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Abstract

Finding all occurrences of a given word in a large static text is a well-studied
problem. Most solutions. however. are not well-suited for phrase-searching. In this
thesis. we investigate a new algorithm to find all occurrences of a given phrase in
a large. static text. based on the data structure known as a suffiz array. Using
this algorithm. phrases of bounded length can be found with expected search time
of one disk access to the text and one disk access to an index. To achieve this
performance for phrases of up to five words in length requires an index having total
size of approximately 120% of the size of the text. The algorithm guarantees a

worst case search performance of 2 disk accesses to the text per phrase search.

The method augments a suffix array with a parallel signature array. so that
every indexed phrase has an associated signature. To search for a phrase. we search
a Dblock of the index in memory to locate matching signatures. Then we read oune
or two phrases corresponding to matching signatures from disk and compare them

to the target phrase to filter out false mmatches.

We present theoretical properties of the data structure and algorithm derived
from a suitable model. The theoretical results have been validated through experi-
mentation with actual data ranging in size from 6Mb to 550Mb and also including
actual query patterns derived from logs of searches on the World Wide Web. These
experiments show that the approach is applicable in practice to a variety of texts

and realistic phrase searches.
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Chapter 1

Introduction

This thesis presents a new access method to search for phrases in large static texts.
In this chapter. we first review text search techniques. Then we briefly describe the

proposed method. We conclude the chapter with an overview of the thesis.

1.1 Review of text searching

In text retrieval systems. word or phrase search is a very important operation. We
can either scan all the text. which takes a long timme if it is very long. or we can
pre-process the text to build indices that can be used later when we search [Gon83].
Many text retrieval index methods have been studied and used. including inverted
lists [HFBYL92], tries [Knu73], suffix arrays [GBYS92. MM93]. and signature
files [FC84].

Full text scanning can use the Knuth-Morris-Pratt algorithm [KMP77], Boyer-
Moore algorithm [BM77], Karp-Rabin algorithm [KR87] and various improvements
of these algorithms [Aho90]. Baeza-Yates presented detailed analyses of these al-

1
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CHAPTER 1. INTRODUCTION

gorithms (BY89]. The advantage of full text scanning methods is that they require
no space overhead and minimal effort on insertions and updates. because no indices

have to be maintained and changed. The disadvantage is poor response time [Fal85].

Signature file methods are based on the idea of an inexact filter [Fal92]. which
quickly discards many of the unqualifying items. The qualifying itemns definitely
pass the filter. but somne additional items might also pass it coincidentally. Many
wethods on signature files have been suggested. trying to improve the respouse time
aud trading off space or insertion simplicity for speed [Fal92|. Signature methods
are much faster than full text scanning. But they may be slow for large databases.

since their response time remains linear in the number of items in the database.

An inverted index [Knu73] is a set of postings lists [HFBYL92. WMB94|. each
of which maps one keyword to a list of Links to the documents containing that
keyword. Inverted indices can be implemented as sorted arrays. B-trees. tries and
varions hashing structures [HFBYL92|. A special case of B-tree, the prefix B-tree.
uses prefixes of words as primary keys in a B-tree index [BU77] and is particularly
suitable for text databases. Tries are alternative recursive tree structures that use
the digital decomposition of strings to represent a set of strings and to direct the
searching [dIB59. Fre60]. The storage overhead for a word-level implementation is
30-100 percent of the original file size [GBYS92]. or about 10 percent after removal
of common words and applying cowpression [WMB94|. The advantage of inverted

files is that they are fast and relatively easy to implement [Fal85].

A Patricia tree [Mor68, Knu73, FS86] is a binary trie with the additional con-
straint that single-descendant nodes are eliminated. A PAT! tree is a Patricia tree

on all substrings of a text [Gon83, Gon88, Sha95, Cla96]. A PAT array keeps only

IPAT is a registered trademark of Open Text Corporation.



CHAPTER 1. INTRODUCTION 3

external nodes of a PAT tree. A PAT array is also called a suffix array. and was
independently discovered by Gounet [GBYS92] and Manber and Myers (MM93].
Gounet used it in the PAT system to support fast text search for phrases. as part
of the Ozford English Dictionary project [Tom91]. PAT also provides structures to
support fielded searches. such as to find sowmething specific within certain regions.
or to find regions that include certain phrases or other regions [ST93. Li96]. To
scarch for a phrase using a suffix array takes O(logn) disk accesses to a text of n
indexed phrases. which is a great improvement over using traditional postings lists

when frequently occurring words are commonly used in phrases [GBYS92].

1.1.1 Conventional signature files

One important auxiliary structure for searching is the signature file [Fal92]. A text
file on secondary storage consists of a sequence of blocks. Associated with each
block is an integer signature. as described below. The text file is then represented
by its signature file which contains all its block signatures and is much shorter than

the original text file.

A signature function. similar to a hash function {[Knu73l. can be used to convert
a word (a character string) to an integer. The signature of a block 1s obtained by
bitwise OR-ing the signatures of all words in the block. Similarly. the signature of
a phrase is obtained by bitwise OR-ing word signatures in the phrase. Thus. by
definition. if a block contains a phrase p. the signature of the block must bitwise

contain the signature of the phrase p.

Figure 1.1 is an example of a block signature. For this simple example. the
block signature and word signatures are all 32 bits long. In our example the first

word in the block has 3 bits set, the 2nd to the 5¢h words have 7, 6. 5. and 4 bits
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set to 1 respectively. The block with phrase ~“book is red and old™ has a signature

00000111 11010111 11010110 01100011. with 18 bits set to 1.

word signature
(1st: 3 bits set) book 00000010 00010000 00010000 00000000
(2nd: 7 bits set) is 00000010 00000011 01000010 00100001
(3rd: 6 bits set) red 00000001 00010001 01000000 01100000
(4th: 5 bits set) and 00000100 01000100 10000000 00000010
(5th: 4 bits set) old 00000000 10000000 01000100 01000000
block signature 00000111 11010111 11010110 01100011

Figure 1.1: Illnstration of a block signature

Instead of scarching through a whole text file for a phrase. we go through its
miuch shorter signature file to search for blocks that contain the signature of the
phrase. Since there are false hits. the plirase is checked against matching blocks
to determmine which blocks actually have the phrase. If the number of blocks that
are checked is much smaller than the total number of blocks in a text file. the
search time will be shortened tremendously. The conventional signature approach
is suitable for multiple word fields and partial match queries. which specify a few

words in each field.

A disjoint coding method was studied by Faloutsos [Fal88], in which each block
has several fields, each field has a field signature like the one described in Figure 1.1.
and the block signature is the concatenation of field signatures. It has been shown
that under optimal design, half of the bits in a field signature should be set to
1 [Fal88]. This is different from conventional hashing, where each field is restricted

to one word. queries become exact match queries, and a false hit occurs only if two
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signatures are cqual to cach other instead of one containing the other. We examine

this in more detail in Section 3.4.2.

1.1.2 Suffix array

A suffix array [GBYS92. MM93| is a list of pointers representing lexicographically

sorted phrases stored on secondary storage.

Assumece that we have a text consisting of the following string:

the dog, the cat, the horse, the donkey and the chicken

Eacli position in it indicates a suffiz or semi-infinite string (sistring). which goes
to the end of the phrase. There are about 50 characters in the example: therefore.
there are 50 semi-infinite strings. We look at only semni-infinite strings that start

at the beginning of words. There are 11 such strings:

the dog, the cat, the horse, the donkey and the chicken
dog, the cat, the horse, the donkey and the chicken

the cat, the horse, the donkey and the chicken

cat, the horse, the donkey and the chicken

the horse, the donkey and the chicken

horse, the donkey and the chicken

the donkey and the chicken

donkey and the chicken

and the chicken

the chicken

chicken
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Table 1.1 lists the above sistrings in lexicograplucal order. We store correspond-
ing pointers of sorted sistrings in the suffix array. Figure 1.2 illustrates the situation
showing the above text and its suffix array. The numbers above the text show po-
sitions of starting characters of these sistrings in the text. Sistrings in the text
are referenced by pointers in the suffix array. and pointers are sorted in the lexi-
cographical order of the 11 sistrings. The numbers under the suffix array indicate
relative orders of these sistrings. For example. the 8th sistring “the chicken™ starts

at the 45th character position of the text.

1 | and the chicken

2 | cat. the horse. the donkey and the chicken

3 | chicken

4 | dog. the cat. the horse. the donkey and the chicken
5 | donkey and the chicken

6 | horse. the donkey and the chicken

7 | the cat. the horse, the donkey and the chicken

8 | the chicken

9 | the dog. the cat. the horse. the donkey and the chicken
10 | the donkey and the chicken
11 | the horse. the donkey and the chicken

Table 1.1: Sorted sistrings in an example

In large text databases, the text must be stored on disk. The suffix array
corresponding to sistrings at every word typically requires 60 — 80% of the size of
the text. When the suffix array grows too big to fit in memory, it too is kept on

disk. The suffix array is then divided into blocks and an index to the blocks can
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1 3 10 14 19 23 30 34 41 45 4§
text: the [dog, the kat, the horse, the [donkey land tthe [chicken|
on disk

SJF%?};"Z)I'ray:[ T TN

on dsk 1 2 3 4 5 6 11

Figure 1.2: Suffix Array (PAT Array)

be used to reduce disk accesses. The block list contains a sorted list of words or
phrases that delitnit blocks. Normally. the block list is small enough to be kept in

wmemory. Figure 1.3 illustrates the hierarchy.

Assume that we search for phrases starting with the word “the™. From the
block list. we could find out which block of the suffix array may contain the target
phrases. Then we read that block of the suffix array into memory and perform

a binary search on the suffix array block. accessing the text for each probe to

determine whether to search to the right or the left within the array.

on disk

Figure 1.3: Hierarchy of Indices

Since search time is dominated by disk operation time. the number of disk

accesses is critical. For a suffix array. search time is O(logn) disk accesses. where
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n 1s the number of entries in one block.

1.2 Proposed suffix-signature method

We propose a hash-based method to reduce the number of disk accesses to a text.
The idea is to give a short “signature” to each phrase in a suffix array. When we
search for a phrase. we first compute its signature. and then see if its signature

watches any one in the signature file.

Optimistically. through the availability of a unique signature. a phrase search
needs one disk access: after reading an appropriate piece of the signature file.
perhaps located with the help of a block list. the phrase can be matched without
access to the text itself. Thus. ideally. we want every phrase to have a short nnique
signature. The most trivial signature is. of course. the phrase itself. but these are

too long.

If we simply give each phrase very “short™ signatures. then we might have several
different phrases with the same signature. If we design these signatures carefully.
they will work most of the time and fail in some small number of cases. In these

latter cases. we do a few more disk accesses. but on average, we still win.

This thesis aims at developing a method to search for a phrase with an expected
time of one disk access to the index and no more than two disk accesses to the text.
or two disk accesses to indices and no more than one disk access to the text. The
space of the phrase signatures is about 20 bits per 5-word phrase after a simple

CoIpression.

In this section, we describe the outline of the suffix-signature method we are

proposing. We briefly show each part of the method and how the method works in
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general. In the following chapters. we study each part in detail.

1.2.1 Signature array and index hierarchy

Each phrase Las an integer as its signature. If each phrase has a unique signature.
only internal integer comparisons are needed to find out if a phrase exists in a block.
But it is infeasible to have uniqueness. because words must be known in advance in
order to find perfect signature functions. and adding one more word will probably

make it necessary to find new functions.

Signature methods therefore give up the idea of uniqueness. permitting a small
unmber of different words to have the same signature and using a special method
to resolve collisions. Thus signature methods use hashing techniques as functions

to generate signatures.

In the proposed method. there is a signature arrayin addition to the tezt. suffiz
array. and block list. as illustrated in Figure 1.4. The text and the suffix array are
the same as in Figure 1.2. Elements in the signature array are integers generated
by a hash function. and they are signatures of corresponding sistrings in the suffix
array. Unlike a signature file as described earlier [Fal92]. the signature array has
one signature for each phrase in the suffix array. Signature functions are used
at index building time to produce an integer as a signature for each phrase. In
Figure 1.4, there are 8 different signature values. Some different sistrings have
the same signature. For instance, the 9th and the 11th sistrings have Sg as their
signatures. In this example, the suffix array and the signature array are divided
into two blocks. The first block has 5 sistrings and the second has 6 sistrings.
The block list indicates where each block starts in the suffix array and the parallel

signature array.
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10 14 19 23 30 34 41 45 49
text: [the [dog the lcat, the horse, the ldonkey Jand Jthe khicken|

Suffix array: [T T 11 *CT LT LT[T]
signature: [si[s2]s3[s4] s5]  [S6|57]57|58]54]58]

1 2 3 4 5 6 7 8 9 10 11
on disk on disk
nmemory i memory

block list: e lnd

and horse

Figure 1.4: Suffix-Signature Method

The text. suffix array and signature array are on disk. whereas the block list
is in memory. When we search for a particular phrase. we read a signature block
into memory according to the start of that target phrase and the block list. Then
we search the signature block for the same signatures as the target plrase. and
read corresponding phrases from disk to determine whether they match the target

phrase.

Assume that we search for a phrase p="the horse, the donkey and the chicken".
which we will find starting at the 19th character in the text of Figure 1.4: this is
the 11th entry in the suffix array and in block 2; it has 58 as its signature. Notice
that in the same block, the phrase p’="the dog, the cat. the horse, the donkey and
the chicken” has S8 as its signature too. By looking up the block list, we know
that the phrase p is indexed in block 2, if it is in the text at all. We read the
corresponding blocks of the suffix array and the signature array into memory from
disk. We search the signature array block from the beginning for S8. We find p’
after 1 disk access to the text, and then find p at the 2nd disk access to the text.
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how to bound the number of disk accesses for searching for a phrase in Sections 1.2.3

and 1.2.4.

1.2.2 Signature structure

In onr exawple. the 9th semni-infinite string in the suffix array. starting at the first
character. has signature $8. Its prefixes. for instance “the dog”. in general have
different signatures. In order to search for prefixes of semi-infinite strings using the
signature array. phrase signatures need the prefix property. that is. signatures of a

prefix plirase are computable from the phrase signature.

The concatenation scheme. which satisfies the prefix property. computes the
signature for each word in a phrase and concatenates all the word signatures to get

the phrase signature.

A complete phrase signature array contains @(n*r) word signatures. where n is
the number of words in a block and r is the length of the longest repeating phrase.
To effectively use space. we let a phrase signature contain signatures for only the

first several words. for instance. the first four words in our example of Fignre 1.5.

Naively, each word signature may be of the same size. for example. 16 bits in
Figure 1.5. To use space more effectively. we could use different signature sizes for
different words in a phrase, and different phrases may use different word signature

sizes depending on word distributions.



CHAPTER 1. INTRODUCTION 12

word 1 word 2 word 3 word 4
phrase 1 S11 Si2 Si3 S1a
phrase 2 Sa21 S22 S23 Sa4
phrase 3 Sai Saz Saa Saa

hrase 4
phra Sa1 Saz Saa Saa
1 ] 1 1 ]
i | | ] ]
t ] 1 ] 1
] ] 1 ] ]
1 ) ] t i
] ) ] t !
] ' ] ] ]
phrusc n Sn1 Snz SnS Sn4
s e e e .
16 16 16 16

Figure 1.5: Signature Structure
1.2.3 Separate collisions

Assume that we search for the shaded phrase of Figure 1.6 which has a signature s.
There are many phrases in the signature block having signature s. We could start
searching for signature s from the beginning of the signature block. For a matching
signature s. we need a disk access to read the corresponding phrase of the text into
memory to verify if it is the target phrase. 8 such disk accesses are needed to get

the shaded phrase in our example of Figure 1.6.

s|  [s[s|s|s] [s[{s] Is| Is|s|] [s|s| |

AR .

Figure 1.6: Search for Matching Signatures

To reduce the number of disk accesses for searching for a phrase, we start from

the middle point of a range to look for matching signatures. Then. having found
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one matching signature and having examined the corresponding text we could de-
termnine whether to look further to the right or left in the block. Therefore. ouly a

logarithmic number of disk accesses is needed at worst to find the target phrase.

In Figure 1.7. we search for the shaded phrase. Using binary search to choose
starting points for each scan. we start from the dot numbered 1 to search for
matching signatures to the left and to the right at the same time. Using binary
subdivision. dot 2 and dot 3 are the starting positions in the 2nd and the 3rd scaus
respectively. So. the 3rd disk access to text reaches the target phrase.

'
[
[}
+—

l [s[  [s[s]s|s] ligLSF:M élSl sls| |
o

Figure 1.7: Start from the middle

1.2.4 Adjacent collisions

Phrases starting with the same first two words have the same 2-word prefix sig-
nature. All such phrases are adjacent in the suffix-array since it is ordered lexico-
graphically, and thus also in the signature array. Therefore if we are searching for
a 2-word phrase. we need to read only one of these phrases from disk to verify that
all. or none, of the phrases match the target phrase. This reduces the number of

disk accesses. but introduces the problem of separating adjacent collisions.

If two different 2-word phrases, for instance. “the cat™ and “the chicken™ in our
example of Figure 1.4, are alphabetically adjacent and have the same signature.
reading only one of the two adjacent phrases and using the above approach may

iss the correct phrase.
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To solve the adjacent collision problem. adjacent collision boundaries are stored
in a table. called a look-aside table. exemplified in Figure 1.8. In every subrange of
the signature array delimited by entries in the table. there are no adjacent collisions.
Therefore we can safely read ounly one phrase of adjacent phrases sharing the same
signature from disk to test for a match.

[
' |
)
] '
1 |
1 |

signature file:

[s[_Ts[S[s[sL] E S[s[ ]

RO

look-aside table: phrase1 L:hrasez\ phrases /I """" [ phrase i

Figure 1.8: Look-aside Table

If phrases corresponding to such boundary points are stored in the look-aside
table. searching on the signature array is done only on a smaller section. and no
disk access to text is needed for phrases that appear in the table directly. The
average number of disk accesses to search for a phrase thus is expected to become

smaller.

The look-aside table may contain some other phrases as well. For instance.
phrases that could not be found within the first two disk accesses may also be stored
in the table. This guarantees that all the searches are done by at most two disk
accesses to text; such stored phrases are called “guaranteeing phrases”. Properties
of the look-aside table and resulting algorithms form a major contribution of this

thesis.
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1.2.5 Simplified phrase search algorithm

Given a text and its suffix array. we divide the suffix array into blocks and create
a block list. Assume that for each block there are a signature block based on the
first 5 words of suffix phrases and a look-aside table. The lock-aside table contains
all the adjacent collision boundary phrases and some other sufficient phrases to
guarantee a worst case of 2 disk accesses to the text for searching for a phrase up
to 5 words. They arc all on disk. Before searching starts. the block list is loaded

into main memory.

Problem: find all the occurrences in a text of a phrase p of length up to 5 words.

Input: a phrase p:
block lList: strings:
suffir array: integers:
signature array: integers:

look-aside table: (string. integer) pairs:

Output: the number of matches and the range in the suffix array poiunting to

matching places in the text.

Algorithm 1 (Phrase Search - a simplified version of Algorithm 3 from Chapter 4)

1. Check the block list. find the block in which phrase p falls.

2. Read the corresponding block of the suffiz array and the signature array into

memory.
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3. Check the adjacent collision boundary phrases in the look-aside table. and find

the adjacent collision interval [ly.1s] containing p.
4. Create the signature sig, for phrase p. Then

(a) Check the guaranteeing phrases in the look-aside table. If p matches a
guaranteeing phrase p'. pointers in the range around p’ in [l;. 1] that
matches sig, point to all occurrences of phrase p in the tezt. Otherurnse.
go to Step 4b.

(b) Starting at position t—%k search up and down the signature array block

alternatively to find a match for sig,. If no match is found. then phrase
p does not occur in the tezt. Otherwise. determnine the first encountered
interval [ty.t,] that matches sig,.
(¢c) Pick any position i in [t;.t2]. Get the ith pointer in the suffiz array block
and read a phrase p’ from tezt on disk. Compare phrases p and p’.
o [f they arc identical. then pointers in the range [t;.ts] of the suffiz
array point to all oceurrences of phrase p in tezt.
o If they are not identical. re-iterate from Step {b using [l1,t; — 1] if

p<p orita+1.0L]ifp>p.

Step 2 in Algorithm 1 costs one disk access per plhirase search. Step 4c¢ costs one
disk access each time it gets executed. and because of storing guaranteeing phrases
in the look-aside table, Step 4c will be executed at most twice per phrase search.

Therefore. the number of disk accesses to text is at most 2.
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1.3 Overview of the thesis

In this thesis. we study a suffix-signature method for searching for phrases in large
static texts. We describe how the suffix-signature method works. investigate how
to augment a suffix array with a parallel signature array and how to gnarantec
the worst case of 2 disk accesses to the text for searching for a phrase of bounded
length. We also investigate how to create a look-aside table and how to control its

size. We present theoretical analyses and report the results of experiments.

We will use the following assumptions in this thesis:

e Data: A text is a very large. static sequence of characters stored on a slow-

access medium.

o Queries: Queries applied to the large text data are primarily substring queries.

locating strings that start with a given phrase.

e Fast and on-line access: Queries to data are on-line and therefore responses

are required to be very fast.

o Storage space: Ouly a small fraction of the text can be stored in main memory
at one time. and auxiliary structures on secondary store are restricted in size

to a small multiple of the size of the text.

o Disk accesses: The disk access time 1s the elapsed tine from a reading request
received by a disk driver to all the data having been transfered to memory. A
disk access consists of two steps: a locating phase and a transferring phase.
During a locating phase, the disk read-write head moves to the position where
the transfered data starts. It includes the disk read-write head moving from

the current track to the next required track and the required section rotating
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to under the disk read-write head. Locating time depends on seek titne an
latency time. Transferring time depends on the transfer rate and the amonnt
of data transfered. We limit the amount of data transfered in one disk access
to be at most the amonnt of data that can be transfered in the average time
needed to locate a randomly chosen point on the disk. This limits the block

size.

In Section 1.2. we briefly described how the proposed method works in general.

In the following chapters. we study each part of the method in detail.

In Chapter 2. we examine properties of adjacent collisions and review some re-
lated results on hashing. We study word signature functions. which take a word
as input and geunerate an integer as the signature for that word. We present and
analyze optimal word signature functions and discuss principles of word signature
functions. Then we analyze the tradeoff between word signature size and the nuin-

her of disk accesses required to search for a word.

In Chapter 3. we investigate phrase signature functions. which take a phrase as
input and geuerate an integer as the signature for that phrase. We describe the
prefix property of phrase signatures and the structure of phrase signatures. We
study a concatenation scheme for phrase signatures, and contrast it with a more
traditional superimposition scheme. We also discuss possibilities of using perfect

hashing and compression techniques for phrase signatures.

In Chapter 4, we study searching with signatures. We define and show how
to solve adjacent collisions and how to manage separate collisions (as described
in Section 1.2). We describe a search algorithm on word signature arrays, and
extend it to phrase signature arrays. Then we study how to balance the space

requirements imposed by the look-aside table. We also discuss shortcomings of our
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suffix-signature method and how to tackle these problems.

Throughout Chapters 3 and 4. we illustrate the properties of various schemes
with smnall experiments. In Chapter 5. we present the implementation of our pro-
totype system and report on more extensive experiments using the proposed suffix-
signature method. We describe both the experimental model and experimental
resiults.

In Chapter 6. we discuss somwe 1nuplementation issues. We discuss the creation

of indexes. memory requirements and block lists.

In Chapter 7. we review the properties of the suffix-signature method. compare

it with other methods. and discuss future related work.

In Appendix A. we describe the corpus nsed in our experiments. and in Ap-
pendix B. we give more detailed experimental results of the proposed suffix-signature

method.

The main contribution of the thesis is a new phrase search method for large
static texts. For a phrase of bounded length. it guarantees 2 disk accesses to a
text in the worst case for both successful and unsuccessful searches. On average it
requires one disk access to the text and one disk access to the index. Experimentally
we show the method works well for real world data. using space that is 110% to

130% of the original text.



Chapter 2

Word Signatures

Since adjacent collisions influence search algorithms presented in the thesis. we
examine properties of adjacent collisions in this chapter. We also review some

related results on hashing.

We first define the data model used in this chapter. Next. we discuss issues
related to designing good signature functions. and we describe some specific sig-
uature functions. Finally. we investigate some theoretical limitations for random
signature functions and investigate a tradeoff between the signature size and the

nuinber of disk accesses to search for a word.

2.1 Data model

In this section, we define some terms and a simple word search model based on

word signature matching. Our studies in this chapter are based on this model.

Definition 1 (Word) A word is a sequence of characters.

20
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Definition 2 (Signature and signature function) A signature is a sequence of hits.
A signature function Sig takes a word w as input and generates an inteqer Sig(w)

as the signature for word w.

Model 1 (Simnple word search data model) We are given an ordered set of words
W = {w; | w; <w;.1 <i<j<n}. based on lezicographic ordering of the words.
and a signature function Sig. For each word w; in W. there is a corresponding
nalue Stg(w;). As a result. an indered set Q ix associated with W. where Q = {<

i.Sig(w;) > 1 <i<n}.

[n this simple data model. words are distinct. Since the number and the relative
positions of adjacent collisions are not affected by repeating words. we will use this
sttuplified data model in tlis chapter. We will define and use a more complex data

model in later chapters of the thesis.

Definition 3 (Collision) If two words have the same signature. we say that they

collide with each other.

It is because W is ordered that there are two kinds of collisions.

Definition 4 (Adjacent collision and separate collision) Given an ordered set of
words W. let w; and w; be words in W with Sig(w;) = Sig(w;). If there is another
word wy. in W between w; and w;, we say that w; and w; collide separately: if there

is no such word wy in W. w; end wj are said to collide adjacently.

As presented in Section 1.2 the two kinds of collisions are handled differently.
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2.2 Signature functions

Much research has been done regarding hash functions [Knu73. GBY91]. which can
be applied to words by interpreting the words as natural numbers. A simple way
to interpret a word as a natural number is to consider a word as a number in a
suitable radix notation. A word w = sys;...s, represented as ASCII characters.

for instance. can be expressed as
so* Bt + s« B+ . +5,% BY.

And the following hash function could be used

t
h(w) = ((Z 5;B*7"} mod m) mod M.

i=0
where m is the maximuin value in a computer word. the operation mod m is done
by the hardware. and ! with M = 2 is the number of bits in a word signature. For
the function h(w). the value B = 131 is recommended. as B* has a maximum cycle

mod 2* for 8 < k < 64 [GBY91].

Since the mod M operation has to be done to fit a word signature space and
it is believed that 3 s;p; might behave more randomly when p;’s are prime nuin-
bers. it might be a good idea to replace B* in h(w) by a prime number p;. Also.
the exclusive-or has the advantageous feature that if two strings have 0 or 1 bits
occurring equally-probably and independently in each position. then the result-
ing bit string also has this property [Kno75]. Thus, the signature function A'(w)
that we used in our experiments for the suffix-signature method is the result of
exclusive-ORing various segments of

t
B (w) = (D sip:) mod m,

1=0
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where p; is the ith prime number in a vector of primue numbers. m is the maxinm
valne in a computer word. and the size of a segment is the size of a word signature.
Again since it is believed that 3 s;p; might behave more randomly when p;’s are
prime nutnbers. p;’s should be less than the size of a word signature. otherwise s;’s
are essentially multiplied by non-prime nunbers. Furthermore. if the word hashing
space is very big. p;’s should be randomly spread in the hashing space to avoid
clustering in sowe parts of the hashing space. and there should not be any relations

among the p;'s. such as one being about twice as big as the previous one.

2.3 Analytical results

Signature functions use hashing techniques to map words (i.e. sequences of charac-
ters) into word signatures (¢.e. sequences of binary bits). Following the defimtion
from hashing we define the load factor to be the number of words divided by the
size of the signature space. Collisions cause false hits. which need to be resolved
by using more disk accesses. Given a particular signature. the fewer words mapped
to this value by a signature function. the better the function behaves for retrieval.
Since words are ordered and collisious are distinguished between adjacent collisions
and separate collisions. signature functions have some characteristics that general
hashing functions do not have. Since hashing techniques have been studied exten-
sively by others [Knu73. GBY91]. we will only concentrate on properties that are

related to adjacent collisions and have not been studied before.

