,

and many more advanced models; see Wakker (2010) for decision models and Föllmer and

Schied (2016) for risk measures. However, in many practical situations, one rarely has

precise information on the preferences, since elicitation of preferences can be challenging

and costly (e.g., Leonard (1983)), and preferences may be incomplete, ambiguous, or falsely
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supplied (e.g., Delage and Li (2018)). This is especially relevant in digital economy, where

anonymized digital platforms are used to implement risk sharing, such as P2P insurance,

revenue sharing of digital music and movies, and blockchain mining pools.

In this chapter, we consider a framework of anonymized risk sharing, where no infor-

mation on preferences is required or used. The key feature of this framework is that agents

do not need to disclose their preferences, identity, or wealth level.1 More precisely, the

allocation to an agent is determined by the initial risk contributions of all agents, but not

the specification of these agents. For this reason, anonymized risk sharing schemes are

desirable in several application such as P2P insurance (e.g., Denuit (2019) and Abdikeri-

mova and Feng (2022)), Bitcoin mining pools (e.g., Eyal and Sirer (2018) and Leshno and

Strack (2020)), and tontines (e.g., Chen et al. (2019) and Hieber and Lucas (2022)), and

revenue sharing of digital content (e.g., Meyn et al. (2023)). Anonymized risk sharing is

also closely related to the concept of decentralized risk sharing, where some key features

are that no capital reserve is needed and agents settle their allocations via a pre-specified

contract and a payment network; see Feng (2023). Examples of decentralized insurance

include decentralized P2P insurance, mutual aid, and catastrophic risk pooling; see Feng

et al. (2022) for a summary of models for decentralized insurance.

Since no information on individual preferences is known in the setting of anonymized

risk sharing, it is difficult to apply equilibrium approaches. To better understand a suit-

able anonymized risk sharing rule, we put forward four natural axioms, namely, actuarial

fairness, risk fairness, risk anonymity, and operational anonymity. The interpretation and

desirability of these axioms will be discussed in detail in Section 4.3. Quite remarkably, we

show in Section 4.4 that these four axioms uniquely identify one risk sharing rule (Theorem

4.4.1), the conditional mean risk sharing (CMRS). As far as we know, this chapter provides

the first axiomatic result for any risk sharing rules.

As an important risk sharing rule in economic theory with many attractive proper-

ties, CMRS was used by Landsberger and Meilijson (1994) to study Pareto optimality

1We chose the term “anonymized risk sharing” over “anonymous risk sharing”, as the former emphasizes

that individual information is deliberately masked (but it could be available), and the latter stresses that

such information is not known or supplied.
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of comonotonic risk allocations, and its properties were studied in detail by Denuit and

Dhaene (2012); see Denuit et al. (2022a) for a summary of these properties. Our charac-

terization hence provides a first axiomatic foundation for CMRS and its applications in

economic theory and decentralized finance and insurance.

On the technical side, the proof of Theorem 4.4.1 relies on a new characterization of the

conditional expectation which we present in Theorem 4.4.2. We further show that the four

axioms are independent (Proposition 4.4.1), and the characterization holds also on half

spaces (Theorem 4.4.3), common in the context of loss sharing or profit sharing. Several

other properties related to our axioms are studied in Section 4.5, including backtracking,

universal improvement, comonotonicity, and symmetry. In particular, we show that CMRS

is the unique risk sharing rule satisfying universal improvement, risk anonymity, and op-

erational anonymity, complementing the characterization in Theorem 4.4.1. Section 4.7

further generalizes the above framework to include modeling of target information. The

formulation of target information is motivated by the consideration that in some risk shar-

ing contexts, participants may prefer settling the risk transfer via some other information

in addition to the total incurred loss or profit. This formulation allows for a wider spec-

trum of practical applications. Applications discussed in Section 4.8 include blockchain

mining pools, and revenue sharing of digital music and videos, highlighting the suitability

of our axiomatic and the implication on risk sharing mechanisms. Proofs of all results are

relegated to the Appendix 4.10.

Research on axiomatic approaches for decision models and risk measures has a long

history. For a specimen, see the monographs by Gilboa (2009), Wakker (2010) and the

extensive lists of references therein. Axiomatic studies on risk functionals have been prolific

in decision theory (e.g., Yaari (1987), Schmeidler (1989), Maccheroni et al. (2006) and

Gilboa et al. (2010)) and risk measures (e.g., Artzner et al. (1999), Föllmer and Schied

(2002) and Wang and Zitikis (2021)). Gilboa et al. (2019) had a recent discussion on

the usefulness of axiomatic approaches in modern economic theory. Despite the huge

success of axiomatic theories for risk functionals, an axiomatic study for risk sharing rules

is missing from the literature; our work fills in this gap. Our new framework imposes

substantial technical challenges compared to the above literature, as the risk sharing rules
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are multi-dimensional and random-vector-valued, as opposed to preference functionals or

risk measures, which are typically real- or vector-valued.

4.2 Risk sharing rules: Definition and examples

We describe in this section the main object of the chapter, the risk sharing rules. For

this, we first need to fix some notation. Let (Ω,F ,P) be a probability space and X be

a convex cone of random variables on this space, representing the set of possible random

losses of interest. Assume 0 ∈ X . Positive values of random variables represent losses and

negative values represent gains; this convention makes no difference in all mathematical

results. We always treat almost surely (a.s.) equal random variables as identical, and we

use supX for the essential supremum of X, that is, supX = inf{x ∈ R : P(X > x) = 0}.

In our framework, n economic agents share a total risk, where n ⩾ 3 is an integer. We

assume n ⩾ 3 since the case n = 2 is technically different and practically limiting; see

Example 4.5.1 in Section 4.5.1. For notation simplicity we write

[n] = {1, . . . , n}.

Each agent i ∈ [n] faces an initial risk Xi, which is the risk contribution of agent i to the

risk sharing pool. We use the term “risk” to reflect that the random variable Xi may be

positive or negative, and sometimes we use the term “loss” to emphasize its positive side.

For any random variable S, the set of all allocations of S is denoted by

An(S) =

{
(Y1, . . . , Yn) ∈ X n :

n∑
i=1

Yi = S

}
.

Throughout, we write X = (X1, . . . , Xn) for the initial risk (contribution) vector, and

SX =
∑n

i=1Xi for the total risk.

A risk sharing rule is a mapping A : X n → X n satisfying AX = (AX
1 , . . . , A

X
n ) ∈

An(S
X) for each X ∈ X n. The requirement AX ∈ An(S

X) means that AX sums up to the

total risk. In other words, there is no external fund coming in or out of the risk sharing pool
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except for the initial contributions of the agents, a most natural requirement for defining

an allocation rule. Each component of AX represents the (random) allocation of risk to an

agent. Through the rule A, the initial risk vector X enters the sharing pool as an input,

and the allocation vector AX comes out as the output. Given each scenario ω ∈ Ω, the

actual payment is settled as the vector AX(ω) ∈ Rn. A positive payment AX
i (ω) = x > 0

means that agent i needs to pay the amount of x, because positive values represent losses.

This simple procedure is illustrated in Figure 4.1.

initial risks X allocation AX
A

input of A output of A

payment AX(ω)
ω

realization of AX

Figure 4.1: Risk sharing procedure

As a key feature of this framework, different from the large body of risk sharing problems

studied in the literature, a risk sharing rule A does not require any information on the

preferences of the agents, a risk exchange market, or subjective decisions of a central

planner. The risk allocation will be determined completely through the mechanism design

and the input risk vector.

We next provide several simple examples of risk sharing rules; see Denuit et al. (2022a)

for a collection of risk sharing rules and their properties. Throughout, for q ∈ [0,∞),

denote by Lq = Lq(Ω,F ,P) the set of all random variables with a finite q-th moment, and

Lq+ be the set of non-negative elements of Lq. We use the shorthand Lq, and we will write

the full Lq(Ω,G, Q) when we encounter another probability space (Ω,G, Q). Some of the

risk sharing rules below require X to be a subset of some specific spaces. We always use

the convention 0/0 = 0 which may appear in degenerate cases of (vi) and (vii).

(i) The identity risk sharing rule

AX
id = X for X ∈ X n.

(ii) The all-in-one risk sharing rule

AX
all =

(
SX, 0, . . . , 0

)
for X ∈ X n.
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(iii) The mean-adjusted all-in-one risk sharing rule

AX
ma =

(
SX − E[SX], 0, . . . , 0

)
+ E[X] for X ∈ X n ⊆ (L1)n.

(iv) The uniform risk sharing rule

AX
unif = SX

(
1

n
, . . . ,

1

n

)
for X ∈ X n.

(v) The conditional mean risk sharing rule (CMRS)

AX
cm = E

[
X|SX

]
for X ∈ X n ⊆ (L1)n.

(vi) The mean proportional risk sharing rule

AX
prop =

SX

E[SX]
E[X] for X ∈ X n ⊆ (L1

+)
n.

(vii) The covariance risk sharing rule

AX
cov =

SX − E[SX]

Var(SX)
Cov(X, SX) + E[X] for X ∈ X n ⊆ (L2)n.

These examples will be revisited repeatedly in the chapter. Among them, CMRS in (v)

is the most important for our theory of anonymized risk sharing.

4.3 Four axioms for anonymized risk sharing

We next discuss desirable criteria for risk sharing rules by addressing the considerations

of both fairness and anonymity. Fairness refers to the feature that an agent does not receive

an absurd or unjustified allocation. Anonymity refers to the feature that agents do not need

to disclose information on their identity, wealth, preferences, rank or ordering, and final

realized losses. Given a risk sharing rule A, the only information required to determine the

risk allocation is the initial risk vector X. Anonymity also guarantees that each agent will
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not be treated differently and this reduces discrimination. As such, anonymity is closely

related to fairness, although the two concepts have different motivations. To reflect these

key features, we propose four natural axioms on a candidate risk sharing rule A. Two

of these axioms may be categorized as fairness axioms, and two may be categorized as

anonymity axioms.

Axiom AF (Actuarial fairness). The expected value of each agent’s allocation coincides

with the expected value of the initial risk. That is, E[AX] = E[X] for X ∈ X n.

Axiom AF is one of the most ancient and formidable idea in risk management, which

dates back to at least the 16th century; see Heras et al. (2020) for a history. AF serves as

the basis for premium pricing in insurance, and this served as one of the earliest sources

for studying probability and statistics.2 Certainly, not all risk exchanges in practice are

actuarially fair. In our framework, because of no information on the preferences or identities

of the agents, it should not happen that one agent would receive an allocation with a

higher expected value than her contribution, and some others receive allocations with

lower expected values. Recall that the sum of these expected values is equal to the sum of

the total risk, and hence agents on average receive the same expected value before and after

risk sharing. Based on the above reasons, AF is a most natural requirement for anonymized

risk sharing, and here we observe a joint effect of fairness and anonymity. The recent book

Friedman (2020) has a comprehensive non-technical treatment on the historical importance

of actuarial fairness and probability theory in insurance and social welfare.

Axiom AF can be alternatively formulated via incentives to join a risk sharing pool. AF

means that the risk sharing rule does not exclude any risk-neutral agents, who would not

join the risk sharing pool if the expected value of their risk increases after risk exchange.

Since preferences are not revealed, a risk sharing rule should not exclude by design risk-

neutral agents; we recall that a fundamental model of insurance (Arrow (1963)) involves a

risk-neutral insurer to help share losses from risk-averse insureds.

Axiom RF (Risk fairness). The allocation to each agent should not exceed their max-

imum possible loss. That is, for X ∈ X n and i ∈ [n], it holds that AX
i ⩽ supXi.

2As we know, another important early source, roughly around the same time, is gambling, which

motivated some work of Blaise Pascal, Pierre de Fermat, and Jacob Bernoulli.
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Axiom RF reflects the idea that agents join the pool to share their risk, and they should

not have to suffer more than their worst-case loss.3 For each realization of the actual losses,

the allocation satisfies the no rip-off condition in the insurance pricing literature (Deprez

and Gerber (1985)), which says that an insured will never pay more premium than their

maximum possible loss. If AX
i ⩽ supXi does not hold, then an agent with no risk of

default may introduce positive probability of default after risk sharing, a clearly undesirable

situation. For instance, using a power or logarithmic utility function, an agent’s potential

loss should never exceed her total wealth level (this may be called bankruptcy aversion),

and Axiom RF says that there is no bankruptcy after the risk exchange if the initial risk

is safe in this regard. Hence, formulated via incentives, this axiom means that not all

bankruptcy-averse agents are excluded, which is arguably a weak requirement.

Two special implications of RF may be useful.4 First, if the agent brings a pure surplus

to the pool, i.e., Xi ⩽ 0, its allocation should also be a pure surplus; this is certainly true

if X is contained in a half space such as the space of negative random variables. Second,

in conjunction with Axiom AF, RF yields

for X ∈ X n and i ∈ [n], if Xi = x is a constant, then AX
i = x; (4.1)

this follows from AX
i ⩽ x and E[AX

i ] = x. That is, if the initial risk of an agent is a

constant, then there is no risk exchange for this agent; this is quite intuitive since any risk-

averse agent (in the sense of Rothschild and Stiglitz (1970)) would not trade a constant risk

with a non-constant risk with the same mean. As a particular example, for a risk vector

(X, 0, . . . , 0), i.e., only the first agent has a non-zero initial risk, this property implies

A
(X,0,...,0)
1 = X and A

(X,0,...,0)
j = 0 for j ̸= 1, (4.2)

which is arguably the only reasonable allocation in this particular case. On a point related

to (4.1) and (4.2), our framework does not include the mechanism of side-payments, as

3We can alternatively formulate Axiom RF using AX
i ⩾ infXi, where inf is the essential infimum. This

has the same interpretation if we interpret positive values of random variables as gains instead of losses.

With this formulation, mathematical results in the chapter remain the same due to symmetry.
4We can also check that Axiom RF is implied by these two simpler properties in conjunction with

Axiom OA.

78



in e.g., selling insurance, because deciding side-payments usually requires the knowledge

of specific identities or preferences (e.g., which agent is institutional, more risk averse, or

with more bargaining power).

Axiom RA (Risk anonymity). The realized value of the allocation to each agent is

determined by that of the total risk. That is, for X ∈ X n, AX is σ(SX)-measurable.

Axiom RA is central to the idea of designing a risk sharing mechanism. It means

that the total realized allocation is determined only by the total loss suffered by the risk

sharing pool, and not by specific losses from the individual participants. This resembles

the earliest idea in insurance and risk sharing: Individuals get together to share their

total future losses (in early years, these losses are typically caused by unexpected deaths,

diseases or injuries), regardless of which one of them is the realized cause of the future loss.

In other words, once an agent enters the pool, her own realized loss no longer matters,

and only the realized loss of the pool matters. This reflects anonymity, as each agent does

not need to disclose what is the realized loss; all individual losses are masked and only the

total loss is revealed. The knowledge of the initial risk vector is only used for the design

of the risk sharing mechanism, but not for the settlement of actual losses (see Figure 4.1).

Technically, RA holds for X ∈ X n satisfying that AX is comonotonic. As studied by

Borch (1962) and Landsberger and Meilijson (1994), comonotonicity is closely related to

Pareto optimality for risk-averse agents; see Section 4.5 for details.

Axiom OA (Operational anonymity). The allocation to one agent is not affected if

risks of two other agents merge. That is, AY
k = AX

k for k ̸= i, j for X ∈ X n, i, j ∈ [n] and

Y = X + Xjei − Xjej, where ek = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector along the k-th

axis (the k-th component is 1).

In the definition of Axiom OA, the risk vector Y can be written by Yi = Xi + Xj,

Yj = 0 and Yk = Xk for k ̸= i, j. Axiom OA means that merging the risks of two agents

will not affect the allocation components of uninvolved agents. This also implies that a

redistribution of risks between agent i and j does not affect agent k for k ̸= i, j. In an

anonymized risk sharing framework, two agents may be two different accounts of the same
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family, same organization, or even the same person. Their internal (private) operations

do not need to be disclosed and should not affect the allocation to other agents. OA is

called the property of fair merging by Denuit et al. (2022a), which clearly has a connection

to fairness, although our motivation is different from the latter chapter. In the context

of Bitcoin mining, Leshno and Strack (2020) formulated two axioms, called robustness to

Sybil attacks and robustness to merging, which together reflect the same consideration as

OA. This property is further explained in the following simple example.

Example 4.3.1. Assume X = (X1, X2, X3) and Y = (X1, X2 + X3, 0). In this setting,

we have AY
1 = AX

1 if Axiom OA holds. Further, we have AY
3 = 0 from (4.1) implied by

AF and RF, leading to AY
2 = AX

2 +AX
3 . Therefore, by merging risks from agents 2 and 3,

agent 2 now takes up the total allocation to the two agents, and the allocation to agent 1

is unaffected by this operation.

Axiom OA can be alternatively formulated by another intuitive property that AX
i is

determined by (Xi, S
X) for each i andX. This latter property implies OA by definition. To

see that OA implies this property, it suffices to observe, by repeatedly merging all agents

except for agent 1, that

AX
1 = A

(X1,SX−X1,0,...,0)
1 (4.3)

holds. We summarize the above observation in the following proposition, which is conve-

nient to use for our later discussions.

Proposition 4.3.1. A risk sharing rule A satisfies Axiom OA if and only if for all X ∈ X n

and i ∈ [n], AX
i is determined by (Xi, S

X).

As discussed in this section, the four axioms are mathematically very simple and ar-

guably natural in the framework of anonymized risk sharing. Quite remarkably, these four

axioms uniquely pin down one risk sharing rule, which will be studied in the next section.
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4.4 Two axiomatic characterizations of CMRS

4.4.1 An axiomatic characterization with four axioms

In this subsection, we show that Axioms AF, RF, RA and OA uniquely identify CMRS

among all risk sharing rules. Recall that CMRS is defined as

AX = E
[
X|SX

]
for X ∈ X n ⊆ (L1)n,

and equivalently, AX
i = E[Xi|SX] for i ∈ [n]. For the ease of presentation, we take X = L1

or L1
+ in all our results; these results hold true for X = Lq and X = Lq+ with q ∈ [1,∞]

following the same proof; see Remark 4.10.1.

We first briefly check that CMRS satisfies the four axioms by using properties of the

conditional expectation E[X|S] for any (X,S) ∈ X 2 which will be chosen as (Xi, S
X) for

i ∈ [n]. First, AF holds by the tower property E[E[X|S]] = E[X]. Second, RF holds since

E[X|S] ⩽ supX. Third, RA holds by definition since E[X|S] is a function of S. Fourth,

OA holds since E[X|S] is determined solely by (X,S). See also Denuit et al. (2022a) for

these and other properties of CMRS.

Theorem 4.4.1. Assume X = L1, i.e., the set of all integrable random variables. A risk

sharing rule satisfies Axioms AF, RF, RA and OA if and only if it is CMRS.

Theorem 4.4.1 is the main result of the chapter, showing that the four fairness and

anonymity axioms allow for only one risk sharing rule. As far as we know, Theorem 4.4.1

is the first axiomatic characterization of risk sharing rules in the literature.

The “if” statement in Theorem 4.4.1, that CMRS satisfies the four axioms, has been

checked above. The “only if” statement, which is the most important part of Theorem

4.4.1, requires a much more involved proof based some advanced results from functional

analysis. Below we provide an intuitive sketch of the proof in the case that (Ω,F ,P) is

discrete. A full proof is presented in Appendix 4.10.1.

For a discrete Ω, the main idea is to analyze each possible realized value s ∈ R of SX one

by one. There are at most countably many such s. Let A be a risk sharing rule satisfying
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the four axioms. We focus on the allocation to agent 1, and aim to show AX
1 = E[X1|SX]

for all X ∈ X n; the allocations to the other agents are similar. Fix S ∈ X , and we will

first consider the risk vector (X,S −X, 0, . . . , 0) by allowing X to vary within X . Let V

be the set of possible values taken by S. By RA, the value of the allocation A
(X,S−X,0,...,0)
1

to agent 1 is a determined by the realized value s ∈ V of S and X. Denote this value by

hS,s(X), that is, for fixed S ∈ X and s ∈ V ,

hS,s(X) = A
(X,S−X,0,...,0)
1 given S = s. (4.4)

We can carefully check that hS,s : X → R satisfies the following properties (in the last

property we allow s to vary in V ):

(a) normalization: hS,s(t) = t for all t ∈ R; (by (4.1))

(b) additivity: hS,s(X + Y ) = hS,s(X) + hS,s(Y ) for X, Y ∈ X ; (by OA and (a))

(c) monotonicity: hS,s(Y ) ⩾ hS,s(X) if Y ⩾ X; (by RF and (b))

(d) hS,s(S) = s; (by RF and (4.2))

(e)
∑

t∈V h
S,t(X)P(S = t) = E[X] for X ∈ X . (by AF)

The properties (a), (b) and (c) together guarantee that hS,s is linear, monotone, and

normalized. Using a standard representation theorem (such as that of Riesz), there exists

a probability measure PS,s such that

hS,s(X) =

∫
XdPS,s for all X ∈ X . (4.5)

The next task is to show that PS,s is precisely the conditional probability P(·|S = s). Let

x ∧ y represent the minimum of x, y ∈ R. Using (d) and taking X = S ∧ x in (4.5), we

arrive at

hS,s(S ∧ x) ⩽
∫
SdPS,s ∧

∫
xdPS,s = s ∧ x.

