PLANNING RENEWABLE ELECTRICITY USING LIFE-CYCLE ANALYSIS

by

Mir Sadek Ali

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 1999 © Mir Sadek Ali 1999 I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Min Sadek

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other means, in total or part, at the request of other institutions or individuals for the purpose of scholarly research.

Min Sadele ali

The University of Waterloo requires the signature of all persons using or photocopying this thesis. Please sign below, and give address and date.

ABSTRACT

It has been predicted that by the mid-21st century worldwide energy demand will grow two to three times the current level of demand. Expanding the global electric power generation capacity will be problematic using the three predominant methods, namely, nuclear fission, fossil fuels and hydropower. There are few suitable sites left for new largescale hydropower dams. Both fossil fuels and nuclear fission have widespread environmental consequences to their use and the supply of fuel for these two technologies is a nonrenewable resource. Renewable energy system (RES) technologies have been proposed as the means to expanding energy markets in a sustainable manner.

A formative step in deploying RES will be the design of a standardized methodology for determining policy and planning decisions to initiate market and government support for these nascent technologies. This thesis outlines the design of a RES planning model based on the life-cycle analysis (LCA) methodology. The proposed model will integrate a climatologically-based renewable energy optimization and simulation (REOS) model into the LCA. Goal-attainment algorithms will be used to find feasible installed capacities for power generation which will meet a prescribed load demand and simultaneously attempt to meet desired policy targets. The policy targets here will be the per-kilowatt hour price of power, life-cycle air-borne CO_2 emissions, and the land requirements of the system. An analysis of the performance of RES technologies in two Canadian cities that already have mature electricity utilities is done to demonstrate the methodology.

TABLE OF CONTENTS

Abstract	
Table of Co	ntentsv
List of Tab	les
List of Figu	resx
Chapter 1: <i>1.0</i>	Introduction Background
1.1	System Components
1.2	Outline of the Thesis
Chapter 2: <i>2.0</i>	A Review of RES Technologies and Power Planning Introduction
2.1	Renewable Energy System Technologies
2.1.1	Wind Turbine Generators
2.1.2	Solar Photovoltaics
2.1.3	Biomass Conversion Systems14
2.2	Power Planning
2.2.1	General Problem
2.2.2	Standard Method for Determining the Power System Installed Capacities
2.3	Dealing with Renewable Technologies in Determining Installed Capacities
2.4	Summary of Planning Methodologies
Chapter 3: 3.0	Applying Life-Cycle Analysis to RES Technologies Background
3.1	Definitions of Selected LCA Terms
3.2	Goal Determination
3.3	System Scope
3.4	Inventory of Materials and Energy for Renewable Technologies
3.4.1	Using Templates for Systems Analysis
3.4.2	Fabrication
3.4.3	Construction

3.4.4	Use	44
3.4.5	Disposal	46
3.5	Impact Assessment Through Environmental Indicators	47
3.6	System Improvement	50
3.7	Summary of the Life-Cycle Analysis for IRES	53
Chapter 4: <i>4.0</i>	: Life-Cycle Inventory of Renewable Technologies <i>Introduction</i>	54
4.1	Goal Determination	55
4.2	Determining the System Scope Using the REOS Model	
4.3	Wind Turbine Materials Inventory	60
4.4	Solar Photovoltaic Material Inventory	65
4.5	Liquefaction of Woody Biomass Material Inventory	71
Chapter 5: <i>5.0</i>	: Examining Air-borne CO ₂ within a Renewable Energy System <i>Background</i>	80
5.1	Preliminary Set-up	
5.1.1	Load Demand	81
5.1.2	Long-term Coal-fired Backup	82
5.1.3	Brief Overview of Study Sites	83
5.1.4	Cost Criteria	84
5.1.5	Sensitivity Analysis	92
5.2	Effect of Cost of Electricity Production on CO2 Emissions	95
5.2.1	Method	95
5.2.2	Observations	
5.2.3	Sensitivity Analysis	
5.2.4	Summary	
5.3	Effects of Constrained Land on CO_2 Emissions	104
5.3.1	Method	104
5.3.2	Observations	
5.3.3	Sensitivity Analysis	
5.3.4	Summary	110

5.4 5	mmary of Results	112
Chapter 6: <i>6.0</i> (Conclusions and Future work nclusions	114
6.1 I	ture Research	119
Appendix A	: LCI Template for Wind Turbines	122
Appendix A	: LCI Template for Solar Photovaltaic Cells	124
Appendix A	: LCI Template for Biomass Integrated Gasification/Gas Trubine	126
Appendix A	Embodied energy and Carbon dioxide for raw Materials	128
Appendix A	: Embodied Energy and CO_2 Calculations for Wind Turbines, Solar Photovolt	aics and
Biomass		132
Bibliography.		137

,

LIST OF TABLES

Table 1:	Wind turbine applications and the approximate power requirements		
Table 2:	Estimated worldwide WTG installations for 1993-9510		
Table 3:	State of photovoltaic cell technologies13		
Table 4:	Estimated performance of various PV technologies14		
Table 5:	Summary of the LCA stages and their associated activities		
Table 6:	Study classifications and some clarifications to ascertain biases therein32		
Table 7:	Summary of boundary types in power generation systems		
Table 8:	Summary of inventory classifications		
Table 9:	Plant Specifications Template41		
Table 10:	Material Acquisition Inventory Template42		
Table 11:	Emissions Summary Template42		
Table 12:	Land Requirements Template		
Table 13:	Facility Inventory Template43		
Table 14:	Emissions Summary Template44		
Table 15:	Time Issues Template44		
Table 16:	Example Power Output Template45		
Table 17:	Operation Inventory Template45		
Table 18:	Emissions Summary Template45		
Table 19:	Summary of Material Processing Template46		
Table 20:	Emissions Summary Template46		
Table 21:	Proposed environmental indicators from the OECD and UNEP49		
Table 22:	Implementation of the RES goal-attainment system		
Table 23:	Summary of Jacobs 41/500 wind turbine carbon dioxide emissions		

Table 24:	Summary of ASE-300-DG/50 PV array CO ₂ emissions
Table 25:	Effects from the general stages of biomass liquefaction73
Table 26:	Summary of dedicated woody biomass system CO ₂ emissions74
Table 27:	Typical performance for coal powered electricity generation plants82
Table 28:	London, Ontario climate and location83
Table 29:	Whitehorse, Yukon climate and location83
Table 30:	Nomenclature for representing costs of REOS LCA model
Table 31:	Design variables for simulation
Table 32:	Assumed lifetimes of system components
Table 33:	Economic unit cost summary
Table 34:	CO ₂ emission unit costs
Table 35:	Land unit costs summary90
Table 36:	Iterations of simulation required for price vs CO ₂ tests101
Table 37:	Average IRES install mix for London for price versus CO ₂ test101
Table 38:	Average IRES install mix for Whitehorse for price versus CO ₂ test101
Table 39:	Sensitivity matrix (S_n) for price vs. CO_2 tests for Whitehorse102
Table 40:	Sensitivity matrix (S_n) for price vs. CO_2 tests for London102
Table 41:	Electricity regimes for modest levels of CO ₂ emissions103
Table 42:	Iterations of simulation required for land vs CO ₂ tests109
Table 43:	Average IRES install mix for London for land vs. CO ₂ test109
Table 44:	Average IRES install mix for Whitehorse for land vs. CO ₂ test109
Table 45:	Sensitivity matrix (S_n) for land vs.CO ₂ tests for London110
Table 46:	Sensitivity matrix (S_n) for land vs.CO ₂ tests for Whitehorse110
Table 47:	Land and CO_2 emissions for London and Whitehorse111

LIST OF FIGURES

Figure 1: Illustrations of the horizontal-axis and vertical-axis wind turbines9
Figure 2: Process for optimizing for standard power planning from section 2.225
Figure 3: Process for optimizing for IRES power planning from section 2.325
Figure 4: Defining system boundaries, Source: Reproduced from [Vigon, 1993]33
Figure 5: System boundaries of single-load electricity power networks
Figure 6: Proposed LCA template from Franklin & Assoc., Ltd
Figure 7: Generalized LCA template for a process stage40
Figure 8: Components in a single photovoltaic cell42
Figure 9: Calculating indicators within impact assessment
Figure 10: Summary of LCA components used to determine system improvements50
Figure 11: REOS model of sustainable electricity57
Figure 12: Wind Turbine Process Model Using Block Flow Diagram
Figure 13: A typical power curve for a wind turbine64
Figure 14: Solar Photovoltaic Array Process Block Flow Diagram
Figure 15: BIG/GT Process Block Flow Diagram75
Figure 16: Simulated growth of Salix using the CTM model78
Figure 17: Basic load curve used for both London and Whitehorse tests
Figure 18: Graph of worldwide electricity supply by fuelstock
Figure 19: Test points for testing the price of power and CO ₂ emissions95
Figure 20.: Results for London using the test points in Figure 19
Figure 21: Results for Whitehorse using the test points in Figure 19

Figure 22:	Price versus unserved demand for London for price vs.CO ₂ 98
Figure 23:	Price versus unserved demand for Whitehorse for price vs.CO298
Figure 24:	CO2 vs. unserved demand for London for price vs. CO2 test99
Figure 25:	CO_2 vs. unserved demand for Whitehorse for price vs. CO_2 test100
Figure 26:	Test points for testing limited land area and overall CO2 emissions104
Figure 27:	Results for London using the test points in Figure 26
Figure 28:	Results for Whitehorse using the test points in Figure 26
Figure 29:	Land area vs. unserved demand for London for land vs. CO ₂ test107
Figure 30:	Land area vs. unserved demand for Whitehorse for land vs. CO_2 test108

•

CHAPTER 1: INTRODUCTION

1.0 BACKGROUND

Currently, the world's electricity is generated from about 70% fossil fuels, 15% nuclear energy and 15% hydropower [Brown, 1996]. Approximately one-fifth of the world's population uses over 75% of this electricity. Overall energy production and consumption worldwide (which includes transportation, agriculture, and non-electric cooking and heating) is around 88% fossil fuels, 8% nuclear and 4% hydro power [Berrie, 1992]. Due to capital shortages, growing populations, political instability and natural resource limitations, fourfifths of the world have not experienced the levels of industrialization that characterize the developed world (notably, but not exclusively; U.S., Western Europe and Japan). Driving much of the developed world's industrialization has been the historically recent (80 years) explosive growth in energy use by these nations. As an example, since 1700 the U.K. has increased its per capita energy use by almost 15 times (400 to 5400 kg coal equivalent per capita). As a measure of development, per capita energy use is a fairly indicative value. For instance, per capita energy use in 1997 was 11209 kg coal equivalent in Canada (developed), 3772 kg coal equivalent in South Korea (developing), and 332 kg coal equivalent in Pakistan (less developed) [Economist, 1998]. Unlike the developing world, which is now undergoing rapid and sustained energy expansion of 4% per year, the developed nations are reaching a plateau to their energy consumption (increasing approximately 0% to 1% per year) [Flanagan, 1993]. These predictions in energy consumption are seen as long-term trends that should last well into the next century. One of the global challenges in the coming years will be to meet the world's increased demands for energy.

The worldwide response to this challenge has been twofold; namely conservation efforts and increased energy generation. By adopting more energy efficient appliances and lifestyle practices, industrialized countries have been able to greatly curtail increases in their per capita energy use [Berrie, 1992]. As has been noted though, that even with approximately two decades of conservation efforts (since the oil crisis), the industrialized world's energy consumption still accounts for more than 60% of the world's total consumption, whereas it accounts for less than 20% of the world population. The developing countries have been undergoing an unprecedented expansion in both their economies and industrial bases. Industrialization around the world has put a heavy reliance on the most plentiful and available large-scale energy source; namely fossil-fuels. The global response to increased energy demand has been mostly fiscally-motivated, but as environmental tolerance within cities and regions is exceeded, other motivations such as social equity and environmental responsibility will also become (and in some places already are) issues in energy-related decisions. The world is facing large environmental hazards as the global natural resource base becomes depleted and polluted. Air, water, and soil are all despoiled by much of the industrial and power generation activity that is ongoing today. Nuclear energy, oil- and coalfired power plants, and deforestation/defoliation for firewood, all heavily contribute to the worldwide deterioration of the shared global environment. The recognition of international environmental problems has spurred on multilateral efforts to help find solutions to these problems [Rio, 1992], [Kyoto, 1997]. It has been projected that world energy demand without conservation efforts will double within the next 20 years [Wrixon, 1993], and even with aggressive energy conservation policies it should double within the next 40 years [Johansson, 1993]. Thus, one may conclude that whether managed or not, the world energy production market will see very large future growth. As energy markets open and change with available technologies, there is a possible future in which the predicted deleterious effects of future industrial growth may be lessened to more manageable levels through a more sustainable and ecologically-focused energy generation model.

In traditional power planning, the technologies that were available consisted predominantly of fossil-fuels, hydropower, and nuclear energy. These technologies' power characteristics are controllable and predictable given the assumption that the generators would be provided sufficient fuel [Stoll, 1989], [Berrie, 1983]. The goal of the planner was essentially to find the optimal dispatch of network power generators in order to satisfy the usually conflicting goals of service reliability and monetary costs (this is commonly known as least-cost planning). Today, this traditional power planing model has also had to introduce contemporary issues dealing with the environment and social equity. Because of the known profound effects that power projects can have on its locale, today's power project plans must usually undergo the scrutiny of environmental and social analysts, as well as meeting standards for economic and technologic feasibility.

Integrated renewable energy system (IRES) power networks introduce new constraints and uncertainty into the traditional planning methods. Wind and solar-based renewable technologies rely on the continuous availability of wind and sunshine to generate power. Prediction of climatic conditions is a problematic endeavour and thus, in assessing the performance of IRES power networks, the problems in predicting weather conditions introduces uncontrollable and unpredictable power output into the planning process. In addition, spatial constraints must also be addressed because of the far-flung and distributed nature of IRES installations.

This study is concerned with the high-level design stage where the planner's goal is to determine reasonable estimation of the overall facility deployment for servicing a projected load demand. Power network simulation and goal-programming are used to analyze and design against engineering, economic and environmental targets. Life-cycle analysis (LCA) is used to demonstrate how environmental considerations are introduced into the high-level planning exercise. Overall, this study presents a methodology for planning of IRES power networks in which environmental criteria may be addressed in the design by integrating a power simulation/goal-programming system into a life-cycle analysis (LCA) framework.

4

1.1 SYSTEM COMPONENTS

The methodology presented in this report is based on the life-cycle analysis methodology (LCA) [Vigon, 1993], [Curran, 1996], [Ciambrone, 1997]. Life-cycle analysis (LCA) is a methodology through which environmental problems related to human consumption can be evaluated. It is a comparative approach in which alternative products and processes are assessed to find their relative fitness and performance. The LCA methodology consists of 5 stages; namely (and in order of execution), goal determination, system scope, inventory audit, impact assessment and system improvement. The presented methodology shows how a power planning model and goal-programming design system are incorporated into the five-stage LCA study.

The power planning model is based on the renewable power simulation presented in [Venema & Ali, 1998]. The simulation assumes a single-point centralized load with a gridconnected IRES network. The overall simulation is used as a sub-component for a goalprogramming software system. The goal-programming component is based on the capabilities and specific requirements of the Matlab 5.0 mathematical software system's goalattainment algorithms (*attgoal*) [Matlab, 1998].

Feasibility studies for deploying IRES technologies are conducted for two Canadian sites; London, Ontario and Whitehorse, Yukon. The climatic simulation is conducted using 5 years (1989-1993) of weather data from the Canadian Weather for Energy Calculations database [CWEC,1997].

5

1.2 OUTLINE OF THE THESIS

This research thesis outlines the methodological issues in integrating IRES power planning into the life-cycle analysis framework. In particular, the thesis focuses on analyzing the planning of new IRES installed capacity within an established and mature electricity grid.

The major contribution of this research is to demonstrate the efficacy and applicability of the life-cycle analysis methodology as a complementary method to standard energy planning in order to address environmental criteria in the planning stages of a power development project. In addition, a simplified implementation of an IRES planning system based on existing literature will be demonstrated.

The report structure presents the background and literature reviews for power planning (ch. 2) and life-cycle analysis (ch. 3). Special sections are included in both of these chapters to address and highlight relevant issues in RES technologies. The LCA exercise begins with the goal determination stage (where the products and limitations of the study are defined) and continues with the setting of the system scope and boundaries (ch. 4). The lifecycle inventory for the various material components of the IRES system is then conducted by quantifying component materials' emissions, energy and land requirements (ch. 4). Chapter 5 presents the power simulation and goal-programming results for London and Whitehorse for designing networks using the three design variables of land requirements, price of power and CO_2 emissions. Chapter 6 concludes the overall study with conclusions and recommendations.

CHAPTER 2: A REVIEW OF RES TECHNOLOGIES AND POWER PLANNING

2.0 INTRODUCTION

The following sections outline the technologies and some of the assumptions that are used for modelling an integrated-renewable energy system (IRES) network. Section 2.1 provides an overview of current trends in renewable energy technologies. Section 2.2 uses a power balance equation to demonstrate one method for conducting a least-cost planning exercise with standard electric generation technologies like coal or nuclear power. Section 2.3 shows the differences that occur from applying the power balance of Section 2.2 to IRES technologies.

2.1 RENEWABLE ENERGY SYSTEM TECHNOLOGIES

Renewable electricity generation entails a number of different conversion technologies. These technologies convert into electricity some of the energy that is contained in continuous natural events, such as ocean tides, sunshine, geothermal geysers, winds, and carbon-based fuel from biological materials. In recent years, the technologies of solar photovoltaics, wind turbines, and biomass fuel conversion have progressed to the point that they may be soon competitive in their prices with other more familiar energy technologies such as fossil fuels and nuclear energy. The following sections briefly outline some of the ideas and current trends that are prevalent in commercial systems of these three technologies.

2.1.1 WIND TURBINE GENERATORS

Commercial wind turbine generators (WTG) are usually classified into three main groups. The peak power output of the single WTG plant defines its class. The table below outlines the details of WTG classifications.

Class	Plant Size	Uses
Small	<10 kW _p	Water pumping, agriculture
Intermediate	10 – 150 kW _p	Remote stand-alone
		applications
Medium-to-large	200 – 800 kW _p	Grid-connected WTG

Table 1: Wind turbine applications and the approximate power requirements

Experimental machines range in sizes (as measured in peak power) from hundreds of kW_p to up to 4 MW_p . But for commercial applications, these very large machines have proved to be cost prohibitive because of their enormous size. Johannson (1993) explains this with a simplified heuristic that the energy captured by a rotor increases with the square of the radius, whereas the mass, and thereby the cost, will increase with the cube of the rotor diameter. With current materials, the optimal size of WTG for a first class wind resource has been found to be 200 to 500 kW_p.

There are two main types of WTGs that are used; vertical-axis wind turbines (VAWT) and horizontal-axis wind turbines (HAWT). Figure 1 below depicts the major differences between the designs of the VAWT and the HAWT windmills. In the U.S., the DOE and various utilities have aggressively pursued research and operation of the VAWT design (whereas most research outside of the U.S. has concentrated on developing HAWT technologies). VAWT, or the Darrieus turbine, offers advantages over the HAWT in that the yaw system for the windmill is simpler, the rotors use light-weight airfoils held together by tension wires and the maintenance of the facility is made simpler because the controls and turbine are all at ground level. In addition, the performance and efficiency of the VAWT are comparable to that of the HAWT. One of the main reasons that some researchers doubt its wide-scale use outside of the U.S. is that the VAWT is not easily able to utilize winds at higher heights (over 40m). Unlike the HAWT, which easily accommodates higher towers.

Figure 1: Illustrations of the horizontal-axis and vertical-axis wind turbines

WTG's are the most mature of the renewable energy technologies considered in this

review. Worldwide there is approximately 3700 MW_p of installed wind capacity. The bulk of these installations are in California and throughout Europe. According to EUREC (1996) the growth of the global wind industry has been very rapid in the 1990's. The table below shows estimates of the worldwide installed wind capacity in the years of 1993 to 1995.

Year	Installed
1993	541 MW _p
1994	642 MW _p
1995	1200 MW _p

Table 2: Estimated worldwide WTG installations for 1993-95

The World Energy Commission (WEC), projected that at current growth rates wind energy will be at least 180 000 MW_p by the year 2020 [WEC, 1993]. With a more "ecodriven" policy, they predict that the installed wind capacity could be as high as 474 000 MW_p , or 5% of the total projected global energy demand in the year 2020.

These future estimates are based upon the high performance that field tests have yielded around the world. Today, wind-derived electricity is at cost parity to both fossil-fuels and nuclear energy when external and social costs are added to the direct costs of generation. The International Atomic Energy Association (IAEA) predicts that by some time between the years 2005 to 2010, wind energy will have a lower overall cost than traditional nonrenewable energy and will be at near par even when only current direct costs are considered [IAEA, 1993]. As per the performance of the current WTG's, the availability and system efficiencies are achieving near their theoretical limits. For instance, the Dutch experience has measured an availability of power which is between 98-99% [DWTMA, 1998]. With newer

10

tools, such as remote sensing for siting and more reliable components for turbines, power output estimates are usually within a margin of 15% of the actual power output. The maximum theoretical efficiency of WTG is 50% [Wrixon, 1993]. Current plants have reported efficiencies of up to 45% during periods of optimal wind conditions. The yearround average performance of the Dutch and California wind farms had efficiencies between 15 to 22% [DWTMA, 1998], [Walker, 1997].

Areas where there is still a lot of research activity include finding new materials for rotors and turbine components, designing variable speed rotors, and more robust stall controlled airfoils for higher hub heights. Johansson(1993) predicts that these activities could potentially produce systems that produce 10% more power than current systems.

2.1.2 SOLAR PHOTOVOLTAICS

Solar photovoltaics is the conversion of sunlight into electricity via the use of photoelectric materials. There are two major types of solar photovoltaic systems. The first and only commercial system is flat-plate photovoltaics which consists of simply a flat surface such as ceramics or glass which has been coated with a photoelectric substrate. This system converts both direct and diffuse light into electricity. The other system that is still in an experimental stage is the concentrator module. Concentrator modules use mirrors and lenses to focus direct sunlight onto a flat-plate. Concentrators achieve higher efficiencies but problems in tracking the sun and the mechanical durability of the system has made it problematic in actual implementations. The following sections will deal solely with flat-plate technologies.

