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Abstract

Patterns naturally arise in all types of data. The universal drive to uncover and
understand these patterns has generated a wide range of pattern discovery tools
and algorithms. The result is that patterns are sought after in many different forms,
including rules, network weights, topologies, hierarchical trees, hypergraphs, mem-
bership functions, probability density functions and functional relationships. This
diversity of pattern instantiations raises the question as to what is the fundamental
information in the data.

In this thesis, the event is promoted as the fundamental information bearing
entity in continuous data. Events, event associations and patterns are defined for
the continuous sample space. From the event perspective, pattern discovery is
viewed as the search for statistically significant events, where significance is judged
according to the objective of the discovery. Hence. event-based pattern discovery
is formulated as a mathematical optimization problem with statistical objective
functions. A novel sequential and recursive methodology is proposed as the solution
technique to the optimization task.

For two or three dimensional data, an approximation based on selective recursive
pa.rt'itioning is developed. The application of the discovered events to multivariate
density estimation, smoothing and classification demonstrate the versatility of the
event framework. An event-based measure of significant temporal change forms the
basis for a time-dependent discovery algorithm. A new event synthesis procedure
facilitates the analysis of high-dimensional data by selectively constructing high

dimensional events. Parallel event plots serve as an interpretative visualization

v



tool.

Experiments illustrate that on a classical front, event-based classification can
be comparable to existing methodologies. From a discovery standpoint, the event
approach offers unprecedented interpretability of complicated multivariate continu-
ous data. Local dependencies are easily revealed and locally significant features are
immediately identified. Temporal changes can be objectively assessed and elusive
high-dimensional outliers can be detected. Subdimensional clusters, while tradi-
tionally challenging to unravel, are handled confidently with event-based pattern

discovery.
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Chapter 1

Introduction

In this introductory chapter, the emphasis is on an intuitive overview of the thesis.

Terminology that is introduced here will be followed by more precise definitions in

later chapters.

1.1 What is pattern discovery?

A pattern is a collection of observations or measurements whose occurrence in an
. ensemble is statistically significant. The stipulation of statistical significance implies
that the observations are not just a chance occurrence, but rather indicative of some
underlying process or law. Each observed or measured entity constitutes a variable
in the pattern description.

Patterns can be described on 2 different levels. At the variable level, a pattern
is a mathematical relation among variables while at the event level, a pattern is

a subset of variable values. For now, we can think of an event as a subset of
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Figure 1.1: Variable and event level descriptions

observations or measurements. On the left-hand side of Figure 1.1, a data set is
described at the variable level by a functional relationship, y = f(z). On the
opposite side, the same data set is described by 3 subsets or events, F;, E, and F;.

Broadly speaking, pattern discovery is the search for significant patterns in data
and in particular, event-based pattern discovery is the search for significant subsets
of variable values. To appreciate the central role that pattern discovery plays in
the problem of intelligent data analysis, I will briefly outline each component in
Figure 1.2.

The collection stage involves the gathering of data and one typically encounters
the difficulties of excessive data, insufficient data or fractured data [44]. In light
of these problems with experimental measurements and observations, the second
stage of intelligent data analysis usually involves some preprocessing. A broad
range of techniques for preprocessing are available. including filtering, editing, di-

mensionality reduction and sampling. The common goal of these techniques is to
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Preprocessw
Problem solving
Decision making

Figure 1.2: The general data analysis problem adapted from Famili [44]

better prepare the data for analysis and interpretation. In the analysis stage, the
objective is “fo discover patterns that will be used to solve problems or make deci-
sions” [44]. I have thus further subdivided this stage into 2 groups of tasks, namely,
pattern discovery and the subsequent applications of the discovered information.
These applications include classification, prediction. planning, diagnosis, structural
modeling and tracking.

Patterns naturally occur in all types of real-life data, gathered from disciplines
as diverse as economics, finance, medicine, demography, electronics and astronomy.
Whenever patterns may exist, pattern discovery can assist in the interpretation
of the underlying structure of data. Considering its place in the intelligent data
analysis framework along with its broad spectrum of applicability, the importance
of pattern discovery is undisputed. Human visual and perceptual abilities continue
to play a major part in data analysis. as evidenced by graphical exploratory anal-
ysis and visualization. However, automatic (machine executed) pattern discovery
techniques are needed in many real-world situations where, due to the aforemen-
tioned problems with the collected data, the analysis becomes too laborious and
overwhelming for the human faculties. In recent literature, the term discovery is

used synonymously with the term "knowledge discovery™. Since there is still de-
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bate among experts as to what constitutes "knowledge” arising from data, I will
exclusively use the more classical terminology of ”pattern” and hence discovery will

mean pattern discovery.

1.2 Ongoing issues and challenges

Despite widespread research, a number of challenges in pattern discovery still per-

sist.

Fundamental information The first is a theoretical issue concerning the level
(variable or event) at which information is extracted and described. Many
methods used for pattern discovery, such as neural networks, cater only to
variable level descriptions and more fundamental information is difficult to
extract. This additional information often leads to a better overall interpre-
tation of the data. To date, there is little theory for discovering patterns at

the elemental level of events.

High-dimensionality The discovery of high-dimensional patterns with little prior
information is an ominous task. An immediate problem is the sparsity of data
in high dimensional space [104]. Small sample situations invalidate the wealth
of asymptotic results that have been developed for statistical data analysis.
Limited ability to explore surfaces of more than 5 dimensions [68] and the
curse of dimensionality [13], i.e. the exponential growth of computational
effort with increasing dimensionality, are some of the other dilemmas encoun-

tered.
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Dynamic discovery Oftentimes, patterns change dynamically over time and a
static description no longer suffices as the evolution of patterns becomes
the object of interest. Inability to objectively detect and describe tempo-
ral changes have hampered the development of stochastic pattern discovery.
Among the obstacles encountered are complicated update rules, unreasonably

lengthy retraining sessions and restrictive parametric assumptions.

1.3 An event level approach

In this thesis, the emphasis is on the pattern discovery stage of intelligent data
analysis. Preprocessing is not directly addressed although some of the developed
techniques do provide preprocessing functions. Unlike many existing methods, an
event rather than a variable level approach is adopted. The present research aims
to establish the theoretical groundwork for event-based pattern discovery. Once
the foundation is laid, specializations and extensions to discovery applications such
as classification and density estimation, are investigated from an event perspective.
Throughout the development, flexibility of discovery and transparency of the results
are key requirements. The objectives of this thesis are formally stated in Chapter

3.

1.4 Summary of contributions

To draw this chapter to a close, I briefly outline what I feel are the contributions

of this work towards the field of pattern discovery. A more detailed list appears at
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the end of this thesis.

A) Theoretical contributions. The main theoretical contribution is the de-
velopment of a framework of events for continuous pattern discovery.
This framework supports the existence of structure in less than the full
dimensionality and is general enough to assist in the interpretation of
other data analysis methods. Two new test statistics are derived for
a unique application of a 2-way contingency table. Discovery in con-
tinuous data is cast as an optimization problem, a general formulation

which holds for any discovery objective.

B) Methodological contributions. An enhanced recursive partitioning scheme
is developed with self-adaptive parameters, avoiding ad-hoc settings of
its predecessors. The novel ideas of recursive and sequential discov-
ery are proposed as practical solution techniques to the optimization
problem. High-dimensional analysis is addressed with a new bottom-up
approach of event synthesis from low-dimensional projections. Under
the common umbrella of events. a general kernel method is put forth
and an objective measure of temporal change is developed. A variation
of the parallel axes plot is conceived in order to enhance the visualiza-

tion of multidimensional organization.

The bulk of the above items revolve around the common framework of events.
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1.5 Chapter roadmap

Following this introductory chapter, there will be a survey of related methods which
have been employed as pattern discovery tools. This review will span from clas-
sical to modern methods, emphasizing their merits and shortcomings as pattern
discovery mechanisms. A formal statement of the thesis objectives and rationale
constitute Chapter 3. In Chapter 4, the theoretical foundations of the pattern
discovery framework are laid down. This chapter begins by refining some of the
terminology introduced here, and moves on to formulate the discovery problem
conceptually and mathematically. Chapter 5 extends and specializes the theory
discussed in Chapter 4 to various scenarios. Throughout the presentation, a uni-
fied framework is maintained. The chapter concludes with an explanation of how
discovered information can be easily interpreted. Some demonstrative and compar-
ative experiments are reported in Chapter 6. Basic pattern discovery properties
are highlighted along with a number of case studies. The final chapter concludes

the thesis with a summary of contributions and indications for future ventures.



Chapter 2

Review of Discovery-related

Methods

2.1 Overview

The thrust towards understanding data by uncovering hidden patterns and embed-
ded knowledge is not a new research incentive. Indeed a multitude of techniques,
variants and hybrids have arisen over the years in response to the universal need for
data interpretation. Contributions to this area stem from a diversity of disciplines,
including statistics, geology, psychology, economics. finance, medicine, engineering,
astronomy and physics.

Categorizing the existing discovery methods is an arduous task, largely due to
the different interpretations of what constitutes discovered information. Figure 2.1
is an arrangement of some generally accepted methods of discovering interesting

information in data. The list is by no means comprehensive. With the exception of
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Figure 2.1: Pattern discovery methods classified by underlying techniques and tools

discrete event association methods, the categorized techniques focus on uncovering
variable type dependencies. An alternative and insightful classification, showﬁ in
Figure 2.2, is obtained by considering the research question that is addressed, rather
than the commonalities among the techniques. Some methods occur in more than
one category as they are capable of fulfilling multiple pattern discovery objectives.
The discovery objectives are also ranked according to the complexity of information
sought after, with “functional relationship” [119] being the most complex, and
“outliers” being the most elementary. Although the ranking is not absolute, it
does provide a general idea of the hierarchy of information that is generally of
interest. Again, the methods largely extract variable relationships, although some
have straightforward event interpretations (Section 4.2.4).

Although this chapter reviews some related work, certain ideas are more appro-

priately presented along with the proposed theory and methods. Therefore, in the
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Figure 2.2: Pattern discovery methods classified by research question addressed

ensuing chapters, there will also be intermittent sections which will again revisit
existing methodologies. Throughout the thesis, the reviews focus specifically on

discovery methods for continuous data.

2.2 Visualization methods

Visualization is indispensable in exploratory data analysis. There is information

revealed through graphical tools that cannot be easily detected by other means [30].

2.2.1 Scatterplot matrix

A scatterplot matrix is obtained by first graphing each pair of variables in a scatter
plot. These plots are then arranged in a matrix so that along a given row or

column, each variable is graphed against all the others. The key characteristic
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of scatterplot matrices is the redundancy of information achieved by duplicating
graphs in the upper and lower triangles of the matrix. This redundancy is conducive
to visual linkage of features among scatter plots. Correlations among variables and
limited high-dimensional structure can be easily detected via a scatterplot matrix.
As a starting point of analysis, the scatterplot matrix can also suggest potential
relationships that may be investigated by another method.

The scatterplot matrix can be enhanced by brushing [32] or highlighting points
in corresponding plots to reveal interplot linkage. However, pairwise scatter plots
are limited to 10 variables, beyond which viewing becomes difficult. Another en-
hancement has been the Grand Tour [7], a smooth sequence of scatter plots pro-
duced by applying a continuous sequence of projection matrices. Unfortunately, it
may take hours to unveil interesting projections in this manner. The main advan-
tage of scatter plots is the symmetrical treatment of variables. Some 2-dimensional
structures and clusters can also be detected. An obvious disadvantage is the dif-
ficulty of interpretation when categories of data overlap or when classes vary in
sample size. Overplotting occurs with voluminous data and obscures structure.
Geometrically, many different dissimilar d-dimensional data sets can give rise to
visually similar scatter plots. Without further verification, a statement of the high-
dimensional structure cannot be made conclusively. Due to distortions of high
dimensional geometry. scatter plots exhibit an undue bias on tails of data (104]. De-
spite its popularity, simplicity and interpretability, scatter plots are not completely
clairvoyant and might actually yield deceptive information about high-dimensional

patterns.
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2.2.2 Codependence plots

Codependence plots (coplots) are used to discover conditional dependencies among
variables in a visually efficient manner [30]. Some of the variables are conditioned
to lie within specific intervals and are represented in the given panels. In the
dependence panel is a scatterplot matrix of the 2 variables under study. Each
scatter plot in the dependence panel satisfies the conditioning imposed by the given
panels. In this way, the effect of one variable on another can be isolated for analysis.

Interaction among variables is also easily detected.

2.2.3 Residual analysis

Residuals are extremely informative in statistics and exploratory data analysis.
Generally, residuals represent the variation in the data which is not accounted for
by the assumed model. This interpretation of residuals is naturally conducive to
pattern discovery. Indeed, by a careful choice of the model, deviations, as indicated
by the residuals, can represent the discovery of useful information or patterns. The

residual arises from the fundamental relationship,
data = fit + residual (2.1)

where the fit is established by an assumed model [53]. In regression analysis, resid-
ual dependence plots convey valuable information about the adequacy of the fit.
A sloping residual band indicates the presence of additional linearities in the data

while a curved band suggests the prevalence of a nonlinear relationship [53]. Mono-
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tone spread in the data is conveyed by a wedge-shaped residual distribution.

The residual is also employed in other graphical and analytical tools. Spread-
location plots are used to detect monotone spread in the data [30]. Residual-
fit spread plots clearly compare the variation explained by the fit against that
remaining in the residuals. Normal probability plots or quantile-quantile plots
exploit the ordered sequence of residuals to detect skewness and outliers [53]. In
categorical data analysis, residuals are used to detect outliers and to check for
normality [26]. Particularly. in the former role, residuals can pinpoint cells which
significantly depart from the assumed model. In pattern discovery, it has been
recognized that model departures can often point towards interesting patterns in the
data [23, 125, 25, 126]. In this light, residuals have been engaged in the discovery of
sequential patterns in data [125], the estimation of missing measurements in power
systems [36), the discovery of associations in continuous data (116} and the detection
of high-order patterns in discrete data [128]. An advantage of residuals over other
visualization techniques is that in addition to the transparency of residual plots.
quantitative information is conveyed in the actual residual values.

Visualization methods are inarguably powerful discovery tools as they effectively
exploit human pattern recognition abilities. However, with high-dimenéional or
extremely dense data, visualization may be severely hampered. Further, there is
no guarantee that the human analyst will not overlook certain structure, due to
fatigue, information overload, or the application of inappropriate tools. Clearly,
considerable expertise is required in interpreting the observed graphs. Nonetheless,

visualization provides a valuable initial step in many discovery problems.
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2.3 Multivariate statistical methods

2.3.1 Analysis of variance: effects, interactions and strength
of associations

A wide variety of variance analysis methods exists. These include the analysis of
variance (ANOVA) and analysis of covariance (ANCOVA) and their multivariate
counterparts, the factorial multivariate analysis of variance (MANOVA) and fac-
torial multivariate analysis of covariance (MANCOVA). Basically, these methods
rely on the computation of variances and covariances among variables to answer
a number of research questions. Of particular interest to pattern discovery, is the
question of whether independent variables (IVs) or their interactions exhibit sig-
nificant effects on a dependent variable (DV) or group of DVs. Further, if these
significant effects exist. then how strong are the associations. I will briefly discuss
how analysis of variance methods answer these two questions.

The analysis hinges upon the fact that the total variance in the data set can
be attributed to different sources of variation. In the multivariate case, variation is
measured by a sum-of-squares and cross-products matrix, denoted as 5. Generally,
in the absence of covariates, the total sum-of-squares, S, or the total variation

in the data, can be decomposed as follows,
Stota.l = Z SIV + Z Sinteract + Serror (22)

where 3 Srv is the variation due to the IVs, ¥ Sinterace is the variation due to the

interaction of IVs, and S..... represents the within-group or error variation.
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To test whether or not the IVs or their interactions significantly affect the DV
or combination of DVs, one typically uses an approximate F-test based on Wilks

Lambda [114]. Wilks Lambda, A, has the general form,

|Serror
A= 2.3
IScffcct + Serrorl ( )
where | - | denotes determinant. The determinant is the multivariate analog of

univariate variance. The matrix S.ff.c: is the effect under investigation. It could
be the variation due to an independent variable (S;v) or interaction of independent
variables (Sinteract). An approximate F-value can be computed from A via a rather
intricate equation. See Tabachnick [114, p.387]. If the F-value exceeds the critical
value at the chosen level of significance, then the effect in question significantly
influences the DV.

Once a statistically significant effect is identified. we can gauge the strength of

the association using the measure 2, given as,

7?=1-A (2.4)

This represents the fraction of the variance in the DVs that is accounted for by the
effect under consideration. Hence, by examining variances alone, the MANOVA
technique can reveal significant main and interaction effects on the DVs and give a
quantitative assessment of the strength of these effects.

From a pattern discovery standpoint, multivariate analysis of variance answers

the preliminary question of which variables influence each other and to what extent.
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Although this is fairly low-level information, the analysis can point to directions
for more in-depth study. The main limitation is the assumption that groups of
data arise from normal populations with equal variances. Nonetheless, MANOVA

is robust to mild violations of this assumption.

2.3.2 Principal components: discovering structure

Two closely related methods for revealing information about the latent structure
in a multivariate data set are Principal component analysis (PCA) and Factor
Analysis (FA). These are discussed in turn.

Principal component analysis is concerned with finding a set of uncorrelated
indices that sufficiently describe the observed variation in the data. Ideally, the
number of requisite indices for a sufficient description is much less than the original
number of variables, and hence dimensionality reduction is achieved. Since these
indices or components hint at the topological dimensionality of the data, they often
allow easier interpretation of the data’s structure, than in the original dimensions.

Suppose that the data is given in terms of the variables, X, X,.... ,Xp. The
analysis begins by computing the sample covariance matrix for the p variables. Let
the eigenvalues of the matrix be A;, A2,..., A, and the corresponding eigenvectors,
a.as,...,ap. There will be p principal components Z;, each expressed as a linear

combination of the original variables X;,

P
Z;=Za,-,-X; i=1,...,p (25)

=1

where a;; is the j** element of the i** eigenvector. The variance of the ** principal
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component is var(Z;) = A;. This variance is the proportion of the variation in the
data that is accounted for by the component. Components which account for small
proportions of the overall variation in the data are discarded. In this way, PCA
seeks out the “dimensions” of greatest variation. Note that if the original variables
were coded to have 0 means and unit variances, then we would be dealing with
the correlation rather than covariance matrix. Recently, it has been shown that
multilayer perceptron autoassociators with one hidden layer also perform linear
PCA [40]. Some neural network implementations of PCA are reviewed in [83].
From a pattern discovery perspective, PCA is advantageous in that the number
of dimensions to be simultaneously considered is reduced. The extracted princi-
pal components are useful for understanding the underlying structure in the data.
However, if the variables are nonlinearly related. interpretation of the principal
components can be difficult. Because PCA effectively projects the original data
onto dimensions of maximal variance, it is often used as a preprocessor to classi-
fication where separability is of prime interest. However, due to the emphasis on
variance, principal components critically depend on the units used. Generally, all

features need to be sphered to have unit variance.

2.3.3 Factor analysis: discovering structure

Factor analysis (FA) is similar to principal components in that it uncovers a reduced
set of common “factors™ to explain the data. Unlike PCA which analyzes all the
variance in the observed variables, FA only considers the variance that is shared

among the variables.
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Suppose the original variables are X;, X,,... , Xp. The observed values for each
variable are standardized to have mean 0 and unit variance. Factor extraction yields
an initial set of factors. described by a factor loading matrix A. This key matrix
contains the correlations between each factor and each variable. Factor rotation
tries to enhance high correlations while diluting low correlations. The resulting

factor model is given by.

