
Improving the Performance of Concurrent Sorts
in Database Systems

Weiye Zhang

A t hesis

presented to the University of Waterloo

in f d f h e n t of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 1997

@Weiye Zhang 1997

National Library m * I of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, nie Wellington
Ottawa ON KI A ON4 Ottawa ON K I A ON4
Canada Canada

Yourfile Votre réfd-

Our EJe Notre rdIérCMce

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or Sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fome de microfiche/^ de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts kom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author' s ou autrement reproduits sans son
permission. autorisation.

The University of Waterloo requires the signatures of al1 persons using or ph*

tocopying this thesis. Please sign below, and give address and date.

Abstract

Most research on sorting has been focused on improving single sort performance.

This thesis focuses on improving overd system throughput when multiple sorts (or

ot her operations) are running concurrently, competing for the same resources. This

is the normal environment in a database system.

A dynarnic memory adjustment technique is proposed for external mergesort

which adjusts sort space at run tirne in response to actual input size and a d a b l e

memory space. It balances memory allocation among concurrent sorts so that more

sort jobs are done entirely in main memory. This significantly increases system

throughput and reduces average response tirne.

Several read-ahead strategies which reduce disk seeks during merging are stud-

ied. Three strategies, cded equal buffering, simple clustering, and clus tering wit h

atomic reads, effectively reduce disk seeks. The latter two exploit existing order

in the input data much bet ter than the first. A set of formulas are derived for es-

timating the performance improvement resulting from t hese read-ahead strategies .
They provide close estimates for uniformly distnbuted random data.

The amount of data transferred between main memory and disk is determined

by the merge pattern, i.e., the order in which runs are merged. For the case when

the sort space remains h e d throughout the merge phase, we derive formulas for

calculating the optimum merge cost and provide methods for choosing the best

merge width and buffer size. For the case when the sort space is adjustable be-

tween merge steps, four merge strategies are proposed and studied. Two are found

promising for practical use.

To my parents

Acknowledgement s

1 am deeply indebted to Professor ~er-Ake Larson for his valuable guidance.

constant encouragement, patience and support throughout the course of this thesis

research. Many ideas in this thesis were sparked fkom discussions with him. When-

ever 1 was lost, he helped me find the path again. Without his time and effort, this

thesis would never have been completed. 1 am fortunate to have leamed bom him

not only about doing research and writing but also many other aspects of Me.

1 would like to express my great appreciation to Professors Ian Munro and

Kenneth Salem for th& guidance. Professor Salem has been watchmg my progress

over the years and has given me much usefd advice. Professor Munro provided

many helpfid suggestions for my thesis research. I am thaddu1 to Dr. Balakrishna

Iyer, Professor Bruno Preiss, and Professor Forbes Burkowski for reading this thesis

and providing insightfùl comments.

I gratefdy acknowledge financial assistance for my research from the Depart-

ment of Cornputer Science, Faculty of Mathematics Graduate Scholarships. On-

tario Graduate Scholarships, and the IBM Graduate Student Internship Progam.

1 t h a d the Center for the New OED and Text Research for providing computing

facilities for my experiments. 1 am gratefd to Wendy Rush, Debbie Mustin, Jane

Prime, and Ursula Thoene who often helped me beyond their duties.

Special t h d s go to Matthew Huras and K.C. Tin at IBM Toronto Lab for

giving me a chance to venfy my ideas in an industrial environment. The tirne that

Mike Winer spent on explaining the DB2 system is t d y appreciated. Thanks also

go to James Hamilton and Bruce Lindsay for their encouragement of the work.

Through the journey of my study, many friends offered great help. Weipeng

Yan. Qiang Zhu, Glenn Padey, and Gopi Krishna Attaluri always listened to

my problems patiently and provided their suggestions. Lin Yuan helped me with

statistical and mathematical questions. Arunprasad Marathe, Mei Zhou, and many

other fiiends enriched my Me with their fnendship.

Last but not least, 1 would like to express sincere gratitude to my d e , Yunqi

Sun, who has always been very understanding and patient since the beginning of

my Ph.D. studies. When disappointment and depression doaked me, she lifted my

spirits and strengthened my optimism. My daughter accompanied me through my

writing of this thesis. She is cute, lovely, and "supportive" in every way. Findy, 1

am gratefid to m y parents who led me to the road of science.

vii

Trademarks

IBM are trademarks of International Business Machines Corporation.

Oracle is a trademark of Oracle Corporation.

UNIX is a trademark of The Open Group.

Ordinal and Nsort are trademarks of Ordinal Technology Corporation.

Contents

1 Introduction 1

. 1.1 Motivation 1

. 1.2 Problem and Research Goals 2

. 1.3 Thesis Outline 5

2 Related Work 7

. 2.1 Interna1 Sorting 7

. 2.2 ExternalSorting 9

. 2.2.1 External sorting algorithms 10

. 2.2.2 Techniques for improving external mergesort 12

3 Sort Design and Sort Testbed 20

. 3.1 A Three-Phase Mergesort Algorithm 21

. 3.2 Bottlenecks 23

. 3.3 Reducing Run Input/Output Cost 25

. 3.4 SortTestbed 27

. 3.4.1 Sort testbedcomponents 27

. 3.4.2 Configurations and test parameters 30

4 Dynamic Memory Adjustment 35

4.1 Problems with Memory-S tatic Algorithms 35

. 4.2 A Memory- Adaptive Mergesort 39

. 4.3 Memory Adjustrnent Mechanism 40

. 4.4 Memory Adjustment Policy 42

. 4.4.1 Systemsort space 43

. 4.4.2 Sort stages 44

. 4.4.3 Memory adjustment bounds 46

. 4.4.4 Waiting 48

. 4.4.5 Fairness 49

. 4.5 Experimental Results 50

. 4.5.1 Single sort performance 50

. 4.5.2 Concurrent sorts 52

. 4.6 Summary 58

5 Read Ahead during External Merge 59

. 5.1 Strategies for Read Ahead 61

. 5.1.1 Fixed buffering 61

. 5.1.2 Extended fmecasting 62

. 5.1.3 Simple clustering 66

. 5.2 Read Ahead for Concurrent Jobs 72

5.3 Performance on Partially Sorted Input 83

. 5.4 Estimate of Improvement 88

. 5.4.1 Estimate of simple clustering 89

5.4.2 Estimate of clustering with atomic reads 93

. 5.4.3 Estimate of equal bdering 96

. 5.4.4 Estimate of clustering with disk disturbance 97

. 5.4.5 Estimate of extemal merge time 100

. 5.5 Clustering and B&er Size 102

. 5.6 Summary 106

6 Merge Patterns 108

. 6.1 Tree Representation of Merge Patterns 109

. 6.2 Memory-Static Merge 111

. 6.2.1 Optimum merge cost for equal size runs 112

. 6.2.2 Optimum merge cost for variable length nins 114

. 6.3 Optimum Merge with Clustering 122

. 6.4 Merge Width and BufFer Size 128

. 6.5 Memory- Adap tive Merge 131

. 6.5.1 Dynamic merge strategies 131

. 6.5.2 Memory usage patterns 135

. 6.5.3 Cornparisons of the merge strategies 136

. 6.5.4 hplementation issues and possible improvements 141

. 6.6 Summary 142

7 Conciusion 143

. 7.1 Contributions 143

. 7.2 Future Work 145

. 7.2.1 Dynamic memory adjustment 145

. 7.2.2 110 improvement 148

. 7.2.3 Sumrnxy 149

A Variable Run Lengths 150

A.1 Run lengths fkom sort testbed . 150

A 2 Run lengths from trîangular probability distribution 151

B Specification of ST-15150W Disk Drive 152

Bibliography 154

List of Tables

. 3.1 Sort system configuration and test parameters 31

. 3.2 TPGD sort sizes. scale factor 1.0 33

. 3.3 Sort job characteristics 34

. 4.1 Sort stages 44

. 4.2 Default values for memory usage bounds 48

. 4.3 Number of extemal sorts (out of 100 sorts) 55

. 6.1 Optimum b d e r sizes for the exampies 129

List of Figures

. 2.1 External mergesort 11

. 2.2 Merge patterns for six runs 16

. 3.1 Three-phase extemal mergesort 21

. 3.2 Design of the sort testbed 27

. Pro blems with memory-static sort 37

. Memory usage of a sort in a commercial DBMS 38

. Sort rnemory usage bounds 47

. Single sort performance 51

. Concurrent sorts performance (Dl. D2) 53

Concurrent sorts performance (D3. D4) 54

. System performance of D2 56

. System performance of D3 57

. System performance of D4 57

. 5.1 Consumption sequences 64

. 5.2 Feasibility of read sequence 67

. 5.3 Cornparison of read-ahead strategies 71

. 5.4 Feasibility of read sequence 74

. 5.5 Cornparison of read strategies (single sort without disturbance) 79

. 5.6 Effects of disk disturbance (single sort) 80

. 5.7 Experiments with multiple concurrent sorts 82

. 5.8 Disk seeks on partially sorted data 85

. 5.9 Merge time an partially sorted data 86

. 5.10 Comparing disk seeks of read strategies 87

. 5.11 Comparing merge time of read strategies 87

. 5.12 Ideal consumption sequence for random data 90

. 5.13 Ideal read sequence 90

. 5.14 Modeling simple clustering 92

. 5.15 Varying the input size (simple clustering) 93

. 5.16 Ideal read sequence 93

. 5.17 Modeling clustering with atomic reads 95

. 5.18 Varying the input size (clustering with atomic reads) 95

. 5.19 Modeling the effects of disk disturbance 99

. 5.20 Estimate of external merge time 101

. 5.21 Number of clusters as a function of buffer size 104

. 5.22 Merge t h e aEected by buffer size 105

. 6.1 Tree representation of a merge pattern 110

. 6.2 Merge cost for 50 runs of size 1 113

. 6.3 Tree representation for encoding 116

. 6.4 An example of encoding with preik constraint 116

. 6.5 Optimum merge tree for equal size runs 118

. 6.6 Merge cost for variable-length runs 121

. 6.7 Analysis of merging with clustering 125

. 6.8 Analysis of rnerging with clustering 126

. 6.9 Optimum merge with clustering (hed b d e r size: 8K) 127

. 6.10 Analysis of merge width and b d e r size 130

. 6.11 Effects of b&er sizes 130

. 6.12 Memory usage changing patterns 135

. 6.13 Cornparison of merge strategies 140

. A.l Triangular probability distribution for nui length 151

Chapter 1

Introduction

Motivation

Sorting is a frequently used operation in database systems. It is used not only to

produce sorted output, but also in many sort-based algorithms, such as grouping

with aggregation, duplicate removal, sort-merge job, ANY and ALL operations,

as well as set operations including union, intersect, and except [Gra93] [IBM95].

Sorting can also improve the efficiency of dgorithms like nested-Ioop joins and row

retrieval via an index.

Sorting speeds have improved dramatically over the past few years. The most

recent results are for NOW-Sort, developed at University of California, Berkeley

[ADADC+97], Nsort, developed by Ordinal Technology C o q [NKG97], and Alpha-

Sort, developed at Digit al Equipment Corporation [NBC+94]. These sorts were

designed to break previous sort benchmark records, such as Minutesort [NBCf 941

and Datamation Benchmark [AEA85], which are disk-to-disk sorts with no limit on

system resources. The researchers focused on speeding up sorting by using enough

memory to sort the data entirely in rnemory, using as many disks as needed to over-

CHAPTER 1. INTRODUCTION

corne 110 bottlenecks, and using multiple processors or a network of workstations

to sort the data in pardel.

In a real application system, however, resources are Iimited and shared by mul-

tiple jobs Nnning concnrrentiy. hproving overall system performance is more

important than just improving the performance of a single sort Nnning in is*

lation. Multiple jobs Nnning concurrently in a system will compete for system

resources. Large data sets that cannot fit entirely into available memory have to

be sorted extemally, introducing problems entirely different fkom those encoun-

tered when aiming ti> break benchmark records. The bottlenecks will be different .

The issue of balancing resource usage among concurrent jobs must be addressed.

Furthemore, sorting in database systems is normally not a disk-tdisk operation,

because operators of a query are often pipelined. The sort input is obtained fkom

another operator and the sorted output is sent to a different operator. When the

input is obtained from a fast provider and the output is sent to a fast consumer,

source data input and sorted data output are not bottlenecks in sort processing.

This thesis concentrates on sorting issues in database systerns. especidy when

there are multiple sorts running concurrently in the system. We assume that re-

sources, particularly memory resources, are limited. Therefore large sort jobs may

have to be done by external sorting due to shortage of memory. The goal is to

improve ove~a l l system (sort) performance by making better use of main memory

and I/O resources.

1.2 Problem and Research Goals

When memory resources are limited, external sorting is required to sort large data

sets. In this case, I/O time for transmitting intermediate data normdy dominates

CHAPTER 1. INTRODUCTION 3

the sort time. As a result, the amount of a d a b l e memory may affect the sort

t h e dramatically. Many existing systems rely on static memory allocation, that

is, work space is allocated when the sort operation starts and remains unchanged

until it finishes. The problem with this approach is that some operations may

waste memory while others are starved for memory. There are two reasons why

this may happen. First, the input data size may be tinknovm or poorly estimated

at the time a sort starts. Second, in a multiuser environment the workload changes

continuously resulting in varying demands on the total memory a d a b l e in the

system. Overall performance can be irnproved by using algorithms that enable

operations to adjust their memory usage at run time in response to the actual size

of their inputs and fluctuations in total memory demand. The first goal of this

thesis is to have more sorts done in memory by dynamically adjusting the memory

usage of sort jobs.

Extemal mergesort is the most commonly used algorithm for extemal sort-

ing. It has a run formation phase, that produces sorted nins, and a merge phase,

that merges the sorted runs into sorted output. During merging, run blocks are

consumed in a particular sequence and are usually read in that order. However,

researchers have found that disk seek time can be reduced by reading the run

blocks in a different order if extra memory is a d a b l e [Zhe92] (ZLSGb] [ECW94].

Several read-ahead s trat egies have been proposed to reschedule read orders , but

these strategies were designed for single sorts, i.e., no concurrent jobs access the

disk at the same time. This motivated the study of strategies for concurrent sort

jobs as well as estimation of the performance improvement of read strategies. The

second goal of this thesis is to h d good read-ahead strategies taking into account

concurrent jobs, and to es timate the improvement resulting from these strategies.

When runs have to be merged in multiple steps, the amount of data transferred

CHAPTER 1. INTRODUCTION 4

between main memory and disk is determined by merge pattern, i.e., the order in

which runs are merged. Knuth described a method for constructing an optimum

merge pattern under the condition that the sort space remains h e d during the

whole mage phase [Knu73]. However, no one has ever given the cos t of an optimum

merge. One of the goals of this thesis is to b d d cost models for the optimum

merge. The models help investigate the relationship between optimum merge and

read order scheduling, and the relationship between merge width and b a e r size.

Given a fixed amount of memory, we can use aU buffers to provide the maximum

merge width or leave some buffers for read order scheduling. We can also use large

buffers to reduce disk seeks, but it results in fewer buffers. Using large merge width

can merge more runs in each step, which reduces the amount of data transmitted,

while using more buffers for read ahead and/or using large buffers can reduce disk

seeks. So there is a tradeoff between data transfer time and disk seek time. To find

the optimum merge width with read order scheduling and the optimum b d e r size

taking into account merge width are also the goals of this thesis.

- If sort space is adjustable during the external merge phase, an optimum merge

pattern cannot be guaranteed due to unpredictable memory changes. The last goal

of this thesis then, is to find reasonable strategies for adjusting the merge width

d ynamically.

In summary, the ultimate goal of this thesis is to achieve better sort throughput

in an environment where multiple sorts (possibly with other jobs) are ninning con-

currently, competing for the same resources (memory, disks, or both). By making

better use of memory resources, we try to have more sorts done entirely in memory;

we use extra memory for read order scheduling to reduce disk seeks; and we select

proper merge patterns to reduce the amount of data transferred between disk and

main memory. Memory resources WU be better utilized by dynamically adjusting

CHAPTER 1. INTRODUCTION

the work space of sort jobs.

Thesis Outline

The rest of this thesis is structured as six chapters.

Chapter 2 reviews previous research on sorting, including recent interests in

int e n a l sorting , external sort ing algori t hms, and techniques for improving ext e n a l

rnergesor t .
Chapter 3 serves as a starting point for the following chapters. It first introduces

a t hree-phase external mergesort algorithm, followed by an analysis of the bot tle-

necks in sort processing. It then introduces techniques to reduce run input/output

cost, including clynamicdy adjusting sort memory space, rescheduling read order

of nui blocks, and choosing proper merge patterns, which are the main topics of

this thesis. To evaluate the proposed techniques and c o n h o u - analysis results,

a sort testbed was implemented. The design of the testbed is also described in this

chap ter.

Chapter 4 studies techniques for dynarnic memory adjustment. It begins with an

analysis of the problems introduced by a memory-static sort, then gives a memory-

adaptive mergesort algorithm. We propose a memory adjustment mechanism and a

policy that balances memory usage among concurrent sorts. The technique enables

sorts to adapt their memory usage to the actual input size and a d a b l e memory

space, and enables concurrent sorts to cooperate with each other when they compete

for memory resources. Experimental results show that this technique allows more

sort jobs to be done entirely in memory which significantly improves overall system

performance.

Chapter 5 presents a set of read-ahead strategies aimed at reducing disk seeks

CHAPTER 1. INTRODUCTION 6

during external merging. These s trategies indude fhed-bufFering, extended fore-

casting, simple clustering, and dustering with atomic reads. The last strategy is

designed for concurrent sort jobs. It helps retain performance when disk contention

is high. Besides comparing the strategies on random data, we investigate the effects

of partially sorted input. To estimate the performance improvement, a set of for-

mulas is obtained fiom analysis of these strategies. The accnracy of the estimates

is confirmed by experimentd results. We also study the problem of how to choose

the buffer size.

Chapter 6 explores merge patterns with the goal of reducing the amount of

data transferred between disk and main memory when runs are merged in multiple

steps. For the case that sort space remains fixed during the extemal merge phase, a

formula is derived for calculating the exact optimum merge cost for equal size nuis,

while a lower bound and an upper bound on the optimum merge cost are given

for variable length runs. Approximation formulas are provided for both cases.

Based on these results, we study the relationship between optimum mage and read

order scheduling, and the relationship between merge width and b d e r size, then

propose methods to determine the optimum merge width and the optimum b a e r

size. For the case that a sort is able to adjust its memory usage between merge

steps, four strategies are proposed for memory-adaptive merge: lazy merge, eager

merge, impioved eager merge, and optimistic merge. They are compared dong

with memory-static merge. The improved eager merge strategy and the optimistic

merge strategy are promising for practical use.

Chapter 7 summarizes the main contributions of this thesis, and discusses prob-

lems and possible solutions for future research.

Chapter 2

Relat ed Work

Sorting is a fundamental problem in computer science. It has been extensively

studied for several decades. This chapter surveys some work in the literature re-

lated to the issues studied in the thesis. For internd sorting, this survey focuses

on the recent interests in sort performance enhancernent rather than the sorting

algori t hms . For ext ernal sorting, the survey covers two sor ting algoriths: exter-

na1 mergesort and external distribution sort. This is followed by techniques for

improving external mergesort, including algorithms for run formation, read ahead

for merging, merge patterns, and a dynamic memory adjustment technique.

2.1 Internal Sorting

Interna1 sorting deals with data sets which can be sorted entirely in main memory.

Mmy algorithms have been invented for interna1 sorting, including insertion sort:

selection sort, bubble sort, quicksort, bucket sort (distribution sort) , radk sort ,

mergesort, and heapsort, etc. [Knu73] [CLR89] [ManSS]. Quicksort and bucket

sort are two algorithms comrnonly used in practice.

Early studies of interna1 sorting focused on time and space complexity. Nowa-

days, rnost researchers in the sort community appear to direct their effort towards

sort benchmarks. More attention is paid to issues in computer architecture. Peo-

ple try to speed up sorting by exploithg all system resources: processors, cache,

memory, and I/O [NBC+94] [AD AD C+97].

Internal sorting algorithms typicdy perform a sort job in three steps: data in-

put, sorting, and result output. The three steps are performed sequentially. Nyberg

et al. proposed the Alphasort algorithm which uses quicksort to sort data in small

buffers then uses a tournament tree to merge the sorted buffers [W C f 941. In this

algorithm, data input can be overlapped with sorting of the bders, and the result

output can be overlapped with merging. Consequently, the CPU and 110 resources

are better utilized and the sort elapsed time is reduced.

If input data is read from disk and result data is written to disk, disk 110

tends to be the bottleneck. This problem can be solved by striping data across

rnany disks'. Data striping can balance the workload among multiple disks, which

allows parallei reading and writing, and thus increases the effective disk bandwidth

[S CM861 [KimS6].

For the sorting step, the major cost cornes £rom memory accesses. Processor

speeds continue to increase faster than memory speeds causing an algorithm's cache

behavior to become increashgly important. The latency of accessing data from

cache is much smaller than hom memory. Cache miss penalties have a great d u -

ence on sort performance so that cache locality becomes an important factor in sort

algorithm design. Among the classic sorting algorithms, quicksort has good cache

'[BGKSO] rnentioned a sort on a 100-processor 100-disk system, while DeWitt, Naughton, and
Schneider used 32 processors, 32 disks, and 224M of memory [DNSSl] for their sorting experi-
ments. The 1/0 bottleneck was overcome by striping data across many disks to get sufficient 1 / 0
bandwidth.

CHAPTER 2. RELATED WORK 9

locality since it accesses memory in sequential patterns. Moreover, because of its

divide-and-conquer strategy, the data set is divided recursively into smaller pieces,

eventually s m d enough to fit into cache. Many memory accesses can be avoided.

So quicksort was employed to construct the cache-efficient AlphaSort in [NBC+94].

LaMarca and Ladner studied the influence of caches on several sorting dgorithms,

including heapsort , mergesort , qnicksort , and radix sort [LL97a] [LL97b]. They

showed that radix sort has poor cache locality, and therefore performs worse than

other algorithms. To improve cache locality of the sorting algorithms, they used a

d-heap (a d-ary tree) for heapsort, employed multiway merging for mergesort, and

proposed multi-partitioning for quicksor t . AU modified algonthms perform bet t er

than the original algonthms due to lower cache miss rate. The modified heapsort is

outperfomed by the modified mergesor t and quicksor t . Unfortunately, they did no t

compare t heir algonthms with the AlphaSort algorithm which sorts small bde r s

using the quicksort algorithm followed by a multiway mage.

Many researchers are working on sorting using multiprocessors and dis tributed

systems, producing many sort benchmark records [ADADC+97] [NBC+94] [GT92]

[DNS91] [BGKSO]. Parallel sorting and distnbuted sorting have been studied ex-

tensively fiom bo th theoretical and practical perspectives. There are many inter-

esting problems in this area [FL96] [GraSO] [ID901 [Qui881 [BBW88] @SS85] [AH851

[BDHM84] [BBDW83]. However, the topic is outside the scope of this thesis, and

will not be investigated here.

2.2 External Sorting

This section describes two commonly used external sorting

mergesort and external distribution sort. We discuss several

algori t hms: external

important techniques

CHAPTER 2. RELATED WORK 10

for improving external mergesort and show the limitations of t hese techniques.

2.2.1 Ext ernd sort h g algorit hms

External sorting refers to sorting very large data sets that cannot fit into main

memory. Many algorithms have been developed for external sorting, most of thern

derived fkom techniques used in internal sorting. Early studies of external sorting

focused on using tapes as secondary storage, while current research concentrates

on disk-based algorit hms.

Extemal mergesort is a w&-known algorithm for extemal sorting [Knu73]. It

consists of two phases: a nui formation phase and a merge phase. During the first

phase, the data to be sorted is divided into smder sets that can be sorted in main

memory. Each set is sorted and then stored on extemal storage. These sorted data

sets are called m . In the merge phase, the mns are merged into sorted output.

Figure 2.1 shows the two phases of external mergesort. Elapsed time of the two

phases is usually used as a measure of sort performance. When data input and

result output are fast, reading and writing nin data becomes the bottleneck.

Among all the external sorting algorithms, external mergesort is the most thor-

oughly studied algorithm. Aggarwal and Vitter claimed that mergesort is an opti-

mal external sorting method (up to a constant factor) in the total number of 110

operations required [AV88]. Many techniques have been developed to increase its

efficiency. We will discuss some of the important techniques and their limitations

in Section 2.2.2.

Distribution sort [Kwa86] is also called distributive sort [Ver891 or bucketsort

[Knu73]. This internal sorting method has been applied to external sorting to

provide an external distribution sort. External distribution sort also consists of

two phases. During the f i s t phase, it distributes the input data into a set of range-

CHAPTER 2. RELATED WORK

elapsed t h e

Data i b * i bottleneck i Result

runs / I I I - I I 1
1 Disk 1

Figure 2.1: Extemal mergesort

disjoint relatively ordered buckets. This process is repeated on the buckets until

each bucket is s m d enough to be sorted in memory. At the second phase, the data

in each bucket is sorted interndy and the final result is formed by combining all

the buckets.

The main issue for this algorithm is finding some way to distribute data evenly

among the buckets, thereby reducing the recursive distributions on the buckets.

Sampling is commonly used for this purpose. There are many variations of externd

distribution sort. For example, Cunto et al. proposed an in situ distributive extenid

sorting algorithrn, which recursively distributes a file into m subfiles. The partition

is based on a random sample of size hm - 1. The values of m and k depend on the

data size and the track size of the disk to be used. The analysis of the algorithm is

presented in [CGMPSl].

There is a duality between merge sort and distribution sort, with a correspon-

dence between externdy ordered buckets and internally ordered r u s , between

dis tribution passes and merge passes, etc. (see [Knu73] and [Kwa86]). Although

there are similadies between these two external sorting algorit hms, the behavior of

the algorithms and the research issues are totally different. It is claimed in [LV85]

that distribution sort cannot compete with mergesort, unless particular disks (e.g.,

associative secondary storage) are used. One of the reasons is that an infeasible

amount of memory is required to finish the distribution in one pass for large data

files.

Besides external mergesort and external distribution sort, there are many other

algorithms for external sorting, such as external quicksort [GBYS 11 [Ver88], external

tag sort [Kwa86], external heapsort [WT89], and external bubblesort [DL92]. These

algorithms are derived fiom the corresponding internal sorting algorit hms. Since

they require more 110 operations than extemal mergesort, these algonthms are

rarely used in practice.

2.2.2 Techniques for improving ext ernal mergesort

Extenial mergesort is the most commonly used algorithm for external sorting. Many

t echniqties have been developed to improve it s performance, including algorit hms

for run formation, read ahead for merging, optimum merge patterns, and dynamic

memory adjus tment .

