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Abstract

Most research on sorting has been focused on improving single sort performance.
This thesis focuses on improving overall system throughput when multiple sorts (or
other operations) are running concurrently, competing for the same resources. This
is the normal environment in a database system.

A dynamic memory adjustment technique is proposed for external mergesort
which adjusts sort space at run time in response to actual input size and available
memory space. It balances memory allocation among concurrent sorts so that more
sort jobs are done entirely in main memory. This significantly increases system
throughput and reduces average response time.

Several read-ahead strategies which reduce disk seeks during merging are stud-
ied. Three strategies, called equal buffering, simple clustering, and clustering with
atomic reads, effectively reduce disk seeks. The latter two exploit existing order
in the input data much better than the first. A set of formulas are derived for es-
timating the performance improvement resulting from these read-ahead strategies.
They provide close estimates for uniformly distributed random data.

The amount of data transferred between main memory and disk is determined
by the merge pattern, i.e., the order in which runs are merged. For the case when
the sort space remains fixed throughout the merge phase, we derive formulas for
calculating the optimum merge cost and provide methods for choosing the best
merge width and buffer size. For the case when the sort space is adjustable be-
tween merge steps, four merge strategies are proposed and studied. Two are found

promising for practical use.
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Chapter 1

Introduction

1.1 Motivation

Sorting is a frequently used operation in database systems. It is used not only to
produce sorted output, but also in many sort-based algorithms, such as grouping
with aggregation, duplicate removal, sort-merge join, ANY and ALL operations,
as well as set operations including union, intersect, and except [Gra93] [IBM95].
Sorting can also improve the efficiency of algorithms like nested-loop joins and row
retrieval via an index.

Sorting speeds have improved dramatically over the past few years. The most
recent results are for NOW-Sort, developed at University of California, Berkeley
[ADADC?97], Nsort, developed by Ordinal Technology Corp [NKG97], and Alpha-
Sort, developed at Digital Equipment Corporation [NBC*94|. These sorts were
designed to break previous sort benchmark records, such as MinuteSort [NBC*94]
and Datamation Benchmark [AEA85], which are disk-to-disk sorts with no limit on
system resources. The researchers focused on speeding up sorting by using enough

memory to sort the data entirely in memory, using as many disks as needed to over-
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come I/Q bottlenecks, and using multiple processors or a network of workstations
to sort the data in parallel.

In a real application system, however, resources are limited and shared by mul-
tiple jobs running concurrently. Improving overall system performance is more
important than just improving the performance of a single sort running in iso-
lation. Multiple jobs running concurrently in a system will compete for system
resources. Large data sets that cannot fit entirely into available memory have to
be sorted externally, introducing problems entirely different from those encoun-
tered when aiming to break benchmark records. The bottlenecks will be different.
The issue of balancing resource usage among concurrent jobs must be addressed.
Furthermore, sorting in database systems is normally not a disk-to-disk operation,
because operators of a query are often pipelined. The sort input is obtained from
another operator and the sorted output is sent to a different operator. When the
input is obtained from a fast provider and the output is sent to a fast consumer,
source data input and sorted data output are not bottlenecks in sort processing.

This thesis concentrates on sorting issues in database systems, especially when
there are multiple sorts running concurrently in the system. We assume that re-
sources, particularly memory resources, are limited. Therefore large sort jobs may
have to be done by external sorting due to shortage of memory. The goal is to
improve overall system (sort) performance by making better use of main memory

and I/O resources.

1.2 Problem and Research Goals

When memory resources are limited, external sorting is required to sort large data

sets. In this case, I/O time for transmitting intermediate data normally dominates
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the sort time. As a result, the amount of available memory may affect the sort
time dramatically. Many existing systems rely on static memory allocation, that
is, work space is allocated when the sort operation starts and remains unchanged
until it finishes. The problem with this approach is that some operations may
waste memory while others are starved for memory. There are two reasons why
this may happen. First, the input data size may be unknown or poorly estimated
at the time a sort starts. Second, in a multiuser environment the workload changes
continuously resulting in varying demands on the total memory available in the
system. Overall performance can be improved by using algorithms that enable
operations to adjust their memory usage at run time in response to the actual size
of their inputs and fluctuations in total memory demand. The first goal of this
thesis is to have more sorts done in memory by dynamically adjusting the memory
usage of sort jobs.

External mergesort is the most commonly used algorithm for external sort-
ing. It has a run formation phase, that produces sorted runs, and a merge phase,
that merges the sorted runs into sorted output. During merging, run blocks are
consumed in a particular sequence and are usually read in that order. However,
researchers have found that disk seek time can be reduced by reading the run
blocks in a different order if extra memory is available [Zhe92] [ZL96b] [ECW94].
Several read-ahead strategies have been proposed to reschedule read orders, but
these strategies were designed for single sorts, i.e., no concurrent jobs access the
disk at the same time. This motivated the study of strategies for concurrent sort
jobs as well as estimation of the performance improvement of read strategies. The
second goal of this thesis is to find good read-ahead strategies taking into account
concurrent jobs, and to estimate the improvement resulting from these strategies.

When runs have to be merged in multiple steps, the amount of data transferred
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between main memory and disk is determined by merge pattern, i.e., the order in
which runs are merged. Knuth described a method for constructing an optimum
merge pattern under the condition that the sort space remains fixed during the
whole merge phase [Knu73]. However, no one has ever given the cost of an optimum
merge. One of the goals of this thesis is to build cost models for the optimum
merge. The models help investigate the relationship between optimum merge and
read order scheduling, and the relationship between merge width and buffer size.

Given a fixed amount of memory, we can use all buffers to provide the maximum
merge width or leave some buffers for read order scheduling. We can also use large
buffers to reduce disk seeks, but it results in fewer buffers. Using large merge width
can merge more runs in each step, which reduces the amount of data transmitted,
while using more buffers for read ahead and/or using large buffers can reduce disk
seeks. So there is a tradeoff between data transfer time and disk seek time. To find
the optimum merge width with read order scheduling and the optimum buffer size
taking into account merge width are also the goals of this thesis.

" If sort space is adjustable during the external merge phase, an optimum merge
pattern cannot be guaranteed due to unpredictable memory changes. The last goal
of this thesis then, is to find reasonable strategies for adjusting the merge width
dynamically.

In summary, the ultimate goal of this thesis is to achieve better sort throughput
in an environment where multiple sorts (possibly with other jobs) are running con-
currently, competing for the same resources (memory, disks, or both). By making
better use of memory resources, we try to have more sorts done entirely in memory;
we use extra memory for read order scheduling to reduce disk seeks; and we select
proper merge patterns to reduce the amount of data transferred between disk and

main memory. Memory resources will be better utilized by dynamically adjusting
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the work space of sort jobs.

1.3 Thesis Outline

The rest of this thesis is structured as six chapters.

Chapter 2 reviews previous research on sorting, including recent interests in
internal sorting, external sorting algorithms, and techniques for improving external
mergesort.

Chapter 3 serves as a starting point for the following chapters. It first introduces
a three-phase external mergesort algorithm, followed by an analysis of the bottle-
necks in sort processing. It then introduces techniques to reduce run input/output
cost, including dynamically adjusting sort memory space, rescheduling read order
of run blocks, and choosing proper merge patterns, which are the main topics of
this thesis. To evaluate the proposed techniques and confirm our analysis results,
a sort testbed was implemented. The design of the testbed is also described in this
chapter.

Chapter 4 studies techniques for dynamic memory adjustment. It begins with an
analysis of the problems introduced by a memory-static sort, then gives a memory-
adaptive mergesort algorithm. We propose a memory adjustment mechanism and a
policy that balances memory usage among concurrent sorts. The technique enables
sorts to adapt their memory usage to the actual input size and available memory
space, and enables concurrent sorts to cooperate with each other when they compete
for memory resources. Experimental results show that this technique allows more
sort jobs to be done entirely in memory which significantly improves overall system
performance.

Chapter 5 presents a set of read-ahead strategies aimed at reducing disk seeks
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during external merging. These strategies include fixed-buffering, extended fore-
casting, simple clustering, and clustering with atomic reads. The last strategy is
designed for concurrent sort jobs. It helps retain performance when disk contention
is high. Besides comparing the strategies on random data, we investigate the effects
of partially sorted input. To estimate the performance improvement, a set of for-
mulas is obtained from analysis of these strategies. The accuracy of the estimates
is confirmed by experimental results. We also study the problem of how to choose
the buffer size.

Chapter 6 explores merge patterns with the goal of reducing the amount of
data transferred between disk and main memory when runs are merged in multiple
steps. For the case that sort space remains fixed during the external merge phase, a
formula is derived for calculating the exact optimum merge cost for equal size runs,
while a lower bound and an upper bound on the optimum merge cost are given
for variable length runs. Approximation formulas are provided for both cases.
Based on these results, we study the relationship between optimum merge and read
order scheduling, and the relationship between merge width and buffer size, then
propose methods to determine the optimum merge width and the optimum buffer
size. For the case that a sort is able to adjust its memory usage between merge
steps, four strategies are proposed for memory-adaptive merge: lazy merge, eager
merge, improved eager merge, and optimistic merge. They are compared along
with memory-static merge. The improved eager merge strategy and the optimistic
merge strategy are promising for practical use.

Chapter 7 summarizes the main contributions of this thesis, and discusses prob-

lems and possible solutions for future research.



Chapter 2

Related Work

Sorting is a fundamental problem in computer science. It has been extensively
studied for several decades. This chapter surveys some work in the literature re-
lated to the issues studied in the thesis. For internal sorting, this survey focuses
on the recent interests in sort performance enhancement rather than the sorting
algorithms. For external sorting, the survey covers two sorting algorithms: exter-
nal mergesort and external distribution sort. This is followed by techniques for
improving external mergesort, including algorithms for run formation, read ahead

for merging, merge patterns, and a dynamic memory adjustment technique.

2.1 Internal Sorting

Internal sorting deals with data sets which can be sorted entirely in main memory.
Many algorithms have been invented for internal sorting, including insertion sort,
selection sort, bubble sort, quicksort, bucket sort (distribution sort), radix sort,
mergesort, and heapsort, etc. [Knu73] [CLR89] [Man89]. Quicksort and bucket

sort are two algorithms commonly used in practice.
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Early studies of internal sorting focused on time and space complexity. Nowa-
days, most researchers in the sort community appear to direct their effort towards
sort benchmarks. More attention is paid to issues in computer architecture. Peo-
ple try to speed up sorting by exploiting all system resources: processors, cache,
memory, and I/0 [NBC*94|[ADADC*97].

Internal sorting algorithms typically perform a sort job in three steps: data in-
put, sorting, and result output. The three steps are performed sequentially. Nyberg
et al. proposed the AlphaSort algorithm which uses quicksort to sort data in small
buffers then uses a tournament tree to merge the sorted buffers [NBC*94]. In this
algorithm, data input can be overlapped with sorting of the buffers, and the result
output can be overlapped with merging. Consequently, the CPU and I/O resources
are better utilized and the sort elapsed time is reduced.

If input data is read from disk and result data is written to disk, disk I/O
tends to be the bottleneck. This problem can be solved by striping data across
many disks!. Data striping can balance the workload among multiple disks, which
allows parallel reading and writing, and thus increases the effective disk bandwidth
[SGMS6] [Kim86)|.

For the sorting step, the major cost comes from memory accesses. Processor
speeds continue to increase faster than memory speeds causing an algorithm'’s cache
behavior to become increasingly important. The latency of accessing data from
cache is much smaller than from memory. Cache miss penalties have a great influ-
ence on sort performance so that cache locality becomes an important factor in sort

algorithm design. Among the classic sorting algorithms, quicksort has good cache

1[BGK90] mentioned a sort on a 100-processor 100-disk system, while DeWitt, Naughton, and
Schneider used 32 processors, 32 disks, and 224M of memory [DNS91] for their sorting experi-
ments. The I/O bottleneck was overcome by striping data across many disks to get sufficient I/O
bandwidth.
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locality since it accesses memory in sequential patterns. Moreover, because of its
divide-and-conquer strategy, the data set is divided recursively into smaller pieces,
eventually small enough to fit into cache. Many memory accesses can be avoided.
So quicksort was employed to construct the cache-efficient AlphaSort in [NBC*94].
LaMarca and Ladner studied the influence of caches on several sorting algorithms,
including heapsort, mergesort, quicksort, and radix sort [LL97a] [LL97b]. They
showed that radix sort has poor cache locality, and therefore performs worse than
other algorithms. To improve cache locality of the sorting algorithms, they used a
d-heap (a d-ary tree) for heapsort, employed multiway merging for mergesort, and
proposed multi-partitioning for quicksort. All modified algorithms perform better
than the original algorithms due to lower cache miss rate. The modified heapsort is
outperformed by the modified mergesort and quicksort. Unfortunately, they did not
compare their algorithms with the AlphaSort algorithm which sorts small buffers
using the quicksort algorithm followed by a multiway merge.

Many researchers are working on sorting using multiprocessors and distributed
systems, producing many sort benchmark records [ADADC*97] [NBC+94] [GT92]
[DNS91] [BGK90]. Parallel sorting and distributed sorting have been studied ex-
tensively from both theoretical and practical perspectives. There are many inter-
esting problems in this area [FL96] [Gra90] [ID90] [Qui88] [BBW88] [RSS85] [AkI85]
[BDHMS84| [BBDWS83|. However, the topic is outside the scope of this thesis, and

will not be investigated here.

2.2 External Sorting

This section describes two commonly used external sorting algorithms: external

mergesort and external distribution sort. We discuss several important techniques
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for improving external mergesort and show the limitations of these techniques.

2.2.1 External sorting algorithms

External sorting refers to sorting very large data sets that cannot fit into main
memory. Many algorithms have been developed for external sorting, most of them
derived from techniques used in internal sorting. Early studies of external sorting
focused on using tapes as secondary storage, while current research concentrates
on disk-based algorithms.

External mergesort is a well-known algorithm for external sorting [Knu73]. It
consists of two phases: a run formation phase and a merge phase. During the first
phase, the data to be sorted is divided into smaller sets that can be sorted in main
memory. Each set is sorted and then stored on external storage. These sorted data
sets are called runs. In the merge phase, the runs are merged into sorted output.
Figure 2.1 shows the two phases of external mergesort. Elapsed time of the two
phases is usually used as a measure of sort performance. When data input and
result output are fast, reading and writing run data becomes the bottleneck.

Among all the external sorting algorithms, external mergesort is the most thor-
oughly studied algorithm. Aggarwal and Vitter claimed that mergesort is an opti-
mal external sorting method (up to a constant factor) in the total number of I/O
operations required [AV88]. Many techniques have been developed to increase its
efficiency. We will discuss some of the important techniques and their limitations
in Section 2.2.2.

Distribution sort [Kwa86] is also called distributive sort [Ver89] or bucketsort
[Knu73]. This internal sorting method has been applied to external sorting to
provide an external distribution sort. External distribution sort also consists of

two phases. During the first phase, it distributes the input data into a set of range-
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Figure 2.1: External mergesort

disjoint relatively ordered buckets. This process is repeated on the buckets until
each bucket is small enough to be sorted in memory. At the second phase, the data
in each bucket is sorted internally and the final result is formed by combining all
the buckets.

The main issue for this algorithm is finding some way to distribute data evenly
among the buckets, thereby reducing the recursive distributions on the buckets.
Sampling is commonly used for this purpose. There are many variations of external
distribution sort. For example, Cunto et al. proposed an in situ distributive external
sorting algorithm, which recursively distributes a file into m subfiles. The partition
is based on a random sample of size km — 1. The values of m and & depend on the
data size and the track size of the disk to be used. The analysis of the algorithm is
presented in [CGMP91].

There is a duality between merge sort and distribution sort, with a correspon-

dence between externally ordered buckets and internally ordered runs, between
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distribution passes and merge passes, etc. (see [Knu73] and [Kwa86]). Although
there are similarities between these two external sorting algorithms, the behavior of
the algorithms and the research issues are totally different. It is claimed in [LV85]
that distribution sort cannot compete with mergesort, unless particular disks (e.g.,
associative secondary storage) are used. One of the reasons is that an infeasible
amount of memory is required to finish the distribution in one pass for large data
files.

Besides external mergesort and external distribution sort, there are many other
algorithms for external sorting, such as external quicksort [GBY91] [Ver88|, external
tag sort [Kwa86], external heapsort [WT89], and external bubblesort [DL92]. These
algorithms are derived from the corresponding internal sorting algorithms. Since
they require more I/O operations than external mergesort, these algorithms are

rarely used in practice.

2.2.2 Techniques for improving external mergesort

External mergesort is the most commonly used algorithm for external sorting. Many
techniques have been developed to improve its performance, including algorithms
for run formation, read ahead for merging, optimum merge patterns, and dynamic

memory adjustment.

Run formation

The simplest way to create a run is to fill all the available memory with input
records, sort them using some internal sorting algorithm (e.g., quicksort), and then
write the run to external storage. The size of the run is the same as the size of

available memory for the internal sorting. All runs generated are the same size,
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except the last one. Quicksort has good cache locality, but it is hard to overlap
CPU processing and I/O. CPU and I/O resources are not fully utilized.

Replacement selection is one of the most well-known methods used for run for-
mation. To create a run, this method first fills all available memory with records
and organizes them into a tournament tree (normally using a heap). A loser tree is
better than a winner tree since it requires fewer key comparisons for updating the
tree structure [Knu73]. The record with the smallest key is then removed from the
top of the tree and written to a run file. A new record from the input is inserted
into the tree. If the key of this new record is smaller than the key of the last
record written out, the new record is marked “dead” and otherwise left unmarked.
In comparisons among records in the tree, marked records are always considered
“larger” than the unmarked records. Then the currently smallest record is removed
and written to the current run file. A new record is inserted into the tree again.
When there are no unmarked records left in the tree, the current run is closed, a
new run is started, and all records are unmarked.

Replacement selection provides perfect overlap of data input, internal sorting,
and run output. In addition, it can produce runs larger than the available memory
size. The average run length for random data is twice the size of available mem-
ory [Knu73]. Several variants of this algorithm produce even longer runs [Knu73]
[Kwa86], but they require several read passes of the input data. The benefit from
the longer runs may not fully compensate the extra cost at the run formation phase.
The major problem with replacement selection is its poor cache performance when
the tournament tree is large. Only a small part of the tree resides in cache. When
the record with the smallest key is removed, a new record is added into the tree.
Each replacement selection step traverses the tree from the bottom to the top. The

traversal path in one step is likely to be different from the path in the next step,
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resulting in random memory accesses and many cache misses. One way to improve
the cache performance of replacement selection is to have as many parent-child
node pairs fit in the same cache line as possible. This can reduce cache misses by
a factor of two or three; however, according to [NBC*94], quicksort is still more

attractive.

Read ahead for merging

The merge phase requires at least one buffer for each run. If there are no extra
buffers, reading will stop during merging until a buffer becomes free. Then merg-
ing stops during reading. The overlap of reading and merging requires additional
buffers. Several buffer allocation schemes have been proposed.

Double buffering is a commonly used scheme. Two input buffers are used for
each run to achieve better overlap between reading and merging. One block from
each run is read into memory and the merge process starts. Then the second block
of each run is read in during merging. After that, as soon as a buffer is emptied,
the next block of that run is read into memory. Salzberg strongly advocates this
technique to achieve “perfect overlapping” of merging and reading [Sal89].

Knuth proposed the forecasting technique which uses only one extra buffer for
read ahead [Knu73]. By comparing the last key of each block in memory, it is easy
to decide which block will be emptied first. The next block of that run will be read
into the extra buffer.

Both double buffering and forecasting can achieve complete overlap of merging
and I/0. In this case, the elapsed time of the merge phase is normally dominated
by the I/O time. The time required to read a block of data from disk consists
of two parts: disk seek time (including rotational latency) and data transfer time.

Two techniques have been proposed for reducing the total seek time: increasing the
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buffer size and changing the read order. Increasing the size of each buffer reduces
the total disk seek time simply by reducing the number of reads. The effects of this
technique are discussed in [Sal89].

The idea of changing the read order was introduced by Zheng and Larson [Zhe92]
[ZL96b]. Extra buffers make it possible to read data blocks in an order that is
different from the order they are consumed during merging. We can then try to
read them in an order that minimizes the total seek time (taking into account
that the number of buffers is limited). Zheng and Larson introduced the concepts
consumption sequence and read sequence and proposed a heuristic for computing
near-optimal read sequences. However, the proposed method has one deficiency:
it relies on the physical location of the run blocks, which is often unknown for
modern disks. Estivill-Castro and Wood continued this research and proposed an
algorithm that groups adjacent run blocks together to reduce the number of disk
seeks, assuming that run blocks of the same run are stored in adjacent locations
on disk [ECW94]. So this algorithm does not rely on the physical location of run
blocks. However, both methods were designed for single sorts. If there are other
Jjobs accessing the run disk at the same time of merging, the disk head may move

away randomly after each disk read. Disk seek time will not be reduced as expected.

Merge patterns

When runs cannot be merged in a single pass, the merge cost can be measured by
the amount of data transferred. This is determined by the merge pattern. As an
example, Figure 2.2 shows three merge patterns for six runs. The maximum merge
width is 4. Each circle represents a run (either an initial run, or a run created by
merging), and the number in the circle represents the run length. The three merge

patterns result in different merge costs.
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(a) merging in passes (b) merging in steps (c) optimum merge

Figure 2.2: Merge patterns for six runs

Figure 2.2(a) shows a straightforward merge method using multiple passes. All
runs are merged into larger runs before going to the next merge pass. In this
example, two passes are needed to finish the merge. All the data (70 blocks) are
read into memory and written to disk once before the last merge pass.

In fact, runs need not be merged in passes. The only requirement is that each
merge step must reduce the number of runs. Some records may be involved in many
merge steps while others may be involved in only a few steps. Figure 2.2(b) shows
a merge pattern using multiple steps. In this example, the last two runs (R5,R6)
need not be merged until the last merge step. So only the first 4 runs (totally 55
blocks) are read and written before the last merge step. The merge cost is lower
than the cost of merging in passes.

There are many valid merge patterns. Which one transfers the least amount of
data? Under the assumption that the maximum merge width remains fixed, this
problem has a very simple solution, as described by Knuth in [Knu73] (pp.365-366):

“An optimum pattern for this situation can be constructed without difficulty using
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Huffman’s method, which may be stated in merging language as follows: ‘First add
(1-S) mod (P-1) dummy runs of length 0. Then repeatedly merge together the P
shortest existing runs until only one run is left.” ”. S denotes the number of initial
runs and P is the maximum merge width. Instead of adding dummy runs, Harold
Lorin proposed an algorithm to calculate the number of runs for the first merge
step ({Lor75] pp.287). The algorithm is described as below:

K = (5-1) mod (P-1)
if (K>0)M=K+ 1else M=P
merge the M shortest rums in the first step

merge the P shortest runs in each following step

Figure 2.2(c) gives an optimum merge pattern for the six runs. Only 25 blocks are
read and written before the last merge step.