X; = Z aijFj+e, t=1.....p (2.6)

Jj=1

where a;; are the factor loadings for the i** variable, X; and the F; are m uncorre-
lated common factors with 0 mean and unit variance. The last term, e; represents
a factor that is specific to the ¢** variable. Note that the number of factors m, is
less than the number of original variables, p. Hopefully, the m factors are easier to
interpret than the original p variables. By looking at the final factor loadings, the
analyst would attempt to assign meaningful interpretations to the factors. Ideally.
a factor is easily interpretable when several observed variables correlate highly with
it but do not correlate with other factors. In fact, the effect of factor analysis is to
group together variables that are correlated.

From a pattern discovery perspective, FA attempts to unveil the underlying
structure in data. Like PCA, it is not very effective when the data is not well
approximated by a linear model. The ultimate evaluation of a factor analysis is the
interpretability of the final factors. Hence, the success of this mode of discovery
hinges heavily on human creativity in deriving meaningful interpretations of the

factors.
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2.3.4 Projection pursuit: discovering structure

Projection pursuit (PP) [48] searches for the most “interesting” low-dimensional
linear projection of high-dimensional data. It is a numerical optimization problem
with the objective of finding a projection axis k to maximize a projection index.

The original index of Friedman and Tukey [48] was of the form,
I(k) = s(k)d(k) (2.7)

where the spread of the data is measured by s(k) and d(k) describes the local density
of points after projection onto k, the projection axis. Maximizing I corresponds
to finding a projection in which the data are simultaneously concentrated locally
(large d(k)) and expanded globally (large s(k)). Equivalently, projection pursuit
finds a direction of maximum variance of the data while trying to preserve their
interpoint distances.

Several different projection indices have been proposed, including the standard-
ized Fisher index, negative Shannon entropy, L, index and the Hellinger index. All
incorporate the dual local-global optimization objective. The accepted meaning of
“interestingness” is the departure from multivariate normality (68].

Unlike PCA, PP gives some consideration to local variation. However, it too
has several drawbacks. PP is sensitive to the scaling of the data and experiences
difficulty in detecting structure in highly curved surfaces [48]. As a constrained
nonlinear optimization problem, it is computationally intense and often encounters
suboptimal local maxima [101]. Huber [68] remarked that in high dimensions, a

large number of points is required to ensure that discovery reveals the underlying
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structure rather than quirks of the sample space. Many projection indices are
difficult to evaluate when the projection space is of more than 1 or 2 dimensions
and indices such as the Legendre index and Hermite index are very sensitive to
outliers [101]. To detect high-dimensional structure, many careful decisions must
be made: the dimensionality of the projection subspace, a characteristic radius
which determines the algorithms sensitivity to local variations and the metric to
measure interpoint distances. In terms of advantage, the PP algorithm does not
rely on a single projection as in PCA. It can be applied recursively to decreasing
subspaces to uncover multiple levels of structure. However, the choice of subspace
must be made manually. In many applications, projection pursuit serves primarily
as a powerful visualization tool for seeking outliers [101] and natural groupings in
data. The only disadvantage is that the potentially large number of different views

can be overwhelming.

2.4 Decision tree methods

Tree-based methods have mainly been used for classification problems. The rules
generated from tree-construction are often interpretable and thus as discovery mech-
anisms, they offer insight into the structure of the data. Generally, a classification
tree consists of a top node or root and branches off to many subsequent nodes
at which decisions are made. Decisions continue until a terminal node or leaf is
reached. A classification tree partitions the sample space into sub-regions corre-
sponding to the leaves. Hence, a tree is a naturally hierarchical way to describe the

partitioning of the sample space.
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The task of constructing a decision tree from a set of examples is known as
tree induction. The key considerations in tree induction are pruning strategy and
prescription for splitting nodes. The process of splitting at a node is driven by an
impurity measure. The impurity measure is an indication of the class composition
at each node, with a single class composition being 0 impurity. Common impurity
measures include the entropy and the Gini index. Pruning is needed to efficiently
choose a rooted tree from among the large number of possibilities. The pruning
process is typically propelled by some measure of the classification error rate and
the number of leaves in the tree. The aim is to simultaneously minimize error rate
and tree size.

Trees have been applied in 3 general areas [101] outside of its social science
origins, namely, statistics. machine learning and engineering. In machine learning,
the use of trees is closely tied to discovery. Specifically, the objective is to induce
a set of rules from a data set, either directly, or by way of an induced tree. Exam-
ples of such methods are ID3 [96], its descendant C4.5 [97}, ASSISTANT and the
family of CLS [94] systems. Only recent versions of some of these algorithms can
accommodate continuous data. In engineering, a discovery-related application of
trees is the recursive partitioning of the sample space for the generaﬁion of invariant
decision rules. Some prominent works include Henrichon and Fu’s frequency equal-
ization partitioning [64] and Friedman’s binary, recursive scheme [47]. Common
strengths of past partitioning methods are scale invariance and local representation
of the feature space. These properties offer solutions to nonlinearly separable deci-

sion regions. The underlying shortcomings include the need to determine problem
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dependent parameters and the inability to effectively screen out irrelevant data.
The natural ability to handle missing data and the relative ease of interpreting

the acquired “knowledge” are the key strengths of trees as discovery tools. However,

for noisy data sets, trees tend to become very large, very difficult to prune (101]

and classification performance degrades.

2.5 Neural network rule extraction

The literature on neural networks is of titanic proportions. Fortunately, here I will
only focus on recent discovery approaches, namely the excavation of interpretable
rules from an artificial neural network trained in a supervised fashion.

It has been shown that, assuming an unlimited number of sigmoidal hidden
units, a 3 layer network can approximate any continuous function to arbitrary ac-
curacy {78]. In a similar spirit, radial basis functions have also been proven to
be universal function approximators [60, 91]. In other words, these networks can
discover any arbitrary functional mapping between independent and dependent
variables in a given data set. However, from the standpoint of readability [89],
the trained network parameters offer little understanding and interpretation into
the “knowledge” acquired. Narazaki [89] attributes this lack of readability to the
inherent distributed representation of the neural network. This deficiency in “expla-
nation capability” [5] has spawned the recent work in rule extraction from trained
networks.

In a recent survey, Andrews et. al. [5] proposed expressive power and translu-

cency as the principal criteria for classifying strategies for rule extraction from
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trained neural networks. Three categories were identified:

1. Boolean rule extraction using decompositional approaches
Techniques in this category seek Boolean rules at the level of the individual
hidden and output units. Particularly, for a unit under study, a rule is gen-
erated from a connection whose summed weights guarantee that the unit’s
activity exceeds its bias. The rules from individual units are aggregated to

form a composite rule base.

2. Boolean rule extraction using pedagogical approaches
According to Andrews et. al., this set of techniques treat rule extraction as a
learning task, with the network function as the target concept and the inputs
as the network’s inputs. The extracted rules directly map network inputs into

network outputs.

3. Fuzzy rules in neurofuzzy systems
Strategies in this group perform fuzzy rule refinement by tuning membership
functions and modifying connection weights. Two prominent examples are

the tuning of fuzzy associative memories [76] and fuzzy logic controllers [130].

Andrews et. al. observed that rule extraction occurs only after network training
but not during training. Hence, there may be some redundancy in the 2 processes.
Unfortunately, like many training algorithms, rule extraction algorithms are also
computationally expensive. Furthermore, the majority of rule extractors rely on
some form of ad-hoc heuristics to constrain the rule space. A number of studies

have reported certain inconsistencies between the classification performance of the
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extracted rules and that of the network itself [117, 50]. These unexpected results
have raised some theoretical queries [5].

In more recent work. Setiono and Liu [106] developed a neural rule genera-
tor, NeuroRule, that alleviated some of the aforementioned complications. Their
technique consisted of 4 phases: the building of a weight decay network, pruning
the network, discretizing hidden unit activations and rule generation. The main

advantages of NeuroRule are as follows.

o Unlike its predecessors. NeuroRule does not place restrictions on the hid-
den unit activation values. Theoretically, rules can then be a more faithful

reflection of the network operation.

¢ Through experiments on machine learning data sets, it was shown that ex-
tracted rules maintained classification accuracy of the network itself, and

generally exceeded that of equivalent decision tree classifiers.

e The number of antecedents in the extracted rules are not limited, as in some

of the decompositional approaches classified by Andrews et. al.

Exploiting both local and distributed representations, Narazaki et. al. (89] de-
veloped a fuzzy rule generation system that directly analyzes the network function
rather than the network weights. Rules were derived by first identifying homoge-
neous, “monotonic” regions of the input space and secondly by projecting a hyper-
rectangle estimate of the region onto the individual axes. The proposed idea of
relating local intervals for class discrimination is philosophically akin to event level

analysis. Unfortunately. apart from 2 simple pedagogical examples, no experimen-
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tal results were presented.

In short, neural rule extraction seems to be a promising alternative for pattern
discovery and data-mining. Indeed, there would be a tremendous impact on data
analysis in general, if the internal representation of the neural network could be fully
interpreted. Nonetheless, consistency between the rules and the trained network

have yet to be theoretically established.

2.6 Nonlinear projection methods

Nonlinear projection methods, like their linear counterparts (PCA and PP), at-
tempt to map the original data or some computed characteristic (e.g. interpoint
distances) from the original high dimensional space into a lower dimensional, more
easily interpretable space. The advantage of nonlinear projections is the potential
of revealing more general relationships in the data. Both statistical and neural
methods are used to this end. Some popular examples are briefly introduced here.

A common nonlinear projection neural network is the bottleneck or autoencoder
network. This is typically a five layer network with linear outer and middle layers
while the second and fourth layers have sigmoidal transfer functions. The two
outer layers have p units while the middle layer has ¢ units, with p > ¢. By
simultaneously applying the p dimensional original data to both outer layers, the

network is forced to learn the mappings,

R — R? and R —s P (2.8)
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Ideally, the ¢ dimensional result will be more revealing than the original data.

A self-organizing feature map [75] projects similar examples onto contiguous
locations in a one or two dimensional topological output space. The mechanism
of projection is soft competitive learning. When an example (data point in R9)
is presented to the network, the connection weights of the closest representative
(neuron) along with its neighbours in a predefined vicinity are adjusted. In brief,

the attained mapping is

R — R or R? (2.9)

In a similar vein to the self-organizing map, learning vector quantization [74, 75]
achieves nonlinear dimensionality reduction by hard competitive learning. In this
approach, d dimensional data is mapped to ¢ dimensional vectors or codes, where
g < d and g need not be restricted to one or two. Unlike soft learning, only the
neuron with the nearest code is updated, leaving its neighbours unaffected. The

achieved mapping is thus,

R R0 (2.10)

The Sammon mapping [103] is a special case of multidimensional scaling [82].
The idea is to compute interpoint distances in the original data and to map this
set of distances into a corresponding set of distances in a lower dimensional space.

The objective of the projection is to minimize stress, defined as,

1 - Z(d:, d‘.‘l)2 (2.11)

N
Ex(] d:J i<j

where dj; is the distance between the :** and j** points in the original dimensionality,



CHAPTER 2. REVIEW OF DISCOVERY-RELATED METHODS 27

d;; is the distance between the same two points in the lower dimensional space and
N is the total number of data points. This type of mapping maximally preserves

interpoint distances.

2.7 Spatial analysis

Spatial data analysis is employed in the detection of clustering or regularity in data
distributed in R¢. The general spatial model [35] is specified by spatial locations
{s1,...,8a} and data {Z(s,),..., Z(s.)}, where Z(-) is often a random mapping.
Depending on the definition of the locations {s;} (e.g. continuously varying over
R or restricted to lattice points), this model can accommodate the analysis of
geostatistical, lattice or point data. The analysis of point patterns is most relevant
to pattern discovery in a continuous sample space.

With point data, complete spatial randomness is defined as a homogenous Pois-
son process in R4. This spatial process has the property that the eventsin a bounded
region E C R are independently uniformly distributed over E. In other words,
the events are equally likely to occur anywhere within E, without any interaction.
For example, suppose a bounded region A is under analysis. The probability that
a point z € R4 falls within a subregion E C A is

volume of F

total volume A~ (2.12)

P(z € E) =

This definition of randomness closely coincides with the concentration discovery

hypothesis formulated later in this thesis.
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The goal of the analysis is to summarize the spatial data by way of descrip-
tive statistics, which in turn suggest appropriate models for the data. Two main
mechanisms for obtaining summary statistics of spatial data are quadrats [118, 102]
Moreover, inter-event distances. In both cases, point patterns are defined as regu-
larities or clusterings in the location of spatial events. These patterns are detected
by testing the data against the complete spatial randomness hypothesis. If the hy-
pothesis is rejected, the subsequent step is to measure the magnitude of deviation
from randomness.

Quadrats are well defined geometrical shapes (usually rectangles), placed ei-
ther randomly or contiguously over the study region. The number of events falling
within each quadrat is enumerated yielding observed frequencies. Using a 2 test,
these observed counts are statistically compared to a set of expected frequencies
obtained under the assumption of the complete spatial randomness model. A signif-
icant difference indicates departure from randomness. Numerous indices have been
developed to gauge the amount of deviation from randomness, including the rela-
tive variance, David-Moore index, ICS, mean-crowding and Morisita’s index [100].
From a pattern discovery perspective, quadrat-based analysis only detects global
but not local patterns. Further, the definition of pattern or useful information is
restricted to spatial clustering. Functional and general relational behaviour cannot
be detected. In addition, the quadrat size and shape are chosen arbitrarily and
spatial information is inevitably lost in the summary statistics.

Distance methods for spatial data are founded upon the definition of a handful

of different nearest-neighbour distances. For example, the distance D between
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events and nearest neighbouring events has a known distribution under the complete

spatial randomness hypothesis. In particular, the density is
p(D) = 2nAD exp(-wAD?), D >0 (2.13)

where ) is the intensity of the homogenous Poisson random process. With knowl-
edge of the distance distributions, complete spatial randomness can be tested using
a number of test statistics [35, p.604], [118, p.242-263]. The shortfall of spatial
distance methods for pattern discovery is that the definition of pattern relies heav-
ily on the number of nearest neighbours considered. With a single neighbour, only
small scale patterns are considered while larger scale information is unavailable [35].
Again, spatial information is lost in retaining only a nearest neighbour summary.
The nearest neighbour statistics can only indicate the direction of departure with

no additional information as to the nature or location of the discrepancy.

Comment on Discrete Discovery Methods

Although, with some preprocessing, discrete data may be analyzed, the techniques
reviewed above are all geared towards continuous data. There exist a whole realm
of methods designed specifically for discrete-valued, categorical and ordinal data.
Belief networks (See Ripley [101] for a review) such as Markov networks or Causal
networks, APACS [23], discovery of association rules {1], AQ17 [20] and CN2 [29]
are among the many existing discrete discovery methodologies. Here, I restrict the
review to the treatment of continuous data, which is the principal concern of this

thesis.
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2.8 Summary

In this chapter, I have briefly reviewed a sampling of techniques from the main areas
of visual exploratory data analysis, multivariate statistics, decision trees and neural
networks. Visualization is limited to a small number of dimensions and statistical
methods often impose a set of limiting parametric assumptions. Decision trees are
not rooted in deep theory {101] but rely on many ad-hoc heuristics. Rule extraction
from neural networks are computationally intensive tasks and the number of rules
can often be unmanageable. Nonetheless, each genre of analysis offers some insight
into the discovery problem and potential solutions. Visualization emphasizes the
need for interpretability and transparency. Statistical approaches underscore the
presence of intricate associations and interactions among variables and offer ways to
overcome the curse of dimensionality. Hierarchical partitioning of the sample space
1s an intriguing prospect for local discovery that is suggested by the decision tree
methods. Finally, the generation of readable rules from complex neural networks
points towards the existence of a fundamental level of data organization. Some of
these ideas and implications will be explored in the development of an event-based

pattern discovery framework.



Chapter 3

Problem Definition

From the review, it is evident that the scope of the pattern discovery problem is
quite broad. In this brief chapter, I attempt to succinctly define the focus of the

present research.

3.1 Data specification

The main specification is with regards to the type of data targeted for analysis. The
event level theory should be applicable to both discrete and continuous data. In

terms of algorithmic development, the data should meet the following specifications.

Type The data should be continuous. If it is discrete, the variables should have a
large number of values such that they can be effectively treated as continuous

(e.g integer test scores from 0 to 100).

Range The range of possible data values is unrestricted.

31
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Missing Values Missing values are tolerated if they are few and infrequent. Grossly

incomplete data is not admissible. !

Format Typically, with multidimensional data, an observation or measurement is
arranged into a vector of numbers or symbols. Each element of the vector
represents the value of a physical entity that has been observed or measured.
The physical entities of interest are called features in pattern recognition, at-
tributes in machine learning and factors or variables in statistics. Throughout
this thesis, these terms will be used interchangeably and I will assume that

data is organized in a vector format.

3.2 Rationale for present research

Traditionally in pattern recognition, random variables and random vectors have
been used as mathematical representations of patterns [49, 131, 41]. From prob-
ability theory, we know that associated with each random variable value is an
event [90]. Since the relationships among random variables are used to express the
overall structure of the data, it is natural to turn to events for a deeper view of
that structure.

With discrete data, an event level theory for pattern discovery is straightforward
since the individual observations constitute elementary events. The developments
of (23, 125, 128] exemplify the maturity of the discrete event theory. For continuous

data, an event formulation for discovery is not yet established.

1Many strategies are dedicated to the handling of more troublesome and incomplete data. See
for example [71, 85].
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A discovery strategy and theory should accommodate multivariate data. In the
analysis of multidimensional data, one usually relies on several independent sources
of evidence to validate hypotheses one may have about the data’s structure. Hence,
an additicnal perspective is always welcome.

To be useful for decision making and problem solving, the detected patterns
should be easily understood. Transparency also permits easy verification with do-
main knowledge and comparison to the findings of other methods.

We have seen that numerous different criteria are of interest in data analysis,
for example, the maximal local data concentration, the maximum data variance
and the minimum class impurity. A useful discovery algorithm must therefore have
the flexibility to support different discovery objectives.

If a framework of discovery is to be general, it should be extensible to many
problems in data analysis which directly or indirectly make use of patterns in the

data.

3.3 Objectives

Formally, the objectives of the present research are:

1. To propose a theoretical framework for pattern discovery at the event level

for multivariate continuous data.

2. To develop a transparent pattern discovery algorithm for multivariate contin-
uous data. The algorithm should yield interpretable patterns while accom-

modating different discovery objectives, and
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3. To apply the discovered patterns to problems of multivariate density esti-
mation, multicategory classification, dynamic pattern discovery and high-

dimensional discovery.



Chapter 4

Pattern Discovery Foundations

In this chapter, I will lay down the definitions and conceptual arguments which
comprise the proposed event-based theoretical construct. The generality of the
formulation will be argued by exemplifying its interpretation in the context of
some existing methods. Different discovery objectives are introduced along with
appropriate test statistics. The chapter will close with a mathematical statement

of the discovery problem.

4.1 Generalized events

The notion of an event was vaguely alluded to in the introductory chapter. Here,
the concept will be formalized. Note that the definitions that I invoke here are
generally consistent with the terminology of probability theory, particularly in the
axiomatic definition of an experiment [90]. Minor departures will be noted. In

pattern discovery, we are concerned, in general, with d-dimensional data. To draw

35
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an equivalence with probability theory, we simply consider a d-dimensional data
point, either an observation or a measurement, as the outcome of an imaginary
experiment. Denote an experimental outcome as w. The set of all possible outcomes
is the sample space, . and may be finite or uncountably infinite. In each case,
events are defined differently. Although continuous data is assumed in this thesis,

the discussion of events for discrete data enforces the generality of the event concept.