Run formation

The simplest way to create a run is to fill all the a d a b l e memory with input

records, sort them using some interna1 sorting algorithm (e.g., quicksort), and then

mite the run to external storage. The size of the nui is the same as the size of

available memory for the internal sorting. AU runs generated are the same size,

except the last one. Quicksort has good cache locality, but it is hard to overlap

CPU processing and 110. CPU and I/O resources are not fùlly utilized.

Replacement selection is one of the most well-known methods used for nin for-

mation. To create a run, this method f i s t fiUs all available memory with records

and organizes them into a tournament tree (normally using a heap). A loser tree is

better than a winner tree since it requires fewer key comparisons for updating the

tree structure [Knu73]. The record with the srnaIlest key is then removed fiom the

top of the tree and written to a run file. A new record fiom the input is inserted

into the tree. If the key of this new record is smaller than the key of the last

record writ ten out, the new record is marked "deadn and otherwise left unmarked.

In comparisons among records in the tree, marked records are always considered

"larger" than the unmarked records. Then the currently smallest record is removed

and written to the c m e n t run file. A new record is inserted into the tree again.

When there are no unmarked records left in the tree, the current run is closed, a

new run is started, and all records are unmarked.

Replacement selectiou provides perfect overtap of data input , interna1 sorting ,

and run output. In addition, it can produce runs larger than the available memory

size. The average run length for random data is twice the size of a d a b l e mem-

ory [Knu73]. Several Mnants of this algorithm produce even longer runs [Km731

[Kwa86], but they require several read passes of the input data. The benefit from

the longer nins may not M y compensate the extra cost at the r u formation phase.

The major problern with replacement selection is its poor cache performance when

the tournament tree is large. Only a small part of the tree resides in cache. When

the record with the smallest key is removed, a new record is added into the tree.

Each replacement selection step traverses the tree fiom the bottom to the top. The

traversal path in one step is likely to be different fiom the path in the next step,

CHAPTER 2. RELATED WORK 14

resulting in random memory accesses and many cache misses. One way to improve

the cache performance of replacement selection is to have as many parent-child

node pairs fit in the same cache line as possible. This can reduce cache misses by

a factor of h o or three; however, according to [NBC+94], quicksort is still more

attractive.

Read ahead for merging

The mage phase requires at least one b&r for each run. If there are no extra

bufFers, reading wilI stop during merging until a buffer becomes hee. Then merg-

ing stops during reading. The overlap of reading and merging requires additional

buffers. Several b d e r docation schemes have been proposed.

Double buffering is a commonly used scheme. Two input buffers are used for

each run to achieve better overlap between reading and rnerging. One block fkom

each r u is read into memory and the merge process starts. Then the second block

of each nin is read in during merging. After that, as soon as a b d e r is emptied.

the next block of that run is read into memory. Salzberg strongly advocates this

technique to achieve "perfect overlappingn of rnerging and reading [SalSS].

Knuth proposed the forecasting technique which uses only one extra b&er for

read ahead [Knu73]. By comparing the last key of each block in memory, it is easy

to decide which block will be emptied fist. The next block of that nui will be read

into the extra buffer.

Both double buffering and forecasting can achieve complete overlap of merging

and 110. In this case, the elapsed time of the merge phase is normdy dominated

by the 110 time. The time required to read a block of data fiom disk consists

of two parts: disk seek time (including rotational latency) and data transfer time.

Two techniques have been proposed for reduung the total seek time: increasing the

CHAPTER 2. RELATED WORK

b d e r size and changing the read order. Increasing the size of each buffer reduces

the total disk seek time simply by r e d u h g the number of reads. The effects of this

technique are discussed in [Sal89].

The idea of changing the read order was introduced by Zheng and Larson [Zhe92]

[ZL96b]. Extra bufKers make it possible to read data blocks in an order that is

different f?om the order they are consumed during merging. We can then try to

read them in an order that minimizes the total seek t h e (taking into account

that the number of buffers is limited). Zheng and Larson introduced the concepts

consumption sequence and read sequence and proposed a heuristic for computing

near-optimal read sequences. However, the proposed method has one deficiency:

it relies on the physical location of the nui blocks, which is often unknown for

modem disks. Estivill-Castro and Wood continued this research and proposed an

algorithm that groups adjacent run blocks together to reduce the number of disk

seeks, assuming that run blocks of the same run are stored in adjacent locations

on disk [ECW94]. So this algorithm does not rely on the physical location of nui

blocks. However, both methods were designed for single sorts. If there are other

jobs accessing the run disk at the same time of merging, the disk head may move

away randomly after each disk read. Disk seek time will not be reduced as expected.

Merge patterns

When runs cannot be merged in a single pass, the merge cost can be measured by

the amount of data transferred. This is determined by the merge pattern. As an

example, Figure 2.2 shows three merge patterns for six runs. The maximum merge

width is 4. Each circle represents a run (either an initial run, or a run created by

merging), and the number in the circle represents the nui length. The three merge

patterns result in different merge cos t S.

(a) rnerging in passes (b) merging in steps (c) optimum merge

Figure 2.2: Merge patterns for six nuis

Figure 2.2(a) shows a straightforward merge method using multiple passes. AU

runs are merged into larger runs before going to the next merge pass. In this

example, two passes are needed to finish the merge. All the data (70 blocks) are

read into memory and written to disk once before the last merge pass.

In fact, runs need not be merged in passes. The only requirement is that each

mage step must reduce the number of runs. Some records may be involved in many

merge steps while others may be involved in only a few steps. Figure 2.2(b) shows

a merge pattern using multiple steps. In this example, the last two runs (R 5 ,R6)

need not be merged until the last merge step. So only the first 4 runs (t o t d y 55

blocks) are read and written before the last merge step. The merge cost is lower

than the cost of merging in passes.

There are many valid merge patterns. Which one transfers the least amount of

data? Under the assumption that the maximum merge width remains fixed, this

problem has a very simple solution, as described by Knuth in [Km731 (pp.365-366):

"An optimum pattern for this situation can be constructed without difFiculty using

CHAPTER 2. RELATED WORK 17

Huftinan7s method, which may be stated in merging language as follows: 'First add

(l-S) mod (P-1) d&my nins of length O. Then repeatedly merge together the P

shortest existing nuis u t i l only one run is left.' " . S denotes the number of initial

nuis and P is the maximum merge width. Instead of adding dummy m s , Harold

Lorin proposed an algorithm to calculate the nurnber of runs for the first merge

step ([Lor75] pp.287). The algorithm is described as below:

K = (S-1) mod (P-1)

if (K > O) M = K + i e l s e M = P

merge the M shortest runs in the first step

merge the P shortest runs in each fo l lov ing step

Figure 2.2(c) gives an optimum merge pattern for the six runs. Only 25 blocks are

read and written before the last merge step.

Although the optimum merge pattern can be simply constructed, no one has

ever given formulas for calculating the cost of an optimum merge. Unfortunately,

this method does not apply to the case when the sort space, and therefore the

maximum merge width, may change during merging.

For a given amount of memory, the number of b d e r s is inversely proportional

to the b d e r size. The maximum mage width increases as b d e r size decreases.

Large merge width minimizes the amount of data transmitted, while small bders

increases disk seeks. Then what is the optimum b d e r size for a given memory

space? This is a tradeoff between transfer t h e and disk seek tirne. Graefe has

studied this problem and shows that the optimum buffer size can be obtained by

minimizing

(t + s I C l I (~ (M I C)) 7

where t is the transfer time per page, s is the average seek time, M is the memory

CHAPTER 2. RELATED W O M 18

size, and C is the buffer size [GraSO]. This result is derived from an approximate

formula for data transfer size, which may underestimate the real transfer size by

o v e 20%. Finding the optimal b d e r size fkom this result is complicated. Graefe

resorted to fidl enurneration by testing each physically possible bnffer size.

Dynamic Memory Adjustment

Sorting is a memory intensive operation whose performance is greatly affected by

available memory. System performance improves radically when the data is pro-

cessed entirely in memory. Whether externa1 sorting can be avoided or not depends

on the input data size and available memory size. If a sort uses a predehed con-

stant amonnt of memory, extra memory a d a b l e in the system will not be used.

On the other hand, a small sort may not use all the space allocated. The extra

space allocated to this sort is wasted and cannot be utilized by other jobs in the

system. Memory utilization is low in both cases. Can this problem be solved if a

sort docates an exact amount of space determined by the input data size? Unfor-

tunately, no. First of d, the input data size is often unknown, especially when the

data is pipelined kom another operator in the query. Secondly, with multiple jobs

running in a system, the available memory changes dynamically. There may be

only a small arnount of memory space a d a b l e when a sort starts, but more mem-

ory may become available during sorting. Allocating a fixed amount of memory for

sorting prevents the sort from using the newly a d a b l e rnemory space.

Dynamic memory adjustment for sorting is a technique to solve the above prob-

lem. It was fist studied by Pang, Carey and Livny [PCL93a]. They proposed

memory adjus tment strategies for external mergesort . For the run formation phase,

they considered quicksort and replacement selection. When quicksort is used, ad-

justments can only be done when a run has been finished and output. Data input,

CHAPTER 2. RELATED WORK 19

interna1 sorting, and nui output cannot be overlapped. When replacement selection

is used, memory adjustments can be done by expanding or shrinking the tourna-

ment tree. But it has been found in [NBC+94] that replacement selection has poor

cache behavior, which degrades CPU utilization. For the mage phase, they pro-

posed a method to dynamically adjust sort space (merge width) during merging,

basically by stopping the current mage step and st arting the next merge step in a

new merge pattern. The problem is that frequent adjustment within a mage step

may be expensive. Also in thek study, they did not consider unknown input size

and the effects of several sorts ninning coticurrently.

Further research on dynamic memory adjustment for sorting was done in my

previous work at IBM Toronto Lab [ZL96a]. A memory-adaptive sort (MASORT)

was designed making a sort adapt its memory usage to both input size and a d a b l e

memory space. The method aims to balance the memory usage among concurrent

sorts, but only limited cases (two concurrent sorts and t k e e concurrent sorts) were

studied.

Up to now, dynamic memory adjustment techniques have been applied only

to external mergesort. However, it is possible to apply the idea to other external

sorting algorithms, such as external distribution sort.

Chapter 3

Sort Design and Sort Testbed

Resources required for sorting include CPU, memory, and disk(s). Sort performance

is mostly afEected by the utilization of these limited resources. Our sort design aims

to improve sort performance by exploiting these resources. The goal is to increase

system sorting throughput and reduce average response time. In this chapter, we

f u t introduce a three-phase mergesort algorithm followed by an analysis of the

bottlenecks in sort processing. Since nui input/output is normdy the bottleneck

of external mergesort , we describe several ways to reduce run input /output cost ,

including dynamically adjusting sort memory space, rescheduling rnn read orders,

and using proper merge patterns. These techniques are aimed at improving sort

performance by ntilizing memory and disk resources better. They are the main

topics of this thesis and will be discussed in detail in Chapters 4 to 6. In the last

section, we describe a sort testbed, which has been used to experimentally study

the effects of the techniques proposed.

CHAPTER 3. SORT DESIGN AND SORT TESTBED

3.1 A Three-Phase Mergesort Algorithm

External mergesort is the most commody used algorithm for extemal sorting. It

consists of two phases: a run formation phase and a merge phase. The standard

algorithms for rua formation are quicksort and replacement selection. However,

both algorithms have drawbacks: replacement selection suf5ers fiom poor cache

performance, and quicksort does not overlap sorting and input/output. Following

[NBC+94] we therefore opt for a tw+phase algorithm for run formation! which

results in a three-phase external mergesort algoAthm as shown in Figure 3.1.

input 0
in-buffer i-1

in-memory
sorting

1 extemai sorting

Figure 3.1: Three-phase external mergesor t

CHAPTER 3. SORT DESIGN AND SORT TESTBED 22

This algorithm has three phases: an in-buffer sort phase which sorts data within

each buffer, an in-memory merge phase which merges sorted bders , and an ex-

ternal merge phase which merges sorted runs. Each phase involves input/output

operations and sortlmerge processing. By separating CPU processing and 110 op-

erations, we get seven sort steps: data input, in-buffer sort, in-memory merge, run

output, nui input, extemal merge, and result output.

If input data fits into one bu&, sorted output will be produced directly from

the in-buffer sort phase. If the input data is larger than one b d e r but fits into

a d a b l e memory, sorted output will be produced from the in-memory merge phase.

If the input data does not fit into the a d a b l e memory, the sort process will go

through the f i s t two phases multiple times to produce nuis, and may execute

several extemal merge steps. Sorted output will be produced from the last merge

step in the extemal merge phase.

In this a lgor i th , the in-buffer sort can use any internal sorting algonthm to

sort the data within a butfer. Quicksort is adopted in our implementation. The

b a e r size is selected s m d enough to fit into second level cache (on-board cache),

which irnproves cache performance even if some 0th- algorithm is used for in-

b d e r sorting. The in-memory merge and the extemal merge use tournament trees

to merge the sorted buffers or sorted runs.

We choose t his sorting algorithm because it has several desirable characteristics.

First, the algorithm has good cache performance. This is because it sorts data

in small buffers using quicksort and then merges the sorted buffers and sorted runs

using multiway merging. Both quicksort and multiway merging have been found to

have good cache locality [LL97a] [NB C+94].

Second, the algorithm dows almost fidl overlap of CPU and 110 operations,

which helps improve CPU and disk utilization. Many sort steps can be overlapped,

CHAPTER 3. SORT DESIGN AND SORT TESTBED 23

including data input and in-bnffer sort, in-memory merge and result/run output,

in-mernory merge and data input (for the next nui), run input and external merge,

as well as extenial merge and result output. These overlaps can be achieved by

using separate 110 agents (processes, threads) for 110 operatiom. If sort/merge

steps and input/output steps are fùlly overlapped, a sort is completely CPU bound

or completely 110 bound, and sort peâormance is determined either by CPU time

or by I/O tirne.

Third, the algorithm results in smooth I/O operation because it uses multiway

merging while producing initial runs, reading run blocks, and writing intermediate

runs. It also allows sort jobs to use large bntfers (110 unit) to transfer intermediate

data between main memory and disk.

Fourth, this algorithm supports an incremental sorting style. A sort can allocate

new space after a buffer is fidl and before or after the b d e r is sorted. This makes

it possible for a sort to adapt its memory usage to unknown input data sizes (see

Chapter 4).

3.2 Bottlenecks

Any sort step may become the bottleneck of a sort. It depends on system con-

figuration, input data size, and other operators in the query which requires the

sort .

Data input becomes the bottleneck when input data is fiom either a disk or

an operator that provides the data slower than the in-buffer sort is able to

process the data.

CHAPTER 3. SORT DESIGN AND SORT TESTBED 24

In-buffer sort becomes the bottleneck when input data originates from a fast

provider. This could be an operator or multiple disks.

In-memory rnerge becomes the bottleneck when it produces sorted data that

is sent to a fast consumer, either an operator or multiple disks.

Run output becomes the bottleneck when writing run data is slower than

in-memor y rnerge processing .

Run input becomes the bottleneck when reading run data is slower than ex-

ternal merge processing.

External merge becomes the bottleneck when both run input and result output

are faster than the merge processing.

ResuB output becomes the bottleneck when the sorted output is sent to an

operator or a disk that consumes the data slower than the merge processing.

In a multiuser environment, a d a b l e memory is limited and may vary contin-

uously. Although main mernories are becoming very large, data size increases even

faster, especidy in database applications and information retrieval. Large data

sets have to be sorted with external merge. Since processors are much faster than

disks, input/output is still the most common bottleneck unless many disks are used

to stnpe the data on disks. Run data input/output is a major cost in external

sort ing .
In database systems, operators of a query are often pipelined. The input data

for sorting is usudy f h m an operator rather than directly fiom disk. The sorted

output is often sent to another operator, rather than written to a disk. The overd

performance of a query is atfected by the sort operator when it becomes the bottle-

neck, that is, the data input and result output are both fast sdiciently that they

CHAPTER 3. SORT DESIGN AND SORT TESTBED 25

are not the bottleneck. Therefore, we assume that the bottleneck for (externai)

sorting is run data inputfoutput, and the major cost of sorting is determined by

the cost of writing and reading run data blocks. Source data input and sorted result

output are not considered in this thesis, although they are important in disk- to-disk

sorting problems.

Reducing Run Input /Output Cost

Sort performance improves radically if input data can be sorted entirely in memory,

in which case there is no r u input/output cost. Whether external sorting can be

avoided or not depends on the input data size and a d a b l e memory size. Static

memory allocation either wastes memory space or fails to make Ml use of memory.

In this thesis, we propose a dynamic memory adjustment technique to improve

memory utilization. It supports run-tirne adjustment of in-memory work space

for external mergesort. The goal is to have more data sets sorted completely in

memory, thereby improving overd system performance, especially when multiple

sorts are running concurrently in a system. Our technique enables sorts to adapt

their memory usage gracefdy to the actud input size and a d a b l e memory space.

Compared to static memory allocation, this technique wastes less memory. In

addition, a large sort may expand to use all a d a b l e memory resources (for sor ting) .
Both sort throughput and response t h e can be improved sigrilficantly by using this

techniq-~e. A memory-adaptive sort was implemented using this technique in the

sort testbed. It was compared to a sort without dynamic memory adjustment.

called memory-static sort. Details are given in Chapter 4.

If data sets are larger than the available memory, they have to be sorted with

one or more merge steps. The run I/O cost can be reduced by reducing data transfer

CHAPTER 3. SORT DESIGN AND SORT TESTBED

time, disk seek time, or both.

During extemal merging, available extra memory can be used for reading nui

blocks which are not required immediately but can be read with less disk seek time.

This is achieved by a read ahead technique which reschedules the read order of run

data blocks. The run blocks are read in such an order that the disk seek tirne is

reduced and therefore the sort performance is improved. We can also use large

block size, or 110 transfer unit, to reduce disk seeks. Details of these techniques

are discussed in Chapter 5.

If memory is very s m d or the number of runs is large, the runs have to be

merged in multiple steps. Part or all of the data will be read fiom and written

to disk multiple times. Both data transfer time and disk seek time are aEected

by the order in which runs are merged. Choosing a proper merge pattern can

reduce data transfer cost as well as disk seeks. When the a d a b l e memory changes

dynamically in the system, sort space may change from one rnerge step to another.

An optimum merge pattern cannot be guaranteed in such cases. Heuristic strategies

are developed in this thesis to deal with dynarnic merges. Details are given in

Chapter 6.

In summary, we attempt to reduce run I/O cost by

reducing the number of external sorts using dynamic memory adjustment

t ethnique;

0 reducing disk seeks by exploiting extra memory for read ahead and/or larger

nnits of 110;

reducing the total amount of data transferred between memory and disk by

choosing proper merge patterns.

CHAPTER 3. SORT DESIGN AND SORT TESTBED

3.4 Sort Testbed

3.4.1 Sort testbed components

To evaluate the ideas and techniques proposed in this thesis, a sort testbed was

implemented. The sort testbed simulates (part of) a database environment, as

shom in Figure 3.2. It includes a sort job initiator, a memory space manager, a

disk space manager, asynchronous 110 support, a disk accrss disturbance facility,

and the sort system. When provided with system configuration parameters and

sort test parameters, the testbed generates and executes a sequence of sort jobs

and collects performance results.

(Sort systern configuration parameten 1
Sort test parameters

t

Son Job Initiator 1
\Ir

Sort System

sequence
adj us tmen t scheduler scheduler

Disturbance

t
Experiment performance resu1t.s

Figure 3.2: Design of the sort testbed

CHAPTEX 3. SORT DESIGN AND SORT TESTBED

The memory manager is similar to a work space manager that manages the

work space of ail operators in a database system but, in our case, it manages only

the system sort space.

The disk space manager manages allocation and deallocation of run blocks on

disk. It does not rely on the file system for space management - all run Mes are

stored in a raw disk partition.

Asynchronow 1'0 is implemented by using separate I/O threads. Sort threads

and 110 threads communicate through queues. All buEers are in shared memory

and raw I/O is used for reading and writing.

The disk access disturbance module simulates other jobs which access the disk(s)

storing the run file as an external sort is ninning. It reads a small chunk of data

(4K) fiom a random position in the raw partition of the disk. The purpose is to

move the disk head away fkom its curent position.

The sort job inztzator constructs sort jobs according to the given test parameters

and drives the sort system by submitting sort requests.

The sort system implements the sort mechanism with the ideas and techniques

proposed in this thesis. It includes in-bder sort, in-memory merge, external merge,

memory adjustment, read sequence scheduler, and merge pattern scheduler. The

system is multi-threaded with each sort job Nnning as a separate thread. Using

threads reduces context switch cost and rnakes it easier for concurrent jobs to share

resources.

The in-buffer sort sorts a set of pointers pointing to the records in a data buffer.

If the input data fits in one data b 6 , the sorted records wiU be collected fiom the

bufFer using the sorted pointers, and the sort job is finished. The in-mernory merge

merges sorted buffers, while extemal merge merges sorted m s . Both may produce

either a run or the final result, i-e.. the sorted output. The memory usage of a sort

CHAPTER 3. SORT DESIGN AND SORT TESTBED

is allowed to change during sorting. The memory adjvstment component makes

the decision of adjustment based on a pre-defined memory-adjustment policy. The

read sequence scheduler produc-es a better read sequence of run blocks to reduce

disk seek time. When runs cannot be merged in a single step, the merge pattern

scheduler determines the merge width of each merge step.

Quicksort is used for in-b& sorting. When there are a lot of equal keys,

the performance of quicksort degrades dramatically. There are many techniques to

solve this problem [Weg85], but none of them were implernented in this testbed.

Sorting of data with equal keys is beyond the scope of this thesis. Tournament

trees are used for multiway merging, both during in-memory merge and extenial

merge. A loser tree is used because it has better performance than a winner tree

for updating the tree structure [Knu73].

In the implementation, record pointers and data records are stored in a con-

tiguous memory space, which is cded a memoqj adjllstment unit. The fiont part

is allocated for pointers, and the remaining part is docated for data records. Data

records are 64 bytes long with a randornly generated 10 byte key.

Input data for a sort can either be read fiom disk or generated on the fly.

Sorted output is packed into buffers which can then be either written to disk or

simply discarded. All experiments reported in this thesis were nui with input data

generated on the £ly and discardhg output data. The sort system was driven at

maximal speed to simnlate the case when the sort is an intermediate operator

between a (fast) producer and a (fast) consumer operator.

In this testbed, one disk is used for storing runs. To f d y utilize CPU and 110
resources, two 110 agents are used for the disk. If' the sort is completeIy I/O bound,

there is always an I f0 request in the 110 queue, which will keep the disk busy all

the time. If the processing is CPU bound, one 110 agent is enough, while the other

CHAPTER 3. SORT DESIGN AND SORT TESTBED 30

I/O agent is idle all the time. In both cases, CPU tirne and 110 time are f d y

overlapped.

Two output buffers (double buffering) are reserved for each sort in the testbed,

one for collecting output data and one for writing. If the sort process is completely

I/O bound or completely CPU bound, the two batfers will be enough to overlap

CPU and I f 0 tirne. But if processing speed and I/O speed change dynamicdy

(because of system workload and data input speed, etc.), sort processing and 1/0

may wait for each other alternatively. Extra output buffers rnay hdp to reduce

the wait t h e in this case. This issue is not investigated further in this thesis and

therefore not considered in the implementation.

Extra buffers are also used for reading to overlap CPU and I/O time. During

nui formation, at least one b a e r is used for read ahead until not enough memory

is available. During external merging, with one b a e r for each nui involved in

merging, a m.inimum of two buffers are used for read ahead. CPU (merging process)

and 1/0 (reading) time are fdly overlapped if the sort processing is completely 1/0

bound or completely CPU bound.

This test bed supports both a memory-adap tive sort and a rnernory-st atic sort.

Static sorts are run using exactly the same sort system, the only difference being

that memory adjustment is disabled. In this mode, each sort allocates a fbced

amount of memory and releases the whole space when the sort is finished. By

using exactly the same sort algorithms, we isolate the effects of dynamic memory

adjustment .

3.4.2 Configurations and test parameters

The machine used for all experiments reported in this thesis is a Dec Alpha 3000/500S

with a clock rate of 150 MHz and a 512 Kb of£-chip cache. Run data is stored on a

CHAPTER 3. SORT DESIGN AND SORT TESTBED 31

single disk, a Seagate ST-15150W (see Appendix B foi its spedcation). Table 3.1

lis t s the configuration parameters of the sort system and t heir default values.

Table 3.1: Sort system configuration and test parameters

System sort space is the total memory space available for sorts. The one sort

space limit is used by mernory-static sort as the default memory size.

Sort buffer size is the size of a data b d e r for in-mernory sortlmerge. The unit of

memory adjustment is a data buffer plus the space for additional data structure for

sorting. Most modern systems provide large second level cache (on-board cache).

Buffers should be selected small enough to fit into this cache.

Run block size is the b d e r size for external merge and also the 1/0 transfer

unit .
Maximzlrn concurrency limits the number of active sorts. When the number of

active sorts reaches this limit, incoming sorts are forced to wait until the number

Sort system parameters
system sort space
one sort space limit
sort b d e r size
run block size
1/0 agents per disk
maximum concmency
maximum merge width
read disturbance rate

32 M bytes
4 M bytes

64 K bytes
32 K bytes

2
10

no limit
O

Test data parameters
number of sorts
random seed
overlap of key ranges
concurrency degree
sort size distribution D3

CHAPTER 3. SORT DESIGN AND SORT TESTBED

of active sorts drops below the limit.

M a z i m m n e r g e width lunits the mage width so as to study the effect of merge

patterns.

Read disbrbance rate is used for generating disk disturbance requests which

affect the performance of read-ahead strategies for external merge. It is the proba-

bility of disturbance for a nin read request . Before each nui read request , a random

number within [O, 1) is generated. If the number is smaller than the disturbance

rate, a disturbance request is issued. The disk head is moved away resulting in a

disk seek for the run read request.

The sort jobs in each experiment run is determined by sort test parameters.

Number of sorts is the total number of sort jobs for a test nui. Random seed is the

seed for the random number generator used to generate input data.

Overlap of Ee y ranges is used for generating partidy sorted input. The keys for

each run are generated randomly from a range. This parameter controls the overlap

of the key ranges between two consecutive runs. Default value of this parameter

is 1, in which case the key ranges of all runs are fully overlapped, which produce

completely random data. Decreasing this value inmeases the presortedness of input

data. When it is 0, the key ranges of all runs are not overlapped. In this case, the

keys between the nuis are already in sorted order, but the keys in the input for

each run are not sorted.

Within each test r u , a fixed number of sort jobs are always running concur-

rently, which is controlled by the concurrency degree. If the concurrency degree is

n, n sort jobs would be submitted to the sort system initially and as soon as one is

finished another one would be submitted.

