
Efficient Memory Allocator for
Restricting Use-After-Free

Exploitations

by

Ruizhe Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Ruizhe Wang 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on work co-authored with my supervisors Meng Xu and N. Asokan
that have been accepted for ACM CCS 2024 [76] (Chapter 3) and DIMVA 2024 [75]
(Chapter 4). I conducted all the design, implementation, and experimentation described in
this thesis. All authors contributed to the writing of the papers [75, 76].

iii

Abstract

Attacks on heap memory, encompassing memory overflow, double and invalid free, use-
after-free (UAF), and various heap-spraying techniques are ever-increasing. Existing secure
memory allocators can be generally classicied as complete UAF-mitigating allocators
that focus on detecting and stopping UAF attacks, type-based allocators that limit type
confusion, and entropy-based allocators that provide statistical defenses against virtually
all of these attack vectors. In this thesis, I introduce two novel approaches, SEMalloc
and S2Malloc, for type- and entropy-based allocation, respectively. Both allocators
are designed to restrict, but not to fully eliminate, the attacker’s ability, using allocation
strategies. They can significantly increase the security level without introducing excessive
overheads.

SEMalloc proposes a new notion of thread-, context-, and flow-sensitive “type”,
SemaType, to capture the semantics and prototype a SemaType-based allocator that aims
for the best trade-off amongst the impossible trinity. In SEMalloc, only heap objects
allocated from the same call site and via the same function call stack can possibly share
a virtual memory address, which effectively stops type-confusion attacks and make UAF
vulnerabilities harder to exploit.

S2Malloc aims to enhance UAF-attempt detection without compromising other
security guarantees or introducing significant overhead. We use three innovative constructs
in secure allocator design: free block canaries (FBC) to detect UAF attempts, random
in-block offset (RIO) to stop the attacker from accurately overwriting the victim object,
and random bag layout (RBL) to impede attackers from estimating the block size based
on its address.

This thesis demonstrates the importance of memory security and highlights the potential
of more secure and efficient memory allocation by constraining attacker actions.

iv

Acknowledgments

I would like to thank my advisors, N. Asokan and Meng Xu for their supports and my
thesis readers: Yousra Aafer and Sihang Liu.

v

Dedication

To my loved ones.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgments v

Dedication vi

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 4
2.1 Common Heap Vulnerabilities . 4
2.2 UAF Attacks . 4

2.2.1 UAF Exploitations . 5
2.3 Secure Memory Allocators . 8

2.3.1 Complete UAF-Mitigating Allocators (A1) 8
2.3.2 Type-based Allocators (A2) . 8

vii

2.3.3 Entropy-Based Allocators (A3) . 9
2.4 Other UAF-Mitigating Techniques . 10

2.4.1 Invalidate Dangling Pointers (B) 10
2.4.2 Validate a Pointer Upon Use (C) 11

2.5 Widely deployed secure memory allocators 11
2.6 Summary . 11

3 Mitigation Approach: SEMalloc 12
3.1 Introduction . 12
3.2 Rethinking Type . 13
3.3 Capture Semantics with SemaType . 16

3.3.1 Defining SemaType . 16
3.3.2 Cyclic Control-flow Structures . 17
3.3.3 SemaType Representation . 20
3.3.4 Alternative: Path-sensitivity . 21
3.3.5 Instruction Insertion Summary . 21
3.3.6 Transformation for Function Call with Exception Handling 22

3.4 SemaType-based Heap Allocation . 23
3.4.1 Overview . 24
3.4.2 Call Graph Construction . 25
3.4.3 Edge Weight Assignment . 26
3.4.4 SCC Stack Pointers Aggregation . 27
3.4.5 Parameter Encoding . 29
3.4.6 Heap Allocator Backend . 30
3.4.7 Implementation Details of The Allocation Backend in SEMalloc . . 30

3.5 Security Analysis . 32
3.5.1 Qualitative Analysis . 32
3.5.2 Formal Analysis . 33

viii

3.5.3 Empirical Check on Real-world Exploits 35
3.6 Performance Evaluation . 39

3.6.1 Evaluation Setup . 40
3.6.2 Macro Benchmarks . 41
3.6.3 Micro Benchmarks . 42
3.6.4 Performance on real-world programs 43
3.6.5 On Recurrent Allocations . 44

4 Entropy-Based Approach: S2Malloc 52
4.1 Introduction . 52

4.1.1 Adversary model . 53
4.1.2 Challenge 1: entropy loss . 54
4.1.3 Challenge 2: information leak . 55

4.2 Design and Implementation . 56
4.2.1 Architectural overview . 56
4.2.2 Randomized in-slot offset (RIO) . 57
4.2.3 Random bag layout (RBL) . 58
4.2.4 Hardening heap canaries . 59
4.2.5 Free block canaries (FBC) . 60
4.2.6 Summary and comparison . 61

4.3 On The Formal Modeling of Probabilistic Use-After-Free Detection 61
4.3.1 Success rate of attack and defense per single attempt 62
4.3.2 Strategy S1: repetitive UAF-writes to the same address 63
4.3.3 Strategy S2: UAF-writes through fresh dangling pointers 64
4.3.4 Strategy S1-spray: repetitive UAF-writes to the same address with

spraying . 65
4.3.5 Strategy S2-spray: UAF-writes through fresh dangling pointers with

spraying . 66

ix

4.4 Security Evaluation . 67
4.4.1 Parameterized protection rates . 67
4.4.2 Protection rates with heap spray 69
4.4.3 Illustrate the protection rates . 70
4.4.4 Defending against real-world CVEs 70

4.5 Performance Evaluation . 74
4.5.1 Macro benchmarks . 75
4.5.2 Micro benchmarks . 77
4.5.3 Performance on real world programs 78
4.5.4 Performance with multi-threading 79
4.5.5 Influence with different parameters 79

5 Conclusion 85

References 86

Appendices 94
A List of Failed Tests and Corresponding Exceptions on PARSEC and SPEC 94

A.1 List of Failed Tests and Corresponding Exceptions on PARSEC and
SPEC in S2Malloc . 94

A.2 List of Failed Tests and Corresponding Exceptions on PARSEC and
SPEC in SEMalloc . 95

B Maximum Working Set Size (WSS) of Each Benchmark Test 98

x

List of Figures

2.1 A hypothetical example to illustrate different types of UAF exploits. 6
2.2 A hypothetical example to illustrate UAF exploits against objects of the

same type. 7

3.1 Code snippet that yields the call graph in Figure 3.2 18
3.2 Call graph (left) of a crafted program Figure 3.1 illustrating how SemaType

(right) can be deduced. In this call graph, each node is a function and solid
edges represent function calls not in a loop inside the function control-flow
graph (CFG) while dashed edges represent function calls inside a loop. . . 19

3.3 Design overview of SEMalloc (1 : flags, 2 : SemaType, 3 : allocation size).
The size is the parameter without SEMalloc, while SEMalloc encodes
the trace information into the parameter after applying the pass. 24

3.4 Weight assignment of a crafted example program. Dashed lines refer to one-
time function calls and solid lines refer to iterative function calls. Numbers
on the edges refer to edge weights and numbers in the function nodes are
function weights. For example, the nid of main → D → malloc is 2. 28

3.5 Parameter encoding rule for regular objects(L: loop identifier; H: huge block
identifier). 29

3.6 Normalized average and standard deviation of run-time overhead on PARSEC
and SPEC benchmarks. 40

3.7 Normalized average and standard deviation of memory overhead on PARSEC
and SPEC benchmarks. 41

3.8 Normalized average and standard deviation of run-time and memory overhead
on mimalloc-bench. 43

xi

3.9 Normalized average and standard deviation of throughput overhead on three
real-world programs. 44

3.10 Normalized average and standard deviation of memory overhead on three
real-world programs. 44

4.1 Example UAF attack based on mRuby issue 4001 [17] 55
4.2 Overview of S2Malloc with an example of free and malloc. A , B , and

C show three S2Malloc segments, stored in segregated memory. 1 , 2 ,
and 3 show how an allocated bag slot is freed and then allocated. 57

4.3 Parameterized security evaluation (x-axis: logarithmic block size/byte, y-axis:
protection/attack success rate/%). 68

4.4 Adapted code snippets to illustrate CVE-2015-6835 and its exploits. 73
4.5 Type definition of zval. 74
4.6 Execution time of glibc-simple . 77
4.7 Run-time and memory overheads of running PARSEC with multi-threads 77

xii

List of Tables

1.1 Illustration of existing secure memory allocators and the two proposed
allocators. The number of + symbols indicates the amount of introduced
overhead. The attack scope is progressively more limited from to and
 . The attack success chance gradually decreases from to and . . . 2

3.1 Number of instructions inserted for call, invoke, and for duplicating the
invoke nodes. In the call graph, we use “branch node” to denote a node with
more than one incoming edges and “iterative node” to denote a node that
has at least one outgoing edge annotated in dashes (i.e., the call site is in a
loop). We note that a branch node can potentially also be an iterative node.
In this case, both groups of instructions will be inserted. 22

3.2 SEMalloc is effective in thwarting () exploitation of all real-world UAF
vulnerabilities evaluated while TypeAfterType [72] and Cling [3] provide no
protection (#) or partial protection (G#) to most vulnerabilities. †: Cling is
not open-sourced and is only analyzed conceptually. 36

3.3 Normalized average runtime overheads (and standard deviations) of SEMalloc
on SPEC and PARSEC. We indicate the best scheme in bold and the second
best underlined to show how SEMalloc hits the sweet spot in the tradeoff
between run time and memory use. 46

3.4 Normalized average memory overheads (and standard deviations) of SEMalloc
on SPEC and PARSEC. We indicate the best scheme in bold and the second
best underlined to show how SEMalloc hits the sweet spot in the tradeoff
between run time and memory use. 47

xiii

3.5 Normalized run-time overheads (and standard deviations) of SEMalloc on
mimalloc-bench (results of * marked tests use built-in measurements). We
indicate the best scheme in bold and the second best underlined to show
how SEMalloc hits the sweet spot in the tradeoff between run time and
memory use. 48

3.6 Normalized average memory overheads (and standard deviations) of SEMalloc
on mimalloc-bench (results of * marked tests use built-in measurements).
We indicate the best scheme in bold and the second best underlined to show
how SEMalloc hits the sweet spot in the tradeoff between run time and
memory use. 48

3.7 Normalized average throughput (and standard deviations) of SEMalloc
on three real-world programs (results of * marked tests use built-in measure-
ments). We indicate the best scheme in bold and the second best underlined
to show how SEMalloc hits the sweet spot in the tradeoff between run
time and memory use. 49

3.8 Normalized average memory overheads (and standard deviations) of SE-
Malloc on three real-world programs (results of * marked tests use built-in
measurements). We indicate the best scheme in bold and the second best
underlined to show how SEMalloc hits the sweet spot in the tradeoff
between run time and memory use. 49

3.9 Program profile of each SPEC and PARSEC test. 50
3.10 Number of allocations, iterative allocations, and iterative pools for each

SPEC and PARSEC test. We highlight that SEMalloc can efficiently
identify SemaTypes and cause negligible memory leakage for most programs.
Tests with * have more than one input. We only report the input that
triggers the most allocations. 51

4.1 Overview of existing secure memory allocators and S2Malloc to illustrate
how S2Malloc fills the gap (MD: metadata). Memory and run-time over-
heads are measured by running the PARSEC benchmark [7]. Note that
overheads of MarkUs and FFmalloc (numbers marked with ∗) are reported
in [78] instead of measured by us. The details for getting other overhead
numbers are presented in §4.5. With that said, the performance numbers
shown here are for a qualitative illustration on the scale of overhead only.
For quantitative comparisons, please refer to details in §4.5. 59

xiv

4.2 Protection and attack success rates of attack rounds in mRuby issue 4001
using the two strategies. 70

4.3 Summary of how different memory allocators defend against eight exploitation
techniques on seven vulnerabilities. Vanilla BIBOP allocator and Scudo [43]
are vulnerable to all attacks and behave similarly to Guarder [63] (DP:
dangling pointer, #: no defense, G#: detect at the end of execution, H#:
defense via zero-out, : detect via FBC change, ⊚• : non-deterministic leak
(RIO), ■: thwart the exploitation ability). 71

4.4 Normalized run time and memory overheads for state-of-the-art entropy-
based secure allocators on SPEC and PARSEC benchmarks. We report
geometric averages and standard deviations of the run-time overhead over
five runs. 76

4.5 Average and standard deviation of run time and memory overhead on PAR-
SEC and SPEC benchmarks (x86 and AARCH). 80

4.6 Normalized run-time and memory overheads of running mimalloc-benchmark. 81
4.7 Normalized memory and run-time Overhead changes compared with the

default settings. 81
4.8 Normalized runtime overheads of mimalloc-bench 82
4.9 Normalized memory overheads of mimalloc-bench 83
4.10 Throughput (request/second), memory consumption (KB), and delays (msec)

for servers. 83
4.11 Throughput (request/second) and memory consumption (KB) on databases 84

5.1 Normalized maximum WSS (and standard deviations) of SeMalloc on SPEC
and PARSEC. We indicate the best scheme in bold and the second best
underlined. 99

5.2 Normalized maximum WSS (and standard deviations) of SeMalloc on three
real-world programs. We indicate the best scheme in bold and the second
best underlined. 99

xv

Chapter 1

Introduction

Heap-related vulnerabilities are serious and common threats that can be leveraged to launch
attacks resulting in arbitrary code execution or information leakage. Heap overflow, double
and invalid free, and use-after-free (UAF) are among the most common types of these
vulnerabilities. According to the Common Vulnerabilities and Exposures (CVEs) report of
2022, they were ranked 19th, 11th, and 7th respectively, in terms of bug prevalence [48].

Secure memory allocators are an important defense against heap exploitations. State-
of-the-art secure allocators can be generally classified into three categories: complete
UAF-mitigating allocators, type-based UAF-mitigating allocators and entropy-based generic
memory allocators.

UAF occurs when a previously freed memory block is used to store data. It receives
special attention in secure allocator design due to its prevalence and the powerful exploitation
primitives (e.g. arbitrary read/write) it enables. Chromium has reported that more than a
third of their security issues are related to UAF, more prevalent than other types of memory
errors combined [68].

While complete mitigation of UAF is possible by virtually never re-using a previously
freed memory block, UAF-mitigating allocators incur substantial overheads (e.g., about
40% for MarkUs [2]), and their complexity leaves them vulnerable to new attacks [78]
(albeit preventable).

Type-based allocators assign a memory pool to each object type and only allows objects
of the same type to be allocated to the same memory address. Specifically, they target on
restricting the attacker’s exploitation ability by limiting type-confusion. The attacker now
can only use the dangling pointer to obtain an object of the same type.

1

However, the efficacy of type-based allocators requires a careful and precise tracking and
annotation of object types. Existing works are limited in identifying allocation wrappers or
tracking program execution semantics, causing type-confusion attacks still powerful.

Entropy-based heap allocators aim to provide comprehensive protection against most,
if not all, common heap vulnerabilities with simpler designs but may fail with a small
probability. Specifically on UAF mitigation, entropy-based memory allocators typically
use delayed free-lists [40, 63] to prevent the same memory block from being immediately
re-allocated after being freed. Attackers now face a moving-target even when they manage to
obtain a dangling pointer as they have less confidence in knowing when this pointer becomes
valid again and/or which object it might point to. While achieving relatively low overhead
on time usage, especially compared with UAF-mitigating allocators, existing entropy-based
allocators still face the challenge of entropy-loss due to heap spraying, information leak,
and silent failures on (potentially repeated) trials.

In this thesis, I show that the protection provided by both types of allocators can be
bypassed, individually or even when the techniques are combined. I show that the design
of secure memory allocator should take the attacker’s ability into consideration and both
types of allocators can be further improved by adopting this concept.

Memory
Overhead

Run-Time
Overhead

UAF
Attack Scope

UAF
Success Rate

Complete Miti. + ~+++ +++
Complete Miti.

(w/ Special HW) + +

Type-Based ++ + #
Entropy-Based ++ ++ #

SEMalloc ++ + #
S2Malloc ++ ++ #

Table 1.1: Illustration of existing secure memory allocators and the two proposed allocators.
The number of + symbols indicates the amount of introduced overhead. The attack scope is
progressively more limited from to and . The attack success chance gradually decreases
from to and .

Contributions. I improve the state-of-the-art memory allocators of both types by limiting
the attack ability. Specifically, I present S2Malloc (Chapter 4), a straightforward drop-in
solution that makes an UAF attack detectable while also protects against all other commonly
observed heap memory vulnerabilities, and SEMalloc (Chapter 3) a new type-based

2

memory allocator SEMalloc which uses SemaType, a carefully designed “type”, to target
a sweet spot between sensitivity (which decides security) and performance (which is affected
by tracking overhead). Designs of these two allocators may be even adopted to a single
allocator to limit both attack scopes and success rates. An illustration of existing and
proposed secure memory allocators is presented in Table 1.1 that highlights the gap the
two proposed allocators cover.

3

Chapter 2

Background

2.1 Common Heap Vulnerabilities

Common heap vulnerabilities include 1 buffer overflow (reads/writes to an out-of-bound
memory location), 2 double free (frees an already-freed object), 3 invalid free (frees
an invalid pointer), and, as explained later in details, 4 use-after-free (UAF). Successful
exploitation of these vulnerabilities can cause heap corruption, leading to devastating results
such as denial of service (DoS), information leak, arbitrary code execution, and/or privilege
escalation.

2.2 UAF Attacks

UAF is a common heap error that occurs when a program unintentionally releases a heap
object but continues to use the original pointer, i.e., a dangling pointer. Abusing the
dangling pointer, an attacker can create powerful exploitation primitives such as arbitrary-
address-write and code execution. A typical UAF exploitation involves the following
steps:
• Trigger the vulnerable free() function to release a heap object A, turning the pointer P

that points to the freed object into a dangling pointer.
• Look for a victim heap object B having ideally the same size as the released object.

Victims containing interesting data such as pointers or length are usually preferred.
• Wait for the program to allocate a new B object that could refill the memory space

initially belonging to A. The attacker can now corrupt the victim object B with pointer

4

P . This primitive can be used to either hijack the control flow or corrupt sensitive data
such as uid or gid.

2.2.1 UAF Exploitations

UAF is generally considered as a temporal memory error, i.e., an error that occurs following
a specific temporal order of events. In the context of UAF, the events include allocation
(e.g., malloc), de-allocation (e.g., free), read, and write. Fortunately (or unfortunately), for
most programs, there are plenty of such events in their original code logic; all an attacker
needs to do is to find and trigger the correct sequence of events to mount an attack without
code injection. Figure 2.1 is a crafted example to show how a dangling pointer can be
exploited differently with different event orderings.

Formally, if a new object N (accessible through a fresh pointer p) is allocated over the
heap location previously occupied by a freed object O (which leaves a dangling pointer q),
then one of the following cases can happen:

A a read through p breaches the confidentiality of O, although this is usually called
uninitialized read, which is generally not a concern of UAF and can be mitigated via
zeroing allocations [25, 34] or other techniques [5, 45];

B a write through p breaches the integrity of O, as the written content can be subsequently
read through q which can compromise the execution context where q is used;

C a read through q breaches the confidentiality of N which can be used to leak sensitive
information such as pointer addresses (to break ASLR [4, 8]) or secret data

D a write through q breaches the integrity of N , as the written content can be subsequently
read through p which can compromise the execution context where p is used;

E a free through q de-allocates N entirely, and yet, the heap allocator cannot block it if p
and q are the same integer representing memory addresses (a free through p is legit).

Exploit B-E can all be found in Figure 2.1. Again, note that from an attacker’s point of
view, exploiting a UAF bug does not require code injection. Instead, an attacker can craft a
“weird machine” [18] by merely re-purposing operations involving the inadvertent alias pair
(p, q) in the original code logic. Intuitively, the more operations an attacker can re-purpose,
the more useful a UAF can be in launching attacks. In the extreme case where any new
object can be allocated over the heap location accessible by the dangling pointer q, this
UAF is effectively an arbitrary read/write exploit primitive.

On a side note, Exploit-E is different from what is conventionally known as double free
which arises when the old pointer q is freed twice without the allocation of a new heap

5

1 struct N {long usr; long pwd; int (*fn)(void);};
2 struct O {int (*oper)(void); long u1; long u2;};
3
4 void foo(long uid, long secret) {
5 struct N *p = malloc(sizeof(struct N));
6 p->fn = __safe_function_1;
7 p->usr = uid;
8 p->pwd = secret;
9 p->fn();

10 }
11
12 void bar(long user1, long user2) {
13 struct O *x = malloc(sizeof(struct O));
14 x->oper = __safe_function_2;
15 struct O *q = x;
16 free(x); // q is dangling
17 q->oper();
18 q->u1 = user1;
19 q->u2 = user2;
20 reply("Users: %l | %l", q->u1, q->u2);
21 free(q);
22 }

Exploit-B: line 13–4–6–14 → arbitrary code execution.
Exploit-C: line 13–4–5–6–16 → information leak.
Exploit-D: line 13–4–15–7 → arbitrary code execution.
Exploit-E: line 13–4–17 → p is de-allocated and dangling.

Figure 2.1: A hypothetical example to illustrate different types of UAF exploits.

6

1 struct N {long usr; long pwd; int (*fn)(void);};
2
3 void register_real(long uid, long secret) {
4 struct N *p = malloc(sizeof(struct N));
5 p->fn = __real_fn;
6 p->usr = uid;
7 p->pwd = secret;
8 p->fn();
9 }

10
11 void register_fake(long uid, long secret) {
12 struct N *x = malloc(sizeof(struct N));
13 x->fn = __mock_fn;
14 struct O *q = x;
15 free(x); // q is dangling
16 q->fn();
17 q->usr = uid;
18 q->pwd = secret;
19 reply("Debug: %l | %l", q->usr, q->pwd);
20 free(q);
21 }

Figure 2.2: A hypothetical example to illustrate UAF exploits against objects of the same type.

object N . Double free vulnerabilities can be mitigated cheaply by maintaining a set of freed
and yet-to-be allocated memory addresses [40, 54, 63] as a top-up of other UAF-mitigation
strategies.

Type confusion. The methodology to exploit the UAF bug in Figure 2.1 is also known
as type confusion or type manipulation, which is arguably the most popular way to exploit
a UAF bug, especially when an object type involved contains a function pointer. However,
type confusion is not the only way to exploit a UAF; and more importantly, a UAF bug can
be exploited even when the two objects involved have the same type, as shown in Figure 2.2.
Despite the fact that both the victim pointer p and dangling pointer q share the same type,
one can still leak sensitive data via p or cause __real_fn to be called in register_fake and
vice versa.

Multi-threading and race conditions. Although Figure 2.1 and 2.2 are demonstrated
in a multi-threaded setting, and indeed many exploits in the wild requires some form of
race condition to work [33], multi-threading is not a strict requirement to exploit a UAF
bug, as long as the attackers can find a similar sequence of events in a sequential execution,
as showcased in [17, 28, 32, 49–51].

7

2.3 Secure Memory Allocators

In this section, we introduce three lines of secure memory allocators, from providing the
strongest to the weakest security guarantee (UAF-mitigating techniques A1 - A3).

2.3.1 Complete UAF-Mitigating Allocators (A1)

This line of allocators prevent heap objects from being allocated over any pointer that might
be dangling, which can be achieved by tracking pointer derivation [62] or sweeping all stored
pointers [2, 19, 57]. In other words, these allocators do not trust the free request from
developers; instead, they de-allocate memory only when “absolutely” safe. Hence, allocators
in this category can achieve complete protection against heap-based UAF (modulo subtle
pointer propagation flows [61]). However, they arguably introduce high overheads. For
example, MarkUs [2] more than doubles the run-time on the PARSEC benchmark (see §3.6).

2.3.2 Type-based Allocators (A2)

This line of work prevent heap objects that an attacker targets (victim objects) from being
allocated over a dangling pointer. This is essentially a weaker version of B1 and
entrusts allocators to decide which class of objects should or should never be allocated on
a specific free memory chunk. Intuitively, the ideal allocator would never place a victim
object over a freed memory chunk with attacker-controlled dangling pointers.

Unfortunately, this ideal allocator cannot exist, as there is no way for an allocator to
tell which object can be a victim (i.e., a valuable target for attackers) among all allocated
objects, even with information from static or dynamic program analysis. Hence, in theory,
perfect UAF-mitigation is not possible with this approach.