4.1.1 Events - finite sample space

When the sample space is finite, an event is defined as a subset of 2. This subset
may consist of a single event in which case it is called an elementary event [90]. If
the subset is empty, it is called a null event. For events in a finite sample space,
probabilities are assigned to elementary events. The axioms of probability are then
easily satisfied. In pattern discovery, this definition of events applies when the data
of interest is discrete. The discrete nature of the data may be manifested in 2 ways,
a finite number of numerical values or a finite number of categorical levels. In the
latter case, the data is symbolic. The following example illustrates an event for

discrete-valued data which consists of both numeric and symbolic features.

Example 1 Events in discrete data
Consider a study on birds where the features of interest are habitat, the number of
toes, the colour of the bird’s chest and its ability to fly. These features can take on

values from a finite set, as indicated below.
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Feature Allowable values
Habitat urban area, inland waters, grassland,
desert, brushy areas, woodlands
# of toes 28,4
Breast colour | red, white, grey, spotted, blue, yellow
Flight yes, no

Ezamples of events from the sample space of possible combinations of feature

values are listed below.

Eyent Habitat # of toes | Breast colour | Flight
(Symbolic) | (Numeric) | (Symbolic) | (Binary)
1 urban area 4 red yes
2 inland waters 3 white yes
s grassland 2 grey no
4 desert 4 white yes

Random variable

In pattern analysis, tools have been developed to manipulate random variables
rather than elementary events or outcomes. The outcomes are mapped into a
space in which the operations of discovery are more easily performed. The chosen
mapping becomes the random variable for the problem at hand. Since there are a
finite number of outcomes, the resulting random variable can only assume a finite
number of distinct values, meaning that it is a discrete random variable. There are
3 possible mappings depending on the nature of the data and the processing ability

of the analysis method.

1. When the discrete data is numerical, the random variable can simply be the

unity mapping.
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2. If the data is categorical and the pattern discovery method can directly handle

symbolic variables, the unity mapping can also be applied.

3. On the other hand, if the data is categorical but the discovery method can
only manipulate numbers, we require a transformation from the events to a

finite set of integers. For categorical data, a mapping of the form
X:w—ri, wel, tel'cl (4.1)

is usually employed. Here, w is an elementary event and the image space I'

is a finite subset of the set of integers, I.

In Example 1, if the symbolic variables were mapped into a set of integers, each
event would be a distinct point in 4.

Table 4.1 summarizes the different discrete random variable mappings discussed.
In general, the choice of X(-) only needs to satisfy the usual axiomatic condi-
tions [90, p.66]. However, for an event level formulation, we also demand that the
inverse transformation exists. In practice, this requirement stipulates that X(-)
should be 1-to-1. To understand the rationale for this additional constraint, we
need to realize that discovery could be performed in either the sample space, 2, or
the image space, I, depending on the discovery algorithm. The existence of X ~!(-)
ensures that information about events is always available, regardless of the space

in which discovery is performed.
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Table 4.1: Summary of random variable mappings for discrete-valued data

Discrete data | Variable type that Random variable
type discovery method can mapping
can handle
Numeric Numeric Unity mapping
X:w—ow
Symbolic Symbolic Unity mapping
X:w—ow
Symbolic Numeric General, invertible
X:w—t,2el’CI

4.1.2 Events - infinite sample space

39

In this thesis, | am mainly concerned with continuous data, for which the sample

space is generally taken to be the d-dimensional Euclidean space, R¢. Clearly, this

sample space consists of an uncountable number of outcomes. The use of elementary

events becomes intractable, especially when defining probabilities [90]. Instead,
events are defined to be subsets of Q which form a Borel o-field, B(R9). To clarify,

we need a number of definitions. Let Z be a nonempty set of arbitrary elements. A

class of sets in Z is a collection of subsets of Z. A field is a nonempty class closed

under all finite set operations (union, intersection and complementation). A o-field

is a nonempty class closed under all countable set operations. The canonical o-field

for R4 is the Borel o-field.

Definition 1 Borel o field of R¢ [95]

Consider the sample space R?. Let oo < a; < b; < o0,i=1,...,d. Let I; = (ai, ;).
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A subset A of R? is called a rectangle if it has the form,
A=[1X---XId={x:$i€I;,15iSd} (4.2)

The o-field generated by the collection of all rectangles in R is the Borel o-field of
R4, B(RY).

Equivalently, the Borel o-field is the smallest o-field containing all rectangles. The
sets in the Borel field are called Borel sets. Borel sets include rectangles and
countable unions and intersections of rectangles. We are now ready to define an
event in the continuous sample space. R<.

Definition 2 An event in R4 is a Borel set.

There are two advantages of defining events in this way. First of all, there is a
nice geometric perspective. Figure 4.1 depicts examples of events in R3. We see

that events are just hyper-rectangles or countable unions or intersections of hyper-

rectangles. Secondly, a probability measure can now be assigned to events without

violating the axioms of probability.

Random variable

As in the case with discrete data, technically we cannot talk about random variables
until we have mapped the outcomes into numerical values. Fortunately, for the
sample space R9, the outcomes are already continuous numerical values. Hence, we

can simply employ the identity mapping,

Xiw—w weR (4.3)
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E3: Union of rectangles

E;: Rectangle

Figure 4.1: Example of events in R

to obtain a continuous random vector X. The identity mapping has an important
implication for pattern discovery, namely that w is both the outcome of the imag-
inary experiment and the corresponding value of the random vector. This nicety
will be exploited in formulating the idea of event-based discovery.

To summarize, Figure 4.2 pictorially represents the general mapping from the
sample space {2 to an image space I'. Note that typically, discovery algorithms
operate in the image space I', so that random variable terminology and properties
can be employed. For discrete data, I is a subset of integers whereas for continuous
data, I' is the real line. The event E in Q is an elementary event for discrete data

and a Borel set for continuous data.
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Sample space X() Image space

Figure 4.2: General random variable mapping for pattern discovery

4.1.3 Event characterizations - infinite sample space

Apart from its location in space, a few other quantities will be used to characterize

events in R9.

Definition 3 Volume

The volume of an event is the hypervolume of the d-dimensional subspace occupied

by the event.

From a measure theoretic viewpoint, if we consider the event to be a set, then the

volume is a measure of the set.

The next definition deviates slightly from the analogous concept in probability

theory. Suppose we have a data set {w} from a sample space,  C R<.

Definition 4 Observed Frequency

The observed frequency. ng, of an event E in the sample space Q is the number of
data points that fall within the volume of E. If we denote {z} C {w} as the finite
set of points falling inside the volume of E, then ng = |{z}|, where | - | denotes

cardinality.
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For the sake of notational simplicity, I will assume that the event F is synonymous
with the set of points that it contains. Hence, the observed frequency will be
directly written as, ng = |E|. I will interchangeably refer to ng as the cardinality
of event E and as the observed frequency of event E.

In probability theory. the observed frequency of an event is the number of times
the event is observed in an experiment. To consolidate the 2 definitions concep-
tually, consider a hypothetical experiment where each observed data point in
induces an event. Now suppose that there is a set of points {x}, each of which
induces the same event E. If we consider events rather than data points as the
experimental outcomes. the number of times E will be observed is exactly equal to

the number of points in {x}. Therefore, ng = [{x}|.

Definition 5 Probability
The probability of an event E is intuitively estimated by the proportion of data

points contained in the event.

p, — LE
Pg = N (4.4)

Equivalently, this is the probability of finding an outcome within the subspace
defined by E. The fact that events have been defined as Borel sets allows us to

construct this probability measure without fear of violating probability axioms.
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4.2 Pattern

With the formal definition of an event in place, the notion of a pattern can now be

made precise.

Definition 6 Pattern
Let Q denote the sample space and let g(-) be a test statistic corresponding to a
specified discovery criterion. Let 8% be the criticul value of a statistical test at a

significance level of a. A pattern is an event E that satisfies the condition,

9(E) 2 62 (4.5)

The test statistic g(-) measures the degree to which an event satisfies the ob-
Jective of our discovery. Different discovery objectives and their corresponding test
statistics will be discussed in Section 4.3. In this section, some general remarks are
made about the test statistic and its interpretation.

If the test statistic is 2-tailed, 3 types of events can be identified, according to

the value of the test statistic.

1. g(E) = 67
When the test statistic equals or exceeds the critical value, the event E ad-
equately satisfies the discovery objective and is called a positive significant

event. A pattern, as defined above, is a positive significant event.

2. l9(B)| < 62

Here the test statistic indicates that the event does not satisfy the discov-
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ery objective at the chosen level of significance. We label the event as an

insignificant event.

3. g(E) < 62
The last type of event is called a negative significant event. These events are

contrary to the discovery objective.

With a 1-tailed test statistic, only insignificant and positive significant events are
applicable. When there is no ambiguity, the term, “significant event” will be taken
to mean a positive significant event. What follows is another useful interpretation

of a pattern which I will refer to on occasion.

Event association

Any event E of dimension d > 1 can be interpreted as the joint occurrence of lower
dimensional events. For example, in Figure 4.3, the event E can be viewed as the
joint occurrence of three 1-dimensional intervals, I, I, and I,. These 1-dimensional
intervals are themselves Borel sets in R and therefore valid events. This leads to
the following simple definition.

Definition 7 Event Association [128]

An event association is a significant joint occurrence of low-dimensional events. In
particular, any d-dimensional event (d > 2) can be considered an event association,
composed of d 1-dimensional events.

According to defintions 4.2 and 2, an event E uniquely determines a set of one-

dimensional intervals. However, the event E may also be interpreted as the joint

occurrence of a nonunique set of lower dimensional events, each with d > 1.
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Figure 4.3: A 3-dimensional event association

Note that the term “association” should not be confused with the association
between dependent and independent variables as measured by n? in statistical anal-
ysis of variance (ANOVA) studies. Nonetheless, both usages do imply an inherent
relationship between objects: variables in ANOVA, and events in pattern discovery.

We appreciate that the jargon, “pattern”, “significant event” and “event asso-
ciation” all share the same meaning, with only variations in interpretation. While
the word “pattern” has intuitive appeal, its statistical basis is intimately implied
by the term “significant event”. On the pragmatic front, “event association™ offers

a geometric perspective, which will be useful in interpreting discovery results.
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4.2.1 Geometry of a significant event

The definition of a pattern suggests that pattern discovery involves the search for
significant events. In this light, the geometry of an event naturally demands further
clarification. Theoretically, the event can be any Borel set. To simplify computa-
tions, I have chosen the most elementary configuration, a rectangular event, which
only requires 2d parameters for complete specification. To specify a hyperellipsoid
for instance, one would need in the order of d? parameters. At the onset, this may
seem to be a colossal compromise in the accuracy of the discovery process. However,
it will be shown that since discovery is performed sequentially and recursively, the
loss in accuracy is effectively mitigated. Furthermore, from a strictly theoretical
viewpoint, representational power is not jeopardized since any geometrical config-
uration can be represented by a countable number of hyper-rectangles to arbitrary

accuracy.

4.2.2 Advantage of the identity mapping

In the discussion of random variables in Section 4.1.2, I hinted that the identity
mapping is advantageous for event-based discovery. To appreciate this advantage,
first consider a general random variable mapping, X(-). Suppose that we are given
a data set with sample space Q. Upon applying the random variable mapping to
events in , we have an image space I' = R¢ (Figure 4.4). Discovery is applied in the
image space I' and a subspace B C I, is discovered as significant, i.e., g(B) > 62.

This subspace B induces an event E in £,



CHAPTER 4. PATTERN DISCOVERY FOUNDATIONS 48

Significant X-1()

Event

Figure 4.4: Identity mapping

E ={w|X(w) € B}CQ (4.6)

In general, after discovery is performed in the image space I, we cannot directly
make any conclusions about the corresponding events in Q. In fact, we would need
to apply the inverse transformation to points in B to obtain outcomes contained in
E. Fortunately, with the identity mapping, we have that £ = {X~!(b)lb€ B} = B
trivially. Discovery can thus be performed directly in the sample space while ran-
dom variables, typically reserved for use in the image space, can be employed with-
out restriction. Alternately, we can say that under these circumstances, discovery
can be performed in either the image space or the sample space. In short, we see

that continuous data naturally lends to event level discovery.

4.2.3 Pattern discovery

Theoretically, candidate events may lie anywhere in the sample space. However,
in practice, we restrict the search to a compact subspace of the sample space,

as demarcated by the available samples. The following definition summarizes the
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above discussions.

Definition 8 Pattern discovery (Continuous data)

Suppose we have a continuous data set with sample space . Suppose further that
the identity mapping is invoked to produce the image space I'. Pattern discovery is
then the search for significant (rectangular) events in a compact subspace of either

the sample space Q or the image space I.

Here is a quick recap of the last two sections. For continuous data, an event
is a rectangular Borel subset of R¥. It is characterized by its observed frequency,
volume, probability and statistic value. A pattern is an event that is significant
according to its statistic value. Pattern discovery is the search for significant events.

Before discussing some important discovery objectives, I want to demonstrate
the generality of the proposed event framework by interpreting a few existing

methodologies from an event perspective.

4.2.4 Application to existing methods

With continuous data, trees and neural networks can be viewed as inherently event

discovery mechanisms.

Decision trees

Recall that decision trees partition the sample space into subregions each time a
node splits. Consider the construction of a tree from a data set of continuous
variables. Suppose that at a given node %, the range of a variable X undergoes a

binary split, say, X < @ and X > a, where a is some scalar value. The subregion
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corresponding to node i is then partitioned into 2 smaller regions. The continua-
tion of this process demarcates successively smaller regions of space. The subspace
delineated by the terminal leaf nodes represents a subspace with maximally homo-
geneous class composition. This subspace is simply a hyper-rectangular event in
the above formulation. Indeed, tree construction can be considered the discovery

of events with the impurity measure as the discovery criterion.

Neural classifiers

That neural networks discover events is suggested by the recent attempts to inter-
pret neural learning in terms of rules. Particularly. the work of Narazaki et al. [89]
lends support to this theory. In developing their explanatory mechanism, “mono-
tonic regions” of the sample space are identified. These are basically regions where
the class membership is fairly uniform. Once a “monotonic region” is identified, it

is projected onto each axis to form a rule with the following structure,

If z; is around ¢;, and =, is around ¢;, ..., and z4 is around ¢4, then
z = {z,...,24} belongs to class P
where (cy,...,cq) are the coordinates of the center of the monotonic region. The

fuzzy concept, “around ¢;” is approximated by a closed interval around ¢;. Clearly,
this rule simply identifies a hyper-rectangle in the sample space. It is an event

where the discovery criterion is uniformity of class membership.

Neural function approximators

White [123] argues that standard backpropagation learning is equivalent to finding
the set of weights, W=, such that the network function, f(X,W), is the mini-
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Figure 4.5: Back propagation learning as event averaging

mum mean-squared error approximation to the conditional expectation function,
g(X) = E(Y|X). Here. X and Y are respectively the network inputs (independent
variables) and outputs (dependent variables). Other theorists have offered similar
interpretations of neural network learning [81, 39. 120]. The summary statistic
E(Y|X) can be interpreted as the average value of Y over events which contain X.
Figure 4.5 is a two-dimensional example showing, as a solid line, the values of Y
learned by backpropagation. These Y values can be thought of as the average YV’

value of the events, shown as rectangles.

4.3 Discovery objectives

The definitions of pattern and pattern discovery are general in that they are valid

for any discovery objective. The specification of this objective is important since
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the discovery criterion drives the discovery process and determines what type of
information will be uncovered. In theory, there could be an infinite number of
possible discovery criteria, reflecting the unlimited information which may be of
interest. Here, I will only develop a few basic criteria. In general, a discovery
hypothesis is associated with each discovery criterion. This hypothesis implies
a model for the data. By measuring the amount of deviation or adherence to
the model, we can gauge the degree of violation or satisfaction of the discovery
objective.

In discussing each criterion, I will proceed by motivating its consideration, sum-
marizing the basic idea in the formulation and stating the relevant mathematics.
Note that the mathematical objectives presented here only serve to illustrate the
different discovery incentives and are not yet suitable for pattern discovery. The
discussion on test statistics in Section 4.4 will develop the proper mathematical

expressions.

4.3.1 Concentration and clustering

Motivation

In many data sets, natural grouping tendencies, high frequency observations and
regions of unusually high concentration are of interest. These are typical problems

tackled by unsupervised learning algorithms.
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Basic idea

The main premise in formulating the concentration objective is that the uniform
distribution bears no information. Hence, the search for clusters and regions of
high concentration becomes the search for regions where the density is significantly
higher than that of the uniform density. The discovery hypothesis in this case is

that the data is uniformly distributed throughout the compact subspace.

Mathematical objective

Let pos, represent the density of points observed within the rectangular event under

scrutiny. We have that.

Pobs = (4'7)

e |3

where n is the cardinality of the event and v is the volume of the rectangle. Let
Punis Tepresent the density of points assuming a uniform distribution over the space
of interest. Hence,

N

Punif = T/‘ (4-8)

where N is the sample size of the data set and V is the volume of the compact

subspace under consideration. The discovery criterion J can then be written as,

J = pobs = Punis (4.9)

The discovery process would attempt to find an event to maximize J.
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4.3.2 Dependency
Motivation

Oftentimes, in deciphering a data set. we are interested in local interdependencies
in the data. The presence of interdependencies suggests further investigation into
possible interactions among variables. In addition, the detection of independence

usually allows drastic simplifications of the model.

Basic idea

If the data under analysis is independent, then the joint probability density function
(pdf) can be expressed as the product of the marginal densities. Let f(x) represent
the joint pdf and let f;(x) represent the marginal pdf for the i** variable. The

condition of independence is then,

d
f(x) =] fi(x) (4.10)

i=1

The discovery hypothesis for the dependency objective is that the data is indepen-

dent throughout the compact subspace.

Mathematical objective

The joint pdf for a rectangular region can be estimated as [41],

n
) = — 4.11
= (4.11)
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where n is the number of points in the region, N is the sample size and v is the
volume of the region. In a similar vein, the estimated marginal pdf for the i**

variable is,
R ng

pi = NT. (4.12)

Here, n; is the number of points within the ¢** interval l;, obtained by projecting

the region onto the i** axis. The dependency objective can then be expressed as,

d
J = p-]]5 (4.13)
i=1
n 4 n;

No NL; (4.14)

i=1

To search for regions of interdependencies, the discovery process would find events

to maximize J.

4.3.3 Outliers

Motivation

The identification of outliers or influential observations is an important step in data
analysis. In multivariate methods such as multiple regression, outliers are removed
or transformed to prevent them from unduly biasing the analysis [114]. In pattern
analysis, filtering of random noise and outlying observations allows the algorithms

to focus on relevant underlying patterns.
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Basic idea

To detect outliers, either the concentration or the dependency criterion can be used.
The basic idea is that observations which are not covered by significant events are

considered as outliers.

4.3.4 Linear dependence
Motivation

The presence of linear relationships among variables often simplifies analysis and
modeling. Further, the presence of linearity allows the use of many well-developed
statistical methods such as linear regression. Most importantly, the local analysis
of pairwise linear dependencies alone. completely reveals all higher order linear

dependencies within the same local subspace.

Basic idea

If the data is governed by a linear relationship, the variation in the data can be
adequately captured by a line or a hyperplane. Equivalently, linearity is present
when the amount of variation captured by the line or hyperplane far exceeds the
variation which is not accounted for by the linear model. This premise is subject
to the usual assumptions of linear regression, such as, normality of residuals, lin-
earity and homoscedasticity. Violation of these assumptions weaken but does not
invalidate the regression [114]. Thus, from a discovery standpoint where we are
only checking for the presence of linearity, these assumptions are not restrictive. A

suitable discovery hypothesis is that the data under examination does not have a
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linear relationship.