The input size of a sort job is randomly drawn horn a specified sort size distri-

bution. To get some basis for deciding on a distribution of sort sizes, we analyzed

CHAPTER 3. SORT DESIGN AND SORT TESTBED 33

the sorts generated when running the TPCD benchmark queries [Raa95]. More

specifically, we analyzed the execution plan used by a major commercial DBMS for

each of the 17 queries on a 1 Gb TPCD database with 26 indexes. We found a

total of 55 sorts with the size distribution shown in Table 3.2.

TabIe 3.2: TPCD sort sizes, scale faetor 1.0

Our analysis revealed that small sorts occurred frequently while large sorts were

relatively rare. S m d sorts were often used in nested loop joins to sort row identifiers

before accessing the inner table. Many of the TPC-D queries also require a sort

of the final result, which usually is small. Large sorts were typically caused by

sor t-rnerge joins or group-by.

The number and size distribution of sorts depend on the database system and

the execution plans generated so no generd conclusions can be drawn fiom this

analysis. Nevertheless, it provides some data where there was none before.

Table 3.3 shows the five sort job sets used for experiments. DO is used for single

sort experiments. The sort size can be changed to any size required for testing. Dl

is fiom execution plans of a set of queries on a small database in our system. D3

is based on the result of our analysis of the queries in the TPC-D benchmark. D2

is a case between D l and D3, while D4 contains larger sorts than Dl to D3. They

reflect several types of workload. Dl represents a type of workload that contains

Input size range
OK - lOOK
lOOK - IM
1M - 4M
4M - 10M

10M - 30M

Average size
17K
380K
2M
7M
16M

No of sorts
15
19
Il
4
6

Frequency
27%
35%
20%
7%
11%

CHAPTER 3. SORT DESIGN AND SORT TESTBED 34

only small sorts, which will test whether memory-adaptive sort will degrade system

performance when available memory is so large that dynamic memory adjustment

is not necessary. Both memory-static sort and memory-adaptive sort wiLl sort all

the data sets in memory. D4 represents a type of workload that contains large sorts

that cannot be sorted in memory even with all a d a b l e memory in the system.

Bot h memory-s t atic sort and memory-adap tive sort require external merging to

finish the large sort jobs. D2 and D3 are cases between D l and D4. Experiments

over these cases will give us some idea of the behavior of the sort algorithms, even

t hough t hey do not cover all possible situations.

Table 3.3: Sort job characteristics

1 Sort Size 1 60K 1 3M 1 5M 1 50M 1 lOOM 1

Sort Data Set D2: 100 sorts

1 I 1 1 I (Frequency [10% 1 55% 1 30% 1 3% 1 2% 1

Sort Size
Frequency

60K
10%

Sort Data Set D3: 100 sorts

1M
20%

Sort Size
Frequency

3M
60%

Sort Data Set D4: 100 sorts

17K
27%

5M
5%

380K
35%

10M
5% '

2M
20%

7M
7%

16M
11%

Chapter 4

Dynamic Memory Adjustment

Because of fluctuations in memory demand and unknown input size, sort jobs

should have the capability to adjust their memory allocation during execution. This

chapter begins with a discussion of memory-static sorts, then proposes a memory-

adaptive mergesort, followed by details of the memory adjustment mechanism. The

main part of the chapter is the design of a policy for memory adjustment. The goal

is to reduce the nurnber of extenid sorts by making better use of rnemory resources,

thereby reducing sort elapsed time and improving system throughput.

4.1 Problems with Memory-Static Algorit hms

A memory-static sort algorithm allocates memory space when a sort starts and

keeps it fked until the sort is finished. To prevent a sort fkom allocating too much

rnemory in the system, there is frequently a fixed upper limit of memory space for a

single sort. Memory-static algonthms may docate memory space in several ways.

If the input size is unknown and there is no estimate, it has to docate memory

space using some default size. If the input size is known or estimated, the sort can

CHAPTER 4. DYNAMIC MEMORY ADJUSTMBNT

allocate space according to this size and the memory limit of a single sort to reach

the bes t sort performance.

Estimates of intermediate result size may be off by as much as one or two

orders of magnitude [IC91]: either under-estimated in which case the estimated

size is much Iowa than the real size, or over-estimated in which case the estimated

size is much Iarger than the real size. Figure 4.1 shows the behavior of a static sort

in four cases: no estimate, correct estimate, under-estimate, and over-estimate.

For each case, there are two sorts: one is a small data set which can be sorted in

memory, and the other is a large data set which has to be sorted using external

merging by memory-static sort. In the diagram, the height indicates memory usage,

while the width indicates sort time. The single s o ~ t space limit is the maximum

memory space that can be allocated to one sort by the static sort algorithm. With

dynamic memory adjustment, sort memory space wiU not be limited by this value.

Solid lines shows the performance of static sort while dotted lines show how the

performance can be improved by dynamic memory adjustment, either by reducing

sort tirne, or by reducing memory space without decting the sort tirne.

For small data sets, if there is no estimate or the input size is over-estimated,

part of memory may be wasted during sorting (a, g). If the input size is under-

estimated, and even though the data can be sorted in memory, an external merge

may occur, which degrades the sort performance greatly (e). For large data sets?

under-estimating the input size increases the risk of merging with multiple steps

(f).

The memory usage of a static sort is dways limited by the single sort space

limit. If there is only one sort in the system, the extra space cannot be used by the

sort because of this Iimït. However, the extra space may help to sort some large

data sets in mernory without the external merge phase, which will Save a lot of sort

CHAPTER 4. DYNAMIC MEMORY A-üJUSTMENT

single sort space limit

no estimate correct estimate under-estimate ov&-estimate
a in-memory sort @ extemal sort @ external son with more merge steps

Figure 4.1: Problems with memory-static sort

t h e (b, d, h).

When the single sort Limit is set high, more large sorts can be sorted in memory.

However, small sorts will waste more memory space, and fewer sorts are allowed

to nui concurrently so that large sorts may block s m d sorts for a long time. This

increases the average response tirne. When the limit is set low, srnall sorts will

waste iess memory and more sorts are able to nui at the same time, but more large

sorts may be sorted with external merge.

Some sorts used in commercial systems are able to adjust sort space during

execution, but with very limited ability. For example, some sort algorithrns are able

to change sort memory space between the run formation phase and the external

merge phase. A sort can use less memory for the external merge, but it cannot

allocate more space. If the query optimizer provides an estimate of the input

size, a sort can allocate memory space according to this size when the sort starts.

Figure 4.2 shows the memory usage of a sort algorithm used in a major commercial

CHAPTER 4. DMVALMIC MEMORY ADJUSTMENT 38

DBMS. The &op in memory usage during sorting is the start of the external merge

phase.

single sort sDace lirnit , -

no estimate correct estimate under-estimate over-estimate

Figure 4.2: Memory usage of a sort in a commercial DBMS

There is a sort space limit at the database system level. It is defined by a

system configuration parameter. Each sort is lMited by the single sort space limit,

which is also defined by a system configuration parameter. Since memory usage

may change when the sort enters the extemal rnerge phase, the memory will be

used more efficiently compared to the memory-static sort. However, it changes at

most once during sorting and does not consider the memory requirement of other

sorts in the system. All the problems of memory-static sort still exist: if the query

optimizer does not provide an estimate or provides a poor estimate of the input

size, sort performance wiU be affected; 5ee memory in the system cannot be used

to improve sort performance, since a sort cannot docate more memory space than

the single sort space limit.

CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT

4.2 A Memory- Adaptive Mergesort

We first need a sort that is able to adjust its memory usage during execution.

Pseudo-code given below illustrates a memory-adaptive mergesort based on the

sort algorithm introduced in Section 3.1. It shows at which points a sort is able

to adjust its memory usage. This algorithm processes input data incrementally,

making it possible for a sort to adapt its memory usage to both the actual input

sizes and memory fluctuations. (Several places are labeled to be referenced in

Section 4.4.2.)

Algorithm memory-adaptzve sort :

// In-Buffer Sort Phase

while there is more input & memory space

read data in to a bu. f e r

s o r t the buffer

[check/adjust memory] ----- (si>
endloop

// In-Memory Merge Phase

if no more input & t h i s is the f i r s t run

merge buffers t o produce output and stop ----- (~ 2)

i f no more memory o r t h i s is the last run

merge buff ers

write the sorted data into a trnp t ab le

i f there i s more input

[check/ad just memoq] ----- (~3)
go t o In-Buffer Sort Phase

/ / External Merge Phase

CHAPTER 4. DYNAMIC MElMORY ADJUSTMENT

[check/ad j u s t memory]

vhile max merge width < number of runs

merge a number of shortest runs

[check/adjust memory] ----- (94)

merge runs to produce output ----- (~5)

The data in each buffer can be sorted using any interna1 sorting algorithm.

Therefore, many sort algonthms can be modified to produce memory-adaptive ver-

sions.

The basic idea of this adaptive sort is to increaçe memory usage when the

system has extra space and additional space will speed up the sort, and to reduce

memory usage when the system experiences rnemory shortage and some memory

used by the sort is not critical to sort performance. How to adjust memory usage

is Mplemented by the mechanism of rnemory adjustment, while the timing and

amount of adjustment are determined by a memory adjustment policy. The details

of the memory adjustment mechanisrn and policy are explained in the following

two sections.

4.3 Memory Adjustment Mechanism

In-buEer sort phase

During this phase, the sort process collects data into buffers and sorts each b d e r

using some in-memory sort algorithm. When it runs out of free bdkrs, it tries to

docate more memory. If the system can provide more space, the in-buffer sort

phase continues. In this way, the work space increases gradually, one b d e r at a

tirne. When the sort reaches the end of input or cannot acquke more buffer space,

CHAPTER 4. DMVAMIC MEMORY ADJUSTMENT

it proceeds to the in-memory rnerge phase.

If acute shortage of memory space occurs, a sort in this phase could "roll back"

its input and release the last buffers acquired. This is a rather drastic step though

so we have not considered it f - t h e r .

In-memory merge phase

During an in-memory merge, the sorted data is written to a temporary Me as a

nui. As buffers become empty, they can be either released (if the system is short

of memory) or used for loading data for the next run. Whether a buffer is to be

released or kept is a policy decision. It is not necessary to inaease memory space

during this phase.

External merge phase

The exact number of runs and amount of data are known when a sort enters this

phase. The sort structure is changed fiom the data structure for nui formation

(in-rnemory sortfmerge) to the data structure for externd merge. If the number of

runs is small, we attempt to docate enough memory to complete the sort with a

single merge step.

When the number of runs is large (relative to a d a b l e memory), multiple merge

steps may be needed. In this case, memory usage can be changed between merge

steps by increasing or decreasing the merge fan-in. Once the fan-in for a step has

been determined, the shortest runs are selected for merging.

Memory usage can also be adjusted by changing the size of input b d e r s and,

thereby, the merge fan-in. hcreasing the buffer size reduces disk overhead (total

seek time and latency) because fewer 110 requests are needed to transfer the same

CHAPTER 4. DY7VAMIC MEMORY ADJUSTMENT 42

amount of data. However, this option is not considered in our implementation; we

always use a ihed b d e r size. Normdy, we use 32Kb bufFers because we experi-

mentally found that increasing the b d e r size further yields o d y marginal benefits.

It is possible to reduce memory usage in the middle of a merge step, simply

by terminating the input Grom one or more rnns. The part of a nui that was not

processed can be treated as any other run during the next merge step. This seems

like a rather radical option so we have not considered it further.

Wait queues

As part of the memory adjustment mechanism, we use multiple wait queues, each

with an associated priority. A sort may enter a wait queue because of lack of

memory in the system or to yield to higher priority sorts. When memory becomes

available, the sorts in the queue with the highest priority are awakened fmt . A sort

may move from one queue to another during processing. When a sort should wait

and on what queue are decided by the memory adjustment policy.

4.4 Memory Adjustment Policy

A memory adjustment policy is a set of rules for deciding when and by how much

to increase or decrease memory usage of a sort, when a sort should wait and at

what priority, and when waiting sorts should be awakened. The policy is indepen-

dent fiom the actual memory adjustment mechanisms. By separating policies and

mechanisms, we can easily study the effects of different policies.

A memory adjustment policy needs some system wide state information, includ-

ing the number of active sorts, the amount of free memory in the system, the stage

of each sort, etc. It also relies on a set of predefined parameters such as memory

CHAPTER 4. DYNAME MEMORY ADJUSTMENT 43

adjustment bounds. The objective is to improve system performance (throughput

and response time) while at the same tirne ensuring fair treatment of competing

sorts.

4.4.1 System sort space

In principle, a memory-adaptive sort should adjust its memory usage according to

the total a d a b l e memory space to the system. However, database systems often

specify a maximum size for total sort space or use a separate b d e r pool for sorts.

Eso, the total memory for sort jobs is limited. The limit can be a hard limit with

a fked value or a soft lMit which changes according to the system workload. In

this section and the following one, a d a b l e memory space refers to the available

memory reserved for sort jobs.

In our adaptive sort two configuration parameters determine total sort space

and memory allocation: SysSortSpace and MemUnit. SysSortSpace is the limit

on total memory space available for sorts. MemUnit is the size of one data b d e r

plus related sort structures. A sort docates memory one MemUnit at a tirne. The

value of SysSortSpuce is based on the total memory size, while MemUnit is used

to tune sort performance. If a system does many s m d sorts, setting MemUnit low

will make use of memory space more efficiently and memory adjustment is more

flexible. On the other hand, if a system usudy does large sorts, setting Memunit

high will reduce the allocation and deallocation cost, but some memory may be

wasted.

CHAPTER 4. DYNAMIC M m R Y ADJUSTMENT

4.4.2 Sort stages

For the purpose of memory adjustment, we consider a sort to be in one of seven

dXerent stages as lis ted in Table 4.1. The stages correspond to the sort phases and

the specified places (sl to s5) indicated in the algorithm given in Section 4.2.

Table 4.1: Sort stages

l sort phase 1 explanution

--

in-memory merge (s3) 1 produce nuis
external mage (s4) intermediate merge
externalmerge(s5) finalmerge

Stage O: The sort is waiting to start. Since a s m d sort requires little memory

and releases the memory very soon, it may be beneficial to give a sort in this stage

a small amount of memory and let it start. If it requires more space and the system

is short of memory, the sort can be put into a wait queue later.

Stage 1: The sort is processing the first nin dnring the in-memory sort phase

(at sl). It is not known yet if the input will fit completely in memory. Giving a

sort in this stage additional memory rnay be very beneficial if it results in the input

being sort ed completely in memory.

Stage 2: A1I input data has been loaded into memory and the sort is in the

in-mernory merge phase (at s2), i.e., the sort has enough space for an in-memory

sort. A sort in this stage is unable to reduce its memory usage. On the other hand,

extra memory will not improve the performance of the sort.

CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT 45

Stage 3: The sort is processing the remaining nuis during in-memory sort

phases (at s l) . At this stage it is known that an external rnerge is necessary. All

data will be written to disk and then read during mage again. Additional memory

helps to reduce the number of runs, which may reduce the number of external merge

steps. If a single mage step is snfficïent, extra memory can be used to reduce the

disk seeks (see next chapter). However, if this memory space helps some 0 t h sort

in the system to be done entirely in memory, the total 110 cost of that sort for

writing and reading nuis is avoided. Thus memory space is less critical to a sort in

this stage than it is to a sort in stage 1 or stage 5.

Stage 4: The sort is processing the runs during in-mernory merge phases (at

s3). Similar to Stage 3, it is known that external merging is necessary.

Stage 5: The number of runs could not be merged in a single step and the sort

is performing intermediate merges during this stage (at s4). It checks the a d a b l e

memory before each mage step and adjusts the fan-in accordingly. When there is

enough memory to merge all remaining runs in one step, the sort docates enough

space, and imrnediately goes to the last merge step. Since extra memory will help

reduce the amount of I/O, additional memory is very important to a sort in this

stage.

Stage 6: The sort merges all remaining runs producing the final output (at s5).

Since the amount of data is known at the start of the merge step, the sort is able

to allocate exactly the amount of memory needed. One page less of the memory

will result in another merge step.

Based on the above analysis, we decided on the following priorities:

1. rnemory requirements of sorts in stage O have the highes t priority,

2. memory requirements of sorts in stage 1 or stage 5 have the next highest

CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT

priori ty,

3. sorts in stage 3 c m benefit fÏom more memory (by reducing the number of

runs) but yield to sorts in stage 1 or stage 5,

4. sorts in stage 4 have the lowest priority,

5. sorts in stage 2 or stage 6 do not change their memory usage.

4.4.3 Memory adjust ment bounds

We do not d o w a sort to increase or decrease its work space arbitrarily but restrict

the size to be within a specified range. The range depends on what stage the sort

is in and on the number of active sorts. The main purpose of this restriction is to

prevent a sort from monopolizing resources, thereby starving other sorts running at

the same time or arriving later. The lower bounds prevent sorts fkom attempting

to run with too few resources. Figure 4.3 illustrates these memory bounds.

O lstMin: minimum memory for a sort to start. One MernUnit is usually

enough.

0 LstRunMin: minimum memory for the first run. This bound guarantees that

a sort of size less than 1stRunMi.n will always be sorted in memory.

O IstMax: maximum memory for the first m. When a sort reaches this point.

it gives up its effort to sort the data in memory and converts to external

sorting. A substantial amount of memory is then released to improve the

performance of other sorts in the system.

CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT

I 4 ;
I

1 : I
I ' :
I 1 :
1 lstRunMin I : - - - - - -
I 1 : 4 1 : I
I I 1 : 2ndMax : - - - - - ex_M_ax-
I I I :
I l

1 : -

4 i ' : 2n-cS1~in . 4
I I

I p!yK + 1 : 4 1 ! e x ~ i n 1 v : y 1- - '- - 7
first run : remaining mns : external rnerge :

: (stagel) : (stage 2 - 4) (stage 5 - 6) :

Figure 4.3: Sort memory usage bounds

0 an-: minimum memory for processing the remaining nuis. This should

be large enough so that most medium size sorts will require only one merge

step.

2ndMax: maximum memory for processing the remaining mns. This bound

prevents a very large sort fkom taking too much sort space when there are

higher priority sorts in the system.

exMin: minimum memory for an extemal merge. This must be high enough

for a fan-in of a least two.

exMax: maximum memory for an external merge. This prevents a sort con-

sisting of many nuis fiom taking too much sort space for merge buffers. When

reaching this point, a sort converts to multiple merge steps.

The lower bounds are usudy fixed based on system configuration, while the

upper bounds depend on total amount of &ee memory and workload in the sys-

tem. Table 4.2 list the values used for o w experiments, where f reeMem is the

amount of fiee memory space (i.e. a d a b l e memory) for sorting in the system, and

evenShareMem is the total sort space size divided by the number of active sorts

in the system. Both of them change dynamically as the workload changes.

Table 4.2: Default values for memory usage bounds

2nd& 1 5 t MemUnit
2ndMax) evensharekfem

memory bound

1stMi.n
1s tRunMin
1s tMax

1

exMin 1 Memunit
exMax 1 evenShareMem

de fault value

MemUnit
118 * SysSottSpace
f reeMem - MemUnit

When a sort fails to allocate more memory, it can either wait or proceed with its

cment work space. Proceeding immediately without waiting may cause a s m d

sort to rely on extemal merging or a sort with relatively few nuis to resort to

multiple merge steps. On the other hand, waiting increases the sort response tirne.

In our system, a sort is allowed to wait only ifit has not reached the upper bound

on memory for its current stage (IstRunMki, 2ndMax' or exMax). Otherwise, it

wiU proceed with the memory it has acquired. A sort rnay wait in one of five

situations:

W1: in stage O waiting to start;

W2: in stage 1 with 1stMin space;

W3: in stage 1 with more memory;

W4: in stage 3;

W5: before an exteinal merge step.

When memory is released and there are multiple sorts waiting, we must decide

which sort to wake up. For reasons explained below we settled on the following

priority order for waiting sorts: W1, W3, W5, W4, W2.

In general, sorts with more memory space should have higher priorîty so that

they can finish sooner and release a large amount of memory. However, we assign

W1 sorts the highest priority to give very s m d sorts (requiring less than lstMin

memory) a chance to fînish quickly. If a sort requires more memory and there is no

fiee space, it becomes a W2 sort which is assigned a low priorîty because it holds

lit tle memory. Among sorts in stage 1, we make W2 sorts yield to W3 sorts to give

them a chance to proceed sooner. When reaching 1stRunMin or fiaishing entirely

in memory, the sort will release a substantial amonnt of memory relatively quickly.

Sorts in stage 3 are allowed to acquire more memory and becorne W4 sorts when

there is no free space in the system. If the remaining runs can be merged in one

step with exMax memory and the sort cannot acquire enough memory to do sol

the sort becomes a W5 sort. We give W5 sorts prionty over W4 sorts to give them

a chance to acquire enough memory to finish quickly and release all memory held.

4.4.5 Fairness

Our memory adjustment policy aims to improve overall system performance, that

is, throughput and average response tirne, but it also takes into account fairness con-

siderations. However, fairness is not achieved by simply assigning the same amount

of memory to each sort job. Specifically, the folIowing fairness considerations are

CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT

reflected in our policy:

A sort should not allocate more memory than needed. It is unfair for one sort

to allocate extra memory it cannot use while others are waiting.

A sort whose performance is not very sensitive to memory should yield to

sorts whose performance is more affected by memory space.

0 Large sorts should not block s m d sorts indefinitely, while s m d sorts should

not prevent large sorts fkom getting a reasonable amount of memory.

0 When all other conditions are the same, older sorts should have priority over

younger sort S.

These considerations are addressed by the incremental sorting mechanism, mem-

ory priority of sort stages, mdti-level priority waiting queues, fkst-corne-fist-serve

policy for the sorts within each waiting queue, and round-robin scheduling policy

for active sort agents.

4.5 Experimental Results

4.5.1 Single sort performance

When there is only one active sort in the system (the single sort case), a static sort

is limited by the single sort space limit, while our adaptive sort is able to employ

much more space available in the system. If this limit is the same as the system

sort space size, sort jobs are not allowed to run concurrently. A small sort will

waste memory space, while a large sort may block the following sort jobs for a long

CHAPTER 4. DYNAME MEMORY ADJUSTMENT 51

Figure 4.4 shows the observed elapsed t h e of a single sort as a h c t i o n of

input size and the corresponding throughput measured as the amount of sorted

data produced per second. Static sort changes hom in-memory sort to external

sort at an input size of 3,585 Kb, while the adaptive sort changes at an input size

of 29 Mb.

Data Size (M byîes)

(a) Sort elapsed t h e

memory-*tic sort t
memory-adaptive sort +-

Data Size (M bytes)

(b) Sort throughput

Figure 4.4: Single sort performance

For input less than 3585 Kb, both adaptive sort and static sort finish the sort

entirely in memory and have the same elapsed t h e and throughput. For medium

size input (3585 Kb - 29 Mb) , static sort relies on externd merging, while adaptive

sort can sort the data completely in memory. The difference in throughput is

dramatic, dropping from about 6 Mb/s to slightly over 1 Mb/s. One of the main

objectives of memory-adaptive sort is to exploit this difference by trying to complete

as many sorts as possible in memory.

Adaptive sort performs slightly better for large inputs (over 29 Mb). The reason

is that adaptive sort produces a large nui followed by a set of small nuis. The nui

blocks required for external merge are more often fiom the first nui than from other

CHAPTER 4. D Y N A M E ME2MORY ADJUSTMENT

runs, which reduces the disk seek time. When the input size grows and the number

of runs inmeases, the elapsed time and throughput of the two sort algorithms slowly

converge.

Although the system sort space size was fixed in these experiment , adaptive sort

also utilizes memory efficiently when the system sort space changes dynamically.

Static sort allocates the same amount of memory for ail sorts. If the system sort

space is too s m d to meet the requirement, the sort has to wait. However, adaptive

sort can proceed with a s m d amount of memory. If the input size happens to be

s m d , the job finishes quickly without waiting for a large chunk of rnemory it in

fact does not need.

In summary, adaptive sort saves memory space on s m d sorts, drastically re-

duces the elapsed time of medium size sorts, and performs better than or as well

as static sort for large inputs.

4.5.2 Concurrent sorts

A database system does not have the luxury of running only one sort at a time.

Many sorts may be ruaning concurrently, competing for memory and I/O resources.

This section reports on experiment s inves tigating the effects of memory adj us t ment

on (sort) system throughput and response t h e when multiple sorts are running

concurrently.

The workload for each experiment consisted of a sequence of sort jobs of varying

size. There were 100 sort jobs in each experiment run. The input size of a sort

job was randomly drawn fkom a specified sort size distribiition (Dl to D4) given

in Section 3.7.2 Table 3.3. For each sort job set, experiments were conducted on

concurrency degree 1 to 12 (or the maximum concurrency defined). Memory-st atic

sort and memory adaptive sort were tested in the same conditions.

Unrestricted concurrency

When the number of concurrent sorts increases, each sort gets less memory and

there is more competition for I/O bandwidth. More sorts will require extemal

merging which reduces throughput measured in bytes of sorted data produced per

second. The question is how rapidly performance deteriorates.

Figure 4.5 and Figure 4.6 show the sorted data throughput as a function of the

nunber of sorts running concurrently for workload based on sort size distributions

Dl to D4.

Sort Job Set : D l

rnemory-setic sort -m-
memory-adaptive sort +-

Number of Concunent Sorts

(a) Throughput of Dl

- Sort Job Set : D2
: 7 - , 1 1 1 , 1 1 1 ln 2 6.5 -+-- memory-static son + - ')--+--a,-ptive sort +-

Nurnber of Concurrent Çortç

(b) Throughput of D2

Figure 4.5: Concunent sorts performance (Dl, D2)

All sorts in Dl are small enough to always be sorted in memory, even with

12 sorts running concurrently. In this case the system is completely CPU bound.

Figure 4.5 (a) shows that the two sort methods achieve about the same throughput .
which confitms that the overhead of dynamic memory adjustment is minimal. As

the number of concurrent sorts inueases, throughput decreases only slightly. This

is a result of more kequent thread switching which (probably) also results in poorer

CHAPTER 4. DMVAMIC MEMORY ADJUSTMENT

Sort Job Set : D3
6.5 1 1 1 1 1 1 1 1

" memry-static sort + '
5.5 - *-, rnemry-adapchre sort - -

5 - -8..

4.5 - +- -.
4 -

3.5 -
3 - .

2 5 - '-t----+.,

Number of Concurrent Sorts

(a) Throughput of D3

A SoR Job Set : 04

Nurnber of Concurrent Sorts

(b) Throughput of D4

Figure 4.6: Concurrent sorts performance (D3, D4)

cache performance.

For the other three workloads. memory-adaptive sort has significantly higher

throughput when the number of concurrent sorts is low (see Figures 4.5 (b) and 4.6).

In the best case, the throughput is up to 6 times higher. The difference decreases

as the nuniber of concurrent sorts increases because of the increased competition

for memory and 110 bandwidth. This shows that memory-adaptive sort works in

the sense that, when possible, it exploits available memory to speed up sort jobs

and gracefdy degrades when the competition for memory space increases.