Although the optimum merge pattern can be simply constructed, no one has
ever given formulas for calculating the cost of an optimum merge. Unfortunately,
this method does not apply to the case when the sort space, and therefore the
maximum merge width, may change during merging.

For a given amount of memory, the number of buffers is inversely proportional
to the buffer size. The maximum merge width increases as buffer size decreases.
Large merge width minimizes the amount of data transmitted, while small buffers
increases disk seeks. Then what is the optimum buffer size for a given memory
space? This is a tradeoff between transfer time and disk seek time. Graefe has
studied this problem and shows that the optimum buffer size can be obtained by
minimizing

(t+s/C)/(n(M/C)) ,

where ¢ is the transfer time per page, s is the average seek time, M is the memory
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size, and C is the buffer size [Gra90]. This result is derived from an approximate
formula for data transfer size, which may underestimate the real transfer size by
over 20%. Finding the optimal buffer size from this result is complicated. Graefe
resorted to full enumeration by testing each physically possible buffer size.

Dynamic Memory Adjustment

Sorting is a memory intensive operation whose performance is greatly affected by
available memory. System performance improves radically when the data is pro-
cessed entirely in memory. Whether external sorting can be avoided or not depends
on the input data size and available memory size. If a sort uses a predefined con-
stant amount of memory, extra memory available in the system will not be used.
On the other hand, a small sort may not use all the space allocated. The extra
space allocated to this sort is wasted and cannot be utilized by other jobs in the
system. Memory utilization is low in both cases. Can this problem be solved if a
sort allocates an exact amount of space determined by the input data size? Unfor-
tunately, no. First of all, the input data size is often unknown, especially when the
data is pipelined from another operator in the query. Secondly, with multiple jobs
running in a system, the available memory changes dynamically. There may be
only a small amount of memory space available when a sort starts, but more mem-
ory may become available during sorting. Allocating a fixed amount of memory for
sorting prevents the sort from using the newly available memory space.

Dynamic memory adjustment for sorting is a technique to solve the above prob-
lem. It was first studied by Pang, Carey and Livny [PCL93a]. They proposed
memory adjustment strategies for external mergesort. For the run formation phase,
they considered quicksort and replacement selection. When quicksort is used, ad-

justments can only be done when a run has been finished and output. Data input,
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internal sorting, and run output cannot be overlapped. When replacement selection
is used, memory adjustments can be done by expanding or shrinking the tourna-
ment tree. But it has been found in [NBC*94| that replacement selection has poor
cache behavior, which degrades CPU utilization. For the merge phase, they pro-
posed a method to dynamically adjust sort space (merge width) during merging,
basically by stopping the current merge step and starting the next merge step in a
new merge pattern. The problem is that frequent adjustment within a merge step
may be expensive. Also in their study, they did not consider unknown input size
and the effects of several sorts running concurrently.

Further research on dynamic memory adjustment for sorting was done in my
previous work at IBM Toronto Lab [ZL96a]. A memory-adaptive sort (MASORT)
was designed making a sort adapt its memory usage to both input size and available
memory space. The method aims to balance the memory usage among concurrent
sorts, but only limited cases (two concurrent sorts and three concurrent sorts) were
studied.

Up to now, dynamic memory adjustment techniques have been applied only
to external mergesort. However, it is possible to apply the idea to other external

sorting algorithms, such as external distribution sort.



Chapter 3

Sort Design and Sort Testbed

Resources required for sorting include CPU, memory, and disk(s). Sort performance
is mostly affected by the utilization of these limited resources. Our sort design aims
to improve sort performance by exploiting these resources. The goal is to increase
system sorting throughput and reduce average response time. In this chapter, we
first introduce a three-phase mergesort algorithm followed by an analysis of the
bottlenecks in sort processing. Since run input/output is normally the bottleneck
of external mergesort, we describe several ways to reduce run input/output cost,
including dynamically adjusting sort memory space, rescheduling run read orders,
and using proper merge patterns. These techniques are aimed at improving sort
performance by utilizing memory and disk resources better. They are the main
topics of this thesis and will be discussed in detail in Chapters 4 to 6. In the last
section, we describe a sort testbed, which has been used to experimentally study

the effects of the techniques proposed.

20
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3.1 A Three-Phase Mergesort Algorithm

External mergesort is the most commonly used algorithm for external sorting. It
consists of two phases: a run formation phase and a merge phase. The standard
algorithms for run formation are quicksort and replacement selection. However,
both algorithms have drawbacks: replacement selection suffers from poor cache
performance, and quicksort does not overlap sorting and input/output. Following
[NBC*94] we therefore opt for a two-phase algorithm for run formation, which
results in a three-phase external mergesort algorithm as shown in Figure 3.1.

data
input

{ in-buffer
sort

in-memory Y external sorting

sorting | |1 e

(ispa )
external

f merge

|

result
output

Figure 3.1: Three-phase external mergesort
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This algorithm has three phases: an in-buffer sort phase which sorts data within
each buffer, an in-memory merge phase which merges sorted buffers, and an ez-
ternal merge phase which merges sorted runs. Each phase involves input/output
operations and sort/merge processing. By separating CPU processing and I/O op-
erations, we get seven sort steps: data input, in-buffer sort, in-memory merge, run
output, run input, external merge, and result output.

If input data fits into one buffer, sorted output will be produced directly from
the in-buffer sort phase. If the input data is larger than one buffer but fits into
available memory, sorted output will be produced from the in-memory merge phase.
If the input data does not fit into the available memory, the sort process will go
through the first two phases multiple times to produce runs, and may execute
several external merge steps. Sorted output will be produced from the last merge
step in the external merge phase.

In this algorithm, the in-buffer sort can use any internal sorting algorithm to
sort the data within a buffer. Quicksort is adopted in our implementation. The
buffer size is selected small enough to fit into second level cache (on-board cache),
which improves cache performance even if some other algorithm is used for in-
buffer sorting. The in-memory merge and the external merge use tournament trees
to merge the sorted buffers or sorted runs.

We choose this sorting algorithm because it has several desirable characteristics.

First, the algorithm has good cache performance. This is because it sorts data
in small buffers using quicksort and then merges the sorted buffers and sorted runs
using multiway merging. Both quicksort and multiway merging have been found to
have good cache locality [LL97a] [NBC*94].

Second, the algorithm allows almost full overlap of CPU and I/O operations,
which helps improve CPU and disk utilization. Many sort steps can be overlapped,
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including data input and in-buffer sort, in-memory merge and result/run output,
in-memory merge and data input (for the next run), run input and external merge,
as well as external merge and result output. These overlaps can be achieved by
using separate I/O agents (processes, threads) for I/O operations. If sort/merge
steps and input/output steps are fully overlapped, a sort is completely CPU bound
or completely I/O bound, and sort performance is determined either by CPU time
or by I/O time.

Third, the algorithm results in smooth I/O operation because it uses multiway
merging while producing initial runs, reading run blocks, and writing intermediate
runs. It also allows sort jobs to use large buffers (I/O unit) to transfer intermediate
data between main memory and disk.

Fourth, this algorithm supports an incremental sorting style. A sort can allocate
new space after a buffer is full and before or after the buffer is sorted. This makes
it possible for a sort to adapt its memory usage to unknown input data sizes (see

Chapter 4).

3.2 Bottlenecks

Any sort step may become the bottleneck of a sort. It depends on system con-
figuration, input data size, and other operators in the query which requires the

sort.

e Data input becomes the bottleneck when input data is from either a disk or
an operator that provides the data slower than the in-buffer sort is able to

process the data.
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e In-buffer sort becomes the bottleneck when input data originates from a fast

provider. This could be an operator or multiple disks.

e In-memory merge becomes the bottleneck when it produces sorted data that

is sent to a fast consumer, either an operator or multiple disks.

e Run output becomes the bottleneck when writing run data is slower than

In-memory merge processing.

e Run input becomes the bottleneck when reading run data is slower than ex-

ternal merge processing.

e FEzternal merge becomes the bottleneck when both run input and result output

are faster than the merge processing.

o Result output becomes the bottleneck when the sorted output is sent to an

operator or a disk that consumes the data slower than the merge processing.

In a multiuser environment, available memory is limited and may vary contin-
uously. Although main memories are becoming very large, data size increases even
faster, especially in database applications and information retrieval. Large data
sets have to be sorted with external merge. Since processors are much faster than
disks, input/output is still the most common bottleneck unless many disks are used
to stripe the data on disks. Run data input/output is a major cost in external
sorting.

In database systems, operators of a query are often pipelined. The input data
for sorting is usually from an operator rather than directly from disk. The sorted
output is often sent to another operator, rather than written to a disk. The overall
performance of a query is affected by the sort operator when it becomes the bottle-

neck, that is, the data input and result output are both fast sufficiently that they
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are not the bottleneck. Therefore, we assume that the bottleneck for (external)
sorting is run data input/output, and the major cost of sorting is determined by
the cost of writing and reading run data blocks. Source data input and sorted result
output are not considered in this thesis, although they are important in disk-to-disk

sorting problems.

3.3 Reducing Run Input/Output Cost

Sort performance improves radically if input data can be sorted entirely in memory,
in which case there is no run input/output cost. Whether external sorting can be
avoided or not depends on the input data size and available memory size. Static
memory allocation either wastes memory space or fails to make full use of memory.
In this thesis, we propose a dynamic memory adjustment technique to improve
memory utilization. It supports run-time adjustment of in-memory work space
for external mergesort. The goal is to have more data sets sorted completely in
memory, thereby improving overall system performance, especially when multiple
sorts are running concurrently in a system. Qur technique enables sorts to adapt
their memory usage gracefully to the actual input size and available memory space.
Compared to static memory allocation, this technique wastes less memory. In
addition, alarge sort may expand to use all available memory resources (for sorting).
Both sort throughput and response time can be improved significantly by using this
technique. A memory-adaptive sort was implemented using this technique in the
sort testbed. It was compared to a sort without dynamic memory adjustment.
called memory-static sort. Details are given in Chapter 4.

If data sets are larger than the available memory, they have to be sorted with

one or more merge steps. The run I/O cost can be reduced by reducing data transfer
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time, disk seek time, or both.

During external merging, available extra memory can be used for reading run
blocks which are not required immediately but can be read with less disk seek time.
This is achieved by a read ahead technique which reschedules the read order of run
data blocks. The run blocks are read in such an order that the disk seek time is
reduced and therefore the sort performance is improved. We can also use large
block size, or I/O transfer unit, to reduce disk seeks. Details of these techniques
are discussed in Chapter 5.

If memory is very small or the number of runs is large, the runs have to be
merged in multiple steps. Part or all of the data will be read from and written
to disk multiple times. Both data transfer time and disk seek time are affected
by the order in which runs are merged. Choosing a proper merge pattern can
reduce data transfer cost as well as disk seeks. When the available memory changes
dynamically in the system, sort space may change from one merge step to another.
An optimum merge pattern cannot be guaranteed in such cases. Heuristic strategies
are developed in this thesis to deal with dynamic merges. Details are given in
Chapter 6.

In summary, we attempt to reduce run I/O cost by

e reducing the number of external sorts using dynamic memory adjustment

technique;

e reducing disk seeks by exploiting extra memory for read ahead and/or larger

units of I1/0;

o reducing the total amount of data transferred between memory and disk by

choosing proper merge patterns.
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3.4 Sort Testbed

3.4.1 Sort testbed components

To evaluate the ideas and techniques proposed in this thesis, a sort testbed was
implemented. The sort testbed simulates (part of) a database environment, as
shown in Figure 3.2. It includes a sort job initiator, a memory space manager, a
disk space manager, asynchronous I/O support, a disk access disturbance facility,
and the sort system. When provided with system configuration parameters and
sort test parameters, the testbed generates and executes a sequence of sort jobs

and collects performance results.

Sort system configuration parameters
Sort test parameters

r Sort Job Initiator I
]
Sort System
in-buffer in-memory external
sort merge merge
memory read merge
. sequence pattern
adjustment scheduler scheduler
Memory Disk Space || Asynchronous || pisk Access
(sort space) || (run file) IO .
Manager Manager Support Disturbance

L Experiment performance results J

Figure 3.2: Design of the sort testbed
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The memory manager is similar to a work space manager that manages the
work space of all operators in a database system but, in our case, it manages only
the system sort space.

The disk space manager manages allocation and deallocation of run blocks on
disk. It does not rely on the file system for space management — all run files are
stored in a raw disk partition.

Asynchronous I/0 is implemented by using separate I/O threads. Sort threads
and I/O threads communicate through queues. All buffers are in shared memory
and raw I/O is used for reading and writing.

The disk access disturbance module simulates other jobs which access the disk(s)
storing the run file as an external sort is running. It reads a small chunk of data
(4K) from a random position in the raw partition of the disk. The purpose is to
move the disk head away from its current position.

The sort job initiator constructs sort jobs according to the given test parameters
and drives the sort system by submitting sort requests.

The sort system implements the sort mechanism with the ideas and techniques
proposed in this thesis. It includes in-buffer sort, in-memory merge, external merge,
memory adjustment, read sequence scheduler, and merge pattern scheduler. The
system is multi-threaded with each sort job running as a separate thread. Using
threads reduces context switch cost and makes it easier for concurrent jobs to share
resources.

The in-buffer sort sorts a set of pointers pointing to the records in a data buffer.
If the input data fits in one data buffer, the sorted records will be collected from the
buffer using the sorted pointers, and the sort job is finished. The in-memory merge
merges sorted buffers, while ezternal merge merges sorted runs. Both may produce

either a run or the final result, i.e., the sorted output. The memory usage of a sort



CHAPTER 3. SORT DESIGN AND SORT TESTBED 29

is allowed to change during sorting. The memory adjustment component makes
the decision of adjustment based on a pre-defined memory-adjustment policy. The
read sequence scheduler produces a better read sequence of run blocks to reduce
disk seek time. When runs cannot be merged in a single step, the merge pattern
scheduler determines the merge width of each merge step.

Quicksort is used for in-buffer sorting. When there are a lot of equal keys,
the performance of quicksort degrades dramatically. There are many techniques to
solve this problem [Weg85], but none of them were implemented in this testbed.
Sorting of data with equal keys is beyond the scope of this thesis. Tournament
trees are used for multiway merging, both during in-memory merge and external
merge. A loser tree is used because it has better performance than a winner tree
for updating the tree structure [Knu73].

In the implementation, record pointers and data records are stored in a con-
tiguous memory space, which is called a memory adjustment unit. The front part
is allocated for pointers, and the remaining part is allocated for data records. Data
records are 64 bytes long with a randomly generated 10 byte key.

Input data for a sort can either be read from disk or generated on the fly.
Sorted output is packed into buffers which can then be either written to disk or
simply discarded. All experiments reported in this thesis were run with input data
generated on the fly and discarding output data. The sort system was driven at
maximal speed to simulate the case when the sort is an intermediate operator
between a (fast) producer and a (fast) consumer operator.

In this testbed, one disk is used for storing runs. To fully utilize CPU and I/0O
resources, two I/O agents are used for the disk. If the sort is completely I/O bound,
there is always an I/O request in the I/O queue, which will keep the disk busy all
the time. If the processing is CPU bound, one I/O agent is enough, while the other
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I/O agent is idle all the time. In both cases, CPU time and I/O time are fully
overlapped.

Two output buffers (double buffering) are reserved for each sort in the testbed,
one for collecting output data and one for writing. If the sort process is completely
I/0 bound or completely CPU bound, the two buffers will be enough to overlap
CPU and I/O time. But if processing speed and I/O speed change dynamically
(because of system workload and data input speed, etc.), sort processing and I/O
may wait for each other alternatively. Extra output buffers may help to reduce
the wait time in this case. This issue is not investigated further in this thesis and
therefore not considered in the implementation.

Extra buffers are also used for reading to overlap CPU and I/O time. During
run formation, at least one buffer is used for read ahead until not enough memory
is available. During external merging, with one buffer for each run involved in
merging, a minimum of two buffers are used for read ahead. CPU (merging process)
and I/O (reading) time are fully overlapped if the sort processing is completely I/O
bound or completely CPU bound.

This testbed supports both a memory-adaptive sort and a memory-static sort.
Static sorts are run using exactly the same sort system, the only difference being
that memory adjustment is disabled. In this mode, each sort allocates a fixed
amount of memory and releases the whole space when the sort is finished. By
using exactly the same sort algorithms, we isolate the effects of dynamic memory

adjustment.

3.4.2 Configurations and test parameters

The machine used for all experiments reported in this thesis is a Dec Alpha 3000/500S
with a clock rate of 150 MHz and a 512 Kb off-chip cache. Run data is stored on a
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single disk, a Seagate ST-15150W (see Appendix B for its specification). Table 3.1
lists the configuration parameters of the sort system and their default values.

Table 3.1: Sort system configuration and test parameters

Parameter Default

Sort system parameters
system sort space 32 M bytes
one sort space limit 4 M bytes
sort buffer size 64 K bytes
run block size 32 K bytes
I/O agents per disk 2
maximum concurrency 10
maximum merge width no limit
read disturbance rate 0

Test data parameters

number of sorts 100
random seed 97
overlap of key ranges 1
concurrency degree 10
sort size distribution D3

System sort space is the total memory space available for sorts. The one sort
space limit is used by memory-static sort as the default memory size.

Sort buffer sizeis the size of a data buffer for in-memory sort/merge. The unit of
memory adjustment is a data buffer plus the space for additional data structure for
sorting. Most modern systems provide large second level cache (on-board cache).
Buffers should be selected small enough to fit into this cache.

Run block size is the buffer size for external merge and also the I/O transfer
unit.

Meazimum concurrency limits the number of active sorts. When the number of

active sorts reaches this limit, incoming sorts are forced to wait until the number
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of active sorts drops below the limit.

Mazimum merge width limits the merge width so as to study the effect of merge
patterns.

Read disturbance rate is used for generating disk disturbance requests which
affect the performance of read-ahead strategies for external merge. It is the proba-
bility of disturbance for a run read request. Before each run read request, a random
number within [0, 1) is generated. If the number is smaller than the disturbance
rate, a disturbance request is issued. The disk head is moved away resulting in a
disk seek for the run read request.

The sort jobs in each experiment run is determined by sort test parameters.
Number of sorts is the total number of sort jobs for a test run. Random seed is the
seed for the random number generator used to generate input data.

QOverlap of key ranges is used for generating partially sorted input. The keys for
each run are generated randomly from a range. This parameter controls the overlap
of the key ranges between two consecutive runs. Default value of this parameter
is 1, in which case the key ranges of all runs are fully overlapped, which produce
completely random data. Decreasing this value increases the presortedness of input
data. When it is 0, the key ranges of all runs are not overlapped. In this case, the
keys between the runs are already in sorted order, but the keys in the input for
each run are not sorted.

Within each test run, a fixed number of sort jobs are always running concur-
rently, which is controlled by the concurrency degree. If the concurrency degree is
n, n sort jobs would be submitted to the sort system initially and as soon as one is
finished another one would be submitted.

The input size of a sort job is randomly drawn from a specified sort size distri-

bution. To get some basis for deciding on a distribution of sort sizes, we analyzed
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the sorts generated when running the TPC-D benchmark queries [Raa95]. More
specifically, we analyzed the execution plan used by a major commercial DBMS for
each of the 17 queries on a 1 Gb TPC-D database with 26 indexes. We found a
total of 55 sorts with the size distribution shown in Table 3.2.

Table 3.2: TPC-D sort sizes, scale factor 1.0

Input size range | Average size | No of sorts | Frequency
0K - 100K 17K 15 27%
100K - IM 380K 19 35%

1M - 4M 2M 11 20%
4M - 10M ™ 4 ™%
10M - 30M 16M 6 11%

Our analysis revealed that small sorts occurred frequently while large sorts were
relatively rare. Small sorts were often used in nested loop joins to sort row identifiers
before accessing the inner table. Many of the TPC-D queries also require a sort
of the final result, which usually is small. Large sorts were typically caused by
sort-merge joins or group-by.

The number and size distribution of sorts depend on the database system and
the execution plans generated so no general conclusions can be drawn from this
analysis. Nevertheless, it provides some data where there was none before.

Table 3.3 shows the five sort job sets used for experiments. D0 is used for single
sort experiments. The sort size can be changed to any size required for testing. D1
is from execution plans of a set of queries on a small database in our system. D3
is based on the result of our analysis of the queries in the TPC-D benchmark. D2
is a case between D1 and D3, while D4 contains larger sorts than D1 to D3. They

reflect several types of workload. D1 represents a type of workload that contains
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only small sorts, which will test whether memory-adaptive sort will degrade system
performance when available memory is so large that dynamic memory adjustment
is not necessary. Both memory-static sort and memory-adaptive sort will sort all
the data sets in memory. D4 represents a type of workload that contains large sorts
that cannot be sorted in memory even with all available meﬁow in the system.
Both memory-static sort and memory-adaptive sort require external merging to
finish the large sort jobs. D2 and D3 are cases between D1 and D4. Experiments
over these cases will give us some idea of the behavior of the sort algorithms, even

though they do not cover all possible situations.

Table 3.3: Sort job characteristics

Sort size distribution DO0: for 1 sort

Sort Size | 10M

Frequency | 100%
Sort Data Set D1: 100 sorts

Sort Size 50K | 600K | 1M | 2.5M

Frequency | 62% | 27% | ™% | 4%

Sort Data Set D2: 100 sorts

Sort Size 60K IM | 3M 5M| 10M

Frequency | 10% | 20% | 60% 5% 5%

Sort Data Set D3: 100 sorts

Sort Size 17K | 380K | 2M ™ | 16M

Frequency | 27% | 35% | 20% ™% | 11%

Sort Data Set D4: 100 sorts

Sort Size 60K 3M| 5M | 50M | 100M

Frequency | 10% | 55% | 30% 3% 2%




Chapter 4

Dynamic Memory Adjustment

Because of fluctuations in memory demand and unknown input size, sort jobs
should have the capability to adjust their memory allocation during execution. This
chapter begins with a discussion of memory-static sorts, then proposes a memory-
adaptive mergesort, followed by details of the memory adjustment mechanism. The
main part of the chapter is the design of a policy for memory adjustment. The goal
is to reduce the number of external sorts by making better use of memory resources,

thereby reducing sort elapsed time and improving system throughput.

4.1 Problems with Memory-Static Algorithms

A memory-static sort algorithm allocates memory space when a sort starts and
keeps it fixed until the sort is finished. To prevent a sort from allocating too much
memory in the system, there is frequently a fixed upper limit of memory space for a
single sort. Memory-static algorithms may allocate memory space in several ways.
If the input size is unknown and there is no estimate, it has to allocate memory

space using some default size. If the input size is known or estimated, the sort can

35
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allocate space according to this size and the memory limit of a single sort to reach
the best sort performance.

