BAYESIAN NONPARAMETRIC SURVIVAL
ANALYSIS

Lin Yuan

A thesis
presented to the University of Waterloo
in fulfilment of the -
thesis requirement for the degree of
Doctor of Philosophy
in

Statistics

Waterloo. Ontario. Canada. 1997

©Lin Yuan 1997



L |

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fig Votre référence

Qur fie Notre refdrenca

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-22253-5

i+l

Canada



The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below. and give address and date.

11



Acknowledgements

First. I wish to express my sincere gratitude to my supervisor John D. Kalbfleisch for his

expertise. guidance and enthusiasm in the research of Bayesian nonparametric methodology.

Thanks are due to my Committee: Mary Thompson. Don McLeish. David Matthews.
Kjell Doksum and Andrew Heunis for their helpful suggestions and comments. [ am espe-
cially grateful to Professor Matthews for his contribution that improved the presentation of

this thesis.

Last. but most importantly, I thank my family and friends that have supported and

enconraged me during the years of diligent study at Waterloo.

v



To My Parents



Abstract

This thesis makes contributions to the Bayesian nonparametric approach for
survival and bioassay problems. It contains creative work towards a simple and
practical Bayesian analysis for right-censored failure time data using a smoothed

prior. and for binary and doubly-censored data using the Dirichlet process prior.

One-sample survival analysis under a smoothed prior is fully studied. The
posterior computations are realized via the Gibbs sampler. and illustrated by nn-
merical examples. Bayesian inference under non-informative priors is addressed
and compared with existing results. A compromised version of Bayesian nonpara-
metric approach is proposed which retreats from the infinite-dimensional priors
and considers a more practical treatment using data-dependent priors. Links to
some well-known results such as Cox’s partial likelihood for proportional hazards
regression and Hill's rule for prediction are established. Fiducial inference for fail-
ure time data is also discussed. which is numerically equivalent to the Bayesian

approach under a non-informative and data-dependent prior.

A new auxiliary variables technique is proposed which has substantially sim-
plified the Bayesian bioassay under a Dirichlet process prior. and application is
illustrated in cancer risk assessment. The problem of combining many assays is
discussed in the empirical Bayes framework. and more complicated types of data

such as doubly-censored data are also considered.
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CHAPTER 1

Introduction and Review

1.1 Introduction

Bayesian nonparametric statistics has enjoyed limited success since the fundamental work
of Ferguson (1973). The current status of this branch of Bayesian statistics is better de-
scribed as a research topic rather than a well developed theory and application tool. The
nonparametric approach makes few model assumptions yet incorporates initial information.
but sophisticated posterior characterization and costly computation are often mevitable.

Therefore. the basic issue is not philosophical but rather technical.

Ferguson (1973) generalized the traditional Dirichlet distribution to the Dirichlet process.
which stimulated a series of investigations in this particular area. As is well knowu. the
Dirichlet process prior facilitates simple calculation and leads to many natural resnlts. Oun
the other hand. the Dirichlet process prior assigns full probability mass to the class of discrete
distributions and this has cansed undesirable sampling properties. a lack of smoothness in
results and inconvenience in applications. Despite some criticisins. Ferguson's prior has
received much attention for its cowmputational convenience. Many have followed his work
and attempted to repair its defects. For example. Susarla and Van Ryzin (1976) applied the
Dirichlet process to survival analysis. and Lo (1984) discussed the smoothing problem of the
discrete estimate.

Neutral to the right processes. another class of priors. were introduced by Doksum (1974).

These place full probability mass on discrete life distributions and yield tractable posteriors

for right-censored data. Applications are mainly in survival analysis: for example. Kalbfleiseh
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(1978) analyzed the proportional hazards model using the Gamma process. a special nentral

to the right process.

How far can we go with the Bayesian nonparametric methods? Ths is determined by
the inherent structure of Bayesian inference. As is well-known. the Bayesian posterior is
essentially a product of the prior and the likelihood. Therefore. added complexity i the
prior or the likelihood results in a more complex posterior. Although the Dirichlet and
neutral to the right process priors lead to tractable Bayesian analysis for complete and righe-
censored observations. difficulty may arise when mnore features are present either in the prior
or in the data. For example. if we add smoothness to the prior. or we have more complicated

data such as doubly-censored data. the posterior computation generally becomes difficult.

There have been efforts to find suitable smoothed priors. For example. a prior was
constructed by Dykstra and Laud (1981) on continuous survival functions with an mcreasing
hazard function. For the purpose of density estimation. the so-called logistic-Ganssian prior
was proposed by Leonard (1978). and further studied by Lenk (1988. 1991). Unfortunately.

all these suffered from the lack of a proper device for a full posterior computation.

In recent years. powerful numnerical devices have been developed to deal with high-
dimnensional posteriors. Resampling methods. especially the Gibbs sawpler. have wade
wany difficult computations possible. A question arises as to whether the Gibbs sampler
can provide a way to solve the nonparametric problem using a smoothed prior. Oue wmust
understand that. however. the so-called parameter in the nonparametric set-up is nsnally of

infinite dimension. a situation where Gibbs sampler cannot be applied directly.

Some progress has been made using a kind of hierarchical model introduced by Escobar
(1994) and Escobar and West (1995) that puts the Dirichlet process prior on the hyper-
parameter. This allows a finite-dimensional posterior analysis for the parameters since the
truly nonparametric part i1s in the background. The drawback is that a Gibbs sampler has
to be run in its original form. which is highly iterative. and over n parameters if there are n

observations. This 1s rather costly unless the sample size is small.
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Complexity in data also poses problems in posterior computation. Even the Dirichler
process prior leads to analytically intractable results for binary data. For example. a Bayesian
bioassay under a mixture of Dirichlet process priors (Antoniak. 1974) is hard to implemenr:

a more realistic treatment (Gelfand and Kuo. 1991) is provided by the Gibbs sawpler.

This thesis is aimed at extending the existing theory in both directions: (1) smoothness
i the prior and (2) more complicated types of data. Specifically. it facilitates Bayesian anal-
ysis for right-censored failure time data using smoothed priors. and for binary and donbly-

censored data using Dirichlet process priors.

1.2 The Dirichlet Process Prior

The Dirichlet distribution is well known to statisticians. Its basic properties cau be found
in textbooks such as Wilks (1962). A k-parameter Dirichlet distribution D(a;.---. g ). where
a; > 0. 1s a probability distribution confined to a (k — 1)-dirnensional manifold with deunsiry

function

F((!]_ +"'+ak) ap—1 "k—l—l
"’1 . .‘"'k—l
L(ay)--- ()

yret

fluyg - - up_y) = (L =y — -+ —up_,y

for u; > 0. and w; + - -+ + -1 < 1. otherwise it 1s zero. When s = 2. D(ay. 2} 15 just the

Beta distribution.

Let @« = a; + -+ + ag and m; = a;/a. then the Dirichlet distribution can be written as
D(amy.--- . amt). where @ > 0 is called the confidence parameter. and (m;.---. 7). which
is also a probability distribution. is called the shape parameter. If the distribution of a
random vector (p;.---.pg) is the Dirichlet D(a;.:--.ar). then the marginal distribution of

pi 1s Beta(a;.a — ;) and the joint distribution of p; and p; is D(w;. aj. 0 — a; — ).

The Dirichlet distribution is a conjugate prior for multinomial models. Suppose we have
a prior guess at the unknown distribution. say (m;.---.m). Then. the prior distribution

D(cmy. -+ emy) is recommended becanse the prior mean of each p; is 7; which coincides with
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our guess. The parameter ¢ is a measure of our coufidence about the guess. where a larger

value of ¢ implies more concentration of the prior around (my.---.m).

As a natural generalization of the Dirichlet distribution. the Dirichlet process introdunced
by Ferguson (1973) is a random measure on an abstract space. It can be briefly described
as follows. Let « be a finite measure with positive total mass on measurable space (X..A).
Then a random measure P or. equivalently. n random probability function F induced by P
is said to be a Dirichlet process with parameter « if. for any partition of the whole spacc
A,..-.. A the joint distribution of P(A;).---.P(Ax) is D(a(Ay). - .a(Ax)). In this case.
Fy(A) = a(A)/a(X). A € A is the shape parameter representing the initial estimate of a

distribution. and ¢ = «(X) is the confidence.

For the Dirichlet process on the real line. the distribution of the ¢-th guantile &, is

expressed as

Pr (€, < t) = 1 - B(qla(—oo.t]). a((t. 00)))

where B(z|a. ) denote the cumulative probability function of the Beta distribution with

parameters « and 3.

The main result in Ferguson (1973) states that. if X;..--. X, is a sample from P. then the
postertor distribution of P given X;.---.X, is also a Dirichlet process with parameter o —
Y%, dx,. where ¢, denotes the measure giving mass one to . Ferguson has considered many

applications including the estimation of a distribution. a mean. a variance and qnantiles.

Under quadratic loss. the Bayesian estimate of the cumulative distribution function is

- n
F= F, F.
c+n d+c+n

where Fj is the initial estimate of the unknown cumulative distribution and F,, is the ew-
pirical distribution function. This gives a clear picture of the role of the prior and the data

in Bayesian inference.
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1.3 The Gamma Process Prior

Gamma distributions have been widely used in Bayesian analysis. Let G(a.b) denote the
Gamma distribution with shape a and scale b and P(§) the Poisson distribution with mean
#. We briefly review the Poisson-Gamiua model. Suppose the unknown parameter # lies
in (0.00) and we expect # to be near #, with a certain degree of confidence. A conjugate
prior would be G(cby.c) where 6, is our initial belief or guess and ¢ is a measure of onr
confidence in that gness. For a fixed experiment. when ¢ is larger the prior would be wore
concentrated around 8, and contribute more to the posterior. On the other hand. when «
is smaller the prior would have less influence in the statistical conclusions. Extremely high
confidence happens when ¢ — oo which means the prior is degenerating and we are certain

abont our guess. Ou the other hand. when ¢ — 0 the prior becomes almost untform on log#.

The Gamma process is an independent increments process with Gamma distributed in-
crements. Its sample paths are non-decreasing pure jump functions. Physical applications
can be found in Moran (1959) where the process of inputs to a dam over a time period was
modeled as a Gamma process. For Bayesians. such a process can also serve as a snbjective
probability representing knowledge or uncertainty. Kalbfleisch (1978) created the so-called
Gamma process prior for a Bayesian analysis of proportional hazards regression. We start
with a guess Ay about the true cumulative hazard. and assume that the increment A(£) —.\(5)
lhas a distribution G(c[Ao(t) — Ao(s)].¢) where ¢ > 0 is the degree of belief attached to thar

suess. Asin the Dirichlet process. Ay and c are identified as shape and confidence parameters.

Suppose each subject with covariates z = (z;.---. z)’ has hazard function
At|z) = exp('2)A7(¢). t>0.

where 3 = (1. ---.3k)" are the regression parameters and A*(¢) is the baseline hazard. Let
the observed failures be ¢, < --- < t, and suppose censorings in [t;. t;+;) are adjusted

to t;. The interest in this case is the estimation of the regression parameter. Kalbfleisch
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(1978) assuiued that prior knowledge about the baseline hazard could be represented by the
Gamma process prior described above. Suppose the subject who failed at #; has covanate =;
and let s:(3) = Xerqe) e’z where R(t;) is the risk set just before ¢;. Let B; = —log[l —
exp(/3'z:)/(c + si(3))]. Then a Bayesian way of eh'minating nuisance parameters is adopted
and a likelihood for /3
L(B) = " exp{— Z eB; Ay(t; H [Ao(t
i=1 i=1

is obtained by integrating out the baseline hazard. This gives a spectrum of likelihoods
ranging from the truly nonparametric sitnation. where the baseline hazard is cowpletely

unknown. to the parametric situation. where the baseline hazard is known.

Given f3. the posterior of the cumulative hazard function is again an independent incre-
ments process. Between ¢;_; and t; the cumulative hazard function is a Gamma process with
shape cAy/(c + s;(8)) and confidence ¢ + s;(#): at t; the increment has a density function

proportional to

w™t exp(—cu)exp(—s:(F)u) — exp(—sip1(Flu)]. uw > 0.

1.4 The Gaussian Process Prior

[t seems that the Gaussian process is not suitable for the purpose of assigning a prior to
distributions. This is mainly due to the constraints that have to be satisfied by a distribution
or density function. Leonard (1978) considered the logistic transform of a Gaussian process.
Let = be a Gaussian process on a finite interval [a.b]. Then.

exp{—z(t)]
f,f exp|—z(s)ds]

ft) =

is obviously a density function. Leonard argued that the mean and covariance of # can bring

the prior information into f. Nevertheless. the prior features of f. such as prior mean and
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variance. are extremely hard to calculate. We might therefore have difficulty in specifying
x even if we have knowledge about f. The posterior distribution of f given a sample from
it 1s. according to Leonard. rather complicated and thus omitted in his paper. Lenk (1988.
1991) studied the same model but was also unable to make any real progress in pusterior

computation.

However. the Gaussian process does offer. at least theoretically. the possibility of uiee
results incorporating initial information about an arbitrary curve. A simple mathematical
treatment can be described as follows. Let us confine the curve z(£) to L*[a.b] . the space of
square integrable functions with a complete orthonormal basis {¢,}. According to functional
analysis. x(t) = Y00, fatha(t). where 3, is the n-th Fourier coefficient of & and the equality
is in the sense of the L? norm. Initial knowledge about = can be incorporated by assigning a
joint distribntion on {#3,}72,. It is simple to assume that 3, ~ N(g,. ) 1s an independent
sequence satisfying A, > 0. Y2, 42 < oo and 7%, A, < oo, By doing so. x(#) becomes a
Gaussian process on [a.h] with mean

polt) = 3 patbalt)
n=1

and covariance

7()(3-t) = Z /\n'd'n(s)"l’n(t)'

n=1

In the Bayesiau framework. the prior mean py(t) is our initial guess at the curve. The

covariance vy(s.t) represents the vagueness or uncertainty in our knowledge.

Let y(t) = z(t) + n(t) where z(t) is a Gaussian process with mean py(t) and covariance
Yo(s.t): n(t) is white noise with variance o? > 0 and independent of #(t). Assume that the
observations y; are discretely sampled points from y(¢) at ¢;. ¢ = 1..... N. The posterior of
z(t) given y;. ¢ = 1.--- . N Is again a Gaussian process (Kimeldorf and Wahba. 1970) with
mean

pn(t) = po(t) + a@'(t) (o + K) "Ny — p).
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1.5 THE GIBBS SAMPLER B

may be many ways to construct such a Markov chain. and various types of MCMC wmethods
arise from different coustructions of the Markov chain. The reader is referred to Smith and

Roberts (1993) for a comprehensive review.

Oune of the MCMC methods which seems especially attractive to Bayesians is the Gibbs
sampler. which was originally proposed by Geman and Geman (1984) and later introduced to
the statistical literature by Gelfand and Smith (1990). Suppose the joint posterior density for
# = (6y.---.6,) is w(#) and the conditional density of 8; given #_y = (#;. ~-~. fi_1. Hiry. -+ -H)
is m(6:|6—y). The standard Gibbs sampler is an iterative updating scheme described as
follows: Initially choose an arbitrary starting value () = (9(10). -89 and then updarte

¢ into #'!! by generating

i ~  w(6]63" .- 60).
oY~ w(hae\ e ),

g~ w(d,|6. 6.

This completes one iteration and the process of updating can be continued. Under muld
conditions (Tierney. 1994) the sequence 'Y 1) ... §) ... forms a realization of a Markov

chain whose equilibrium distribution is w.

To implement a Gibbs sampler. the conditional distribution m(6;/6[_;) wust be easy ro
sample. This is not always the case in practice. and discussions are available ou facilitating
Gibbs sampling. For example. Besag and Green (1993) reviewed and discussed this issue in
detail. A very effective way of implementing a Gibbs sampler is via auxiliary variables. In
some situations. it is easier to work with the joint density w(€.7n) rather than the marginal
density w(8). Here n is merely an auziliary variable introduced for convenience. According
to Besag and Green (1993). the auxiliary variables help to reduce interaction and thus

accelerate the convergence. In some cases. the auxiliary variables also simplify the Gibbs
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samnpling. Suppose we want to sample

xy «
gyt .- 4

o< . 8; >0,
(1+61+“'+9&)B

w(6)

where «;. (# > 0. Obviously. the conditional distribution m(#;|¢{—;) is unfamiliar. and thus
the original form of Gibbs sampling is not easily carried out. But if we consider the joint
density

7(6.77) oc g -+ 4P exp[—(1 + 6, +-- e+ 8,)n]. 4:>0. >0
with 7(#) as its marginal density. the implementation becomes much easier. The Gibbs
sampling between 6 and n is antomatic and substantially simplified in that only Gamuna

distributions are involved and updating is between two components only. This technique

will be used constantly in this thesis to circumvent difficulties in Gibbs sampling.

1.6 Mixture and Hierarchical Models

The class of mixtures of some standard distributions. say the normal or Beta. 1s very rich
in the sense that. there is a member in the class arbitrarily close to any given distribution.
For example. the well-known Bernstein theorem states that any continuous function f on
the unit interval [0.1] can be uniformly approximated by a sequence of polynomials. naiely.

its Bernstein polyuomials.
T 7. e
Bu(z.f) =) (D)2 (1 —2)"7. n=1.2...
=0 \ J
From the statistical point of view. this can be interpreted as follows: Any probability distni-

bution on the unit interval [0. 1] with continuous density can be uniformly approximated by

a finite mixture of Beta distributions.

Escobar (1994) proposed a hierarchical model

yi=p;+ e 1 =1.---n.
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where ¢; ~ N(0.0%) and o2 is known. Further. g; ~ F are independent. A Dirichlet
process prior is assigned to F representing the initial information. Observations are thnus
from a mixed normal and prior knowledge is assumed on the mixing distribution rather than
directly on the data distribution. Inference on p; is of interest and implemented by the Gibbs
sampler. In a more recent work. Escobar and West (1995) extended this study to consider

the unknown variance. and examined applications in density estimation.

Mixtures on intervals other than (—oc. oo) are formed throngh Gamma or Beta Distribn-
tions. Distributions on (0. 1). or generally a finite interval. can be approximated by a mixture
of Beta distribntions. For instance. Beta(nn+1.n(1—n)+1) with 5 being a random vanable

on (0.1) with density f is close to f when n is la.rge'enough.

1.7 Statement of the Problem and Outline

It is the purpose of this thesis to develop Bayesian analysis for failure time data and
bioassay data. Generally. the bioassay problem still falls in the framework of survival analysis
it we follow the concept of tolerance. The approach is basically non-parametric becanse we
o not confine the life distribution or tolerance distribution to any specific parametric class:
the advantage is apparent when field knowledge is not enough to determine the type of the
life or tolerance distribution. As stated earlier. we would work towards a simple and practical
Bayesian analysis for right-censored failure time data using smoothed priors. and for binary

and doubly-censored data using Dirichlet process priors.

Due to the complexity of the smoothed prior. some preliminary work is done in Chapter
2. A multivariate Gamma distribution is constructed to incorporate correlation. The re-
lated Bessel family which includes the Bessel distribution. squared Bessel process and bridge
1s mtroduced. Some numerical computation issues regarding the evaluation of the Bessel

quotient and the simulation of Bessel variables are discussed in detail.
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Chapter 3 is basically the problem of one-sample survival analysis nnder a smoothed
prior. Posterior computations for right-censored failure time data are efficiently handled
and illustrated by numerical examples. Bayesian inference under non-informative priors is

addressed and compared with existing results.