According to EUREC (1996), solar photovoltaic systems are currently being installed at a rate of about 80 MW_p per year with a projected annual growth of about 15% in new installations per year. These installations are mostly remote applications in agriculture, telecommunications, and rural development projects. The payback periods for these systems is approximately 2 to 6 years in regions of high to medium intensity sunlight (often referred to respectively as sunbelt and continental regions).

At present there are a number of different designs in flat-plate systems. All of these flat-plate technologies utilize production methods that are akin to semi-conductor fabrication. As with microchip manufacture, this means that the size and weight of the substrate highly affects the cost and environmental performance of production. These designs are broadly defined as silicon, thin-plate (also referred to as thin-film) and multijunction cells. Silicon cells are the most widely used design (approximately 80% installed capacity of the world market is silicon-type solar cells). These cells are characterized as being made of either mono-crystalline or poly-crystalline silicon substrates. These substrates are relatively thick and are relatively costly to manufacture. Current silicon photovoltaic systems generate electricity at around US\$0.35-0.65/kWh, whereas commercial viability is around \$0.10/kWh. As a result, researchers have designed thin-plate designs in which the substrate is significantly thinner (on the order of 10 times) and thus the cost of forming the substrate is greatly reduced. The trade-off for these thin-plate designs is that they use chemicals such as cadmium, tellurium, indium and a number of other heavy metals, which are potentially very hazardous materials. Thin-plate technologies achieve approximately the same, if not higher, efficiencies and use a more reliable manufacturing process. Another type of thinplate cell is the amorphous silicon cell that uses a thin silicon substrate. Its manufacture is very low cost on a per unit area basis, but unlike mono- and poly-crystalline silicon cells which achieve around 10% efficiency, amorphous silicon achieves roughly 5% efficiencies [Markvaart, 1993]. The following table outlines the performance of the various cell types both in lab conditions and as commercially available cells.

Cell Type	Lab	Commercial
	Efficiency	Efficiency
Mono-crystalline silicon	23%	10-12%
Poly-crystalline silicon	18%	8-9%
Amorphous silicon (a-Si)	13%	3-5%
Gallium Arsenide (GaAr)	25.5%	n/a
Copper indium selenide (CIS)	15%	n/a
Cadmium Telluride (CdTe)	15%	n/a

Table 3: State of photovoltaic cell technologies

Current research is heavily involved in two main areas; the first being the improvement of manufacturing techniques for thin-film cells and the second being the development of multi-junction cells. Multi-junction cells capture more than one band of the light spectrum within the same cell area. Thus, theoretically more of the light energy can be captured on a per unit area basis. These research efforts combined with mass production methods should be able to bring the price of solar photovoltaics down significantly from its current relatively high per kWh cost [Johansson, 1993], [EUREC, 1996]. The table below summarizes some of the projected performance advances in solar photovoltaic systems.

Item	Short-term	Medium-term
	(by year 2000)	(by year 2010)
Crystalline Silicon	16-18%	>20%
Amorphous Silicon	>10%	>15%
Thin-Film Advanced	>20%	25%
Module Lifetimes	20 yrs	30 yrs
Inverter efficiency (AC power conditioning)	90-97%	95-98%
Consumer cost of power (per kWh)	\$0.15-0.20	\$0.05-0.10

Table 4: Estimated performance of various PV technologies

2.1.3 BIOMASS CONVERSION SYSTEMS

A biomass conversion system uses biological material as feedstock for power generation. According to EUREC (1996), it is the fourth largest energy source worldwide. This translates to 14% of global primary energy demand. In developing countries, biomassderived energy accounts for up to 35% of primary energy demand. One of the reasons that biomass has been so widely used is that it is available almost anywhere habitable by man, and there are numerous methods for extracting energy from biomass.

The feedstock may be burned and the heat energy is used for cooking or to drive a steam turbine. Other methods of biomass energy extraction are to produce intermediate fuels such as ethanol, or bio-gas through chemical processes such as anaerobic digestion, distillation or liquefaction. The feedstock also may be of any number of different species of plants or animals. But, biomass feedstock is usually classified under four major groups: (i) Municipal solid waste (MSW)

- (ii) Agricultural and lumber residues and waste
- (iii) Wood energy
- (iv) Energy cropping of short rotation forestry, or herbaceous lignocellulic (stalky) grains and cereals

Municipal solid waste (MSW) refers to material that is combustible and is usually landfilled. One of the problems of the latter half of the twentieth century was to find space for the refuse generated by cities. One scheme that seemed to make sense was to incinerate the refuse, thus making it much more compact, but at the same time use the heat to run steam turbines. The major problem with this system was that any harmful chemicals in the waste were passed into the atmosphere and local water sources. Although, MSW is still practiced, it is not a widely used fuelstock because of the negative environmental effects.

Combustion of agricultural and lumber wastes is probably the most popular method currently for producing electricity from biomass. This is because the materials are usually free of large amounts of unwanted pollutants, and the cost is very low because it is unused waste material. These materials are often used in small generators (< 1 MW) which also produce centralized heat for small settlements (often termed co-generation). Commercial and industrial wastes are used but these are considered much like MSW because of the chemical pollutants that are typical of large industrial processes.

Agricultural waste materials are also used in both anaerobic digestion systems, which

produce bio-gas for cooking (dung, crop residues) [Ravindranath, 1995], or distillation processes that produce alcohol-based fuels for use in vehicles or power plants (e.g. bagasse from sugar cane) [Tillman, 1991]. Lumber waste is usually used as feedstock in order to run remote steam co-generators. But, lumber, in general, has a larger monetary value as a commodity for the furniture, construction, or paper industries.

As far as research and development, much interest has been generated from ideas in energy cropping. The two most dominant forms of energy crops that are being considered are herbaceous lignocellulic biomass (e.g. perennial grasses and cereals), and short rotation forestry (e.g. willows, poplars). There are a number of motivations behind the development of energy cropping. One of the motivations is the trend of industrialized nations to subsidize their agricultural industries to restrict the amount of commercial crops harvested each year to keep prices stable. Another motivation is the desire of governments around the world wanting to conduct costly environmental remediation on polluted areas. Finally, globalwarming is seen as a problem which stems mainly from air-borne carbon emissions from fossil-fuel combustion, thus there has been a great deal of debate as to how to curtail and control these emissions. Numerous authors have espoused the use of biomass cropping as a possible solution to these trends and problems [Cook, 1996], [Mann, 1996], [Wright, 1993], [Coiante, 1996], [Ledin, 1996a].

Traditional methods for extracting energy from biomass has been direct combustion, pyrolisis to produce charcoal, fermentation and distillation of alcohol, and anaerobic digestion to produce bio-gas. More modern methods that have emerged in the last three

16

decades are the thermochemical conversion processes of gasification and liquefaction. These methods produce relatively high-energy content fuels of methanol and heavy oil, respectively. These fuels can then used within large electric power plants $(30+ MW_p)$. These fuels are clean burning and easily transportable. The most popular commercial system is called the biomass integrated gasification gas turbine (BIG/GT). The gas turbine uses jet engine technology (as opposed to steam turbines) to produce electricity. Even as the steam engine has begun to reach its theoretical maximum thermodynamic efficiency, jet engines have been undergoing development and progress in power output and overall system efficiencies. Currently in the U.S., 9000 MW of biomass derived power has been installed to date. U.S. and European companies are currently developing BIG/GT systems that are capable of generating 250MW of power.

By harvesting fast growing indigenous plant species, which are often pest-resistant and do not require large amounts of fertilizer or herbicide inputs, researchers have investigated some of the environmental and economic effects. From Mann (1996), the indications are that 95% carbon-closure, which is the amount of carbon released to the atmosphere from the system divided by the carbon that the system sequesters, could be expected from biomass generation. Future retired agricultural land that has been set aside for no planting is estimated to be in the millions of hectares in both Europe and North America. EUREC (1996) predicted that by the year 2000 there would be 20 million hectares of retired agricultural land in the EC12, and 10-20 million more hectares of marginal industrial land.

Biomass conversion systems still need a lot of research and development for finding or

. 17

breeding pest-resistant species of plants for the many different regions of the world where this technology could prove fruitful. Dedicated biomass cropping has many benefits in that a new energy economy may be emerging which will help to ease the economic crunch on the industrialized countries' rural communities. However, wide-scale biomass systems have the potential to do great harm to the environment. Intensive agriculture could spur soil erosion and local ecosystem disruptions. The processing of biomass in thermochemical processes produces liquid and solid wastes in the slurry after the fuel extraction has been completed. The performance of these systems is very much a function of the local biota and the management techniques employed.

2.2 POWER PLANNING

2.2.1 GENERAL PROBLEM

Power network planning has been based around the two main goals of adequately servicing a load demand and achieving a desired life-cycle economic performance from the network. The difficulty in introducing renewable technologies into standard power planning methods is that climate-based constraints are pervasive and inherent to most measures of the IRES network's performance, cost and feasibility.

The basic problem outlined in the following sections is that the planning model used for IRES compared with standard planning methods for conventional power generation (nuclear, fossil fuel and hydropower) must be augmented with the LCA in order to account for added environmental constraints.

The planning method for conventional power systems usually involves the following two iterative steps:

- (i) Assessing how well a chosen power regime will satisfy some foreseen power demand
- (ii) Iterations over step (i) in which changes to the power regime are evaluated until desired goals in cost and quality are achieved.

As will be demonstrated, these two basic steps remain the same, but the overall system of equations and decisions in the planning process for IRES changes. Utility planning is concerned primarily with finding the three inter-related quantities of:

- a. Forecast load demand
- b. Size and regime of the installed capacity of generators
- c. Unit price of electricity to consumers in relation to reliability or quality of service measures

This thesis examines only (b) and (c). Concern (a) was considered beyond the scope of this work.

2.2.2 STANDARD METHOD FOR DETERMINING THE POWER SYSTEM INSTALLED CAPACITIES

The most basic equation used in power planning is the simulation of load demand and power generation. This is often termed as the load balance equation. For a single load with multiple generators over hourly timesteps, the load balance can be simply expressed as:

$$U[t] = \max(L[t] - \sum_{i=1}^{k} P_i[t], 0)$$
 (2.1*a*)

 $U[t] \equiv \text{unserved load demand at timestep } t \text{ (kWh)}$ $L[t] \equiv \text{load demand at timestep } t \text{ (kWh)}$ $k \equiv \text{total number of power sources}$ $P_i[t] \equiv \text{power output from generator } i \text{ at timestep } t \text{ (kWh)}$

The power output from the generators must also adhere to the physical constraints of the generators. The maximum power output and dispatch characteristics of the power source must be met. In a system where there is simply a limit to the upper power output of a plant, the power constraint would be an expression of the restrictions on the loading of the generator. This may be expressed as:

$$\frac{P_i[t]}{P_{\max,i}} < lf_{\max,i} \qquad (2.1b)$$

 $P_{max,i} \equiv \text{maximum rated power output for generator } i$ $f_{max,i} \equiv \text{maximum load factor for generator i}$

The load balance (Equation 2.1a) is then subjected to a general cost target function, which in equation (2.2) calculates a per kWh cost, based on the total cost of the network.

$$C = \frac{\sum_{i=1}^{k} c_i}{\sum_{t=0}^{T} (L[t] - U[t])}$$
(2.2)
$$T = \text{number of timesteps in simulation}$$

 $c_i \equiv \text{cost of generator } i \text{ over time period } T (\$)$ $k \equiv \text{total number of power sources}$ $C \equiv \text{cost per unit power for network}$

One of the other main factors in power planning is the reliability and quality of the network to meeting load. This step attempts to correct for problems such as blackout and "brownout" conditions. These problems occur because of either insufficient capacity in the network, fuel shortages or ill-planned dispatch of power from the generators. Two of the most widely used reliability measures are loss-of-load-probability (LOLP) which is a measure of the system's inability to meet the daily maximum load, and loss-of-energy-expectation (LOEE) which measures how much load is expected to be unserved over a particular period [Berrie, 1983]. In this study, a simplified measure was used which has been termed the percentage unserved load. It is simply a constraint on the percentage of load demand that went unserviced through the period of simulation.

$$\sum_{t=0}^{T} U[t]$$

$$\sum_{t=0}^{T} L[t] \leq ue \qquad (2.3)$$

ue \equiv maximum allowable unserved load percentage

So, in order to find the dispatch for the optimal cost, C from equation (2.2) is minimized subject to the constraints of equations (2.1a), (2.1b) and (2.3):

 $\min C \ s.t. \ (2.1a), (2.1b), (2.3) \ are \ satisfied \ (2.4)$

2.3 DEALING WITH RENEWABLE TECHNOLOGIES IN DETERMINING INSTALLED CAPACITIES

Integrated renewable energy systems (IRES) use the same basic set of equations and constraints as standard power systems for power planning. All of the equations (2.1a), (2.1b) and (2.2)-(2.4) still apply to the renewable's scenario. But, IRES technologies add another physical dimension to the power planning methodology because of their constraints on power production from spatial and climatic issues. The problems are three-fold:

- Renewable technologies are not subject to a controllable loading of the generator and must have their power dispatched, off-loaded or both depending on whether the load has been surpassed.
- 2. Maximum power at any time period is due to stochastic climatic variations such as wind speed or solar irradiation rates
- 3. Siting plays a significant role in the maximization of power conversion from IRES technologies.

The following additions to equations (2.1-2.4) will deal with the first two of the aforesaid problems. The third problem, which deals with the effects of siting on IRES power output, was beyond the scope of this report. For solar photovoltaics and wind turbines, the overall area of coverage governs the magnitude of power output. This is explained in more detail in Chapter 4. The area of coverage for these technologies is proportional to their installed capacities. For this discussion, the area of coverage is introduced into the planning model as new constraints on the power output of a generator. Additionally, the constraint includes a new variable which is referred to as a power density. It is simply a measure of the per unit area resource available to a particular technology for energy conversion. Thus, the power density multiplied by the area of coverage equals the maximum power output in a particular time period.

$$P_i[t] \le p_i[t] \cdot a_i \qquad (2.1c)$$

 $\begin{array}{ll} p_i[t] &\equiv \text{per unit area power density for generator } i\\ a_i &\equiv \text{area of coverage for generator } i \end{array}$

Unlike solar photovoltaics and wind turbines, biomass conversion systems are the same as other fossil-fueled technologies. However, for an ideal regionally sustainable system, biomass conversion would be based upon only the fuelstock that was grown and distilled locally. This would add a second IRES constraint in the storage and growth potential for a region. Simply, this constraint would recognize that the fuel used between two subsequent harvests would need to be less than or equal to the storage at the time of the initial harvest plus the fuel produced from that initial harvest. This could be expressed as,

$$S_{j+1} = S_j + H_j - F_{j+1}, \quad S_j \ge 0, \quad (2.1d)$$

 $\begin{array}{ll} S_j & \equiv \text{Stored fuel in period } j \\ H_j & \equiv \text{Harvested fuel in period } j \\ F_{j+1} & \equiv \text{Fuel consumed in period } j+1 \\ j & \equiv \text{Harvest period} \end{array}$

So, in order to find the dispatch for the optimal cost in the IRES, equation (2.2) is minimized subject to the constraints of equation (2.1a-d) and (2.3):

 $\min C \ s.t. \ (2.1a), (2.1b), (2.1c), (2.1d), (2.3) \ are \ satisfied \ (2.5)$

2.4 SUMMARY OF PLANNING METHODOLOGIES

The two methodologies of standard power planning and planning with IRES are shown below in figures 2 and 3, respectively. In general, they are both based on the same power balance equation but the climatic constraints imposed by immediate dispatch renewable technologies increases the complexity of the IRES network at this particular level of network simulation.

Figure 2: Process for optimizing for standard power planning from section 2.2

Figure 3: Process for optimizing for IRES power planning from section 2.3
This chapter showed how the planning methods changed between power generators that have deterministic and controllable output, and those that rely on stochastic processes for power generation.

The next chapter (Chapter 3) will look into the physical plant modelling for IRES technologies. The physical plant modelling will be put into the overall context of modelling through the LCA framework. The chapter will develop the life-cycle inventory (LCI) template through which IRES technologies can be accurately modelled, and show how the simulation presented in this chapter is embedded into the LCA using goal-attainment.

CHAPTER 3: APPLYING LIFE-CYCLE ANALYSIS TO RES TECHNOLOGIES

3.0 BACKGROUND

Environmental problems are problematic to analyse because of their inherent complexity. Haith (1982) characterizes some of these difficulties, as follows:

"The management of environmental problems is a challenging venture. These problems involve land, water, air and energy resources that significantly affect human activities and attitudes. A major difficulty is that individual parts of environmental problems function together to produce unwanted results. For example, the water pollution associated with a wastewater discharge to a stream is related to many factors: waste sources and properties, waste collection, treatment process, method and location of discharge, transport of the wastes in the stream, and the effects of the wastes on biota and human use. Each component can be and often is analysed separately, but a water pollution problem results from the interactions of the collective effects of a water pollution *system*."

The LCA attempts to unravel some of the analytic complexity of environmental systems through a systematic approach which breaks down the problem into a number of stages and by attempting to attain two basic goals:

- (i) Characterizing the system by a "cradle-to-grave" approach
- (ii) Ensuring simplicity and transparency in the methodology

The cradle-to-grave approach attempts to define the system boundaries of a production system in what is termed a process model. The system begins at the raw material extraction from the earth and terminates at the point(s) at which the materials are returned back to the earth as either emissions or disposal at the end of the product's useful life. In the LCA, this method of inclusion of upstream and downstream processes in the product life cycle is sometimes referred to as internalizing externalities. This is a highly complex view of a production system because it must account for not only the upstream processing of raw materials and sub-components of the product, but also the downstream consumer use, confluence of sub-products into primary products, and the eventual product disposal. To add to this, much of the time multiple product streams must be evaluated in even simple products./For instance, a cradle-to-grave view of an electric lamp would need to assess the cradle-to-grave systems for light bulbs, electric cords manufacture, and possible glass or textile manufacture for the cosmetic aspects of the lamp. This approach can be onerous and seem over-complicated, but it allows for a reasonably unbiased and standardized framework where highly disparate products can be reviewed and compared.

The LCA uses the cradle-to-grave system by first accounting for energy and material inputs and outputs at each stage of the product's life and then conducting analyses on these results. Simplicity and transparency is maintained through a rigorous and systematic accounting procedure, which allows for straightforward auditing of the study and ascertainment of how particular figures were calculated. For environmental problems, complex systems must be clearly delineated for external review (e.g. legal and environmental auditing). In addition, the communication of the results must be understandable when there are often multi-disciplinary decision-makers.

Stage	Major Activities				
Goal Definition	• Determine study deliverables and quantifiable goals				
	Restrict products and processes under investigation				
System Scoping	• Determine system and process model boundaries				
	• Determine system components that are considered beyond system				
	scope				
Inventory	• Accounting of materials and energy at each step of process				
	Include only significant material consumption in overall appraisal according to weight, toxicity, price, and goals				
	Detail sources used for data gathering				
	• Assumptions to system dynamics and performance				
Impact	• Assess inventory and relate to environmental effects				
Assessment	• Use indices to asses environmental burdens and system performance				
Improvement	• Use goals and impact assessment results to determine possible prescriptions for improvement of system				

Table 5: Summary of the LCA stages and their associated activities

The LCA consists of five main stages of inquiry; (i) goal definition, (ii) system scoping, (iii) inventory, (iv) impact assessment, and (v) improvement [Vigon, 1993]. Table 5 (above) shows the main activities that are conducted through each stage. *Goal definition* pertains to focusing the study around the measurable goals and deliverables of the overall study. *System scoping* looks at developing the process model and deciding which stages of the system are included in the study and which stages are beyond the scope of the overall study. The *life-cycle inventory* (LCI) is the accounting of materials, energy and other metrics (such as natural resources like land) within the process model. The results of the LCI show where relative consumption of resources are concentrated and rates at which consumption occurs.

From these results, impact assessments are made. *Impact assessments* are typically measures or simulations, which help to define the environmental burden or societal effect of the system in terms relative to the overall goals of the study. Finally, the impact assessment and the LCI are used to determine possible *improvements* in the system. This could take the form of comparing different processes or finding the component(s) in a system that are most likely to provide the greatest benefits through revision of the component(s). As an aside, originally only the latter three stages (inventory, impact assessment and improvement) were prescribed stages, but in order to have the studies more focused, the stages of explicitly defining goals and system scope were added.

Sections 3.1 to 3.7 will outline the life cycle analysis framework through which an IRES network may be analysed. The outline will include some of the general issues in the various stages of the LCA studies. Section 3.1 begins by introducing some terminology and the remaining sections expand on the major concepts for each stage.

3.1 DEFINITIONS OF SELECTED LCA TERMS

The following terms are some definitions of common system components of the LCA.

Templates: A guide used by analysts for collecting and organizing data. The template describes a material and energy balance for a defined system. It includes resource requirements, transportation requirements, and emissions and waste for that system or subsystem.

- *Input:* Inputs to a process stage are either raw materials, or intermediate products. Thus, into any single stage there are usually multiple material inputs.
- *Product:* The output of a process stage that is passed on to following process stages is the product of the stage. It is the input material(s) finished form after undergoing processing.
- *Co-products:* After materials have undergone the processing of a stage, the result is a desired product(s) which is then passed on or "flowed" into the following stage of the process. In some process stages, instead of generating waste from the process, materials not used to make the desired product are used to create a product which leaves the overall system, but is used in some other process. These other products which are useful but leave the scope of the current system are the co-products to a process stage.
- *Emissions:* A material flow within a process in which the flow goes directly from the process stage to the environment, or, in other words, out of the overall system boundaries. The sink for the emission is the eco-sphere into which it flows. The three major emission types that are considered are air-borne, water-borne, and solid (landfilled/land-based sequestration) emissions.
- *Cradle-to-gate:* The representation of a subsystem in an overall process flow where the results of previous LCA studies are used to quantify and characterize the subsystem. These previous LCA results are integrated into the overall LCA system's results. This takes advantage of the re-usability and data sharing that is possible for certain processes (such as the production of steel or other widely used intermediate products).