For a uniform query distribution. the more uniform a signature function. the
better performance. Since word functions are chosen prior to knowing the words
to be coded. the best expected performance is the one from truly random hash

functions. In this section, we study. for random signature functions, the distribution
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of the number of adjacent collisions and the distribution of the number of words

having the same signature.

The reason that we study adjacent collisions is that the number of adjacent
collisions influences the number of disk accesses used to retrieve words and the

space used by the suffix-signature method. as discussed in detail later.

Lemma 1 (Distribution of the number of adjacent collisious) If the hashing space
has size m. the number of adjacent collisions « in a block of length n has a binomial
. R . . n— —~1 n—i—1

distribution b(i:n — 1. 1) = (% l)mm,),_,

Proof: Let uslook at words in W. which are in lexicographical order. Signatures
are repeated independent trials with only two possible outcomes for each signature.
one is that a word collides with the word to its left and another possible outcome is
that it does not collide. For any word. the probability to be hashed to the same value
as the word to its left is 1. and the probability to hash to a different value is (==,
These probabilities remain the same throughout the block except for the first word.
Thus. word signatures are Bernoulli trials [Fel50]. Therefore. the probability that i
words collide with the words on their left is b(i:n—1. =) = ("’.‘1)'"‘:"1,+_:'_l [Fel50].0
Lemma 2 (Expected number of adjacent collisions) Assume that there are n keys

to be hashed randomly in the range [0.m — 1]. The ezpected number of adjacent

n—1
o

collisions s

Proof: The number of adjacent collisions has a binomial distribution b(<;n—1, L ).
as shown in Lemma 1. The expectation of the binomial distribution b(é;n — 1. 1)
is E(b(:n —1,1)) = 2=l [Fel50]. Therefore, the expected number of adjacent

collisions is "T"l O
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Lemma 3 (Distribution of the number of collisions for a given signature) Assurmne
that there are n keys to be hashed randomly in the range [0.n — 1]. The number
of words that are mapped to a given signature has a binomial distribution p;(n) =
n) (nt—-l]"-"

bi:n, i] = (7 —

Proof: For a given signature value. the probability of a key to be hashed to
it is =, and the probability that it is hashed to some other value is (2=1). All
the keys are hashed independently with ouly two possible outcomes. one is that
it is hashed to the given key and another is that it is not hashed to the given
key. Again. these are Bernoulli trials. Therefore. the probability that ¢ words

collide with a given signature follows the Bernoulli distribution p;(n) = b(i:n. &) =

[Fel50].0

)u-i

(m—1
(F) =

Wheun the load factor is 1 (i.e. 2 = n). the probability that i keys are hashed

—1)m— _L(m.—l)""" -~

m)(m
i it mm—t

to a given signature is p = ( —+— For small ¢ and large m. p =
1 ! \rn . Lym 1 1 .. .
(1 — L)™. Since (1 — )™ = # for large i [GBY91]. we have p = D) for small «.
large . and m = n. This approximation agrees with Lemma 3 to three significant

digits for e = n = 2'3 and @ < 6.

Lemma 4 (Expected fraction of hash values associated with ¢ words) Assume that
there are n. keys to be hashed randomly in the range [0.m —1]. The ezpected fraction
of hash values (signatures) with ¢ keys per value is the same as the probability of

any given hash value corresponding to i@ keys.

Proof: The problem can be converted to a problem in which n balls are randomly
thrown into m boxes. It is needed to prove that the expected fraction of boxes with

¢ balls is the same as the probability of a box having i balls. Thus. for a box j.
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let p! be the probability of box j having ¢ balls. and p; be the expected fraction of

boxes with 4 balls. We want to prove that p! = p;.

T is the total number of ways of placing n balls in m boxes. B(:.7) is the
number of ways in which box j has ¢ balls. By definition. we have p! = B—(qii)

Each way throws balls in m boxes. T ways throw balls in mT boxes. out of
™ B(ij
which 371, B(i. j) boxes have i balls. So. we have p; = —Z—E;—I.g

Since B(i.j)'s areequalforall 7 = 1.2.....7n. we havep; = mi‘;j) = B(;.'j’ =pi.

Therefore. we have that the expected fraction of hash values that have ¢ keys is the

same as the probability of any specific hash value having ¢ keys. O

To illustrate the above lemina. let us look at all the ways 3 balls can be put into

3 boxes.

Table 2.1 is the sample space of 3 boxes and 3 balls. Table 2.2 lists values of

B(i.j). pl. and p; for the example.

Two keys producing identical signatures parallels two keys hashing to the same
bucket. Thus studying the distribution of collisions is the same as studying the

length of chains in external hashing (GBY91].

Lemma 5 (Expected fraction of words colliding with (z — 1) other words. or per-
centage of words in chains of length i) Assurne that there are n keys to be hashed
randomly in the range [0,m — 1]. The ezpected percentage of words in one of the
chains of length i is inﬂb(i;n. ).

Proof: The expected fraction of hash values each of which has 2 keys is the same as

the probability of a hash value being produced by 7 keys (lemma 4). The probability

L
m

of a hash value having i keys is b(i;n. ;) (lemma 3). So, b(i;n, ) is the expected
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box 1 | box 2 | box 3
3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3

Table 2.1: Sample space of 3 boxes and 3 balls

fraction of hash values each of which has i keys. Then. mb(i:n. L) is the expected
number of chains with length ¢. Then. imb(i:n. =) is the expected number of words
in all the chains with length ¢. Tlerefore. inﬂf)(izrt, ) is the expected percentage

of words in all the chains with length ¢. O

Note that for small ¢. big 7 and m = n. the expected percentage of words in all

the chains with length 7 is c—(zi—u' So most words will appear on very short chains.

Lemma 6 For m = n > 1, the ezpected lengths of non-empty chains is smaller

3
e(m-1)"

than 2 +

Proof: We use the formulas (1 — )™ < 1[GBY91] and 3%, (:._il)!

Since )20 F - X o = Lizon =eand R 2 E =307, =1t — 2i=0 i = €. we have

SRl = i =2

=1 (i=1)le =0 ' =

0N =
I
(V]
" -
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B(3.5)=1 pi=1/10 ps = 3/30
B(2.5) =2 Py =2/10 p2 = 6/30
B(l.j)=3 P =3/10 1 =9/30
B(0.5) =4 P =4/10 po = 12/30
Table 2.2: Values of B(:i.j). pi. and p;

Let the expected lengths of non-empty chains be {. From Lemma 5. we have

=y, 'n (izm. =). So for m = n.
[ — iiz(w)(m —1)m i 3 m!  (m—1)m"
o ¢ mm = (- 1)l (o —2)! mm
mi{m-1)""" 1 m! (m-1}™" i m(m=-1)(m-2)...(m—-1+1) 1
Let = be )' (m-l.)'rn" = o moimey mm < e (m—1) e
Thus we have ry < m_-fZ and z, < % ? Since m("‘_”((’:‘n__zl)i',’(m_‘“] <1fori>2.
we have z; < (T—le for i > 2.
Thus we have
I < m 3 + i i 1
m—1e ZH(-1)e
m 3 = L 1
< Sy =
m—1le ;(z—l)!e
2
_ m_ 3 9 _ E 2
m-—1le e e
e(m — 1)

The upper bound of [ goes to 2 as mn increases. When m =1, 2,3 and 4, [is 1.
1.5, 1.67 and 1.75 respectively. Figure 2.1 illustrates expected lengths of non-empty

chains when the load factor is 1. The numbers on the z axis represent numbers of
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bits in each signature. and numbers on the y axis are expected counts of words in
chains. We notice that the expected lengths converge to 2 as m goes to nfinity.
Based on this. in later chapters we choose to gnarantee at most 2 disk accesses to

a text when searching for a phrase.
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number of brts in a signature

Figure 2.1: Expected length of non-empty chains when m=n

Corollary 1 Assumne that W includes n words to be hashed randomly in the range

[0.7n — 1]. The czpected number of matches to a given signature @s . For a given
m
word w in W. the expected number of matches to the signature of w is ";11 + 1.

Proof: Let i be the number of words in W that have a given signature s as

their signatures. Then. the expected number of matches is 32—y * pi(n) = S ik

1)_2

b(e:n. ;) = 2.

Let s be the signature of a given word w in W. The number of other words
having s as their signatures has a binomial distribution pi(n) = b(iin — 1. ) =
—1yn-1—t R . . - .
("i‘l)im—1;7 for 0 < ¢ < n—1. There are (i+1) words having s as their signatures

mn—t

if there are ¢ other words that have s as their signatures. So, the expected number
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of matches is Y0P (¢ + 1) pi(n) = TR0t i+ pi(n) + L0} pi(n). Since Y0} ixpi(n)
is the expectation of the binomial distribution pj(n) = h(i:n — 1. +). We have
o0 i*pi(n) = 2=L [Fel50]. Since Y75 pi(n) = 1. We have the expected number

of matches is equal to 2=t +1. O

In the suffix-signature method. signature comparisons are integer comparisons
in memory. whereas comparing the target word against a word in the text having
the same signature requires a random disk access to the text. So. the number of

string (word) comparisons is indicative of the nmmber of disk accesses.

Intuitively. the more bits in word signatures. the fewer collisions result and
hence the fewer string comparisons are needed. There is a tradeoff between the

length of signatures and the number of string comparisons.

Lemma 7 (Space-Time trade-offs} Assume signature matching and binary scarch
probing are used to search for a word in an ordered word set W. If |[W| = n and
(logn — &) bits are used for each word signature. the ezpected number of string
cotnparisons to search for a word chosen from W with all words in W equally likely

to be chosen s O(z).

Proof: Each probe of a binary search cuts a range to half. So. the first probe on
a signature file is over a range of size n. the second is over a range of size n/2. and
the ith is over a range of n/2""!. If the desired word has not been found after ¢

probes. we are left with a range of size n/2' in which the desired word falls.

Since each word signature has (logn — ¢) bits, there are 2'°¢"~* = n/2¢ dis-
tinct word signature values. Thus, since this is the same size as the range after
probes. each signature in W is expected to appear 1.5 to 2 times, as illustrated in

Figure 2.1. That is. for each signature in W, the expected number of string com-
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parisons on the resulting range converges to 2. Therefore. the expected number of

string comparisons to search for a word 1s about . O

Lemma 7 describes the relationship between the number of bits in word signa-
tures and the number of string comparisons for our suffix-signature method nusing
binary probing. The following corollaries give two extreme cases. One is a lower
bound oun the nnmber of bits needed to get O(1) string comparisons and another is

the case when the size of word signatures is (.

Corollary 2 If |W| = n and word signatures have logn bits. the ezpected number

of string comparisons to search for a word is ©(1).

Corollary 3 If we do not use signatures to filter probes. that is. a word signa-
ture has QO bits. the ezpected number of string comparisons to search for a word is
Olog n). This is a direct binary search on an ordered list of words without using

the suffic-signature method.

2.4 Summary

The coutributions of this chapter are studies of the properties of adjacent collisions.
We also reviewed some related results on hashing. We discussed issues related to
practical word signature functions. We analyzed behaviors of random signature
functions for the suffix-signature method. in particular. behaviors of adjacent col-
lisions. We studied the relationship between the signature size and the number of

disk accesses to search for a word.

Interestingly, when the number of words in W is approximately the size of

the signature space. most words share signatures with at most one other word.
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As the number of words in W increases. more words share signatures: but then
the probability of adjacent collisions increases as well. Since adjacent collisions
are stored in a look-aside table. W is effectively partitioned into subranges. thus
reducing the load factor for each subrange. As will be seen in Chapters 3 and 4.

this forms the basis of the effectiveness of the suffix-signature approach.



Chapter 3

Extension To Phrase Signatures

In Chapter 2. we explored signature functions for words. We will study phrase

signatures in this chapter.

We first discuss desirable properties of phrase signature. Then we study the
concatenation signature scheme. We investigate various phrase signature structures
and discuss some parameters of the concatenation scheme. We next compare its
performance to an alternative phrase signature scheme based on superimposition.
We also study the possibilities of using other techniques, namely perfect hashing

and compression. in the suffix-signature method.

3.1 Notations

We first define the notation that is used in this chapter:

e w; 1s a word.

¢ P =ww,... w,is a phrase.

33



CHAPTER 3. EXTENSION TO PHRASE SIGNATURES 34

o Sig(P) is the signature of phrase P.

o P =ww,...w,is an indexed phrase in a text if P is a prefix of a semi-infinite

string listed in the suffix array.

Counsider a set of phrases P;..... P,.. They can be partitioned according to the
first word of each phrase. w; through w,. All phrases beginning with w; can again
be partitioned by their second words. wy;.wys. ... . wik. Repeating this partition-
ing. the set of phrases can be considered to form levels much like a word-based
trie [FreG0]. as illustrated in Figure 3.1. For the one-word prefix w,. there are the

phrases “w," at the first level. “wy ws; " at the second. and the two three-word phrases

Wa Way way; and “waq way ways at the third.

level 1 W W2 Wn
tevel 2 Wil Wi Wiz Wag Wai Wna W3 Wit
level 3 ce Wapy Waga Wyt Wy Wy

Figure 3.1: Levels of phrases

The number of nodes on level { is equal to the total number of distinct i-word
plirases in the database, and the branching factor between level (: — 1) and level :

represents the number of ¢-word phrases that share a commmon (7 — 1)-word prefix.

3.2 Prefix property

If a phrase P = wyw, ... w, is indexed, its signature can be stored in the signature

array. However. we also wish to search for phrases that are the prefixes of P. For
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example. we may want to find all phrases starting with P, = wjw,. a prefix of
the phrase P. The suffix array accommodates such prefixes naturally [GBYS92].
However we cannot afford to store independent signatures for all the prefixes of P

hecause they would take too much space.

To find prefixes of such a phrase P using the signature file of a text without

storing all the prefix signatures. we need the signature of P to have a prefiz property:

Definition 5 (Prefix Property) The signatures of prefizes of a phrase P
(P = wyw, ... w,) can be extracted algorithmically from the signature of P. That is.
there ezist a family of functions {f; | 1 < i < n}. such that. Sig(P;) = f:(Sig(P))

for P; = wyw, ... w;. where 1 <1< mn.

Somwetimes. a weaker prefix property 1s useful. It does not require that prefix
signatures of a phrase can be extracted fromn the phrase signature. Instead. it
requires that a function be defined that returns true if a given prefix matches the
target signature. Just as the signature of a prefix can also be the signature of a
phrase that is not a prefix, this function may also return true for some phrases that

are not prefixes.

Definition 6 (Weak Prefix Property) There ezist a test and a real value € ( 0 <
€ < 1) such that. given an input phrase P; and a phrase signature Sig, the test
returns ‘true if P; is a prefiz of some phrase P having Sig as its phrase signature.
and returns ‘false” with probability at least € when it is called with randomly chosen
signatures as parameters. That is, there ezist a family of functions {f;|]1 <i < n}
such that f;(Sig(P), Sig(P;)) = True for P; = wyw,...w; where 1 < i < n. and

fi = False for some other input phrases.

A stronger prefix property is as follows.
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Definition 7 (Strong Prefix Property) The signatures of prefizes of a phrase P

are prefizes of the signature of P.

Clearly. any signature scheme satisfying the prefix property satisfies the weak
prefix property. and any one satisfying the strong prefix property satisfies the prefix

property.

3.3 Concatenation scheme

We present the concatenation scheme for phrase signatures in this section. We
investigate plrase signature structures and study adjacent collisions. We discuss
the expected number of adjacent collisions in a block. the condition of minimizing
the total nnmber of adjacent collisions. and how likely it is that a boundary between
two distinct phrases has adjacent collisions from various levels of phrases. Using
these results. we discuss how to partition bits among words for the concatenation
scheme. and discuss related parameters. for instance. the total number of bits in
a phrase signature, the number of words to be encoded in a phrase signature. and

the block size to be used as a umit of I/0.

3.3.1 Structure of phrase signature

The 1dea of the concatenation scheme is that we concatenate all the word signatures

of a phrase to form a phrase signature
Sig(P) = Sigi1(wy)Stga(w2) . .. Sigr(we).

A signature array of n phrases is shown in Figure 3.2, in which S;; denotes Sig;(w;;)

for phrase 2.
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word 1 word 2 word 3 word 4
phrase 1 St Si2 Sia Sta e e
phrase 2 Sa1 Sz2 Saa Sa P
phrase 3 Sat Sz Saa Sas vee
hrase 4
p H 541 542 543 SM s e o s
i 1 1 1 1
i | 1 t {
: : : : : » . .
[} ] t i i
| I | : |
phrzme n Sm Snz Sn:! Snd
< | | | N
K k2 K3 ka

Figure 3.2: Signature Structure

Word signatures are basic units on which phrase and prefix signatures are built.
Assume that there are k; bits for Sig;(w;) (1 < ). and that P; = wywa. ... w;.

(1<)

o Prefix signature functions are:

Sig(P) = 3 Siga(wa) « 25emee™ = 3 (Siga(wa) << 3 ke)

d=1 d=1 t=d+1

for (1 <1).

o The functions converting a phrase signature into its word signatures are:

k k
Sigi(wi) = (Sig(P:)/ Y. k;) mod 2% = (Sig(P:) >> Y k;) mod 2%

J=1+1 =141

for (1 <i< k).

By definition, the concatenation scheme satisfies the Strong Prefix Property.
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3.3.2 Improved structure of phrase signature

There are some strategies to maintain collections of phrase signatures:

o Ideally. signatures of all the prefixes of phrase P could be obtained from
Sig(P). Storing signatures for semi-infinite strings requires O(nm) space.
where n is the number of indexed phrases and m is the number of words in

the text.

e To reduce space. we reduce the number of distinct prefix signatures that
come from Sig(P). Let Sig(P) contain signatures for only P,. P». .... P.
where P is the shortest prefix of P which appears only once in the text.
Thercfore. different phrases might have different shortest prefixes. which leads
to a variable length for phrase signatures in the schewme and may still need a

lot of space.

¢ To further reduce space. Sig( P) contains signatures for only the first ¢ prefixes
of P. that is. P;. P,. ... P, for some counstant ¢. This is equivalent to the
constraint that Sig;(w;) has no bits for ¢ > ¢t. Thus significantly many more

different phrases may have the same signatures.

We will use this third approach in the thesis.

In Figure 3.2, it appears that word signatures may be all of the same size.
However. to use space more effectively, we use different signature sizes for different
words in a phrase. So as to minimize collisions, the i-th words of phrases should
have bigger signatures than the j-th words if there are more distinct i-word phrases
that share the first (z — 1) words than distinct j-word phrases that share the first

(7—1) words. To use space even more effectively, different phrases may use different
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numbers of bits for signatures of the ¢th words: that 1s. Sig;(w;) need not be of con-
stant size for all values of w;. In fact. we will choose signature sizes independently

for each block of the signature array.

3.3.3 Adjacent collisions

Let us first develop a concrete idea of the cost to store adjacent collisions. Assniue
that adjacent collisions occur for about 1% of the phrases. or 100 times for a block of
10.000 phrases. which is approximately what is expected for a 7-bit signature using
the model from Chapter 2. An English word is about 4.5 characters in length on
average. and each character is represented with 8 bits. Let a. p. w. c and b represent
the number of adjacent collisions. the size of a pointer. the number of words to be
encoded in a phrase signature. the number of characters per word. and the number
of bits per character or space. respectively. Storing adjacent collision boundary
phrases and their pointers without compression uses a* (p+w*c* b+ (w — 1) *h)
bits. This implies about 100 (14 +4%4.5«8 +3%8)/10.000 = 1.82 bits per phrase.
if a phrase signature is based on the first 4 words; and 100 * (14 4+ 5 4.5 * 8§ +
4 % 8)/10.000 = 2.26 bits per phrase. if a phrase signature is based on the first 5

words.

In this section, we study adjacent collisions for the concatenation scheme. We
first determine a formula for the expected number of adjacent collisions in a block.
Then we investigate how to minimize the expected number of adjacent collisions
for a block. Finally, we determine the probability of a particular distinct i-word
phrase boundary having an adjacent collision due to phrases of length greater than

or equal to z.
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Expected number of adjacent collisions

Assume that signature functions hash words uniformnly. and that phrase signatures
are based on the first £ words. Let the number of distinct i-word phrases be ; and

the number of bits used for word signatures for the ith word of a phrase be ;.

Lemma 8 The ezpected total number of adjacent collisions is

cop(A) = T, Bgmat

Proof: The word signature space for the ith word has size m; = 2%_ There are n,;
distinct ¢-word phrases for the jth (¢ — 1)-word phrases. According to Lemma 2 in

Section 2.3. the expected number of adjacent collisions for these n;; distinct i-word

. on;=-1
phrases is =42—.
m

There are n;_; (1 —1)-word phrases. so the expected number of adjacent collisions

for i-word phrases is

n,—i

>

i=1
ni—t . .
Zj:l i —Ni_1
(N
T; — 1y

'Il,ij -1

™

Ty
Ty — iy
2ki
Therefore. we have the expected total number of adjacent collisions
t

n; — Ni_
exp(A) = Z _-21-._1
i=1

Notice that the expected total number of adjacent collisions is affected by the

number of repetitions of any of the phrases. i.e.. how bits are divided among words
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and how distinctions among phrases oceur at different levels. It is not affected by

the distribution of distinct i-word phrases within level i.

Minimize the number of adjacent collisions

Given the number of bits we are willing to allocate to each phrase signature and the
count of distinct i-word phrases in the text. how should we choose word signature

sizes for each word to get the minimnm total expected number of adjacent collisions?

Assume that phrase signatures are based on the first ¢ words of phrases. the
number of bits in a phrase signature is L. and the number of distinct ¢-word phrases

1s ;.

Lemma 9 When the expected numbers of i-word adjacent collisions are equal for

all values of i. the ezpected total number of adjacent collisions is manimum.

Proof: From Lemma 8. we have the expected total number of adjacent collisions

exp(A) = ¥Xi; “Sr=*. where n; is the number of distinct i-word phrases. and k; is

the number of bits of word signatures for the ith word of a phrase. To simplify the

description. let z; = i"‘—:%':'-’ then we lLave

t
erp(A) = Z Ti.
=1

Since the number of bits in a phrase signature L = 5_, & is fixed. [Ti_, 2% is

a constant. and therefore since n; are also fixed. [T, z: = [Tio, ((ni — nio1)/25) is

a constant. Let [Ti_, #; be C. So. we have
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Let A be a new variable. and

t t

flzy. 2o ...z A} = ZJ:{—A(HJ:{—C}.

i=1 i=1

According to the method of Lagrange multipliers [Swo81]. the values of :; which
give the extrema of exp(A) = !_, x; are among the simultaneous solutions of

fi,=0and f; =0for+=1.2.. t. where f,. and f; are the first partial derivatives

of f. So. exp(A) = £i_, #: reaches its minimnm when x; = AC for i =1.2.. .t

Therefore. when the expected numbers of i-word adjacent collisions are equal
for : = 1.2...t. the expected total number of adjacent collisions has its minimnm

value. O3

n;~n,—i

Lemma 10 When the number of bits for the ith word signature is k; = log,
the expected total number of adjacent collisions is minimumn and the number of i-

t
word adjacent collisions is C for i = 1.2. .. t. where C = \‘/ HEJL',_;{—E;'—) and L is

the total number of bits in a phrase signature.

Proof: According to Lemma 9. the expected total number of adjacent collisions
is minimum when the expected numbers of i-word adjacent collisions are equal for

all values of i. Assume that the expected number of :-word adjacent collisions is

C = T — Ni_
ki

fori=1.2...t. So. we have

H:‘=1 (n: — ni-1)

22::1 k"

Therefore. when the number of bits for the ¢th word signature is

Ct=

T, — Tl.i_l
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the expected number of i-word adjacent collisions 1s

t H:___ (n,- - 7).,'__1)

where L is the length of a phrase signature. O

Corollary 4 Under the conditions in Lemma 10. the ezpected number of adjacent

collisions in a block having n; distinct i-word phrases for 1 <i <t s tC.

Probability of an :-word phrase being listed in a look-aside table because

of adjacent collisions

As indicated in Section 1.2.4. the search algorithm to be used depends on stor-
ing adjacent collisions in a look-aside table. Adjacent collisions partition a list of
phrases into sublists and searches are performed on one of these smaller sublists.
Therefore. the number of adjacent collisions is an important performance factor for

estimating search time.

For a list of ¢-word phrases. adjacent collisions affecting search performance are
not only from the ith words of these phrases. but from higher levels of words as
well. For example. in Figure 3.3. word w; has 8 distinct following words. Words
awwys and wyy in the shaded area have the same signature. So. an adjacent collision
occurs between phrases "w; w3 and "w; w4 . Since the phrase wy wy4 1s recorded
in the look-aside table because of this adjacent collision. the word w, is effectively
also listed in the look-aside table. Therefore. an i-word phrase may be listed in the

look-aside table because of adjacent collisions occurring at the ith or higher level.

In this section. we study cross-impacts of adjacent collisions from different levels.
more specifically. the probability of an :-word phrase being listed in a look-aside

table because of an adjacent collision at the ith or higher level.
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.......... Wi Wi
W Ve
IUUTU\) Wia
.......... Wihevoeeeebee Wz
......... Wle oo, W3
.......... Wl Wia
.......... Wl Wis
.......... Wb W6
.......... Wl Wi
.......... W e Wiz

W) Wig

Figure 3.3: Adjacent collisions

Definition 8 (Collision probability and no-collision probability of two phrases)
The collision probability of two adjacent phrases hawving the first © — 1 words in
cotntnon is the probability p; that the signatures of the ith words collide with each

other. The no-collision probability is 1 — p;.

If bits are allocated to word signatures to minimize adjacent collisions. then

the expectation of an adjacent collision is independent of the level of the collision.

(%

n;—n;_1°

Therefore. p; =

Assnme phrase signatures are based on the first ¢ words of phrases. In the
following figure. phrases are in alphabetic order. 10 shadowed phrases in the center
have P as their i-word prefixes. and. P, and P, are the left and the right adjacent

phrases whose ¢-word prefixes are not P.
If P, and P collide. P will be listed in the look-aside table. If P and P, collide.

P, will be listed in the look-aside table. Thus. in order to not list P in the look-aside

table. P, and P should not collide and all the adjacent pairs of the 10 phrases of P
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Px P Py

SERRRRENE

should not collide. From this we see that. the probability of an :-word phrase P not

appearing in the look-aside table because of adjacent collisions is the no-collision
probability between P and its left adjacent phrase times no-collision probabilities

of adjacent pairs of all occurring ¢-word phrases having P as the i-word prefix.

Lemma 11 Assume an i-word phrase P differs from phrase P, first in word j. and
there are N distinct k-word phrases having prefic P. for j < i < k < t. If bits are
allocated to word signatures to minimize adjacent collisions. P will appear in the

look-aside table with an expected value

C : C
L= (1= =) ] (1= e,
j TRl pezig T = Tkt

Proof: If bits are allocated to word signatures to minimize adjacent collisions.
the collision probability of two adjacent phrases having the first & — 1 words in

corumon is pp = "k_ik_l . Among the phrases having a prefix P. there are N — Ny._,

boundaries at which adjacent pairs have the first & — 1 words in common and differ
at the kth words. Then the probability of P not appearing in the look-aside table

is (1 - < )H2=i+1(1 - < )Nk—Nk—' .a

ny—m;— Ng—TNE_)

3.3.4 Compressing phrase signatures

We notice that. in most texts. phrases distribute in such a way that many words

or phrases ocenr multiple times. When phrases are ordered lexicographically. some
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prefixes are listed repeatedly. Subsequently. signatures of these prefixes are repeated

multiple times if signatures are stored word-wise instead of phrase-wise.

Therefore. to save storage costs. we substitute consecutively repeated word sig-
natures by the word signature and the number of repetitions. So. word-wise sig-
natures consist of word signatures and counts. An extra bit is nsed to indicate

whether it 1s a word signature or a count.