Chapter 4 retreats from the infinite-dimensional priors and considers a more practical
approach using finite-dimensional priors. Links to some well-known results such as the partial
likelihood for proportional hazards regression and the A(n) for prediction are established.
Fiducial inference for failure time data is also presented. Tlis is numerically eqnivaleut to

Bayesian analysis under a non-informative and data-dependent prior.

Previous research on the application of the Dirichlet process prior in bicassay data is
not comupletely successful. at least in the implementation thereof. The topic of Chapter 5
will be the Bayesian analysis of a single bioassay and the combining of many assays. More

complicated data types. such as doubly-censored data. are also considered.

The concluding chapter sumnmarizes the findings in the effort to achieve onr goal. Sowe
random thonghts and coments on the current study are presented informally and fture

research topics are also discussed.



CHAPTER 2

The Bessel Family and Gamma

Distributions

2.1 Introduction

The concept of conjugate priors is central in traditional Bayesian statistics. Iu nonpara-
wetric survival analysis the form of the likelihood varies according to the way we paramcterize
the wodel. and the following parameterization suggests using the Gamma distribution as a
prior. Suppose we observed failures at times ¢, < --- < t, (t, = 0) with d; subjects failed
at t;. and censorings in [ti. £:4;) are adjusted to £;. Let ®; denote the increment of the
cumulative hazard over (#;-;. ¢;). 1 <7 < n. and let ¢; be the hazard at time #;. Then the

likelihood for (¢.®) given the data can be expressed as
L(¢.®) = ¢ -+ - ¢ exp(—s18) — - -+ — 5, Bp).

where s; denotes the number of subjects at risk just before time t;. Approximately. &; =

®;/(¢; — t;—y) and thus the likelihood for ® turns out to be
L(®) = <I>‘f‘ --~(I>i" exp(—s1®; — -+ — 5, P,).

which indicates that an independent Gamma prior is conjugate in this situation.

However. a multivariate Gamma distribution is needed if the relationships between pa-

rameters are taken into account. This is the motivation for constructing the exponentially

13
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correlated Gamma distribution in section 2.3. The randomized Gamma distributions arise
when we study varions conditional distributions. Furthermore. the mechanism of the ran-
domization involves the Bessel distribution. which is relatively nnknown. and a general lis-
cussion 1s provided.

The path integral is a device originally created for quantum physics. From the view of
probability. it is a conditional Laplace transform. The link between path integrals and some
differential equations was exhibited in the 1940°s. but the actnal evaluation of path integrals
is only possible for some special cases. Section 2.5 will show some applications of this device

in dealing with some complex distributions.

The numerical evaluation of various Bessel functions has received widespread attention
and many articles have been published proposing possible solutions. But the inherent struc-
ture of the Bessel functions is so complicated that none of the existing methods is really
efficient. It is fortunate that our computations only involve the ratio of two Bessel functions.
which is called Bessel quotient. with complexity much less than that of the Bessel function
itself. The evaluation of the Bessel quotient is based on its continued fraction representation.
a well-known result. In section 2.6 we provide some elementary analytical properties of the

Bessel gquotient.

Finally. we propose a method for simulating Bessel distributions. The efficiency and

accuracy of this Bessel generator is vital in our subsequent posterior computations.

2.2 The Bessel Distributions

A random variable Y. taking values on the non-negative integers. is said to be a Bessel

random variable with parameters v > —1 and a > 0 if

_ _ 1 A onty — 9
Pr(Y—")—I,,(a)n![‘(n-}—u-{—l)(?.’ .o n=0.1.---. (2.1)
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where [,(2) denotes the first type of (modified) Bessel function given by

L v = 1 L a2y
I,,(J;):(;j) n§=:0n!I‘('n+u+l)(§) .ox>00 vr>-1

For simplicity we use the notation Bes(v.a) for the Bessel distribution with paramecters v

and a.

It is obvious that (2.1) gives a probability mass function. but unlike the binomial or
Poisson. which arises naturally from some physical process. the definition of the Bessel
distribution may seem somewhat artificial. Thus. it is desirable to reveal its many faces and

link it to distributions that are familiar to most readers.

(i) The Bessel distribution as an inverse probability. Assigning a Gamma prior to the
mean of a Poisson distribution is standard in Bayesian statistics: in this example. however.
we put a Poisson prior on a Gawmma distribution. Suppose we want to draw an inference
about the number of customers visiting a laundromat based on the power consumption.
The observable total power consumption Y in a period T breaks up into two parts: the
customer consumption Y; and a base amount Y, independent of Y;. Further. we assmmne
the power consumption of each custoruer is an eprnential random variable with scale .
and the distribution of Y3 is G(v + 1l.a) where v > —1. Let the number of customers r
be the parameter of interest. Then. the distribution of Y given r is G(r + v + L.a). If
customer arrivals are described by a Poisson process with rate A. the prior distribntion for
r should be P(AT). Given an observation y. it follows that the posterior distribution of r is
Bes(v.2y/alTy).

(ii) The Bessel distribution as a conditional Poisson distribution. When v 1s an integer.
the Bessel distribution Bes(v.a) is the conditional distribution of Y given X —Y = v. where

X ~ P{A\;) and Y ~ P(),) are independent and A\ A» = a?/4.

For the general case v > 0. X is generated from a randomized Poisson distribution. Let
X ~ P(A\ — ) with n ~ G(v — [v].1) but right truncated at A;. where [v] denotes the

integer part of v. To include the integer case we adopt the convention that G(0.1) denotes
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the probability distribution concentrated on zero. Now. the density of 5 is proportional o
nr~#=le=n1(0 < 7 < Ay). so that

Pr(X =k) « / Pr(X = kin)n*~®1"1e="1(0 < 5 < A )dy

R AR IR kd
= _le_)/u 1 (Av —7)"dn

L(
k+v—{v
o /\1"!‘ ]
Plk+1+v—[v])
It is now clear that. for v > 0. the conditional distribution of ¥ given X — Y = v, is

Bes(v.a). We now turn to build a kind of recurrence relation for Bessel distributions.

(1) The Bessel distribution as a surn of Bernoulli variables. It 1s well-known that the

Bessel function satisfies the recurrence equation

20v+1
L) = Loate) + 225 ). (2.2

£L
which implies a kind of relation between Bes(v.a). Bes(v+1.a) and Bes(v+2.a). In fact. 1t
is immediately seen that the Bessel distribution Bes(v.a) is a mixture of Bes(v+ 1. a) awd a
right-shifted Bes(v+2. a) produced by moving the mass at k to k+1. The two weights for this
wixture are 2(v + 1)R,(a)/a and R,(a)R,+(a) respectively. where R, (a) = [L.1(a); [, (1) 15
called the Bessel quotient. In the langnage of sampling. a random variable Y ~ Bes(v. )
can be generated by first generating a Bernoulli random variable r with parameter Pr (r =

1) = R.(a)R,4+1(a) followed by X ~ Bes(v +r + 1.a). and then ¥ = X + r.

From this property. a Bessel random variable can be expressed as a sum of Bernoulli
variables: First. a random variable Y ~ Bes(v.a) can be written as Y = r| + X; with r; a
Bernoulli variable with parameter R, (a)R,4:(a) and X; ~ Bes(v + ry +1.a). Then. X; can
be written as X; = r4+ X, with r, a Bernoulli variable with parameter R, 4. +1(4)Rosr, +2(02)
and X, ~ Bes(v+ 1, + 72+ 2.a). Since Bes(v + k. a) can be treated as a point mass on zero

for k large enongh. we can express Y as an infinite sum of Bernoulli variables 272, r;.

(iv} Relationship to the von Mises distribution. The von Mises distribution. which was

introduced by von Mises. is an analogue of the normal distribution in circular statistics. [ts
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density function is

B(d) = -——1—-—exp(f~ccos ), —-nm<f<m. x>0
2nly(K)

where & is the concentration parameter. Detailed study and interesting applications can
be fonnd in Mardia (1972). It is not surprising that the Bessel distribution offers a simple
characterization for the von Mises distribution. If # is a von Mises variable with concentration
parameter x. then the distribution of cos®# is a randomized Beta distribution Beta(r —
1/2. 1/2) where r ~ Bes(0. k). However. given cos® § = y there are still four possible valnes
of 8 in [~7. 7). The uncertainty can be removed given the sign of cos ¢ and the sign of # itsclf.
To determine the sign of § we can simply flip a fair coin since the von Mises distribution
is symumetric. But to determine the sign of cos § we need a biased coin with head and rail
probabilities proportional to (e*v¥. ¢=*v¥) which is based on the density of the vou Mises
distribution. Now. suppose ¥ ~ Beta(r+1/2.1/2) where r ~ Bes(0. ). and given Y. by and
—zm/7) re

h, are independent Bernoulli variables with parameters 1/2 and 1/(1+¢ spectively.

Then.
§ = (2b, — 1) arccos|(2b, — 1)VY]
is a von Mises variable with concentration parameter .
(v) Moments and mode. The moments of the Bessel distribution can be expressed in
terms of the Bessel quotient. For instance. if Y ~ Bes(v. a). then

EY = al-aR,,(a) and EY?= %a:"R.,(a)R,,H(a) + %rzR,,(a). (2.3)

-

The factorial moments.
EY(Y =1)(Y —k+1) = (5)* Bu(a) - Rupics(a). k=12.---.

are easily obtained and fromw these we can calculate the moment of any order.

Finally. the Bessel distribution has a unique mode. or two modes at consecutive integers.

For convenience we make the convention that the mode of a Bessel distribution always refers
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2.3 MULTIVARIATE AND RANDOMIZED GAMMA DISTRIBUTIONS 1

to the larger one if there are two modes and. it then follows that the mode of Bes(ia)
is the integer part of m(v.a) = (vVa® +v® — v)/2. This 1s useful m simnlating the Bessel

distribution.

2.3 Multivariate and Randomized Gamma Distributions

We begin with a simuple construction of a bivariate Gamma distribution. Consider the

joint Laplace transform of independent random variables Y; ~ G(a. A;) and Y2 ~ G« s ).

¢
ettt <14 Sy 2 2)7" = [det(; + AT)]™, 2.4
1

where I, is a 2 < 2 identity matrix. A and T are 2 < 2 diagonal matrixes with entries 1. A\ 1\,
and £;.t, respectively. The simple form of the joint Laplace transform follows from the
independence of Y¥; and Y>. Qur purpose is to construct a bivariate Gamma distribution
that accommodates fairly general dependence. and there are many ways to accomplish this.
One simple way. however. is to alter the matrix A to a positive symmetric matrix. Therefore.
a more general form of A can be obtained if we replace the two zeroes mm A by /p/AA2 with

) < p < 1. The correspouding Laplace transform is

ty ts (1 =p)tita, _,,
ppa e, B opinnte .
i Wit wvaa ‘

to
[\

We can find the inverse of (2.5) in two steps. First treat f; as a coustant and calculate
the inverse with respect to ¢,. and then invert the result with respect to £,. Lengthy bur
straightforward calculation shows that the density function corresponding to the Laplace

transform (2.5) i1s proportional to

- A Y + /\'.’!/2 4pA )\2'! Y2
(1 z/-,)‘ 1)/2 exp(~ 141 ) Loy PALA2YLY ). i g2 > 0. (2.6)
1—p 1—0p

The density (2.6) keeps the marginal distributions of Yy and Y, and. the only thing to

be investigated is the dependence imposed by this kind of generalization. Specifically. we
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respectively. This can be viewed as a generalization of the first type taking r.. in a liuiting
case. as zero. For any positive numbers a. b. A and «. the randomized Gamma G(« ~ ry -
2r,. ) with 7, ~ P((a +b)/(4A)) and r, ~ Bes(a — 1.vab/(2))) independent has a density
function proportional to eI, i(\/ay)L.-1(vby). vy > 0. A proof of this will be provided

later in section 2.4.

A randomized Gamma distribution of the second type arises from (2.7) wheu we consider
the conditional distribution of Y; given Y;_; = y;_; and Y;4; = y;.;. The conditional densiry

1s proportional to

1_ P /\ 1 411 /\l‘_l, 4.“ /\iAi Yl
exp[— ( Pipit1)Ayi I._ 1(\/ PiNi-1 / l)[u-1(\/p+1 +1Y I+1). -

yi >
(l—p:)(l—ﬂm 1 —pin1

exactly the form given above.

2.4 The Squared Bessel Processes

For any d > (. the d-dimensional squared Bessel process £(¢). £ > 0 is a time howogencons

Markov process with transition density

Lo
o

1 2 £+ T
qlt.z.y) = t( ye 12 oxp(— ;;J)I,,( tJ). t>0. 2.y >0. (:

where v + 1 = d/2. From the last section. the conditional distribution of £(#) given &(U) = »
is a randomized Gamma distribution of the first type G(v + r + 1.1/2¢) with r ~ P(r 2f).
When d is an integer and £(0) = 0. £(t) can be expressed as

E(t) = Bi(t) +---+ B3i(t). t>0.

where (By(t).---.By(t)). t > 0 is a standard d-dimensional Brownian motion. The sample

path of the squared Bessel process is continuous but nowhere differentiable.
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Fig. 2.1 A sample path of the squared Bessel process when 4 = 1.

It is not trivial to verify that (2.8) is a transition density. Assuwming it is. however. we
can derive the density function for the randomized Gamma of the second type. Applying

the Chapman-Kolmogorov equation to (2.8) we have

/q(t- z.y)q(t.y. z}dy = q(2t. z. z).
Letting @ = z/¢2. b = z/t* and X = 1/t. we see that
Vab

By

-

[ e LA L oy = § (S L

thus.

b b —
= >I;1(%—j—)e'*w\/@)ly(\/6y)

g(yla.b.A) = Aexp(—
is a probability density function.

Using (2.9) again we can calculate the Laplace transform

_ : A (a4 b) /\. Vab _ vabh
" a(yla. b N)dy = - N ) ~—).
[ e atlab Ay = 5 el (G~ Db )6 5
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This can be seen to be identical to the randomized Gamma G(a + r; + 2r.. A) with
ry ~ P((a+b)/(4A)) and r» ~ Bes(a — 1. Vab/(2)) independent. Thus g is the density of

the randomized Gamma distribution described above.

When £(0) = 0 the marginal distribution of £(¢) is G(4/2.1/(2t)) and. for s < ¢ the joiur
distribution of £(s) and &(£) has a density with the same form as (2.6) with the parameters
given by « = d/2. Ay = 1/(2s). A» = 1/(2t) and p = s/t. There is a correspondence hetween
a multivariate Gamma given by (2.7) and a re-scaled finite dimensional distribution of a
Bessel process. Specifically. if we sample £(¢) at times £; = 1/(py---pi). ¢ = L.---.n. then
the joint distribution of £(£;)/{#1A1). -.&(tn)/(tnAn) is exactly the same as (2.7) provided

d=2aand \; >0. 0 < p; < 1.

A standard squared Bessel bridge &,, ., (t) is a stochastic process on [0.1] generated by
£(t) with £(0) and £(1) tied at z, and z, respectively. The distribution of &, ., () 15 studied
in detail by Pitman and Yor (1982). Its trausition distribution is a randomized Gamina
distribution of the second type. Let 0 < s < t < 1. If we know that &, ., (s) = ». thewn.
Y =&, .. (t) can be obtained by generating independent random variables

—_—
v‘ LI

1 - -5
ry ~ P( [S*f;.r + :i — t;::l]) 7 and 1, ~ Bes(v.

21 — ) )

- S

and then
1—s

Y ~Gv+r, +2ry + 1. "(t—s)(l—t))’

2.5 Path Integrals

The path integral or Feynman integral (Gelfand and Yaglom. 1960) is a device used
in quantum physics for integration over a function space. The first result of path integral

evaluation (Cameron and Martin. 1944) is the so-called Cameron-Martin formmnla:

1
£ exp[—,\ju B*(t)dt] = (cosh V22,
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where B(t) is a standard Brownian motion and A > 0. The path integrals for the Bessel
process can be found in Pitman and Yor (1982). Actually. for fixed initial state the pach
integral has been considered in a more general setting. It has been shown (Pitman and Yor.

1982) that. for a Radon measure g2 with support in [0. a]. the Schrédinger equation

1
(—;A-{-;l.)'lL:U. (2.1

w(0)=1. u'(a)=0 (2.11)
has unique solution u in the sense of distributions on the space Cj*(0.00). and

a o 1 ,
E. c:xp[-—-/; E(t)du(t)] = ud/‘(a)exp{;)-u (0)z]. (2.12)

4

An immediate result is a generalization of the Cameron-Martin formula to the squared Besscl

process:

t
E exp[—/\/ &(s)ds] = (cosh \/‘2—/\t)‘d/:, (2.13)
[§]

where A. d > (). We will see that including a weighting measure g makes (2.12) more powerful
than the classical Cameron-Martin formula. For fixed initial and end states. Pitman aud

Yor (1982) provided a very useful path integral of the squared Bessel process:
t
E, (EXP[—/\/U E(s)ds] | &(2) =y) = a(t.z.y)

where A > 0 and

V2At r+y — ) Vv2Azy ‘LY
Ua(t. o y) = —— Z(1 — V2X tcoth V2A £)}, DS (214
¢A( Z .'/) sinh\/?jtexp{ 2t ( coth )} (sinh\/ﬁt) u( ) (

The conditional distribution of [f £(s)ds given £(0) = = and £(t) = y is also available
since the path integral is the corresponding Laplace transform. Using the infinite product

(Titchmarsh. 1939) formula
sinh z 22 ) (2.15
E2r2’” =-19)

(1+
1

x

4
-

k
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we see that v2A¢/ sinh vV2X¢. the first factor in (2.14). is the Laplace transform uf an infinire
convolution of G(1.k*n?/(2t)). k = 1.2..... Next. using the following series expansion
(Titchmarsh. 1939)

zcothz=1+i ;— (2.16)

k=1 <
we can show that the exponential factor in (2.14) is the Laplace transform of an infinite
convolution of randomized Gamina distributions G(ry . k*x2/(2¢)). bk = 1.2.---_ with ry; ~
P((z+y)/t). k > 1 independent. Similarly. the remaining part in (2.14) is the Laplace trans-
form of the convolution of the randomized Gamina distributions G(v + 2r,. k*x?/(2t)). k =
1.2.---. with ro ~ Bes(v.,/zy/t). Therefore. a sample Y from the conditional distribution

of [ &(s)ds given £(0) = = and £(¢) = y can be drawn by the following procedure:
(i) generate an itd random sequence vy ~ P((x -+- y)/t). k> L:
(i) generate a randomn variable ro ~ Bes(v. |, Ty/t) ndependent of vy b 2 1
(iil) generate an independent random sequence . ~ G(ryp+2ra+v+ 1. 72 /(282)) &k = 1

(iv) Y = 302, me/k>.