Estimates of intermediate result size may be off by as much as one or two
orders of magnitude [IC91]: either under-estimated in which case the estimated
size is much lower than the real size, or over-estimated in which case the estimated
size is much larger than the real size. Figure 4.1 shows the behavior of a static sort
in four cases: no estimate, correct estimate, under-estimate, and over-estimate.
For each case, there are two sorts: one is a small data set which can be sorted in
memory, and the other is a large data set which has to be sorted using external
merging by memory-static sort. In the diagram, the height indicates memory usage,
while the width indicates sort time. The single sort space limit is the maximum
memory space that can be allocated to one sort by the static sort algorithm. With
dynamic memory adjustment, sort memory space will not be limited by this value.
Solid lines shows the performance of static sort while dotted lines show how the
performance can be improved by dynamic memory adjustment, either by reducing
sort time, or by reducing memory space without affecting the sort time.

For small data sets, if there is no estimate or the input size is over-estimated,
part of memory may be wasted during sorting (a, g). If the input size is under-
estimated, and even though the data can be sorted in memory, an external merge
may occur, which degrades the sort performance greatly (e). For large data sets,
under-estimating the input size increases the risk of merging with multiple steps
().

The memory usage of a static sort is always limited by the single sort space
limit. If there is only one sort in the system, the extra space cannot be used by the
sort because of this limit. However, the extra space may help to sort some large

data sets in memory without the external merge phase, which will save a lot of sort
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Figure 4.1: Problems with memory-static sort

time (b, d, h).

When the single sort limit is set high, more large sorts can be sorted in memory.
However, small sorts will waste more memory space, and fewer sorts are allowed
to run concurrently so that large sorts may block small sorts for a long time. This
increases the average response time. When the limit is set low, small sorts will
waste less memory and more sorts are able to run at the same time, but more large
sorts may be sorted with external merge.

Some sorts used in commercial systems are able to adjust sort space during
execution, but with very limited ability. For example, some sort algorithms are able
to change sort memory space between the run formation phase and the external
merge phase. A sort can use less memory for the external merge, but it cannot
allocate more space. If the query optimizer provides an estimate of the input
size, a sort can allocate memory space according to this size when the sort starts.

Figure 4.2 shows the memory usage of a sort algorithm used in a major commercial



CHAPTER 4. DYNAMIC MEMORY ADJUSTMENT 38

DBMS. The drop in memory usage during sorting is the start of the external merge

phase.

single sort space limit ...

no estimate correct estimate under-estimate over-estimate

Figure 4.2: Memory usage of a sort in a commercial DBMS

There is a sort space limit at the database system level. It is defined by a
system configuration parameter. Each sort is limited by the single sort space limit,
which is also defined by a system configuration parameter. Since memory usage
may change when the sort enters the external merge phase, the memory will be
used more efficiently compared to the memory-static sort. However, it changes at
most once during sorting and does not consider the memory requirement of other
sorts in the system. All the problems of memory-static sort still exist: if the query
optimizer does not provide an estimate or provides a poor estimate of the input
size, sort performance will be affected; free memory in the system cannot be used
to improve sort performance, since a sort cannot allocate more memory space than

the single sort space limit.
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4.2 A Memory-Adaptive Mergesort

We first need a sort that is able to adjust its memory usage during execution.
Pseudo-code given below illustrates a memory-adaptive mergesort based on the
sort algorithm introduced in Section 3.1. It shows at which points a sort is able
to adjust its memory usage. This algorithm processes input data incrementally,
making it possible for a sort to adapt its memory usage to both the actual input
sizes and memory fluctuations. (Several places are labeled to be referenced in

Section 4.4.2.)

Algorithm memory-adaptive sort :

// In-Buffer Sort Phase
while there is more input & memory space
read data into a buffer
sort the buffer
[check/adjust memory] ----- (s1)
endloop
// In-Memory Merge Phase
if no more input & this is the first run
merge buffers to produce output and stop ----- (s2)
if no more memory or this is the last run
merge buffers
write the sorted data into a tmp table
if there is more input
[check/adjust memory] ----- (s3)
go to In-Buffer Sort Phase

// External Merge Phase
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[check/adjust memory]

wvhile max merge width < number of runs
merge a number of shortest runs
[check/adjust memory] ----- (s4)

merge runs to produce output ----- (s5)

The data in each buffer can be sorted using any internal sorting algorithm.
Therefore, many sort algorithms can be modified to produce memory-adaptive ver-
sions.

The basic idea of this adaptive sort is to increase memory usage when the
system has extra space and additional space will speed up the sort, and to reduce
memory usage when the system experiences memory shortage and some memory
used by the sort is not critical to sort performance. How to adjust memory usage
is implemented by the mechanism of memory adjustment, while the timing and
amount of adjustment are determined by a memory adjustment policy. The details
of the memory adjustment mechanism and policy are explained in the following

two sections.

4.3 Memory Adjustment Mechanism

In-buffer sort phase

During this phase, the sort process collects data into buffers and sorts each buffer
using some in-memory sort algorithm. When it runs out of free buffers, it tries to
allocate more memory. If the system can provide more space, the in-buffer sort
phase continues. In this way, the work space increases gradually, one buffer at a

time. When the sort reaches the end of input or cannot acquire more buffer space,
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it proceeds to the in-memory merge phase.
If acute shortage of memory space occurs, a sort in this phase could “roll back”
its input and release the last buffers acquired. This is a rather drastic step though

so we have not considered it further.

In-memory merge phase

During an in-memory merge, the sorted data is written to a temporary file as a
run. As buffers become empty, they can be either released (if the system is short
of memory) or used for loading data for the next run. Whether a buffer is to be
released or kept is a policy decision. It is not necessary to increase memory space

during this phase.

External merge phase

The exact number of runs and amount of data are known when a sort enters this
phase. The sort structure is changed from the data structure for run formation
(in-memory sort/merge) to the data structure for external merge. If the number of
runs is small, we attempt to allocate enough memory to complete the sort with a
single merge step.

When the number of runs is large (relative to available memory), multiple merge
steps may be needed. In this case, memory usage can be changed between merge
steps by increasing or decreasing the merge fan-in. Once the fan-in for a step has
been determined, the shortest runs are selected for merging.

Memory usage can also be adjusted by changing the size of input buffers and,
thereby, the merge fan-in. Increasing the buffer size reduces disk overhead (total

seek time and latency) because fewer 1/0 requests are needed to transfer the same
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amount of data. However, this option is not considered in our implementation; we
always use a fixed buffer size. Normally, we use 32Kb buffers because we experi-
mentally found that increasing the buffer size further yields only marginal benefits.

It is possible to reduce memory usage in the middle of a merge step, simply
by terminating the input from one or more runs. The part of a run that was not
processed can be treated as any other run during the next merge step. This seems

like a rather radical option so we have not considered it further.

Wait queues

As part of the memory adjustment mechanism, we use multiple wait queues, each
with an associated priority. A sort may enter a wait queue because of lack of
memory in the system or to yield to higher priority sorts. When memory becomes
available, the sorts in the queue with the highest priority are awakened first. A sort
may move from one queue to another during processing. When a sort should wait

and on what queue are decided by the memory adjustment policy.

4.4 Memory Adjustment Policy

A memory adjustment policy is a set of rules for deciding when and by how much
to increase or decrease memory usage of a sort, when a sort should wait and at
what priority, and when waiting sorts should be awakened. The policy is indepen-
dent from the actual memory adjustment mechanisms. By separating policies and
mechanisms, we can easily study the effects of different policies.

A memory adjustment policy needs some system wide state information, includ-
ing the number of active sorts, the amount of free memory in the system, the stage

of each sort, etc. It also relies on a set of predefined parameters such as memory
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adjustment bounds. The objective is to improve system performance (throughput
and response time) while at the same time ensuring fair treatment of competing

sorts.

4.4.1 System sort space

In principle, a memory-adaptive sort should adjust its memory usage according to
the total available memory space to the system. However, database systems often
specify a maximum size for total sort space or use a separate buffer pool for sorts.
If so, the total memory for sort jobs is limited. The limit can be a hard limit with
a fixed value or a soft limit which changes according to the system workload. In
this section and the following one, available memory space refers to the available
memory reserved for sort jobs.

In our adaptive sort two configuration parameters determine total sort space
and memory allocation: SysSortSpace and MemUnit. SysSortSpace is the limit
on total memory space available for sorts. MemUnit is the size of one data buffer
plus related sort structures. A sort allocates memory one MemUnit at a time. The
value of SysSortSpace is based on the total memory size, while MemUnit is used
to tune sort performance. If a system does many small sorts, setting MemUnit low
will make use of memory space more efficiently and memory adjustment is more
flexible. On the other hand, if a system usually does large sorts, setting MemUnit
high will reduce the allocation and deallocation cost, but some memory may be

wasted.
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4.4.2 Sort stages

For the purpose of memory adjustment, we consider a sort to be in one of seven
different stages as listed in Table 4.1. The stages correspond to the sort phases and
the specified places (s1 to s5) indicated in the algorithm given in Section 4.2.

Table 4.1: Sort stages

Fsta.ge sort phase ezplanation
0 waiting to start
1 in-buffer sort (s1) first run
2 | in-memory merge (s2) | final result
3 | in-buffer sort (s1) remaining runs
4 in-memory merge (s3) | produce runs
5 external merge (s4) intermediate merge
6 | external merge (s5) final merge

Stage 0: The sort is waiting to start. Since a small sort requires little memory
and releases the memory very soon, it may be beneficial to give a sort in this stage
a small amount of memory and let it start. If it requires more space and the system
is short of memory, the sort can be put into a wait queue later.

Stage 1: The sort is processing the first run during the in-memory sort phase
(at s1). It is not known yet if the input will fit completely in memory. Giving a
sort in this stage additional memory may be very beneficial if it results in the input
being sorted completely in memory.

Stage 2: All input data has been loaded into memory and the sort is in the
in-memory merge phase (at s2), i.e., the sort has enough space for an in-memory
sort. A sort in this stage is unable to reduce its memory usage. On the other hand,

extra memory will not improve the performance of the sort.
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Stage 3: The sort is processing the remaining runs during in-memory sort
phases (at s1). At this stage it is known that an external merge is necessary. All
data will be written to disk and then read during merge again. Additional memory
helps to reduce the number of runs, which may reduce the number of external merge
steps. If a single merge step is sufficient, extra memory can be used to reduce the
disk seeks (see next chapter). However, if this memory space helps some other sort
in the system to be done entirely in memory, the total I/O cost of that sort for
writing and reading runs is avoided. Thus memory space is less critical to a sort in
this stage than it is to a sort in stage 1 or stage 5.

Stage 4: The sort is processing the runs during in-memory merge phases (at
$3). Similar to Stage 3, it is known that external merging is necessary.

Stage 5: The number of runs could not be merged in a single step and the sort
is performing intermediate merges during this stage (at s4). It checks the available
memory before each merge step and adjusts the fan-in accordingly. When there is
enough memory to merge all remaining runs in one step, the sort allocates enough
space, and immediately goes to the last merge step. Since extra memory will help
reduce the amount of I/O, additional memory is very important to a sort in this
stage.

Stage 6: The sort merges all remaining runs producing the final output (at s5).
Since the amount of data is known at the start of the merge step, the sort is able
to allocate exactly the amount of memory needed. One page less of the memory

will result in another merge step.
Based on the above analysis, we decided on the following priorities:
1. memory requirements of sorts in stage 0 have the highest priority,

2. memory requirements of sorts in stage 1 or stage 5 have the next highest
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priority,

3. sorts in stage 3 can benefit from more memory (by reducing the number of

runs) but yield to sorts in stage 1 or stage 5,
4. sorts in stage 4 have the lowest priority,

5. sorts in stage 2 or stage 6 do not change their memory usage.

4.4.3 Memory adjustment bounds

We do not allow a sort to increase or decrease its work space arbitrarily but restrict
the size to be within a specified range. The range depends on what stage the sort
is in and on the number of active sorts. The main purpose of this restriction is to
prevent a sort from monopolizing resources, thereby starving other sorts running at
the same time or arriving later. The lower bounds prevent sorts from attempting

to run with too few resources. Figure 4.3 illustrates these memory bounds.

e 1stMin: minimum memory for a sort to start. One MemUnit is usually

enough.

¢ 1stRunMin: minimum memory for the first run. This bound guarantees that
a sort of size less than 1stRunMin will always be sorted in memory.

e IstMax: maximum memory for the first run. When a sort reaches this point,
it gives up its effort to sort the data in memory and converts to external
sorting. A substantial amount of memory is then released to improve the

performance of other sorts in the system.
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Figure 4.3: Sort memory usage bounds

e 2ndMin: minimum memory for processing the remaining runs. This should
be large enough so that most medium size sorts will require only one merge

step.

¢ 2ndMax: maximum memory for processing the remaining runs. This bound
prevents a very large sort from taking too much sort space when there are

higher priority sorts in the system.

@ exMin: minimum memory for an external merge. This must be high enough

for a fan-in of a least two.

® exMax: maximum memory for an external merge. This prevents a sort con-
sisting of many runs from taking too much sort space for merge buffers. When

reaching this point, a sort converts to multiple merge steps.
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The lower bounds are usually fixed based on system configuration, while the
upper bounds depend on total amount of free memory and workload in the sys-
tem. Table 4.2 list the values used for our experiments, where freeMem is the
amount of free memory space (i-e. available memory) for sorting in the system, and
evenShareMem is the total sort space size divided by the number of active sorts

in the system. Both of them change dynamically as the workload changes.

Table 4.2: Default values for memory usage bounds

L memory bound default value
1stMin MemUnit
1stRunMin 1/8 * SysSortSpace
1stMax freeMem — MemUnit
2ndMin 5 * MemUnat
2ndMax evenShareMem
exMin MemUnit
exMax evenShareMem

4.4.4 Waiting

When a sort fails to allocate more memory, it can either wait or proceed with its
current work space. Proceeding immediately without waiting may cause a small
sort to rely on external merging or a sort with relatively few runs to resort to
multiple merge steps. On the other hand, waiting increases the sort response time.

In our system, a sort is allowed to wait only if it has not reached the upper bound
on memory for its current stage (1lstRunMin, 2ndMax, or exMax). Otherwise, it
will proceed with the memory it has acquired. A sort may wait in one of five
situations:

W1: in stage 0 waiting to start;
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W2: in stage 1 with 1stMin space;

W3: in stage 1 with more memory;
W4: in stage 3;

W5: before an external merge step.

When memory is released and there are multiple sorts waiting, we must decide
which sort to wake up. For reasons explained below we settled on the following
priority order for waiting sorts: W1, W3, W5, W4, W2.

In gereral, sorts with more memory space should have higher priority so that
they can finish sooner and release a large amount of memory. However, we assign
W1 sorts the highest priority to give very small sorts (requiring less than 1stMin
memory) a chance to finish quickly. If a sort requires more memory and there is no
free space, it becomes a W2 sort which is assigned a low priority because it holds
little memory. Among sorts in stage 1, we make W2 sorts yield to W3 sorts to give
them a chance to proceed sooner. When reaching 1stRunMin or finishing entirely
in memory, the sort will release a substantial amount of memory relatively quickly.
Sorts in stage 3 are allowed to acquire more memory and become W4 sorts when
there is no free space in the system. If the remaining runs can be merged in one
step with exMax memory and the sort cannot acquire enough memory to do so,
the sort becomes a W5 sort. We give W5 sorts priority over W4 sorts to give them

a chance to acquire enough memory to finish quickly and release all memory held.

4.4.5 Fairness

Our memory adjustment policy aims to improve overall system performance, that
is, throughput and average response time, but it also takes into account fairness con-
siderations. However, fairness is not achieved by simply assigning the same amount

of memory to each sort job. Specifically, the following fairness considerations are
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reflected in our policy:

e A sort should not allocate more memory than needed. It is unfair for one sort

to allocate extra memory it cannot use while others are waiting.

e A sort whose performance is not very sensitive to memory should yield to

sorts whose performance is more affected by memory space.

e Large sorts should not block small sorts indefinitely, while small sorts should

not prevent large sorts from getting a reasonable amount of memory.

o When all other conditions are the same, older sorts should have priority over

younger sorts.

These considerations are addressed by the incremental sorting mechanism, mem-
ory priority of sort stages, multi-level priority waiting queues, first-come-first-serve
policy for the sorts within each waiting queue, and round-robin scheduling policy

for active sort agents.

4.5 Experimental Results

4.5.1 Single sort performance

When there is only one active sort in the system (the single sort case), a static sort
is limited by the single sort space limit, while our adaptive sort is able to employ
much more space available in the system. If this limit is the same as the system
sort space size, sort jobs are not allowed to run concurrently. A small sort will
waste memory space, while a large sort may block the following sort jobs for a long

time.
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Figure 4.4 shows the observed elapsed time of a single sort as a function of
input size and the corresponding throughput measured as the amount of sorted
data produced per second. Static sort changes from in-memory sort to external
sort at an input size of 3,585 Kb, while the adaptive sort changes at an input size

of 29 Mb.
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Figure 4.4: Single sort performance

For input less than 3585 Kb, both adaptive sort and static sort finish the sort
entirely in memory and have the same elapsed time and throughput. For medium
size input (3585 Kb - 29 Mb), static sort relies on external merging, while adaptive
sort can sort the data completely in memory. The difference in throughput is
dramatic, dropping from about 6 Mb/s to slightly over 1 Mb/s. One of the main
objectives of memory-adaptive sort is to exploit this difference by trying to complete
as many sorts as possible in memory.

Adaptive sort performs slightly better for large inputs (over 29 Mb). The reason
is that adaptive sort produces a large run followed by a set of small runs. The run

blocks required for external merge are more often from the first run than from other
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runs, which reduces the disk seek time. When the input size grows and the number
of runs increases, the elapsed time and throughput of the two sort algorithms slowly
converge.

Although the system sort space size was fixed in these experiment, adaptive sort
also utilizes memory efficiently when the system sort space changes dynamically.
Static sort allocates the same amount of memory for all sorts. If the system sort
space is too small to meet the requirement, the sort has to wait. However, adaptive
sort can proceed with a small amount of memory. If the input size happens to be
small, the job finishes quickly without waiting for a large chunk of memory it in
fact does not need.

In summary, adaptive sort saves memory space on small sorts, drastically re-
duces the elapsed time of medium size sorts, and performs better than or as well

as static scrt for large inputs.

4.5.2 Concurrent sorts

A database system does not have the luxury of running only one sort at a time.
Many sorts may be running concurrently, competing for memory and I/O resources.
This section reports on experiments investigating the effects of memory adjustment
on (sort) system throughput and response time when multiple sorts are running
concurrently.

The workload for each experiment consisted of a sequence of sort jobs of varying
size. There were 100 sort jobs in each experiment run. The input size of a sort
job was randomly drawn from a specified sort size distribution (D1 to D4) given
in Section 3.7.2 Table 3.3. For each sort job set, experiments were conducted on
concurrency degree 1 to 12 (or the maximum concurrency defined). Memory-static

sort and memory adaptive sort were tested in the same conditions.
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Unrestricted concurrency

When the number of concurrent sorts increases, each sort gets less memory and
there is more competition for I/O bandwidth. More sorts will require external
merging which reduces throughput measured in bytes of sorted data produced per
second. The question is how rapidly performance deteriorates.

Figure 4.5 and Figure 4.6 show the sorted data throughput as a function of the
number of sorts running concurrently for workload based on sort size distributions

D1 to D4.
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Figure 4.5: Concurrent sorts performance (D1, D2)

All sorts in D1 are small enough to always be sorted in memory, even with
12 sorts running concurrently. In this case the system is completely CPU bound.
Figure 4.5 (a) shows that the two sort methods achieve about the same throughput.
which confirms that the overhead of dynamic memory adjustment is minimal. As
the number of concurrent sorts increases, throughput decreases only slightly. This

is a result of more frequent thread switching which (probably) also results in poorer
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Figure 4.6: Concurrent sorts performance (D3, D4)

cache performance.

For the other three workloads, memory-adaptive sort has significantly higher
throughput when the number of concurrent sorts is low (see Figures 4.5 (b) and 4.6).
In the best case, the throughput is up to 6 times higher. The difference decreases
as the number of concurrent sorts increases because of the increased competition
for memory and I/O bandwidth. This shows that memory-adaptive sort works in
the sense that, when possible, it exploits available memory to speed up sort jobs
and gracefully degrades when the competition for memory space increases.

Only workload D4, see Figure 4.6 (b), shows increased throughput as the number
of concurrent sorts increases (up to 4). The few large sorts in this workload are
completely I/O bound, leaving free CPU cycles that will only be used (by small
sorts) when there are enough sorts active at the same time.

An important objective of memory-adaptive sort is to reduce the number of
external sorts. Table 4.3 shows that, when memory space is available, all but the

largest sorts are completed entirely in memory. When many sorts run concurrently,
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less memory is available for each sort so fewer sorts can be completed in memory
and the load on the I/O system increases. This effect accounts for most of the

decrease in throughput.

Table 4.3: Number of external sorts (out of 100 sorts)

Concurrent D2 D3 D4
sorts ma | st [ ma | st | ma| st
1 0 |10 0118 5135
2 0 |10 3118 5135
3 0 |10 5|18 51|35
4 0 |10 7118 o |35
S 0 |10 71|18 535
6 0 {10} 1118 6135
7 1 |10) 12118 8135
8 4 [10] 13|18 8135
9 4 10| 14|18 | 10| 35
10 5 [10] 15 {18} 12|35

(ma: adaptive sort; st: static sort)

Limiting concurrency

A database system has no control over the work load but it can decide how to
make use of its resources to improve throughput and/or response time. As we saw
in the previous section, running too many sorts concurrently reduces throughput
significantly. But the system does not have to start executing a sort immediately if
the resources are already strained; it can make the sort wait until enough resources
have been freed up. So the question is: How many sorts should the system run
concurrently? The experiments described in this section attempt to provide some

insight into this issue.
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In these experiments we had 10 clients repeatedly submitting sort jobs. As soon
as a client’s previous job finished, it submitted another sort job. In other words,
there were always 10 outstanding sort jobs, some being processed and some waiting
to start. We then varied the number of sorts being processed concurrently, i.e., the
maximum concarrency, and measured throughput and response time. Response
time is the average time from when a client submitted a request until the last
record in the output arrived.