3.2 GOAL DETERMINATION

The product of the goal determination stage should make clear the purpose and scope of the study. This requires the definition of both the study deliverables and the constraints under which the study is conducted. The purpose of a study is usually a combination of issues pertaining to:

- (i) Product design
- (ii) Setting industrial or governmental policy
- (iii) Environmental system assessment

The product design study may be summarised under two main areas of concentration. The first is to use the LCA to identify stages within the life cycle of a product or process where a reduction in resource use and emission might be achieved. The second is to compare the system inputs and outputs in order to compare the performance between alternative products, processes or activities. Setting policy is focused on determining general guidelines and procedures to foster desired environmental performance within the system(s). Environmental system assessment studies attempt to establish a baseline of information on a system's overall resource use, energy consumption, and environmental loading.

The constraints that should be stated at this stage of the study are the time for conducting the study, operating budget and the informational availability/requirements of the project.

Attributes of Study	Typical attributes of item
Specific area of study	Product or process under investigation
Organization Type	Public, Private, Public-Private Disclosure
Purpose(s) of study	Product design, setting policy, system
	assessment
Constraints of study	Time of study, Budget, informational
Deliverables	Reports, analysis tools, environmental
	performance

Table 6: Study classifications and some clarifications to ascertain biases therein

The goals of the study are to help focus the exercise by giving direction on how information and data are processed, to determine methods for producing the final deliverables and to communicate the overall results.

3.3 SYSTEM SCOPE

From Vigon (1993), a general "cradle-to-grave" system has four stages; namely raw materials acquisition, manufacturing, use/re-use/maintenance, and recycling/waste management. Figure 4 (below) shows the general system relationships.

Figure 4: Defining system boundaries, Source: Reproduced from [Vigon, 1993]

For power generation systems, the general model of figure 4 may be adapted to

reflect some of the realities that exist in these particular systems. Power generation systems have many irregularities in their manufacture, use and disposition. One of the other difficulties with these systems is that within a network of power stations, different power generation technologies may be employed. In addition, the timeframes under which these facilities are constructed, operated and disposed of is highly independent to the technology.

Figure 5: System boundaries of single-load electricity power networks

Figure 5 presents some of the specifics to power generation network's life cycles. Figure 5 shows that the overall system is made up of a number of full life-cycle subsystems. They all share the same effluent and input streams for system assessment. But each generation technology undergoes different manufacture, construction, operation and disposition. In the figure above, the heavy vertical arrows show material and energy streams that exits in all stages of the electricity generation process. The thin arrows within the system show inputs which are relevant to this study and that occur at only particular stages in the process. The vertical dashed lines divide the process(es) into discrete stages. Across the stages, there are three system boundaries that must be addressed in order to define the system. These are the process or stage, temporal and spatial boundaries of the system.

Process Boundary

The general process of generating electricity includes all upstream activities such as the raw materials acquisition in both fabrication of components and the construction of the plant and required infrastructure.

Operating costs in acquiring and consuming fuelstocks must be addressed for each technology in the overall power grid. This translates to accounting of transportation, storage, procurement and processing of fuels.

At the end of the downstream processes, the disposal of generating facilities must be considered. The process boundary looks at the material and energy requirements of haulage, landfills and recycling.

Temporal Boundary

The timeframes in power generation systems have a lot of variation. For a typical hydro or nuclear power plant project, it can take over a decade to go from proposal to construction to operation of the plant. In contrast, for a wind farm, relatively large installations (on the order of 50MW) can be installed and be operating within a year. Thus, in assessing the life-cycle effects of integrated power systems one must clearly delineate the lifetimes and stage timeframes of the different technologies. These issues highly affect performance because the power per unit material is strongly related to the equipment lifetimes, and the useful operating lifetime of the facility. Additionally, monetary costs can be highly skewed if decommissioning and discardment charges (which again are strongly related to time for hydro and nuclear power) are not properly accounted for.

Other temporal issues arise in assessing the operation of the plants. These include examining the frequency of maintenance and repair. For thermal and backup power systems, another issue is the availability and transport of fuel, especially for biomass systems because the system may not be able to supply the rate of fuel consumption needed for optimal performance.

Finally, in decommissioning power plants, one of the temporal issues is the short and long-term^{*}effects and possible remediation services that are concomitant with shutting down a facility.

Spatial Boundary

The renewable technologies studied in this report all utilize highly diffuse power sources. The sun, wind and biota require not only land but also properly situated land. Thus, one of the difficulties in assessing the performance of these systems is the constraint of the local resource of land. The location of these facilities is very important to achieving predictable performance. Two general issues must be dealt with specifically for IRES analysis, (i) availability of land, and (ii) suitability of geographic characteristics (climatic and landform) for energy conversion systems. A third land issue for power generation systems is the distance for transmission and distribution (T&D) of power within the service domain because the efficiency of the whole network is affected by the T&D losses. The three boundary types reviewed are summarized below in Table 7.

Boundary Type	Boundary descriptions
Process	Manufacture of power conversion equipment
	Construction of power plant and additional infrastructure Use of power plant and emissions from generating energy Disposal costs in haulage, landfill, and recycling
Temporal	Useful operating lifetime of equipment Frequency of maintenance and repair Availability of fuelstock Timeframe for facility passing from manufacture stage to disposition stage
Spatial	Availability of land Suitability of climate and landform for energy conversion systems Distance to transport power from power plant to load demand site

T 11 7	C		., ,				. •	
Table 1:	Summary	nt	houndary	ていわらら	111	nnwer	orneration.	custome
	2	~	<i>comany</i>	JP**		P0#01	Sener arron	3 4 3 4 0 1 1 3 3

3.4 INVENTORY OF MATERIALS AND ENERGY FOR RENEWABLE TECHNOLOGIES

Inventory calculations fall into the three main classifications; (i) fixed inventory, (ii) variable inventory, and (iii) recycled inventory (table 8). Each of the three has certain properties that must be adhered to in order to properly and accurately assess the overall inventory. Fixed inventory are material flows that may be accounted through the life cycle of

Inventory	Units
Fixed inventory	Weight/Unit
Variable Inventory	Weight/Unit-time
Recycled inventory	Weight/Unit-time

Table 8: Summary of inventory classifications

a single unit of product and then simply scaled in magnitude to the number of units of product in question. Variable inventory is different in that it is not a factor of the number of units of products but rather the rate of inventory inclusion. It is usually dependent on a timeframe and the number of units in question. Recycled inventory is the amount of material that is re-directed from the discarding of a product to a new product stream. Recycling of materials is done in two main ways. The first way, which is known as *open-loop recycling*, consists of taking the materials from one product and re-processing some of the discarded product's materials and using them within a different type of product. The other way of recycling is called *closed-loop recycling* because the recycled material is used in the manufacture of the same product line. Both of these methods potentially reduce raw material use but their effect on a system is not always straightforward. As a consequence, they must usually be quantified by functions that use the time, magnitude of material flow and open- or closedloop process systems to calculate the appropriate credits to the inventory.

3.4.1 USING TEMPLATES FOR SYSTEMS ANALYSIS

The goal of the life-cycle inventory (LCI) may be summarized as a report of the material, energy, and resource flows into and out of a "cradle-to-grave" system boundary. A useful tools to conduct the LCI is the template. Figure 6 shows one of the most widely used templates, which was proposed for manufactured products by Franklin and Assoc., Ltd. [Vigon, 1993].

Figure 6: Proposed LCA template from Franklin & Assoc., Ltd.

A template can be thought of as a general framework in which parameters to the system can be classified and through which a rational accounting between process stages can be made simpler.

The template from figure 6 can be generalized to other systems as general flows of

material and energy. Figure 7 shows the general flows. Material inputs are defined as the materials used directly in the process stage. Cascaded flow has two classes of items; (i) useful output which gets passed on to successive stages (products and co-products), or possibly to the system boundary when the product is discarded, and (ii) the resource expenditure in having the process proceed from one stage to another (such as transportation costs). Local resources refer to finite or constrained resources, which are applied or used by the process, such as water, land, labor, or energy that are geographically local to the process stage. Appropriated resources from another region within the system scope should be accounted for in the process stage of procurement of that resource, otherwise embodied measures to the process stage may be made, but these should be highlighted with explicit reasoning. Finally, emissions to the system boundary may be considered as discharges of waste products directly into some ecological sphere (e.g. geosphere, hydrosphere, biosphere, atmosphere).

Figure 7: Generalized LCA template for a process stage

The following sections develop a template for the life-cycle of a general electricity conversion facility (such as a solar PV array or wind turbine).

3.4.2 FABRICATION

Plant specifications should summarize the manufacturer's classification of the technology in question. It should provide enough information so that the source of specifications within the LCA may be traced. An example of manufacturer's plant specification is provided in Table 9.

Type of Technology:	Basic description (e.g. WEC, Coal-fired boiler, hydropower)				
Manufacturer:	Company Name	Model No.:			
Fuel Type:		Unit Size:	Peak power output		
Cogeneration:	Yes/No	Max. load factor:			

Table 9:Plant Specifications Template

The material acquisition inventory should separate the plant into components and processes. Each component and process should then be assessed for direct material and energy inputs. An example of the major components of a photovoltaic cell is shown in Figure 8. This information is usually available through general manufacturing processes and manufacturer specifications.

Table 10 shows an example materials acquisition inventory template. Beyond the components and the constituent materials of the components, the three material qualities of particular material should be included in the analysis. Only the information relevant to the study need be included in the final analysis, thus there will almost certainly be elements of the material inventory that will not have values.

Back Contact

Figure 8: Components in a single photovoltaic cell

Component Name	Materials	Toxicity	Price	Weight		

|--|

Emissions from the fabrication stage should include embodied energy and waste material that are in the direct material and energy flows for the various components and processes. The meanings of each column have been included in Table 11.

Material	Process	Emission	Discharge Type	Effect	Rate
Inventory	Process model	Chemical	Eco-sphere to which	Harmful or	Rate of emission,
source material	source of	description of	the emission is passed	significant	usually in units of
of emission	emission	emission		effects of	weight/time
				emission	

Table 11: Emissions Summary Template

3.4.3 CONSTRUCTION

This stage should define the siting rules around which the technology may be

planned and deployed. This information is usually made available in practitioner's guides and manufacturer recommendations.

In general, the land requirements of facilities should entail the required infrastructure, land type(s), land area and the distance between the load and power generator. For specific cases, other information such as land use changes, regional availability of land, and existing infrastructure should also be assessed.

Region:	Proposed location of installation
Land Area Required:	Per unit install land requirements
Land Definition:	Suitability criteria for siting facility
Required Infrastructure:	Access roads, T&D systems, water diversions
Distance to Load:	Distance that power must be transmitted to reach load
Regional Effects:	Regional land use changes

Table 12: Land Requirements Template

As in the fabrication stage, the structural components and processes of construction should be outlined similar to Table 10. The facility inventory (Table 13) should summarize the construction stages, facility components (e.g. foundations, roads, housing), and the materials summary and energy required for erecting the facility.

Construction Stage	Facility Part	Material	Weight	Toxicity	Price
					•
		T A T MA			

Table 13: Facility Inventory Template

The material and energy flows of the facility may then be assessed for embodied waste streams and energy. The construction stage emissions table (Table 14) has the same structure as Table 11 used in the fabrication stage, but it is applied to the emissions from the materials and processes outlined in Table 13.

Material	Process	Emission	Discharge Type	Effect	Rate
Inventory	Process model	Chemical	Eco-sphere to which	Harmful or	Rate of emission,
source material	source of	description of	the emission is	significant	usually in units of
of emission	emission	emission	passed	effects of	weight/time
				emission	

Table 14: Emissions Summary Template

3.4.4 USE

This section typifies the use or activity of electricity generation. Table 15 examines the temporal aspects of power generation. Time issues are usually quite different for different technologies. Reliability and system degradation are both temporal issues. These go beyond the scope of this report, but in practice they play significant roles in the efficiency of most power systems.

Time to complete	Amount of time from beginning to end of construction phase
construction	
Time to begin generating	Time from after construction has begun, that facility may start generating
power	power. If it cannot generate at full capacity at the beginning of power
-	generation activities then details should be provided as to the magnitude of
	load that it will be able to service.
Useful life of plant	Time over which the facility is used for the purpose of generating
-	electricity
Rate of degradation of plant	Rate(s) of plant degradation through useful lifetime
services	
Backup Facilities	Type of backup facilities in the plant such as batteries or a pumped water
-	system. This is not the power network backup facility.
Maintenance Effects on	Schedules or rates of required system maintenance that would effect the
Power Output	power output, or that would add to the inventory of the plant

Table 15: Time Issues Template

The power output from the plant must be clearly specified, in order to achieve accurate data-models of power efficiency relative to material inputs. The power output template, in general, should provide enough information to set up the architecture of the high-level simulation environment for the particular technology. Table 16 contains power output information that is not complete, but is typical.

Dispatch Characteristics	Immediate off-load, short-term governing, long-term scheduled
Offloading Capacity	Type and magnitude of offloading capability
Power Type	AC or DC
Maximum Current	
Maximum Voltage	
Maximum Power	
Rated Load Factor	
Grid-connected	Yes/No

Table 16: Example Power Output Template

The following two tables (Table 17 and Table 18) should characterize the normal operating condition inventory of materials. These tables are filled in the same as those fabrication inventory templates introduced in Table 10 and Table 11, respectively. The difference is that these values will usually be rates of consumption as opposed to per plant emissions (i.e. variable versus fixed inventories).

Activity	Material	Toxicity	Weight	Price
		Report values as r	ates used during op	eration
	m 11 47 0 0	x		

 Table 17:
 Operation Inventory Template

Material	Process	Emission	Discharge Type	Effect	Rate

Table 18: Emissions Summary Template

Conspicuously missing in this section was the characterization of facility reliability and abnormal operating conditions. These issues are highly relevant to power systems analysis but because of time and resource constraints they were beyond the scope of this work.

3.4.5 DISPOSAL

Disposal is the stage in which the facility is no longer useful for its intended purpose of power generation. The modes in which materials are discarded are recycling, re-use, and emissions. The introduction to this section introduces the concepts of open-loop and closed-loop recycling. Efficient recycling and re-use of materials usually produces a credit for inventories. But, the effects of recycling are still active areas of LCA research.

Table 19 and Table 20 summarize the emissions and effects of recycling. One of the caveats to the emissions table (Table 20) is that at this stage it should include effects such as hazardous waste disposal and incubation of irradiated materials. Again, this is still an active area of research in LCA studies.

Material	Mode	Processing	Costs	Time to dispose
-	T 11 40	C ()(, ;		-

 Table 19:
 Summary of Material Processing Template

Material	Process	Emission	Discharge Type	Effect	Rate

Table 20: Emissions Summary Template

3.5 IMPACT ASSESSMENT THROUGH ENVIRONMENTAL INDICATORS

Assessing the impact of multimedia effects and multi-chemical reactions and flows necessitates the use of some methodology that is both understandable and accurate. The modelling and measurement of specific physical effects of pollution are beyond the scope of this thesis. In this study, the impact assessment is simply the creation of a set of expressions, which provide quantitative measures of system success from different viewpoints. In practice, a more reasoned approach would be the use of environmental indicators. Environmental indicators are vectors of quantitative factors that contribute to a particular class of environmental problem. The vector is then made into an indicator by applying a weighting scheme to the different factors in the vector and an overall indicator or measure of the environmental burden is thus made.

Indicators are still an active area of research which should help to simplify the complex systems that characterize environmental problems. Issues such as global warming, deforestation, habitat encroachment, and ground water pollution, are all environmental problems that are caused by complex reactions between multimedia emissions from various human-based endeavours. The World Resources Institute recently published "Environmental Indicators: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development" [Hammond, 1996]. The paper summarizes the type of information criteria that they envision for the development of environmental indicators.

The purpose for any numeric indicator is to both quantify information so its significance can be made apparent, and to simplify information for complex phenomena so laypersons may more easily understand the dynamics of the system. Environmental indicators are always based on some empirical model of the phenomena under investigation. The indicator represents the system's performance in relation to the indicator's underlying model, not necessarily the actual performance of the system under analysis. Thus, the theory is that the indicator should allow the comparative analysis of different systems by simplifying the environmental performance of a system to a numeric value.

In choosing candidate environmental indicators, [Hammond, 1996] acknowledges three major indicator design characteristics which have proven to produce the best set of indicators:

User-driven:	Indicator is relevant and meaningful to the intended	
	audience	
Policy-relevant:	Indicator reflects policy concerns	
Highly Aggregated:	Indicator should have as few indices as possible without	
	sacrificing accuracy and relevance	

The OECD and UNEP have been jointly working on a framework for developing environmental indicators. The table below shows a small subset of the indicators, which are currently under consideration. The indicators have been grouped according to different stressor types. Indicators of pressure on the environment are measures of pollution and resource depletion. The state indicator attempts to characterize the state of the environmental subsystem that is being affected. Finally, response indicators are seen as measures of the intensity of change from either the eco-system and/or human feedback on the environmental system.

Issues	Pressure	State	Response
Climate Change	(GHG) emissions	Concentrations	Energy Intensity; Env. Measures
Acidification	(SO _x , NO _x , NH ₃) emissions	Deposition; concentrations	Investments; signatory agreements
Biodiversity	Land conversion; land fragmentation	Species abundance vs. virgin territory	Protected areas
Soil Degradation	Land use changes	Top soil loss	Rehabilitation/ protection

Table 21: Proposed environmental indicators from the OECD and UNEP

Figure 9: Calculating indicators within impact assessment

For the impact assessment, once an indicator(s) has been chosen then it becomes a matter of conducting the LCI and converting units to suitable quantities for the indicator. Figure 9 shows the process for calculating a pollution indicator from the LCI and using a simulation-based data model for an IRES.

3.6 SYSTEM IMPROVEMENT

System improvement is the LCA stage in which the impacts and inventory results are analysed in order to ascertain the way to improve the system performance. System improvement for energy systems may be defined from economic, environmental, social, or thermodynamic criteria, and any combination thereof. The criterion for what constitutes a successful system was presumed to have been determined within the LCA goal definition stage. Quantitative expressions for measuring system success would then have been developed in the impact assessment. System improvement investigates the limits of feasible policy and design boundaries.

Figure 10: Summary of LCA components used to determine system improvements

In determining means and methods for system improvement, there are many

analytical tools that are available. In this study, the system improvement stage of inquiry is conducted via a goal-attainment system and a simulation framework. This improvement system is meant to discern suitable performance regimes. The feasibility of a quantitative performance-based policy can be confirmed by using goal-attainment to find that an appropriate design exists. Figure 10 summarizes the factors and components used to test and determine system improvements.

In general, goal-attainment for the power balance optimization presented in section 2.3 may be viewed as a modification of the minimization represented in equation 2.5, which has been reproduced below.

 $\min C \ s.t. \ (2.1a), (2.1b), (2.1c), (2.1d), (2.3) \ are \ satisfied \ (2.5)$

Equation 2.5 contains a C which represents a cost function for the overall power balance. In goal-attainment, G is introduced, which is the target cost for the function. One of the simplest methods for finding a feasible design for a particular least-cost target is to minimize the function C-G. [Matlab, 1998]

 $\min |C - G| = 0$ st. (2.1a), (2.1b), (2.1c), (2.1d), (2.3) are satisfied (3.1)

For this study, a goal-attainment system was written in the Matlab mathematical software environment. In general, the simulation system uses the models presented in Chapter 5. In the table below, the general stages of execution, functionality and data sets are summarized for the goal-attainment system considered in this thesis.

Stage	Activity	Output
Data Acquisition	 1. Required data sets: Load demand CWEC climate data for site Manufacturers' specifications for energy conversion technology Read CWEC and extract time-series for wind, insolation and temperature Calculate power densities for solar wind and biomass 	 Per unit design variable energy catchments for: Wind Insolation Biomass harvests
Pre-processing	catchments	
1-re-processing	 Configure system to use appropriate cost functions and cost values Initialize Matlab environment for global variables and output buffers Read stored energy catchment time-series Read stored load demand 	
Simulation	1. Run REOS with desired design, pre-processed energy catchment and given load demand	 Energy generation from installation: 1. Immediate dispatch for: Wind turbines Solar photovoltaics 2. Short-term dispatch with fuel storage: BIG/GT 3. Unserved load
Goal- attainment and optimization	 Choose appropriate mix of cost functions (or constraints) for optimization or goal-attainment from: Production cost of power in \$/kWh Life-cycle CO₂ emissions in kg CO₂/kWh Land area required for regional and sustainable power generation Percentage of load that may go unserved by final design Determine desired performance targets and possible design constraints, and convert per unit power generation metrics (\$/kWh, kg CO₂/kWh) to life-cycle metrics (total \$ over and total CO₂ emissions over simulation period) Combine simulation, cost functions, pre-processed data sets and either Matlab 'attgoal' or 'constr' functions to conduct design search using constrained SQP-optimization routines 	 Output design and performance of searched-for system

Table 22: Implementation of the RES goal-attainment system

3.7 SUMMARY OF THE LIFE-CYCLE ANALYSIS FOR IRES

This chapter introduced the LCA methodology and its concomitant stages. Each of the stages were presented for applying the LCA framework to power system networks. Tables 8 to 20 were presented as a possible template for studying the materials inventory for the facilities of a power network. This section introduced the general framework around which the overall study of this thesis will be conducted.

The following chapters (ch.4 and 5) will conduct an LCA for a simulated IRES planning exercise for two Canadian sites.

CHAPTER 4: LIFE-CYCLE INVENTORY OF RENEWABLE TECHNOLOGIES

4.0 INTRODUCTION

The following sections outline the life-cycle inventories for specific renewable electricity generation technologies. The life-cycle assessment begins with the determination of the goals of this study (sect. 4.1). The system scope is then defined (sect. 4.2). Following the goal determination and system scoping stages, the life-cycle inventory results are presented (sect. 4.3-5). These use the templates developed in chapter 3. Each technology inventory begins with a general description of the process to manufacture, use and dispose of the power station. This includes notable emissions and effects. The results are summarized at the end of each section. In addition, specific commercial technologies have been selected to demonstrate how they may be used in the LCI.