This inequality further implies

E[S ∧ x] =
∑
t∈V

(t ∧ x)P(S = t) ⩾
∑
t∈V

hS,t(S ∧ x)P(S = t) = E[S ∧ x],

82



where the last equality is due to (e). Hence, we get hS,s(S ∧x) = s∧x for each s ∈ V , and

this gives, in particular,
∫
(S ∧ s)dPS,s = s. Therefore, PS,s(S ⩾ s) = 1. Using symmetric

arguments, we can show PS,s(S ⩽ s) = 1. As a result, PS,s(S = s) = 1. Using this equality

and (e), for any B ⊆ {S = s}, we have

P(B|S = s) =
E[1B]

P(S = s)
=

∑
t∈V h

S,t(1B)P(S = t)

P(S = s)
=

∑
t∈V PS,t(B)P(S = t)

P(S = s)
= PS,s(B).

Therefore, PS,s(·) = P(·|S = s) and hS,s(X) = E[X|S = s] for X ∈ X . Based on this

result, we can finally get AX
1 = E[X1|SX] for a general X using (4.3) guaranteed by OA.

This concludes the proof of Theorem 4.4.1 in case Ω is discrete.

It is clear that the above proof sketch heavily relies on the assumption that P(S = s) > 0

for s ∈ V , and it cannot be directly generalized to non-discrete spaces. For a proof of

Theorem 4.4.1 on general probability spaces, we need a more refined representation result

in functional analysis. We obtain such a result in Theorem 4.4.2 below, which may be of

independent interest. In what follows, σ(S) is the σ-field generated by S.

Theorem 4.4.2. For a random variable S on (Ω,F ,P) and G = σ(S), consider the map-

ping ϕ : L1(Ω,F ,P) → L1(Ω,G,P). The mapping ϕ is the functional induced by the

conditional expectation, i.e., ϕ(X) = E[X|S] for X ∈ L1(Ω,F ,P), if and only if ϕ satisfies

the following properties: (a) ϕ(t) = t for all t ∈ R; (b) ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all

X, Y ; (c) ϕ(Y ) ⩾ ϕ(X) if Y ⩾ X; (d) ϕ(S) = S, and (e) E[ϕ(X)] = E[X] for all X.

The G-conditional expectation as a mapping from L1(Ω,F ,P) to L1(Ω,G,P) admits

a few different sets of characterizations; Pfanzagl (1967) has a collection of several early

results. For a more recent account, see Eisner et al. (2015, Chapter 13) in the context of

Markov operators. Theorem 4.4.2 extends the above literature by offering a new character-

ization of the conditional expectation. There is a substantial gap between characterizing

risk sharing rules, which is absent from the literature, and characterizing the conditional

expectation, which has a rich history. We mention three notable differences. First, our

framework concerns risk sharing rules, which are mappings from X n to X n with the ad-

ditional property of full allocation, whereas the literature on the conditional expectation

concerns mappings from X to X . Second, the property ϕ ◦ ϕ = ϕ, called idempotentness
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or projection (see e.g., Douglas (1965) and Pfanzagl (1967)), is essential to characterize

the conditional expectation, whereas in our framework this property is implied as a con-

sequence of the four axioms on the risk sharing rule. Third, in our framework, the output

σ-field G depends on the input random vector X, whereas for results on the conditional

expectation, the σ-field G is pre-specified.

In the next proposition, we verify that the four axioms are independent, and thus none

of them can be removed from Theorem 4.4.1.

Proposition 4.4.1. Axioms AF, RF, RA and OA are independent. That is, any com-

bination of three of Axioms AF, RF, RA and OA does not imply the remaining fourth

axiom.

For each axiom, we will provide in Example 4.4.1 a risk sharing rule that only satisfies

three of them but not the fourth one; some of these examples have been listed in Section

4.2. The technical details of these claims are in Appendix 4.10.1.

Example 4.4.1. (i) The Q-CMRS AX
Q-cm = EQ[X|SX] with X ⊆ L1(Ω,F , Q) for a

probability measure Q ̸= P satisfies RF, RA and OA, but not AF.

(ii) The mean-adjusted all-in-one risk sharing rule

AX
ma =

(
SX − E[SX], 0, . . . , 0

)
+ E[X]

with X ⊆ L1 satisfies AF, RA and OA, but not RF. As another example, the covari-

ance risk sharing rule in Section 4.2 also satisfies AF, RA and OA but not RF.

(iii) The identity risk sharing rule AX
id = X satisfies AF, RF and OA, but not RA.

(iv) A combination of Aall and Acm, defined by AX = AX
all = (SX, 0, . . . , 0) if X is

standard Gaussian, and AX = AX
cm = E[X|SX] otherwise, satisfies AF, RF and RA,

but not OA.

In some applications, risk allocation and risk contributions are restricted to being all

positive or all negative, depending on the context. For instance, if agents are sharing P2P
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insurance losses, then it may be sensible to assume X and AX both take non-negative

vector values; if agents are sharing profits from an investment, then it is the opposite;

recall that positive values represent losses and negative values represent gains. A similar

characterization to Theorem 4.4.1 for the case of positive random variables is presented

below; the case of negative random variables holds by symmetry and is omitted.

Theorem 4.4.3. Assume X = L1
+, i.e., the set of all non-negative integrable random

variables. A risk sharing rule satisfies Axioms AF, RF, RA and OA if and only if it is

CMRS.

Technically, Theorem 4.4.3 requires a more sophisticated analysis than Theorem 4.4.1,

as by restricting X to a half space, the mapping hS,s in (4.4) is no longer well-defined on a

closed set under addition. Hence, some extension arguments are needed, and a full proof

is put in Appendix 4.10.1.

By working with the positive half space, Axiom RF in Theorem 4.4.3 can be replaced

by the simpler Property CP stated in (4.1). This is because CP and OA imply RF in case

X = L1
+.

Property CP (Constant preserving). A constant initial risk results in constant allo-

cation. That is, for X ∈ X n and i ∈ [n], Xi = x ∈ R implies AX
i = x.

The restriction of X to a half space allows for the example of the mean proportional

risk sharing rule

AX
prop =

SX

E[SX]
E[X], X ∈ X n ⊆ (L1

+)
n.

Similar to the covariance risk sharing rule, Aprop satisfies AF, RA and OA but not RF or

CP, since a constant Xi does not lead to a constant AX
i .

4.4.2 Another axiomatic characterization

In this section, we provide another way to characterize CMRS in a discrete space

(Theorem 4.4.4). We first introduce a property called law specification which is satisfied

by the CMRS rule.
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Property LS (Law Specification). The risk sharing rule AX
i is determined by the

conditional distribution of Xi on S = s for i = 1, . . . , n and s in the range of S.

Theorem 4.4.4. Assume (Ω,F ,P) is discrete and X = L1(Ω,F ,P). A risk sharing rule

satisfies Property LS and CP, Axioms RF, RA and OA if and only if it is CMRS.

Compared to the Theorem 4.4.1, we substitute Axiom AF for Property LS and CP.

Obviously, Theorem 4.4.4 is weaker than Theorem 4.4.1 since Property LS is a quite strong

property. In practice, it is unlikely to know the information of conditional distribution of

the individual risk.

It is more reasonable to assume that a risk sharing rule AX
i is determined by the dis-

tribution of (Xi, S), or determined by the joint distribution of X. However, we show in

Proposition 4.3.1 that a risk sharing rule satisfies Axiom OA if and only if it is determined

by (Xi, S), and Axiom RF, RA and OA cannot uniquely characterize CMRS (see Exam-

ple 4.4.1(i)). Also, when OA holds, it is equivalent to assume AX
i is determined by the

distribution of (Xi, S) and determined by the joint distribution of X. Thus, it is unlikely

to loose the Property LS in this situation. We put this theorem here as a mathematical

result for characterizing CMRS.

4.5 Other properties and their connection to the four

axioms

In this section, we discuss several further properties that CMRS satisfies or does not

satisfy. These properties are known and straightforward to check. The purpose of this

section is to clarify their relationship with the four axioms in Section 4.3.

4.5.1 Universal improvement in terms of convex order

For two random variables X and Y , we say X is improved compared to Y in convex

order if E[u(X)] ⩽ E[u(Y )] for any convex function u : R → R; this is denoted by X ⩽cx Y .

86



The most appealing feature of CMRS, as argued by Landsberger and Meilijson (1994) and

Denuit and Dhaene (2012), is that it universally improve the risk for a larger class of

decision makers, via the following property.

Property UI (Universal improvement). The allocation improves the initial risk in

convex order. That is, for any X ∈ X n and i ∈ [n], it holds that AX
i ⩽cx Xi.

CMRS satisfies UI as a direct result of conditional Jensen’s inequality. Intuitively, UI

means that the initial risk for each agent has larger variability than the allocation to that

agent. As a consequence, risk-averse agents in the classic sense of Rothschild and Stiglitz

(1970), i.e., those who prefer both an improvement of convex order and a sure gain, will

prefer their UI allocations over their initial risks. In a similar spirit, Denuit and Robert

(2020, Proposition 4.2) showed that if risks in the pool are independent then the CMRS

allocation improves in convex order for each existing agent when the pool is enlarged.

To illustrate the important role of UI for CMRS, we note that UI implies both AF and

RF, since X ⩽cx Y implies X ⩽ supX ⩽ supY and E[X] = E[Y ] for any random variables

X, Y ∈ L1. We summarize this observation in the following proposition.

Proposition 4.5.1. Property UI implies Axioms AF and RF and Property CP.

Combining Proposition 4.5.1 with Theorems 4.4.1 and 4.4.3, we immediately obtain

in Corollary 4.5.1 another characterization of CMRS with AF and RF replaced by UI.

Proposition 4.5.1 and Corollary 4.5.1 also illustrate that UI is a very strong property.

Recall that our characterization in Theorem 4.4.1 relies on the weaker axioms of AF and

RF, and thus the more important “only if” statement is stronger than that of Corollary

4.5.1.

Theorem 4.5.1. Assume X = L1 or L1
+. A risk sharing rule satisfies Axioms RA and

OA and Property UI if and only if it is CMRS.

Finally, we provide a subtle example, showing that the condition n ⩾ 3 which we

assumed from the beginning is indispensable, and this remains true even if we further

assume the stronger property of UI. The intuition is that in case n = 2, Axiom OA is
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empty since no merging operation is possible when one agent’s risk is fixed. As a result, we

cannot obtain the additivity of hS,s in (4.4) which requires some “wiggle room” provided

by the third dimension.

Example 4.5.1. Let n = 2. We design a risk sharing rule A which satisfies all of AF, RF,

RA, OA and UI, but it is not CMRS. Let A = Acm for all X ∈ X n except for a specific

Y = (Y1, Y2), which is given by

AY
1 = E[Y1|SY] + h(SY) and AY

2 = E[Y2|SY]− h(SY),

where h satisfies E[h(SY)] = 0. The intuition is that, if h is sufficiently small and E[Yi|SY]

is sufficiently different from Yi, then A
Y
i ⩽cx Yi still holds, thus satisfying RA, OA and UI.

To make the example explicit, let us take Y1 ∼ N(0, 1) and Y2 ∼ N(0, 2), and Y1, Y2 are

independent. Let h(s) = s/6. Note that SY ∼ N(0, 3). We can compute

AY
1 =

1

3
SY +

1

6
SY =

1

2
SY ∼ N(0, 0.75) and AY

2 =
2

3
SY − 1

6
SY =

1

2
SY ∼ N(0, 0.75).

Hence, for this particular Y, everything in Axiom RA and Property UI (hence Axioms AF

and RF) is satisfied. Axiom OA holds trivially as its statement is empty. Therefore, A is

not CMRS but it satisfies the four axioms and Property UI.

4.5.2 Backtracking

The second property we discuss is the backtracking property, which means that, for

any i ∈ [n] if SX is able to determine Xi, then A
X
i = Xi, and thus there is no risk exchange

involving agent i. It is straightforward to verify that CMRS satisfies this property.

Property BT (Backtracking). For each X ∈ X n and i ∈ [n], if Xi is σ(S
X)-measurable,

then AX
i = Xi.

Property BT is sometimes argued as an undesirable property; see Denuit et al. (2022b).

We give a simple example below for the purpose of discussion.

88



Example 4.5.2. Suppose that X1 = σ1Y1, X2 = σ2Y2, and X3 = σ3Y3, where Y1, Y2, Y3

are iid taking values in {0, . . . , 9}, and σ1 = 1001, σ2 = 1010 and σ3 = 1100. Note that

SX uniquely determines the value of (X1, X2, X3) since the last three digits of SX are

precisely Y3, Y2, Y1. In this example, X1, X2, X3 have similar distributions, and they are

independent. Intuitively, some risk sharing effect is possible for such X, but AX
cm = X due

to the backtracking property.

Property BT intuitively means that there is no risk sharing effect if SX is too informative

compared to the individual contributions. As a consequence, there are some situations,

although perhaps rare, in which CMRS discourages some participants to enter the risk

sharing pool, even if they bring in risks independent of the other participants. Theorem

4.4.1 provides the additional insight that BT is unavoidable, given the four natural axioms

of fairness and anonymity. If some applications demand BT to be avoided, then one has to

relax some axioms. For this, one naturally wonders which of the four axioms are responsible

for Property BT.

The axiom which involves σ(SX) is RA, and a first guess may be that RA is connected

to BT. Somewhat surprisingly, this is not true. In the next result we establish that AF,

RF and OA are sufficient for BT if AX is further assumed σ(X)-measurable; the last

assumption holds in virtually all applications of risk sharing rules as the risk settlement

should not involve extra randomness outside σ(X).

Proposition 4.5.2. Assume X = L1 or L1
+. If a risk sharing rule A satisfies Axioms AF,

RF and OA, and AX is σ(X)-measurable for all X ∈ X n, then it satisfies Property BT.

An example of a risk sharing rule satisfying AF, RF and OA but not RA is the mixture

A = λAid + (1 − λ)Acm for some λ ∈ (0, 1]; such a rule satisfies BT. On the other hand,

the mean-adjusted all-in-one and covariance risk sharing rules in Example 4.4.1 satisfy AF,

RA and OA, and it does not satisfy BT or RF.
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4.5.3 Comonotonicity

Next, we discuss comonotonicity, an important concept in risk sharing. A random vector

(X1, . . . , Xn) is comonotonic if there exists increasing (in the non-strict sense) functions

g1, . . . , gn and a random variable Z such that Xi = gi(Z) a.s. for i ∈ [n].

Property CM (Comonotonicity). For each X ∈ X n, AX is comonotonic.

Property CM implies Axiom RA since each component of a comonotonic random vector

can be written as an increasing function of the sum; see Denneberg (1994). Therefore,

Property CM can be equivalently formulated as that for X ∈ X n and i ∈ [n], there exists

an increasing function gXi : R → R such that AX
i = gXi (S

X).

If Property CM holds, then the allocation to each agent increases as the total realized

risk increases. Under belief homogeneity and mild assumptions, Property CM is also a

necessary condition for a risk sharing rule to be Pareto optimal for risk-averse agents

or for an exchange market with linear prices; see e.g., Borch (1962), Landsberger and

Meilijson (1994) and Boonen et al. (2021). As notable exceptions, quantile-based risk

sharing and belief heterogeneity both result in non-comonotonic Pareto-optimal allocations;

see Embrechts et al. (2018, 2020).

CMRS does not generally satisfy Property CM, which may be seen as a drawback of

CMRS when the preferences of the agents are specified and risk averse, as the allocation

is suboptimal. In our context of anonymized risk sharing, optimality cannot be discussed

this way, since agents’ specific preferences are not relevant. Nevertheless, if s 7→ E[Xi|S =

s] is increasing for each i ∈ [n], then CMRS is comonotonic. There are many specific

models of X for which comonotonicity of CMRS holds; see Denuit et al. (2022a) and the

references therein. In several contexts, such as those with risk-averse agents or moral

hazard, comonotonicity is desirable. On this point, our Theorem 4.4.1 implies the negative

result that the four axioms and Property CM conflict each other. We further strengthen

this result by showing that OA, CM, and a weak version of CP cannot be satisfied by the

same risk sharing rule. This weak version of CP is the following property.

Property ZP (Zero preserving). For X ∈ X n and i ∈ [n], if Xi = 0, then AX
i = 0.

90



It might be useful to recall some logical relationship among some properties and axioms

mentioned above, that is,

UI =⇒ AF + RF =⇒ CP =⇒ ZP; CM =⇒ RA.

Proposition 4.5.3. Assume X = L1. There is no risk sharing rule satisfying Axiom OA

and Properties CM and ZP.

If Property CM is needed in a specific application, one may need to relax some of the

axioms. In the following example, we provide two relaxations to show that it is possible

to have both CM and OA or both CM and UI.

Example 4.5.3. (i) The mean-adjusted all-in-one risk sharing rule satisfies CM (imply-

ing RA), AF, and OA, but not RF or ZP, as we see from Example 4.4.1.

(ii) For each X ∈ X n ⊆ (L1)n, the comonotonic improvement of Landsberger and Meil-

ijson (1994) gives a comonotonic vector X′ such that each component of X′ is dom-

inated by the corresponding component of X and SX′
= SX; see also Rüschendorf

(2013). The risk sharing rule given by AX = X′ satisfies CM (implying RA) and UI

(implying AF and RF), but not OA.

Remark 4.5.1. Property CM is closely related to Pareto optimality for risk-averse decision

makers with specified preferences. Equilibrium and optimality will be discussed in detail

in Section 4.6.

4.5.4 Symmetry

Symmetry is another important property reflecting the spirit both fairness and anonymity.

Let Πn be the set of n-permutations, and we write Xπ = (Xπ(1), . . . , Xπ(n)) for π ∈ Πn and

X ∈ X n.

Property SM (Symmetry). For each X ∈ X n and π ∈ Πn, (A
X)π = AXπ .
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Property SM reflects that consideration that if agents i and j exchange their initial

risk contributions, then they also exchange their allocations. Hence, their identities or

positions in the risk sharing pool does not matter; this clearly relates to both fairness and

anonymity. Property SM is called the reshuffling property by Denuit et al. (2022a), and a

similar property is called anonymity by Leshno and Strack (2020) in the setting of Bitcoin

reward sharing.

Property SM is not directly assumed among our axioms, and CMRS satisfies Property

SM by definition. Therefore, SM must follow from some of the axioms we impose. Since

SM is very intuitive for an anonymized risk sharing rule, we wonder which axioms yield

SM. It turns out that OA and ZP are sufficient for SM.

Proposition 4.5.4. Axiom OA and Property ZP imply Property SM.

We can briefly verify that SM does not come from any one of the four axioms alone.

The mean-adjusted all-in-one risk sharing rule in Example 4.4.1 satisfies AF, RA and OA,

but not SM or ZP. The combination of Aall and Acm in Example 4.4.1 satisfies AF, RF

(hence ZP) and RA, but not SM or OA.

4.6 Equilibrium analysis and optimality

In this section, we focus on equilibrium analysis of CMRS. An existing result by De-

nuit and Dhaene (2012) shows that gX(S) is Pareto-optimal if each component of gX

are comonotonic. However, a number of interesting questions are worth exploring. For

example, is the conditional mean risk sharing a Pareto equilibrium for some models of

preferences? Is it possible to show that, for some preferences, and for all X, the condi-

tional mean risk sharing always gives a Pareto equilibrium? We intend to answer these

questions in this section.

We say that an agent with preference (complete order) ⪯ on X , with its strict relation

denoted by ≺ and equivalence relation denoted by ≃, is

(i) monotone if X ⩾ Y implies X ⪯ Y ;
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(ii) risk-averse if it is monotone and X ⩾cx Y implies X ⪯ Y ;

(iii) strictly risk-averse if it is risk-averse and X ⩾cx Y and X ̸ d= Y imply X ≺ Y .

Given S ∈ X , we define the set of allocations of S as

An(S) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = S

}
. (4.6)

An allocation (Y1, . . . , Yn) ∈ An(S) of S is Pareto optimal if for any (Z1, . . . , Zn) ∈ An(S)

satisfying Zi ⪰i Yi for all i = 1, . . . , n, we have Zi ≃i Yi for all i = 1, . . . , n. Intuitively,

one cannot find another allocation (Z1, . . . , Zn) such that all agents are better off, with at

least one of them strictly better off.