Figures 4.7 to 4.9 show the throughput and average response time for D2, D3,
D4 as the limit on concurrent sorts varies. (Limiting the number on concurrent
sorts has no effect on D1 because the sorts are so small.) In all cases, except for
D1, memory-adaptive sort achieves both better throughput and response time than

static sort.
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Figure 4.7: System performance of D2

The graphs are best read from right to left. The results for D2 and D3 are very
similar because all sorts in these job sets are less then 32 Mb and, hence, can be

sorted entirely in memory if run in isolation. As the number of sorts being processed
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(a) Throughput of D4

o7

(b) Average response time of D4
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Figure 4.9: System performance of D4

concurrently is decreased, both throughput and average response time improve for
memory-adaptive sorts as more and more of the sorts are done in memory. The
reverse is true for static sort but the effects of limiting concurrency are much less

pronounced.
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D4 contains a few large sorts that cannot be completed in memory. In the
time it takes to complete a 100 Mb sort, about 24 (6x4) sorts of size 256 Mb can be
completed (assuming they can be done in memory). So in this case, processing only
one sort at a time is clearly not a good idea. This effect is also visible in the graphs.
Figure 4.9 (a) shows that throughput initially increases as the limit on concurrent
sorts decreases but then starts dropping (because CPU and memory resources are
not fully utilized). Response time, see Figure 4.9 (b), increases steadily as fewer
sorts are processed concurrently.

These experiments reinforce what we found in the previous section: completing
as many sorts as possible in memory is crucial to overall system performance. But
we also learned that it is important to fully utilize available resources (memory,
CPU, 1/0).

4.6 Summary

This chapter proposed a dynamic memory adjustment mechanism and policy based
on the three-phase mergesort algorithm introduced in Chapter 3. The technique
enables sorts to adapt their memory usage to the actual input size and fluctuations
of available memory space.

Our study focused on a memory adjustment policy that takes into account sys-
tem sort space, sort stages, memory adjustment bounds, waiting, and fairness. The
policy balances memory usage among concurrent sorts so that more sort jobs are
done entirely in main memory, which improves the overall system (sort) perfor-
mance. Experimental results showed that sort throughput was improved signifi-

cantly compared with static memory allocation.



Chapter 5

Read Ahead during External
Merge

The purpose of read ahead is usually to overlap CPU and I/O operations. It seems
that extra buffers will not help improve performance, once full overlap has been
achieved. However, Zheng and Larson {ZL96b] showed that extra buffers can be
exploited to reduce disk seek time.

Modern disks have become increasingly complex. Most disk drives have multiple
zones, with each zone having different numbers of sectors per track [RW94]. Disk
caches also have a great impact on disk performance. Some data may be read from
the disk cache rather than the disk. There will be no disk seeks in this case and
the transfer rate is much higher. So it is very difficult to calculate the exact cost

of each disk access, but two facts remain unchanged:

1. disk seek time and rotational latency still heavily affect the total disk access

time for random reads/writes; and

2. sequential access is much faster than random access.

59
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This chapter focuses on improving I/O performance by reducing the number of
disk seeks. Three read-ahead strategies are considered: fixed buffering, extended
forecasting, and clustering. When multiple jobs access the same disk, improvements
from simple clustering degrades as disk contention increases. An improved cluster-
ing algorithm, called clustering with atomic reads, helps retain performance when
disk contention is high. An analysis of these methods results in a set of formulas
to estimate the performance improvement, and the accuracy of the estimates is
confirmed by experimental results.

Throughout this chapter, we assume that all data blocks of a run are stored
contiguously on disk!. When several blocks of the same run are adjacent, it is
assumed that only one disk seek is required if these blocks are read continuously,
even with several read requests. In the sort testbed, this is accomplished by having
two I/O agents for each disk. The disk is kept busy and there is little waiting time
between the requests. We also assumed that memory for external merging is fixed
within each merge step, but it is adjustable between merge steps. So for each merge
step, a sort is able to plan for reading in advance based on the given memory size.

This chapter is organized as follows. Section 5.1 describes three types of read-
ahead strategies: fixed buffering, extended forecasting, and (simple) clustering.
Section 5.2 discusses the problem introduced by concurrent jobs and gives our solu-
tion — clustering with atomic reads. Section 5.3 studies the performance of these
read-ahead strategies on partially sorted input. Formulas are derived in Section

5.4 for estimating the performance improvement resulting from these strategies.

In the sort testbed, runs are stored in a raw partition of the disk. Normally a partition is a
large chunk of contiguous space on disk. This space is managed by the disk manager of the sort
testbed. which allocates a contiguous space for a run before the in-memory merge starts, since the
run length is already known at this stage. This guarantees that run blocks from multiple sorts
will not be mixed on disk.
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Section 5.5 studies the the problem of how to choose buffer size when using these

strategies, and the last section summarizes this chapter.

5.1 Strategies for Read Ahead

5.1.1 Fixed buffering

Fixed buffering assigns all buffers to runs before a merge step starts. Each buffer is
dedicated to a run until the merge step is finished. Buffers can be assigned to runs
in many ways. The minimum requirement is that each run must have at least one
buffer. These buffers are called merge buffers, while others are called read ahead
buffers. Whenever a merge buffer is empty, it becomes a read ahead buffer, while
a read ahead buffer with the next block for that run becomes the merge buffer.

Equal buffering assigns the same number of buffers to each run. Double buffering
is a special case of this method in which each run has two buffers. Double buffering
achieves full overlap of CPU and I/O operations if the process is constantly I/0O-
bound or constantly CPU-bound.

For random data, the next block to be read is normally from a run different
from the run that the latest block was read. So each read requires a disk seek.
With more than one read ahead buffer for each run, it is possible to read several
(contiguous) blocks with one disk seek. Suppose each run has S buffers, one buffer
for merging and S —1 buffers for read ahead. If a sort sends a read request whenever
a buffer becomes empty, reading still jumps across runs. A better approach is to
read S — 1 blocks from a run when all its buffers but one become empty. So only
one disk seek is required for every S — 1 blocks. The total number of disk seeks is
then reduced by a factor of (S — 1).
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To overlap processing and read time, fixed buffering requires at least twice as
many buffers as the number of runs, although it can proceed with fewer buffers.
With more buffers, it is able to reduce disk seeks. The problem is that fixed buffering
does not fully utilize the buffer space. When S — 1 buffers become empty, the sort
cannot issue read requests for these buffers unless they belong to the same run. If
data is not uniformly distributed or the runs are not in equal size, some buffers may
stay unused for a long time. For example, when some runs finish much earlier than
other runs, their buffer space will be unused until the end of the merge. A simple
improvement is to reallocate these buffers to other runs (but this is not strictly
fixed buffering any more). Another way is to allocate the buffers proportional to
the run length before merge starts. Long runs get more buffers. However, short
runs do not necessarily finish earlier. To use buffer space more efficiently, buffers
should not be dedicated to a specific run, but serve any run on demand. This is

floating buffering in contrast to fixed buffering.

5.1.2 Extended forecasting

In this section, we extend the standard forecasting read-ahead strategy and discuss
two methods of merging.

Forecasting uses floating buffers, i.e., buffers are not dedicated to specific runs.
Traditionally, forecasting uses one extra buffer for read ahead {Knu73]. When one
block from each run resides in memory, it can be determined which buffer will be
emptied first by comparing the last keys in the buffers. The extra buffer is used for
reading the next block from that run.

Because of data distribution and variation of system work load, a merging pro-
cess may not produce empty buffers at a constant rate. After reading the extra

buffer, there may not be any empty buffers. Even if merging is fast enough to pro-
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duce empty buffers all the time, the next block to be read is determined on the fly.
The disk always has a wait time after finishing each read request. Thus processing
and reading are not fully overlapped. To maintain high utilization of the disk, it
is necessary to keep one read request in the [/O queue. To achieve this, we must
(a) have more than one extra buffer and (b) know which block to read in advance.
FEztended forecasting is an extension of traditional forecasting, which reads the run
blocks based on a pre-determined run block sequence and is able to use additional
buffers for read ahead. It achieves better overlapping of processing and read time.

The order in which run data blocks are consumed by merging is called the
consumption sequence. It depends on the external merge algorithm. The standard
merge algorithm requires the next block of a run whenever the merge buffer of that
run becomes empty. So the next block required depends on when the previous block
of the run is finished. The consumption sequence is based on the last key of each
run block and can be computed by simulating the merge process.

In the standard merge algorithm, the run block required for merging in fact may
not be used immediately. As an example, if the input data is sorted (or reversely
sorted), at any time only one merge buffer is really needed while all other merge
buffers stay unused. For each run, reading its data blocks can be delayed until all
the runs with smaller keys have finished. In general, the read of any block can be
delayed until all other blocks with keys smaller than the first key of the block have
been read.

Based on this observation, we designed a new merge variant, called merging with
delayed reads: whenever a buffer becomes empty, the next block required is the one
which has the smallest first key among all runs on disk. If the next block to be read
is from run X and the merge buffer of run X has not been emptied yet, the merge

process is able to proceed while some other runs may not have merge buffers. Those
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runs without merge buffers are not involved in merging until their next blocks are
read into memory, and there are no key comparisons between these runs and their
sibling runs. So the algorithm reduces the number of key comparisons, which is
usually the major cost of CPU time for sorting in database applications.

For merging with delayed reads, the read order is determined by the first key
of each run block. The consumption sequence can be computed simply by sorting

the first keys of the run blocks.
Figure 5.1 shows an example with 3 runs, each with 3 blocks. The block numbers

reflect the order of the blocks written (adjacently) on disk. The first key and the
last key of each run block are given in the diagram.

block# 1 2 3 4 5 6 7 8 9
firstkey | 5 |11 ]33} 1 |16]25]12}35]45
last key 10 {30 |50 115120 | 40|18 {4260

runs Run 1 Run 2 Run 3
Consumption sequence for Consumption sequence for
traditional merge merging with delayed reads

block# | 4725 8 6.3.9 4,1,2,7,56, 3,8 9 block#
lastkey 10, 15,18,30,2042,50,40,60 1, 5,11,12,1625333545 first key

Figure 5.1: Consumption sequences

The consumption sequence for standard merging is based on the last key of
each data block. Initially, the first block of each run is required to start the merge
process. Block 1 is finished first since it has the smallest last key. The next block
of run 1 (block 2) is then required. Then block 4 is finished. The next block to be
read is the next block of run 2 (block 5), and so on, resulting in the consumption

sequence at the left in the diagram.
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The consumption sequence for merging with delayed reads is based on the first
keys of the run blocks. The consumption sequence is computed by sorting the first
keys as shown at the right in the diagram. During merging, after the first two
blocks are read into memory, the merge process can start, since the next block to
be read (block 2) is from the same run of the previous block (block 1). Run 3 is not
involved in merging until block 1 is finished and block 7 is read into memory. It
shows that merging with delayed reads groups more adjacent blocks together than
the standard merge algorithm.

For both merging algorithms, once the consumption sequence is determined,
extended forecasting reads the run blocks in that order. Extra buffers help improve
the overlap of CPU and I/0 operations, but cannot reduce disk seeks. However, if
the extra buffer space is used to increase the buffer size instead of increasing the
number of buffers, disk seeks can be reduced, since large buffers reduce the number
of read requests, resulting in fewer disk seeks. Section 5.5 will study the effect of
buffer size for some read strategies. Before that section, we assume that buffer size,
i.e., I/O transfer unit size, is fixed. We focus on how the number of disk seeks is
affected by the number of buffers.

In summary, traditional forecasting uses one extra buffer for read ahead. Merg-
ing does not rely on the consumption sequence, but processing and reading may
not be fully overlapped. Extended forecasting employs additional buffers to achieve
better overlap of CPU and I/O time, but merging relies on a pre-computed con-
sumption sequence. The consumption sequence depends on the merging algorithm.
For the standard merge algorithm, the consumption sequence is determined by the
last key of each run block, while for merging with delayed reads, the consumption
sequence is determined by the first key of each run block. The merging with de-

layed reads may save some of the key comparisons. For both merging algorithms,
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additional buffers improve the overlap of CPU and I/O time, but cannot reduce

disk seeks unless the extra space is used to increase the buffer size (I/O unit size).

5.1.3 Simple clustering

Although a merge process consumes run blocks in a particular order, the run blocks
can be read in a different order if extra buffers are available. The extra buffers can
be used for storing run blocks which are not required immediately but which can be
read with less I/O cost (i.e., disk seek time). The sequence in which blocks are read
from disk is called the read sequence. Let C = {C},C3,...,Cr} be a consumption
sequence, where each C; is a run block. A read sequence R = {R;, R,,...,Rr}is a
permutation of {Cy, Cs,...,Cr}. Throughout this chapter, for any two sequences A
and B, we define A C B to mean that the set of elements in A is a subset of those
in B.

Not all read sequences are useful for merging. Some may result in deadlock
between merging and reading. For example, given 10 runms, each with 100 data
blocks, and a total of 50 buffers, if the last 5 blocks of each run are read at the
beginning in the read sequence, no buffers are left to read the first block of each run,
so the merge process cannot proceed. A read sequence is feasible if it guarantees
that the merge process terminates. Zheng and Larson [ZL96b] introduced following

condition to check the feasibility of a read sequence:

Proposition 5.1 A read sequence {Ry, R, ..., Rt} is feasible for consumption se-
quence {Cy, Cs, ...,C1}, tf {C1,C2, ...,Ci-Bin} C {R1, Ra, ..., Ri} for all k such that

B <k <T, where B is the number of buffers and n is the number of runs.

To overlap processing and read time, Estivill-Castro and Wood [ECW94] sug-

gested to have one buffer reserved for reading at all times. Therefore the condition
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becomes {C1,Cs,...,Ck—p4n} C {R1, R2, ..., Re-1}.

Figure 5.2 illustrates the idea with one buffer reserved to overlap the merge
processing and read time. At any stage of the merge process when k > B, k — 1
blocks have been read into memory, which includes C; to Cr_p4n. Among them
k — B blocks have been consumed by the merge process, while n blocks, one for each
run, are being merged. The condition guarantees that merging can proceed while
Ry is being read into memory. If merging is fast enough to provide empty buffers
before the read of Ry is finished, processing and read time are fully overlapped.

.
.
.
.
e
L

Figure 5.2: Feasibility of read sequence

Proposition 5.1 is based on the standard merge algorithm. With delayed reads,
the number of runs involved in merging may be smaller than n. So more than B—n
buffers may be available for read ahead. Thus the condition in Proposition 5.1 is
sufficient, but not necessary for merging delayed reads.

It is obvious that the consumption sequence is a feasible read sequence if B >
n (with at least one buffer for read ahead to overlap merging and reading). It
guarantees that the merge process terminates. In fact, the consumption sequence
is the read sequence for both traditional forecasting and extended forecasting.

Although there is a finite number of feasible read sequences, it is not known if

there is an efficient algorithm to find the optimum sequence with minimum disk seek
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time. Finding the optimum sequence by trying all the read sequences is expensiveZ.

Research has been focusing on using heuristics.

The following algorithm, which we call simple clustering, is a heuristic algorithm
for finding a “good” read sequence. The initial read sequence is the consumption
sequence for the standard merge algorithm. The first n blocks are the first blocks
of the n runs. Beginning from the (n + 1)th block in the read sequence, each block
is combined with the previous block of the same run if the feasibility of the read

sequence is preserved.

Algorithm simple clustering
Input: consumption sequence C = {Cy,Cy, ...,Cr},
number of buffers B, number of runs »
Output: read sequence R = {Ry, R», ..., Rr}
// Ci and R; have the same structure: run number field and block address field
begin
R:=C; |/ Initialize read sequence to be the consumption sequence
fori:=n+1toT
/] Search each previous block to find the one with the same run as Rfi]
for j:=t:—1 downto 1
if R[jl.runNumber = R[i].run Number
then exit loop; endif;

endfor;

2Here is an example which gives 2 rough idea on how expensive it is to find an optimum read
sequence. A brute-force algorithm implemented on the sort testbed searched all feasible read
sequences to find the best one. It took more than 10 hours to get the optimum sequence for 3
runs with a total of 24 blocks. However, using a heuristic algorithm, it took 5 ms to compute
a feasible read sequence for a 50M data set with 15 runs and 1600 blocks. The generated read
sequence reduced disk seek time by 12 seconds, which is 80% of the disk seek time if the data
blocks are read in the consumption sequence.
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if R[¢] can be moved after R[j] preserving feasibility
then insert R[i] between R[j] and R[j + 1]; endif;
endfor;

end

The algorithm tries to cluster together as many blocks from the same run as
possible while preserving feasibility. Each group, called a cluster, is a sequence of
adjacent blocks from the same run. Since the blocks in a cluster are adjacent, they
can be read sequentially which avoids disk seeks, and therefore reduces the total
read time. In this algorithm, a cluster is not read with a single read command. It is
still read one block at a time, each block using one read command. When the disk
drive processes the read requests of a cluster continuously, these adjacent blocks in
a cluster will be read sequentially.

To check the feasibility efficiently, we used a free buffer count array F =
{F\, F, ..., Fr} in our implementation, where F; is a nonnegative integer which
records how many free buffers will be left after R; is read. The initial value of F;
is B—n—1. (z =1to T), with 1 buffer reserved for overlapping merging and
reading. When a data block R; is moved after block R; (j < ), Fj42 to F; are
reduced by one, since one free buffer is used for reading a data block (R;) before
it is required. To guarantee a feasible read sequence, we need only to keep all F’
values nonnegative, i.e., a block should not be inserted before a data block which F
value is 0. Therefore, for each block R;, the algorithm needs only check the block
R;_, down to the first block R; where F; = 0. With F values correctly maintained,
we can guarantee the feasibility of the read sequence. This method is very efficient
compared to using Proposition 5.1 directly to check the feasibility.

The simple clustering algorithm is similar to the group-shifting algorithm pro-
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posed by Estivill-Castro and Wood [ECW94]. However, the two algorithms were
designed independently. Compared to group-shifting, our algorithm is much simpler
and requires fewer scans of the consumption sequence. Experimental results (see
Section 5.1.3) show that for random data, the simple clustering algorithm reduces
disk seeks as well as the group-shifting algorithm.

Several other algorithms were developed and tested on the sort testbed, includ-
ing closest logical distance, double clustering, and a method achieving similar effect
of the backward movement in the group-shifting algorithm, but the additional per-
formance improvement is small compared to the simple clustering algorithm. So

those methods were not investigated further.

Experimental results

Experiments were run on many data sets. For each data set, each read-ahead strat-
egy was tested, and the experiment was repeated using the minimum number of
buffers up to the maximum number of buffers allowed within the memory space
limit. The minimum number of buffers is the number of runs plus two. The two
extra buffers are used to improve disk utilization by keeping a read request in the
I/O queue. Each point plotted in the diagrams represents the average computed
from five experiments. The five experiments used five data sets of the same size that
were produced using different random seeds. The three-phase external mergesort
algorithm proposed in Section 3.1 was used for producing runs and merging. How-
ever, dynamic memory adjustment was not used in these experiments. Throughout
the experiments, buffer size was 32 K bytes for all read strategies. It was also the
run data block size and I/O transfer unit size. For extended forecasting, when
the merge phase was started, we sent a read request for each buffer according to

the consumption sequence. During merging, as soon as one buffer became empty,



CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 71

we sent a read request for the next block in the consumption sequence. Simple
clustering worked in the same way, but using a read sequence pre-computed from
the clustering algorithm. For equal buffering, instead of issuing a read request as
soon as a buffer became empty, we sent a set of read requests for a run when all its

buffers but one became empty.
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( EF: extended forecasting; EB: equal buffering; SC: simple clustering )

Figure 5.3: Comparison of read-ahead strategies

Figure 5.3 (a) shows the average results for five 50M data sets. The experiments
using other data sizes (5M to 100M) produced similar results. Figure 5.3 (b) shows
the results of using 6 buffers per run while data size changes from 5M to 60M (the
memory limit is not enough to provide 6 buffers per run for larger data set). The

figures prompt the following observations:

1. When the number of buffers is less than twice the number of runs, equal
buffering performs the worst. The reason is that some runs have two buffers
while others have only one buffer. Processing and reading are not fully over-

lapped.
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2. When the number of buffers is more than twice the number of runs, we can
reduce disk seeks by using equal buffering. If the number of buffers is over
three times the number of runs, a significant amount of merge time is reduced.

With seven buffers per run, the merge time is close to the lowest value.

3. Extended forecasting does not benefit from extra number of buffers. Merging
is very fast in our experiments so that full overlap of processing and reading is
achieved by using two extra buffers. Disk seeks are not reduced by the extra
number of buffers assume that the buffer size (I/O unit size) is fixed. In fact
performance tends to degrade as the number of buffers increases. The reason

is not known, though.

4. Simple clustering makes full use of floating buffers and reduces the disk seek
time even with a small number of extra buffers. With twice as many buffers
as the number of runs, the merge time is already reduced significantly. Merge
time is close to the lowest value using as little as five buffers per run. For all

cases, simple clustering outperforms the other strategies.

5.2 Read Ahead for Concurrent Jobs

All previous research on computing read sequences ([ZL96b] and [ECW94]) as well
as the discussion in the previous section assumed that only one sort runs in the
system. No other jobs access the run disk when the sort is doing an external merge.
In reality, a disk drive serves many jobs in the system. Several queries may access
the run disk(s) at the same time. Reading the run blocks in a cluster may require
more than one disk seek if: (1) while a sort is doing an external merge, other

jobs, such as joins, access the same disk, (2) multiple external sorts are running
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concurrently and their run blocks are read/written on the same disk, (3) sorted
output is written to the same disk where the input runs reside, or (4) a sort merges
the runs in multiple steps and stores intermediate runs on the same disk. Many
people have suggested using different disks for intermediate runs and input runs so
that run read requests and run write requests will not be mixed with each other,
but it does not solve the problem when there are multiple sorts accessing the same
disks at the same time or when the optimum merge pattern is adopted for merging
(see Section 5.2.1).

The clustering technique given in the previous section groups data blocks into
clusters expecting that the blocks in each cluster are read sequentially. When a
sort’s read requests are mixed with I/O requests from other jobs or its own write
requests (for intermediate runs or sorted output), a cluster may be broken into
several pieces requiring more than one disk seek. Experimental results indicate
that with moderate disk disturbance, the simple clustering algorithm still works
fine. But when disk contention is high, for example in the extreme case when there
is an I/0O request from other jobs after each run read request, clustering will not
save any disk seeks.

This problem can be solved by atomic cluster reading, where an atomic cluster
read (or an atomic read for short) is composed of a set of uninterruptible data block
read requests®. A cluster will not be broken into pieces, but the sort has to wait
for enough empty buffers before sending an atomic read. To overlap processing

and read time, there must be enough buffers for the merge process to proceed and

3In the sort testbed. it is supposed that all jobs in the database system send their I/O requests
to an I/O request queue, through which the I/O requests are served by the I/O agents. An
atomic read is implemented by locking the I/O request queue, sending a set of read requests, then
unlocking it. It is also possible to send a set of read requests of a cluster by using UNIX ready()
command, which is able to read adjacent blocks from disk into several buffers.
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enough buffers for I/O to read an additional cluster. This resulted in Theorem 5.2

for feasible read sequence using atomic cluster reading.