Since the cowmpression uses an extra bit to distinguish signatures and counts.
compressions are not going to be performed when numbers of bits in word signatures

are small.

As a second heuristic. at lower levels (like the first or the second word in a
plirase). we conld use wore bits in word signatures if we prefer to distinguish phrases
as early in levels as possible. So. numbers of bits used for words at lower levels
are relatively big. and word signatures at these levels can be compressed to a large

degree.

3.3.5 Experimental results

In this section we discuss the allocation of bits among words. the number of bits
and the number of words in a phrase signature. and the block size for the proposed

method.

Allocate bits among words

The length of a phrase signature is L bits. How best to divide L bits among words
of a plirase depends not only on the phrase distribution in a block but also on the

expected pattern of phrase searches.
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Since adjacent collisions need space to be stored. the number of total adjacent
collisions in a block may be cousidered as a factor in choosing the numbers of bits
for word signatures. If L bits are divided among words in such a way that the
number of total adjacent collisions is minimnm. the size of the look-aside table is
nearly minimized. We shall call this strategy Balance. Lemma 10 in Section 3.3.3
says when the nnmber of bits for the ith words k; satisfies 2% = M=%i=t_ the total
number of adjacent collisions is minimum and the number of adjacent collisions at

each level is C. where C =

ﬂEJ(—’,_:'LL_" and L is the number of bits in a phrase

signature. The number of i-word phrases is influential.

Minimizing the total number of adjacent collisions does not always guarantee
a good search performance. because the presence of adjacent collisions reduces the

range of the array over which searches are actually conducted.

Let us look at another strategy of allocating bits. The more distinct words
there are. the bigger hash space i1s needed to reduce collisions. So. the maximum
number of distinct words following all (¢ — 1)-word prefixes is an important factor
for allocating bits to the ith word signature. Thus. one relevant measure is the
maximuw load factor n;/m;. where n; is the maximum number of distinct words
following any (i — 1)-word prefix and m; is the size of the signature space of the ith
word of a phrase. We will call this way of allocating bits ByMaz in the following
discussion.

Some experiments were done on the text of the Bible by using the two different
bit allocation algorithms. The Bible is approximately 5.6Mb and has around 1.13M
indexed phrases (see Appendix A). Parameters that affect performance are the
number of words in a phrase signature. the size of a block. and the maximum
number of bits in a phrase signature. Each different experiment takes a different

combination of parameter values. which are fixed in each experiment. The number
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of words in a phrase ranges from 3 to 7. The size of a block is 1k. k. or 10k indexed
phrases. The maximum length of a phrase signature is 16 bits. 24 bits. or 32 bits

respectively.

If the maximum number of bits in a phrase signature is z and there are not
many distinct phrases in a block. the number of bits in a phrase signature will
be chosen to be fewer than = bits in this block. For the i-word phrase having the
biggest number of distinct folowing words (the (i +1)th words). the lower bound of
load factors of the word signature space for the (i + 1)th words is set to be around

1.

Search performance and space usages of the two algorithins are plotted in the
error-bar style (one of Gnuplot's displaying styles [WK]}). The values of the algo-
rithin Balance (to minimize the total number of adjacent collisions) are represented
by “o”. and the values of the algorithm ByMaz (to use the maximnm numbers
of distinct i-word phrases for (i — 1)-word phrases) are represented by ~~". The
values of the two algorithms using the same group of parameters are connected by
a vertical line. The longer the line. the bigger the difference between values of the

two algorithins.

Let us look at space usages first. The z-axis represents primarily the size of
the signature: the major divisions mark the number of words in a phrase signature.
which ranges from 3 to 7: in each interval. these minor divisions represent the maxi-
muin lengths of 16. 24. and 32 bits for a phrase signature. In each subinterval. there
are three samples corresponding to the block sizes of 1k. k. and 10k respectively.

The y-axts represents the numbers of bits per index point.

Figure 3.4 shows numbers of bits used in a phrase signature. Figure 3.5 shows

numbers of bits used for storing adjacent collision boundaries. We observe that
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Figure 3.4: Bits in a phrase signature

Balance generally uses less space than ByMaz both for a phrase signature and for
adjacent collisions. So. the total space used per index point. for the signature
array and the look-aside table. is smaller using Balance than ByMaz. as shown
in Figure 3.6. Note that the space used by the look-aside table includes adjacent

collisions and block boundary phrases. as shown in Figure 1.4.

Although ByMaz uses more space for a phrase signature. its word signatures
are more compressible than Balance. as shown in Figure 3.7 which shows numbers
of bits in a phrase signature after compression (as described in Section 3.3.4) is
applied to the signature array. This results from the fact that Balance recognizes
how phrases distribute between different levels. but ignores how phrases distribute
locally within a level. In fact. Lemma 10 in Section 3.3.3. on which Balance is
based. actually assumes the most skew phrase distribution. in which all the ¢-word

phrases except one have only one distinct following word. Normally the numbers
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Figure 3.7: Bits for a phrase signature after compression

of distinct following words of i-word phrases are all much smaller than (7; — n;_;).
Therefore. Balance in general gives a relative high load factor at the first level and

lower load factors at other levels.

But. if compression is applied to the signature array. the two algorithms use
a similar amount of total space for the signature array and the look-aside table
combined. except when the number of bits in a phrase signature is too small for

the number of words. such as 16 bits for 6 words as shown in Figure 3.8.

Figures 3.6 and 3.8 indicate that for a fixed number of bits in a phrase signature.
the difference in the total space between the two algorithms. both before and after

compression. increases as the number of words in a phrase signature increases.

Figure 3.9 plots the search performance for the cases where a phrase signature

is based on 5 words and the maximum number of bits in a phrase signature is 32.



CHAPTER 3. EXTENSION TO PHRASE SIGNATURES 52

70 Y T T T
compress3 (ByMax |-~ Balance)

its per index point
n
o
L]
-—

30 ot
IH 495 aet

20 o2 L0? 4
33 2y oo

e22 Le0 400

N . L . - 1 . : L . L
0 3 16b 24b 32by 16D 24D 32bg 160 24b 32bg 16b 24b 32by 16b 24D 32bs
word numbers

Figure 3.8: Total bits per index point after compression

assuming each distinct -word phrase is searched once using the algorithm described
mm Section 1.2. The z-axis represents the number of words of a phrase. There are
three points in each interval on the z-axis. corresponding to the block sizes of 1k.
5k. and 10k respectively. The y-axis is the expected number of disk accesses to
a text using binary search and scanning as shown in Figure 1.7. We observe that
ByMazx and Balance are very close for phrases longer than 2 words. For one or two
word phrases. ByMaxz is faster than Balance. For all cases. the expected number of

disk accesses to a text to search for a phrase of up to 5 words is less than 1.1.

Generally. we could assign bits to lower levels of words (i.e.. the first or the
second word in a phrase) more generously in order to distinguish phrases as early as
possible. This improves the performance of short phrases. which are most commonly
requested in practice. Furthermore. a better performance at lower levels makes the

performance at higher levels better as well. since more phrases that have different
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Figure 3.9: Search performance for 32 bits 5-word signatures

prefixes but the same following words are more likely distinguished already by the
signatures of their prefixes. Thus. factors other than minimizing the total nnmber
of adjacent collisions might influence how best to allocate bits for individual word

signatures.

In summary. our experiments show that the search performance of Balance is
good enough. Although. Balance uses a similar amount of space as ByMaz after
compression for a reasonable combination of the number of bits and the number of
words in a phrase signature. it uses less space than ByMaz without the signature
array compression. as predicted by the theory. We suggest using Balance to allocate

bits among words in a phrase.
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The number of bits and the number of words in a phrase signature

How many bits to use in a phrase signature and how many words are included in
a phrase signature are determined by search requirements and space requirements.
In general. the more words a phrase signature contains. the more bits a phrase

signature needs to maintain a reasonable load factor at each level.

The two nuwbers affect each other. Sowme other factors. for example. the block
size and the munber of adjacent collisions we can accept. may affect the two pa-

rameters as well.

The experiments described in the previous section use different combinations
of the maximum number of bits. the number of words. the block size. and a bit

allocation algorithm. Let us look at the results from a different perspective.

As shown in Figure 3.5. the amount of space used for storing adjacent collisions
increases as the number of words included n a phrase signature increases. When
the number of words in a phrase signature i1s no more than 3. 5. and 6 words for the
maximui allocation of 16 bits. 24 bits. or 32 bits respectively. the space to store

adjacent collisions is less than 5 bits per index point.

Figure 3.6 shows that when the number of words in a phrase signature is no
more than 3. 5. and 6 words for the maximnm allocation of 16 bits. 24 bits. or 32
bits respectively. the total space is around or less than 16 bits. 24 bits. or 32 bits

for strategy Balance.

Figure 3.8 indicates that if run-length compression (as described in Section 3.3.4)
1s used on the signature array. a longer phrase signature uses less space than a
shorter phrase signature as the number of words in a phrase signature increases.

This is because for these measurements the look-aside table is not compressed.
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Too many adjacent collisions indicates that the total number of bits in a phrase
signature is too small. or alternatively that too many words are included in a phrase
signature. assuming that bits are properly divided among words. We may need to
increase the nuiuber of bits in a phrase signature or reduce the number of words in

a plirase signature.

On the other hand. if the number of adjacent collisions is very small. we could
include more words in a phrase signature. or reduce the total space by reducing the
total number of bits in a phrase signature with a tolerable increase in the number

of adjacent collisions.

As a final experiment. total space was examined for the suffix-signature method.
taking into account subdivision of the text and of the suffix array into blocks as
described in Figure 1.3. The total space used by the signature array and storing
adjacent collision boundaries and block boundaries for different block sizes is shown
in Figure 3.10. The z-axis represents the block size. and the y-axis represents the
unmber of total bits per index point. Values before compression of the signature
array are represented by “o”. and values after the compression are represented by
“; . We observe that when the size of a block is small. bits can be allocated among
words wore suitably to each particular block. but more space is required for the

block list to store block boundaries.

3.4 Alternative phrase signature schemes

In this section. we study two alternatives to the concatenation scheme to create a
phrase signature from word signatures. One i1s the Chinese remainder approach.

Another is the superimposition scheme.



CHAPTER 3. EXTENSION TO PHRASE SIGNATURES 56

4 T T T T T T

uncompressed o
o compressed +

30 .

28 s

26 :

bils per index point

24 | E

20}F -+ .

1 B L L 1 L 1 1
0 20 40 60 80 100 120
block size (k ingex pants)

Figure 3.10: Total bits nsed by different block sizes
3.4.1 Chinese remainder approach

In this section. we describe an implementation of phrase signatures based on the

Chinese remainder theorem and modnlar arithmetic.

Chinese remainder theorem [AHUT74|: Assume that py. pa. .... p, are a sct
of pairwise relatively prime integers. and uy. us. .... u, are a set of residues. Let
p =1 pi. i = p/p;i. and d; = ¢! modulo p; (that is. dic; = 1 modulo p;). Then

we have w = Y | cidiu; modulo p. and u; = v modulo p;.

Let us look at an example [AHUT74]. Assume that (p1.ps.ps.ps) = (2.3.5.7).
and (wy.wa.13. 1) = (1.2.4.3). We have that
dy = (35 7)"! modulo 2 = 1. since 1 * 105 = 1 modulo 2.
ds = (25 % 7)"! wmodulo 3 = 1. since 1 * 70 = 1 modulo 3.

dy = (

[SV]

* 3% 7)"! modulo 5 = 3. since 3 * 42 = 1 modulo 5.
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dy = (2% 3 %5)"! modulo 7 = 4. since 4 * 30 = 1 modulo 7.
So.uw=(105%«1%14+T70%1%2+42 %3 x4+ 30 *4 * 3) modulo 210 = 59. and

(« modulo p;.% modulo ps.u wodulo ps.u modulo py) = (1.2.4.3).

Assume that Sig(P) contains the information of the first & prefixes of phrase P.
The tmplementation of phrase signatures based on the Chinese remainder theorem

1s as follows:

o Choose k pairwise relatively prime integers. p;. pa. .. .. pr. that are closest to

selected signature sizes of words in phrases.
o Let ¢; = (Hf=1pj)/p,- and d; = ¢! modulo p;.
¢ The phrase signature function is

Ik
Sig(P) = Z Sig(w;)e;d; modulo p

i=1

The functions converting a phrase sienature into its word signatures are
(=] (=] (=)

Sig(w;) = Sig(P) modulo p;
for (1 <:<k).

To search for a phrase P. we search for a signature x in the signature file such

that Sig(w;) = £ modulo p; for each word w; in P. where (1 <: < k).

Like the concatenation approach. the Chinese remainder approach satisfies the
phrase prefix property. The phrase signature space S has & dimensions and is the
Cartesian product of k word signature spaces Sy. S». ... Sk. The size of space 5, is
2% in the concatenation approach or p; in the Chinese remainder approach. Thns

there is more flexibility in allocating bits to words in the latter approach.
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In the concatenation approach. prefixes of phrase signatures are identical for
different phrases having identical prefixes. In the Chinese remainder approach. two
phrases do not necessarily share any bits even if they have an identical prefix. So.
signature files bult on the concatenation approach have more repeated patterns.
and therefore are more compressible than the ones built on the Chinese remainder
approach. Furthermore. it is nuch cheaper to extract word or prefix signatures from
phrase signatures in the concatenation approach than in the Chinese remainder

approach.

3.4.2 Superimposition scheme

In this section. we study an alternative based on a more conventional phrase sig-
nature scheme. Instead of concatenating word signatures. we superimpose word

signatures to get a phrase signature [Fal92].

First. we describe the superimposition scheme. Then we study the relation-
ship between the number of adjacent collisions and the word signature sizes. We
compare the superimposition scheme and the concatenate scheme. including some

experimental results on the OED (which is described in Appendix A).

Word and phrase signatures

In the superimposition scheme. phrase signatures are created differently from the
concatenation scheme. Word signatures are bit patterns of the same size and are
bitwise OR-ed together to form a phrase signature. Faloutsos has shown that under
optimal design. half of the bits in the phrase signature should be set to 1 [Fal88].
We will investigate the possibility of using the superimposition scheme in phrase

searches and study adjacent collisions for the scheme.
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Word signatures and phrase signatures are of the same length. Word signatures
may be formed using any suitable hashing scheme. The signature of the ith word
has b; bits set to 1. We superimpose (using bitwise OR) the signatures of the first
& words in a phrase as the phrase signature. In total. we wish to have about half

of the bits set to 1 in a phrase signature.

Figure 3.11 is an example showing how a phrase signature is created. The phrase
signature and word signatures are all 32 bits long. In our example the first word in
the phrase has 3 bits set. the 2nd to the 5th words have 7. 6. 5. and 4 bits set to 1
respectively. The phrase “book is red and old™ has a signature 00000111 11010111
11010110 01100011. with 18 bits set to 1.

word signature
(1st: 3 bits set) book 00000010 00010000 00010000 00000000
(2nd: 7 bits set) is 00000010 00000011 01000010 00100001
(3rd: 6 bits set) red 00000001 00010001 01000000 01100000
(4th: 5 bits set) and 00000100 01000100 10000000 00000010
(5th: 4 bits set) old 00000000 10000000 01000100 01000000

phrase signature 00000111 11010111 11010110 01100011

Figure 3.11: Hlustration of a phrase signature

Definition 9 (Contain) Let s; and s, be two signatures of the same size. The
signature $; contains signature s, if sy = s1|s2. where | " represents bitwise hoolean

OT.

By definition. we have that in the superimposition scheme a phrase signature con-

tains the signatures of all its prefixes. Thus. given a phrase P; and a phrase signa-
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ture Sig. if P; is a prefix of any phrase P having Sig as its phrase signature. the

signature of P; must be contained by Sig.

Lemma 12 The superimposition scheme satisfies the Weak Prefiz Property of

phrase signatures.

Word signature spaces are bigger in the superimposition scheme than m the
concatenation scheme. But in the concatenation scheme two phrases collide ouly
when they have the same signature. while in the superimposition scheme they may
collide even when they do not have the same signatures. For example. if the sig-
natures of words w,.w, and w3 are 01001001. 11000010. and 11001001 respectively.
then the signature of the phrase wy w, is 11001011. which contains the signature

of wj; although the signature of neither w;, nor w, contains it.

Adjacent collisions

Is the superimposition scheme better or worse than the concatenation scheme in
termns of numbers of collisions? Let us look at adjacent collisions for the superim-

position scheme.

Assume that signatures are of n bits. a phrase signature is constructed from
superimposing signatures of the first k words. and the number of bits to be randomly

set at the :th word is b;.

Let S be an integer of n bits with each bit initially 0. First. we set b, bits
of S according to the signature of the first word of a phrase P. Then. we set b,
bits of S based on the signature of the second word. We continue to set bits in

S like this until the Ath word of the phrase P. So. the value in S is the i-word
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phrase signature Sig(F;) after processing the :th word signature. and it 1s the phrase

sienature Sig( P) after processing k words.
g g9 P g

Lemma 13 The prohability of a bit set to 1 in a k-word phrase signature is

Hf:l(n - bl) .

- &

n
The ezpected number of bits set in a k-word phrase signature is

Hf:],(n — b)

n(l — = ).

n
Proof: b; is the number of 1's in the signature of the ith word. So. with a
probability of "%Lf". a bit in a phrase signature would not be set by the ith word.

,,‘: (n=b;)
nk

Thus. with a probability of H-'—-L—— a bit would not be set by the & words. This

k
. . .y . . . n—bh,
proves that in a k-word phrase signature the probability of a bit set is 1 — L‘—‘f—l

n

k n—=h;
and the expected number of bits set is n(1 — H-El—(}—)) a

123

Lemma 14 If i of n bits arc initially set and j of n bits are randomly chosen to
he also set. the probability of the total number of bits set being s is P(s.j.m.n) =

(Gamey) * (52 )/ (3) of max(m. j) < s < min(n.m + j). and 0 otherurse.

J+m—s s—m

Proof: Assume that m of n bits are set in S;. and j of n bits are set in S,. 5;]55
denotes S; bitwise ORed with S;. Then. ¢ of n more bits are set in S;}S, than in
Sy with probability (;7;) = ("7™)/(}) if [min(m — j.0)| < ¢ < min(j.n —m). and 0
otherwise. Because the total number of bits set is s = ¢ + m. we substitute s —mn

for ¢ to prove the lemma. O

Figure 3.12 plots the probability of a signature containing j bits that are ran-

domly chosen. that is. P(s.j.m.n) in Lemma 14 for s = m. A signature is n = 32
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bits long. and initially has m bits set to 1 for mn = 14..... 18 (about n/2). The

r-axis represents j. the number of bits chosen randomly. and the y-axis is the prob-

ability. Results are denoted by “o™. ~,.". "g". "y 7. and "o~ for m. the numbers of

bits set initially. of 14. 15. 16. 17. and 18 respectively.
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Let us look at the probability that s bits are set in a phrase signature.

Corollary 5 Assume that b; < n bits are set for each word w; in a phrase.
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Figure 3.12: Probability of containing j bits

probability that s bits are set in S after the 1st word is

1. if s = b]_.
newpy(s.by.n) =
0. otherwise.

18

T} Le
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The probability of s hits heing set after the first i words is

dl—l
Z.f:fii—l

newp;(o.by. ba. ... hi.n) = if d; <s < d;.

P(s.b;.j.n)*newp;_1(3.b1.ba. . ... b;_1.m).

0. otherwise.

where d; = maxX;cme: bn. d; = win(n. 30 _ bm). and n is the total number of bits
1<m<i1 Ym Zwm=1

e signature.

Proof: Since S is initially 0 at every bit and there are b; bits set for the first

word. we have

1. if s = })1.
newp(s.by.n) =
0. otherwise.

So. the probability of s bits set after the 2nd word is
newps(s.by.ba.n) = P(s.by.by.n). where max(b;.bs) < s < min(n.b; +by). Let the
probability that j bits are set after (i —1) words set be newp;_, (7. by. ba. .. .. bi_y.n).

where j is in [d;_;.d;_;|. Notice that

d; 4 dit
Z newp;_1 (3. by bae . ... bi_i1.n) = Z newp;—1(J. b ba. . ... bi_i.n) =1
j=dicy J=u

for ¢ > 1. Thus. the probability of s of n bits being set afterwards is

di—y
newp;(s.by. by, .. .. bi.n) = Z P(s.b;.j.n) *newp;_1 (5. by . bae .. .. bi_y.m).

j=d; 1

for ri,' < s < d;: and 0 otherwise. O

Lemma 15 Assurmning perfect signature functions. the probability that a k-word

phrase signature S contains a given word signature for level v is

contain(i.by.ba. .. .. br.n) = Z [(g )/(5;) * newpr(g. by by ... hi.n)].

j=b;
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and the probability that S contains the signature of a given i-word phrase is

de i
contain'(1.hy. by . . .. br.m) = Z (H[(Zl )/ (2)]) * newpr(5. by ba. ... hi..m).

j=d.|= t=1

where dj. = max;cm<t bm. and di, = min(n. f;:l bm).

Proof: I; is the number of bits set for signatures of words at the level <. (i. )/ (,)
is the probability of 7 bits containing b; bits for 5 > b;. ) otherwise. Hizl[(g‘)/(,’,")]
is the probability of j bits containing a given i-word phrase for j > d. 0 otherwise.

O

Lemma 16 The number of adjacent collisions occurring because of the ith words

for a list of phrases is
adj num(i. by ba. . ... biin) = (2¢; — ¢ * i) * (ny — my_y).

where ¢; = contain(i.by. by, . ... be.n). and n; s the number of distinct i-word

phrases with ny = 1.

Proof: Let P, and P; be two adjacent phrases that have the identical first (z —
1)-words and differ at the i¢th words. An adjacent collision occurs between P,
and P, if either the signature of P; contains the signature of the ith word of P,.
or the signature of P, contains the signature of the ith word of P,. Thus. the
probability of an adjacent collision occurring between P and Py is 2 x ¢; — ¢; * ¢;.
where ¢; = contain(i.by. bs. .. .. bi.n). Since the number of boundaries of distinct
t-word phrases is (n; — 1). the number of distinct boundaries introduced by the
tth-word level is (n; — 1) ~ (n;~; — 1) = n; — n;_;. Therefore. the number of adjacent
collisions occurring because of the ith-words is adj num(i.by.bs. . ... hiin) = (2 =

¢ — ¢ *¢)*(ni —niy). O
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The superimposition scheme versus the concatenation scheme

We compare the superimposition scheme and the concatenation scheme in this
section. We will compare them in termns of collisions. wore specifically. in terins
of adjacent collisions. because storing the boundaries of adjacent collisions needs

extra space.

We list some differences between the two schemes as follows.

e In the superimposition scheme. each word signature has the same number of
bits as a phrase signature. whereas a word signature has fewer bits in the

concatenation scherme.

o In the superimposition scheme. two phrase signatures collide if one is any
subset of the other. whereas in the concatenation scheme. they collide only if

the prefixes are identical.

o In the superimposition scheme. if most bits are 1 or most bits are () 1 a
phrase signature. it will collide with many other phrase signatures. becaunse
it contains or is contained by many phrase signatures. To maximize the
information content of a phrase signature. approximately half the bits should
be set {Fal88]. Thus the superimposition scheme does not use the full space of
2L where L is the number of bits in a phrase signature. In the concatenation

scheme. each word could use its full. albeit smaller word signature space.

e In the superimposition scheme. a phrase signature does not keep the order
information of words of a phrase. and words in different positions affect each
other. The signature of the third word of one phrase. for instance. wmay contain
the signature of the second word signature of another. or the superimposition

of the third and the fourth words may contain the signature of the second
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word. In the concatenation scheme. two words collide only when they have

the same signature and appear in the same positions in their phrases.

To cowpare the two phrase signature schemes. we calculated the theoretical
and the experimental numbers of adjacent collisions for various combinations of
bits allocated or set for word signatures on some blocks of data from the OFED (see

Appendix A).
The concatenation scheme

We experimented with various combinations of word signature sizes on some
blocks of data in the OFD. Each block has about 2! indexed phrases such that
phrases in each block start with the same word. Thus phrase signatures are based

on the 2nd to the 5th words of phrases.

For most of these blocks. ByMaz. a bit allocation strategy limiting the maximnun
load factor at each level (see Section 3.3.5). gives 29 bits in total for a phrase
signature. so the total number of bits in a phrase signature was chosen to be 29 in

our experiments.

The number of bits in a signature of the ith word in a phrase is k;. We used
different combinations of (ki.ks.ks. ks) with k; in the range of [1.26] to calculate
the theoretical numbers of adjacent collisions using Lemma 8 (Section 3.3.3). We
chose 100 combinations that have the smallest theoretical numbers of adjacent
collisions. and used these 100 combinations on the blocks chosen from the OED
to calculate the empirical numbers of adjaceut collisions. Thus we counted the
actual numbers of adjacent collisions for the 100 bit-allocations that had the best

theoretical performance.

We observed that theoretical and experimental results are very close. as illus-

trated below.
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The superimposition scherne

We conducted similar experiments using the superimposition signature scheme.
We varied the combinations of the numbers of bits set for words in a phrase to
see the relationship between the numbers of bits set and the number of adjacent

collisions.

To compare with the concatenation scheme. we used the same conditions as
used in the previous experiments. We used the same blocks of lexicographically
consecutive phrases from the OED. Again. since the first words of all the phrases
in each block are the same. we did not use the first words in the phrase signatures.
Thus. again phrase signatures are structured from the 2nd. 3rd. 4th. and 5th words.
and the number of bits in word signatures and phrase signatures is 29 bits. The
number of bits set in a signature of the ith word in a phrase is k;. We used
different combinations of (ks. k. ky. ks) with &; in the range of [1.16] to calculate the
theoretical numbers of adjacent collisions using Lemma 16 (Section 3.4.2). Again
we chose 100 cowmbinations that have the smallest theoretical nnmbers of adjacent
collisions. and used these 100 combinations on the blocks chosen from the OFED to

calculate the empirical numbers of adjacent collisions.

We observed that theoretical results are better than experimental results. but
they are not far from experimental values in general. When the expected total
number of bits set to 1 is between 12.5 and 16.5. the number of adjacent collisions
is small. except when three words in a phrase have small numbers of bits set and
one word has many bits set. When the expected total number of bits set is less than
10.5 or bigger than 18.5. the number of adjacent collisions increases substantially.
This observation matches Faloutsos™ optimal analyses; that is. the total number of

bits set in a phrase signature shounld be close to half of the bits in a phrase signature.
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Contrast

Tests on all blocks of data had similar results. Figure 3.13 and Table 3.1 show
the relationship between numbers of adjacent collisions and percentages of com-
binations of bits allocated to words by both the concatenation scheme and the
superimposition scheme for the block of phrases starting with the word “book™.
They are the results of the best 100 combinations of word signature sizes in terms

of adjacent collisions for each scheme.
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Figure 3.13: Concatenation versus superimposition

In Figure 3.13. the z-axis represents the number of adjacent collisions. and the
y-axis indicates the theoretical rank for the combination of bits allocated (i.c..
point 30 represents the 30th best combination of word signature sizes as predicted

by the theoretical model). There are four parts in Table 3.1. representing the
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concatenation-theoretical

rank 1 10 25 20 75 20 100

adj # || 35.3 | 40.2 | 46.0 | 52.3 | 59.6 | 63.2 | 66.3

concatenation-empirical

rank 1 10 25 50 75 90 100
adj # 34 43 52 63 70 79 89

superiinposition-theoretical
rank 1 10 25 50 75 90 100
adj # | 331.1 | 353.2 | 366.1 | 382.4 | 398.1 | 403.3 | 407.1

superimposition-empirical

rank 1 10 25 50 75 90 100
adj # || 372 400 426 439 460 480 516

Table 3.1: Concatenation versus superimposition

theoretical and empirical results of the two schemes. In each part. the first row
represents the rank of the combination of bits allocated or set. and the second row
indicates the number of adjacent collisions. In our experiments. the total number of
adjacent collisions 1s under 100 for every combination of word signature sizes nsing
the concatenation schewe. and above 300 for the superimposition scheme. These
indicate that the superimposition scheme has about 3 to 4 times as many adjacent

collisions as the concatenation scheme.