For an initial risk vector (X1, . . . , Xn) ∈ An(S), an allocation (Y1, . . . , Yn) ∈ An(S)

is individually rational if Yi ⪰i Xi for all i = 1, . . . , n. Intuitively, individual rationality

means that the situation of each agent has either improved or remain indifferent. This

condition is necessary for the participation of these agents in the risk sharing problem.

Proposition 4.6.1. The conditional mean risk sharing rule is individually rational for any

n agents with risk-averse preferences.

Below we show a weak result on Pareto optimality where we need to assume the agents

have identical preferences. Choquet utilities of Yaari (1987) include, for instance, those

induced by an Expected Shortfall (e.g., Wang and Zitikis (2021)).

Proposition 4.6.2. Let gX be the conditional mean risk sharing rule for some X ∈ X n

with sum S. If each component of gX is increasing, then gX(S) is Pareto optimal for

any n agents with identical and risk-averse preferences numerically represented by a finite

Choquet utility on X .
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4.7 Generalized risk sharing rules with target infor-

mation

In some applications, more information than simply the realized value of the total risk is

observable, and one may wish to allocate risks according to such information; see Sections

4.8.1 and 4.8.2 below for real-world examples. This leads us to propose a generalization of

risk sharing rules.

Denote by Σ a set of sub-σ-fields of F . A generalized risk sharing rule is a mapping

Â : (X n × Σ) → X n satisfying ÂX|G = (Â
X|G
1 , . . . , Â

X|G
n ) ∈ An(S

X) for each X ∈ X n and

G ∈ Σ. The input σ-field G represents the information used to determine the realized

values of the allocation, called target information. Note that
∑n

i=1 Â
X|G
i = SX implies that

the σ-field of ÂX|G must contain σ(SX) regardless of the choice of G. There may not exist

Â such that ÂX|G is G-measurable for every G ∈ Σ and every X ∈ X n, because G may not

contain the information of SX.

To address this issue, we merge the information in σ(SX) into G, and denote by GX =

σ(SX,G) the σ-field generated by SX and G. Below, we present two properties describing

how the information modeled by G and GX is used for the generalized risk sharing rule Â.

Property IA (Information anonymity). For X ∈ X n and G ∈ Σ, ÂX|G is GX-

measurable.

Property IA reflects on the idea that the risk allocations may not be solely determined

by the realized value of SX but also depend on other information represented by G. Prop-
erty IA is a generalization of Axiom RA. Property IA gives GX-measurability instead of

G-measurability.

Property IB (Information backtracking). For each X ∈ X n and G ∈ Σ, if X is

GX-measurable, then ÂX|G = X.

Property IB is a generalization of Property BT. It reflects on the consideration that
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getting an allocation determined by GX is our target.5 More precisely, no risk exchange

happens if the initial risk is already determined by GX.

For a generalized risk sharing rule Â, we say that it satisfies an axiom or property

introduced for risk sharing rules, if the mapping X 7→ ÂX|G satisfies the corresponding

axiom or property for each G ∈ Σ. The next result characterizes the generalized CMRS,

defined by

ÂX|G
cm = E

[
X|GX

]
for X ∈ X n and G ∈ Σ, (4.7)

among all generalized risk sharing rules.

Theorem 4.7.1. Assume X = L1 or L1
+. A generalized risk sharing rule satisfies Axioms

AF, RF and OA and Properties IA and IB if and only if it is the generalized CMRS.

Theorem 4.7.1 indicates that, assuming AF, RF, OA, IA and IB, the only generalized

risk sharing rule with a given target information GX needs to be calculated based on the

conditional expectation with respect to GX. This interpretation is similar to the result of

Theorem 4.4.1. The generalized CMRS characterized in Theorem 4.7.1 will be useful as

many practical applications involve allocations that are not solely determined by the total

risk. We discuss some of them in Section 4.8.

4.8 Applications

In this section, we discuss a few examples of risk or reward sharing, including blockchain

mining rewards, the revenue sharing of digital content, and P2P health care insurance, as

illustrative examples of our axiomatic theory for anonymized risk sharing.

5For a given risk sharing rule A, we can define Â by ÂX|G = AX for each X ∈ Xn and G ∈ Σ; that

is, the information G is ignored. In this case, A satisfies RA if and only if Â satisfies IA. For instance,

the generalized risk sharing rule Â defined by ÂX|G = AX
cm for each (X,G) satisfies Property IA, but this

case is not interesting for this section, as it ignores G; in particular, Property IB excludes this case, since

ÂX|σ(X) = X needs to hold by Property IB.
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4.8.1 Blockchain mining rewards

A single Bitcoin mining pool

By the design of the Bitcoin protocol (Nakamoto (2008)), when a computational puzzle

is solved by a decentralized network of anonymous computers, which are commonly called

miners. After a block in the Bitcoin blockchain is successfully mined by a randomly selected

miner, a predetermined number of bitcoins is rewarded to that miner. For more background

on Bitcoin mining, including criticisms on its environmental and economic impact and the

conflict between mining pools and decentralization, we refer to Chiu and Koeppl (2022),

Eyal and Sirer (2018) and Leshno and Strack (2020). It is not our intention to say whether

mining pools are good or bad; taking their existence as given, our focus is the design of

reward sharing mechanisms within mining pools.

Mining activities are risky, with a large monetary value of the reward and a small

probability of success, for individual miners. For this reason, mining pools are formed by

groups of miners to share the risk. Risk-averse miners always have incentives to join mining

pools to improve their utility.

Suppose that n miners form a mining pool to share the possible reward from mining

the next block. Let the random variable P > 0 represent the monetary value of the

next block at the time of solving the block. The miners’ initial contribution vector is

X = (1D1 , . . . ,1Dn), where Di ⊆ Ω is the event that miner i successfully issues the next

block,6 and the probability P(Di) represents the computational contribution of the miner i,

measured by the number of hashes tried, divided by that of all miners in the world mining

the block. Since the reward has a non-negative monetary value, we interpret positive values

of allocations as rewards in this section, a different sign convention from the rest of the

chapter; this causes no technical problem as all our results are invariant with respect to

their signs. The events D1, . . . , Dn are mutually exclusive because at most one miner can

issue the next block. We assume that these events are independent of the bitcoin price P

because P is determined by market activities and D1, . . . , Dn are determined by randomly

6All sets D ⊆ Ω that appear in this section are assumed measurable, i.e., D ∈ F .
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trying solutions. Denote by D =
⋃n
i=1Di the event that any miner from this pool issues

the block.

Our model addresses miners in mining pools. This setting is distinct from the settings of

Eyal and Sirer (2018) and Leshno and Strack (2020), which focus on the reward mechanism

of home miners, i.e., those who do not participate in mining pools. Moreover, in the setting

of their papers, the reward to an individual miner is a binary outcome, characterized by

the probability of receiving 1 block, whereas in our framework of a mining pool, miners

can receive non-binary outcomes, depending on the pool performance and theirs shares in

the pool.7 This distinction is also useful in our later analysis of application of mining in

multiple blockchains in Section 4.8.1.

To make our analysis of reward sharing rigorous, let P ∈ X be a fixed positive random

variable, and denote by Bn the set of all possible contribution vectors from the miners,

that is,

Bn = {(1D1 , . . . ,1Dn) : D1, . . . , Dn ⊆ Ω are disjoint and independent of P}.

We assume that the probability space is rich enough so that a continuously distributed

random variable independent of P exists. A reward sharing rule is a mappingA : Bn → X n

satisfying AX = An(S
X) for each X ∈ Bn and AX

i = AX
j for i, j ∈ [n] with P(Di) =

P(Dj) where X = P (1D1 , . . . ,1Dn). The last requirement reflects that only the amount of

computational contribution of each miner is supplied (instead of the specification of the

events Di and Dj), as assumed in Eyal and Sirer (2018) and Leshno and Strack (2020).

The four axioms of fairness and anonymity have natural interpretations and desirability in

this setting.

(i) Axiom AF means that no agent gets less (or gets more) than their initial contribution

in expectation, a simple form of fairness among anonymous participants.

(ii) Axiom RF (with a sign flip, i.e., AX
i ⩾ infXi for i ∈ [n]) means that any miner has

a non-negative reward, since inf(P1Di
) = 0 if P(Di) ∈ [0, 1). Note that the case

7All axioms in Leshno and Strack (2020) are formulated on probabilities, and therefore they are different

from our setting, where axioms are formulated on monetary outcomes.
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P(Di) = 1 is trivial since all other agents have 0 contribution and 0 reward (using

AF), and agent i receives the whole reward P .

(iii) Axiom RA means that the reward does not depend on which miner issues the block. If

the block is issued by the pool, the rewards to miners depend on their computational

contributions and the bitcoin price, but not the actual issuing miner. This feature is

central to the idea of creating a mining pool and joining computational resources.

(iv) Axiom OA means that the mechanism is safe against merging and Sybil attacks, i.e.,

creating multiple accounts of the same participant. Recall that miners are represented

by computers and online accounts, and merging, splitting, or creating them is not

disclosed to other miners. Hence, such operations between some miners should not

affect the reward to an uninvolved miner.

Anticipated from Theorem 4.4.1, the only reward sharing rule satisfying Axioms RA,

RF, AF and OA should be CMRS. This is indeed true, although a separate proof is needed,

as the set Bn is much smaller than X n and it is not closed under addition, preventing us

from directly applying Theorem 4.4.1 or its proof.

Proposition 4.8.1. Assume P ∈ X = L1 and P > 0. A reward sharing rule A : Bn → X n

satisfies Axioms RA, RF, AF and OA if and only if it is specified by

AX
i =

P(Di)

P(D)
P1D, i ∈ [n], X = P (1D1 , . . . ,1Dn) ∈ Bn, (4.8)

which is CMRS.

The allocation (4.8) is precisely the common practice in mining pools; see Eyal and

Sirer (2018) and Leshno and Strack (2020) in case P = 1. The total value P is shared

proportionally to the computational contribution of each miner if this mining pool success-

fully issues the block (i.e., 1D = 1), and the rewards are 0 otherwise. This reward sharing

rule is CMRS, since E[P1Di
|P1D] = P1DE[1Di

|1D] = P1DP(Di)/P(D).8 An example is

shown in Figure 4.2 to illustrate how (4.8) works for three miners. Before joining a mining

8In this simple setting, CMRS also coincides with the mean proportional risk sharing rule.
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Figure 4.2: An illustration of a Bitcoin mining pool of 3 miners

pool, miner 1 gets the reward P if she issues the block (purple area in Figure 4.2) and

otherwise she receives nothing. After miner 1 joins the group, the reward for her will be

PP(D1)/P(D) if any of the three miners issues the block (brown area in Figure 4.2).

The new insight offered by Proposition 4.8.1 is that the reward sharing rule (4.8) is the

unique possible mechanism if our four axioms are considered as desirable, and thus they

fully rationalize the choice of this mechanism in practice.

Multiple mining pools

Next, suppose that miners can choose to participate in multiple pools by allocating

their computational resources among these pools. We would like to pin down a suitable

allocation rule in this setting with the help of the generalized CMRS and a specific choice

G of target information.

There are m mining pools. Let E1, . . . , Em be mutually exclusive events where Ej

represents the event that pool j successfully issues the block. Miners can choose to join one

or several mining pools, and their initial risk vector is given by X = P (1D1 , . . . ,1Dn) as in

Section 4.8.1. Since the n miners form the m mining pools, we have the equality
⋃n
i=1Di =

99



⋃m
j=1Ej and the decomposition Di =

∑m
j=1 1Di∩Ej

where Di ∩ Ej is the contribution of

miner i to pool j.

Due to the separation of mining pools, we consider a generalized reward sharing rule

with target information G = σ(P,1E1 , . . . ,1Em), that is, the information of the Bitcoin

price P and the winning pool which successfully mines the block. For this choice of G, the
generalized CMRS Â in (4.7) is given by

Â
X|G
i =

m∑
j=1

P(Di ∩ Ej)
P(Ej)

P1Ej
. (4.9)

Note that this rule can be easily implemented in practice as P(Di∩Ej)/P(Ej) is the relative
share of computational contribution of worker i to pool j. This rule can be equivalently

explained by the mechanism in which all m pools are allocated separately and each of them

uses CMRS.

Similarly to Proposition 4.8.1, we can show that (4.9) is the only generalized reward

sharing rule with target information G, and this rationalizes the practice of allocating

rewards across multiple mining pools.

Multiple blockchains

We proceed to consider a pool of n miners with a collection of m cryptocurrencies

(which we call coins) with random prices P1, . . . , Pm in a pre-specified period of time. The

computational contribution of miner i to coin j is fixed during this period of time. For

simplicity, we assume that for each of these coins at most one block may be issued during

this period of time. Denote by Dij the event that miner i issues the block for coin j, and

by Dj =
⋃n
i=1Dij is the event that coin j is successfully mined by the pool. The events

Dij are mutually exclusive across i ∈ [n] for the same j. We further assume that Dij is

independent of {Dkℓ : k ∈ [n], ℓ ∈ [m] \ {j}}, because issuing the block of one coin should

not affect issuing the block of another one.

Similarly to Section 4.8.1, we assume that the prices P1, . . . , Pm are independent to

the issuance events. The initial risk vector is given by X =
∑m

j=1 Pj(1D1j
, . . . ,1Dnj

).
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Finally, we consider the target information G = σ(P1, . . . , Pm,1D1 , . . . ,1Dm), which is the

information of the coin prices and the events of whether each of them is successfully mined.

For this choice of G, the generalized CMRS Â in (4.7) is given by

Â
X|G
i =

m∑
j=1

P(Dij)

P(Dj)
Pj1Dj ,

because E[Pj1Dij
|G] = E[Pj1Dij

|Pj1Dj ] = PjP(Dij)/P(Dj). In other words, each miner

gets a proportion P(Dij)/P(Dj) of each successfully mined coin, where the proportion is

determined by its relative contribution to the pool for that particular coin.

4.8.2 Revenue sharing of digital content

Our next application concerns revenue sharing in subscription-based online platforms

for digital content. The primary examples are music platforms such as Spotify, Deezer, or

Apple Music; see Meyn et al. (2023) for a description of different revenue sharing schemes

in subscription-based music platforms.

Suppose that there are n artists and m potential users in a specific month (many

platforms collect subscription fees monthly). In this context, m is usually much larger

than n. We assume that each user can subscribe to the platform because of one artist i,

which is unobservable from the platform or the artist.

Let Dij be the event that user j subscribes because of artist i, and Dij are mutually

singular across i ∈ [n]. Assume that the subscription events across different users are

independent; i.e., Dij is independent of {Dkℓ : k ∈ [n], ℓ ∈ [m] \ {j}} for each i ∈ [n] and

j ∈ [m]. Let Dj =
⋃n
i=1Dij be the event that user j subscribes to the platform, which is

observable, and it generates a non-random revenue qj > 0 (i.e., subscription fee, which may

vary across users). If Dj does not occur, then user j does not subscribe to the platform

during the considered month. Suppose that for j ∈ [m], a proportion δj of qj will be shared

by the artists (the other proportion is kept by the platform or used to cover costs), and we

denote by pj = δjqj.
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In this model, the initial risk vector is given by X =
∑m

j=1 pj(1D1j
, . . . ,1Dnj

), which is

not observable to the platform. The target information is modelled by G = σ(1D1 , . . . ,1Dm),

that is, the information based on the events of subscription. For this choice of G, the gen-

eralized CMRS Â in (4.7) is given by

Â
X|G
i =

m∑
j=1

P(Dij)

P(Dj)
pj1Dj , (4.10)

similarly to the model in Section 4.8.1.

Although P(Dij) and P(Dj) are not directly observable, their ratio P(Dij)/P(Dj) can

be estimated the ratio sij of the number of streams of user j using (e.g., listening to) the

work of artist i to that of all streams of user j, and such data are available to the platform.

Intuitively, the more user j uses the work of artist i, the more likely that user j subscribed

because of artist i.

With the ratio P(Dij)/P(Dj) estimated by sij, the revenue sharing mechanism (4.10)

is exactly the user-centric remuneration model promoted by some platforms based on an

argument of fairness.9 We refer to Meyn et al. (2023) for a comparison of this revenue

sharing rule with other rules. Thus, our framework provides a theoretical justification for

the user-centric system of sharing digital content.

4.9 Concluding remarks

Decentralization in finance and insurance is getting increasing attention from both

academia and the financial industry. As an important feature of decentralization, anonymity

guarantees that agents are not distinguished by their preference, identity, private opera-

tions, and realized losses. Anonymized risk sharing is especially relevant in digital economy

with applications including the revenue sharing of digital arts, and blockchain mining pools.

Although there is extensive literature on axiomatic approaches in decision theory, so far

there is no axiomatic theory for risk sharing.

9For instance, the platform Deezer is promoting the user-centric payment system; see https://www.

deezer-blog.com/how-much-does-deezer-pay-artists/ (accessed April 2023).
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This chapter presents an axiomatic theory of risk sharing in the context of anonymized

risk sharing. Based on two axioms of fairness and two axioms of anonymity, we prove

that the conditional mean risk sharing rule is the only risk sharing rule that satisfies

the four axioms. Furthermore, the conditional mean risk sharing rule is only the rule

that is compatible with the incentives of all risk-averse agents and satisfies the anonymity

requirement. We do not see any general reasons to dispute any of the four axioms in the

framework of anonymized risk sharing as a whole, although in certain specific applications

the conditional mean risk sharing rule may be suboptimal for some individual agents. As

such, our work serves as a theoretical support to the wide applications of the conditional

mean risk sharing as a standard tool in many relevant applications in decentralized risk

sharing.

As a potential limitation, the conditional mean risk sharing requires a full specification

of the joint distribution of the risk contributions from the agents to compute. This is

not a problem for the applications discussed in this chapter, due to the availability of the

information. For some other applications, computational issues can be cumbersome for a

large set of heterogeneous agents; for computing CMRS in some specific models, see Denuit

(2019) and Denuit et al. (2022a) and the references therein.

4.10 Appendix: Technical details

4.10.1 Proofs in Section 4.4

We first prove Theorem 4.4.2, as it will be used in the proof of Theorem 4.4.1.

Proof of Theorem 4.4.2. First, we prove that ϕ is continuous. Suppose that Xn → X in

L1(Ω,F ,P). By using (b) and (c), we have

ϕ(Xn)− ϕ(X) = ϕ(Xn −X) ⩽ ϕ(|Xn −X|).

Similarly,

ϕ(Xn)− ϕ(X) = ϕ(Xn −X) ⩾ ϕ(−|Xn −X|) = −ϕ(|Xn −X|).
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Hence,

|ϕ(Xn)− ϕ(X)| ⩽ |ϕ(|Xn −X|)| = ϕ(|Xn −X|),

where the last equality is due to ϕ(|Xn − X|) ⩾ ϕ(0) = 0 by (a). Using (e), we have

E[ϕ(|Xn −X|)] = E[|Xn −X|] → 0. Therefore, E[|ϕ(Xn)− ϕ(X)|] ⩽ E[ϕ(|Xn −X|)] → 0.

This means ϕ(Xn) → ϕ(X) in L1(Ω,G,P), thus showing the continuity of ϕ : L1(Ω,F ,P) →
L1(Ω,G,P).

Next, we prove that ϕ is linear. Based on the fact that ϕ is (b) additive and (c)

monotone, we have

ϕ(X) ⩾ ϕ(0) = 0 for any X ∈ L1(Ω,F ,P) and X ⩾ 0,

which implies that ϕ is linear (see, e.g., Theorem 1.10 of Aliprantis and Burkinshaw (2006)):

ϕ(αX + βY ) = αϕ(X) + βϕ(Y ) for any α, β ∈ R and X, Y ∈ L1(Ω,F ,P).

It further follows that ϕ is a positive operator on X . Recall that a linear operator between

two ordered vector spaces is a positive operator if it maps positive elements to positive

elements.

Finally, we show that ϕ satisfies the following property

ϕ(X) = X for all σ(S)-measurable X. (4.11)

For t ∈ R, by (c) we have ϕ(S∨t) ⩾ ϕ(S)∨ϕ(t), and by (a) and (d) we get ϕ(S)∨ϕ(t) = S∨t.
Since ϕ(S ∨ t) ⩾ S ∨ t and they have the same mean by (e), we know

ϕ(S ∨ t) = S ∨ t for all t ∈ R. (4.12)

Write Ts,t =
1
t−s(S ∨ t− S ∨ s) for t > s. Note that for all t > s,

1{S⩽s} ⩽ Ts,t ⩽ 1{S⩽t}. (4.13)

The linearity of ϕ and (4.12) imply that ϕ (Ts,t) = Ts,t. Using the above equality, (c) and

(4.13), we have, for all t > s,

ϕ
(
1{S⩽s}

)
⩽ ϕ (Ts,t) = Ts,t ⩽ 1{S⩽t},
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and

ϕ
(
1{S⩽t}

)
⩾ ϕ (Ts,t) = Ts,t ⩾ 1{S⩽s}.

It follows that for all ε > 0,

1{S⩽t−ε} ⩽ ϕ
(
1{S⩽t}

)
⩽ 1{S⩽t+ε}.