One of the major assumptions used in the inventories was that there would be no backup facilities for the individual power generators such as batteries or pumped water systems. Instead, this study in IRES assumes that the distributed power generators are interconnected onto a shared bus, and that offloaded power will be handled via the grid.

The study was conducted using only existing literature, both general figures

published in other studies and manufacturer specifications. The process flow diagrams used consisted of very coarse descriptions of the actual processes. This was done due to time and resource considerations. One element that is conspicuously missing in the emissions summary tables (tables 23, 24, and 26) is the effects of discarding of power stations on emissions. This was done because of time considerations. In addition, access to commercial LCI databases that would detail many of the common steps (e.g. two of the most popular databases would be Ecobalance, Inc.'s DEAM database, or the Swiss Office of Forestry and the Environment's BUWAL database) were not available for the most up-to-date numbers [DEAM,1997], [BUWAL,1998].

Economic considerations were taken from two sources. The first was from the software libraries of Hybrid2 [Hybrid2, 1997]. Hybrid2 modelled IRES networks and was used extensively in the validation of the REOS model. Thus, per unit area installation pricing information for wind turbines and photovoltaic systems were borrowed from the software package. For BIG/GT systems, the LCI study conducted in [Mann, 1996] was used.

4.1 GOAL DETERMINATION

The goal of this study is to provide a framework from which further work may be done in order to aid policy-makers make more objective decisions concerning the deployment of renewable energy systems. A dictionary definition of policy is "a definite course or method of action selected from among alternatives and in light of given conditions

to guide and determine present and future decisions". To these ends, the goals of this study were:

- (i) Demonstrate the use of goal-attainment for attempting to relate performance tradeoffs within a mock IRES system
- (ii) Define performance of the electricity network with the three indices of price of electricity, land occupation of the network, and air-borne carbon dioxide emission levels
- (iii) Produce a reasonable methodology for determining rules for policy-making using a design model to map system performance
- (iv) Use available literature to conduct the study

4.2 DETERMINING THE SYSTEM SCOPE USING THE REOS MODEL

An integrated renewable energy system is depicted below in Figure 11. It is based on the renewable energy optimization and simulation (REOS) [Venema & Ali, 1998] model developed at the University of Waterloo.

The system is bounded to a specific geographic region. Within this region are included all the operating facilities for power conversion from renewable technologies. External to the overall system is a long-term power grid backup. The power grid is made external because the electricity that it provides can come from an open market of numerous distant power sources.

Figure 11: REOS model of sustainable electricity

Power delivery is shown as a set of various storage, dispatch and backup schemes. Immediate dispatch power sources must deliver their continuous power output to some load, whether useful or not. Scenarios in offloading energy include routing the excess power to some storage facility (batteries or pumped water), or in cases where an external power grid exists, the excess power is sold on the open market. Short-term dispatch sources do not necessarily output energy continuously and may potentially consume fuel even if the system is kept idle. Short-term dispatch means that load demand can be met variably as needed provided that the supply of fuel for the facility does not run out. Long-term backup facilities may be viewed as sources that provide power on demand with a very low outage probability, but because of cost, environmental effects or other factors, it is the least favoured power source.

The following assumptions were made in this study:

- Long-term backup facilities already exist within the region
- End-use inventory such as factory emissions, or household emissions from electricity use are beyond the scope of this study
- Infrastructure for power delivery over a shared grid already exists (i.e. mature electricity market)
- Discarding of facilities has no effect on material consumption

Transmission and distribution (T&D) infrastructure and end-use activities were not considered within the study because although they are necessary to make a proper energy analysis, the actual processes between of T&D and end-use were seen as independent enough to deem outside of the study scope. Discarding of facilities was not as straightforward. The main reason for its omission was that suitable literature at the time of this thesis was not available in order to characterize the discard phase for all power types. Thus, it seemed prudent to exclude the discard stage entirely.

Overall the system should include all processes that occur within the regions boundaries, which includes:

- (i) Assume that fabrication of facilities is done locally, but raw material transport may be from distant locales
- (ii) Electricity demand is completely domestic to the region
- (iii) Disregard inventory consumption/emission outside of the simulation timeframe

Thus, the scope of the study should respect the spatial constraints of the simulated region, and consider only emissions within the timeframe of the simulations.

4.3 WIND TURBINE MATERIALS INVENTORY

The following sections (4.3.1-6) outline the modelling of the material inventory and power simulation for wind turbines. Sections 4.3.1-4 detail the process stages for wind turbines. Figure 12 in section 4.3.5 summarizes the process model that was outlined in the preceding sections. The results of the materials inventory as applied to the Jacobs 41/500 [Jacobs, 1998] wind turbine is summarized in Table 23 in section 4.3.5. Finally, the power simulation of a wind turbine is shown in section 4.3.6.

4.3.1 FABRICATION

The materials used in wind turbine technology are commonplace. These are predominantly steel, concrete and aluminum. The three main components of a wind turbine are the nacelle, rotors and tower. Additionally, modern power conditioning and inversion equipment must be employed to inter-connect turbine power outputs to a shared grid. But, in relation to the overall materials requirements of the system, the power conditioning equipment is a negligible component.

4.3.2 CONSTRUCTION OF FACILITY

Typically, a commercial windfarm will use windmills with rotors of 25-50 m in diameter. The towers will be approximately 30 m tall. The overall weight of the structure

varies, but for a typical 200 kW installation, it will be on the order of 1-2 tonnes for the rotor, 3-5 tonnes for the nacelle (gearbox and generator) and 7-10 tonnes for the tower. Overall, this works out to an overall weight of 11-17 tonnes for a mid-rated turbine [Nacfaire, 1987]. In order to assemble such structures, there is necessarily a need for road access to the prospective farm area. In addition, land requirements for the spacing between adjacent windmills usually is on the order of 5-10 times the diameter of the rotor [Johansson, 1993]. Finally, the foundation of the tower will add about 20% to the weight of the entire aboveground structure. The foundation is predominantly made of concrete.

4.3.3 USE

Electricity generation from a wind turbine is a benign process. There are no direct emissions from the operation and electricity generation. But the system does require maintenance and repairs. The system does potentially require backup and energy storage facilities in times when either load cannot be met by the immediately generated power or when demand is low and the generated power must be offloaded. Backup facilities are usually on-site fossil-fuel based generators, grid connection, or discharge from storage facilities (such as pumped water or battery systems). Systems to offload energy include pumped water systems and delivering energy into a shared heterogeneous power grid. The useful life of modern windmills is on the order of 15-20 years. [Nacfaire, 1987], [Walker, 1997]
4.3.4 DISCARD

The emissions from the retiring of facilities emissions will come from transportation of materials to processing plants (typically, recycling or landfill). The materials that are usually recycled include the metals (aluminum, steel and copper) in the nacelle and tower. Concrete, fiberglass and wood are usually landfilled, although the concrete can be re-used as road construction materials.

4.3.5 INVENTORY AND PROCESS SUMMARY

Appendix A.1 contains the LCI template for the Jacobs 41/500 wind turbine. The materials inventory calculations for the Jacobs wind turbine is presented in Appendix A.5. The materials summary is shown below in Table 23. Additionally, the process model is depicted in Figure 12.

Item	Carbon Dioxide Emissions
Fiberglass	12.94 tonnes CO ₂ /unit
Steel	308.7 tonnes CO ₂ /unit
Copper	7.7 tonnes CO_2 /unit
Aluminum	1.41 tonnes CO_2 /unit
Cement	15.7 tonnes CO ₂ /unit
Transport	0.275 tonnes CO ₂ /unit
Total Fixed CO ₂ :	346.725 tonnes CO_2 /unit
Total Variable CO ₂ :	0 tonnes CO ₂ /unit

Figure 12: Wind Turbine Process Model Using Block Flow Diagram

4.3.6 CALCULATING POWER OUTPUT FROM WIND TURBINES

Wind turbines' power output is derived from local wind resources. Below, the general expressions for calculating wind energy output from a plant are shown. It should be noted that the power output in this case is related to the cube of wind speed. In a practical setting, proper siting of the plant has a pronounced effect on achieving optimal performance from the wind plant.

Design Variable:	A_{r}	=	Windswept area of rotors (m ²)
Constants and derived variables:	$ ho_w$. =	Air density (kg/m ³)
	$\eta_{_{\mu \nu}}(t)$	=	Efficiency of wind turbine
Climatological variables:	v(t)	=	Wind speed

Let $G_w(t)$ be the expression for the wind turbine power output. Thus, the calculation for wind generated power is,

$$\mathbf{G}_{w}(t) = \frac{1}{2}\mathbf{A}_{w} \cdot \boldsymbol{\rho}_{w} \cdot \boldsymbol{\eta}_{w}(t) \cdot \boldsymbol{v}^{3}(t) \tag{4.1}$$

Figure 13 (below) demonstrates the dynamics of a typical power generation curve from a wind turbine. As has been marked, most windmills have three characteristic windspeeds. The first is the *cut-in speed*, which defines the windspeed where the turbine will begin to output power. At the *rated windspeed* the windmill achieves maximum power output. The third major windspeed is the *maximum windspeed*, which is the maximum windspeed that the physical structure of the windmill can withstand.

Figure 13: A typical power curve for a wind turbine

For simulation purposes, an alternative method to using the analytic expression for wind turbine power would be to use the manufacturer's power curve to calculate $G_w(t)$. This alternative approach may prove to be slower in computational terms, but it gains the realism of a time-varying efficiency and possibly simplifies complicated actual commercial turbine power output calculations.

4.4 SOLAR PHOTOVOLTAIC MATERIALS INVENTORY

The following sections (4.4.1-6) outline the modelling of the material inventory and power simulation for wind turbines. Sections 4.4.1-4 detail the process stages for wind turbines. Figure 14 in section 4.4.5 summarizes the process model that was outlined in the preceding sections. The results of the materials inventory as applied to the ASE 300-DG-50 [ASE, 1998] solar photovoltaic cell is summarized in Table 24, also in section 4.4.5. Finally, the power simulation for a wind turbine is shown in section 4.4.6.

4.4.1 FABRICATION OF SOLAR CELLS

Silicon cells are the most widely used and manufactured photovoltaic technology in North America. Other technologies such as cadmium telluride (CdTe), cadmiumiridium-selenide (CIS) and amorphous silicon (a-Si) cells are definitely candidates for future technologies. These experimental cells use some highly toxic and dangerous chemicals, in comparison to silicon cells. But, they have achieved significantly higher

65

conversion efficiencies and use materials that are much lighter and easily manufactured. Production methods (especially for CIS) for these cell types have a greater potential to significantly lower the overall costs of deploying solar energy. The major disadvantage of these same technologies is the use of the highly toxic and hazardous material cadmium. As solar energy markets continue to grow the current dominant technology (silicon cells) will probably be usurped by one of the newer technologies due to the advances in power conversion efficiencies and cost. [Markvaart, 1993], [Bell, 1996], [Zweibel, 1990]

4.4.2 CONSTRUCTION OF SOLAR ARRAY

Assembly and construction of solar arrays is conducted similarly to other infrastructure projects. The bulk of materials that are used within this process consist of construction materials such as steel housings for the cell arrays and concrete foundations. In addition, energy is input in the form of transportation of the cells and raw materials.

4.4.3 USE

The operation and maintenance of a solar array involves a number of different activities. Over the lifetime of the solar array its back-up systems (such as batteries) must be replaced and serviced as needed. The useful lifetime of a solar cell is approximately 20 years. Batteries usually must be changed every 6 years, depending upon how heavily the system uses up the finite charge-discharge cycles of batteries (car batteries allow for 400

66

of such cycles). Back-up energy in solar arrays, especially in large deployments will probably not use batteries because of their cost, bulk and deleterious environmental effects when they leak. More likely will be that the solar arrays will be connected to an energy grid or for remote applications. Fuel cells will probably be the future storage medium of choice [Markvaart, 1993]. This report assumes that there is no battery or fuel-cell backup within the solar array. Thus, solar photovoltaic energy conversion becomes a fairly benign and passive process. But potential problems, especially with very large deployments would certainly be biosphere disruptions in migration patterns and habitat encroachment, which are yet to be fully understood.

4.4.4 DISCARD

The retirement of solar arrays involves a number of steps. The bulk of the concrete may be landfilled or possibly re-used as road paving material. The steel and aluminum in the cell frames and array housings can be almost completely recycled. But, care must be taken in disposing of the cells because they may potentially contain highly toxic substances such as cadmium or tellurium. The cells must be specially treated in order to extract the more dangerous chemicals from the cells. This requires special leaching facilities and containment facilities for eventually landfilling or diluting the harmful heavy metals.

4.4.5 INVENTORY AND PROCESS SUMMARY

Appendix A.2 contains the LCI template for the ASE 300-DG-50 solar photovoltaic cell. The materials inventory calculations for the ASE solar cell is presented in Appendix A.5. The materials summary is shown below in Table 24. Additionally, the process model is depicted in Figure 14.

Figure 14: Solar Photovoltaic Array Process Block Flow Diagram

Item	Carbon Dioxide Emissions
Steel	126.9 kg CO_2 /unit
Glass	3.185 kg CO ₂ /unit
Aluminum	37.1 kg CO ₂ /unit
Cement	9.5 kg CO ₂ /unit
Semiconductors	371.9 kg CO ₂ /unit
Transport	0.35 kg CO ₂ /unit
Total Fixed CO2:	548.9 kg CO ₂ /unit
Total Variable CO2:	0 tonnes CO ₂ /unit

Table 24: Summary of ASE-300-DG/50 PV array CO2 emissions

4.4.6 CALCULATING POWER OUTPUT FROM SOLAR ARRAYS

Solar photovoltaics generate power by converting solar radiation into electricity. The analytic expression for power output is fairly simple. The power output is simply the total irradiation of the solar cell area times the efficiency times the area power density of the solar radiation on the surface of the cell. But, this is deceptively simple because the solar irradiation (insolation) is usually measured in two general components. The first is direct sunlight or solar irradiation that is the radiation incident on a surface perpendicular to the Sun's rays. The second component of the solar irradiation is the diffuse irradiation that is defined by the power density on a surface parallel to the sun's rays.

Design variable:	$A_{\mu\nu}$	=	Area of photovoltaic cells (m ²)
Climatic variables:	R(t)	=	Direct and diffuse insolation (kWh/m ²)
	Temp(t)	=	Temperature (°C)
Parameter variables:	$\eta_{pv}(Temp, t)$	=	Efficiency of cells

As shown above, the temperature of the cell affects their efficiency. For northern

climates, the fluctuation of temperatures on diurnal, seasonal, and yearly periods are large enough to warrant the accounting of the change in efficiency.

Let G_{pv} be the power output from a solar photovoltaic cell. The calculation for the output power would simply be [Markvaart, 1993],

$$G_{pv} = A_{pv} \cdot \eta_{pv} (Temp, t) \cdot R(t)$$
(4.2)

Thus for a fixed solar array, as the Earth and Sun turn, the incident radiation on the cell will be only a part of either the diffuse or direct irradiation. In order to correct for this, the solar cells angle to the Sun's direct rays must be tracked and the solar irradiation values similarly corrected. Not all commercial solar arrays require these added computations because the solar arrays track the sun so that maximum energy conversion can be achieved.

4.5 LIQUEFACTION OF WOODY BIOMASS MATERIALS INVENTORY

The following sections (4.5.1-4) outline the modelling of the material inventory and power simulation for a biomass integrated gasifier gas turbine system (BIG/GT) which uses liquefaction for converting biomass to fuelstock. Sections 4.5.1-2 detail the process stages for BIG/GT fuel production. Section 4.5.3 summarizes the overall materials inventory for the BIG/GT system. Figure 15 in section 4.5.3 summarizes the process model that was outlined in the sections 4.5.1 and 4.5.2. The results of the materials inventory as applied to the biomass system in [Mann, 1996] is summarized in Table 26, also in section 4.5.3. Finally, the power simulation for a BIG/GT system is shown in section 45.4.

4.5.1 AGRICULTURE

For growing woody biomass, the general agricultural process is much the same as for other agricultural crops such as corn or wheat. The largest deviation from typical farm crops is that a stand of woody biomass is not harvested yearly. Rather, a plantation would be harvested along periods ranging from 3-10 years. This periodic harvest is highly dependent on the crop species. Aside from this, the cultivated woody crops will usually be given fertilizers and pesticides. Application of herbicides and weeding do not become common after the trees reach a certain age (usually at around the mid-point of the growth period between harvests). But, as mentioned, wood agriculture uses the same modern agricultural equipment, irrigation systems, fertilizers, and the need to transport the harvested biomass via

71

train or roads as more common cropping systems. [Ledin, 1996a], [Sharpe, 1985]

Similarly, agricultural effects such as desertification, land-based discharges of chemicals into local biota and water systems from fertilizers and pesticides, and ecological disruption by usurping habitat or blocking migration routes are still possibilities in dedicated biomass agriculture. One of the possible highlights from widespread cultivation of trees is the potential for net sequestering of carbon from the atmosphere into the soil. This is not always the case, and is strongly a function of both the tree species and the local soil type. Dedicated woody biomass may be a means to reduce aggregate CO_2 emissions and at the same time meet future power demand. [Mann, 1996]

4.5.2 LIQUEFACTION

Liquefaction is the process of extracting liquid fuel from a feedstock. For woody biomass this usually involves the following steps:

- 1. Raw feedstock is made into wood chips
- 2. Chips are dried in a kiln
- 3. Dried wood chips are then bio-degraded and this gasification process produces the fuel

These steps in liquefaction are summarized below in Table 25. The table also details some of the hazardous environmental effects of these stages.

Stage	Harmful Effects	Use of contaminated waste
Wood chipping	Air-borne particulate from saw dust	
Kiln drying		Contaminants carried on saw dust
		through flue gas
Gasification	Ash, char and tar	Waste products may have
		excessively high heavy metal
		content

Table 25: Effects from the general stages of biomass liquefaction.

4.5.3 SUMMARY OF MATERIALS FOR A BIOMASS INTEGRATED GASIFIER GAS TURBINE SYSTEM

There are many problems in attempting to generalize a biomass conversion system. The first problem is that candidate biomass feedstock can be from many different sources. Systems exist which utilize for feedstock municipal waste, waste wood from lumber, bagasse from sugar cane, and dedicated cropping of grasses, shrubs and trees. These methods of biomass feedstock procurement fall under two main categories; waste materials and dedicated cropping. One of the major problems with using waste products (especially municipal waste) is that the contaminants that are present in the waste materials (such as wood products from a pulp and paper mill) pass these contaminants into the power generation systems' effluence. And thus, the effluence from these systems can be highly polluting. Dedicated cropping or the use of only unadulterated waste material (such as wood chips from cutting timber or bagasse from sugar cane) are usually recommended [Cook, 1996], [Wright, 1992]. Within the realm of dedicated cropping of biomass feedstock, theoretically, almost any plant species can be used. Practically, local conditions and cost dictate which plants (either natural or engineered) would prove to be the most suitable for a particular application. Finally, the process for extracting fuel from the feedstock may highly differ between systems. Through different processes the resultant fuel may be gas (e.g. methane), liquid (e.g. ethanol) or solid (e.g. charcoal). The possible fuel types are dependent on the chemical and physical make up of the feedstock. Thus, gross generalization of biomass conversion systems is not possible. But, for the LCA one must attempt to specify the assumptions and system components that are present in the system under study. This study uses the values from [Mann, 1996] for the thermal plant (this is outlined in the following section) and the woody biomass chosen was willow cropping as presented in [Ledin, 1996b] with approximations for the agricultural inputs from a number of other sources; [Perlack, 1992], [Shapouri, 1995], [Hohenstein, 1994], [Cook, 1996]. The results of the life-cycle inventory from the various sources mentioned in the paragraph above, are summarized below in Table 26. Figure 15 summarizes the process model considered in this inventory for the biomass component.

Item	Carbon Dioxide Emissions
Steel	329.1 tonnes CO ₂ /plant
Iron	3.8 tonnes CO_2 /plant
Aluminum	4.7 tonnes CO_2 /plant
Cement	210.1 tonnes CO ₂ /plant
Transport	0.87 tonnes CO ₂ /plant
Total Fixed CO2:	548.6 tonnes CO ₂ /unit
Fertilizer	34.9 kg CO ₂ /ha-yr
Fossil Fuel	0.35 kg CO ₂ /ha-yr
Transport	14.9 kg CO ₂ /ha-yr
Above-ground Carbon	-4.3 Mg CO ₂ /ha-yr
Soil Sequestered Carbon	-5.5 Mg CO ₂ /ha-yr
Electricity Generation	$0.332 \text{ kg CO}_2/\text{kWh}$
Total Variable CO ₂ :	50.15 kg CO ₂ /ha-yr (Agriculture)
	-5.5 Mg CO ₂ /ha-yr (Tree growth)
	0.332 kg CO ₂ /kWh (Power Gen.)

Table 26:	Summary of dedic	cated woody biomas	s system CO	, emissions

Figure 15: BIG/GT Liquefaction Process Block Flow Diagram

4.5.4 CALCULATING POWER OUTPUT FROM BIOMASS SYSTEMS

BIG/GT power system output can be modelled using an expression that in general has the form:

k,	=	Percentage of maximum power output	
I _{th}	÷	Installed capacity	

 $P_{tb} \equiv Power output of thermal plant = k_t I_{tb}$

The fuel consumption for such a plant is usually of the form:

fidle	≡	Fuel consumed by keeping generator idle (l/hr)
f_p	=	Fuel consumed by power generation (l/kWh)
$f_{tb,t}$	=	Total fuel consumed in timestep t $= f_{idle} + k_t I_{th} f_p$

Biomass-based power generation must also take into account the logistics and availability of fuel. In cases where power cultivation is assumed to be regionally sustainable, a suitable model must be chosen which would be used to simulate the regional biomass yield, and the required area and facilities for supplying fuel to the plant.