Theorem 5.2 Let B represent the number of buffers, n the number of runs, Q;
a cluster (a set of adjacent run blocks from the same run), and L; the number of
run blocks in cluster Q;. When clusters are read atomically, a read sequence of N
clusters {Q1, ..., @n} is feasible for consumption sequence {C\,...,Cr}, if for all k
such that B <k < T, {Ci,.--,Ci-Btn} C @1U...UQj_; for the largest j such that
Yi,Li<k

Proof: We assume that a merge process is able to proceed only if the first unfinished
block of each run resides in memory.

When k = B, {C1,..,Co} € Q1 U ...UQj-1 and ¥4, L; < B, which means
the first block of each run belongs to the first j — 1 clusters, and there are enough
buffers to read the first j clusters. When cluster Q; is being read, @, to @;-1 have
already been read into memory. Thus Ci, Cs, ... , Cy, reside in memory. The merge

process can start.

- SO W - Y- N

1 : Rk RT
o : B-n extra buffers for read ahead:
- '\W"‘ ; =
1 n blocks for merging Ck-B+n T
(one block for each run)

Figure 5.4: Feasibility of read sequence

At any stage when B < k < T (as shown in Figure 5.4), among {C1, ..., Ck=B4n}

n blocks are needed for merging. So k — B blocks must have been consumed by
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the merge process. Since {C},...,Cr-B+n} C @1 U ...U @;—1, the number of blocks
unfinished within {Q,...,@;} is Y%, L; — (k — B). Because S5, L; < k, we
have Zf=1 L; — (k — B) < B, which means there are enough buffers to store the
unfinished blocks in {@\,...,@;}. So after cluster Q;_, is read into memory, the
n blocks needed for merging already reside in memory. The merge process can
proceed, while there are enough buffers to read cluster Q;.

The merge process is able to proceed until & = T when all blocks are read
into memory. Therefore, the merge process will terminate. So the condition in the
theorem guarantees the feasibility of the read sequence. =

Similar to the proposition for simple clustering, Theorem 5.2 is based on the
standard merge algorithm. The condition is sufficient but not necessary for merging
with delayed reads.

The following algorithm, called clustering with atomic reads, is used to compute
a feasible read sequence for atomic cluster reading. It is similar to the simple
clustering algorithm given in the previous section. The initial read sequence is still
the consumption sequence for the standard merge algorithm, while each block is
a cluster of size 1. Each block is then combined with the previous cluster for the
same run if the feasibility of the read sequence is preserved. The major difference
between simple clustering and clustering with atomic reads is that the latter records
cluster size and uses Theorem 5.2 to check the feasibility of the read sequence. The
algorithm returns a sequence of clusters (each cluster with a run number and an
address of the first block in the cluster), and returns a cluster size array at the same

time.

Algorithm clustering with atomic reads :
Input: consumption sequence C = {C},Cy,...,Cr},

number of buffers B, number of runs n
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Output: read sequence Q@ = {Q1, @2, -.., @n}, cluster size L = {L,, L, ..., Ln}
// C: and R; have the same structure: run number field and block address field,
/| L; is an integer recording the size of cluster Q;
begin
Q :=C; [/ Initialize Tead sequence to be the consumption sequence
fori:=1toT
L[i] :=1; [/ Set initial cluster size to 1
endfor;
lastCluster :=n; [/ lastCluster: indez of the last cluster before Qfi]
fori:=n+1toT
/| Search each previous cluster to find the one with the same run as Qi
for j := lastCluster downto 1
if Q[j].runNumber = Q[i].run Number
then k := j; exit loop; endif;
endfor;
if Q[Z] can be combined with Q[k] preserving feasibility
then L[k] ++; // combine Q[i] with cluster Q[k]
else lastCluster ++; Q[lastCluster]| := Qi]; // Q[i] becomes the new last cluster
endif;
endfor;

end

To check the feasibility efficiently. a free buffer count array F = {Fy, F3, ..., Fr}
was also used to implement this algorithm. F; records the number of free buffers
left after cluster Q; is read. It is set to B — n initially. When @Q); is combined with

cluster @;, the values for F; to Figseciuster are reduced by one. To guarantee that



CHAPTER 5. READ AHEAD DURING EXTERNAL MERGE 77

there are enough buffers to read a cluster while the merge process can proceed, it is
required that F; > L;y, for all :. This condition guarantees that the merge process
can terminate. For each @Q;, the algorithm needs only check cluster Qiastcruster
down to cluster Q; that F; = Ljy; or F;_; = L;. It is more efficient than using
Theorem 5.2 directly.

In simple clustering, whenever a buffer is empty, it is used for reading the next
block. When the blocks to be read are adjacent and from the same run, they form a
cluster. So a cluster size may be as large as the run length (which happens when the
input data is already sorted). For clustering with atomic reads, however, the sort
has to wait until there are enough buffers to hold a cluster before issuing an atomic
read request. The cluster size is limited by the number of buffers. In fact, the cluster
size is restricted by the feasibility of the read sequence. In the above algorithm,
the size of each cluster grows to its maximum while preserving the feasibility of
the read sequence. Two adjacent clusters are counted as two clusters because they
require two atomic reads, even though they may come from the same run and only
one disk seek is required. For random data, the next cluster is normally from a run
different from the run that the latest cluster was read. So few clusters of the same
run are adjacent. Therefore, we can use the number of clusters to approximate the

number of disk seeks.

Experimental results
Experiments have been conducted for the following cases:
- single sort, no disk disturbance

- single sort requiring one merge step, with external disturbance

- single sort requiring multiple merge steps, no external disturbance
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— multiple sorts, no external disturbance

— multiple sorts with external disturbance

Figure 5.5 shows the experimental results of clustering with atomic reads (CA)
compared with previous strategies (with the same data sets), where there is only one
sort running in the system. No other jobs access the run disk. Because clustering
with atomic reads requires a set of empty buffers to send each atomic read, the
average cluster size is shorter than that of simple clustering (see next section). Its
performance is not as good as simple clustering, but better than equal buffering
and extended forecasting. As the number of buffers increases, both equal buffering
and clustering with atomic reads converge to simple clustering, but clustering with
atomic reads converges more quickly than equal buffering. Figure 5.5 (b) shows
that the result of merging with 6 buffers per run while data size changed from 5M
to 60M. Simple clustering and clustering with atomic reads performed almost the
same.

During external merge, the run read requests of a sort may be mixed with other
disk access activities, which is called disk disturbance or disturbance for short. To
distinguish it from the disturbance of its own write requests (for intermediate runs
or sorted output), the disturbance from other jobs is called ezternal disturbance.
External disturbance may vary greatly in practice, depending on the system work-
load. This can be modeled by simply using a disturbance frequency or a probability
of disturbance. The sort testbed simulates the external disturbance by sending dis-
turbance requests, each reads a small chunk of data (4K) from a random position on
the run disk. The purpose is to move the disk head away from its current position.
Disturbance requests are issued according to a given disturbance rate d,, called the
read disturbance rate (an input parameter), which is the probability of disturbance

for a run read request. Before each run read request, a random number within [0, 1)
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Figure 5.5: Comparison of read strategies (single sort without disturbance)

is generated. If it is smaller than d,, a disturbance request is issued. When 4, = 1.
i.e., the highest disturbance rate, there will be a disturbance request for each run
read request. For simple clustering, a disturbance request may appear between any
run read requests. Before each run read request, the system will decide whether a
disturbance request will be produced or not. For clustering with atomic reads, the
disturbance requests can appear only between atomic reads. If the cluster contains
m run block read requests, the testbed will generate m random numbers. Whenever
there is a number smaller than d,, a disturbance request is issued. So there may
be several disturbance requests between two atomic reads. For a given disturbance
rate and a given random seed, the total number of disturbance requests produced
is the same for all strategies.

Figure 5.6 (a) shows the impact of external disturbance on the four strategies.

The experiment was performed on five 50M (random) data sets. For each data
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Figure 5.6: Effects of disk disturbance (single sort)

set, the run formation phase produced 15 runs with a total of 1600 run blocks.
90 buffers (6 buffers per run) were used during external merge. The disturbance
rate changes from the minimum value 0 (no disturbance) to the maximum value 1
(highest disturbance). Since the merge time measured is the elapsed time of the
external merge phase, including the time for disturbance requests, it increases as
disturbance rate increases.

The equal buffering introduced in the previous section issues a set of read re-
quests for a run when all the buffers of the run but one are emptied. Each set of
read requests were implemented by an atomic read, thus its performance is similar
to clustering with atomic reads. Extended forecasting reads run blocks in the order
of the consumption sequence. For random data, the next block to be read is nor-
mally from a run different from the run that the latest block was read. So each read
required a disk seek. The total number of disk seeks reached the maximum value

and was not affected by the disturbance requests. This resulted in much longer
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merge time, but the merge time changed at the same rate as for clustering with
atomic reads. All these three strategies are not affected by disk disturbances.

The major impact of disturbance is on simple clustering (SC). When there was
no disk disturbance, it performed almost the same as clustering with atomic reads
(in fact a little bit better). As the disturbance rate increased, the improvement
deteriorated. At the highest disturbance rate (d. = 1), simple clustering performed
the same as extended forecasting, which means almost all of its reads required a
disk seek.

Figure 5.6 (b) shows the results of a sort requiring multiple merge steps. In-
termediate runs are stored on the same disk as the input runs. So reading of the
input run blocks is mixed with writing of the new generated runs. Since input and
output proceed at about the same speed (the small difference is from merging which
does not provide empty buffers at a constant rate), so there is a write request after
almost each read request. Each read then requires a disk seek. Thus simple clus-
tering is very close to extended forecasting. Both of them are worse than clustering
with atomic reads and equal buffering with atomic reads.

Figure 5.7 compares simple clustering and clustering with atomic reads when
multiple sorts run concurrently in the system. These experiments were very time
consuming. Since extended forecasting always performs the worst and equal buffer-
ing is similar to clustering with atomic reads, they were not included in the exper-
iments. Each experiment run consists of twenty 50M sorts, and each sort uses 6
buffers per run during external merge.

Figure 5.7 (a) shows the results of multiple sorts without external disturbance.
When the sorts run independently (concurrency degree = 1), both methods have
the same performance. As the concurrency degree increases, throughput increases

for both of them. This is caused by the overlap of processing and I/O operations
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Figure 5.7: Experiments with multiple concurrent sorts

when multiple sorts reside in the system. It shows that clustering with atomic

reads improves faster than simple clustering. The reason is that simple clustering

is affected more by mixed requests from multiple jobs.

Figure 5.7 (b) shows the results for multiple sorts with disturbance from other

jobs at the same time. The disturbance rate is 0.5. Simple clustering is affected by

both other sorts and non-sort jobs (simulated by external disturbances).

The experimental results show that clustering with atomic reads outperforms

simple clustering when sorts are affected by disk disturbance, but the degradation

of simple clustering is not very significant, unless the disturbance is extremely high.

In summary, we offer the following conclusions:

1. The simple clustering algorithm effectively reduces disk seek time for external

merge, even with moderate disk disturbance.
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2. Clustering with atomic reads is not affected by disk disturbance. It avoids
the performance degradation of traditional read strategies. The algorithm is
suitable for high disk contention, but it is not as good as simple clustering
when there is no disk contention, especially if the number of buffers per run

is less than 3 (see Figure 5.5).

5.3 Performance on Partially Sorted Input

All the experimental results in the previous sections are based on random input.
In this section, we give some performance results of the read strategies on partially
presorted input.

Existing order or presortedness of a data file can be measured in many ways
[EC91] [ECW92]. However, most of them cannot be used in our case, because
the performance of our read strategies is affected by the existing order of records
between runs, rather than the existing order in the input for each run. During the
external merge phase, regardless of the existing order in the input of the runs, the
records in each run are already sorted during the run formation phase. Zheng and
Larson introduced a simple model for producing partially ordered records between
runs. The keys in a run ¢ are uniformly distributed in a range Low; to Hzigh;.
Each run has a key range of the same length but the key ranges of run ¢z and run
¢ + 1 are set to overlap. A parameter a controls the overlap of the key ranges for
run ¢ and 7 + 1 so that Low;y; = (1 — a)High; + aLow;. Setting « = 1 produces
completely random data. Decreasing « increases the data skew (modeling partially
sorted data). Setting a = 0 is equivalent to the input file already being sorted
[ZL96b)|.

Our sort testbed was modified to generate partially sorted input based on the
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above model. a is set to the value of input parameter overlap of key ranges. A
set of experiments was performed using each read strategy on 50M data sets. The
overlap of key ranges, i.e., the a value, varied from 0 to 1 (100%). 4M memory
space was used for sorting, resulting in 15 runs. Merge buffer size was 32K, and the
number of buffers per run varied from the minimum number (one buffer per run
plus 2 read ahead buffers) to the maximum number allowed by available memory.

Figure 5.8 shows experimental results for five data sets, each representing par-
tially sorted input controlled by the overlap of key ranges. It plots the number of
disk seeks as a function of the number of buffers per run for each read strategy. For
each set of adjacent blocks (or a set of adjacent clusters) of the same run, only one
disk seek is counted for reading*. Thus when a = 0, only one disk seek is counted
for reading each run, resulting in the minimum 15 disk seeks.

The results show that all read strategies perform better on partially sorted
input. However, extended forecasting does not benefit from additional buffers.
Equal buffering can save disk seeks by using more than two buffers per run, while
the two clustering strategies can reduce the number of disk seeks even with a small
number of buffers. For the clustering strategies, when the input data is nearly
sorted, i.e., the overlap of key ranges is small, the number of disk seeks is close to
the minimum with far fewer buffers for read ahead.

Figure 5.9 shows the external merge time as a function of the number of buffers
per run for each read strategy. The merge time is mostly consistent with the re-
sults for disk seeks shown in Figure 5.8. When the input data is nearly sorted,
equal buffering and the clustering strategies can reduce disk seek time to the mini-

mum with far fewer buffers. For equal buffering, the number of disk seeks remains

*In practice, more disk seeks are required sometimes even with sequential read. For example,
a disk seek may be needed when the data crosses cylinder boundaries. However, the number of
these disk seeks is normally small. So they are ignored here.
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Figure 5.8: Disk seeks on partially sorted data

constant with less than two buffers per run. This is because some runs have two
buffers while others have only one buffer so the sort can use at most one buffer
for read ahead for each run. Within this range, merge time decreases as the num-
ber of buffers increases, since CPU time and I/O time are better overlapped with
more buffers. Extended forecasting does not benefit from extra number of buffers.
In fact the merge time tends to increase as the number of buffers increases. This

also happens to other strategies when they reach the minimum merge time. Some
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Figure 5.9: Merge time on partially sorted data

factors other than disk seeks play a role here. Cache behavior may be one of the

reasons, since extra buffers reduce cache locality.

Figure 5.10 compares the read strategies with 4 buffers per run and 6 buffers

per run respectively. It shows the number of disk seeks as a function of overlap of

key ranges. Figure 5.11 gives the corresponding merge time.

Extended forecasting and equal buffering benefit little from partially sorted

data until the overlap of key ranges is below 50%, in which case only two runs are
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Figure 5.11: Comparing merge time of read strategies

involved in merging at each stage of the merge process. Unlike these two strategies,

the two clustering strategies benefit from partially sorted data starting from a large

overlap of key ranges. As the overlap of key ranges decreases, the merge time

decreases. At 80% overlap of key ranges (close to random data), the merge time is
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almost minimal. Experimental results indicate that the clustering strategies exploit
existing order in the input better than equal buffering and extended forecasting.
Why extended forecasting has a higher merge time at 10% overlap than at 20% is
not known at this time.

In summary, all read strategies benefit from existing order in the input. How-
ever, the clustering strategies exploit it better than equal buffering and extended
forecasting. For nearly sorted data, far fewer buffers are required to minimize the

external merge time.

5.4 Estimate of Improvement

Previous research evaluated the performance effects of read strategies experimen-
tally. In this section, we build approximate models to estimate the performance
improvement resulting from the read strategies. We use two factors to measure the

performance improvement: average cluster size and read reduction factor.

Definition 5.4.1 Suppose the number of run blocks is T and the number of clusters
is N. Then the average cluster size CS is defined as T/N, and the read reduction
factor RF is defined as 1 — N/T.

The average cluster size is the average number of blocks in a cluster. When
the average cluster size is large, more blocks are grouped together and fewer disk
seeks are required to read the run blocks. It reflects the ability of a read strategy
to group data blocks into clusters.

For uniformly distributed random data, there are few data blocks adjacent in
the consumption sequence when the number of runs is not too small. T disk seeks

are required for the consumption sequence, while only N disk seeks are needed
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for the read sequence after clustering. The number of disk seeks saved is T — N,
and the percentage of the saving is (T' — N)/T, which is 1 — N/T. Therefore the
read reduction factor reflects the amount of improvement from using a clustering
technique. From the definition, we have:

1

RF=1- . (5.1)

Since extended forecasting does not save any disk seeks from the extra num-
ber of buffers, the analysis is focused on simple clustering, clustering with atomic
reads, and equal buffering. We also estimate the performance improvement of sim-
ple clustering under disk disturbance. For partially sorted input, we do not have

approximation models for now. It is left for future work.

5.4.1 Estimate of simple clustering

CS and RF can be greatly affected by the ordering of the input data. For the
purpose of estimation, we assume that the sort keys are uniformly distributed, all
runs are the same size, and there is only one sort doing a single step merge with no
disk disturbance. The approximate model is derived based on the assumption that
all runs are equal, in the sense that the probability of each run being required for
a block by the merging process is the same, and the blocks of each run have the
same opportunity to be clustered, i.e., to be combined with the previous block of
the run. In such a situation, we assume that the consumption sequence is close to
the ideal consumption sequence shown in Figure 5.12. n is the number of runs and
within each sequence of n blocks, there is one block from each run.

When simple clustering is used, each block is combined with the previous block

of the same run if feasibility is preserved. Therefore, block Cpni1, Crya, .- » Con
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Figure 5.12: Ideal consumption sequence for random data
are combined with Ci, C,, ... , C, respectively and form n clusters. Each cluster

contains two blocks. Then Csny1, Canga, ..., Csn are combined with these clusters.
The cluster size grows until the feasibility cannot be preserved. The remaining
blocks will be combined to form the second set of clusters, and so on. Since each
block of each run has the same opportunity to be combined with the previous block
of the same run, the clusters are the same size, which results in the ideal read
sequence shown in Figure 5.13, where Q; represent a cluster, which is a sequence
of adjacent blocks from the same run. Within each sequence of n clusters, there is

one cluster from each run.

B buffers required B buffers required R’l'

R lRi .................... ........................... e \
'Q Q ... ‘Qn Quyy Qs I Q,

unl un2 ... un n nnl un2 ...

Figure 5.13: Ideal read sequence

To guarantee feasibility, the merge process should be able to proceed while an
extra buffer is used to overlap the merge processing and read time. The first n —1
clusters and the first block of @,, are required for the merge process to start, while
a buffer is required to read the second block of @,. Suppose the cluster size is C'S,
then at least (n — 1) * C'S + 2 buffers are required. Whenever a buffer is empty, it is
used to read the next block of cluster Q,,. Based on the equality of the runs, their
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blocks are consumed at the same speed (see the ideal consumption sequence). As
@1 is finished, enough buffers have been emptied to read Qn4; into memory. The
merge process is able to continue. The same holds when @Q; is finished. When @,
is finished, there are exactly 2 buffers for 2., one to store the first block of @5, so
that the merge process is able to proceed, and another one to read the next block
of Q2,. This procedure repeats until the last set of clusters are read into memory.
So the (mn — 1) * C'S + 2 buffers are enough for the merge process to continue until
it terminates. Suppose there are B available buffers and S buffers per run (i.e.,
S=B/n),then B=n*S =(n—1)*CS + 2. So we have:

_B—2_n*S-—2

S, n—-1 n-—1 (5-2)
n—1 n—1
h=l-p5 =l oo (53)

Although these formulas are derived from the ideal case, they provide good
estimates of clustering if sort keys are uniformly distributed. Figure 5.14 shows
experimental results on 50M data sets with fixed 4M memory space (which resulted
in 15 runs, 14 of them are 3584 K and the last run is 1024 K). Sort keys are 10
byte random character strings. Experiments were performed on 10 random data
sets. The differences of the results from these random data sets are less than 3%.
All the experimental results are very close to the estimated values (the solid line).

Experiment were also performed on data sets with different sizes (20M to 100M).
The results for a 20M data set and a 80M data set are shown in Figure 5.15. When
the number of runs is small, merging may require more than one block from one
run, then from another run. For example, with two runs, the probability of the next

block coming from the same run as the block that was just read is 0.5. If there are
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Figure 5.14: Modeling simple clustering

ten runs, the probability is 0.1. So there may be clusters already in the consumption
sequence, especially for a small number of runs. After the clustering algorithm is
applied, the resulting cluster size tends to be greater than the cluster size resulting
from the consumption sequence without clusters. Since our formulas are derived
based the ideal consumption sequence (without clusters in it), they underestimate
the cluster size, especially for a small number of runs. This is reflected in the
diagram for the 20M data set (with 6 runs), but the experimental results are still
close to the estimated values. The read reduction factor (RF) shows that the
number of disk seeks is reduced by over 80% when S > 6 in all these cases.

When a sort produces variable-length runs (e.g., using memory-adaptive sort),
especially when the run lengths differ greatly, experimental results indicated that
the average cluster size is larger than the estimated size from formula 5.2, and
the performance is better than the estimates based on equal runs. One reason is
that data blocks are more often from the longer runs than the shorter runs, which

increases the cluster size. But the analysis becomes complicated and is left for
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Figure 5.15: Varying the input size (simple clustering)
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5.4.2

Estimate of clustering with atomic reads

8

Similar to the analysis of simple clustering, the estimate for clustering with atomic

reads is also based on the ideal consumption sequence and the ideal read sequence

in which clusters have the same size. Within each sequence of n clusters, there is

one cluster from each run.

B buffers required

B buffers required

.......

Qn Qn+1§ Qr1+2

run n runl run?2

..............

Figure 5.16: Ideal read sequence

For clustering with atomic reads, the sort sends the read requests of a cluster
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as an atomic read. n * CS buffers are required to keep the first n clusters so that
the merge process can start, while C'S buffers are required for Q.41 to overlap the
merge processing and read time (as shown in Figure 5.16). We assume that all the
runs are consumed at the same speed. When there are enough buffers for the next
cluster, another atomic read is issued. By the time the first n clusters are finished,
there are enough buffers to keep Qn41 to Q2n41- So the merge process is able to
continue with the run blocks in Qn4; to @2,, while there are enough buffers for
Q2n4+1 being read at the same time. Thus the merge process is able to terminate
with (n + 1) * CS buffers. Then we have B=n xS = CS % (n + 1), which gives us

the following formulas.