Hence, 1{S<t} ⩽ ϕ
(
1{S⩽t}

)
⩽ 1{S⩽t} for all t ∈ R. Using (e), we know ϕ

(
1{S⩽t}

)
= 1{S⩽t}.

From this equality, using (a) and linearity of ϕ, it follows that ϕ
(
1{S>t}

)
= 1{S>t} for all

t ∈ R.

Define the class

C = {C ∈ F : ϕ(1C) = 1C} .

Hence, {S ⩽ t} ∈ C for any t ∈ R. We have Ω ∈ C. Using linearity of ϕ, we have that if

C ∈ C, then
ϕ(1Cc) = ϕ(1− 1C) = ϕ(1)− ϕ(1C) = 1− 1C = 1Cc ,

which implies that the complement set Cc ∈ C. Suppose that {Ci}i⩾1 ⊆ C are disjoint.

We proceed to show that
⋃∞
i=1Ci ∈ C. Indeed, using monotonicity and additivity of ϕ, we

have

ϕ
(
1{

⋃∞
i=1 Ci}

)
⩾ ϕ

(
1{

⋃m
i=1 Ci}

)
= ϕ

(
m∑
i=1

1Ci

)
=

m∑
i=1

1Ci
, for all m ⩾ 1.

Letting m→ ∞, we have

ϕ
(
1{

⋃∞
i=1 Ci}

)
⩾

∞∑
i=1

1Ci
= 1{

⋃∞
i=1 Ci}.

Based on (e), we have

E
[
ϕ
(
1{

⋃∞
i=1 Ci}

)]
= E

[
1{

⋃∞
i=1 Ci}

]
,

which implies ϕ
(
1{

⋃∞
i=1 Ci}

)
= 1{

⋃∞
i=1 Ci} and

⋃∞
i=1Ci ∈ C. Hence, the class C is a σ-field

and σ(S) ⊆ C based on the monotone class theorem. It follows that ϕ(1B) = 1B for all

B ∈ G. Since any G-measurableX can be upper and lower approximated by the summation

of simple functions, using linearity and monotonicity we conclude that ϕ(X) = X for all

G-measurable X.
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The conditions that ϕ is continuous, linear and monotone and satisfies (4.11) guarantee

the representation of ϕ (see Proposition 2.6 of Filipović et al. (2012) or Theorem 1 of

Pfanzagl (1967)), as

ϕ(X) = E[ZX|S] for all X ∈ L1(Ω,F ,P), (4.14)

for some Z ⩾ 0 satisfying E[Z|S] = 1. Using (e), we get 1 = E[Z] = E[ϕ(Z)] =

E[E[Z2|S]] = E[Z2]. Since E[Z2] = E[Z] = 1, we know Z = 1. Hence, we have ϕ(X) =

E[X|S] for X ∈ X and this completes the proof.

Remark 4.10.1. The key step in the proof of Theorem 4.4.2 is to obtain the property (4.11);

ϕ with such a property is sometimes called a projection. Several characterizations of the

conditional expectation directly rely on this property; see Pfanzagl (1967) and Eisner et

al. (2015). In particular, Theorem 1 of Pfanzagl (1967) holds for subspaces of L1(Ω,F ,P),
and hence our results in Theorems 4.4.1-4.4.3 hold for general X = Lq where q ∈ [1,∞].

Proof of Theorem 4.4.1. The “if” statement is checked in Section 4.4.1. We proceed to

prove the “only if” statement. Let A be a risk sharing rule satisfying Axioms AF, RF, RA

and OA. Fix any S ∈ X . Define the mapping

hS : X → L1(Ω, σ(S),P), X 7→ A
(X,S−X,0,...,0)
1 .

Note that RA guarantees that hS takes values in L1(Ω, σ(S),P). We will verify that hS

satisfies the following properties on X :

(a) constant preserving: hS(t) = t for all t ∈ R;

(b) additivity: hS(X + Y ) = hS(X) + hS(Y ) for X, Y ∈ X ;

(c) monotonicity: hS(Y ) ⩾ hS(X) if Y ⩾ X;

(d) hS(S) = S;

(e) E[hS(X)] = E[X] for X ∈ X ;
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First, (a) follows directly from (4.1) and the definition of hS. Next, we proceed to prove

(b). By using Axiom OA, we have, for any X, Y ∈ X (note that here we use the fact that

n ⩾ 3),

hS(X + Y ) = A
(X+Y,S−X−Y,0,...,0)
1

= A
(X,S−X−Y,Y,0,...,0)
1 + A

(X,S−X−Y,Y,0,...,0)
3

= A
(X,S−X,0,...,0)
1 + A

(0,S−Y,Y,0,...,0)
3 = hS(X) + A

(0,S−Y,Y,0,...,0)
3 (4.15)

where Axiom OA is used in the second and third equalities. In particular, by choosing

X = 0 and using the fact that hS(0) = 0 in (a), (4.15) implies hS(Y ) = A
(0,S−Y,Y,0,...,0)
3 .

Using this relationship and (4.15), we further have

hS(X + Y ) = hS(X) + hS(Y ),

and hence (b) holds. Next, we show (c). Using Axiom RF, we have hS(X − Y ) ⩽ 0

if X − Y ⩽ 0. Hence, by (b), we obtain (c). Moreover, (d) is implied by the equality

A
(S,0,...,0)
1 = S from (4.2). Finally, (e) follows from Axiom AF.

Using Theorem 4.4.2, (a)-(e) imply that hS admits the representation

hS(X) = E[X|S] for all X ∈ X .

For any X ∈ X n, let S = SX =
∑n

i=1Xi. Using Axiom OA and the representation of hS,

we have

AX
1 = A

(X1,S−X1,0,...,0)
1 = hS(X1) = E[X1|S] = E

[
X1|SX

]
.

Similarly, we have AX
j = E[Xj|SX] for any j = 2, . . . , n, which gives that A is CMRS.

Proof of Proposition 4.4.1. (i) The Q-CMRS rule AX
Q-cm = EQ[X|SX] satisfies Axioms

RA, RF and OA with the same reasoning as the CMRS. Since E[AX
Q-cm] = EQ[X],

AF does not hold as long as Q ̸= P.

(ii) For the mean-adjusted all-in-one risk sharing rule

AX
ma =

(
SX − E[SX], 0, . . . , 0

)
+ E[X],
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it is clear that Axioms RA and AF hold by definition. Axiom OA holds because the

allocation to agent i ∈ [n] is determined only by (Xi, S). Axiom RF does not hold

because the allocation to agent 1 is not a constant if SX is not a constant, regardless

of whether X1 is a constant, violating (4.1).

(iii) For the identity risk sharing rule AX
id = X, it is clear that Axioms AF, RF and OA

hold. Axiom RA does not hold because AX
id is not necessarily a function of SX.

(iv) Consider a combination of Aall and Acm, defined by AX = AX
all = (SX, 0, . . . , 0) if X

is standard Gaussian, and AX = AX
cm = E[X|SX] otherwise. Axioms AF, RF and

RA and be checked separately for Aall and Acm, by noting that RF only needs to be

checked for Acm since the standard Gaussian X is not included in the statement of

RF.

To verify that OA does not hold, it suffices to consider n = 3. Let X = (X1, X2, X3)

follow a standard Gaussian distribution. By definition, AX
1 = SX. However, for

Y = (X1, X2 + X3, 0), we have AY
1 = E[X1|SX] = SX/3 ̸= AX

1 , thus violating

OA.

Proof of Theorem 4.4.3. The “if” statement is checked in Section 4.4.1. We proceed to

prove the “only if” statement. The gap between the proof of Theorem 4.4.1 and this result

is that we need the following extension argument.

Let A be a risk sharing rule satisfying Axioms AF, RF, RA and OA. Fix any S ∈ X =

L1
+. Denote by BS = {X ∈ L1

+ : X ⩽ S}, which is the set of random variables between 0

and S. Define the mapping as in the proof of Theorem 4.4.1,

hS : BS → L1(Ω, σ(S),P), X 7→ A
(X,S−X,0,...,0)
1 .

It is clear that hS is well-defined on BS and satisfies additivity

hS(X + Y ) = hS(X) + hS(Y ) for X, Y,X + Y ∈ BS,

which can be checked by the same argument as in the proof of Theorem 4.4.1. Define

CS = {λX : λ ∈ R+, X ∈ BS} which is the cone generated by BS, and LS = {λX : λ ∈

108



R, X ∈ BS} which is the linear space generated by BS. According to Lemma 4.10.1 below,

hS can be uniquely extended on CS and LS and it is linear on LS. This allows us to use

the same arguments in Theorem 4.4.1 to get

hS(X) = E[X|S], X ∈ LS,

and following the rest of the steps for the proof of Theorem 4.4.1 yields thatA is CMRS.

Lemma 4.10.1. Fix S ∈ L1
+. Any additive function ϕ : BS → L1

+ has a unique additive

extension on CS and a unique linear extension on LS.

Proof. For X ∈ CS, denote by γX = sup{γ ∈ [0, 1] : γX ∈ BS}. Note that there exists

λX ∈ R+ and Y ∈ BS such that λXY = X, and hence γX ⩾ 1/λX > 0. Moreover, we have

γXX ∈ BS since BS is closed. Define ϕ̂(X) = ϕ(γXX)/γX for X ∈ CS. It is clear that

ϕ̂ = ϕ on BS because λX = 1 for all X ∈ BS. We next verify that ϕ̂ is additive.

Take m, k ∈ N such that m ⩽ k. By additivity of ϕ on BS, we have ϕ(mX/k) =

mϕ(X/k) for X ∈ BS. By taking m = 1, we get ϕ(X/k) = ϕ(X)/k, which in turn gives

ϕ(mX/k) = mϕ(X)/k. Since X is non-negative, positivity (monotonicity) of ϕ further

gives ϕ(λX) = λϕ(X) for any real number λ ∈ [0, 1].

For any X,Z ∈ CS such that Z ⩾ X, since γZ ⩽ γX , we obtain, by choosing λ = γZ/γX ,

ϕ(γZX) = ϕ(λγXX) = λϕ(γXX) =
γZ
γX

ϕ(γXX). (4.16)

Take any X, Y ∈ CS and write Z = X + Y . Using (4.16) and additivity of ϕ on BS,

ϕ̂(X + Y ) =
1

γZ
ϕ(γZ(X + Y ))

=
1

γZ
ϕ(γZX) +

1

γZ
ϕ(γZY ) =

1

γX
ϕ(γXX) +

1

γY
ϕ(γY Y ) = ϕ̂(X) + ϕ̂(Y ).

Therefore, ϕ̂ is additive on CS. The extension is unique because any two additive and

monotone functions agreeing on BS must agree on CS. The unique linear extension to LS

follows from Theorem 1.10 of Aliprantis and Burkinshaw (2006).

109



Proof of Theorem 4.4.4. Let A be a risk sharing rule satisfying Property LS, CP and

Axioms RA, RF and OA, and fix any S ∈ X . For each s in the range of S, define

the mapping

hS,s : X → R, X 7→ A
(X,S−X,0,...,0)
1 (s).

we know that hS,s satisfies the following properties on X :

(a) normalization: hS,s(t) = t for all t ∈ R.

(b) additivity: hS,s(X + Y ) = hS,s(X) + hS,s(Y ) for X, Y ∈ X .

(c) monotonicity: hS,s(Y ) ⩾ hS,s(X) if Y ⩾ X.

The arguments above have been proved in Theorem 4.4.1. Also, based on the fact that

hS,s is additive and monotone, we have

hS,s(X) ⩾ hS,s(0) = 0 for any X ∈ L1(Ω,F ,P) and X ⩾ 0,

which implies that hS,s is linear (see e.g., Theorem 1.10 of Aliprantis and Burkinshaw

(2006)):

hS,s(αX + βY ) = αhS,s(X) + βhS,s(Y ) for any α, β ∈ R and X, Y ∈ L1(Ω,F ,P).

Thus, hS,s is normalized, linear and monotone. By the Riesz representation theorem (see

e.g., Theorem 27.10 of Aliprantis and Burkinshaw (1990)), we know that hS,s admits the

representation

hS,s(X) =

∫
XdPS,s, X ∈ X ,

for some probability measure PS,s.

Write the probability measure Ps(·) = P(·|S = s). We claim that PS,s = Ps. Suppose

that there exists B ∈ F such that PS,s(B) ̸= Ps(B). First, we consider the case PS,s(A) >

Ps(A). Let m be a positive integer such that

PS,s(B) >
1

m
> Ps(B).
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Take disjoint events B1, . . . , Bm each with probability 1/m under Ps such that B1 ⊃ B.

Such disjoint events exist since Ps is atomless. By Property LS, we have

PS,s(Bj) = hS,s(1Bj
) = hS,s(1B1) = PS,s(B1) ⩾ PS,s(B) >

1

m

for j = 2, . . . ,m. Hence,

PS,s(Ω) = PS,s

(
m⋃
i=1

Bi

)
⩾ mPS,s(B) > 1,

which contradicts the fact that PS,s is a probability measure. Next, we consider the case

PS,s(B1) < Ps(B1). Let m be a positive integer such that

PS,s(B1) <
1

m
< Ps(B1).

Take disjoint events B1, . . . , Bm each with probability 1/m under Ps such that B1 ⊂ B.

By Property LS, we have

PS,s(Bj) = hS,s(1Bj
) = hS,s(1B1) = PS,s(B1) ⩽ PS,s(B1) <

1

m

for j = 2, . . . ,m. Hence,

PS,s(Ω) = PS,s

(
m⋃
i=1

Bi

)
⩽ mPS,s(B1) < 1,

which contradicts the fact that PS,s is a probability measure.

Hence, we have PS,s(·) = Ps = P(·|S = s). We now obtain

hS,s(X) =

∫
XdPS,s = E[X|S = s], X ∈ X .

Now, let us take an arbitrary X = (X1, . . . , Xn) ∈ X n with S =
∑n

i=1Xi. Using Axiom

OA again, we have, for each s in the range of S,

AX
1 (s) = A

(X1,X2+···+Xn,0,...,0)
1 (s) = A

(X1,S−X1,0,...,0)
1 (s) = hS,s(X1) = E[X1|S = s].

Similarly, the same conclusion holds for all AX
i for i = 1, . . . , n. Therefore, we obtain that

A is indeed the conditional mean risk sharing rule.
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4.10.2 Proofs in Section 4.5

Proof of Proposition 4.5.1. Since X ⩽cx Y implies X ⩽ supX ⩽ supY and E[X] = E[Y ],

UI implies both RF and AF. Property CP follows from AF and RF as discussed in (4.1).

Proof of Proposition 4.5.2. We only show the case that X = L1, as the case X = L1
+ is

analogous. Let A : X n → X n be a risk sharing rule satisfying Axioms AF, RF and OA.

Fix S ∈ X . For any X ∈ L1(Ω, σ(S),P), A(X,S−X,0,...,0)
1 is σ(S)-measurable, because it is

σ(X,S −X)-measurable by assumption and σ(S) = σ(X,S −X). Define the mapping

hS : L1(Ω, σ(S),P) → L1(Ω, σ(S),P), X 7→ A
(X,S−X,0,...,0)
1 ,

where we use the fact that hS(X) is σ(S)-measurable for X ∈ L1(Ω, σ(S),P). The ar-

guments in the proof of Theorem 4.4.1 yield that hS satisfies the conditions in Theorem

4.4.2. By Theorem 4.4.2, hS is the identity on L1(Ω, σ(S),P). Using this and OA, for any

X ∈ An(S) and X1 ∈ L1(Ω, σ(S),P), we have

AX
1 = A

(X1,S−X1,0,...,0)
1 = hS(X1) = X1.

The other case of AX
j for j ∈ [n] are similar.

Proof of Corollary 4.5.1. The proof follows directly from Theorems 4.4.1 and 4.4.3, Propo-

sition 4.5.1, and the fact that CMRS satisfies Property UI.

Proof of Proposition 4.5.3. Fix a non-constant S ∈ X , and write hS : X → X , X 7→
A

(X,S−X,0,...,0)
1 . By ZP, we have hS(S) = S. Using additivity (4.15) guaranteed by OA in

the proof of Theorem 4.4.1, we have hS(2S) = 2hS(S) = 2S. This and additivity give

hS(−S) = −S, and therefore, A(−S,2S,0,...,0) = (−S, 2S, 0, . . . , 0) is not comonotonic.

Proof of Proposition 4.5.4. By Proposition 4.3.1, OA implies that AX
i is determined by

(Xi, S
X) and i ∈ [n]. It suffices to show that i ∈ [n] is also not relevant. Using ZP and

OA, we have, for the pair (1, 3) and any X,S ∈ X ,

A
(X,S−X,0,...,0)
1 = S − A

(X,S−X,0,...,0)
2 = S − A

(0,S−X,X,0,...,0)
2 = A

(0,S−X,X,0,...,0)
3 .

The other pairs (i, j) are similar. Therefore, AX
i is determined by (Xi, S

X) regardless of

i ∈ [n], showing that SM holds.
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4.10.3 Proofs in Section 4.6

Proof of Proposition 4.6.1 . Individual rationality is implied by Property UI and the fact

that the preferences are risk-averse.

Proof of Proposition 4.6.2. Let U be the Choquet utility representing the agents’ prefer-

ences. Recall that a Choquet utility is comonotonic additive (Yaari (1987)). Therefore,

since gX1 , . . . , g
X
n are increasing functions, we have

n∑
i=1

U(gXi (Sn)) = U

(
n∑
i=1

gXi (Sn)

)
= U(Sn).

By the comonotone improvement theorem (e.g., Theorem 10.49 of Rüschendorf (2013)),

we obtain, for any (Y1, . . . , Yn) ∈ An(Sn), there exists (Y ∗
1 , . . . , Y

∗
n ) which is comonotonic,

such that Y ∗
i ⩽cx Yi which implies U(Y ∗

i ) ⩾ U(Yi), i = 1, . . . , n. Hence,

n∑
i=1

U(Yi) ⩽
n∑
i=1

U(Y ∗
i ) = U

(
n∑
i=1

Y ∗
i

)
= U(Sn) =

n∑
i=1

U(gXi (Sn)).

Therefore, (Y1, . . . , Yn) cannot dominate gX(Sn) for these agents. Thus, the allocation

gX(Sn) is Pareto optimal.

4.10.4 Proofs in Section 4.8

Proof of Proposition 4.8.1. We have seen that CMRS satisfies the four axioms for mappings

on general spaces, and hence also on Bn, and it clearly satisfies the definition of a reward

sharing rule. Below we show that the four axioms are sufficient for CMRS. Fix D ⊆ Ω

independent of P and denote by

ID = {C ⊆ D : C is independent of P} and MD = {P1C : C ∈ ID}.

Define the mapping as in the proof of Theorem 4.4.1,

hD :MD → L1(Ω, σ(P1D),P), P1C 7→ A
(P1C ,P (1D−1C),0,...,0)
1 .
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We can check that hD satisfies additivity

hD(X + Y ) = hD(X) + hD(Y ) for X, Y ∈MD with X + Y ∈MD,

and monotonicity

hD(X) ⩽ hD(Y ) for X, Y ∈MD with X ⩽ Y ;

these statements can be shown by arguments using AF, RF and OA as in the proof of

Theorem 4.4.1. For m ∈ N, take C1, . . . , Cm ∈ ID such that P(C1) = · · · = P(Cm) and⋃m
j=1Cj = D. Using hD(P1D) = P1D (guaranteed by AF and RF) and hD(P1C1) =

hD(P1Cj
) for j ∈ [m] (by the definition of a reward sharing rule), we get from additivity

of hD that

hD(P1C1) =
P1D
m

= P1D
P(C1)

P(D)
.

Since C1 is arbitrary, we get that, for any C ∈ ID with P(C) = P(D)/m,

hD(P1C) = P1D
P(C)
P(D)

= P1DE[1C |P1D] = E[P1C |P1D]. (4.17)

Using additivity again, we know that (4.17) holds for any j ∈ [m] and C ∈ ID with

P(C) = jP(D)/m, and finally, by monotonicity of hD, we get (4.17) for all C ∈ ID.

Following the rest of the steps for the proof of Theorem 4.4.1 yields that A is CMRS on

Bn.
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Chapter 5

Testing mean and variance by

e-processes

5.1 Introduction

Testing mean and variance in various settings is a classic problem in statistics. In

parametric inference concerning testing the mean, well-known tests like Student’s t-test

and z-test, as well as tests related to variance such as the Chi-Squared test and the F-test,

are commonly employed; see e.g., Lehmann et al. (1986). However, parametric tests always

come with assumptions about the parameters of the population distribution from which

samples are derived. Deviating from these assumptions can lead to significantly flawed

results. For situations where these assumptions might be compromised, non-parametric

methods provide a great alternative. Comprehensive and well-established methods of non-

parametric techniques for testing means and variances can be found in e.g., Conover (1999)

and Hollander et al. (2013). Different from the classic settings, we will consider the problem

of testing composite hypotheses in which data are not stationary.