Another path integral

Ux(z.y) = E; (exp[——z\_/U ﬁi—)gfﬁ] (1) = y)

is related to the posterior calculation in the next chapter. This can be evalnated nsing (2.12)

(see Appendix). yielding the result

v8A + 1sinh~ [ ze¥ + ;qe;’
exp| —————

sinh v8A + 1+ P 2

zy(8A + 1)sinhy

sinh /8X + 1 M)

Ui(z.y)

sinh y(coth v

— V8A + lcoth v8A + 1 7)]L(

where ¢* = (p + 1)/p.
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Similarly. we can describe the corresponding conditional distribution by the Laplace
transform (2.17). infinite product (2.15) and series (2.16). A sawple Y from the conditional
distribution of [} £(¢)(t + p)~2dt (7 = (p+1)/p) given £(0) = = and £(1) = y can be drawn

by geuerating

(1) an independent random sequence ry . k > 1 where ry g has a Poisson distribution with

TILE(LTY
E*m?®  sinh~

— P zel +ye 7):
ki 442 v (

(i) 7o ~ Bes(v. /zy) independent of ry . k > 1:
(i) an independent randormn sequence n. ~ G(ryp + 2ra +v + 1.1/(84%)). & > 1:

(V) Y =32, me/(K27 +4%).

2.6 The Bessel Quotient

Evaluation of the Bessel functions 1s avoided here. This is primarily due to the ineffi-
clency of existing numerical methods. Evaluating a Bessel function once or twice costs very
little using a computer and a mathematical package. But if a resampling schewme requires
evaluation of many Bessel functions at every iteration. it could be disastrous. Fortnunatcly.
we only need a ratio of two Bessel functions. the Bessel quotient R,(x) = [, (x)/[(r).

which is substantially easier to work with.

We present some results that are neither trivial nor readily available in the lLiterature.
The properties stated here of the Bessel quotient are. however. entirely based on the existing

theory.
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Fig. 2.2 The curves of the Bessel quotients for different v values.

A recwrrence formula for Bessel uotients arises immediately from (2.2):

1
R,(z) = 3 : (2.13)
200 +1
‘(—‘—;“*l*i' Ry (x)

Further. the following relation for Bessel functions

I(z) v _
T,,_(;)_ = ;‘*’ R.(z). v>-1

leads to a differential equation

2w+1

y=1-y* - Y- (2.19)

y(0) =0

which has unique solution R, (). These equations are generally important in studying the

Bessel quotient. On the other hand. some special Bessel quotients do have closed form
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expressions. For example. the integral representation of the Bessel function (Spain and

Swmith. 1970) states. for » > —3. that

1 - v ! ,—t _ 2 u—.lT(
[,,(1‘) = m(g) /;[ [ (]. ¢ ) Tt

which gives

I

/2 2
(#) = y/—sinhz. and [i(z) = \/—3(xcoshz - sinh z).
T z

nr

-

It follows that Ri(#) = cothz —1/x and. by (2.18). R_.(x) = tanh .

A

The asymptotic expansion (Spain and Smith. 1970) of the Bessel function imuplies that
R,(zr) — 1 as & — oo. and thus all curves of functions R,(x). v > —1 start from (0.0) and

share the same asymptote y = 1. Further. we have
lim z{1 - R, (z)] =2v +1 (2.2()
L=

—

which means the curve of R, () approaches the asymptote from above when —1 < v < -

3

and from below when v > -—%.

The wouotonicity is also classified into two categories according to whether v is larger
than —% or not. For v > —1. the function R, (z) is increasing over the whole interval (0. x:
while for ~1 < v < —1%. the function R, (z) is increasing first to reach a maximnm and then

decreasing.
To verify this analytically we differentiate (2.19) to obtain

2v+1 2v+1
Y=y = 2y ——) Y

The sign of the second derivative at stationary points. where the first derivative vanishes. is
the same as that of 2v + 1 and. this gives rise to an essential difference between R, (x) when
v>—zand v < —%. namely that the former can have local minima only while the latter

local maxima ouly.
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From the differential equation (2.19). ¢’ cannot change sign when v > —1. Otherwise.

there must be a stationary point xy, which is. according to the discussion above. a local
minimum where y’ changes from negative to positive. Since ¢'(0) = 1/(2v + 2) > 0. there

must be a local maximum between zero and xz, which is impossible.

When -1 < v < —%. (2.20) indicates that y must be larger than one when r is large
enough and y(oco) = 1. Hence. there must be a point at which ¢y’ is negative. Since y'(0) = ().
there must be a stationary point xy which is a local maximnuim. Furthermore. y(r,) > 1 is
gnaranteed by (2.19). We can show that ¢’ changes sign only once. otherwise we will have
two local maxima between which there must be a local minimurm. which is a contradiction.

Hence. y(xy} 1s also a global maximum.

We are now ready to give some bounds for the Bessel quotient. In fact. the variance of

the Bessel distribution calculated from (2.3) must be non-negative and this implies

(2.21)

R (x) <

VEXENEES
Ou the other hand. the differential equation (2.19) suggests that R, (z) < R, (z)1f v - p
for these two functions have the same initial value but the former has a smaller derivative.

Hence. R, +1(2) < R, () and this. combined with (2.18) and (2.21). leads to

£ £
24+ w+1)2+(v+1) AVA i o 2 o 4

which gives upper and lower bounds. For v > —} a slightly sharper upper bound can be

derived from the fact R (z) > 0. This kind of bounds was also derived by Amos (1974) for

the case v > ().

From (2.18) we see that R,(x) can be cowmputed if we know the value of R,.(2) for

some k. Actually. by repeating the recurrence relation. R, (x) can be written as a continued
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fraction

1
R(=) = 571y I
x 2(v + 2) 1
T 2wL3)
I o
or. in a compact notation.
1 1 1

RU(J:):2(U+1)/I+ Yo r2)/at w3 et (2.23)

The npper bound in (2.22) implies that. for fixed z. Ry (z) — 0 as & — oo and it secs

that R,(z) can be computed by iteration.

The validity of (2.23). or in other words. the convergence of the continued fraction is
easily verified. Practically. however. (2.23) is not directly applicable for the round-oft error

by iteration could pose a problem. A coupled iteration (Amos. 1974) is more appropriate.

The continued fraction is a powerful device for numerical computation. Elementary
functions such as «* and tanz are actually evaluated based on their continued fractions
rather than Taylor series. We hope this short discussion has given a clear picture of the

Bessel quotient. a function we will meet again.

2.7 Simulating Bessel Distributions

Simulating a Bessel Distribution is generally difficult due to its complexity and loose links
with well-known distributions. Standard procedures such as the discrete inverse integral
transform. or rejection sampling can be used to generate Bessel random variables. But none
of these is easily implemented. The method proposed here for simulating Bessel Distributions

is a compromise between efficiency and accuracy.

It seems that a normal approximation is applicable to a fairly large class of Bessel dis-
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tributions. Specifically. we use the normal distribution left-truncated at zero with density

P((x — p)/a)
flzlp.a?) = 7l — O(~p/a)
0 r <

where ® and ¢ are the cumulative distribution function and density function of the stan-
dard normal respectively. To avoid the trouble of solving some complicated eqnations. the
parameters u and o2 are simply set to be the mean and variance of the Bessel given by (2.3).
One must nnderstand that this choice of parameters is not strictly optimal since g and o
are not the mean and variance of the truncated normal. But in practice the inaceurare
approximation will not be used. The only loss is that a Bessel distribution which is deemed
to lack a good normal approximation might actually have one if the parameters were chosen
more carefully.

An intuitive argument for using the normal approximation is available from section 2.2.

Note that. for integer-valued v the Bessel distribution Bes(v. a) is the conditional distribution
of Y given X — Y = v. where X ~ P{a/2) and Y ~ P(a/2) are independent random
variables. It is well-known that the Poisson distribution with large mean is similar to a
normal distribution. Hence. the Bes(v.a) should be similar to a normal distribution when
a is large. For example. Bes(0.12) displayed in Figure 2.3 (I) is very close to a norwal
distribution. But generally the normal approximation to a Poisson distribution is only
accurate in a region centered at its mean. and less accurate in the two tails. A large value
of a is not the sole condition for a satisfactory normal approximation. Intensive numerical
experiments show that the normal approximation is accurate only when «a is large and v 1s
relatively small. In the Bessel distribution Bes(v.a). increasing a without changing v will
improve the normal approximation; on the other hand. increasing v for fixed a will decrease

its accuracy.
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Fig. 2.3 The Bessel distributions and their normal approximations.
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For example. as shown by Figure 2.3 (II) and (III). Bes(0.20) is more similar to a normal
than Bes(0.12) and. Bes(10.20) is less similar to normal than Bes(0.20). If we increase the
value of v to 40 we can see that the normal approximation in Figure 2.3 (IV) is obviously

not satisfactory.

For any fixed v there is a threshold value a(v) such that the normal approximation 1s
acceptable for all Bes(v.a). @ > a(v). The Bessel distributions are thus divided into two
groups. one that is close to the approximating normal distribution and one that is not. If

we can find a proper threshold a(v) we can then officially define these two groups.

Note that the mode of Bes(v.a). or the quantity mn(v. a). can be written as

A _a a
m(v.a) = 3 \/713?4-_?:;
The first factor measnres the magnitude of a and. the second factor. which is between zero
and one. measures the relative magnitude of v to a. A Bessel distribution Bes{v.a) with a
large mode has to meet both requirements: a large a and a relatively small v. Hence. the
maode might set a threshold but how large it has to be remains a problem. Again. we find the

answer from numerical experiment that the mode should be no less than 6 or. equivalently.
m(v.a) > 6. Hence. the threshold should be a(v) = \/24(1/ +6).
When mn(v.a) > 6. a sample Y ~ Bes(v.a) is drawn by generating U ~ U(0.1) followed
by
X=p+ad U+ (1-0U)B(—p/7)]

where ;1 = taR,(a) and ¢° = %a"’ — 2 — v Y is then identified as the closest integer to X
This can be easily implemented since ® and its inverse ®~! are available in major statistical

packages.

When the mode is less than 6 the distribution would have a very short right tail. Figure
2.4 displays the tail probability Pr (Y > 16) for Bes(v.a(v)) and shows that Pr (Y > 16) <
2 x 107" for —1 < v < 1000. a range of v wide enough for our intended use in Bayesian

analysis.
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Fig. 2.4 The tail probability Pr (Y > 16) for Bessel distribution Bes(v, a(v)).

We can easily argue that a Bessel distribution Bes(v.a) with @ < a(v) has an even shorter
right tail than that of Bes(r.a(v)). Suppose we have a sample Y ~ Bes(v.a(v)) and want
to use this to generate a sample from Bes(v.a) with a < a(v). Applying von Neuwann's
rejection sampling theorem we see that Y will be accepted if it is smaller than some random
quantity. Therefore. Bes(v.a) has a shorter right tail and Pr(Y > 16) < 2 < 107* is valid for
all Bes(v.a) with a < a(v). —1 < v < 1000. Consequently. table sampling 1s appropriate for
the case m(v.a) < 6 which requires only a relative magnitude of the probability mass and

evaluation of the Bessel function is not necessary. For Bes(v.a). m(v.a) < 6. we set

n
a

. k=1.---.16.
k(K + o) B 16

qu=1 and q.=
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and then s = Y5, @/ T, ¢ A sample Y ~ Bes(v.a) can be drawn by generating a
uniform random variable 5 ~ U(0.1) and letting ¥ = 8, I(n > si). Higher accuracy can
be reached at the cost of sampling from a louger table. For cxample. the tail probability

Pr(Y > 20) < 2.02 x 107% is valid for all Bes(v.a) with a < a(v). —1 <v < 1000.



CHAPTER 3

Survival Analysis with Many

Parameters

3.1 The Infinite-Dimensional Gamma Prior

A prior distribution represeuts our knowledge about the unknown parameter hefore we
look at the data. In the nonparametric survival problem. a natural way to sumumarize this
kunowledge is in terms of a shape parameter Ay(f) > 0. which is our guess at the hazard
function. and a confidence paraweter ¢ > ) in the prior specification. The shape parameter
snmmarizes onr estimate of the nnknown hazard function based on past expericnce. The

confidence parameter specifies the degree of nncertainty we attribute to that estimate.
Ferguson (1973) remarked that a desirable prior for nonparametric problem should:
(1) have a large support on the space of probability distributions.
(i1} lead to a tractable posterior given the observations.

The Dirichlet process as a prior on the space of probability distributions weets these two
requirements. But it assigns full probability to the class of discrete distributions. and this

has caused difficulty and inconvenience. Therefore. a third desirable property might he
(i1) assign full probability to continuous distributions.

We begin by introducing a model with many parameters. Suppose that there is a small

timme unit 4 > 0 such that the class of hazard functions defined by

A(L18) = 8; Mo(t). t € (id —d. id]. i=1.2.---. (3.1)
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is rich enough for our purpose of describing the life distribution. Here. {#;}2, is a sequenee
of positive parameters and Ay(¢) is the initial estimate for the hazard function. In a Bayesian
framework we need to specify the joint probability distribution of {#;}X, in order to smmn-
marize the uncertainty in onr knowledge about the unknown hazard function. As we pointed
out in section 2.1. a Gamima prior is a natural choice in survival analysis. To make Ay(#)
the prior mean. the marginal distribution of #; is chosen to be G(c.c¢) where ~ > (). Bur
independence between the parameters would be unrealistic since ¢ is usually swall. and the

knowledge represented by ¢;_; and 6; wonld often be strongly correlated.

We assume that {#;}72, coustitutes a Markov chain. Under the constraint set by the
marginal distributions. we can generate such a Markov chain by discretely sampling a modi-
fied squared Bessel process. Let £(t) be a 2¢-dimensional squared Bessel process with (1) =0
and let A be a strictly increasing function. We define the prior of 6;.4 = 1.2.--- . as the distn-
bution of the Markov chain produced by sampling &, () = E(h(t))/(2h(t)c) at 2d. 2 = 1.2.-- -

By doing so we have introduced an infinite-dimensional Gamma prior on hazard functions.

To specify such a prior we have used four items. The time unit 4. the shape parameter
Ao(t). the confidence ¢ and a function A called ther smoothing parameter. Each plays an
mnportant role in the prior. For simplicity we use the notation IG (4. Ay(t). c. h(#)) to represent
the prior constructed above. As stated before. 4 determines the richness of the support of the
prior and its choice depends on the precision required in the data analysis. In practice. data
must be recorded within some precision limit. say. a year. a month. a day or even a winnte.
according to the nature of the investigation. This kind of data precision i1s determined
at the experimental design stage: to avoid any loss of information. we can choose § no
larger than the precision limit. Marginally. the distribution of the hazard function A(#1#)
1s G(c.¢/Ay(t)). Our guess. Ay(t). is the mean and also the center of the distribution. and
c¢. which determines the degree of concentration. is a measure of confidence. The larger c.
the more the prior is concentrated. The smoothing parameter h is designed to countrol the

associations between #;. : = 1.2.-... For i < j. the dependence coefficient between #; and
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f; as defined in section 2.3 is h(Z0)/h(j4) so that h determines the degree of associations
between the #;. ¢ = 1.2.---. The choice of h could be very arbitrary. but due to some

®oand

techuical difficulty we only discuss two special cases: the stationary case h(f) x o
the shape-dependent case h(t) o Al(t). where 4 > 0. In either case. note that. when
p — oo. the Markov chain {6;}, returns to an independent sequence. The smoothing
parameter h(t) o< e** providing a stationary dependence structure on the sequence {#;}X, is
the most uniform representation of the relationships between parameters. On the other haud.
the shape-dependent smoothing parameter h(t) o Af(t). which measures the associations

according to a kind of distance [A,(s)/Ao(#)]*. s < t on the time. is also intuitively acceptable.

More discussion of the smoothing parameter is provided in subsequent sections.

Two extreme cases in confidence should be discussed separately: ¢ — oc and ¢ —
). Obviously. as ¢ — oo. IG(d. Ay(t).c. h(t)) becomes concentrated at its mean and no
uncertainty exists in the prior knowledge. As ¢ — 0. the prior IG(d. Ay(#). c. k(t)) approaches
a non-informative prior under which the log §; are independent and uniformly distributed

over the real line. More discussion of this is presented later in this chapter.

As an ideal situation we may cousider the exact failure times where ¢ — 0. and the
stochastic process Ay(2)}€n(t} can be viewed as a kind of limit of the hazard function defined
above. The parameter in this case should be 8, = &,(%). a continnous time process. However.
mathematical analysis falls short in dealing with a general smoothing parameter. As it
turns out. we must confine our study to the shape-dependent smoothing paramecter. As
an illustration. we work with A(¢) = /Ay(t) for the exact failure tine data. The hazard
function in this case can be represented as A(¢£|) = &(7(¢))y'(¢t) where y(t) = v"’A.,(t),fr-.
and the cumulative hazard is thus an integral transform of the squared Bessel process. Some
mowents of A(t]¢) are available. For example. the prior mean and variance of the enmulative

hazard can be obtained from the generalized Cameron-Martin formula (2.13):

E A(£]6) = Ao(t) and varA(tw):ﬁlAg(t).
C
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From this we see that the shape and confidence control the features of the prior.

3.2 The Posterior Under Censored Data

We first solve the posterior problem for life table data. Let t;d./ = 1.---.n be the observed
failure times and d; be the number of subjects failing at ¢t;. Withont loss of generality we
assume that ¢; are all integers. Let s; denote the number of subjects at risk just before jd and
N deunote the largest index for which sy is non-zero. The prior deusity for ;. y =1.--. . N.

1s proportional to

N
H q(h(58) — hizjd — 9). 2h(50 — 8)cbj_1. 2h(30)cb;)

where q is defined in (2.8) with v = ¢ — 1 and #y = 0. The likelihood for paramecters

Hj. _/ = ]..N iS
N
gt -8 exp[— Y s;0;(Ao(jS) — Auljd — 8))]

=1

and by Bayes theorew. the posterior density is proportional to

{e—=1)/2 »d; dn al Al \/ 1= 19 9
(6265) 12050 -8 exp(= D ajf;) [ Lema(F—=—) (3.2)
j=1 J=2 -7

where. for y =1.---. N — 1.

: h{;jd) h{jd) o
L[It(jJ) "RG0 —8)  h(jd + ) — h(j(,-)] + 5i[Ao(§9) — Ao(jd — d)].

o h(N9) -
ayN = L[h(NJ) ~h(NG _{))} + sn[Ao(NJ) — Ao(Nd — d)].

h(gd) k(g6 -94) . _,  »

———— j
2¢y/h(j& — 8)h(59)

When h(t) o e#. the expressions above can be smmplified to

tl,j =

and h; =

) . C
a; = ¢ coth %+.sj[Au(jd) —Ao(jo —=9). j=1.---.N-1.

g i .
¢ (1+ coth £2) + sn[Ao(N8) — Ag(N§ — 9)].
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Gibbs sampling from (3.2) may not always be feasible for N could be very large. The
high dimension of this density function may cause slow convergence of the Markov chaiu
generated by the Gibbs sampler. If this is the case. a possible approach is to break the
parameter into two parts. (8;.6:,.---.0;,.0x). which will be sampled by the Gibbs sampler.
and 8;. j € {k: 1<k< N.k#t}. viewed as nuisance parameters at this stage. though
they may be equally important in later Bayesian inference. Integrating out the nuisance

parameters can be done by using (2.9) repeatedly. To illustrate this we state a simple result.