Only workload D4, see Figure 4.6 (b), shows increased throughput as the number

of concurrent sorts increases (up to 4). The few large sorts in this workload are

completely I/O bound, leaving free CPU cycles that wiU only be used (by s m d

sorts) when there are enough sorts active at the same time.

An important objective of memory-adaptive sort is to reduce the number of

extemal sorts. Table 4.3 shows that, when memory space is available, d but the

larges t sorts are completed entirely in rnemory. When many sorts run concurrently,

CHAPTER 4. DYNAMXC MEMORY ADJUSTMENT 55

less memory is available for each sort so fewer sorts can be completed in memory

and the load on the I/O system increases. This efFect accounts for most of the

deaease in throughput .

Table 4.3: Number of entemal sorts (out of 100 sorts)

(ma: adaptive sort; st: static sort)

Limiting concurrency

A database system has no control over the work load but it can decide how to

make use of its resources to improve throughput and/or response time. As we saw

in the previous section, ninning too many sorts concurrently reduces throughput

siDdcantly. But the system does not have to s tart executing a sort immediately if

the resources are already strained; it can make the sort wait until enough resources

have been freed up. So the question is: Hoow many sorts should the system nui

concurrently? The experiments desccibed in this section attempt to provide some

insight into this issue.

CHAPTER 4. DMVAMIC MEMORY ADJUSTMENT 56

In these experiments we had 10 clients repeatedly submitting sort jobs. As soon

as a client's previous job finished, it submitted anotha sort job. In other words.

there were always 10 outstanding sort jobs, some being processed and some waiting

to start. We then varied the number of sorts being processed concurrently, i.e., the

maximum concurrency, and measured throughput and response time. Response

time is the average time fiom when a client submitted a request until the last

record in the output arrived.

Figures 4.7 to 4.9 show the throughput and average response t h e for D2, D3,

D4 as the limit on concurrent sorts varies. (Limiting the number on concurrent

sorts has no effect on Dl because the sorts are so smd.) In all cases, except for

Dl, memory-adaptive sort achieves both better throughput and response time than

static sort.

Maximum Concurrent Sorts

(a) Throughput of D2

Workload fmm 02

memory-adaptive sort +-

F

1 2 3 4 5 6 7 0 9 1 0

Maximum Concurrent Sorts

(b) Average response time of D2

Figure 4.7: System performance of D2

The graphs are best read fiom right to left . The results for D2 and D3 are very

similar because all sorts in these job sets are less then 32 Mb and, hence, can be

sorted entirely in memory if run in isolation. As the number of sorts being processed

CHAPTER 4. DMVAMIC MEMORY ADJUSTMENT

Worklwd from D3

memory-staüc sort +
mernory-adaptive sort +-

5
4.5 2,

4
3.5 .

Maximum Concurrent Sons

(a) Throughput of D3 (b) Average response time of D3

Figure 4.8: System performance of D3

Maximum Concurrent Sorts

Maximum Concurrent Sorts

(a) Throughput of D4

Workload from 04
1 1 1 1 1 1 l

Maximum Concurrent çdrts

(b) Average response time of D4

Figure 4.9: System performance of D4

concurrently is decreased, both throughput and average response t h e improve for

memory-adaptive sorts as more and more of the sorts

reverse is true for static sort but the effects of limiting

pronounced.

are done in memory. The

concurrency are much less

CHAPTER 4, DYNAMIC MEMORY ADJUSTMENT 58

D4 contains a few large sorts that cannot be completed in memory. In the

time it takes to complete a 100 Mb sort, about 24 (6x4) sorts of size 25 Mb can be

completed (assuming they c m be done in memory). So in this case, processing only

one sort at a t h e is clearly not a good idea. This effect is also visible in the graphs.

Figure 4.9 (a) shows that throughput initially increases as the limit on concurrent

sorts decreases but then starts dropping (because CPU and rnemory resources are

not W y utilized). Response t h e , see Figure 4.9 (b), increases steadily as fewer

sorts are processed concurrentiy.

These experiments reinforce what we found in the previous section: complethg

as many sorts as possible in memory is crucial to overall system performance. But

we also learned that it is important to fully utilize available resources (memory,

CPU, 110).

4.6 Summary

This chapter proposed a dynamic memory adjustment mechanism and policy based

on the three-phase mergesort algorithm introduced in Chapter 3. The technique

enables sorts to adapt their memory usage to the actual input size and fluctuations

of available memory space.

Our study focused on a memory adjustment policy that takes into account sys-

tem sort space, sort stages, rnemory adjustment bounds, waiting, and fairness. The

policy balances memory usage among concurrent sorts so that more sort jobs are

done entirely in main memory, which improves the overd system (sort) perfor-

mance. Experiment al results showed that sort t hroughput was improved signifi-

cantly compared with static memory allocation.

Chapter 5

Read Ahead during External

Merge

The purpose of read ahead is usudy to overlap CPU and I/O operations. It seems

that extra buffers will not help improve performance, once fidl overlap has been

achieved. However, Zheng and Larson [ZLSGb] showed that extra buffers can be

exploited to reduce disk seek tirne.

Modern disks have become increasingly complex. Most disk drives have multiple

zones, with each zone having different numbers of sectors per track [RW94]. Disk

caches also have a great impact on disk performance. Some data may be read fiom

the disk cache rather than the disk. There will be no disk seeks in this case and

the transfer rate is much higher. So it is very difficult to calculate the exact cost

of each disk access, but two facts remain unchanged:

1. disk seek time and rotational latency still heavily affect the total disk access

tirne for random readslwrites; and

2. sequential access is much faster than random access.

This chapter focuses on improving I f 0 performance by reducing the number of

disk seeks. Three read-ahead strategies are considered: fixed buffering, extended

forecasting, and clustering. When multiple jobs access the same disk, improvements

from simple dustering degrades as disk contention inneases. An improved cluster-

ing algorithm, called clus tering with atomic reads, helps ret ain performance when

disk contention is high. An analysis of these methods results in a set of formulas

to estimate the performance improvement, and the accuracy of the estimates is

Throughout this chapter, we assume that all data blocks of a nui are stored

contiguously on diskl. When several blocks of the same run are adjacent, it is

assumed that only one disk seek is required if these blocks are read continuously,

even with several read requests. In the sort testbed, this is accomplished by having

two 110 agents for each disk. The disk is kept busy and there is little waiting time

between the requests. We also assumed that memory for external merging is h e d

within each merge step, but it is adjustable between rnerge steps. So for each rnerge

step, a sort is able to plan for reading in advance based on the given memory size.

This chapter is organized as follows. Section 5.1 describes three types of read-

ahead s trategies: fixed buffering, extended forecas ting, and (simple) clus t ering.

Section 5.2 discusses the problem introduced by concurrent jobs and gives our solu-

tion - clustering with atomic reads. Section 5.3 studies the performance of these

read-ahead strategies on partially sorted input. Formulas are derived in Section

5.4 for estimating the performance improvement resulting fiom t hese strategies.

'In the sort testbed, runs are stored in a raw partition of the disk. Normally a partition is a
large chunk of contiguous space on disk. This space is managecl by the disk manager of the sort
testbed. which dlocates a contiguous space for a run before the in-memory rnerge starts, since the
run length is already known at this stage. This guarantees that run blocks from multiple sorts
will not be mixed on disk.

CHAPTER 5. READ AHEAD DURlNG EXTERNAL MERGE

Section 5.5 stndies the the problem of how to choose buffer size when using these

s trategies, and the las t section summarizes this chap ter.

5.1 Strategies for Read Ahead

5.1.1 Fked buffering

Fixed bdering assigns ail buffers to runs before a merge step start S. Each b d e r is

dedicated to a run until the merge step is finished. B d e r s can be assigned to r u s

in many ways. The minimum requirement is that each nui must have at te& one

buffer. These buffers are c d e d merge bGers, while others are called read ahead

buffers. Whenever a merge bdFer is empty, it becomes a read ahead buffer, while

a read ahead buffer with the next block for that nin becomes the merge buffer.

Equai bu f l enng assigns the same number of b d e r s to each run. Double bz@ering

is a special case of this method in which each run has two bdFers. Double buffering

achieves fU overlap of CPU and I/O operations if the process is constantly 110-

bound or constantly CPU-bound.

For random data, the next block to be read is nomally fiom a run dXerent

fiom the run that the latest block was read. So each read requires a disk seek.

With more than one read ahead buffer for each nui, it is possible to read several

(contiguous) blocks with one disk seek. Suppose each run has S bders , one b d e r

for merging and S - 1 buffers for read ahead. If a sort sends a read request whenever

a b&er becomes empty, reading still jumps across runs. A better approach is to

read S - 1 blocks fkom a nin when all its buffers but one become empty. So only

one disk seek is required for every S - 1 blocks. The total number of disk seeks is

then reduced by a factor of (S - 1).

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

To overlap processing and read tirne, fixed bdering requires at lead twice as

many butfers as the number of runs, although it can proceed with fewer buffers.

With more bders , it is able to reduce disk seeks. The problem is that fixed buffering

does not M y utilize the butfer space. When S - 1 b d e r s become empty, the sort

cannot issue read requests for these buffers unless they belong to the same run. If

data is not d o r m l y distributed or the runs are not in equal size, some buffers rnay

stay unused for a long tirne. For example, when some nuis finish much earlier than

other r u s , their buffer space will be unused until the end of the merge. A simple

improvement is to reallocate these buffers to other runs (but this is not strictly

fixed buffering any more). Another way is to allocate the b d e r s proportional to

the run length before merge starts. Long nins get more bders . However, short

runs do not necessarily finish earlier. To use b&er space more efficiently, buffers

should not be dedicated to a specific run, but serve any run on demand. This is

floating buffering in contrast to fixed buffering.

5.1.2 Ext ended forecast ing

In this section, we extend the standard forecasting read-ahead strategy and discuss

two methods of merging.

Forecasting uses floating buffers, i.e., bufEers are not dedicated to specific runs.

Traditionally, forecasting uses one extra buffer for read ahead [Knu73]. When one

block from each run resides in memory, it can be determined which b d e r wiU be

emptied first by comparing the last keys in the buffers. The extra buffer is used for

readuig the next block kom that run.

Because of data distribution and variation of system work load, a merging pro-

cess may not produce empty buffers at a constant rate. After reading the extra

buffer, there may not be any empty bders . Even if merging is fast enough to pro-

CNAPTER 5. READ AHEAD DURING EXTERNAL MERGE 63

duce empty buffers all the tirne, the next block to be read is determined on the dy.

The disk always has a wait time after finishing each read request. Thus processing

and reading are not fidly overlapped. To maintain high utilkation of the disk, it

is necessary to keep one read request in the 1/0 queue. To achieve this, we must

(a) have more than one extra buffer and (b) know which block to read in advance.

Extended forecmtzng is an extension of traditional forecasting, which reads the mm

blocks based on a pre-determined nin block sequence and is able to use additional

bde r s for read ahead. It achieves better overlapping of processing and read tirne.

The order in which run data blocks are consumed by merging is c d e d the

consumption sequence. It depends on the external merge algorithm. The standard

merge algorithm requires the next block of a nui whenever the merge buffer of that

run becomes empty. So the next block requked depends on when the previous block

of the run is finished. The consumption sequence is based on the last key of each

run block and can be computed by simulating the merge process.

In the standard merge algorithm, the run block required for merging in fact may

not be used immediately. As an example, if the input data is sorted (or reversely

sorted), at any time only one merge b d e r is really needed while all other merge

buffers stay unused. For each ru, reading its data blocks can be delayed until all

the runs with smaller keys have finished. In general, the read of any block can be

delayed until all other blocks with keys smaller than the first key of the block have

been read.

Based on this observation, we designed a new merge variant, c d e d merging vrith

delayed reads: whenever a buffer becomes empty, the next block required is the one

which has the smdest first key among all runs on disk. If the next block to be read

is fiom run X and the merge b d e r of run X has not been emptied yet, the merge

process is able to proceed while some other runs may not have merge buffers. Those

CNAPTER 5. READ AHEAD DURING EXTERNAL MERGE 64

runs without merge b&s are not involved in merging nntil their next blocks are

read into memory, and there are no key cornparisons between these nuis and their

sibling runs. So the algorithm reduces the number of key comparisons, which is

u sudy the major cost of CPU time for sorting in database applications.

For merging with delayed reads, the read order is determined by the f i s t key

of each block. The consumption sequence can be computed simply by sorting

the first keys of the nui blocks.

Figure 5.1 shows an example with 3 runs, each with 3 blocks. The block numbers

reflect the order of the blocks written (adjacently) on disk. The first key and the

last key of each run block are given in the diagram.

lastkey 1 10 130 150 115 120 140 18 (421 60 1
mns 1 Run 1 1 Run 2 1 Run 3 1

Consumption sequence for Consumption sequence for
traditional merge merging with delayed reads

Figure 5.1: Consump tion sequences

The consumption sequence for standard merging is based on the last key of

each data block. Initially, the first block of each run is required to s t k t the merge

process. Block 1 is finished first since it has the smallest last key. The next block

of nui 1 (block 2) is then required. Then block 4 is finished. The next block to be

read is the next block of nin 2 (block 5), and so on, resulting in the consumption

sequence at the left in the diagram.

CHAPTER 5. READ AHEAD D VRING EXTERNAL lMERGE 65

The consumption sequence for merging with delayed reads is based on the first

keys of the nui blocks. The consumption sequence is computed by sorting the first

keys as shown at the right in the diagram. During merging, after the first two

blocks are read into memory, the merge process can start, since the next block to

be read (block 2) is fkom the same nui of the previous block (block 1). Run 3 is not

involved in merging u t i l block 1 is fullshed and block 7 is read into memory. It

shows that merging with delayed reads groups more adjacent blocks together than

the standard merge algorithm.

For both merging algorithms, once the consumption sequence is determined,

extended forecasting reads the run blocks in that order. Extra b d e r s help improve

the overlap of CPU and I/O operations, but cannot reduce disk seeks. However, if

the extra b&er space is used to increase the buffer size instead of increasing the

nwnber of buffers, disk seeks can be reduced, since large buffers reduce the number

of read requests, resdting in fewer disk seeks. Section 5.5 will study the effect of

b&er size for some read strategies. Before that section, we assume that buffer size,

Le., 1/0 transfer unit size, is fixed. We focus on how the number of disk seeks is

afEected by the number of buaérs.

In snmmary, traditional forecasting uses one extra b&er for read ahead. Merg-

ing does not rely on the consumption sequence, but processing and reading may

not be M y overlapped. Extended forecasting employs additional buffers to achieve

better overlap of CPU and I/O t h e , but merging relies on a pre-computed con-

sumption sequence. The consumption sequence depends on the merging algorithm.

For the standard merge algorithm, the consumption sequence is determined by the

last key of each nui block, while for merging with delayed reads, the consnmption

sequence is determined by the fmt key of each run block. The rnerging with de-

layed reads may Save some of the key comparisons. For both merging algorithms?

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 66

additional buEers improve the overlap of CPU and 1/0 time, but cannot reduce

disk seeks d e s s the extra space is used to increase the b d e r size (110 unit size).

5.1.3 Simple clustering

Although a merge process consumes run blocks in a particular order, the run blocks

can be read in a different order if extra buffers are available. The extra buffers can

be used for storing nui blocks which are not required immediately but which can be

read with less I f0 cost (i.e., disk seek time). The sequence in which blocks are read

fiom disk is called the read sequence. Let C = {Ci, C2, ..., CT) be a consumption

sequence, where each Ci is a run block. A read sequence R = (Ri, R2, ..., RT) is a

permutation of {Cl, C2, . .., CT). Throughout this chapter, for any two sequences A

and B, we define A C B to mean that the set of elements in A is a subset of those

in B.

Not all read sequences are usefd for merging. Some may result in deadlock

between merging and reading. For example, given 10 nuis, each with 100 data

blocks, and a total of 50 bders , if the last 5 blocks of each run are read at the

beginning in the read sequence, no buifers are left to read the first block of each run,

so the merge process cannot proceed. A read sequence is feasible if it guarantees

that the merge process terminates. Zheng and Larson [ZL96b] introduced following

condition to check the feasibility of a read sequence:

Proposition 5.1 A read sequence {R I , R2, ..., RT) is feasdle for consumption se-

pence {Cl, Cz7 ..., CT), if {Ci, C2, ...? Ck-B+n) c (&, &, ..., &) for al1 k such that

B 5 k 5 T , where B 2s the number of buffers and n is the number of mns.

To overlap processing and read tirne, Estivill-Castro and Wood [ECW94] sug-

gested to have one buffer reserved for reading at all times. Therefore the condition

becomes {Cl, CI , ..., C ~ - B + ~) {Ri, R2, . .., &-1).
Figure 5.2 dlustrates the idea with one bufFer resemed to overlap the merge

processing and read tirne. At any stage of the mage process when k 2 B, k - 1

blocks have been read into memory, which includes Cl to Ck-B+n. h o n g them

k - B blocks have been consumed by the mage process, while n blocks, one for each

nui, are being rnerged. The condition guarantees that merging can proceed while

Rk is being read into memory. If rnaging is fast enough to provide empty b d e r s

before the read of Rk is finished, processing and read time are M y overlapped.

/- : B-n extra buffen for read atiead:

Figure 5.2: Feasibility of read sequence

Proposition 5.1 is based on the standard merge algorithm. With delayed reads,

the number of r a s involved in merging may be smder than n. So more than B - n
bufFers may be a d a b l e for read ahead. Thus the condition in Proposition 5.1 is

sdc ien t , but not necessary for merging delayed reads.

It is obvious that the consumption sequence is a feasible read sequence if B >

n (with at least one b d e r for read ahead to overlap merging and reading). It

guarantees that the merge process terminates. In fact, the consumption sequence

is the read sequence for both traditional forecasting and extended forecasting.

Although there is a h i t e number of feasible read sequences, it is not known if

there is an efficient algorithm to find the optimum sequence with minimum disk smk

tirne. Finding the optimum sequence by trying all the read sequences is expensive2.

Research has been focusing on using heuristics.

The following algorithm, which we c d simple clustering, is a heuristic algorithm

for finding a "goodn read sequence. The initial read sequence is the consumption

sequence for the standard merge algorith. The first n blocks are the fist blocks

of the n runs. Beginning from the (n + 1)th block in the read sequence, each block

is combined with the previous block of the same nui if the feasibility of the read

sequence is preserved.

Algorithm simple clustering

Input: consumption sequence C = {Cl, C2, ..., CT),

number of buffers B, number of nins n

Output: read sequence R = (Ri, R2, ..., RT)

// Ci and l& have the same structure: run nzlmber field and block add~ess field

b egin

R := C; // Initialize read sequence to be the consumption sequence

for i := n + 1 to T

/ / Search each previous block t o find the one with the same run as R[i]

for j := i - 1 downto 1

if R~].runNumber = R[i] .runNumber

then exit loop; endif;

endfor;

"ere is an example which gives a rough idea on how expensive it is to find an optimum read
sequence. A brute-force algorithm implernented on the sort testbed searched al1 feasible read
sequences to find the best one. It took more than 10 hours to get the optimum sequence for 3
runs with a totai of 24 blocks. However, using a heuristic algorithm, i t took 5 ms to cornpute
a feasible read sequence for a 50M data set with 15 runs and 1600 blocks. The generated read
sequence reduced disk seek tirne by 12 seconds, wbich is 80% of the disk seek time if the data
blocks are read in the consumption sequence.

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

if R[i] can be moved after Rb] preserving feasibilie

then insert R[i] between R[j] and Rb + 11; endif;

endfor;

end

The algorithm trie ogether as many blocks fiom the same run as

possible while preserving feasibility. Each group, called a cluster, is a sequence of

adjacent blocks fiom the same run. Since the blocks in a cluster are adjacent, they

can be read sequentially which avoids disk seeks, and therefore reduces the total

read time. In this algorithm, a cluster is not read with a single read command. It is

still read one block at a time, each block using one read command. When the disk

drive processes the read requests of a cluster continuously, these adjacent blocks in

a cluster wiLI be read sequentially.

To check the feasibility efficiently, we used a fiee buffer count array F =

{ F I , Fa, ..., FT) in our implementation, where Fi is a nonnegative integer which

records how many fiee buffers will be left after R. is read. The initial value of f i

is B - n - 1. (i = 1 to T), with 1 b d e r resenred for overlapping merging and

reading. When a data block & is moved after block Rj (j < i), Fjcz to Fi are

reduced by one, since one fiee buffer is used for reading a data block (&) before

it is required. To guarantee a feasible read sequence, we need only to keep aIl P

values nonnegative, i.e., a block should not be inserted before a data biock which F

value is O. Therefore, for each block &, the algorithm needs only check the block

down to the first block Ri where Fj = O. With F values correctly maintained,

we can guarantee the feasibility of the read sequence. This method is very efficient

compared to using Proposition 5.1 directly to check the feasibility.

The simple dus tering algorit hm is s i d a r t O the group-shîfiing algorit hm prw

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 70

posed by Estivill-Castro and Wood [ECW94]. However, the two algorithms were

designed independently. Compared to groupshifting, our d g o ~ t h m is much simpler

and requires fewer scans of the consumption sequence. Experimental results (see

Section 5.1.3) show t hat for randorn data, the simple clus tering algorit hm reduces

disk seeks as well as the groupshifting algorithm.

Several other algorithms were developed and tested on the sort testbed, includ-

ing closest Zogical distance, double clustering, and a method achieving similar effect

of the backward movement in the group-shifting algorithm, but the additional per-

formance improvement is small compared to the simple clustering algorithm. So

those methods were not investigated furt her.

Experimental result s

Experiments were run on many data sets. For each data set, each read-ahead strat-

egy was tested, and the experiment was repeated using the minimum number of

buffers up to the maximum number of buffers allowed within the memory space

limit. The minimum number of buffers is the number of runs plus two. The two

extra buffers are used to improve disk utilization by keeping a read request in the

I/O queue. Each point plotted in the diagrams represents the average computed

from five experiments. The five experiments used five data sets of the same size that

were produced using different random seeds. The three-phase external mergesort

algorithm proposed in Section 3.1 was used for producing runs and merging. How-

ever, dynamic memory adjustment was not used in these experiments. Throughout

the experiments, bufîer size was 32 K bytes for all read strategies. It was also the

nui data block size and 110 transfer unit size. For extended forecasting, when

the merge phase was started, we sent a read request for each b d e r according to

the consumption sequence. During merging, as soon as one buffer became empty,

CHAPTER 5. READ AHEAD DURING EXTERJVAL MERGE 71

we sent a read request for the next block in the consumption sequence. Simple

dustering worked in the same way, but ushg a read sequence pre-cornputed from

the clustering algorithm. For equal buffering, instead of issuing a read request as

soon as a b d e r became empty, we sent a set of read requests for a run when all its

buffers but one became empty.

4M memory space SOM data

32 l* @

1 1 b 1 I 1

Buffers pet Run (S)

4M memory space. 6.0 buffers per mn

- 0 10 20 30 40 50 60

Data S i e (M)

(a) Effect of merge buffers (b) Effect on data size

(EF: entended forecasting; EB: equal buffering; SC: simple clustering)

Figure 5.3 : Cornparison of read-ahead strategies

Figure 5.3 (a) shows the average results for five 50M data sets. The experiments

using other data sizes (5M to 100M) produced similar results. Figure 5.3 (b) shows

the results of using 6 buffers per nui while data size changes from 5M to 60M (the

memory limit is not enough to provide 6 buffers per run for larger data set). The

figures prompt the following observations:

1. When the number of bufKers is less than twice the number of runs, equal

buffering performs the worst . The reason is that some nuis have two buffers

while others have only one b d e r . Processing and reading are not f d y over-

lapped.

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

2. When the number of buffers is more than twice the number of runs, we can

reduce disk seeks by using equal buffering. If the number of buffers is over

three times the number of nins, a significant amount of merge tirne is reduced.

With seven buffers per run, the merge time is close to the lowest value.

3. Extended forecasting does not benefit fiom extra number of b&ers. Merging

is very fast in our experiments so that fd overlap of processing and reading is

achieved by using two extra butfers. Disk seeks are not reduced by the extra

number of buffers assume that the buffer size (110 unit size) is fixed. In fact

performance tends to degrade as the number of buffers increases. The reason

is not known, though.

4. Simple clustering makes fidl use of floating bnffers and reduces the disk seek

time even with a small number of extra buffers. With twice as many buf5ers

as the number of runs, the merge time is aheady reduced sigdicantly. Merge

time is close to the lowest value using as little as five buffers per m. For aIl

cases, simple clustering outperforms the O ther s trategies.

5.2 Read Ahead for Concurrent Jobs

All previous research on cornputing read sequences ([ZLSGb] and [ECW94]) as well

as the discussion in the previous section assumed that only one sort r u s in the

system. No other jobs access the run disk when the sort is doing an external merge.

In reality, a disk drive serves many jobs in the system. Several queries may access

the run disk(s) at the same time. Reading the run blocks in a cluster may require

more than one disk seek if: (1) while a sort is doing an external merge, other

jobs, such as joins, access the same disk, (2) multiple external sorts are running

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

concurrently and th& run blocks are read/written on the same disk, (3) sorted

output is written to the same disk where the input runs reside, or (4) a sort merges

the runs in multiple steps and stores intermediate runs on the same disk. Many

people have suggested using different disks for intermediate runs and input nins so

that run read requests and nui mi te requests will not be mixed with each other,

but it does not solve the problem when there are multiple sorts accessing the same

disks at the same time or when the optimum rnerge pattern is adopted for merging

(see Section 5.2.1).

The dustering technique given in the previous section groups data blocks into

clusters expecting that the blocks in each cluster are read sequentially. When a

sort's read requests are mixed with I/O requests from other jobs or its own write

requests (for intermediate runs or sorted output), a cluster may be broken into

several pieces requiring more than one disk seek. Experirnental results indicate

that with moderate disk disturbance. the simple clustering algorithm still works

fine. But when disk contention is high, for example in the extreme case when there

is an I/O request fiom other jobs after each run read request, clustering will not

Save any disk seeks.

This problem can be solved by atomic cluster reading, where an atomic cluster

read (or an atomic read for short) is composed of a set of uninterruptible data block

read requests3. A cluster will not be broken into pieces, but the sort has to wait

for enough empty buffers before sending an atomic read. To overlap processing

and read time, there must be enough bnffers for the merge process to proceed and

'In the sort testbed. it is supposed that all jobs in the database system send their 1/0 requests
to an 1/0 request queue, through which the 1/0 requests are served by the 1/0 agents. An
atomic read is implemented by iocking the 1/0 request queue, sending a set of read requests, then
unlocking it. It is &O possible to send a set of read requests of a cluster by using UNIX madu()
command, which is able to read adjacent blocks from disk into several buffers.