Suppose that a tester has sequentially arriving data points (possibly dependent)X1, X2, . . . ,

each from an unknown distribution (possibly different). The tester is interested in testing

115



whether

E[Xi|Fi−1] ⩽ µi and Var(Xi|Fi−1) ⩽ σ2
i for each i, (5.1)

where Fi−1 is generated by observations before Xi, and µi and σi may also depend on past

data; see Section 5.2 for a precise formulation. If independence is further assumed, then this

problem reduces to the classic problem of testing mean and variance. Testing conditional

mean and conditional variance is common in some contexts such as forecasting (e.g., Henzi

and Ziegel (2022)) and financial risk assessment (e.g., Fissler and Ziegel (2016)).

Problem (5.1) can be interpreted in two different ways (we omit “conditional” here):

(A) testing both the mean and the variance;

(B) testing the mean under the knowledge of an upper bound on the variance.

The interpretation (A) is relevant when the tester is interested in whether a time-series

has switched away from a given regime with specified mean and variance bounds. We

mainly use interpretation (A), while keeping in mind that interpretation (B) is useful

when comparing with the literature. Of course, one could also interpret it as testing the

variance knowing the mean.

Clearly, problem (5.1) is a composition of many complicated, non-parametric, composite

hypotheses on each observation. The key challenge in this setting is that the data points

are not iid, and hence we cannot make inference of the distributions themselves.

This problem can be addressed with the following general methodology, called e-tests or

tests by betting, a successful example being Waudby-Smith and Ramdas (2024). We first

consider a simpler problem: constructing an e-value from one random variable from each

data point with the corresponding hypothesis on its mean and variance (which corresponds

to n = 1). For a general background on e-values in hypothesis testing, see Vovk and Wang

(2021), Grünwald et al. (2023), and the review by Ramdas et al. (2023). After obtaining

these e-values, we combine them, usually by forming an e-process, to construct a test for

the overall hypothesis. Alternatively, we can construct p-values instead of e-values, but

the power of such a strategy is usually quite weak, as seen from our experiments.
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Section 5.2 formally describes the hypotheses and defines e-variables, e-processes, and

p-variables. As mentioned above, we will first address the case of one data point, i.e.,

n = 1, presented in Section 5.3. We consider four types of composite hypotheses on mean,

variance and the shape of the distribution: symmetry, unimodality and their combination.

Our main results are ways that are optimal, in a natural sense, to constructions of p-values

and e-values in this setting. Although our main methodology is based on e-processes, we

present results also for p-values, which may be useful in multiple testing (not treated in

this chapter). Considering a non-parametric composite hypothesis with a given mean and

variance as the baseline case, assuming symmetry approximately improves the baseline

p-variable by a multiplicative factor of 1/2, unimodality by a factor of 4/9, and both by a

factor of 2/9. Similarly, the corresponding baseline e-variable is improved by multiplicative

factors of 2, 1, and 2, respectively, in these scenarios.

We propose in Section 5.4 several methods to test using multiple data points, thus

addressing the main task of the tester. The main proposals are e-process based tests,

which follow the idea of testing by betting in Shafer (2021), Wasserman et al. (2020) and

Waudby-Smith and Ramdas (2024). Although we mainly focus on one-sided hypotheses,

our methodology can be easily adapted to test the two-sided hypothesis on the mean, that

is,

E[Xi|Fi−1] ∈ [µLi , µ
U
i ] and Var(Xi|Fi−1) ⩽ σ2

i for each i,

where [µLi , µ
U
i ] is an interval or a singleton for each i; this is discussed in Section 5.4.3.

The closest methodological work related to this chapter is Waudby-Smith and Ramdas

(2024), where the authors test in a non-parametric setting the conditional mean of sequen-

tial data, which are assumed to be bounded within a pre-specified range, thus a generally

smaller class of distributions. Our problem and methodology are different from Waudby-

Smith and Ramdas (2024) in the sense that we assume a bounded variance instead of a

bounded range. Since a bounded range implies bounded variance, the assumption needed

to apply our methodology is weaker than in the setting of Waudby-Smith and Ramdas

(2024), following interpretation (B) of the main testing problem. Moreover, we are able to

utilize the additional information on the distributional shape to obtain better e-values than

without such information. A great advantage of the tests of Waudby-Smith and Ramdas
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(2024) is that their power adapts to the unknown true variance of the distribution if data

come from an iid population. Our method based on the growth rate of empirical e-values

has a similar feature, which uses a betting strategy similar to that of Waudby-Smith and

Ramdas (2024). Another closely related methodology is Wang et al. (2022), where, other

statistical functions are tested other than the mean. Once e-variables are constructed, we

will build e-processes in a similar way to Wang et al. (2022). The methods of Howard et al.

(2020, 2021) and Wang and Ramdas (2023) based on exponential test supermartingales,

which are e-processes, can also be applied to test (5.1). These methods differ from ours as

our e-process is obtained by combining individual e-variables.

Section 5.5 provides simulation studies for the proposed methods and compare them

with the method of Waudby-Smith and Ramdas (2024) when the model has both bounded

support and bounded variance and with methods based on exponential test supermartin-

gale of Howard et al. (2021) and Wang and Ramdas (2023). Section 5.6 contains empiri-

cal studies using financial asset return data during the 2007–2008 financial crisis, further

demonstrating the effectiveness of the e-process based methods. Section 5.7 concludes the

chapter. All proofs in the chapter are provided in Section 5.8.

5.2 General setting

5.2.1 Hypotheses to test

We first describe our main testing problem. Let n be a positive integer or ∞, and

denote by [n] = {1, . . . , n}. Throughout, fix a sample space. Suppose that data points

(Xi)i∈[n] arrive sequentially, each possibly from a different distribution, and not necessarily

independent. A hypothesis is a collection H of probability measures that govern (Xi)i∈[n].

Denote by Fi the σ-field generated by X1, . . . , Xi for i ∈ [n] with F0 being the trivial

σ-field. The main hypotheses of interest are variations (by adding shape information) of

the following hypothesis

H =
{
Q : EQ[Xi|Fi−1] ⩽ µi and VarQ(Xi|Fi−1) ⩽ σ2

i for i ∈ [n]
}
, (5.2)
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where µi and σi are Fi−1-measurable for each i ∈ [n]; that is, they can be data-dependent

on past observations. A simple case is

H =
{
Q : EQ[Xi|Fi−1] ⩽ µ and VarQ(Xi|Fi−1) ⩽ σ2 for i ∈ [n]

}
, (5.3)

where µ and σ are two constants; that is, we would like to test whether data exhibit con-

ditional mean and conditional variance in (−∞, µ]× [0, σ2]. Although (5.3) looks simpler,

it is indeed equivalent to (5.2) by noting that µi and σi can be absorbed into Xi since

they are Fi−1 measurable. Therefore, we will focus on the formulation (5.3) for the rest of

the chapter. If data are independent (but not necessarily identically distributed), then the

problem is to test the unconditional mean and variance.

We will further consider hypotheses with additional shape information, by assuming

that some (or all) of the distributions of X1, . . . , Xn are unimodal, symmetric, or both.

A distribution on R is unimodal if there exists x ∈ R such that the distribution has an

increasing density on (−∞, x) and a decreasing density on (x,∞); it may have a point-

mass at x. A distribution on R with mean µ is symmetric if for all x ∈ R it assigns equal

probabilities to (−∞, µ−x] and [µ+x,∞). If a distribution with mean µ is both unimodal

and symmetric, then its mode must be either µ or an interval centered at µ.

Remark 5.2.1. The main question in Waudby-Smith and Ramdas (2024) is to test the

conditional mean m with data taking values in [0, 1]. We note that any random variable

with mean at most m and range [0, 1] has variance at most 1/4 (if m ⩾ 1/2) or m(1−m)

(if m < 1/2), attained by a Bernoulli random variable. Therefore, our hypothesis with

µ = m and σ2 = 1/4 or σ2 = m(1−m) has less restrictive assumptions than their setting

(except they formulated two-sided hypotheses; see Remark 5.2.2 below) and in particular,

our setting can handle unbounded data.

Remark 5.2.2. Our hypotheses are formulated as one-sided on both µ and σ2. Certainly, all

validity results remain true for the two-sided hypotheses. Testing EQ[Xi] ⩾ µ is symmetric

to testing EQ[Xi] ⩽ µ, but such symmetry does not hold for testing the variance. Building

e-processes to test the two-sided hypothesis on the mean is discussed in Section 5.4.3.
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5.2.2 P-variables and e-variables

We formally define p-variables and e-variables, following Vovk and Wang (2021). A

p-variable P for a hypothesis H is a random variable that satisfies Q(P ⩽ α) ⩽ α for

all α ∈ (0, 1) and all Q ∈ H. In other words, a p-variable is stochastically larger than

U[0, 1], often truncated at 1. An e-variable E for a hypothesis H is a [0,∞]-valued random

variable satisfying EQ[E] ⩽ 1 for all Q ∈ H. E-variables are often obtained from stopping

an e-process (Et)t⩾0, which is a nonnegative stochastic process adapted to a pre-specified

filtration, (Fi)i∈[n] in our problem, such that EQ[Eτ ] ⩽ 1 for any stopping time τ and any

Q ∈ H.

Some p-variables and e-variables are useless, like P = 1 or E = 0. A p-variable P for

H is precise if supQ∈H Q(P ⩽ α) = α for each α ∈ (0, 1), and an e-variable E for H is

precise if supQ∈H EQ[E] = 1. In other words, a p-variable or an e-variable being precise

means that it is not wasteful in a natural sense. A p-variable P is semi-precise for H if

supQ∈H Q(P ⩽ α) = α for each α ∈ (0, 1/2]. Semi-precise p-variables require the sharp

probability bound supQ∈H Q(P ⩽ α) = α only for the case α ⩽ 1/2 which is relevant for

testing purposes. We will see that for some hypotheses, precise p-variables do not exist,

but semi-precise ones do.

Realizations of p-variables and e-variables are referred to as p-values and e-values.

5.3 Best p- and e-variables for one data point

We begin by considering the simple setting where one data point X is available, from

which we will build a p-variable or e-variable for the hypothesis. Although it may be

unconventional to test based on one observation, there are several situations where this

construction becomes useful.

1. Testing by betting: To construct an e-process, one needs to sequentially obtain one

e-value from each observation (or a batch of observations). This is the main setting

in the current chapter.
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2. Testing multiple hypotheses: One observation is obtained for each hypothesis, and

p-values or e-values for each of them are computed and fed into a multiple testing

procedure such as that of Benjamini and Hochberg (1995); this setting is particularly

relevant for e-values as in Wang and Ramdas (2022). Even if for some hypotheses

there is only one data point, a p-value or e-value (even moderate, say e = 0.8 or

e = 1.2) from this hypothesis may be useful for the overall testing problem; see

Ignatiadis et al. (2023) where e-values are used as weights, so e = 0.8 or e = 1.2

matters.

3. Testing a global null: One may first obtain a p-value or e-value for each experiment

and then combine them to test the global null, as in meta-analysis; see Vovk and

Wang (2020, 2021) and the references therein.

E-values are relevant for all of the three contexts, and p-values are relevant for the second

and the third contexts.

Throughout, we make the assumption that a larger value of X indicates stronger evi-

dence against the null; this is intuitive because we are testing the mean less or equal to µ

in (5.3). This means that a p-variable is a decreasing function of X and an e-variable is

an increasing function of X (always in the non-strict sense).

Remark 5.3.1. In the contexts of multiple testing and sequential e-values, the dependence

among several e-values or p-values obtained is preserved from the dependence among the

data points, if the monotonicity assumption above holds. This will be helpful when ap-

plying statistical methods based on dependence assumptions; see Benjamini and Yekutieli

(2001) for the BH (Benjamini and Hochberg (1995)) procedure with positive dependence

and Chi et al. (2022) for BH with negative dependence. Both concepts of dependence are

preserved under monotone transforms.

5.3.1 Two technical lemmas

The following lemma establishes that the minimum of p-variables based on the same

data point X is still a p-variable. This result relies on our assumption that p-variables are

decreasing functions of X.
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Lemma 5.3.1. For a given observation X and hypothesis H, the infimum of p-variables

is a p-variable. As a consequence, there exists a smallest p-variable.

Although the smallest p-variable for H exists, it may not be precise. Indeed, in Theo-

rems 5.3.2 and 5.3.4 below we will see that there may not exist any precise p-variable for

some hypotheses.

The following lemma allows us to convert conditions on distribution functions into

conditions on the corresponding quantile functions. For a probability measure Q, denote

by

TQY (α) = inf{x ∈ R : Q(Y ⩽ x) ⩾ α} for α ∈ (0, 1);

that is, TQY is the left-quantile function of Y under Q.

Lemma 5.3.2. For a random variable P and a hypothesis H,

(i) P is a p-variable if and only if infQ∈H T
Q
P (α) ⩾ α for all α ∈ (0, 1);

(ii) P is a precise p-variable if and only if infQ∈H T
Q
P (α) = α for all α ∈ (0, 1);

(iii) P is a semi-precise p-variable if and only if infQ∈H T
Q
P (α) = α for all α ∈ (0, 1/2)

and infQ∈H T
Q
P (α) ⩾ α for α ∈ [1/2, 1).

The proof of Lemma 5.3.2 is essentially identical to that of Lemma 1 of Vovk and

Wang (2020), which gives the equivalence between probability statements and quantile

statements for merging functions of p-values.

5.3.2 Main results

Recall that we have only one observation, denoted by X. We consider the following

four classes of non-parametric composite hypotheses, where µ ∈ R and σ > 0.

H(µ, σ) =
{
Q : EQ[X] ⩽ µ and VarQ(X) ⩽ σ2

}
;

HS(µ, σ) = {Q ∈ H(µ, σ) : X is symmetrically distributed};

HU(µ, σ) = {Q ∈ H(µ, σ) : X is unimodally distributed};

HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).
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For our main results on the “best” p-variables and e-variables, it will be clear from our

proofs that the condition VarQ(X) ⩽ σ2 in each hypothesis can be replaced by VarQ(X) =

σ2, and the condition EQ[X] ⩽ µ in each hypothesis can be replaced by EQ[X] = µ. All

results remain true with any combinations of the above alternatives. Possible improvement

for the two-sided test is discussed in Section 5.4.3.

The above four sets of distributions are studied in a very different context by Li et al.

(2018) to compute worst-case risk measures under model uncertainty in finance. Some of

our techniques for constructing p-variables use results from Li et al. (2018) and Bernard

et al. (2020) for finding bounds on quantiles (called the Value-at-Risk in finance).

In what follows, for x ∈ R, we write x+ = max{x, 0}, x− = max{−x, 0}, x2+ = (x+)
2,

and x2− = (x−)
2. We first consider the simplest case of testing H(µ, σ).

Theorem 5.3.1. A precise p-variable for H(µ, σ) is P = (1 + (X − µ)2+/σ
2)−1, and a

precise e-variable for H(µ, σ) is E = (X − µ)2+/σ
2.

It may be interesting to compare P and 1/E obtained from Theorem 5.3.1. Note

that any e-variable can be converted into a p-variable via the so-called calibrator e 7→
min{1/e, 1} (Vovk and Wang (2021)). As 1/E is a p-variable for an e-variable E, we have

P ⩽ 1/E. In Theorem 5.3.1, we obtain 1/P = 1 + E > E, as expected.

In the subsequent analysis, we will compare p-variables and e-variables for other hy-

potheses with those in Theorem 5.3.1. For a concise presentation, we will always write

P0 = (1 + (X − µ)2+/σ
2)−1 and E0 = (X − µ)2+/σ

2, (5.4)

which are the p-variable and e-variable in Theorem 5.3.1, and note the connection P0 =

(1 + E0)
−1.

We next consider the hypothesis HS(µ, σ) of symmetric distributions.

Theorem 5.3.2. A semi-precise p-variable for HS(µ, σ) is P = min{(2E0)
−1, P0}, and a

precise e-variable for HS(µ, σ) is E = 2E0. Precise p-variables do not exist for HS(µ, σ).

From Theorem 5.3.2, the e-variable for HS(µ, σ
2), which we denote by ES is improved

by a factor of two from E0 for H(µ, σ2) due to the additional assumption of symmetry.
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On the other hand, the p-variable in Theorem 5.3.2, denoted by PS, is improved from P0

by taking an extra minimum with 1/ES. In the most relevant case that P0 ⩽ 1/2, or

equivalently, E0 ⩾ 1 (i.e., there is some evidence against the null), we have PS = 1/ES.

Next, we will see that the hypothesis HU(µ, σ) of unimodal distributions admits the

same precise e-variable but a quite improved p-variable, compared to P0 and E0. This class

includes, for instance, the commonly used gamma, beta, and log-normal distributions.

Theorem 5.3.3. A precise p-variable for HU(µ, σ) is

P = max

{
4

9
P0,

4P0 − 1

3

}
,

and a precise e-variable for HU(µ, σ) is E = E0.

We denote the p-variable in Theorem 5.3.3 by PU and the e-variable by EU. If P0 is

smaller than 3/8, corresponding to (X − µ)/σ >
√
5/3, then PU = 4P0/9; that is, the

unimodality assumption reduces the p-variable by a multiplicative factor of 4/9 compared

to H(µ, σ). On the other hand, the e-variable EU does not get improved at all compared

to E0.

Finally, we consider the hypothesis HUS(µ, σ) of unimodal-symmetric distributions.

This class includes, for instance, the popular normal, t-, and Laplace distributions. To

construct a semi-precise p-variable for this hypothesis, we will use the following lemma of

quantile bounds within HUS(µ, σ), which may be of independent interest. In what follows,

1 is the indicator function; that is, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

Lemma 5.3.3. For α ∈ (0, 1), it holds that

sup
Q∈HUS(0,1)

TQX (1− α) =

√
2

9α
1(0,1/6](α) +

√
3(1− 2α)1(1/6,1/2](α).

The general formula for HUS(µ, σ) can be easily obtained from Lemma 5.3.3 via

sup
Q∈HUS(µ,σ)

TQX (1− α) = µ+ σ sup
Q∈HUS(0,1)

TQX (1− α).
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Theorem 5.3.4. A semi-precise p-variable for HUS(µ, σ) is

P =
2

9E0

1[4/3,∞)(E0) +
3−

√
3E0

6
1(0,4/3)(E0) + 1{0}(E0).

and a precise e-variable for HUS(µ, σ) is E = 2E0. Precise p-variables do not exist for

HUS(µ, σ).

We denote the p-variable obtained from Theorem 5.3.4 by PUS and the e-variable by

EUS. One may check that PUS is smaller than both PU and PS unless X ⩽ µ (in which

case they are equal to 1). For (X − µ)/σ ⩾
√
5/3, or equivalently, P0 ⩽ 3/8, we have the

following simple relation:

PS =
P0

2(1− P0)
, PU =

4

9
P0, and PUS =

2P0

9(1− P0)
,

implying the order P0 > PS > PU > PUS unless P0 = 0. For instance, if we observe

(X − µ)/σ = 3, then the p-values are

P0 =
1

10
= 0.1, PS =

1

18
≈ 0.056, PU =

2

45
≈ 0.044, and PUS =

2

81
≈ 0.025.

On the other hand, the corresponding e-values are

E0 = 9, ES = 18, EU = 9, and EUS = 18.

For a comparison, if we are testing the simple parametric hypothesis N(0, 1) against N(3, 1)

with one observation X = 3, then the corresponding (Neyman-Pearson) p-value is 0.00135

and the corresponding likelihood ratio e-value is 90.02. This is not surprising as generally

p-values and e-values built for composite hypotheses are more conservative than those for

simple hypotheses based on the same data.

We summarize our construction formulas for p-variables and e-variables in Table 5.1 by

breaking them down using ranges of X. To obtain the formulas for a general (µ, σ) other

than (0, 1), it suffices to replace X in Table 5.1 by (X − µ)/σ.

We conclude the section by making two technical remarks on the obtained results.
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Hypothesis p-variable e-variable

H(0, 1) (1 +X2
+)

−1 X2
+

HS(0, 1)

1
2
X−2 if X ⩾ 1

2X2
+

(1 +X2
+)

−1 if X < 1

HU(0, 1)

4
9
(1 +X2)−1 if X ⩾

√
5/3

X2
+

4
3
(1 +X2

+)
−1 − 1

3
if X <

√
5/3

HUS(0, 1)

2
9
X−2 if X ⩾

√
4/3

2X2
+

1
2
−

√
3
6
X if 0 < X <

√
4/3

1 if X ⩽ 0

Table 5.1: Formulas for p-variables and e-variables

First, all results holds true if the conditions EQ[X] ⩽ µ and VarQ(X) ⩽ σ2 in each

hypothesis is replaced by EQ[X] = µ and VarQ(X) = σ2, respectively. Such modifications

narrow the hypotheses and hence all validity statements hold. The precision statements can

be checked with similar arguments to our proofs, and we omit them. Therefore, knowing

VarQ(X) = σ2 on top of VarQ(X) ⩽ σ2, or EQ[X] = µ on top of EQ[X] ⩽ µ, does not lead

to more powerful one-sided p-variables or e-variables.