Mathematical objective

Let k be the number of parameters in the linear model. For d-dimensional data,
k = d + 1, with one parameter for each of the d variables and 1 extra parameter
for the constant term. Let N denote the total sample size under examination. The

linear model is,
Y =Xb (4.15)

where X is a N x k matrix and b is a A x 1 vector of parameters. The variation
captured by the linear model is expressed as the regression sum-of-squares, SS,., =
S(Y —Y)?, where Y is the predicted value of Y and Y is the mean of Y. Likewise,
the variation which is not accounted for by the linear model is given by the error-

sum-of-squares, $Sur = (Y — Y)2. A suitable objective would be in the form,

SSreq

7= 35...

(4.16)

To discover regions of strong linear dependence, the discovery process would seek
events which maximized J. The various criteria and their associated discovery
hypotheses are summarized in Table 4.2. Note that the discovery hypotheses are

simply the null hypotheses in hypothesis testing.
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Table 4.2: Summary of discovery objectives and associated hypotheses
Discovery objective | Discovery hypothesis

Concentration Uniform distribution
Outliers Uniform distribution/Independence
Dependencies Independence

Linear dependence | No linear dependence

4.4 Statistical test

Although the aforementioned discovery objectives successfully capture the specific
goals of discovery, their present forms are not conducive to measuring significant

differences. The deficiencies are as follows.

1. The value of J is sensitive to the magnitude of the numbers involved. Some

sort of standardization is required.

2. Arbitrary thresholds need to be set in order to delineate significant from

insignificant differences. These thresholds would also be problem dependent.

3. There is no prescription on how to adapt the thresholds to increasing dimen-

sionality.

Clearly, we need a robust measure of significant differences. Fortunately, the
discipline of statistics provides a wealth of tools for addressing these 3 deficiencies.
The approach is to express the discovery objective as a test statistic with a known
asymptotic distribution. To determine the degree of significance of an event, we

simply compare the value of the test statistic for that event to a critical value
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6%, at a chosen level of significance a. For all the test statistics considered, this
significance level is determined in a similar manner. A prudent choice is detailed

below.

4.4.1 Significance level

The significance level, a, represents the probability of a Type I error in hypothesis
testing [90]. In the present context. it is the probability of detecting an event
as significant, when it is actually insignificant. Typically, a 5% significance level
indicates a reasonably substantial deviation from the null hypothesis, while a 1%
significance level is used for very stringent testing. A Type II error is committed
when an event is dismissed as insignificant, when in fact it contains organized data.

For d = 2, the value of @ and the location of the critical region can be determined
by a standard protocol discussed at the end of this section. The difficulty in selecting

a arises when the dimensionality d increases. Consider the following example.

Example 2 Let a = 0.05 and d = 2. Suppose we randomly generate a 2-dimensional
data set in a rectangle, R. Now divide each side of R into Q@ = 5 units, for a total
of 25 regions. If we were to repeatedly generate such data sets and then test each
region for significant differences, we would on average, err on 0.05 x 25 =~ 1 of
these regions. Now suppose we have a 6 dimensional data set. We will now be
Q° = 5% = 15,625 regions. Upon repeated data generation and testing, we would on
average, err on 0.05 x 15,625 = 782 of the possible regions. Note that we do not
intend to search the space ezhaustively. Regardless of dimensionality, we wish to

maintain the number of searches within the same order of magnitude. Hence, 782



CHAPTER 4. PATTERN DISCOVERY FOUNDATIONS 60

is an unacceptably large number of false positives.

From the example, we realize that as dimensionality increases, the volume of
the space increases exponentially, as does the number of possible regions for test-
ing. However, most of the high-dimensional space is sparse [104], and many false
claims would turn up regions with little or no data. To limit the number of possi-
ble discovery errors, we demand that the significance level decrease exponentially
with increasing dimensionality. The simple function below possesses the desired

behaviour,

a(d) = coexp(—(d—2)), d>2 (4.17)

where ag is the base value of the significance level, chosen for d = 2. This ensures

that the number of discovery errors does not rise with dimensionality.

Justification for choice of aq

The critical region of the hypothesis test is determined by a standard procedure [90].
Suppose the statistical test has a density f(z,m) when the null hypothesis is true.
Here z is a normal random variable and m is the parameter whose value is being
tested. Under the null hypothesis Hy, m = my.

First, a value is assigned to ao, the Type I error probability. Subsequently,
one searches for a critical region in R such that the Type II error probability S, is
minimized for a given parameter value, m, # mg. The value m, is the "true value”
of the parameter. If 8 is too large, then ay is increased and the minimization is
repeated. If B is still too large, more samples are collected.

In Section 4.4.2, the residual statistic is introduced as the chosen test statistic
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Table 4.3: Operating characteristic and Power curve for ag = 5%.

m, Operating characteristic | Power curve
B 1-p8
mo £ 3 0.149 0.851
mo £ 4 2.07 x 102 0.9793
mg £ 5 1.18 x 1072 0.99882
mg + 6 2.67 x 105 0.999973

and in Appendix Section A.l, it is shown that this statistic is normally distributed
under the null and alternate hypotheses. Hence, for a given level a and parameter

value m,, B is expressed as,

2 —af2

B(mg) = / fz,mq)dz (4.18)

“Zl~a/2

To validate statistical testing in contingency tables, it is recommended that in
general, individual expected frequencies must exceed a value of 5 [77], i.e. mg > 5.
In the present application, an even more conservative lower bound was usually
employed, i.e. mg > 25. to ensure validity of the asymptotic assumptions (See
Appendix Sections A.1 and A.2). Consequently, for significant differences, typically
lmo — m4| > 5. Using Equation 4.18 we arrive at Table 4.3. It is clear that with
ag = 5%, the Type II error is negligible for m, > m¢ + 5 and the corresponding
power of the test approaches unity. Hence, Type Il errors do not threaten the test
and ap = 5% is a plausible choice.

Having addressed the issue of significance level, we can now proceed with the

discussion of individual test statistics. The first statistic applies to the concentra-
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tion and dependency objectives, while the second statistic is appropriate for the

linearity objective.

4.4.2 Residual analysis

In statistics, residual analysis provides valuable local information about a data set.
In linear regression, the assumptions of normality, homoscedasticity and linearity
can be checked by examining residual plots [114]. In exploratory data analysis,
residuals aid in the uncovering of underlying structure [53]. The study of contin-
gency tables also commissions residuals for the purpose of detecting outliers and for
verifying normality {26]. This last application will be the one adopted for pattern
discovery.

There are several advantages to the application of residuals in pattern discovery.
The problems of unstandardized, wildly varying quantities and arbitrary thresholds
are overcome by the use of the residual. Furthermore, the residual is easily inter-
preted in terms of the degree of satisfaction of the discovery objective. Residual ex-
pressions will be easily developed for the concentration and dependency objectives.
In fact, these residuals strongly correlate to the values of the original objectives in
Section 4.3, ensuring that the intent of the discovery is realized.

In this section, I will digress a little from the main theme in order to provide

the theoretical background for applying residuals to pattern discovery.
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Contingency table set-up

Consider the I x J contingency table shown in Table 4.4. The row and column labels
can be the levels of the factors under study or alternatively, the rows can signify
different populations while the columns can represent the possible categorizations.
In either case, the observed frequency, n;j, is the number of individuals with the
** row label and j* column label. The marginal totals are represented as ni;
and n4;, for summation across row ¢ and down column 7, respectively. Since all
the table entries are frequencies, this is also called a table of counts. Without loss
of generality, we can assume multinomial sampling, i.e., the counts arise from a
multinomial distribution [26].

Once we have constructed such a table, we usually wish to test some null hy-
pothesis, Hy, for example, independence or homogeneity of proportions. The null
hypothesis implicitly implies a model for the counts and thus determines how we
will compute the expected values m;;. To evaluate how well the model fits or equiv-
alently, whether to accept or reject the null hypothesis, a global measure such as x2
or G? is invoked. In contrast, to identify local departures from the assumed model,
the residual is employed. This type of local analysis is in tune with the theme of
event level discovery.

The basic residual is defined as the difference between the observed frequency

count, n, and the estimated expected value, 72, under the null hypothesis.

; (4.19)

(1.1
Il
3
I
3

To use this as a statistic for hypothesis testing, we need to know the asymptotic
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Table 4.4: Standard form of an I x J 2-dimensional table

Factor 2 (Categories)

1 2 ... J Totals
l{ny mni2 ... mny 14
Factor 1 2| nay Ma2 ... TMag gy
(Populations)
Iinn mnp ... npy | ni,
Totals Ny N2 ... nyg N4y

distribution of é.

Large-sample results

The key property of interest is that when the assumed null hypothesis is satisfied,
the residual asymptotically approaches a normal distribution. Therefore, deviations
from the assumed model can be easily detected as cells with residual values that
are unlikely to arise from the normal distribution.

The large-sample distribution of the residual is derived from the basic multino-
mial result, usually using the delta method. See for example (2, 26]. A derivation,
in the spirit of Christensen [26] is provided in the Appendix Section A.1. Let m
be the vector of estimated expected frequencies. As the number of observations N

increases to infinity, the residual converges to a normal distribution [26],
N=Y%(n — @) -2 N(0, D(I — A)) (4.20)

The A matrix is defined as A = X(X'DX)"!X'D where X is the model matrix.
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The model matrix arises from the fitting of a log-linear model, log(rh) = Xb, with
parameter vector b, to the table of counts. The matrix D is a diagonal matrix
with the elements of h along the main diagonal. It is denoted as D(rh). Several
equivalent forms of this result exist in the literature [34, 2, 57], but the form of the
covariance matrix in (4.20) is most suitable for the present discussion.

The adjusted residuals [57] of individual cells can be obtained by dividing the
simple residual by the square root of the large-sample variance. These variances

are the main diagonal elements of D(/ — A). Therefore,

A n; — m;

" - am)

where a;; is the i** diagonal element of the matrix A.

(4.21)

Conditions of applicability

When considering asymptotic results for multinomial sampling, the sample size,
N, approaches infinity in a specific manner. A summary of various conditions

mentioned by different authors is provided below.

(i) The number of cells should remain constant as the sample size, N, goes

to infinity [2].

(ii) For multinomial or product-multinomial sampling, the probabilities in
each cell should remain constant [26}], or equivalently, the expected fre-

quencies must grow at the same rate [2].
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(i) For product-multinomial sampling, the sample sizes of each population

should remain in fixed proportions [26].

Agresti [2] further cautions that asymptotic results obtained by the delta method
become dubious in the presence of small samples. highly sparse data or complex

sampling designs.

Closed form estimate of the covariance

For hierarchical log-linear models which are decomposable, highly streamlined for-
mulas have been developed for the elements of the covariance matrix, D(I — A).

The following theorem. due to Haberman [57], embodies the simplifications.

Theorem 1 Asymptotic covariance for the simple residual

Suppose the estimated ezpected frequency can be written in the closed form!,

. n xn%$ x ... x nS¢

nTt x nT x ... x nTe=1

where n5i and nT are marginal sums. 2 The asymptotic variance of the simple

residual of the it* cell can be estimated by,

i=1 =1

G 1 G-1 1
G = my l—m,'z§+miz;ﬁ.)—. (4.23)

1See Haberman [57] for eristential proofs of such estimates.

2 The superscripts S; and T; actually denote elements of special classes which are not needed in
the present discussion. We can simply think of these superscripts as denoting the marginal sums
in the numerator and denominator of the estimated ezpected frequency m.
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The derivation of this theorem uses an elegant but intricate coordinate-free ap-
proach and can be found in Haberman [57, Chapter 4]. However, the relationship
between (4.23) and the more common variance expressions based on projection ma-
trices [34, 2, 26|, as in (4.20), is elusive. To the best of my knowledge, no attempt
has been made at consolidation. In the Appendix (Section A.2), I attempt to clarify

these important but subtle relationships.

4.4.3 Pattern discovery as residual analysis

With the results of the previous section in mind. pattern discovery can now be
posed as a residual analysis problem. I will first build a contingency table for
pattern discovery and subsequently derive the associated residual equation. The
residual will then be specialized to the concentration and dependency objectives.

Suppose that we would like to discover patterns in a given data set {x;,i =
1,...,N} where each x; € R4. Suppose further that the continuous subspace
S C R4 in which this data lies, has been partitioned into J events. > Let us label
them as E;, j = 1...J. We are interested in discovering which events are significant
according to a discovery criterion.

Consider the 2 x J contingency table shown in Table 4.5. The columns of the
table are labeled with the events, E;, 7 = 1...J. The first population represents
the unknown distribution of the sample {x;} under consideration. Across this first
row, we enter the actual observed frequency, n,;, 7 = 1...J of each event Ej,

j = 1...J. The last column in the right is the row total, n,;, where the + sign

3Partitions of the sample space can be obtained by an optimization search (Section 4.8) or by
maximum entropy partitioning (Section 5.1)
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Table 4.5: 2 x J Contingency Table for Pattern Discovery

Events
Population E, E;, ... E; | Totals
1 (unknown distribution) | ny; nj2 ... nys n14
2 (assumed distribution) Moy MN22 ... MNaJ Naoyt
Totals Mgy MNy2 ... Npg | Tps

indicates summation over j. This notation is consistent with that of standard
contingency table analysis [26, 56, 43, 2].

The second row represents the assumed distribution. The entries here are the
frequencies we would expect in each event, assuming one of the discovery hypotheses
(Table 4.2) to be true. Note that summing across the second row yields nyy = ny4
as required by construction. The bottom row of totals is the sum of the frequencies
for each event.

We now have a 2 x J table, consisting of 2 independent multinomial popula-
tions. This is a case of product-multinomial sampling. We would like to compare
the 2 populations for significant local differences. In contingency table parlance,
this amounts to a test for homogeneity of proportions. The corresponding null

hypothesis, Hy, is given by,

Ho - D1j = P25, ] =1...J (424)

where p;; is the probability of event j for population :. This null hypothesis is for
testing homogeneity of proportions and is not to be confused with the discovery

hypotheses.
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To detect local departures from this hypothesis, we require estimates of the
expected values, m;;, under the assumption that H, is true. We now draw upon
a number of standard results for a 2-dimensional table with product-multinomial
sampling. Since each n;; has a multinomial distribution, the expected value is,
m;; = niypi; [26, 46, 2]. Assuming the null hypothesis, Hg, to be true, the estimate

of the common value of p;; is,

pij = X (4.25)
it

From this we obtain as the estimated expected value,

hij = My ;‘:’ (4.26)

Using the definition n.; = n,; + n2j, and exploiting the symmetry relations, n;; =
7o and ny, = 2n;,, we may specialize Equation (4.26) to the present table. Doing

so, we arrive at,

1
m; = §n+j (427)

1
= 5(mj +m2;5) (4.28)

where n,; is computed according to the discovery hypothesis. Equation (4.28) is
the estimated expected value for the cells in the j** column of the contingency
table, assuming Hy is true. Note that the 7 subscript has been dropped, as the
expected value m is independent of the population ¢, by virtue of the hypothesis of
homogeneity.

To detect local deviations from Hy, we invoke the adjusted residual test statis-
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tic [57]. From Equation (4.21), we can write the adjusted residual for the cell
corresponding to the :** population and j** event,
nij — T

~1/2
1]

T = (4.29)
where &;; is the estimated asymptotic variance of the numerator.

Since all the underlying models of 2-dimensional tables are trivially hierarchical
and decomposable, we can compute the asymptotic variance using Haberman’s
formula (4.23).

By direct application of Equation (4.26), we arrive at,

- X R 1 1 . 1
Cij = myj (1 - my; (n,-+ + a;-) + my; (m)) (430)
= i (1 ~ nﬁ) (1 - "—‘“) (4.31)
Nyt Nyt

This is the asymptotic variance applicable to our model under the assumptions of
product-multinomial sampling and homogeneity of proportions.
By applying Equation (4.27) and the relations, n,; = 2n;4 and n;. = ngy,

Equation (4.31) is further simplified to,
1 5 -
& = 3; ( - ﬁ) (4.32)

where again the ¢ subscript has been dropped as there is no dependence on the
population z.
Recall that only the first row of the contingency table (Table 4.5) describes the
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actual data. Hence, we only need to compute residuals for the first row of cells. For
simplicity of notation. these residuals will be written as r; without the population
subscript. Substituting (4.28) into the numerator of the residual definition (4.29),
we arrive at the adjusted residual, tailored for Table 4.5,

1 . .
2 2(n1J n2J) (4.33)

Ti = ~1/2
Cj

with é; defined by Equation (4.32). The above statistic is suitable for detecting
differences between the event frequencies of the unknown distribution against those

of an assumed distribution.

Interpreting residuals

The residual is an asymptotically normal, 2-tailed test statistic. The interpretation
in terms of events is just a special case of the definitions in Section 4.2. Let zg be
the value of the standard normal deviate, Z ~ N(0,1), such that P(Z < z) = 8.

Let 7; be the estimated value of the adjusted residual.
e An event Ej; is significant at a significance level a, if #; > Z1_a/2-
¢ An event Ej is negatively significant at a significance level a, if #; < —2z;,_q/2.

e An event E; is insignificant at a significance level a, if |#;| < z;_qy2.

4.4.4 Residual statistic: concentration objective

To specialize (4.33), we simply need to specify the estimate of n,;, the frequency for

the assumed distribution. For the concentration objective, the discovery hypothesis
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is that the data is uniformly distributed throughout the volume of the bounded
subspace, § C 2, under consideration. Hence, within an event E, of volume vj, the

expected number of observations would be,

ke B (4.34)

TNo; =
" Vror

where Vror is the volume of S and n;, is the total number of observations. In ac-
cordance with our intuitive understanding of a uniform distribution over a volume,
no; is proportional to the fraction of the total volume occupied by the event.

In the context of concentration-driven discovery, a significant event identifies
a part of the subspace which contains data with some structure. In contrast, in-
significant events demarcate sections of the subspace where the data is lacking in
organization. Lastly, negatively significant events indicate a region of space where

the data is notably sparse.

4.4.5 Residual statistic: dependency objective

Similar to the previous section, the residual is tailored to the dependency objective
by specifying the estimate of n,;, the frequency of the assumed distribution. Under
the discovery hypothesis of independence, we assume that for an event E;, its joint
probability is equal to the product of the marginal probabilities. Therefore, the

expected number of observations in E;, under the assumption of independence is,

d
Naj; = N14 H Pg (435)

i=1
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The marginal probability is estimated as,

n;
N1+

P, = (4.36)
with n; being the cardinality of the relaxed event R; which is obtained by relaxing
every dimension of E; except for the i** dimension. The relaxed event is more
precisely defined in the final formulation of the dependency objective (Section 4.5.2).

When considering dependency-driven discovery, a significant event marks a sub-
space where the different dimensions of the data exhibit strong relationships or
interactions. These dependencies might be general relations or functional relations.
Regions populated with data but void of dependencies are detected as insignificant
events. Negatively significant events also indicate a region of space that contains
no dependencies. In addition, negative significance implies that the space is sparser

than its surroundings. which may support some type of dependency.

4.4.6 F-statistic: linearity objective

The linearity objective (4.16) can be easily cast as a test statistic. In fact, the ratio

$S,eq/k
SSere/(N —k —1)

F= (4.37)
has an asymptotic F-distribution [114]. The computed value of F' is compared
against an F-distribution with k& and N — &k — 1 degrees of freedom. Recall that
the null hypothesis is the absence of a linear relationship between the dependent

variable (DV) and the independent variables (IVs), i.e. all the regression coefficients
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and all correlations between DV and IVs are zero. Hence, if F exceeds the critical
F-value, we reject the null hypothesis and conclude that there is an underlying
linear relationship.