CHAPTER 5. READ AHEAD DUMNG EXTERNAL MERGE 74

enough b a e r s for 110 to read an additional cluster. This resulted in Theorem 5.2

for feasible read sequence using atomic cluster reading.

Theorem 5.2 Let B represent the number of buflers, n the number of mm, Qi

a clwter (a set of adjacent run bloch f rom the same mn), and Li the number of

run blocks in cluster Qi- When cluters are read atomically, a read sequence of N

clwters (QI, ..., QN) is feasible for consumption sequence {Cl, ..., CT), if for d l k

 SUC^ that B 5 k 5 T, {Ci, ..., Ck-B+*} Q1 U ..- U Qj-l for the largest j such that

ci=, L; 5 k.

Proof: We assume that a merge process is able to proceed only if the first unfinished

block of each run resides in memory.

When k = B, {Cl, ..., Cn) C Ql U ... U Qj-l and xi=, Li 5 B, which means

the first block of each nui belongs to the first j - 1 clusters, and there are enough

buffers to read the f is t j clusters. When cluster Qj is being read, QI to Qj-i have

dready been read into memory. Thus Cl, Cz, ... , C, reside in memory. The merge

process

Q

C

caa start.

/ i B-n extra buffets for read ahead:

(one block for each nin)

Figure 5.4: Feasibility of read sequence

At any stage when B < k _< T (as shown in Figure 5.4), among (Cl, ..., Ck-B+n),

n blocks are needed for merging. So k - B blocks must have been consumed by

the merge process. Since {Ci, ..., Ck-B+n) C QI U ... U Q j-1, the number of blocks

&shed within {QI, ..., Qj) is c=l Li - (k - B). Because & Li k, we

have CLl Li - (k - B) 5 B, which means there are enough b&s to store the

unfinished blocks in {QI, ..., Qj). So after cluster Q j-l is read into memory, the

n blocks needed for merging already reside in memory. The merge process can

proceed, while there are enough buffers to read cluster Qj.

The merge process is able to proceed until k = T when all blocks are read

into memory. Therefore, the mage process will terminate. So the condition in the

theorem guarantees the feasibility of the read sequence. CI

Similar to .the proposition for simple clustering, Theorem 5.2 is based on the

standard mage algorit hm. The condition is s&cient but not necessary for merging

with delayed reads.

The following algorithm, c d e d clastering with atomic reads, is used to compute

a feasible read sequence for atomic cluster reading. It is similar to the simple

clustering algorithm given in the previous section. The initial read sequence is still

the consumption sequence for the standard mage algorithm, while each block is

a cluster of size 1. Each block is then combined with the previous cluster for the

same run if the feasibility of the read sequence is preserved. The major clifference

between simple clustering and clustering with atomic reads is that the latter records

cluster size and uses Theorem 5.2 to check the feasibility of the read sequence. The

algorithm retunis a sequence of clusters (each cluster with a run number and an

address of the f i s t block in the cluster), and retums a cluster size array at the same

Algorithm clustering with atomic ~eads :

Input: consumption sequence C = (C1,C2, ..., CT),

number of buffets B, number of runs n

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 76

Output: read sequence Q = {QI, Qz, . . ., QN), cluster size L = {Li , L2, ... , L N)

// Ci and & have the sume structure: rcm number field and block address field,

// Li is an integer recording the size of cluster Qi

begin

Q := C; // Initialize read sequence to be the consumption sequence

for i := I to T

L[i] := 1; // Set initial cluster s l e to 1

endfor;

ZastCluster := n; // lastCluster: index of the la& cluster before Q[i]

for 2' := n + 1 t o T

// Search each previous cluster to find th.e one with the same run as Q[i]

for j := 1astCluster downto 1

if Q [j] .~unNutnber = Q [il .runNumber

t hen k := j ; exit loop; endif;

endfor;

if Q[i] can be combined with Q[E] preserving feasibility

t h e n L [k] ++; // combineQ[i] vnthclwterQ[k]

else last Cluster ++; Q[lastClustei] := Q[i] ; // Q[i] becomes the new last cluster

endif;

endfor;

end

To check the feasibility efficiently. a free buffer count array F = {Fi, F2? . . . , FT)
was also used to implement this algorithm. Fi records the number of fiee buffers

left after cluster Qi is read. It is set to B - n initidy. When Qi is combined with

cluster Qj, the values for Fj to Flaatclwte are reduced by one. To guarantee that

there are enough buffers to read a cluster while the merge process can proceed, it is

required that Fi 2 Li+1 for all i. This condition guarantees that the merge process

can terminate. For each Qi, the algorithm needs only check duster QlortCIustn

d o m to cluster Qj that Fj = Lj+1 or Fj-i = L j . It is more efficient than ~ s i n g

Theorem 5.2 direc tly.

In simple clustering, whenever a buffkr is empty, it is used for reading the next

block. When the blocks to be read are adjacent and from the sarne run, they form a

cluster. So a cluster size may be as large as the run length (which happens when the

input data is already sorted). For clustering with atomic reads, however, the sort

has to wait until there are enough buffers to hold a cluster before issuing an atomic

read request. The cluster size is limited by the number of buffers. In fact, the cluster

size is restrïcted by the feasibility of the read sequence. In the above algorithm,

the size of each cluster grows to its maximum while preserving the feasibility of

the read sequence. Two adjacent clusters are counted as two clusters because they

require two atomic reads, even though they rnay corne from the same run and only

one disk seek is required. For random data, the next cluster is normally &om a nui

different ffom the run that the latest cluster was read. So few clusters of the same

run are adjacent. Therefore, we can use the number of clusters to approximate the

number of disk seeks.

Experimental results

Experiments have been conducted for the foJlowing cases:

- single sort, no disk disturbance

- single sort reqniring one merge step, with external disturbance

- single sort requiring multiple merge steps, no external disturbance

CHAPTER 5. READ AHEAD D U m G EXTERNAL MERGE

- mdtiple sorts, no extemal disturbance

- multiple sorts with extemal disturbance

Figure 5.5 shows the experimental results of clustering with atomic reads (CA)

compared with previons strategies (with the same data sets), where there is only one

sort rnnning in the system. No other jobs access the nui disk. Because clustering

with atomic reads requires a set of empty buifers to send each atomic read, the

average duster size is shorter than that of simple clustering (see next section). Its

performance is not as good as simple clustering, but better than equal buffering

and extended forecasting. As the number of bnffers increases, both equal bdering

and clustering with atomic reads converge to simple clustering, but clus tering with

atomic reads converges more quickly than equal bdFering. Figure 5.5 (b) shows

that the resdt of merging with 6 buffers per nui while data size changed from 5M

to 60M. Simple clustering and clustering with atomic reads performed almost the

same.

During external merge, the run read requests of a sort may be mixed with other

disk access activities, which is called disk disturbance or distutbance for short. To

distinguish it fiom the disturbance of its own write requests (for intermediate runs

or sorted output), the disturbance fkom other jobs is called eztemal disturbance.

Extemal disturbance rnay vary greatly in practice, depending on the system work-

load. This can be modeled by simply using a disturbance frequency or a probability

of disturbance. The sort testbed simulates the external disturbance by sending dis-

turbance requests, each reads a s m d chu& of data (4K) fiom a random position on

the run disk. The purpose is to move the disk head away from its current position.

Disturbance requests are issued according to a given disturbance rate 4, c d e d the

read disturbance rate (an input parameter), which is the probability of disturbance

for a run read request. Before each run read request, a random number within [O, 1)

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

1 2 3 4 5 6 7 8

Buifers per Run (S)

(a) Effect of merge bders

EF: extended forecasting

4M memory Wace, 6.0 bufferr per nin
E F ~ b 8 1 1 1

v

O 10 20 30 40 50 60

Data Site (M)

(b) Effect on data size

EB: equal buffering
SC: simple clustering CA: clustering with atomic reads

Figure 5.5: Cornparison of read strategies (single sort without disturbance)

is generated. If it is smaller than 4, a disturbance request is issued. When d, = 1.

i.e., the highest disturbance rate, there will be a disturbance request for each nui

read request. For simple clustering, a disturbance request may appear between any

nui read requests. Before each run read request, the system will decide whether a

disturbance request will be produced or not. For clustering with atomic reads, the

disturbance requests can appear only between atomic reads. If the cluster contains

m run block read requests, the testbed wiU generate m random numbers. Whenever

there is a number smaller than 4, a disturbance request is issued. So there may

be several disturbance requests between two atomic reads. For a given disturbance

rate and a given random seed, the total number of disturbance requests produced

is the same for all strategies.

Figure 5.6 (a) shows the impact of extemal disturbance on the four strategies.

The experiment was performed on five 50M (random) data sets. For each data

CHAPTER 5. READ M E A D DURING EXTERNAL MERGE

4M mernory space. SOM data, 1600 Mocks SOM data. 15 ninç. 6 buf/mn
50 180 r I I I I I

A

EF + - u; 45 - EB -t-
E 4 0

SC -O-- -
- - C A a- -

35 g'
- 30
Cu

25 -
w" 20 E 20 - --..*._

d

P

15 O - I 1 I 1 I 1

O 02 0.4 0.6 0.8 1 2 3 4 5 6 7 8 9

Distutûance rate (DR) Maximum meqe width

(a) Single merge step with external dis- (b) Multiple merge steps, no external
turbance disturbance

Figure 5.6: Effects of disk disturbance (single sort)

set, the run formation phase produced 15 nuis with a total of 1600 mn blocks.

90 bufFers (6 buffers per run) were used during external merge. The disturbance

rate changes from the minimum value O (no disturbance) to the maximum value 1

(highest disturbance). Since the merge time measured is the elapsed time of the

external merge phase, including the time for disturbance requests, it increases as

disturbance rate increases.

The equal bdering introduced in the previous section issues a set of read re-

quests for a run when all the bufFers of the run but one are emptied. Each set of

read requests were implemented by an atomic read, thus its performance is similar

to clustering with atomic reads. Extended forecasting reads run blocks in the order

of the consumption seqnence. For random data, the next block to be read is nor-

m d y fiom a run different from the run that the latest block was read. So each read

required a disk seek. The total number of disk seeks reached the maximum value

and was not afFected by the disturbance requests. This resulted in much longer

CHAPTER 5. READ AHEAD DUEGING EXTERNAL MERGE 81

merge t h e , but the merge t h e changed at the same rate as for clustering with

atomic reads. AU these three strategies are not affected by disk disturbances.

The major impact of distarbance is on simple dustering (SC). When there was

no disk disturbance, it performed almost the same as clustering with atomic reads

(in fact a little bit better). As the disturbance rate increased, the improvement

deteriorated. At the highest disturbance rate (d , = 1) , simple clustering performed

the same as extended forecasting, which means a h o s t all of its reads required a

disk seek.

Figure 5.6 (b) shows the results of a sort requiring multiple merge steps. In-

termediate runs are stored on the same disk as the input runs. So reading of the

input run blocks is mixed with writing of the new generated runs. Since input and

output proceed at about the same speed (the s m d difference is fkom merging which

does not provide empty buffers at a constant rate), so there is a write request after

almost each read request. Each read then requires a disk seek. Thus simple clus-

tering is very close to extended forecasting. Both of them are worse than clustering

with atomic reads and equal buffering with atomic reads.

Figure 5.7 compares simple clustering and clustering with atomic reads when

multiple sorts nui concurrently in the system. These experiments were very time

consuming. Since extended forecasting always performs the worst and equal buffer-

ing is similar to clustering with atomic reads, they were not included in the exper-

iments. Each experiment run consists of twenty 50M sorts, and each sort uses 6

bde r s per nui during external merge.

Figure 5.7 (a) shows the results of multiple sorts without external disturbance.

When the sorts run independently (concurrency degree = 1), both methods have

the same performance. As the concurrency degree increases, t hroughput increases

for both of them. This is caused by the overlap of processing and 110 operations

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

1 2 3 4 5 6 7 8

Concunency degree

(a) No external disturbance (b) With external disturbance

(SC: simple clustering, CA: dustering with atomic reads)

Figure 5.7: Experiments with multiple concurrent sorts

when multiple sorts reside in the system. It shows that clustering with atomic

reads improves faster than simple clustering. The reason is that simple clustering

is afKected more by mixed requests fkom multiple jobs.

Figure 5.7 (b) shows the results for multiple sorts with disturbance from other

jobs at the same tirne. The disturbance rate is 0.5. Simple clustering is affected by

both other sorts and non-sort jobs (simulated by external disturbances).

The experimental results show that clustering with atomic reads outperforms

simple clus t ering when sorts are affect ed by disk disturbance, but the degradation

of simple clustering is not very signuicant, d e s s the disturbance is extremely high.

In summary, we offer the foIlowing conclusions:

1. The simple dustering algorithm effectively reduces disk seek t h e for extemal

mage, even with moderate disk disturbance.

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 83

2. Clustering with atomic reads is not affected by disk disturbance. It avoids

the performance degradation of traditional read strategies . The algorit hm is

suitable for high disk contention, but it is not as good as simple clustering

when there is no disk contention, e speudy if the nurnber of buffers per run

is less than 3 (see Figure 5.5).

5.3 Performance on Part ially Sorted Input

All the experimental results in the previous sections are based on random input.

In this section, we give some performance results of the read strategies on part idy

presort ed input.

Existing order or presortedness of a data file can be measured in many ways

[EX911 [ECW92]. However, most of them cannot be used in our case, because

the performance of our read strategies is affected by the existing order of records

between rws, rather than the existing order in the input for each nui. During the

external merge phase, regardless of the existing order in the input of the runs, the

records in each run are aheady sorted during the nui formation phase. Zheng and

Larson introduced a simple mode1 for producing partially ordered records between

nuis. The keys in a run i are uniformly distributed in a range L m i to High;.

Each run has a key range of the same length but the key ranges of run i and run

i + 1 are set to overlap. A parameter a controls the overlap of the key ranges for

run i and i + 1 so that LW^+^ = (1 - a)Hiiighi + almi. Setting a = 1 produces

completely random data. Decreasing a increases the data skew (modeling partially

sorted data). Setting cr = O is equivalent to the input file aheady being sorted

[ZLSGb].

Our sort testbed was modXed to generate partially sorted input based on the

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

above model. a is set to the value of input parameter overlap of key ranges. A

set of experiments was performed using each read strategy on 50M data sets. The

overlap of key ranges, i.e., the a value, varied fiom O to 1 (100%). 4M memory

space was used for sorting, resulting in 15 runs. Merge buffer size was 32K, and the

number of bde r s per rnn varied fiom the minimum number (one b d e r per run

plus 2 read ahead bufks) to the maitimiim number allowed by a d a b l e memory.

Figure 5.8 shows experimental results for five data sets, each representing par-

tially sorted input controlled by the overlap of key ranges. It plots the number of

disk seeks as a function of the number of buffers per nui for each read strategy. For

each set of adjacent blocks (or a set of adjacent clusters) of the same r u , only one

disk seek is counted for reading4. Thus when a = O' only one disk seek is counted

for reading each run, resulting in the minimum 15 disk seeks.

The results show that ail read strategies perform better on par t idy sorted

input. However, extended forecasting does not benefit from additional buffers.

Equal buffering can save disk seeks by using more than two bders per nui, wMe

the two clustering strategies can reduce the number of disk seeks even with a s m d

number of bders . For the clustering strategies, when the input data is nearly

sorted, i.e., the overlap of key ranges is small, the number of disk seeks is close to

the minimum with far fewer b d e r s for read ahead.

Figure 5.9 shows the external merge time as a function of the number of bufFers

per nui for each read strategy. The merge time is mostly consistent with the re-

sults for disk seeks shown in Figure 5.8. When the input data is nearly sorted,

equal buffering and the clustering strategies can reduce disk seek time to the mini-

mum with far fewer buffers. For equal buffering, the number of disk seeks remains

'In practice, more disk seeks are required sometirnes even with sequential read. For example,
a disk seek may be needed when the data crosses cylinder boundaries. However, the number of
these disk seeks is nonnally small. So they are ignored here.

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

(a) Extended forecasting

SOM data SC read strategy

overlap: 100 % 6-
overlap: 80 % -c- . ; overlap: 50 YO --O--
overlap: 20 % -n- . , overlap: 0 YO -o.- .

1 2 3 4 5 6 7 8

Buffets per run

(c) SimpIe clustering

SOM data EB read strategy

overiap: 1 OO % +
overlap: 80 % +-

averlap: 50 % -a--
overlap: 20 % *-
overiap: O % *--

1 2 3 4 5 6 7 8

(b) Equal bdering

SOM data CA read sùategy
lsoo, , 1 I I 1 1 1

overlap: 100 % +-
overiap: 80 % +--

overlap: 50 % .a--
overlap: 20 % -x--
overiap: O % *--

1 2 3 4 5 6 7 8

Eufferç per run

(ci) Clustering with atomic reads

Figure 5.8: Disk seeks on partidy sorted data

constant with less than two b d e r s per m. This is because some runs have two

buffers while others have only one buaèr so the sort can use at most one buffer

for read ahead for each nui. Withh this range, merge t h e decreases as the num-

ber of buffers increases, since CPU tirne and I/O time are better overlapped with

more buRers. Extended forecasting does not benefit fiom extra number of bders.

In fact the merge time tends to increase as the number of buffers increases. This

also happens to other strategies when they reach the minimum merge tirne. Some

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE

5ûM data EF read strategy
1 I 1 T I

overbp: 50 % -a--
overhp: 20 % -x-
overiap: O % -6-

1 a " k wx------.-x---x -%--

16

50M data €6 read stmiegy

averlap: 50 % -O--
owrlap: 20 % a-

overlap: O % 4-

22

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 6

Buffers per mn Mers per run

(a) Extended forecasting (b) Equal buffering

50M data SC read strategy

overlap: 100 % +-
overiap: 80 % +
overiap: 50 % -a--
overiap: 20 % -M-
overlap: O % 4-

1 2 3 4 5 6 7 8

Buffers per mn

50M data CA read strategy
30 1 I 1 I 1 I 1 1

overîap: 100 % +
weilap: 80 % +-

wedap: 50 O/o -a - -
overlap: 20 % -M-
overia$+: O % 6-

Buffers per run

(c) Simple clustering (d) Clustering with atomic reads

Figure 5.9: Merge t h e on partiaily sorted data

factors other than disk seeks play a role here. Cache behavior may be one of the

reasons, since extra buffers reduce cache locality.

Figure 5.10 compares the read strategies with 4 bufFers per nui and 6 bufFers

per nui respectively. It shows the number of disk seeks as a function of overlap of

key ranges. Figure 5.11 gives the corresponding merge time.

Extended forecasting and equd buffering benefit little fiom partidy sorted

data until the overlap of key ranges is below 50%, in which case only two runs are

Overlap of key ranges (%)

(a) Nurnber of disk seeks (4 buf/nui)

50M data set, 6.0 buffers per run
1 600

1400

3 1200

: looo
.-
O 800
%

600 E
400

+-4----C---+--

200

O
O 20 40 60 80 100

Overiap of key ranges (%)

(b) Number of disk seeks (6 buf/run)

Figure 5.10: Comparing disk seeks of read strategies

50M data set. 4.0 bufferç per nrn
30 1 I I i

O 20 40 60 80 100

Overlap of key ranges (%)

(a) External merge time (4 buf/run)

50M data set. 6.0 buffers par fun
1 I L I

12 1 1 1 n 1 1
O 20 40 60 80 100

ûverlap of key ranges (%)

(b) External merge time (6 buf/run)

Figure 5.11: Comparing merge time of read strategies

involved in merging at each stage of the merge process. Unlike these two strategies,

the two clustering strategies benefit fiom partially sorted data starting from a large

overlap of key ranges. As the overlap of key ranges decreases, the merge time

demeases. At 80% overlap of key ranges (close to random data), the merge tirne is

almost minimal. Experimental results indicate that the clustering strategies exploit

existing order in the input better than equal bdering and extended forecasting.

Why extended forecasting has a higher merge t h e at 10% overlap than at 20% is

not known at this t h e .

IR summary, all read strategies benefit from existing order in the input. How-

ever, the clus tering s trategies exploit it bet ter than equal buffering and extended

forecasting. For nearly sorted data, far fewer buffers are required to minimize the

external mage t h e .

5.4 Estimate of Improvement

Previous research edua t ed the performance effect s of read s trategies experimen-

tally. In this section, we build approxïmate models to estimate the performance

improvement resulting kom the read strategies. We use two factors to measure the

performance improvement : average clus ter size and read reduction factor.

Definition 5.4.1 Suppose the number of run blocks is T and the number of clusters

is N . T h e n the average cluster szze CS .is defined as T I N , and the read reduction

factor RF is defined as 1 - NT.

The average cluster size is the average number of blocks in a cluster. When

the average cluster size is large, more blocks are grouped together and fewer disk

seeks are required to read the nui blocks. It reflects the ability of a read strategy

to group data blocks into clusters.

For UILifody distributed random data, there are few data blocks adjacent in

the consumption sequence when the number of nuis is not too small. T disk seeks

are required for the consumption sequence, while only N disk seeks are needed

CHAPTER 5. READ AHEAD DURING EXTERATAL MERGE 89

for the read sequence after clustering. The number of disk seeks saved is T - N,

and the percentage of the saving is (T - N) / T , which is 1 - NIT. Therefore the

read reduction factor reflects the amount of improvement fiom using a clustering

technique. From the definition, we have:

Since extended forecasting does not Save any disk seeks from the extra num-

ber of buffers, the analysis is focused on simple dustering, clustering with atomic

reads, and equal buffering. We also estimate the performance improvement of sim-

ple clustering under disk disturbance. For part idy sorted input, we do not have

approximation models for now. It is left for future work.

5 A.1 Est imate of simple clustering

CS and R F can be greatly affected by the o r d e ~ g of the input data. For the

purpose of estimation, we assume that the sort keys are uniformly distributed, all

ruas are the same size, and there is only one sort doing a single step merge with no

disk disturbance. The approicimate mode1 is derived based on the assumption that

aLl runs are equal, in the sense that the probability of each nui being required for

a block by the merging process is the same, and the blocks of each run have the

same opportunity to be clustered, i.e., to be combined with the previous block of

the run. In such a situation, we assume that the consumption sequence is close to

the ideal consumption sequence shown in Figure 5.12. n is the number of runs and

within each sequence of n blocks, there is one block from each r u .

When simple clustering is used, each block is combined with the previous block

of the same nui if feasibility is preserved. Therefore, block C,+i, C,,+z, ... , C2*

CHAPTER 5. READ M E A D DUMNG EXTERNAL MERGE

L 1
.......... run 1 to run n mnltorunn mnltorunn I

Figure 5.12: Ideal consumption sequence for random data

are combined with Ci, CÎ, ..., C,, respectively and form n clusters. Each cluster

.... contains two blocks. Then C2n+l, C3* are combined with t hese clus ters.

The cluster size grows until the feasibility cannot be preserved. The remaining

blocks will be combined to form the second set of clusters, and so on. Since each

block of each nui has the same opportunity to be combined with the previous block

of the same run, the clusters are the same size, which results in the ideal read

sequence shown in Figure 5.13, where Qi represent a cluster, which is a sequence

of adjacent blocks fiom the same nui. Within each sequence of n clusters, there is

one cluster Erom each r u .

B buffers required B buffen required , .
R "

. R1.
. 6 Q2 ----.- Q n Qn+I Qn+2 ai

Figure 5.13: Ideal read sequence

To guarantee feasibility, the merge process should be able to proceed while an

extra b d e r is used to overlap the merge processing and read t h e . The first n - 1

clus ters and the first block of Q, are required for the mage process to start, while

a b d e r is required to read the second block of Q,. Suppose the cluster size is CS,

then at Ieast (n - 1) * CS + 2 buffers are required. Whenever a buffer is empty, it is

used to read the next block of cluster Q,. Based on the equality of the r u s , their

blocks are consumed at the same speed (see the ided consumption sequence). As

QI is finished, enough bde r s have been emptied to read Q,+i into memory. The

merge process is able to continue. The same holds when Qz is finished. When Q,

is finished, there are exactly 2 buffers for Qrn, one to store the fmst block of Qz, so

that the merge process is able to proceed, and another one to read the next block

of Qzn. This procedure repeats until the last set of dusters are read into memory.

So the (n - 1) * CS + 2 buffers are enough for the mage process to continue until

it terminates. Suppose there are B a d a b l e b d e r s and S butfers per nui (i.e.,

S = Bln), then B = n * S = (n - 1) * CS + 2. So we have:

Although these formulas are derived from the ideal case, they provide good

estimates of clustering if sort keys are uniformly distnbuted. Figure 5.14 shows

experimental results on 50M data sets with fixed 4M memory space (which resulted

in 15 runs, 14 of them are 3584 K and the last run is 1024 K). Sort keys are 10

byte random Aaracter strings. Experiments were performed on 10 random data

sets. The ciifferences of the results fiom these random data sets are iess than 3%.

All the experimental results are very close to the estimated values (the solid line).

Experiment were also performed on data sets with diaerent sizes (20M to 100M).

The results for a 20M data set and a 80M data set are shown in Figure 5.15. When

the number of nuis is s m d , merging may require more than one block fkom one

nui, then fiom another run. For example, with two runs, the probability of the next

block coming from the same run as the block that was just read is 0.5. If there are

CHAPTER 5. READ M E A D DURING EXTERNAL MERGE

Simple dustering
9 I 1 1 1

Buffers per Run (S)

(a) Average cluster size (CS,)

Simple dustering
100 1 L 1 1 I I

1 2 3 4 5 6 7 8

Buffers per Run (S)

(b) Read reduction factor (RF,)

Figure 5.14: Modeling simple clustering

ten r u s . the probability is 0.1. So there may be clusters akeady in the consumption

sequence, especially for a small number of nuis. After the dustering algorithm is

applied, the resulting cluster size tends to be greater than the cluster size resulting

£rom the consumption sequence without clusters. Since our formulas are derived

based the ideal consumption sequence (without clusters in it), they underestimate

the cluster size, especially for a s m d number of runs. This is reflected in the

diagram for the 20M data set (with 6 nuis), but the experimental results are still

close to the estimated values. The read reduction factor (RF) shows that the

number of disk seeks is reduced by over 80% when S 2 6 in all these cases.

When a sort produces variable-length runs (e.g . , using memory-adap tive sort) ,

especially when the r u lengths differ greatly, experimental results indicated that

the average cluster size is larger than the estimated size fiom formula 5.2, and

the performance is better than the estimates based on equal runs. One reason is

that data blocks are more often fkom the longer runs than the shorter runs, which

increases the duster size. But the analysis becomes complicated and is lefk for

1 2 3 4 5 6 7 8

Buffers per Run (S)

(a) Average cluster size (CS.)

Simple dustering
100 1 I I I I 1 1

Buffers per Run (S)

(b) Read reduction factor (RF.)

Figure 5.15: Varying the input size (simple clustering)

k t her work.