LEMMA 3.1. Let

~ x \/ \/6’ 6, By
Loy = [ oo [ exploaby = - = ) LA L) - Ly,
0 u by bt1
for a;. b; > 0. Then. L(x.y) < exp(lyz + l-_»y)[u(,/:l:y/llg) where the coefficients ). l» and ;-
depend on only a = (ay.---.a,) and b = (by.-+- . by1). Furthermore. if we define { A},
and {B;}, by Ay = a1. By = by and
1
Ar=ap — ———=5. Br=2A,yBeihi. 2<k <,
k= A 4-4k-1b;':. k k-1 Dr-10% L
then
l(ab)—i:~—1— l(a.h) = - lia(a.b) = 2A,.Bnb
L. - = 4ALBE~ RAREN -]:A b“+l . 12146, — &Annlnqy.

The sequences {A;}™,; and {B;}, give a step-by-step prescription for the calculation of
the multiple integral using (2.9). After integrating out 6;. the roles of as and b, are replaced
by A, and B, respectively. Next. integrating out 6, we see that ag and bg are replaced by

As and Bj. This process continued establishes the lemma.
Applying this lemma to the density (3.2). we can eliminate all the nuisance parameters.

The marginal density of (6,.8;,.---.6,,.0~5) can be expressed as

P(gl 6:, Sttt Ht,.- HN) fo's (9191\)’)(6—1)/28(:: .. Hmti:

‘/Hlﬁtl Ht,,_let" vﬁt,ﬂN) (33)

- e Loy () .1 -
btl bt,, by

exp(—ajb) — Z “: B, — anOn) L1 (
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where the constants {a’} and {#’} are easily calculated from {a;} and {b;} by functions I, I

and [;5 defined in the lemma. For example. when 2 <1 <n — 1.

7
a, = Q¢ — Liagep.--- <, —-10 bt;+l- Tt bt.H) - l‘.’.(at.-p{»l- MR TR bt,_,—l- ey )
! .
bti = 112((1:‘._1.{,.1."' ¢TI N bgl_l+1."" 'bt.’)' 2 S 2 S n.

The Gibbs sampler can now be applied to density (3.3) and the detailed sampling scheme s

given later in this section.

Suppose now we have a large sample of (8,,.-+-6;, ) at hand. How can we explore the
posterior of the full parameter? Specifically. given 6,,_, and 6,,. (¢,, = 0) how can we generate
a sample of (y,_, +1.--.8:-1)? One can easily see that this is equivalent to sampling from
a density defined by the integrand in L(z.y). The marginal density of ¢, is proportional
to exp(—Anbn) o1 (V205 ) Bo) -1 (v/ 80y /bay1) and thus it has a randomized Gama of the
second type. After obtaining a sample of §,, we consider the conditional density of #,_; siven
¢, which 1s proportional to exp(—.4,‘_19,1_1)[__;(\/M/Bn_l)I__I(V/m,’b"). AgAIL A
randomized Gamma distribution of the second type. Note that the characterization of the
randomized Gamma distribution of the second type in section 2.3 gives a sampling scheme.

Therefore. we can generate (6,.---.6,) as a chain from 6, to 8,.

As stated before. the prior IG(0. Ay(t). c. \/Ao(t)) can be used to analyze the exact failurce
time data where a discrete time unit is not needed. Consider continuous lifetime data where
each observation is either a failure or a right-censored time. Suppose that t, = 0 and we
observed failures at time £, < --- < t,, and d; subjects failed at ¢; : censorings that ocenr m
(t;. tiy1) are adjusted to ¢;. It is generally agreed that an estimate of the cumulative hazard
function is more easily interpreted than an estimate of the hazard function itself. Let &
denote the increment of the cumulative hazard over (¢;_;.¢;). 1 < ¢ < n. In the nonparametric
case. the parameters ® = (P, ---.®,) are often the quantities of primary interest. but thesc
increments alone are not enough to describe the probabilistic mechanisin from which the

data were generated. We have to introduce another parameter ¢ = (¢y. -+ - @,) where o; 15
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the hazard at time #; divided by v'(¢;). Then the likelihood for (¢. ®) given the data can be

expressed as

L(¢.®) = ool exp(—s,Dy — -+ — $5,B,)
where s; denotes the number of subjects at risk just before time £;.

Under the prior IG(0. Ay(t). c.\/Au(t)). the joint prior density m(¢.®) can be writren
as the product of the density m(¢$) and the conditional density w(®{¢). Then. from the
transition density of the squared Bessel process.

7(¢) oc [T a(v(t:) — (tic1). dbicr. ).
=1

where ¢, = 0 and again. by the Markov property.

w(®lp) =[] m(B:| bizr. i)

i=1

Hence. the posterior deusity p(¢.®) is proportional to
¢ - piem(p) [] exp(—s:®i)m(Bs | dbicy. B5).
=1
and the marginal density p(¢) can be obtained by integrating out ®. Note that.

/ exp(—siP:)m(P; | diy. hi)dP;

y(ti)
= E{(exp[-s;/ ( E(t)dt] | E(y(timy)) = i1 E(7(E:)) = 1)}

Y(ti-1

From path integral theory we have
/ exp(—siP:)7(P; | ioy. bi)dP; = ¢, (v(t:) — Y(tiz1). bic1. ).

where i is defined by (2.14).

It follows that the posterior density function of ¢ is

V(bl Ibl

b —_—). (3.4)

B) o (hrpa) V2T - B exp(—ardy - — andn) H L_i(

=2
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where ;. b; are given by:

_ AV 25{ . \/.’..Si.{,l » d } _ bln.h \/95 t ) - ‘_1]) . 1
a; = 9 (4+ 9 Cigl- an N = \/;)I L= 1l.---

¢; = coth /2s; (7(t;) —1(ticy)) t=1.---.n(cpyer =0).

-n.

We can see that the posterior distribution of ¢ is also a randomized Gamma distribution.
but the mechanism of this randomization is very complex. Direct sawmpling from the posterior
density such as (3.3) or (3.4) seems quite hard. Fortunately. the Gibbs sampler can help

this situation. Note that. the density (3.4) can be viewed as a marginal density of

) i . \/‘(ﬁi— ‘pi 2r
(fsi+dl i, ¢ +dn— E‘Xp(—’ll(ﬁl cer = Aphy) H ( (.)( 2})1‘1 "

=2
by integrating or sumiing out the variables r;. In this case there is an advantage in working
with the joint demsity of ¢ and r; with r; as auxiliary variables. Gibbs sampling between
¢ =(P1.---.¢n) and r = (ry.-++.rpy1) where r; = r,,; = 0 can be easily done as follows:
Given r. we generate independent variables ¢; ~ G(c+d;+1;+7:4;. a;). Given ¢. we generate
independent variables r; ~ Bes(c — 1. \/i_1¢:/b;). 2 < i < n. This is a very efficient way

to sample the posterior with the form given by (3.4) and the convergence is rapid.

The conditional posterior of the hazard function given ¢ 1s described by a Bessel bridge.
We have found that the conditional posterior distribution of A(¢{#). t;-y <t < t;. (t, = 1)
given ¢;.; and ¢; is the same as that of the re-scaled Bessel bridge &.,_, - [h:(¢)]y' () hi(#)
where iy = ¢y hi{ti1) /7' (Eis). 22 = dhl(£:) /7 () and

hi(e) = SR2VIR ) = exp(2y/ T 1 (ti-1))
exp(2v/2s; 7(t:)) — exp(2v/2s; y(ti-1))

For ¢t > t,.. A(t|#) remains a 2¢-dimensional squared Bessel process under time change v and

t=1.---.n. (3.9)

scale change 4 with initial state given by the posterior of ¢,. These n + 1 components are

conditionally independent given ¢.

The derivation of this result is similar to the technique we just used. For ¢;_, = u, <

uy < -+ < wup < t;. we add some components to the parameter (¢.®). Let ¢’ and & he
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the hazard at u; and the increment of the cumulative hazard over (uj_;.u;). Using the
same technique. we can obtain the posterior density for (¢y.---. iy Pl - . D . Di. - . D)
from which the conditional density of (¢).---. %) given ¢;_; and ¢; is easily found. Finally.
by straightforward algebra. we can cowmpare this conditional density with that of a sqnared

Bessel bridge. They have the same structure except for the difference in scales for which the

transform (3.5) is introduced.

It is unfortunate that the marginal density for ® is beyond our reach. Even the conditional
density p(®;|d;_;.¢:) is generally too complicated to work with. But the correspounding
Laplace transform can be obtained through this conditional posterior and path integral

(2.19).

For any A > 0.

E (exp(—=A®;} i1 i)
E:J:;_;‘:z.- [h‘(t]](ﬁ’z[t}

= Fexp[—-A - WD) dt]
Voo (u)
= exp|— =l —d
Eexpl 8s; Ju (u+p)? dul
_ A6 o o .
- E{EXP[—SS;/‘J (e 180 = 29250 p o £1) = 202, (L p) o
where
b= exp(2v/2s; (ti—l))

exp(2v/2s; v(t; ) p(2v/2s; v{ticy))

Let 7 = v/2s:{v(t:) — v(ti=1)]. The above Laplace transform can now be expressed as the

(p._ 1 + &i)(coth s — /1 + A/s; coth /1 + A/s; 7i)] (3.6}

v1+As; amh‘r, \/‘7 A+ 5i)di Iqb,)[ 251.4,1._14,{) (47)
- . . ] D
sinh /1 + A/s; T, amh,/1+,\/bl i sinh ;

Thus. from section 2.4 we conclude that. given ¢;_; and ¢;. a sample of ¢; can be drawn as

product of

exp| ¥

and

follows:
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(1) generate an independent random sequence ryp. k > 1. where vy is from a Powsson
distribution with mean

V2s; k2x?

—(bi—1 + ;)

T; I
(11) generate a random variable o ~ Bes(c — 1. \/¢pi_1¢:/b;) independent of i kb > 1.
(i) generate an independent randomn sequence mp ~ Gl + 1. + 2r2.8:/77). b = L1

(iv) ®: = 302, me/ (K7 + 7).

3.3 Bayesian Estimation

If our interest is only Bayesian estimation. the computation could be easier for only some

numerical features of the posterior. such as the mode or moment. are needed.

As is well known. taking the posterior mode as a Bayesian estimate is numerically equiv-
alent to the penalized likelihood approach. To estimate the parameters §;. 7 = 1.---. NV we

consider the penalized likelihood (3.2) which can be viewed as a marginal likelihood from

N . .
C - c N - - l 6 —19 I
61+H| 1 9;‘5 1 exp(—alﬁl oo — (LNHN) H [‘(7- n 1)1“(7, " C)( \/;b J )- ]
J J =2

=2

by integrating or sumining out the variables r;. 2 < j < N. where 4; = 4; if j§ is failure
time ¢; and zero otherwise. -

For ¢ > 1. the mode can be computed by the EM algorithm. If r;, 2 < j < N are known

the maximum penalized likelihood estimate for §; would have a closed form expression
éj =(c+pBj+r;+ ris1 — 1}/a;

where 7y = ry;; = 0. On the other hand. given the current value of §;. 1 < j < V.
ri. 2 < j < N are conditionally independent with

(e~ 1. VI

b

2

Tj ~ BCS
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Therefore. the EM algorithm is appropriate for this situation which yields the following

iterative procedure: if the current value of 6; is H;k’. the next value can be computed as

F (L) T ) (k) PP
Vo8 J 16' o 9;‘—1”;‘ vH 9;+1 v J+1
bj J+1

2bj41

ll,'

(k+1) _
91’ -

= L+,H_1

The convergence of this algorithin is nsually more rapid than that of a Gibbs sampler.

The role of the confidence and smoothing parameters can be further explained i the
light of penalized likelihood. Given r;. 2 < j < N. the logarithm of the penalized likelihood

(3.2) can be expressed as

log-likelih 1+i( +r;+ 1) log ¢ f: [ h(9)
g- 00 r P P —_ of — . . S
g 2 c+ri+ris ) log 6 2 c RG9) < o —3)
h{j9) 1,
"h(jd +8) = h(58)

where A(NJ + §) is taken as infinity. We see that ¢ and h determine the way to wodify

the likelihood. The confidence ¢ is a global feature which controls the overall amount of
modification: while i describes the details of the modification for each of the components

#;. As a special case. the smoothing parameter h(t) = ¢ treats each component equally.

Next. we show how to estimate the hazard function with the posterior (3.4) under
quadratic loss. For #,_; < t < #;. the posterior conditional expectation of A(t{#) given
¢;—, and ¢; can be calculated by the property of squared Bessel bridge given in section 2.3.

Then the posterior mean of the hazard fanction would be

sinh 2Zsi((t:) = 7(t))  sinh 2si(y() — 7(tio1))

"(£)Q:(= .= .
T G Jasae) = 7(t1)) siah Vi (8] — 7(Eea)))
where Qi(z.y) = A;_12% + 2B;ry + A;y® with
B; =bic+ E ¢i-1¢iRc-1(—M)- e=1.ome (3.9)
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while for A(#|#). t > ¢, the posterior wean is

where the expectation is taken with respect to the posterior of ¢.

Therefore. estimating the whole curve of the hazard function is equivalent to estimating
2. parameters or coefficients. If a sample of ¢ from (3.4) is available. this can be easily doue.

Subsequently. the Bayesian estimate of ® is obtained as well.

3.4 Numerical lllustration

We illustrate our method by analyzing the survival of lung cancer patients using data
reported by Prentice (1974). The data. which consist of survival times in days. are given

Table 3.1.

Table 3.1

VETERAN'S ADMINISTRATION LUNG CANCER TRIAL DATA

Group I 8. 140. 1. 25°. 42, 72, 82, 100, 110, 118.
126. 144. 228. 314. 411

Group II 4 7 10 13 16 18 18 20 21 22
27 30 31 51 52 54 54 56 59 63
97 117 122 123 139 151 153 287 384 392

Group III 3 8 12 35 92 95 117 132 162

Group IV 12 00 103 105 143 156 162 177 182° 200
216 250 260 278 553

+ Censored

First we use the Markov chain prior with time unit one day or § = 1. Suppose that based
on experience we have a shape specification Ay(t) = 0.012¢ for the prior. We consider three

levels of confidence (c = 0.5. 10. 50) and of smoothing parameter (h,(¢) = \‘/A.,(t). ha(t) =
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V’A(,(t]. ha(t) = Au(t)). For the moment. we use the smoothing parameter i, and we perfori
Bayesian analyses at different levels of confidence. The Gibbs sampler is used to obtain a
Yy y p

large sample from the posterior of 6,,. t = 1.---.n.

Next. samples of (6;.  41.---.8;_1).1i = 1.+--.n are generated by the iterative procedures
-1+ i—1 ) I

given in section 3.2 and. once this is available. Bayesian inference can easily be done. For

example. under quadratic loss we nse the posterior mean to estimate the hazard function.

We can also transform the sample and compute the posterior mean for the survival function.

The subsequent discussion including all the figures in this section is regarding to the
one-sample analysis for the Group I in the lung cancer data. In Figure 3.1 we cowmpare
the survival estimates for different values of confidence. It shows how the Bayesian analysis
depends on the confidence. When ¢ is small. the estimate is close to the Kaplan-Meier
estimate. the empirical result. As ¢ increases. the Bayesian estimate changes gradually from

the empirical to the prior estimate exp(—0.012¢).
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Fig. 3.1 Comparison of the Bayesian estimates under priors /G(1, Ag, ¢, h2), ¢ = 0.5, 10. 50

with the prior estimate and Kaplan-Meier estimate for the survival curve.

The effect of the smoothing parameter can be examined by changing it frowm the very
S —_—

stooth Ay (t) = \*/Au(t) to the moderate smooth hy(t) = y/Ao(t) and then to the least stuooth

ha(t) = Ay(t) but keeping the confidence level ¢ = 0.5. The estimated survival curves are all

close to the Kaplan-Meier due to the low confidence.
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Fig. 3.2 Comparison of the Bayesian estimates of the survival function under

priors IG(1, Ay, 0.5, h;). 1 = 1. 2, 3 with Kaplan-Meier estimate.

From this point of view the smoothing parameter does not affect the result wmuch since che
survival curve is quite stable when the smoothing parameter varies over a certain range. We
also noticed that the curves corresponding to £ and ks, are smoother than that correspondiug

to f3. though the difference is not serious.

Figure 3.3 gives another view of the smoothing parameter.-Since the confidence is low. the

Bayesian estimate of the hazard is sensitive to the data. Thus. at a failure time the estiinate 1s
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large and yields a peak. with a valley between failures. Consequently. the Bayesian estituaces
are wave-like curves. But there 1s an obvious difference in the amplitudes of these waves.
indicating that the degree of oscillation depends on the smoothing parameter i agreemcent
with intuition. The effect of the smoothing parameter on the cumulative hazard or snrvival
function is less apparent because the integral transform itself is a smoothing procedure. The

difference in smoothness is then diminished.

-t
[~
[=]
— n1
............ n2
——— h3
: i
S -y
{=)
i
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(=] |
S 4
S
o |
o
7 T T T T 1
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Fig. 3.3 Comparison of the Bayesian estimates of the hazard function under

priors IG(1,A4,0.5,R),i=1, 2, 3.

The analysis of exact failure time data using the squared Bessel process prior is also
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lustrated here. We first obtain the posterior density for ¢ and then a large sawmple from it.
Next. we cowpute the coefficients from (3.9) and (3.10) and then the whole hazard cnrve.
Three hazard curves are shown in Figure 3.4 corresponding to different confidence levels.
These are smoothed piecewise since the means are calculated from different Bessel bridges
over each interval between failures. Note that the prior mean is a horizontal line at the
Leight 0.012. The effect of the confideuce is to draw the curve towards that horizontal line

and reduce the oscillation caused by the data.
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0.028
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]

0.015
|

0.010
!

0.005
{

o} 100 200 300 400 500

Fig. 3.4 Comparison of the Bayesian estimates of the hazard function under

priors IG(0, Ay, ¢, ha), ¢ = 0.5, 10, 50.
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The integral transform of the hazard estimate would be the Bayesian estimate for the
cumulative hazard. But inserting this Bayesian estimate of the cumulative hazard into
the exponential function. we can only obtain an ad hoc Bayesian estimate for the survival
function. Theoretically. we have to transform sample paths of the hazard into sample paths
of the survival function and then to compute the mean. We have two choices here: cither take
the approximate approach to save computation. or counect the Bessel bridges to generate
sample paths for the survival function. We display the ad hoc result in Fignre 3.5 and nore

the similarity to the result reported in Figure 3.1 and discussed previonsly.

1.0
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1
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1
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Fig. 3.5 Comparison of the Bayesian estimates under priors IG(0, Ag, ¢, h2), ¢ = 0.5, 10, 50

with the prior estimate and Kaplan-Meier estimate for the survival function.
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With the sample from the posterior we can certainly do more than estimation. For
example. under the prior IG(1. Ay. 10. kz) we have 411 parameters and finally the posterior
is nuinerically represented by a matrix of size lOOd rows aﬁd 411 colnmuns in which each
row is a sample of the parameters. It takes considerable compnuter memory storing such a
posterior matrix. To visualize the posterior distribution. this matrix can be represented as

sample paths of the survival function and be simultaneously plotted on a computer screen.

For illustration. Figure 3.6 displays only a plot of 20 sample paths.