Second, admissibility of the proposed p-variables and e-variables needs future research.

For e-variables, admissibility is not difficult to establish, but the picture is different for

p-variables. By Lemma 5.3.1, there always exists a smallest p-variable. It remains unclear

whether the p-variables we obtained in Theorems 5.3.1-5.3.4 are the smallest ones for the

four hypotheses, respectively.

126



5.4 Testing the null hypotheses

We build tests based on e-values and p-values in Section 5.3. Section 5.4.1 describes the

main methodology based on e-processes for the one-sided testing problem; Section 5.4.2

describes a few other methods using our results in Section 5.3; and Section 5.4.3 discusses

the two-sided testing problem on the mean with given variance.

5.4.1 Constructing e-processes

Let µ ∈ R and σ > 0. We consider the following hypotheses by keeping the same

notation as in Section 5.3:

H(µ, σ) =
{
Q : EQ[Xi|Fi−1] ⩽ µ and VarQ(Xi|Fi−1) ⩽ σ2 for i ∈ [n]

}
;

HS(µ, σ) = {Q ∈ H(µ, σ) : Xi|Fi−1 is symmetrically distributed for i ∈ [n]};

HU(µ, σ) = {Q ∈ H(µ, σ) : Xi|Fi−1 is unimodally distributed for i ∈ [n]};

HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).

Recall that it is without loss of generality to consider µ and σ2 as constants. We can also

test the hypotheses where some data are symmetric or unimodal and some are not, because

we will build e-values from each of them separately. For simplicity, we only list the above

four representative cases. Using a similar formulation, the hypothesis in Waudby-Smith

and Ramdas (2024) is

HWSR(µ) = {Q ∈ H(µ, 1) : Xi|Fi−1 is supported in [0, 1] almost surely for i ∈ [n]}.

In the above formulation, the choice of σ = 1 is simply to remove the variance constraint;

see Remark 5.2.1.

There are several simple ways to use results in Section 5.3 to construct an e-variable

or p-variable for the above hypotheses; some of these methods are more useful than the

others. In general, we can compute an e-variable Ei or p-variable Pi based on Xi for i ∈ [n]

using Theorems 5.3.1-5.3.4, and then combine them.
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Our main proposal is to use e-processes. An e-processM = (Mt)t∈[n] can be constructed

using

Mt =
t∏
i=1

(1− λi + λiEi), (5.5)

where λi is Fi−1-measurable and takes values in [0, 1). This idea is the main methodology

behind game-theoretic statistics; see Shafer (2021), Shafer and Vovk (2019), and Waudby-

Smith and Ramdas (2024, Proposition 3). It has been used by Waudby-Smith and Ramdas

(2024) for testing the mean and Wang et al. (2022) for testing risk measures. To find good

choices of λ = (λi)i∈[n] is a non-trivial task. We propose to specify λ in two different ways.

(a) E-mixture method: We first take several λi = λ ∈ [0, 1), which is a constant for

each i ∈ [n], and then average the resulting e-processes from (5.5) over these choices

to get an e-process. An uninformative choice of the values of λ may be some points in

[0, 0.2]. We avoid choosing λ close to 1 because our e-value may take the value 0 with

substantial probability, leading a small value of EQ[log(1 − λ + λE)]. This quantity

measures the growth rate of an e-process; see Grünwald et al. (2023) and Waudby-

Smith and Ramdas (2024). In our simulation and empirical studies, we average over

λ = 0.01× {1, . . . , 20}.

(b) E-GREE method: In the GREE (growth-rate for empirical e-statistics) method of

Wang et al. (2022) for λi, i ∈ [n] in (5.5), λi is determined by solving the following

optimization problem:

λi =

(
argmax
λ∈[0,1)

1

i− 1

i−1∑
j=1

log(1− λ+ λEj)

)
∧ 1

2
. (5.6)

To simplify the maximization in (5.6), a fast and approximate solution can be obtained

using Taylor expansion as in Waudby-Smith and Ramdas (2024). This leads to the

following simple formula

λi =

( ∑i−1
j=1(Ej − 1)∑i−1
j=1(Ej − 1)2

)
+

∧ 1

2
. (5.7)

We will use (5.7) for all e-GREE related calculations for the following results.
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When the hypothesis to test is HWRS(µ), the e-GREE method reduces to the method of

Waudby-Smith and Ramdas (2024); see Section 5.5.2. An optimization procedure related

to (5.6) is studied by Kumon et al. (2011).

For either the e-GREE or the e-mixture method, we fix α ∈ (0, 1) and reject the null

hypothesis if the e-process M goes beyond 1/α, that is, when Mt ⩾ 1/α for the first time.

If we are only interested in testing with a fixed finite number n data points, then this is

equivalent to using maxt∈[n]Mt. The type-I error control is guaranteed by Ville’s inequality

(Ville (1939)) as P(maxt∈[n]Mt ⩾ 1/α) ⩽ α for any positive integer n.

The result below clarifies consistency of the e-GREE method in the most idealistic

setting.

Proposition 5.4.1. Suppose that data are iid and generated from an alternative proba-

bility Q. The e-GREE method has asymptotic power approaching 1 as n → ∞, that is,

Q(supt∈[n]Mt ⩾ 1/α) → 1 for any α ∈ (0, 1) if and only if EQ[E1] > 1.

Although Proposition 5.4.1 requires an iid assumption, this assumption is not needed

for consistency in practical situations; an example is in Section 5.5.1.

5.4.2 Some other methods

Below we list some other methods, where we assume that n is finite. They generally

do not work well as shown by the simulation studies, but nevertheless we list them as they

follow from our results in Section 5.3, and they are presented only for a comparison.

(c) P-Fisher method: Construct a p-variable P using the Fisher combination (Fisher

(1925))

P = 1− χ2n(−2(logP1 + · · ·+ logPn)),

where χ2n is the cdf of a chi-square distribution with 2n degrees of freedom.

(d) P-Simes method: Construct a p-variable P using the Simes combination (Simes

(1986))

P = min
i∈[n]

n

i
P(i),
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where P(i) is i-th order statistic of P1, . . . , Pn from the smallest to the largest.

Although in general p-Fisher and p-Simes require independence among p-variables, they

are valid in our setting since our p-variables are conditionally valid, and they can be treated

as iid when we work with combination of p-values.

The next two methods use all data directly, and requires independence amongX1, . . . , Xn.

A most natural statistic is the sample mean T =
∑n

i=1Xi/n. Under H(µ, σ), T has at most

mean µ and variance at most σ2/n. Moreover, symmetry of T follows from symmetry of

X1, . . . , Xn. Nevertheless, T is not necessarily unimodal even if X1, . . . , Xn are unimodal,

and hence unimodality of T cannot be used. The following e-variables and p-variables are

constructed by directly applying Theorems 5.3.1-5.3.4.

(e) E-batch method: An e-variable for H(µ, σ) or HU(µ, σ) is

E0 = n(T − µ)2+/σ
2,

an e-variable for HS(µ, σ) or HUS(µ, σ) is

ES = 2n(T − µ)2+/σ
2.

(f) P-batch method: A p-variable for H(µ, σ) or HU(µ, σ) is

P0 = (1 + E0)
−1,

a p-variable for HS(µ, σ) or HUS(µ, σ) is

PS = min{(2E0)
−1, P0}.

All methods described in this section have Type-I error control under the null hypothesis

and with finite sample (with methods (e) and (f) additionally requiring independence)

without requiring that the data are identically distributed.
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5.4.3 Two-sided e-values testing the mean given variance

We briefly discuss the two-sided mean testing problem, where the main hypothesis

H(µL, µU , σ) to test is{
Q : EQ[Xi|Fi−1] ∈ [µL, µU ] and VarQ(Xi|Fi−1) ⩽ σ2 for i ∈ [n]

}
,

where µL ⩽ µU are constants. The case µL = µU corresponds to testing whether the mean

is equal to a precise value.

Our methodology can be easily adapted to test this hypothesis. First, we note that the

e-variable E given by

E =
(X − µU)2+ + (X − µL)2−

σ2
, (5.8)

is a precise e-variable for H(µL, µU , σ) formulated on a single observation X. To see this,

it suffices to note that for Q ∈ H(µL, µU , σ),

EQ[E] = EQ
[
(X − µU)2+ + (X − µL)2−

σ2

]
⩽ EQ

[
(X − EQ[X])2+ + (X − EQ[X])2−

σ2

]
=

VarQ(X)

σ2
⩽ 1.

The statement on its precision can be verified similarly to Theorem 5.3.1.

If µL = µU = µ, then the e-variable in (5.8) is

E = (X − µ)2/σ2.

This e-variable satisfies the property that EQ[E] > 1 if EQ[X] ̸= µ and VarQ(X) = σ2; this

condition is useful to establish consistency in Proposition 5.4.1.

Following the same procedure in Section 5.4.1 using (5.8), we obtain e-processes for

the two-sided problem H(µL, µU , σ). Due to a smaller null hypothesis, this e-process is

generally more powerful than the one in Section 5.4.1 testing the one-sided mean.

There are special, adversarial scenarios where such two-sided tests may not be powerful.

For instance, if data are independent with E[Xi] < µ and E[Xj] > µ appearing in an
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alternating sequence; this forms a dataset that looks like iid data with mean µ, thus very

difficult to detect. The same challenge exists for other methods based on e-processes, such

as that of Waudby-Smith and Ramdas (2024).

Remark 5.4.1. Under the additional information of symmetry, the e-variable in (5.8) can be

used, but it cannot be multiplied by two as in Theorem 5.3.2. In this case, an alternative

way to take advantage of symmetry is to build two e-processes in Section 5.4.1: one to test

E[Xi|Fi−1] ⩽ µU and another one to test E[−Xi|Fi−1] ⩽ −µL. Taking the average of these

two e-processes yields a valid e-process for the null hypothesis. As long as one of the two

e-processes has good power for the true data generating procedure, the average e-process

has good power.

5.4.4 Power of the e-values with fixed mean and growing variance

In this section, we analyze the power of the e-variables. For a given e-variable E, its

e-power, using the terminology of Vovk and Wang (2024), for an alternative probability

Q is defined as EQ[logE]; see Shafer (2021) and Grünwald et al. (2023) for using this

quantity as a notion of power. Certainly, the power depends on the specific alternative Q.

We are particularly interested in how the e-power changes as the variance in the alternative

hypothesis grows.

For this purpose, we consider a simplistic, yet representative setting, where a class of

simple alternatives (Qσ)σ>1 is indexed by σ > 1, such that our data point X under Qσ is

distributed as σZ, where Z has a fixed distribution with mean 0 and variance 1 satisfying

the null hypothesis, which can be one of H(0, 1), HS(0, 1), HU(0, 1) and HUS(0, 1). Note

that in this setting, the mean of the data is always 0, and only its variance grows under

the alternative. We denote by Q0 a null probability. Below, we will show that the e-power

of each e-variable grows at a rate of log σ as the alternative variance σ2 grows, regardless

of the distribution of Z.

Let E be the e-variable computed based on X as in Section 5.3. Due to the construction

of the e-process M in (5.5), the e-power of relevance is defined as

ΠQσ = sup
λ∈[0,1]

EQσ [log(1− λ+ λE)] = sup
λ∈[0,1]

EQ0 [log(1− λ+ λσ2E)],
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that is, the best-achievable e-power of in each multiplicative term in the e-process M .

Proposition 5.4.2. Suppose p := Q0(E ⩾ 1) > 0. For σ > 1,

(2p log σ − log 2)+ ⩽ ΠQσ ⩽ 2 log σ. (5.9)

Moreover, 0 ⩽ ΠQσ − ΠQδ ⩽ 2(log σ − log δ) for σ > δ > 1.

Proposition 5.4.2 suggests that the growth rate of the e-processM is roughly a constant

times log σ when the alternative variance σ2 is larger than 1. An additional negative term

− log 2 in (5.9) is not surprising, because our conditions do not guarantee ΠQσ > 0 for σ

very close to 1. Below, we give an example to illustrate the sharpness of bounds in (5.9).

Example 5.4.1. Suppose that Q0(E = 0) = Q0(E = 2) = 1/2. We can compute

ΠQσ = sup
λ∈[0,1]

1

2

(
log(1− λ) + log(1 + λ(2σ2 − 1))

)
=

1

2
log

σ4

2σ2 − 1
.

It is clear that ΠQσ is approximately equivalent to log σ for large σ, corresponding to the

left side of (5.9) with p = 1/2.

5.5 Simulation studies

5.5.1 A comparison of different e-combining methods

In this section, we conduct simulation studies for the non-parametric hypotheses in

Section 5.4. We set µ = 0 and σ = 1 without loss of generality.

We first concentrate on the null hypothesis H(0, 1), as the other four cases are similar.

For all the methods stated in Section 5.4, we do not make the assumption that the data

are identically distributed. Thus, we generate a sample of n independent data points

(although independence is not needed for methods (a)-(d)), alternating from two different

distributions: X1, X3, . . . , follow a normal distribution, and X2, X4, . . . , follow a Laplace
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distribution, with the same mean ν and the same variance η2.1 We denote this data

generating process as NL(ν, η2) with the null parameters being (ν, η2) = (0, 1). We consider

two alternatives: (1) Data generated from NL(0, η2) where η > 1; (2) Data generated from

NL(ν, 1) where ν > 0. In our setting, the tester does not know the alternating data

generating mechanism. For each alternative model, we compute the rejection rate over

1000 runs using the thresholds of E ⩾ 1/α and P ⩽ α, with α = 0.05, for e-values and

p-values, respectively.

For the e-mixture method, we experiment by averaging λ in the interval [0.01, 0.20]

with step size 0.01. The e-GREE method is similar to the e-mixture method, except that

λi is dynamically updated with different i ∈ [n] using the formula (5.6).

Figure 5.1 shows the rejection rates for all methods with data generated from NL(0, η2),

where η ∈ [1, 4] (left panel), and from NL(ν, 1) where ν ∈ [0, 1] (right panel). For alter-

native model NL(0, η2), we see that the e-mixture and the e-GREE methods outperform

the other methods, with the e-mixture method being the most powerful. For η < 1.5,

the rejection rates of all methods are very low, making it challenging to distinguish their

efficiency. As η > 1.5, both the e-mixture method and the e-GREE method exhibit signifi-

cantly higher rejection rates compared to other methods, demonstrating their effectiveness

in testing H(0, 1). The other four methods have almost no power. For alternative model

NL(ν, 1), we observe that e-batch method and the p-batch method show significant high re-

jection rates, since they are quite sensitive to the sample mean. Recall that these methods

rely on independence, so the central limit theorem kicks in.

Among all methods, only the e-process based methods satisfy anytime-validity, that is,

decision can be made at any stopping time when data arrive sequentially. This situation

is common in financial applications, where realized losses accumulate over time; see the

empirical study in Section 5.6.

The testing procedures for HS, HU and HUS are the same as for testing H. We generate

100 data points from NL(0.5, 2) and calculated the rejection rates for testing HS, HU and

HUS with null hypotheses µ = 0 and σ = 1. Table 5.2 displays the rejection rates for all

1The assumption that the two distributions have the same mean and variance is not necessary when

evaluating the power of the methods. We assume this only for simplicity.
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Figure 5.1: Rejection rates for all methods for testing H(0, 1) with sample size n = 100

over 1000 runs using the threshold 20.

hypotheses. It is clear that the extra information of symmetry improves the power.

E-mixture E-GREE P-Fisher P-Simes E-batch P-batch

H 0.419 0.315 0.000 0 0.639 0.664
HS 0.998 0.882 0.000 0 0.900 0.900
HU 0.419 0.315 0.006 0 0.639 0.664
HUS 0.998 0.882 0.763 0 0.900 0.900

Table 5.2: Rejection rates of testing H, HS, HU and HUS with n = 100 data generated

from the model NL(0.5, 2).

5.5.2 A comparison with the GRAPA method

Recall that our model can also be interpreted as testing the mean under the knowledge

of an upper bound on the variance. This allows us to compare our testing approach with

the GRAPA (Growth Rate Adaptive to the Particular Alternative) method proposed by

Waudby-Smith and Ramdas (2024). GRAPA is similar to the e-GREE method discussed

in Section 5.4, but it requires the random variable to be bounded. The e-process (Mt)t∈[n]
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for the GRAPA method is constructed as follows:

Mt =
t∏
i=1

(1 + λi(Xi − µ)), (5.10)

where µ is the conditional mean being tested and λi is Fi−1-measurable and takes value

in (−1/(1− µ), 1/µ), maximizing the growth of (5.10) in some sense similar to (5.6). It is

clear that 1 + λi(Xi − µ) is an e-variable for each i ∈ [n]. One way to obtain λi is to solve

the following equation:

1

i− 1

i−1∑
j=1

Xj − µ

1 + λj(Xj − µ)
= 0. (5.11)

Due to computational complexity, Waudby-Smith and Ramdas (2024) offered an alter-

native way to obtain λi by taking a Taylor expansion, which they call the approximate

GRAPA method, so that the λi is computed by the following way

λi = − c

1− µ
∨ µ̂i−1 − µ

σ̂2
i−1 + (µ̂i−1 − µ)2

∧ c

µ
, (5.12)

where µ̂i and σ̂
2
i are empirical mean and variance of the observations X1 . . . , Xi, and c ⩽ 1

is fixed. From (5.12), it is clear that the GRAPA method is able to use the sample

variance information adaptively; this is also true for (5.6) and (5.11) but implicitly. In this

simulation, we use the approximate GRAPA method and choose c = 1/2.

We compare five methods for testing the mean under various conditions:

(a) GRAPA: The (approximate) GRAPA method with a bounded support [0, 1].

(b) E-GREE: The e-GREE method with the variance upper bound σ2.

(c) E-mixture: The e-mixture method with the variance upper bound σ2.

(d) E-GREE-2s: The two-sided e-GREE method with the variance upper bound σ2.

(e) E-mixture-2s: The two-sided e-mixture method with the variance upper bound σ2.

The two-sided e-GREE and the two-sided e-mixture methods are abbreviated as e-GREE-

2s and e-mixture-2s, respectively. We also note that GRAPA is also designed as a two-sided

test, although it can easily be adjusted by restricting λi in (5.10) to be nonnegative.
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Remark 5.5.1. We could also implement the e-GREE and e-mixture methods without an

upper bounded variance but using the bounded support, as described in Remark 5.2.1.

Although these methods are valid, they have poor power in our setting, because their

assumption is strictly weaker than both bounded variance and bounded support. We omit

their results.

We set µ = 0.2 and apply both one-sided and two-sided tests on the same dataset. We

generate a sample consisting of n independent data points from a beta distribution, denoted

by Beta(ν, σ2), where ν and σ2 represent the mean and variance of the beta distribution.2

Here, we use ν and σ2 instead of the standard beta parameters α and β for the sake of

convenience. Note that the parameters α and β can be easily recovered based on given

mean ν and variance σ2: α = ν(ν − ν2 − σ2)/σ2 and β = (ν2 + σ2 − ν)(ν − 1)/σ2. Since

the beta distribution has a bounded support [0, 1], we can make meaningful comparisons

between the GRAPA method and the e-GREE and e-mixture methods.

We first compare the rejection rates, using a threshold of 20 over 1000 runs, for all

methods mentioned above under different ν with fixed σ2. We consider ν ⩾ 0.35 and

σ = 0.05, σ = 0.1 and σ = 0.3. We use 20 data points for each run.

Figure 5.2 shows the performance of the three methods. First, the e-GREE method

is always better than the e-mixture method. Second, the two-sided versions of both the

e-GREE and e-mixture methods show a slight improvement over their respective one-sided

methods, as expected. Third, in case σ = 0.05 and σ = 0.1, the e-GREE method outper-

forms the GRAPA method; in case σ = 0.3, the GRAPA method demonstrates superior

performance compared to the other methods. This is intuitive, because the variance infor-

mation is less useful for larger σ; recall that for any distribution supported in [0, 1] with

mean µ ⩽ 0.35, the maximum possible variance is 0.2275 (σ ≈ 0.477).

Figure 5.3 shows the average logarithmic e-processes for n up to 50 by using ν = µ+ σ

for each alternative model. The relative rankings of these methods are consistent with

their rejection rates, with e-GREE performing the best when σ is relatively small.