However, if an allocator knows enough about the semantics of allocated objects, it
can place objects of different semantics into different and isolated pools. In this way, a
dangling pointer of certain semantics controlled by the attacker can only be used to access
newly allocated objects bearing the same semantics. This is commonly known as type-based
allocation which makes UAF exploitation harder by confining what attackers can do after
obtaining a dangling pointer. Not surprisingly, allocators in this category [3, 72, 78], differ
on their definition of semantics or type.

PUMM [79] proposes that the completion of a “task” can be a clear signal to de-allocate
freed memory accumulated in the ended task such that the freed memory can be re-allocated

8

in a new task which is irrelevant to any previous tasks. As tasks can have arbitrarily-defined
boundary (e.g., one iteration of a loop is one task), PUMM effectively encodes temporal
information into type and in theory, can be complementary to type-based allocators [3, 72].

2.3.3 Entropy-Based Allocators (A3)

Entropy-based heap allocators strive to provide protections against almost all of the above-
mentioned heap exploitations by minimizing the attacker’s success rate. Ideally, the success
rate should be low enough to deter attackers from even trying to attack the system. However,
practical implementations face limitations in terms of memory and computation resources,
as demonstrated in Guarder [63].

BIBOP. State-of-the-art entropy-based allocators typically build on the Big Bag of
Pages (BIBOP) [29] memory management mechanism with various security enhancements.
BIBOP-style allocators classify allocation sizes as classes. For each size class, one or several
continuous pages are treated as a bag, and all allocations of the same size class will be
assigned to a corresponding bag. Each bag is split into several slots preemptively and each
allocated object will take one of them. The status of each slot is monitored by a bitmap and
can be used to defend against double or invalid frees. Bag metadata is stored separately to
avoid metadata-based attacks [60], and UAF only occurs within the same size class.

Extended secure features. Prior works have introduced a diverse set of security
enhancements over the basic BIBOP-style allocation, including:

• Guard page: is a single-page virtual memory block not mapped to the physical memory.
Therefore, any attempt to dereference an address in a guard page triggers a segmentation
fault. Guard pages could be strategically placed after each bag or randomly within bags
to protect against overflows or random accesses.

• Heap canary: is a small object set to a secure value and placed at the end of each slot.
Heap overflow can be detected if the canary value is modified.

• Random allocation: guarantees that slots within each bag are not allocated sequentially
(i.e., linear allocations). Instead, each allocated slot is randomly chosen from at least r
free slots. More slots will be requested if there are not enough free slots to satisfy this
requirement. Intuitively, the entropy (reflected by r) marks a trade-off between security
and performance overhead.

Evolution history. While many entropy-based allocators have been proposed, we
introduce three representative works that have contributed to advancing the field.

9

DieHarder [54] is one of the earliest entropy-based secure allocators that adopts the
BIBOP-style memory management and provides statistical protections against heap ex-
ploitations. Despite incorporating all the security features mentioned above, DieHarder has
several issues compared to more recent works. These include unstable allocation entropy,
predictable guard pages, and a significant impact on the execution time of the hardened
program.

Guarder [63] offers multiple improvements over DieHarder, such as using a linked-
list-based free block management algorithm instead of bitmap traversal, providing stable
allocation entropy, and offering in-bag tunable random guard pages. Guarder significantly
reduces the run-time overhead to less than 3%, making it suitable for production systems.

SlimGuard [40] further extends Guarder by reducing its memory overhead. It divides
size classes into 16-byte increments instead of powers of two. However, the current imple-
mentation of SlimGuard has two security compromises: it 1) allocates blocks sequentially
in the free-list, violating the claim of random allocation. 2) reuses freed blocks to store
metadata, possibly due to an implementation flaw, violating the argued metadata separation
practice.

2.4 Other UAF-Mitigating Techniques

UAF can also be defended by invalidating dangling pointers §2.4.1 and validating the
pointer upon derefernece §2.4.2. We label them as type-B and type-C approach to mitigate
UAF attacks, respectively.

2.4.1 Invalidate Dangling Pointers (B)

This line of work breaks the foundation of any UAF exploits. In literature, this has been
achieved via various creative techniques, including:
• Track pointer derivation at runtime and nullify all associated pointers upon object

de-allocation [34, 61, 73, 80];
• Treat pointers as capabilities to access memory (instead of integers) and free revokes

the capability [16, 22, 25].
Prior works in this category have demonstrated complete protection against heap-based
UAF but may pay the price of compatibility (e.g., CHERI [77]), kernel privilege [25], high
overhead (e.g., 80% run-time overhead for DangNull [34]), or subtle complexities as shown
in HeapExpo [61].

10

2.4.2 Validate a Pointer Upon Use (C)

This line of work checks whether a pointer is safe for read/write operation upon dereference
and can detect UAF attempts on the spot. Achieving this typically requires heavy instru-
mentation on instructions that may access memory through a pointer which significantly
outnumber malloc and free operations. This explains the high overhead [37, 52, 58] even
amongst the works designed to run in production [13, 21, 31, 35, 81] (e.g., 20% run-time
overhead for Vik [13]).

2.5 Widely deployed secure memory allocators

The industry has adopted security designs into their allocators. Scudo [43] is a solution from
LLVM [41] and supports random allocation and delayed free-list. Hardened_malloc [27] is
the default allocator of GrapheneOS [26], a privacy and security-focused Android-based
OS. While applying all aforementioned designs in entropy-based allocators and providing
UAF-write protections, it suffers from at least reduced randomness and increased overheads
for larger blocks, making the allocation predictable and limiting its use scenarios.

2.6 Summary

Prior works in categories A1, B, and C can mitigate all heap-based UAF attacks (assuming
perfect implementation) but might also incur excessive overheads or require special hardware
or kernel modification. Type- or entropy-based secure allocators (categories A2, A3) incur
smaller overheads at the expense of incomplete protection. Compatible allocator designs
may be stacked together to provide more complete defense. For example, A2 and A3 typed
allocators can be used together to limit both the attack scope and success rate.

11

Chapter 3

Mitigation Approach: SEMalloc

3.1 Introduction

Heap vulnerabilities are common in memory unsafe languages like C and C++. Exploiting
these vulnerabilities, attackers can inflict denial-of-service, information leakage, or arbitrary
code execution. Use-after-free (UAF) is a typical class of heap vulnerabilities that have
received special attention due to both its prevalence and the number and variety of powerful
exploits it enables [66].

UAF happens when a memory chunk is accessed after it is freed. More specifically,
freeing a heap object renders all pointers to this object (or parts thereof) dangling. Any
memory access through a dangling pointer can lead to undefined behavior according to the
C standard [11].

There is a wealth of prior research intended to address UAF vulnerabilities (see Chapter 2
for an exposition) and pros and cons can be found in each theme of UAF-mitigation
techniques. For example, some allocators suffer from incomplete protection while others
may incur prohibitively high run-time or memory overhead. While no allocation strategy
is unquestionably superior in mitigating UAF vulnerabilities, type-based allocation, which
permits the reuse of memory chunks only among allocations of the same type, seems to be
a promising direction and is the focus of this paper.

Although type-based allocation provides imperfect protection only, the protection is
more predictable than entroy-based allocators and more importantly, the protection can
be achieved with reasonable overheads. However, existing type-based allocators are either
coarse-grained in its definition of type [3, 72] leading to weaker protection, or extremely

12

fine-grained, treating each heap object as a different “type" [78], and leading to complete
protection at a very high cost. Therefore, a gap remains in the design space for type-based
allocators to balance between security and overheads.

The goal of this paper is to find a sweet spot in the design space of type-based allocation
that achieves sufficiently high protection without excessive overhead. More specifically,
we present S2Malloc, a type-based UAF-mitigating allocator that operates on a new
definition of type at its core:

Two heap objects are of the same type if and only if they are (a) allocated from
the same allocation site (e.g., a specific malloc call), and (b) the allocation call
is invoked under the same call stack, modulo recursion.

To avoid confusion with the conventional notion of type in programming languages, we
denote our "type" definition SemaType. For programs hardened with S2Malloc, UAF can
only occur between heap objects of the same SemaType.

S2Malloc’s run-time and memory overheads are low enough to make it suitable for
real-world use. For instance, on SPEC CPU 2017, SEMalloc incurs an average run-time
overhead of -0.6% which is faster than MarkUs [2], MineSweeper [19], and DangZero [25]
(by giving up protection against UAF within the same SemaType), and is similar to
TypeAfterType [72] (with improved security) and PUMM [79] (with improved usability).
SEMalloc incurs an average memory overhead of 61.0% which is much lower than
FFMalloc [78] (again, by giving up protection against UAF within the same SemaType) but
is higher than TypeAfterType due to improved type sensitivity (hence security).
Summary. We claim the following contributions:
• A callout that the “type” in type-based heap allocator can be defined differently and

does not need to be a native type in the programming language;
• The design and implementation of a new type-based memory allocator SEMalloc which

uses SemaType, a carefully designed “type”, to target a sweet spot between sensitivity
(which decides security) and performance (which is affected by tracking overhead); and

• A thorough evaluation of S2Malloc showing that it successfully detects all real-world
attacks we tested with marginal overheads.

3.2 Rethinking Type

In programming languages, “type” is typically considered as a token that encodes some
“semantics” of an object. As briefly discussed in §2.2, a type-based heap allocator confines

13

the types of objects a dangling pointer might ever access [3, 72, 78]. More specifically, if a
freed object is of type T, only objects of the same type T can then be allocated over the
free chunk. Intuitively, type-based allocation provides a tunable defense against UAF with
a clear security and performance trade-off—all by varying the definition of “type”.

While there are many ways to define types (hence the research on type systems [12]), one
particularly useful angle in the context of type-based allocation is the sensitivity of a type,
i.e., how well a type can distinguish heap allocations occurring under different execution
states. The insight is that: objects allocated under the same or similar execution
states are expected to behave similarly in the program, and such behaviors are
essentially the semantics of the objects, which serve as the “type” in type-based allocation.

Borrowing sensitivity notions from program analysis, we can define type sensitivity from
the following perspectives:

Flow-sensitive. If a function is invoked in two places within the same function, a
flow-sensitive type will differentiate these two function calls. To illustrate, in the code
below, the two malloc calls are different under a flow-sensitive scheme.

1 void foo() {
2 void *p = malloc(sizeof(int));
3 void *q = malloc(sizeof(int));
4 }

Path-sensitive. If a function is reached via different control-flow paths within a function
(modulo loop), a path-sensitive type will differentiate these two execution paths. To
illustrate, in the code below, the malloc call might allocate objects of different types
depending on the boolean cond.

1 void foo(bool cond) {
2 size_t len = sizeof(int);
3 if (cond) {
4 len = sizeof(long);
5 }
6 void *p = malloc(len);
7 }

Context-sensitive. If a function is reached via different call traces (modulo recursion),
a context-sensitive type will differentiate these two calling contexts. To illustrate, in the
code below, the malloc call under contexts [foo → wrapper] and [bar → wrapper] allocate
objects of different types.

1 void wrapper(size_t len) {
2 void *p = malloc(len);
3 }
4 void foo() {
5 wrapper(sizeof(int));

14

6 }
7 void bar() {
8 wrapper(sizeof(int));
9 }

Thread-sensitive. If a function is invoked in different threads, a thread-sensitive type
will differentiate the threads. To illustrate, in the code below, the malloc call under the
two threads allocates objects of different types.

1 void *thread(void *ptr) {
2 void *p = malloc(sizeof(int));
3 }
4
5 void foo() {
6 pthread_t t1, t2;
7 pthread_create(&t1, NULL, *thread, NULL);
8 pthread_create(&t2, NULL, *thread, NULL);
9 }

Sensitivity in cyclic control-flow structures. In loops and recursive calls, the
sensitivity are typically classified as:
• Unbounded, where different iterations of a loop or recursion yield different types.
• Bounded, where different iterations of a loop or recursion yield different types, up to a

pre-defined limit.
• Insensitive, where different iterations of a loop or recursion yield the same type.

Finding the right sensitivity level. For a type-based heap allocator to be secure yet
practical, finding the right sensitivity level is the key.

A type definition with higher sensitivity implies a smaller set of object types a dangling
pointer may possibly point to. In this regard, the glibc allocator [24], the default allocator
in most Linux-based systems, is (almost) completely insensitive. Regarding the two closely
related works in this field, the type definition of Cling [3] is thread-sensitive and adopts a
weaker form of context-sensitivity (the context is defined by stack pointer address, which
is an approximation to call trace). Type-after-Type [72] is based on statically-inferred
unqualified types native to the programming language without sensitivity add-ons.

And yet, for a type-based allocator, it is not necessarily true that more sensitivity is
better. To illustrate, the type definition with the highest sensitivity is to treat every heap
object as a different type. This effectively means that a heap allocator will never reclaim
memory—an impractical approach, as a long-running program may allocate and free an
endless number of heap objects yet the virtual memory address space has a limit (e.g.,
48-bit on x86). FFMalloc [78] is a close approximation to this extreme approach and incurs
a large memory overhead despite the fact that it still reclaims virtual pages. A path-,

15

context-, and thread-sensitive type qualifier will be extremely sensitive as well, and yet,
tracking path sensitivity requires instrumentation at basic block granularity, which adds a
significant overhead.

Conclusion. While a multitude of prior work has tried to address UAF vulnerabilities,
the challenge of finding the right balance between the level of protection and incurred
overhead remains. In the rest of this paper, we present our approach towards finding such
a balance.

3.3 Capture Semantics with SemaType

We now introduce SemaType, a type qualifier [23] tailored to capture the semantics of heap
allocations, and showcase how to deduce SemaType at runtime through a concrete example.

3.3.1 Defining SemaType

SemaType is a thread-, context- and flow-sensitive type qualifier over the standard type
system of the underlying programming language (e.g., LLVM IR in SEMalloc) with
bounded sensitivity for recursions and no sensitivity for loops (sensitivity levels defined
in §3.2).

Informally, in a more operative description, two heap objects are of the same SemaType
if and only if they are:
• allocated from the same allocation site (e.g., the very same malloc call in the source

code); and
• allocated under the same call stack, modulo recursion.
In the presence of recursive calls, SemaType differentiates call traces inside each strongly
connected component (SCC, representing a group of recursive calls) in the call graph up to
a fixed limit In SEMalloc, this bound is 214 different call traces overall (see Figure 3.5).
Deducing SemaType. In theory, the SemaType of every heap allocation can be deduced
at compile-time by inlining all functions, converting recursive calls to loops, and creating
a huge main function. This, however, is impractical for any reasonable-sized real-world
program as analyzing a huge function can be both time- and memory-intensive in current
compilers while aggressive inlining results in large binaries. Distinguishing heap allocations
by thread (i.e., thread-sensitivity) at compile-time further adds complexity, as it requires
more extensive function cloning to differentiate per-thread code statically.

16

Fortunately, SemaType can be deduced at runtime as well, at the cost of code instru-
mentation (and hence, overhead). More specifically, the dynamic deduction of SemaType
can be facilitated with context-tracking logic automatically and strategically instrumented
at compile-time.

A concrete example. To illustrate how SemaType can be deduced, we use the simple
example in Figure 3.2. The code snippet is shown in Figure 3.1 and the figure is a
conventional call graph of the program enhanced with (1) flow-sensitive edges (e.g., two
edges from a to e marked as [l] and [r] respectively) and (2) annotations on whether the
call occurs inside a loop or not (i.e., dashed vs solid edges).

3.3.2 Cyclic Control-flow Structures

Due to the existence of a recursive call group (the SCC), there are an unlimited number of
call traces that can reach malloc from main. This is why we cannot enumerate all call traces
to assign each call trace a SemaType statically. And yet, even we can track the call context
at runtime, having an unlimited number of SemaTypes for this program is not desirable
either, because such an approach is, in the worst case, the same as giving each allocated
heap object a different SemaType. As discussed in §3.2, this can be overly sensitive and
may cause a significant memory overhead as in FFMalloc [78].

How can we fit unlimited number of call traces into a fixed number of SemaTypes? We
considered two simple solutions:

• Bounded unrolling: unroll the SCC to a limited depth and treat each malloc called
from the unrolled iterations differently. Beyond the unrolled iterations, assign a single
SemaType to the malloc called inside this SCC.

• Aggregation-based hitmap: aggregate the call trace inside the SCC to a fixed number of
bits and call traces bearing the same aggregated value are considered to have the same
SemaType.

SEMalloc uses the aggregation-based hitmap solution as it provides a slightly better
security by distributing SemaType more uniformly across different rounds of recursion.

However, malloc calls occurring in different loop iterations are not differentiated by
SemaType. Differentiating loop iterations will require path-sensitive instrumentation, i.e.,
instrumentations (and hence overhead) linear to the number of basic blocks; while differen-
tiating iterations in recursive calls only requires instrumentations linear to the number of
functions, which is arguably significantly smaller in most real-world programs.

17

1 int main() {
2 for (...) {
3 b(32);
4 }
5 d(sizeof(int));
6 a(16);
7 }
8 void a(int i) {
9 d(sizeof(int));

10 e(i * 16);
11 e(i * 16);
12 }
13 void b(int i) {
14 c(i, 64);
15 }
16 void c(int i, int s) {
17 if (i > 1)
18 c(i, 64);
19 else
20 malloc(sizeof(int));
21 }
22 void d(int size) {
23 for (...) {
24 malloc(size);
25 e(16);
26 }
27 }
28 void e(int size) {
29 for (...)
30 malloc(size);
31 }
32 void f(int i, int s) {
33 g(i, s - 16);
34 }
35 void g(int i, int s) {
36 c(i - 1, s);
37 for (...)
38 malloc(s);
39 }

Figure 3.1: Code snippet that yields the call graph in Figure 3.2

18

SCC

c

f

malloc

g

main

ab

d

e

SemaType without recursive calls
A main→a→e[l]→malloc
B main→a→e[r]→malloc
C main→a→d→malloc
D main→a→d→e→malloc
E main→d→e→malloc
F main→d→malloc
SemaType with recursive calls
G main→b→c→malloc
H main→b→c→f→g→malloc
I main→b→c→f→g→ c→malloc
J main→b→c→f→g→ c→f→g→malloc
K main→b→c→f→g→ c→f→g→c→malloc
· · · · · · · · · ·
· · · · · · · · · ·
* main→b→c→· · ·→malloc

Figure 3.2: Call graph (left) of a crafted program Figure 3.1 illustrating how SemaType (right)
can be deduced. In this call graph, each node is a function and solid edges represent function calls
not in a loop inside the function control-flow graph (CFG) while dashed edges represent function
calls inside a loop.

19

3.3.3 SemaType Representation

SemaType can be represented as a composition of two values:
• nID: a non-recurrence identifier representing top-level call traces in the directed acyclic

call graph, which is built by abstracting each SCC in the call graph into a node;
• rID: a recurrence identifier for call traces within an SCC.

The nID and rID for the current execution context are both tracked at runtime through
global variables. Their values are merged together to form a SemaType when the execution
is about to invoke a memory allocation function (e.g., malloc).

We assign each call site outside SCCs with a weight (§3.4.3). Before making a call, nID
is incremented by the weight of the call site and decremented by the same weight upon
return. This rule for nID generalizes to a stack of calls as well. Operationally, nID is the
cumulative weight of all call sites in the call stack when a heap allocation happens. Our
weight assignment algorithm (§3.4.3) ensures that two SemaType instances have the same
nID if and only if their external SCC traces are identical (formally proved in §3.5.2).
rID is for intra-SCC call stack tracking. Unlike nID, rID is an aggregated value of what

happened inside an SCC. rID is tracked with two global variables s and h, where

• s is a stack that hosts the stack pointers before a function within an SCC is called (a.k.a.,
a call stack), and

• h is the aggregation of stack s, representing the rID (§3.4.4). h is computed and stored
before an SCC function calls a function not in the current SCC (outbound call), and
will be cleared after the return of the initial function call to this SCC (inbound call).

Repetitive allocation. A SemaType only needs to be tracked if heap objects of this
SemaType can be allocated repetitively. For one-time allocations, i.e., a SemaType that
can only be reached in one call stack where none of the call site is in a loop (see §3.6.5
for evidence that this is rare), once an one-time object is freed, its space is never reused.
Therefore, we optimize SemaType tracking only to those instances where re-allocation is
possible, identified by the presence of at least one recursive call site in their allocation
traces.

We keep track of the recursive depth l by incrementing it before executing an iterative
function call and decrementing after it. Upon memory allocation, if l is not zero, we can
conclude that this SemaType object may be recurrently allocated. l is also increased before
a non-SCC function calls a SCC function (inbound call) and decreased after it.

20

Illustration. Revisiting the example in Figure 3.2, only A and B are non-repetitive; all
other SemaTypes need to be tracked: types C and D are repetitive because of looping while
other types are repetitive due to involvement in recursive calls.

We take F as a case study for variable management. the nID is increased before calling
c and malloc. The call stack s holds three stack pointers, pushed into it before each SCC
function (c, f, and g) is called. Upon calling malloc, the rID (i.e., h) is computed. The
b→c function call enters a SCC, causing l to be incremented. Upon calling malloc, l is
non-zero indicating a recurrent allocation.

Thread sensitivity. Note that thread identifiers are not discussed here in the representa-
tion of SemaType despite the fact that SemaType is thread-sensitive. This is because the
backend heap allocator does not need this information to be deduced through compiler-
instrumented code at runtime. Instead, it can be queried directly by the backend allocator
via a system call (e.g., syscall(__NR_gettid)) or even one assembly instruction if the
platform supports. As a result, we do not specifically encode a thread ID in the malloc
argument passed to the backend allocator (see §3.4.5).

3.3.4 Alternative: Path-sensitivity

SemaType is not path-sensitive. Although a thread-, context- and path-sensitive type qualifier
is intriguing, we have to weaken path- to flow-sensitivity for practical reasons:
• Within a function control-flow graph (CFG), paths exponentially outnumber CFG nodes

(the latter is captured by flow-sensitivity), hence adopting a path-based SemaType will
bloat the number of SemaTypes and allocation pools.

• Deducing execution paths requires either dynamic CFG branch tracking (non-trivial
run-time overhead) or static function splitting, e.g., assign different SemaTypes to the
same malloc based on whether function arguments satisfies predicate X, except that
devising X is undecidable.

• Empirical evaluation (§3.5) shows that SemaType in its current form is sufficient to
defend against known exploits.

3.3.5 Instruction Insertion Summary

The number of LLVM IR instructions instrumented at different code locations are summa-
rized in Table 3.1.

Briefly, following is a summary of instructions added:

21

Code location Call Invoke

SCC inbound edges 1 2
SCC inner edges 9 13
SCC outbound edges 16 22

Iterative node 6 12
Branch node 6 20
malloc call site 12 20

Duplicated invoke node 2*calls in the same bracket

Table 3.1: Number of instructions inserted for call, invoke, and for duplicating the invoke nodes.
In the call graph, we use “branch node” to denote a node with more than one incoming edges and
“iterative node” to denote a node that has at least one outgoing edge annotated in dashes (i.e.,
the call site is in a loop). We note that a branch node can potentially also be an iterative node.
In this case, both groups of instructions will be inserted.

• For an SCC inbound edge, instructions are inserted after the call site to clear s.
• For an intra-SCC edge, instructions are inserted before and after the call site to update

s.
• For an SCC outbound edge instructions are inserted before the call to compute h (which

is rID) and clear s.
• For an iterative node, instructions are inserted before and after the call to maintain nID.
• For a branch node, instructions are inserted before and after the call to maintain nID.
• For a malloc call site, instructions are inserted before the call to encode rID and nID

into the size parameter.

Additionally, if a function is called with exception handling (via the invoke instruction in
LLVM), additional instructions need to be inserted to handle the unwind branch and to
duplicate the execution logic to make it compatible with S2Malloc. We refer the readers
to §3.3.6 for details.

3.3.6 Transformation for Function Call with Exception Handling

In LLVM, regular function calls are represented with the call instruction. This instruction
is similar to a regular function call in high-level programming languages and does not
encode exception handling semantics. For calls that may throw an exception, LLVM uses
the invoke instruction.

22

Different from the call instruction that returns the control flow to the next instruction,
invoke terminates the control flow and jumps to two destinations that contains the regular
branch and the exception handling branch (a.k.a., the unwind branch). If more than one
function calls are made in one exception-handling context (e.g., more than one functions
calls in the same try block in C++), there is still only one unwind branch that all invoke
instructions will jump to.

When making a regular call, nID is decreased after the call returns. With the invoke
instruction, nID needs to be decreased in both destination branches. The unwind branch
also needs to be exclusive to each invoke as nID needs to be reduced with a different value
in different sites. To achieve this, we duplicate the unwind branch and guarantee that each
branch is only jumped from one invoke instruction.