Assume there are 10.000(x 2!?) indexed phrases in a block. 14 bits are needed
for a pointer. 4.5 characters in a word on average. adjacent collision boundary

phrases are 2.5 words on average because the first word is constant across the block
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and it need not be stored. and one character requires 8 bits. In Table 3.1. there arc
66 adjacent collisions in the 100th best combination for the concatenation scheme.
which needs 66%(14-+2.5%4.5%x8+1.5%8)/10000 = 0.7656 bits per indexed phrase: and
331 adjacent collisions in the number 1 ranked combination for the superimposition
scheme. which needs 331 % (144+2.5%x4.5x84+1.5%8)/10000 = 3.8396 bits per indexed
phrase. Thus. adjacent collisions cost at least 3 more bits per indexed phrase

the snperimposition scheme than in the concatenation scheme.

A phrase signature is used as a filter to limit disk accesses. Because the fewer
the words. the fewer bits are set. it is more likely that the signature of a short prefix
is contained by signatures of other phrases. Thus the superimposition scheme has
the further disadvantage that the expected number of disk accesses might be even

bigger to search for shorter. likely more common. prefixes than for longer ones.

3.4.3 Perfect hash functions for phrase signatures

In the next two subsections we briefly examine two other possible approaches.

A hash function £ is perfect for a set of keys if for any z; and z; in the set.
we have h(z;) = h(z;) iff + = j. Assume that there are n words and . hash
values. Witten. et al. give a trial and error algorithm to find a mapping function g
such that a hash function h(w) = g(h'(w)) +. g(k"(w)) is perfect. where +, means
addition modulo n [WMB94|. It is required that o > 2n in order to get such a
perfect hash function h after a constant number of trials on average. They also give
an algorithm for a perfect hash function h(w) = g(h'(w)) +n g(k" (w0)) 4, g(h" (w)).
It requires e > 1.237 in order to get h. In either approach. the mapping function

g occupies mlogn bits.

Assume that we use the concatenation scheme for phrase signatures. We create
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a perfect hash function h; for the ith words of each (¢ — 1)-word phrase. The
concatenation of hy..k; 1s then a perfect hash function for z-word phrases. For this
approach. we must find and record a distinct function for every (¢ — 1)-word prefix.

This clearly needs a lot of space.

Alternatively function h; can be chosen for all distinct ¢th words independently
of the first (¢ — 1) words in the phrase. For this approach. n (the number of keys)
would be quite large. Assuwne phrase signatures are based on the first & words. Let
n; be the number of distinct i-word phrases. and A be the load-factor of function
gi- Then. the number of distinct ¢th words might be comparable to (n; — n;_;).
So. (—"——;;‘l hashing slots are needed in the mapping table g; of A;. and the total
number of bits for mapping tables i1s about ¥ ‘1:;#'—) log,(n; — ni_y).

Assume thereis a block of 10. 000 phrases with n;. . ... ng being 1000. 2000. 3000.
4000. 5000 respectively. Let a load factor A be 1.5. Then. space for mapping tables
is about 5 * 1000 * 10/1.5 bits. which 1s about 4.200 bytes (3.3 bits per phrase).
Since there are about 10«5 bits for each phrase signature. the total is about 53 bits
per phrase. As will be seen in Chapter 4. this expected size of 53 bits per phrase is

significantly rore space thau is ueeded for the approach we propose.

3.4.4 Compressed text as phrase signatures

In text cowpression. one or wmore characters are represented by a short code. As a
result. a text with n Latin characters is represented by an encoding that is shorter
than n bytes. Because compression is typically used for text streams. text prediction

models are used for coding [BCW90].

Table 3.2 snminarizes compression measures used to estimate the entropy of
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ordinary English [BCW90]. Shannon’s results are that using 0-gram model '. ordi-
nary English for 26 characters could be compressed to about 4.70 bits per character:
decreasing to 4.14. 3.56. 3.3 bits per character for 1. 2. 3-gram respectively: and
2.62 bits per character for the word model. or 11.79 bits per word assuming 4.5
characters per word. Evidence suggests that compression better than one bit per

character is not likely to be achieved [WMB94].

size of letter models with gram: word

alphabet 0 1 2 3 4 8 12 > 100  model source
fromn statistical analysis of text

26 4.70 4.14 3.56 3.3 2.62 Shannon(1951)

26+1 4.75 4.03 3.32 3.1 2.14

26 4.70 4.12 1.65 Barnard(1955)

2641 4.75 4.09 3.23 285 266 243 240 Newman and

Waugh (196()

from experitnents with subjects” best guesses
26+1 4.75
upper bound 4.0 34 3.0 2.6 21 1.9 1.3 Shannon(1951)
lower bound 32 25 21 1.8 1.2 11 06

26+1 4.75 2.2 1.8 1.8 1.7 Jamison and
Jamison(1968)
from experiments with subjects using gambling
26+1 4.75 1.25 Cover and
King(1978)

Table 3.2: Estimates of the storage requirement of ordinary English (bits/char)

LA n-gram model uses statistical information of n characters.
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Let us consider a very different signature scheme in which we apply compression
algorithms to a phrase. and then take the first 32 bits of the compressed code as

the signature of the phrase.

It 1s generally accepted that an English word is about 4.5 characters in length
on average. Considering the space character. a word 1s generally then about 5.5
characters. At present. cowmpression techniques reach about 2 bits per characters
on average. and a phrase of 5 words (and 4 spaces) uses about 45 — 53 bits. in
other words. a 32 bit signature contains about 2.9 — 3.6 words. If a phrase could
be compressed to one bit per character. a 5-word phrase. on average uses 22.5 to
26.5 bits for plrase signature. However. even compression to 2 bits per character is
achieved only under a good probability prediction. which needs a very good world

wodel that requires a lot of extra space.

An alternative is to compress words instead of phrases. Word compression can
then produce different lengths. We can keep a certain number of bits from cach
word signature. and then concatenate them to form a phrase signature. With this

approach. 32 bits can then contain some informations for 5 words. for example.

If we maintain a prediction model of some kind. we would in principle get a good
compression code for a phrase. but the model itself wonld occupy a large amount

of space.

Bell. et al. report that for a 0-gram character model. we need about 4.7 bits per
character. which is about 106 bits per phrase. with no model space cost [BCW90].
A 4-gram model with 26 letters. uses 2.2 bits per character. needs at least 26* nodes
and gives about 50 bits per phrase of 5 words. A word model uses 11.79 bits per
word or 59 bits per phrase of 5 words. but we need to maintain a word probability

list.
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In conclusion. using compression techniques to form a signature for a phrase is
conceptually situple. Such a phrase signature contains any prefixes of a phrase np to
the cutoff point for the phrase signature: phrase signatures are order-preserving if
an order-preserving coding is used. so binary searches could be performed: and there
are no collisions if compressions are lossless. Like perfect hashing. the disadvantage

is that such an approach uses much more space.

3.5 Conclusion

In this chapter. we investigated the concatenation phrase signature scheme. We
studied strategies to balance parameters. such as the number of bits in a phrase
signature. the number of bits in each word. the size of a block. and the number
of words in a phrase signature. We also compared the concatenation scheme and
the superimposition scheme for phrase signatures. and explored the possibilities of
using perfect hashing technique or a compression technique as the basis for the

suffix-signature method.

We choose the concatenation scheme for phrase signatures. This scheme is
based on simple hashing. and. unlike modifications based on perfect hashing or

comipression. it is not overly space intensive.

A superimposition schemwe is an alternative. but there will hikely be more colli-
sions. because a phrase signature can contain a given word signature even though
none of its words have that word signature. We also notice that signature arrays
based on the concatenation scheme are more easily compressed using standard rmn-
length techniques than those based on the superimposition scheme. since ordered

phrases result in repeated prefixes in the signatures.



Chapter 4

Searching With Signatures

We have explored signature functions for words in Chapter 2. and signature struc-
tures for phrases in Chapter 3. In this chapter. we develop an algorithmn for search-
ing using the signature array.

We first study searches for simple words: then. we extend the algorithm to
phrases. We next study ways to improve search performance for the proposed

method. We also discuss long phrase searches and range searches.

4.1 Data model

Chapter 2 was based on a model that assumes no words repeat. The model in this
chapter is based on repeated words. This relaxation on words comes from the fact
that individual words occur in several places in a text. The remainder of the thesis

assuwes this more realistic text model.

Model 2 (Practical word search data model) There is an ordered set of words W.

where W = {w; | w; < w;.1 < i< j < n} based on lezicographic ordering of the

79



CHAPTER 4. SEARCHING WITH SIGNATURES 76

words. Also there is a signature function Sig. For each word w; in W. there is a
corresponding value Sig(w;). such that if w; = w;. Sig(w;) = Sig(w;). So. we have

a set of pairs Q. where Q@ = {< . Sig(w;) >| 1 <i<n}.

This word search model i1s the same as the simple word search model except
that two lexicographically adjacent words in set W may be equal. Like the simple
word search model. words in set W are sorted. and the signature function Sig takes
a word from W as input and generates an integer Sig(w;) as the signature for that

word. When two words are the same. their signatures are same.

We continue to assuine that operations on signature set (Q are much cheaper

than on word set W.

4.2 Search Based On Word Signatures

Since word signature functions that have no collisions either have no reduction in the
address space. require a large model. or are very expensive to support updates. wor
signature functions that are used in the suffix-signature method yield collisions. In
this section we investigate collision handling issues in more depth. Next. we give a

search algorithm. which is extended to phrase searching in Section 4.3.

4.2.1 Collision handling

Since we assume that operations on signature set @) are much cheaper than oun word

set W. we do most searching on @) and do as little as possible on W.

The first step to search for a word w is to look at signature set @ and ideutify

entries < i.Sig(w;) > such that Sig(w;) are equal to Sig(w). In the worst case.
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we compare word w with those w;'s picked in the first step. Because W is ordered.
the search of @ can be done in any order and unsuccessful searches can be stopped
as soon as we find a range (7. k) for which w; < w < w; and Sig(w;) # Sig(w) for
J<i<k.

To improve performance. we choose not to search for words having signatnre
Stg,, one by one from w, to w, in set W. Instead we start in the middle of W and
compare signatures in a widening range alternating towards w; and towards w,.
That is. we examine wz.wz41.wz_y..... Once a matched signature is found. we
compare the corresponding word with word w. Then we can determine in which

part of set W to continue the search. based on the ordering of W.

We know that a word in W might be repeated several times. Since W is ordered.
repeated identical words are adjacent and have the same signature. Assuming for
the moment that there are no adjacent collisions. all the identical signatures that
are adjacent correspond to the same word. Thus having compared any word from
a group of adjacent words having identical signatures to the target word. we can
determine that all those words match w or none do. In the latter case. we can skip

the whole set of adjacent words having signatures equal to Sig(w).

However. as discussed in Chapters 2 and 3. there are almost nunavotdably adja-
cent collisions: a block of adjacent identical signatures might correspond to different
words. Thus to avoid comparing an identical word with w repeatedly. we store all
the adjacent collision boundaries in a look-aside table (as illustrated in Figure 1.8).
As a result. adjacent non-identical words having the same signature are divided
into different sub-blocks. Within these sub-blocks there are therefore no adjacent

collisions.

For each adjacent collision boundary. the look-aside table includes the lexico-
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sraphically larger word and its index. Words that appear in the look-aside table
can be found without going to word set W. We may realistically assume that op-
erations on the look-aside table are much cheaper than on word set W. since it is
much smaller in general. as proven in Chapters 2 and 3. In addition to that. such
boundary words describe limits that rednce search ranges. which therefore reduce

search cost on word set W for other words as well.

4.2.2 Word search algorithm

A set of postings lists and a signature array are built over a text file tezt. The
postings lists contain pointers to words in the tezt. In the postings list correspond-
ing to a word. there are as many pointers as that word occurs in tert. Following
the strategy used in suffix arrays [GBYS92|. the postings lists are concatenated
in lexicographical order. Thus. in the resulting postings array. pointers are or-
dered lexicographically by the words they reference. The signature array contains

signatures of corresponding words represented in the postings array.

Assume that tezt. the postings array. and the signature array are very large and
are stored on disk. The postings array and the signature array are partitioned into

blocks so that each block fits in memory.

Normally. a word falls inside a single block. But it might be possible that a word
occurs so often that it spans several blocks. as exemplified in Figure 4.1. In this
case. all middle blocks correspond to this particular word. and one block at each
end might contain this word as well. In our example. the shaded area represents
a word w. which occupies the last part of the second block. the whole third block.
and the beginning of the fourth block. Notice that the shaded areas in blocks 2

and 4 are necessarily within the nearest adjacent collision points in both blocks.
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adjacent collision boundaries
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block divisions

blocks

Figure 4.1: Blocks and look-aside table

We assume that a block list contains block division points (i.e. word values)
that divide the postings array and the signature array into blocks. This list is
assumed to be sufficiently small to fit in memory. We store the fragment of the
look-aside table corresponding to each block together with the signature array and
postings array fragment for that block. The look-aside table is nsed to store all
adjacent collision boundary words and their indices in the postings array. Inside a

block. binary search is used to find a word and identify its two end boundaries.

The text. the postings array. the signature array. and the block list are stored on
disk. Before searching starts. the block list is loaded into main memory. Following
is a word search algorithm to search for all occurrences of a word w. by using word

signatures.
Problem: find all the occurrences in a text of a word w.

Input: a word w:
hlock list: strings:

postings array: integers:
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stgnature array: integers:

look-aside table: (string. integer) pairs:

Output: the nnmber of matches and the range in the postings array pointing to

matching places in the text.
Algorithm 2 (Word Search)
[. Calculate the signature siq,, for word w.

2. If w is not a block division point. all matches to w fall within one block. Read
this block into memory. Determine the adjacent colliston interval containing

w by searching in the look-aside table.

o [fw is listed in the table as an adjacent collision boundary word. then the
corresponding pointer in the postings array represents the smallest index
i for which w; = w. Adjacent pointers for w;. Wiyy. Wigs. ... having the
sarne stgnature and before the nezt adjacent collision boundary reference

all occurrences of word w in tect.

o If w is not listed in the table. find the pair of adjacent words in the
table surrounding word w. and get the corresponding range [l;.1s] of the
postings array.

(a) Starting at position hji,'—’~ search up and down the signature array
alternatively to find a match for sig,. If no match is found. then
word w does not occur in the tezxt. Otherwise. determine the first
encountered interval [tl.tg] that matches sig,,.

(b) Pick any position i in [t).t2]. Get the ith pointer of the postings
array and read a word w’ from tezt on disk. Compare words w and

w'.
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— If they are identical. then pointers in the range [ty.t2] on the
postings array point to all occurrences of word w in tert.
~ If they are not identical. re-iterate from Step 2a using [Iy.t; — 1]

ifw<w or[ty+ L] ifw>w.

3. Ifw is listed as a block division point. word w appears in some adjacent hlocks.

Center blocks contain only word w. We read the two end blocks into memory.

o [n the higher end block. the beginning range that has the matching signa-
ture siq,, and is before the first adjacent collision houndary corresponds

to word .

o [n the lower end block. if the highest adjacent collision houndary word
matches w. pointers from it to the end of the block correspond to word w.
Otherunse. find the smallest position t which is greater than the highest
adjacent collision boundary word and from which to the end of the block
all positions have signature sig,,. Get the pointer on the postings array
for any posttion i in that interval and read the corresponding word from
text on disk and compare it with w. If they are identical. the range from

t to the end of th block corresponds to word w.

Note that the asymmetrical test of blocks in step 3 results from our convention
that adjacent collisions always cause the lexicographically greater word to be stored
in the look-aside table. In Step 2b. picking any position in an interval spares reading
word w’ from text on disk if word ' is coincidentally already in memory. which

will potentially reduce cost.
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4.2.3 Experimental results

Let us look at the search speed of all words in experiments described in Section 3.3.5.
Although phrase signatures are stored. we are only concerned with the first word
of each phrase. The experiments use different combinations of the block size. the
number of words and the maximum number of bits in a phrase signature. and a
bit allocation algorithm on the Bible. The graph on the left in Figure 4.2 plots the
search performance for the block size 10k. assuming every distinct word is searched
once. The graph on the right plots the number of bits per index point used for
the signature array and the look-aside table. The z-axis represents the number of
words in a phrase signature. which ranges from 3 to 7. The y-axis represents the
expected number of disk accesses to a text on the left graph. and the number of

total bits on the right.

aan

1oy meiden et

Figure 4.2: Speed vs. space

We observe that the expected numbers of disk accesses to the text are always
less than 1.2. In general. the expected number of disk accesses decreases and the
total space increases as the number of words increases. This is because the number

of adjacent collisions increases as the number of words in a phrase signature in-
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creases and the maximum number of bits in a phrase signature remains unchanged.
Therefore. more space is required. and searches are performed in smaller ranges.
which potentially reduces search costs. It also shows that when the number of
words in a phrase signature is big enough. the expected number of disk accesses for
the maximum allocation of 16 bits is smaller than 24 bits. which in turn is smaller
than 32 bits. It again is due to the fact that there are more adjacent collisions
for fewer bits than more bits. Thus. although sometimes more space is used. the
higher likelihood of finding a word in the look-aside table and the smaller ranges
for searching for other words. saves disk accesses on average. This is a tradeoff

between space and time. and this motivates Section 4.4.1.

4.3 Phrase search algorithm

Having presented an algorithm to search for words by using word signatures. we

now give an extended algorithmn to search for phrases by using phrase signatures.

Again assume that tezt is a sequence of words. Phrases consist of subsequences
of words from tert. We create a suffix array and a signature array for phrases in
the text. where the suffix array contains pointers to phrases in the text. Pointers
in the suffix array are ordered by the lexicographical order of the repeated phrases.
The signature array is a parallel array of signatures. one for each phrase in the
text. The order of phrase siguatures is the same as the order of the corresponding

pointers to phrases.

The phrase signature is based on the first k& words of the phrase. such that word
signatures are concatenated to form a phrase signature. Thus. phrases having the
same first [ words have the same [-word prefix signatures. We again use a look-aside

table to store all the adjacent collisions and a block list to store block boundaries.
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An adjacent collision is said to be order i if the adjacent collision occurs at the
ith words of the two adjacent phrases. Notice that two adjacent j-word phrases at

an i-order adjacent collision point are not equal for j = ¢ and equal for j < :.

The text. the suffix array. the signature array. and the block list are stored
on disk. Before searching starts. the block list is loaded into main memory. The
following algorithm supports searches for all the phrases whose l-word prefixes

match p = wywa .. .wp. [ < k.

Problem: find all the occurrences in a text of a phrase p of length up to & words.

Input: a phrase p containing at most & words:
block [ist: strings:
suffiz array: integers:
stgnature array: integers:

look-aside table: (string. integer) pairs:

Output: the number of matches and the range in the suffix array pointing to

matching places in the text.

Algorithm 3 (Phrase Search)

This algorithm outputs a flag and a range of the suffiz array. The flag indicates if
a search is successful or unsuccessful. The range includes all phrases whose l-word
prefizes are p when the flag is “successful”. and when the flag is “unsuccessful”. the

range is the last range during a search in which p falls.

1. Create the signature sig, for phrase p = wyw, ... w;.
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2. If p is not a prefiz of a block division point. all matches to p fall unthin one
block. Read this block into memory. Determine the adjacent collision interval

containing p by searching in the look-aside table.

o [f p is listed in the table as a prefic of an adjacent collision boundary

phrase p;:

— If the order of this adjacent collision is less than or equal to [. then
the corresponding pointer in the suffiz array represents the smallest
indez ¢ for which p; = p. Adjacent pointers for p;.piyy.piva. ... that
have signature sig,. and before the nezt adjacent collision boundary
of an order less than ot equal to l. correspond to all occurrences of
phrase p in test.

— If the order of this adjacent collision s greater than l. adjacent point-
ers for ... pica.Pi-i-Pi-Pit1-Pit2- - - . that have signature sig,. and
are after the previous adjacent collision boundary of an order less
than or equal to | but before the nezt adjacent collision boundary
of an order less than or equal to l. correspond to all occurrences of

phrase p in tect.

o Ifp is not listed in the table. find the corresponding range [l;. ls] in which
phrase p falls.

(a) Starting at position LL%L search up and down the signature array
alternatively to find e match for sig,. If no match is found. then
phrase p does not occur in the tezt. Set the return flag to false. and
return the range [l}.ls]. Otherwise. determine the first encountered

interval [t,.ts] that matches sig,.

(b) Pick any position i in [t.t2]. Get the ith pointer in the suffiz array
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and read a phrase p' from tezt on disk. Compare phrases p and p'.
— If they are identical. then pointers in the range [t,.ts] of the
suffic array point to all occurrences of phrase p in text. Set the
return flag to true. and return the range [t;.t.).
— If they are not identical. re-iterate from Step 2a using [l,.t; — 1]

ifp<p ortat+1l.l] if p>p.

9. If p is listed as @ prefiz of a bhlock division point. phrase p appears in some

adjacent

blocks. Center blocks all correspond to phrase p. As in Algorithm 2.

we read the two end blocks into memory.

e In the higher end block. the beginning range that has the matching signa-

ture sig, and is before the first adjacent collision houndary of an order

less than or equal to | corresponds to phrase p.

o [n the lower end block:

If p is a prefiz of the highest adjacent collision boundary phrase.
the last range that has the matching signature sig, and is after the
highest adjacent collision houndary of an order less than or equal to
l corresponds to phrase p.

If p is not a prefic of the highest adjacent collision boundary phrase.
as in Algorithm 2. find the smallest position t which is greater than
the highest adjacent collision boundary phrase and from which to the
end of the block all positions have signature sig,. Get the pointer
on the suffiz array for any position ¢ n that interval and read the
corresponding phrase from tezt on disk and compare it with p. If they
are identical. the range from t to the end of th block corresponds to

phrase p.
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During searching. there are O(log ;) comparisons within the block list. O(log ;)
cowparisons within the look-aside table. and O(z,) cowmparisons in a search range.
where z;, is the number of entries in a block list. x; 1s the total number of adja-
cent collision phrases in a block. and =, is the size of a search range of matching

signatures.

4.3.1 Experimental results

Some further experiments were conducted on the text of the Bible (see Appendix A)

to determine the effects of block size on performance.

We assume that all distinct existing i-word phrases have the same probability
to be queried. and non-existing phrases are not queried in these experiments. A
phrase signature has 32 bits and is based on the first 5 words. The strategy Balance

is used to allocate bits among words in a phrase.

Figure 4.3 shows the expected nnmmber of disk accesses to the text to search
for an i-word phrase with block sizes of 1k. 5k. 10k. 50k. and 100k. The z-axis
represents the number of words in a phrase. and the y-axis represents the expected
number of disk accesses to the text. Samples are represented by “o". ~.". =g".
“« . and “a" for the block sizes of 1k. 5k. 10k. 50k. and 100k respectively. Again.
the average number of disk accesses to the text under all parameter settings is less

than 1.2. We observed that searching for phrases of one or two words is noticeably

faster on smaller blocks than bigger blocks.
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Figure 4.3: Search performances of different block sizes

4.4 Selecting phrases for look-aside tables

We can reduce the average search time by reducing the load factor for one or wmore
of the component word signature spaces. There are several ways to reduce a load
factor. We could increase bits allocated to the ith words by increasing the total
number of bits in a phrase signature. Or. given a fixed nnmber of bits in a phrase
signature. we could give one more bit to the ¢«th words by reducing one bit from
the jth words. Or without increasing the number of bits to the ith words. a load
factor can be decreased by reducing the number of words to be stored within a

single extent of the signature array.

Iu this section. we show how to limit the number of disk accesses to a text. We
will discuss how to control load factors while maintaining the same hash space size

for the ¢th words of all (¢ — 1)-word phrases. and how to gnarantee a worst case for
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search performance by putting some additional phrases in the look-aside table. We
investigate the trade-off that arises between different parts of the look-aside table

in terms of search speed and space.

4.4.1 Breaking points

The strategy ByMaz or Balance described in Section 3.3.5 could be used to allocate
bits in a phrase signature among the component words. If phrases are umformuly
distributed. each i-word sub-space corresponding to different (i — 1)-word prefixes
would have similar load factors. But in reality. different words may have very
different numbers of following words appearing in natural language phrases. For
example. word wg in Figure 4.4 has many more distinct second words than words
w, throngh ws. Thus load factors for some :-word phrases may be much bigger

than a desired load factor.

level 1 w2 w3 wd wS wo6

AMA AR

Figure 4.4: Far-outness of word distributions

level 2

Dividing the suffix array and signature array into blocks enables us to use dif-
ferent numbers of bits to represent the ith words of phrases in different blocks.
Moreover. within each block. load factors can be further controlled while the ith
words of phrases are represented by the same number of bits. The approach is to
pick some phrases. to store them in the look-aside table. and to use them to narrow

search ranges. like adjacent collision boundary phrases. This approach lowers load
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factors for some phrases. and is motivated by the observation from Figure 4.2 that

search performance improves when the number of adjacent collisions increases.

Control load factors

We explore the idea to lower load factors for some phrases if necessary by using an

idea similar to extendible hashing [FNPS79].

Figures 4.5 and 4.6 illustrate extendible hashing. Items are hashed into a hash
space with each hash value pointing to a bucket in which items are stored. as
illnstrated in Figure 4.5. Depths (in circles) indicate sizes of a hash space for each
bucket. When a particular bucket is too full by some standard. the bucket will be
split into two buckets. For example. the third bucket is split into two buckets. as
illustrated in Figure 4.6. Items in the original bucket will be divided into the two
new buckets. Depths of a hash space and buckets may change as insertions and

deletions go on. Thus. each bucket could have a controllable load factor.

Buckets
Hash Space

h(~) =00
00 //QL

h(-) =01
01 -
10 D——_O)
11 -

h(~)=1

Figure 4.5: Before split (extendible hashing)
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Buckets
Hash Space
h(~) =00
00 ‘]
/© .
01 7
10 J==--ee___ -0
11 -~
\“\\ h(-)=10
‘\‘g@
h(=)=11

Figure 4.6: After split (extendible hashing)

Let us look back at our suffix-signature method. Assume there are x adjacent
collisions that are of orders less than or equal to <. Then these z adjacent collision
boundaries divide ¢-word phrases in a block into {x + 1) buckets. Assume that
each (¢ — 1)-word phrase has the same hash space size for following words. Then
each bucket for the ith words has the same hash space size. but a different load
factor. A bucket having more distinct ¢-word phrases has a higher load than a
bucket having fewer distinct i-word phrases. If a bucket gets too full. an i-word
phrase can be chosen to split the space into two parts. and the two new buckets
will have lower loads than the original bucket. The chosen i-word phrase is kept
in the look-aside table and serves as a separator of the two new buckets. which 1s
similar to the idea in external hashing with limited internal storage [GL82. LK84}.
Whereas extendible hashing determines which sub-bucket to use based on a hash.

this approach chooses sub-buckets based on the keys themselves. Therefore. while
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the same nnmber of bits are used for the :th words of all phrases. controllable load
factors are obtained by inserting additional breaking points in the look-aside table.
Which bucket a given i-word phrase falls in depends on its lexicographic order in

relation to all phrases in the look-aside table.

Strategies of inserting breaking points

When the number of distinct i-word phrases that have the same first (¢ — 1) words
exceeds some threshold. phrases can be inserted into a look-aside table so that the
new load factor is around some number p. We will call this checkf). Figure 4.7
illustrates picking breaking points. There are 12 distinct words. or 19 words if
repetitions are counted as well. So. either w6. the middle word of the 12 distinct
words. or wl0. the middle word of the 19 words. could be picked as a breaking
point phrase. Although the size of hash spaces remains unchanged. load factors
in the two new subspaces are expected to be half as big as the one in the original
space since the number of elements in each new sublist is about half as many as in

the original one.