1.0

0.8

06

0.4

0.2

0.0

Fig. 3.6 Plot of twenty sample paths from the posterior of the survival

function under the prior IG{1, Ay, 10, hs).
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Our impression ou the posterior of the survival function is gradually accumulated during
the process of plotting. This might be the unique way to visnally explore a posterior is-
tribution with such a huge dimension. Unfortunately. one can only obtain an impression of
the marginal distribution by locking at the final plot since it is impossible to distinguish one

path from another.
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Fig. 3.7 Three quantile curves of the survival function under the prior /G(1, Ay, 10. k).

One way to summarize the marginal distribution is to use each column of the matrix

to obtain sample quantiles for the survival function at each grid point. Three quantile
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curves are shown in Figure 3.7. where the median serves as the Bayesian estimmate. awd the
other two form a 90% posterior probability interval for the survival function at a fixed tiwwe.
Simnltaneous coverage probability could also be determined numerically for these probability

bands.

3.5 The Non-informative Prior

In a Bayesian analysis we always assume a prior distribution describing our initial knowl-
edge abont the parameter and then. use both the prior and data to derive the posterior. To
some statisticians. the dependence of the results on the prior is completely unacceptable.
Particularly in scientific investigations. it is hard to deny the need for standard posteriors
which do not incorporate personal opinions. Suggestions have been made to solve this prob-
lem. and one possible technique is the so-called non-informative or reference prior which adds
very little influence to the posterior. In other words. we would like to remove the subject

information as much as possible but retain the Bayesian flavonr in the inference.

There is no standard definition nor standard construction for a non-informative prior.
Typical approaches are based on invariance (Jeffreys. 1967) or the limiting form of a conju-
gate prior (Novick. 1969). or the information-theoretic method of Lindley (1961) or Jayvnes
(1968). In many sitnations. the non-informnative prior leads to a Bayesian analysis which

agrees numerically with the classical results.

In terms of a non-informative prior for the model (3.1) we consider the lituiting casc
where the confidence is extremely weak. The improper prior IG(d.Ay(¢).0.k(t)) can he
thought of as a limniting form of IG(d.Ay(t).c. h(t)) as ¢ — 0. Recall from section 3.1.
under [G(d. Ay(£). 0. h(t)) the parameter sequence is mutually independent and each #; has
a density proportional to d§;/6;. The posterior is immediately obtained that the paramecter

sequence 1s still independent and

B, ~ G(di. s, [Ao(t:0) — Ap(t:d — d)]) and 6; =0 if jZ#H. 1<k<n (3.10)
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Hence. the hazard function is zero everywhere except in those intervals (14 — d. tpd]. &k =
1.---.n. Based on this posterior. a Bayesian estimate of the cumulative hazard is

da. k-1 (L' . . k

L) + 3 =t -5 << trd

Sty i=1 St

where

ity < -lt) = Aoftid = )
rell) = A ted) = Ag(tad — )"

for k = 1.-~-.n. The estimate is constant on each interval [t—10. tr0 — 4).

Similarly. a Bayesian estimate for the survival function is

1 k-l 1

o . )
Sit)=(1 _—.stﬁrk(t)) g(l p—

)i 8 — 86 <t < b4, (3.11)

and constant between tr_;d and £.d — 4. where an empty product is one. Note that the
result still depends slightly on our initial knowledge. The data plays a main role in that the
estimate at points :d are independent of the prior: the shape parameter only provides a kind

of interpolation.

Now. it we consider another lituiting process in the posterior (3.11) by letting ¢ — 1.
the hazard function becomes a linear combination of Dirac functions. The posterior of the
cumnlative hazard can be represented by

S¢.

e
> = (3.12)
L <t it

where ¢; ~ G(d;. 1) are independent variables. The Bayesian estimate for the hazard based ou
(3.12) coincides exactly with the Nelson estimate (Nelson. 1972). Furthermore. the estimatcd

survival curve would be

) (3.13)

Siey=T[ (1 - !

t; <t Ste; + 1
which is very similar but not identical to the Kaplan-Meier estimate. From (3.12) we can
also develop a Bayesian interval for the survival curve by simulation. Applying this to the

Inng cancer data (Group I) we have the results displayed in Figure 3.8.
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Fig. 3.8 The Bayesian point estimate compared with the 90% pointwise posterior probability

intervals for the survival function for the lung cancer data (Group I)

under a non-informative prior.

In fact. the estimate given by (3.13) has some advantage over the Kaplan-Meier. although
they are equivalent asymptotically. The derivation of the Greenwood variance formnla is not
valid for small samples and the confidence interval 1s based on a normal approximation which
may not be accurate. Actually. in some cases. the Greenwood lower bound curve could cross
the zero line. On the other hand. the posterior (3.12) automatically provides the mecan. the

variance and the quantiles for each margin of the survival functiomn.
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We may also be interested in the nou-informative case of the squared Bessel process
prior. Let us first analyze the limiting behaviour of the Gibbs sampler for ¢. When ¢ — 0.
the lmiting distribution of ¢; will be independent. In fact. the Gibbs sampling scheme in
section 3.3 has told the whole story. For convenience we follow the notations used there. As
¢ = 0 we have a; — (/2s; + v/25:21)/2 and b; — oo with an exponential rate. It is quite
obvious that r can be treated as zero and. under the limiting posterior. ¢;. ¢ = L.--- . n are

independent and

2si + /2si
v=* ikl (3.14)

2

b ~ G(d;.

where s,,; = 0.

Next. we calculate the limiting conditional distribution of ®; given ¢;_, and ¢; as ¢ —
0. According to section 3.2 the Laplace transform of this conditional distribution can be
expressed as a product of two factors. It is easy to see that the first factor in the Laplace
trausform given by (3.6) tends to

\//2.5','
2

exp{ —

((bi—l + (ﬁi)(\/ 1+ /\/b’i — 1)]

But the limit of the second factor (3.7) cannot be directly evaluated since the argnments in
the Bessel function also depend on c. and I_;(-) is not well-defined by the power series given

bhefore. Let

Y2+ s , - YTk

and -
sinh /1 + A/s; v sinh ;

Then. by (2.2) the second factor can be written as

el._y(z) cl(z)+ zlyi(x)

yloi(y)  el(y) +ylii(y)

It is now obvious that the limit is one by eliminating the higher order infinitesimal terms.

Therefore. we have

Vv 2.9{

2

lim B (exp(—A®:) | dio1. bi) = exp[ - (fi1 + d:) (1 + A/si — 1)]. (3.15)
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This posterior is in fact very informative that Bayesian estimates based on (3.14) and
(3.15) are essentially different from conventional empirical results. For example. the enmn-

lative hazard estimate

1 d{—l \/l; rl1‘\//5_1.

D s

IR VA BV RV e gV

- (50 = $ny1 = o)

is almost half of the Nelson estimate.

Mathemmatically. this is not surprising. There are two limit operations: the confidence
¢ — 0 and the time unit § — 0. whose order cannot be exchanged. It seems that taking
the limnit ¢ — 0 first and then & — 0 leads to a result which agrees essentially with classical

approaches. But. changing the order of these two limits might be dangerous.

From a Bayesian point of view. many problems arise in modeling ignorance. Even in the
traditional parametric case. pecnliar marginal behaviour of the posterior could occur (Dawid.
Stone and Zidek. 1973) with an improper prior. It is also well known that a prior representing
lack of knowledge about a parameter might. at the same time. incorporate strong knowledge
about a transform of that parameter. Given a fixed time unit § > 0. both the hazard and
cnmulative hazard are reasonably represented by the prior. When our knowledge about the
hazard is extremely vague. so is the knowledge about the cumulative hazard. Howcever. as
¢ — 0. the Bessel process prior 1G(0. Ay. ¢. v/Ay) is non-informative about the hazard bur
very informative about the cumulative hazard. Counsequently. when ¢ is extremely small. the

posterior has been drawn in an unwanted direction.

The prior IG(0. Ao. ¢. VAy) is viewed as a limiting case of IG(d. Ay. ¢c. v/Ag) when & — 0.
The numerical result shows this is true. at least for a confidence not too small. But when « is
extremely small. it is hard to tell whether the corresponding Bayesian analysis approximates
that under IG(d. Ay.c./Ay) with very small §. or approximates the poor result we just
obtained. Therefore. the prior IG(0. Ay. c. v/Ay) with extremely small ¢ should be avoided.
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3.6 Choosing A Prior

To pure Bayesians the prior specification is virtually a subjective matter. But from
the perspective of increasing data efficiency. information contained in related or historical
datasets can sometime be incorporated into current analysis in the form of a prior distribn-
tion. For example. marketing and financial analysts use historical data to generate priors.
In survival analysis. however. historical data may not always be available. In this scetion.

we illustrate a way of choosing a prior from related datasets.

We choose the lung cancer data as an example. If we believe that similarity in survival
exists within each treatment group. we may assume that the priors for the four subgroups
the standard treatment are independent and identically distributed and thus have common

shape and confidence parameters. This is a typical empirical Bayes set-up.

To avoid heavy duty computation. we use some ad hoc rather than conventional esti-
mation procedures. Intuitively. the Nelson estimate of the cumulative hazard function by
pooling the data together is a good summary of the cominon aspects of survival in the fonr
snbgroups. The shape parameter can simply be taken as a smoothed function that fits the

Nelson estimate well and has a positive first derivative.

In this particular example it is well approximated by a straight line Ay(t) = 0.008# which
can be taken as the shape parameter. The confidence should reflect the variation in the
hazard plots and put most probability mass around the region formed by those curves. In
practice several levels of confidence should be chosen and a semsitivity analysis i1s recom-

mended.

There is also an ad hoc method of determining the confidence from the data. Suppose
d is the time unit for the whole dataset and the shape parameter Ay is known. To assess
the variation in the hazard plots we treat the hazard curves as realizations of the random
process 3, 0;[Ao(jd) — Au(jd —d)]. However. a difficulty arises that the random process must

have a positive increment over a time interval (jo ~— d. jd) but the plotted hazard curves arc
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pure jump functions. To proceed we have to spread the increments in the plotted hazard
curves to smaller time intervals. For example. the increment of hazard over (t;_,d. £;0) can
be equally divided into increments over time intervals (jd —d. jd). j = t;_y +1.--- . #;,. which

is basically a smoothing procedure.

o 100 200 300 400 500 600

Fig. 3.9 Smoothed cumulative hazard plots of the four subgroups receiving standard treatment

compared with the shape parameter Ay(Z) = 0.008 £.

If we think that the four increments over a given interval (78 — 4. jd) in the four hazard

curves are independent realizations of 8;[Ay(7d) — Au(j6 — d)]. then the estimate §; for 6; is
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casily obtained as an average. Next. since {#:}>= . is assumed to be a Markov chain. nnder
g Jij=1

wild condition on the smoothing parameter k. the law of large numbers that

o

m — 0.

~

Q| b

1 m
= > 6 = 1+
T i=1

offers an estimate for the confidence. In the lung cancer data exawmple this method gives

¢>~10.9.

As we pointed ont in section 3.3. the effect of smoothing parameter is secondary to the
choice of confidence. The stationary smoothing parameter is. in a certain sense. the most
unbiased choice. But the use of the shape-dependent smoothing parameter is also intnitively
acceptable. It is unfortunate that a finite dataset cannot provide the desired information
on the smoothness of the hazard function. On the other hand. smoothness is needed for a

reasonable incorporation of initial knowledge and a continnous modeling of the survival.



CHAPTER /4

Data-Dependent Prior and Fiducial

Inference

4.1 General Remarks

A rigorous Bayesian framework requires a fully specified prior distribution before the
data become available. But. in some cases. the model is actually built after examining the
data. For example. the Kaplan-Meier estimate is shown be to a maximum likelihood estinate
where the parameters are set up with reference to the failure times. So. in this situation. how
can we assign a prior distribution to the model parameters without even having a model?” It

we have examined the data. then how can we obtain a legitimate prior in the logical content.

It is also a fact that the operationally convenient prior may differ according to the pa-
rameter of interest. In survival analysis. the parameters of interest as given in section 3.2
can be determined only after the failure times have been observed. We have struggled ro
avoid this kind of problem by setting parameters alinost everywhere because we do not know
where the failures will be. Then we tried to work out the posterior for a special margin
by integrating many “nuisance parameters . but we still need the "nuisance parameters”
to complete the posterior computation and Bayesian inference. The practical mierit of this
approach is questionable given the cost die to the intensive computations. It seems that we
have to choose between two evils. the computational burden if we specify the prior before the
data as we have done in the last chapter: or the logical contradiction if we specify the prior

after the data. The theme of this chapter is simplification and we take the latter approach.

63



4.1 GENERAL REMARKS 64

In fact. any theory has to be seriously compromised in practice. We wmight have a perfece
representation of our initial knowledge. But if it is not operationally convenient. we probably
need to seek an alternative which approximates the original representation fairly well and
also leads to simpler computations. Note that a random process can be approximated by
a high-dimensional probability distribution. The difference between a random process aud
a high-dimensional probability is that. the former is a well-organized class of distributions
satisfying Kolimogorov's consistency. a feature that may be completely irrelevant in terms of

incorporating information.

We illustrate this by considering the simple situation that t; < --- < t, is an ordered
sample of size n from an unknown distribution F. upon which inference will be drawn.
According to Ferguson (1973). a Dirichlet process F'(¢£) would be constructed expressing onr
initial knowledge about the data distribution. On the other hand. a compromised approach
might assume that F is constant between observations and has junp of size 4; at ;. The
parameter space is now shrunk to (n - 1)-dimensional space. namely that ¢ = (#,.---.6,)
satisfying 8, + ---+6,, = 1. 6; > 0 are taken as parameters and F(¢|6) = 31_, 6:1( > t;).
This kind of parameterization is data-dependent for the location of the jumps is specified by
the data. A Bayesian framework is now built by assigning a convenient prior to #. possibly
a Dirichlet distribution which approximates the Dirichlet process prior in some sense. This
is conceptnally more straightforward than the Dirichlet process prior and leads to sunilar

results.

A topic related to this is Fisher's fiducial approach. Fiducial inference is a kind of piv-
otal inference that leads to a probability description of uncertainty about the parameter.
A pivotal is a function of the data and the parameter whose distribution is completely
known. The fiducial argument transforms the probability statement about the pivotal quau-
tity into probability statement about the parameter after the sample is drawn. Let us recall
Fisher's original example on the sample variance of a normal distribution. If a sample of

n observations #,.---.z, has been drawn from a normal population with variance &% and
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52 = T8 (2 — £)¥/(n — 1). then. it is well known that the quantity s*/o* has a ? distri-
bution with n — 1 degree of freedom. For any constants a. b (b > a > ). we can always fiud
the probability ,
Pr(a < ;f; <bh)=p

from the y? table but this probability statement is based on the so-called sampling distribn-
tion where o2 is fixed and s* is random. However. once the sample is available s* becowes
fixed and the interpretation for the probability has to be changed. One may argne thar
this probability statement is only valid before the sampling and should be discarded after.

Imagine that we are tossing a coin. We can make a probability statement about the outcowe

ouly before a tossing.

Fisher (1935) argued that the probability statement above induces a distribution on
the parameter o* given s? and thus the probability becomes a description of parameter
uncertainty. Although this approach has been criticized since its introduction. it offers. ar
least in some cases. very reasonable results. According to Fisher (1935). fiducial probability
differs from Bayesian inverse probability in logical content. But. numerically. the fiducial
inference coincides with Bayesian under a certain kind of non-informative prior. For example.
Pitman's estimate for location parameter can be derive from both the fiducial and Bayesian

approaches.

We shall discuss the fiducial approach in a nonparametric setting where the parameter

is the unknown distribution itself.

4.2 A Data-Dependent Prior and Its Posterior

We now introduce a data-dependent prior on the hazard function. We start with a guess
Ao(t) at the cumulative hazard. or equivalently Ayp(¢) > 0 at the hazard function with a
certain degree of coufidence. Suppose that failures ocenr at times ¢; < --- < £, and d;

subjects fail at ¢;: censorings that occur in [t;. £;+1). ¢ = 0.---.n are adjusted to #; where
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ty = 0 and t,., = co. We assume that uncertainty exists only in a finite-dimensional margin
of the hazard function at #;. : = 1.---.n. and. once this margin 1s given. the whole hazard
function can be obtained by a kind of interpolation. In practice. we suppose that the hazard

function over each interval (¢;_,. t;] can be parameterized as
A(t|6) = 9,: /\U(t)- t E (ti_l. ti] (41'

where § = (#,.---.6,). The hazard function defined by (4.1) has fixed juwps at ;. / =
1.--- 0.

Given the data described above. the likelihood function for # is proportional to

g3 . g0 exp[— S sibi(Ao(t:) — Ao(ti-1))]

i=1
where s; is the number of individuals at risk just before time ¢;. According to this likelihood.
the most practical prior for § would be the conjugate prior with #; ~ G(c. ¢) being wdepen-
dent. This conjugate prior allows us to perform easy Bayesian analysis and to derive seusible
Bayesian and non-Bayesian results such as the A(n). the Nelson hazard estimate and even

Cox’s partial likelihood. We have many reasons to use this prior if a Bayesian analysis 15

needed.

It is also possible to use a non-conjugate prior such as the multivariate Gamma. Let
£(t) be a 2c-dimensional squared Bessel process with £(0) = 0 and let & be an increasing
function. If we assnme that the components of the parameter § are generated by sampling

a random process &y () = E(h(t))/(2h(t)c) at times ¢;. then the posterior density of § is

2 e Vyi— Hi
p(8) x (915n)(n—1)/-gtliz o fn exp(—arby - — anbn) H [c_l(TI

=2

) (+.2)
where the constants {a;}7,. {hi}",. which carry information from the data as well a5 the

prior. are given by:

h(t,‘) }I,(t,')
h(t;) — h{t;21)  R{tiz1) — h(t:

”'i = (_'[

}] + .S'i[A.(_)(t{) bt i\u(t{_l)]. r=1.--+.n—1.
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_ hit,)c . )
L, = h(tﬂ) _ h,(t"_l) + -Sn[AU(tn) - A‘J(tn—l)]‘
poow Pb) Zhty) o,

" 9 /h{tio)R(t:)

For this density. the Gibbs sampling schemes proposed in section 3.2 can be applied withour

difficulty.

Under the conjugate prior. we have

a;, = C + .Si{[\()(ti) - 1\(}(ti_1)]. l: = 1. LLIE IR 1 %

hy=0c 1=2.---.n.

and thus 6; ~ G(c¢ + d;. a;) are independent.

The limit of the proper prior as ¢ — 0 gives the non-informative prior having the form
m(fy.---.0,) x d8y---db,/6;---0,. This coincides with the Jefferys' reference prior in rhis

casc. The corresponding posterior distribution is given by:
9,' ~ G(d, .S,'[Au(tg') - Au(ti—-l)])- L =1.---.n

independently. The increment of the cumulative hazard over (f;_,. t;) is thus a Gamma
variable from G(d;. s;) which is the same as the posterior (3.12). But an essential difference
exists: according to the model (4.1). the increment is continuously distributed over the whole
interval {¢;_;. #;): while the posterior (3.12) describes the increment as an impnlse at tuue

t;.

4.3 Proportional Hazards Regression

In practice. it is important to incorporate some covariates in our survival model hecanse
the population under investigation can rarely be treated as homogeneous. It is also a basic

goal of survival analysis to study the dependence of life time on explanatory variables. In
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this section we extend the survival model (4.1) to the regression case. Suppose that a subject

with covariates z = (z,.---.2:) has hazard function
Altz) = exp(d'z)A7(¢). t2>0. (4.3)

where 3 = (f31.---. )" are the regression parameters and A™(¢) is the baseline hazard.