The unwind branch might contain ϕ-instructions, whose return value is dependent to
the prior basic block the control flow jumped from. To make the transformation compatible
with this special instruction, we only duplicate the basic exception handling logic (first half
of the unwind basic block) and insert instructions to reduce nID for the unwind branches
here. We create a new basic block only contains the second half of each branch, and all
ϕ-instructions are in the newly created basic block.

Similarly, a invoke destination block can have incoming edges from basic blocks that
do not end with the invoke instruction. We need to duplicate this destination block as
well to avoid always executing the inserted tracking instructions even this basic block is
not jumped from a invoke call site. We create a new basic block and insert the SemaType
tracking instructions here. We then replace the invoke destination to this block and link
this block with the old destination, while update all ϕ-instructions accordingly.

3.4 SemaType-based Heap Allocation

In this section, we describe the design and implementation details of SEMalloc—a
SemaType-based heap allcator for mitigating UAF vulnerabilities. We first introduce our
threat model and explain how SEMalloc realizes dynamic SemaType deduction and
allocates memory accordingly.

Threat model. We assume that (a) the underlying operating system kernel and hardware
are trusted, (b) the targeted program is uncompromised at startup, and (c) the attacker can
obtain and analyze the source code and the compiled binaries of both the targeted program
and SEMalloc. Exploiting implementation bugs in SEMalloc or utilizing side-channel
information, such as power usage or memory fetch time, are left out of scope.

23

LLVM IR

Track SemaType
§3.3

Call Graph
Construction §4.2

Edge Weight
Assignment §4.3

malloc (① || ② || ③)

malloc (③)

Allocator Backend
§4.6

LLVM Pass

Stack Pointer
Aggregation §4.4

malloc (① || ③)

Parameter
Encoding §4.5

Figure 3.3: Design overview of SEMalloc (1 : flags, 2 : SemaType, 3 : allocation size). The
size is the parameter without SEMalloc, while SEMalloc encodes the trace information into
the parameter after applying the pass.

3.4.1 Overview

SEMalloc consists of an LLVM transformation pass and a heap allocator backend. The
LLVM pass analyzes the intermediate representation (IR), inserts instructions to cre-
ate and instrument the tracking variables, and encodes the allocation parameters with
SemaType-tracking information. The LLVM pass is built on top of MLTA [44] (for com-
prehensive and robust call graph construction) and CXXGraph [9] (for graph algorithms).
The pass instruments SemaType tracking and encoding in the program which eventually
passes SemaType through common heap allocation APIs, including malloc, calloc, realloc,
memalign, pthread_memalign, and aligned_alloc. The heap allocator backend takes the
encoded information for segregated memory allocation.

Figure 3.3 gives a comprehensive overview of SEMalloc. In the transformation pass,
SEMalloc first constructs a call graph that only contains functions (nodes) and call sites
(edges) relevant to SemaType that need to be tracked (see §3.4.2), and assigns weights on
all edges and nodes in it for nID computation (see §3.4.3). In the call graph, an SCC is
treated as a function node, and call traces within it are not considered by nID. Instead,
intra-SCC calls are tracked in rID by obtaining and aggregating the stack pointers with
an aggregation algorithm (see §3.4.4). They are encoded into the size parameter of an
allocation request (see §3.4.5).

24

In terms of the heap allocator backend, we explain how it enforces the allocation
segregation policy using the decoded SemaType (see §3.4.6). For simplicity, we use malloc
to represent all functions that may request heap memory directly from the backend. We
refer readers to §3.3.5 for a complete discussion about how the IR is transformed after
applying the pass and how instructions are inserted.

3.4.2 Call Graph Construction

We start by building a call graph for the program to be hardened by SEMalloc. While
call graph is a foundational concept with mature support in modern compilers, the call
graph in SEMalloc is slightly more complicated in two aspects:

1) Flow-sensitive edges. If function e is called in two places by function a, there will
be two edges from a to e in the call graph, as shown in the example in Figure 3.2.

2) Indirect calls. SEMalloc takes special care for indirect calls whose call targets
cannot be resolved at compile-time and hence do not show up in a conventional call graph.
To handle indirect calls, SEMalloc first identifies all callee candidates via MLTA [44].
MLTA uses a multi-layer type hierarchy to refine indirect call targets and is based on
the observation that function pointers are stored in complicated hierarchical structures.
It matches the load instructions of each layer and take functions have the same multi-
layer structure type as call candidates. Subsequently, for each callee candidate identified,
SEMalloc adds an edge in the call graph and treat different callee candidates as if they
are called in different places in the calling function. This is a conservative treatment for
indirect calls and can lead to more SemaTypes being derived than necessary which can
result in a better security but a larger memory overhead.

Additional trimming and marking. With a baseline call graph, the next step is to
remove nodes and edges that are irrelevant to SemaType, i.e., paths that do not eventually
lead to a malloc. We also mark call sites that occur in a loop in the caller function
(e.g., dashed edges in Figure 3.2) in order to distinguish recurrent allocations vs one-
time allocations (see §3.3.2). Such a marked call graph enables SEMalloc to optimize
instrumentation to recurrent mallocs only. We remove all nodes or edges that are not
(eventually) called by or (eventually) call any recurrent edge. This call graph contains only
nodes and edges that eventually call malloc while each edge leads to at least one recurrent
SemaType object.

Finally, we use the Kosaraju-Sharir algorithm [59] to identify SCCs and create a new
call graph with each SCC being abstracted as a single node. In this way, the new call graph

25

is essentially a directed acyclic graph (DAG) while recursions (i.e., intra-SCC paths) are
handled using rID (see §3.4.4).

3.4.3 Edge Weight Assignment

Recall from §3.3.3 that nID, which is part of the representation for SemaType, serves to
distinguish different call stacks that end up with malloc modulo recursions in SCCs. As
nID is calculated as the sum of weights per each edge in the path, these weights need to be
assigned strategically to ensure that different paths yields different nID values.

To assign weights, we run a topological sort on the DAG for a deterministic ordering of
functions and then go through each function to assign weights according to algorithm 1.

Algorithm 1: Edge weight assignment
nodes ← topological_sort(DAG)
for each n ∈ nodes do

w ← 0
for each e ∈ n.outgoing_edges do

e.weight ← w
w ← w + max(1, e.dst.weight)

end
n.weight ← w

end

We maintain two weights while going through each function: the function weight and
the call-site weight. The function weight describes how many different SemaTypes exists
if taking this function as the program entry point. The call-site weight is the sum of the
weights of all functions called before it within the function. It describes how many different
SemaTypes all previous call sites of the current function lead to. More specifically, it is an
offset that guarantees that all SemaTypes allocated through the current call site have their
nID larger than all previous SemaType nIDs to avoid collision. For example, in a function,
the path weight of the first call site is zero, and the weight of the next call site is the weight
of the first callee function (note the minimum weight is one, line 4 - 7). As long as the
offset is computed correctly, no collision will happen.

After processing all call sites, we assign the weight of the current function as the sum
of the weights of all its callees (line 8). Using the topological order, we guarantee that all

26

callee weights are computed before they are needed; we set the weight of malloc to zero as
it does not call any function.

Note that weight assignment (algorithm 1) ensures a one-to-one mapping between a nID
and an end-to-end path that reaches the malloc in the call DAG (see §3.5.2 for a proof). It
is worth-noting, however, that tracking the path at runtime directly is possible but would
incur a slightly higher overhead than tracking the nID, which only involves two arithmetic
operations per each call site.

Optimization. To further minimize the instrumentation needed, a node can be removed
from the call graph if it has only one incoming edge, i.e., the function f (represented by
this node) is only called in one place. Essentially, removing the node has the same effect as
inlining f into its caller (without actually transforming the code). In this situation, the
call site that invokes f does not need to be instrumented for nID-related logic. And this
optimization repeats until we cannot find such f in the call graph.

Example. We present an example of the allocated weights of a crafted program in Fig-
ure 3.4.

3.4.4 SCC Stack Pointers Aggregation

We balance between performance and security, and use an aggregation approach to track
the execution path within SCCs. Before calling each function within the SCCs, we obtain
the stack pointer using an LLVM intrinsic function, which is then pushed into the stack s,
and will be the aggregation input to compute rID.

Algorithm 2: Algorithm to aggregate the stack pointers.
h ← 0
for each p ∈ s do

h ← h ≪ 2 ; p ← (p ≫ 6) & 0x3 ; h ← h + p
end
h ← h & 0x3FFFF

rID is computed using algorithm 2. Initially, we set it to be zero (line 1). We then go
through each stack pointer by adding the seventh and eighth least significant bits of each
input to it and shift it to left by two bits (line 3-5). We specifically take these two bits as
stack pointers are 8-byte aligned in the x86 clang environment [42], and we select those bits
that are not identical in different call frames. Finally, we only keep the least fourteen bits of
the aggregated value, which represents the most recent seven functions called within SCCs.

27

0

main

B (2)

D (1)

M (0)

C

0 1

1

0
2

Figure 3.4: Weight assignment of a crafted example program. Dashed lines refer to one-time
function calls and solid lines refer to iterative function calls. Numbers on the edges refer to edge
weights and numbers in the function nodes are function weights. For example, the nid of main →
D → malloc is 2.

28

1514131211109876543210Offsets

Object Size
0

16

nID32

HLrID48

Figure 3.5: Parameter encoding rule for regular objects(L: loop identifier; H: huge block
identifier).

We note that as a stack pointer is dependent on the call depth and all calls that are not
returned, this algorithm accounts for the entire call trace without losing function calls older
than the most recent seven.

3.4.5 Parameter Encoding

The heap allocator backend requires two pieces of information as input: allocation size
(as required by all memory allocators) and SemaType (unique information in SEMalloc),
and allocates heap objects based on them. While standard memory allocation APIs already
accept the allocation size as a parameter, we need to find a way to pass SemaType to the
backend. And SEMalloc, conceptually, has two options:

• Changing the malloc signature: This would involve adding a new parameter
to the existing interface and hence, introducing a new function signature like
malloc(size_t size, void *semantics).

• Repurposing the size_t parameter type: This implicitly change the type of the size
parameter with SemaType encoded alongside the existing size.

In SEMalloc, we take the second approach for compatibility with the existing allocation
interface, and encode SemaType within the malloc size parameter using the format shown
in Figure 3.5 for blocks smaller than 4GB.

We set the loop bit (L) if the number of loop layers (l) is not zero to notify the backend
that it might reuse the memory freed by another object. We store the nID and rID
accordingly as the SemaType, and we use the remaining 32 bits to store the size of the
allocated object.

For larger blocks, we set the huge-block bit (H) and use all the remaining bits to store
the block size. These blocks are allocated via a system call, and launching UAF attacks on
them is not trivial (see §3.4.7 for details).

29

This design is compatible with legacy code or external libraries that are not transformed
by our pass with function allocation call size up to 4GB. However, memory allocated this
way do not have the loop identifier set, is not going to be released unless the block is big
enough that allocated from the OS directly (see §3.4.7 for details). This indeed is not
common as shown in Table 3.9 and Table 3.10, where most tests have more than 99%
allocations identified with recurrent SemaType.

3.4.6 Heap Allocator Backend

The backend heap allocator for SEMalloc is packaged as a library that can either
be preloaded at loading time or statically linked to replace the default allocator. The
backend extracts and decodes the SemaType packed in the size parameter and enforce
SemaType-based allocation by allocating objects of different SemaTypes from segregated
pools.

More specifically, SEMalloc backend adopts the BIBOP [29] style to manage block
allocation inside each SemaType pool. BIBOP allocates blocks of the same size class together
using one or more continuous memory pages, and preemptively allocate sub-pools for each
size class. A block is not going to be further split or coalesced. SEMalloc is built upon
this design. For each thread (hence thread-sensitivity §3.2) it allocates a global BIBOP
pool for all one-time SemaTypes and allocate individual pools for different SemaTypes upon
seeing a recurrent request for the same SemaType. SEMalloc uses power of two size
classes, for example, all blocks with the same SemaType and of size 65 to 128 bytes will be
allocated to the same pool.

Operationally, upon receiving a heap allocaiton request, the backend first checks the
huge bit and, if applicable, allocates huge blocks using the mmap [38] system call. For regular
blocks, if the loop bit is not set, SEMalloc will allocate it using the global pool, and it
will never be released even after it is freed. If the loop bit is set, SEMalloc allocates it
using the global pool if the SemaType is seen for the first time and otherwise create an
individual pool dedicated for all following allocations with this SemaType A freed block in
the individual pool can be reused by later allocations with the same SemaType.

3.4.7 Implementation Details of The Allocation Backend in SE-
Malloc

The heap allocator backend of SEMalloc is implemented using the dlsym function and is
a dynamic library that can be loaded by either setting the LD_PRELOAD environment variable

30

to replace the system default memory allocator or direct linkage during compilation.
SEMalloc maintains a per-thread metadata that stores the status of all blocks allocated

in this thread. If a block not allocated in this thread is freed, SEMalloc will atomically
add this block to the free-list of the thread that allocates it and defers the deallocation until
that thread handles a heap memory management operation. Other than the free-list, for
each thread SEMalloc maintains a global pool for all one-time allocations, a lazy pool
for all first-seen recurrent allocations, several individual pools for each recurrent allocations,
and a map that used to locate the pool for each SemaType. The lazy pool and global pool
are pools for all size classes, while individual pools contain a limited set of size classes (most
of the time only one) that have been used to save virtual memory address space.

Upon creation, each pool is allocated with a dedicated virtual memory address range
that all its memory will be allocated from. For each sub pool of the global pool or the lazy
pool, SEMalloc allocates the block sequentially. For each individual pool, SEMalloc
maintains a free list as well and will allocate the head of the free list if it is not empty.
Otherwise, SEMalloc will also allocate the mapped memory of this individual pool
sequentially.

For each block, a 16-byte metadata is stored immediately before the data. For huge
block, it stores the block type (huge) and the block size. For regular small blocks, it stores
the block type (regular) with one byte, the ID of the thread that allocates the block with
two bytes, the pointer to the pool that allocates the block with eight bytes, and an offset if
the block is allocated via memalign-like functions to locate the start byte of the block chunk
with four bytes.

When a malloc call comes, SEMalloc firstly check if the block size is larger than
the huge allocation threshold or not. If so, SEMalloc uses mmap to allocate this block
and sets the header. Otherwise, SEMalloc takes the recurrent identifier. If it is not set,
SEMalloc will use the global pool to allocate this block. Otherwise, SEMalloc will
take SemaType and check if a block with it is already allocated or not using the lazy pool.
If so, SEMalloc can confirm that this blocks with this SemaType is recurrently allocated
and will allocate an individual pool for all following allocations with this SemaType. The
map will be updated with this new entry as well. Otherwise, the lazy pool will allocate this
block.

When a free call comes, SEMalloc will firstly take the header of the pointed block
to check if it is a huge block or not If so, SEMalloc uses munmap to deallocate this block.
Otherwise, SEMalloc will check the thread id and put it to the corresponding free list if
this block is not allocated in this thread. If the block is allocated in this thread, SEMalloc
then takes the pool pointer. If the pool is a global pool or lazy pool, SEMalloc will

31

release the taken memory to the operation system by calling madvise. However, this virtual
memory address will not going to allocated to any blocks again. If the pool is an individual
pool, SEMalloc will put this block to the pool’s free list, recycling it for another block
with the same SemaType.

3.5 Security Analysis

3.5.1 Qualitative Analysis

The key reason why type-based allocators cannot deliver perfect UAF mitigation is UAF
within the same type. More specifically, to S2Malloc, this means UAF within memory
objects marked with the same SemaType—and this is not only possible but also common
due to recurrent allocations, i.e., malloc inside a cyclic control-flow structures such as loops
or recursive calls (§3.3.2). On the other hand, memory reuse is crucial in reducing memory
footprint. An allocator that places each object into a new pool and never reclaim memory
is immune to UAF at the cost of a high memory waste. Therefore, intuitively, the more
recurrent allocations a program have, the less effective SEMalloc is in mitigating UAF
exploits, but the greater the memory saved by S2Malloc, compared to allocators that
never free memory.

In this section, we sketch a qualitative explanation on how loops and recursive calls
affect the security of S2Malloc.

Setup. Assume a program has N allocation sites:
• each allocation site i ∈ 1..N can be reached via Pi traces in the flow-sensitive call graph

after CFG-reduction (§3.4.2);
• each trace Ti,j (where j ∈ 1..Pi) contains Ri,j nodes that are reduced from call graph

SCCs, i.e., recursive calls (§3.4.4);
• k out of N sites are in a loop w.r.t a function-level CFG.

SEMalloc assigns one nID to each trace Ti,j and up to 2#bits(rID) rIDs per trace. Thus,
this program will have:
• a minimum of ∑

Pi SemaTypes, the minimum occurs when the program does not contain
any recursive calls, or

• a maximum of 2#bits(rID) ×∑
Pi SemaTypes, the maximum occurs when all traces Ti,j

have recursive calls.

32

UAF-protection in different scenarios. We discuss how UAF protection in S2Malloc
can be weakened by recurrent allocations with reference to complete UAF mitigation:

• No recurrent allocation (k = 0 and all Ri,j = 0): SEMalloc provides perfect security
against UAF, a similar level of protection as complete UAF-mitigating allocators since
no memory reuse exists. SEMalloc provides strictly more protection than existing
type-based allocators: in the worst case, all ∑

Pi SemaTypes can the same C/C++ type
which will be allocated from the same pool.

• With malloc in loops (k ≠ 0 and all Ri,j = 0): SEMalloc provides weaker security
than complete UAF-mitigating allocators as UAF is possible within the same SemaType
in one of the k loop allocations. Higher k means weaker UAF protection, but a smaller
memory footprint. Regardless of k, SEMalloc provides strictly more protection than
existing type-based allocators, as shown in §3.2.

• With malloc in one group of recursive calls only (k = 0 and all Ri,j = 0 except Ra,b = 1):
SEMalloc provides weaker security than complete UAF-mitigating allocators as UAF
is possible among the same SemaType in the recursive call group. Every SemaType in
trace Ta,b shares the same nID, and there is only limited entropy for rID but potentially
unlimited call traces in the recursive call group. Having more SCCs in call graphs
means weaker security but more memory-saving. Regardless of the number of SCCs,
SEMalloc still provides strictly more protection than existing type-based allocators,
as shown in §3.2.

• With malloc in both loops and recursive calls (k ̸= 0 and some or all Ri,j ̸= 0): Security
degradation comes from all sources of recurrent allocations (discussed above) as there
are now more chances for two objects to be marked as the same SemaType. However,
memory savings are also brought in due to exactly the same reasons.

Effectiveness evaluation. To show how SemaType diversifies heap allocation, we compare
the number of different allocation sites using SemaTypes and pure object types in the last
two columns of Table 3.10 based on programs in the PARSEC3 [7] and SPEC 2017 [65]
benchmarks. In programs that have complicated program contexts (e.g., 600 and 602),
SemaType diversifies the allocations by more than 250x than the native allocation sites.
Other tested programs that have the same native-typed objects allocated from different
traces are also diversified accordingly.

3.5.2 Formal Analysis

SEMalloc stops UAF attacks by defining the object types based on the path used to
allocate them, and guarantees that upon the allocation call site (i.e., malloc call), the exe-

33

cuting tracing and weight assignment can uniquely identify each type. As explained in §3.3,
SemaType is classified into two types in SEMalloc: allocated through recurrent allocation
trace (RA), and non-recurrent regular allocation trace (NA). There are three possibilities if
SEMalloc cannot represent each SemaType identically based on this classification:

1. NA1 and NA2;

2. NA1 and RA1;

3. RA1 and RA2.

Next, we explain why SEMalloc can notify the runtime wrapper to allocate blocks of
different SemaType separately in each of the above scenario.

NA1 and NA2

A SemaType is classified as NA if there is no recurrent call site in its allocation trace. Thus,
there is no possibility that a NA trace accidentally classified as RA. NA blocks are not to
be reused by another block after freed. As a result, the two NA blocks are never going to
share the same memory address.

NA1 and RA1

As explained above, a NA trace is not classified as RA thus never reuses a block allocated
to others or releases itself to be used by another object. Thus, cross-category memory
address reuse also will not happen.

RA1 and RA2

RA blocks release the memory space after being freed and a further block with the same
SemaType will be allocated to this address. If two different RA objects allocated to the
same virtual memory address, their nID must be the same (i.e., t1 = t2) upon calling
malloc. We define the call trace of RA1 as C1 = α1, α2, ..., αn, and the call trace of RA2 as
C2 = β1, β2, ..., βm. Our target is to prove:

Theorem. Given any two recurrent call traces C1, C2, where C1 ̸= C2. Upon the malloc
call site βm of C2, its nID t2 is never the same to the nID of C1 at their malloc call site αn

with the value t1.

34

To prove this, we first need to prove:

Lemma 1. Given any recurrent call trace C = γ1, γ2, ..., γr, its nID t is always the same
at its malloc call site γr.

Suppose the iterative call site is γi. After returns γr and before calling it the next time,
function call γr, γr−1, ..., γi sequentially returns and γi, γi+1, ..., γr are sequentially called.
As t is increased with a specific value before a call site and is decreased with the same value
after the call returns, executing the above sequence does not change the t. Thus, we have
proved the lemma 1.

Lemma 2. The weight of function wf is larger than the sum of the weights on any trace
starting with it.

We can use mathematical induction to simply prove this. Suppose f does not call
any functions other than malloc, its weight is the number of calls to malloc it has, and
the path weights are assigned from zero to wf − 1. Now, suppose f does call functions
other than malloc, we suppose that f calls F = f1, f2, ..., fq sequentially. We assume that
∀f̃ ∈ F , lemma 2 applies. We take an arbitrary fp ∈ F . The weight assigned with it is∑p−1

i=1 wfi, and by assumption the maximum path weight among all call traces within fp is∑p
i=1 wfi < wf = ∑q

i=1 wfi Thus, we have proved the lemma 2.

Prove the theorem. To prove the theorem, We only need to show that the sum of the
weights in each trace is identical. We denote the weight of αi as wαi, and the weight of βi

as wβi. We assume that the two traces shares the first k prefixes (i.e., αi = βi, 0 < i ≤ k).
Now take the (i + 1)th call of each trace αi+1 and βi+1, their caller is the same function.
Without the lose of generality, we suppose that wαi+1 > wβi+1. According to the weight
allocation algorithm algorithm 1, in the caller function, βi+1 is called before αi+1, and
wαi+1 − wβi+1 ≥ wδ, where wδ is the weight of the function called by βi+1. According to
lemma 2, any function traces within δ is smaller than wδ, thus wαi+1 >

∑m
k=i+1 wβk. Thus,∑n

k=1 wαk >
∑m

k=1 wβk. We have proved the theorem.

3.5.3 Empirical Check on Real-world Exploits

We evaluate the effectiveness of SEMalloc in stopping UAF exploits by running it with
15 real-world UAF vulnerabilities. We compare the protection results with two type-based
allocators, Cling [3] and TypeAfterType [72], while other allocators used in performance
evaluation (§3.6) either have theoretically complete UAF-mitigation [2, 19, 25, 78] or
requires case-by-case manual annotation to work (e.g., PUMM [79]).

35

Vulnerability Exp. (§2.2) [72] [3]† S2Malloc

CVE-2015-6831 B # #
CVE-2015-6835 C # #
Python-24613 C
mRuby-4001 D G# G#
yasm-91 D/E G# #
CVE-2018-11496 D/E # #
CVE-2018-20623 C G#
yasm-issue-91 C G# G#
mjs-issue-78 B G# #
mjs-issue-73 B G# #
CVE-2017-10686 D/E G# #
CVE-2016-3189 D # #
CVE-2009-0749 D/E
CVE-2011-0065 B G#
CVE-2012-0469 B G#

Table 3.2: SEMalloc is effective in thwarting () exploitation of all real-world UAF vulnera-
bilities evaluated while TypeAfterType [72] and Cling [3] provide no protection (#) or partial
protection (G#) to most vulnerabilities. †: Cling is not open-sourced and is only analyzed concep-
tually.

Tested vulnerabilities are summarized in Table 3.2. They are selected from three sources:
representative CVEs from DangZero [25], TypeAfterType [72], uafBench [46], and further
enriched with additional vulnerabilities selected by us to cover the exploitation types
discussed in §2.2. We present four representative examples here.