Instead of using an overall load factor to determine when to split buckets. limit-
ing the number of collisions in a single bucket could be used. as implied by extendible
hashing [FNPS79]. Thus breaking points could be picked so that between two ad-
jacent look-aside phrases no more than 2 or 3 distinct :-word phrases have the same
signature. We will call this checkl. Then. all phrase searches are gnaranteed to be
found within 2 or 3 disk accesses to a text. Figure 4.8 has a signature array for a
list of distinct 2-word phrases. w and w’ are 2 distinct first words having the same
signature s. Signatures of their second words are s;. s, occurs four times after w
and three times after w’. Assume that we pick every third occurrence of the same

signature as a breaking point. Then. we pick z; and z, as breaking points because
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1 wl

2 w2l

3 w3

4 w4

5 w3
-— 6 w6

7 w7

8 w¥

9 wY
—_ 1) wih

[ wll

12 wit

13 wil

IE w2

ts Cwi

16 v ».\;l’

. wl: .........

1% wi2

" poeseeees w[; .........

Figure 4.7: Choose breaking points to reduce load factor

the signature 's s;” occurs the third time at z, from the point a and at =, after the
yoint x;. Althongh sg occurs four times. rs will not be a breaking point becansc
I 1 o) 8 =)

sg occurs fewer than three times after z, is picked as a breaking point.

As a third alternative. breaking points could also be picked so that (for all
values of ¢ < t) between two adjacent look-aside phrases any indwidual (¢ — 1)-word
phrase has no more than 2 or 3 distinct following words having the same signature.
This will be called check2. As a result. very few phrases need more than 2 disk
accesses to a text. Note that unlike for checkl. however. the same z-word signature
can occur between breaking points more than 2 or 3 times in total because distinct
(# — 1)-word phrases might have the same signature. So. in Figure 4.8. positions
y; and y2 are picked as breaking points where the signature 's s, occurs the third

time in the ranges of w and w'. respectively. Although sg occurs three times in the



CHAPTER 4. SEARCHING WITH SIGNATURES

sl

s2

-

s3
sl
s4
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sl - x12

s
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Figure 4.8: Choose breaking points to limit the length of a collision list
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range of the word w’. y; will not be a breaking point because sg occurs fewer than

three times after ¥, is picked as a breaking point.

Summary

Phrases that are picked to lower load factors are stored in the look-aside table and
are used like adjacent collisions to narrow search ranges. Inserting phrases in the
look-aside table essentially gives extra bits to those phrases while most other phrases
use the assigned number of bits. which is smaller. Such an approach guarantees
a controllable load factor. and in that sense it has the property of a variable size
schemne. However. it does not introduce new complexities. but instead uses the

look-aside table. which matches the style of our suffix-signature method.

4.4.2 Guaranteeing upper bounds on search time

In the proposed suffix-signature method. a look-aside table is introduced to store
adjacent collision boundary phrases to solve the problem of adjacent collisions. As
discussed in Section 4.4.1. supplementary breaking points can also be inserted to
balance load factors for different i-word phrases. Since phrases in the look-aside
table reduce the range of the array in which searches are performed. the result of

using the look-aside table is improved search performance.

If most phrase searches can be solved by no more than 4 disk accesses. a -
disk access performance can be gnaranteed by pre-loading the rest of the occurring
phrases in another look-aside table. At indexing time. after a look-aside table
is built to accommodate adjacent collisions and breaking points. we perform the

following algorithm to build a second look-aside table L:

For p € text and p < k words
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if p is not found within 3 accesses using Algorithm 3.
then insert p into L.

Therefore. at search time. if a phrase p is not in L and using Algorithm 3 we
have not found a match within 4 disk accesses. then p does not exist in the text.
As a result. both successful and unsuccessful searches can be done within at most
3 disk accesses to a text. Step 2a in Algorithms 2 and 3 of Sections 4.2.2 and
4.3 is therefore repeated at most 3 times. Based on Figure 2.1 of Section 2.3. we
choose {3 = 2. Since phrases in L need space to store. the number of guaranteeing
phrases should be kept small. Ifit is found that too many phrases need to be stored.
the value of 3 should be increased to rednce the number of guaranteeing phrases.

Phrases in L are stored as strings. and binary search is used to search L.

When we search for a phrase using Algorithm 3. we start from the middle of
a range and move np and down towards both endpoints of the block to find a
matching signature. As in binary search. if the phrase corresponding to a matched
signature is not the one being sought. we iterate in the appropriate subinterval.
Unfortunately. this is not a binary search on matching signatures. So. if there are.
for instance. three matching signatures in a range. it is not gnaranteed that one of
them is found at the first iteration. and two are found at the second iteration. In
Figure 4.9. for example. there are three matching points at positions z. y. and z.
z will be found at the first iteration. and the other two will be found at the second

and third iteration. respectively.

Figure 4.9: Non-binary
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Why must L be kept separately? Paradoxically. reducing the size of a range may
make some matching signatures require more iterations. For example in Figure 4.10.
there are three matching signatures in the range [A. B]. Match point 2 could be
found at the first iteration. and either point 1 or 3 would be found at the second
iteration. depending on which lexicographical subinterval is chosen. If the range
[A. B] is reduced to [A. B']. match point 1 will be found at the first iteration. and the
other two points will be found at the second and third iteration respectively. Thus.
in this example. reducing the size of the interval increases the average and maximum
numbers of probes for a successful search for this particular signature! Inserting a
guaranteeing phrase into the first look-aside table may therefore negatively affect

phrases already confirmed to take at most 3 accesses.

(S Y N N A Y - O N O <00 < - T I T S
| “W

Figure 4.10: Reducing a range

So. guaranteeing phrases are not used for reducing search ranges. Instead.
the look-aside table consists of two parts. The first part contains all the adjacent
collision boundary phrases and breaking point phrases. They can be used to reduce
search ranges. The second part contains “gnaranteeing phrases™ so that all phrase
searches are guaranteed to require at most g disk accesses to a text. Adjacent
collision boundary phrases make the suffix-signature method work. Breaking point

hrases and gnaranteeing plirases speed up phrase searches.
l=] (=]

Generally. the more phrases used to reduce search ranges. the better search
performance. and therefore the fewer guaranteeing phrases are needed. There is a

trade-off between the two parts of a look-aside table. and we prefer more phrases
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in the first part of the table than in the second part. given a fixed size of a look-
aside table. Thus. optimizing a look-aside table overall could be done by inserting
breaking point phrases into a look-aside table to reduce the nnmber of gnaranteeing

phrases. and thus hopefully to reduce the size of the whole table.

Theorem 1 Using the suffiz-signature method with signatures stored for all k-word
phrases. if the look-aside table fits in the same block as the corresponding segment
of the suffiz array and the signature array. then all searches of length up to k waords

can be found in at most 3 disk accesses.

Proof: For a successful search. if the target phrase is not a block boundary phrase.
it requires one disk access to get the corresponding index block and at most two
disk accesses to the text. If the target phrase is a block boundary phrase. we must
consider the blocks on both sides: at the higher end block. it requires one disk
access to get the corresponding index block and no disk accesses to text (matching
signatures at the end of the block are all for matching phrases): at the lower end
block. it reqnires one disk access to get the corresponding index block and at most
oue disk access to the text to check if matching signatures at the end of the block
match the target phrase. If the target phrase appears for more than one block
boundary. the same arguments hold for the uppermost and lowermost blocks: every
phrase in every intervening block must be a match. so there is no need to access
either those index blocks nor the text. Therefore. the algorithm requires at most 3

disk accesses for a successful search.

For an unsuccessful search. the target phrase must fall within one block. So. it
requires one disk access to get the corresponding index block and at most two disk

accesses to the text. depending on how many matching signatures are encountered
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during the search. By design. if a matching phrase is not found within two accesses

to the text. there is no watch.

Therefore. under all conditions. the algorithmn requires at most 3 disk accesses

to search for a phrase of length up to & words. O

If a look-aside table is too big to fit in the same block as the segment of the
suffix-array and the signature array. we reduce the number of index points in the
block to make the complete structure fit in one block. If as a result. there are too
many blocks for the block list to fit in memory. the block list has to be stored in
two levels. This requires one more disk access to get to the corresponding part of
the block list. We discuss the two-level block list in Section 6.3. In the worst case.
all index phrases in a block are adjacent collision phrases. Then the look-aside
table becomes an inverted list on all & word phrases. We will discuss inverting all

distinct & word phrases in Section 7.2.

4.4.3 Experimental results

Experiments have been done to evaluate several ways to insert breaking points. as
described in Section 4.4.1. We choose § = 2. i.e. we wish to gunarantee at most
two disk accesses to the text for any search. which is motivated by Figure 2.1 of

Section 2.3. We contrast the following approaches:

o nobreak_noguar: Neither breaking points nor guaranteeing phrases are in-

serted into the look-aside table.

o nobreak: No breaking points are inserted into the look-aside table. but guar-

anteeing phrases are inserted into the second look-aside table.
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e checkl): Breaking points are inserted when the load factor of i-word phrases
that have the same first (# — 1) words exceeds 1. In our experiments. load
factors after breaking points are inserted are limited to be at most 0.8. Guar-

anteeing phrases are inserted into the second look-aside table.

® checkl: A breaking point is inserted when the third appearance of the same
i-word signature for distinct ¢-word phrases is encountered (therefore avoiding

the need to store any guaranteeing phrases).

® check2: A breaking point is inserted when the third appearance of the same
t-word signature for distinct words following a single (¢ — 1)-word phrase is
encountered. Guaranteeing phrases are inserted into the second look-aside

table.

Again we assume that all distinct existing i-word phrases have the same proba-
bility to be queried. and non-existing phrases are not queried in these experiments.
A phrase signature has 32 bits and is based on the first 5 words. The strategy

Balance is used to allocate bits among words in a phrase.

The following figures present experimental results for each of the different ways
of inserting breaking points for the texts of Bible and News (see Appendix A). Sam-
ples are represented by “o". “.". "g". ",". and "A" for nobreak_noguar. nobreak.

checkl. checkl. and check. respectively.

Figures 4.11. 4.12. and 4.13 display the expected number of disk accesses to the
text to search for an i-word phrase on the text of 5.6Mb Bible for block sizes of 1k.
5k. and 10k indexed phrases respectively. Figure 4.14 shows the search performance
on the text of 8Mb News (for block size 10k). The z-axis represents the number of
words in a phrase. and the y-axis represents the expected number of disk accesses

to the text.
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Figure 4.12: Search performance ( Bible/5k)
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Figure 4.13: Search performance ( Bible/10k)
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Figure 4.15 is the total space used by the suffix-signature method for the News
and the Bible for block sizes of 1k. 5k. and 10k respectively. The y-axis repre-
sents the number of bits per index point on average for storing the signature array.
adjacent collision boundaries. block boundaries. and/or breaking points and guar-

anteeing phrases.
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Figure 4.15: Total space

Observations

Guaranteeing phrases improve search performance at the cost of space. In gen-
eral. all three ways of inserting breaking points (checkll. checkl. and check?) im-
prove search performance and use less space than nobreak. which puts guaranteeing
phrases in the look-aside table but does not insert breaking points. Shorter phrases

get more search improvement than longer phrases. The results of check! and check?
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are close. and they have the most improvement and use the least space. Since check!
requires no guaranteeing phrases. it gives a faster index creation due to no need
to check if any phrase is a guaranteeing phrase. For many blocks check? requires
significantly fewer breaking points. Therefore. we suggest using either checkl or
check?.

Smaller blocks are better than bigger ones in terws of search performance and
space because they are more adaptive for allocating bits among words. but a larger

block list must be kept in memory.

4.5 Long phrase search

Fromn Chapter 3. we know that a phrase signature does unot contain all the infor-
wation of a phrase and does not always countain enough information to distinguish
it from other phrases. because a phrase signature normally is based on the first &
words. Since a phrase signature contains no information about words after the Ath
word. phrases that share the first & words cannot be distinguished from each other
by just checking their signatures. So. we need to handle searches for phrases of

longer than k words differently.

Again. the text. the suffix array. the signature array. and the block list are stored

on disk. Before searching starts. the block list is loaded into main memory.

Problem: find all the occurrences in a text of a phrase p containing more than &

words.

Input: a phrase p containing [ > k& words:

block list: strings:
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suffiz array: integers:
signature array: integers:

look-aside table: (string. integer) pairs:

Output: the nummber of matches and the range in the suffix array pointing to

matching places in the text.
Algorithm 4 (Long Plrase Search)
1. Use Algorithm 3 (Phrase Search) to search for phrases containing the first k

words of s.

2. If the result set Sy contains a few phrases. we may simply check phrases in 5,

directly. Otheruwnse. go to the next step.

3. Use Algorithm 3 again to search for phrases containing the nest k words of

s. The result set is S-.

4. Find phrases in S, that are followed by a phrase in S» by comparing their

pointers. Assume that |S)| = I} and |S2| = l>.

o If one of the sets is very small. say S,. we sequentially go through S,
and for each phrase pointer in Sy we check Ss. Time is O(l1ls).
o Otherwise sort Sy and Ss. Then sequentially go through S, and S, to

comnpare positions. Time s O(l; log ly + l2log l,).

3. Let the result set of the last step be Sy. and go to Step 2.

Let [ be the length of the target plrase (the number of words) and £ be the

number of words in a phrase signature. The above algorithm divides a long phrase
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into [H k-word fragments (the last one might have fewer words). then combines
search results of these fragments. The total number of disk accesses is ‘2[{] on

average.

If a k-word fragment does not appear in the block list. it can be found within at
wost 3 disk accesses. If it appears = > 0 times in the block list. as in Figure 4.16.
the number of disk accesses to get all the pointers from a suffix array is at most

x 4+ 2 (z for blocks 1 to z and two for block 0).

.....

Figure 4.16: A phrase covers more than two blocks

Let ¢ be the number of k-word fragments that are not listed in the block hst.
Then these t k-word fragmments need at most 3¢ disk accesses. Let b be the total
number of times that A-word fragments are listed in the block List. Then these
({H — t) k-word fragments need at most 2( f{-] —t) + b disk accesses. In the worst

case. the total number of disk accesses is 2[%] +t+b.

4.6 Range searches
There are some issues that need to be further addressed.

o Interval searches: How can the structure be used to support a search for all

phrases that are lexicographically between two given phrases?
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e [ncomplete phrase searches: How can the structure be used to support a
search for all phrases that share a common prefix ending in the middle of a

word?

We will use Algorithm 3 (Phrase Search) of Section 4.3 to get some intermediate
results and then nse a binary search on a result set of Algorithm 3. We assume
that the binary search will take a suffix array range and a phrase s. and return
~successful” with a range corresponding to s. or return "unsuccessful” with a pointer
to the phrase in the text that is lexicographically greatest among all those smaller

than s.

Interval search

An interval search finds all the phrases that are lexicographically between two given
phrases p; and p,. If both p; and p» exist. the phrases whose index positions arc
between p;, and p, in the suffix array are lexicographically between p, and p,. But
if either or both of p; and p, do not exist in a text. we need to find the smallest
phrase in a text that is bigger than p;. and/or the biggest phrase in a text that is

swmaller than p,.

Again. the text. the suffix array. the signature array. and the block list are stored

on disk. and the block list is loaded into main memory before searching starts.

Problem: find all the phrases in a text that are lexicographically between two

phrases p; and p,.

Input: two phrases p; and ps:

block list: strings:



CHAPTER 4. SEARCHING WITH SIGNATURES 108

suffiz array: integers:
swynature array: integers:

look-aside table: (string. integer) pairs:

Output: the number of phrases in a text that are lexicographically between p; and

p» and the range in the suffix array pointing to matching places in the text.
Algorithm 5 (Interval Search)

1. Use Algorithm 3 (Phrase Search) to search for phrases whose prefizes are p,.

returnung a flag and a range.

2. If the flag is “successful”. let the index of the first phrase in the range be r;.
If the flag is “unsuccessful”. use a binary search in the range for pi. which
returns an indez z that references the greatest phrase smaller than py. and let

r+1 bhery.

3. Use Algorithm 3 to search for phrases whose prefizes are ps. returning a flag

and a range.

4. If the flag is “successful”. let the inder of the last phrase in the range be ra.
If the flag is “unsuccessful”. use a binary search in the range for py. which
returns an indez z that references the greatest phrase smaller than p,. and let

r be rq.

If 1y > 7. there is no phrase between p; and p,. Otherwise. phrases from 7,

I

to To are between p, and p,.
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Incomplete phrase search

Assume that we search for phrases with first word “the”. and a prefix of the sec-
ond word is “snrg”. That is. in the target phrase p =-the surg™. the last word
w ="surg is an incomplete word. So “the surge”. “the surgeon”. “the surgery™.
and “the surgical” are all eligible. We call this search an incomplete phrase search.
Unfortunately if w is a proper prefix of the last word of a matching plrase. the

signature of p and the signature of a matching phrase may not be the same.

We will search for phrases that contain all the words in a target phrase p except

the last word. Then in the matching range. we resort to a binary search for p.

Again. the text. the suffix array. the signature array. and the block list are stored

on disk. and the block list is loaded into main memory before searching starts.

Problemn: find all the occurrences in a text of a phrase p with an incomplete last

word.

Input: a phrase p with an incomplete last word:
block list: strings:
suffiz array: integers:
signature array: integers:

look-aside table: (string. integer) pairs:

Output: the number of matches and the range in the suffix array pointing to

matching places in the text.
Algorithm 6 (Incomplete Phrase Search)

1. Use Algorithin 3 (Phrase Search) to search for phrases whose prefizes are p

except the last word. and get a flag and a range.
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2. If the flug is “unsuccessful”. there is no matching phrase. If the flag is “sue-
cessful”. use a binary search in the range for p. This returns “successful”™ or

“unsuccessful”. which is the value to return for the phrase search.

4.7 Summary

In this chapter. we developed an algorithm to search for words using word signa-
tures. extended it to phrases using phrase signatures. and discussed long phrase

searches and range searches.

We also discussed inserting breaking points and using a second look-aside table
to improve search performance for the proposed suffix-signature method. For a
non-variable signature size scheme. inserting breaking points makes load factors
controllable. The performance of at most [3-disk accesses to a text is guaranteed by
putting gnaranteeing phrases in a second look-aside table. This reduces expected

and worst-case search time without too much extra space being required.



Chapter 5

Experimental Validation

We have proposed a suffix-signature method for fast phrase searching on a large
static text. In this chapter we describe the implementation of our prototype system
and extensive experiments conducted to test the suffix-signature method based on
the concatenation of word signatures of the first & words in a phrase. The goal
of the experiments is to validate the suffix-signature method with respect to both

space and searching speed.

The searching speed is measured in terms of numbers of disk accesses to search
for a phrase. The extra space that the method uses. in addition to a suffix array
and a list of blocks for the suffix array. includes the signature array and a look-aside

table.

5.1 Prototype system

Figure 5.1 illustrates the hierarchy of indices. The suffiz array and the signature

array are divided into fixed sized blocks. Block addresses and corresponding bound-

111
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ary phrases are kept in a block list. The tezt. the suffiz array. signature array. and
look-aside tables are on disk. The block list is in wmemory. During searching. a par-
ticular block of the ~uffiz array and the signature array. including the corresponding

part of the look-aside table. is loaded into memory using one read operation.

on disk
e USSR & :

: Suffix array
:signature armay  C

Figure 5.1: Hierarchy of Indices

The prototype system supporting the suffix-signature method has been imple-
wented in C. with about 6000 lines of code. It includes two parts: huildinder and
searchphrase.

Buildindez builds a block list. a signature array and look-aside tables based on
a text and its suffix array. Searchphrase provides only a simple user interface. It
takes a phrase search query from a user and prints the number of matches and a

few matching samples.

Experiments with the prototype system were run on a shared DEC alpha 3000/508
machine. using the Bible and the News (see Appendix A) as data sources. The
number of words in a phrase signature was chosen to be 5. and the number of
phrases in a block was 10000. 32 bits were used for a suffix array pointer. and for

simplicity. all phrase signatures. regardless of length. were stored in 32 bit fields.
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About 800Kb of memory was required for data structures used by huiddinder.

For searchphrase. the times were measured from the moment that a query was is-
sued to the moment that a list of answers was ready. They do not include retrieving

the final matching phrases from disk.

For the Bible. huildindez took an elapsed time of 10 minutes. The Bible is 5.6Mb
and the suffix array is 4.5Mb. The block list. the signature array. and the look-aside
tables use about 4.9Mb without any compression. and 3.0Mb after compressing the
signature array (as described in Section 3.3.4). Selected phrases were searched
against the Bible using searchphrase. which required about 110Kb of memory for
its data structures. A typical phrase search required about 0.004 — 0.008 seconds

of cpu titue and 0.05 — 0.14 secounds of elapsed time. Some search examples are in

Table 5.1.
matches | cpu (sec) | elapsed
both 458 0.004 0.064
today 0 0.004 0.078
tomorrow 3 0.004 0.047
Egypt 658 0.004 0.064
and so 168 0.005 0.060
and there was 145 0.006 0.059
in the beginning 20 0.008 0.136
an east wind to 1 0.006 0.105

Table 5.1: Search examples in Bible

For the News. buildindez took an elapsed time of 155 minutes. The News is

84.7Mb and the suffix array is 61.3Mb. The block list. the signature array. and
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the look-aside tables use about 66.0Mb without any cowmpression. and 43.7Mb after
compressing the signature array (as described in Section 3.3.4). Again selected
phrases were searched against the News using searchphrase. which required about
170Kb of memory for its data structures. A typical phrase search required about
0.005 — 0.010 seconds of cpu time and 0.05 — 0.15 seconds of elapsed time. Some

search examples are in Table 5.2.

matches | cpu (sec) | elapsed

both 6281 0.009 0.132

today 7212 0.010 0.130

tomorrow 334 0.006 0.085

Eqgypt 388 0.005 0.061

and so 524 0.005 0.067

we have a 377 0.005 0.048

and there was 135 0.005 0.095

in the beginning 40 0.009 0.149
Canadian government has 23 0.005 0.098
an east wind to 0 0.006 0.081

where did he come from 0 0.004 0.064

Table 5.2: Search exawmples in News
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5.2 Design of experiments

5.2.1 Experiment corpus

In order to verify that the suffix-signature method works well on real texts. exper-
iments were conducted on a collection of different types of texts. Specifically. the

texts inclnde the Bible. News. the OED. and data from the World Wide Web. as
described below and more fully in Appendix A.

Bible is about 5.6Mb and has approximately 1.1M indexed phrases.

News is a half year (Jan 1 1990 - July 31 1990) collection of articles from the
Ottawa Citizen newspaper. [t is roughly 84.7Mb and has about 15.3M indexed
plrases.

The OED is the Ozford English Dictionary. second edition. It is approximately
545.6Mb and has aronnd 1.5M distinct words. Its suffix array is roughly 439.3Mb
and has about 109.8M indexed phrases.

WWWi1. WWW2. and WWW3 are collections of HTML pages from the World

Wide Web. They are roughly 5.1Mb. 50.1Mb and 201.6Mb in size. and have abont
0.83M. 7.8M and 34.4M indexed phrases. respectively.

5.2.2 Parameters

Lexicographical ordering is based on a case-insensitive indexing: most punctua-
tion characters are mapped to blanks. and multiple cousecutive blanks are treated

equivalently to a single blank.
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[ text # bytes | # index points | avg word length
Bible 5.6M 1.1IM 3.96 (char)
News 84.7TM 15.3M 4.54 (char)
OED | 545.6M 109.8M 3.97 (char)

WwWwwi| 51M 0.83M 4 (char)
Wwwz| 50.1M 7.8M 5.42 (char)
WWWwWzsz | 201.6M 34.4M 4.86 (char)

Figure 5.2: Experiment corpus
Block size

A Dblock is a unit that is loaded into memmory from disk and in which searches
are performed. For the purposes of the experiments. the number of total indexed

phrases in each block is fixed to be 10.000.

Number of words in a phrase signature

Phrase signatures are based on 5 words of text. This parameter is the same for all

blocks in a text.

Phrase and word signature size

The number of bits for signatures of the ith words in a phrase is chosen indepen-
dently for each individual block. Bits of a plirase signature are divided among
words using the strategy Balance. as described in Section 3.3.5. Balance tries to

winiwize the total number of adjacent collisions in a block.
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The nuwmber of bits in a phrase signature is at most 32. If the total number of
bits for a phrase is more than 32 bits after the initial bit assignment. the number of
bits is reduced proportionally among all words. For the i-word phrase having the
biggest number of distinct following words (the (7 + 1)th words). the lower bound of
load factors of the word signature space for the (i + 1)th words is around 1. Thus.
if there are not many distinct phrases in a block. the number of bits in a phrase

signature will be fewer than 32 bits in this block.

Look-aside table

Strategy check? (Sections 4.4.3 and 4.4.1) is used to choose breaking points to lower
load factors for some phrases. The value of (3 is chosen to be 2 (see Section 4.4.2).
So. all the searches for phrases up to 5 words can be done by at most 2 disk accesses

to a text. therefore by at most 3 disk accesses in total.

Word signature function

The word signature function used in our experiments is the composition of f(w)
and g. defined as follows. Function f(w) is T(w(j] * primne[j]). the summation of
the multiplication of the jth character w(j] of a word and a prime number prime[;].
Function g divides the result of f(w) into several parts of [ bits and exclusive-ORs

them together. where [ is the number of bits in the word signature.

Simple compression

An {-word phrase may repeat several times. especially when ¢ is 1 or 2. So. if

signatures are stored word-wise. many word signatures repeat adjacently at lower
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levels. Run-length encoding is used to compress word signatures at these lower

levels.

Let z be the number of adjacent repetitions of a word signature s. When =« is
greater than a certain number. the = repetitions of the signature s are represented
by a pair (s.x). For our purposes. the cutoff value for the run-length encoding is
4. An extra bit is needed for each word signature s to indicate if s is followed by a

repetition number.

When a fragment of a signature array is read into memory. the phrase signatures

are decompressed so that they can be processed more easily.

5.2.3 Performance metrics

By construction. searching for a phrase up to 5 words can be done by at most 2

disk accesses to a text. Since one disk access to index is needed for each search.

the total number of disk accesses is at most 3.

Theoretical models have shown that this can be achieved with reasonable space.
However we wish to see that space 1s also manageable 1n practice. i.e. that not too

many phrases need to be stored in look-aside tables.

Thus. we will measure space usage for each text in our experiments. We will
also measure the average number of disk accesses to a text (so with one access to

the index we can know the total average number of disk accesses).

Space

We show the space used by a signature array. the block list. and a look-aside table.

in terms of bits per indexed phrase in a text. The size of a phrase signature is
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weasured by the actual number of bits in it. The space is shown for both states of

the signature array: before and after simple compression (see Section 5.2.2).

Speed

The experiments are done by using the proposed method with a binary search on

a block of the suffix array. They are repeated for i-word phrases for: = 1.2.....5.

where 5 is the number of words on which a phrase signature is based.

The experimental results are shown for all indexed phrases (to estimate time for
successful searches) and for all phrase signatures (to estimate time for unsuccessfnl

searches). as described in Section 5.2.4.

Search performance is in terms of the expected numbers of disk accesses to the

text and the percentages of searches being satisfied by j disk accesses.

5.2.4 Query distributions

Experiments are all done for i-word phrases. for 7 between 1 and 5.

Successful searches

Searches for indexed phrases are successful searches. Three query distributions for

the indexed phrases are used in the experiments.

e Each distinct ¢-word phrase is queried exactly once. which will be labeled as

uniform phrases.

e An i-word phrase is queried as many times as it occurs in a text. which will

be labeled as proportional to occurrences.
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¢ An i-word phrase to be queried is selected according to the DeFazio distribn-

tion [DeF93]. as follows:

— For a given value of i. consider the ¢-word phrases in decreasing order
of the numbers of occurrences. Calculate the cumulative nnmbers of
occurrences from the top.

— Those phrases accounting for the first 90% of occurrences are the ~high”
frequency phrases. Those in the next 5% are the “medium”™ frequency
phrases. Those in the last 5% (which will typically be many. many

phrases) are the “low™ frequency phrases.
— In choosing a phrase to be scarched. select from each of the “high™.
“medium”. and “low” categories with 1/3 probability. and select um-

formly within each category.

Unsuccessful searches

Searches for unindexed phrases are unsuccessful searches. We do not actually search
for nnindexed phrases in most of our experiments. Instead. we assume every phrase
signature 1s equally likely to be requested since an arbitrary phrase has an eqnal
probability of having each signature.