Calculating Harvest and Land Size Using a Biomass Growth Model

One of the additional components that was required by this system was a method for estimating the land area of the biomass power component. In Matlab, a continuous-time Markov (CTM) plant growth model based on [Sharpe, 1985] was implemented. This model was designed for a broad range of general floral types (grasses, woody shrubs, small trees, and large trees) that would grow within a resource competitive environment. It modelled plant growth through a set of growth factors and plant growth states (notably, the processes of photorespiration, nutrients metabolism through cellular processes, and photosynthesis). The model simulated competition for growth factors such as nutrients (such as fertilizer), light and water through the setting of parameters which represented the percentage of the optimal growth factors that would be available to the plant. These were assumed idealized to 100% for the results in this study. The CTM model presented by Sharpe (1985) recognized the fact that temperature effects were not taken into account in the model. For Canadian climates this was problematic because of the short growing season. The CTM model did contain a parameter for the photorespiration rate for the plant species. This respiration rate was made temperature sensitive by using a very coarse linear approximation to a photorespiration curve from [Weier, 1982].

The plant species used in this study was the willow tree species Salix [Ledin, 1996b]. The maximal photorespiration rate was assumed to occur at 35 °C, with a decreasing rate of 15% per 5 °C below the temperature at the maximal rate to a minimum of 0.5%. Also, above the maximal rate temperature, the drop-off was markedly more steep at -45 % per 5 °C increase in temperature.

The CTM model was configured to use the parameterization for small tree growth in the mid-west United States. The growth model was then normalized to output the percentage of maximum tree size that had been achieved (as opposed to the actual tree size). From [Ledin, 1997], the maximum size for the above-ground growth for a willow plantation in Sweden was estimated at 200 tonnes per hectare. The harvest period for willow trees range from 4-7 years, so a harvest period (the time between successive harvests for a stand of coppiced trees) was chosen to be 5 years. A harvest was assumed to be idealized such that the plantation would be cut to the unfettered conditions of the plantation at 10% of the maximum size. So, it was assumed that the cutting would not disrupt the plant growth cycle beyond the loss in plant mass. Figure 16 (below) shows the growth of Salix in Whitehorse, London and under optimal conditions. The graphs were generated with a starting stand of 1 tonne of biomass. The optimal curve shows growth with neglecting temperature effects on photorespiration and assuming ideal supply of nutrients, sunlight mad water. The graphs for Whitehorse and London show the effects of temperature on biomass growth (although the resources of light, nutrients and sunlight were still assumed to be ideal).

Figure 16: Simulated growth of Salix using the CTM model

From the CTM model, it was estimated that within five years a stand of willows in London, Ontario would reach to approximately 25% of their maximum size, whereas in Whitehorse, it was estimated that the trees would reach to approximately 20% of their maximum size. The power simulation assumes an existing infrastructure and this would include an established plantation. Thus, the initial conditions for the plots would be a stepped size starting from the regional 5-year size (25% and 20%, respectively) and ending the last plot to be at 10% (i.e. it had just been harvested).

4.4 SUMMARY

This chapter presented the rationale and summary values for an LCI of wind turbine, solar photovoltaics, and BIG/GT systems. Detailed calculations of the materials accounting for all of these systems has been included in Appendix A.

The next chapter uses these results to build an IRES simulation based on the REOS model. Additionally, the results for using this REOS model with goal-attainments to investigate the suitability of this type of energy system in two Canadian cities (London, Ont. and Whitehorse, Yukon) are presented.

CHAPTER 5: EXAMINING ATTAINMENT OF GOALS WITHIN A RENEWABLE ENERGY SYSTEM

5.0 BACKGROUND

This chapter demonstrates the use of goal-programming in the LCA improvement stage. Goal-attainment algorithms are used to find feasible designs for IRES networks, such that the network will meet prescribed goals. Tradeoffs between goals can then be assessed by using the goal-attainment system to map out target regions between contending goals. As an example, one may examine the relationship between carbon dioxide emissions and the production price of electricity by exploring the feasibility of a range of emissions levels over a range of reasonable pricing levels. The product of this stage is a reasonable estimation of the network deployment and performance that would be required for the specified load.

The goal of this thesis was to demonstrate the methodological framework of the LCA as applied to IRES networks.

5.1 PRELIMINARY SET-UP

The following sections detail the sources and reasoning for the simulated load

demand (5.1.1), long-term backup power source (5.1.2), climatic data (5.1.3), economic costing model (5.1.4), and finally, how sensitivity analysis (5.1.5) was conducted.

5.1.1 LOAD DEMAND

The basic load curve was taken from the Hybrid2 software package [Hybrid2, 1997]. The load curve was for a small installation in the 100 kW range. The load time-series was a single year of hourly data points. This load curve was linearly scaled by a factor of 100 and then made into a multi-year data series by assuming the load demand would be the same across multiple years. The unfactored load-curve is depicted below in Figure 17 for a period of 136 weeks. It is shown as a weekly maximum load, although the data was provided in hourly time steps.

Figure 17: Basic load curve used for both London and Whitehorse tests.

5.1.2 LONG-TERM COAL-FIRED BACKUP

Coal-based electricity generation was chosen as the long-term backup for this study. Coal is one of the most polluting, but convenient electricity generation technologies. Coal is an abundant fuelstock and it is relatively cheap. It may be safely stored and transported. Worldwide, coal-fired power is the dominant electricity generation technology. Below in Figure 18, worldwide electricity generation by fuelstock is depicted [Johansson, 1993].

Figure 18: Graph of worldwide electricity supply by fuelstock.

Table 27 (below) summarizes the ranges of emissions and costs associated with coal generation.

Power generation prices	\$0.05-0.10/kWh
CO ₂ Emissions	1-2 t CO2/kWh
Land requirements	Negligible primary land requirements, possibly secondary land
_	requirements such as railway and road infrastructure, mining
	and processing operations
Reliability	Reliability based on adequate supply of fuel have yielded
-	upwards of 99.99% reliability and availability
Typical Plant Sizes	>100 MWe
<u> </u>	

Table 27: Typical performance for coal powered electricity generation plants.

5.1.3 BRIEF OVERVIEW OF STUDY SITES

London, Ontario, Canada is a large in-land urban centre with a population of approximately 300,000 people. It is centrally located in south-western Ontario, approximately mid-way between Lake Huron and Lake Ontario. London is situated within a fairly dense settlement of small-sized cities and extensive agricultural lands. Mann(1996) estimates that in highly populated regions land availability is usually on the order of 10% within a given area. Thus, if a particular installation requires 10000 ha of land, in urbanized regions, the installation will probably be dispersed over an area of 100000 ha. Below, the climatic conditions for London are shown (Table 28).

Wind speed	Annual mean speed at ground-level 4.1 m/s
Insolation	Annual mean daily direct insolation 0.162 kW/m2
Temperature	Annual mean temperature 7.1 °C
Location	Latitude 43.5° N , Longitude 81° W

Table 28: London, Ontario climate and location

Wind speed	Annual mean speed at ground-level 3.6 m/s
Insolation	Annual mean direct insolation 0.133 kW/m2
Temperature	Annual mean temperature 0 °C
Location	Latitude 61° N, Longitude 135° W

Table 29: Whitehorse, Yukon climate and location

In contrast, Whitehorse, Yukon, Canada is a small very northern settlement of approximately 15000 people. It has a very harsh winter climate, with large swaths of tundra in the general area. The region is sparsely populated. The major industries in the far north communities are mineral and oil exploration operations. Above, the climatic conditions for Whitehorse are shown above in Table 29.

5.1.4 COST CRITERIA

This section presents the various costing models that were employed in this system.

Specifically, the costing formulations for CO_2 emissions, monetary costs, and land requirements for an IRES are discussed.

The nomenclature that is used to represent the system costs are as follows:

Symbol	Represents			
c,e,h	Unit economic cost, CO_2 emissions, and land area			
C,E,H	Total economic cost, CO_2 emissions, and land area			
L	Lifetime of facility			
Т	Length of time of simulation			
U	Total simulation unserved load demand in kWh			
X	Design variables (see below in Table 31)			

Table 30: Nomenclature for representing costs of REOS LCA model

The design variables that were used in the study were:

Technology	Symbol	Units
Solar Photovoltaic	x_{pr}	m ² of installed solar cell area
Wind Turbine	X_{nrind}	m ² of installed windswept rotor area
Thermal Plant	$x_{ibermal}$	Peak power (kW _p) of installed thermal
		capacity

Table 31: Design variables for simulation

Incorporating a Cost Vector into Goal-Attainment

In this study, four performance, or cost, functions were considered. These were the production price of energy (kWh), regional land occupation (hectares of land), air-borne carbon dioxide emissions (kg CO₂/kWh) and the load demand that remained unserved (% of total load). For goal-attainment, as presented in equation 3.1, the cost *C* and target *G* were replaced with vector values as shown below.

Facility Lifetimes

For the three facility types (photovoltaics, wind turbines, and thermal plant) the lifetimes are taken from the LCI in chapter 5. Assuming a continuous single-species crop rotation, biomass plantations for willow trees has been estimated to be approximately 20 years, which is the amount of time before the land is no longer suitable for willow agriculture [Ledin, 1996b]. After this period, the land should be left fallow for a time.

Component	Symbol	Years
Solar Photovoltaic	l _{bv}	15
Wind Turbine	I, nind	20
Thermal Plant	l _{thermal}	30
Plantation	l _{hiomass}	20

The lifetimes assumed for the various system components were:

Table 32: Assumed lifetimes of system components

Economic Costs

The costs for photovoltaics, wind turbines, and biomass agriculture includes the costs of land acquisition. This was assumed to be \$10000/ha in both Whitehorse and London. This land price was chosen because generic pricing was highly problematic to generalize. It is assumed that this price was a maximal price in both of the test sites. The unserved load demand cost was the unit price of coal-based electricity (which acts as the long-term backup energy source for this study) as estimated in [Berrie, 1993].

Economic Cost	\$US	Symbol	Units	Source
Solar Photovoltaic	\$40	C _{pr}	\$/m2 of installed solar array area	[Hybrid2,1997]
Wind Turbine	\$65	Cwind	\$/m2 of installed windswept area	[Hybrid2,1997]
Biomass Agriculture	\$20	C _{biomass}	\$/(ha-yr) of farmland	[Mann,1996]
Fuel Processing	\$0.50	C _{fuel}	\$/litre bio-fuel produced	[Mann,1996]
Thermal Plant	\$30	C _{thermal}	\$/kW _p of installed capacity	[Mann,1996]
Unserved load demand	\$0.05	C _{ne}	\$/kWh of unserved demand	[Berrie, 1993]

Table 33: Economic unit cost summary

The following equations show how the total costs for the system were calculated. For the facility costs (solar PV arrays, wind turbines, and thermal plant), the installed capacities were multiplied by the unit costs and the proportion of the simulation period of the facility lifetime.

$$C_{pv} = c_{pv} \cdot x_{pv} \cdot \frac{T}{l_{pv}}$$
(5.1.4.1*a*)
$$C_{wind} = c_{wind} \cdot x_{wind} \cdot \frac{T}{l_{wind}}$$
(5.1.4.1*b*)

$$C_{thermal} = c_{thermal} \cdot x_{thermal} \cdot \frac{T}{l_{thermal}}$$
(5.1.4.1c)

For the biomass plantation, the costs of agriculture and fuel production were calculated. The area of the plantation was derived from the CTM biomass growth model (Section 4.5.3), which provided the land estimate. The fuel production F_i per period *i* used the energy content in the harvested biomass and divided this by the energy content of heavy fuel oil given in [BUWAL, 1993].

$$C_{biomass} = c_{biomass} \cdot A_{plantation} + \sum_{i=0}^{l} c_{fuel} \cdot F_i$$
 (5.1.4.1d)

The unserved load demand cost was simply the total unserved demand over the period of simulation multiplied by the appropriate unit cost.

$$C_{ue} = c_{ue} \cdot U \qquad (5.1.4.1e)$$

The CO_2 emissions in Table 34 were taken from the results of the LCI presented in Chapter 4.

CO ₂ Cost	kg CO ₂	Symbol	Units
Solar Photovoltaic	2.22 x 10 ⁵	e _{pr}	kg CO_2/m_2 of installed solar array area
Wind Turbine	1.23 x 10 ⁵	enind	kg CO_2/m_2 of installed windswept area
Biomass Agriculture	$-5.5 \ge 10^3$	e _{biomass}	$kg CO_2/(ha-yr)$ of farmland
Above-ground	$-4.3 \ge 10^3$	e _{ag}	$kg CO_2/(ha-yr)$ of farmland
Sequestration	s.	5	
Bio-Fuel	1.1 x 10 ⁻⁴	e _{fuel}	kg CO ₂ /kW _p -hr
Combustion			
Thermal Plant	549 x 10 ³	e _{thermal}	kg CO ₂ /kW _p plant
Thermal Plant Idle	1	e _{idle}	kg CO ₂ /hour
Unserved Load	1027	lue	kg CO ₂ /kWh of coal-based power
Demand			

Table 34: CO₂ emission unit costs

It should be noted that the biomass agriculture includes life-cycle emissions from fertilizer, machinery and soil sequestration. CO_2 sequestration from biomass growth should have been calculated via the CTM model. But, the CTM model was calibrated to only calculate the above-ground growth. So, mean values of growth from the literature reviews were used for both below-ground and above-ground sequestration instead. Soil sequestration was taken from [Cook, 1996] and above-ground foliage was estimated from [Ledin, 1997] and [Ledin, 1996b].

The thermal plant requires a certain amount of fuel to keep it running whether it is producing electricity or not. The calculation for plant idling was derived from [Hybrid2, 1997] by scaling the emissions from a 100 kW_p gas turbine. This was done on the assumption that the scaling of gas turbines are linear in their scaling of power capacities, because the idling cost was not made explicit in [Mann, 1996].

The following equations show how the total CO_2 emissions were calculated. The emissions were calculated based on the total proportions of emissions over the period of the simulation.

The calculations for emissions from solar photovoltaics and wind turbines is similar to those as for economic costs (Equations 5.1.4.1a and 5.1.4.1b)

$$E_{pv} = e_{pv} \cdot x_{pv} \cdot \frac{T}{l_{pv}}$$
(5.1.4.2*a*)
$$E_{wind} = e_{wind} \cdot x_{wind} \cdot \frac{T}{l_{wind}}$$
(5.1.4.2*b*)

The thermal plant emissions stemmed from three sources; (i) plant facility construction, (ii) power generation, and (iii) power plant idling. T_{bennal} refers to the total power generated over the period of the simulation by the thermal plant. It was assumed that the idling emissions were present for all time steps.

$$E_{ihermal} = e_{ihermal} \cdot x_{ihermal} \cdot \frac{T}{l_{ihermal}} + P_{ihermal} \cdot e_{fuel} + T \cdot e_{idle}$$
(5.1.4.2c)

The biomass plantation was calculated from the above-ground growth carbon content and soil sequestration rate.

$$E_{biomass} = \left(e_{ag} + e_{biomass}\right) \cdot A_{biomass} \cdot T \qquad (5.1.4.2d)$$

The unserved load demand CO_2 emissions were calculated from the total unserved load demand multiplied by the emissions due to coal-based power.

$$E_{ue} = e_{ue} \cdot U \qquad (5.1.4.2e)$$

Land Occupation

The land unit costs were as follows:

Technology	Area (ha)	Symbol	Units
Solar Photovoltaic	1 x 10-4	hpr	ha/m ² of installed cell area
Wind Turbine	25 x 10 ⁻⁴	h _{wind}	ha/m ² of windswept rotor area

Table 35: Land unit costs summary

Solar photovoltaics is assumed to use only the cell area as the land occupation. The wind turbine was estimated to use a spacing of 5 rotor diameters. This was the minimum recommended spacing from [Johansson, 1993], which recommended a spacing of between 5 to 10 rotor diameters.

The following equations show how total land area was calculated for solar

photovoltaics and wind turbine installations.

$$H_{pv} = h_{pv} \cdot x_{pv} \qquad (5.1.4.3a)$$
$$H_{wind} = h_{wind} \cdot x_{wind} \qquad (5.1.4.3b)$$

In Mann(1996), the load factor for a thermal plant was assumed to be 0.8. So, for a 100 MW_p installation, it was assumed that the power plant would on average service a load of 80 MW. This assumption was maintained in this study for the land calculations for verification and simplicity. Thus, in order to estimate the amount of land needed for a biomass plantation, the mean annual energy harvest (b_{arg} kWh/(ha-yr)) across the five years of growth/harvest was used to meet a planned for annual power demand of 0.8 of the installed thermal capacity, $\times_{thermal}$. The total power that would need to served would be 0.8 of the installed capacity multiplied by the number of hours in a single year. The total land needed for the year would be the total power divided by b_{arg} . The total estimated land required by the plantation would then be the single year size multiplied by 5, assuming that each year the same size of plantation was harvested. This is summarized below in Equation 5.1.4.3c.

$$H_{thermal} = \frac{0.8 \cdot x_{thermal} \cdot (365 \cdot 24) \cdot 5}{b_{avg}}$$
(5.1.4.3c)

91

5.1.5 SENSITIVITY ANALYSIS

Sensitivity analysis was conducted using a finite-difference approximation of the gradients of the costs, \overline{c} , versus installed capacity, \overline{x} . In a set of results, such as shown in sections 5.3.2 and 5.4.2, the partial derivatives were calculated and then summed. It was assumed that the sensitive cost variables would then be identified by their corresponding coefficient's magnitudes.

Let $c(\overline{x})$ be the performance vector that represents the recognized costs in the system; namely price (p), CO₂ emissions (CO_2) , land (l) and unserved energy (ue). Let g be the desired goals for the goal-attainment. Then, goal-attainment can be executed by running the constrained optimization,

$$c(\overline{x}) = \begin{bmatrix} c_p(\overline{x}) \\ c_{CO_2}(\overline{x}) \\ c_l(\overline{x}) \\ c_{ue}(\overline{x}) \end{bmatrix} \qquad \overline{g} = \begin{bmatrix} g_p \\ g_{CO_2} \\ g_l \\ g_{ue} \end{bmatrix}$$
$$\min f(\overline{x}) = c(\overline{x}) - \overline{g}, f(\overline{x}) \le 0 \qquad (5.1.5.1)$$

The gradient function for $f(\overline{x})$ would thus be,

$$\nabla f(\bar{x}) = \begin{bmatrix} \frac{\partial c_p}{\partial x_{pv}} & \frac{\partial c_p}{\partial x_w} & \frac{\partial c_p}{\partial x_b} \\ \frac{\partial c_{CO_2}}{\partial x_{pv}} & \frac{\partial c_{CO_2}}{\partial x_w} & \frac{\partial c_{CO_2}}{\partial x_b} \\ \frac{\partial c_l}{\partial x_{pv}} & \frac{\partial c_l}{\partial x_w} & \frac{\partial c_l}{\partial x_b} \\ \frac{\partial c_{ue}}{\partial x_{pv}} & \frac{\partial c_{ue}}{\partial x_w} & \frac{\partial c_{ue}}{\partial x_b} \end{bmatrix}$$
(5.1)

(5.1.5.2)

Let a solution from the goal-attainment be x^* . Then, finite-differencing at some small distance ε from point x^* could be used to numerically approximate the gradient in Equation 5.1.5.2.

For a single goal-attained point, the gradient's partial derivative terms would indicate a sensitivity based on the relative size of the terms. Let this approximated gradient matrix be F as shown in Equation 5.1.5.3.

$$\nabla f|_{x} = F = \begin{vmatrix} f_{p,pv} & f_{p,w} & f_{p,b} \\ f_{co_{2},pv} & f_{co_{2},w} & f_{co_{2},b} \\ f_{l,pv} & f_{l,w} & f_{l,b} \\ f_{ue,pv} & f_{ue,w} & f_{ue,b} \end{vmatrix}$$
(5.1.5.3)

In order to ascertain the sensitive parameters within a set of n goal-attained points, F would need to be calculated for each goal-attained point. This would produce a set of n matrices. This set of F-matrices could be represented as $\{F_n, F_2, ..., F_n\}$. One means of quick sensitivity analysis within this set would be to aggregate the F-matrices, and to examine the resultant matrix terms for their relative sizes (much the same as the analysis would be done with a single F-matrice). Equation 5.1.5.4 shows the calculation of this aggregated sensitivity matrix, which was termed as S_n . The absolute value of the F-matrices shown in Equation 5.1.5.4 means to take the absolute value of the individual F-matrix terms (as opposed to the determinant of F), so that negative terms would not cancel out positive terms.

$$S_N = \sum_{k=1}^n \left| F_k \right|$$
 (5.1.5.4)

It is noted that this method of sensitivity is not very accurate, reliable or rigorous, but was pursued due to the time constraints that were present in this study.

5.2 EFFECT OF COST OF ELECTRICITY PRODUCTION ON CO_2 EMISSIONS

The purpose of this section was to investigate the relationship between life-cycle airborne CO_2 emissions levels and the unit price of electricity for IRES installations in London and Whitehorse.

5.2.1 METHOD

The bounds of target price were determined by using a baseline cost of 0.05/kWh, which was the assumed minimum cost of coal-fired power, and varying it to 0.15/kWh. Similarly, carbon dioxide emissions were varied from 0 to 1000 kg CO₂/kWh (from the inventory calculations in Appendix A, coal power produced 1027 kg CO₂/kWh). The test points that were used are pictured below (and demarcated by dots) in Figure 19.

Figure 19: Test points for testing the price of power and CO_2 emissions.

95

5.2.2 OBSERVATIONS

Below the results of the test runs for CO_2 emissions versus price are presented in Figure 21 and Figure 22 for London and Whitehorse, respectively. The graphs show the resulting maps, with dots, where there were returned feasible installations. The infeasible regions were marked by the triangles in the graphs. One may note that the infeasible regions occur for the tests that were at the combined lowest cost and lowest CO_2 emissions.

Figure 20.: Results for London using the test points in Figure 19.

The graph for London (Figure 20) shows that zero emissions is only feasible with a price of \$0.10-0.124/kWh for power. The best price to emissions tradeoff occurs at approximately an emission level of 160 kg/kWh, which would have a price between \$0.05-0.111/kWh.

Figure 21: Results for Whitehorse using the test points in Figure 19.