While SEMalloc successfully thwarts all exploits, TypeAfterType provides no defense
against four exploits and only partial protections for most attacks, as the attacker can still
launch attacks successfully but cannot create powerful attack primitives. Additionally, we
checked all exploits since 2019 in exploitDB [55], and we are not aware of any exploitation
against S2Malloc—confirming that SEMalloc can help confine UAF exploitability in
practice.
Case study: mjs-issue-78 [46]. This vulnerability is in mjs, a restricted JavaScript engine,
and can be triggered when mjs parses a crafted JSON string as shown in the test case.

While parsing, both the raw JSON string and intermediate outputs are stored in one
buffer: field owned_strings within type (struct mjs), a context manager for an mjs en-
gine. As the parser keeps appending parsed elements to the buffer (more precisely, to

36

https://github.com/cesanta/mjs/blob/238dc31c6eb386bd91f3a3f1491fc46b650783b1/mjs/tests/unit_test.c#L2838-L2842
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L3126
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L2098-L2102

mjs->owned_string->buf) during mjs_mk_string, the buffer might potentially be reallocated
via mbuf_resize, causing other pointers that also refer to the same buffer to be dangling (e.g.,
frozen->cur). To summarize, the dangling pointer in this UAF vulnerability is allocated in
the call trace of mjs_json_parse → json_walk → ... → frozen_cb → mjs_mk_string →
mbuf_resize → realloc.

Assuming that the memory chunk freed by mbuf_resize is later reallocated to a buffer
in which the attacker can put arbitrary data, then the attacker-controlled object can be
accessed by a dangling pointer (e.g., the frozen->cur through one of “cur(f)”). This
UAF-read might lead to compromised execution states, making it a type-B exploit.

From an attackers’ perspective, to exploit this UAF vulnerability, the crux is to gain
control of an object that may be allocated to the memory chunk freed by mbuf_resize.
This can be done in at least two ways based on our findings:

Exploit 1 : Run an mjs engine in another thread and have the other mjs engine parse an
attacker-supplied JSON string. In this way, the attacker-controlled buffer is allocated using
exactly the same call trace as the dangling pointer. Therefore, only SEMalloc can defend
against this exploit because SemaType is thread-sensitive while flow- and context-sensitivity
is not enough.

Recall that Cling defines the “type” of an allocated object based on the two innermost
return addresses on the call stack when realloc is invoked. This definition cannot distinguish
objects allocated using exactly the same call stack on different threads. The lack of thread-
sensitivity is also the reason why TypeAfterType cannot defend against this exploit, as both
the freed object (which inadvertently creates dangling pointers) and attacker-controlled
object are classified as the same “type”, hence allowing UAF among them.

Exploit 2 : An attacker may exploit another call trace mjs_mkstr → mjs_mk_string

→ mbuf_resize → realloc to obtain a controllable buffer potentially in the same thread
where mjs_json_parse is invoked (e.g., by placing a mkstr(..) JavaScript call after the JSON
string). In this way, the attacker-controlled buffer is allocated using a different call trace as
the dangling pointer. SEMalloc mitigates this exploit by assigning different SemaTypes
to the dangling pointer and attacker-controlled buffer, eliminating the possibility of UAF
among them.

Cling takes mbuf_resize as an allocation wrapper and treats all objects allocated
through mjs_mk_string to have the same type. This allows UAF between the dangling
pointer and attacker-controlled buffer despite that they are originated from different roots.
TypeAfterType, on the other hand, further takes mjs_mk_string as a malloc wrapper as it
still passes a variable length to mbuf_resize. This enables TypeAfterTypet to differentiate
objects allocated through frozen_cb and mjs_mkstr. Hence, can mitigate this exploit.

37

https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L13656
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L13706
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L6430
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L5966

Case study: CVE-2015-6835 [50]. This vulnerability is in the
PS_SERIALIZER_DECODE_FUNC function, which restore a PHP session from a serial-
ized string. During this process, php_var_unserialize returns a zval pointer, which is
stored in a hashtable. However, the same pointer might be freed later and this causes the
stored copy to be dangling. Through this dangling pointer, an attacker might corrupt any
zval object that may be reallocated to the freed slot.
zval is a reference-counting wrapper of almost all other objects in the PHP engine.

Therefore, the attacker can corrupt any zval object that may be reallocated to this free
slot and its value can be leaked through the dangling pointer. In the PoC exploit, the
attacker simply uses the PHP echo(..) function to dump a newly allocated zval through
the dangling pointer, i.e., a type-C exploit.

In this PoC exploit, both the dangling pointer and victom objects are allocated through
a common call trace: php_var_unserialize → emalloc → malloc. This is critical to
understand why both Cling and TypeAfterType fail to provide protection. For Cling,
this malloc wrapper chain implies that all zval objects allocated through this chain share
the same type (measured by the two innermost return addresses on the call stack). This
leaves the dangling pointer plenty of candidate objects to refer to after several rounds of
deserialization in PHP. TypeAfterType can inline malloc wrappers but the inlining stops
at php_var_unserialize because it sees the sizeof(zval) argument in emalloc and hence,
will allocate all zval objects originating from this malloc wrapper from the same pool.
Unfortunately, the dangling pointer is also allocated this way, enabling UAF among the
dangling pointer to other zval objects as well.

SEMalloc can mitigate this exploit because SemaType is not only context-sensitive
but also flow-sensitive. For examples, a session initialization zval can never be allocated
from the same pool as a zval created in the middle of a session.

Python-24613. [32] This vulnerability resides in the logic of parsing an array from
a string and appending it to an existing array. In the array.fromstring() method, the
Python interpreter calls realloc to guarantee that the allocated memory of the appended
array object is big enough, and calls memcpy to copy the data from the string to the new
array. However, if the array is appending itself, i.e, the string and the array is the same
object, realloc essentially frees this object, and the subsequent memcpy copies the freed
heap chunk to the new object. An attacker can exploit this vulnerability by racing to
allocate objects filled with attacker-controlled malicious data over the freed chunk, making
this a type-C exploit (see §2.2).

In this exploit, both the dangling pointer and the target object (i.e., the ob-
ject that the attacker uses the dangling pointer to read from) are allocated through

38

array_fromstring→realloc. array_fromstring is an exposed Python API that can be
called directly in a Python script, and is only called by one other function, array_new, which
is also a Python API. All three allocators here can differentiate these two call sequences,
thus providing complete protection for this vulnerability.

CVE-2012-0469. [72] This vulnerability is in the indexedDB module of Firefox. While
a IDBKeyRange is freed, its reference is left in the object table. The attacker can craft an
object, for example, a vector to reclaim the pointed space, and interpreting the crafted
object using the dangling pointer can cause arbitrary code execution. This is a type-B
exploit.

As this object can only be allocated by calling new to its constructor, Cling can stop
the type confusion on the primary type, provides a partial protection. SEMalloc and
TypeAfterType can further differentiate the source of the created IDBKeyRange object,
from serialized data or explicitly created in the JavaScript script, thus providing complete
protection for this vulnerability.

3.6 Performance Evaluation

We evaluate the performance of SEMalloc across a diverse range of scenarios, including
macro, micro, and real-world programs. For comparative analysis, we also benchmark
MarkUs [2], FFMalloc [78], TypeAfterType [72], and the glibc memory allocator [24] on the
same test suites. Although Cling [3] is a closely related work, we omit it in our evaluation
because its code is not available.

Based on the design features of each memory allocator, we expect that SEMalloc
should:

A incur a lower run-time overhead than MarkUs,
B incur a lower memory overhead than FFMalloc,
C is on-par with TypeAfterType in run-time overhead and may incur a higher memory

overhead.

Preview. The outcomes of our evaluation are in alignment with these expectations with
consistent results across mimalloc-bench, SPEC CPU 2017, PARSEC 3, and real-world
server programs (Nginx, Lighttpd, and Redis).

39

PARSEC SPEC
0.5

1.0

1.5

2.0
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 3.6: Normalized average and standard deviation of run-time overhead on PARSEC and
SPEC benchmarks.

3.6.1 Evaluation Setup

All experiments except DangZero are conducted in the Ubuntu 22.04.4 environment, on a
server configured with a 48-core 2.40GHz Intel Xeon Silver 4214R CPU with 128GB of system
memory. DangZero experiments are executed on the same machine with QEMU-KVM as
DangZero requires patching the Linux 4.0 kernel in the guest VM.

We use LLVM 15 to compile programs. For simplicity, we use the WLLVM [71] compiler
wrapper to link the whole program bitcode into a single IR file. While generating the IR,
we enable the compiler to track pointer types by setting the -fno-opaque-pointers flag,
and disable constructor aliasing with -mno-constructor-aliases flag to simplify the call
graph. We then transform the IR using our pass and compile it to generate the hardened
program. We also generate unhardened programs by directly compiling the IR without
running the S2Malloc-specific transformation pass.

We use a Python wrapper to measure clock time and maximum memory usage (maxrss)
in program execution for all test programs except from DangZero-protected programs,
which is additionally measured with the page table size as instructed in their paper. All
results are based on five runs, normalized with respect to the corresponding glibc. We
compute performance averages using geometric means, and report standard deviations as
well.

While we built all related tools as instructed in the latest versions of their respec-
tive official GitHub repositories, we note that MarkUs, TypeAfterType, DangZero, and
MineSweeper are not compatible with all tests. We exclude them from computing their
respective average overheads and the complete list can be found at §A.2.

40

PARSEC SPEC
0.5

1.0

1.5

2.0

2.5
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 3.7: Normalized average and standard deviation of memory overhead on PARSEC and
SPEC benchmarks.

3.6.2 Macro Benchmarks

We choose the widely used SPEC and PARSEC benchmark suites as macro benchmarks.
They are general-purpose benchmarks with various kinds of programs that can show the
performance of SEMalloc in a broad range of scenarios.

SPEC CPU2017 : We use SPEC CPU2017 [65] version 1.1.9 and report the results of
12 C/C++ tests in both "Integer" and "Floating Point" test suites. We use the SPEC
runsetup option to set up the program inputs and invoke the benchmark binary through
our measurement wrapper to collect more precise overhead numbers. We note that some
SPEC tests run the test executable multiple times with different inputs. We report the
sum of all run-times and the largest memory usages for these tests.

PARSEC 3 : We use the latest PARSEC 3 [7] benchmark, excluding two (“raytrace”
and “facesim”) from analysis because they are incompatible with the Clang compiler, and
one (“x264”) as it causes segmentation fault with glibc.

Benchmark Performance. On SPEC, SEMalloc, FFMalloc, and TypeAfterType
outperform the glibc allocator (0.6%, 3.3%, and 3.0% respectively). This is explainable as
pre-allocating heap pools by types reduces the number of page requests made the kernel and
hence can reduce allocation latency. Placing heap objects of similar types or SemaTypes
in adjacent memory is also beneficial to cache lines. MarkUs and MineSweeper incur
significant overheads (21.0% and 33.4% respectively), which is expected due to expensive
pointer scanning operations. DangZero also incurs a significant 45.2% overhead even with
a modified kernel presented, which does not align with our expectations, and is explained
below.

All allocators incur extra memory overhead than glibc. As expected, for type-based
allocators, the more sensitive the type (TypeAfterType → SEMalloc → FFMalloc) the
greater the memory overhead (23.5% → 61.0% → 98.4%). MarkUs and MineSweeper incur

41

31.1% and 32.5% memory overheads respectively due to quarantine of freed blocks although
the number here is for reference only. DangZero incurs a 47% memory overhead (including
kernel memory consumption) due to the use of alias page tables.

The results on PARSEC also align with expectations that SEMalloc incurs: smaller
run-time overhead (-0.4%) than MarkUs (144%) and MineSweeper (23.0%), smaller memory
overhead (40.5%) than FFMalloc (84.1%), similar run-time overhead with TypeAfterType
(1.0%), and smaller run-time and similar memory overheads with DangZero (19.5% and
32.3% respectively).
Abnormalities. While the overall evaluation results align with expectations A, B, C, and
D, we do notice abnormalities in the results. Failed test cases and how they might affect
the reported evaluation numbers in related works are summarized in §A.2. Here, we focus
on discussing individual test cases that do not yield expected results.

SEMalloc allows memory reuse among allocations of the same SemaType while FF-
Malloc does not allow any virtual memory reuse, thus running SEMalloc should incur
less memory overheads compared with FFMalloc. However, on the benchmarks, we observe
three exceptions: “641”, “644”, and “fer”. Test “641” and “fer” frequently call functions in
external libraries that allocates heap memories causing excessive memory use. Test “644”
reaches its memory usage peak at the beginning of the program that allocates a significant
number of blocks together and they are all not released until the end of the program. As
FFMalloc allocates blocks at a 16-byte granularity, it uses less memory to allocate them
compared with SEMalloc uses the size of two size classes to allocate blocks. The observed
overhead comes from the data storage instead of the way SEMalloc reuse freed blocks.

While benchmarks like SPEC and PARSEC are good indicators of the overall performance
of SEMalloc, to give a clear view how long SEMalloc takes to finish the memory
allocation and release calls, and how such delay would influence real-world programs, we
run it on micro benchmarks (§3.6.3) and real world programs respectively (§3.6.4).

3.6.3 Micro Benchmarks

We use mimalloc-bench [15], a dedicated benchmark designed to stress test memory
allocators with frequent (and sometimes only) allocations and de-allocations. We exclude one
test: “mleak” that tests memory leakage instead of allocation performance, and summarize
the overheads and standard deviations of the rest of tests in Figure 3.8. Individual results
can be found in Table 3.5 and Table 3.6.

On average, SEMalloc introduces less execution delay compared with allocators that
offer more security (i.e., MarkUs, MineSweeper, DangZero and FFMallloc) and perform

42

Run-time Memory
0.5

1.0

1.5

2.0

2.5
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 3.8: Normalized average and standard deviation of run-time and memory overhead on
mimalloc-bench.

slightly better than TypeAfterType. For memory overhead, SEMalloc cuts the memory
usage by more than half compared with FFMalloc, which aligns with our expectations and
make it a possible approach for real-world programs.

3.6.4 Performance on real-world programs

We evaluate three real-world performance of SEMalloc using Nginx (1.18.0), Lighttpd
(1.4.71) and Redis (7.2.1).

For network servers, we use ApacheBench (ab) [67] 2.3 to evaluate their throughput
with 500 concurrent requests, and take the Nginx default 613 bytes root page as the
requested page. On Redis, we use the same settings as how its performance is measured in
mimalloc-bench [15]. The results are summarized in Figure 3.9 and Figure 3.10. Overhead
numbers can be found in Table 3.7 and Table 3.8. While running Nginx, MarkUs consumes
a significant amount of memory possibly due to an implementation error. DangZero
is not compatible with Redis and Lighttpd, and MineSweeper is not compatible with
Nginx. Running them causes segmentation faults and hence we exclude them from the
analysis. PUMM incurs negligible run-time overheads for the two web servers but an
abnormal 43% overhead for Redis, possibly due to an implementation bug or an incomplete
program profiling that misidentifies the “task”. Albeit this outlier, the results align with
our expectations for SEMalloc:
• a lower run-time overhead than MarkUs,
• a lower memory overhead than FFMalloc,
• on-par with TypeAfterType in run-time overhead but may incur a higher memory

overhead.

43

Redis Nginx Lighttpd
0.5

1.0

1.5

2.0
SEMalloc
Markus
FFMalloc

MineSweeper
TypeAfterType

DangZero
PUMM

Figure 3.9: Normalized average and standard deviation of throughput overhead on three real-
world programs.

Redis Nginx Lighttpd
0
1
2
3
4 SEMalloc

Markus
FFMalloc

TypeAfterType
MineSweeper

DangZero
PUMM

Figure 3.10: Normalized average and standard deviation of memory overhead on three real-world
programs.

3.6.5 On Recurrent Allocations

In SEMalloc, a SemaType only needs to be tracked dynamically if heap objects of this
SemaType are allocated recurrently, i.e., through loops or recursions (see §3.3.2, §3.3.3, and
§3.4.6). For non-recurrent allocations, once an object is freed, its space is never reused. In
two extreme cases,

• if a program itself involves absolutely zero recurrent heap allocations (but the dependent
libraries may allocate heap memories) SEMalloc behaves exactly like FFMalloc [78];

• if there is only one execution context where heap allocation can happen (i.e., a single
SemaType), SEMalloc behaves exactly like the glibc heap allocator [24].

Fortunately, most programs are not written in these extreme cases. And yet, this observation
leads us to wonder how prevalent recurrent heap allocations are in common benchmark
programs that evaluate heap allocators. Needless to say, programs that have a more diverse
set of recurrent allocations can benefit more from the fact that SEMalloc attempts to
strike a sweet spot in security, performance, and memory overhead in the context of UAF
mitigation.

To give more insights on profiling recurrent allocations in real-world programs, we list

44

key statistics pertinent of each PARSEC and SPEC test relevant to SEMalloc’s internals
in Table 3.9 and Table 3.10. In particular, we use recurrent allocation percentage to describe
how many allocations are one-time allocations. For most programs that frequently allocate
blocks, over 99% of the allocations are effectively captured and allocated to individual
SemaType pools. These pools handles a significant amount of memory reallocation (as shown
in the last column), which improves memory efficiency and thus explains why empirically
SEMalloc incurs a lower memory overhead than FFMalloc.

However, we observe three exceptions: "620," "bod," and "fer". They often call functions
from external libraries (such as those linked with the -lm flag in the math.h library) that
allocate heap memory as well. These external libraries are not transformed by SEMalloc,
leading to untracked heap allocations that are handled in the global non-releasing pool
(like FFMalloc). Therefore, adopting SEMalloc for a program that heavily depends on
external libraries for heap allocations may not be ideal, and the developers can opt to
recompile the depended libraries with SEMalloc for better compatibility.

45

TEST SEMalloc [2] [78] [19] [72] [25]

600 2.69 (0.00) 1.65 (0.00) 3.98 (0.00) 1.74 (0.01) 1.30 (0.00) 1.85 (0.00)
602 1.08 (0.00) 1.06 (0.00) 1.27 (0.02) 1.61 (0.02) - 1.32 (0.00)
605 1.00 (0.00) 1.28 (0.00) 1.02 (0.00) 1.01 (0.00) 1.00 (0.00) 1.25 (0.00)
619 1.00 (0.00) 1.00 (0.00) 1.02 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
620 3.27 (0.00) 1.98 (0.00) 18.04 (0.00) 2.17 (0.17) 1.28 (0.00) 3.32 (0.00)
623 1.58 (0.00) 2.23 (0.00) 3.54 (0.00) 1.77 (0.02) 1.00 (0.00) 1.50 (0.00)
625 1.07 (0.00) 1.12 (0.00) 1.53 (0.00) 1.08 (0.00) 1.01 (0.00) 1.09 (0.00)
631 1.00 (0.00) 1.00 (0.00) 1.01 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
638 1.00 (0.00) 1.07 (0.00) 1.01 (0.00) 1.06 (0.00) 1.03 (0.02) -
641 4.29 (0.00) 1.23 (0.01) 3.98 (0.00) 1.65 (0.05) 1.89 (0.00) 1.92 (0.00)
644 4.46 (0.00) 1.76 (0.00) 1.76 (0.00) 1.42 (0.00) 2.18 (0.00) -
657 1.00 (0.00) 1.00 (0.00) 1.02 (0.00) 1.00 (0.00) 1.01 (0.00) -

Avg 1.61 (0.00) 1.31 (0.00) 1.98 (0.00) 1.33 (0.01) 1.24 (0.00) 1.47 (0.00)

bla 1.02 (0.00) 1.00 (0.00) 1.12 (0.00) 1.01 (0.00) 1.00 (0.00) 1.00 (0.00)
bod 2.50 (0.00) 1.23 (0.01) 3.14 (0.03) 1.76 (0.01) 10.21 (0.00) -
can 1.21 (0.00) 1.35 (0.00) 1.23 (0.00) 1.43 (0.00) - 1.24 (0.00)
ded 1.05 (0.00) 1.07 (0.00) 1.05 (0.00) 1.99 (0.00) 1.07 (0.00) -
fer 1.81 (0.00) - 1.76 (0.00) - - -
flu 1.04 (0.00) 1.00 (0.00) 1.13 (0.00) 1.02 (0.00) 1.00 (0.00) 1.01 (0.00)
fre 0.95 (0.00) 0.99 (0.00) 1.05 (0.00) 0.96 (0.00) 1.09 (0.00) 1.02 (0.00)
str 1.47 (0.00) 1.09 (0.00) 1.65 (0.00) 1.08 (0.00) 1.00 (0.00) 1.07 (0.00)
swa 2.37 (0.00) 1.08 (0.00) 9.77 (0.01) 1.87 (0.07) - 3.83 (0.00)
vip 1.47 (0.00) 1.08 (0.00) 2.92 (0.00) 1.53 (0.03) - -

Avg 1.41 (0.00) 1.10 (0.00) 1.84 (0.00) 1.33 (0.01) 1.52 (0.00) 1.32 (0.00)

Table 3.3: Normalized average runtime overheads (and standard deviations) of SEMalloc on
SPEC and PARSEC. We indicate the best scheme in bold and the second best underlined to show
how SEMalloc hits the sweet spot in the tradeoff between run time and memory use.

46

TEST SEMalloc [2] [78] [19] [72] [25]

600 2.69 (0.00) 1.65 (0.00) 3.98 (0.00) 1.74 (0.01) 1.30 (0.00) 1.85 (0.00)
602 1.08 (0.00) 1.06 (0.00) 1.27 (0.02) 1.61 (0.02) - 1.32 (0.00)
605 1.00 (0.00) 1.28 (0.00) 1.02 (0.00) 1.01 (0.00) 1.00 (0.00) 1.25 (0.00)
619 1.00 (0.00) 1.00 (0.00) 1.02 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
620 3.27 (0.00) 1.98 (0.00) 18.04 (0.00) 2.17 (0.17) 1.28 (0.00) 3.32 (0.00)
623 1.58 (0.00) 2.23 (0.00) 3.54 (0.00) 1.77 (0.02) 1.00 (0.00) 1.50 (0.00)
625 1.07 (0.00) 1.12 (0.00) 1.53 (0.00) 1.08 (0.00) 1.01 (0.00) 1.09 (0.00)
631 1.00 (0.00) 1.00 (0.00) 1.01 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
638 1.00 (0.00) 1.07 (0.00) 1.01 (0.00) 1.06 (0.00) 1.03 (0.02) -
641 4.29 (0.00) 1.23 (0.01) 3.98 (0.00) 1.65 (0.05) 1.89 (0.00) 1.92 (0.00)
644 4.46 (0.00) 1.76 (0.00) 1.76 (0.00) 1.42 (0.00) 2.18 (0.00) -
657 1.00 (0.00) 1.00 (0.00) 1.02 (0.00) 1.00 (0.00) 1.01 (0.00) -

Avg 1.61 (0.00) 1.31 (0.00) 1.98 (0.00) 1.33 (0.01) 1.24 (0.00) 1.47 (0.00)

bla 1.02 (0.00) 1.00 (0.00) 1.12 (0.00) 1.01 (0.00) 1.00 (0.00) 1.00 (0.00)
bod 2.50 (0.00) 1.23 (0.01) 3.14 (0.03) 1.76 (0.01) 10.21 (0.00) -
can 1.21 (0.00) 1.35 (0.00) 1.23 (0.00) 1.43 (0.00) - 1.24 (0.00)
ded 1.05 (0.00) 1.07 (0.00) 1.05 (0.00) 1.99 (0.00) 1.07 (0.00) -
fer 1.81 (0.00) - 1.76 (0.00) - - -
flu 1.04 (0.00) 1.00 (0.00) 1.13 (0.00) 1.02 (0.00) 1.00 (0.00) 1.01 (0.00)
fre 0.95 (0.00) 0.99 (0.00) 1.05 (0.00) 0.96 (0.00) 1.09 (0.00) 1.02 (0.00)
str 1.47 (0.00) 1.09 (0.00) 1.65 (0.00) 1.08 (0.00) 1.00 (0.00) 1.07 (0.00)
swa 2.37 (0.00) 1.08 (0.00) 9.77 (0.01) 1.87 (0.07) - 3.83 (0.00)
vip 1.47 (0.00) 1.08 (0.00) 2.92 (0.00) 1.53 (0.03) - -

Avg 1.41 (0.00) 1.10 (0.00) 1.84 (0.00) 1.33 (0.01) 1.52 (0.00) 1.32 (0.00)

Table 3.4: Normalized average memory overheads (and standard deviations) of SEMalloc on
SPEC and PARSEC. We indicate the best scheme in bold and the second best underlined to show
how SEMalloc hits the sweet spot in the tradeoff between run time and memory use.