Let the total number of distinct signatures of the indexed i-word phrases of a
block be Nindereq. and the total number of possible signatures of ¢-word phrases be
Npossible-

Let S be the set of signatures of all the indexed i-word phrases of a block.
Partition S into Sy U S; U S5... U S; such that for a signature s i S.. = is the
maximum number of disk accesses to search for indexed i-word phrases having s as

signature.
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If the signature of an ¢-word phrase is not in S. no disk access to the text is
needed to confirm that a phrase having that signature does not appear. If the
signature of an i-word phrase is in S.. then at most z disk accesses to a text are

needed for this unindexed i-word phrase.

Let |S.| be the size of S,. The expected percentage of searches without extra

M . N, nasible = ndere Si
disk access to a text js —pesssio—tncs a+1%] and the expected percentage of searches
P',”‘ Ld

with at most = disk accesses to a text is FI—SLI&T for x > 0. which i1s the expected
poan Ld

worst case performance of unsuccessful searches for i-word phrases and is labeled

as uniform i-word signatures in the following tables.

Similarly. for each (4 —1)-word prefix. we can get the expected worst case perfor-
mance of unsuccessful searches for following words. assuming every word signature
of the ith level is equally likely to be requested. This corresponds to a search for
an i-word phrase for which only the ith word does not match the text. The average
of the worst case performance over all (i — 1)-word prefixes is labeled as uniform
word signatures. The maximum of the worst case performance of all (i — 1)-word

prefixes is labeled as maz(uniform word signatures).

5.2.5 Experimental procedure

The suffix array and the signature array are created for a text. They are divided

into blocks. where each block has a fixed number of indexed phrases.

The look-aside table contains three types of information: adjacent collision

boundary phrases. breaking point phrases. and gunaranteeing phrases.

Each i-word adjacent collision boundary is represented by the index position
(an integer) and the first 5 words of the lexicographically greater colliding phrase.

Each breaking point is represented by an index position and a 5-word phrase. Each
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t-word guaranteeing phrase is represented by an index position together with the
t-word phrase. For a breaking point or guaranteeing phrase. the smallest position

of a repeating :-word phrase is stored.
Phrases are in lexicographical order in each part of the look-aside table.

Experiments are conducted through blocks one by one. All distinct t-word
phrases in each block are searched using the suffix-signature method. Each block
r

has its local result for i-word phrases. for + = 1.2..... 5. A text has a global

experimental result. obtained by aggregating the local results.

For the query distribution of querying each distinct i-word phrase exactly once.
we calculate the percentage of the distinct i-word phrases that need z disk accesses
as a fraction f. of the total number of all the distinct i-word phrases. Expected

search time then is 3 fl = o,

For the query distribution of querying each i-word phrase as many times as it
occurs. we calculate the percentage of i-word phrases with repetitions that need
x disk accesses as a fraction fI of the total number of occurrences of all z-word

phrases. and use Y f = .

For the pth distinct z-word phrase in a block. we keep its signature. d, (the
number of disk accesses used to search for it). and r, (the number of its repeti-
tions). For the DeFazio distribution. we sort (d,.7,) pairs in descending order of

rp. and divide the ordered pairs in three adjacent groups so that the first group

has 90% of total r,’s. and the 2nd and the 3rd 5% each. Then. we calculate f.'.

the percentage of i-word phrases that need x disk accesses. which is the average of

# of pairs in the 1st group such that dy=z # of pairs in the 2nd such that d,==
# of pairs in the Ist group # of pairs in the 2nd group

# of pairs in the 3rd such that dy=z e . m o,
Z of pairs in the 3rd group . Expected search time then is Y f)" * =.

and

We calculate the expected worst case performance of unsuccessful searches as
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described in the subsection “Unsuccessful searches™ of Section 5.2.4.

5.3 Experimental results

We briefly give experimental results in this section. A more detailed report of search

performance is found in Appendix B.

The colnmn labeled ~i-words™ in tables represents i-word phrases. Search per-
formance is given in rows for the suffix-signature method and contrasting PAT

search [GBYS92]. averaged over all blocks in the text.
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5.3.1 Bzible

Table 5.3 summarizes the expected numbers of disk accesses to the text to search for
an i-word phrase by using the proposed suffix-signature method and the pure PAT
search. The successful search performance is presented under the three different
query distributions. and the unsuccessful search performance is measured by nsing

the two unsuccessful models.

1-word | 2-words | 3-words | 4-words | 5-words

Suffix-Signature

uniform phrases 0.92 1.03 1.01 1.00 1.00
proportional

to occurrences 0.09 0.51 0.78 0.92 0.97

DeFazio 0.43 0.90 0.94 0.97 0.97

Suffix-Signature(unsuccessful)

uniform i-word signatures 1.23 0.77 0.05 0.02 0.00

uniform word signatures 1.23 0.37 0.03 0.04 0.03

max(uniform word signatures) 2.00 2.00 1.094 1.03 0.84

PaT

uniform phrases 16.56 15.21 14.75 14.55 14.48
proportional

to occurrences 17.19 18.61 16.11 15.44 14.70

DeFazio 14.15 14.88 14.02 14.26 14.04

Table 5.3: Expected numbers of disk accesses to a text (Bible)

The average search time for a phrase is about 1 disk access to the text using the

suffix-signature method. and about 14 or 16 disk accesses to the text using binary
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search when the size of a block is 10K as used in the experiment.

Table 5.4 sumnarizes the space usage. The number of bits in a phrase signature
is 28.31 on average. The simple compression method described in Section 5.2.2 re-
duces this to 19.15. There are 1.45. 0.55. 0.02 and 0.03 bits per phrase on average to
store adjacent collisions. breaking phrases. guaranteeing phrases and block bonnd-
aries. respectively. Therefore. the total is abont 30.36 bits which is compressed to

21.20 bits per indexed phrase.

# of bits

phrase signature 28.31

phrase signature(compressed) 19.15
adjacent collisions 1.45

break points 0.55

guaranteeing phrases 0.02

block boundaries 0.03

total 30.36

total(compressed) 21.20

Table 5.4: Space (Bible)
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5.3.2 News

Table 5.5 suminarizes the expected nubers of disk accesses to the text to search for
an i-word phrase by using the proposed suffix-signature method and the pure PAT
search. As before. the successful search performance is presented under the same
three query distributions. and the unsuccessful search performance is measured by

using the two unsuccessful models.

1-word | 2-words | 3-words | 4-words | 5-words

Suffix-Signature

uniform phrases 0.98 1.04 1.00 0.99 0.99
proportional

to occurrences 0.08 0.54 0.82 0.92 0.97

DeFazio 0.36 0.90 0.96 0.96 0.97

Suffix-Signature(unsuccessful)

uniform z-word signatures 1.00 0.78 0.08 0.01 0.01

uniform word signatures 1.00 0.50 0.06 0.03 0.03

max(uniform word signatures) 2.00 1.86 1.51 1.84 1.81
Pat

uniform phrases 15.72 15.03 14.58 14.36 14.32

proportional
to occurrences 13.94 17.73 16.34 15.12 14.76
DeFazio 11.46 14.17 14.38 14.18 14.23

Table 5.5: Expected numbers of disk accesses to a text { News)

Again. the average search time for a phrase is about 1 disk access to the text

using the suffix-signature method. and about 14 or 15 disk accesses to the text
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using binary search.

Table 5.6 snmmarizes the space usage as before. The nnmber of bits in a phrasc
signature 1s 28.95 on average. The simple compression method described in Sec-
tion 5.2.2 reduces this to 20.81. There are 1.41. 0.54. 0.03 and 0.03 bits per phrase
on average to store adjacent collisions. breaking phrases. guaranteeing phrases and

block boundaries. respectively. Therefore. the total is about 30.96 bits which is

compressed to 22.82 bits per indexed phrase.

# of bits

phrase signature 28.95

phrase signature(cowmpressed) 20.81
adjacent collisions 1.41

break points 0.54

guaranteeing phrases 0.03

block boundaries 0.03

total 30.96

total(compressed) 22.82

Table 5.6: Space (News)

1<

=1
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5.3.3 OED

Table 5.7 sminmarizes the expected numbers of disk accesses to the text to search for
an i-word phrase by using the proposed suffix-signature method and the pure PAT
search. As before. the successful search performance is presented under the same
three query distributions. and the unsuccessful search performance is measured by

using the two nnsuccessful models.

1-word | 2-words | 3-words | 4-words | 5-words

Suffix-Signature

uniform phrases 1.06 1.03 1.01 1.00 1.00
proportional

to occurrences 0.08 0.35 0.61 0.80 0.94

DeFazio 0.29 0.65 0.82 0.91 0.97

Suffix-Signature(unsuccessful)

uniform z-word signatures 0.63 0.53 0.12 0.04 0.03

uniform word signatures 0.63 0.43 0.11 0.06 0.06

max(uniform word signatures) 2.00 2.00 1.85 1.93 1.97
Pat

uniform phrases 15.18 14.87 14.65 14.55 14.50

proportional
to occurrences 8.28 14.60 16.44 16.67 16.62
DeFazio 6.39 11.50 13.73 14.46 14.75

Table 5.7: Expected numbers of disk accesses to a text (OED)

As for the previous experiments. the average search tie for a phrase is abont

1 disk access to the text using the suffix-signature method. and about 14 to 15 disk
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accesses to the text nsing binary search.

Table 5.8 summarizes the space usage. The number of bits in a phrase signature
15 25.75 on average. The simple compression method described in Section 5.2.2 re-
dnces this to 14.90. There are 0.87. 0.49. 0.02 and 0.03 bits per phrase on average to
store adjacent collisions. breaking phrases. gnaranteeing phrases and block bound-

aries. respectively. Therefore. the total is about 27.16 bits which is compressed to

16.31 bits per indexed phrase.

# of bits

phrase signature 25.75

phrase signature(compressed) 14.90
adjacent collisions 0.87

break points 0.49

guaranteeing phrases 0.02

block boundaries 0.03

total 27.16

total(compressed) 16.31

Table 5.8: Space (OFED)
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5.3.4 WWWI

Table 5.9 summarizes the expected numbers of disk accesses to the text to search for
an i-word phrase by using the proposed suffix-signature method and the pure PAT
search. As before. the successful search performance is presented under the same
three query distributions. and the nnsuccessful search performance is measured by

using the two unsuccessful models.

1-word | 2-words | 3-words | 4-words | 5-words

Suffix-Signature

uniform phrases 1.04 1.02 1.00 0.99 0.99
proportional

to occurrences 0.33 0.78 0.91 0.96 0.98

DeFazio 0.81 1.03 1.00 0.99 0.99

Suffix-Signature(unsuccessful)

uniform i-word signatures 1.52 0.43 0.01 0.00 0.00

uniform word signatures 1.52 0.23 0.01 0.03 0.04

max{uniform word signatures) 2.00 1.70 1.34 1.38 1.78

PaT

uniform phrases 15.59 14.83 14.60 14.51 14.46
proportional

to occurrences 18.28 17.94 16.37 15.84 15.57

DeFazio 14.20 14.71 14.46 14.41 14.39

Table 5.9: Expected numbers of disk accesses to a text (WWW1)

Again. the average search time for a phrase is about 1 disk access to the text

using the suffix-signature method. and about 14 or 15 disk accesses to the text
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using binary search.

able 5.10 summarizes the space usage as before. The number of bits in a
phrase signature is 29.94 on average. The simple compression method described
in Section 5.2.2 reduces this to 20.92. There are 1.55. 0.52. 0.01 and 0.03 hits
per phrase on average to store adjacent collisions. breaking phrases. gnaranteeing
phrases and block boundaries. respectively. Therefore. the total is abont 32.05 bits

which is compressed to 23.03 bits per indexed phrase.

# of bits

phrase signature 29.94

phrase signature(compressed) 20.92
adjacent collisions 1.55

break points 0.52

guaranteeing phrases 0.01

block boundaries 0.03

total 32.09

total(compressed) 23.03

Table 5.10: Space ( WWW1)
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53.5 WWW2

Table 5.11 snmmmarizes the expected numbers of disk accesses to the text to search
for an i-word phrase by using the proposed suffix-signature method and the pnre
PAT search. As before. the successful search performance is presented under the

same three query distributions. and the unsuccessful search performance is mea-

EXPERIMENTAL VALIDATION

sured by using the two nnsuccessful models.

l-word | 2-words | 3-words | 4-words | 5-words
Suffix-Signature
uniform phrases 1.05 1.03 1.00 0.99 0.99
proportional
to occurrences 0.22 0.74 0.90 0.94 0.96
DeFazio 0.67 1.00 0.99 0.98 0.98
Suffix-Signature(unsuccessful)
uniform i-word signatures 1.31 0.48 0.02 0.00 0.00
uniform word signatures 1.31 0.33 0.02 0.03 0.05
max(uniform word signatures) 2.00 1.87 1.52 2.00 1.94
Pat
uniform phrases 15.49 14.89 14.63 14.47 14.20
proportional
to occurrences 16.83 17.76 16.05 15.60 15.32
DeFazio 13.01 14.56 14.32 14.36 14.41

Table 5.11: Expected numbers of disk accesses to a text ( WWWZ2)

Again. the average search time for a phrase is about 1 disk access to the text

using the suffix-signature method. and about 14 or 15 disk accesses to the text
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using binary search.

Table 5.12 summarizes the space usage as before.
phrase signature is 29.62 on average. The simple compression method described
in Section 5.2.2 reduces this to 20.72. There are 1.30. 0.50. 0.01 and 0.03 bits
per phrase on average to store adjacent collisions. breaking phrases. guaranteein

plirases and block boundaries. respectively. Therefore. the total is about 31.46 bits

which is compressed to 22.56 bits per indexed phrase.

# of bits

phrase signature 29.62

phrase signature(compressed) 20.72
adjacent collisions 1.30

break points 0.50

guaranteeing phrases 0.01

block boundaries 0.03

total 31.46

total(compressed) 22.56

Table 5.12: Space { WWW2)

The number of bits in a
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5.3.6 WWW3

Table 5.13 smmmarizes the expected numbers of disk accesses to the text to search
for an ¢-word phrase by using the proposed suffix-signature method and the pure
PAT search. As before. the successful search performance is presented under the
same three query distributions. and the unsuccessful search performance is mea-

sured by using the two unsuccessful models.

1-word | 2-words | 3-words | 4-words | 5-words

Suffix-Signature

uniform phrases 1.03 1.04 1.01 1.00 0.99
proportional

to occurrences 0.08 0.58 0.87 0.96 0.99

DeFazio 0.40 0.97 1.00 0.99 0.99

Suffix-Signature(unsuccessful)

uniform i-word signatures 1.02 0.76 0.06 0.00 0.00

uniform word signatures 1.02 0.57 0.04 0.02 0.04

max(uniform word signatures) 2.00 1.82 1.80 1.61 1.81
Pat

uniform phrases 15.57 15.04 14.73 14.59 14.52

proportional
to occurrences 13.38 18.89 16.77 15.80 15.48
DeFazio 10.64 14.92 14.47 14.40 14.40

Table 5.13: Expected numbers of disk accesses to a text (WWW3)

Again. the average search time for a phrase is about 1 disk access to the text

using the suffix-signature method. and about 14 or 15 disk accesses to the text
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using binary search.

Table 5.14 summarizes the space usage as before. The number of bits in a
phrase signature is 29.48 on average. The simple compression method described
in Section 5.2.2 reduces this to 19.44. There are 1.19. 0.49. 0.01 and 0.03 bits
per phrase on average to store adjacent collisions. breaking phrases. gnaranteeing
phrases and block boundaries. respectively. Therefore. the total is about 31.20 bits

which is compressed to 21.16 bits per indexed phrase.

# of bits

phrase signature 29.48

phrase signature(compressed) 19.44
adjacent collisions 1.19

break points 0.49

guaranteeing phrases 0.01

block boundaries 0.03

total 31.20

total(compressed) 21.16

Table 5.14: Space (WWW23)
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5.3.7 WWWQ on WWWI1, WWW2, and WWW3

In order to further test our approach in practice. we perform one more sequence
of experiments. this time nsing a real query distribution. WWWQ. as described in
Appendix A.4.4. contains a trace of 2.7 million phrase search queries posed against
the World Wide Web in the first two months of 1997. Query phrases in WWWQ are
searched against the WWW1. WWW2 and WWW?3 databases by using the suffix-
signature method. Tables 5.15. 5.16 and 5.17 sumnmarize the search performance
for both successful searches and unsuccessful searches for the WWWi1. WWWZ2 and
WWW3. respectively.

For successful searches. these tables list the number of successful i-word queries.
the percentage of successful i-word queries over all successful queries. the average
mimber of disk accesses to a text for a successful i-word query. and the average
number of disk accesses to a text for a successful search over all lengths of successful

searches. Similarly. they list the information for unsuccessful queries.

In the experiments. the average number of disk accesses to a text for a suc-
cessful search is less than 1. The average unmber of disk accesses to a text for an
unsuccessful search is less than 0.2. which is significantly less than we had expected

from the earlier experiments.
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5.4 Summary

This chapter presented the implementation of our prototype system. experiments

and results of the proposed suffix-signature method on real world data.

The required number of disk accesses to a text to search for an :-word phrase
using only a suffix array is about 14 or 15. The suffix-signature method reduces this
to about 1 for a variety of texts and query distributions. Unsuccessful searches are
particularly fast in experiments using real query patterns obtained from the World
Wide Web. In addition to accesses to a text. 1 disk access is needed to a suffix
array block in the pure suffix array method. and 1 or 2 disk accesses are needed to

a suffix array block and a signature block in the suffix-signature method.

Table 5.18 summarizes space used by a signature array and auxiliary tables
in terms of bits per index point for the Bible, News. OED. WWW1. WWWZ2. and
WWWS3. Table 5.19 summarizes the total space usage. where percentages are based
on sizes of original texts. Interestingly. for web data. the total space for the index

is merely 15% more than the space for the text itself.
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successful searches unsuccessful searches
length # % disk accesses # % disk accesses
1 1095368 | 95.4222 0.860 761125 | 48.3449 0.325
2 47086 | 4.1019 0.911 503860 | 32.0040 0.038
3 4735 0.4125 0.982 192386 | 12.2199 0.009
4 607 0.0529 0.932 73967 | 4.6982 0.003
5 70 0.0061 0.986 25229 1.6025 0.001
6 34 0.0030 1.618 9843 0.6252 0.002
7 14 0.0012 2.500 4072 0.2586 0.004
8 0 0.0000 0.000 1833 0.1164 0.005
9 2 0.0002 2.000 861 0.0547 0.002
10 0 0.0000 0.000 429 0.0272 0.002
11 1 0.0001 2.000 246 0.0156 0.000
12 0 0.0000 0.000 154 0.0098 0.000
13 0 0.0000 0.000 85 0.0054 0.000
14 0 0.0000 0.000 53 0.0034 0.000
15 0 0.0000 0.000 54 0.0034 0.000
>15 0 0.0000 0.000 169 0.0107 0.018
total expected disk accesses total expected disk accesses
1147917 0.863 1574366 0.171

Table 5.15: WWWQ searches on (WWW1)
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successful searches unsuccessful searches
length # % disk accesses # % disk accesses
1 1504638 | 89.7994 0.633 351855 | 33.6147 0.331
2 150217 | 8.9652 0.872 400729 | 38.2839 0.090
3 17416 1.0394 0.901 179705 | 17.1682 0.023
4 2452 0.1463 0.944 72122 6.8902 0.009
5 333 0.0199 1.000 24966 2.3851 0.004
6 399 0.0238 2.115 9478 0.9055 0.007
7 74 0.0044 1.797 4012 0.3833 0.013
8 19 0.0011 2.053 1814 0.1733 0.019
9 2 0.0001 2.500 861 0.0823 0.015
10 3 0.0002 2.333 426 0.0407 0.028
11 1 0.0001 4.000 246 0.0235 (0.028
12 0 0.0000 0.000 154 0.0147 0.019
13 0 0.0000 0.000 85 0.0081 0.012
14 0 0.0000 0.000 53 0.0051 0.000
15 0 0.0000 0.000 54 0.0052 0.000
>15 0 0.0000 0.000 169 0.0161 0.012
total expected disk accesses total expected disk accesses
1675554 0.658 1046729 0.151

Table 5.16: WWWQ searches on (WWW2)
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successful searches unsuccessful searches
length # % disk accesses # % disk accesses
1 1629345 | 84.2269 | 0.732 227148 | 28.8328 0.425
2 255276 | 13.1962 0.817 295670 | 37.5305 0.142
3 39996 2.0675 0.844 157125 | 19.9445 0.036
4 7386 0.3818 0.873 67188 | 8.5284 0.016
5 1399 0.0723 0.969 23900 | 3.0337 0.008
6 680 0.0352 2.222 9197 1.1674 0.015
7 250 0.0129 1.668 3836 | 0.4869 0.024
8 101 0.0052 1.871 1732 0.2198 0.047
9 19 0.0010 1.842 844 0.1071 0.056
10 8 0.0004 2.000 421 0.0534 0.100
11 10 0.0005 3.900 237 0.0301 0.046
12 0 0.0000 0.000 154 0.0195 0.078
13 J 0.0001 3.000 84 0.0107 0.071
14 0 0.0000 ¢.000 53 0.0067 0.019
15 0 0.0000 0.000 54 0.0069 0.000
>15 0 0.0000 0.000 169 0.0215 0.053
total expected disk accesses total | expected disk accesses
1934471 0.747 787812 0.185

Table 5.17: WWWQ searches on ( WWW3)
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uncompressed | compressed
Bible 30.36 21.20
News 30.96 22.82
OED 27.16 16.31
WWwWw1I 32.05 23.03
WWwe 31.46 22.56
Wwws 31.20 21.16

# bytes Suffix array | Signature array | compressed Sig

Bible 5.6M 4.5M (81%) 4.3M (77%) 3.0M (54%)
News | 84.TM | 61.3M (71%) 59.3M (70%) 43.7M (52%)
OED | 545.6M | 439.3M (81%) | 372.9M (68%) | 224.0M (41%)
WWWwi1 5.1M 3.3M (66%) 3.3M (66%) 2.4M (47%)
Wwwez! 50.1M | 31.3M (62%) 30.7M (61%) 22.0M (44%)
WWWs | 201.6M | 137.4M (69%) | 134.0M (67%) 90.8M (45%)

Table 5.19: Total space (bits per index point)
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Chapter 6

Implementation Issues

In this chapter. we investigate some implementation issues. We discuss the creation
of indexes. We study the relationship among the number of index points. the
mermory size required by the method and the block size. We also discuss a two-

level block list.

6.1 Creating a signature array

In the proposed suffix-signature method. both a suffix array and a signature array
of a text are needed. In this section we examine briefly how to generate the data
structures. The signature array and its look-aside table can be created by using the
suffix array of a text. or they can be created at the same time as the suffix array

of a text is created.

In using a pre-existing suffix array to create a signature array. we read in each
block of a suffix array sequentially. All the indexed phrases in a block addressed

by the pointers in its suffix array block are read into memory. There are n random

142
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disk accesses to read phrases if there are n pointers in the suffix array in total. The
number of random disk accesses can be reduced as follows [GBYS92|: a certain
number of blocks of suffix array pointers are read. and sorted by location in the
text. then a large number of phrases are read from the text in a sequential pass.
and then written to temporary disk space. Then each block of phrases from the
temporary phrase file is read to create signatures. About 97% of comparisons are
within 48 characters in the OED [GBYS92]. If 48 characters are read into memory
for each indexed phrase. it is possible to read 600.000 phrases into a 32Mb mermory.
For a 600Mb text. this requires that we expect to read 1 phrase per kilobyte. so we
can use sequential I/O. If the disk transfer rate is 5Mb per second. each reading of
the file needs about 150 seconds. For 120.000. 000 index points. it takes 200 passes.

or approximately 8.3 hours.

Alternatively consider how to create a suffix array and a signature array at the
same time. If a text is too huge for a suffix array to be created in memory. its
suffix array could be created by merging several smaller suffix arrays. as studied
and described in [GBYS92]. The algorithin suggested there uses a heap to orga-
nize pointers for each suffix array to be merged. reads phrases associated with each
pointer and compares them. As indicated above. the number of random disk ac-
cesses can be reduced by writing a sufficiently large number of phrases to temporary
disk space. These phrases are then merged by making a sequential pass over all the
temporary phrase files. Thus it requires about 200 passes of reading a file of 600MDb.
which takes about 8.3 hours. When these phrases are compared and merged. we
essentially have all the phrases in memory block by block sequentially. So. we can

create signatures for a block after the block is formed from the merge.

Bits in a phrase signature are allocated among words based on the phrase dis-

tribution of the block. Word signatures are created by some hashing functions.



CHAPTER 6. IMPLEMENTATION ISSUES 144

and phrase signatures are created by using the concatenation scheme. While the
signatures are created. the adjacent collision boundary plrases and the breaking
point phrases are recorded into the look-aside table. The number of disk accesses
needed to search for a particular phrase will not be known until the signature array
block is completely created. To find the gnaranteeing phrases. each indexed i-word

phrase of the block is checked after the signature array block is created.

Therefore. the cost to create a suitable signature array is comparable to the cost

to create the corresponding suffix array.

The size of a phrase signature should be the same as the size of a stored integer
value. for example 32 bits. The number of words in a phrase signature is picked
based on search needs. Usually. 5 or 6 is enough. Block size could be 1k to 10k
index points. Smaller block sizes are better than bigger ones in terms of search
performance and space. but a larger block list must be kept in memory during
searching. For gnaranteeing phrases. choose 3 = 2 to guarantee at most 2 disk
accesses to a text for searching for a phrase. These parameters could be adjusted
after creating test signatures for some random blocks. Strategy Balance described
in Section 3.3.5 should be used to allocate bits among words for a block. Strate-
gles checkl or check? described in Sections 4.4.3 and 4.4.1 should be used to pick

breaking phrases.

6.2 Choosing block sizes

Memmory required for searching includes a block list. a block of suffiz array. a block
of signature array and its look-aside table. In memory. both suffiz array block and
stignature array block are integer arrays. A look-aside table contains adjacent col-

lision information. breaking phrases. and guaranteeing phrases. Adjacent collision
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information includes adjacent collision boundary phrases (strings). their relative po-
sitions in a block (integers). and word positions (integers) at which collisions occur.
Breaking phrases and guarantee phrases are strings. and their relative positions in
a block are integers. Searches on look-aside table phrases are binary searches on
strings. The block list contains all the block boundary phrases (strings) and starting
positions (integers) of all the blocks. Searches on the block list are binary searches

on strings.

Throughout this thesis it has been assumed that when the search engine opens
a text file. the block list is loaded into memory and stays there. During each
query. one block of the suffix array and the signature array and the corresponding

look-aside table are loaded into memory as a single unit.

If a block is very big. the buffers for the suffix array and the signature array
will occupy a lot space. Furthermore. data transfer time is longer for larger blocks.
But if a block is very small. there will be many blocks. and therefore the block list
will occupy a lot more space. In this section we will study how the memory size.

the total number of index points and the block size affect each other.
First. we define some notation.
T: the size of a text
N: the total number of index points in a text
M: the memory allowed for data
n: the number of index points 1n a block
b: the number of blocks in a text
[: the number of characters in an entry of the block hst

L,: the number of bytes for an entry of the suffix array
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l,: the number of bytes for an entry of the signature array
l,: the number of bytes for a pointer in an entry of the block list

So. we have N = bn. The maximum number of blocks is bpee = 287, since

there are 8 = [, bits of addressing available. and the minimum number of blocks is

N

mar

N = 5

Since we wish to calculate memory requirements to support signature arrays.
we must examine the data as it will reside in main memory. The search algorithins
invoke random probes into the block list and into each block of the signature array.
and therefore these are stored in an uncompressed form in memory. even if they
are compressed when stored on disk. Thus for example. we will assume 32 bits per

stored signature instead of 21 to 23 bits.

Clearly we have

bl +0,) +n(l, +1,) < M.

Since b = ¥ we have
Tt

Nty + nily+1,) < M.

T

So.
n*(l, + L) —nM + (I + [,)N < 0.