The graph for Whitehorse (Figure 21) shows that zero emissions is only feasible with a price of \$0.106-0.132/kWh for power. The best price to emissions tradeoff occurs at approximately an emission level of 240 kg/kWh, which would have a price between \$0.05-0.111/kWh.

The following plots (Figures Figure 22, Figure 23, Figure 24, and Figure 25) show the relationships that resulted between price, CO_2 emissions and unserved demand. In this test, the goal-attainment was used to find designs based on varying CO_2 and price levels. Land was left as unconstrained. So, given adequate land resources, these plots suggest that substantial gains in CO_2 emissions over coal-generation can be gained through the use of RES technologies without unduly raising power prices.

Figure 22: Price versus unserved demand for London for price vs.CO₂

In Figure 22, at 0% unserved demand the price of power ranges from \$0.10-0.125/kWh for London. By relaxing the need for 0% unserved demand, prices can be brought to the \$0.05/kWh level at 12-16% unserved demand.

Figure 23: Price versus unserved demand for Whitehorse for price vs.CO₂

Similarly, for Whitehorse (Figure 23), at 0% unserved demand the price of power ranges from \$0.071-\$0.132/kWh for London. By relaxing the need for 0% unserved demand, prices can be brought to the \$0.05/kWh level at 20-24% unserved demand.

Below, the relationships between unserved demand and CO_2 emissions are depicted in Figure 24 and Figure 25, for London and Whitehorse, respectively. Using the unserved demand of 12-16% for London and 20-24% for Whitehorse, these graphs indicate that CO_2 emissions would be at 160-180 kg/kWh for London (Figure 24) and 220-240 kg/kWh (Figure 25) for Whitehorse. The projected prices at these unserved demand levels would be 0.05-0.111/kWh for London and 0.05-0.11/kWh for Whitehorse.

Figure 24: CO₂ vs. unserved demand for London for price vs. CO₂ test

Figure 25: CO₂ vs. unserved demand for Whitehorse for price vs. CO₂ test

Computation

There were 900 target points used in generating the results for both London and Whitehorse. Each target point required multiple REOS simulation runs which was driven by the goal-attainment algorithm. On a Pentium 300, with 96 Mb RAM running Windows NT Server 4.0, the total running time was approximately 2 hours per city for the 900 test points. Table 36 (below) summarizes the total REOS iterations run. For any single target, the goalattainment was limited to a maximum of 80 runs for finding a feasible design (in cases where more than 80 runs were required it was assumed that the target point was infeasible).

	London	Whitehorse
Total Iterations	22872	24014
Number of Test Points	900	900
Feasible Designs Found	875	855
Infeasible Points Tested	25	45
Maximum Iterations For a Run	80	78
Minimum Iterations For a Run	16	16

Table 36: Iterations of simulation required for price vs. CO₂ tests

Summary of Designs

The following tables give an indication of the power deployment that resulted from the runs of price versus CO_2 emissions. The total install is the installed capacity of the entire IRES system (i.e. deployments of wind, solar and biomass). The technology mix is also shown. These average values were calculated from the designs that resulted from the goalattained regions presented in this section.

London	Total Install (kW _p)	%Solar	% Wind	% Biomass
Average	7,087	1%	22%	76%

Table 37: Average IRES install mix for London for price versus CO₂ test

Whiteborse	Total Install (kW _p)	% Solar	% Wind	% Biomass
Average	8,103	1%	25%	73%

Table 38: Average IRES install mix for Whitehorse for price versus CO₂ test

Overall, the designs that resulted from the goal-attainment were composed of predominantly wind turbine and biomass installed capacities.

5.2.3 SENSITIVITY ANALYSIS

The tables below show the sensitivity matrices for both Whitehorse and London (Tables 37 and 38, respectively). The dominant factors in the sensitivity analysis were the CO_2 emissions for solar photovoltaics and biomass gasification technologies. Land and unserved demand were not used in the goal-attainment algorithm and were left unconstrained (so, the results were insensitive to land and unserved demand).

	Price	CO ₂	Land	Unserved Demand
Solar	0.117	220.1	0	0
Wind	0.578	162.5	0	. 0
BIG/GT	0.566	234.1	0	0

Table 39: Sensitivity matrix (S_n) for price vs. CO_2 tests for Whitehorse

	Price	CO ₂	Land	Unserved Demand
Solar	0.153	253.9	0	0
Wind	0.551	187.4	0	0
BIG/GT	0.586	253.2	0	0

Table 40: Sensitivity matrix (S_n) for price vs. CO₂ tests for London

5.2.4 SUMMARY

The graphs of the feasible regions for both London and Whitehorse (Figure 19 and Figure 20) suggest that a zero CO_2 emissions level for the load demand is only feasible where prices for electricity are between \$0.10-0.124/kWh for London and \$0.106-0.132/kWh for Whitehorse.

But, substantial carbon gains over coal may be achieved without adding substantially to the per unit price of electricity from coal. Assuming that there is available and suitable land, designing for the emissions ranges of 100-200 kg/kWh for London, and 200-300 kg/kWh range for Whitehorse, the graphs (Figure 19 and Figure 20) show that maximally the price will be about 0.11/kWh, although it could also be as low as the assumed price of coal-power (0.05/kWh). Additionally, from Table 37 (London) and Table 38 (Whitehorse), it becomes apparent that these tradeoffs in performance stem mainly from the deployment of biomass and wind technologies. Thus, for modest levels of CO₂ emissions, this would result in an overall electricity regime of approximately (as measured by percent of load serviced by either coal or solar-based renewables):

	London	Whitehorse
Renewable	84-88%	78-80%
Long-term Backup (Coal)	12-16%	20-22%

Table 41: Electricity regimes for modest levels of CO₂ emissions

5.3 EFFECTS OF CONSTRAINED LAND ON CO₂ EMISSIONS

The purpose of this section was to investigate the relationship between limited land availability and air-borne CO_2 emissions for IRES installations in London and Whitehorse.

5.3.1 METHOD

It was known that biomass systems took up the largest area of the technologies considered in this study, so its estimation was used to determine the test limits. From Mann (1996), a 100 MW thermal plant run at an average load factor of 0.8 that used the gasification and dedicated cropping of Douglas fir trees, used an estimated area of 44000 ha. The simulated load demand used was on the order of 10 MW_p . So, the target land area for these tests was chosen to be between 1000 and 11000 ha, or approximately double the estimated maximum land area from [Mann, 1996].

Figure 26: Test points for testing limited land area and overall CO₂ emissions.

Carbon dioxide emissions were varied from 0 to 1000 kg CO_2/kWh to coincide with the range of zero emissions to coal-fired power emissions (from the inventory calculations in Appendix A, coal power produced 1027 kg CO_2/kWh). The test points that were used are pictured (demarcated via dots) above in Figure 26.

5.3.2 OBSERVATIONS

Below, the results of the test runs for CO_2 emissions versus land area are presented in Figure 27 and Figure 28, for London and Whitehorse, respectively.

Figure 27: Results for London using the test points in Figure 26.

Figure 27 shows that zero emissions is not feasible for London within the land areas tested. The best land area to CO_2 tradeoff is at an emission level of 320 kg/kWh. At this emission level, the land area ranges from 1000-5900 ha.

Figure 28: Results for Whitehorse using the test points in Figure 26.

Figure 28 shows that zero emissions is not feasible for Whitehorse within the land areas tested. The optimal land area to CO_2 tradeoff is at an emission level of 420 kg/kWh. At this emission level, the land area ranges from 1000-5200 ha.

The following plots show the relationships that resulted between land requirements, and unserved demand. In this test, the goal-attainment was used to find designs based on varying CO_2 and available land levels. Price was left as unconstrained.

From the section 5.2.2, an unserved demand of about 15% resulted in reasonable price performance for London. Using the results below shown in Figure 29, the projected

land requirement at this unserved demand level would be 4900-7900 ha for London. In terms of CO_2 emissions, using the mid-point land resource of 6400 ha, London would emit 120-230 kg/kWh (Figure 27).

Figure 29: Land area vs. unserved demand for London for land vs. CO2 test.

Similarly, from section 5.2.2, for Whitehorse an unserved demand of approximately 20% would result in a land requirement of 5000-7400 ha (Figure 30). In terms of CO_2 emissions, using the mid-point land resource of 6200 ha, Whitehorse would have CO_2 emissions of 170-330 kg/kWh (Figure 28).

Figure 30: Land area vs. unserved demand for Whitehorse for land vs. CO₂ test.

Computation

There were 900 target points used in generating the results for both London and Whitehorse. Each target point required multiple REOS simulation runs which was driven by the goal-attainment algorithm. On a Pentium 300, with 96 Mb RAM running Windows NT Server 4.0, the total running time was approximately 2 hours per city for the 900 test points. Table 36 summarizes the total REOS iterations run. For any single target, the goalattainment was limited a maximum of 50 runs for finding a feasible design (in cases where more than 50 runs were required it was assumed that the target point was infeasible).

	London	Whitehorse
Total Iterations	17520	16504
Number of Test Points	900	900
Feasible Designs Found	727	687
Infeasible Points Tested	173	213
Maximum Iterations For a	50	50
Run		
Minimum Iterations For a	16	16
Run		

Table 42: Iterations of simulation required for land vs CO₂ tests.

Summary of Designs

The following tables give an indication of the power deployment that resulted from the runs of price versus CO_2 emissions. The total install is the installed capacity of the entire IRES system (i.e. deployments of wind, solar and biomass). The technology mix is also shown. These average values were calculated from the designs that resulted from the goalattained regions presented in this section.

London	Total Install (kW _p)	% Solar	% Wind	% Biomass
Average	6,723	2%	18%	80%

Table 43: Average IRES install mix for London for land vs. CO2 test

Whitehorse	Total Install (kW _p)	% Solar	% Wind	% Biomass
Average	7,068	2%	18%	80%

Table 44: Average IRES install mix for Whitehorse for land vs. CO₂ test

Overall, the designs that resulted from the goal-attainment were composed of predominantly wind turbine and biomass installed capacities.

5.3.3 SENSITIVITY ANALYSIS

The tables below show the sensitivity matrices for both London and Whitehorse (Table 45 and Table 46, respectively). The dominant factor in the sensitivity analysis was the land requirement calculation for the biomass gasification system. Price and unserved demand were not used in the goal-attainment algorithm and were left unconstrained.

	Price	CO2	Land	Unserved
				Demand
Solar	0	0.0343	0.0000426	0
Wind	0	0.0251	0.000424	0
BIG/GT	0	0.0343	0.196	0

Table 45: Sensitivity matrix (S_n) for land vs. CO_2 tests for London

	Price	CO2	Land	Unserved
				Demand
Solar	0	0.0296	0.0000387	0
Wind	0	0.0216	0.000388	0
BIG/GT	0	0.0682	0.191	0

Table 46: Sensitivity matrix (S_n) for land vs. CO_2 tests for Whitehorse

5.3.4 SUMMARY

To reiterate the results from section 5.3.2, the following table summarizes the estimated land requirements and carbon dioxide emissions for London and Whitehorse using an unserved demand of 15% and 20%, respectively. From the design summary in

Table 43 and Table 44, these tests suggest that the dominant technologies for an IRES would be wind and biomass systems.

	Land	CO ₂ Emissions
London	6400 ha	120-230 kg/kWh
Whitehorse	6200 ha	170-330 kg/kWh

Table 47: Land and CO₂ emissions for London and Whitehorse

The reason that the CO_2 emissions are so much less in London than in Whitehorse was due to the fact that London had better wind and biomass resources, and thus its IRES installation was able to achieve a much lower unserved demand, thereby mitigating the use of coal combustion to produce power.

The results of this section assumed that only single-use land utilization was allowed. Dual-use land such as wind farms on agricultural land, was not investigated for its effects on these results. In addition, as was mentioned in previous sections, the overall land use is the total land parcels needed for the technology. Thus, the land for energy cultivation would be dispersed as smaller parcels within a larger contiguous area as suggested in Mann(1996). So, for a dense urban region like London a much larger prospective area would be needed than in a remote locale such as Whitehorse.

5.4 SUMMARY OF RESULTS

From the two tests of investigating CO₂ emissions with respect to price (Section 5.2) and land availability (Section 5.3), biomass and wind technologies were the dominant technologies. It should be noted that solar photovoltaic installation became significant in highly land-limited (below 4000 ha (Section 5.3.1)) scenarios in the land versus CO₂ tests, but their role was not further investigated because the results from section 5.2 suggested that an unserved demand level of 20% was the most advantageous from a tradeoff between price and CO₂ emissions (which was outside the land-limited scenario). The tests of section 5.2 demonstrated that the cost benefits of using coal, could be augmented with the environmentally friendly performance of renewables. In this overall simulated system, introduction of renewables would be able to significantly reduce emissions, while still maintaining reasonable pricing for both Whitehorse and London. Section 5.3 suggested that zero-emission systems were not feasible within the tested limit of 10000 ha of land for either London or Whitehorse.

These results were based on the assumptions of a service price of 0.05/kWh, an emissions rate of 1027 kg/kWh for coal-based power and an average hourly load demand of 74 kWh (simulated 10 MW_p load). A feasible planning target for London would be a carbon dioxide emissions rate within 150-250 kg CO₂/kWh, which would require around 6000-7000 ha of land. This would be accomplished with prices ranging from 0.05-0.11/kWh. The resultant overall electricity regime for the prescribed load would be:

15% Long-term backup 85% Renewables Similarly, for Whitehorse a feasible planning target would be a carbon dioxide emissions rate of 200-300 kg/kWh with price ranges from \$0.05 - \$0.11/ kWh. This would result in a land requirement of 6000-7000 ha. An overall electricity regime for the prescribed load would be:

20% Long-term backup 80% Renewables

As a final note, these results are based on an assumed load demand which was taken from a source which was really meant for modelling smaller loads (100 kW range). This translates to a number of possible problems in these results. The first would be that the load may not be indicative of a municipal load for either London or Whitehorse. In addition, the load may not correspond to the geographic load demand that would characterize London and Whitehorse (e.g. heating in winter, air-conditioning in summer). Although, the load curve from Hybrid2 (1997) was from a North American site. These results would suggest that IRES technologies are suitable for both London and Whitehorse, but clearly, the omission of formulating a proper load demand (which was beyond the scope of this study) could have highly unexpected effects on these results. The objective of the study was to demonstrate the methodology, and hence the shortcomings of the data were considered acceptable.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.0 CONCLUSIONS

Energy policy deals with many issues that pertain to the economic, environmental, and social well-being of communities and regions. Many solutions for specific problems; such as long-term sustainable energy programs, affordable and abundant energy supplies, and energy security, deal with specific areas of the problem to the exclusion of other issues. For the policy-maker, this luxury of exclusion is becoming more difficult as the shortcomings in existing man-made energy systems becomes more apparent. Issues such as urban air-pollution, global warming, regional scarcities in fuelstocks, nuclear non-proliferation and poverty alleviation, are a few of the problems that national and international policy-making bodies are grappling with in regards to setting energy policies. The scope of engineering design has changed accordingly, and thus, for power systems, many particulars, in addition to economic or technological issues, must be investigated before undertaking long-term projects.

One of the growing movements in electric power systems is the research, development and deployment of solar renewable technologies. Specifically, solar

114

photovoltaics, wind turbines, and dedicated biomass cultivation for thermal electricity generation, have been proposed as candidate technologies for meeting the world's future needs for electricity. These new technologies add to the complexity of policy work because they are highly prone to uncertainties in their power output due to their dual reliance on both facility siting and local climatic conditions. One direct method for dealing with the uncertainty is to use time-series based climatological simulations in order to gauge how well a particular installation will perform. Such models have been available for many years but the computing power to run such models was not readily available. With the advent of highperformance mathematical software systems, the ability to use the simulation in conjunction with other analytic tools has become a reality. The general conclusions of the study fall within two categories; I. Issues in the proposed LCA-based methodology, II. Results from the LCA in studying power systems.

I. Issues in the LCA Methodology

The LCA is a time-consuming and highly detailed process. One of the most difficult aspects of administering the LCA is to verify results. Strict accounting of materials in production processes is straight-forward but onerous. But, for certain inputs and emissions, time- and site-based models had to be used in order to measure inventory quantities. Verification of these models was a major problem. In this study two main areas of verification were problematic. The first area was verification of models of natural physical processes. The second area was verification of embodied emissions. Verification of the models for natural physical processes is made difficult by time constraints, data availability, and a lack of expert knowledge of the process. Natural physical processes work on timescales that may span generations of human society. These same processes usually require a large amount of site specific data in order to understand the process in the context of a particular study. Additionally, many natural processes use models that span traditional disciplinary boundaries such as biology, chemistry, physics, and agriculture, so, for reliable verification, an expert appraisal is a necessity unless there exists expert software systems to calibrate the model used in the inventory.

Embodied emissions present a special problem in verification. Using carbon dioxide emissions in a wind turbine rotor as an example, the fiberglass in the rotors proved to be a major contributor to its life-cycle carbon dioxide emissions. Fiberglass manufacture requires large energy inputs. The electricity may be assumed to come off of a shared grid in some industrial centre in the United States. In upper state New York, much of their electrical power comes from Niagara Falls, whereas in the southern United States (such as Texas) fossil fuels are more commonly used for electricity generation. Most of the carbon dioxide from fiberglass is embodied in the electricity input to the overall manufacturing process. Clearly, in this case the rotor's effects on emissions depends on where it was manufactured. This problem becomes even more complicated as the multiple material input streams provide the same raw or intermediate material (such as partially recycled goods like paper or metal parts) because the proportions may not be uniform across all the makes of the same general product. In this study, embodied energy was calculated using only coal-based electricity generation. This approach provided a simple and transparent means to understand the sources of emissions. In a practical application of the LCA, the embodied emissions would be easier to trace because particular products could be evaluated with more detail in their manufacturing processes. The lesson to this situation is that the embodied emissions are significant and cannot be ignored, but care must be taken that unseen bias from these sources do not overly change the results and goals of the study.

II. Results from the LCA in Studying Power Systems

The goal of this thesis was to demonstrate the efficacy of using goal-attainment algorithms in order to provide indicative results which would be employed in the trade-off analysis for energy policy projects. Special consideration was given to renewable energy system (RES) technologies because of their environmental benefits over fossil-fuel based systems.

The LCA is well-suited to handle the accounting and organization needed to conduct a power study, by its open-ended nature and logical progression in stages. But, problems arise in the implementation of systems which need to assess the aggregate effects of multiple technologies on the same network. Problems such as the cross-effects and network interrelationships between power output, planned dispatch between multiple sources to multiple loads and material emissions from network facilities must be formally addressed. But, unlike ad hoc and traditional methods, for IRES networks the LCA does help to make the overall study more understandable, holistic, focused and easier to audit than traditional methods such as least-cost planning.

117

Studies examining embodied effects of products have been conducted for a long time. The LCA provides a malleable and a formalized framework from which industry-toenvironment interactions can be classified and examined. Power utility studies employ very large and intricate models. Adding environmental criteria without proper accounting and formalizations courts misinformation within the study. The LCA is information intensive, highly prone to unnoticed shortcuts, implicit assumptions and biases, and difficult to use as an analytic instrument if its open-endedness is abused. But, by incorporating a formal study approach, standard models, well-documented parameterization and inventory results, and accurate process models, very large and transparent software systems can be implemented to analyse these complex systems. Thus, one advantage to using the LCA for studying power utilities, over methods such as least-cost planning, stems from the advent of powerful and accessible computing facilities. The LCA is suited for high-level but in-depth studies that require a prescribed accuracy and clarity, which the interested party is willing to pay for in time, resources and data. Finally, low-level studies that are within more controlled and formal areas of research may be better off using other methodologies because of the information and formalization requirements demanded by an LCA.

Perhaps the most important advantage that the LCA has over other methodologies is that legislation is being brought forth for industries to disclose their emissions. Much of this work is based on the LCA, and thus the LCA would be the best candidate methodology to use in studying problems of industrial environmental effects for this reason alone.

118

6.1 FUTURE RESEARCH

The LCA model for IRES networks contained many potential areas of refinement. The three major functional areas were the inventory, power simulation and goal-attainment system. Below, proposed refinements to the three areas are presented.

Life-Cycle Inventory (LCI)

- (i) Include effects of maintenance, replacement and disposal of generating units on LCI
- (ii) Land estimates should reflect appropriated and regional land utilization possibly like the ecological footprint concept [Wackernagel, 1993]
- (iii) Introduce dissipation and dispersion models for emissions and possible area of effect of emissions
- (iv) Link the inventory results to standard LCA databases such as BUWAL or DEAM for future studies [BUWAL, 1998], [DEAM, 1997]

Power Simulation

- (v) Standard methods which should be included into REOS model:
 - Statistically based load demand forecast models
 - Measures of power system reliability and service using LOLP and LOEP
 - Dispatch models for multiple load demand sinks/power generation sources

- (vi) More elaborate economic models could be used to account for:
 - Intra-regional energy supply and demand
 - Biomass importing and exporting
- (vii) Disaster and risk management concepts could be used to explore robustness and overall risk associated with system investment

Goal Attainment

(viii) Use alternate methods for goal-attainment such as genetic algorithms.

APPENDICES

APPENDIX A.1: LCI TEMPLATE FOR WIND TURBINES

Component	Materials	Weight	
Nacelle	Steel	High	
	Aluminum	Low	
	Copper	Moderate	
Tower	Concrete	Moderate	
	Steel	High	
Rotors	Fiberglass	Low	
	Plastics	Low	
Foundation	Concrete	High	

A.1.1 Summary of Materials in Wind Turbine Fabrication

A typical windmill from the early 1980's would have had a composition of materials as follows:

	400 short tons steel	
	60 tons fiberglass and plastics	
	10 tons of copper	
	>1 ton of aluminum	
	Concrete foundation estimated at 0.2 of the sum	
	weight of the rest of the structure	
λ	1aterials estimated for a 4 MW installation with a load factor of ().2
a	nd a lifetime of 10-20 years, [Inhaber, 1981]	

A.1.2 Example Commercial Wind Turbine – Jacobs 41/500 Inventory

Fabrication Stage

Plant Specifications

Description of Technology:	Wind Turbine		
Fuel Type:	Wind	Unit Size:	500 kW

Manufacturer's Specifications

Manufacturer:	Jacobs Energie GmbH	Model No.: Jacobs 41/500
Technology Specific Details:	Туре:	VAWT
	Diameter:	41 m
	Number of Blades:	3
	Power Control	Stall
	Rotor Area	1320 qm
	Rotor Speed at low windspeed	18 rpm
	Rotor Speed at high windspeed	27 rpm
	Location of rotor	Upwind
	Tilt Angle	4 degrees
	Direction of Rotation	Clockwise
	Cut-in windspeed	3.2 m/s
	Cut-out windspeed	20 m/s

Survival windspeed	58 m/s
Hub Height	50 m

[Jacobs, 1998]

Material Acquisition Inventory

Component Name	Materials	Weight
Rotor Blade	Fiberglass	1950 kg/blade
Nacelle	Steel	High
	Aluminum	Moderate
	Copper	Low
	Total Nacelle	28000 kg
Tower	Steel	52000 kg

Specific component weights from [Jacobs, 1998]

Construction Stage

Siting rules assumes 5 diameters (D) to 10D spacing between adjacent wind mills [Johansson, 1993]. This report will assume a spacing of 5D.