47

TEST SEMalloc [2] [78] [19] [72] [25]

alloc-test* 1.20(0.02) 2.83(0.08) 1.51(0.02) 1.53(0.04) - 7.13 (0.14)
cscratch 1.01(0.00) 1.00(0.00) 1.03(0.00) 1.05(0.02) 1.00 (0.00) 1.62(0.05)
cthrash 1.01(0.00) 1.01(0.00) 1.03(0.00) 1.03(0.01) 1.00 (0.00) 1.75(0.05)
glibc-simple 1.16(0.00) 3.41(0.04) 1.29(0.00) 1.70(0.07) 1.33 (0.01) 16.39(0.12)
malloc-large 3.28(0.00) 3.96(0.01) 3.25(0.01) 3.19(0.01) - 2.62(0.02)
rptest* 0.84(0.13) 8.43(0.07) 3.46(0.01) 9.94(0.12) 1.23 (0.00) 4.31(0.05)
mstress 1.28(0.01) 2.94(0.02) 2.53(0.02) 3.63(0.09) 1.32 (0.23) 3.90(0.02)
rbstress 1.03(0.00) 1.03(0.00) 1.02(0.00) 1.04(0.01) - -
sh6bench 0.95(0.00) 7.73(0.13) 1.51(0.00) 2.08(0.05) 1.36 (0.00) -
sh8bench 0.89(0.00) 0.00(0.00) 1.60(0.02) 3.50(0.13) 1.36 (0.03) -
xmalloc-test* 1.40(0.04) 1.33(0.02) 0.33(0.02) 0.47(0.06) 1.49 (0.03) 4.50(0.11)

Avg 1.18 (0.03) 2.52 (0.04) 1.42 (0.02) 1.90 (0.04) 1.25 (0.04) 4.00 (0.06)

Table 3.5: Normalized run-time overheads (and standard deviations) of SEMalloc on mimalloc-
bench (results of * marked tests use built-in measurements). We indicate the best scheme in
bold and the second best underlined to show how SEMalloc hits the sweet spot in the tradeoff
between run time and memory use.

TEST SEMalloc [2] [78] [19] [72] [25]

alloc-test 2.72(0.00) 1.43(0.00) 58.99(0.00) 2.52(0.05) - 13.45(0.01)
cscratch 1.99(0.01) 1.00(0.01) 8.04(0.01) 1.32(0.01) 1.01 (0.01) 1.01(0.01)
cthrash 1.98(0.01) 1.00(0.01) 7.97(0.01) 1.30(0.01) 1.01 (0.01) 1.02(0.01)
glibc-simple 3.67(0.01) 1.01(0.01) 8.02(0.00) 2.52(0.08) 1.01 (0.01) 3.46(0.01)
malloc-large 0.78(0.00) 0.78(0.00) 0.91(0.00) 0.80(0.00) - 1.00(0.00)
rptest 3.56(0.00) 10.09(0.01) 8.28(0.01) 1.89(0.01) 1.28 (0.01) 1.01(0.01)
mstress 1.43(0.01) 1.00(0.01) 8.04(0.00) 1.89(0.05) 1.00 (0.00) 1.03(0.00)
rbstress 1.27(0.00) 1.09(0.00) 1.71(0.01) 1.18(0.00) - -
sh6bench 1.23(0.00) 1.06(0.00) 2.09(0.00) 1.36(0.05) 1.01 (0.00) -
sh8bench 1.02(0.00) 0.00(0.00) 1.30(0.01) 7.30(0.28) 0.97 (0.01) -
xmalloc-test 3.37(0.01) 1.01(0.01) 11.19(0.01) 13.53(0.82) 1.03 (0.01) 7.07(0.01)

Avg 1.84 (0.00) 1.30 (0.01) 5.31 (0.01) 2.16 (0.03) 1.03 (0.01) 2.08 (0.01)

Table 3.6: Normalized average memory overheads (and standard deviations) of SEMalloc on
mimalloc-bench (results of * marked tests use built-in measurements). We indicate the best
scheme in bold and the second best underlined to show how SEMalloc hits the sweet spot in
the tradeoff between run time and memory use.

48

Redis Nginx Lighttpd Average

SEMalloc 1.06 (0.02) 0.99 (0.01) 1.00 (0.01) 1.02 (0.01)
MarkUs 1.33 (0.04) 1.12 (0.05) 1.04 (0.03) 1.16 (0.04)
FFMalloc 1.20 (0.04) 0.99 (0.02) 1.00 (0.00) 1.06 (0.00)
MineSweeper 1.21 (0.01) - 1.04 (0.00) 1.12 (0.00)
TypeAfterType 1.05 (0.02) 0.99 (0.00) 1.00 (0.00) 1.01 (0.00)
DangZero - 2.90 (0.01) - 2.90 (0.01)
PUMM 1.43 (0.01) 1.01 (0.00) 1.02 (0.06) 1.14 (0.00)

Table 3.7: Normalized average throughput (and standard deviations) of SEMalloc on three
real-world programs (results of * marked tests use built-in measurements). We indicate the best
scheme in bold and the second best underlined to show how SEMalloc hits the sweet spot in
the tradeoff between run time and memory use.

Redis Nginx Lighttpd Average

SEMalloc 2.22 (0.01) 2.64 (0.02) 2.43 (0.02) 2.42 (0.02)
MarkUs 1.77 (0.01) 303.11 (0.02) 1.45 (0.02) 9.20 (0.02)
FFMalloc 5.92 (0.02) 15.48 (0.01) 11.55 (0.02) 10.19 (0.02)
MineSweeper 2.74 (0.04) - 2.53 (0.10) 2.63 (0.06)
TypeAfterType 2.91 (0.03) 1.55 (0.02) 1.00 (0.02) 1.65 (0.02)
DangZero - 2.37 (0.01) - 2.37 (0.01)
PUMM 1.03 (0.01) 1.03 (0.01) 1.13 (0.01) 1.06 (0.01)

Table 3.8: Normalized average memory overheads (and standard deviations) of SEMalloc on
three real-world programs (results of * marked tests use built-in measurements). We indicate the
best scheme in bold and the second best underlined to show how SEMalloc hits the sweet spot
in the tradeoff between run time and memory use.

49

Test ∆ size # alloc
sites

CG
nodes

CG
edges

CG
SCCs

600 8.97% 80 1,355 14,068 14
602 3.06% 91 2,330 23,128 12
605 0.06% 16 9 22 0
619 1.01% 0 0 0 0
620 3.37% 1,105 1,498 110,380 5
623 1.23% 30 1,387 4,273 25
625 1.01% 66 55 319 0
631 0.37% 0 0 0 0
638 8.97% 10 1,249 13,271 7
641 2.47% 90 96 323 0
644 5.17% 202 83 367 1
657 1.90% 10 66 221 2

bla 1.36% 0 0 0 0
bod 4.48% 55 654 809 0
can 3.07% 3 47 55 0
ded 4.98% 40 41 110 0
fer 7.78% 161 125 355 1
flu 7.75% 12 10 20 0
fre 10.29% 64 37 150 0
str 21.65% 22 14 35 0
swa 0.84% 5 12 32 0
vip 24.06% 573 2,758 37,108 25

Table 3.9: Program profile of each SPEC and PARSEC test.

50

Test
#

allocs
#

rec.
pools

#
rec.

allocs
ave.

allocs
per

rec.
pool

m
em

.
leak

#
native

objs
#
S
e
m
a
T
y
p
e

objs

600*
47,799,547

4,470
99.89%

10,693
0.0%

30
7943

602*
76,739,284

1,410
99.97%

58,990
0.0%

5
1280

605
1,005,766

8
100.00%

125,719
0.0%

14
14

619
6

0
0.00%

0
0.0%

1
1

620
458,738,506

698
98.60%

648,045
41.6%

567
1026

623
138,362,610

455
100.00%

304,079
1.6%

2
193

625*
3,245

28
97.75%

113
0.6%

4
87

631
3

0
0.00%

0
0.0%

1
1

638
42,945,318

135
100.00%

613,486
0.0%

5
835

641
53,759,694

648
99.87%

82,855
54.0%

35
144

644
1,533,183

56
100.00%

27,378
0.0%

39
57

657*
32

5
31.25%

2
0.0%

6
22

bla
8

0
0.00%

0
0.0%

1
1

bod
371,834

35
94.62%

10,053
34.9%

32
76

can
21,141,425

12
100.00%

1,761,785
0.0%

3
5

ded
1,717,291

28
100.00%

61,328
0.0%

27
27

fer
521,103

104
86.5%

4,335
9.8%

76
76

flu
229,910

1
100.00%

229,899
0.0%

10
10

fre
441

6
2.72%

2
0.0%

23
35

str
8,835

35
99.57%

251
0.0%

14
15

sw
a

48,001,799
20

100.00%
2,400,089

0.3%
5

20
vip

2,380,317
283

99.99%
8,410

2.5%
44

320

Table 3.10: Number of allocations, iterative allocations, and iterative pools for each SPEC
and PARSEC test. We highlight that SEMalloc can efficiently identify SemaTypes and cause
negligible memory leakage for most programs. Tests with * have more than one input. We only
report the input that triggers the most allocations.

51

Chapter 4

Entropy-Based Approach: S2Malloc

4.1 Introduction

While effective in defending against various heap exploits, entropy-based allocators are
not ideally suited to protect against UAF attacks. Allocators in this theme share one
limitation: probabilistic protection. However, the relaxed security requirement also enables
them to protect most, if not all, common heap vulnerabilities with simpler and binary-
compatible designs. Specifically on UAF mitigation, entropy-based memory allocators
typically use delayed free-lists [40, 63] to prevent the same memory block from being
immediately reallocated after being freed. Attackers now face a moving target even when
they obtain a dangling pointer, as they have less confidence in knowing when this pointer
becomes valid again and/or which object it might point to.

While achieving relatively low CPU overhead, especially compared with UAF-mitigating
allocators, existing entropy-based allocators still face the challenge of entropy loss, further
compromising the probabilistic protection. To illustrate how entropy loss can occur:

1. Entropy-loss due to heap spraying. If an attacker could control multiple dangling
pointers, one of them will likely point to a newly allocated block. This is especially
popular in scenarios where the creation and access of the dangling pointer happen in
different threads or loops [20, 74].

2. Entropy loss due to information leak. An attacker could estimate the block size or
even type based on the pointers address — blocks of the same size range have the
same top address bytes [40, 63]. An attacker can exploit this information to launch
UAF exploits strategically, i.e., only when a target category of dangling pointer is
obtained.

52

3. Entropy loss due to silent failures and repeated trials. A failed exploitation attempt
raises no signals to the heap allocator. Whether the victim application enters into
a human recognizable erroneous state (e.g., crashing) is completely decided by the
application logic. Unfortunately, long-running services are usually equipped with
resilience features such as auto-restart on exceptions. These features actually work in
favor of the attackers as now they can probe live systems by repeatedly launching the
same attack until succeed.

To overcome these challenges, we propose S2Malloc, an allocator that reduces entropy
loss by detecting UAF attempts with low CPU and memory overhead on par with state-of-
the-art entropy-based memory allocators. S2Malloc achieves its promises by combining
several new realizations of existing concepts: randomized in-slot offset (RIO), free-
block canary (FBC), and random bag layout (RBL). RIO mitigates UAF attacks by
allocating blocks with random offsets, obstructing the attacker from locating the target field
in a data structure. FBC puts cryptographically secure canaries in free blocks to detect
illegal writes, turning a failed UAF exploitation attempt into a clear signal. RBL organizes
blocks of the same size range using sub-bags. Only blocks within the same memory page
are guaranteed to be in the same sub-bag.
Summary. We claim the following contributions:
• We analyze current entropy-based allocators in real-world UAF attack scenarios and

show their protection is weaker than claimed.
• We present S2Malloc, a drop-in solution that addresses the above weaknesses while

protecting against other commonly observed heap memory vulnerabilities. S2Malloc
does not require special hardware, program recompilation, or elevated privileges and
works on x86 and AARCH.

• Through various real-world CVEs and benchmarks, we show that S2Malloc can suc-
cessfully detect all attacks while incurring 2.8% CPU overhead and 27% memory overhead
on the PARSEC benchmark and 11.5% CPU overhead and 37% memory overhead on
the SPEC benchmark.

4.1.1 Adversary model

We assume that the attacker can analyze the source code and binary executable to determine
the implementation details of the victim program, including vulnerabilities and other relevant
information such as the size and layout of critical data structures. We also assume that the
attacker can identify when a victim object is allocated or de-allocated.

53

We do, however, assume that the underlying OS kernel and hardware are trusted and
an attacker cannot utilize a data leakage channel, such as /proc/$pid/maps, to discover the
location of the heap allocator’s metadata. The attacker cannot compromise the random
number generator nor can they take control of the heap allocator. Exploiting bugs of the
allocator itself is out of scope. These assumptions are similar to that of other entropy-based
allocators [40, 63].

Additionally, we allow attackers to use any existing heap feng-shui [64] technique (e.g.,
heap spray) to prepare or manipulate the layout of heap to facilitate UAF-exploits. And
attackers can retry an exploit as long as previous attempts fail silently. These assumptions
make our adversary model stronger than those assumed in entropy-based allocators and
on-par with the adversary models in UAF-mitigating allocators [2, 78].

4.1.2 Challenge 1: entropy loss

Entropy-based allocators thwart UAF by avoiding instant memory reuse. However, if 1)
the attacker could continue to retry the attack when the previous trial fails, or 2) the heap
memory can be spoofed with either dangling pointers or victim objects, it is guaranteed
that the attack would eventually succeed even without the victim’s notice.

Figure 4.1 is an example, abstracted from mRuby issue 4001 [17], a UAF vulnerability
in the Ruby compiler. The function mrb_io_initialize_copy is called when opening a
file. It first frees the existing data pointer of the copy object (DATA_PTR(copy)) (line 7)
and allocates new memory to it (line 9 and 11). If an invalid argument is passed, calling
io_get_open_fptr would throw an exception (line 10), making DATA_PTR(copy) a dangling
pointer to the freed object.

Using this vulnerability, the attacker can allocate a string object to take the freed
memory space. The attacker can then close the file in Ruby, which will set the first word of
the pointed memory to INF. If this memory is taken by a string object, its length will be
overwritten to INF that allows arbitrary memory read and write.

In the above scenario, random (i.e., non-sequential) allocation or delayed free-lists
available in existing entropy-based allocators [40, 54, 63] merely increases the attack
difficulty: as long as the attacker can wait, the memory chunk referred to by the dangling
pointer will eventually be re-allocated, allowing the UAF exploit to proceed after some
delay.

Furthermore, the entropy diminishes if an attacker is allowed to repeat the same attack
without penalty (e.g., when a failed attempt does not crash the target program or trigger

54

1 mrb_io_initialize_copy(mrb_state *mrb, mrb_value copy) {
2 mrb_value orig;
3 struct mrb_io *fptr_copy, *fptr_orig;
4
5 fptr_copy = (struct mrb_io *)DATA_PTR(copy);
6 if (fptr_copy != NULL) {
7 mrb_free(mrb, fptr_copy);
8 }
9 fptr_copy = (struct mrb_io *)mrb_io_alloc(mrb);

10 fptr_orig = io_get_open_fptr(mrb, orig);
11 DATA_PTR(copy) = fptr_copy;
12 }

Figure 4.1: Example UAF attack based on mRuby issue 4001 [17]

attention). Similarly, if attackers have the ability of spraying the heap with either dangling
pointers of victim objects, the probability of success increases significantly.

This motivates us to design an allocator in a way that 1) actively searches for UAF
attempts and raises signals if the evidence is found; and 2) stops the attacker from locating
critical information in memory even if the attacker manages to obtain a dangling pointer.
In this example, we could prevent the attacker from being able to deterministically locate
the string length even if the attacker manages to obtain a dangling pointer to a string
object originally pointed to by DATA_PTR(copy). In addition, any attempts of writing to
unallocated memory will be detected with a high probability. If an attacker attempts to
spray the heap with arbitrary write to increase success rates, we can raise a signal on or
even before the UAF actually happens.

4.1.3 Challenge 2: information leak

Existing entropy-based allocators [40, 63] create a huge memory pool for each block size
range, resulting in the leakage of block size via their address, possibly revealing the victim
software’s internal state to the attacker. For example, each BIBOP bag is assigned an 8
Gigabytes virtual memory pool in SlimGuard [40]. Any objects belonging to this bag will
be allocated from this pool. As a result, obtaining a known sized block will be sufficient
enough to infer the size of any blocks sharing the upper 32-bit address. Further, block
addresses in Guarder [63] are aligned by their size. Block size would possibly be inferred
just based on its address. For example, a block with an address value ending with 0x10 is
of size 1 to 16 bytes, and a block with an address value ending with 0x300 is highly likely
of size 129 to 256 bytes.

We mitigate this threat by dividing bags into sub-bags, limiting the size leakage only if the
attacker-controlled block resides in the same sub-bag as the victim block. Furthermore, we

55

assign random guard pages within sub-bags to make the sub-bag boundaries unpredictable.

4.2 Design and Implementation

Now we explain the design and implementation of S2Malloc and how it thwarts the types
of heap attacks in §2.1.

4.2.1 Architectural overview

At its core, S2Malloc adopts BIBOP to manage memory blocks. An overview of
S2Malloc is illustrated in Figure 4.2. S2Malloc maintains a per-thread metadata
(A), stored in a memory chunk requested directly from the kernel. Huge blocks are ob-
tained or released from the OS directly (B), and are stored using a linked list. Small
objects are maintained using bags, claiming memory indirectly from a segregated memory
pool (C). Each regular bag maintains the metadata of blocks of a size range, including
the number of free slots and a list of sub bags. We take sub bag as the basic unit of a
group of slots (§4.2.3).

The data field points to a memory chunk requested from the memory pool to store
the objects allocated to this sub-bag. The bitmap indicates whether the current slot is
taken or not. If the current slot is taken, the corresponding offset table cell stores an offset
indicating where the data stored in the bag starts (§4.2.2). Otherwise, the slot is free and
the offset table stores the location of the FBC (§4.2.5).

When a free() call is received by S2Malloc (step 1 → 2), S2Malloc checks
whether: (1) the bitmap indicates the current block is taken; (2) the offset stored in the
offset table matches with the freed pointer address; and (3) the canary value is not modified.
If all checks pass, the current block will be freed: the bitmap cell will be set to free and
an FBC will be put at a random location in the current block. The offset table will be
updated to store the location of the FBC.

When a malloc() call comes, (step 2 → 3), S2Malloc randomly selects one free
block of the corresponding size and checks the FBC of current and nearby free blocks. A
random offset will be generated indicating where the data starts within the current block,
and the offset table will be updated accordingly. The heap canary will be set after the
last data byte of the current block, and the bitmap will be updated. In this example, we
assume that each block stores at most 7 bytes of data. The heap canary is set to the 9th

56

Empty DataFBC

0X1 → 0X2 → 0X2

0000011011

Counter1-16B

Counter17-32B

Counter33-48B

…

…

Head

Offset Table

Bitmap

Data

Head

Size

Ptr

Head

Size

Ptr

Head

Offset Table

Bitmap

Data

① Initial state, heap canary is assigned;
offset table stores RIO location

②After free, check heap canary, set FBC;
offset table stores heap canary location

③After malloc, check FBC, set heap canary;
offset table stores RIO location

Heap Canary

Ⓐ Per Thread Metadata

Memory
Pool

Huge Objects

Regular Bags

Sub Bags
S2Malloc

Guard Page

Ⓒ Per Thread Data

1 → 0 → 1

Ⓑ Huge
Blocks

Figure 4.2: Overview of S2Malloc with an example of free and malloc. A , B , and C show
three S2Malloc segments, stored in segregated memory. 1 , 2 , and 3 show how an allocated
bag slot is freed and then allocated.

byte initially as the offset is one and is then set to the 10th after reallocation as the offset
is changed to two.

4.2.2 Randomized in-slot offset (RIO)

In all existing secure memory allocators, allocated objects store their data from the first
byte of the allocated slot. Alternatively, we propose that the object will be stored with
a random offset p, and the first p bytes of the slot will be left empty. After the slot is
freed and allocated to another object, the offset p will be re-computed. Thus, the relative
offset between these two objects cannot be accurately predicted and the attacker cannot
accurately re-use a freed pointer and arbitrarily read or write the target memory.

We define k to be the RIO entropy. For each bag with blocks of b bytes, e = b/k
bytes are not used to take data, and each block can take at most b − e bytes of data,
guarantee minimal in-slot offset entropy. We refer to these extra bytes as entropy bytes.
Suppose this block is malloc-ed with an object of s bytes (s < b− e). Before this block is

57

allocated, p ∈ (0, b − s) is computed to decide the starting byte of the data object. p is
16-byte aligned following the minimum default alignment of GNU C implementation [69],
and to be compatible with special data structures, such as atomic objects that need to be
stored to align with the registers and cache lines. The offset of each block will be stored
separately in an offset table. The minimal entropy e increases as b becomes larger to avoid
introducing high memory overhead for small objects and to provide stronger protections for
large objects, observing the fact that larger objects have more complicated structures and
are more likely to be targeted.

We adopt the Permuted Congruential Generator (PCG) [56] algorithm following the
design of [40] to generate all random numbers. With negligible execution time – much
faster than existing random number generators, such as LCG and Unix XorShift, PCG
generates hard-to-predict numbers. While it does not provide cryptographic security, the
only known attack towards PCG requires three consecutive PCG outputs to recover the
seed [10]. However, in S2Malloc, none of the generated numbers is accessible to the user
and can only be obtained by sweeping the memory. As a result, PCG is sufficient enough
to provide the required level of entropy.

4.2.3 Random bag layout (RBL)

As with existing secure allocators, S2Malloc employs BIBOP-style management for
small-size blocks. Blocks larger than 64 kilobytes are mapped and unmapped from the
OS directly, and are managed using a linked list. Blocks smaller than 64 kilobytes are
further classified as small, medium, and large blocks to decrease the number of size classes.
Small bags contain blocks smaller or equal to 1 kilobyte, and a bag is created every 16
bytes (16 bytes granularity). For example, the first small bag takes blocks smaller than 16
bytes, and the second small bag takes blocks of (16, 32] bytes (without taking RIO into
consideration). Medium bags contain blocks within the range of 1 kilobyte and 8 kilobytes
with the granularity of 512 bytes; large bags contain blocks within the range of 8 kilobytes
and 64 kilobytes with the granularity of 4 kilobytes. In total, S2Malloc has 64 small
bags, 14 medium bags, and 14 large bags.

S2Malloc obfuscates the virtual memory allocation and stops linking block sizes to
their addresses. Instead of allocating a dedicated virtual memory pool for each bag, (as
shown in prior works [40, 63]), we create a single virtual memory address pool for all bags.
We further divide each bag into sub-bags each containing 256 slots. Each bag creates new
sub-bags upon need, and a newly created sub-bag would request corresponding memory
from the pool. We use a bump pointer to track the available memory in the pool and
linearly allocate pool memory to sub-bags.

58

Secure Guard Rand. Segre. Heap Ptr UAF UAF Overheads
Allocators Pages Alloc. MD Can. Inval. Miti. Detect Mem. Runtime

DieHarder Y Y Y N N G# N 21.3% 2.1%
Guarde Y Y Y Y N G# N 58.1% 2.4%

SlimGuard Y N N Y N G# N 22.5% 4.4%

S2Malloc Y Y Y Y N Prob. 26.8% 2.8%

MarkUs N N N N Y N 13.0%∗ 42.9%∗

FFmalloc N N N N Y Y 50.5%∗ 33.1%∗

Table 4.1: Overview of existing secure memory allocators and S2Malloc to illustrate how
S2Malloc fills the gap (MD: metadata). Memory and run-time overheads are measured by
running the PARSEC benchmark [7]. Note that overheads of MarkUs and FFmalloc (numbers
marked with ∗) are reported in [78] instead of measured by us. The details for getting other
overhead numbers are presented in §4.5. With that said, the performance numbers shown here are
for a qualitative illustration on the scale of overhead only. For quantitative comparisons, please
refer to details in §4.5.

S2Malloc randomly places guard pages within sub-bags to thwart overflow, spraying,
and random pointer access. If a sub-bag is randomly allocated with a guard page, one of its
pages will be unmapped (protected) randomly using the mprotect system call. Any slots
within this protected page will be marked as allocated in the bitmap to avoid allocating them
to the program. Any accesses to these slots are thus invalid and result in a segmentation
fault. The tunable guard page rate can be configured in an environment variable. We note
that the memory pool allocation is not deterministic and cannot be predicted due to the
random guard pages.