Tlerefore. the number of index points in a block has to satisfy

n < n < na.

M —y/M?~4(lp+1,)(1+1)N
2(p+,)

M++/M? =4l +L) 1+, N

and n, = T
20+,

where n, =

Since M? — 4(l, + {,)(! + l,) N is inside the square root. it has to be at least 0.

Thus the memory size for data has to be at least

Minin = 2\/(lp + L)(I + 1,)N.
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From the equation. we see that the minimum memory size increases as the number

of index points increases.

Assume that [, = 4 bytes. [, = 4.25 bytes which includes 32 bits of a phrase

signature and 2 bits for the look-aside table per index point on average. [ = 15

characters and [, = 2 bytes. Table 6.1 lists the minimumn memory sizes for OED.

News and Bible.

# bytes | # index points | M,,in(bytes)
OED 546M 110M 248.4K
News | 84.TM 15.3M 91.7K
Bible 5.6M 1.13M 25.2K

Table 6.1: Minitnum memory sizes for OED. News. and Bible
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Figure 6.1 shows how the minimnm memory size changes with the total number
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of index points. The z-axis represents the number of index points while the y-axis
stands for the minimum memory size. According to this figure. at least 237K and

411K bytes are required for 100M and 300M index points. respectively.
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Figure 6.2: Block size vs. nnmber of index points

We have shown that the size of a block has to be in a certain range. Figure 6.2
shows how the range of possible block sizes responds to the total number of index
points and the memory size. The top part shows the upper bounds of ranges and

the bottom part shows the lower bounds of ranges. The z-axis is the total number
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of index points. and the y-axis shows the number of index points in a block. Curves

for memory sizes of 249K (the minimum size for OED). 500K. 1M. 2M. 4M and 8M

bytes are shown in the figure.
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Figure 6.3: Block size vs. memory size

Figure 6.3 shows essentially the same data as Figure 6.2. but from a different

vantage point. Again the top part shows the upper bounds of ranges and the

bottom part shows the lower bounds of ranges. The z-axis represents the memory

size. and the y-axis represents the range of possible block sizes. Curves for the total
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numbers of index points of 1M. 10M. 50M. 100M. 200M and 300M are shown in

the figure.

The reason that the size of a block has to be in a certain range is that the suffix
array and the signature array will need a lot of memory space if each block is big.
and if each block 1s small. more space will be required for the block list. We observe
that given a mwemory size. the range of possible block sizes shrinks as the nmuber of
total index points increases. Also. given a total number of index points. the range

of possible block sizes gets bigger as the memory size increases.

6.3 Hierarchical block list

Since the minimum memory size required increases as the number of index points
lncreases. we may cowe to a point when the minimum memory requirement cannot
be satisfied. Since the data size in memory is affected by the size of a block and

the nnmber of blocks. a hierarchical structure of block lists may have to be used.

In Figure 6.4. the block list is a tree of height 2. Only the root stays in memory
all the time. A corresponding leaf block of the tree is loaded into memory for each
search query. This will reduce the data size in memory. but as a cousequence. the
number of disk accesses to search for a phrase will be increased by 1 due to visiting

a corresponding leaf of the block list.

We use the same notations defined in Section 6.2. and let ¢ be the number of
sub-blocks into which the block list is divided. Assume that a block of the suffix-
array and the corresponding block of signature array together use memory of a full

page size. that is. page size = n(l, + {,).

Since the same memory space can be used for a leaf block of the block list and
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text ¢

Suffix array
signature array

block list _ >N~_N____._.__

Figure 6.4: Hierarchical block Lst

corresponding blocks of the suffix array and the signature array at different times.

we have
N
—(l+4) <M ~c(l+ 1) (6.1)
cn
n(l, +14,) < M—-c(l+1) (6.2)

Let a leaf block of the block list be at most a full page size. we have
N
—(l+ ) < n(l, +1,). (6.3)
CcTL

Therefore. n. the number of index points in a block. has to satisfy Equations 6.2

and 6.3.

From Equation 6.3. we have

N ot Y
“Nell,+1,) 0
and from Equation 6.2. we have
M - L(I + lb)
n —_— = M.

- lp+l.#
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Thus. the unmber of index points in a block has to satisfy

ny < n < ns.

Thus, /N o M—clitls)

) refore. we >
Ay S LA Therefore. we have

N+ L), +1,)

c

Min(N.c) =c(l+l,,)+\/ (6.4)

Again assume that {, = 4 bytes. [, = 4.25 bytes which includes 32 bits of a
plirase signature and 2 bits for the look-aside table per index point on average.
! = 15 characters and [, = 2 bytes. Figure 6.5 shows how the minimum memory
size relates to the number of sub-blocks into which the block list is divided. and
the total number of index points. The y-axis represents the mwinimum memory size.
and the xz-axis represents the nmiuber of sub-blocks for the block list. Curves for

block sizes of 1IM. 10M. 50M. 100M. and 200M index points are shown in the figure.

We observe that the minimnin meory size depends not only on the total num-
ber of index points. but also on the number of sub-blocks of the block lList. When
the number of sub-blocks of the block list is in a certain range. the minimum mem-
ory size is at its valley. As the number of sub-blocks of the block list increases or
decreases away from its valley range. the minimum memory size increases. This
is because. for the two level block list. more memory space is required to load a
sub-block of the block list during each query if the number of sub-blocks of the
block list is too small. and if the number of sub-blocks of the block list is very big,.
more space is needed to keep the root of the block list in memory.

Figure 6.5 also indicates that for a given number of total index points N. the

merwory size gets its minimnm at a particular value of c¢. Let W = 0. we

have ¢ = (%)% Substituting it for ¢ in Equation 6.4. we have the minimum
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wemory required for a given N.

Monin(N) = (475 + 45)N 3 (I, + L) 3 (L+ )7 (6.5)
Figure 6.6 shows how the minimum memory size M irs(N) changes with the

total number of index points N. The s-axis represents the nutnber of index points

while the y-axis stands for the minimmnm mewory size. According to this figure. at

least 2.63K. 6.23K and 12.10K bytes are required for the Bible. News and OED.

respectively.

Figure 6.7 shows. for 110M total index points (OED). how the range of possible
block sizes relates to M (the memory size) and c (the number of sub-blocks that
a block list is divided into). The bottows part of the figure shows in detail the
lower-left corner of the top part. The z-axis is the memory size. and the y-axis is

the number of index points in a block. Figure 6.7 shows "n-M" curves for ¢ = 1.
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50. 100. 240. 1000. and 2000. In the bottom part. it also plots curve M, ;,(N.n)

N{i+ls}

for N = 110M. derived from M,,;.{N.c) by substituting ¢ by ¢ = FL

(frow

Equation 6.3).

We observe that for a given number of sub-blocks of a block list. the "n-M~
curve is a straight line starting at a poiut (z.y) on curve M,a(110 * 10°.n). It
means that for a given number of sub-blocks of a block list. the minimum memory
size is z. the minimum number of index points in a block is y. and the number
of index points in a block is restricted in a range. The minimum number of index
points in a block is restricted by the total number of index points. and the maximum
number is restricted by the memory size and the page size. The bigger the available

mermory. the larger the possible range of the block size.

When the number of sub-blocks is very small. the number of index points in
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# bytes | # index points | Muin(bytes)
OED | 546M 110M 12.10K
News | 84.7M 15.3M 6.23K
Bible |  5.6M 1.13M 2.63K

Table 6.2: Minimum wmemwmory sizes for OED. News. and Bible

a block cannot be very small. otherwise there would be too many blocks. which
would make big sub-blocks of the block list. The maximuin block size decreases as
the number of sub-blocks increases. This is because more space is required by the

root of the block lList.

The bottom part of Figure 6.7 highlights points corresponding to page sizes of
2k. 4k. and 8k bytes on curve M,nin(110 % 10°. ). The top part highlights the point
corresponding to page size lk. The numbers of index points in a block for page
sizes of 1k. 2k. 4k and 8k are at most 121. 242. 484 and 970. respectively. The
minimum mewory sizes required for page sizes of 1k. 2k. 4k and 8k bytes are about

263.8k. 67.7k. 20.4k and 12.1k bytes. respectively.

6.4 Summary

In this chapter we studied the relationship among the size of memory required. the
number of total index points. and the size of a block for both one-level and two-level
block lists. The reported results are used for picking parameters for the method.
The total number of index points determines the minimnm size of memory. For a
given size of memory. the block size must fall within a certain range. If sufficient

mewory is not available. a two-level block list must be used. which costs one more



CHAPTER 6. IMPLEMENTATION ISSUES

25000

20000

15000

10000

¥ ndex pomls 1 a block

5000

s 1 L

page = 14
I m

5000 T

100000 150000 200000
memary si1Ze (for ndex pointsat 10M)

250000

4500 -

4000 |-

3500 |

3000 |-

2500

20C0 |-

& ndax ponts n a block

1000 page = Bk

500 |-

>
2k

Figure 6.7:

disk access for all searches.

20000 30000 40000 50000 60000
memaory siZe (for index pointset 10M)

Block size vs. memory size (OED)

70000

156



Chapter 7

Conclusions

In this chapter. we summarize the results of the thesis. compare the suffix-signature

method with some other structures. and outline future work.

7.1 Summary

We have proposed the suffix-signature method for searching for all the occurrences
of a given phrase in large static texts. Using this method. phrase searches can
be done very efficiently. as shown theoretically and experimentally. Assume that
phrase signatures are based on the first & words of phrases. For a phrase of length
[ < k. the method requires two disk accesses on average (one to the index and
one to the text). The average number of disk accesses for unsuccessful searches
approaches 1 as the number of words in a phrase increases. For both successful and
unsuccessful searches. the method requires at most two disk accesses to text in the

worst case to search for a phrase of length [ < &.

We studied word signature properties. In particular. we investigated the dis-
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tribnution of the number of adjacent collisions. the distribution of the number of
collisions to a given word. and the trade-off between signature size and the number
of disk accesses. We gave solutions to address adjacent collisions and to rednce

iupacts of separate collisions.

We investigated phrase signature schemes and proposed the concatenation scheme
for phrase signatures. We studied and compared strategies to allocate bits among
words in a phrase for the concatenation scheme. We also investigated some alterna-
tive plhrase signature schemes. We compared the concatenation schewe against the
superimposition scheme for phrase signatures. and concluded the superimposition
scheme has far more adjacent collisions than the concatenation scheme. We studied

the possibilities of using text compression techniques for phrase signatures.

We gave search algorithins for the method and proposed a way to guarantee two
disk accesses to the text in the worst case to search for a phrase of bounded length.
We also discussed balancing different parts of the look-aside table and the search
performance. We showed that under many distributions. most searches require only
two disk accesses in total. and no search for a phrase of bounded length requires

more than three disk accesses in total.

We zave a model to calculate the minimum memory space and to choose the
block size for a one-level block lList. We also studied a hierarchical block list. and
a model for calculating the minimum memory space. choosing the block size. and

dividing the block list.
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7.2 Comparison to other structures

The proposed suffix-signature method is very efficient for doing phrase searches. It
requires two disk accesses on average and three disk accesses at wmost to search for
a phrase of bounded length. In particular. it is very fast for unsuccessful searches
because it can quickly filter out unqualified phrases. In our experiments using real
queries from the World Wide Web. unsuccessful one-word searches need 0.3 — 0.4
disk accesses to text on average. and less than 0.2 disk accesses over all phrases of

all lengths.

It also handles range searches well. Since it is based on a suffix array. and
any operation on a Patricia tree can be simulated on a suffix array at the cost of
a factor of Oflog,n) [GBYS92]. the method has a potential use in other kinds of
searches. such as. prozimity search [MBY91|. most frequent search. longest repetition

search (with additional snpporting bits). and regular ezpression search [BY89].

For a word level implementation of phrases up to five words. the total size of the
suffix array and the signature array is about 110% to 130% of the original text (see
Table 5.19). which includes 60 — 80% of the original text for the suffix array and

40 — 55% for the signature array and look-aside table. depending on the text.

Inverted lists

As we discussed in Section 1.1. an inverted list is very well suited for one-word
searches. and the storage overhead for a word-level implementation is 30% to 100%
of the original file size [GBYS92]. Searching for a phrase requires set operations
involving all postings for each word in the phrase. If words in a target phrase are

very cominon. intersecting several result sets of words would require many disk
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accesses. The number of disk accesses to search for a phrase is the total number of

blocks involved in each word of a phrase.

As compared with other structures. the suffix-signature method is slower than
an inverted hist for one-word searches {nnless a word list is used in place of the
block list - see below). but faster for phrase searches. It uses more space than an

iverted list.

Inverting five word phrases

Inverting all distinct five word phrases requires fewer disk accesses to search for a
phrase and more disk space than the suffix-signature method used on the first five

words of all suffixes.
Speed

Since the number of distinct five word phrases is comparable to the number of
words in the text. the inverted phrase list needs to be divided into blocks. Assume
that a block list fits in memory. then one disk access is required to get to the block
in which the target phrase falls. For a phrase of up to five words. no more disk
accesses are needed. therefore one disk access in total is required to search for a

phrase of length up to five words.
Space

Inverting all distinct five word phrases is at best a lossless compression of the
text. and the signature array on five words of all phrases is a lossy compression.
From an information theoretical point of view. the suffix-signature method should
in principle use less space than inverting all distinct phrases containing the same

number of words.
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The inverted list has two parts. a phrase list and postings. A suffix array gives
all the postings. The phrase list consists of all the distinct five word phrases.
Since the distinct five word phrases are sorted alphabetically. each phrase can be
represented by (¢;.£,. 5). where ¢, is the length of the common prefixes of this phrase
as compared to the alphabetically previous omne. ¢, is the length of the remaining
part of this plirase. and s is the remaining part. Remaining parts of all distinct five
word phrases conld be compressed by using a text compression scheme. Assuining
a compression of 30% for the remaining strings. they would require about 60% of
the space used by the original texts for our experimental data files: Bible. News.
OED and web page files. Since compressing short text strings may not have a
compression rate as good as 30%. the phrase list very likely uses much more than

60% of the space of original texts.

Therefore. inverting all distinct five word phrases requires fewer disk accesses
for searches. but more space. than using the suffix-signature method on the first

five words of all suffixes.

Conventional signature files

Conventional signature files are sumilar to the superimposition phrase signature
scheme. This suits partial matches. but does not perform as well as the suffix-
signature method for exact phrase searches. as shown in Section 3.4.2 due to the

nuiuber of collisions.

Tries

In addition to supporting string search. trie structures support other kinds of

searches. such as. prozimity search. most frequent search. longest repetition search
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(with additional supporting bits). and regular ezpression search [BY89].

A PaTrie [Sha95] is a pointer-less representation of a binary Patricia trie. Ex-
perimentally. it requires 5 to 7 disk accesses when using 1k byte pages for searching
a text with 100 million index points. The worst case might be 46 disk accesses. It
is unlikely to be well extended to larger block sizes. since it is processor intensive (it
scans every bit when traversing a block). The space is reported to be 0.65 to 0.78

words (¢.e. 20.80 to 24.96 bits) per index point.

A Compact Pat tree [Cla96] requires at most 5 disk accesses when using 1k byte
pages for searching the OED. and requires 3 disk accesses using 8k byte pages. Its
average number of disk accesses is close to its worst case. It handles dynamic texts.
Experimentally. the space of the static Compact Pat tree on the text of the complete
works of Sherlock Holmes (238.6Kb). the Bible (5.6Mb). and the OFED (546Mb) are
about 60%. 88%. and 99% of the original text. respectively. The space of the
dynamic version on a collection of 161 documents of size 21Kb to 1.4Mb is about

134% of the original text.

The suffix-signature method requires no more disk accesses than a trie struc-
ture. and given sufficient memory can be designed to use fewer disk accesses. For
example. a hierarchical suffix-signature structure requires 3 disk accesses on aver-
age and 4 in the worst case when using 1k byte pages for searching a text of 110M
index poiuts. given a 264Kb memory. It uses more space than a static Compact

Pat tree. but less space than dynamic trie structures.

Some prototype systems

MG (Managing Gigabytes) [WMB94] is a full-text retrieval system. It compresses

texts and images and indexes them using inverted lists. It supports boolean queries
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and ranked queries. A compressed text is about 25% of the original text. and an
index is about 10%. On a Sun SPARC 10 model 512. it takes about 4 hours and 39
minutes of cpn time to invert the 2Gb TREC collection. Using plain compressed
inverted lists. typical queries of five to ten terms are resolved in 3 to 4 seconds of
cpu time. and slightly more elapsed time. Skipping! allows them to be resolved 4

to 6 times faster.

Glimpse [MW93] provides indexing and guery schemes for personal file s.ystems.
It uses a two-level indexing and searching scheme. An index is an inverted list of
distinct words followed by a list of blocks. It searches the index and then searches
each block on the list. The index is about 2-4% of the original text. It allows
boolean queries. approximate matching.and searching for regular expressions. On
a DEC 5000/240 workstation. it took 4.9 minutes of cpu time (9 minutes of elapsed
time) to index a file system containing 69Mb of text. A typical search takes about

2-10 seconds cpu time.

Compared with these prototype systews. the proposed suffix-signature method

uses more space for faster phrase searches.

7.3 Future work

The suffix-signature method might be particularly useful in langnages. such as

Japanese or Chinese. where word boundaries are not well defined.

Japanese Industrial Standards have 6353 characters for general nse [YMO91]. It

has been showed that the length of words is 2.51 characters for Kang: and 4.39

LA sequence of pointers are interleaved with blocks of a compressed inverted list entry to

provide randorn access into the inverted list entry for faster searching.
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for Katakana on average. Since words are not separated by spaces in a sentence
in Japanese. inverted lists based on words are not casily created for Japanese.
Therefore many Japanese document retrieval systems use character-based index-
ing [YMO1]. Because merging postings lists of inverted lists based on single charac-
ters incurs significant cost. indexing strings of two. or sometimes more. characters

has been proposed for Japanese.

Yasushi and Masajirou [YM91] also show that for Kangi. 73.57% of distinct
words are of length equal to or fewer than 5 characters. and 99.37% are of length
equal to or fewer than 10 characters: for Katekana. the corresponding numbers are
26.80% and 88.97%: and on average. these numbers are 68.71% and 98.29% for 5
and 10 characters respectively. The suffix-signature method therefore could be used
effectively to index Japanese documents. The approach to take is to index every
character and to store signatures for corresponding multi-character strings. there-
fore effectively storing word signatures as if they were phrase signatures. Because
of the prefix property. searching for individual words in Japanese text could then he
guaranteed to take no more than 3 disk accesses without requiring Japanese word

segmentation.

Whether for Japanese or for Western languages. one possible extension of this
work is to use ideas of the suffix-signature method in combination with other data
structures to achieve fast searches. For instance. k-word signatures of phrases could
be stored with postings in an inverted list. This additional data can be used to filter
out unqualified elements in a postings list in answering a phrase query. As a result.

set operations would be done on significantly smaller sets for phrase searches.

We studied a two-level block list for the situation when the number of blocks
is too big for the size of an available memory. With such an approach. one disk

access is needed to find the block in which a given phrase falls. Alternatively. a
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word list of distinct first words of block boundary phrases can be used. A word on
the word list that appears too many times in a text might need another word list
on the second words to reduce the size of its blocks. as illustrated in Fignre 7.1.
So. the block list is nneven in height. Some phrases need no disk accesses on the
block list. and some need one disk access. assuming that the first level of the block
list 1s in memory and the second level is on disk. If the block list is based on a
word list (like in the experiment for Section 3.4.2). then the first word need not be
represented in the signature. saving space. reducing disk accesses. or increasing the

effective number of words represented by a phrase signature.

block list - signature blocks

Figure 7.1: A block list of uneven height
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Experiment Corpus

In this appendix. we describe the texts used in our experiments. They are the Bible.

News. OED. and three different sizes of texts from the World Wide Web.

A.1 Buible

This is an SGML encoded version of the King James Version of the Bible - the
Old Testament. Apocrypha. and the New Testament. Following is a piece from the

Bible:

<bible><book><NAME>Gen</NAME><chap><C>Gen 1.</C><V><L> 1.</L> In the
beginning God created the heaven and the earth.</V>

<U><L>2.</L> And the earth was without form, and void; and darkness

was upon the face of the deep. And the Spirit of God moved upon the

face of the waters.</V>

<V><L>3.</L> And God said, Let there be light: and there was light.

</V>

166
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The text of the Bible 1s about 5.6Mb. There are roughly 1.13M indexed phrases
in its suffix array. The suffix array and the signature array are divided into 113

blocks. each block having 10K indexed phrases. Table A.1 characterizes the Buble

plirases.
1-word | 2-words | 3-words | 4-words | 5-words
m; || 14.666 | 180.965 | 498.667 | 740.433 | 886.727
Table A.1: Numbers of distinct i-word phrases (Bible)
A.2 News

This text 1s an SGML version of the Ottawa Citizen newspaper from July 1990 to

December 1990. Following is a piece from the News:

<I><K#>1178128</K#><CS>Ready</CS><PA>0ttawa Citizen</PA><PD>Tue 31
Jul 90</PD><D>900731</D><DAY>Tue</DAY><ED>Final</ED><SEC>BUSINESS
</SEC><PG>D5</PG><HL>Consumer spending in U.S. up 1.0 per cent in
June</HL><SRC>AP</SRC><DL>WASHINGTON</DL><ST>NEWS</ST><L>354</L><CN>
LK</CN><D0OB>900731</DOB><UP>900731</UP><AKN>1178128</AKN><T> <P>---
Consumer spending in U.S. up 1.0 per cent in June --= </P><P>
WASHINGTON (AP) -- Consumer spending in the United States jumped

1.0 per cent in June, the largest gain in five months, while

personal in comes rose 0.4 per cent, the government said Monday.</P>

The text of the News is about 84.7Mb. There are roughly 15.3M indexed phrases

in its suffix array. The suffix array and the signature array are divided into 1534
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blocks. each block having 10K indexed phrases. Table A.2 characterizes the News

phrases.

l-word | 2-words | 3-words | 4-words | S-words

m; || 246K | 3.074K | 7.938K | 11.227K | 12.868K

Table A.2: Numbers of distinct :-word phrases (News)

A.3 O0OED

This is a tagged version of the Ozford English Dictionary. second edition. Following

is a piece from the OED:

<e><hg><hw>A</hw> <pr><ph>eI</ph></pr></hg>, <s0>the first letter of
the Roman Alphabet, and of its various subsequent modifications

(as were its prototypes Alpha of the Greek, and Aleph of the
Ph&oe.nician and old Hebrew); representing originally in English,

as in Latin, the &oq.low-back-wide&cq. vowel, formed with the widest
opening of jaws, pharynx, and lips.&es.The plural has been written
<cfY>aes</cf>, A’s, <cf>As</cf>. &es.<il>from A to Z</il>: see <xr>
<x>Z</x> <xs>3</xs>. </xr><qp><q><qd>&c. 1340</qd><a>Hampole</a>
<w>Pr. Consc.</w> <1c>481</1lc> <qt>And by &th.at cry men knaw
Zth.an Whether it be man or weman, For when it es born it cryes
swa.&es.If it be man it says a! a'!&%es.That &th.e first letter is of

&th.e nam 0f our forme-fader Adam. </qt></q> <q><qd>&c.1386</qd>
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The text of the OFED is about 545.6Mb. There are roughly 109.8M indexcd
phrases in its suffix array. The suffix array and the signature array are divided into
about 11K blocks. each block having 10K indexed phrases. Table A.3 characterizes

the OED phrases.

l1-word | 2-words | 3-words | 4-words | 5-words

m; || 2.6T0K | 15.834K | 36.512K | 53.660K | 65.062K

Table A.3: Numbers of distinct i-word phrases (OED)

A.4 Data from World Wide Web

These are HTML pages from the World Wide Web. Three texts of sizes 5.1Mb.
50.1Mb. and 201.6Mb were taken frow different portions of the pages. A search
query log from World Wide Web was collected from 1996 for about 2 mouths.

Following is a piece from the data:

<0TData>

<TITLE>RADIOACTIVA - LIAM NEESON</TITLE>

<TABLE><IMG><H3>Liam Neeson</H3><H4>(1953 - )</H4>Actor Fecha de
Nacimiento: 1953, Ballymena, Irlanda del Norte Educacion: Lyric
Players’ Theatre, Belfast; Abbey Theatre, Dublin, Irlanda</TABLE>
1981 EXCALIBUR actor 1984 THE BOUNTY actor 1985 THE INNOCENT actor
1985 LAMB actor 1986 DUET FOR ONE actor 1986 LA MISION/ THE MISSION
actor 1987 A PRAYER FOR THE DYING actor 1987 SUSPECT actor 1988 THE
DEAD POOL actor 1988 THE GOOD MOTHER actor 1988 HIGH SPIRITS actor
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1988 SATISFACTION/GIRLS OF SUMMER actor 1989 NEXT DE KIN actor 1990
DARKMAN actor 1991 CROSSING THE LINE/THE BIG MAN actor 1992 MAR IDOS
Y ESPOSAS/ HUSBANDS AND WIVES actor 1992 SALTO DE FE/ LEAP DE FAITH
actor 1992 REVOLVER actor 1992 UN DESTELLO EN LA OSCURIDAD/ SHINING
THROUGH actor 1992 BAJO SOSPECHA/ UNDER SUSPICION actor 1993
DECEPTION actor 1993 ETHAN FROME actor 1993 LA LISTA DE SCHINDLER/
SCHINDLER’S LIST actor<H3>0scar </H3>Nominado por Mejor Actor 1993 :
SCHINDLER’S LIST<>[RADIOACTIVA - Cine] [RADIOACTIVA - Menul

</0TData></0TDoc><0TDoc>

A41 WWWI

The text of WWW1is about 5.1Mb. There are roughly 834K indexed phrases in its
suffix array. The suffix array and the signature array are divided into 84 blocks. each

block having 10K indexed phrases. Table A.4 characterizes the WWW1I phrases.

1-word | 2-words | 3-words | 4-words | H-words

m; 60K 314K 508K 594K 637K

Table A.4: Numbers of distinct i-word phrases (WWWI)

A42 WWW2

The text of WWW2 is about 50.1Mb. There are ronghly 7.8M indexed phrases
in its suffix array. The suffix array and the signature array are divided into 782

blocks. each block having 10K indexed phrases. Table A.5 characterizes the WW W2

phrases.
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1-word

2-words

3-words

4-words

H5-words

171

m; | 405K | 2.646K | 4.657K | 5.460K | 5.802K

Table A.5: Numbers of distinct i-word phrases (WWWZ2)

A.4.3 WWW3

The text of WWW9is about 201.6Mb. There are roughly 34.4M indexed phrases
in its suffix array. The suffix array and the signature array are divided into 3436
blocks. each block having 10K indexed phrases. Table A.6 characterizes the WW W3

phrases.

l-word | 2-words | 3-words 5-words

6.923K | 16.546K | 22.329K | 24.742K

m; || 635K

Table A.6: Numbers of distinct i-word phrases ( WWW3)

Ad.4 WWWQ

Experiments were conducted on the WWWi1. WWWZ2, and WWW3. by using real
search queries in the search query log WWWQ from WWW. The query log began
on approximately Dec 27. 1996 and covered about 2 months. The queries in the log
include those posed to the Open Text Index as simple search queries and as power

search queries (see http://index.opentext.net).

One simple search query might consist of several word searches. or one phrase

search. For example. a compound word search “tourisin Malaysia™ searches for



APPENDIX A. EXPERIMENT CORPUS 172

web pages coutaining words “tourism”~ and “Malaysia®. A simple phrase search
~American Political Science Association™ is to search for web pages which have
the phrase “American Political Science Association”™. A user can request a phrase

search. even if only one word is specified.

A power search query is more complicated than a siruple search query. it might
consist of several word searches and phrase searches. For example. the power search
in Table A.7 is to search for web pages which have “Hampshire” somewhere other

than the titles of pages. have "Randall”. and have no "New Hampshire™.

Hampshire Anywhere
And Randall Anywhere
But not Hampshire Title

But not New Hampshire Anywhere

Table A.7: An example of power searches

The trace includes in total about 3.4 million simple search queries and power
search queries. The percentages of word search queries of simple search queries.
phrase search queries of simple searches. and power search queries are 54.0%. 15.5%.

and 30.5%. respectively.