In this section, I have set forth 2 test statistics for discovery, the adjusted resid-
ual and the F-statistic. These provide objective, problem-independent measures of
deviation from the discovery hypotheses. The significance level is the only thresh-
old to be set and has an intuitive appeal. The problems of determining thresholds

and oversensitive objectives are alleviated by using these standard statistics.

4.5 Discovery as optimization

Now that we have established pattern discovery as a process of searching for events
which maximize a discovery criterion (test statistic), it is natural to formulate

discovery as a mathematical optimization problem.

4.5.1 Parameters

Recall that discovery is restricted to rectangular events. There are several ways
to parameterize a d-dimensional rectangle. Some alternatives are listed below. All

require 2d parameters.

1. Specify all the vertices.
2. Specify the coordinates of 1 corner (reference point) and d lengths.

3. Specify the coordinates of 1 corner (reference point), the length of the longest

diagonal and d — 1 angles from the diagonal to the edges.
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I have chosen the second parameterization as it offers a number of advantages
in terms of incorporating parameter constraints. This will be discussed in Sec-

tion 4.5.3. With this parameterization, the parameters are,

8 =[61,....04,0441,....04] (4.38)

i** coordinate of the reference point, i=1,...,d

length of the ¢ — d side from the reference point, i =d +1,...,2d
(4.39)

4.5.2 Objective functions

The objective functions are simply the test statistics written in terms of §. Each
objective function is listed in turn. Note that to avoid confusion of notation for
joint and marginal frequencies, I have used A; and N> to represent the observed
and assumed frequencies, formerly denoted by n,; and n,;. Marginal frequencies

are still written as n;.

Concentration objective

The objective function is

7.(0) = (4.40)
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where N;(6) is the cardinality of the event E,
M(6) = |E| (4.41)

and N3(f) is the assumed frequency,

- E)N
Ny(d) = 22D (4.42)
Vror
The event E is defined by the parameters § as,

E={w|9i<w,-$9i+0;+d, i=1,...,d}CQ (4.43)
where w = {w;,...,wq} is a sample in Q. The volume of the event is also expressed
in terms of 5,

d
v(E) =[] bisq (4.44)
i=1
Finally, the asymptotic variance of n() — () is given by (4.31),
A ()

with m expressed by
. 1



CHAPTER 4. PATTERN DISCOVERY FOUNDATIONS 77

Dependency objective

The form of the dependency objective is similar to the concentration objective. It

is given by,

(4.47)

where again N, 1(5) is the cardinality of the event. The frequency N; is now given

as,

d
Ny(8) = NH P;(6) (4.48)
=1
The marginal probability estimate, 2;(6) is computed as

5.5y = ™i(0)
P(8) = — 4
6) =" (4.49)
with n;(d) = |R:| denoting the cardinality of the relaxed event R;. Relaxing an event
in a given dimension simply means to extend the boundaries in that dimension to
the limits of the subspace under consideration. The event R; is obtained by relaxing
all but the ** dimension of the event E. Particularly, R; is given by,
0; <w; < 6; + 04

Ri={w cQ (4.50)
LJ’SQ}_,'SUJ', j=1,...,d ]#z

where L; and Uj; are the lower and upper boundaries of the j** dimension, respec-
tively. As with the concentration objective, the asymptotic variance is expressed

by (4.45).
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Linearity objective

The linearity objective is the ratio,

(d) = 58eeq(8)/k
SSerr(8)/(N — k = 1)

(4.51)

where k = d + 1 is the number of regression coefficients and N is the size of the
sample under consideration. The sums-of-squares are computed for the points in
E, by selecting one variable as the DV and using the remaining variables as I'Vs.

The event E is defined by (4.43).

4.5.3 Constraints

To complete the mathematical formulation as an optimization problem, we need to
specify the constraints. Let L; and U; represent the lower and upper bounds of the

#t" dimension of the bounded subspace. Three sets of constraints are identified.

1. L; <6; <U;,i=1,....,d
The first constraint states that the reference point for the hyper-rectangle

must fall within the bounded subspace.

2.0<6;<U;,i=d+1,...,2d
The constraint §; > 0 ensures that the lengths of the hyper-rectangle are non-
negative. The constraint §; < U; limits the maximum length. However, this
implies that the event could extend beyond the boundary U; whenever the i**

coordinate of reference point is greater than L;. Fortunately, since there is no
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data beyond U;, ¢ = 1,...,d, events which do extend beyond U; are naturally

not favoured.

8. M1224410: > 6Vror = Vinim
The last constraint demands that the event volume exceed a minimum volume,
expressed as a percentage of the total volume. The purpose is to avoid volumes
which produce expected frequencies which are too small for valid statistical
testing. It is important to note that the minimum volume ought to depend

only on the total volume and not on the dimensionality of the data.

4.5.4 Statement of optimization problem

With the parameters. objective function and constraints in place, we can now for-

mally state the optimization problem. The pattern discovery problem is to,

Maximize J(8) (4.52)
subject to 0<6;<U; t=d+1,...,2d
L;<6;<U;, 1i1=1,...,d

2d
i=d+1 01’ Z Vmin

The objective function J(6) is,

f‘c(é ) concentration
74(8) dependence (4.53)
ﬁ'(é) linearity

J(6)
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All the theoretical formulations of this chapter are now complete. The final sections

present a solution technique to the optimization problem.

4.6 Genetic algorithm approach

The objective functions for concentration and dependency discovery are not smooth
so that gradient-based methods cannot be readily applied. Further, the objective
function is ill-posed in that the cardinality, n(f), cannot be expressed as an ana-
lytical function of the parameters, 4.

Genetic algorithms (GA) have proved to be useful tools in the optimization
of non-smooth objective functions [52]. Although there is debate as to whether
GAs can locate a global optimum, this is not of immediate concern for the present
application. In discovery, we can tolerate suboptimal and crude local solutions.
Recursive discovery will provide the needed refinement to these inexact solutions.
There are a number of advantages to applying GAs to the discovery problem. First
of all, no derivatives are required and the objective functions can be used in their
present form. For typical problem sizes, the GA approach requires less computa-
tions than a standard simplex direct search with penalty functions®. Moreover, the

aforementioned constraints can be directly embedded into the GA coding scheme.

Coding scheme

The GA coding scheme can directly incorporate a variety of parameter constraints.

Note that the volume constraint can be roughly approximated by a set of parameter

*Parallel direct searches such as [37] were not investigated
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constraints. Let R; = U; — L;. We can write the volume constraint as,

2d d
II 6:>dVror =6 R: (4.54)
i=d+1 i=1
d

where 0; are the lengths and [J{_;, R; = Vror. It is clear that the volume constraint

is satisfied if the following set of conditions are satisfied,

Giva > 8Y4R;, j=1.....d (4.55)

This may be a conservative bound on the lengths of the hyper-rectangle and is
in fact only a sufficient but not necessary condition. The approximate bound is
nonetheless tolerable since extremely small events are generally not reliable for
statistical testing.

For the GA coding scheme. I have elected to use binary representation. Although
not as sophisticated as gray-coding, it should be sufficient for the present purposes.

I will summarize the coding procedure in five steps.

1. The first step is to determine the binary variable range. Suppose we code each

variable into ¢ bits. The representable range of values is from 0 to 27 — 1.

2. The second step is to compute the resolution of the binary variables. Define
the resolution p;, of the i*® binary variable as,

max(8;) — min(6;)

4.56
52 1 (4.56)

pi =

This is simply the range of the i** parameter divided by the range of the
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binary variable. For the present parameterization, the resolution of the binary

variables are thus.

i U-~L. .
Sio i=1,...,d
pi = 21-1”4 (4.57)
UidRi  j=d+1,....2d

29-1

. Next, a linear transformation scales the actual parameter values to numbers
within the binary representation range. Suppose the parameter values are § =
{6:,...,624} and let the transformed values be denoted as T = {¢;,...,¢sq}.

The transformed values are given by,

1'ound(%"-), t=1,...,d
round(gi:i:ﬂh), t=d+1,...,2d

. The individual genes are now obtained by converting the numbers ¢; into base
2 representation. Let g; represent the binary gene, and let Decimal_to_Binary(-)

be a function which converts a decimal number to its binary equivalent.

g: = Decimal_to_Binary(¢;) (4.59)

5. The final step is to assemble the chromosome C of length 2d x q.

C=[9192 --- gud] (4.60)

In Steps 2 and 3 above. the parameter constraints are directly incorporated into
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the binary code. In fact, with this coding procedure, the GA can only represent
solutions which satisfy the prescribed parameter bounds.

A standard genetic optimization routine [52] is used with a resolution of ¢ = 10
bits. A population size of 30 is initiated at each optimization and a maximum of 30
generations is permitted. These were found to be empirically reasonable values to
obtain crude, approximate solutions. Other coding schemes and variant GA designs

are subject of much research. See Beasley [12] for an overview.

4.7 Sequential discovery

Since the subspace under analysis may have more than 1 significant event, we need
to repeat discovery sequentially. Discovery should stop either when we encounter
a threshold number of insignificant events or when no more events can be found.
The number of insignificant events is typically set at 5 or more, to allow for a
handful of poor random initializations. The general procedure is as follows. Let

Number_insignificant be the number of insignificant events detected.
1. Set the discovery space S to be a subset of .

2. Perform discovery in S.

3. If an insignificant event is found. check if the number of insignificant events
has exceeded the specified tolerance. If exceeded, then STOP. Otherwise,

increment Number _insignificant and goto Step 2.

4. If a significant event E is found,
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(2) Remove the set F from further consideration, i.e. S =S5\ E.

(b) Check if the cardinality of S is sufficient to warrant further discovery,
i.e. |S| > minimum # of points? If no. then STOP. Otherwise, goto

STEP 2.
5. If no event is found, then STOP.

Sequential discovery reflects our interest in identifying the many possible local op-
tima which significantly satisfy the discovery objective. The idea of sequential
discovery is analogous to the projection pursuit principle of removing known struc-

ture (68, 101].

4.8 Recursive discovery

Clearly even with sequential discovery. the detected events or patterns can be quite
crude. In order to refine the events. we need to extend discovery in a recursive
manner. The basic idea is to take each discovered significant event and re-examine
the contained data in isolation. Recursion should be stopped when there is an
insufficient number of points to warrant further analysis or when the remaining

subspace is insignificant. The basic recursive procedure is as follows,
1. Set S to be a subspace of Q.

2. Perform sequential discovery on S to obtain a set of events {E;,7 = 1,...,J}.

If no events are detected, then EXIT.
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3. For the j** significant event E;, check if |E;| > minimum # of points. If

affirmative, set § = E and goto Step 2. Otherwise, goto Step 4.

4. Have all events been checked? If not, then j = j + 1 and goto Step 3.
Otherwise, EXIT.

From a measure theoretic viewpoint, the set of events forms a covering of the
sample space and thus recursive discovery seeks a refinement of the initial covering.
The action of recursive discovery can be interpreted in both the sample space and

the parameter space.

Sample space interpretation

In the sample space, recursive discovery yields events with successively smaller
volumes. If we view events as sets of real numbers, then events from recursive

discovery satisfy a containment property,

EoDE DED... (4.61)

where E; is the event detected at the it® level of recursion. Figure 4.6 illustrates

the sample space interpretation.

Parameter space interpretation

In the parameter space, recursive discovery can be interpreted by way of Figure 4.7.
The key observation is that each local solution induces a smaller search space for

the next level of recursive discovery. Let U; denote the bounded parameter space.
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Reference point

Figure 4.6: Sample space interpretation of recursive discovery

Suppose discovery yields a local solution 6} corresponding to an event Ey. This
solution induces a search space U; which contains all the possible solutions for the
next level of discovery. When discovery is performed, a solution 9-; is obtained,
corresponding to the event £;. In like fashion, this solution induces a search space,
U,.

The induced space can be specified in general terms. If §= is the solution at the
rth level of recursion r > 0, then the induced search space U, is given by,

|6 <8< +65, i=1,....d
U.={6 (4.62)

9; < o5, i=d+1,....2d

Note that 87 is the lower boundary of event E, in the i** dimension while
07 + 6;,4 is the corresponding upper boundary. Hence, the first condition on U,
in (4.62) simply states that the reference point of the next solution must lie within
the confines of E,.

The second condition in (4.62), 6; < 87, i =d+1,...,2d stipulates that the
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\: space induced by 6

g; ®
Solution in Z,

85

Solution in Uy

tduced by 6;

Search space Uy

Figure 4.7: Parameter space interpretation of recursive discovery

lengths of the next solution should be shorter and at most equal to the lengths of
E.. Referring back to Figure 4.6, we appreciate that these 2 conditions must be
satisfied in order for the second rectangle to lie within the first.

In summary, recursive discovery allows the individual optimizations to be crude

and suboptimal since solutions can be recursively refined.

4.9 Summary

In this chapter, I have laid the theoretical groundwork for pattern discovery at the
event level. Events, their characteristics, patterns and pattern discovery have been
formally defined. Event-based discovery is formulated as an optimization problem
with statistical objectives. The proposed solution methodology combines a genetic
algorithm with sequential and recursive discovery processes. Figure 4.8 recaps the

components of the framework. With these foundational concepts in place, we can
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now proceed to a number of important specializations and extensions of the basic

framework.
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Components of Event-based Framework

( Definitions

)

Event

Event characteristics
Pattern

Patern discovery

LFonnulalion of event-based discovery j

Probability Discovery objectives
Obsef‘{ed frequency Statistical tests
Statistic value Optimization problem
Volume

Figurc 4.8: Summary of theoretical framework
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Chapter 5

Pattern Discovery: Specialization,

Extensions and Interpretation

In this chapter, the basic ideas developed for event level pattern discovery are
specialized and extended. For data of 2 dimensions, I present a recursive, criterion-
driven partitioning algorithm which offers substantial computational savings over
the optimization approach, without seriously compromising the ability to discover
significant events. Subsequently, I will present extensions of pattern discovery to
five areas of pattern analysis: density estimation, smoothing, classification, tracking
of dynamic patterns and high-dimensional discovery. These applications will serve
to illustrate the versatility of the event level framework. The chapter will close with
a discussion on the interpretation of high-dimensional events. Figure 5.1 gives a

pictorial overview of the topics.
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5.1 A general low-dimensional approximation

When dealing with low-dimensional data, events can be quickly uncovered by divid-
ing the bounded subspace into smaller contiguous regions [126, 24]. Uninteresting
regions, as determined by the discovery criterion, are discarded. Subspaces with
information are further subdivided into contiguous regions. The process of repeat-
edly dividing and evaluating subspaces can be continued until certain termination
conditions are met. Throughout the process, informative subspaces are stored as
significant events. With this overview in mind, a low-dimensional discovery alterna-
tive can now be developed. I will first review an information theoretic partitioning

scheme which is employed in the low-dimensional discovery alternative.

5.1.1 Marginal maximum entropy partitioning

According to the definitions of events and patterns (Section 4.1), Q should be par-
titioned into countably many non-overlapping rectangular regions. Clearly, such a
partition is not unique. However, since we eventually want to describe the data’s
organization probabilistically. we desire a technique which maximally preserves its
probability distribution. One such technique is known as marginal maximum en-
tropy partitioning (MMEP) [126, 79]. This method segments the subspace of
interest while approzimately maximizing the overall entropy [107], H, of the par-
tition. If the subspace is partitioned into J events, then the entropy is expressed

as,

H= —XJ;P(E,-)log P(E;) (5.1)

1=1
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where P(E;) is the probability associated with event E;. The approximate nature
of the method is due to the fact that partitioning is not performed in the full
dimensionality, but rather marginally along each dimension. Lascurain has shown
that this is a reasonable approximation [79] for a number of distributions.

It is well-known that the entropy of a partition (Equation (5.1)) is maximized
when all probabilities are equalized [107, 72]. Event probabilities are estimated

by (4.4), which is repeated here for reference,

P; = n;/N. (5.2)

As usual, N is the total number of data points under consideration and n; is the
number of data points within E;. Consequently, the equalization of probabilities
in (5.1) translates into an equalization of event frequencies. Therefore, marginal en-
tropy maximization involves the segmentation of individual axes into 1-dimensional
intervals such that each interval contains an approximately equal number of sam-
ples. Lascurain’s procedure {79] is paraphrased below.
Marginal Maximum Entropy Partitioning Procedure (MMEP)

Let S represent the subspace to be partitioned. The partition size will be de-
noted as . As usual, d is the dimension of the data. Partitioning will produce

Q@ x @ x...xQ = Q? events. The operation |-| rounds down to the nearest integer.

1. Enumerate the number of sample points, N, in S. Set ¢ = 1. Choose a

partition size Q.

2. For axis 12,
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(a) Identify the minimum and maximum value of the i** coordinate. Label

them as a; and ag41, respectively.

(b) Choose @ — 1 points, as,...,aq along the axis, between a; and ag4;, so

that there are () intervals, each containing | N/Q] £ 1 points.

(c) From each a;. extend a (d — 1) dimensional plane perpendicular to the
axis.

(d) If : < d, increment ¢ and return to Step 2. Otherwise, goto Step 3.

3. The intersection points of the (Q + 1)? planes define Q¢ events in R<.

For ease of visualization. the procedure is illustrated in Figure 5.2 with a 2-dimensional
example (d = 2), using a partition size of @ = 3, for a total of Q¢ = 32 events.
The data consists of N = 45 points. The dashed lines indicate the locations of
the partition points on each axis. The vertical and horizontal partitions are shown
separately on the left side. They are combined to produce the picture on the right-
hand side. Each interval contains N/Q = 15 points and the observed frequencies

of each event are approximately uniform.

5.1.2 Boundary refinement

The MMEP method is fairly rigid in that the boundaries of the constructed events
must lie on the partitioning planes. For discovery purposes, this is inadequate as
data on curved surfaces will not be well-represented. The left panel of Figure 5.3
exemplifies this dilemma with 4 events, {E,..., E4}. A simple enhancement is to

adjust the event boundaries to coincide with the maximum and minimum coordi-
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Figure 5.2: Example of MMEP with 2-dimensional data
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Figure 5.3: Boundary refinement

nates of the contained data. The adjacent pictorial demonstrates this adjustment.
In this way, the location of events can be completely general. Close adherence to

the actual data is ensured, despite the restrictive nature of the partitioning scheme.

5.1.3 Criterion-driven recursive partitioning

Despite the enhancement due to boundary refinement, it is evident that a single
partition of the space yields events which only coarsely capture the data’s organi-
zation. Although a very fine partition may solve the problem, it is computationally
infeasible. To refine the events, we need to extend the above partitioning procedure
in a recursive manner.

In the present context, recursive partitioning [126, 24, 110, 54, 47, 64, 28] means
that we again apply the MMEP procedure to each constructed event. Clearly, it
is not meaningful to continue this process indefinitely. Termination conditions are
required (See Section 5.1.5). Moreover, recursive partitioning of every constructed

event may not be necessary, especially where there is actually little data or in-
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Figure 5.4: Recursive partitioning

formation. Some criterion is needed to guide the process of selective recursive
partitioning [126, 24].

Criterion-driven recursive partitioning of the sample space has been applied to
the problem of pattern classification [64, 47, 87, 55], where partitioning is typically
driven by some measure of class discrimination. In like manner, discovery objectives
can guide the partitioning process. Chiu et. al. [126, 24] have entertained this idea
specifically with a criterion similar to the concentration objective. Here, I generalize
the approach so that any of the aforementioned discovery criteria can direct the path
of recursive partitioning. Specifically, only events which are significant according
to the discovery criterion become candidates for further partitioning. Figure 5.4
portrays an example of two levels of partitioning. The initial partition is shown
on the left, along with the objective function values of each event. On the right is

the result of recursive partitioning. For this example, I have assumed that the test
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statistic is normally distributed, so that at a 5% significance level, only events with
objective values larger than or equal to zgg7s = 1.96 are repartitioned.