5.4.2 Estimate of clustering wit h atomic reads

Similar to the analysis of simple clustering, the estimate for clustering with atomic

reads is also based on the ideal consumption sequence and the ideal read sequence

in which clusters have the same size. Within each sequence of n clusters, there is

one cluster from each m.

B buffers required B buffers required S * - . R - 6, Q - * - - - - Qn Qn+; Qn+i
....... run 1 run 2 run n run 1 run 2

Figure 5.16: Ideal read sequence

For clustering with atomic reads, the sort sends the read requests of a cluster

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 94

as an atomic read. n * CS b d e r s are required to keep the first n clusters so that

the merge process can start, while CS b d e r s are required for Qn+l to overlap the

merge processing and read t h e (as shown in Figure 5.16). We assume that all the

runs are consumed at the same speed. When there are enough baffers for the next

cluster, another atomic read is issued. By the time the first n clusters are finished,

there are enough buffers to keep Qn+l to Qzn+i- So the merge process is able to

continue with the run blocks in Qn+l to Q2,, while there are enough buffers for

Q2n+l being read at the same time. Thus the merge process is able to terminate

with (n + 1) * CS buffers. Then we have B = n * S = CS * (n + l), which gives us

the following formulas.

These formulast derived fkom the ided case, again provide good estimates of

the eEects of clustering with atomic reads when sort keys are uniformly distributed.

Figure 5.17 and Figure 5.18 show experimental results for the same data sets used

for simple dustering. They are all very close to the estimated values. In fact, the

es timates fit the experiment al result s even bet ter t han for simple dus tering.

Similar to simple clustering, when a sort produces variable-length runs, exper-

irnental results indicated that the average cluster size for clustering with atomic

reads is larger than the estimated size using formula 5.4, and the performance is

better than the estimate based on equal r u s .

From formula 5.2 and formula 5.4, we find that CS, = 2 + (S - 2)/(1 - lln)

CHAPTER 5. READ AHEAD DURlNG EXTERNU MERGE

0 CS. > CS, when S > 1 + lin. Simple clustering results in larger average

duster size, and therefore pedorms bet ter than clustering with atomic reads

(if there is no disk disturbance).

CS, > S and CS, < S (when S > 2). As the number of runs increases, CS.

and CS, converge to S, which means the effect of both methods becomes close.

When the number of runs is large enough, they resdt in the same average

cluster size S, and therefore the same peâormance improvement (R F = 1 -

11s).

5.4.3 Estimate of equd buffering

Equal buffering can be considered as a special clus tering algorit hm which uses fixed

buffers. It sends an atomic read request when a set of empty buffers (for a nui)

is available. Each nui owns S buffers and uses one buffer for merge. If S 2 2,

whenever S - 1 bde r s of a run become empty, the sort sends an atomic read of

S - 1 blocks for that m. So the average cluster size is S - 1. Then we have:

[i-k as22
RF, =

Normally the number of blocks of a run is not an exact multiple of S - 1, so

the size of the last cluster of the nui is Iess than S - 1. The average cluster size

is therefore slightly smaller t han the estimate from formula 5.6. When run lengths

are large compared to the number of runs, the clifference is minimal. Experimental

results c o n h that the average cluster size and the read reduction factor are almost

identical to the estimates.

From formula 5.2 and 5.6, we can get CS8 > CS. when S + n > 3. Since n 2 2,

and S > 1 (with at least two extra b d e r s for read ahead), the condition always

holds. So simple clustering produces larger clusters and perfoms better than equd

buffering (if t here is no disk disturbance).

From formula 5.4 and 5.6, we can get CS, > CS, when S < n + l . So dustering

with atomic reads performs better than equal buffering when S < n + 1. When

the number of buffers is s m d and many buffers are a d a b l e so that S > n + 1.
equal buffering may outperform clustering with atomic reads, provided that the

processing and read t h e are f d y overlapped. However, if the data is not d o d y

distributed, clustering (floating bufFering) wiU exploit the existing order in the input

data, but equal bdering (fixed bdering) cannot.

5.4.4 Estimate of clustering with disk disturbance

Clustering with atomic reads and equal buffering with atomic reads issue their block

requests in atomic reads, which cannot be affected by disturbance requests. So their

average cluster size and read reduction factor are not afFected by disk disturbance.

Wit h simple clus tering, the improvement det eriorates as dis turbance increases .

Suppose the disturbance rate is 4 , the average cluster size of simple clustering

without disturbance is CS,, T is the number of run blocks, and N is the number

of clusters after clustering without disturbance. For each block, the probability

of requiring a disk seek (after clustering) is P, = NIT = l/CS,. For each read

request, the probability of having a disturbance request is A. Shen the probability

of a block having both a disk seek for the cluster and a disturbance request in

front of it is Pd = (1ICS.) * 4 = &/CS8. Each block after a disturbance request

requires a disk seek. So for any block, the probability of requiring a disk seek is:

CHAPTER 5. READ AHEAD DURING EXTEIUVAL MERGE

~ ~ = P c + ~ d - ~ ~ = ~ / C s ~ $. ~ - (I / ~ s a = (~ s a * d , - d , + l) / ~ s ~

Among T blocks, T * PP, of them require disk seeks. So the number of clusters is

T * Pr, and thus the average cluster size with disturbance is T/ (T * Pr) = 1/Pr.

Then we have:

R F d = l - c s a * d , - 4 + 1
CS*

Here are some special cases to CO& the formulas:

With the highest disturbance, 4 = 1, CSd = CSa/(CS. * 1 - 1 + 1) = 1. The

average cluster size degrades to 1 when there is a disturbance request before

each nui block read request.

Without disturbance, 4 = O, CSd = CSJ(CSa * O - O + 1) = CS.. Average

cluster size is not changed when there is no disk disturbance.

If CS, = 1, CSd = 1/(1* d, - d, + 1) = 1. Ifeach block in the read sequence

already requires a disk seek, disturbance will not (actually cannot) add more

disk seeks.

Figure 5.19 shows the experimental results for simple clustering when the disk

disturbance rate changes. The left diagram shows the disk seeks for disturbance

requests and the disk seeks for run blocks. Given the total number of blocks T,

the number of disturbance seeks is estimated by T * 4, while the number of run

block seeks is estimated by T * P,. The experimental results are very close to

the estimates. As the disturbance inmeases, the number of disturbance requests

increases, and the nnmber of run block seeks increases at the same t h e . When

the disturbance rate reaches 1, the number of run block seeks equals the number of

run blocks, i-e., each nin block requires a disk seek. The right diagram shows the

average cluster size of simple clustering as the disturbance rate changes. It is very

close to the estimates obtained from formula 5.8. When the disturbance rate is 1,

the average cluster size degrades to 1, which means there is no improvement from

clus tering.

SOM data. 1600 blods. 15 m m
1600 1 i 1 i F

Distubance rate (DR)

(a) Number of disk seeks

50M data, 1600 blocks. 15 wns. CS-s = 6.29
1 I 1 1

experiment O
estimation -- -

Disturbance rate (DR)

(b) Average cluster size (CSd)

Figure 5.19: Modeling the effects of disk disturbance

When a sort is doing intermediate merge and writes the output run on the same

disk as the input runs, the input data size is the same as the output data size.

If input and output buffers are of the same size, the number of write requests is

the same as the number of read requests. If read requests and write requests are

mixed completely evenly, namely, there is a write request before each read request

(except the fUst one), the disturbance rate is 1. Normally, readlwrite requests will

not be mixed exactly in this way. Some read requests may be issued and served

continuously. The disturbance rate is then smaller than 1. If output and input use

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 100

different buffer sizes, especially when large output bde r s are used, there will be

fewer write requests. The disturbance rate will be smaller so that the degradation

of clustering will be less.

When multiple sorts are running concurrently, it is almost impossible to predict

the disturbance rate for a particular sort. The analysis becomes much more diflicult

and is not investigated further.

5.4.5 Estimate of external merge time

Modern disks have become complicated, making it difEcult to precisely predicate

the 110 elapsed time. Roughly, the 110 t h e can be estimated by data transfer

time and disk seek t h e (including rotational latency) as expressed in formula 5.10:

where D is data size (Mb), t is the data transfer time for 1M data (sec/Mb), N is

the number of disk seeks, s is the average disk seek t k e (with rotational latency),

and T is the total elapsed t h e for accessing the data.

The sort testbed uses a 500M raw partition on one disk, a Seagate ST-15150W.

Experimeiitally, it was found that t 0.3 sec/Mbytes and s = 0.007 sec.

For a one pass merge, the amount of data to be read is the same as the input

data size, while the nnmber of disk seeks can be approximated by the number of

clusters. Suppose the nin block size (merge b&er size) is b, the number of blocks

is Dib, and thus the number of clusters is D / (b * CS). Then we have:

T = t * D + s * D / (b * CS) = D * (t + s/(b* CS)) . (5.11)

Figure 5.20 shows experimental results for a set of 50M data sets, and compares

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 101

the results with estimates from formula 5.11, where CS is replaced by the average

cluster size of each algori t hm.

4M rnemory space 50M data

28 1% 1 I 1 1 1 1
experirnent o

estimate -

Buffers per Run (S)

(a) Simple clustering

4M memory space SOM data
28f o I

I l I 1
experiment o

estimate -

Buffen per Run (S)

4M mernory spaca 50M data
28 I 1 I I I

(b) Clustering with atomic reads

h s 2 6 i

50M data. 1600 blocks. 15 mns. CS = 6.29

45 5

$ 0 ' experiment o
O estimate - -

Buffers per Run (S) Disturbance rate (DR)

(c) Equal buBering (d) Simple clustering with disturbance

Figure 5.20: Estimate of extemal merge time

For the dustering strategies, when the number of butfers per run S = 2, the

average cluster size is close to 2 (according to formulas 5.2 and 5.4). For equal

bufFering, when the number of buffers per nin S = 3, the average cluster size is

close to 2 (according to formula 5.6). Figure 5.20 (a) to (c) show that when the

average cluster size is over 2, the experimental results and the estimates are close,

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 102

but with some diffaences. When the average cluster size is less than 2, some clusters

contain only one block and some contain 2 blocks. The real improvement is much

less than estimated. Clearly, factors other than disk seeks play an important role

here, but we do not know which factors.

Figure 5.20 (d) shows the the experiment of simple clustering with disk distur-

bance. The elapsed t h e collected during extemal merge includes the part of data

access for disturbance requests. The estimated value is the sum of the merge time

(based on formula 5.11 and formula 5.8) and the time for disturbance requests based

on formula 5.10, where the number of disturbance requests (or seeks) is the number

of run blocks mdtiplied by the disturbance rate, and the data size is the distur-

bance read size (4K) mdtiplied by the nnmber of disturbance requests. It shows

that the experimental results and the estimates are close when the disturbance rate

is low (4 < 0.4). With a high disturbance rate (4 1 0.4), the experimental results

diverge fkom the estimates. For this set of experiments, when d, > 0.4, the average

cluster size CSd 1. 2. So the reason may be the same as the reason for the three

clustering algorithms when average cluster size is less than 2.

5.5 Clustering and B&er Size

The purpose of clustering is to reduce the number of disk seeks when reading run

blocks during extemal merge. Using large buffers also saves disk seeks. However,

given a fixed amount of memory, the number of buffers is inversely proportional to

the buffer size. Large buffer size results in fewer butfers. The number of buffers per

r u , S, becomes smaller, thus the average cluster size decreases and the number of

disk seeks increases. With clustering, how is the number of disk seeks afTected by

b a e r size?

Suppose D is the amount of input data, M is the size of available memory for

external merging, and b is the run block size (merge buffer size). The number of

merge buffers is LM/bJ z M/b, the number of run blocks is dose to [D/bl x Dib,'

and the number of clusters CN a (D/b)/CS = D / (b * CS). Let n be the number

of runs, then S = (M / b) / n = M / (n * b). From formulas 5.2, 5.4, and 5.6, we then

bave:

Simple ciustering: C N s = D / (b * (n * S - 2) / (n - 1)) = D + (n - 1) / (M - 2 * b)

Clustering with atomic reads: C N , = D / (b * n * S / (n + 1)) = D * (n + 1) / M

Equal bdering: C N . = D/(b* (S - 1)) = D / (M / n - b) (if S 2 2)

CNe = Dlb (if S < 2)

When S = 2 , 6 = M/(2*n) . So the formula for equal bdfering can also be expressed

as:

From these formulas we observe that:

a For simple clustering, the number of clusters increases s buffer size increases.

When the a d a b l e memory M is much Iarger than the b d e r size 6, the

change will not be significant.

0 For clustering with atomic reads, the number of clusters is independent of

buffer size.

For equal buffering, when 6 5 M/(2 1; n), the number of clusters increases as

b d e r size increases. When b > M / (2 * n), the cluster size equals the buffer

size. So the number of clusters decreases as buffer size increases.

'Suppose the run lengths are ri for n runs (i = 1 to n). The exact number of run blocks is
C:='=, [r i / b l . Since the last block of each run rnay not be full, the total number of run blocks may
be greater than [D/bl blocks.

CHAPTER 5. READ M E A D DURING EXTERATAL MERGE 104

These results are based on equal size runs. For variable length runs, the results

might be different.

Figure 5.21 plots expexirnental results for a 50M data set (15 runs) with 3M

and 2M merge memory respectively. The observed results (plotted as points) are

compared to the estimates from the above formulas (plotted as lines). The exper-

imental results are close to the estimates. The differences are mainly caused by

rounding down the number of butfers when the b a e r size is not an exact divisor

of the memory size.

3072 K merge memory. 50 M data, 15 runs

Buffen sue (K)

(a) Merge memory space = 3M

2048 K merge memory, 50 M data. 15 ~ ~ n s
800 1 I I 1 I I I

Buffen size (K)

(b) Merge memory space = 2M

Figure 5.21: Number of clusters as a function of buffer size

Based on the analysis of the number of clusters, the smallest b d e r size would

appear to be the best choice. However, our experiments showed that the smallest

b d e r size did not result in the lowest merge time. Figure 5.22 shows the merge

t h e in the above experiments. When the b&er size is very s m d , the number of

clusters is also s m d , but the merge time is fairly hi&. The major reason is that

our I f0 time estimate (formula 5.10) does not take into account the small overhead

for each read request. When a cluster contains many read requests, although there

CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 105

is only one disk seek, the total overhead becomes noticeable. The experimental

resdts show that this happened when the average cluster size is over 8, but it may

not be true for al1 situations.

. -
O 20 40 60 80 100 120 140 160 180 200

Butter size (K)

(a) Merge memory space = 3M

2048 K merge memory SOM data 15 m m

I I -

O 20 40 60 80 100 120 140

Buffer size (K)

(b) Merge memory space = 2M

Figure 5.22: Merge time afTected by bufFer size

When the b d e r size increase to some point, there is a sharp increase in the

external tirne. It was found that the average cluster size drops below 2 exactly at

these points. The experimental results in the previous section (Figure 5.20) show

that the three alg0nth.m~ do not perform as well as the estimates when the average

cluster size is smaller than 2, which results in the poor performance of large b d e r s

here.

So the experiment shows that I/O performance is aec ted not only by disk seeks,

but also by other factors, some of which may be device dependent. Experimentally,

two conditions may be used as a guideline to choose buffer size:

1. the buffer size should be selected small enough so that the average cluster

size is greater than 2;

CHAPTER 5. READ AHEAD D U W G EXTERIVAL lMERGE 106

2. the b d e r size should be selected large enough so that the average duster size

is less than 8-

Within this range, the mage time is not greatly dected by the buffer size.

Summary

This chapter focused on reducing disk seeks during merging, taking into account

the overlap of processing and read tirne, and concurrent jobs. We presented three

read strategies: fxed buffering, extended forecasting, and dustering.

Fixed bdering assigns buffers to nuis statically, with each buffer dedicated to

a m. It reduces disk seeks by s e n h g a set of read requests for a nui each t h e

when all this nui's buEers but one become empty. The strategy does not rely on

the consumption sequence.

Forecasting uses floating buffers for read ahead. Extended forecasting uses more

than one additional bufFer, and so achieves better overlap of CPU and I/O tirne

than the traditional forecasting which uses only one extra buffer. However, merging

for extended forecasting relies on a pre-computed consumption sequence that is

determuied by the last key or the first key of each nui block depending on the

merge algori t hm (standard rnerging or merging wi t h delayed reads) .
Clustering exploits floating b d e r s to read nui blocks in an order different &om

the consumption sequence. Blocks from the same nin are grouped into clusters for

reading, which reduces disk seeks. Simple clustering results in the largest (aver-

age) clusters, but its performance deteriorates when there is disk disturbance from

ot her concurrent jobs. An improved method, clustering with atomic reads, retains

performance better in this case. It performs better than other strategies when disk

disturbance is high. Experimental results on partially sorted input showed that the

CHAPTER 5. READ AHEAD DURING EX!I'ER.MIL MERGE 107

two clustering strategies exploit any existing order in the input bet ter than equal

bdering and extended forecasting.

Formulas were derived to estimate the performance improvement of the read

strategies. The accnracy of the estimates is confirmed by experimental results. We

also study the effect of buffer size, resulting in a guideline for choosing b d e r size

when using the read strategies.

Chapter 6

Merge Patterns

When the a d a b l e memory is very s m d or the data sets are very large, runs may

have to be merged in multiple steps. The amount of data transferred between disk

and main memory is determined by the merge pattern, which also affects disk seeks.

The goal of this chapter is to reduce the I/O transmission cost when multiple merge

steps are required to complete a sort.

When the sort space remains constant, it is known how to constntct an optimum

merge pattern. However, no one has ever given the cost of an optimum merge,

and this has motivated the study of merge cost in this chapter. The results are

used to analyze the relationship between rnerge width and clustering, as well as

the relationship between merge width and b d e r size. When the sort space is

adjustable during extemal merge, an optimum merge pattern is not guaranteed.

Fou. merge strategies are proposed for memory-adaptive merge: laty merge, eager

merge, improved eager merge, and optzmistic merge. The chapter is organized as

follows. Section 6.1 describes tree representation of merge patterns. Section 6.2

studies the optimum merge patterns of memory-static merge, and derives formulas

for calculating the optimum merge cost. Section 6.3 and 6.4 study the relationship

CHAPTER 6. MERGE PATTERNS 109

between optimum rnerge and clustering, and the relationship between merge width

and b d e r size. Strategies for memory-adaptive merge are proposed in Section 6.5,

and the 1 s t section summarizes this chap ter.

6.1

Perhaps

step. It

Tree Representation of Merge Patterns

the simplest merge pattern is 2-way merge which merges two nuis in each

has been s t udied ext ensively, especially for merging wi t h tapes [Knu73].

With today's high performance disks and large memory space, multiway merging

is more often used. Merge patterns can be represented as trees with initial nuis as

external "leaf" nodes and output runs as internal nodes. The root node represents

the last nui, i.e., the final result, which may be sent to some other operator rather

then written to disk. Figure 6.1 shows a merge pattern for 6 r u s . The number

in each node is the length of the run. Each internal node corresponds to a merge

step. The length of an output run is the sum of the lengths of its input nuis.

Suice each internal node corresponds to a merge step, the length of an output

run equals the amount of data read in the merge step. Therefore, the sum of all

the output nui Iengths is the total arnount of data read during the external merge.

Suppose there are m output runs (including the final result) whose lengths are LI,

12, ---, lm, then D,, the total amonnt of data read during the extemal merge, equals

CZJri.
For each externd

the node, represents

node, its height, i.e.,

how many times the

the length of the path fkom the root to

data of the initial run is involved in a

merge step. In other words, the height represents how many times the data is read

fkom disk into memory. Thus the total arnount of data to be read can be computed

fkom lengths of the initial runs and their heights. Suppose there are n initial runs

CHAPTEX 6. MERGE PATTERNS

Figure 6.1: Tree representation of a merge pattern

whose lengths are 7-1, r ~ , ... , r, and their heights are hl , hl, ..., h,. Then we have

The right side of the formula is also called the weighted ezternal path length of the

tree.

When the buffer size b, which is also the 110 unit size, is fixed, the number

of run blocks D,/b is proportional to Dr. Without clustering, reading each block

requires a disk seek. Therefore, the number of disk seeks is also proportional to

Dr. The amount of data read during the external merge, Dr, is used as a mesure

of extemal merge cost throughout this chapter. Because the source data input and

sorted result output are not considered in this thesis, the total I/O cost is only from

reading and writing nin blocks. As the amount of nui data written is the same as

the amount of data read, the total amount of data transferred is 2 * LI,, and its

CHAPTER 6. MERGE PATTERNS

transfer time plus disk seek time is the total 110 cost.

6.2 Memory-Static Merge

Memory-static mage does not change sort space size during the external merge

phase. The maximum merge width is fixed for alI merge steps. Rnns can be

merged in passes. Each pass produces a set of new runs from the set of existing

m s , and aLl the data will be read fkom and written to disk once per pass. Suppose

the maximum width is w, the number of nuis is n, and the input data size is D.

Each pass reduces the number of rnns by a factor of w, so [log,n] passes are

required to finish the merge. Thus the total amount of data read by merging in

passes is D * [log, n] .
However, it is not necessary to merge runs in passes. There are many valid

merge patterns. The only requûement is that each merge step must reduce the

number of nuis so that we eventually end up with a single, completely sorted m.

Given n initial ruus, possibly of variable length, and a maximum merge width

w, which merge pattern will result in the minimum data transmission? Under

the assumption that the maximum mage width remains fixed this problem has a

very simple solution (çee [Knu73] pp.365-366). An optimum merge pattern can be

constructed using Huffriian's technique. The first step is to add (1 - n) mod (m - 1)

dummy runs of length zero, and then repeatedly merge together the w shortest

remaining runs until only one nin remains. Figure 6.1 ac tudy shows an example

of an optimum merge pattern. The first merge step merges T I and r z , as well as

a dummy run of length O which is not shown in the diagram. Other merge steps

always merge the short est remaining runs .

CHAPTER 6. MERGE PATTERNS

6.2.1 Optimum merge cost for equal s h e runs

Most nui formation algonthms, except replacement selection, produce equal size

runs if sort space size is fixed dnring nui formation. Even though the Iast nui

usudy is shorter than the previous r u s , the situation is close to the equal size

runs when the number of runs is not too s m d . The following theorem gives a

formula for calcdating the exact amount of data read during the external merge

phase.

Theorem 6.1 Given maximum merge vidth w and n initial runs al1 of the sume

length r , by optimum merge, the total amount of data read during the extemal merge

phase equals

Dr = T * (h * n - [(wh - n)/(w - 1)J), where h = [log, n] . (6-2)

Proof: Since all nins have the same length, the optimum merge pattern corresponds

to a tree with minimum external path length. Knuth shows that a complete w-ary

tree results in the minimum external path length. He states that the minimum

externd path length of a w-ary tree is h t n - L(wh - n)/(w - 1)J, where h =

[log, nl ([Km731 pp. 365-366). From Formula 6.1, D, = xy., hi * T i , we have

Dr = Ln=, hi * r = T * (Ci., hi), where CE, hi is the external path length of the

tree. Cl

Formula 6.2 provides the exact cost of an optimum merge for equal size runs,

but it is too cornplicated to be used for further analysis. The formula c a n be

approximated by setting h z log, n. Then we have:

CHAPTER 6. MERGE PATTERNS

where D is the input data size (the base of the logarithm is arbitrary), and DE^ is an
estimate of the exact cost. It will be shown in the cost analysis for variable-length

m s that Formula 6.3 is a lower bound for the rnerge cost for equal size nuis. So

we call it the lower bound estimate.

Although this approximation is simple, it underestimates the merge cost. The

clifference can be as large as 20% of the real cost. Figure 6.2 (a) shows an example

of merging 50 nins with nui size of 1. The maximum merge width w changes from

2 to 50. The diagram gives the exact cost of an optimum merge and the lower

bound estimate, as well as the cost for merging in passes.

merging in passes --
optimum merge -

lower bound estimate .----

Maximum merge width (w)

(a) Merge cost and approximate

m

E 200 lower bound estirnate (n = 50 - - - --
lower bound estimate (n = 301 - - - - -

$ 150
O

Maximum merge width (w)

(b) Cornparison of estimates

Figure 6.2: Merge cost for 50 nuis of size 1

A better approximate is to use a line segment for each range of merge width

during which h = [log, nl does not change. From Formula 6.2 we can derive that

when w = nllk (H = 1, 2, 3, ...), h = k, and

CHAPTER 6. MERGE PATTERNS

Dr = r * (h n - L((n'/k)k -n)/(nll"I)J = k * (+ * n) = k* D .
When w = Dr = (k + 1) * D. So for nll(k+l) < - w < n'IL, we can

estimate the cost using a line segment defined by two points: (d l k , k * D) and

(nl/(k+l), (k + 1) * D). The function can be derived from the following equation:

When w 2 n, the nuis will be merged in a single step. The amount of data to

be read is the same as the input size D.

We now have a second approximate formula, c d e d Iine estimate:

Figure 6.2 (b) shows the line estimate costs of merging 50 runs and 30 runs. The

Iine estimates are much closer to the exact cost than the lower bound estimates.

6.2.2 Optimum merge cost for variable length runs

Replacement selection produces initial rnns of variable length. If there is existing

order in the input data, run lengths may Vary greatly. If a sort is able to adjust

its memory space during run formation, run lengths may also vary, and they Vary

greatly when the sort space expenences dramatic changes fiom one run to another.

For runs of variable length, the exact formula for calculating the merge cost is

CHAPTER 6. MERGE PATTERNS 115

not known, although the optimum merge pattern can be simply constructed with

H&an7s technique. The following theorem gives an upper bound and a lower

bound on the optimum merge cost.

Theorem 6.2 Given maximum merge width w, n initial runs, and nrn lengths T I ,

T Z , .. . , T,, i f the rum are merged in a n opt imum merge pattern, then

where h = [log, n], D = Ci=, ri, and D, is the total amount of data read during

the extemal merge phase.

Proo f: The lower bound is derived fiom a coding theorem which gives a-lower bound

for the average code length for encoding a source alphabet with each character

associated with a probability. ([Man871 [YY83]). Let { a t , a2, ..., an) be a source

alphabet and {cl, c*, ..., ck) be an encoder's alphabet. Each character in the source

alphabet wiJl be encoded by a code word, which is a sequence of code letters fiom

the encoder's alphabet. Any encoding schema c m be expressed in a l a ~ y tree as

shown in Figure 6.3. Each node has at most k children. Level 1 gives the k s t let ter

of a code word, level2 gives the second letter of a code word, and so on.

For encoding with prefix constraint, no code word can be a prefix of another

code word, which means no code word is in the path fiom the root to another code

word. AU code words are leaf nodes of the tree. A code word's length 1; is the

length of the path from the root to the leaf node. Figure 6.4 shows an example of

encoding source alphabet (al 7 a*, as, or, as, aa) with encoder's alphabet {cl. c2 , c3).

It gives the tree representation of the encoding and the code word for each source

character. The prefix constraint is satisfied.