B nxS

CS°=n+1=n+1' (5.4)
n+1 n+1
RF, =1-— B —l—n*S, (5.5)

These formulas, derived from the ideal case, again provide good estimates of
the effects of clustering with atomic reads when sort keys are uniformly distributed.
Figure 5.17 and Figure 5.18 show experimental results for the same data sets used
for simple clustering. They are all very close to the estimated values. In fact, the
estimates fit the experimental results even better than for simple clustering.

Similar to simple clustering, when a sort produces variable-length runs, exper-
imental results indicated that the average cluster size for clustering with atomic
reads is larger than the estimated size using formula 5.4, and the performance is

better than the estimate based on equal runs.

From formula 5.2 and formula 5.4, we find that CS, = 2 + (S — 2)/(1 — 1/n)
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Figure 5.17: Modeling clustering with atomic reads
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Figure 5.18: Varying the input size (clustering with atomic reads)

and CS, = S/(1 + 1/n). Therefore,

e As the number of runs n increases, the average cluster size of simple clustering

CS, decreases (when S > 2), but the average cluster size of clustering with

atomic reads C'S, increases;
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e CS, > CS, when § > 1+ 1/n. Simple clustering results in larger average
cluster size, and therefore performs better than clustering with atomic reads

(if there is no disk disturbance).

¢ CS,> S and CS, < S (when S > 2). As the number of runs increases, C'S,
and C'S, converge to S, which means the effect of both methods becomes close.
When the number of runs is large enough, they result in the same average
cluster size S, and therefore the same performance improvement (RF =1 —

1/S).

5.4.3 Estimate of equal buffering

Equal buffering can be considered as a special clustering algorithm which uses fixed
buffers. It sends an atomic read request when a set of empty buffers (for a run)
is available. Each run owns S buffers and uses one buffer for merge. If § > 2,
whenever S — 1 buffers of a run become empty, the sort sends an atomic read of

S — 1 blocks for that run. So the average cluster size is S — 1. Then we have:

S-1 if§>2

CS. = (5.6)
1 fl1<S5<2.
1-55 fS>2

RF,. = (5.7)
0 fl<S<2.

Normally the number of blocks of a run is not an exact multiple of S — 1, so
the size of the last cluster of the run is less than S — 1. The average cluster size
is therefore slightly smaller than the estimate from formula 5.6. When run lengths
are large compared to the number of runs, the difference is mirimal. Experimental

results confirm that the average cluster size and the read reduction factor are almost
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identical to the estimates.

From formula 5.2 and 5.6, we can get CS, > CS. when S+n > 3. Sincen > 2,
and S > 1 (with at least two extra buffers for read ahead), the condition always
holds. So simple clustering produces larger clusters and performs better than equal
buffering (if there is no disk disturbance).

From formula 5.4 and 5.6, we can get CS, > CS. when S < n+1. So clustering
with atomic reads performs better than equal buffering when S < n + 1. When
the number of buffers is small and many buffers are available so that S > n + 1,
equal buffering may outperform clustering with atomic reads, provided that the
processing and read time are fully overlapped. However, if the data is not uniformly
distributed, clustering (floating buffering) will exploit the existing order in the input
data, but equal buffering (fixed buffering) cannot.

5.4.4 Estimate of clustering with disk disturbance

Clustering with atomic reads and equal buffering with atomic reads issue their block
requests in atomic reads, which cannot be affected by disturbance requests. So their
average cluster size and read reduction factor are not affected by disk disturbance.
With simple clustering, the improvement deteriorates as disturbance increases.
Suppose the disturbance rate is d,., the average cluster size of simple clustering
without disturbance is C'S,, T is the number of run blocks, and ¥ is the number
of clusters after clustering without disturbance. For each block, the probability
of requiring a disk seek (after clustering) is P, = N/T = 1/CS,. For each read
request, the probability of having a disturbance request is d.. Then the probability
of a block having both a disk seek for the cluster and a disturbance request in
front of it is Py = (1/CS,) *d, = d,./CS,. Each block after a disturbance request
requires a disk seek. So for any block, the probability of requiring a disk seek is:
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P=P+P;—-Py=1/CS,+d. -d./CS,=(CS,*d, —d. +1)/CS,
Among T blocks, T * P, of them require disk seeks. So the number of clusters is
T = P., and thus the average cluster size with disturbance is T'/(T * P,) = 1/P,.

Then we have:

CS,
CSd_-CS,*d..-d,.-i-l' (5.8)
_ CS,xd. —d. +1
RF;=1-~ e . (5.9)

Here are some special cases to confirm the formulas:

o With the highest disturbance, d, =1, CSy = CS,/(CS,*1—-1+1) = 1. The
average cluster size degrades to 1 when there is a disturbance request before

each run block read request.

o Without disturbance, d. =0, CS4=CS,/(CS,*0—0+1) =CS,. Average

cluster size is not changed when there is no disk disturbance.

¢« IfCS,=1,CS4=1/(1*d. —d. + 1) = 1. If each block in the read sequence
already requires a disk seek, disturbance will not (actually cannot) add more

disk seeks.

Figure 5.19 shows the experimental results for simple clustering when the disk
disturbance rate changes. The left diagram shows the disk seeks for disturbance
requests and the disk seeks for run blocks. Given the total number of blocks T,
the number of disturbance seeks is estimated by T * d., while the number of run
block seeks is estimated by T * P,. The experimental results are very close to

the estimates. As the disturbance increases, the number of disturbance requests
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increases, and the number of run block seeks increases at the same time. When
the disturbance rate reaches 1, the number of run block seeks equals the number of
run blocks, i.e., each run block requires a disk seek. The right diagram shows the
average cluster size of simple clustering as the disturbance rate changes. It is very
close to the estimates obtained from formula 5.8. When the disturbance rate is 1,

the average cluster size degrades to 1, which means there is no improvement from

clustering.
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Figure 5.19: Modeling the effects of disk disturbance

When a sort is doing intermediate merge and writes the output run on the same
disk as the input runs, the input data size is the same as the output data size.
If input and output buffers are of the same size, the number of write requests is
the same as the number of read requests. If read requests and write requests are
mixed completely evenly, namely, there is a write request before each read request
(except the first one), the disturbance rate is 1. Normally, read /write requests will
not be mixed exactly in this way. Some read requests may be issued and served

continuously. The disturbance rate is then smaller than 1. If output and input use
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different buffer sizes, especially when large output buffers are used, there will be
fewer write requests. The disturbance rate will be smaller so that the degradation
of clustering will be less.

When multiple sorts are running concurrently, it is almost impossible to predict
the disturbance rate for a particular sort. The analysis becomes much more difficult

and is not investigated further.

5.4.5 Estimate of external merge time

Modern disks have become complicated, making it difficult to precisely predicate
the I/O elapsed time. Roughly, the I/O time can be estimated by data transfer
time and disk seek time (including rotational latency) as expressed in formula 5.10:

T=t«D+s+N, (5.10)

where D is data size (Mb), ¢ is the data transfer time for 1M data (sec/Mb), N is
the number of disk seeks, s is the average disk seek time (with rotational latency),
and T is the total elapsed time for accessing the data.

The sort testbed uses a 500M raw partition on one disk, a Seagate ST-15150W.
Experimentally, it was found that ¢ =~ 0.3 sec/Mbytes and s =~ 0.007 sec.

For a one pass merge, the amount of data to be read is the same as the input
data size, while the number of disk seeks can be approximated by the number of
clusters. Suppose the run block size (merge buffer size) is 8, the number of blocks

is D/b, and thus the number of clusters is D/(b * C'S). Then we have:

T=txD+sxD/(bxCS)=D=(t+s/(bxC3)). (5.11)

Figure 5.20 shows experimental results for a set of 50M data sets, and compares
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the results with estimates from formula 5.11, where C'S is replaced by the average

cluster size of each algorithm.
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Figure 5.20: Estimate of external merge time

For the clustering strategies, when the number of buffers per run S = 2, the

average cluster size is close to 2 (according to formulas 5.2 and 5.4). For equal

buffering, when the number of buffers per run S = 3, the average cluster size is

close to 2 (according to formula 5.6). Figure 5.20 (a) to (c) show that when the

average cluster size is over 2, the experimental results and the estimates are close,
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but with some differences. When the average cluster size is less than 2, some clusters
contain only one block and some contain 2 blocks. The real improvement is much
less than estimated. Clearly, factors other than disk seeks play an important role
here, but we do not know which factors.

Figure 5.20 (d) shows the the experiment of simple clustering with disk distur-
bance. The elapsed time collected during external merge includes the part of data
access for disturbance requests. The estimated value is the sum of the merge time
(based on formula 5.11 and formula 5.8) and the time for disturbance requests based
on formula 5.10, where the number of disturbance requests (or seeks) is the number
of run blocks multiplied by the disturbance rate, and the data size is the distur-
bance read size (4K) multiplied by the number of disturbance requests. It shows
that the experimental results and the estimates are close when the disturbance rate
is low (d. < 0.4). With a high disturbance rate (d, > 0.4), the experimental results
diverge from the estimates. For this set of experiments, when d, > 0.4, the average
cluster size CS; < 2. So the reason may be the same as the reason for the three

clustering algorithms when average cluster size is less than 2.

5.5 Clustering and Buffer Size

The purpose of clustering is to reduce the number of disk seeks when reading run
blocks during external merge. Using large buffers also saves disk seeks. However,
given a fixed amount of memory, the number of buffers is inversely proportional to
the buffer size. Large buffer size results in fewer buffers. The number of buffers per
run, S, becomes smaller, thus the average cluster size decreases and the number of
disk seeks increases. With clustering, how is the number of disk seeks affected by
buffer size?
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Suppose D is the amount of input data, M is the size of available memory for
external merging, and b is the run block size (merge buffer size). The number of
merge buffers is | M/b| ~ M/b, the number of run blocks is close to [D/b] =~ D/b,}
and the number of clusters CN =~ (D/b)/CS = D/(b=*CS). Let n be the number
of runs, then S = (M/b)/n = M/(n *b). From formulas 5.2, 5.4, and 5.6, we then

have:
Simple clustering: CN, =D/(bx(nxS5-2)/(n-1))=Dx(n~1)/(M —2+b)
Clustering with atomic reads: CN, = D/(b+xn*S/(n+1))=D «(n+1)/M
Equal buffering: CN. =D/(b*(S—-1))=D/(M/n—b) (if S > 2)

CN. =D/b (if S < 2)
When S = 2, b= M/(2#%n). So the formula for equal buffering can also be expressed
as:
CN. = D/(M/(2+n) + |M/(2 xn) — b])
From these formulas we observe that:

o For simple clustering, the number of clusters increases as buffer size increases.
When the available memory M is much larger than the buffer size b, the
change will not be significant.

e For clustering with atomic reads, the number of clusters is independent of

buffer size.

e For equal buffering, when b < M/(2 =), the number of clusters increases as
buffer size increases. When b > M/(2 % n), the cluster size equals the buffer

size. So the number of clusters decreases as buffer size increases.

SSuppose the run lengths are r; for n runs (i = 1 to n). The exact number of run blocks is
Soi-1[ri/b]. Since the last block of each run may not be full, the total number of run blocks may
be greater than [D/b] blocks.
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These results are based on equal size runs. For variable length runs, the results
might be different.

Figure 5.21 plots experimental results for a 50M data set (15 runs) with 3M
and 2M merge memory respectively. The observed results (plotted as points) are
compared to the estimates from the above formulas (plotted as lines). The exper-
imental results are close to the estimates. The differences are mainly caused by
rounding down the number of buffers when the buffer size is not an exact divisor

of the memory size.
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Figure 5.21: Number of clusters as a function of buffer size

Based on the analysis of the number of clusters, the smallest buffer size would
appear to be the best choice. However, our experiments showed that the smallest
buffer size did not result in the lowest merge time. Figure 5.22 shows the merge
time in the above experiments. When the buffer size is very small, the number of
clusters is also small, but the merge time is fairly high. The major reason is that
our I/O time estimate (formula 5.10) does not take into account the small overhead

for each read request. When a cluster contains many read requests, although there
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is only one disk seek, the total overhead becomes noticeable. The experimental
results show that this happened when the average cluster size is over 8, but it may

not be true for all situations.
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Figure 5.22: Merge time affected by buffer size

When the buffer size increase to some point, there is a sharp increase in the
external time. It was found that the average cluster size drops below 2 exactly at
these points. The experimental results in the previous section (Figure 5.20) show
that the three algorithms do not perform as well as the estimates when the average
cluster size is smaller than 2, which results in the poor performance of large buffers
here.

So the experiment shows that I/O performance is affected not only by disk seeks,
but also by other factors, some of which may be device dependent. Experimentally,

two conditions may be used as a guideline to choose buffer size:

1. the buffer size should be selected small enough so that the average cluster

size is greater than 2;
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2. the buffer size should be selected large enough so that the average cluster size

is less than 8.

Within this range, the merge time is not greatly affected by the buffer size.

5.6 Summary

This chapter focused on reducing disk seeks during merging, taking into account
the overlap of processing and read time, and concurrent jobs. We presented three
read strategies: fixed buffering, extended forecasting, and clustering.

Fixed buffering assigns buffers to runs statically, with each buffer dedicated to
a run. It reduces disk seeks by sending a set of read requests for a run each time
when all this run’s buffers but one become empty. The strategy does not rely on
the consumption sequence.

Forecasting uses floating buffers for read ahead. Extended forecasting uses more
than one additional buffer, and so achieves better overlap of CPU and I/O time
than the traditional forecasting which uses only one extra buffer. However, merging
for extended forecasting relies on a pre-computed consumption sequence that is
determined by the last key or the first key of each run block depending on the
merge algorithm (standard merging or merging with delayed reads).

Clustering exploits floating buffers to read run blocks in an order different from
the consumption sequence. Blocks from the same run are grouped into clusters for
reading, which reduces disk seeks. Simple clustering results in the largest (aver-
age) clusters, but its performance deteriorates when there is disk disturbance from
other concurrent jobs. An improved method, clustering with atomic reads, retains
performance better in this case. It performs better than other strategies when disk

disturbance is high. Experimental results on partially sorted input showed that the
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two clustering strategies exploit any existing order in the input better than equal
buffering and extended forecasting.

Formulas were derived to estimate the performance improvement of the read
strategies. The accuracy of the estimates is confirmed by experimental results. We
also study the effect of buffer size, resulting in a guideline for choosing buffer size

when using the read strategies.



Chapter 6

Merge Patterns

When the available memory is very small or the data sets are very large, runs may
have to be merged in multiple steps. The amount of data transferred between disk
and main memory is determined by the merge pattern, which also affects disk seeks.
The goal of this chapter is to reduce the I/O transmission cost when multiple merge
steps are required to complete a sort.

When the sort space remains constaut, it is known how to construct an optimum
merge pattern. However, no one has ever given the cost of an optimum merge,
and this has motivated the study of merge cost in this chapter. The results are
used to analyze the relationship between merge width and clustering, as well as
the relationship between merge width and buffer size. When the sort space is
adjustable during external merge, an optimum merge pattern is not guaranteed.
Four merge strategies are proposed for memory-adaptive merge: lazy merge, eager
merge, improved eager merge, and optimistic merge. The chapter is organized as
follows. Section 6.1 describes tree representation of merge patterns. Section 6.2
studies the optimum merge patterns of memory-static merge, and derives formulas

for calculating the optimum merge cost. Section 6.3 and 6.4 study the relationship

108
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between optimum merge and clustering, and the relationship between merge width
and buffer size. Strategies for memory-adaptive merge are proposed in Section 6.5,

and the last section summarizes this chapter.

6.1 Tree Representation of Merge Patterns

Perhaps the simplest merge pattern is 2-way merge which merges two runs in each
step. It has been studied extensively, especially for merging with tapes [Knu73).
With today’s high performance disks and large memory space, multiway merging
is more often used. Merge patterns can be represented as trees with initial runs as
external “leaf” nodes and output runs as internal nodes. The root node represents
the last run, i.e., the final result, which may be sent to some other operator rather
then written to disk. Figure 6.1 shows a merge pattern for 6 runs. The number
in each node is the length of the run. Each internal node corresponds to a merge
step. The length of an output run is the sum of the lengths of its input runs.

Since each internal node corresponds to a merge step, the length of an output
run equals the amount of data read in the merge step. Therefore, the sum of all
the output run lengths is the total amount of data read during the external merge.
Suppose there are m output runs (including the final result) whose lengths are I;,
la, ..., ln, then D, the total amount of data read during the external merge, equals
PPUBY

For each external node, its height, i.e., the length of the path from the root to
the node, represents how many times the data of the initial run is involved in a
merge step. In other words, the height represents how many times the data is read
from disk into memory. Thus the total amount of data to be read can be computed

from lengths of the initial runs and their heights. Suppose there are » initial runs
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10 15

Figure 6.1: Tree representation of a merge pattern

whose lengths are 7y, 73, ... , 7, and their heights are A, ko, ..., h,. Then we have

D,. = Zh, *¥T; . (61)

=1
The right side of the formula is also called the weighted ezternal path length of the
tree.

When the buffer size b, which is also the I/O unit size, is fixed, the number
of run blocks D, /b is proportional to D,. Without clustering, reading each block
requires a disk seek. Therefore, the number of disk seeks is also proportional to
D,. The amount of data read during the external merge, D,, is used as a measure
of external merge cost throughout this chapter. Because the source data input and
sorted result output are not considered in this thesis, the total I/O cost is only from
reading and writing run blocks. As the amount of run data written is the same as

the amount of data read, the total amount of data transferred is 2 x D,, and its
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transfer time plus disk seek time is the total I/O cost.

6.2 Memory-Static Merge

Memory-static merge does not change sort space size during the external merge
phase. The maximum merge width is fixed for all merge steps. Runs can be
merged in passes. Each pass produces a set of new runs from the set of existing
runs, and all the data will be read from and written to disk once per pass. Suppose
the maximum width is w, the number of runs is n, and the input data size is D.
Each pass reduces the number of runs by a factor of w, so [log, »n] passes are
required to finish the merge. Thus the total amount of data read by merging in
passes is D * [log,, ] .

However, it is not necessary to merge runs in passes. There are many valid
merge patterns. The only requirement is that each merge step must reduce the
number of runs so that we eventually end up with a single, completely sorted run.
Given n initial runs, possibly of variable length, and a maximum merge width
w, which merge pattern will result in the minimum data transmission? Under
the assumption that the maximum merge width remaius fixed this problem has a
very simple solution (see [Knu73] pp.365-366). An optimum merge pattern can be
constructed using Huffman'’s technique. The first step is to add (1 —=) mod (w—1)
dummy runs of length zero, and then repeatedly merge together the w shortest
remaining runs until only one run remains. Figure 6.1 actually shows an example
of an optimum merge pattern. The first merge step merges v, and r;, as well as
a dummy run of length 0 which is not shown in the diagram. Other merge steps

always merge the shortest remaining runs.
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6.2.1 Optimum merge cost for equal size runs

Most run formation algorithms, except replacement selection, produce equal size
runs if sort space size is fixed during run formation. Even though the last run
usually is shorter than the previous rums, the situation is close to the equal size
runs when the number of runs is not too small. The following theorem gives a
formula for calculating the exact amount of data read during the external merge

phase.

Theorem 6.1 Given mazimum merge width w and n initial runs all of the same
length r, by optimum merge, the total amount of data read during the external merge

phase equals

D, =r*(h+n—|(v*—n)/(w-1)]), where h = [log, n] . (6.2)

Proof: Since all runs have the same length, the optimum merge pattern corresponds
to a tree with minimum external path length. Knuth shows that a complete w-ary
tree results in the minimum external path length. He states that the minimum
external path length of a w-ary tree is A * n — |(w® — n)/(w — 1)|, where A =
[log,, ] ([Knu73] pp. 365-366). From Formula 6.1, D, = Y1, h; * 7;, we have
D, =32 hixr =7 * (3, ki), where 37| h; is the external path length of the
tree. O

Formula 6.2 provides the exact cost of an optimum merge for equal size runs,
but it is too complicated to be used for further analysis. The formula can be

approximated by setting h = log,, n. Then we have:
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D® =rxnxlog,n=Dx*logn/logw . (6.3)

where D is the input data size (the base of the logarithm is arbitrary), and DZ is an
estimate of the exact cost. It will be shown in the cost analysis for variable-length
runs that Formula 6.3 is a lower bound for the merge cost for equal size runs. So
we call it the lower bound estimate.

Although this approximation is simple, it underestimates the merge cost. The
difference can be as large as 20% of the real cost. Figure 6.2 (a) shows an example
of merging 50 runs with run size of 1. The maximum merge width w changes from
2 to 50. The diagram gives the exact cost of an optimum merge and the lower

bound estimate, as well as the cost for merging in passes.
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= merging in passes --— = exact cost (n =50) —
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° | s 200 lower bound estimate (n =50} ----- 4
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= o
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< e <

50 ——l ; """""""" Joooeoeoeno- i I 1

10 20 30 40 50 10 20 30 40 50
Maximum merge width (w) Maximum merge width (w)
(a) Merge cost and approximate (b) Comparison of estimates

Figure 6.2: Merge cost for 50 runs of size 1

A better approximate is to use a line segment for each range of merge width
during which i = [log,, n] does not change. From Formula 6.2 we can derive that

when w =n¥* (k= 1,2,3, ..), h =k, and



CHAPTER 6. MERGE PATTERNS 114

D, =r*(kxn—|((nY*)F —n)/(n* =1)| =k*(r*n)=k=*D .
When w = n/*+1) D = (k+ 1) * D. So for n'/*+1) < w < nl/* we can
estimate the cost using a line segment defined by two points: (n!/* k * D) and
(nt/Ce+1) (k + 1) * D). The function can be derived from the following equation:

w — pt/ (D) nlfk _ pl/(k+1)
D,—(k+1)*D k+*D—(k+1)*«D "’

So
D * (w — nl/(k+1))
nl/k _ pl/(k+1)

D.=(k+1)%D—

When w > n, the runs will be merged in a single step. The amount of data to
be read is the same as the input size D.

We now have a second approximate formula, called line estimate:

pe D ifw>n, (where n > 2)
i Dx(k+1— 2pnlloldn) il <y <nllk =123, ...

(6.4)
Figure 6.2 (b) shows the line estimate costs of merging 50 runs and 30 runs. The

line estimates are much closer to the exact cost than the lower bound estimates.

6.2.2 Optimum merge cost for variable length runs

Replacement selection produces initial runs of variable length. If there is existing
order in the input data, run lengths may vary greatly. If a sort is able to adjust
its memory space during run formation, run lengths may also vary, and they vary
greatly when the sort space experiences dramatic changes from one run to another.