General Land Requirements

O Unitital Banda Fito ganz United	
Per Unit Install Land Area	$(2.5 \times 2 \times 41 \text{m})^2 \times 3.1415 = 13 \text{ ha}$
Required:	
Suitability Criteria for Siting	- Cut-in windspeed at 3.2 m/s @ 50 m above ground level
Facility:	- Maximum power at 16 m/s @ 50 m above ground level
Required Infrastructure:	- Access roads for heavy equipment for maintenance
_	- Power transmission cable to interconnect and distribute power

Regional effects on land-use changes are beyond the scope of this study.

Facility Inventory

Construction Stage	Facility Part	Material	Weight	Toxicity	Price
Assembly and erection of tower	Foundation	Concrete	0.2 of structure	Low	Low
Inhaber 1981]					

Use Stage

Time Issues

Time to begin generating power	Less than one year from construction start
Time to complete construction	Less than one year from construction start
Useful life of plant	20 yrs.

Reliability figures were not available at the time of this report.

Power Output Simulation Requirements

Dispatch Characteristics	Immediate dispatch with offloading
Power Type	AC
Maximum Power	Rated to 510 kW

APPENDIX A.2:LCI TEMPLATE FOR SOLAR PHOTOVALTAIC CELLS

A.2.1 Summary of Materials in Solar Photovoltaic Array Fabrication and Construction

Relative weight, toxicity and prices of input materials to fabricating a PV cell

Material	Toxic	Weight	Price
Quartzite Ore	Low	Very high	High
Hydrogen Chloride	Low	Moderate	Moderate
Energy (Assuming Fossil-fuel based)	Moderate	Not applicable	High
Dopants	High	Very low	High
Cleaning Agents (various acids)	Moderate	Low	Low
Steel and aluminum	Low	Moderate	Low

Fabrication Emissions Summary

Harmful Emissions	Stage
Silica Dust	Sawing wafers
Hydrogen Chloride	Quartzite Ore Refinement
££	Cleaning Agents
	Wafer surface etching
NOx, Sox	Substrate formation

Construction Materials Summary

Material	Toxic	Weight	Unit Price
Concrete	Low	High	Low
Steel Frames	Low	Moderate	Moderate

Summary of material processing

Material	Mode	Processing	Costs	Time to dispose
Concrete	Landfilled	Low	Low	Low
Steel	Recycled	Moderate	Moderate	Low
Glass	Recycled	Low	Low	Low
Semi-conductors	Leaching	High	High	Moderate
	Storage	Low	Moderate	Moderate
	Dilution	Low	Low	Moderate

A typical solar array from the early 1980's would have had a composition of materials as

follows:

Material	Weight (tonnes)
Steel	18.1
Flat Glass	2.9
Cement	5.9
Aluminum	2.9
Semi-Conductor Material	2.9

Estimated per MWyr at a load factor of 0.25

[Inhaber, 1981]

A.2.2 Example Commercial Solar Photovoltaic Array Inventory -- ASE-300-DG/50

Fabrication Stage

Plant Specifications

Description of Technology:	Solar Photovoltaic Flat-plate Silicon Cells		
Fuel Type:	Solar Irradiation	Unit Size:	300 W

Manufacturer's Specifications

Manufacturer:	ASE	Model No.: ASE-300-DG/50
Technology Specific Details:		
	Cells in array	216
	Cell dimensions	100 mm x 100 mm
	Module Dimensions	1.89 m x 1.282 m
	Front Glass Thickness	3.2 mm
	Back Glass Thickness	3.2 mm

[ASE, 1998]

Material Acquisition Inventory

Component Name	Materials	Toxicity	Price	Weight
Cells	Quartzite Ore	Low	Low	High
	Hydrogen Chloride	Low	Moderate	Moderate
	Dopants	High	Moderate	High
	Cleaning Agents	Moderate	Low	Low
	Metal and aluminum	Low	Low	Low

Construction Stage

General Land Requirements

Per Unit Install Land Area Required:	Assumed to be approximately 6 m^2 /module 2.4 m^2 /module is actual solar gathering area	
Required Infrastructure:	 No dual use of land for habitat Transmission to central power conditioning station and inverter(s) for network of solar modules 	

Facility Inventory

Facility Part	Material	Weight
Single Array	Aluminum frame, glass plates, semi-conductive cells	48.2 kg
Concrete		9.6 kg
	Facility Part Single Array Concrete	Facility Part Material Single Array Aluminum frame, glass plates, semi-conductive cells Concrete

[ASE, 1998], [Inhaber, 1981]

Use Stage

Time Issues

Time to begin generating power	Less than one year after construction
Time to complete construction	Less than one year after construction
Useful life of plant	Assume long life of 15 yrs

Power Output Simulation Requirements

Dispatch Characteristics	Immediate
Power Type	AC

APPENDIX A.3:LCI TEMPLATE FOR BIOMASS INTEGRATED GASIFICATION/GAS TRUBINE

A.3.1 Example of an Estimated BIG/GT Inventory

Manufacture Stage

Plant Specifications

Description of Technology:	Biomass Integrated Gasifier Gas Turbine		
Fuel Type:	Gasification of Willow wood	Unit Size:	100 MW _e

Manufacturer's Specifications

Manufacturer:	General Electric	Model N	o.: GE MS-6101FA
Technology Specific Details:			
	Туре	Cor	nbined Gas/Steam Turbine
	Turbine Pressure Ratio	1:14	.9
	Turbine Firing Temp.	128	8 C
	Steam Cycle Conditions	10 1	Mpa/538 degrees C/538 degrees C

[Mann, 1996]

Construction Stage

Component-by-component material breakdowns for the thermal plant were unavailable. The

materials for the plant have been aggregated.

Facility Inventory

Material	Weight	Toxicity	Price
Concrete	230 tonnes	Low	Low
Steel	83 tonnes	Low	Low
Aluminum	650 kg	Low	Moderate
Iron	970 kg	Low	Low

Adapted from [Mann, 1997, p. 35]

Emissions Summary

Material	Process	Emission	Discharge Type
Particulate	Construction	Dust	Air-borne
Ash and Char	Power Generation	Residue	Solid

Use Stage

Time Issues

Time to begin generating power	4-6 years after plantation + 1 year after construction begins
Time to complete construction	2 years
Useful life of plant	20 years

Power Output Simulation Requirements

Dispatch Characteristics	On-demand with a constant minimal running fuel consumption
Power Type	AC

Operation

Activity	Material	Toxicity	Weight	Price
Fertilizer Use	Nitrogen	Low	60 kg/ha yr	Low
	Phosphates	Low	15 kg/ha yr	Low
	Potassium	Low	15 kg/ha yr	Low
Harvest	Fossil Fuel	Low	0.5 GJ/Mg of harvested crop	Low-Moderate
	Wood Yield	Low	10-15 Mg/ha yr	Low

Sources for fertilizer inventory [Hohenstein, 1994], for harvest fossil fuel use [Shapouri, 1995], harvest fossil fuel use [Perlack et al., 1992]

Emissions Summary

Material	Process	Discharge Type	Effect	Rate
Carbon	Soil Sequestration	Solid	Traps carbon into soil	1-2 Mg C/ha-yr
ICool 100/	(1			

[Cook, 1996]

APPENDIX A.4: EMBODIED ENERGY AND CARBON DIOXIDE FOR RAW MATERIALS

The following tables are by no means complete life-cycle analyses of the processes and products in question. This study is focused on global warming potentials and the goal is to look at the life-cycle carbon dioxide emissions present in power production. To these ends, these tables summarize some of the factors that contribute to air pollution from various products and are meant only as an instructive example of the type of information requirements that the LCA warrants.

Steel

Emissions assume the use of scrubbers (99% efficiency) to control the contents of the exhaust from the smelter. Items in *italics* are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Energy	24-59 GJ/tonne	BRE, 1994
Particulates	0.75 kg/tonne	USEPA, 1975
Carbon Monoxide	1.5 kg/tonne	USEPA, 1975

Copper

Emissions assume the use of scrubbers (99% efficiency) to control the contents of the exhaust from the smelter, and the use of other techniques (90% efficiency) to reduce sulfur dioxide emissions. Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Energy	24-59 GJ/tonne	BRE, 1994
Particulates	0.675 kg/tonne	USEPA, 1975
Carbon Monoxide	Known emission but rate is	USEPA, 1975
	unknown	
Sulfur Dioxide	62.5 kg/tonne	USEPA, 1975

8

Aluminum

Assumes zero percent recycled material was used in the processing from ore. In addition, the air-borne emissions includes the emissions from the energy inputs. Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Thermal energy	58.8 GJ/tonne	BUWAL, 1993
Electricity	16.8 GJ/tonne	BUWAL, 1993
Particulates	37.4 kg/tonne	BUWAL, 1993
Carbon Monoxide	17.7 kg/tonne	BUWAL, 1993
Sulfur Dioxide	75.8 kg/tonne	BUWAL, 1993

Concrete (Portland)

Emissions assume the use of scrubbers (50% efficiency for SO_2 , 98% efficiency for Particulates). According to [USEPA, 1975], which was the most recent documented data found, 3200 kg of raw material was needed to produce 1 tonne of cement. It was stated that 35% of the raw material volume was emitted in the form of water vapour and carbon dioxide. Items in italics are considered contributors to overall carbon dioxide emissions. The water vapour/carbon dioxide emission has been assumed to have a composition of 35% CO_2 and 65% water.

Item	Rate	Source
Energy	4.3-7.8 GJ/tonne	BRE, 1994
Particulates	2.4 kg/tonne	USEPA, 1975
Carbon Dioxide and water vapour	1120 kg/tonne	USEPA, 1975
Nitrogen Oxide	75.8 kg/tonne	USEPA, 1975
Sulfur Dioxide	2.6 kg/tonne	USEPA, 1975

Glass

The following values assume a minimal recycled material content in the product (<60% of raw materials is discarded glass). These values include the value of emissions from the energy input. Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Energy	6.5 GJ/tonne	BUWAL, 1993
Particulates	8 kg/tonne	BUWAL, 1993
Sulfur Dioxide	3.1 kg/tonne	BUWAL, 1993

Fiberglass

The specific life-cycle materials and energy required for fiberglass production were not available at the time of the writing of this report. But, the chemical constituents of construction grade fiberglass were available. The following table is an estimation of the material requirements for fiberglass of the S-class type. Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Aluminum	~250 kg/tonne	Bevier, 1993
Glass	~650 kg/tonne	Bevier, 1993
Magnesium Monoxide	~100 kg/tonne	Bevier, 1993

Hard Coal Power Plants

Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Carbon Dioxide	1.03 kg/kWh	BUWAL, 1993
Particulates	0.47 g/kWh	BUWAL, 1993
Sulfur Dioxide	5.9 g/kWh	BUWAL, 1993
Carbon Monoxide	1.09 g/kWh	BUWAL, 1993
NOx	3.16 g/kWh	BUWAL, 1993

Transportation Estimation

CO₂ estimates were made from the following assumptions as was done by [Mann, 1996]:

- 1. Diesel fuel is 85.8% carbon by weight, and that this is converted to emitted CO_2 during combustion with a density of 3173 g/gallon.
- 2. Both trains and trucks use diesel fuel, with an average truck mileage is 5.5 gallons/mile for a fully loaded 18-tonne capacity truck
- 3. Average energy content of diesel is 140000 Btu/gallon [USEPA, 1975] which is consumed at an overall efficiency of 0.38 [BUWAL, 1993].

Items in italics are considered contributors to overall carbon dioxide emissions.

Item	Rate	Source
Truck	2349 Btu/ton-mile	Mann, 1997
Train	589 Btu/ton-mile	Mann, 1997

Item	Rate
Hard Coal (Electricity)	$0.343 \text{ kg CO}_2/\text{kWh} = 95.54 \text{ kg CO}_2/\text{GJ}$
Truck Transport	0.0442 kg CO ₂ /ton-mile
Train Transport	0.0111 kg CO ₂ /ton-mile
Steel	2293 – 5637 kg CO ₂ /tonne
Copper	2293 – 5637 kg CO ₂ /tonne
Aluminum	7232 kg CO ₂ /tonne
Glass	621 kg CO ₂ /tonne
Fiberglass	2211.65 kg CO ₂ /tonne
Truck	0.04418 kg CO ₂ /ton-mile
Train	0.01108 kg CO ₂ /ton-mile
Nitrogen Fertilizer	576 kg CO ₂ /tonne
Phosphate Fertilizer	20 kg CO ₂ /tonne
Potassium Fertilizer	2 kg CO ₂ /tonne
Cement (Portland)	746 – 1865 kg CO ₂ /tonne

Summary of Embodied Carbon Dioxide Emissions

EMBODIED ENERGY AND CO₂ CALCULATIONS FOR WIND TURBINES, SOLAR PV AND BIOMASS **APPENDIX A.5:**

Inventory Calculations for Carbon Dioxide Emissions for IRES Technologies

Carbon Dioxide from Coal-based Electricity Assume electrical power input and thermal power input are derived from hard coal. [BUWAL, 1993]

	CO2 emissions				
Hard Coal (Electricity)	0.343	kg/kWh	11	95.54	kg/GJ

Transportation Calculations from [Mann, 1996]

Train	Truck	Units	
1400000	1400000	Btu/Gallon	Heat Value in Diesel
0.38	0.38	Eff.	Engine Efficiency
532000	532000	Btu Energy/Gallon	Diesel energy transfer
0.001107143	0.004415	Gallons/ton-mile	Fuel consumption (mass)
0.003512964	0.014008795	kg fuel/ton-mile	Fuel consumption (weight)
0.003021149	0.012047564	kg of C/ton-mile	Fuel consumption (carbon by weight)
0.011078554	0.044178416	kg of CO2/ton-mile	Carbon emissions assuming 100% C to CO2 conversion
	3.667	C to CO2 Weight Ratio	
	86.00%	% Carbon in Diesel	
	3.173	kg/gal	Mass of Diesel

Embodied Carbon Dio	xide Emissions of Raw and Int	termediate Materials				
				Derived CO2 E	Emissions	
Material	Component	Rate	Гом	High	Avg.	
Steel	Energy	24-59 GJ/tonne	2293	5637	3965	kg/tonne
Copper	Energy	24-59 GJ/tonne	2293	5637	3965	kg/tonne
Aluminum	Electricity	58.8 GJ/tonne	5627			kg/tonne
	Thermal	16.8 GJ/tonne	1605			kg/tonne
Cement	Energy	4.3-7.8 GJ/tonne	410	745	577.5	kg/tonne
	CO2 and H20	1120 kg/tonne	336	1120		kg/tonne
Glass	Energy	6.5 GJ/tonne	621			kg/tonne
Fiberglass	Aluminum	250 kg/tonne	1808			kg/tonne
	Glass	650 kg/tonne	403.65			kg/tonne
Truck	Fuel	2349 Btu/ton-mile	0.04418			kg/ton-mile
Train	Fuel	589 Btu/ton-mile	0.01108			kg/ton-mile
Nitrogen Fertilizer	Energy	0.022 kWh/kg	0.007546			kg/kg N
	Ammonium Production		0.5682			kg/kg N
Phosphate Fertilizer	Overall		0.02			kg/kg P
Potassium Fertilizer	Overall		0.002			kg/kg K2O

S
ial
P
at
Σ
e
<u>ia</u>
a
E
ē
2
פ
ar
≥
Ba
Ę
5
ğ
:2
<u>is</u>
Ε
Щ
쀵
X
읤
믭
ō
2
ပိ
σ
<u>e</u>
8
2
Mile Turbine 50 kW Rate: 500 kW kg with Eabrication State 500 kW rot of 200 kg month Component Name Materials Weight Cost Domponent Name Materials 100530.353 Use Inhaber's estimation for acceller Domponent Name Materials 100530.353 Use Inhaber's estimation for acceller Domponent Name Naminum 1955 1140.24 Pereprission 533 Vacelle Numinum 1946 7715.89 400:10:01 Vever Steel 52000 kg 52000 206180 Coster Steel 52000 kg 52000 30075.2175 Construct Steel 0.00:10:01 100:01:01 Construction State 100:01:01 100:01:01 Construction State 0.00 0.00 17170 1568.4795 Construction State 0.00 0.01 17170 1568.4795 Construction State 0.00 0.02 17170 1568.4795 Construction 0.02 0.02 17170 1568.4795 Construction 0.02 0.02 17170 1568.4795 Fransportation 100 17170 15959.92708
--
Init Ste: Entrication State 50 kW Entrication State kg Kg/unit Entrication State Notes Entrication State 1950 kg/blade 5550 102530335 Use Imbate's estimation for 1955 Rotorlla Steel 52000 kg 26859 100:530335 Use Imbate's estimation for 1915 Nacelle Steel 52000 kg 52000 206180 400:10:01 Vorent Steel 52000 kg 52000 206180 400:10:01 Tower Steel 52000 kg 52000 206180 400:10:01 Comper Steel 52000 kg 52000 206180 400:10:01 Tower Steel 52000 kg 52000 206180 400:10:01 Comper Steel 52000 kg 52000 206180 400:10:01 Construction State Totals: 88850 330775.2175 400:10:01 Construction State Trainsportation 60 22757175 400:10:01 Construction State Train 60 0.171770 15563.275718 Construction 100 171770 15563.275718 Could find 60 0.10 171770 15563.275718 Could fistone mi.)
Batrication Stage kg/unit control Component Name Materials Weight Total Weight Co.2 Notes Retor Blade Steel 1950 kg/blade 26550 12338 1525 Notes Retor Blade Steel 1950 kg/blade 26550 12338 1525 Notes Retor Blade Steel 1956 1410.24 the proportions of material Vower Steel 52000 kg 52000 206180 400:10:01 Tower Steel 52000 kg 52000 206180 400:10:01 Comstruct Steel 52000 kg 52000 206180 400:10:01 Construction Stage Auminum 1946 1710.24 the proportions of material Construction Stage Foundation Construction Stage 36756.2175 400:10:01
Component Name Materials Veight Total Weight CO2 Notes Rotor Blade Fiberglass 1950 kg/blade 5850 126333.1525 Use Inhaber's estimation for Nacelle Rotor Blade Steel 1950 kg/blade 5850 120530.335 Use Inhaber's estimation for 1956 for 7715.393 Nacelle Steel 52000 kg 52000 kg 52000 kg 500 kg Tower Steel 52000 kg 52000 kg 52000 kg 500 kg Tower Steel 52000 kg 52000 kg 52000 kg 500 kg Construct Iteration Totals: 85850 330775.2175 400:10:01
Rotor Blade Fiberglass 1950 kg/blade 5850 12338.1525 Use Inhaber's estimation for 25859 Use Inhaber's estimation for 1915 Use Inhaber's estimation for 1915 Use Inhaber's estimation for 1916 Use Inhaber's estimation for 1000 <
Nacelle Steel 195 102530.335 Use Inhaber's estimation for 195 Unaber's estimation for 1915 Aluminum Copper 1946 7715.39 400:10:01 Comper Steel 52000 kg 52000 206180 400:10:01 Tower Steel 52000 kg 52000 kg 52000 206180 400:10:01 Tower Italian Italian B5850 330775.2175 400:10:01 Construction Stage Eculity Part Material 0.2 17170 15684.795 Foundation Italian Veight Total Veight CO2 17170 15684.795 Foundation Italian 0.2 17170 15684.795 15699.795 Construction Italian 50 0.2 17170 15684.795 15699.795 Fransportation Italian 50 17770 15684.795 15699.735 Italian 50 0.2 17170 15684.795 17757.57718 170 Italian 50
Aluminum 195 1410.24 the proportions of material Copper 52000 kg 52000 1410.24 the proportions of material Tower Steel 52000 kg 52000 206180 400:10:01 Tower Totals: 85850 330775.2175 400:10:01 Construction Stage Totals: 85850 330775.2175 400:10:01 Construction Stage Totals: 85850 330775.2175 400:10:01 Construction Stage Totals: 85850 330775.2175 400:10:01
Copper 1946 7715.89 400:10:01 Towar Steel 52000 206180 400:10:01 Towar Steel 52000 206180 400:10:01 Towar Steel 52000 206180 400:10:01 Construction Stage Totals: 85850 330775.2175 400:10:01 Construction Stage Material Weight Total Weight 200 205180 Construction Stage Facility Part Material 0.2 117170 15684.795 Facility Part Material 0.2 117170 15684.795 27757118 Transportation Train 50 0.2 17770 15689.2708 Facility Part Truck 50 0.1 27757118 27757118 Truck 50 100 17770 15689.92708 27757138 Touck 00 100 17770 15569.92708 27757138 Total Variable CO2: 0.1 0.1 0.1 0.1 0.1
Tower Steel 52000 kg 52000 206180 Construction Eaclity Part 85850 330775.2175 Construction Stage Eaclity Part Material Veight Total Weight CO2 Facility Part Material 0.2 17170 15684.795 17170 15684.795 Foundation Concrete 0.2 17170 15684.795 17170 15684.795 Fransportation Train 50 0.2 17170 15684.795 17170 15689.795 Fransportation Train 50 0.2 17170 15689.2708 1716 Transportation Truck 50 0.2 17170 15959.92708 17118 Truck 50 100 170 1790 1790 1790 1790 1790 Total Variable CO2: 0.1 1710 1790 1790 1790 1790 17118 17118 17118 1700 1711 1700 17116 17116 17116 <t< td=""><td></td><td>Copper</td><td></td><td>1946</td><td>7715.89</td><td>400:10:01</td><td></td></t<>
Towar Steel 52000 kg 52000 206180 Construction Stage Totals: 85850 330775.2175
Construction Stage Totals: B5850 330775.2175 Construction Stage Teality Part Material Veright Total Weight Foundation Concrete 0.2 17170 15684.795 Transportation Train 50 47.5609 Transportation Train 50 47.5609 Transportation Train 50 17170 15684.795 Transportation Train 60 17710 15684.795 Transportation Train 50 847.5118 Transportation Train 50 17170 15699.32708 Total Variable CO2: 0.1225.1446 Kg/unit Total Variable CO2: 0.122636088 Kg/unit
Construction Stage Totals: 85850 330775.2175 Construction Stage Reclifty Part Material Weight Total Weight CO2 Foundation Concrete 0.2 17170 15684.795 Foundation Train 60 17170 15684.795 Transportation Train 50 47.5609 Transportation Train 50 47.5609 Transportation Train 50 17170 15959.92708 Total Fixed CO2: 0.122636088 47.5609 100
Construction Stage Facility Part Material Weight Total Weight CO2 Foundation Concrete 0.2 1/7170 15684.795 Transportation Instructure of structure 47.5609 Transportation Train 50 47.5609 Transportation Indicance mi.) 100 1/7170 Transportation Train 50 47.5609 Transportation Train 50 227.57118 Train 100 1/7170 15959.92708 Total Fixed CO2: 0.122536088 frontit Total Fixed CO2: 0.1226356088 frontit
Foundation Material Weight Total Weight O.C. Foundation Concrete 0.2 17170 15684.795 Transportation Train 50 47.5609 Truck 50 17170 15684.795 Transportation Train 50 47.5609 Truck 50 17170 15659.92708 Total Fixed CO2: 0 17170 15959.92708 Total Fixed CO2: 0 0.122636088 /m2 windswept
Foundation Concrete 0.2 17170 15684.795 Transportation of structure of structure 17170 15684.795 Transportation Train 50 47.5609 47.5609 Truck 50 17170 15959.92708 1718 Total Fixed CO2: Total Fixed CO2: 346735.1446 kg/unit Total Fixed CO2: 0 122636088 t/m2 windswept
Transportation of structure of structure Transportation Itrain (distance mi.) Train 50 47.5609 Truck 50 227.57118 Truck 100 17170 15959.92708 Total Fixed CO2: 0 86735.1446 kg/unit Total Fixed CO2: 0 0.122636088 t/m2 windswept
Transportation (distance mi.) (distance mi.) (distance mi.) Train 50 47.5609 47.5609 Truck 50 17170 227.57118 Total Fixed CO2: 100 17170 15959.92708 Total Fixed CO2: 0 846735.1446 kg/unit Total Variable CO2: 0 122636088 t/m2 windswept
Train 50 47.5609 Truck 50 227.57118 Truck 100 17170 15959.92708 Total Fixed CO2: 346735.1446 kg/unit Total Variable CO2: 0 kg/unit Total Fixed CO2: 0.122636088 t/m2 windswept
Truck 50 227.57118 Total Fixed CO2: 100 17170 15959.92708 Total Fixed CO2: 346735.1446 kg/unit Total Variable CO2: 0 kg/unit Total Variable CO2: 0.122636088 t/m2 windswept
Total Fixed CO2: 100 17170 15959.92708 Total Fixed CO2: 346735.1446 kg/unit Total Variable CO2: 0 kg/unit Total Fixed CO2: 0.122636088 t/m2 windswebt
Total Fixed CO2:346735.1446kg/unitTotal Variable CO2:0kg/unitTotal Fixed CO2:0.122636088t/m2 windswept
Total Fixed CO2: 346735.1446 kg/unit Total Variable CO2: 0 kg/unit Total Fixed CO2: 0.122636088 t/m2 windswept
Total Fixed CO2: 0.122636088 t/m2 windswept