2None of the methods requires that the data follow identical distributions; we use a single distribution

just for simplicity.
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Figure 5.2: Rejection rates for the GRAPA, the e-GREE, the e-mixture and the two-

sided e-GREE-2s and the e-mixture-2s methods over 1000 runs using the threshold 20 and

µ = 0.35. Data are generated from Beta(ν, σ2) with sample size n = 20, where ν ⩾ 0.35

and σ ∈ {0.05, 0.1, 0.3}.
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Figure 5.3: Average logarithmic e-processes for the GRAPA, the e-GREE, the e-mixture

and the two-sided e-GREE-2s and the e-mixture-2s methods with varying sample size and

µ = 0.35. Data are generated from Beta(ν, σ2) where σ ∈ {0.05, 0.1, 0.3} and ν = µ+ σ.

From the simulation results, our general recommendation is to use e-GREE to construct

the e-process when the variance is relatively small, and to use GRAPA when the variance

is relatively large compared to the bounded support.

5.5.3 A comparison with exponential test supermartingale

Next, we compare our methods with the exponential test supermartingale methods that

directly construct e-processes, rather than using a betting strategy to combine sequential

e-variables.
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Wang and Ramdas (2023) extends the idea from Catoni (2012) to construct a non-

negative test supermartingale called the Catoni supermartingale to test mean and variance

in sequential settings. The test supermartingale is constructed as follows:

MC
t =

t∏
i=1

exp

(
ϕ(λi(Xi − µ))− λ2iσ

2

2

)
, (5.13)

where ϕ is the influence function and (λi)i∈[n] is any predictable process. Following the

recommendation of Wang and Ramdas (2023), we choose the influence function

ϕ(x) =

log(1 + x+ x2/2), if x ⩾ 0;

− log(1− x+ x2/2), if x < 0.

and (λi)i∈[n] as

λi =

(
2 log(1/α)

i(σ2 + η2i )

)1/2

where ηi =

(
2σ2 log(1/α)

i− 2 log(1/α)

)1/2

. (5.14)

A different approach by Howard et al. (2021) is to use a framework for non-parametric

confidence sequences based on the concept of exponential supermartingales. They intro-

duce the concept of a “sub-ψ process” in Howard et al. (2021, Definition 1), where a pair

of Ft-adapted processes (St, Vt) is a so-called sub-ψ process. Here, St is the zero-mean

deviation of the sample sum from its estimand at time t and Vt and ψ make the following

process

Mψ
t = exp{λSt − ψ(λ)Vt} (5.15)

a supermartingale for all λ in an interval [0, λmax). This framework allows for testing

mean and variance under a wide variety of assumptions, including bounded supports, self-

normalized bounds, and symmetric conditions. We refer to Howard et al. (2021, Appendix

J, Table 3) for a collection of commonly used ψ functions and variance processes for St =∑t
i=1(Xi−µ) under various assumptions. We choose two special cases for comparison with

our methods: the self-normalized bounds test supermartingale, denoted byMψ,SN
t , and the

symmetric condition test supermartingale, denoted by Mψ,sym
t . For λ ∈ [0,∞), these test

supermartingales are constructed as follows:

Mψ,SN
t =

t∏
i=1

exp

(
λ(Xi − µ)− λ2(Xi − µ)2 + 2σ2

6

)
, (5.16)

139



which also appears in Wang and Ramdas (2023, Section 5), and

Mψ,sym
t =

t∏
i=1

exp

(
λ(Xi − µ)− λ2(Xi − µ)2

2

)
. (5.17)

We follow a simple method of choosing λ suggested by Howard et al. (2021, Section 3.2),

that is, to use the mixture supermarginagle
∫
exp(λSt − ψ(λ)Vt) dΦ(λ) by assuming λ ∼

Φ = N(0, 1). Now, we further compare the following methods:

(f) WR23-Catoni: The Catoni method with the variance upper bound σ2.

(g) HRMS21-SN: The self-normalized method with the variance upper bound σ2.

(h) HRMS21-sym: The sub-ψ method with symmetry, but without variance information.

(i) E-GREE-sym: The e-GREE method with the variance upper bound σ2 and symme-

try.

(j) E-mixture-sym: The e-mixture method with the variance upper bound σ2 and sym-

metry.

We compare above five methods, along with the e-GREE and e-mixture methods that do

not utilize symmetric information (methods (a) and (b) described in the previous section),

in testing H(0, 1). Following the same data generating process as described in Section

5.5.2, we generate n independent data points alternating between the normal and Laplace

distributions, denoted by NL(ν, η2). Figure 5.4 shows rejection rates for above methods

with data generated from three cases: NL(ν, 12) for ν ∈ [0, 1], NL(ν, (1+ ν)2) for ν ∈ [0, 1],

and NL(ν/5, (1 + ν)2) for ν ∈ [0, 2].

For NL(ν, 12), the Catoni method outperforms other methods, while methods utilizing

symmetric information generally perform well. For NL(ν, (1 + ν))2), where both the mean

and variance of the data generating process change, the power of methods from Howard

et al. (2021) reduces. In contrast, the power of our e-value based methods increases,

as our construction of e-values is sensitive to the changes to variance. In the last case,

NL(ν/5, (1 + ν)2), the impact of changes in mean is small and the variance effect is large,
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Figure 5.4: Rejection rates for methods (a), (b) and (f)-(j) for testing H(0, 1) with sample

size n = 100 over 1000 runs using the threshold 20.

e-value based methods generally outperform others. Although method (h) benefits from

not requiring information about variance or even the existence of variance, it demonstrates

minimal power when testing mean with varying variance, due to its penalization term

−(Xi − µ)2 in the exponential form of (5.16) and (5.17). In summary, our methods are

comparatively more powerful when the alternative variance defers from the null.

5.6 Empirical study with financial data

In this section, we conduct an empirical study to test the hypothesis H(µ, σ) on the

daily losses of financial assets. We aim to calculate the number of trading days required

to detect evidence for rejecting the null hypothesis H(µ̂, σ̂) during the 2007–2008 financial

crisis period. Here, µ̂ and σ̂ represent the sample mean and sample variance estimated from

historical data prior to the testing period. That is, we are testing whether the historical

estimations before the testing period are still valid. If the null hypothesis can be rejected

at a reasonable thresholds level rather swiftly, this will serve as evidence of the effectiveness

of e-process methods and could help investors switch strategies in a timely manner.

We choose 20 stocks from 10 different sectors of the S&P 500 list with the large market

capitalization in each sector. Moreover, we include two companies with the largest market

capitalization from the to-be Real Estate sector.3 We first calculate the daily losses for

3Real Estate becomes the 11th sector of S&P500 in 2016.
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each of the selected stocks from January 1, 2001 to December 31, 2010. The daily losses

are expressed by percentage and calculate by Lt = −(St+1 − St)/St, where St is the close

price at day t. Note that the positive value represents a loss and negative value represents

a gain. We could also use the log-loss data instead of the linear loss data, but the difference

between the two is minor. We use the loss data from January 1, 2001 to December 31,

2006 to estimate the mean and variance for the null hypothesis. We compute the e-values

using both the e-mixture method and the e-GREE method based on the construction of

(5.5) as the daily loss from January 1, 2007 fed into the e-process.

Following a methodology similar to the simulation study in Section 5.5, we report the

evidence against the null hypothesis when the e-process exceeds thresholds of 2, 5, 10, and

20.4 E-values exceeding 5 or 10 provide substantial evidence to reject the null hypothesis,

while a threshold of 20 offers strong evidence against the null hypothesis. It is important

to note that, although a threshold of 2 may not be substantial enough to reject the null

hypothesis, it can still serve as an early warning that the stock’s performance may be

different from its historical path.

To illustrate the e-process detection procedure, we first focus on a single stock as an

example. Figure 5.5 reports the stock price for Simon Property (SPG) throughout the

detection period and its corresponding e-process initiated on January 1, 2007. Observing

from the e-process figure, it is evident that both the e-mixture method and the e-GREE

method effectively reject the null hypothesis at thresholds of 2, 5, 10, and 20 before the

financial crisis ends. Notably, the e-GREE method generally takes fewer trading days

compared to the e-mixture method to achieve this rejection across various threshold levels.

Also, the null hypothesis is rejected using e-GREE method prior to another significant

decline in the stock price during February 2009 to June 2009, thus preventing potential

larger losses and underscoring the effectiveness of e-process methods.

Compared to e-batch and other p-variable based methods stated in Section 5.4, e-

4In accordance with Jeffrey’s rule of thumb about e-values (see Jeffreys (1961) and Vovk and Wang

(2021)), if the e-value falls within the interval of (101/2, 10), the evidence against the null hypothesis is

considered substantial; If the e-value falls within the interval of (10, 103/2), the evidence against the null

hypothesis is regarded as strong.
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Figure 5.5: Sample path and logarithmic e-process using the e-GREE and the e-mixture

methods testing of H(µ̂, σ̂) for Simon Property (SPG) stock from January 2007 to January

2008, where µ̂ = −0.001028 and σ̂ = 0.012123 are the sample mean and variance estimated

from historical data for stock SPG from January 1, 2001 to December 31, 2006.

process based methods exhibit a unique advantage in sequential settings, particularly in

financial applications where actual losses accumulate sequentially over time. In such sce-

narios, the e-process permits the early termination without a specified sampling period,

potentially preventing further losses at an earlier stage. Table 5.3 displays the number

of trading days required to reject the null hypothesis at various threshold levels for the

selected 20 stocks from 10 different sectors and the two stocks in Real Estate. The ta-

ble shows that stocks in sectors significantly impacted by the 2007–2008 subprime crisis,

such as Financials and Consumer Discretionary, Energy (as evident in the top three stock

price figures in Figure 5.6), could generally be detected using e-process based methods. In

particular, the representative companies in Real Estate are rejected the earliest (see the

last rows of Table 5.3). In contrast, for stocks in sectors less affected by the subprime

crisis, such as Technology, Health Care, and Consumer Staples (as evident in the bottom

three stock price figures in Figure 5.6), we are unable to reject the null hypothesis. This

is intuitive, given that their prices and returns remain relatively stable or even increase

during the financial crisis.

143



E-GREE E-mixture

Threshold 2 5 10 20 2 5 10 20

Financials
Bank of America 376 382 385 385 393 394 395 403

Morgan Stanley 429 434 436 439 447 447 447 447

Utilities
The Southern - - - - - - - -

Duke Energy - - - - - - - -

Communication Verizon Comms. - - - - - - - -

Services AT&T - - - - - - - -

Consumer Walmart - - - - - - - -

Staples PepsiCo - - - - - - - -

Consumer Ford Motor 457 476 483 491 546 594 594 594

Discretionary Las Vegas Sands 441 443 445 445 451 454 457 457

Energy
Texas Pacific Land 158 219 242 261 242 261 261 263

Pioneer 486 515 539 548 - - - -

Materials
Southern Copper 473 476 484 496 539 - - -

Air Products 473 477 491 516 - - - -

Health Care
Johnson & Johnson - - - - - - - -

Pfizer - - - - - - - -

Technology
Int. Business Machines - - - - - - - -

Microsoft - - - - - - - -

Industrials
General Electric 526 542 546 557 - - - -

United Parcel Service 457 476 488 491 542 604 - -

Real Estate
Simon Property 165 223 238 250 223 239 250 253

Prologis 264 270 271 271 270 271 271 275

Table 5.3: The number of trading days taken to detect evidence against H(µ̂, σ̂) using the

e-GREE method and the e-mixture method for different stocks from January 1, 2007 to

December 31, 2010; “–” means no detection is observed till December 31, 2010.
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Figure 5.6: Sample paths for the stock price of Bank of America Corp. (BAC), Morgan

Stanley (MS), Texas Pacific Land Corp. (TPL), Walmart Inc. (WMT), PepsiCo Inc.

(PEP), Microsoft Corp. (MSFT) from January 1, 2001 to December 31, 2010.

5.7 Concluding remarks

This chapter proposes an e-process based approach for testing mean and variance from

non-stationary data. We consider four classes of non-parametric composite hypotheses

with specified mean and variance bound along with additional constraints of distribution,

such as symmetry, unimodality, or a combination thereof. For this purpose, our main

technical results give the best p-variables and e-variables in the simple setting where one

summary data point is observed. The explicit formulas are summarized in Table 5.1. Using

the obtained e-variables, we construct an e-process using either the e-mixture method or
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the e-GREE method. Simulation studies and empirical analysis are conducted to show the

performance of the proposed methods in comparison with GRAPA of Waudby-Smith and

Ramdas (2024) and with the exponential supermartingale methods of Howard et al. (2020,

2021) and Wang and Ramdas (2023).

As mentioned in Section 5.3, our constructions of p-values and e-values are potentially

useful for multiple testing, which is not addressed in this chapter. The literature on using

e-values in multiple testing is growing recently. For instance, e-values are used for false

discovery control in knockoffs; see Ren and Barber (2023) for derandomization, Ahn et al.

(2023) for Bayesian linear models, and Gablenz and Sabatti (2023) for resolution-adaptive

variable selection. Finally, the obtained e-variables may also be useful to build e-confidence

regions (see Vovk and Wang (2023)) and e-posterior (see Grünwald (2023)) for (µ, σ2),

although we mainly consider a non-parametric setting.

5.8 Appendix: Technical details

We collect all proofs in the chapter in this section.

Proof of Lemma 5.3.1. Let P be any collection of p-variables for H. For Q ∈ H, using the

fact that the elements of P are comonotonic, we have

Q(inf{P ∈ P} > α) = Q

(⋂
P∈P

{P > α}

)
= inf

P∈P
Q(P > α) ⩾ 1− α.

This implies

Q(inf{P ∈ P} ⩽ α) ⩽ α.

Hence, the infimum of all p-variables for H is still a p-variable, which is the smallest

one.

For all theorems below, we will prove precision statements for the formulation of

EQ[X] = µ instead of EQ[X] ⩽ µ, making these statements stronger. For the validity

statements, it is easy to verify that those p-variables and e-variables are valid under both

formulations.
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Proof of Theorem 5.3.1. Since the problem is invariant under location shift and scaling, it

suffices to consider the normalized case of (µ, σ) = (0, 1).

It is clear that P is decreasing in X and E is increasing in X.

For Q ∈ H(0, 1), Cantelli’s inequality implies Q(X > x) ⩽ 1/(1 + x2) for x > 0, which

implies, for each α ∈ (0, 1),

Q(P ⩽ α) = Q(1 +X2
+ ⩾ 1/α) = Q

(
X ⩾

√
(1− α)/α

)
⩽

1

1 + 1/α− 1
= α.

The inequality above is an equality if Q is chosen such that

Q
(
X =

√
(1− α)/α

)
= α = 1−Q

(
X =

√
α/(1− α)

)
, (5.18)

and we can easily verify that EQ[X] = 0 and VarQ(X) = 1. This implies that supQ∈H(0,1)Q(P ⩽

α) = α for each α ∈ (0, 1), and therefore P = 1/(1+X2
+) is a precise p-variable for H(0, 1).

For Q ∈ H(0, 1), we have EQ[X2
+] ⩽ EQ[X2] ⩽ 1. To show that E is precise, let Q be

given by (5.18), which satisfies EQ[X2
+] = α. By taking α ↑ 1 we know supQ∈H(0,1) EQ[E] =

1, and therefore E = X2
+ is a precise e-variable for H(0, 1).

Proof of Theorem 5.3.2. We first show the statement on the e-variable. Set (µ, σ) = (0, 1)

as in the proof of Theorem 5.3.1. For Q ∈ HS(0, 1), we have 2EQ[X2
+] = EQ[X2] ⩽ 1, with

equal sign holding if VarQ(X) = 1. Therefore, E = 2X2
+ is a precise e-variable for HS(0, 1).

Since E = 2X2
+ is an e-variable, by Markov’s inequality, 1/E = (2X+)

−2 is a p-variable

for HS(0, 1). In Theorem 5.3.1 we have seen that P0 is a p-variable for H(0, 1), and hence

also a p-variable for HS(0, 1) ⊆ H(0, 1). Using Lemma 5.3.1, the minimum of P0 and

(2E0)
−1 is a p-variable for HS(0, 1).

Next, we show that P is semi-precise. For α ∈ (0, 1/2], let Q be chosen such that

Q
(
X = (2α)−1/2

)
= α = Q

(
X = (2α)−1/2

)
and Q(X = 0) = 1− 2α.

We can verify that EQ[X] = 0, VarQ(X) = 1, andX is symmetrically distributed. It follows

that Q(P ⩽ α) = Q(X = (2α)−1/2) = α. This implies that supQ∈HS(0,1)
Q(P ⩽ α) = α for

α ∈ (0, 1/2]. Therefore, P is a semi-precise p-variable for HS(0, 1).
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Finally, we show that there do not exist precise p-variables for HS(0, 1). Suppose that

P = f(X) is a precise p-variable, where f is a decreasing function. Note that Q(X ⩽ 0) ⩾

1/2 for all Q ∈ HS(0, 1). It follows that Q(P ⩾ f(0)) ⩾ 1/2 and Q(P < f(0)) ⩽ 1/2.

If f(0) > 1/2, then for α ∈ [1/2, f(0)], Q(P ⩽ α) ⩽ 1/2 < α, implying that P is not

precise. If f(0) ⩽ 1/2, then, by taking Q as the point-mass at 0, we have Q(P ⩽ 1/2) = 1,

implying that P is not a p-variable. Either way we have a contradiction, and hence does

not exist a precise p-variable.

Proof of Theorem 5.3.3. Set (µ, σ) = (0, 1) as in the proof of Theorem 5.3.1. By Theorem

1 of Bernard et al. (2020),

sup
Q∈HU(0,1)

TQX (1− α) = max

{√
4

9α
− 1,

√
3− 3α

1 + 3α

}
for α ∈ (0, 1). (5.19)

Note that P is a decreasing function of X, and we denote this by P = f(X) where

f(x) = max

{
4

9
(1 + x2+)

−1,
4

3
(1 + x2+)

−1 − 1

3

}
.

For α ∈ (0, 1/6], we have

sup
Q∈HU(0,1)

TQX (1− α) =

√
4

9α
− 1,

and hence

inf
Q∈HU(0,1)

TQP (α) = f

(
sup

Q∈HU(0,1)

TQX (1− α)

)
=

4

9

(
1 +

4

9α
− 1

)−1

= α.

For α ∈ (1/6, 1), it is

sup
Q∈HU(0,1)

TQX (1− α) =

√
3− 3α

1 + 3α
,

and hence

inf
Q∈HU(0,1)

TQP (α) = f

(
sup

Q∈HU(0,1)

TQX (1− α)

)
=

4

3

(
1 +

3− 3α

1 + 3α

)−1

− 1

3
= α.
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Using Lemma 5.3.2, we obtain that P is a precise p-variable for HU(0, 1).

As E is an e-variable for H(0, 1), it is also an e-variable for HU(0, 1). To show that it

is precise, fix any a ∈ (0, 1), and let p > 0 and b > 0 satisfy

a2 =
3− 3p

3p+ 2− p2
and b =

1 + p

1− p
a.

Note that such p exists for any a ∈ (0, 1) since the range of (3− 3p)/(3p+ 2− p2) covers

(0, 1). Choose Q such that the distribution of X has a point-mass at −a with probability

p and a uniform density on [−a, b]. We can compute

EQ[X] = −ap+ b− a

2
(1− p) = −ap+ ap = 0,

and

EQ[X2] = a2p+
a2

3
(1− p) +

b2

3
(1− p) =

a2(3p+ 2− p2)

3(1− p)
= 1.

Therefore Q ∈ HU(0, 1). We also have

EQ[E] = EQ[X2
+] = 1− a2p− a2

3
(1− p) ⩾ 1− a2.

Since a ∈ (0, 1) is arbitrary, we get supQ∈HU(0,1) EQ[E] = 1, and hence E is a precise

e-variable.

Proof of Lemma 5.3.3. For α ⩾ 1/2, since Q ∈ HUS(0, 1) is symmetric about 0, we have

TQX (1−α) ⩽ 0, with TQX (1−α) = 0 if Q is the point-mass at 0. We assume α < 1/2 below.

Take any Q ∈ HUS(0, 1), and we will find another distribution R with smaller variance

and the same α-quantile (we omit “left” because the quantile is unique for Q and R).

Note that Q has a decreasing density on (0,∞) and possibly a point-mass at 0. Denote by

x0 = TQX (1−α) and g the density function of Q on (0,∞). Consider a different distribution

R symmetric with respect to 0 which has uniform density equal to g(x0) on (0, b) for some

b > x0 and a point-mass at 0, such that R([x0, b)) = α = Q([x0,∞)) = R([x0,∞)). Denote

by h the density function of R on (0,∞), and note that h(x) = 0 for x > b. Since Q has a
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decreasing density g on (0,∞), g ⩾ h on (0, x0) and g ⩽ h on (x0, b). The above conditions

imply ∫ x0

0

x2g(x)dx ⩾
∫ x0

0

x2h(x)dx and

∫ ∞

x0

x2g(x)dx ⩾
∫ ∞

x0

x2h(x)dx, (5.20)

where the second inequality is due to R([x0,∞)) = Q([x0,∞)). Note that both inequalities

in (5.20) are equalities if and only if g = h, and equivalently, Q = R. It follows that

EQ[X2] ⩾ ER[X2], and hence R ∈ HUS(0, 1). Note that the condition Q([x0,∞)) = α =

R([x0,∞)) guarantees TQX (1− α) = x0 = TRX (1− α); that is R has the same α-quantile as

G.