For runs of variable length, the exact formula for calculating the merge cost is
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not known, although the optimum merge pattern can be simply constructed with
Huffman’s technique. The following theorem gives an upper bound and a lower

bound on the optimum merge cost.

Theorem 6.2 Given mazimum merge width w, n initial runs, and run lengths vy,

T9, ... , Tn, if the Tuns are merged in an optimum merge pattern, then

S(ri*log, 2) < Do < (hxn—|(w=n)/(w=-1))=D/n,  (65)

where h = [log,n], D = 3%, ri, and D, is the total amount of data read during

the external merge phase.

Proof: The lower bound is derived from a coding theorem which gives a lower bound
for the average code length for encoding a source alphabet with each character
associated with a probability. ([Man87] [YY83]). Let {a;,as,...,a.} be a source
alphabet and {c;, cs, ..., cx} be an encoder’s alphabet. Each character in the source
alphabet will be encoded by a code word, which is a sequence of code letters from
the encoder’s alphabet. Any encoding schema can be expressed in a k-ary tree as
shown in Figure 6.3. Each node has at most k children. Level 1 gives the first letter
of a code word, level 2 gives the second letter of a code word, and so on.

For encoding with prefix constraint, no code word can be a prefix of another
code word, which means no code word is in the path from the root to another code
word. All code words are leaf nodes of the tree. A code word’s length [; is the
length of the path from the root to the leaf node. Figure 6.4 shows an example of
encoding source alphabet {a;, a2, a3, as, as, as} with encoder’s alphabet {c;, ¢z, cs}.
It gives the tree representation of the encoding and the code word for each source

character. The prefix constraint is satisfied.
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root

level 1 \ Cy
level 2 2 ClC.»."c,q e QQ..&C cesse & qq"° &

Figure 6.3: Tree representation for encoding

source character code word

root a, c,

a2 — Q¢

level 1 a,— GG
a,— GG

12 a as; — GG
leve 6o ¢t ce GG G ag— G5

Figure 6.4: An example of encoding with prefix constraint

Given a source alphabet {a,,az, ..., a,} with probability distribution P(a;) = p:
(1 < i < n), the average code word length I = ", p; * I; , which is the weighted
path length of the tree. Huffman'’s technique is often used to minimize the average
code word length. It is shown in {Man87] that for encoding with prefix constraint

H
log &’

1>

where A = Y., p: xlog pl‘ , and k is the size of the encoder’s alphabet. This can
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be rewritten as

T, pivlog L
log &

S ipi*l,'.

=1

In the merging problem, the optimum merge pattern corresponds to the tree
constructed using Huffman’s technique. Each initial run is at a leaf node of the
merge tree. The maximum merge width w corresponds to the size of the encoder’s
alphabet k, the number of runs corresponds to the size of the source alphabet, and
the path length h; of an initial run corresponds to the code length I;. Suppose the
input data size is D, which is the sum of the initial run lengths, i.e., D = 3, r;.
The merge cost 3.7, 7; * h; can be rewritten as D = 17, (ri/D) * h;, where r;/D
is between 0 and 1, and -7, 7;/D = 1. In the optimum merge pattern, the runs
of shortest lengths r; are merged first and they have the largest path length h; in
the merge tree. Similarly in Huffman encoding, the characters with the smallest
probabilities p; are constructed first and have the longest cord words. Both optimum
merge and Huffman encoding try to put off the costly part, long runs or characters
with high probabilities, so that they appear at high levels in the tree. The long runs
will be involved in fewer merge steps, and the characters with high probabilities
will have shorter code words. So the value r;/D corresponds to the probability p;

in constructing merge trees. Then we have

w1(re/ D) *log ,T}ﬁ n
: Z(T{/D) * h;

=1

IA

log w

Siirixlog D n
oL . ,
fogw < ; T; * h;
2 D
Z(r,— * log,, ;—) < D,.

=1 L
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To prove the upper bound, let D,. be the exact cost of the optimum merge for
equal size runs whose lengths are the average length of the given runs. We will
construct a merge tree for the given runs and prove that the merge cost is less than
or equal to D,.. Since an optimum merge pattern results in the minimum merge
cost, its cost is no more than the cost of our constructed tree. Then we can claim
that the cost of the optimum merge pattern is less than or equal to D,..

According to Knuth, a complete w-ary tree gives an optimum merge pattern if
all of the initial runs are the same length ([Knu73] pp.365-366). Figure 6.5 shows
a general optimum merge pattern of n equal size runs with maximum merge width
w, where (1 — n) mod (w — 1) dummy runs of length 0 are added. The lengths of
output runs are always larger than the lengths of initial runs. All of the initial runs

are at either the bottom level or the second to last level.

.| |r| {r| |r Ll |t [ 0

Figure 6.5: Optimum merge tree for equal size runs

Suppose the height of the tree is k, the length of the runs is 7, where 7 = D/n =
(X7, m:)/n, and there are k runs at the bottom level. From Figure 6.5 we can see

i=1

that the cost of the optimum merge is
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D, = kxrxh+(n—Fk)xr«(h—1)

= nxrx(h=1)+kx*r.
Since r= (L, m)/m

D.. = (h -1) *ir,--l-k*(f:r,-)/n .
i=1

=1

Now we use this merge pattern to merge the variable-length runs. Suppose the
run lengths are 7y, 73, ..., ™n, 71 < 72 < = < 7Ty, and the smallest & runs are at
the bottom level. Let D,, denote the merge cost for these variable-length runs, we

have
Dy =h Z?:l e+ (h—=1)«X0, = (h—=1)=37 ™ +2?=1 Ty -

Then we have:

n k
D,-e - Dﬂ, = k=* (ZT,)/’H, b Zr,-

=1 i=1

n k

= (k*gr;—n*_‘;r;)/n
n k

= (k= Z ri—(n—Fk)*Y_ r:)/n

i=k+1 i=1

> (kx(n—=k)xrpp —(n—k)*xkxr)/n
= kx(n—k)*(reer — 1) /0
> 0.

Thus D,, < D,.. The cost of the constructed merge pattern for the n runs
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is less than or equal to D,.. Since the optimum merge pattern of the n runs of
variable length has the minimum cost, its cost is less than or equal to D,,, which
is less than or equal to D,.. Therefore the cost D,. is an upper bound. According
to Theorem 6.1,

Do =rx(h*n—|(uw*—n)/(w~1)]) = (h+n— |(w} —n)/(w~1)])* D/n .
This completes the proof. m]

Based on the lower bound in the above theorem, when all the initial runs have
the same length, we have
D, > Y (r+log, ®) = (X 1) *log,n = rxnxlog,n |,
which is the lower bound estimate for equal size runs (Formula 6.3). Therefore, the
lower bound estimate mostly underestimates the exact cost of the optimum merge.

They are equal only when w = n'/* for an integer k.

Since no formula is available for calculating the exact cost of merging variable-
length runs, we approximate it by using the average of the lower bound cost and

the upper bound cost, that is, by

pev _ Zi=(Ti#log, 2) + (h*n—|(wh ~n)/(w~1)])* D/n
r 2 ’

(6.6)

where h = [log,n],and D=%2,7; .

Figure 6.6 shows examples of two sets of variable-length runs. The left diagram
is based on a set of runs collected from an execution of memory-adaptive sort on
the sort testbed. The run lengths are listed in Appendix A.1. The right diagram
is based on a set of runs between 1M and 5M whose lengths were randomly drawn
from a triangular probability distribution. The run lengths are listed in Appendix
A2
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Figure 6.6: Merge cost for variable-length runs

Each of the diagrams plots the exact optimum merge cost, the estimated cost,
the upper bound and the lower bound on the optimum merge cost, as well as the
cost of merging in passes. The exact optimum merge costs are calculated from an
optimum merge algorithm and the estimates are obtained from Formula 6.6.

The diagrams show that the estimates are very close to the exact costs. The
cost of merging in passes is usually much higher than the cost of optimum merge.
They meet at the points when the number of merge passes changes, i.e., at w = n'/F
for each integer k > 0. The diagrams also show that within a large range w € [/n,
n], the merge cost changes slowly, but when the merge width is smaller than \/n,
the merge cost increases very fast as merge width decreases. This is also true for

equal size runs (see Figure 6.2).

Using multiple disks

Many people have suggested using different disks for input runs and output runs.

The purpose is to overlap run input and run output [Sal89], and make run output
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fast by exploiting sequential writes. To achieve this goal, two disks are enough if
runs are merged in passes. But it has been shown that merging in passes usually
results in higher data transmission cost than the optimum merge. With optimum
merge, the shortest runs are selected for each merge step. These runs may reside on
any disk used for initial runs and intermediate runs. If the maximum merge width
is w, input runs may reside on w disks. So w + 1 disks are required to guarantee
that there is always a disk for intermediate runs which does not contain any input
runs. Since the maximum merge width can be large, it is quite possible that a
system does not provide as many disk as required.

When multiple sorts access disks at the same time, even if there are enough
disks to separate intermediate runs and input runs of a particular sort, the run
read /write requests of all the sorts are mixed. Since the work load on each disk
may vary, using different disks for input runs and output runs may not help improve
performance. Instead, I/O performance is more affected by the utilization of all
disks. Balancing the workload among disks is more important. Data striping is one
of the techniques to solve this problem by spreading each data file across the disks
[SGM86| [Kim86].

6.3 Optimum Merge with Clustering

Given a fixed amount of memory, we can use all buffers to maximize the merge width
which minimizes data transmission cost. We can also merge a smaller number of
runs while using some buffers to cluster run blocks thus reducing disk seeks. The
decision is a tradeoff between data transfer time and disk seek time. Then for a
given memory size, or a given number of buffers, what is the optimum merge width,

taking clustering into account?
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In this section and the next section, we use the following notation:
D, : amount of data read during the external merge phase
N, : number of disk seeks for reading run blocks
N,, : number of disk seeks for writing run blocks
M : size of available memory space for external merging
b : run block size, which is also the merge buffer size
B : number of merge buffers (M = b * B)
w : maximum merge width (2 <w < B —2)
S : number of buffers per run (S = B/w)
D : input data size
n : number of initial runs
t : transfer time for 1M data
s : average seek time.
Since the total amount of data to be transferred is twice the amount of data to
be read during the external merge phase, the total I/O cost, including the cost for

writing initial runs, is

T=tx2%D.+s%x(N.+ Ny) . (6.7)

Assuming that all initial runs have the same length and clustering with atomic
reads is used for clustering run blocks, the total number of run blocks to be read is
close to D, /b. The average cluster size CS is estimated by CS; = B/(n + 1) from
Formula 5.4, where the number of runs = is the maximum merge width w, since

only w runs are merged each time except the first merge step. Then we have:

N. = (D./b)/CSa
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= (D:/b)/(B/(w+1))
= D,*(w+1)/(db* B)
= Dex(w+1)/M. (6.8)

The number of disk seeks for writing run blocks may vary greatly depending on
how much the run writing is interrupted by other disk activities as well as its own
run read requests. Two extreme cases are sequential writes and random writes, in
which N,, is 0 and D, /b respectively. For the general case, we introduce a value
d,, as the write disturbance rate , so that N, = dy, * D, /b, where 0 < d, < L
For sequential writes d,, = 0 and for random writes d,, = 1. Basically, this value
reflects the degree of disk contention. When many external sorts run concurrently
or many other jobs access the run disk, it is high. When the disk workload is low

or multiple disks are used, it is low. In general we have

T = t«2+«D,.+3+(N,.+d,*D,./b)
= 2xt*D,+s+*D, x(w+1)/M +sxd,*D,./b
= (2*t+sx(w+1)/M +3*d,/b)=D, .

The amount of data D, can be replaced by the exact cost Formula 6.2, but
further analysis will become very complicated. The lower bound estimate (For-
mula 6.3) is simple, but sometimes it underestimates the cost significantly. Fig-
ure 6.7 gives two examples of 100 M and 200 M data sets with run size of 1M.
Using lower bound estimate for D,, the optimum merge width is about 50 in both
cases. However, if we use the exact cost formula (Formula 6.2) for D,, we found

that the optimum merge widths are 100 and 14, respectively.
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Figure 6.7: Analysis of merging with clustering

Line estimates are very close to the exact formula. Using Formula 6.4 to estimate

D,, we have

w — pl/+1)

T=(2+t+s*xd/b+ (s/M)*(w+1)) *T*n*(k+1_n1/k_n1/(k+1)) , (6.9)

where nl/*+H) <y <nlf* £ =1,2,3, ...

This function is composed of a set of functions, each is determined by k. To
minimize T, we can find the optimum merge width within each range, and then
find the lowest among them. To find the optimum merge width within each range,

the above formula can be rewritten in the following format:

r=n

T=a*xw?+b*xw+c, where a=—(3/M)*m<0 .

Thus the function has a maximum value, but not a minimum value. Since w is
bounded by n'/* and n/(*+!) T will be minimal at one of these two points. As a

result, we need only check merge width w = »/* (k= 1,2, 3, ... and w > 2) to
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get the optimum merge width.

Normally the number of runs is not very large. When the merge width is
smaller than /n, the amount of data to be transferred increases very fast as the
merge width decreases (see Figure 6.2). At merge width »'/® and smaller, we can
hardly get better performance. The check for & > 3 is virtually unnecessary. In
addition, with two buffers for read ahead, merge width is restricted by B — 2. So
in practice we need only check two merge widths: \/n and min{n, B — 2}.

Several examples are plotted in Figure 6.8. Three data sizes and two memory
sizes are selected. The merge buffer size is 8K and the write disturbance rate d,, is
0.5!. The diagrams are plotted using Formula 6.9. They show that the optimum
merge width is either /= or min{n, B — 2}.

M=0.5M,b=8k e=05,r=0.5M M=10M,b=8k e=05,r=1.0M
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Figure 6.8: Analysis of merging with clustering

Because of the complexity of modern disks, the estimate of I/O cost T may

!In many cases the optimum merge width is not very sensitive to d,. Even though the value
of d,, may not be precisely predicted, the optimum merge width selected is still the right one.
Through our analysis, we set the value of d,, at 0.5.
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not be precise. When the cost at /n and .he cost at min{n, B — 2} are close,
the optimum merge width selected may be the wrong one, but it does not affect
the performance greatly because the I/O costs at both merge widths are about the
same.

Figure 6.9 shows experimental results corresponding to the above examples.
The optimum merge widths are about the same as that determined by the formula.
For merging the 200M data set with 1M memory, the optimum merge width is 14
according to the formula, but it is close to 120 in the experimental result. However,
the experimental result shows that the I/O costs at the two merge widths are very
close. Even though the merge width 14 is not optimal, it is still a good choice.
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Figure 6.9: Optimum merge with clustering (fixed buffer size: 8K)

The above analysis and experimental results are based on equal size runs. For
variable-length runs, no models are available to estimate average cluster size, mak-

ing the analysis impossible for now.
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6.4 Merge Width and Buffer Size

With a fixed amount of memory, the number of buffers is inversely proportional
to the buffer size. The maximum merge width increases as buffer size decreases.
Large merge width minimizes data transmission cost, while small buffers increases
the disk seeks. The question is, for a given memory size, what is the optimum
buffer size? This is also a tradeoff between transfer time and disk seek time.

Goetz Graefe studied this problem based on the lower bound estimate of data
transfer size while assuming that the same amount of memory is used for both
the run formation and the merge phase, and that the runs have the same lengths
[Gra90]. There are three problems with his results: first, the optimum buffer size
selected based on his formula is sometimes far away from the real one because of the
poor estimate; second, his result shows that the optimum buffer size is independent
of data size, which is not true; and third, because of the complexity of his formula,
he suggested a check of all physically possible buffer sizes to find the optimum buffer
size. It will be shown in this section that we can find the optimum buffer size by
checking far fewer buffer sizes

To simplify the analysis, we assume that all buffers are used to increase merge
width and runs are merged without clustering. So the number of disk seeks for
reading run blocks is about D, /b, where D, is approximated by line estimate (For-
mula 6.4). Then we have

T = t*2x=D,.+s%(N,+ Ny)
= t*2+ D, +s%(D,./b+dy,*D,./b)
= (2+%t+(1+dy)*s/b)=D,
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(M/b) - /=4

ik — p1/(k+1)

= (2*t+(1+dy)*s/b)*xrxnx(k+1— ), (6.10)

where M/n'* < b< M/nt/0+1) k=123, ...

Similar to the analysis of merging with clustering, we can prove that the op-
timum value is one at the points M/n'/*, k = 1, 2, 3, ... . With minimum two
buffers for read ahead, the minimum number of buffers is 4. Thus the maximum
buffer size is M /4. So we have

b M/4 = M/nt/* < M/4 = n'*> 4= 1/k>log 4 =k <log,n.

For merging 1000 runs, the maximum value of k is 4. So values larger than 4
are virtually never needed. Normally, the buffer size is selected as some multiple
of the page size to improve I/O efficiency. Assume the page size is P (4K or 8K).
For each k, checking both [(M/n'/¥)/P] = P and |(M/n'/*)/P| * P will give us a
better result.

Several examples are given in Figure 6.10. They are plotted using Formula 6.10.
All the optimum merge widths are close to M/+/n. Table 6.1 lists the number of
runs for each case and the optimum buffer size rounded up or down to a multiple

of the page size (8K).

Table 6.1: Optimum buffer sizes for the examples

M=05M M=10M

D | 100M | 150M | 200M | 100M | 150M | 200M
n | 200 | 300 | 400 | 100 | 150 | 200
Jrn| 14 17 | 20 10 | 12 | 14
b | 40K | 32K | 24K | 104K | 80K | 72K

Figure 6.11 shows experimental results corresponding to the above examples.
The optimum buffer sizes are almost the same as those shown in Figure 6.10 and
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Figure 6.11: Effects of buffer sizes
Table 6.1.

For variable-length runs, the data transfer size is close to the upper bound given

in Theorem 6.2, and therefore close to the line estimate. So we can use the above

method to determine the optimum merge width, although the result may not be the
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exact optimum one. If precise buffer size is desired, we can evaluate each possible
buffer size using Formula 6.10, while the data transfer size D, is estimated by the
approximate formula for variable-length runs (Formula 6.6).

When clustering is taken into account, both buffer size and merge width are
variable. The optimization becomes more complicated. Since only two checks are
needed to find the optimum merge width for a given buffer size, a straightforward
strategy is to find the optimum merge width for each physically possible buffer size

and compare their costs.

6.5 Memory-Adaptive Merge

In the previous sections, we assumed that the available memory space for merging
remains constant. With memory-adaptive sort, the memory usage of a sort may
change from one merge step to another, which means that the maximum merge
width changes dynamically. Since the memory change is unpredictable, it is impos-
sible to plan an optimum merge in advance. However, the following two facts still

hold:

e Merging m runs always reduces the total number of runs by m — 1.

o Merging the shortest runs transmits less data than merging any other runs.

6.5.1 Dynamic merge strategies

To make merging adapt to the memory changes in the system, we devised four
merge strategies. All of them merge the shortest remaining runs in each merge
step. The strategies focus on how to determine the merge width for each merge

step.
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Suppose n is the number of existing runs before a merge step, w is the maximum
merge width allowed by the available memory, and m is the actual merge width
which has to be determined (m < w). The values of w and m may change from

one merge step to another, while n is reduced by m — 1 after each merge step.

Lazy merge : merge the smallest number of runs if the existing runs cannot be
merged in a single step, i.e., if n < w, m = n; otherwise, m = 2.

This strategy tries to do minimal work in each merge step and postpones the
costly merge(s) as long as possible, hoping that the system will soon have enough
space to merge the remaining runs in a single step.

One of the best cases of this strategy is when, after the first merge step, there
is enough memory to merge the remaining runs in one step. These two merge steps
result in the minimum data transmission.

However, if the available memory is decreasing and w < n after each merge step
until » = 2, only two runs are merged each time, which results in the maximum
number of merge steps and high cost in data transmission.

The major problem of this strategy is that it does not make full use of the

available memory resource to reduce the merge cost.

Eager merge : merge as many runs as possible each time, 1.e.,if n < w, m = n;
otherwise, m = w.

This strategy works eagerly by utilizing all the available memory. The number
of runs is reduced as much as possible in each merge step, resulting in the minimum
number of merge steps.

If w = n in the last merge step, memory resources are fully utilized for each
merge, and the amount of data transmission is minimal.

If only two runs are left for the last merge while more memory is available, the
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memory space is not fully utilized.
The major problem of this strategy is that the merge width of the last merge
step may be very small, which means the transfer cost of the second to last merge

step or previous steps is high. As a result, the total transfer cost is higher than it

is in an optimum merge.

Improved eager merge : merge as many runs as possible in each step until the
available memory is large enough to merge the remaining runs in two steps, then
keep the sort space fixed and do an optimum merge, ie., if n < w, m = n: if
w<n<2xw,m=n—w+ 1; otherwise, m = w.

This strategy tries to merge fewer runs in the second to last merge step by
making the merge width of the last merge step wide. Since the last merge step
always reads a fixed amount of data, i.e., the total run data, which is independent
of the merge width, minimizing the I/O cost of the second to last merge step will
reduce the total transfer cost.

If n —w+ 1 = w in the second to last merge step, memory resources are fully
utilized for each merge, and the amount of data transmission is minimal.

If the second to last merge step merges only two runs, the I/O cost can be
further reduced by merging fewer runs in the third last merge step and making the
merge widths of the last two merge steps wide. However, we have to keep the sort
space fixed for the last three merge steps. In the extreme case, we can keep sort
space fixed for the whole merge phase and do an optimum merge. The strategy
degrades to a memory-static merge. In this case, newly available memory in the
system is not utilized at all.

One major problem of improved eager merge as well as the previous strategies

is that they do not merge the runs in an optimum pattern if the available memory
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remains constant.

Optimistic merge : always do an optimum merge based on the currently available
memory space. More specifically, at the beginning and after each sort space change,
add (1 — ») mod (w — 1) dummy runs of length zero, and merge w shortest runs,
including the dummy runs. In the following merge steps, always merge w shortest
runs.

The philosophy of this strategy is that whatever has been done is done and the
work can be done better only from now on. It tries to optimize the remaining merge
steps based on the current sort space, hoping that the transfer cost of merging the
remaining runs will be minimized. It produces an optimum merge pattern within
each time period during which there are no memory fluctuations. Whenever sort
space changes, the sort moves to a new merge pattern, that is optimum for the new
sort space. Usually some dummy runs are added after memory adjustment. So the
number of runs actually merged or the real merge width in the first merge step
after memory adjustment is normally smaller than w. Memory is not fully utilized
for this merge step.

The best case of this strategy is that no dummy runs are added so that the
available memory is always fully utilized, and the amount of data transmission is
minimal. It results in an optimum merge if the available memory does not change
during the merge phase.

The worst case is that w changes after each merge step and w — 2 dummy runs
are added. Only two runs are merged each time, which results in the maximum
number of merge steps and expensive data transmission.