As before. let the observed failures be t; < --- < £, and suppose that censorings in
[t;. tiy1) are all adjusted to ;. Our primary concern in this case is the estimation of the
regression parameter. If A*(¢) is observable at the data points ¢; the likelihood for ;4 wounld
be

L(p) = H P exp—si(B)(A™(8:) — A (timy))]. (4.4

where s;(8}) = X,cr(e) exp(f'z;) and R(t;) is the risk set just before time ¢;. The point
estimation problem corresponds to maximizing a parametric likelihood.

4

Cox (1972. 1975) proposed an approach which gives a kind of likelihood for /3 in the
absence of any knowledge about the baseline hazard. A later work of Kalbfleisch (1978)
assumed a vague knowledge concerning the baseline hazard. which is represented by a Gamma
process prior. Then a Bayesian way of eliminating nuisance parameters is adopted and a
likelihood for S is obtained by integrating out the baseline hazard.

If the conjugate data-dependent prior specified in the last section is assigned to the

baseline hazard choosing A, and ¢ as the shape and confidence parameters. then the marginal

likelihood would be

i=1 [s:(8) + Ao(t;) — Ao(ti-y)

Two extreme cases are of interest: the parametric likelihood when ¢ — oo and Cox’s partial

]c+1 :

likelihood when ¢ — 0. Thus the integrated likelihood gives all the intermediate analyses

when ¢ goes from zero to infinity.

The pure Bayesian approach would also put a prior on the regression parameters. For

example. one may assume a uniform prior for 3 independent of the prior for the baseline
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hazard. Generally. the posterior of (3 is hard to sample and only when the covariates are
properly coded is the Gibbs sampler applicable. For simplicity we only consider a Bayesian
many-sample problem. Suppose the hazard functions of these samples are expressed as
mA™(t). k =1.---.m with A"(¢) being a baseline hazard. Let s;. be the number of subjects
at risk in the k-th sample just before time ¢; and d;; be the number of deaths at #; in che A-th
sample. Under the prior. the regression parameters 7 = (n;.- --.1,,)" are independent of the
baseline hazard. We assign a data-dependent prior to the baseline hazard as described in the
last section. and assume . k = 1.---.m are independent with log . nniformly distributed
over the real line. The likelihood for (5. ) is
9‘1" ~--9;f"'nf" -een ";" exp[— Z Z mesicfi(Aolts) — Ao(tizy))]-
k=1 i=1
where ;. = Y7, di. denotes the total failures at time ¢;. and d = 372, dix the total failures

in the A-th sample.

A Gibbs sampling from the posterior of (1.4) can be easily carried out when the non-
informative prior for # is used. Given n. we draw independent variables
1443

Z sl Ao(t:) — Ao(ticy)]). i=1.---.n.

and given §. we draw independent variables

me ~ G(d.. Z siebi[Ao(t:) — Ao(ticr)]). k=1.---.m.

=1
We illustrate this using the lung cancer data presented in section 3.4 cowmparing the four
subgroups receiving standard treatment. We can arbitrarily choose a shape parameter. say

Ay(t) = 0.008¢. which has actually no influence ou the comparison.
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[t

The posteriors of log r; are graphically displayed in Figure 4.1 and shown to be close to

normal distributions. A brief summary of the posterior features is given in Table 4.1.

Table 4.1

SUMMARY OF THE BAYESIAN MANY-SAMPLE COMPARISON

USING NON-INFORMATIVE PRIOR

i | Elogni  E(logni/m) sellogn) sellogni/m)
1| —0.169 — (.313 —

21 0.275 (444 (.231 0.337

3| 0.493 0.662 0.367 0.454

4| —0.544 —0.375 0.323 0.395

Meanwhile. we use Cox's proportional hazards regression to compare these snbgroups.

We set the covariate z = (z;. z5. z3)" and define z = (0.0.0)". (1.0.0). (0.1.0)". (0.0.1) for

subgroups I-IV respectively. The results are summarized in Table 4.2.

Table 4.2

SUMMARY OF THE MANY-SAMPLE COMPARISON USING

COX'S PROPORTIONAL HAZARDS REGRESSION

A exp(B)  se(B)
| 0.425  1.530  0.341
22| 0.724 2063 0.445
z3 | —0.448  0.639  0.396

There is only a minor difference between the Bayesian analysis and the proportional

hazards regression based on Cox’s partial likelihood. However. the Bayesian analysis is more

flexible in terms of probability evaluation. For example. if the relative risk difference of 20°

is considered significant. we may want to know the posterior probabilities Pr(0.8 < /1 <

1.2). ¢ # k. which can be easily obtain from the sampled posterior.
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4.4 Bayesian Prediction

Statistical prediction makes some statement about the outcome of a future experunent
E; based on previous data from an informative experiment E;. This kind of inference has

been widely applied in clinical trials and medical survival analysis.

A Bayesian would formulate the prediction in the following way. Suppose that E; and
Ef are described by the same probability distribution from the class {F(z]f). # € ©}. where
© is the parameter space. and E; and Ej are independent given #. Suppose. before the
experiment F;. a prior 7 is available for @ representing our initial knowledge about the
parameter. After the experiment E;. the data z is used to obtain the posterior w(#lx). which
updates our knowledge about #. The predictive distribution for the outcome Y of a futurce

experiment Ey is then defined by
Pr (Y € Bls) :/F(B|H)7r(d9|m).

where B is a region in the sample space and Pr(Y € B|z) is the probability for the prediction

that a future observation Y will fall in B based on the data .

In most of the literature. © is of finite dimension as arises in a traditional parametric
set-up. In the nonparametric case. however. @ is infinite-dimensional. Both the prior and
the posterior are stochastic processes. and characterizing their distributions is generally
difficult. Ferguson (1973) introduced the well-known Dirichlet process prior which. in some
cases. yields natural results. However. a major drawback of this prior is that it assigus
full probability mass to the class of discrete distributions and this has posed a problem
e applications. We can see this through the way that a single observation change our
prediction. Suppose we have an observation = and a neighbourhood B of . Let Pr (B) and
Pr ( B|x) denote the predictive probabilities based on the prior and the posterior. The local
sensitivity sen(B) is defined as the ratio of Pr (B|z) — Pr (B) to Pr (B) which measures the

relative change of the probability statement. We now calculate the local semsitivity for a
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Dirichlet process prior with continuous intensity « (Fergusou. 1973) such that «(R') ~ 0. Ir

Is easy to verify that
a(RY) — a(B)
a(B)a(RY) + 1]

and sen(B) — oo as B shrinks to =. Therefore. the contribution of the observation has been

sen(B) =

exaggerated by the Dirichlet process prior due to its discrete nature.

When ¢ — 0. the prior introduced in section 3.1 also leads to predictive probability with
zero mass allocated to intervals where no failures were observed. The data-dependent prior.
however. does not have this kind of undesirable feature. Generally. the predictive probability
can be expressed as

k
Pr(T > ti|data) = E exp[— Z G:i{Ao(t:) — Aolticy))].
i=1
where the expectation is taken with respect to the posterior. When the conjugate prior in

section 4.2 1s nsed. we have a closed form expression

k
Pr (T > ti|data) = H {1- ! -

1= Sy + 1+ :_
' ’ Aolts) — Aoltioy)

}r:+d.‘. k=1.---.n. (4.9)

We would like to point ont a link between this data-dependent prior and the A(n) rule.
which was proposed by Hill (1968) and later generalized to censored data by Berliner and Hill
(1988). The A(n) rule directly specifies the predictive probabilities after the observations
become available. For the uncensored data t; < --- < t,. the A(n) rule assigns equal
probabilities 1/(n + 1) to each of the n + 1 open intervals I; = (¢;.£;41). ¢ = 0.---.n with
ty = 0 and t,4, = oo. This prediction can be thought of as representing a robust Bayes
procedure when the prior knowledge about the true distribution is extremely vague. It has
been shown (Hill. 1968) that the A(n) rule is an approximation to exact Bayesian procedures.

though 1t cannot hold exactly for a continuous population.

Berliner and Hill (1988) generalized the A(n) rule to censored data. Suppose that failures

oceur at times ) < --- < ¢, and there are no ties: censorings in [¢;. £;4)) are adjusted to ¢,
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Then the generalized A(n) rule assigns to [; the predictive probability p; given by

1 1
= ———— R . k=0.---.n
P Seer + 1 il;],;( .s,~+1)
where s; is the number of subjects at risk just before ;. ¢ = 1.---.n (sne1 = 0) and an

empty product is taken as one.
When ¢ — 0 the predictive probability (4.5) reduces to

1

ok =1.---.n.
s;+1

&
Pr (T > ti|data) = H (1-

=1

which provides prediction for data with tied failures. If d; = 1 this predictive probability
coincides with A(n). but Berliner and Hill (1988) suggested breaking ties arbitrarily withont

giving a prediction for data with tied failures.

The proportional hazards model can easily be incorporated into this prediction which
yields a further generalization of A(n). provided that there are no ties in the failures. Suppose
the subject with covariate z; has hazard "= A(t]0) and 5;(3) = ¥iere;) e#'s where R(t;) is
the risk set just before ¢;. If (3 is known. by assigning a non-informative prior on the baseline
hazard. the A(n) can be generalized to predict the lifetime of a future subject with covariate
=. and the corresponding predictive probability can be expressed in the same way as in (4.5)
except that s; should be replaced by s;(#) e ?"*. However. 3 must be estimated from the

data by maximizing Cox’s partial likelihood.

A pure Bayesian approach would put a prior 7{df3) on 3 as well. For simnplicity we assuie

f 1s independent of 8. Then the joint posterior would be proportional to

e et oxp [~ 3 si(B)8i(Ao(ts) — Ag(ti-1))]dby - - - dBnm(d3)

i=1
and the marginal posterior of [ is proportional to
n B's;

€ 7).
II S @)

=1
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The prediction for a future subject with covariate z 1s

P’ eB'=
i tilz. data) =B ————— (1= ———). i=1.---.n
Pr(tios < T < bifz. data) = B si(B3) + 'z j<i( 5;(B) + € 2 "

where the expectation is with respect to the posterior of /3.

Finally. we discuss the positive correlation issue in prediction. Suppose we sce a patient
who survives longer than t,: what would be the effect on the predictive probability that
next patient will survive longer that ¢,? If ¢, = ¢, = ¢t. a Bayesian would be more confident
to predict that the next patient will survive longer than t. This is the nature of Bayesian
statistics and it can be shown as follows. Let the life times of these two patients be T| and

T-. and suppose that for a given parameter 6 they are independent. Note that if £, =, = £,

PI‘(T1 > t. T-_) > t) _ E-n- [Fﬁ(t)]z

Pr (T, > t|Ty > t) = Pr(T, >t)  E. Fa(t)

and therefore

Pl’(Tg>tg|T1>t1)—-Pr(Tg>tg) > 0. (4.6)

where 7 is the prior and Fy is the conditional survival function given §. Butif £, = t,. a
further assnmption is needed to assure the validity of (4.6). If (4.6) is valid for any f, and
t,. we say that T, and 7%, are positive dependent. In the general case. randow variables

T).---.T, are said to be positive dependent if
Pr (T1 > tl."’.Tn > tn) Z PI'(T[ > tl)---Pr(Tn > t") {47’

for any £;.--- . t,.

In Bayesian statistics observations are exchangeable but not necessarily positive depen-
dent. A simple example will illustrate this. Suppose T). T» are conditionally independent
with survival function Fy(¢) = exp(—t*) where A has a uniform prior distribution U/(1.2). If

t; <1 <t, then (4.6) does not hold. This can be verified by the fact that

(b— a)[lb flz)g(z)dz < /ub fla)dz /: g(z)dz
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provided one function is increasing and the other decreasing over the interval. In the nonpara-
metric approach. however. this kind of negative correlation does not exist nnder a Dirichler
process or Gamima process prior. or even the squared Bessel process prior. The observations
are always positively dependent. and this will be shown in the following for the Dirichlet
process prior.

Suppose F(t) is a Dirichlet process with intensity a(¢). and Ty.---.T, are id for a given
sample path of the Dirichlet process. We use mathematical induction to prove the positive
dependence. Since the case » = 1 is trivial. we assuwe that (4.7) is valid for n = &k and

proceed to show it is also correct for n = k + 1. Note that

Pr(Ty > t1.--- T > tiee Tiegr > try1)

JPr(Ty > ty.-- Tk >t Terr > tes1|Thwr = U)dFTHl(!/)
= ‘,;‘:C_H Pr (T]_ > tl. Tt TL- > tkITk+1 _= y)dFTk-(-l (lj).

where Fr, ., denotes the marginal distribution of Tiy;. According to Ferguson (1973) the
posterior of F(t) given Tj,; = y is again a Dirichlet process with intensity «(f) + d(f — y)

and. 1t then follows from the induction assumption that
Pr(Ty >ty Tt > ti|Tewr = y) 2 Pr (T, > 81|Theyr = y) - -Pr (T > t1|Tisy = y).
Without loss of generality we can assume that ¢.,; > max;<i<x ¢; and verify that
Pr(T: > t;|Thyr =y) > Pr(T: > t;) for y>tpyr. t=1.--- k.

and therefore the positive dependence follows.

4.5 Fiducial Approach

Certain restrictions apply to the fiducial inference. Let Q(8.T') be a pivotal where 6 1s the

parameter and T is a statistic. To qualify for fiducial inference. T must be a sufficient statistic
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for §. Next. to guarantee the probability transform the following one-to-one correspondence

must be satisfied:
(a) given Q and T there 1s a unigue solution of &:
(b) given @) and # there is a unique solution of T'.

Conditions (a) and (b) may be too restrictive in some situations. For exaruple. (a) may be
violated if for some given Q = q and T = ¢ there are many values of 8 satisfying Q(6.t) = .
If this is the case. all members in the set {#|Q(6.t) = q} will be treated as identical hecanse
we cannot distinguish one from the other based on the information provided by Q. Thus.
a fiducial distribution is induced on a smaller parameter space generated by grouping the

“tdentical” parameter values as one value.

[u survival analysis. there are pivotal quantities and fiducial argument can be applied.
In fact. Nelson's hazard estimate is the mean of fiducial probability though he does not
obtain it in that way. For simplicity we do not consider censoring at this time. Suppose the
enmulative hazard function of a population is A. and T} < --- < T, are ordered failure tunes.
It is well known that (n — ¢ + 1)[A(T:) — A(Ti—y)]. 4 =1.---.n are iid standard exponerntial
variables. In other words. Q(A.T) is a pivotal quantity with A as the parameter. Ounece
the data ¢ are available. we could use the fiducial step to argue that the distribution of
Q(A.t) is unchanged. But the parameter here is of infinite dimension and condition (a) is
obviously violated. Therefore. a fiducial distribution is induced only to a projected space
of cumulative hazard functions where two members A; and A, are considered the sawe if

A(ts) = Aa(ts). i = 1.---.n.

With this we would have a finite-dimensional distribution of A(t) at times ¢; < --. < t,.
Thus information is partial or incowplete since fiducial statements for other margins are
mwissing. But one should not be blamed for only being able to draw inferences on such
a margin with sample (¢;.---.%,) at hand. The limitation is not due to the procedure of

inference but to the data available. We used to add an assumnption on the cumnulative hazard.
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such as a step function assumption. But this cannot be derived from the fiducial probabilicy

and is of course additional to the information furnished by the data.

Now. the mean of the fiducial probability for A(t;) is easily calculated as

I3
1
EA(t) = —_—
(£) ; n—1+1
and so is the variance
k
1
var A(#e) = —_— -
(tr) ; P

Thus. like the Bayesian predictive distribution. a fiducial predictive probability can also be
obtained. Let ¢, = 0 and t,,; = oo and denote an empty product by one. For a future

observation T'. the predictive fiducial probability would be

Pr(tiei < T < tr) = Elexp(—A(tio1)) —exp(—A(ty))]
_ it P | f‘[n—i-é—l
- et n—z—i-Q—il‘n.——i—%?.
1
= — k=1..--.1 .
n+1 n+l

which is exactly the value specified by the A(n).

Fisher had tried to develop a coherent theory of pivotal inference but failed. In practice
it is not always the case that a pivotal quantity can be found. For example. when right
censoring is present. @ is no longer a pivotal and the fiducial argnment must be modified.
Suppose that failures were observed at times ¢; < --- < t,, and. censorings that occured in
[t:. ti+1) are adjusted to t;. Let s; denote the number of subjects at risk just before timec f;.
We show that @ is in some sense a pivotal quantity. Let us study the survival experience
sequentially. From time #;_, to ¢; which is called the ¢-th period. a total of s; subjects were
under observation. Let T).---.T,. be the life times of these s; subjects. At the beginning of
the i-th period we had the information that min(Ty..--.T,,) > t;—; and what we observed at
the end of the period is min(7}.---. Ty, ). It is straightforward to show that. conditioning on

the history before t;_;. specifically. s; and ¢;_;. the cummulative hazard for min(7y.---.7.,)



4.5 FIDUCIAL APPROACH 79

is s;[A(#) — A(t;i-1)] and thus the sarmpling distribution for -s;[A(t:) — Aft;_1)] i1s standand
exponential. If the experiment can be viewed as a sequence of independent experiments. the

joint distribution of s;{A(t;} — A(¢i—1)]. ¢ = 1.---.n is independent standard exponential.

This argutnent is not mathematically rigorous. but the sequential view of an experiment
is helpful in dealing with survival problems. For example. Cox’s partial likelihood is Duult
by sequentially identifying the subject who fails first in each risk group. The many-sample
comparison (Kalbfleisch and Prentice. 1980) is carried out by analyzing a sequence of cou-
tiugency tables. This approach can sometime simplify the situation and approximate the

exact result.

With the fiducial probability on s;[A(%;) — A(ti-1)]. £ = 1.---.n we can draw inference
on the life distribution or future observation. It can be seen that the fiducial predictive
probability is exactly the A(n) prediction. Survival curve estimation is possible if we choose a
kind of interpolation to compensate for the missing information within interval (¢;_;. ¢;). For
example. right continnous step function interpolation is commonly used. The step function

type of estimate is obtained by taking the mean of the fiducial probability

1
E exp[—A(t)] = L[t (1-— s_ﬁ)

which is only slightly different from the Kaplan-Meier estimate. Fiducial probability mtervals
can be obtained by easy simulations or even by closed-form formulae. As an example. we
show how to evalnate the fiducial probability Pr(a < A(t;) < b) where 0 < a < h. Note that.
if ¥7.---.Y,, are independent standard exponential variables. then the linear combination

mY1 + - + .Y, has a density function

n n—1
A 1 4
. — exp(__y_)_ y > 0. (4.8)
o iz (s — p5) x
where y; > 0 are distinct numbers. From (4.8) we have
k
1

Pr(a < A(t) <b) = Z ———————— [exp(=sia) —exp(—=s:b)]. k=1..--.n
i=t [[jm (1 - ;’:)
7

which is easy to compute.