S2Malloc guarantees that the block size leakage occurs only if the known block and
the victim block reside on the same memory page: adjacent blocks may not be within
the same sub-bag, and RIO guarantees that blocks start at addresses that cannot be
deterministically predicted. On the contrary, two blocks are highly likely of the same size
range in SlimGuard if their address difference is smaller than 8GB.

4.2.4 Hardening heap canaries

Canary is a small data block put after the allocated memory to detect overflow, initially
introduced in StackGuard [14] to protect the stack. Canary has now been adopted to
protect the heap [53]. At the time a memory slot is being allocated, the canary will be set

59

to a specific value. This value will be checked at the time this slot is freed, and memory
overflow will be detected if the canary value changes.

However, in previous designs, this value is set to be either globally identical [63] or
is binded with slots [40], and could be trivially broken by a knowledgeable attacker. We
follow the design of previous works to use the secure MAC of the memory address as the
canary [36, 47]. Specifically, we take the CMAC-AES-128 encrypted block address as the
canary implemented using AES-NI [30] (on x86 CPUs) or Neon [6] (on AARCH CPUs) to
keep the canary confidential and compact. Even if the attacker learns a canary value, they
can only use it to break the current object or any further objects allocated to this slot with
the same RIO.

Specifically in S2Malloc, we put a ι-byte canary immediately after the last data-
storage byte in the allocated slot, (i.e., the (p + b − e)th byte), and the canary will be
checked upon free.

4.2.5 Free block canaries (FBC)

Existing entropy-based allocators defend against UAF-write attacks by statistically avoiding
allocating a victim object in a block pointed to by a dangling pointer. Although a failed
attack attempt only modifies a free block without causing any harm, the attack attempt is
not detectable either and given the fact that the same attack can be retried, the attacker
will succeed eventually.

To detect such attempts, we put a canary of length c in each free block. The canary
value is also computed using CMAC-AES-128. This value will be checked before the block
is allocated and will be reset after it is freed. We also check the FBC of d nearby blocks to
improve the rate of detection. FBC guarantees that accessing a freed block is not risk-free.
Its protection rate is analyzed in §4.4. In Figure 4.2, we further illustrate how the two
kinds of canaries (FBC and regular heap canary) are set and cleared when an allocated
block is first freed and then allocated again.

Initially in S2Malloc, we create the memory pool using the mmap system call with the
ANON flag and all allocated memories are set to zero in the Linux environment [38]. We take
this advantage and use the zeros as the initial FBC with the following benefits:

• Until being accessed, an unused slot will remain unmapped to the physical memory,
decreases memory overhead.

• An unused slot is exempted from computing a secure canary value and writing to the
corresponding memory field.

60

• The whole slot will be checked instead of only the canary bytes, increasing the detection
rate.

Treading off the computation cost of the encrypted canaries, S2Malloc always zeros out
the contents of small blocks and will check the whole block before being allocated to a new
object, bringing both security and computation benefits.

4.2.6 Summary and comparison

Table 4.1 summarizes S2Malloc and selected state-of-the-art secure heap allocators along
the two defense lines that are closely related to S2Malloc.

Being an entropy-based allocator, S2Malloc is inherently closer to this line of work [40,
54, 63] with a nearly identical set of heap exploitation protection features except UAF
protection. S2Malloc provides a much stronger security assurance in the presence
of UAF vulnerabilities. In particular, S2Malloc addresses the two entropy-loss cases
(discussed in §4.1.2 and §4.1.3) with RIO (§4.2.2) and RBL (§4.2.3), respectively, and
hence, providing much higher effectiveness on UAF mitigation. In addition, S2Malloc
is designed to actively monitor the integrity of the heap and watch for UAF attempts,
including heap spraying practices that aim to prepare the heap data and layout for UAF
exploits. S2Malloc achieves this through a synergy of regular heap canaries (§4.2.4) and
FBC (§4.2.5).

On the other hand, Table 4.1 also shows a sheer contrast between entropy-based
allocators and UAF-mitigating allocators. Notably, although providing a theoretically
complete mitigation guarantee toward UAF, UAF-mitigating allocators [2, 78] significantly
impair program efficiency and are hard to be deployed in time-sensitive use cases. In
contrast, as will be presented in §4.5, S2Malloc incurs a significantly lower overhead that
is typical for entropy-based allocators, making S2Malloc practical and deployable on
production systems if the end-user can tolerate a marginal chance of protection failure (less
than 10% in the default setting of S2Malloc, discussed in §4.3).

4.3 On The Formal Modeling of Probabilistic Use-
After-Free Detection

To mathematically model how S2Malloc provides defense against UAF, we make the
following assumptions for the attacker and target program (which are consistent with our
adversary model in §4.1.1):

61

1 The goal of the attacker is to modify a sensitive field (e.g., a function pointer or an
is_admin flag) in a specific type of object, a.k.a., a victim object, via memory writes
over a dangling pointer (i.e., UAF-writes).

2 The attacker can obtain a dangling pointer through a bug in the program at any point
of time during execution.

3 The program repetitively allocates and frees the type of objects targeted by the attacker
(i.e., victim objects) during its execution. However, we do not assume that each victim
object is freed before the next victim is allocated.

4 The attacker can either indirectly monitor or directly control the allocations of victim
objects, i.e., the attacker knows when a victim object is allocated, but does not know
the address of the allocation.

5 Any memory writes through the dangling pointer is conducted after the victim object
is allocated.

6 If the intended sensitive field of a victim object is overridden, the attack succeeds;
otherwise, the program continues to execute, allowing the attacker to repeat the
exploitation effort unless detected by S2Malloc (condition 7).

7 S2Malloc checks FBCs on each heap allocation and detects the attack if any FBC is
modified.

To simplify the illustration, we assume that the above execution logic is the only code logic
that involves heap management. In real-world settings, attackers usually have an even lower
success rate as memory slots can be allocated to other objects, which gives S2Malloc
more chances to check FBCs and detect UAF attempts.

Notation. We denote the victim object size as s which will be placed in a block of size b.
Within a victim object, the sensitive data starts at the s1 byte, and with length l. The
RIO entropy is e and obviously, b ≥ e + s. The length of the FBC is c. The block-level
entropy bit is n, i.e., each allocation of the victim object will fall in one of r = 2n blocks.

4.3.1 Success rate of attack and defense per single attempt

In a block hosting a victim object, the first byte of the sensitive field is in the interval
[s1, b − s + s1). A reasonable attacker will always try to modify l bytes of data starting
at some byte within the interval. A smarter attacker will further leverage the knowledge
that memory allocations are 16 bytes aligned (a convention from glibc). This implies that
the RIO of a block is randomly chosen from one out of 1 + ⌊b− s

16 ⌋ positions. Thus, if the
attacker attempts to write l bytes through the dangling pointer with a randomly guessed
RIO value, the chance of success per trial is:

62

A = 1
r
▷ the correct block ◁ × 1

1 + ⌊b− s

16 ⌋
▷ the correct in-block RIO value ◁

= 1

r(1 + ⌊b− s

16 ⌋)

(4.1)

S2Malloc puts an FBC randomly to any c consecutive bytes in the block with the
same probability. Hence, the probability that an FBC is modified by an l-byte write in the
same block is reduced to the probability of selecting one l-byte chunk and one c-byte chunk
randomly from a b-byte block and the two chunks overlaps by at least one byte.

D = 2 ∑c−2
i=0(l + i) + ∑b−(l+c−1)

_=c−1 (l + c− 1) ▷ number of overlaps ◁
(b− l + 1)(b− c + 1) ▷ number of ways to place l-byte and c-byte ◁

= b(l + c− 1)− (l − 1)2 − (c− 1)2 − cl + 1
(b− l + 1)(b− c + 1)

(4.2)

The above equation holds when b ≥ l + 2(c− 1), which represents the most practical cases
(i.e., lengths of both sensitive field and FBC are small) and favors the attacker. In fact, if
either l or c is large enough relative to b, any l-byte write to the block will almost always
corrupt the FBC and can be detected by S2Malloc.

4.3.2 Strategy S1: repetitive UAF-writes to the same address

In this strategy, the attacker first obtains a dangling pointer (2) and holds the pointer for
arbitrarily long. Every time the attacker notices a victim object is allocated (4), an l-byte
UAF-write at the same offset through the same dangling pointer is conducted (5). This is
essentially repetitive UAF-writes to the same address.

As S2Malloc only detects UAF attempts when a victim object is allocated, we use
round i to represent the i-th allocation of a victim object after the attacker obtains the
dangling pointer and conducts the UAF-write. Effectively, after round i, S2Malloc should
have checked FBCs i times to catch the UAF attempt.

We denote Pi
e to represent the probability that the program execution ever reaches

round i. By definition, P1
e = 1−A, i.e., when the attacker’s first UAF-write is not successful

63

in achieving the goal (1). Suppose the execution has reached round i, the probability that
the repetitive UAF-writes is detected at this particular round is

2d + 1
r

▷ the FBC of the overridden block is checked ◁ ×

D ▷ the FBC of the overridden block is corrupted ◁
(4.3)

Based on this, we can derive the inductive definition for Pi
e:

Pi+1
e = Pi

e ▷ reaches round i ◁ ×(1− 2d + 1
r
×D) ▷ undetected ◁

×(1− A) ▷ unsuccessful attack attempt ◁
(4.4)

Limiting program execution to an upper bound of K rounds, the chance of attacker and
S2Malloc wins, respectively, is:

PK
attack = A +

K∑
i=1

(Pi
e × A) :: PK

detect =
K∑

i=1
(Pi

e ×
2d + 1

r
×D) (4.5)

4.3.3 Strategy S2: UAF-writes through fresh dangling pointers

Unlike §4.3.2, the attacker does not hold a dangling pointer indefinitely, instead, the attacker
obtains a fresh dangling pointer (2) if a prior UAF-write attempt is not successful. After
obtaining a dangling pointer, if the attacker notices a victim object is allocated (4), an
l-byte UAF-write through the fresh dangling pointer is conducted (5). This essentially
means that every UAF-write is likely on a different address.

More importantly, as S2Malloc only detects UAF attempts when a victim object is
allocated, this strategy effectively creates a turn-based game between the attacker and
S2Malloc where in each round, the attacker makes the move of obtaining a dangling
pointer and conducting a UAF-write while S2Malloc makes the move of checking FBCs
and allocating a new victim object (if FBCs checked are intact). The game ends when
either the attacker or S2Malloc wins.

We use round i to represent the i-th round of the game. In each round, the attacker
makes the first move and S2Malloc follows. We denote Pi

e to represent the probability
that the program execution ever reaches S2Malloc’s turn in round i (to be consistent
with the notation in §4.3.2). By definition, P1

e = 1− A, i.e., the attacker’s first UAF-write
is not successful in achieving the goal (1).

64

To calculate the detection rate by S2Malloc, we rephrase the question to a classical
combinatorics question: there exists r balls in a box where each time the attacker picks one
ball randomly (i.e., the block referred by the dangling pointer), colors it with probability D
(i.e., corrupts the FBC in the block), and puts the ball back to the box. A ball cannot be
uncolored once it is colored (because the attacker does not undo a UAF-write). We use Qi

to denote the probability that an arbitrary ball in the box is not colored (i.e., a block with
its FBCs integral) after i rounds.

Qi = (r − 1
r

▷ ball not selected ◁ +1
r
× (1−D) ▷ ball selected but not colored ◁)i

= (r −D

r
)i

(4.6)

Therefore, at round i, there will be, by expected value, r ·Qi balls remain uncolored in the
box. The detection rate of S2Malloc at round i will be the same as the probability of
selecting 2d + 1 consecutive balls from a string of r balls where at least one of the selected
balls is colored. The detection rate is denoted as Pi

d and calculated as:

Pi
d = 1− Qir − 2d

r − 2d
·

2d∏
i=0

(Qir − i

r − i
) (4.7)

Based on this, we can derive the inductive definition for Pi
e:

Pi+1
e = Pi

e ▷ reaches round i ◁ ×(1− Pi
d) ▷ undetected ◁ ×

(1− A) ▷ unsuccessful attack attempt ◁
(4.8)

Limiting program execution to an upper bound of K rounds, the chance of attacker and
S2Malloc wins, respectively, is:

PK
attack = A +

K∑
i=1

(Pi
e × A) :: PK

detect =
K∑

i=1
(Pi

e × Pi
d) (4.9)

4.3.4 Strategy S1-spray: repetitive UAF-writes to the same ad-
dress with spraying

This strategy operates similarly to the strategy in §4.3.2: the attacker first obtains a
dangling pointer (2) and holds the pointer for arbitrarily long. However, generalized

65

from §4.3.2 in which the attacker conducts a UAF-write after one allocation of a victim
object (4), the attacker waits until there are m victim objects newly allocated and alive
(i.e., not freed yet) and then issues the UAF-write. Effectively, the attacker is trying to
diligently spray the heap by victim objects to increase its chance of success. The UAF-write
is still an l-byte memory write at the same offset through the same dangling pointe (5).
This is essentially repetitive UAF-writes to the same address, similar to §4.3.2.

Consistent with the analysis in §4.3.2, we still use round i to represent the i-th allocation
of a victim object after the attacker obtains the dangling pointer and conducts the UAF-
write. Effectively, after round i, S2Malloc should have checked FBCs i times to catch
the UAF attempt.

We denote Pi
e to represent the probability that the program execution ever reaches round

i. By definition, P1
e = 1−mA, i.e., when the attacker’s first UAF-write is not successful in

achieving the goal (1). Note that the attacker success rate increases as there are m victim
objects alive and the attack succeeds as long as the sensitive field in any one of them is
overridden by the UAF-write—this is essentially the advantage of heap spraying.

And yet, consistent with §4.3.2, this UAF-write can corrupt one FBC at most. Hence,
suppose the execution has reached round i, the probability that the repetitive UAF-writes
is detected at this particular round is still Equation 4.3. With attacker’s success rate
improved, the inductive definition for Pi

e in this strategy will be:

Pi+1
e = Pi

e ▷ reaches round i ◁ ×(1− 2d + 1
r
×D) ▷ undetected ◁ ×

(1−mA) ▷ unsuccessful attack attempt ◁
(4.10)

Limiting program execution to an upper bound of K rounds, the chance of attacker and
S2Malloc wins, respectively, is:

PK
attack = mA +

K∑
i=1

(Pi
e ×mA) :: PK

detect =
K∑

i=1
(Pi

e ×
2d + 1

r
×D) (4.11)

4.3.5 Strategy S2-spray: UAF-writes through fresh dangling
pointers with spraying

In this strategy, the attacker still sprays the heap such that overriding the sensitive field in
any the m victim objects achieves the goal (like the strategy in §4.3.4). Similar to §4.3.3,

66

the attacker does not hold a dangling pointer indefinitely, instead, the attacker obtains
a fresh dangling pointer (2) if a prior UAF-write attempt is not successful and use it to
launch a UAF-write attack in the current round. In each round, the attacker makes the
first move and S2Malloc follows. We denote Pi

e to represent the probability that the
program execution ever reaches S2Malloc’s turn in round i (to be consistent with the
notation in §4.3.2 , §4.3.3, and §4.3.4). By definition, P1

e = 1−mA, i.e., the attacker’s first
UAF-write is not successful in achieving the goal (1) even after spraying m victim objects.

Similar to §4.3.3, we use Qi to denote the probability that an arbitrary ball in the box is
not colored (i.e., a block with its FBCs integral) after i rounds. Qi and Pi

d can be computed
using the same formula as in §4.3.3

Based on this, we can derive the inductive definition for Pi
e:

Pi+1
e = Pi

e ▷ reaches round i ◁ ×(1− Pi
d) ▷ undetected ◁ ×

(1−mA) ▷ unsuccessful attack attempt ◁
(4.12)

Limiting program execution to an upper bound of K rounds, the chance of attacker and
S2Malloc wins, respectively, is:

PK
attack = mA +

K∑
i=1

(Pi
e ×mA) :: PK

detect =
K∑

i=1
(Pi

e × Pi
d) (4.13)

4.4 Security Evaluation

In this section, we show the robustness of S2Malloc towards UAF exploitations in
different scenarios. We first present the results from our formal modeling and then show
how S2Malloc mitigates real-world UAF attacks.

4.4.1 Parameterized protection rates

In this section, we illustrate how the protection and attack success rates vary with different
parameter configurations using the two attack strategies. Assuming the victim field is a
pointer of 8 bytes, The set of tunable parameters include 1 block size, 2 FBC length, 3
RIO entropy, 4 break on free, and 5 number of free blocks with FBCs checked.

For FBC-checking, we take 0 and 4 nearby blocks as a comparison to the default setting
(2 nearby blocks). For FBC length, we take 4 and 12 bytes as a comparison with the default

67

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0 default
4B FBC
12B FBC
no nearby check
4 nearby check
50% RIO space
break on free

(a) S1 protection rate

4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6 default
4B FBC
12B FBC
no nearby check
4 nearby check
50% RIO space
break on free

(b) S1 attack success rate

4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 default
4B FBC
12B FBC
no nearby check
4 nearby check
50% RIO space
break on free

(c) S2 protection rate

4 6 8 10 12 14 16
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
default
4B FBC
12B FBC
no nearby check
4 nearby check
50% RIO space
break on free

(d) S2 attack success rate

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8 spray 1 objs
spray 2 objs
spray 4 objs
spray 8 objs
spray 16 objs
spray 32 objs
spray 64 objs
spray 128 objs

(e) S1-spray protection rate

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0 spray 1 objs
spray 2 objs
spray 4 objs
spray 8 objs
spray 16 objs
spray 32 objs
spray 64 objs
spray 128 objs

(f) S1-spray attack success rate

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0 spray 1 objs
spray 2 objs
spray 4 objs
spray 8 objs
spray 16 objs
spray 32 objs
spray 64 objs
spray 128 objs

(g) S2-spray protection rate

4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0
spray 1 objs
spray 2 objs
spray 4 objs
spray 8 objs
spray 16 objs
spray 32 objs
spray 64 objs
spray 128 objs

(h) S2-spray attack success rate

Figure 4.3: Parameterized security evaluation (x-axis: logarithmic block size/byte, y-axis:
protection/attack success rate/%).

68

(8 bytes). For random offset entropy, we reserve 50% of block size for RIO compared to the
default (25%). We also evaluate the influence on the two rates with break-on-free.

We provide estimates of the rates by assuming that an attacker re-tries an attack for
500 times at max even if the attack is still not detected by the defender. We also assume
that overwriting the heap canary does not trigger any alarm. We analyze the protection
and attack success rates of blocks with sizes ranging from 16 bytes to 64K bytes as larger
blocks are resistant to UAF attacks. All these simplifications favor the attacker.

Figure 4.3a shows how the protection rate changes with a different set of tunable
parameters while Figure 4.3b shows how the attack success rate changes using strategy
S1. We observe that adopting a more secure setting increases the protection rate and
decreases the attack success rates for both small and large blocks. However, as the block
size increases, both rates decrease as it is less likely to overwrite either the target field or
FBC. Both the attacker and the defender are likely not to succeed, and the rates are thus
not summed up to one (in fact, not even close to one).

Figure 4.3c shows how the protection rate changes with the same set of tunable pa-
rameters while Figure 4.3d shows how the attack success rate changes using strategy S2.
Similarly, we observe that a more secure setting increases the protection rate and decreases
the attack success rates. However, the attacker would leave numbers of overwritten FBC in
the memory pool in this strategy making the protection rate higher.

Note that other entropy-based allocators provide zero protection as they do not detect
failed UAF-write attempts.

4.4.2 Protection rates with heap spray

Heap spraying boosts attackers’ chance of overwriting a sensitive field in a victim object
and hence, increases the attack success rate and decreases the protection rate. (see
detailed strategies and formal analysis in §4.3.4 and §4.3.5). We use the default settings of
S2Malloc and evaluate how both attack and defense rates change of strategies (S1 and
S2) with different numbers of sprayed objects and object sizes. Figure 4.3e and Figure 4.3f
show the protection and attack success rates of reusing the same pointer (strategy S1-spray).
Figure 4.3g and Figure 4.3h show the protection and attack success rates using a fresh
pointer (strategy S2-spray).

Spraying the heap with target variables diminishes the random allocation entropy, thus
decreases the protection rate and increases the attack success rate as FBC will not be
overwritten if the pointed block is allocated thus making the attack not detectable. RIO

69

Attack Strategy 1 Attack Strategy 2

round 1 5 10 50 100 500 1 5 10 50 100 500

pprotection 1.4% 4.1% 7.4% 28% 43% 64% 0.8% 12% 37% 95% 95% 95%
pattack 1.2% 2.6% 4.4% 15% 24% 35% 1.2% 2.6% 4.0% 5.5% 5.5% 5.5%

Table 4.2: Protection and attack success rates of attack rounds in mRuby issue 4001 using the
two strategies.

entropy is not influenced by heap spray. An effective protection can be achieved by adopting
a more secure configuration (e.g., checking more nearby FBCs, larger RIO or block entropy),
with marginal performance degradation (see §4.5.5) to make the spraying less effective.

4.4.3 Illustrate the protection rates

We take the mRuby issue 4001 (shown in Figure 4.1) as an example and show how its
protection rate is computed. The size of object mrb_io is 16 bytes, In each run, the attacker’s
goal is to overwrite 4 bytes of it. With the default settings (r = 256, s = 32 to store
a 16-byte object), the attack success rate of each trial is approximately 0.002, and the
probability of overwriting FBC in a free block is approximately 0.16. In Table 4.2, we show
how the rates change as the number of attack rounds goes up. The attack is 64% likely to
be detected if the attacker adopts the first attack strategy and 95% likely to be detected
using the second strategy after running it 500 times.

4.4.4 Defending against real-world CVEs

In this section, we compare how S2Malloc, Guarder, DieHarder, SlimGuard, Cling, and
TypeAfterType perform in defending against seven UAF vulnerabilities. We select these
vulnerabilities based on the following criteria:

• The vulnerabilities target the Linux platform and can be mitigated in the user space (i.e.,
not a Linux kernel bug);

• The vulnerabilities can be deterministically triggered (i.e., not racy);
• Public exploits for these vulnerabilities are available and the exploit breaks the program

information integrity (i.e., not just causing DoS).
Out of the seven vulnerabilities, six are UAF-write bugs and one (CVE-2022-22620)

is a UAF-read only bug. We also found seven exploits against these vulnerabilities (two

70

Vulnerability Attack pattern [63] [54] [40] S2Malloc [72] [3]

CVE-2015-6831 DP → Write G# # # # #
CVE-2015-6834 DP → Write G# # # # #
CVE-2015-6835 DP → Write G# # # # #
CVE-2015-6835 DP → Write → sleep # # # # #
CVE-2020-24346 DP → Write # # # # #
Python-91153 DP → Write # # # ■ #
mruby-4001 DP → Write # # # ■ ■
CVE-2022-22620 DP → Read # H# # ⊚• # #

Table 4.3: Summary of how different memory allocators defend against eight exploitation
techniques on seven vulnerabilities. Vanilla BIBOP allocator and Scudo [43] are vulnerable to all
attacks and behave similarly to Guarder [63] (DP: dangling pointer, #: no defense, G#: detect at
the end of execution, H#: defense via zero-out, : detect via FBC change, ⊚• : non-deterministic
leak (RIO), ■: thwart the exploitation ability).

exploits for CVE-2015-6835 with different attack patterns). All CVEs except Python-91153
and mruby-4001 can cause arbitrary code execution (ACE) if properly exploited. However,
a powerful attack (e.g., ACE by overriding a function pointer) can succeed when the target
object is precisely allocated to a freed memory chunk that is still referred to by a dangling
pointer1. S2Malloc can mitigate attacks by reducing the chance that a target object is
referred to by a dangling pointer. Evaluation results of the eight exploits are in Table 4.3.
Entropy-based allocators. S2Malloc can thwart all UAF-write attacks evaluated,
Guarder can detect three exploits by recognizing double-free attempts, but DieHarder and
SlimGuard fail to thwart these exploits. For the UAF-read attack, S2Malloc uses RIO to
stop the attacker from reusing the memory chunk with accurate object alignment, causing
the data read by the dangling pointer to be not sensible. DieHarder zeros out the memory
after it is freed, which is effective if the attacker tries to over-read a freed block.
Context-based allocators. While we expect context-based allocators to demonstrate
strong and stable protection, some of the exploits, unfortunately, hit on certain blind spots
in Cling and TypeAfterType by accident.