The above argument shows that it suffices for us to consider distributions Q which

can be represented by a mixture of point-mass at 0 and a uniform distribution on [−b, b].
We also assume that Q has variance 1; if the variance is less than 1, then a rescaled

distribution from Q has variance 1 and a larger α-quantile. Let p = Q((0,∞)) ∈ (0, 1/2].

We can compute EQ[X2] = 2pb2/3 = 1, and hence b = 31/2(2p)−1/2. This gives

TQX (1− α) = b(1− α/p) =

√
3

p

(
1− α

p

)
.

Maximizing the above term over p ∈ (0, 1/2] gives p = 3α if α ⩽ 1/6 and p = 1/2 if

α ∈ (1/6, 1/2], showing the desired supremum formula in the lemma.

Proof of Theorem 5.3.4. Set (µ, σ) = (0, 1) as in the proof of Theorem 5.3.1. By Theorem

5.3.3, E = 2E0 is an e-variable for HUS(0, 1). It is precise because EQ[2X2
+] = 1 for any

Q ∈ HUS(0, 1) with VarQ(X) = 1.

The fact that precise p-variables do not exist for HUS(0, 1) follows from the same argu-

ment as in the proof of the corresponding statement in Theorem 5.3.2.

It remains to show that P is a semi-precise p-variable for HUS(0, 1). Write P = f(X)

where

f(x) =
2

9x2
1[4/3,∞)(x

2
+) +

3−
√
3x

6
1(0,4/3)(x

2
+) + 1(−∞,0](x).

Using Lemma 5.3.3, for α ∈ (0, 1/6], we have

sup
Q∈HUS(0,1)

TQX (1− α) =

√
2

9α
⩾

√
4

3
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and

inf
Q∈HUS(0,1)

TQP (α) = f

(
sup

Q∈HUS(0,1)

TQX (1− α)

)
=

2

9
× 9α

2
= α.

Similarly, for α ∈ (1/6, 1/2), we have

sup
Q∈HUS(0,1)

TQX (1− α) =
√
3(1− 2α) ∈

(
0,
√

4/3
)

and

inf
Q∈HUS(0,1)

TQP (α) = f

(
sup

Q∈HUS(0,1)

TQX (1− α)

)
=

3− 3(1− 2α)

6
= α.

Finally, for α ∈ [1/2, 1), we have infQ∈HUS(0,1) T
Q
P (α) = 1 since P(X ⩽ 0) ⩾ 1/2. Using

Lemma 5.3.2, the above three cases together imply that P is a semi-precise p-variable for

HUS(0, 1).

Proof of Proposition 5.4.1. The assumption that data are iid implies that E1, E2, . . . are

iid. The “only if” statement is trivial since EQ[E1] ⩽ 1 implies that (Mt)t⩾1 is an e-

process for Q, and hence Q(supt∈[n]Mt ⩾ 1/α) ⩽ α for all n ∈ N. Next we show the “if”

statement. For this, we use Theorem 3 of Wang et al. (2022), which states that, under the

iid assumption,

1

t

(
logMT (λ

GREE)− logMt(λ
GRO)

) L1(Q)−−−→ 0 as t→ ∞,

where Mt(λ
GREE) is given by (5.5) with each λi computed form the e-GREE method, and

Mt(λ
GRO) is given by (5.5) with each λi given by its theoretically growth-rate optimal

value

λ∗ = argmax
λ∈(0,1]

EQ[log(1− λ+ λE1)],

and this gives
1

t
logMt(λ

GRO) = max
λ∈(0,1]

EQ[log(1− λ+ λE1)].
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Therefore, we have

1

t
logMt

Q−→ max
λ∈(0,1]

EQ[log(1− λ+ λE1)] as t→ ∞.

It remains to verify maxλ∈(0,1] EQ[log(1 − λ + λE1)] > 1. Note that E[E1] > 1 implies

E[E1∧K] > 1 for someK ⩾ 1. We denote by Y = E1∧K. Since E[(Y −1)+]−E[(Y −1)−] =

E[Y − 1] > 0, there exists some ε ∈ (0, 1) such that

1

1 + ε
E[(Y − 1)+]−

1

1− ε
E[(Y − 1)−] > 0.

Note that log(1 + x) ⩾ x/(1 + ε) for x ∈ [0, ε) and log(1 + x) ⩾ x/(1− ε) for x ∈ (−ε, 0),
that is,

log(1 + x) ⩾
x+

1 + ε
− x−

1− ε
for x ∈ (−ε, ε).

Hence, for λ ∈ (0, ε/K), implying λ(Y − 1) ∈ (−ε, ε), we have

E[log(1− λ+ λE1)] ⩾ E[log(1 + λ(Y − 1))]

⩾
1

1 + ε
E[λ(Y − 1)+]−

1

1− ε
E[λ(Y − 1)−] > 0,

thus showing the desired inequality.

Proof of Proposition 5.4.2. First, it is clear that ΠQσ ⩾ 0 by choosing λ = 0 in the supre-

mum. Second, by Jensen’s inequality, for σ > 1,

EQ0 [log(1− λ+ λσ2E)] ⩽ log(1− λ+ λσ2EQ0 [E]) ⩽ log(1− λ+ λσ2) = 2 log σ.

We next show ΠQσ ⩾ 2p log σ − log 2. Note that

EQ0 [log(1− λ+ λσ2E)] ⩾ (1− p) log(1− λ) + p log(1− λ+ λσ2).

Maximizing the above term over λ ∈ [0, 1], the maximizer is λ∗ = (pσ2 − 1)/(σ2 − 1). The

corresponding maximum value satisfies

(1− p) log
(1− p)σ2

σ2 − 1
+ p log(pσ2) ⩾ (1− p) log(1− p) + p log p+ p log σ2

⩾ − log 2 + p log σ2,
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where we used the fact that x log x+ (1− x) log(1− x) on [0, 1] is maximized at x = 1/2.

This shows ΠQσ ⩾ 2p log σ − log 2, completing the proof of (5.9).

Finally, we prove the last statement 0 ⩽ ΠQσ − ΠQδ ⩽ 2(log σ − log δ) for σ > δ > 1.

For any λ ∈ [0, 1], let λ′ = λδ2/σ2 ∈ [0, 1]. We have

ΠQσ ⩾ log(1− λ′ + λ′σ2E) ⩾ log(1− λ+ λδ2E).

Taking a supremum over λ ∈ [0, 1] yields ΠQσ ⩾ ΠQδ . To show the other inequality,

ΠQσ ⩽ sup
λ∈[0,1]

log

(
σ2

δ2
(1− λ) + λσ2E

)
= log

σ2

δ2
+ sup

λ∈[0,1]
log(1− λ+ λδ2E) = 2 log

σ

δ
+ΠQδ .

This gives ΠQσ − ΠQδ ⩽ 2(log σ − log δ) and completes the proof.
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Chapter 6

Conclusions and future research

6.1 Conclusion

This thesis first studies risk optimization under distributional model uncertainty, fo-

cusing on three main types of uncertainty sets: moment-based, distance-based and shape-

preserving uncertainty sets. Other than risk optimization problem, we also study an in-

novative risk sharing problem, where we establish a new risk sharing framework that does

not require predefined risk preferences. In addition, this thesis also studies the hypothesis

testing problem in the context of quantitative risk management, particularly focusing on

testing mean and variance using the new concept of e-values.

In Chapter 2, we develop the reverse ES optimization formula compared to the well-

known ES optimization formula in Rockafellar and Uryasev (2002). The reverse ES opti-

mization formula reveals that a mean excess function at any fixed threshold is the maximum

of an ES curve minus a linear function, which may appear simple to risk experts. Such

reverse formula proves to be useful in calculating the worst-case mean excess loss under

the moment-based uncertainty set and Wasserstein uncertainty set.

In Chapter 3, we derive the explicit and closed-form expressions for the worst-case

target semi-variance when only the mean and variance of a loss are known and the loss
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is symmetric or non-negative. The closed-form results are extended to multivariate cases

with applications in robust portfolio selection.

Chapter 4 proposes a concept of anonymized risk sharing. In contrast to other tradi-

tional risk sharing rules, it requires no information on preference, identity, irrelevant op-

erations and actual loss in the risk sharing pool. To depict the key features of anonymity

in risk sharing, we thus propose four economic axioms: risk anonymity, risk fairness, ac-

tuarial fairness and operational anonymity. We establish the surprising fact that these

four very basic axioms uniquely characterize the conditional mean risk sharing; no other

risk sharing rules satisfy these properties. We show that the anonymized risk sharing is

compatible with the concept of decentralized systems, serving as a theoretical support to

the wide applications of the conditional mean risk sharing as a standard tool in many

relevant applications in decentralized risk sharing, including Bitcoin mining, tontines, P2P

insurance.

Chapter 5 introduces an e-test approach for testing mean and variance in a non-

parametric setting. Starting from a simple scenario where only one data point is observed,

we develop p-variables and e-variables for null hypotheses that specify mean and variance

bound along with additional constraints of distribution, such as symmetry, unimodality, or

a combination thereof. We then establish e-processes by using e-combining methods that

integrate these e-variables derived from single data points. Simulation results demonstrate

that e-test methods are markedly superior to p-test methods. Furthermore, e-values are

particularly compatible with sequential testing common in financial applications, where

realized losses accumulate over time.

In the following sections, some future research and open questions that emerge from

the findings of this thesis will be discussed. It aims to provide a roadmap for extending

the methodologies and insights developed here to the quantitative risk management field.
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6.2 Future research and open questions

6.2.1 Several distributionally robust reinsurance problems

In Chapter 3, our discussion mainly centers on the worst-case target semi-variance

within the framework of moment-based and shape-preserving uncertainty sets. The closed-

form formulas are applied to robust portfolio selection problems. However, numerous

intriguing problems remain, particularly in the application of those moment-based uncer-

tainty sets, as introduced in Section 3.2 of Chapter 3, to the insurance and reinsurance

applications.

Several literature explores the robust insurance applications with distance-based un-

certainty sets (mainly Wasserstein distance introduced in Section 2.4.2 of Chapter 2). We

refer to Birghila and Pflug (2019), Boonen and Jiang (2024) and Cai et al. (2024) for

the robust general insurance/reinsurance applications, and Bernard et al. (2024) for the

robust life insurance. In addition, Liu and Mao (2022) investigates distributionally robust

reinsurance under the moment-based uncertainty set, but restricts risk measures to VaR

and ES, and limits the insurance indemnity functions to stop-loss functions only. Thus, a

natural extension arises as follows:

Question 1. Can we extend the risk measures ρ to more generalized cases, for example

distortion risk measure, or set the general form of indemnity functions I(X) (for example,

increasing convex indemnity functions) instead of limiting it to be stop-loss only:

min
I∈I

sup
F∈L

ρF (X − I(X) + π(I(X))),

where π(X) indicates the premium principle.

The problem outlined above can be challenging to solve under very general conditions.

One way to simplify is to choose a specific indemnity function. A direct connection to

the worst-case target semi-variance with a moment-based uncertainty set (discussed in the

Chapter 3), but in the insurance context, is to consider the target semi-variance premium

principle

π(X) = E[X] + θE[(X − t)2+].
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Question 2. We link the results in Chapter 3 to address a more specific robust reinsurance

problem:

min
d⩾0

sup
F∈L

ρF (X ∧ t+ E[(X − t)+] + θE[(X − t)2+]),

where moment-based with shape preserving uncertainty set L is defined in Introduction of

Chapter 3.

The above problem is considered from the perspective of insurer in a two-party rein-

surance contract. It would be interesting to explore this robust reinsurance problem from

the reinsurer’s point of view.

Question 3. From the perspective of the reinsurer, we aim to solve the following opti-

mization problem:

min
I∈I

sup
F∈L

ρF (I(X)− π(I(X))).

In more specific and common reinsurance settings, with the stop-loss contract I(X) =

(X − t)+ and expected premium principle π(X) = (1 + θ)E[X] we aim to solve

min
d⩾0

sup
F∈L

ρF ((X − d)+ − (1 + θ)E[(X − t)+]).

Questions 1, 2 and 3 are all natural and intuitive extensions of current insurance frame-

work under the moment-based uncertainty sets introduced in Chapter 2 and 3. Further-

more, more sophisticated reinsurance problems involving multiple risks or parties, as well

as negotiable premiums as decision variables (see Cai and Chi (2020) and the references

therein), can also be studied within a distributionally robust insurance context.

6.2.2 Standard and comparative e-backtests based on elicitabil-

ity

There are many unresolved questions concerning the application of e-values in quanti-

tative risk management, particularly in the backtesting of risk measures like VaR, ES, and

expectile. Inspired by the work in Wang et al. (2022), which introduces a model-free tra-

ditional backtesting procedure for VaR and ES using e-values and e-processes, it is natural
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to extend the traditional/standard backtests to the comparative backtests (proposed by

Nolde and Ziegel (2017)) that evaluate different forecasting methods for these risk measures

based on e-values and e-processes introduced in the Chapter 5.

Standard backtests are crucial for detecting risk underestimation and model misspec-

ification, which are key concerns in financial regulation. Essentially, they assess whether

the risk predictions made by financial institutions deviate significantly from a correct or

reference model, typically unknown in practical scenarios. However, when a financial in-

stitution employs multiple forecasting methods, standard backtests fall short in helping

regulators or risk managers select the most accurate method among the alternatives. To

address this gap, we can use the idea of comparative backtests. This innovative approach

allows for a direct comparison between different forecasting methods, providing a more

detailed analysis that can identify the most reliable method among various alternatives.

More importantly, the comparative e-backtest can also be conducted in a model-free man-

ner, unlike the original comparative backtests described in Nolde and Ziegel (2017), which

are based on p-values and highly dependent on the model.

As introduced by Nolde and Ziegel (2017), the evaluation for comparing risk forecasts

can be formulated by the so-called S-dominance defined below. Given a fixed finite time

horizon T ∈ N with [T ] = {1, . . . T}, and model space M as a set of distributions on R,
we have X1, X2, . . . , XT to be losses arriving sequentially up to time T . The risk measure

ψ : M → 2R
d
is predicted by the internal process {Ri}i∈[T ] and the alternative process

{R∗
i }i∈[T ] that are both predictable, where Ri, R

∗
i : Ω → Rd for all i ∈ [T ]. Instead of an

unknown correct process, we regard the alternative process {R∗
i }i∈[T ] as the standard or

reference process. A comparative backtest should give a conclusion whether the internal

process {Ri}i∈[T ] passes or not compared with the reference {R∗
i }i∈[T ].

Definition 6.2.1. Let ψ : M → Rd be elicitable with scoring function S : Rd+1 → R.
We say {Ri}i∈N S-dominates {R∗

i }i∈N if E[S(Xi, Ri) − S(Xi, R
∗
i )] ⩽ 0 for all i ∈ [T ]. We

say {Ri}i∈N conditionally S-dominates {R∗
i }i∈N if E[S(Xi, Ri)−S(Xi, R

∗
i )|Fi−1] ⩽ 0 for all

i ∈ [T ].

We consider the following null hypotheses for our comparative backtests based on con-
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ditional S-dominance:

H−(ψ) : {Ri}i∈[T ] conditionally S-dominates {R∗
i }i∈[T ]. (6.1)

H+(ψ) : {R∗
i }i∈[T ] conditionally S-dominates {Ri}i∈[T ]. (6.2)

In practice, merely considering one of the two tests above does not always give a safe

conclusion. For instance, if hypothesis H−(ψ) is not rejected, we are not able to say

predictions {Ri}i∈[T ] pass the comparative backtest without further justification. Instead,

another test should be conducted for hypothesis H+(ψ).

Question 4. Based on the Definition 6.2.1, how do we properly construct e-variables and

e-processes for testing the null hypotheses in (6.1) and (6.2) with the comparative backtests

between internal model {Ri}i∈[T ] and reference model {R∗
i }i∈[T ]?

Once appropriate e-processes are established for comparative backtesting, several in-

triguing challenges remain. The e-variables and e-processes are constructed via scoring

function of its corresponding risk measures. We know that the scoring function for a spe-

cific risk measure may not be unique, and different scoring functions may vary in their

discrimination ability, leading to different e-values when using different scoring functions.

This variability leads to the following critical question:

Question 5. How do we appropriately select scoring functions for comparative backtests

in our settings, especially considering that different scoring functions can significantly vary

in their discrimination abilities?

Furthermore, the derivation of these e-processes opens up a broad spectrum of potential

simulation studies and empirical analyses. These could include time series data analysis

and real financial data analysis.

6.2.3 Elicitability and e-test of Gini indices

Backtesting risk measures heavily relies on the property of elicibility, which refers to the

ability of a risk measure to be accurately predicted or forecasted in a consistent valid way,
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see details in He et al. (2022). VaR and expectiles are examples of elicitable risk measures,

which means they can be directly assessed through backtesting because there exists a loss

function for which these measures are the minimizers of expected loss. While variance and

ES are not individually elicitable, they can still be effectively backtested when combined

with other metrics. Variance, for example, is jointly elicitable with the expectation, and

ES is jointly elicitable with VaR, refer to Gneiting (2011) and Fissler and Ziegel (2016).

This joint elicibility enables effective assessment in both traditional and e-process-based

backtesting frameworks.

Now, we are interested in to backtesting the Gini indices, specifically the Gini deviation

(GD) and Gini coefficient (GC). These indices are crucial measures of dispersion, deviation,

and inequality and are widely applied in economics and finance. Fix a probability space

(Ω,F ,P). For q ∈ [1,∞), let Lq be the set of random variables with a finite q-th moment,

and Mq be the distributions of elements of Lq. The Gini deviation GD : L1 → R is defined

as

GD(Y ) =
1

2
E[|Y − Y ′|],

where Y ′ is an iid copy of Y . Alternatively, we can write GD as a function from M1 → R
as a signed Choquet integral

GD(F ) =

∫ 1

0

F−1(t)(2t− 1)dt =

∫
R
F (t)(1− F (t))dt,

see e.g., Wang et al. (2020, Example 1).

Let Lq+ = {Y ∈ Lq : Y ⩾ 0, Y ̸= 0} and Mq
+ be the distributions of elements of Lq+.

The Gini coefficient GC : L1
+ → [0, 1] is defined as

GC(Y ) =
GD(Y )

E[Y ]
=

∫∞
0
F (t)(1− F (t))dt∫∞
0
(1− F (t))dt

.

It is known that no deviation measures are elicitable, as stated in Wang and Wei (2020,

Proposition 2.4). Thus, none of GD or GC is elicitable. Thus, following the idea of joint

elicitability, the subsequent question arises naturally:
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Question 6. Is it possible to identify other functionals that, when paired with GD or

GC, render them jointly elicitable? If not, can we demonstrate, GD or GC are not jointly

elicitable with other functionals, using the terminology of Fissler and Ziegel (2016), that

GD and GC are not k-th order elicitable for any k ∈ N?

If it proves challenging or even impossible to identify auxiliary statistics that render the

Gini deviation (GD) or Gini coefficient (GC) elicitable, we might consider an alternative

approach to handle these non-elicitable risk measures. The concept of multi-observation

elicitability, proposed by Casalaina-Martin et al. (2017) and further discussed in Frongillo

et al. (2019), provides a viable pathway by allowing the scoring function to depend on

multiple data points simultaneously. Below, we give the formal definition:

Definition 6.2.2. For k ∈ N, a mapping ρ : M ⇒ Rk is called d-observation M-elicitable

if there exists a function S : Rk+d → R such that

ρ(F ) = argmin
x∈Rk

∫
Rd

S(x,y)dF d(y), F ∈ M,

where F d(y1, . . . , yd) =
∏d

j=1 F (yj).

This naturally leads us to the question as follows:

Question 7. Can we identify a scoring function for GD or GC that makes them elicitable

under the framework in Definition 6.2.2?

Our preliminary analysis indicates that it is feasible to identify a multi-observation

scoring function, specifically a 2-observation function, for the GD and GC. This discovery

allows us to further develop model-free e-statistics for standard backtesting procedures for

these risk measures.

However, it seems that a major problem is that we need independent and identically

distributed multiple observations. For example, for risk measures that are 2-observation

elicitable, two iid data points are required simultaneously. This makes its application

much more restrictive. Suppose that we observe two series of iid data. The following two

questions arise:
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Question 8. What is a natural way of building an e-process based on the above model-free

e-statistic in this setting?

Question 9. How does the testing method based the e-process compare to other testing

methods in the literature?

Indeed, multi-observation elicibility necessitates the use of multiple data points simul-

taneously. However, in the most natural application domain, such as backtesting financial

risk forecasts, it seems that assuming iid data is not realistic. In the future research, it is

also important to find some good applications to justify multi-observation settings for GD

and GC.
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