CHAPTER 5

Analysis of Binary Data

5.1 Introduction

Binary data arise from experiments in which observations can be classified into rwo
categories. For instance. in a social survey. the attitude of a subject towards a proposal way
be positive or negative: in a medical experiment. a test animal may die or survive from a
given dose of a poisonous drug. Statistical theory concerning binary data is extensive and
involves many applications. Our primary interest here is the analysis of binary data frow

medical or biological experiments.

Bioassay is an experimental procedure for evaluating the biological potency of a material
such as a therapentic drug or carcinogenic substance. It has been used for many years for
a wide range of purposes. and the analysis of bioassay experiments is an important part
of statistics. In a typical bioassay. a dose denoted by ¢ is administered to each subject
who either does or does not respond. For example. in a carcinogenicity experiment. an
animal may or may not develop a tumour after a period of being regularly fed a carcinogenic
chemical. and we say it responded if a tumour is detected. Suppose that. at a fixed dose f.
a subject would respond with probability P(t). a quantity of primary interest. We call P(#)
the response probability at dose t: or the dose-response relation. or the potency curve when

it is viewed as a function of £.

Quantitative cancer risk assessment has been an important application of modern bioas-
say. Many of the standard methods of cancer risk assessment are based on binary data. For

example. see Mantel and Bryan (1961). In this kind of approach. similar animals are exposcd

S0
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to carcinogens at several different dose levels. After a fixed period. all animals are antop-
sied and the presence or absence of tnmors in the target organ of each animal is observed.
With the assumption of the functional form of the dose-response curve. the parameters cau
be estimated by likelihood methods. We can then estimate the VSD (virtnally safe dose).
a very small dose at which the risk of cancer will be less than a given probability. This
often involves estimation outside the range of observations and hence is termed low-dose

extrapolation.

The statistical analysis of bioassay is essentially the same as non-linear regression. With

a link function F. which is usunally a cumulative probability distribution function. the dose-

response curve is expressed as P(¢) = F(a + glogt). 4 > 0. For example. in logistic
regression F(t) = e'/(1 + ¢*). and in probit regression F is the cumulative probability

distribution function of the standard normal distribution. The maximum likelihood methaod
can be applied under a constraint g > 0. The disadvantage is mainly the strong model
assnmption on the dose-response relation. which may be inadequate in a certain range of
dose levels yet fit the data quite well. For example. Van Ryzin (1980) showed that low-
dose extrapolation is very sensitive to the model assumptions. that is. different choices of F

produce very different results.

The nonparametric view of a bioassay is that of binomial inference under order restric-
tions. This. and wore general problems such as isotonic regression. are extensively studicd
by Barlow et al (1972). An efficient algorithm for estimation is available but convenient
access to confidence limits is missing. Another obvious drawback is that the observed data
are only available at the experimental levels and very little inference can be drawn abont
a dose other than the gxperimental values. Perhaps a kind of extrapolation is necded to

complete the analysis.

Ramsey (1972) was one of the early works using the Bayesian method to analyze bioassay
data. Antoniak (1974} also studied the same problem by introducing a mixture of Dirichlet

process priors. but the implementation is difficult. A more recent work of Gelfand and Kuo
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(1991) proposed a resampling approach to the Bayesian bioassay.

This chapter investigates the posterior computation problem for bioassay data using
Dirichlet process priors. A nonparametric method for comnbining many assays is also proposed
and illustrated. Finally. a possible extension to the analysis of doubly-censored data is

discussed.

5.2 Binomial Inference Under Order Restrictions

Bioassay can be viewed as an order-restricted binomial problem. Suppose a bivassay is
performed at dose levels ¢; < --- < ¢,. and the dose-response curve P(#) is an increasing
function. There are two ways to summarize our initial knowledge. The first way is dircer
parameterization by setting P(¢;) = #;. If no initial knowledge is available one might nse the
waximuin entropy prior for # = (#,.---.6,) which is uniform on the simplex < #; < --- 2
f, < 1. Suppose the experimental result shows r; oui: of n; subjects responded at dose level

t;. The posterior density of § is then proportional to
O (Y — Gy (L —6,) T [(0< By < - < B, < 1) {5.1)

where [ 1s the indicator function.

The mode of (5.1). was obtained by Ayer et al (1955) in a nearly closed form expres-
sion. The Gibbs sampling approach was first studied by Gelfand and Kuo (1991). The
sampling scheme is quite obvious since the conditional distribution of ¢; given #_; =
(By.---.biy. Oigy.---.8,) is Beta(r; + 1. n; — r; + 1) doubly truncated at 6;_, and #;-;.
with 6, = 0 and 4,., = 1. More generally. we may use the ordered product Beta prior with

density proportional to

OrH(1— )M (1 = 8,0 < By < - < B, < 1) (5.2)
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which leads to a tractable posterior. Ayer’s algorithm and the Gibbs sampler as well can he
applied to the posterior using (5.2) as a prior. This is numerically equivalent to modifving

the observations as r; 4+ r} out of n; +n! responded instead of the original experimental result.

The second prior for # can be constructed by sumnarizing the initial knowledge on
the differences #; — #;_y. ¢ = 1.---.s + 1 using a Dirichlet distribution. If the prior for
b; — iy, e =1.~--.s+11is D(by.---.b,.1). then the joint distribution of # is the so-called
ordered Dirichlet with density - |

s+l
8) o< [T (6: —6:my)" P I(0< by <--- <, <1).
i=1

Under the bioassay data given above the posterior density is proportional to

s+1
H B0 (1 — )™ T (B — i) [(0< by < ---< 8, <1). (5.3)
i=1 =1

At first glance. one may easily give up this approach because the sampling scheme is not

obvious. In fact. the conditional distribution of 6; given 6[_; has a density proportional to
B (1 = 8™ 77 (6 = 6:0)" 7 (Bir = 6:)00 T (B < B < Bi)

which seems unfamiliar. However. a different approach gives a quite different perspective.

Note that
(6: — Biy)> ™" = b / f 2P (s < B; — Biey < &)dEsdn.

and thus (5.3) 1s a marginal density arising from the joint density proportional to

s s+1
IT 65 (1= 0™ T €728 I (me < 6: — 6:my < &)
i=1 =1

and obtained by integrating out £ = (£.~~~.&,4+1) and n = (qy.~=-.7,4,). Efficient Gibbs
sampling for (. n. #) is available. Thus. instead of sampling the posterior of § directly.
we consider the joint density of (€. 7. §) with £ and 5 serving as auxiliary variables. Let

the current value of these parameters be (%, £*) pt*))  The updating of § must he done
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sequentially to retain the order. Suppose we have updated the value of #;. y < .- 1. To

update 6; we generate

85 « Beta(ri + 1. n; —r; + 1)

subject to left and right truncation at

(L+l) [L) (k) (k) : (k) (k) (k+1) (k)
wmax(6; ) 4+ .0, — &) and min{€;, —m. 000 &)

where 6, = 0 and #,;, = 1 are fixed. Given 4. the auxiliary variables are conditionally
independent and thus can be simultaneously updated by generating sid variables U;. Vi ~

U0.1). 1 <i < s+ 1 and letting

(k+1 (k+1) (k+1) {(k+1) (k+1) (k+1) 1/h;
EFHY = (9" — gttty u. gt = (0T — eI VL

It is obvious that the auxiliary variables have simplified the sampling scheme and updating

these auxiliary variables costs very little compared to the npdating of the original parameters.

Inference on a particular dose level. not necessarily an experimental level. is of practical
importance. For example. in cancer risk assessment. interest centers on very low doses. The
ordered binomial model. however. leaves this extrapolation problem unaddressed for the
dose is not explicitly inclnded in the model. The order restrictions only incorporate dose
information in a very weak manner. To carry out an extrapolation. additional assumptions

concerning the dose-response relationship are required.

5.3 Tolerance Distribution Approach

The tolerance of a subject is a threshold value T such that when the stinulus exceeds
T the subject will fail and otherwise it will survive. Let us assume that the tolerance T is
a random variable across the population. The tolerance distribution function P(%) is thus
the potency curve on which our initial knowledge might be summarized using a Dirichlet

process. If an initial estimnate Py(t) for the tolerance distribution P{¢) is available with a



N )

5.3 TOLERANCE DISTRIBUTION APPROACH NI

certain degree of confidence. then a Dirichlet process with shape parameter Py(t) and a

properly chosen confidence ¢ can be used to summarize this knowledge. Let £, < --- < f, be
the experimental dose levels and 8; = P(¢t;). ¢ = 1.---.5. Under the Dirichlet process prior.

the joint distribution of (#,.---.4,) is the so-called ordered Dirichlet with density
1
w(0) oc J] (8 —~8:im)" P (0 <8y <--- <6, <1)
=1

where b; = ¢[Py(t:) — Po(ti-1)]. ¢ = 1.---.s + 1 and Py(ty) = 0. Suppose the data are the

same as that described in the last section. then the posterior density for § 1s

E) s+1
p(6) o< [T 07(1 —6:)™ " J[ (6 — i)™t IO < 6y <--- <6, <1).
=1 =1

and the auxiliary variables technique discussed in section 5.2 applies for Gibbs sampling.
Gelfand and Kuo (1991) also proposed a Gibbs sampling scherme for this posterior but their

method is less efficient.

Prediction and estimation for the response probability at an arbitrary dose level is also
possible. Suppose t;_; < t < t;: then. under the posterior. the conditional distribution of

P(t) given P(t;—;) and P(t;) is easily characterized. In fact.

_ P(t) - P(tiy)
P(t;) — P(ticy)

Yi(z)

t=1.---.5+1.

are s + 1 conditionally independent Dirichlet processes with shape

Py(t) — Po(ti-y)
Pylt:) — Py(ti-y)

and confidence ¢[Py(t;) — Py(ti—1)|. which is the same as that under the prior. Thercfore,
data information enters P(¢) only through 8;_, = P(t;—1) and §; = P(%;). Once a sample of
¢ is available. inference on the whole dose-response curve or tolerance distribution becomes
feasible. For examuple. the posterior for any quantile of the tolerance distribution is obtained

as follows. Suppose the g-th quantile of P(t) is §;: then. for ¢;_, <t < ¢;.

Pr(§, <t) = Pr(P(t)>q)
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= E Pr(P(t) > q|P(ti_y) = 6oy, P(ts) = 6s)

Q_Hi—l
= (1) > —m——).
B Pr(Yilt) 2 g—=)

where Y; is the Dirichlet process defined above and the expectation is taken with respect ro

the posterior of ¢#. From section 1.2 we have

—f._ _9’:_ ) )
Pr(Yi(t) > L7t bt )= 1— B(L 2L | ([ By(t) — Poltioy)]. e[Polts) — Pa(t)])
0; — 0;_, b; — iy

where B(x|ce. 3) denotes the cumnlative probability function of the Beta distribution with
parameters «« and g. Therefore. the posterior distribution of any quantile can be computed

numerically if a sample of 8 is available.

As an application. we consider the low-dose extrapolation based oun the data from Mautel
and Bryan (1961). reproduced in Table 5.1. After a single injection of methylcholanthine
into wmice at different dose levels shown below. the number of mice that developed tnmonrs

after a fixed period was recorded.

Table 5.1

NUMBERS OF MICE DEVELOPED TUMOURS AT DIFFERENT DOSES

Dose Nuruber of tumour / Number of mice
2.44 x 107 0/158
9.75 x 10~% 0/79
1.95 x 103 /38
3.9 x 1073 /19
7.8 x 1073 3/17
1.56 x 1072 6/18
3.12 x 10-2 13/20
6.25 x 102 17/21
1.25 x 10~} 21/21

The conventional method for analyzing this kind of data is based on logistic or probit

regression. The logistic and probit are special cases of a wore general approach called
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generalized probit regression which allows the use of an arbitrary probability distribution
function F as the link function. Unfortunately. our interest in this problem lies in the lefr

end of the dose-response curve. which is very sensitive to the choice of the link function.
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Fig. 5.1 Comparison of the estimated dose-response relations in the range

of experimental dose levels.

We compare the estimmated dose-response curves from logistic regression. probit regres-
sion and EPA (Environmental Protection Agency) method which assumes an expounential

tolerance distribution. Figure 5.1 shows that all the models fit the data very well. However.
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in cancer risk assessment. our primary concern is often focused on the VSD (Virtually Safe
Dose). which is defined as the dose corresponding to a chance of one in a million of developing
tumour. Figure 5.2 shows that. when ¢ is extremely small the tail behaviour of F' dowinates
the magnitude of VSD. and the effect of the parameters cannot compensate for the huge

difference.

0.06
|

— EPA
.......... Logistic
—_—— Probit

Response probability
0.02 0.03 0.04 0.05
| | 1 !

0.01
]

0.0

Dose leval

Fig. 5.2 Comparison of the estimated dose-response relations in the range

of low dose levels.

On the other hand. the data may support many different models with very different tail

behaviour. Thus. there is no way to choose a better model based on goodness-of-fit or any
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other statistical rule. A more fundamental theory or insight into tumour formation is necded

to give a scientifically plausible model.

One possible solution is to seek a functional form of the dose-response relation based on
the mechamsi of cell progression. The one-hit model (Holland and Sielken. 1993). which
is derived from the assumption that cancer originates from a single cell which progresses
through several irreversible changes. implies a dose-response relation

k
P(t)=1—exp(— Y qt') (5.4)
i=0
where ¢; > 0.

The EPA method chooses a linearized version of (5.4) for simplicity. and fits the model

under the constraints ¢; > 0. ¢ = 0.1 using maximum likelihood. Suppose the estimates are

(qu- 1). Then the VSD can be estimated by
V5D = [~log(1 — 107°) - qul/di-

For the data in Table 5.1. the EPA method gives g, = 0. ¢, = 25.3 and VSD = 3.95 - 10~%;
the fitted dose-response curve is displayed in Figure §5.1. Exact confidence limits for the VSD
can be obtained by using the noun-parametric Bootstrap described in Holland and Siclken

(1993).

A Bayesian approach is proposed here that accommodates model uncertainty and attaches
weights to all possible models by using a Dirichlet process prior. Suppose we have a favoured
model. for example. the model nsed by EPA. We would assign a Dirichlet process prior for
P(t). the tolerance distribution. The shape parameter is chosen as Py(t) = 1 — exp[—(qy +
qt)] with g and ¢ unspecified. and the confidence ¢ now becomes a measure of model
uncertainty. This can be viewed as a relaxed version of EPA method because we put weights
on a continuous spectrum of possible models though the EPA model is at the center. In
practice. several confidence levels can be chosen to see the sensitivity of the VSD on model

uncertainty.



5.3 TOLERANCE DISTRIBUTION APPROACH I

An important issue is the estimation of g, and ¢;. for the prior depends on these nnknown
quantities. Ounce this 1s solved. the posterior of the tolerance distribution can be obtained Ly
the approach we just presented. Bayesian inference on VSD is thus available since the VSD
is a particular quantile of the tolerance distribution. Following the conventional cuipirical
Bayes approach. we choose (qu. q;) such that the average likelihood [ L{(8)w(d8|q. q1) reaches
its maximum. However. computing this average likelihood to generate a surface could he
difficult. The amount of computation is snbstantially reduced if one of the parameters can
be estimated from other sonrces. Note that if data are available from a control group. ¢, is
easily estimated since 1 — exp(—qu) is the respouse probability for a subject in the control
group. This 1s possible even when the current experiment does not have a control group.
Detailed discussions are available in Grice and Ciminera (1988) on utilizing historical control

data.

Our task now is only that of estimmating ¢;. We compute the average likelihood for a series
of values of ¢ to generate a curve. For this. we first generate a large sample §%) . k = 1.... .V

from the deusity proportional to
G (L — )™ BT (L= 8, (0 < 6y < --- < 8, < 1)

either by rejection sampling or Gibbs sampling. depending on the rejection rate. Then. for

a fixed q;.

k k -
(6:" ~ )"

Chy+---+byy) 1 Z i

/L(H)w(dé’l(m- 7)) = T(hy)---C(bys1) N

k=1 i=1
where b; = cexp(—qo)[exp(—qiti-1) — exp(—qit:)]. The EPA model can be fit using standard
software for generalized linear models. This offers an initial range for ¢,. within which the

average likelihood will be computed and the maximum identified.

For the data in Table 5.1. we assume that the tolerance distribution is a Dirichlet process
with shape Py(t) = 1 — exp[—(qo + qi1t})]. Strong evidence in the current data indicates thar

qo = 0 though listorical control data are not available here. We thus assume P,(t) = 1 —
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exp(—q:t) and the estimated q; is listed 1n Table 5.2: the likelihood functiouns are depicted m
Figure 5.3. The estimated value of q, is quite stable with the increasing of model nncertainty.
but the accuracy of the estimate diminishes significantly. This can be seen from Figure
5.3. The cumnlative posterior probability functions of the VSD are displayed in Fignure 5.4
corresponding to different degrees of model nncertainty. The posterior probability intervals
for the VSD tabulated in Table 5.2 are different in tilat. with increasing model uncertainty.

the probability has shifted to the right and become more spread out.

Table 5.2

BAYESIAN INFERENCE ON THE MODEL PARAMETER AND VSD

Confidence  ¢;  Posterior median  Symmetric 90% probability

of VSD interval of VSD
20 28.4 1.19 x 10~ 2.1 < 1073 ~ 4.90 x L)~
5() 27.6 6.21 < 1073 4.65 x 1076 ~ 2.38 x 10~
104) 27.2 3.42 < 1073 2.55 x 1076 ~ 1.43 x 10~
200 25.8 1.86 x 107° 1.39 « 1076 ~ 7.85 « 10~°
500 25.8 8.01 = L0~° 5.99 x 1077 ~ 3.36 < 10~
1000 25.8 4.38 x 106 3.28 x 1077 ~ 1.83 < 10~°
x 25.3 3.91 x 10~8 3.20 x 1078 ~4.78 x 103

* Note: the bottom row is the result from EPA analysis and the probability

staternent is based on a nonparametric Bootstrap.

This example shows that the inference on low dose response is not only sensitive to the
model selection such as the logistic. probit or EPA. but also to the model uncertainty. The
EPA conservative estimate of the VSD is 3.20 x 10™® which is obtained by taking the lower
bound from the 90% probability interval based on the one-hit model. However. if we arc
not comupletely certain about the model. say ¢ = 1000. a conservative estimate of the VSD

would be 3.28 x 107" which is substantially larger than the EPA assessment.
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Fig. 5.4 Comparison of the cumulative posterior probability functions for the VSD

at different confidence levels.

5.4 Many-Sample Problem

It 1s often necessary to combine many bioassay experiments since the physical limitation
may prevent a laboratory from executing the single large assay needed to achieve the required
precision. In such cases. the experiment may be repeated over time. or a co-operative study

way involve several groups of investigators.
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Using the Beta distribution to describe the variation between binomial populations is a
traditional approach. In animal toxicological experiments. variation in the response from
subjects is to be expected between treatments as well as between litters. It is often the case
that. when litter effect is ignored. the true standard errors of estimated treatment differences
will be substantially under-estimated. A two-way analysis of variance for binary data is
needed when both treatment and litter effects are considered. Williams (1975) proposed a
method using a Beta-binomial model to describe the extra variation between litters. Related
discussions can be found in Crowder (1978). Williamns (1982) and Conaway (1990)). But these

studies do not cover the bioassays if no specific dose-response curve is assumed.