1An attacker may attack blindly, e.g., overriding a code pointer through the dangling pointer regardless
of whether it points to a target object or not. This will have three consequences: 1) corrupting FBC, which
may cause the attack to be detected upon future mallocs, 2) overwriting a wrong field due to RIO which
may cause the program to enter a weird state (e.g., crash), 3) a successful attack. If the program can be
recovered from a weird state automatically (e.g., crash resilience), the attacker can retry the same attack
and eventually case 1 or case 3 will occur. However, without the probabilistic detection on UAF attempts
by S2Malloc, only case 3 will occur.

71

In the case of Cling, if both the dangling pointer and the target object (i.e., the object an
attacker hope to corrupt) are allocated through the same multi-layer function call sequence,
they are considered to fall under the same allocation context, causing the target object to
be possibly accessed by the dangling pointer. We will illustrate this limitation through
the CVE-2015-6835 case study presented later. In fact, all examined CVEs, except mruby-
4001, hit this limitation of Cling. Cling mitigates mruby-4001 by limiting the attacker to
target objects of type mrb_io, which prevents the attacker from creating a powerful attack
primitive.

TypeAfterType can unpack malloc wrappers with an arbitrary number of layers until it
finds a sizeof(T) in the function argument, and an ID i is given to each allocation site of
T. The tuple (i,T) makes the allocation context, and all memory allocations through this
call sequence will be allocated from a memory pool dedicated to this context. However,
if the dangling pointer and the target object share the same context in an exploit, UAF
can still occur. We will illustrate this limitation through the CVE-2015-6835 case study.
TypeAfterType mitigates Python-91153 by limiting the target object to be a reallocated
string, and mruby-4001 by limiting the target object to be an mrb_io.
Case study: CVE-2015-6835. This CVE is a UAF bug in the PHP session deserializer,
which reconstructs a session from a serialized string. (see Figure 4.4 for simplified code
snippets to illustrate this CVE and its exploit in details). An attacker can exploit this
vulnerability to control a dangling pointer to a freed zval object. This is possible as the
return value (a zval pointer) of php_var_unserialize is freed in its caller without noticing
that the same pointer might also be stored in a global variable SESSION_VARS.

The zval type, unfortunately, is a reference-counting wrapper over nearly all other
objects involved in the PHP engine (see Figure 4.5 for the type definition of zval). Therefore,
an attacker might corrupt any zval object that may be reallocated to the freed slot. They
can simply uses the echo(..) function to dump a newly allocated zval in the freed memory.

1) Protection from entropy-based allocators. S2Malloc checks FBC on every malloc().
In this exploit, when the attacker tries to use the dangling pointer in zend_echo_handler,
its refcount field is increased, causing the FBC to be modified. This enables S2Malloc to
detect the UAF attempt when the corrupted slot or a nearby slot is about to be reallocated.
If the refcount change does not corrupt FBC (simulated by disabling the FBC check) and
this corrupted block is reallocated, S2Malloc can still stop the exploit as RIO causes
misalignment between the dangling pointer and new object, causing the type field to have
value UNKNOWN and prevents echo printing.

Guarder and DieHarder try to mitigate this attack by random allocation: hoping the
new object will not be referred to by a dangling pointer. However, our experiment shows

72

1 HashTable *SESSION_VARS;
2
3 PS_SERIALIZER_DECODE_FUNC(char* p, char *endptr) {
4 char *cursor = p;
5 hash_table_t *ht = INIT_HASHTABLE();
6 while (cursor < endptr) {
7 // for each item in the serialized stream
8 zval *name = PARSE_NEXT_ZVAL(&cursor);
9

10 zval *parsed = php_var_unserialize(&cursor, ht, endptr);
11 zval *stored = emalloc(sizeof(zval));
12 COPY_ZVAL(parsed, stored);
13 SESSION_VARS[name->value.str.val] = stored; // refcount = 1
14
15 zval_dtor(name);
16 zval_dtor(parsed);
17 }
18 free(ht);
19 }
20 zval* php_var_unserialize(char** pp, hash_table_t* ht, char* endptr) {
21 char *cursor = *pp;
22 zval *rval = emalloc(sizeof(zval));
23 INIT_ZVAL(rval); // refcount = 1
24
25 while (cursor < endptr) {
26 // for each element in the serialized item
27 zval *tmp;
28 if (*cursor == ’R’) {
29 // reference to a previously parsed zval
30 cursor++;
31 tmp = PARSE_NEXT_ZVAL(&cursor);
32 tmp = ht[HASH_ZVAL(tmp)];
33 } else {
34 // parsing a new zval from the cursor
35 tmp = PARSE_NEXT_ZVAL(&cursor);
36 }
37 rval->value.ht[HASH_ZVAL(tmp)] = tmp;
38 zval_dtor(tmp);
39 }
40
41 *pp = cur;
42 ht[HASH_ZVAL(rval)] = rval;
43 return rval;
44 }
45 void zval_dtor(zval *p) {
46 p->refcount--;
47 if (p->refcount == 0) { free(p); }
48 }
49
50 /* -- */
51
52 int zend_echo_handler(char *name) {
53 zval *obj = SESSION_VARS[name];
54 obj->refcount++;
55 zend_print_variable(obj); // UAF read
56 }

Figure 4.4: Adapted code snippets to illustrate CVE-2015-6835 and its exploits.

73

1 typedef union _zvalue_value {
2 long lval;
3 double dval;
4 struct { char *val; int len; } str;
5 HashTable *ht;
6 zend_object_value obj;
7 } zvalue_value;
8
9 typedef struct _zval_struct {

10 zvalue_value value;
11 zend_uint refcount;
12 zend_uchar type;
13 zend_uchar is_ref;
14 } zval;

Figure 4.5: Type definition of zval.

that Guarder fails if the attacker re-runs the attack multiple times or spray the heap with
victim objects. SlimGuard fails to provide protections as it always allocates the most
recently freed objects to the program. It does not implement the claimed random allocation
feature and does not have any other security features that could detect UAF. DieHarder
zeros out the memory chunk that stops information leakage of the freed zval, but it cannot
prevent an attacker to corrupt the newly allocated zval over the freed chunk.

2) Protection from context-based allocators. In this exploit, both the dangling
pointer and the target object (i.e., the object the attacker wish to dump informa-
tion via zend_echo_handler) are allocated by the the same multi-layer malloc wrapper:
php_var_unserialize→emalloc→malloc. This is critical to understand why Cling and
TypeAfterType fail to mitigate this exploit.

For Cling, this malloc wrapper implies that the allocation of many zval objects will
be sharing the same context (measured by the two innermost return addresses on the
call stack). This leaves the dangling pointer plenty of candidate objects to refer to after
several rounds of deserialization in PHP. TypeAfterType can inline malloc wrappers but
the inlining stops at php_var_unserialize because it sees the sizeof(zval) argument in
emalloc and hence, will allocate all zval objects originating from this malloc wrapper from
the same pool. Unfortunately, the dangling pointer is also allocated this way, enabling UAF
among the dangling pointer to other zval objects as well.

4.5 Performance Evaluation

In order to evaluate the performance and memory overhead of these allocators, we run
various benchmarks trying to provide a complete understanding of their performance.

74

We firstly run two macro benchmarks – PARSEC and SPEC (§4.5.1), and then use the
mimalloc-bench and glibc micro-benchmark to evaluate the performance of running two
most frequent heap memory management functions: free() and malloc() (§4.5.2). We then
evaluate their performance on real-world programs using two servers: Nginx and Lighttpd,
and two databases: Redis and SQLite (§4.5.3). We then discuss how multi-threading
impairs each of them performance (§4.5.4). In the end, we show how different parameter
values influence the performance of S2Malloc (§4.5.5). We also show the working set size
(WSS) of each allocator on SPEC, PARSEC, and real-world programs (§B).

Experiment setup. Experiments are performed on both x86 and AARCH servers for
macro benchmarks. The performance of benchmarks is measured only on the x86 server.
The x86 server is configured with 64-bit 160-core 2.40GHz Intel Xeon E7-8870 CPUs (x86
architecture) with 1TB system memory. We set up the AARCH server on Amazon Web
Service (AWS), using the im4gn.4xlarge machine with 16 vCPU cores and 64 GB memory.
On both machines, benchmarks are measured in the Docker environment with Debian 11,
kernel version 5.15.0. We measure the overheads using the GNU time binary [39] and
setting the LD_PRELOAD environment variable to substitute the system default allocator.

We obtain SlimGuard, Guarder, and DieHarder from their corresponding GitHub
repository. We use SlimGuard with commit 81f1b0f as a later erroneous commit prevents
us from using LD_PRELOAD to replace the system allocator. We use the up-to-date version
of the other two memory allocators (Guarder: 9e85978, DieHarder: 640949f). In order to
provide a fair result, we reduce the allocation entropy bit of Guarder to eight (same as the
default value of SlimGuard and S2Malloc). We also disable DieHarder from zeroing out
freed blocks (this actually slightly accelerates DieHarder).

S2Malloc is measured with the settings of checking two nearby blocks (d = 2), 10%
random guard page, and taking 1/4 of the block size as random offset entropy (e = 0.25b).
For blocks smaller than a memory page (4096 bytes), we zero it out and take the whole
block as FBC. For blocks larger than a memory page, we set an 8-byte FBC (c = 8) in the
corresponding blocks. We set the heap canary length to be one byte (ι = 1) following the
design of SlimGuard and Guarder. All reported times and memory usage are normalized
using the baseline (glibc) output. We use geometric averages to compute average overheads
and report the means and standard deviations of five runs.

4.5.1 Macro benchmarks

PARSEC. We first evaluate the performance of S2Malloc using the PARSEC [7]
benchmark. We exclude three network tests (netdedup, netferret, and netstreamcluster)

75

x86 AARCH

SPEC PARSEC SPEC PARSEC

S2Malloc 12% (4.1) 2.8% (1.0) 16% (2.3) 1.8% (0.9)
SlimGuard 17% (7.6) 4.4% (1.5) 7.7% (6.9) 2.6% (1.3)
DieHarder 31% (2.1) 2.1% (1.3) - 2.5% (0.7)
Guarder 3.5% (5.5) 2.4% (11) - -

(a) Run-time Overhead (std. ∗10−3)

x86 AARCH

SPEC PARSEC SPEC PARSEC

S2Malloc 37% (0.2) 27% (1.9) 38% (0.0) 28% (0.7)
SlimGuard 57% (3.8) 23% (2.2) 57% (2.1) 24% (0.2)
DieHarder 59% (0.0) 21% (1.2) - 21% (0.8)
Guarder 56% (0.1) 58% (0.7) - -

(b) Memory Overhead (std. ∗10−3)

Table 4.4: Normalized run time and memory overheads for state-of-the-art entropy-based secure
allocators on SPEC and PARSEC benchmarks. We report geometric averages and standard
deviations of the run-time overhead over five runs.

and one test (x264) that fails to compile in the baseline scenario, and only report the result
of the rest 12 benchmarks. Additionally, we exclude “raytrace” from execution for the
AARCH sever as it cannot compile. We refer to each PARSEC test using the first three
letters of its name.

SPEC CPU2017. We use SPEC CPU2017 [65] version 1.1.9. We report the results of
12 C/C++ only tests in both “Integer” and “Floating Point” test suites with the default
OpenMP settings of four parallel threads. All reported SPEC overheads are “reportable”
following the SPEC documentation [65].

Results. We measure the performance of S2Malloc and three other entropy-based
allocators (SlimGuard, Dieharder and Guarder) on both benchmarks with the x86 machine.
On the AARCH machine, we exclude Guarder from analysis, noticing that Guarder relies
on AES-NI [30], an Intel CPU extension, not supported on AARCH machines. We report
the average and standard deviations of overheads in Table 4.4. Averages and standard
deviations of each test in both settings are shown in Table 4.5. Missing columns in the
figures indicate the corresponding execution runs into error. A complete list of erroneous

76

executions and explanations is listed in §A.1.
For the SPEC benchmark, on the x86 machine, S2Malloc introduces 11.5% run-time

overhead, smaller than two allocators – SlimGuard and DieHarder, and introduces the
least memory overhead at 37.4%. On the AARCH machine, S2Malloc introduces similar
15.5% run-time overhead, larger than the SlimGuard due to the fact that SlimGuard fails
to run tests with frequent heap memory management operations. Running the PARSEC
benchmark gives similar results, with smaller memory and run-time overheads.

We observe S2Malloc and other memory allocators introduce larger overheads for tests
with frequent heap memory management operations, for example, “ded” in PARSEC and
“620” in SPEC. We investigate the costs of running malloc() and free() in the following
section.

4.5.2 Micro benchmarks

16B
malloc

128B
malloc

1KB
malloc

16B
free

128B
free

1KB
free

0

200

400

600

800

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

S2malloc
S2malloc(w/o aes)
SlimGuard
DieHarder
Guarder

Figure 4.6: Execution time of glibc-simple

Time
S2malloc

Time
SlimGuard

Time
DieHarder

Time
Guarder

Memory
S2malloc

Memory
SlimGuard

Memory
DieHarder

Memory
Guarder

0.9

1.1

1.3

1.5

1.7

1.9

2.1
1 thread
4 threads
16 threads

Figure 4.7: Run-time and memory overheads
of running PARSEC with multi-threads

To further understand the overheads introduced by S2Malloc, we investigate its
performance using mimalloc-bench [15], composed of real-world and calibrated programs
that allocate and free heap memory frequently. The results are shown in Table 4.6. Individual
results are reported in Table 4.9 and Table 4.8.. Running three tests with SlimGuard
never returns (marked as "-"). They are excluded from computing the SlimGuard average
overheads.

77

All secure memory allocators incur larger overheads compared to running real-world
(see §4.5.3) or general-purpose benchmarks as mimalloc-bench tests operate the heap
memory in a biased frequent way and some tests (e.g., "leanN" generates the largest run-
time overhead with S2Malloc) counts the CPU ticks instead of seconds of finishing each
call.

We take one test, glibc-simple from mimalloc-bench, from the glibc micro-benchmark
suite [70] to further investigate the delays incurred in the two most common heap object
management functions – malloc() and free(). The test times the execution of allocating
and freeing a large number of blocks of a given size. We modify the benchmark and monitor
the execution time of calling malloc() and free() separately. To investigate the time
consumption of different sizes, we vary the block size S to be 16B, 128B, and 1KB, and
change the number of allocated blocks N correspondingly, so that the total allocation size
(N * S) is always 1000 MB. Results are presented in Figure 4.6, and is the average of 100
runs.

Generally, S2Malloc takes more time to execute malloc() than all other compared
memory allocators, and takes less time to execute free() than DieHarder but longer
time than Guarder and SlimGuard. However, a significant overhead comes with our
cryptographically secure canary implementation, which should be a standard adopted by
all memory allocators. Although using hardware acceleration, the canary value is computed
in each malloc() and free() calls, introducing a nonnegligible computation tax. After
disabling this feature and using a fixed value as the canary, following the implementation
of Guarder, although the execution time of both calls is still longer than Guarder and
SlimGuard, it is comparable to others and the increased overhead is expected as S2Malloc
introduces extra security guarantees. For example, in 16B malloc call, S2Malloc is 31%
slower than SlimGuard and is 26% slower than SlimGuard in 16B free.

4.5.3 Performance on real world programs

To evaluate the performance of S2Malloc in real-world environments, we run two servers:
Nginx (1.18.0), and Lighttpd (1.4.71), and two databases: Redis (7.2.1), and SQLite (3.25.2)
on the x86 machine. We use ApacheBench (ab) [67] 2.3 to test the throughput and delays
using the Nginx default root page, of 613 bytes, as the requested page with 500 concurrent
requests. On Redis, we use the same settings as its performance is measured in mimalloc-
bench [15]. We use sqlite-bench [1] to measure the performance of SQLite. We report
the results of performing random read and write operations in Table 4.10 and Table 4.11.
We observe that applying S2Malloc on these programs results in minimal throughput

78

influence (even better throughput on Nginx and Redis). Running S2Malloc delays the
request response time on Nginx but not on Lighttpd. Applying all secure memory allocators
increases memory consumption.

4.5.4 Performance with multi-threading

We run the memory allocators on the PARSEC benchmark with 4 and 16 threads separately
using the x86 machine. We exclude the test “ray” from analysis as it cannot be executed
with multiple threads and “vip“ as running it using Guarder with 16 threads causes a
segmentation fault. Results are reported in Figure 4.7.

We observe that as the number of threads increases, S2Malloc gradually introduces
more run-time and memory overheads, as we use atomic instructions and maintain per-thread
metadata. SlimGuard and DieHarder use single global metadata, and use lock to achieve
multi-thread compatibility. While increasing the number of threads does not introduce
extra memory overheads on the one hand, lock introduces more run-time overheads on
the other hand. Guarder uses per-thread metadata but fails to use atomic instructions to
update the metadata, causing racing conditions if multiple threads are handling adjacent
blocks.

4.5.5 Influence with different parameters

In addition to the default settings, we also measure how different parameters, namely,
nearby checking range, random offset entropy, and RIO entropy, influence the run-time and
memory overheads. For the nearby checking range, we take 0 and 4 blocks as a comparison
to the default setting: 2. For random allocation entropy, we take 4 bytes and 12 bytes as a
comparison to the default 8 bytes. For random offset entropy, we reserve 50% of block size
for RIO compared to the default 25%. Table 4.7 shows how different parameters influence
the overheads.

We observe that changing the nearby checking range does not introduce observable
differences for the memory overhead. The introduced delta is possibly due to server
fluctuations. Using a larger nearby checking range introduces a larger run-time overhead,
as S2Malloc needs to compute and check more canary values. Using a larger random
allocation entropy or RIO introduces both larger memory and run-time overheads.

79

Setup Run-time overhead Memory overhead

PARSEC
x86

bla bod can ded fac fer flu fre str swa avg
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.36
S2malloc
SlimGuard
DieHarder
Guarder

bla bod can ded fac fer flu fre str swa avg
0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

3.38 12.57
S2malloc
SlimGuard
DieHarder
Guarder

SPEC
x86

600602605619620623625631638641644657avg
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.47 2.47
S2malloc
SlimGuard
DieHarder
Guarder

600602605619620623625631638641644657avg
0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0 3.34 7.92 3.29
S2malloc
SlimGuard
DieHarder
Guarder

PARSEC
AARCH

bla bod can ded fac fer flu fre str swa vip avg
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
S2malloc
SlimGuard
DieHarder

bla bod can ded fac fer flu fre str swa vip avg
0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

3.44
S2malloc
SlimGuard
DieHarder

SPEC
AARCH

600602605619620623625631638641644657avg
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
S2malloc
SlimGuard

600602605619620623625631638641644657avg
0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0 7.95
S2malloc
SlimGuard

Table 4.5: Average and standard deviation of run time and memory overhead on PARSEC and
SPEC benchmarks (x86 and AARCH).

80

Run-time
Overhead

Memory
Overhead

S2Malloc 189% 343%
SlimGuard 298% 250%
DieHarder 229% 92%
Guarder 56% 980%

Table 4.6: Normalized run-time and memory overheads of running mimalloc-benchmark.

∆ Memory
Overhead

∆ Run-time
Overhead

0 Nearby -0.05% -0.42%
4 Nearby -0.13% +0.4%
4B Random N -12.35% -0.33%
12B Random N +68.23% +0.73%
50% Entropy +9.57% +0.49%

Table 4.7: Normalized memory and run-time Overhead changes compared with the default
settings.

81

S2Malloc SlimGuard DieHarder Guarder
cfrac 3.103 2.939 3.326 1.848
espresso 2.223 6.935 2.073 1.293
barnes 0.999 1.000 1.024 0.998
leanN 2.194 - 3.297 1.498
larsonN 9.313 23.250 7.033 1.748
mstressN 3.500 4.333 2.367 1.833
rptestN 5.383 18.131 3.243 1.212
gs 1.599 1.616 1.333 1.184
lua 1.579 2.364 1.337 1.200
alloc-test1 3.612 3.103 4.314 1.783
sh6benchN 5.392 - 40.675 2.228
sh8benchN 8.384 - 26.302 3.038
xmalloc-testN 2.640 4.052 5.136 1.519
cache-scratch1 1.000 1.000 1.007 1.000
glibc-simple 3.370 1244.895 2.801 1.824
glibc-thread 7.008 14.153 4.279 2.980
redis 1.006 1.004 1.008 0.999
average 2.891 3.981 3.298 1.561

Table 4.8: Normalized runtime overheads of mimalloc-bench

82

S2Malloc SlimGuard DieHarder Guarder
cfrac 2.008 1.320 2.539 85.164
espresso 23.822 386.400 3.480 99.456
barnes 1.034 1.014 1.115 1.045
leanN 1.865 - 1.900 1.988
larsonN 11.189 5.667 0.986 17.966
mstressN 4.230 3.853 2.098 2.750
rptestN 12.056 5.119 3.224 5.661
gs 1.548 3.218 1.748 1.683
lua 1.760 1.353 1.333 1.494
alloc-test1 2.156 1.481 1.511 28.857
sh6benchN 1.103 - 1.697 3.109
sh8benchN 3.430 - 1.043 8.004
xmalloc-testN 580.270 8.197 3.032 1238.115
cache-scratch1 1.461 1.250 1.564 1.422
glibc-simple 3.592 239.045 3.778 260.030
glibc-thread 15.690 3.237 3.823 75.580
redis 1.231 1.099 1.249 1.203
average 4.340 4.502 1.922 10.800

Table 4.9: Normalized memory overheads of mimalloc-bench

Nginx Lighttpd
Throughput Memory p50 Throughput Memory p50

S2Malloc 9705.369 7867.2 56 11050.830 9425.6 44
Guarder 9496.210 13724 52 11146.580 11088.8 44
SlimGuard 6159.014 4935.2 81 11153.358 6428.0 44
DieHarder 8769.120 7396.8 57 11128.114 13626.4 44
Glibc 9564.754 3400.0 52 10742.708 5069.6 44

Table 4.10: Throughput (request/second), memory consumption (KB), and delays (msec) for
servers.

83

Redis SQLite-Read SQLite-Write
Throughput Memory Throughput Memory Throughput Memory

S2Malloc 218460.294 44688.8 771247.8791 17234.4 25146.73118 208592.0
Guarder 221245.016 46548.8 790263.9482 17451.2 25735.65366 193408.8
SlimGuard 219986.106 47397.6 766518.4731 14921.6 24456.21604 137659.2
DieHarder 221733.848 52419.2 781983.1092 19115.2 24613.93050 377160.8
Glibc 218155.764 50908.8 796812.7490 5914.4 25439.72566 132984.8

Table 4.11: Throughput (request/second) and memory consumption (KB) on databases

84

Chapter 5

Conclusion

The threat of UAF always need to be considered as long as a memory unsafe programming
language is used. While all memory allocators are not ideal in both security and overheads,
I have shown that limiting the attacker’s ability can be a possible direction.

I have shown that SEMalloc (Chapter 3), a UAF-specialized memory allocator, can
restrict the dangling pointer and the target object to be the same SemaType with almost
no performance degradation. The proposed SemaType can balance security, run-time cost,
and memory overhead in UAF mitigation, and can be used beyond memory allocation to
help enforce finer-grained data access policies.

I have shown that S2Malloc (Chapter 4), a drop-in solution for not only UAF threats
but for other heap vulnerabilities, can fill the gap of expolitation attempt detection without
compormising security and performance. The three innovative primitives (RIO, FBC, and
RBL) incur only marginal performance overhead that makes S2Malloc pratical to even
production systems.

These approaches strike a balance between security and performance: mitigating the
risk of UAF vulnerabilities while maintaining system efficiency. It remains for future work
to explore alternative avenues for achieving constraints on potential attacks. However,
it is essential to remain vigilant and continue exploring advancements in memory safety
techniques to stay ahead of evolving threats in software security.

85

References

[1] Hajime Tazaki. sqlite-bench | SQLite Benchmark. https://github.com/ukontainer/
sqlite-bench/tree/master.

[2] Sam Ainsworth and Timothy M. Jones. MarkUs: Drop-in Use-After-Free Prevention
for Low-level Languages. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2020.

[3] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In 19th
USENIX Security Symposium, pages 177–192, Washington, DC, 09 2010.

[4] Alejandro Guerrero. N-day exploit for CVE-2022-2586: Linux kernel nft_object UAF.
https://www.openwall.com/lists/oss-security/2022/08/29/5, 2022.