In our experiments. a power search is converted to several sitnple phrases. For
example. the power search query in Table A.7 is converted to four simple searches.
“Hampshire”. “Randall”. “Hampshire”. and “New Hampshire”. The WWWQ in-
cludes phrase scarches of simple search queries. and word or phrase searches con-
verted from power search queries. As a result from this trace. the total numnber
of phrases in WWWQ is about 2.7 million. Table A.8 is the distribution of search

length of WWWQ. It lists the number of ¢-word queries. its percentage over all
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queries. and the accumnulative percentage of queries of lengths from 1 to .

In order to estinate the nunsuccessful search rate of WWW(Q queries on a real
search index. we randomly picked query phrases from WWWQ. and then searched
them on the full Open Tezt Indez as it existed in April 30. 1997. For 1000 randomwmly
selected phrases from the trace. the average unsuccessful search rate was 17.6%. We
also randomly picked. from WWWQ. query phrases that have 200 1-word phrases.
200 2-word phrases. 200 3-word phrases. 200 phrases of 4 or 5-words. and 200
phrases longer than 5 words. T e average unsuccessful rate for those 1000 phrases

was 50.9%.
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Appendix B

Detailed Experimental Results

This appendix gives detailed search performance of experiments described in Chap-
ter 5 on the Bible. News. OED. WWW1. WWW2. and WWW3. Experiments are
presented by percentages of searches of 0. 1. 2. and 3 disk accesses to a text. Three
query distributions. uniforrn phrases. proportional to occurrences. and DeFazio. as
described in Section 5.2.4. are used for successful searches. Two models Uniform
t—word signatures and uniform word signatures. as described in Section 5.2.4. for
unsuccessful searches are also used in our experiments. We also list the numbers of

adjacent collisions. breaking points. and guaranteeing phrases.
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B.1 Bible

Phrase signatures are structured from the first 5

Table B.1

words of phrases.
describes the signature array and the look-aside table. It gives the average number
of bits assigned for word signatures. the total number of adjacent collisions. the total
number of breaking points for i-word phrases. and the total number of guaranteeing

plirases of 2 disk accesses.

1-word | 2-words | 3-words | 4-words | 5-words total
bits in word signatures 2.34 6.30 7.40 6.40 5.87 | 28.3108
adjacent collisions 1036 1113 1387 2525 1958 8019
breaking points 286 1071 701 615 614 3287
guaranteeing phrases 0 36 27 16 18 97
Table B.1: Signatures and the look-aside table (Bible)

l-word | 2-words | 3-words | 4 words | 5-words

0 disk accesses || 20.190% | 4.337% | 2.094% | 1.534% | 1.314%

1 disk access 67.919% | 88.140% | 95.262% | 97.092% | 97.752%

2 disk accesses || 11.891% | 7.503% | 2.639% | 1.371% | 0.932%

3 disk accesses 0.000% | 0.020% | 0.005% | 0.002% | 0.002%

4 disk accesses and over 0.000% | 0.000% | 0.000% | 0.001% | 0.000%

0,1,2 disk accesses || 100.000% | 99.980% | 99.995% | 99.997% | 99.998%

Table B.2: Uniform phrases ( Bible)

Tables B.2. B.3. and B.4 describe search performances for indexed phrases under
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 91.729% | 52.234% | 24.083% | 10.262% | 4.111%

1 disk access 7.612% | 44.430% | 73.621% | 87.962% | 94.469%
2 disk accesses 0.659% | 3.331% | 2.293% | 1.774% 1.418%
3 disk accesses 0.000% | 0.005% | 0.003% | 0.002% | 0.002%

4 disk accesses and over 0.000% | 0.000% | 0.000% | 0.000% O.OOOVL

0,1,2 disk accesses || 100.000% | 99.995% | 99.997% | 99.998% [ 99.998%

Table B.3: Proportional to occurrences ( Bible)

three different query distributions. They list percentages of i-word phrases that are
found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and more
disk accesses. Table B.2 is the result of each indexed distinct i-word phrase being
queried exactly once. Table B.3 is for querying a phrase as any times as it
appears in the Bible. Table B.4 is obtained by using the DeFazio distribution to
query indexed plirases. The three results are relatively close. 88%. 93%. 97%. 98%
and 99% of queries of 1. 2. 3. 4 and 5-word phrases respectively could be done by

0 or 1 disk access.

Table B.5 is the worst case search performance of unsuccessful i-word searches
under the assumption that all the i-word phrase signatures are queried with the
same probability. as described under “Unsuccessful searches™ in Section 5.2.4. Ta-
ble B.6 is the expected worst case search performance of the unsuccessful ith word

searches. of all existing (7 — 1)-word prefixes.
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 62.080% | 16.880% | 8.809% | 4.660% | 3.947%

1 disk access || 33.126% | 75.983% | 88.560% | 93.581% | 94.969%

2 disk accesses || 4.793% | 7.122% | 2.627% | 1.758% | 1.081%

3 disk accesses 0.000% | 0.015% | 0.004% | 0.001% | 0.002%

4 disk accesses and over 0.001% | 0.000% | 0.000% | 0.000% { 0.001%

0,1,2 disk accesses || 99.999% | 99.985% | 99.996% | 99.999% | 99.997%
Table B.4: Under the DeFazio distribution (Bible)

1-word 2-words 3-words 4-words 5-words

0 disk accesses || 31.416% | 41.901% | 95.317% | 98.233% | 99.706%

1 disk access || 14.546% | 39.522% | 4.472% | 1.524% | 0.253%

2 disk accesses || 54.038% | 18.577% 0.211% 0.243% 0.041%

0,1,2 disk accesses || 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

Table B.5: Uniform i-word signatures { Bible)

l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses 31.416% | 73.396% | 97.202% | 96.408% | 97.505%

1 disk access 14.546% | 15.838% 2.698% 3.309% 2.411%

2 disk accesses | 54.038% | 10.766% 0.100% 0.283% 0.084%

0,1,2 disk accesses {| 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

Table B.6: Uniform word signatures ( Bible}

(V4]
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B.2 News

Table B.7

Phrase signatures are structured from the first 5 words of phrases.
describes the signature array and the look-aside table. It gives the average nmber
of bits assigned for word signatures. the total number of adjacent collisions. the total
unmber of breaking points for i-word phrases. and the total number of guaranteeing

phrases of 2 disk accesses.

1-word | 2-words | 3-words | 4-words | 5-words total
( bits in word signatures 2.13 6.53 7.76 6.86 5.66 28.95
adjacent collisions || 11,536 16,410 22,462 | 27,512 | 27,832 | 105,752
breaking points 3,998 17,721 11,640 7,599 5,937 | 46,895
guaranteeing phrases 9 426 352 306 817 1,910
Table B.7: Signatures and the look-aside table { News)

1-word | 2-words | 3-words { 4 words | 5-words

0 disk accesses || 13.290% | 3.363% | 2.238% | 2.322% | 2.067%

1 disk access || 75.589% | 89.428% | 95.150% | 96.519% | 97.257%

2 disk accesses || 11.118% | 7.195% | 2.608% | 1.157% | 0.670%

3 disk accesses || 0.000% | 0.012% | 0.003% | 0.001% | 0.001%

4 disk accesses and over || 0.003% | 0.002% | 0.001% | 0.001% | 0.005%

0,1,2 disk accesses {| 99.997% | 99.986% | 99.996% | 99.998% | 99.994%

Table B.8: Uniform phrases ( News)

Tables B.8. B.9. and B.10 describe search performances for indexed phrases
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 92.784% | 49.712% | 20.660% | 9.476% | 4.167%

1 disk access 6.649% | 46.948% | 76.898% | 89.127% | 94.919%

2 disk accesses || 0.567% | 3.335% | 2.439% | 1.395% | 0.908%

3 disk accesses || 0.000% | 0.005% | 0.003% | 0.001% | 0.001%

4 disk accesses and over || 0.000% | 0.000% | 0.000% | 0.001% | 0.005%

0,1,2 disk accesses || 100.00% | 99.995% | 99.997% | 99.998% | 99.994%

Table B.9: Proportional to occurrences ( News)

nnder three different query distributions. They list percentages of i-word phrases
that are found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and
more disk accesses. Table B.8 is the result of each indexed distinct i-word phrase
being queried exactly once. Table B.9 is for querying a phrase as many times as it
appears in the News. Table B.10 is obtained by using the DeFazio distribution to
query indexed phrases. The three results are quite close. 89%. 93%. 97%. 99% and
99% of queries of 1. 2. 3. 4 and 5-word plrases respectively could be done by 0 or

1 disk access.

Table B.11 is the worst case search performance of unsuccessful ¢-word searches
under the assumption that all the :-word phrase signatures are queried with the
same probability. as described under ~Unsuccessful searches™ in Section 5.2.4. Ta-
ble B.12 is the expected worst case search performance of the unsuccessful ith word

searches. of all existing (¢ — 1)-word prefixes.
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l1-word | 2-words | 3-words | 4-words | 5-words
0 disk accesses || 68.352% | 16.527% | 6.489% | 4.983% | 3.730%
1 disk access || 27.807% | 76.571% | 90.779% | 93.705% | 95.435%
2 disk accesses 3.841% | 6.893% ! 2.729% | 1.311% | 0.835%
3 disk accesses 0.000% 0.008% 0.003% 0.001% 0.000%
4 disk accesses and over | 0.000% | 0.001% { 0.000% | 0.000% | 0.000%
0,1,2 disk accesses || 100.00% | 99.991% { 99.997% | 99.999% 100.00%
Table B.10: Under the DeFazio distribution (News)
1-word 2-words | 3-words | 4-words | 5-words
0 disk accesses 44 .172% 42.272% | 92.538% | 99.043% | 99.580%
1 disk access 11.225% 37.457% 6.994% 0.901% 0.389%
2 disk accesses 44.603% | 20.271% | 0.468% | 0.055% 0.031‘7ﬂ
0,1,2 disk accesses || 100.000% 100.000% | 100.00% | 99.999% | 100.00%
Table B.11: Uniform i-word signatures { News)
1-word 2-words | 3-words 4-words | 5-words
0 disk accesses 44.172% 65.510% | 94.623% 97.591% | 96.660%
1 disk access 11.225% 18.862% 5.010% 2.308% 3.259%
2 disk accesses 44.603% 15.628% 0.367% 0.101% 0.081%
0,1,2 disk accesses || 100.000% | 100.000% | 100.00% 100.000% | 100.00%
Table B.12: Uniform word signatures ( News)
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B.3 OED

Phrase signatures are structured from the first 5 words of phrases. Table B.13
describes the signature array and the look-aside table. It gives the average number
of bits assigned for word signatures. the total number of adjacent collisions. the total
nnwber of breaking points for i-word phrases. and the total number of gnaranteeing

phrases of 2 disk accesses.

l-word | 2-words | 3-words | 4-words | 5-words total

bits in word signatures 1.79 4.89 6.59 6.55 5.93 25.75

adjacent collisions [ 50,957 65,246 86,235 | 118,046 | 140,219 | 460,703
breaking points || 46,733 86,503 | 63,847 | 54,955 48,754 | 300,792

guaranteeing phrases 13 778 958 1,386 6,483 9,618

Table B.13: Signatures and the look-aside table (OED)

l-word | 2-words | 3-words | 4 words | 5-words

0 disk accesses || 6.945% | 2.965% | 1.792% | 1.387% | 1.203%

1 disk access || 80.379% | 90.642% | 95.328% | 96.940% | 97.607%

2 disk accesses {| 12.675% | 6.388% | 2.877% | 1.671% | 1.180%

3 disk accesses 0.000% { 0.005% | 0.002% | 0.001% | 0.001%

4 disk accesses and over | 0.001% | 0.000% | 0.001% | 0.001% 0.009%4J

0,1,2 disk accesses || 99.999% | 99.995% | 99.997% | 99.998% | 99.990%

Table B.14: Uniformn phrases (OED)

Tables B.14. B.15. and B.16 describe search performances for indexed phrases
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 92.806% | 67.093% | 41.105% | 21.896% | 8.115%

1 disk access 6.554% | 31.023% | 57.117% | 76.503% | 90.164%

2 disk accesses 0.640% | 1.883% | 1.776% | 1.599% | 1.713%

3 disk accesses 0.000% | 0.001% | 0.002% | 0.002% | 0.003%

4 disk accesses and over 0.000% | 0.000% | 0.000% | 0.000% | 0.005%
r 0,1,2 disk accesses || 100.000% | 99.999% | 99.998% | 99.998% | 99.992%

Table B.15: Proportional to occurrences (OED)

under three different query distributions. They list percentages of i-word phrases
that are found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and
more disk accesses. Table B.14 is the result of each indexed distinct i-word phrase
being queried exactly once. Table B.15 is for querying a phrase as many times as
it appears in the OED. Table B.16 is obtained by using the DeFazio distribution
to query indexed phrases. The three results are quite close. 87%. 94%. 97%. 98%
and 98% of queries of 1. 2. 3. 4 and 5-word phrases respectively could be doune by

0 or 1 disk access.

Table B.17 is the worst case search performance of unsuccessful i-word searches
under the assumption that all the ¢-word phrase signatures are queried with the
same probability. as described under “Unsuccessful searches™ in Section 5.2.4. Ta-
ble B.18 is the expected worst case search performance of the unsuccessful ith word

searches. of all existing (¢ — 1)-word prefixes.
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1-word

2-words

3-words

4-words

5-words

0 disk accesses

74.476%

39.402%

21.314%

11.556%

5.498%

1 disk access

22.253%

55.971%

75.887%

86.255%

92.473%

2 disk accesses

3.271%

4.625%

2.796%

2.187%

2.025%

3 disk accesses

0.000%

0.002%

0.002%

0.002%

0.004%

4 disk accesses and over

0.000%

0.000%

0.001%

0.000%

0.000%

0,1,2 disk accesses

100.000%

99.998%

99.997%

99.998%

99.996%

Table B.16

: Under the DeFazio distribution (OFED)

1-word

2-words

3-words

4-words

5-words

0 disk accesses

65.029%

60.988%

88.532%

95.943%

97.543%

1 disk access

7.143%

25.274%

10.602%

3.746%

2.182%

2 disk accesses

27.828%

13.737%

0.866%

0.310%

0.275%

0,1,2 disk accesses

100.000%

99.999%

100.000%

99.999%

100.000 %

Table B.17: Uniform i-word signatures (OED)

1-word

2-words

3-words

4-words

5-words

0 disk accesses

65.029%

69.087%

89.521%

94.329%

94.540%

1 disk access

7.143%

18.587%

9.688%

5.302%

5.107%

2 disk accesses

27.828%

12.326%

0.791%

0.369%

0.353%

0,1,2 disk accesses

100.000%

100.000%

100.000%

100.000%

100.000%

Table B.18: Uniform word signatures ( OED)
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B4 WWWI

Plrase signatures are structured from the first 5 words of phrases. Table B.19
describes the signature array and the look-aside table. It gives the average nnmber
of bits assigned for word signatures. the total number of adjacent collisions. the total

number of breaking points for i-word phrases. and the total number of gnaranteeing

phrases of 2 disk accesses.

1-word | 2-words | 3-words | 4-words | 5-words | total

bits in word signatures 4.73 7.83 7.06 5.60 4,73 | 29.95
adjacent collisions 984 1072 1459 1628 1490 | 6633
breaking points 919 939 456 303 245 | 2862
guaranteeing phrases 1 23 15 6 5 50

Table B.19: Signatures and the look-aside table (WWW1I)

1-word | 2-words | 3-words | 4 words | 3-words

0 disk accesses 7.305% | 2.503% | 1.769% | 1.587% | 1.518%
1 disk access || 81.003% | 92.943% | 96.725% | 97.744% | 98.065%

2 disk accesses || 11.690% | 4.547% | 1.503% | 0.667% { 0.416%
3 disk accesses 0.000% | 0.007% | 0.003% | 0.001% { 0.001%
4 disk accesses and over 0.002% 0.000% 0.000% 0.001% 0.000%

0,1,2 disk accesses || 99.998% | 99.993% | 99.997% | 99.998% | 99.999%

Table B.20: Uniform phrases (WWW1)

Tables B.20. B.21. and B.22 describe search performances for indexed phrases
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 69.651% | 25.239% | 10.377% | 5.166% | 2.323%

1 disk access || 27.858% | 71.397% | 88.066% | 94.100% | 97.111%

2 disk accesses || 2.489% | 3.360% | 1.551% | 0.733% | 0.564%

3 disk accesses {| 0.001% | 0.004% | 0.005% | 0.001% | 0.000%

4 disk accesses and over | 0.001% | 0.000% ; 0.001% | 0.000% | 0.002% |

0,1,2 disk accesses || 99.998% | 99.996% | 99.994% | 99.999% | 99.998%

Table B.21: Proportional to occurrences ( WWW1I)

under three different query distributions. They list percentages of i-word phrases
that are found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and
more disk accesses. Table B.20 is the result of each indexed distinct i-word phrase
being queried exactly once. Table B.21 is for querying a phrase as many times as it
appears in the WWWI. Table B.22 is obtained by using the DeFazio distribution
to query indexed phrases. The three results are quite close. 88%. 95%. 98%. 99%
and 99% of queries of 1. 2. 3. 4 and 5-word phrases respectively could be done by

() or 1 disk access.

Table B.23 is the worst case search performance of unsuccessful i-word searches
under the assumption that all the ¢-word phrase signatures are queried with the
same probability. as described under “Unsuccessful searches™ in Section 5.2.4. Ta-
ble B.24 is the expected worst case search performance of the unsuccessful «th word

searches. of all existing (i — 1)-word prefixes.
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I-word | 2-words | 3-words | 4-words | 5-words |I

0 disk accesses || 27.703% | 2.432% | 1.481% | 1.493% | 1.587%

1 disk access || 63.266% | 92.414% | 97.012% | 97.830% | 98.032%

2 disk accesses || 9.030% | 5.148% | 1.505% | 0.676% | 0.380%

3 disk accesses || 0.000% | 0.006% | 0.002% { 0.001% | 0.001%

4 disk accesses and over || 0.001% | 0.000% | 0.000% | 0.000% | 0.000%
0,1,2 disk accesses || 99.999% | 99.994% | 99.998% | 99.999% 99.999%J

Table B.22: Under the DeFazio distribution (IWWW1I)

1-word 2-words 3-words 4-words 5-words

0 disk accesses || 15.495% | 64.429% | 98.629% | 99.968% | 99.999%

1 disk access || 17.281% | 27.832% | 1.325% | 0.032% | 0.001%

2 disk accesses 67.224% 7.739% 0.046% 0.000% 0.000%

0,1,2 disk accesses || 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

Table B.23: Uniform i-word signatures ( WWWI)

1-word 2-words 3-words | 4-words 5-words

0 disk accesses 15.495% | 83.261% | 98.652% | 97.288% 95.727%

1 disk access || 17.281% | 10.818% 1.324% 2.693% 4.257%

2 disk accesses | 67.224% 5.921% 0.024% 0.019% 0.016%

0,1,2 disk accesses || 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

Table B.24: Uniform word signatures (WWW1)

-1
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B.5 WWW2

Table B.25

Phrase signatures are structured from the first 5 words of phrases.
describes the signature array and the look-aside table. It gives the average number
of bits assigned for word signatures. the total number of adjacent collisions. the total
number of breaking points for <-word phrases. and the total number of guaranteeing

phrases of 2 disk accesses.

1-word | 2-words | 3-words | 4-words | 5-words | total
bits in word signatures 4.10 7.82 7.29 5.74 4.66 | 29.61
adjacent collisions 6814 8160 12242 13822 10656 | 51694
breaking points 6516 10150 4997 2552 1583 | 25798
guaranteeing phrases 1 134 95 68 93 391
Table B.25: Signatures and the look-aside table ( WWWZ2)

1-word | 2-words | 3-words | 4 words | 5-words

0 disk accesses 6.897% | 2.382% | 1.592% | 1.423% | 1.369%

1 disk access || 80.902% | 92.247% | 96.664% | 97.911% | 98.273%

2 disk accesses || 12.201% | 5.366% | 1.742% | 0.665% | 0.357%

3 disk accesses 0.000% | 0.005% { 0.002% { 0.001% | 0.001%

4 disk accesses and over 0.000% ;| 0.000% | 0.000% | 0.000% | 0.000%
0,1,2 disk accesses || 100.000% | 99.995% | 99.998% | 99.999% | 99.999%

Table B.26: Uniform phrases (WWW2)

Tables B.26. B.27. and B.28 describe search performances for indexed phrases
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 79.936% | 29.342% | 11.438% | 6.742% | 4.392%

1 disk access 18.294% | 66.892% | 86.855% | 92.544% | 95.190%

2 disk accesses 1.770% | 3.763% | 1.705% | 0.711% | 0.416%

3 disk accesses 0.000% | 0.003% | 0.002% ; 0.001% | 0.001%

4 disk accesses and over 0.000% | 0.000% | 0.000% | 0.002% | 0.001%

0,1,2 disk accesses || 100.000% | 99.997% | 99.998% | 99.997% 99.998%1

Table B.27: Proportional to occurrences ( WWW2)

under three different query distributions. They list percentages of :-word phrases
that are found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and
more disk accesses. Table B.26 is the result of each indexed distinct ¢-word plrase
being queried exactly once. Table B.27 is for querying a phrase as many times as it
appears in the WWW2. Table B.28 is obtained by using the DeFazio distribution
to qnery indexed phrases. The three results are quite close. 88%. 94%. 98%. 99%
and 99.6% of queries of 1. 2. 3. 4 and 5-word phrases respectively could be done by
0 or 1 disk access.

Table B.29 is the worst case search performance of unsuccessful i-word searches
under the assumption that all the +-word phrase signatures are queried with the
sawe probability. as described under “Unsuccessful searches™ in Section 5.2.4. Ta-
ble B.30 is the expected worst case search performance of the nnsuccessful ith word

searches. of all existing (7 — 1)-word prefixes.
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses | 40.168% | 5.482% | 3.037% | 2.518% | 1.960%

1 disk access 52.306% | 88.799% | 95.140% | 96.781% | 97.639%

2 disk accesses 7.526% | 5.714% | 1.821% | 0.700% | 0.399%
3 disk accesses 0.000% | 0.004% | 0.002% | 0.000% | 0.001%

4 disk accesses and over 0.000% | 0.001% | 0.000% | 0.001% | 0.001%
0,1,2 disk accesses {| 100.000% | 99.995% | 99.998% | 99.999% | 99.998%
Table B.28: Under the DeFazio distribution (WWW2)

l-word | 2-words 3-words 4-words | 5-words

0 disk accesses 26.518% | 61.923% | 97.852% | 99.659% | 99.785%

1 disk access || 16.163% | 28.274% 2.046% 0.308% 0.204%

2 disk accesses || 57.319% | 9.802% 0.102% 0.033% 0.011%
0,1,2 disk accesses || 100.000% | 99.999% | 100.000% | 100.000% | 100.000%

Table B.29: Uniform ¢-word signatures { WWW2)

l-word | 2-words 3-words 4-words | 5-words

0 disk accesses 26.518% | 75.714% | 98.303% | 97.514% | 95.465%

1 disk access 16.163% | 15.999% 1.624% 2.439% | 4.509%

2 disk accesses || 57.319% 8.287% 0.073% 0.047% | 0.025%
0,1,2 disk accesses | 100.000% | 100.000% | 100.000% | 100.000% | 99.999%

I

Table B.30: Uniform word signatures { WWWZ2)
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B.6 WWW3

Phrase signatures are structured from the first § words of phrases. Table B.31
describes the signature array and the look-aside table. It gives the average number
of bits assigned for word signatures. the total number of adjacent collisions. the total
number of breaking points for +-word phrases. and the total nnmber of guaranteeing

phrases of 2 disk accesses.

1-word | 2-words | 3-words | 4words | 5-words total

bits in word signatures 2.42 7.12 8.01 6.67 5.26 29.48

adjacent collisions 21201 29240 39248 53932 54899 | 198520

breaking points 12707 39306 23712 15038 9185 | 99948

guaranteeing phrases 34 410 471 327 281 1523

Table B.31: Signatures and the look-aside table ( WWW3)

1-word | 2-words | 3-words | 4 words | 5-words

0 disk accesses || 10.370% | 3.027% | 1.672% | 1.339% 1.234%

1 disk access || 76.283% | 90.018% | 95.885% | 97.637% | 98.271%

2 disk accesses || 13.342% | 6.949% | 2.440% | 1.023% | 0.494%

3 disk accesses 0.000% | 0.006% | 0.003% | 0.001% | 0.001%

4 disk accesses and over || 0.005% | 0.000% | 0.000% | 0.000% | 0.000%

0,1,2 disk accesses || 99.995% | 99.994% | 99.997% | 99.999% | 99.999%

Table B.32: Uniform phrases ( WWWS3)

Tables B.32. B.33. and B.34 describe search performances for indexed phrases
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l-word | 2-words | 3-words | 4-words | 5-words

0 disk accesses || 92.344% | 45.904% | 15.074% | 5.233% 1.992%

1 disk access 6.935% | 50.718% | 82.617% | 93.606% | 97.369%
2 disk accesses | 0.720% | 3.376% | 2.306% | 1.159% | 0.638%
3 disk accesses 0.000% | 0.002% | 0.003% | 0.002% | 0.001%

4 disk accesses and over 0.001% | 0.000% | 0.000% | 0.000% | 0.000%

0,1,2 disk accesses || 99.999% | 99.998% | 99.997% | 99.998% | 99.999%

Table B.33: Proportional to occurrences (WWW3)

under three different query distributions. They list percentages of i-word phrases
that are found by 0 disk accesses (by looking up the look-aside table). 1. 2. 3. 4 and
more disk accesses. Table B.32 is the result of each indexed distinct i-word phrase
being queried exactly once. Table B.33 is for querying a phrase as many times as it
appears iu the WWWS3. Table B.34 is obtained by using the DeFazio distribution
to query indexed phrases. The three results are quite close. 87%. 93%. 97%. 99%
and 99% of queries of 1. 2. 3. 4 and 5-word phrases respectively could be done by

0 or 1 disk access.

Table B.35 is the worst case search performance of unsuccessful ;-word searches
under the assumption that all the i-word phrase signatures are queried with the
same probability. as described under “Unsnccessful searches™ in Section 5.2.4. Ta-
ble B.36 is the expected worst case search performance of the unsuccessful tth word

searches. of all existing (¢ — 1)-word prefixes.
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l-word | 2-words | 3-words | 4-words 5-words

0 disk accesses || 65.194% | 10.505% | 2.541% | 1.872% 1.588%

1 disk access || 30.148% | 82.230% | 94.827% | 97.046% | 97.888%

2 disk accesses | 4.657% | 7.260% | 2.630% | 1.080% 0.524%

3 disk accesses 0.000% | 0.004% | 0.002% | 0.001% 0.000%

4 disk accesses and over | 0.001% | 0.001% | 0.000% | 0.001% 0.000%

0,1,2 disk accesses || 99.999% | 99.995% | 99.998% | 99.998% | 100.000%
Table B.34: Under the DeFazio distribution ( WIWW3)

l-word | 2-words 3-words | 4-words 5-words

0 disk accesses || 43.667% | 43.239% | 94.651% | 99.701% | 99.855%

1 disk access || 11.119% | 37.688% 5.066% 0.286% 0.133%

2 disk accesses || 45.214% | 19.073% 0.283% 0.013% 0.012%

0,1,2 disk accesses || 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

Table B.35: Uniform #-word signatures ( WWW3)

l-word | 2-words 3-words | 4-words 5-words

0 disk accesses || 43.667% | 59.619% | 96.591% | 98.221% | 96.553%

1 disk access || 11.119% | 24.137% | 3.220% | 1.749% | 3.418%

2 disk accesses || 45.214% | 16.244% 0.180% | 0.029% 0.029%

0,1,2 disk accesses || 100.000% | 100.000% | 100.000% | 99.999% | 100.000%

Table B.36: Uniform: word signatures ( WWW?3)
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