In the Bayesian framework. hierarchical modeling is appropriate for this kind of problem.
g pPprop 1
Suppose that. for testing the biological potency of a drug. 7n bioassay experiments have been

independently carried ont and have produced the following results:

i/ T/t e T /ng
"‘21/"21 ‘1‘22/”22 see To,/ma,
Tm1 /“‘ml 'rmz/uml’ Tt rrna/"’rns

with each row being the output of a bicassay. Due to experiment-to-experiment variation.
the response probability at a fixed dose can vary across different assays. If we believe the
experiment-to-experiment variation is entirely random. a plausible modeling is to assume
that the response probabilities at a fixed dose in different assays are independently generated

from the same population.

Let m;; be the response probability in the i-th assay and j-th dose level. We postulate
an additive random effect model

Ti; . .
log——’—zr],--}-pj. t=1--vom. j=1.---.s. (5.9)
1—7?;_7'

where o = (py.- - . p,) is the dose effect and n = (5. -+ - . ) 1s a random effect represcuting

variation between experiments. We still use the non-parametric approach that no specific
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dose-response relation i1s assumed except a natural constraint that g, < --- < g, However.

even for a simple model like (5.5). an exact analysis could be technically very complicated.

When the batch sizes n;; are not very small. the empirical logistic transform (Cox. 1970)

works quite well. This wmethod ntilizes the approximation

6D |

7“']’ -+ Ti;
) ~ N(log T Y

. Vij)-

(X1

nij — Ti; +

|

where the term  is used to guard against extreme abservations. and

2

(ni; + 1)(ni; +2)
nij(ri; + I{ng; —ri; + 1)

vij =

is the asymptotic variance. We can thus build a generalized linear model with normal error
as

Yi; =10 +py + €5
where r; ~ N (0. J;':) and €; ~ N(0. v;;) are all independent random variables. If rr;': Is known.
the wodel can be reduced to

Ji =0+ p5+ &
where 77 ~ N(0. a’ﬁ /m). Bayesian analysis can be simply done using a non-informative prior
for g. Suppose we know very little about these parameters. A diffuse prior for pz would
be the uniform distribution on the simplex —co < gy < -+ < p, < co. This prior can be
thought of as the distribution of order statistics from a normal distribution with extremecly

large variance. The conditional posterior of x given ij ~ N(0.a2/m) is expressed as
p; ~ N(j;+ 7. v.;/m)

subject to the order constraint y; < --- < p,. We can sample the posterior by generating
& ~ N(¥;. 9;/m) and then test whether ; is ascending in j. If this is true we generate

i~ N(0.062/m) and set pz; = i + ;: otherwise we return to the first step.

However. in some cases. rejection sampling could be costly. An alternative Gibbs sam-

pling scheme is quite simple. If the current value is (p*). 7%)). we update the parameters
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by first generating

e (05 = 4570/
e~ N (L )T

n
_4_] 1 1/1‘, j:l '“']
and then
,u(H'“ ~ N(ij; ( “+1) 0.;/m)
left and right truncated at g*%" and p'¥
eft and right truncated at p; )" and ;.

We now discuss the issue of estimating #2. the magnitude of the random effect. Averaging

{5.5) over the second index we have
i = [l + 1 + €.

where the variance of &. is known to be #;./s. There is an unbiased estimate for o} given by

1 m ' _a . l

m — 1

7

ll

(1- )i
5

2
n

which is commonly used in the traditional analysis of variances with randomwn effects. The

main drawbacks are that it is not fully efficient and could be negative.

Another estimate can be derived using a likelihood approach. Note that the full ikelihoaod
of (. #}) is readily available if n; + €. is taken as the error term. Then. a marginal likeh-
hocd for L( rrf]) is obtained by integrating out the nuisance parameter ji. which is uniformly

distributed over the whole real space. This gives

—2log L(a-fl) = Z log(a';‘; + v;./s) + log( Z R
i=1 =1 0- vi./ s
m - m _ m '712
+ - b -
(g (r-—i-u /s ; o‘-+u,/.s ; o2 + U)s
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Table 5.3
NUMBERS OF MICE SURVIVING CHALLENGE WITH BORDETELLA PERTUSSIS

AFTER INOCULATION WITH STANDARD VACCINE

Assay No. | Day/Mth. Dose of vaccine

in 1970 0.2 1.0 5.0
1 5/1 8 16 19
2 5/1 6 13 27
3 15/1 9 17 27
4 22/1 10 14 29
5 29/1 4 I1 25
6 5/2 13 24 32
7 12/2 10 16 31
8 19/2 7 15 29
9 26/2 5 13 23
10 25/3 3 14 24
11 2/4 3 18 22
12 16/4 2 17 23
13 23/4 4 15 28
14 20/5 3 12 27
15 4/6 6 12 25
16 11/6 9 25 32
17 18/6 10 19 29
18 25/6 6 20 27
19 23/7 2 8 26
20 6/8 11 18 27
21 27/8 4 13 19
22 3/9 4 12 20
23 10/9 5 16 24
24 17/9 4 17 31
25 24/9 11 24 31
26 30/9 10 19 28
27 8/10 9 15 26
28 5/11 6 20 32
29 26/11 3 18 23
30 9/12 8 23 29
31 17/12 9 23 27
32 31/12 7 14 28
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Fig. 5.5 (a) Log-likelihood of the variance of the random effect (b)-(d) Comparison of the two

Bayesian analyses by pooled data and by a random effect model.
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We illustrate our method using a dataset from Finney et al (1975). Table 5.3 shows the
result of a series of bioassays conducted in 1970 by British National Institute for Biological
Standards and Control. In each assay. the same 3 doses of standard vaccine were used with
32 wice per dose. The numbers of mice that survived the challenge with bordetella pertussis

were noted.

For this particular dataset. the estimate &, = 0.24 based on the log-likelihood log L(e})

is plotted in Figure 5.5(a). The posterior density of 8; = exp(s;)/(1 + exp{;)) 15 depieted
in Figure 5.5(b)-(d) by impulse type plots. Another Bayesian analysis can be perforied
by pooling the data and using the non-informative prior proposed in section 5.2: the cor-
responding posterior densities are represented by solid lines in Figure 5.5(b)-(d). It can be
seen that the posteriors for §; based on the pooled- data and on the random effect model
are quite different in that the randowm effect model gives larger posterior variances to the
parameters. We are thus less confident about any conclusion drawn from this posterior than
that derived from a single large assay. For example. the random effect model gives posterior
probability Pr (|¢» — E ¢, < 0.02} = 0.536: while the corresponding probability shonld he
0.796 if the data were from a single assay. Therefore. the information available is less than

would be the case if all assays were homogeneous and could be combined.

It is also noted that the posterior means of §; from these two analyses do not agrec. The
random effect model gives a larger posterior mean at high dose and a smaller posterior wean
at low dose than that of the pooled data analysis. This 1s mainly caused by the logistic
transform. which is concave over (0. %) and convex over (% 1). At the high dose. where

. by Jeunsen’s inequality we have

1|

riz/mg. ¢ = 1.+ o all exceed

r.g

(5.6)

ja 2 log ———
Mg — T3

for all n;; are the same. For the random effect model. we have E puz > 3 due to left

truncation. Next. since the posterior of i3 is mostly concentrated in (0. co). applying Jenseu's
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inequality to both the logistic transform and its inverse yields

exp(E pa) _ _ exp(¥a)
T 1+exp(E ps) = 1+ exp(iia)

(5.7)

E¥Y

where the expectation is with respect to the posterior from the random effect model. Cow-
bining (5.6) and (5.7) we have

T.
Ef#; > =
n.a

Strictly. r.3/n.3 is less than the posterior mean of 85 from the pooled data analysis. But due
to the pooling of the data. the order-restricted Beta distribution becomes close to the Bera
distribution. Thus. r3/n .3 is close to the posterior mean of ;3 from the pooled data analysis.
This explains the disagreement in posterior mean at the highest dose from the two Bayesian

analyses. The lowest dose case can be explained in a similar way.

5.5 Further Topics

Doubly-censored failure time data can be regarded as a mix of survival and binary data.
Suppose that exact failure times are observed at ¢; < --- < t, with 4; deaths at time #; and
l; and r; left- and right-censored observations respectively: exactly s; subjects are at risk
just before time ¢;. Suppose the survival function is horizontal between failure times and
§; = S(t;). i = 1.---.n. Then a likelihood for 8§ = (#,.---.4,,) is given by

n
L(8) = TT (8ir — )% 65 (1 — 8:)". (5.8)
i=1
from which the maximum likelihood estimate can be derived and viewed as a generalized

Kaplan-Meier estimate.

A nonparametric estimate for the survival function under doubly-censored data was de-
rived by Turnbull (1974). The estimate is obtained by an iterative procedure. First. an
initial estimate of the survival function $(£) is easily obtained as the Kaplan-Meier ostimate

by ignoring all the left-censored observations. We use this initial estimate to modify the
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data so that the left-censored observations are incorporated into the numbers of deaths and

thus the Kaplan-Meier estimate can be applied. Let

o S(ti1) — S(t:)
ll),'j = = .

1 —5(¢;)

The number of deaths and the number of subjects at risk are now modified as
d: = d; + z wy;l;
i>i

and

5= 8; + Z (l;-.

iz
A new Kaplan-Meier estimate can be obtained and thus one iteration is completed. Turnbull

(1974) also showed that this procedure converges to the maximum likelihood estimate derived

from (5.8). However. a convenient method for calculating the confidence linits 1s nussing.

A Bayesian approach to this problem can be carried out under the same parameterization.

I[n the following we only work with the posterior under non-informative priors. yielding results
comparable to Turnbull's estimate. Note that the parameters #; are automatically ordered
and a non-informative prior would be the uniform distribution ou the simplex #. 1 > #,
- > #, > 0. The posterior density is found to be proportional to the product of the
likelihood (5.8) and the indicator of the simplex. However. direct Gibbs sampling from this

posterior is difficult.

A possible solution involves introducing auxiliary variables. For convenience we assuwe

6, = 1 and #,..; = 0. It is easily verified that the posterior density for 8 can be expressed as

p(8) o< T (Bizy — 00)%67 (1 = 6:)[(1 > 6, > -+ > 6, > 0)
=1
which is a marginal density of

p(8. ) o< T v ims < iy — 62087 (1 — 85 1(1 > 6y > -+~ > 6, > 0)

i=1
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by integrating out the anxiliary variable n. As we previously demonstrated in scetion 5.2,
Gibbs sampling for (n. 8) can be easily carried out. Let (8%, 4'*)) denote the current value

of the parameters. Suppose we have npdated the value of ;. 7 </ — 1. To update 6;. we

generate
k
9" ~ Beta(r; + 1. I; + 1)
. ) . k k k : X .
subject to left and right truncation at H$+)1 + r]}+)1 and H}-_T“ - r],!kl respectively. Given A,
;. t =1.---.n+1 are conditionally independent and thus can be updated by generating /:d

variables U; ~ U(0.1}. ¢ = 1.---.n + 1 and letting
r]}kH] = (HEI:T“ - Hi-kﬂ')UiI/d". =1 .n+1

This is even simpler than the sampling scheme proposed in section 5.2 for bioassay data.

A full Bayesian analysis for doubly-censored data using Ferguson's Dirichlet process prior
is also very easy. Note that the Dirichlet process prior is conjugate when all the observations
are complete. Suppose the prior is a Dirichlet process with shape F, and confidence o after
incorporating the complete observations that d; subjects failed at #;. the posterior is again a

Dirichlet process with shape

(,Fu(t) -+ Zn 1 d,.[(t 2 ti)

1=

It -
E]() C+Z:1=1d1

and counfidence ¢ = ¢ + Y[, d;. Tlis posterior is used as a prior now to further extracr
the information in the left- and right-censored observations. We would not repeat the story
told in section 5.3 where a Dirichlet process prior is used to bioassay data. The pure left-
and right-censored data can be viewed as the result of an assay conducted at dose levels
t, < --- < t, with tolerance distribution F(¢). The final posterior can be obtained exactly

in the way as we previously outlined in section 5.3.



CHAPTER 6

Discussion and Summary

6.1 Discussion

Counstructing the smoothed prior is motivated by some criticisms of the Dirichlet process
for its discrete sample paths. After this long journey struggling with computation. however.
we need a serious re-thinking of the role of smoothing. both pro and con. Generally. smmooth-
g is not central in applications yet it remains an'a(:tiVe research topic in wmathematical
statistics. Smoothing techniques are occasionally useful in signal or image processing. But
inference is another story. In most situations. statistical analysis for one-sample problems is
descriptive in nature. Therefore. a rough image such as Kaplan-Meier estimate will do the

job and smoothing seems superfluons.

Then what happens if we completely ignore the smoothness or parameter correlation” No
obvious problem if we think the data is discrete. which is natural from a practical viewpoiut.
However. modeling continuous failure time data without cousidering any dependence in the
parameters (Cornfield and Detre. 1977) is inappropriate: a correct treatment of the pointwise
independent hazard function (Kalbfleisch and MacKay. 1978) should be a Gamma process

approach to discrete data.

The effect of smoothing in Bayesian analysis can be explained in the light of information.
Suppose that there are two priors m; and m,. available for the parameter # = (#,.---.4,,)
that. nnder both priors each §; has the same marginal distribution. Therefore. warvinally.
the same amount of uncertainty is assumed in each parameter. But the total uncertainty in

¢. probably measured by entropy. depeunds on the joint distribution. Suppose further that. &,
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specifies independence between components of § while m, incorporates a kind of dependenee.
Then it can be argued or even mathematically proved that » is more informative and
contains less uncertainty. or in other words. m; is more unbiased and less informative: for
a given sample. 7, leads to a narrower posterior interval for each §; than m;. Thus. the
degree of smoothness or dependence. which is purely a subjective assumption in most cases.
actnally eliminates some uncertainty in the prior. and failing to consider this may exaggerat.

the total uncertainty in parawmeters.

The implementation of a Bayesian analysis under the smoothed prior is more efficient
than it appears. But further improvement can be made provided a more efficient generator
of Bessel random numbers is available. In addition to the aspect of posterior computation.
some intrinsic disadvantages of the nonparametric approach should also be noted. Visnal
exploration of the posterior is not very straightforward due to the high dimension of the

parameter. and the cost of storing the posterior may not be desirable.

Analysis of various types of data is another aspect in Bayesian nonparametric statisties.
This direction of research could be more application-oriented because it cousiders wore

features in the data or the experiment rather than in the prior.

6.2 Topics for Future Study

(1) General smoothing structure

For simplicity we have assumed a Markov structure on the parameters. A more general
consideration would relax this condition and turn to create more symmetric relations.
(i) Gamma process prior for bivassay

The Gamuina process prior. or generally. the neutral to the right process prior can also he
assigned to the tolerance distribution for bioassay problems. For convenience. we still nse

the terminology of survival analysis. Suppose we have initial information on the cumnlative
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hazard. Then. a Gamma process prior can be assigned to the tolerance distribution as we

first described in section 1.3.

We suppose —log(1l — P(t)) is a gamma process with shape Ay and confidence c. where
P(t) is the dose-response relation. Let P(t;) = 1 — exp{—(8; + --- + 6;)] with ¢, < --- - ¢,

being experimental levels.

If the experimental result shows 7; out of n; subjects responded at dose level ¢t;. then the
posterior density of § = (6,.---.6,) is proportional to
IT 627" exp(—bi){1 — exp[~ (61 +--- + 6:)]}"
=1

i

where a; = ¢[Ao(t;) — Ao(ti—y)] and b; = ¢ + (n; — r;). Again. we can introduce some

auxiliary variables to give a simple Gibbs sampler.

(ii1) Doubly-censored data.

To coutinue the discussion broached in section 5.5. some applications and mumerical

examples will be considered. Theoretical issues will also be investigated. for example, the
application of neutral to the right process prior to the analysis of doubly-censored data. The
feasibility of this approach is already seen from our previous discussion.

(iv) Doubly-truncated data.

Kalbfleisch and Lawless (1992) discussed the arising of truncated data frow field reliability
studies and presented some statistical methods for nonparametric estimation. However. a

full statistical analysis for doubly-truncated data is still a problem. We would propose a

Bayesian nonparametric approach to double-truncated data using non-informative priors.

Regression and comparison between samples are practically more important. and will he

stndied in the future.



APPENDIX

I. An inverse Laplace transform

LEMMA The inverse Laplace transform of the function

As,B

F(s) = exp(- o)

1
(Cs + D)v+1

s

2\/—

1 2

fly) = gemarPnIC Ky,

where v > =1, A, , B, ,C and D are positive constants, and A =AD - BC > 0.
I1. Proof for (2.17)

We now consider the evaluation of
Lg(2)
U 1 = E:x: —A/ —*_.,dt 1 = .
NEXD (exp( \ Trp)? 11€(1) = y)

First, we calculate E, exp[~ [} £(t)dp(t)] with dp = [s6; + A(t + p)~?]dt where s > 0 and d; is
the Dirac function. It is straightforward to verify that equations (2.10) and (2.11) in this case are

equivalent to the boundary problem

" 2\
T+
y(0) =1, ¥'(1)+2sy(1) =0.

1

The two independent solutions of this are (¢t + p)(!¥V8*+1)/2 thus

Y= Cl(t + p)'1+‘/8"+”/2 + C:(f-{- p)(l—\/8/\+1]/2’

where ¢; and ¢» are determined by the boundary conditions. After some algebra, we find that

P+ 1
A
8a+1 Cs+ D
and
z , . As+B
VO =-z5D
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where

4::B(p-%—l)[\/Sz\-i—l—l(p+1)m2+\/8A+1+1( D )\/gm/g]

P 2 P 2 p+1

zA p+1 2 p 2
B = —=[(—) 8A+1/2 _ ( )\/s,\+1/_]’

p p p+1

P+1 2 P 2
C = 2p + V)[BT VoFI2 _ (B yverEr
P p+1

D= ‘/8’\*; 1+ 1{P:1)v€m/z + v"SA; L- 1(P: LyvexFise,

Let e = (vV8X+ 1+ 1)/v8X and > = (p + 1)/p. We can verify that

A =2zv2)e? cosh(8 — vV8A +17),

B = gﬂsinh\/81\+l'y,
p

C =4(p+1)sinhvV8A+ 117,

D =2v2Xcosh(B + VBA + 17),
and

A = AD — BC = 8zAe*" cosh?® 3.
Therefore,

1
B exp(- || 80a - seqa)

1 As+ B

— 8\ + 1)+l 2g7iv+1) _
@A+ e e oy PG D

),

and this is equivalent to

x 1 As+ B
“VUx(z.y)q(L,z,y)dy = (8A + 1)+ 2wt —_—_— — exp(~-——).
e a1 2 )y = (83 + 1) 2T o exp(- S
Taking the inverse Laplace transform with respect to s we obtain
(r+1)/2 v+ 1) L (A4Dy)/Crzty)2 B iz 2VAY L —
Ur(z.y) = 2(8) + 1)WH11/2e701) 2 g=(A+Du)/Ctmey)/2( 2 yor2p (IO o1 gy
C A C
and it then follows that,
V8A + 1sinhy ze’ + ye”
Ui(z. = ex — sinh y(coth
A(z.y) Yy w9 p[ 7(cothy

8\ + 1)sinhy
— VBAT Lcoth VBN =T 4)|1, (YU I7YZ3),
e ML snh Ve rTy [ (VY

where e = (p + 1)/p.
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