An interesting interpretation exists for recursive partitioning when each segmen-
tation is driven by an equalization of frequencies (e.g. MMEP). In these circum-
stances, each level of recursion can be interpreted as a refinement in the estimate
of the maximum entropy of the initial partition. More detail on this novel inter-

pretation is provided in the Appendix, Section A.3.

5.1.4 Adaptive partition size

In the original work on MMEP [79] and early recursive partitioning-based discovery
schemes [126, 24|, there is no mention of how to determine an appropriate partition
size Q.

At each level of partitioning, it makes sense to choose a partition size which
yields the most information about the data’s structure. Since significant events
(both positive and negative) capture the information of interest, I choose the parti-
tion size @ to maximize the ratio of significant events to all candidate events. The
number of significant events alone cannot justify the choice of Q. While the actual
number of significant events may be large, the tally of insignificant events may be
many times larger, thereby incorrectly suggesting that the current partition is very
informative.

Formally, suppose the sample space is to be partitioned into Q¢ events. The
number of significant events is a function of the partition size Q. Thus, let M(Q)

represent the number of positively and negatively significant events in this partition.



CHAPTER 5. PATTERN DISCOVERY: SPECIALIZATION, EXTENSIONS

AND INTERPRETATION 99
ol ‘j
02b5 ' -,"
04 g
o8 I -
T

Figure 5.5: Adaptive partitioning

Choose @ to maximize.

Q) 53

As a simple example, suppose that we were trying to detect the structure of the
data in Figure 5.5, using the concentration objective. The left panel is the result of
fixed 2 x 2 partitioning. Much of the structure in the data is lost. The right panel
exemplifies the substantial improvement in discovery due to adaptive partitioning

at each level of recursion.

5.1.5 Termination conditions

As alluded to in the explanation of recursive partitioning, criteria need to be estab-
lished to prevent infinite recursion. These conditions are now outlined. More than

one condition may be satisfied simultaneously.

(1) A>20%

Here, A is the proportion of events with expected frequency below 5.
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(iii)

This first condition states that partitioning should cease at a given level
if more than one-fifth of the events have expected frequencies less than
5. This constraint, mentioned in [2], maintains the validity of statistical

testing.

v; < FI2Z(2min — 1)

This condition applies only for the concentration objective and prevents
an event E; from being partitioned when the expected event frequency
m; is below the minimum value (,;,, required for reliable statistical
testing. The derivation of this condition is provided in the Appendix,

Section A.4.

9(E;) < —62
When an event is negatively significant, it should not be partitioned. In
fact, subspaces with little or no data are removed from further consid-

eration.

(iv) lg(&5)| < 62

This last condition halts recursive partitioning when an event is insignif-
icant. Since the event’s frequency does not deviate from that predicted
by the discovery hypothesis, there is no need for additional investigation

of the subspace.

100
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5.1.6 Event merging

Although recursive partitioning permits the detection of local organization in the
data, two unacceptable complications arise. The first issue is computational. By
a straightforward calculation, we see that with increasing levels of recursion, the
number of events grows exponentially. Apart from being an exhaustive drain on
resources, an overwhelming number of events is unmanageable for tasks such as
classification or prediction. Secondly, overlapping events would arise if we were to
store every event generated from multiple levels of recursion in a given subspace.
From a theoretical perspective, overlapping events are prohibited.

Fortunately, these problems can be effectively alleviated by merging insignificant
events within the current subspace S under consideration. Suppose the MMEP
procedure is applied to a subspace S. using a partition size @, to produce a set
of events {E;}, 7 = 1...Q% An index set, x, can be formed to identify all the

insignificant events.
r={j | lg(E))l <6} 1<j<Q° (5.4)

Once identified, these insignificant events, {E;}, j € &, can be merged into a

compound event, F, = E;. The following is a synopsis of the procedure.

jER
Assume that the space S has been partitioned by the MMEP procedure.

Event Merging Procedure

1. Identify insignificant events, {E;} € S, j € . The index set, &, is defined by

Equation (5.4). If there are no insignificant events, then stop.
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Figure 5.6: Event merging
2. Compound event construction.

(a) Compute the compound event volume, v. = ¥ ¢, v;

(b) Compute the compound event frequency, n. = 3¢, n;.
3. Remove partition boundaries between insignificant events.

Figure 5.6 exemplifies the effect of event merging. The events and their objective
values are shown on the left. Asin the previous example, I assume a 5% significance
level and a normal test statistic. Significant events are identified as those with
an objective value g(E£;) > zgg7s = 1.96. On the right, the significant events are
retained (shown as shaded rectangles) while the insignificant events (|g( E;)| < 1.96)
are merged.

With regards to the computational problem, event merging offers substantial

relief. Suppose that we apply MMEP to S, using a partition size of Q. Without
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event merging, MMEP will produce Q¢ = M + |x| events, where M represents
the number of positively and negatively significant events and |x| is number of
insignificant events. With merging, the tally of events reduces to M + 1. As the
number of insignificant events typically far outweighs its significant counterpart,
i.e., |[k] > M, merging amounts to an order of magnitude reduction in the total
number of events stored.

From a theoretical standpoint, there will no longer be overlapping events. The
compound events may assume quite arbitrary geometries but are still consistent
with the event definitions. The argument is that the compound event is a union of
a finite number of events and is therefore itself an event, by virtue of the closure

property of the Borel field, B(R).

5.1.7 Pattern discovery algorithm

We summarize the above discussions by presenting a low-dimensional pattern dis-
covery algorithm based on criterion-driven recursive partitioning. The algorithm
draws upon partitioning ideas from [64, 47, 79] and the hierarchical methodology
of {126, 24].

Pattern Discovery Algorithm: Criterion-driven Recursive Partitioning

Suppose we want to seek patterns in a subspace S C Q.

1. Compute the partition size @ for S, according to the criterion of Equa-

tion (5.3).

2. Partition S into Q9 events {E;}, j = 1...Q¢, using the MMEP approach of

Section 5.1.1. Set j = 1.
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3. For event F;,

(a) Refine its boundaries by the method described in Section 5.1.2.

(b) Compute the value of the test statistic g(£;) corresponding to the current

discovery objective.

4. Store, recurse or continue.

(a) If termination condition (iv) in Section 5.1.5 is met, mark the event as
insignificant. If termination condition (i) or (ii) is satisfied, store this
event as significant or mark it as insignificant, depending on the value
of its statistic. If condition (iii) is true, simply remove this event from

further consideration. Proceed to Step 4c.

(b) Recursion. If no termination conditions are met, set S = E; and go to

Step 1.

c) Increment j; and proceed to examine the next event by returning to
J p
Step 3. If all events have already been examined, i.e. j = Q¢, then goto

Step 5.

5. Apply the Event Merging procedure of Section 5.1.6 to S. If a compound
event is constructed, store the compound event. If this is a nested recursion,

return to Step 4c. If this is the top-level of partitioning, stop.

In the next chapter, experiments will demonstrate the application of this low-
dimensional discovery algorithm (Section 6.1.5). A number of extensions to the

basic pattern discovery framework will now be presented.
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5.2 Multivariate (discrete) density estimation

The estimation of the probability density function (pdf) is a central problem in
multivariate data analysis, as evidenced by the large body of literature from a
diversity of disciplines. See for example the works of Silverman [108],Tapia and
Thompson [115] and Scott [104]. The density function gives a probabilistic descrip-
tion of the data’s organization. Such a description is useful for data interpreta-
tion, regression, classification and prediction. Density estimation techniques can
be parametric or nonparametric. Average shifted histograms {104}, kernel density
estimators [93], and probabilistic neural networks [86] are just a few of the many
existing methodologies. Due to the valuable information captured by the pdf and
its broad applicability. density estimation tools are indispensable in data analysis.

In the present context, when discovery is performed with the concentration ob-
Jjective, the resulting events can be used directly to furnish a flexible, nonparametric,

discrete probability density estimate.

5.2.1 Probabilistic description

To simplify notation, the event indicator function is defined.

Definition 9 Event Indicator Function
The indicator function for the event, E;, is defined as,

Lx)={ = YxEF (55)

0 otherwise
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Here, x € R? is a point in the d-dimensional sample space.

Employing Definitions 3 and 4 for event volume and observed frequency, we can

assign to an event, E;, the following probability density estimate,

s
Bj = < (5.6)

where, as usual, N is the total number of sample points under consideration. This
definition is along the lines of the general nonparametric density estimate of Duda
et. al. [41]. Note that this probability density is just the probability estimate }5,-
of Equation (4.4), divided by the event volume v;. We see immediately that the

normalization condition
ZPj:Zﬁj-‘szl (57)
J J

is satisfied. To obtain a discrete probability density function, p, valid for the entire
sample space, recall that the events, {E;}, do not overlap and therefore we may

write compactly

Bx) = 3 L(x)5; (58)

where again x € R4 and [;(x) is the indicator function previously defined. Note
that for each x, only one term in the summation will have [;(x) # 0 as the data
point can only fall into one event.

In the Appendix Section A.5, it is argued that the pdf furnished by criterion-

driven recursive partitioning is asymptotically consistent.
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5.2.2 Theoretical validation

In estimating probability densities, p, from discovered events, there is a theoretical
wrinkle that needs to be addressed. Since the density p and the probability P are
related by (5.6), it is sufficient to validate the estimation of probabilities P from
events.

From measure theory, probabilities should only be assigned to a Borel field of
events, otherwise, the axioms of probability will be violated. Suppose we wish to
estimate probabilities in a bounded subspace, S C Q = R¢. For now, assume that
upon completion of discovery, we have a set of events, {E;,7 = 1,...J}, which
completely covers S. Clearly, this set of events does not constitute a Borel field for
R4, since Borel sets in S are not in {Ej,j = 1,...,J}. Fortunately, this is not
a problem if we simply consider S¢ C Q to be arbitrarily partitioned into events.
Thus, the Borel field B(R¢) will consist of discovered events in S and arbitrary
events in S¢. An arbitrary partition of S¢ is admissible because we only assign
non-zero probabilities to events in S. See Figure 5.7.

Now consider the case when the discovered events only form a partial covering
of S. The idea then is to consider the uncovered region of S as an event to which
we assign a uniform background probability. To clarify, suppose discovery yields a

set of events, {E;,7 =1,...,J} in §. However, we now have,
J
Z v; < g (5.9)
Jj=1

where v; and vs are the volumes of the event E; and the subspace $, respectively.
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Sample Space Q = R¢ A valid partition of R¢

Eventsin §

arbitrary events

in §¢
Subspace of
Interest S C Q
Figure 5.7: A Valid Partition the Sample Space
Define the space not covered by the discovered events as,
J
F=5\(UE) (5.10)
=1

Since F' can be represented by at most a countable union of rectangles, it is also

an event and is assigned the density value,

N — Z;:l n;
N(v, — 7, v))

pr = (5.11)
Therefore, as shown in Figure 5.8, F and {FE;,7 = 1,...,J} completely cover S
and the same argument as above validates the Borel field, B(R¢). In this way, the
discovered events in S always provide a valid partition for the sample space R9, to

which we can assign probabilities.
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Sample Space 2 = R4 A valid partition of R¢

Event F

arbitrary events
in §¢

Subspace of
Interest S C Q2

Figure 5.8: A valid partition when S is partially covered

1
1+

Ey E;

Figure 5.9: Nested events in 2-dimensions

5.2.3 Nested events

There is yet another minor theoretical issue which needs to be resolved. With
recursive discovery, it is possible to have spatially nested events. Of course, events
cannot overlap and therefore we consider the nested events as 2 disjoint events, as
portrayed in Figure 5.9. To ensure that the estimated probabilities sum to unity,
we need to subtract the frequency of the smaller, nested event from the larger

event. This prevents data points from being doubly enumerated. In the example of
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Figure 5.9, suppose the original frequency of E; is n¢ and the frequency of E, is n,.
After E, is discovered, the frequency of E, becomes n; = ng—n,. The corresponding
probability density estimates would then be, P = AT"’G,:—:‘;T) and P = ﬁ";';z—, where v,

and v, are the respective volumes. The same adjustment can be extended to any

number of nested events and to any number of levels of nesting.

5.2.4 Scale invariance

To explain scale invariance, we need to first define monotonic scaling, a special case
of monotone transformations of the coordinate axes [3, p.22-4]. Suppose we have a

data set X = {x;},7=1....,N and each x; € R4.

Definition 10 Monotonic Scaling
A data set X = {x;}, i =1,..., N is said to undergo a monotonic change of scale

to X' = {x';}, 1 =1,....N. if for the i** data point,
X' = nXie, >0, k=1,...,d (5.12)

where . are in general d distinct positive constants.

In other words, the A*® coordinate of every data point is scaled by 4. By scale
invariance, we mean that the probability estimates are invariant to a monotonic
change of scale. Equivalently, scale invariance implies that the ratio of densities at
any 2 points in the sample space is invariant.

The importance of scale invariance was recognized by Devroye [38] and Fried-

man [47] in their work on nonparametric classification. Numerous partitioning
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schemes were designed specifically with this property (64, 47, 87, 126, 24]. In dis-
covery, this is an equally indispensable property. Regardless of how the variables are
scaled, a discovery system should uncover the same patterns (events) from a data
set. Further, the probabilistic description of these patterns should be consistent
and independent of scale.

We note that when the low-dimensional discovery algorithm is used to estimate
the pdf, the discrete density function is scale invariant. This property is attributed
to the frequency equalization tendency of the partitioning process. Let us formalize
this property.

Suppose we have 2 data sets, X = {x;} € S,and X' = {x’;} € §',i=1,...,N.
Let X' be a monotonically scaled version of X, as defined by Equation (5.12).
Suppose now we apply MMEP to S and S’. By nature of Equation (5.3), the same
partition size, (), will be selected for both data sets. The result of partitioning
will be 2 sets of events {E;} and {E}}, j = 1,...,Q% We have the following

proposition.

Proposition 1 Scale Invariance
Let {E;} and {Ej} be constructed as above. Let the probability of an event Ej; be

ezplicitly written as P(EJ-). Then,

P(E;)=P(E) VYi=1,...,Q* (5.13)
Furthermore, with © # 7,
p(E:) _ P(E;)
BE;) ~ 5(EY) (5.14)
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Figure 5.10: Scale invariance - Estimated probabilities 15,- are unchanged
where p(E;) is the probability density value of event E; as given by Equation (5.6)

This property is a direct result of MMEP and the chosen density estimate. Ver-
ification is provided in the Appendix, Section A.6. A simple example is provided in
Figure 5.10, where the scale of one feature is expanded and the other is compressed.
The scale factor is denoted as 4. Not only is there a one-to-one correspondence be-
tween events detected in S and S’, but the probabilities remain unchanged.

Due to the random nature of the GA algorithm, scale invariance cannot be
guaranteed for discovery by optimization. Nonetheless, as long as the significant
structure of the data is consistently captured, the pdfs can be approximately in-
variant. Experimental findings will empirically demonstrate the scale invariance

property (Section 6.1.4).
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5.3 Smoothing

The set of discovered events forms a discrete representation of the data. The

representation is discrete because an observation can only fall in one of a finite

number of subspaces.

However, oftentimes. a continuous description of the data’s organization is pre-

ferred. For example, consider the following types of problems.

Analysis of high-dimensional data . Due to the effects of high-dimensional
geometry, data in high-dimensions is inevitably sparse [104]. Consequently,
a discrete representation built upon a given data set, can only account for
a small fraction of the space of interest, even if the space is bounded. Only
through smoothing can the vast regions of uncovered space be parsimoniously

represented.

Generalization . Whenever we need to generalize from the given data, i.e. inter-
polate between data points or extrapolate to uncharted territory, some sort of
smoothing is required. The problems of prediction, classification and function

fitting are typical examples.

Exploratory analysis . When visually inspecting contours and surfaces, a smooth

and continuous approximation to the data is more appealing [30].

Evidently, smoothing is an important method of data analysis [84]. It turns out
that the discrete representation of events can be easily relaxed to produce a smooth

representation of the data’s structure.
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5.3.1 Formulation

The basic idea is to estimate a kernel for each event. The cohort of these kernels
then provides a smooth approximation over the sample space. The Gaussian kernel

centered around the mean p € R with covariance matrix £ is given by,

1
2w)42A(D)?

#ex) = - exp (~3(x - w5 x — ) (5.15)

where here A(X) is the determinant of ¥ and the prime denotes transpose. As
usual, d is the dimensionality of the data. The multivariate Gaussian kernel is the
most popular choice of kernel since it is continuous everywhere but by proper choice
of covariance matrix, its support can be made effectively compact. Another useful

property of the kernel ¢ (x) is that it is a density function, i.e.,

/m¢umx=1 (5.16)

-0

To fit a kernel ¥g(x) to the event E, with observed frequency ng, we simply

compute the mean and covariance matrix for the data points contained in E.

! gg:x, (5.17)

i=1

S = S0 — m)x— ) (5.18)

i=1

ng
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Kernel ¥(z

Event E

Figure 5.11: Smoothing a 2-dimensional event

Conditions of applicability

The covariance matrix is always symmetric and positive semidefinite [41]. In prac-
tice, the use of the kernel is restricted to cases when X is positive definite, so that
the determinant is strictly positive. The kernel ¥(x) is degenerate when the data
within an event falls in a linear subspace, such that the determinant, Ay, is close to
0. This situation arises when two of the variables are strongly linearly dependent
or when one variable has negligible variance.

Figure 5.11 depicts the smoothing of a 2-dimensional event using contours of
the kernel density function. The next section will illuminate the application of the

smoothed events.

5.3.2 Continuous density estimation

The smoothed events can be strategically combined to yield a continuous pdf es-
timate that satisfies probability axioms. Suppose discovery yields events {E;,j =
1,...,J}. The estimated discrete density is p;. Each event is fitted with a kernel,

1;(x) as explained above.



CHAPTER 5. PATTERN DISCOVERY: SPECIALIZATION, EXTENSIONS
AND INTERPRETATION 116

The continuous pdf is estimated by,

. J
f(x) =) Wi;(x) (5.19)

j=1

where the kernel weight. W}, is defined as,

Pj
W. = ~ 5.20
? Z;'Izl pJ ( )

Immediately, we see that the normalization condition for densities is satisfied,

~ . J P

[ i = W [T gsnax (5.21)
= XJ:WJ' (5.22)
-1 (5.23)

Note that I have elected to use the normalized discrete densities rather than the
probabilities as kernel weights. The reasoning is that the significant events may
not cover all the data. so that when probabilities are estimated by (4.4), we may
have 37 Pj < 1.

=1

5.3.3 Nested events

As with discrete probability estimates, nested events arising from recursive discov-
ery should be handled with care. Consider the situation of Figure 5.12. Recall that
we consider E;, and E, to be disjoint. Let s; and s, denote the set of data points

exclusively in E; and E,, respectively. In other words, s, sz = 0.
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E,

Events Individual kernels Weighted summation

Figure 5.12: Handling nested events in continuous pdf estimation

To ensure consistency among different levels of resolution, the mean u; and
covariance X; for event E) should be estimated with the points s; {Js,. However,
the mean p, and covariance, 3, should only be estimated with s,. Note that the
kernels ¥, and v, will inevitably overlap. Nonetheless, the convex sum of kernels

guarantees that the probability axioms are not violated.

5.3.4 Generalized kernel estimation

Despite some attractive analytic properties, kernel estimation has traditionally been
plagued with a number of practical difficulties. Historically, to obtain a smooth
pdf estimate, Parzen {93] advocated the placement of a kernel density function on
every data point. Theoretically, it can be shown that this procedure will produce
an asymptotically consistent estimate of the underlying true density function [41,
p-89].