Solar Photovoltaics			- C		
	-		cuinse	Silicon	
Material	Weight Ratio	kg/unit	g CO2/unit	g CO2/unit	
Steel	18.1	32.01541284	126941.1119	126941.1119	
Flat Glass	2.9	5.129541284	3185.445138	3185.445138	
Cement	5.9	10.4359633	9533.252477	9533.252477	
Aluminum	2.9	5.129541284	37096.84257	37096.84257	
Semi-Conductor Material	2.9	5.129541284	139450.766	371868.7093 (a),(b	(
Totals	32.7	57.84	316207.4181	548625.3614	
		kg CO2/unit:	316.2074181	548.6253614	
		Array Area:	2.47	m2	
	Per Un	it Area Emission Estimat	ion: 0.128019198	0.222115531 t CO3	2/m2
Assume transport and dis	icard are negligible		-		
(a)	[Furlan, 1989]	Energy requirement	is for CIS cell produc	tion, estimated energy I	needs for silicon
(q)	[Inhaber, 1981]	Dased on [Furlan, 1 Proportions of mate	989] energy estimate rials used in a solar	e and [Markvaart, 1993] array, ASE gave only t	ratio of CIS to Si he total array weight w/out
	001				
Markvaari Caiculation	233 2 682655-08	GW/rr/m2	Assumed energ	y production per ann. Ir um per unit area to oth	a Lomvp Install
	40000	t CO2/Gwyr	Final reported	emissions from Palz	and Zibetta
			[Zibetta, 1992]		
	0.010730594 Note: Very low po	t CO2/m2 er unit area emissions estir	Per unit area er mation compared to	nissions estimation use Inhaber	d in Markvaart
	Probably	means mai means or prod	ucilori nave radicaliy	cnangeg in ine lasi zu	years

.

Biomass	[Mann, 1996]		-			
Plant Specifications	Biomass Integrated Gasifier Gas Turbin		Efficiency:	0.15		
	Fuel Type:	Gasification of Willow wood	Unit Size:	100 MWe		
Facility Inventory						
Material	Weight		CO2 (kg/plant)			
Concrete	230	tonnes	210105			
Steel	83	tonnes	329095			
Aluminum	650	kg	4700.8			
lron	670	kg	3846.05			
Truck Transport (50 mi)	50		694.9706635			
Train Transport (50 mi)	50	-	174.2767397			
Totals	314.62	tonnes	548616.0974			
Adapted from [Mann, 1996, p. 35	5], Assumed iron and steel used the same	CO2 emission rates				
Operation				C02		
Activity	Material	Weight	Units	Low	High	Units
Fertilizer Use	Nitrogen	60	kg/ha-yr	34.54476		kg/ha-yr
	Phosphates	15	kg/ha-yr	0.3		kg/ha-yr
	Potassium	15	kg/ha-yr	0.03		kg/ha-yr
Harvest	Fossil Fuel	0.5	GJ/Mg wood	0.28049122	0.42073683	kg CO2/ha-yr
	Wood Yield	10-15	Mg/ha-yr			
Liquefaction	Fuel Yield	4.7	MWh/t wood			
Transport	27 mi. by truck	0.04418	kg CO2/ton-mi	11.9286	17.8929	kg CO2/ha-yr
Source for Willow Fuel Yield [Lec	din, 1996a], fertilizer [Hohenstein, 1994],	narvest fuel use [Shapouri, 199	95] and [Perlack, 1992			
Emissions Summary			C02			
Material	Process	Rate	Low	High	Units	
C02	Power Generation		0.332		kg CO2/kWh	,
Carbon	Soil Sequestration	1-2 Mg C/ha yr	3.667	7.334	Mg CO2/ha-yr	
Source for soil sequestration [Co	ok, 1996]					
			Low	High	Average	Units
Summary	Fixed CO2	Plant Construction		548616.0974	548616.0974	kg CO2/plant
	Variable CO2	Cropping	47.08385122	53.18839683	50.13612403	kg CO2/ha-yr
		Soil Sequestering	-3.667	-7.334	-5.5005	t CO2/ha-yr
		Electricity Generation	0.332		0.332	kg/kWh

BIBLIOGRAPHY

[ASE, 1998]	ASE America's Inc., Product Specifications for ASE-300-DG/50, <http: aseprod.html="" asepv="" st1.yahoo.com="">, Billerica, MA, USA, 1998.</http:>
[Bell, 1996]	Bell, M., R. Lowe, P. Roberts, <u>Energy Efficiency in Housing</u> , Avebury, Aldershot, Hants, England, 1996.
[Berrie, 1983]	Berrie, T. W., Institution of Electrical Engineers, <u>Power System</u> <u>Economics</u> , Peregrinus on behalf of the Institution of Electrical Engineers, London, 1983.
[Berrie, 1992]	Berrie, T. W., <u>Electricity Economics and Planning</u> , Stevenage, Herts: P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1992.
[Bevier, 1986]	Michael Bevier, <u>Encyclopedia of Materials Science and Engineering</u> , pp. 1974-79, Pergamon Press, 1996.
[BRE, 1994]	Building Research Establishment, "Embodied Energy of Building Materials", <http: backinfo="" bldmat.htm="" depart="" www.ecosite.co.uk="">, UK, 1994.</http:>
[Brown, 1996]	Brown, L. R., WorldWatch Institute., <u>State of the World 1996</u> , Norton/WorldWatch Books, 1996.
[Brown, 1997]	Brown, L. R., WorldWatch Institute., <u>State of the World 1997</u> , Norton/WorldWatch Books, 1997.
[BUWAL, 1993]	Bundesamt für Umwelt, Wald und Landschaft (Swiss Federal Office of Environment, Forestry and Landscape), BUWAL Series 132: Raw Materials Summary, http://www.lugatech.ch/buwal.htm , Firma Lugatech AG, Bern, Switzerland,1996.
[BUWAL, 1998]	Bundesamt für Umwelt, Wald und Landschaft (Swiss Federal Office of Environment, Forestry and Landscape), BUWAL Series 250: LCI Database, http://www.lugatech.ch/buwal.htm , Firma Lugatech AG, Bern, Switzerland, 1998.
[Calabrese, 1959]	Calabrese, Guiseppi O, <u>Symmetrical Components Applied to Electric</u> <u>Power Networks</u> , Ronald Press Co., New York, 1959.
[Ciambrone,1997]	David F. Ciambrone, Environmental Life-Cycle Analysis, Lewis

Publisher, Boca Raton, Florida, 1997.

- [Coiante, 1996] D. Coiante and L. Barra, "Renewable Energy Capability to Save Carbon Emissions", Solar Energy Vol. 57 No. 6 pp. 485-491, Elsevier Press Ltd., UK, 1996.
- [Cook, 1996] Jim Cook and Jan Beyea, "An Analysis of the Environmental Impacts of Energy Crops in the U.S.A.: Methodologies, Conclusions and Recommendations", *Working Paper from workshop on energy crops*, National Audubon Society, New York, 1996.
- [Curran, 1996] Curran, Mary A., <u>Environmental Life-Cycle Assessment</u>, McGraw-Hill, New York, 1996, Section 5.5, pp. 5.11-5.16 – International Ecolabelling Programs.
- [CWEC,1997] Numerical Logics Inc., Software package Canadian Weather for Energy Calculations (CWEC) Weather Files, Waterloo, Ont., 1997.
- [DEAM, 1997] Ecobalance, Inc., Software package Environmental Analysis and Management (TEAM): Module Data for Environmental Analysis and Management (DEAM), <http://www.ecobalance.com/>, Rockville, MD, US, 1997.
- [DWTMA, 1998] Dutch Wind Turbine Manufacturer's Assoc., "21 Frequently Asked Questions About Wind Turbines", <http://www.windpower.dk/faqs.>, Copenhagen, Denmark, 1998.
- [Economist, 1998] The Economist, Pocket World in Figures 1998 Edition, Profile Books Ltd., London, UK, 1998.
- [EUREC, 1996] European Renewable Energy Centres Agency, <u>The Future for</u> <u>Renewable Energy : Prospects and Directions</u>, James & James, London, 1996.
- [Fava, 1987] Fava, James A., "Society of Environmental Toxicology and Chemistry. Workshop (1987 : Breckenridge, Colo.), Research priorities in environmental risk assessment : Workshop report, Society of Environmental Toxicology and Chemistry : August 16-21, 1987, Breckenridge, Colorado", SETAC, Rockville, Md., 1987
- [Fiksel, 1996] Fiksel, Joseph R., <u>Design for Environment : Creating Eco-efficient</u> <u>Products and Processes</u>, McGraw-Hill, New York ,1996.
- [Flanagan, 1993] Jana Flanagan, <u>Vision 2001: Energy & Environmental Engineering</u>, New York, 1993

[Ferris, 1990]	Ferris, L. L., <u>Wind Energy Conversion Systems</u> , Prentice Hall, Englewood Cliffs, NJ, 1990.
[Furlan, 1989]	Furlan, G., Sayigh, A. A. M., Nobili, D., Seraphin, B. O., "Proceedings of the Workshop on Materials Science and Physics of Non-conventional Energy Sources: ICTP, Trieste, 11-29 September 1989", World Scientific, Singapore, 1989.
[Haith, 1982]	Haith, Douglas A., <u>Environmental systems optimization</u> , Wiley, New York, 1982.
[Hammond, 1995]	Hammond, Allen L., World Resources Institute, "Environmental indicators : a systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development", World Resources Institute, Washington, D.C., 1995.
[Hobbs, 1994]	Hobbs, B. F., "Optimization Methods for Electric Utility Resource Planning", European Journal of Operational Research 83 (1995) 1-20, 1994.
[Hohenstein, 1994]	W. G. Hohenstein and L. L. Wright, "Biomass Energy Production in the United States: An Overview", <i>Biomass and Bioenergy Vol. 6 No. 3</i> , pp. 161-173, Elsevier Sciences Ltd., 1994.
[Humphreys, 1995]	K. K. Humphreys, M. Singh, and M. Placet, "Life-Cycle Assessment of Electric Vehicles in the United States", IEEE Journal of Energy and Electronics, IEEE, 1995.
[Hybrid2, 1997]	Renewable Energy Research Laboratory (RERL), Software package Hybrid2, University of Massachusetts, Amherst, MA, 1997.
[IAEA, 1993]	IAEA, <u>Electricity and the Environment:: Proceedings Series</u> , Proceedings of a Senior Expert Symposium jointly organized by the Commission of the EC, Council for Mutual Economic Assistance, Economic Commission for Europe, IEAE, IASA, Nuclear Energy Agency of the OECD, UNEP, World Bank, WHO, World Meteorological Organization, Helsinki, Finland, 13-17 May 1991.
[Inhaber, 1982]	Inhaber, Herbert, <u>Energy Risk Assessment</u> , Gordon and Breach, New York, 1982.
[Jacobs, 1998]	Jacobs Energie GmbH, "Jacobs 41/500 Technical Data", <http: 41500e.htm="" www.jacobs-energie.com="">, Heide, Germany, 1998.</http:>
[Johansson, 1992]	Allan Johansson, <u>Clean Technology</u> , Penguin Press, New York,1992.

Johansson, Thomas B., Burnham, Laurie., <u>Renewable Energy:</u> [Johansson, 1993] Sources for Fuels and Electricity, Island Press, Washington, D.C. ,1993. UNFCCC, "3rd Conference of the Parties (COP-3) to the UN [Kyoto, 1997] Framework Convention on Climate Change (UNFCC)", Kyoto, Japan, December, 1997. Ledin, S., "Willow Wood Properties, Production, and Economy", [Ledin, 1996a] Biomass and Bioenergy 11:(2/3):75-83, 1996. Ledin, S. et al, "Willow Coppice Systems in Short Rotation Forestry: [Ledin, 1996b] Effects of Plant Spacing, Rotation Length and Clonal Composition", Biomass and Bioenergy 4:(5):323-331, 1996. Ledin, S., Correspondence between H. Venema and S. Ledin of April 1997 to [Ledin, 1997] the effect that maximum Salix size would be 250 tonnes biomass/hectare, 1997. M. K. Mann P. L. Spath, and K. R. Craig, "Economic and Life Cycle [Mann, 1996] Assessment of Integrated Biomass Gasification Combined Cycle System", NREL/TP-430-23076, National Renewable Energy Labs, US, 1995. Markvaart, T., Bogus, K., World Solar Summit (1993 : UNESCO), [Markvaart, 1993] Solar Electricity, Wiley, Chichester; New York, 1994. The MathWorks, Inc., Software package Matlab 5.0, Natick, MA, 1998. [Matlab, 1998] Nacfaire, H., Commission of the European Communities [Nacfaire, 1987] Directorate-General for Energy, Grid-connected wind turbines, Elsevier Applied Science, London, 1987. [NRDC,1997] Natural Resources Defense Council (NRDC), Getting the Dirt On A Consumers' and Policymakers' Your Electric Company: Handbook of Air Pollution from Electric Utilities in the Eastern United States, <http://mail.igc.apc.org/nrdc/nrdc/brie/fbglob.html>, NRDC Publications, New York, 1997. [Overend, 1996] Overend, R.P., "Production of Electricity from Biomass Crops - US Perspective", National Renewable Energy Laboratory, Golden, Colorado, USA, 1996.

- [Perlack, 1992] Perlack, R.D., J.W. Ranney and L.L. Wright, "Environmental Emissions and Socioeconomic Considerations in the Production, Storage, and Transportation of Biomass Energy Feedstocks" ORNL/TM-12030. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1992.
- [Ravindranath, 1995] Ravindranath, N. H., Hall, D. O., <u>Biomass Energy and the</u> <u>Environment</u>, Oxford University Press, 1995.
- [Rio, 1992] UNFCCC, "1st Conference of the Parties (COP-3) to the UN Framework Convention on Climate Change (UNFCC)", Rio De Janeiro, Brazil, 1992.
- [Shapouri, 1995] Shapouri, H., J.A. Duffield and M.S. Graboski, "Estimating the Net Energy Balance of Corn Ethanol", Agricultural Economic Report No. 721. Economic Research Service, US, Department of Agriculture, Washington, D.C., USA, 1995.
- [Sharpe, 1985] Peter J. H. Sharpe, Joe Walker, Les K. Penridge, and Hsin Wu, "A Physiologically based Continuous-time Markov Approach to Plant Grwoth Modelling in Semi-Arid Woodloands", Ecological Modelling, 29:189-213, 1985.
- [Schlamadinger, 1996] Schlamadinger, B. and G. Marland, "The Role of Forest and Bioenergy Strategies in the Global Carbon Cycle", Biomass and Bioenergy, 1996.
- [Spiegel, 1998] Ronald J. Speigel, Edward C. Kern and Daniel L. Greenberg, "Demonstration of the Environmental and Demand Side Management Benefits of Grid-Connected Photovoltaic Power Systems", Solar Energy Vol. 62 No. 5 pp. 345-358, Elsevier Science Ltd., UK, 1998.
- [Stoll, 1989] Stoll, Harry G., Leonard J. Garver, <u>Least-Cost Electric Utility</u> <u>Planning</u>, Wiley, Toronto, 1989.
- [Tillman, 1991] David A. Tillman, <u>Combustion of Solid Fuels and Waste</u>, Wiley and Sons, New York, 1991.
- [USEPA, 1975] U.S. Environmental Protection Agency Office of Air Quality Planning and Standards, <u>Compilation of Air Pollutant Emission</u> <u>Factors, 2nd Ed.</u>, USEPA, 1975.
- [Venema & Ali, 1998] Henry D. Venema, M. S. Ali, "Biomass Production Constrained Stochastic Optimal Hybrid Power Systems Design", Proc. of Renewable Energy Technologies in Cold Climates Canada, 1998.

[Vigon, 1993]	Vigon, B. W., Risk Reduction Engineering Laboratory (U.S.), <u>Life-cycle Assessment : Inventory Guidelines and Principles</u> , Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Oh. 1993.
[Vigon, 1996]	Bruce Vigon et al., "Life Cycle Assessment of Biomass Conversion to Feedstock Chemicals", IEEE Journal of Power Applications, 1996.
[Wackernagel, 1993]	Wackernagel, M., J. McIntosh, W. E. Rees, R. Woolard, <u>How Big is</u> <u>Our Ecological Footprint?</u> , <i>Task Force on Planning Healthy and</i> <i>Sustainable Communities</i> , UBC, Vancouver, 1993.
[Walker, 1997]	Walker, J. F., N. Jenkins, <u>Wind Energy Technology</u> , John Wiley, Chichester, England ; New York, 1997.
[WCED, 1987]	World Commission on Environment and Development, <u>Our</u> <u>Common Future</u> , Oxford University Press, Oxford, UK, 1987.
[WEC, 1993]	World Energy Council (WEC) Commission, <u>Energy for Tomorrow's</u> <u>World : The Realities, the Real Options, and the Agenda for</u> <u>Achievement</u> , St. Martin's Press, New York, 1993.
[Weier, 1982]	Weier, T. E., M. G. Barbour, C. R. Stocking, T. L. Rost, <u>Botany: An</u> <u>Introduction to Plant Biology, 6th Ed.</u> , wiley & Sons, New York, 1982.
[Wright, 1992]	L. L. Wright et al., "Biofuels Feedstock Development Program Annual Progress Report for 1992", ORNL-6781, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1993.
[Wright, 1993]	L. L. Wright and E. E. Hughes, "U.S. Carbon Offset Potential Using biomass Energy Systems", <i>Water, Air and Soil Pollution 70:483-497</i> , Kluwer Academic Press, Netherlands, 1993.
[Wrixon, 1993]	Wrixon, G. T., AM. E Rooney, W. Palz, <u>Renewable Energy-2000</u> , Springer-Verlag, Berlin ; New York, 1993.
[Zibetta, 1992]	Zibetta, H., W. Palz, "Energy payback time of photovoltaic modules", <i>Yearbook of Renewable Energies 1992</i> , Eurosolar with Ponte Press, Bochum, Germany, 1992.
[Zweibel, 1990]	Zweibel, K., <u>Harnessing Solar Power, The Photovoltaic Challenge</u> , Plenum Press, NY, 1990.