The major problem of this strategy is that the sort has to adjust to the initial

merge width in the first merge step after each memory adjustment. This merge
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width might be small, which results in poor performance when sort space changes

frequently.

6.5.2 Memory usage patterns

Given a merge strategy, the memory usage of a sort in the system follows its own
pattern. From Figure 6.12 we can see some features of the four strategies. The
dotted lines represent changes of the available memory in the system, including
the memory space occupied by this sort. The solid lines represent changes of the
sort space occupied by this sort during its merge phase?, while the dashed lines
represent the amount of memory actually used by this sort. For lazy merge and
eager merge, the amount of memory occupied by the sort is the same as the amount

of memory actually used.

Lazy merge Eager Merge Improved eager merge Optimistic merge T

Figure 6.12: Memory usage changing patterns

Lazy merge uses the minimum merge space until there is enough space to merge
the remaining runs in a single step. So the last merge step uses more memory than

the previous ones.

’In the memory-adaptive algorithm, a sort at merge phase does not use up all the available
memory in the system. Some memory is reserved for high priority sorts and incoming sorts in
order to improve overall system performance.
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Eager merge adapts itself to the memory fluctuations. So does improved eager
merge except that it keeps the sort space fixed in the last two merge steps in order
to reduce transfer cost. For improved eager merge, the merge width is usually
smaller than the maximum merge width in the second to last merge step. The
extra memory occupied can be used for clustering which reduces disk seek time for
reading run blocks.

For optimistic merge, the sort usually merges a small number of runs for one step
and then merges the remaining runs with the maximum merge width during which
the memory space remains steady. Similar to improved eager merge, when merging
a small number of runs, the extra memory occupied can be used for clustering to

reduce disk seeks.

6.5.3 Comparisons of the merge strategies

Each strategy has its advantages and disadvantages. A strategy may perform bet-
ter than others in one situation, but worse in another situation. The four adaptive
merge strategies and optimum static merge are compared based on their total trans-
fer cost. Assume that the number of initial runs is larger than the maximum merge
width when the external merge phase starts, so that the runs have to be merged in

multiple steps.

(a) No memory fluctuation : The maximum merge width w does not change
during the whole merge phase.

Optimistic merge ends up being an optimum merge that exploits all the available
memory space. The I/O cost for the sort is minimal. Optimum static merge
performs exactly the same as the optimistic merge, if they use the same amount of

memory space.
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The other strategies may also produce an optimum merge, but only in rare
cases. Since the last merge step always reads the same amount of data, improved
eager merge has lower transfer cost than eager merge. Lazy merge merges two runs
each time and more runs in the last step, so it requires the most merge steps and

performs the worst.

(b) Increasing memory : The available memory starts from a small space and
keeps increasing. The maximum merge width w increases after one or more merge
steps.

Memory-static merge does not benefit from newly available memory, since the
sort merge space is fixed. The performance of optimistic merge is determined by the
frequency of the memory changes and the merge width of the first merge step after
each memory change (or the number of dummy runs added). Suppose the merge
width for each first step after a memory change is half of the maximum merge width
on average, if w changes after each merge step, only half of the available memory
is used. If the available memory changes less often, optimistic merge will perform
better.

Eager merge outperforms improved eager merge if more runs are left to the last
merge step than the runs merged in the second to last merge step. Otherwise, the
transfer cost of using eager merge is higher than the cost of using improved eager
merge.

Lazy merge always merges two runs until the merge width is greater than the
number of remaining runs. It performs well if a large amount of memory is soon
available to merge the remaining runs in a single step. If not, it will require many

merge steps making transfer cost high.

(c) Decreasing memory : The available memory starts from a large space and
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keeps decreasing. The maximum merge width w decreases after one or more merge
steps.

Memory-static merge does not use the extra space when the available memory
is large, and does not release its sort space when the system is short of memory.
Memory-adaptive merge is able to release part of the sort space to improve overall
system performance.

Similar to (b), the performance of optimistic merge is affected by the frequency
of the memory changes. It may perform very poorly if the available memory changes
after every merge step, but it is coming closer to be an optimum merge as the
frequency of memory change decreases.

Eager merge and improved eager merge performs well in this case by making
full use of memory resources at each stage. Improved eager merge has lower cost
by keeping the sort space fixed in the last two merge steps.

Lazy merge merges two runs and reduces the number of runs by 1 in each step.
The maximum merge width may decrease at the same time. It does not utilize the
available memory space when the space is large. Generally, it is not a good strategy,
although it works well in special cases, such as » = w + 1 under the condition that

memory space does not shrink in the next merge step.

(d) Increasing/decreasing memory : This is the general case. The available
memory increases and decreases as the system workload changes. It is impossible
to predict how the maximum merge width w will change, and it is difficult to tell

which strategy will perform best. However, some facts are true:

o Optimum static merge minimize I/O cost given fixed memory space. However,
it cannot utilize extra memory available in the system, and does not reduce

its sort space on behalf of other jobs in the system.
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e Lazy merge uses minimum sort space until the last merge step. The extra
space in the system is used only when the available memory is large enough
to merge all the remaining runs in one step. Therefore, it does not make full
use of memory resources. Its performance may be worse than memory-static

merge in some cases.

¢ Eager merge makes full use of memory resources. It adapts itself to memory
changes freely, either using newly available space or releasing part of its space.
However, there may be fewer runs left for the last merge step, which means

higher cost in the second to last merge or previous merges.

e Improved eager merge is similar to eager merge, but it reduces the cost in the

second to last merge step.

e The performance of optimistic merge is close to an optimum merge when
memory fluctuation is small, but its performance degrades on frequent mem-

ory changes.

Figure 6.13 shows two sets of experiments. Diagram (a) gives the elapsed time
of single sorts in the case of very small system memory space (256K). It reflects the
situation when the available memory does not changes during the merge period.
Optimum static merge is not included since it performs the same as optimistic
merge if it uses the same amount of memory. The performance of optimistic merge
and improved eager merge are almost the same, while eager merge is occasionally
worse than the two of them.

Diagram (b) gives the system throughput of multiple sorts based on data set
D3 used in Section 4.5.2. The system memory space used is 2M and the merge
buffer size is 8K. When the concurrency degree is 1, each sort job run indepen-

dently without memory fluctuations. For memory-static sort, the single sort space
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Figure 6.13: Comparison of merge strategies

limit is 256 K so that at most 8 sorts are able to run concurrently in the system.
With memory-adaptive sort, more sorts may be able to run concurrently. As the
concurrency degree increases, the available memory in the system may change more
often.

The diagram shows that the performance of all the strategies increases when
the concurrency degree changes from 1 to 2. The reason is that I/O time and
CPU time are overlapped when multiple sorts are running in the system. When
the concurrency degree increases further, the performance of static sort does not
change much, since each sort always uses the same amount of memory. As a result,
its transfer cost is always the same. Memory-adaptive sorts consistently perform
better than memory-static sorts because of full utilization of memory resources.
Most of the time, improved eager merge and optimistic merge are better than eager
merge. Experiments on other data sets produced the similar results, but it does
not mean that improved eager merge and optimistic merge are the best strategies

in all cases.



CHAPTER 6. MERGE PATTERNS 141

From both the analysis and the experiments we can see that: (1) memory-
static merge and lazy merge do not make full use of memory resources, so their
performance tends to be poor; (2) eager merge may lose performance in the second
to last merge step or previous merge steps; (3) improved eager merge and optimistic
merge are promising strategies, the former is a good choice if the available memory

often changes, while the later is better when the available memory is stable.

6.5.4 Implementation issues and possible improvements

Although the memory-adaptive sort is able to adjust its sort space after each merge
step, the amount and frequency of adjustments may affect the merge performance
differently. If an adaptive merge changes a sort space whenever available memory
changes, we have extra overhead due to frequent changes of sort space, while minor
changes of the sort space may not improve the performance. Therefore, some
memory adjustments should be avoided.

From the cost analysis of memory-static sort (Section 5.1), we know that the
transfer cost changes slowly within the merge width [\/n, n]. However, it changes
very fast when the merge width is less than \/n. As to when we should adjust a sort
space, one possible policy is to increase sort space only when w < /n. Another
policy is to increase sort space if the maximum merge width can be doubled, such
that the sort is able to use more space even if w > y/n. The second policy was
adopted in our implementation. Other policies are also possible.

In order to reflect fairness among concurrent sorts, a fair share amount of mem-
ory is defined as the total sort memory space divided by the number of active sorts.
If a sort has less memory than the fair share memory size, and the fair share mem-
ory is large enough to merge the remaining runs in a single step, the sort will wait

for extra memory to do the last merge, rather than proceed with its current smaller
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space. When the system is short of memory, a sort will release part of its space
while keeping the amount of space close to this fair share amount. These policies
are also used in our implementation.

Another issue is that the same amount of memory may improve system per-
formance differently when it is used for different sorts. Sorts with many runs but
very small space may require memory more urgently than other sorts. It might be
helpful to prioritize these sorts and divide the available memory among them. This
is a more delicate problem, which requires further study.

6.6 Summary

This chapter explored merge patterns aimed at reducing the amount of data trans-
ferred between disk and main memory.

For the case when the sort space remains constant throughout the external
merge phase, we derived a formula for calculating the exact cost of optimum merge
for equal size runs, and gave a lower bound and an upper bound on the optimum
merge cost for variable length runs. We also provided some approximation formu-
las. From the analysis of optimum merge, clustering, and buffer size, we proposed
methods to determine the optimum merge width and the optimum buffer size.

For the case that a sort is able to adjust its memory usage between merge
steps, we considered four merge strategies: lazy merge, eager merge, improved
eager merge, and optimistic merge. Experimental results showed that the last
three strategies perform better than memory-static merge, while the last two are

promising for practical use.
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Conclusion

The goal of this thesis was to improve overall system performance by better utilizing
memory and I/O resources for sorting. It can be achieved by dynamically adjusting
sort memory space, rescheduling run block read orders, and using merge patterns

that reduce I/0.

7.1 Contributions

The main contribution of this thesis is a memory-conscious design for sorting, which
takes into account fluctuation in available memory and concurrent sort jobs in the
system. By using the proposed techniques, memory resources can be better utilized,
thereby improving system sort throughput.

A dynamic memory adjustment technique was proposed for sorting. This tech-
nique adjusts sort space at run time in response to input data size and available
memory space. It balances memory allocation among concurrent sorts to reduce
the number of external sorts, and this improves overall system performance. A

memory-adaptive mergesort was designed and implemented using this technique.

143
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We experimentally showed that this technique enables sorts to adapt their mem-
ory usage gracefully to the actual input size and fluctuations in available memory
space. Sort throughput was improved significantly compared with static memory
allocation. Many ideas developed for memory adjustment are important not only
to this memory-adaptive mergesort, but also to other memory-adaptive algorithms
(see next section}).

To reduce disk seek time during external merge, a set of read-ahead strategies
were considered. The strategies include equal buffering, eztended forecasting, sim-
ple clustering, and clustering with atomic reads. Extended forecasting improves
overlapping of CPU and I/O time, but it does not reduce disk seeks. The other
three strategies effectively reduce disk seeks. Simple clustering performs the best
when there is no disk disturbance from other jobs running in the system, while
equal buffering and clustering with atomic reads improves performance without
being affected by the disk disturbance. The two clustering strategies exploit the
existing order in the input better than equal buffering and extended forecasting.
An analysis of these strategies resulted in formulas for estimating the performance
improvement. These formulas provide close estimates for uniformly distributed ran-
dom data. When sort keys are partially sorted, the improvements of the strategies
are better than the improvements on random data, and therefore better than the
improvements estimated using these formulas. Based on the formulas, we analyzed
the tradeoff between using more buffers for read ahead and using large buffers, and
provided guidelines for selecting proper buffer size.

The amount of data transferred between main memory and disk is determined by
the merge pattern. When the sort space remains constant throughout the external
merge phase, it is known how to construct an optimum merge pattern. This thesis

provides a formula for calculating the exact cost of optimum merge for equal size
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runs, and provides a lower bound and an upper bound on the optimum isierge cost
for variable length runs. In both cases, approximate formulas are also provided
which closely estimate the exact costs. Based on these formulas, we analyzed the
tradeoff between using large merge width and using more buffers for read ahead,
and the tradeoff between using large merge width and using large buffers. We gave
methods to choose the optimum merge width and optimum buffer size.

When sort space is adjustable during external merge, an optimum merge pattern
cannot be guaranteed. Four merge strategies were considered for memory-adaptive
merge: lazy merge, eager merge, tmproved eager merge, and optimistic merge. The
last three strategies make better use of memory resources and normally perform
better than static merge. The last two are promising for practical use. Improved
eager merge is a good choice if the available memory often changes, while optimistic

merge is better when the available memory is relatively stable.

7.2 Future Work

7.2.1 Dynamic memory adjustment

Chapter 5 presented one policy for dynamic memory adjustment, taking into ac-
count system sort space, sort stages, memory adjustment bounds, waiting, and
fairness. Other policies can be employed and more factors can be taken into con-
sideration. For example, each job in the system may have its own priority, and this
should affect its memory allocation. High priority jobs should get larger memory
space or get memory space sooner than low priority jobs. This can be achieved by
setting higher memory adjustment bounds for high priority jobs and putting high
priority jobs into a high priority wait queue respectively. Accordingly, the policy
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may require more level wait queues.

In this thesis, the memory usage of a sort is adjusted by changing the number of
buffers. We can also adjust buffer size dynamically, especially in the merge phase.
Before each merge step, we can release some buffers or allocate new buffers, then
divide some or all buffers of the sort into smaller ones, or combine small buffers
into a larger one if their memory spaces are adjacent. The number of buffers will
affect the merge width and read order scheduling. The adjusted buffer size based
on the available memory may result in better performance. However, new policies
are required to determine whether buffers should be divided or combined, and run
block size should be as small as the smallest buffer size. One buffer may contain
several run blocks. Thus sort space management, the merging algorithm, read order
scheduling, and the memory adjustment policy will become complex.

Although the memory adjustment mechanism and policy were designed based
on the three-phase sort algorithm introduced in Section 3.1, most of the ideas are
applicable to other sort algorithms. For example, the (internal) distribution sort
algorithm can be used for run formation. It distributes sort keys into buckets and
then sort each bucket. Each bucket is composed of a variable number of small
buffers. The sort will be able to adjust its memory space by dynamically changing
the number of buffers in each bucket. We can also apply the memory adjustment
technique if replacement selection is used for run formation phase. Memory adjust-
ments can be done by expanding or shrinking the selection heap. This approach
was adopted in [PCL93a], but they did not consider the input data size and the
effects of several sorts running concurrently.

All the above methods are based on external mergesort, but dynamic memory
adjustment can be extended to other external sort algorithms. External distribution

sort is a good candidate. During distribution, we can dynamically change bucket
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size or the number of buckets in response to input data size and available memory.
If the input is larger than available memory, we can output data from one or more
buckets. The bucket(s) to be chosen can be determined by the adjustment policy.
After the first pass distribution, the data sizes of all the buckets are already known.
Large buckets that cannot fit into memory require a second distribution, while
small buckets can be sorted in memory. Based on available memory, we can either
sort small buckets with the keys ready for output, or choose a large bucket for
further distribution. Choice of bucket to be processed is a policy decision. When
all buckets are smaller than the available memory, part of the sort space can be
released to the system. Sort space can be adjusted before sorting each bucket
or before each distribution step. All the decision issues will be managed by the
memory adjustment policy. Many ideas developed for adaptive mergesort, such as
sort stages, memory adjustment bounds, and waiting, will still be useful, but the
details of the memory adjustment mechanism and policy will be very different.

Dynamic memory adjustment can be applied to other memory intensive oper-
ations, join being the obvious candidate. Sort-merge join uses little memory for
the actual join (except when there are many rows with the same value for the join
columns). Much more memory is required for sorting the two input tables and the
performance of sort-merge join depends largely on sort performance.

The technique is more important to hash join algorithms. Memory adjustment
for hash joins has been studied by [ZG90], [PCL93b], and [DG94|. However, their
work focused on how a single join can use extra space or release part of its space
to affect I/O transfer unit size. They did not take into account the memory re-
quirements in different stages of a join and did not comsider balancing memory
allocation among concurrent joins. We can develop memory-adaptive joins based

on the ideas proposed in this thesis, making concurrent joins that are competing for
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memory resources cooperate with each other, therefore improving overall system
performance. In addition, we can develop policies to balance memory allocation

among all types of memory-adaptive jobs (sorts and joins).

7.2.2 I/0O improvement

Chapter 6 proposed several strategies to reschedule the read order of run blocks
and provided formulas to estimate the performance improvement. However, all the
formulas are derived based on random input data and equal size runs. When the
input data is partially sorted, the clustering algorithm exploits the existing order
by using floating buffering, but the estimating of the performance improvement is
difficult. How to estimate the performance effects of different read strategies for
variable-length runs and partially sorted data is still an open question.

All the analysis and experiments of various read strategies were based on the
assumption that runs are stored on a single disk. However, using multiple disks
is common in modern systems. Data striping allows parallel reads and writes to
increase disk bandwidth and improve overall disk utilization. It is not known yet
how our read strategies will behave on multiple disks along with the data striping
technique. New strategies may be needed for multiple disks, taking data striping
into consideration. The goal is not only to reduce disk seeks but, more importantly,
to balance the workload among multiple disks and maximize the parallelism of I/O
operations.

During run formation for the last run, instead of writing the entire run to disk,
we can keep part of the run in memory if extra space is available. This will reduce
the amount of data transferred between main memory and disk. Depending on the
available memory and the last run size, we can keep in memory part of the last run,

the entire last run, or the entire last run plus part of the second to last run. The
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other part of sort space is used for runs residing on disk during external merging.
Since part of the memory is used to keep the entire last run and perhaps part of
the second to last run, some space may stay unused until the very end of external
merging. There is a tradeoff between keeping the runs in-memory and using the

memory for clustering run blocks.

7.2.3 Summary

The techniques for dynamic memory adjustment and I/O improvement can be

studied further in the following areas:
1. New policies for dynamic memory adjustment applied to external mergesort;
2. Memory adjustment for other sort algorithms, such as distribution sort;
3. Memory adjustment for other memory intensive jobs, such as joins;
4. Memory adjustment policies for different types of memory-adaptive jobs;
5. Performance estimate for variable-length runs and partially sorted data;
6. Read strategies for multiple disks along with the data striping technique;

7. Partial writing during run formation.



Appendix A
Variable Run Lengths

A.1 Run lengths from sort testbed

Following run lengths were collected while a 100M data set was sorted on the sort
testbed using memory-adaptive sort. The total available memory in the system is
4M and sort buffer size is 64K.

Data size (Mb): 100.0

Num of runs: 38
Run sizes (Mb):

3.438 0.312 0.375 0.562 0.750 0.938 1.125 1.312 1.500 1.688
1.875 2.062 2.250 2.438 2.625 2.812 3.000 3.188 3.375 3.438
3.438 3.438 3.438 3.438 3.438 3.438 3.438 3.438 3.438 3.438
3.438 3.438 3.438 3.438 3.438 3.438 3.438 2.500
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A.2 Run lengths from triangular probability dis-
tribution

Replacement selection is a popular algorithm for run formation since it is able to
produce runs larger than the available memory size. Usually it produces runs of
variable length depending on the existing order in the input data. However the run
length distribution is not known.

Here we assume that the probabilities of longer runs are smaller than the prob-
ability of shorter runs. The following run lengths were randomly drawn from a
triangular probability distribution (as shown in Figure A.l). The run length is
between IM and 5M.

Pr\obability

0 IM M Run Size

Figure A.1: Triangular probability distribution for run length

Data size (Mb): 227.8
Num of runs: 100
Run sizes (Mb):

2.11.21.52.24.01.22.71.32.01.121.01.81.51.74.52.23.0
2.53.03.13.31.22.51.61.63.82.11.82.43.13.93.53.52.6
3.02.31.81.71.33.31.82.04.41.11.34.22.91.83.13.04.1
1.01.63.01.42.31.04.11.61.01.93.82.31.12.31.42.11.4
2.01.83.51.91.71.71.01.22.12.71.11.83.01.41.61.41.5
1.53.61.02.51.82.62.94.01.43.34.23.01.92.63.2



Appendix B

Specification of ST-15150W Disk
Drive

(From http://www.seagate.com/cgi-bin/view.cgi?/scsi/st15150w.txt)

ST-15150W
UNFORMATTED CAPACITY (MB) ________________ 5048
FORMATTED CAPACITY (xx SECTORS) (MB) _____ 4294
AVERAGE SECTORS PER TRACK __.______ o __ 107 rounded down
ACTUATOR TYPE _ oo e ROTARY VOICE COIL
TRACKS _ e _ _77,931
CYLINDERS ________ e e e 3,711 user
HEADS ______ PHYSICAL _ _ _ o e 21
Discs (3.5 in) __ o ____ o ____ 11
MEDIA TYPE __ _ THIN FILM
RECORDING METHOD _.__ _ _ oo e ZBR RLL (1,7)
INTERNAL TRANSFER RATE (mbits/sec)________ 47.4 to 71.9
EXTERNAL TRANSFER RATE (mbyte/sec) _______ 20 Sync
SPINDLE SPEED (RPM) _______ _______________ 7,200
AVERAGE LATENCY (mSEC) ___________________ 4.17
BUFFER o e e 1024 KByte

Read Look-Ahead, Adaptive,
Multi-Segmented Cache
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INTERFACE _ o e e SCSI-2 FAST WIDE
ASA II
BYTES PER TRACK __________ - —e 64,773 average
SECTORS PER DRIVE _ _ ____ e 8,388,315
TPI (TRACKS PER INCH) ____ _ o 4,048
BPI (BITS PER INCH) - — 52,187
AVERAGE ACCESS (ms) (read/write)__________ 8.0/9.0
Drive level without controller overhead
SINGLE TRACK SEEK (ms) ____ o 0.6/0.9
MAX FULL SEEK (mS) oo e 17/19
MTBF (power-on hours) _____ . ____________ 800,000
POWER DISSIPATION (watts/BTUs) Active ____15/51
Idle 12/41

POWER REQUIREMENTS: +12V START-UP (amps) _2.18
+12V TYPICAL (amps) __0.83 idle
+5V START-UP (amps) __1.0
+5V TYPICAL (amps) ___0.76 idle

IDLE (watts) _________ 14

LANDING ZONE (cyl) _ e AUTO PARK
IBM AT DRIVE TYPE _____ e 0 or NONE
Physical:

Height (inches/mm): 1.63/41.4

Width (inches/mm): 4.00/101.6

Depth (inches/mm): 5.97/151.6

Weight (1bs/kg) : 2.3/1.04

Already low-level formatted at the factory with 9 spare sectors
per cylinder and 1 spare cylinder per unit.

ZBR = Zone Bit Recording = Variable sectors per track
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