Storage and evaluation of N kernels, where IV is the size of the data set, proves
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to be computationally expensive. Efforts to reduce the computational burden have
aimed at reducing the number of kernels. However, the questions of model order,
i.e. the number of kernels to delegate to the space of interest and where to lo-
cate them, are still difficult to answer. Radial basis function research has recently
generated a variety of methods to tackle problems. For determining model order,
methods such as cross-validation [112], stacked generalization [124] and minimum
complexity training have been applied. These are generally computationally ex-
pensive approaches, requiring many repetitions of training and retraining. The
locations of basis function centers are typically determined by a different set of
methods, for example. orthogonal least squares, k-means clustering or learning vec-
tor quantization [74].

It is recognized that the quality of a density estimate is primarily dependent
on the choice of bandwidth rather on the choice of kernel {104]. If the bandwidth
is too large, little detail is captured by the over-smoothed representation. On
the other hand, too small a bandwidth will produce a jagged representation with
poor generalization ability [85]. Unfortunately, choosing the bandwidth requires
yet another set of tools [18, p.186]. Examples include over-smoothing rules, cross-
validation rules, bootstrap methods, adaptive kernels [104] and the root-mean-
square method [121]. Despite this development, comparative studies have shown
that no one bandwidth selector is uniformly preferred [22]. Most methods still
seek a global bandwidth applicable for every kernel. The global bandwidth has
been generalized to different bandwidths for different variables, for example with

probabilistic neural networks [86]. Nonetheless, this is still global in the sense
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that every kernel still has the same covariance matrix. The main drawback of basis
function optimization approaches is that the resulting kernels cannot be completely

general in shape and location.

The combination of event-based pattern discovery and kernel-based smoothing

yields a generalized kernel method which simultaneously addresses the aforemen-

tioned issues.

Generalized Kernel Method
1. Perform discovery on the data in the subspace S, using the concentration
objective.
2. Forevent j,j=1....,J,
(a) Compute the location u; of the kernel according to the contained data.
(b) Compute the bandwidth X; of the kernel based on the contained data.

(c) Place a kernel 4;(x) at p; with bandwidth Z;.
This is considered a general kernel method for the following reasons.

Model Order . The discovery process automatically determines the number of
kernels to commission in modeling the sample space. In fact, the number of

kernels is simply the number of events.

Kernel location . The location of the events directly determines the location of

the kernels.

Bandwidth . The bandwidth of the kernel is determined by the subset of data

contained in the event. The full covariance matrix is used so that the orien-
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tation of the principal axes is completely general and need not be orthogonal
to the coordinate axes. Using the full covariance matrix also mitigates the
problems arising from the curse of dimensionality [18, p.184]. Not only can
each variable support its own local bandwidth, but every kernel can also have

its own covariance matrix.

Apart from the positive definite requirement on the covariance matrix, we see
that the kernel method founded upon the discovery of events is completely general.
Where past methods required 2 or 3 different techniques to answer the questions
of model order, kernel location and bandwidth, the present methodology exploits
events for a complete solution. It is worthwhile to mention that the number of
kernels employed is generally much less than N. The only drawback is that the
representation of the covariance matrix is costly, requiring d parameters per kernel.

Lastly, when the above kernel method is used for density estimation, it can
be argued that the estimate is asymptotically consistent. This property is inher-
ited from the asymptotic consistency of the event-based estimate (See Appendix

Section A.5).

5.4 Classification

Already we have seen that discovered events can be directly employed in density
estimation and smoothing. The versatility of the events is further demonstrated in
their application to multicategory classification. I will first discuss a classifier with

discrete events and subsequently entertain the use of smoothed events.
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5.4.1 DBayesian classifier

The discovered events naturally separate the sample space into different regions.
Taking advantage of this spatial demarcation, and using the estimated probability
densities, a Bayesian classifier can be constructed.

Classifier construction basically involves the discovery of a set of events for each
class. This task can be carried out in a supervised or unsupervised manner. Both
scenarios will be outlined in a subsequent section. Once we have obtained events to
represent each class, the corresponding probability densities are estimated. These
densities play the role of the class conditional densities, f (x|C%), in traditional clas-
sification. The resulting classifier for a K-category problem is shown in Figure 5.13.
In this figure, the label of the k** class is written as Cy. The prior probabilities,
P(Cy), capture any a priori information about the class distributions. The set,
{E}, denotes the events used to represent class k. The a posterior: probabilities

P(Clx) are computed by Bayes rule,

f(xlC}-)P(C,-)

5.24
f(x) (5:24)

P(Ci|x) =

where the density f(x) = K, f(x|C:)P(Ck). The basic decision rule captured in

Figure 5.13 is simply the Bayes decision rule,

Classify x as belonging to class C* = C; if (5.25)

P(x|C;) = maxgy; P(x|Ck)

Note that the unconditional density f(x) is not included since for a given point x
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Figure 5.13: Classifier based on a set of events for each class
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it is the same for each class.

Advantage of event-based classifier

The principal advantage of building a classifier directly from events is that the
representation of the different classes is highly local. Consequently, class content
can be disjoint. Decision boundaries can be discontinuous. Classes may be linearly
inseparable and even completely nested within each other. The idea of localization
also extends to the choice of features in local subspaces. This will be discussed more
fully in Section 5.6. The main implication is that each class can be represented by

different subsets of features.

5.4.2 Supervised approach

As alluded to in the previous section, classifier construction may proceed in 2 ways.
The supervised approach involves performing discovery on each of the class-labeled
subsets of data. The procedure for building a K-category classifier is outlined

below.

Supervised classifier construction
1. Separate the data into K groups according to the class labels.
2. For the k** group, k=1,..., K,

(a) Do pattern discovery according to the discovery objective J (6).

(b) Store the discovered events { E'}.
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(c) Estimate the corresponding set of pdf values {p}, for the discovered

events.

3. Represent class & by the set of events {E}«. and the densities {p}+.

5.4.3 Unsupervised approach

When class labels are unavailable, the approach is to first use concentration discov-
ery to detect natural groupings of the data. The discovered groups of events will
then constitute the representations of the different classes.

Clustering research has developed numerous similarity measures for gauging
the “likeness” of samples and countless criterion functions for evaluating a clus-
tering partition [41, ch.G], [71, 127]. Recent innovations include the Kohonen self-
organizing feature map [75], a versatile clustering algorithm founded upon nearest
neighbour principles. Fuzzy c-means generalizes the traditional k-means approach
by using partial cluster memberships [16]. As with pattern discovery, clustering
algorithms typically rely on a criterion function to direct learning. In addition,
clustering procedures generally depend heavily on a well-definred, scale-sensitive
similarity measure.

With discovered events, groupings can also be identified, but without the need
of a distance or similarity measure. Clusters are understood to be regions of space
where the discrete pdf assumes a local maximum. To check for local pdf maxima,
we can restrict each event’s covering and compute the corresponding change in the
pdf estimate. An increased pdf value is evidence that a local maximum occurs

somewhere within the event. The reasoning is that if an event captures a local
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pdf maximum, then a multilateral restriction of the event will also contain that
maximum. In fact, by arguments of asymptotic consistency [41, p.89], the reduced
event volume should provide an even more accurate estimate of the maximum.
Hence, if the event embodies a point of maximal density, the pdf estimate must

increase. The following 2 definitions summarize the above discussion.

Definition 11 Restriction of an event

Let E denote a rectangular event defined by the set of vertices {a;,b;},1=1,...,d.
The restriction of E is defined by bilaterally reducing each interval (a;, b;) by a
fraction, 0 < v < 0.5 of the original length, L; = b; — a;. Therefore, if E =

(a1,b1] x ... % (a4,bq) (cf Definition 4.2), then the restriction E, is defined as,
E, =(ay +7Ly,by —vLi] x ... x (@aa + vLa, ba — vL4] (5-26)

Figure 5.14 depicts a restricted event.

Definition 12 Cluster
An event E is identified as a cluster if its probability density estimate, p, is less
than the probability density estimate, p, of its restriction, E,. In symbols, event E

is a cluster if,

Ap=p.—p>0 (5.27)

Note that if E, does not contain any points, p, = 0 and the event is not a cluster.
With the ability to seek out natural groupings in the data, a classifier can now be

assembled.
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Figure 5.14: Restriction of an event

Unsupervised classifier construction

1. Perform pattern discovery on the whole unlabeled data set to obtain a set of

events {E'}.

SV

Estimate the set of corresponding pdf values {p}. Initialize the number of

classes, & = 1.
3. For each event,

(a) Restrict the event boundaries.

(b) Compute the pdf estimate for the restricted event, p,.

(c) Compute Ap = p — p..

(d) If Ap > 0 then FE identifies a cluster. Store this event as representative

of class k. Increment k.
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The presented approach assumes that the discovery process will identify the regions
of highest density. Fortunately, the density filtering tendency of the concentration
objective gives credence to this assumption.

In either the supervised or unsupervised approach to classifier construction,
the same classifier set-up as in Figure 5.13 is applicable. Note that both supervised
and unsupervised training is accomplished by the same, common process of pattern

discovery.

5.4.4 Classifier with continuous pdfs

The class conditional density functions can be smoothed using the kernel method.
The resulting classifier is identical to the one portrayed in Figure 5.13 except the
pdfs are replaced with their continuous counterparts. In general, when the data is
high-dimensional (d > 5) and the sample space is sparsely populated, continuous
pdfs are preferred for classification. In contrast, discrete pdfs are favored when the

classes are disjoint or when the class boundaries are discontinuous.

5.5 Time-dependent discovery

The pattern discovery framework can tackle two types of time-dependent discov-
eries: detection of causal relationships and tracking of pattern changes. The first
only entails a mere application of already developed techniques while the second

requires a novel event updating algorithm.
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5.5.1 Causal relationships

Patterns in economic indicators, precipitation recordings, agricultural prices, river
flows and disease outbreaks exhibit some dependence on time [65]. Of particu-
lar interest are the causal relationships between time-dependent variates. Again
the event discovery framework can be immediately applied. Following the lead of
Chan et al. [125], we simply consider time to be another variable in the analysis.
If ¢t denotes the time parameter, then the variables in time-dependent discovery
are, {Xi,...,Xq,t}. By assuming time to be an additional variable, a number of

discovery queries for time-dependent data can be readily addressed.

1. Causality
At the event level. causal influences are manifested as significant dependencies
of certain ranges of a variable, X;, on specific intervals of another variable, X
j # i. These influences can be uncovered by discovery with the dependency
objective. For example, we might be interested in answering the following
query. “Are there certain times where the values of X; cause X, to behave

in a certain way?”

2. Joint occurrences
Time slices of significant joint occurrences can be detected using the con-
centration objective. A typical question might be, “What values of X; and

X, are likely to occur together and over what time intervals are these joint

occurrences most probable?”
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3. Univariate time-dependence
The extent of the dependence of any isolated variable on time can be investi-
gated via a simple bivariate dependency or linearity discovery. The variable
of interest is treated as the dependent variable, while time acts as the inde-
pendent variable. Pattern discovery can reveal local temporal dependencies

which may only persist over specific time intervals.

It is worthwhile to mention that functional form discovery [129] with time as a
independent variable, will yield a function f(z,¢) to describe the dynamic rela-
tionship of the variables. Alternatively, nonparametric curve fitting, such as loess
fitting [31] may be utilized to describe the dynamic relationship. In either case,

prediction (interpolation) or forecasting (extrapolation) can be accomplished.

5.5.2 Tracking pattern evolutions

Often, in real-world data, we encounter patterns which are not static, but evolve
over the course of time. To track and describe such evolution, we need to continually
adapt our representation of the data’s structure. Although the pattern discovery
algorithm described so far can only deal with static data, a simple extension will

expand its applicability to evolving patterns.

Overview

The basic idea is illustrated in Figure 5.15. Instead of a fixed subspace, we are now
concerned with discovery in a dynamic subspace, S(t) C §2, Vi. An initial discovery

is performed at time ¢y, based on the observations in S(£y). The detected events
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Figure 5.15: Schematic view : Tracking evolving patterns

become the “current events”, i.e. the events currently retained in memory. If at
a later time, significant changes to the data are detected, the current events are
updated by the event update algorithm. The following are assumed about the data
and observation process.

Assumptions

1. The changes in the pattern configurations are slow enough that we may ana-
lyze a block of observations collected over an interval T >> 7, where T is the

average time between observations.
2. Bach set of observations are equally important.

3. The same number of observations is collected prior to each update. This
assumption can be mildly violated and is only intended to prevent updates

which are biased by very large or very small sample sizes.
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Table 5.1: Contingency Table for Detecting Significant Event Shifts

Background
Current Events Event
Time E ... FE; EJ+1 Totals
t1 nl(tl) N nj(tl) n_]+1(t1) n+(t1)
t2 nl(tz) nj(tz) n_]+1(t2) n+(t2)
Totals | s; ee. 87 SJ4+1 Ny

Formulation

To detect changes in a set of events, a contingency table similar to that used for
static discovery, can be constructed. In Table 5.1, n;(¢;) represents the observed
frequency of event j at time £;. Note that an extra column, “Background Event”
has been added to the table. This column tabulates the number of observations

which fall outside the events at a given time. The background event is defined as,

Ep=Q- LJJ E; (5.28)
i=1
where {E;} are the current events. Although E;,, is a valid event, its boundaries
are not well-defined. Since the event volumes do not enter into the analysis, this is
not a practical difficulty.

Notation for the row totals is slightly different from before, but intuitively,
ny(t;) = Z;-’“ nj(¢;). Similarly the column totals are denoted by s; = 3; n;(t:).
The null hypothesis is that the distribution of counts at ¢, and ¢, are identical.
Therefore, detecting changes in the patterns (significant events) amounts to isolat-

ing local departures from this null hypothesis. As in static discovery, a residual,
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7;j(t1,t2) can be defined to measure the change in event E; from ¢, to t,.

nj(t1) — n;(¢,)

¢

7i(t1,t2) = (5.29)

The denominator ¢; is given by,

& = 1y (1 _ —31—) (1 — M) (5.30)

Nyt it

The derivation is identical to that of the static case. Further, as before, 0 is

computed as,

. 1
m; = § [‘llj(tl) + nj(tg)] (531)
At the heart of the detection scheme is the concept of a significant event shift.

Definition 13 Significant Event Shift

A significant event shift s an observable change in the data’s organization which
cannot be explained by random fluctuations. In symbols, an event E; has undergone
a significant event shift if,

fj(tl,tz) 2 Zl_a/z (5.32)

Recall that z,_,/, is the critical value of the normal test statistic at a significance
level a. This definition provides a problem-independent test for temporal changes
in the events. To complete the update algorithm, we need to specify the appropriate
responses to the detected changes.

Responses

1. ﬁj(tl’tz) 2 Zl—a/Z, j = 1,- . ’J
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b

A significant event shift has occurred. An unexpectedly small number of
observations fall within event E; at the later time ¢t;. The support for this
event is now questionable and hence E; should be eliminated. The data points

that fall within E; at ¢, are now added to the current background event, E;,;.

I7i] < 21-g/2, 7 =1,...,J

The number of observations falling within E; has not changed substantially
from ¢, to t,. Simply adjust the boundaries of the event to accommodate the
new data (Section 5.1.2 Boundary Refinement). The event is kept in the pool

of current events.

7‘:1 < —'Zl_alz, ] = 1,. ..,J
An unexpectedly large number of observations have occurred within E;. This
only further strengthens the validity of the event. Again, adjust the bound-

aries if necessary, and keep the event as a current event.

Tr41 < —21-q/2

An unusually large number of observations have fallen into the background,
1.e. outside of the current set of events. Once all the data has been collected
from the eliminated events, pattern discovery should be performed only on

data in the background event.

The algorithm below summarizes the procedure for detecting and tracking time-

varying patterns by way of pattern discovery.

Event Update Algorithm

Suppose we are given an initial sample of N points from a subspace of @ = R9.
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Let J(t) denote the number of current events at time ¢.

1. Perform discovery with the N points. Store the set of discovered events {E;},

j = 1,,J(t0) Set t =t0.
2. Let N¢ = J(t) be the number of current events.
3. Collect approximately N data points over the time interval [¢,¢ + T7.

a) For each event E; in the pool of current events, 7 = 1,...,J(¢
J

i. Compute the residual 7;(¢,¢t + T') for Ej;.

ii. If E; has undergone a significant event shift, i.e. 7;(¢,¢+T) > Z1—a/2,
store the contained points in the background event E;,,. Eliminate
event E; and reduce the number of current events N¢ = N¢g — 1.

ili. Otherwise, if E; did not experience a significant event shift, simply
adjust the boundaries of event E; and keep the event as a current

event.

(b) If a significant number of points fall in the background, i.e. #;41(¢,¢ +
T) < —z1_4/2, perform pattern discovery on the points contained within
the background event. Add the k newly discovered events into the pool

of current events. Increment the number of current events, Noc = Ngo+k.
(c) Sett =t + T. Let J(t) = Nc. Return to Step 3.
The above tracking algorithm has several advantages over existing methods in dy-

namic pattern classification. Firstly, the updating of events is data-driven and

hence objective. The representation of the changing patterns is nonparametric and
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therefore general. In contrast, other flexible model-free estimators such as the mul-
tilayer perceptron are cumbersome to retrain [61]. Most importantly, in the spirit
of event-based discovery, updates occur locally, only where significant changes have
been detected. Not only does local updating save computation time but it facili-
tates the tracking of completely arbitrary changes. As well, the updating strategy
may accommodate any discovery objective. Finally, unlike complex self-adaptive
schemes such as Zhu’s dynamic classifier [132], the static events are easily updated.
The simple updating strategy underlines the flexibility of the event-based represen-

tation.

5.6 High-dimensional pattern discovery

The main difficulty with the analysis of high-dimensional data is rooted in Bell-
man’s curse of dimensionality [13]. In statistics, this curse describes the inherent
sparsity of data in multi-dimensional space. This sparsity negatively impacts on
the discovery of structure in high dimensional data. For example, with methods
which seek a smooth estimate of the sample space, smoothing parameters must be
very large to include sufficient data. In turn, in the absence of astronomical sample
sizes, this rampant smoothing compromises the ability to estimate local behaviour
of the data [104]. Kernel estimators and artificial neural networks based on con-
tinuous activation functions both suffer from this predicament. In fact, for generic
kernels, theoretical studies have demonstrated that to attain an equivalent esti-
mation accuracy for increasing dimensionality, the sample size must grow at least

exponentially [104]. The requisite sample sizes are seldom available in practical
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settings. The curse of dimensionality often renders it impossible to work in the full
dimension. In fact, techniques to fully explore surfaces beyond 5 dimensions are
limited [68].

Projection of high-dimensional data onto lower dimensional subspaces is the
prevalent remedy to the maladies of the curse. However, several consequences of
high-dimensional geometry tend to confound our interpretation of low dimensional
projections. These include the migration of the content of a hypercube to its cor-
ners, the concentration of a hypersphere at its surface {122] and the near orthogo-
nality of diagonals in hyperspace. Furthermore, two different kinds of multivariate
structure may have very similar projections [104]. In other words, it is easy to
misinterpret the structure of the data by examining low-dimensional projections
alone.

As a final extension to the pattern discovery framework, I now discuss an event-
based approach for discovery in high-dimensional settings. Before presenting the
algorithm, the next 3 subsections attempt to justify the use of low-dimensional

projections with each discovery objective.