[5] Cristiano Giuffrida Alyssa Milburn, Herber Bos. Safelnit: Comprehensive and Practical
Mitigation of Uninitialized Read Vulnerabilities. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, February
2017.

[6] ARM Developer. Neon. https://developer.arm.com/Architectures/Neon.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. Technical Report
TR-811-08, Princeton University, January 2008.

[8] Blaze Labs. The never ending problems of local ASLR holes in Linux. https:
//www.blazeinfosec.com/post/never-ending-problems-aslr-linux/, 2022.

[9] Matteo Botticci. Zigrazor/cxxgraph: Release v0.2.2. https://doi.org/10.5281/
zenodo.5878832, January 2022.

86

https://github.com/ukontainer/sqlite-bench/tree/master
https://github.com/ukontainer/sqlite-bench/tree/master
https://www.openwall.com/lists/oss-security/2022/08/29/5
https://developer.arm.com/Architectures/Neon
https://www.blazeinfosec.com/post/never-ending-problems-aslr-linux/
https://www.blazeinfosec.com/post/never-ending-problems-aslr-linux/
https://doi.org/10.5281/zenodo.5878832
https://doi.org/10.5281/zenodo.5878832

[10] Charles Bouillaguet, Florette Martinez, and Julia Sauvage. Practical seed-recovery
for the pcg pseudo-random number generator. IACR Transactions on Symmetric
Cryptology, 2020(3):175–196, September 2020.

[11] C Language Working Group. ISO/IEC 9899:2023 (E) Programming languages — C.
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3088.pdf.

[12] Luca Cardelli. Type Systems. ACM Computing Surveys (CSUR), 28(1), 1996.

[13] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili,
Adam Doupé, and Gail-Joon Ahn. ViK: practical mitigation of temporal memory
safety violations through object ID inspection. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Vancouver, Canada, April 2022.

[14] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings
of the 7th USENIX Security Symposium (Security), San Antonio, TX, January 1998.

[15] daanx. mimalloc-bench | Suite for benchmarking malloc implementations. https:
//github.com/daanx/mimalloc-bench.

[16] Thurston H. Y. Dang, Petros Maniatis, and David Wagner. Oscar: A practical page-
permissions-based scheme for thwarting dangling pointers. In Proceedings of the 26th
USENIX Security Symposium (Security), Vancouver, Canada, August 2017.

[17] Daniel Teuchert, Cornelius Aschermann, Tommaso Frassetto, Tigist Abera. Use
after free in File#initilialize_copy. https://github.com/mruby/mruby/issues/
4001, April 2018.

[18] Thomas Dullien. Weird Machines, Exploitability, and Provable Unexploitability. IEEE
Transactions on Emerging Topics in Computing, 8(2), 2020.

[19] Márton Erdős, Sam Ainsworth, and Timothy M. Jones. MineSweeper: A “Clean Sweep”
for Drop-in Use-after-Free Prevention. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Vancouver, Canada, April 2022.

[20] Exploit Database. PHP DateTime - Use-After-Free - PHP dos Exploit. https:
//www.exploit-db.com/exploits/36158.

87

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3088.pdf
https://github.com/daanx/mimalloc-bench
https://github.com/daanx/mimalloc-bench
https://github.com/mruby/mruby/issues/4001
https://github.com/mruby/mruby/issues/4001
https://www.exploit-db.com/exploits/36158
https://www.exploit-db.com/exploits/36158

[21] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. PTAuth: Temporal Memory
Safety via Robust Points-to Authentication. CoRR, March 2020.

[22] Nathaniel Filardo, Brett F Gutstein, John Woodruff, Sam Ainsworth, Lucian Paul-
Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexander Richardson,
John Baldwin, David Chisnall, Jessica Clark, Khilan Gudka, Alexandre Joannou, A.
Theodore Markettos, Alfredo Massinghi, Robert M Norton, Michael Roe, Peter Sewell,
Stacey Son, Timothy M Jones, Simon W Moore, Peter G Neumann, and Robert N M
Watson. Cornucopia: Temporal Safety for CHERI Heaps. In Proceedings of the 41st
IEEE Symposium on Security and Privacy. IEEE Computer Society, May 2020.

[23] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A Theory of Type Qualifiers.
In Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Atlanta, GA, June 1999.

[24] Free Software Foundation, Inc. The GNU Allocator (The GNU C Library). https:
//www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html.

[25] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida. DangZero: Efficient
Use-After-Free Detection via Direct Page Table Access. In Proceedings of the 29th
ACM Conference on Computer and Communications Security (CCS), Los Angeles,
CA, November 2022.

[26] GrapheneOS. GrapheneOS: the private and secure OS. https://grapheneos.org/.

[27] GrapheneOS. Hardened malloc. https://github.com/GrapheneOS/hardened_
malloc, 2024.

[28] Hanno Böck. use after free with malformed input file in yasm_intnum_destroy().
https://github.com/yasm/yasm/issues/91, 2017.

[29] David R. Hanson. A Portable Storage Management System for The ICON Programming
Language. Software: Practice and Experience, 10(6):489–500, 1980.

[30] Intel Corporation. Intel Advanced Encryption Standard Instructions (AES-NI).
https://www.intel.com/content/www/us/en/developer/articles/technical/
advanced-encryption-standard-instructions-aes-ni.html.

[31] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin Jang, and
Changwoo Min. Tightly seal your sensitive pointers with pactight, 2022.

88

https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://grapheneos.org/
https://github.com/GrapheneOS/hardened_malloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/yasm/yasm/issues/91
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

[32] John Leitch. array.fromstring Use After Free. https://bugs.python.org/
issue24613, July 2015.

[33] Moshe Kol. Racing Against the Lock: Exploiting Spinlock UAF in the Android Kernel.
In OffensiveCon, 2023.

[34] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. Preventing use-after-free with dangling pointers nullification. In
Proceedings of the 2015 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2015.

[35] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and
Chao Zhang. PACMem: Enforcing Spatial and Temporal Memory Safety via ARM
Pointer Authentication. In Proceedings of the 29th ACM Conference on Computer and
Communications Security (CCS), Los Angeles, CA, November 2022.

[36] Hans Liljestrand, Zaheer Gauhar, Thomas Nyman, Jan-Erik Ekberg, and N. Asokan.
Protecting the stack with paced canaries. In Proceedings of the 4th Workshop on
System Software for Trusted Execution (SysTEX), Ontario, Canada, October 2019.

[37] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao Cai, and Charles Zhang. GI-
ANTSAN: Efficient Memory Sanitization with Segment Folding. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San Diego, CA, April 2022.

[38] Linux Foundation. mmap(2) - Linux manual page. https://man7.org/linux/
man-pages/man2/mmap.2.html, 2023.

[39] Linux Foundation. time(1) - Linux manual page. https://man7.org/linux/
man-pages/man1/time.1.html, 2023.

[40] Beichen Liu, Pierre Olivier, and Binoy Ravindran. SlimGuard: A Secure and Memory-
Efficient Heap Allocator. In Proceedings of the 20th International Middleware Confer-
ence (Middleware), Davis, CA, December 2019.

[41] LLVM Project. Clang: a C language family frontend for LLVM. https://clang.
llvm.org/.

[42] LLVM Project. llvm-project/llvm/lib/Target/X86/X86CallingConv.td at main ·
llvm/llvm-project. https://github.com/llvm/llvm-project/blob/main/llvm/
lib/Target/X86/X86CallingConv.td#L586-L588.

89

https://bugs.python.org/issue24613
https://bugs.python.org/issue24613
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://clang.llvm.org/
https://clang.llvm.org/
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86CallingConv.td#L586-L588
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86CallingConv.td#L586-L588

[43] LLVM Project. Scudo Hardened Allocator. https://llvm.org/docs/
ScudoHardenedAllocator.html, 1024.

[44] Kangjie Lu and Hong Hu. Where Does It Go? Refining Indirect-Call Targets with
Multi-Layer Type Analysis. In Proceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, November 2019.

[45] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. UniSan: Proactive Ker-
nel Memory Initialization to Eliminate Data Leakages. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS), Vienna, Austria,
October 2016.

[46] Manh Nguyen. UAF Fuzzing Benchmark. https://github.com/strongcourage/
uafbench.

[47] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI:
Cryptographically enforced control flow integrity. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), Denver, Colorado,
October 2015.

[48] National Vulnerability Database. 2022 CWE Top 25 Most Dangerous Software Weak-
nesses. https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html.

[49] National Vulnerability Database. CVE-2015-6831. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2015-6831, 2015.

[50] National Vulnerability Database. CVE-2015-6835. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2015-6835, 2015.

[51] National Vulnerability Database. CVE-2018-11496. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-11496, 2018.

[52] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), San Diego, CA, June
2007.

[53] Nick Nikiforakis, Frank Piessens, and Wouter Joosen. Heapsentry: Kernel-assisted
protection against heap overflows. In Konrad Rieck, Patrick Stewin, and Jean-Pierre
Seifert, editors, Detection of Intrusions and Malware & Vulnerability Assessment,
volume 7967 LNCS, pages 177–196. Springer, jul 2013.

90

https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://github.com/strongcourage/uafbench
https://github.com/strongcourage/uafbench
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6831
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6831
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11496
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11496

[54] Gene Novark and Emery D Berger. DieHarder: Securing The Heap. In Proceedings of
the 17th ACM Conference on Computer and Communications Security (CCS), Chicago,
IL, November 2010.

[55] OffSec Services Limited. Exploit Database - Exploits for Penetration Testers, Re-
searchers, and Ethical Hackers. https://www.exploit-db.com/.

[56] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation. Technical Report HMC-CS-2014-0905,
Harvey Mudd College, September 2014.

[57] Chanyoung Park and Hyungon Moon. Efficient use-after-free prevention with op-
portunistic page-level sweeping. In Proceedings of the 2024 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, February 2024.

[58] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
AddressSanitizer: a fast address sanity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference (ATC), Boston, MA, June 2012.

[59] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications, 7(1):67–72, 1981.

[60] Shellphish. shellphish/how2heap: A repository for learning various heap exploitation
techniques. https://github.com/shellphish/how2heap.

[61] Zekun Shen and Brendan Dolan-Gavitt. HeapExpo: Pinpointing Promoted Pointers to
Prevent Use-After-Free Vulnerabilities. In Proceedings of the 36th Annual Computer
Security Applications Conference (ACSAC), 2020.

[62] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.
CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free in
Legacy C/C++. In Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2019.

[63] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. Guarder: A
Tunable Secure Allocator. In Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, August 2018.

[64] Alexander Sotirov. Heap Feng Shui in Javascript. Black Hat Europe, 2007.

[65] Standard Performance Evaluation Corporation. SPEC CPU® 2017. https://www.
spec.org/cpu2017/.

91

https://www.exploit-db.com/
https://github.com/shellphish/how2heap
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/

[66] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory.
In Proceedings of the 34th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2013.

[67] The Apache Software Foundation. Apache HTTP Server Documentation: ab -
Apache HTTP Server Benchmarking Tool. https://httpd.apache.org/docs/2.
4/programs/ab.html, 2023.

[68] The Chromium Projects. Memory safety. https://www.chromium.org/Home/
chromium-security/memory-safety/.

[69] The GNU Project. Aligned Memory Blocks (The GNU C Library). https://www.
gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html.

[70] The GNU Project. Standalone Glibc-Benchtests. https://github.com/xCuri0/
glibc-benchtests.

[71] Tristan Ravitch. A wrapper script to build whole-program LLVM bitcode files. https:
//github.com/travitch/whole-program-llvm, November 2023.

[72] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cristiano
Giuffrida. Type-After-Type: Practical and Complete Type-Safe Memory Reuse. In
Proceedings of the 34th Annual Computer Security Applications Conference (ACSAC),
2018.

[73] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan: Scalable
use-after-free detection. In Proceedings of the 12th European Conference on Computer
Systems (EuroSys), Belgrade, RS, April 2017.

[74] Vulners. Internet Bug Bounty: Use After Free Vulnerability in unserialize() - bugbounty
database. https://vulners.com/hackerone/H1:73235.

[75] Ruizhe Wang, Meng Xu, and N. Asokan. S2malloc: Statistically Secure Allocator
for Use-After-Free Protection And More. In Proceedings of the 2024 Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), Lausanne,
Switzerland, July 2024.

[76] Ruizhe Wang, Meng Xu, and N. Asokan. SEMalloc: Semantics-Informed Memory Allo-
cator. In Proceedings of the 2024 ACM Conference on Computer and Communications
Security (CCS), Salt Lake City, UT, October 2024.

92

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://github.com/xCuri0/glibc-benchtests
https://github.com/xCuri0/glibc-benchtests
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://vulners.com/hackerone/H1:73235

[77] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben
Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj
Vadera. CHERI: A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization. In 2015 IEEE Symposium on Security and Privacy, pages
20–37, 2015.

[78] Brian Wickman, Hong Hu, Insu Yun, DaeHee Jang, JungWon Lim, Sanidhya Kashyap,
and Taesoo Kim. Preventing Use-After-Free Attacks with Fast Forward Allocation. In
Proceedings of the 30th USENIX Security Symposium (Security), Online, August 2021.

[79] Carter Yagemann, Simon P Chung, Brendan Saltaformaggio, and Wenke Lee. PUMM:
Preventing Use-After-Free Using Execution Unit Partitioning. In Proceedings of the
32nd USENIX Security Symposium (Security), Anaheim, CA, August 2023.

[80] Yves Younan. FreeSentry: protecting against use-after-free vulnerabilities due to
dangling pointers. In Proceedings of the 2015 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2015.

[81] Jie Zhou, John Criswell, and Michael Hicks. Fat pointers for temporal memory safety
of c. In Proceedings of the 2023 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Orlando, FL, June 2023.

93

Appendices

A List of Failed Tests and Corresponding Exceptions
on PARSEC and SPEC

A.1 List of Failed Tests and Corresponding Exceptions on PAR-
SEC and SPEC in S2Malloc

PARSEC x86.

• SlimGuard: ray(mmap error), flu(mmap error), fer(SIGSEGV), ded (SIGSEGV)

SPEC x86.

• SlimGuard: 600 (false positive double free), 602(SIGSEGV), 623(SIGSEGV),
631(SIGSEGV), 644(SIGSEGV), 657(SIGSEGV)

• DieHarder: 602(time out), 657(time out)

PARSEC AARCH.

• SlimGuard: ray(mmap error), flu(mmap error), fer(SIGSEGV), ded (SIGSEGV)

SPEC AARCH.

• SlimGuard: 600 (false positive double free), 602(SIGSEGV), 623(SIGSEGV),
631(SIGSEGV), 644(SIGSEGV), 657(SIGSEGV)

94

• DieHarder: All benchmarks (Too many open files error)

While running SPEC with DieHarder, test 602 runs unacceptably long, and possibly
never returns. We killed the execution after running 1.5 hours, and we also mark it as invalid.
As a comparison, running 602 on the AARCH machine with the default memory allocator
only takes about 350 seconds. Exceptions here are triggered due to the incompatibility
between the allocators and the tests. For example, SlimGuard only supports malloc, free,
realloc and memalign while other allocation functions such as calloc and aligned_alloc
are not supported.

NOTE: a PARSEC test is referenced by the first three letters of its name.

A.2 List of Failed Tests and Corresponding Exceptions on PAR-
SEC and SPEC in SEMalloc

PARSEC. (referenced by the first three letters of its name)

• MarkUs:
– fer (SIGSEGV)

• MineSweeper:
– fer (SIGSEGV)

• TypeAfterType:
– can (incomplete type tracking support)
– fer (LLVM pass exception)
– swa (incomplete type tracking support)
– vip (incomplete type tracking support)

• DangZero:
– bod (SIGSEGV)
– ded (SIGSEGV)
– fer (SIGSEGV)
– vip (assertion fail)

SPEC.

95

• TypeAfterType:
– 602 (LLVM pass exception)

• DangZero:
– 638 (SIGSEGV)
– 644 (SIGSEGV)
– 657 (SIGSEGV)

Mimalloc-Bench.

• TypeAfterType:
– alloc-test (incomplete type tracking support)
– malloc-large(incomplete type tracking support)
– rbstress (configuration failure)

• DangZero:
– rbstress (SIGSEGV)
– sh6bench (SIGSEGV)
– sh8bench (SIGSEGV)

Real-world programs.

• MineSweeper:
– Nginx (SIGSEGV)

• DangZero:
– Redis (SIGSEGV)
– Lighttpd (SIGSEGV)

Exceptions here are triggered due to the incompatibility between the allocators and the
tests. For example, TypeAfterType does not track allocation functions such as calloc and
aligned_alloc, and DangZero does not allocate aligned memory when posix_memalign or
memalign is called.

MarkUs and MineSweeper fail to run on one PARSEC test (“fer”). We exclude it from
computing the average overheads for MarkUs and MineSweeper. However, we should expect
smaller overheads for them given that this failed test does not allocate blocks frequently

96

and running it with other allocators incurs smaller overheads Similarly, for TypeAfterType,
compiling “vips”, “swa”, “can”, “fer”, and “602” fails due to its incompatibility with
the using keyword in C++ and incomplete support for variable type casts. Running it
with “bod” uses more than ten times of memory than the baseline, potentially due to an
implementation bug.

Additionally, running “bod”, “ded”, “fer”, “638”, “644”, and “657” with DangZero fails
due to segmentation faults and “vip” fails due to an assertion failure. This incompatibility
causes the observed overhead to be larger than those reported in the paper. However,
we note that the per-test numbers are close to their reported numbers (see Table 3.3
and Table 3.4). The failed SPEC tests all have small overheads that cause the average
overheads to become larger.

97

B Maximum Working Set Size (WSS) of Each Bench-
mark Test

Macro benchmark. SPEC and PARSEC in Table 5.1.

Real-world programs. Three real-world programs (Redis, Nginx, Lighttpd) in Table 5.2.
We note that we do not compare with DangZero as most of its memory overheads comes

from the page table management and cannot be reflected using WSS, and we do not run
mimalloc-bench as its tests are time-sensitive and many tests, such as glibc-simple, do
not access the allocated memory.

98

Test ID SEMalloc Markus FFMalloc MineSweeper TypeAfterType

600 0.65 (0.00) 1.39 (0.74) 1.59 (0.62) 1.10 (0.69) 0.98 (0.03)
602 1.44 (0.32) 1.19 (0.11) 2.69 (0.69) 1.00 (0.00) -
605 1.02 (0.20) 1.12 (0.18) 2.96 (1.62) 1.53 (0.53) 1.04 (0.03)
619 0.49 (0.10) 0.49 (0.10) 1.72 (0.84) 1.08 (0.85) 0.93 (0.06)
620 1.53 (0.18) 1.63 (0.29) 3.37 (1.37) 1.63 (0.00) 0.98 (0.06)
623 1.17 (0.29) 1.08 (0.14) 1.92 (0.28) 1.33 (0.00) 1.02 (0.03)
625 1.62 (0.22) 2.88 (1.82) 3.00 (0.00) 1.62 (0.22) 1.01 (0.00)
631 3.28 (2.38) 1.13 (0.23) 2.15 (0.20) 3.50 (2.60) 1.04 (0.00)
638 2.08 (1.32) 1.92 (1.61) 2.42 (0.92) 1.25 (0.14) 1.00 (0.00)
641 0.75 (0.08) 0.53 (0.00) 0.62 (0.09) 0.57 (0.08) 1.00 (0.03)
644 1.25 (0.14) 1.25 (0.14) 1.92 (0.14) 2.00 (1.37) 1.00 (0.00)
657 3.35 (1.40) 0.88 (0.14) 3.03 (1.46) 0.80 (0.16) 1.01 (0.00)

Avg 1.24 (0.04) 1.09 (0.05) 2.00 (0.18) 1.21 (0.20) 1.00 (0.02)

bla 1.40 (0.20) 1.30 (0.24) 2.70 (0.24) 1.40 (0.20) 1.01 (0.13)
bod 1.13 (0.16) 1.80 (1.11) 2.93 (1.18) 1.27 (0.13) 1.43 (1.46)
can 1.28 (0.00) 1.28 (0.00) 1.87 (0.21) 1.28 (0.00) -
ded 1.00 (0.00) 1.07 (0.13) 1.60 (0.13) 1.00 (0.00) 1.15 (0.43)
fer 1.45 (0.55) - 1.51 (0.24) - -
flu 1.34 (0.95) 1.71 (1.16) 1.62 (0.70) 0.69 (0.00) 2.01 (2.82)
fre 1.10 (0.44) 1.51 (1.02) 1.76 (0.46) 1.02 (0.72) 1.47 (1.54)
str 1.01 (0.15) 1.07 (0.24) 1.90 (1.14) 1.43 (1.22) 1.49 (1.60)
swa 1.69 (1.53) 1.69 (1.19) 3.52 (1.22) 1.83 (1.13) -
vip 0.89 (0.09) 2.77 (0.38) 1.69 (0.09) 1.27 (0.90) -

Avg 1.14 (0.16) 1.39 (0.23) 1.94 (0.09) 1.11 (0.09) 1.15 (0.69)

Table 5.1: Normalized maximum WSS (and standard deviations) of SeMalloc on SPEC and
PARSEC. We indicate the best scheme in bold and the second best underlined.

Test ID SEMalloc Markus FFMalloc MineSweeper TypeAfterType

Redis 0.99 (0.32) 1.12 (0.04) 1.17 (0.08) 1.14(0.04) 1.00 (0.00)
Nginx 1.02 (0.04) 1.08 (0.03) 1.03 (0.08) - 1.00 (0.00)
Lighttpd 0.97 (0.27) 0.74 (0.38) 1.08 (0.07) 1.06 (0.00) 1.00 (0.00)
Avg 0.96 (0.15) 0.93 (0.18) 1.09 (0.03) 1.10(0.02) 1.00 (0.00)

Table 5.2: Normalized maximum WSS (and standard deviations) of SeMalloc on three real-world
programs. We indicate the best scheme in bold and the second best underlined.

99

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background
	Common Heap Vulnerabilities
	UAF Attacks
	UAF Exploitations

	Secure Memory Allocators
	Complete UAF-Mitigating Allocators (A1)
	Type-based Allocators (A2)
	Entropy-Based Allocators (A3)

	Other UAF-Mitigating Techniques
	Invalidate Dangling Pointers (B)
	Validate a Pointer Upon Use (C)

	Widely deployed secure memory allocators
	Summary

	Mitigation Approach: SEMalloc
	Introduction
	Rethinking Type
	Capture Semantics with SemaType
	Defining SemaType
	Cyclic Control-flow Structures
	SemaType Representation
	Alternative: Path-sensitivity
	Instruction Insertion Summary
	Transformation for Function Call with Exception Handling

	SemaType-based Heap Allocation
	Overview
	Call Graph Construction
	Edge Weight Assignment
	SCC Stack Pointers Aggregation
	Parameter Encoding
	Heap Allocator Backend
	Implementation Details of The Allocation Backend in SEMalloc

	Security Analysis
	Qualitative Analysis
	Formal Analysis
	Empirical Check on Real-world Exploits

	Performance Evaluation
	Evaluation Setup
	Macro Benchmarks
	Micro Benchmarks
	Performance on real-world programs
	On Recurrent Allocations

	Entropy-Based Approach: S2Malloc
	Introduction
	Adversary model
	Challenge 1: entropy loss
	Challenge 2: information leak

	Design and Implementation
	Architectural overview
	Randomized in-slot offset (RIO)
	Random bag layout (RBL)
	Hardening heap canaries
	Free block canaries (FBC)
	Summary and comparison

	On The Formal Modeling of Probabilistic Use-After-Free Detection
	Success rate of attack and defense per single attempt
	Strategy S1: repetitive UAF-writes to the same address
	Strategy S2: UAF-writes through fresh dangling pointers
	Strategy S1-spray: repetitive UAF-writes to the same address with spraying
	Strategy S2-spray: UAF-writes through fresh dangling pointers with spraying

	Security Evaluation
	Parameterized protection rates
	Protection rates with heap spray
	Illustrate the protection rates
	Defending against real-world CVEs

	Performance Evaluation
	Macro benchmarks
	Micro benchmarks
	Performance on real world programs
	Performance with multi-threading
	Influence with different parameters

	Conclusion
	References
	Appendices
	List of Failed Tests and Corresponding Exceptions on PARSEC and SPEC
	List of Failed Tests and Corresponding Exceptions on PARSEC and SPEC in S2Malloc
	List of Failed Tests and Corresponding Exceptions on PARSEC and SPEC in SEMalloc

	Maximum Working Set Size (WSS) of Each Benchmark Test