CHAPTER 6. MERGE PATTERNS

root

level

level

Figure 6.3: Tree representation for encoding

sourcecharacter codeword root

Figure 6.4: An example of encoding with p r e h constraint

Given a source alphabet (al, aa, ..., an) with probability distribution P(a i) = p;

(1 5 i 5 n), the average code word length 1 = CL, p; * 1; , which is the weighted

path length of the tree. H d h a n ' s technique is ofken used to minimize the average

code word length. It is shown in [Man871 that for encoding with prefix constraint

H 12-
log k '

where H = xy=, p; * log $ and k is the size of the encoder's alphabet. This can

CHAPTER 6. MERGE PATTERNS

be rewritten as

1 Pi * log pi n < C p i * k -
log k i=l

In the merging problem, the optimum mage pattern corresponds to the tree

constructed using Hnffman's technique. Each initial run is at a leaf node of the

merge tree. The maximum merge width w corresponds to the size of the encoder's

alphabet k, the number of nuis corresponds to the size of the source alphabet, and

the path length hi of an initial run corresponds to the code length li . Suppose the

input data size is D, which is the sum of the initial run lengths, Le., D = C:=l ri.

The merge cost C:='=, ri * hi can be rewritten as D * C Q l (r i / D) * hi, where r i / D

is between O and 1, and Cy=, T ~ / D = 1. In the optimum merge pattern, the runs

of shortest lengths ri are merged first and they have the largest path length hi in

the merge tree. Similady in H&an encoding, the characters with the smallest

probabilities p; are constructed f i s t and have the longest cord words. Both optimum

merge and Hutfman encoding try to put off the costly part, Iong runs or characters

with high probabilities, so that they appear at high levels in the tree. The long runs

will be involved in fewer rnerge steps, and the characters with high probabilities

will have shorter code words. So the value r i / D corresponds to the probability pi

in constructing merge trees. Then we have

D CF=i ri * log n < Cri * hi - log w i= 1

CHAPTER 6. MERGE PATTERNS 118

To prove the upper bound, let Dr. be the exact cost of the optimum merge for

equal size runs whose lengths are the average length of the given runs. We will

constmct a mage tree for the given nuis and prove that the merge cost is less than

or equal to Dr.. Since an optimum merge pattern resdts in the minimum merge

cost, its cost is no more than the cost of our constructed tree. Then we can claM

that the cost of the optimum merge pattern is less than or equal to D,,.

According to Knuth, a complete w-ary tree gives an optimum merge pattern if

all of the initial nins are the same length ([Knu73] pp.365-366). Figure 6.5 shows

a general optimum merge pattern of n equal size runs with maximum merge width

w, where (1 - n) mod (w - 1) dummy runs of length O are added. The lengths of

output runs are always larger than the lengths of initial runs. All of the initial m s

are at either the bottorn level or the second to last level.

Figure 6.5: Optimum rnerge tree for equal size runs

Suppose the height of the tree is hl the length of the nuis is T , where T = D / n =

(Cy=L=i r i) /nl and there are k runs at the bottom level. From Figure 6.5 we can see

that the cost of the optimum merge is

CHAPTER 6. MERGE PATTERNS

Now we use this mage pattern to merge the variable-length rus. Suppose the

nui lengths are rl, t2, rn, PI 5 TZ 5 T,, and the smallest k nuis are at

the bottom level. Let Dr, denote the mage cost for these variable-length nuis, we

have

Then we have:

Thus D, 5 Dr,. The cost of the constmcted merge pattern for the n nins

CHAPTER 6. MERGE PATTERNS 120

is less than or equal to Dre. Since the optimum mage pattern of the n nuis of

variable length has the minimum cost, its cost is less than or equd to D,, which

is less than or equal to Dre. Therefore the cost Dre is an upper bound. According

to Theorem 6.1,

D,, = r * (h * n - l (w h - n) / (u - 1) J) = (h*n- L (w h - n) / (w - l) J) * D / n .

This completes the proof. O

Based on the lower bound in the above theorem, when all the initial runs have

the same length, we have

Dr 2 ~ ~ ! i (r * l o g , ~) = (C ~ = , T) *log,n = r*n+log,n ,

which is the lower bound estimate for equal size runs (Formula 6.3). Therefore, the

lower bound es timate mostly underestimates the exact cost of the optimum merge.

They are equal only when w = nllk for an integer k.

Since no formula is available for calculating the exact cost of merging variable-

length runs, we approiomate it by using the average of the lower bound cost and

the upper bound cost, that is, by

where h = [log, nl, and D = Ci=l r; .
Figure 6.6 shows examples of two sets of variable-length nuis. The left diagram

is based on a set of r u s collected fkom an execution of memory-adaptive sort on

the sort testbed. The rnn lengths are listed in Appendix A.1. The right diagram

is based on a set of runs between 1M and 5M whose lengths were randomly drawn

£corn a tnangdar probability distribution. The nui lengths are listed in Appendix

A.2.

CHAPTER 6. MERGE PATTERNS

100 M data, 38 run

Mergipg in passes +
Opbmum merge -

Optimum merge lawer bound - --
Optimum merge upperbdund ---.-

Optimum merge approximation -----
= 300

Maximum merge width (w)

(a) lOOM data, 38 runç

2Zï.8 M data. 100 nin
1600 I I 1 1 I 1

Merging in passes +

D
Optimum merge -

g 1200 Optimum merge lower bound -- --
Optimum merge uppe! F n d -.-.-

Optimum merge apprommaûon -----

P" 800

Maximum merge widtt~ (w)

(b) 227.8 data, 100 runs

Figure 6.6: Merge cost for variable-length runs

Each of the diagrams plots the exact optimum merge cost, the estimated cost.

the upper bound and the lower bound on the optimum merge cost, as well as the

cost of merging in passes. The exact optimum merge costs are calculated £rom an

optimum merge algorithm and the estimates are obtained from Formula 6.6.

The diagrams show that the estimates are very dose to the exact costs. The

cost of merging in passes is usually much higher than the cost of optimum merge.

They meet at the points when the number of merge passes changes, i.e., at w = n'lk

for each integer k > O. The diagrams also show that within a large range w E [fi,
n], the merge cost changes slowly, but when the merge width is smder than f i
the merge cost increases very fast as merge width decreases. This is also tme for

equal size runs (see Figure 6.2).

Using multiple disks

Many people have suggested using Merent disks for input runs and output nuis.

The purpose is to overlap run input and run output (Sal891, and make run output

CHAPTER 6. MERGE PATTERNS 122

fast by exploiting sequential mites. To achieve this goal, two disks are enough if

runs are merged in passes. But it has been shown that merging in pîsses usually

results in higher data transmission cost than the optimum merge. With optimum

merge, the shortest nins are selected for each merge step. These runs may reside on

any disk used for initial runs and intermediate runs. If the maximum merge width

is w, input runs may reside on u> disks. So w + 1 disks are required to guarantee

that there is always a disk for intermediate nuis which does not contain any input

runs. Since the m&um merge width can be large, it is quite possible that a

system does not provide as many disk as required.

When multiple sorts access disks at the same tirne, even if there are enough

disks to separate intermediate runs and input runs of a particula. sort, the run

read/write requests of ail the sorts are mixed. Since the work load on each disk

may vary, using different disks for input runs and output nins may not help improve

performance. Instead, I/O performance is more afFected by the utilization of all

disks. Balancing the workload among disks is more important. Data striping is one

of the techniques to solve this problem by spreading each data file across the disks

[S GMSG] [Kim86].

6.3 Optimum Merge with Clustering

Given a fixed amount of memory, we can use all buffers to m d z e the merge width

which minimises data transmission cost. We can also merge a smaller number of

runs while using some buffers to cluster run blocks thus reducing disk seeks. The

decision is a tradeoff between data transfer t h e and disk seek tirne. Then for a

given memory size, or a given number of buffers, what is the optimum merge width,

taking clustering into account?

CHAPTER 6. MERGE PATTERNS

In this section and the next section, we use the following notation:

Dr : amount of data read during the external merge phase

NT : number of disk seeks for reading run blocks

Nw : number of disk seeks for writing run blocks

M : size of a d a b l e memory space for externd merging

b : run block size, which is also the mage buffer size

B : number of merge bufFers (M = b * B)

w : maximum merge width (2 5 w 5 B - 2)

S : number of buffers per nui (S = Blw)

D : input data size

n : number of initial runs

t : transfer t h e for 1M data

s : average seek tirne.

Since the total amount of data to be transferred is twice the amount of data to

be read during the external merge phase, the total I/O cost, including the cost for

writing initial runs, is

Assuming that all initial runs have the same length and clustering with atomic

reads is used for clustering run blocks, the total number of run blocks to be read is

close to DJb. The average cluster size CS is estimated by CS, = B/ (n + 1) from

Formula 5.4, where the number of runs n is the maximum merge width w, since

only w nins are merged each time except the first merge step. Then we have:

CHAPTER 6. MERGE PATTERNS

The number of disk seeks for writing run blocks may vary greatly depending on

how much the nui writing is interrupted by other disk activities as well as its own

run read requests. Two extreme cases are sequential vvrites and random writes, in

which N, is O and D,/b respectively. For the general case, we introduce a value

d, as the write disturbance rate , so that Nw = d, r DJb, where O 5 d, 5 1.

For sequential writes d, = O and for random writes d, = 1. Basically, this value

reflects the degree of disk contention. When many external sorts nui concurrently

or many other jobs access the nui disk, it is high. When the disk workload is low

or multiple disks are used, it is low. In general we have

The amount of data D, can be replaced by the exact cost Formula 6.2, but

further analysis will become very complicated. The lower bound estimate (For-

mula 6.3) is simple, but sometimes it underestimates the cost signuicantly. Fig-

ure 6.7 gives two examples of 100 M and 200 M data sets with run size of 1M.

Using lower bound estimate for D,, the optimum merge width is about 50 in both

cases. However, if we use the exact cost formula (Formula 6.2) for Dr, we found

that the optimum merge widths are 100 and 14, respectively.

CHAPTER 6. MERGE PATTERNS

ewctcost -
lines estirnate ---.-

b e r bound estimate -----

Maximum merge vuidth: w

(a) 100 M data set

Maximum merge width: w

(b) 200 M data set

Figure 6.7: Anaiysis of merging with clustering

Line es timates are very close to the exact formula. Using Formula 6.4 to estimate

D,, we have

where nll(kf') < - w < nllk, k = 1, 2, 3,

This function is composed of a set of functions, each is determined by k. To

rninimize T, we can find the optimum merge width within each range, and then

fmd the lowest among them. To find the optimum merge width within each range,

the above formula can be rewritten in the following format:

T = a * w 2 + b * w + c , where a = -(+) * , i , r -d , (r+ i) t rn < O

Thus the fûnction has a maximum value, but not a minimrim value. Since w is

bounded by d l k and nll(k+l) , T will be minimal at one of these two points. As a

result, we need only check merge width w = n'IL (k = 1, 2, 3, ... and w 2 2) to

CHAPTER 6. MERGE PATTERNS

get the optimum merge width.

Normally the number of nuis is not very large. When the merge width is

smaller than f i the amount of data to be transferred increases very fast as the

merge width decreases (see Figure 6.2). At merge width n'I3 and smaller, we can

hardly get better performance. The check for k 2 3 is Wtually unnecessary. In

addition, with two buffers for read ahead, mage width is restricted by B - 2. So

in practice we need only check two merge widths: f i and min{n, B - 2).

Severai examples are plotted in Figure 6.8. Three data sizes and two memory

sizes are selected. The merge buffer size is 8K and the mi te disturbance rate d, is

0.5'. The diagrams are plotted using Formula 6.9. They show that the optimum

merge width is either f i or min{n, B - 2).

Maximum merge width: w

(a) 0.5 M memory

Maximum msrge width: w

(b) 1.0 M memory

Figure 6.8: Analysis of merging with clustering

Because of the complexity of modern disks, the estimate of I/O cost T rnay

'In many cases the optimum merge width is not very sensitive to 4,. Even though the value
of d, may not be precisely predicted, the optimum merge width selected is still the right one.
Through Our analysis, we set the value of d, at 0.5.

CHAPTER 6. MERGE PATTERNS 127

not be precise. When the cost at fi and Ae cost at min{n, B - 2) are close,

the optimum merge width selected may be the wrong one, but it does not affect

the performance greatly because the 110 costs at both merge widths are about the

same.

Figure 6.9 shows experimental results corresponding to the above examples.

The optimum mage widths are about the same as that determined by the formula.

For merging the 200M data set with 1M memory, the optimum merge width is 14

according to the formula, but it is close to 120 in the experimental result. However,

the experimental result shows that the 110 costs at the two merge widths are very

close. Even though the merge width 14 is not optimal, it is still a good choice.

0512 merge rnemory, 8 K butfers
1800 I L I I 1 1 1

Maximum meqe width

(a) 0.5 M memory (run size = 0.5M)

1024 meqe memory. 8 K hifers
'400 In t I 1 1 t 1 i

(b) 1.0 M rnemory (run size = LM)

Figure 6.9: Optimum merge with clustering (fixed buffer size: 8K)

The above analysis and experimental results are based on equal size mns. For

variable-length runs, no models are available to estimate average clus ter size, mak-

ing the analysis impossible for now.

CHAPTER 6. MERGE PATTERNS

6.4 Merge Width and Buffer Size

With a fked amount of memory, the number of butfers is inversely proportional

to the b d e r size. The maximum merge width increases as b d e r size decreases.

Large merge width minimixes data transmission cost, while small bde r s increases

the disk seeks. The question is, for a given memory size, what is the optimum

buffer size? This is also a tradeoff between transfer time and disk seek time.

Goetz Graefe studied this problem based on the lower b o n d estimate of data

transfer size while assuming that the same amount of memory is used for both

the run formation and the merge phase, and that the runs have the same lengths

[GraSO]. There are three problems with his results: fmt, the optimum b a e r size

selectcd based on his formula is sometimes far away fkom the real one because of the

poor estimate; second, his result shows that the optimum buffer size is independent

of data size, which is not true; and third, because of the complexïty of his formula,

he suggested a check of all physicdy possible b&er sizes to find the optimum buffer

size. It will be shown in this section that we can h d the optimum b d e r size by

checking far fewer buffer sizes

To simplifjr the analysis, we assume that ail bufFers are used to increase merge

width and nuis are merged without clustering. So the number of disk seeks for

reading nui blocks is about DJb, where Dr is approximated by line estimate (For-

mula 6.4). Then we have

CHAPTER 6. MERGE PATTERNS

where M/nlIk < b < - M/n'/(k+l) , k = 1, 2, 3,
Similar to the analysis of merging with dustering, we can prove that the o p

timum value is one at the points ~ / n l I ~ , k = 1, 2, 3, With minimum two

buffers for read ahead, the minimum nnmber of buffers is 4. Thus the maximum

buffer size is M / 4 . So we have

For merging 1000 nuis, the maximum value of k is 4. So values larger than 4

are virtually never needed. Normdy, the b d e r size is selected as some multiple

of the page size to improve I f 0 efficiency. Assume the page size is P (4K or 8K).

For each k, checking both [(M / ~ ' / ~) / P] * P and L (M / ~ ' / ~) / P] * P wiU give us a

bet ter result.

Several examples are given in Figure 6.10. They are plot ted using Formula 6.10.

All the optimum merge widths are close to M / G . Table 6.1 lists the number of

nuis for each case and the optimum b d e r size rounded up or down to a multiple

of the page size (8K).

Table 6.1: Optimum buffer sizes for the examples

Figure 6.11 shows experimental results corresponding to the above examples.

D
n

f i
a,,

The optimum buffer sizes are almost the same as those shown in Figure 6.10 and

lOOM
200

lOOM
100

14
40K

150M
300

200M
400

150M
150

17
32K

200M
200

20 1 10
24K / 104K

12
80K

14
72K

CHAPTER 6. MERGE PATTERNS

Buffer sire: b Buffer size: b

(a) 0.5 M memory (b) 1.0 M memory

Figure 6.10: Analysis of merge width and b d e r size

0.5M memory space
8 0 0 r , , , , r 1 1

Buffer size (K)

(a) 0.5 M memory (run size = 0.5M)

O 10 20 30 40 50 60 70 80 90

Buffer size (K)

(b) 1.0 M memory (run size = 1M)

Figure 6.11: Effects of b d e r sizes

Table 6.1.

For variable-length nuis, the data transfer size is close to the upper bound given

in Theorem 6.2, and therefore close to the line estimate. So we can use the above

method to determine the optimum merge width, although the result may not be the

CHAPTER 6. MERGE PATTERNS 131

exact optimum one. If precise b d e r size is desired, we can evaluate each possible

buffer size using Formula 6.10, while the data transfer size Dr is estimated by the

approximat e formula for nuiable-lengt h r u s (Formula 6.6).

When clustering is taken into account, both b d e r size and merge width are

variable. The optimization becomes more complicated. Since only two checks are

needed to find the optimum merge width for a given buffer size, a straightforward

strategy is to find the optimum merge width for each physically possible b&er size

and compare t heir cos ts.

6.5 Memory- Adaptive Merge

In the previous sections, we assumed that the available memory space for merging

remains constant. With memory-adaptive sort, the memory usage of a sort may

change fiom one mage step to another, which rneans that the maximum merge

width changes dynamically. Since the memory change is unpredictable, it is impos-

sible to pian an optimum merge in advance. However, the following two facts stiu

hold:

Merging rn ~ n s always reduces the total number of runs by rn - 1.

0 Merging the shortest runs fzansmits less data than merging any other runs.

6.5.1 Dynamic merge strategies

To make merging adapt to the memory changes in the system, we devised four

merge strategies. AU of them merge the shortest remaining runs in each merge

step. The strategies focus on how to determine the merge width for each merge

step.

CHAPTER 6. MERGE PATTERNS

Suppose n is the number of existing runs before a merge step, w is the maximum

merge width allowed by the available memory, and m is the actual merge width

which has to be determined (rn 5 w) . The values of w and m may change from

one merge step to another, while n is reduced by na - 1 &ter each merge step.

Lazy merge : merge the smallest number of runs if the existing runs cannot be

merged in a single step, Le., if n 5 w, m = n; otherwise, m = 2.

This strategy tries to do minimal work in each merge step and postpones the

costly merge(s) as long as possible, hoping that the system will soon have enough

space to merge the remaining runs in a single step.

One of the best cases of this strategy is when, after the first merge step, there

is enough memory to merge the remaining nuis in one step. These two merge steps

result in the minimum data transmission.

However, if the a d a b l e memory is decreasing and w < n after each merge step

until n = 2, only two runs are merged each time, which results in the maximum

number of mage steps and high cost in data transmission.

The major problem of this strategy is that it does not make fidl use of the

available memory resource to reduce the merge cost .

Eager merge : merge as many runs as possible each tirne, i.e., if n 5 w, m = n;

otherwise, m = W.

This strategy works eagerly by utilizing all the available memory. The number

of runs is reduced as much as possible in each merge step, resulting in the minimum

number of merge steps.

If w = n in the last merge step, memory resources are f d y utilized for each

merge, and the amount of data transmission is minimal.

If only two runs are left for the las t merge while more memory is available, the

CHAPTER 6. MERGE PATTERNS

memory space is not Fully utilized.

The major problem of this strategy is that the merge width of the last merge

step may be very small, which means the transfer cost of the second to last merge

step or previous steps is high. As a result, the total transfer cost is higher than it

is in an optimum merge.

Improved eager merge : mage as many nuis as possible in each step until the

available memory is large enough to merge the remaining runs in two steps, then

keep the sort space fixed and do an optimum merge, i.e., if n < w, in = n: if

w < n < 2 * w, m = n - w + 1; otherwise, m = W.

This strategy tries to merge fewer runs in the second to last merge step by

making the merge width of the last merge step wide. Since the las t merge step

always reads a fixed amount of data, Le., the total run data, which is independent

of the merge width, minimizing the I/O cost of the second to last merge step will

reduce the total transfer cost.

If n - w + 1 = w in the second to last merge step, memory resonrces are fully

utilized for each merge, and the amount of data transmission is minimal.

If the second to last merge step merges only two runs, the I/O cost can be

further reduced by merging fewer runs in the third last mage step and making the

merge widths of the last two merge steps wide. However, we have to keep the sort

space fixed for the last three merge steps. In the extreme case, we can keep sort

space fixed for the whole merge phase and do an optimum merge. The strategy

degrades to a memory-static merge. In this case, newly available memory in the

system is not utilized at all.

One major problem of improved eager merge as well as the previous s trategies

is t hat t hey do not merge the nuis in an optimum pat tem if the available memory

CHAPTER 6. MERGE PATTERNS

remains constant .

Optimistic merge : always do an optimum merge based on the currently available

memory space. More specifically, at the beginning and after each sort space change,

add (1 - n) mod (w - 1) dummy runs of length zero, and merge w shortest m s ,

including the dummy nuis. In the following merge steps, always merge w shortest

m s .
The philosophy of this strategy is that whatever has been done is done and the

work can be done better only fkoom now on. It tries to optimize the remaining mage

steps based on the current sort space, hoping that the transfer cost of merging the

remaining runs will be minimized. It produces an optimum merge pattern within

each time penod during which there are no memory fluctuations. Whenever sort

space changes, the sort moves to a new merge pattern, that is optimum for the new

sort space. Usually some diimmy runs are added after memory adjustment. So the

number of r u s actually merged or the r e d rnerge width in the f is t merge step

after memory adjustment is normdy smaller than W. Memory is not fully utilized

for this merge s t ep.

The best case of this strategy is that no dummy runs are added so that the

a d a b l e memory is always fidy utilized, and the amount of data transmission is

minimal. It results in an optimum merge if the available memory does not change

during the merge phase.

The worst case is that w changes after each m a g e step and w - 2 dummy runs

are added. Only two runs are merged each tirne, which results in the maximum

number of merge steps and expensive data transmission.

The major problem of this strategy is that the sort has to adjust to the initial

merge width in the f is t merge step after each memory adjustment. This merge

CHAPTER 6. MERGE PATTERNS

width might be s m d , which results in poor performance when sort space changes

frequently.

6.5.2 Memory usage patterns

Given a mage strategy, the memory usage of a sort in the system follows its own

pattern. Rom Figure 6.12 we can see some features of the four strategies. The

dotted lines represent changes of the a d a b l e rnemory in the system, including

the memory space occupied by this sort. The solid lines represent changes of the

sort space occupied by this sort durhg its merge phase2, while the dashed lines

represent the amount of memory actually used by this sort. For lazy merge and

eager merge, the amount of memory occupied by the sort is the same as the amount

of memory actually used.

-- -
7

Lazy merge Eager Merge Improved eager merge Optimistic merge T

Figure 6.12: Memory usage changing patterns

Lazy merge uses the minimum merge space until there is enough space to merge

the remaining nuis in a single step. So the last merge s tep

the previous ones.

uses more memory than

?1n the memory-adaptive algorithm, a sort at merge phase does
memory in the system. Some memory is reserved for high priority
order to improve overd system performance.

not use up dl the avaiiable
sorts and incoming sorts in

CHAPTER 6. MERGE PATTERNS

Eager merge adapts itself to the memory fluctuations. So does improved eager

merge except that it keeps the sort space fixed in the last h o merge steps in order

to reduce transfer cost. For improved eager merge, the merge width is usudy

smaller than the maximum rnerge width in the second to last mage step. The

extra memory occupied can be used for clustering which reduces disk seek time for

reading run blocks.

For optimistic merge, the sort usudy merges a s m d number of runs for one step

and then merges the remaining runs with the maximum merge width during which

the memory space remains steady. Similar to improved eager merge, when merging

a s m d number of m s , the extra memory occupied can be used for clustering to

reduce disk seeks.

6.5.3 Cornparisons of the merge strategies

Each strategy has its advantages and disadvantages. A strategy may perform bet-

ter than others in one situation, but worse in another situation. The four adaptive

merge strategies and optimum static merge are compared based on their total trans-

fer cost. Assume that the number of initial nuis is larger t han the maximum merge

width when the extemal merge phase starts, so that the nuis have to be merged in

multiple steps.

(a) No memory jluctuation : The maximum merge width w does not change

during the whole merge phase.

Optimistic merge ends up being an optimum merge that exploits alI the available

memory space. The 110 cost for the sort is minimal. Optimum static rnerge

performs exactly the same as the optimistic merge, if they use the same amount of

memory space.

CHAPTER 6. MERGE PATTERNS

The other strategies may also produce an optimum merge, but only in rare

cases. Since the last merge step always reads the same amount of data, improved

eager merge has lower transfer cost than eager merge. Lazy merge merges two rnns

each time and more runs in the last step, so it requires the most merge steps and

performs the worst.

(b) IncreasiBg memory : The available memory starts £rom a s m d space and

keeps increasing. The maximum merge width w increases after one or more merge

steps.

Memory-static merge does not benefit fiom newly available memory, since the

sort merge space is fixed. The performance of optimistic merge is determined by the

frequency of the memory changes and the mage width of the first merge s tep afteï

each memory change (or the number of dummy runs added). Suppose the merge

width for each f i s t step after a memory change is half of the maximum merge width

on average, if w changes after each merge step, only half of the available memory

is used. If the a d a b l e memory changes less often, optimistic merge will perform

better.

Eager merge outperforrns improved eager merge if more runs are left to the last

merge step than the runs merged in the second to last merge step. Otherwise, the

transfer cost of using eager merge is higher than the cost of using improved eager

merge.

Lazy merge always merges two runs until the merge width is greater than the

number of remaining runs. It performs well if a large amount of memory is soon

a d a b l e to merge the remaining runs in a single s tep. If not , it will require many

merge s t eps making transfer cos t high.

(c) Dec~easing rnemory : The available memory starts fFom a large space and

CHAPTER 6. MERGE PATTERNS 138

keeps decreasing. The maximum merge width w decreases after one or more merge

steps.

Memory-static merge does not use the extra space when the available memory

is large, and does not release its sort space when the system is short of memory.

Memory-adaptive merge is able to release part of the sort space to improve overd

sys t em performance.

Similar to (b), the performance of optimistic merge is aEected by the fiequency

of the memory changes. It rnay perform very poorly if the available memory changes

after every merge step, but it is corning closer to be an optimum merge as the

fiequency of memory change decreases.

Eager merge and improved eager merge perfoms well in this case by making

f d use of memory resources at each stage. Improved eager merge has lower cost

by keeping the sort space fixed in the last two merge steps.

Lazy merge merges two runs and reduces the number of runs by 1 in each step.

The maximum merge width may decrease at the same time. It does not utilize the

a d a b l e memory space when the space is large. Generally, it is not a good strategy.

although it works well in special cases, such as n = w + 1 under the condition that

memory space does not shrink in the next merge step.

(d) Increasing/dec~easing memory : This is the general case. The available

memory increases and decreases as the system workload changes. It is impossible

to predict how the maximum merge width w wïü change, and it is difEcult to teIl

which strategy will perform best. However, some facts are true:

Optimum static merge minimize I/O cos t given f i e d memory space. However,

it cannot utilize extra memory a d a b l e in the system, and does not reduce

its sort space on behalf of other jobs in the system.

CHAPTER 6. MERGE PATTERNS

0 Lazy merge uses minimum sort space mt i l the last mage step. The extra

space in the system is used only when the a d a b l e memory is large enough

to merge all the remaining runs in one step. Therefore, it does not make full

use of memory resources. Its performance may be worse than memory-static

merge in some cases.

0 Eager merge makes full use of memory resources. It adapts itself to memory

changes fkeely, either using newly available space or releasing part of its space.

However, there may be fewer runs left for the last merge step, which means

higher cost in the second to last rnerge or previous merges.

Improved eager merge is similar to eager merge, but it reduces the cost in the

second to last mage step.

The performance of optimistic merge is close to an optimum merge when

memory fluctuation is s m d , but its performance degrades on frequent mem-

ory changes.

Figure 6.13 shows two sets of experiments. Diagram (a) gives the elapsed time

of single sorts in the case of very s m d system memory space (256K). It reflects the

situation when the available memory does not changes during the merge period.

Optimum static merge is not included since it perforrns the same as optimistic

merge if it uses the same amount of memory. The performance of optimistic merge

and improved eager merge are almost the same, while eager merge is occasionally

worse than the two of them.

Diagram (b) gives the system throughput of multiple sorts based on data set

D3 used in Section 4.5.2. The system memory space used is 2M and the merge

butfer size is 8K. When the concurrency degree is 1, each sort job run indepen-

dently without memory fluctuations. For memory-static sort, the single sort space

CHAPTER 6. MERGE PATTERNS

u- -

O 10 20 30 40 50 60

Data S i e (M bytes)

(a) Single sort

Concufrency degree

[b) Multiple sort

Figure 6.13: Cornparison of merge strategies

limit is 256 K so that at most 8 sorts are able to run concurrently in the system.

With memory-adaptive sort, more sorts may be able to nin concurrently. As the

concurrency degree increases, the

often.

The diagram shows that the

the concurrency degree changes

a d a b l e memory in the system may change more

performance of ail the strategies increases when

fkom 1 to 2. The reason is that I/O time and

CPU time are overlapped when multiple sorts are ninning in the system. When

the concurrency degree increases further, the performance of static sort does not

change much, since each sort always uses the same amount of memory. As a result?

its transfer cost is always the same. Memory-adaptive sorts consistently perform

better than memory-static sorts because of fidl utilization of memory resources.

Most of the time, improved eager merge and optimistic merge are better than eager

merge. Experiments on other data sets produced the similar results, but it does

not mean that improved eager merge and optimistic merge are the best strategies

in all cases.

CHAPTER 6. MERGE PATTERNS 141

From both the analysis and the experiments we can see that: (1) memory-

static merge and lazy merge do not make fidl use of memory resources, so their

performance tends to be poor; (2) eager mage may lose performance in the second

to last merge step or previous mage steps; (3) improved eager merge and optimistic

merge are promising strategies, the former is a good choice if the available rnemory

often changes, while the later is bet ter when the a d a b l e memory is stable.

6.5.4 Implementation issues and possible improvement s

Although the memory-adaptive sort is able to adjust its sort space after each merge

step, the amount and fkequency of adjustments may affect the merge performance

ditferently. If an adaptive merge changes a sort space whenever a d a b l e memory

changes: we have extra overhead due to frequent changes of sort space, while minor

changes of the sort space may not improve the performance. Therefore, some

memory adjustments should be avoided.

From the cost analysis of memory-static sort (Section 5.1), we know that the

transfer cost changes slowly within the merge width [fi, IL]. However, it changes

very fast when the merge width is less than 6. As to when we should adjust a sort

space, one possible policy is to increase sort space only when w < fi. Another

policy is to increase sort space if the maximum mage width can be doubled, such

that the sort is able to use more space even if w > fi. The second policy was

adop ted in our implementation. Other policies are also possible.

In order to reflect fairness among concurrent sorts, a fair share amount of mem-

ory is defined as the total sort memory space divided by the number of active sorts.

If a sort has less rnemory than the fair share memory size, and the fair share mem-

ory is large enough to merge the remaining runs in a single step, the sort will wait

for extra memory to do the last merge, rather than proceed with its current s m d e r

CHAPTER 6. MERGE PATTERNS 142

space. When the system is short of memory, a sort will release part of its space

while keeping the amount of space close to this fair share amount. These policies

are also used in our irnplementation.

Another issue is that the same amount of memory may improve system per-

formance differently when it is used for different sorts. Sorts with many runs but

very small space rnay require rnemory more urgently than other sorts. It might be

helpfd to pnontize these sorts and divide the a d a b l e mernory among them. This

is a more delicate problem, which requires further study.

6.6 Summary

This chapter explored merge patterns aimed at reducing the amount of data trans-

ferred between disk and main memory.

For the case when the sort space remains constant throughout the external

merge phase, we derived a formula for calculating the exact cost of optimum merge

for equal size runs, and gave a lower bound and an upper bound on the optimum

merge cost for variable length rum. We also provided some approximation formu-

las. From the analysis of optimum merge, dustering, and b d e r size, we proposed

methods to determine the optimum merge width and the optimum buffer size.

For the case that a sort is able to adjust its memory usage between merge

steps, we considered four merge strategies: lazy merge, eager merge, improved

eager merge, and optimistic merge. Experimental results showed that the last

three strategies perform better than memory-static merge, while the last two are

promising for practical use.

Chapter 7

Conclusion

The goal of this thesis was to improve overd system performance by better utilizing

memory and I f 0 resources for sorting. It can be achieved by dynamically adjusting

sort memory space, rescheduling run block read orders, and using merge patterns

that reduce 110.

Contributions

The main contribution of this thesis is a memory-conscious design for sorting, which

takes into account fluctuation in availabIe memory and concurrent sort jobs in the

sys tem. By using the proposed techniques, memory resources can be better utilized,

thereby improving sys tem sort t hroughput .
A dynamic memory adjustment technique was proposed for sorting. This tech-

nique adjusts sort space at run time in response to input data size and a d a b l e

memory space. It balances memory allocation among concurrent sorts to reduce

the number of external sorts, and this improves overd system performance. A

memory-adap tive rnergesort was desigsed and im plemen t ed using t his t ethnique.

CHAPTER 7. CONCL USION

We experimentdy showed that this technique enables sorts to adapt their mem-

ory usage gracefdly to the actual input size and fluctuations in available memory

space. Sort throughput was improved signuicantly compared wit h static rnemory

allocation. Many ideas developed for memory adjustment are important not only

to t his memory-adaptive mergesort , but also to other memory-adaptive algorithms

(see next section).

To reduce disk seek time during external merge, a set of read-ahead strategies

were considered. The strategies indude eqval baffering, extended forecasting, sim-

ple clustering, and clustering with atomic reads. Extended forecasting improves

overlapping of CPU and 110 tirne, but it does not reduce disk seeks. The other

three strategies effectively reduce disk seeks. Simple clustering performs the best

when there is no disk disturbance fkom other jobs running in the system, while

equal bdering and clustering with atomic reads improves performance without

being dected by the disk disturbance. The two dustering strategies exploit the

exïsting order in the input better than equal buffering and extended forecasting.

An analysis of these strategies resulted in formulas for estimating the performance

irnprovement. These formulas provide close estimates for un i fody distributed ran-

dom data. When sort keys are partially sorted, the improvements of the strategies

are better than the improvernents on random data, and therefore better than the

improvements estimated using these formulas. Based on the formulas, we analyzed

the tradeoff between using more buffers for read ahead and using large buffers, and

provided guidelines for selecting proper buffer size.

The amount of data transferred between main memory and disk is determined by

the merge pattern. When the sort space remains constant throughout the external

merge phase, it is known how to constmct an optimum merge pat tem. This thesis

provides a formula for calculating the exact cost of optimum merge for equd size

CHAPTER 7. CONCL USION 145

nuis, and provides a lower bound and an upper bound on the optimum Yierge cost

for variable length runs. In both cases, approximate formulas are also provided

which dosely estimate the exact costs. Based on these formulas, we analyzed the

tradeoff between using large mage width and using more bde r s for read ahead,

and the tradeoff between using large merge width and using large buffers. We gave

methods to choose the optimum merge width and optimum b d e r size.

When sort space is adjustable during extemal merge, an optimum merge pattern

cannot be guaranteed. Four merge strategies were considered for memory-adaptive

merge: luzy merge, eager meTge, improved eager merge, and optimistic merge. The

last three strategies make better use of mernory resources and normdy perform

better than static merge. The last two are promising for practical use. Improved

eager merge is a good choice if the available rnemory ofken changes, while optimistic

merge is better when the avdable memory is relatively stable.

7.2 Future Work

7.2.1 Dynamic memory adjust ment

Chapter 5 presented one policy for dynamic memory adjustment, taking into ac-

count system sort space, sort stages, memory adjustment bounds, waiting, and

faimess. Other policies can be employed and more factors can be taken into con-

sideration. For example, each job in the system may have its own priority, and this

should affect its memory docation. High priority jobs should get larger memory

space or get memory space sooner than low priority jobs. This can be achieved by

setting higher memory adjustment bounds for high priority jobs and putting high

priority jobs into a high priority wait queue respectively. Accordingly, the policy

CHAPTER 7. CONCLUSION

may require more level wait queues.

In this thesis, the memory usage of a sort is adjusted by changing the number of

buffers. We can also adjust bufFer size dynamically, especially in the merge phase.

Before each mage step, we can release some b a e r s or allocate new butfers, then

divide some or all bufFers of the sort into smaller ones, or combine small bufFers

into a larger one if their memory spaces are adjacent. The number of bufEers will

affect the merge width and read order scheduling. The adjusted b a e r size based

on the available memory may result in better performance. However, new policies

are required to determine whether buffers should be divided or combined, and ~n

block size should be as small as the smallest b e e r size. One b a e r may contain

several nin blocks. Thus sort space management, the merging algorithm, read order

scheduling, and the memory adjustment policy will become cornplex.

Although the memory adjustment mechanism and policy were designed based

on the three-phase sort algorithm introduced in Section 3.1, most of the ideas are

applicable to other sort algorithms. For example, the (internal) distribution sort

algorithm c m be used for nui formation. It distributes sort keys into buckets and

then sort each bucket. Each bucket is composed of a variable number of small

buffers. The sort will be able to adjust its memory space by dynamically changing

the number of buffers in each bucket. We can also apply the memory adjustment

technique if replacement selection is used for nui formation phase. Memory adjust-

ments c m be done by expanding or shrinking the selection heap. This approach

was adopted in [PCL93a], but they did not consider the input data size and the

effects of several sorts running concurrently.

All the above methods are based on external mergesort, but dynamic memory

adjustment can be extended to other external sort algorithms. External distribution

sort is a good candidate. During distribution, we can dynamically change bucket

CHAPTER 7. CONCLUSION 147

size or the number of buckets in response to input data size and a d a b l e memory.

If the input is larger than available rnemory, we can output data korn one or more

buckets. The bucket(s) to be chosen c m be determined by the adjustment policy.

After the f i s t pass distribution, the data sizes of aII the buckets are already known.

Large buckets that cannot fit into memory require a second distribution, while

s m d buckets can be sorted in memory. Based on available memory. we can either

sort small buckets with the keys ready for output, or choose a large bucket for

further distribution. Choice of bucket to be processed is a policy decision. When

all buckets are smaller than the available memory, part of the sort space can be

released to the system. Sort space can be adjusted before sorting each bucket

or before each distribution step. AU the decision issues will be managed by the

memory adjustment policy. Many ideas developed for adap tive mergesort , such as

sort stages, memory adjustment bounds, and waiting, will still be usefd. but the

details of the memory adjustment mechanisrn and policy will be very different .

Dynamic memory adjustment c m be applied to other memory intensive oper-

ations, join being the obvious candidate. Sort-merge join uses little memory for

the actual join (except when there are many rows with the same value for the join

columns). Much more memory is required for sorting the two input tables and the

performance of sort-merge join depends largely on sort performance.

The technique is more important to hash join algorithms. Memory adjustment

for hash joins has been studied by [ZG90], [PCL93b], and [DG94]. However, their

work focused on how a single join c m use extra space or release part of its space

to affect 110 transfer unit size. They did not take into account the memory re-

quirements in difFerent stages of a join and did not consider balancing memory

docation among concurrent joins. We can develop memory-adaptivz joins based

on the ideas proposed in this thesis, making concurrent joins that are competing for

CHAPTER 7. CONCLUSION

memory resources cooperate with each other, therefore improving overall system

performance. In addition, we can develop policies to balance rnemory allocation

among all types of memory-adaptive jobs (sorts and joins).

7.2.2 1/0 improvement

Chapter 6 proposed several strategies to reschedule the read order of nui blocks

and provided formulas to estimate the performance improvement. However, aIl the

formulas are derived based on random input data and equal size runs. When the

input data is part idy sorted, the clus tering algorit hm exploits the exis ting order

by using floating buffering, but the estimating of the performance improvement is

dif£icult. How to estirnate the performance effects of different read strategies for

variable-length runs and partially sorted data is still an open question.

AlI the analysis and experirnents of various read strategies were based on the

assumption that runs are stored on a single disk. However, using multiple disks

is common in modem systems. Data striping dows parallel reads and writes to

increase disk bandwidth and improve overall disk utilization. It is not h o = yet

how o u read strategies wiU behave on multiple disks dong with the data striping

technique. New strategies rnay be needed for multiple disks, taking data striping

into consideration. The goal is not only to reduce disk seeks but, more import antly,

to balance the workload among multiple disks and maximize the parallelism of I/O

operations.

During r u formation for the last run, instead of writing the entire run to disk,

we can keep part of the nui in memory if extra space is available. This will reduce

the amount of data transferred between main memory and disk. Depending on the

available memory and the last nui size, we can keep in memory part of the last run,

the entire last run, or the entire last nui plus part of the second to last m. The

CHAPTER 7. CONCLUSION

other part of sort space is used for runs residing on disk during external merging.

Since part of the memory is used to keep the entire last run and perhaps part of

the second to last run, some space may stay unused until the very end of external

merging. There is a tradeoE between keeping the runs in-memory and using the

memory for clus tering run blocks.

S ummary

The techniques for dynamic memory adjustment and 110 improvement can be

studied further in the following areas:

1. New policies for dynamic memory adjustment applied to external mergesort:

2. Memory adjustment for 0th- sort algorithms, such as distribution sort;

3. Memory adjustment for other memory intensive jobs, such as joins;

4. Memory adjus tment policies for different types of memory-adap tive jobs;

5. Performance estimate for variable-length nuis and partially sorted data;

6. Read strategies for multiple disks dong with the data striping technique;

7. Partial writing during run formation.

Appendix A

Variable Run Lengths

A S Run lengths from sort testbed

FolIowing r u lengths were collected while a lOOM data set was sorted on the sort

testbed using memory-adaptive sort. The total a d a b l e memory in the system is

4M and sort b d e r size is 64K.

Data size (Mb) : 100.0
Num of runs: 38
Run sizes (Mb) :

A.2 Run lengths fkom triangular probability dis-
tribution

Replacement seleetion is a popdar algorithm for run formation since it is able to

produce nins larger than the a d a b l e memory size. Usudy it produces runs of

variable length depending on the existing order in the input data. However the run

length distribution is not known.

Here we assume that the probabilities of longer runs are smder thaa the prob-

ability of shorter nuis. The following nui lengths were randomly drawn from a

triangular probability distribution (as shown in Figure A.1). The run length is

hetween 1M and 5M.

Run Size

Figure A.l: Triangular probability distribution for run length

Data size (Mb) : 227.8
Num of runs: 100
Run sizes (Mb):
2.1 1.2 1.5 2.2 4.0 1.2 2.7 1.3 2.0 1.1 1.0 1.8 1.5 1.7 4.5 2.2 3.0
2.5 3.0 3.1 3.3 1.2 2.5 1.6 1.6 3.8 2.1 1.8 2.4 3.1 3.9 3.5 3.5 2.6
3.0 2.3 1.8 1.7 1.3 3.3 1.8 2.0 4.4 1.1 1.3 4.2 2.9 1.8 3.1 3.0 4.1
1.0 1.6 3.0 1.4 2.3 1.0 4.1 1.6 1.0 1.9 3.8 2.3 1.1 2.3 1.4 2.1 1.4
2.0 1.8 3.5 1.9 1.7 1.7 1.0 1.2 2.1 2.7 1.1 1.8 3.0 1.4 1.6 1.4 1.5
1.5 3.6 1.0 2.5 1.8 2.6 2.9 4.0 1.4 3.3 4.2 3.0 1.9 2.6 3.2

Appendix B

Specification of ST-15150W Disk
Drive

APPENDUC B. SPECIFICATION OF ST-15150 W DISK D R N E

Physical :
Height (inches/rnm) : 1.63/41.4
Vidth (inchedmm): 4.00/101.6
Depth (inches/=) : 5.97/151.6
Ueight (lbs/kg) : 2.3/1.04

Already low-level f ormatted at the factory with 9 spare sectors
per cylinder and 1 spare cylinder per unit.

ZBR = Zone Bit Recording = Variable sectors per track

Bibliography

[ADADC+97] Andrea C. Arpaci-Dusseau, Remi H. Arpaci-Dusseau, David E.

Culler, Joseph M. Hellerstein, and David P. Patterson. High-

Performance Sor ting on Networks of Workst ations. In Proceedings

of the 1997 ACM SIGMOD Conference, 1997.

Anon-Et-Al. A Measure of Transaction Processing Power. Datama-

tzon, 31(7):112-118, 1985. Also in Readings in Database Systems,

M.H. Stonebraker ed., Morgan KauFmann, San Mateo, 1989.

Selim G. AH. Parallel Sorting Algorithm. Academic Press, Toronto,

1985.

Alok Agganval and Jeffrey Scott Vitter. The Input/Output Com-

plexity of Sorting and Related Problems. Communications of the

ACM, 31(9):1116-1127, Sept. 1988.

Dina Bitton, Haran Bord, David J. DeWitt, and W. Kevin Willcin-

son. Parallel Algonthms for the Execution of Relational Database

Operations. A CM Ransactions on Database Systems, 8(3):324-353,

Dec. 1983.

[C GMP 911

Micah Beck, Dina Bitton, and W. Kevin Wilkinson. Sorting Large

Files on a Backend Multiprocessor . IEEE Iltans. on Cornputers,

37(7):769-778, July 1988.

Dina Bitton, David J. DeWitt, David K. Hsiao, and Jaishankar

Menon. A Taxonomy of Parallel Sorting. ACM Computing Sumeys,

16(3):287-318, Sept. 1984.

B.A.W Baugsto, J.F Greipsland, and J. Kamerbeek. Sorting Large

Data Files on POMA. In Proceedings of COMPAR-90 VAPPIV,

pages 536-547, Sept. 1990. Springer Verlag Lecture Notes No. 357.

Walter Cunto, Gaston H. Gon.net, J. Ian Munro, and Patricio V.

Poblete. f i g e Analysis for Extquick: An in situ Distributive Ex-

ternal Sorting Algorithm. Information and Computation, 92(2):141-

160, June 1991.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. McGraw-HiU Book Company, 1989.

Diane L. Davison and Goetz Graefe. Memory-Contention Responsive

Hash Joins. In Proc. of Int. Conf. on Very Large Data Bases, pages

379-390, 1994.

W. R. Du&ene and F. C. Lin. An Efficient External Sort Algorithm

with no Additional Space. The Cornputer Journal, 35(3):308-310,

Mar. 1992.

D. Dewitt, J.F. Naughton, and D.A. Schneider. Parallel Sorting

on a Shared-nothing Architecture using Probabilistic Split ting. In

[EC91]

[ECW92]

[EC W94]

[FL96]

[GBY9 11

[GragO]

[Gra93]

[GT92]

Proc. of the International Conference on Parallel and Distn'buted

Information Systems, pages 280-291, 1991.

Vladimir Estivill-Castro. Sorting and Measure of Disorder. PhD

thesis, University of Waterloo, 1991.

Vladimir Estivill-Castro and Derick Wood. A S w e y of Adaptive

Sorting Mgorithms. A CM Compnting Su i ey s , 24(4):442-475 Dec.

1992.

Vlanimir Estivill-Castro and Derick Wood. Foundations of Faster

Extemal Sorting. In Proceedings of the Fourteenth Conference on

Foundations of Softvare Technology and Theoretical Cornputer Sci-

ence, pages 414-425, 1994.

James D. Fix and Richard E. Ladner. Sorting by Paralle1 Insertion

on a One-Dimensional Sub-Bus Array. Technical Report WV-CSE

96-09-02, University of Washington, Sept. 16 1996.

Gaston H. Gomet and Ricardo Baeza-Yates. Handbook of Algon'th;s

and Data Structures. Addison-Wesley, 199 1.

Goetz Graefe. Pardel Exteinal Sorting in Volcano. Technical Report

CU-CS-459, University of Colorado at Boulder, 1990.

Goetz Graefe. Query Evaluation Techniques for Large Databases.

ACM Computing Surueys, 25(2):73-170, June 1993.

Goetz Graefe and Shreekant S. Th*. Tuning a Parallel Database

Algorithm on a Shared-Memory Multiprocessor. Softvare - Prccc-

tice and Experience, 22(7):495-517, July 1992.

IBM. DATABASE 2, Administration Guide for common seniers,

Version 2. IBM, June 1 1995.

Yannis E. Ioannidis and Stavros Christodoulakis. On the Propaga-

tion of Errors in the Size of Join Results. In Proc. of ACM SIGMOD

Conf., pages 268-277, May 1991.

Balakrishna R. Iyer and Daniel M. Dias. System Issues in Paral-

lel Sorting for Database Systems. In Proc. of Int. Conf. on Data

Engineering, pages 246-255, Feb. 1990.

M.Y. Kim. S ynchronized Disk Interleaving . IEEE TOCS,

35(11):978-988, Nov. 1986.

Donald E. Knuth. Sorting and Searching, volume 3 of The Art of

Cornputer Programming. Addison- Wesley, Reading, Massachusetts,

1973.

Sai Choi Kwan. Extemal Sorting: I/O Analysis and Parallel Pro-

cessing Techniques. P hD t hesis, University of Washington, 1986.

A. LaMarca and R.E. Ladner. The Muence of Caches on the Perfor-

mance of Sorting. In Proceedings of the Eighth Annual ACM-SIAM

Symposium ' on Discrete Algorithmg, pages 370-379, Jan. 1997.

Anthony LaMarca and Richard E. Ladner. The Muence of Caches

on the Performance of Heaps. Technical Report UW-CSE96-02-03,

University of Washington, Jan. 6 1997.

Harold Lorin. Sorting and Sort SysteW. The Systems Programming

Series. Addison-Wesley, Reading, Massachusetts, 1975.

Eugene E. Lindstrom and J&ey Scott Vitter. The Design and Anal-

ysis of BucketSort for Bubble Memory Secondary S torage. IEEE

Tram. on Cornputers, G34(3):218-233, Mar. 1985.

Masud Mansuripur. rntrod~ction to Information Theory, pages 29-

35. Prentice-Hall Inc., 1987.

Udi Manber. Introduction to Algorithms, A Creative Approach.

Addison-Wesley, 1989.

Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and

David B. Lomet. Alphasort: A RISC Machine Sort. In Proc. of

the 1994 ACM SIGMOD Int. Conf. on Management of Data, pages

233-242, 1994.

Chris Nyberg, Charles Koester, and Jim Gray. Nsort: a

Parallel Sorting Program for NUMA and SMP Machines,

http://www. ordinal. com/white/whitepaper.shtml Technical report,

Ordinal Technology Corp., June 5, 1997.

HweeHwa Pang, Michael J. Carey, and Miron Livny. Memory-

adaptive External Sorting. In Proc. of Int. Conf. on Venj Large

Data Bases, pages 618-629, 1993.

HweeHwa Pang, Michael J. Carey, and Miron Livny. Partially Pre-

emptive Hash Joins. In PTOC. of ACM SIGMOD Conf., pages 59-69,

May 1993.

M. J. Quinn. PardeI Sorting Algorithms for Tightly Coupled Md-

tiprocessors. Paralle1 Computing, 6:349-367, June 1988.

[Rad51

[RSS85]

[RW94]

[S al891

[S GM86]

[Ver 8 81

[Ver 8 91

~ 4 5 1

[WT89]

[w831

F. Raab. TPC Benchmurk(tm) D (Decision SupportJ, Workng Drufi

9.1. Transaction Processing Performance Council, San Jose CA,

95112-6311, USA, Feb. 1995.

Doron Rotem, Nicola Santoro, and Jeffery B. Sidney. Distributed

Sorting. IEEE fians. on Cornputers, C-34(4):372-375, Apr. 1985.

Chris Ruemmler and John Wilkes. An Introduction to Disk Drive

Modeling. IEEE Compter, 27(3):17-28, Mar. 1994.

Betty Salzberg. Merging Sorted Runs Using Large Main Memory.

Acta Infomatica, 27:195-215, 1989.

K e ~ e t h Salem and Hector Garcia-Molina. Disk Striping. In Proc.

of Int. Con6 on Data Engineering, pages 336-342, 1986.

A. Inkeri Verkamo. External Quicksort. Performance Evaluatzon,

pages 271-288, Aug. 1988.

A. Inkeri Verkamo. Performance Cornparison of Distributive and

Mergesort as External Sorting Algorithms. The Journal of Systems

and Softuare, pages 187-200, Oct. 1989.

Lutz M. Wegner. Quicksort for Equal Keys. IEEE Dans. on Corn-

puters, C-34(4):362-367, Apr. 1985.

Lutz M. Wegner and Jukka 1. Teuhola. The External Heapsort. IEEE

Tram. on Software Engineering, 15(7):917-925, July 1989.

A. M. Yaglom and 1. M. Yaglom. Probability and Information, pages

160-161. D. Reidel P u b l i s h g Company, 1983.

[ZG90] Hansjorg Zder and Jim Gray. An Adaptive Hash Join Algorithm

for Multiuser Environments. In PTOC. of Int. Conf. on Ve'ery Large

Data Bases, pages 186197, 1990.

[Zhe92] Luo Quan Zheng. Speeding up Externd Mergesort. Master's thesis,

University of Waterloo, 1992.

[ZL96a] Weiye Zhang and ~er-Ake Larson. A Memory-Adaptive Sort (MA-

SORT) for Database Systems. In Proceedings of the 1996 IBM CAS

Conference (CASCON796), pages 194-207, Nov. 1996.

[ZL96b] Luo Quan Zheng and ~er-Ake Larson. Speeding up External Merge-

sort. IEEE Tram. on Knowledge and Data Engineering, 8(2):322-

332, Apr. 1996.