5.6.1 Concentration: Justification for projections

To justify the use of low-dimensional projections for discovery with the concentra-
tion objective, we need to argue that the regions of high concentration in d dimen-
sions are not lost by projection. Consider the joint pdf, f(x) = f(zi,...,zq) for
d-dimensional data. Here, X; denotes the variable corresponding to the i** dimen-

sion and z; is its realization. Suppose that the joint density has a local maximum
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at x* = {z],...,z3}. Then we know that the gradient vanishes at x*, i.e.,
V(x) |x=x==0 (5.33)

implying that all partial derivatives are also zero at x~,

9f(x)

T be=x=0 (5.34)

The marginal pdf corresponding to the orthogonal projection onto the X; and X;

axes is evaluated as,
o0

 f(x)d{ze} (5.35)

fX.»X,- (zi,z;5) = /

The notation [d{z;} denotes integration over the set of variables {X;}, k #
t,7. We consider the bivariate marginal density since we will concentrate on 2-

dimensional projections. Observe that if the gradient of the marginal density,

Viex,(zoz;) = V /_: F(x) d{z} (5.36)
= [ Vi) dfaa}
=0

at x = x*, then we are assured that the locations of peak concentration are pre-
served in the low-dimensional projections’. Local maxima in the marginal pdfs

can then be used to reconstruct the corresponding local maxima in the joint pdf.

! Differentiation under the integral sign does not hold in general. A special case is considered
in Proposition 2
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Specifically, the events discovered in the low-dimensional projections can be merged
to produce significant events in higher dimensions, if they exist. The difficulty in
establishing the validity of (5.36) lies in the fact that we do not know f(x). With
a leap of faith, let us assume that f(x) can be approximated by a mixture of

Gaussians,
N

Flx) =3 anpi(x) (5.37)

i=1
where the familiar Gaussian kernel 1;(x) is given by (5.15) and a; is a scalar. This
form of f(x) is analytically tractable and plausible. Indeed, we know that such
kernel estimates are consistent in the mean as N — oo [41, 104, 111]. With this

assumption, we have the following proposition.
Proposition 2 If f(x) is as gwen above and fx..,xj 15 obtained by integrating f(x)
over {zi}, k # j, i, then for z;,z; € R.

vr.‘:,‘fX.’Xj(zivzj) = [_: Vr.’:!:,‘f(x) d{xk} (538)

Proof: See Appendiz Section A.7.

Apostol [6] sets forth conditions under which we may differentiate under the integral
sign. The strongest of these conditions is to show that the partial derivative of f(x)
with respect to z; and z; is bounded by a non-negative, Lebesgue integrable function

of {zr}. I postpone more rigorous arguments until the Appendix.
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5.6.2 Dependence: Justification for projections

To justify low-dimensional dependence discovery, again consider the joint pdf f(x).
Suppose that there exists a dependency among the variables X;,..., X;. We want
to verify that by projection, the dependency between any pair of variables is recov-
erable. Without loss of generality, consider the projection onto X; and X,. Using
conditional densities, we can obtain the corresponding marginal pdf fx, x, from

f(x) as follows.

frxene) = [ [T faea)des. . dag (5.39)
= /_:.../;:f(zz,...,xdIa:l)f(zl)dzg...d:z:d (5.40)
= f(z2 | z1)f(z1) (5.41)

Note that since X, and X, are dependent, f(z; | z1)f(z1) # f(z2)f(z1). Therefore,

the dependency is preserved in the marginal pdf and we can have confidence in

discovery in 2-dimensional projections.

5.6.3 Linearity: Justification for projections

In linearity discovery, we are interested in detecting the presence of a linear rela-
tionship between a dependent variable and a set of independent variables. A basic
assumption of linear regression is that the independent variables are sufficiently un-
correlated {114]. This assumption applies to linearity discovery as well. In this light,
2-dimensional projections serve two purposes in the discovery of high-dimensional

linear relationships.
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d-1
Determining multicollinearities Consider the ( 2 ) unique 2-dimensional

projections involving only pairs of IVs. By performing discovery in these
projections, we can detect multicollinearities or highly correlated variables.
In fact, we can uncover specific ranges of the IVs where multicollinearity is
particularly prevalent. Subsequently, potential higher dimensional linear rela-
tionships are investigated only between the DV and the subset of uncorrelated
IVs. Hence, the 2-dimensional projections assist in the high-dimensional lin-

earity discovery by eliminating multicollinearities.

Inferring the d-dimensional relationship If there are d — 1 IVs, then there
will be d — 1 unique 2-dimensional projections involving the DV and one IV.
Assuming that the d — 1 IVs are sufficiently uncorrelated, we can infer the
relationship between the DV and the entire set of IVs by considering these
projections individually. In other words, if we consider Y = X to be the

dependent variable, then the linear relationship,
Y = a1X1 + ...+ ad_le_l + C a; € §R, C € ER (542)

can be approximately reconstructed from the d — 1 estimated relationships,

Vi=a; X+ C; i=1,...,d—1 (5.43)

where &; and C; are estimates of the coefficients, obtained for example by
least-squares regression. The notation ¥; signifies the DV estimated in the

projection with the IV X;, where all the other variables Xj;, j # ¢ are set
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to 0. Finally, because the IVs are assumed to be uncorrelated, the linear

relationship in d dimensions is approximated by,
. d-1 1 d-1
Y = Z a; X; + ~d— Z C; (544)
i=1 T =1

Thus, by examining 2-dimensional projections, higher dimensional relation-

ships between the DV and IVs can be inferred.

With these justifications in hand, it is now fitting to present the discovery algorithm
for high-dimensional data.

5.6.4 High-dimensional event synthesis

To motivate the need for statistical testing and event synthesis, recall that with the
concentration and dependency objectives, discovery in low-dimensional projections
alone may be misleading. Structure detected in low-dimensions may be an artifact
of projection such that in higher dimensions, no structure actually exists. Secondly,
the structure of the data may be occluded by projection. The synthesis and testing
of higher dimensional events will provide a resolution to these issues.

For the ensuing discussions, we will need the definitions of an induced event and

a dimension set.

Definition 14 Induced Event
Given a data set X, an event Er induced by X, is the smallest hyper-rectangle which

covers all points in X.

Definition 15 Dimension Set
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Given a d dimensional data set, enumerate the dimensions as {1,2,...,d}. The
dimension set D of an event E in R™, m < d, is the subset of m numbers corre-

sponding to the dimensions in which E is defined.

Consider events E; and Ej characterized by different dimension sets D; and D;. Let
X; represent the set of points in R¢ which, when projected on the set of dimensions
Dj, are contained in Ej. Define X; in a similar fashion. To synthesize an event

from E; and Ej, we first determine the set,

Xr=X;) X (5.45)

Note that X7 is a set of points in R¢. If this set is nonempty, then we can induce
a rectangular event E; with dimension set D; = D; UD;. The event E; contains
the projection of the points X onto the dimensions in D;. We will refer to the
event Er as the event synthesized from E; and E,. Let us consider the example of
Figure 5.16 where for simplicity, d = 3. The 2-dimensional events E; and F; have
dimension sets D; = {1.3} and D; = {2,3}, respectively. The points in X are
indicated by the '+’ symbols while those in X are labelled by open circles. Their
projections onto D; and D; are the dots within E; and E;. The intersection set X
consists of points that are common to X; and X, and are shown as falling inside
the syntheszied event E;. The dimension set of E; is Dy = {1,2,3}. The following
algorithm provides a synopsis of the synthesis procedure.

Event synthesis algorithm

As above, X; and X, denote subsets of points whose projections onto D; and D,

lie respectively in E; and E;. Let A and B represent 2 sets of projections while N4
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Event E
Event E. o \
b {3

Synthesized Event E I

Figure 5.16: Event synthesis

and Np are the number of unique projections in these sets. Define N E(z) to be the
number of events in the i** projection and let E,.,, represent the newly synthesized

events.
1. For projection ¢t inset A,z =1,...,N4
2.  For event j in projection z, 7 = 1,..., NE(i)
3. For projection kinset B, k=1,...,Np

4. If projection 7 and projection & have already been examined, skip to

the next combination of projections, i.e. return to Step 3.

5. For event [ in projection k, I =1,...,NE(k)
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6. If X; = X;NXi # 0, store the common points X; in their full

dimensionality in a Temporary Bin. Return to Step 5.

7. If Temporary Bin is not empty, use the data in Temporary Bin to

induce an event E; with dimension set Dy = D; | D,.

8. If E; is statistically significant according to the discovery objective,

append it to the set of new events, E,.,. Return to Step 2.

Event synthesis is the crucial operation in the high-dimensional discovery agorithm.
The high-dimensional discovery procedure begins by projecting the data or-
thogonally onto pairwise coordinate axes. Discovery is then performed in these
projections. The initial synthesis involves only the 2-dimensional events and pro-
duces a set of new events of 3 or 4 dimensions. The next synthesis combines these
new events with the original 2-dimensional events to yield events of 3,4 or 5 di-
mensions. This process of interfusing and testing events is repeated until no more
events are found. In this way, significant events of up to d dimensions are synthe-
sized from the collection of 2-dimensional events. The following algorithm realizes
these ideas.
High-dimensional discovery algorithm
Let A and B signify 2 different sets of projections. Each set may contain projec-
tions of different dimensionalities. Let E4 and Ep represent events from these sets

of projections. As usual, d denotes the dimensionality of the data.

d
1. Perform discovery in <2) orthogonal 2-dimensional projections. Denote the

discovered set of events as Eg.
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2. Let E4 = Ep

3. Let d4 =maximum dimension of events in E4.
4. While d4 < d and E4 is not empty,

(2) Apply the event synthesis algorithm to E4 and Ep.
(b) Store the newly synthesized events in E,..,.

(c) Set E4 = E,.,,. Update d4 to be the maximum dimension of events in

E 4. Return to Step 4

I will close the section by mentioning some unique characteristics of the above
method. Rather than examining isolated projections as in principal components or
projection pursuit, information from different projections are cross-referenced with
the hope of mitigating erroneous counclusions about high-dimensional structure.
Secondly, unlike global projection techniques, the present strategy allows separate
regions of the sample space (events) to be characterized by different subsets of

dimensions. This flexibility permits the uncovering of general structure in data.

5.7 Interpretation of events

Insight into the structure of data can only be gained via interpretable patterns.
The need for a clearer understanding of discovery results is evidenced in recent
work on rule extraction from neural networks [8, 5, 106]. To close this chapter,
I will present 2 different modes of interpreting the discovered events, production

rules and parallel event plots.
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Figure 5.17: Interpreting an event as a production rule

5.7.1 Production rules

Since events delineate a region of the sample space via hyperplanes, production
rules can be easily extracted. Consider the 2-dimensional event of Figure 5.17. The
event can be interpreted in 2 ways, depending on the application context. Suppose
the event is used to represent class k. The rule is written as,

If a<z, <band c<zy<d then the object belongs to class k,

with probability pg and the support of ng observations.

In the case where there is no class reference, the discovery result is then interpreted
as an association of events.

If a <z <b then ¢ <z, <d with probability Pz and

the support of np observationms.

More sophisticated rules can be assembled by considering the union and intersection

of events. This method of rule extraction from discovered events is similar in spirit
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to Narazaki’s explanatory mechanism [89], designed to generate rules from trained
neural networks.

The discovered events can also be interpreted graphically via a parallel event
plot. I will first give a very terse overview of the parallel axes plot [70, 122], which
is the basis for the event visualization aid. Incidentally, the parallel axes plot has

been recently incorporated as an interpretive tool for database mining [80].

5.7.2 DParallel axes plot of data

When plotting d-dimensional data in Cartesian coordinates, the d-axes are orthogo-
nal to each other. In contrast, parallel coordinates opt for d axes drawn parallel and
equally spaced. To plot a multivariate point in R¢, each coordinate value is plotted
on the corresponding parallel axis. The resulting d points are connected by a piece-
wise linear curve. Figure 5.18 shows how a point in R3 is represented in parallel
coordinates. The advantage of parallel coordinates is that all variables are treated
symmetrically. A powerful duality between points and lines can be deduced in Eu-
clidean and parallel coordinates [122]. However, in practice, parallel coordinates
suffer from a number of limitations. When the data is dense, a parallel axes plot is
rendered uninterpretable. The predicament is known as splotching [104], since the
large number of intersecting and overlapping lines occludes structure. The process
of thinning [104] attempts to address splotching by plotting random subsets of the
data. Unfortunately, there is no guideline as to what subsets should be viewed
and interpretations are no longer reproducible. In addition, other than Kendall’s

correlation coefficient [70], the parallel axes plot does not provide any quantitative
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Figure 5.18: Parallel axis plot of a point in R3

information to describe or verify the visual analysis. These problems will in part

be alleviated with the parallel event plot.

5.7.3 Parallel event plots

The uniqueness of the parallel axes event plot lies in its local rather than global
focus. At most, only local subsets of data are displayed on a single plot. The
2 variations of the parallel axes event plot are introduced below, along with the

information which can be directly extracted.

Plots of events only

When plotting a discovered event on parallel coordinates, only the vertices of the
hyper-rectangle are displayed. Figure 5.19 exemplifies the parallel plot of an event
in R®. From a plot of events, we can easily detect certain types of multivariate

structure.

I3

]

Z
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Figure 5.19: Parallel plot of an event in R®

Clustering and multimodality can be easily identified in either the full dimen-
sionality of the data or in a subset of dimensions. The probability density
estimates can serve to quantitatively verify the identification of modes and
can be communicated by the intensity of the shading. Figure 5.20 exemplifies

a 2-dimensional cluster in data of 5 dimensions.

Class separability is another type of structure which can be readily spotted
from an event plot. The event plot can reveal separability in the full dimen-
sionality of the data or in only a subset of dimensions. Figure 5.21 shows
events for a 2 category classification problem. We see that the classes are

completely separable in the second dimension.

General associations among specific ranges of the variables are disclosed via

event plots. For example, the 2 events in Figure 5.22 indicate that very small

Z3

T2

I
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Figure 5.21: Detection of class separability from event plots

values of z; are likely to occur with very large values of z5 while large values

of z, are associated with small values of z3, 4 and zs.

It is clear that by plotting events alone, we can gain insight into the multivariate
structure of the data. To take advantage of the properties of standard parallel
axes plots, as detailed in [122, 70}, a second variation of the parallel event plot is

proposed.
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Figure 5.22: Detecting general associations from event plots

Plots of events and data subsets

Further insight into the local properties of the data can be gained by superimposing
a subset of data points on an event plot. In the following, the first 3 observations
apply when only the subset of data contained in an event is added to the event

plot.

1. Linearity between 2 variables is easily detected as parallel lines between a pair
of axes. When the parallel line behaviour extends for more than 2 variables,
a hyperplane is suggested. Figure 5.23 plots an event and the subset of points
that it covers. Note that the parallel lines between the variables z; and z,
and again between z, and z3 indicate that the data is linear in the first 3

dimensions, forming a 3-dimensional hyperplane.

2. Marginal densities can be visually ascertained by examining the subset of
data points. By inspecting the z; axis in Figure 5.23, we recognize that the

data is denser for lower values of z, and sparser for higher values.
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3. One of the easiest structures to detect via traditional parallel axes plots is
negative correlations between variables. This property is indicated by in-
tersecting lines, creating a “cross-over” effect [122]. Referring again to Fig-
ure 5.23, notice the prominent cross-over of lines between axes z; and z,. We

can conclude that z; and z4 are negatively correlated.

4. When the data is not overly dense, it is possible to plot the entire data set
along with the events. Outliers can then be easily pinpointed. Not only
can an outlying observation be identified, but we can also determine which

particular dimensions exhibit deviant behaviour.

Although the information in the combination plot could be obtained from a
standard parallel axes plot, the use of events enhances the interpretability. The
plot of the entire data set may contain noise, outliers, or overlapping structures. On
the other hand, events inherently delineate a subset of data that is homogeneous in
some characteristic, as implied by the discovery objective. Therefore, working with

an event’s data subset can be much more rewarding from a discovery viewpoint.

Advantages of parallel event plots

The parallel plot of events has two additional advantages over conventional parallel
axes plots of data. First, the problem of splotching is overcome by only showing
significant events. Unlike random thinning procedures, there is no fear of losing
valuable structural information. Secondly, the event plot implicitly carries use-
ful quantitative information about the discovered structure, in terms of numerical

event boundaries, statistical significance, probability and the number observations
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Figure 5.23: Detecting linearity, marginal density and negative correlation in a
combined event and data subset plot
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supporting each event.

5.7.4 Summary

In this chapter, I have presented a low-dimensional specialization of pattern discov-
ery. The technique relies on recursive partitioning and evaluation of local regions
of the sample space. Discovery objectives are applied to guide the partitioning
process. The basic pattern discovery framework was extended to provide smooth
representations of the data, using a general kernel method. Density estimation
and classification were also presented as straightforward applications of discovered
events. The significant event shift was defined for the detection of changing patterns
while a novel event synthesis algorithm was developed to decipher high-dimensional
data. The interpretability of discovered events was illustrated through the use of
simple rules and the versatile parallel event plot. All in all, this chapter demon-
strates that conceptually, events provide a fundamental and flexible description of
data organization. Moreover, events can form the basis of exploratory and inferen-
tial tasks. The duty of the coming chapter is to support these conceptual arguments

with some empirical results.



Chapter 6

Experiments and Discussion

The previous two chapters built up many theoretical arguments and proposed a
number of algorithms for pattern discovery. In this chapter, a subset of these items
are empirically demonstrated and tested by way of experiments with simulated and
real data. The presentation will be divided into 2 main groups of experiments. The
first group will primarily illustrate the basic properties of the pattern discovery
methodology, including scale invariance, noise rejection and discovery by different
criteria. The second series of experiments applies pattern discovery to several real
life data sets, highlighting exploratory analysis, outlier detection and classification.
Throughout, the focus is upon the interpretability of the discovery results and the
versatility of the basic event framework.

Appendix 2 contains the details on the generation of the artificial data sets and

explains where the real-world data sets may be obtained via the Internet.

155
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Figure 6.1: Example of bivariate clusters Figure 6.2: Discovered events

6.1 DBasic properties

6.1.1 Discovery by different criteria

To begin, I will use some simple 2 and 3-dimensional data sets to exemplify the

types of organization detected by the discovery objectives.

Concentration

A simple bivariate data set is shown in Figure 6.1. There are 2 visible clusters among
a background of uniformly random points. Figure 6.2 is the result of applying
discovery with the concentration objective. Visually, 2 groups have been identified.
An examination of the estimated pdf values confirms that the discovered events have

higher pdf values than the background event, defined to be the rectangle containing
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Figure 6.3: Estimated pdf values for the discovered and background events

Table 6.1: Discovered group centres
Group | Estimated | Noise-free
Centre Centre
1 (2.52, 2.39) (2,2)

2 (6.27, 5.56) (6,6)

the data. Finally, by applying the cluster determination method of Section 5.4.3,
two groups are verified and the centres are within 8% of the noise-free values. In
general, the concentration objective is suited for the detection of natural grouping

tendencies in the data.

Dependency

At the outset, the data in Figure 6.4 appears to be just random noise. However,

using the dependency objective, an event is discovered near the center of the plot,
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Figure 6.4: Example of subtle dependency

Figure 6.5: Discovered event

as shown in Figure 6.5. In fact, embedded in the apparently random data is a local,

nonlinear relationship between the variables. The known governing relationship is

superimposed. Note that unlike the concentration objective, the discovered event

does not enclose a region of necessarily high data concentration. Rather, the event

captures a region of space where X; and X, exhibit a strong interdependence.

Linearity

Linear dependence is an important special case of the general dependency among

variables. Figure 6.6 shows data points lying on 3 different planes in R3. The

data points have been perturbed by uniform random noise. Sequential, recursive

discovery using the linearity objective unveils that indeed there are 3 unique linear

relationships indicated by the 4 events in Figure 6.7. Events 3 and 4 define the

same relationship. However, they are not redundant for their intersections between
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the axes emphasize that on this plane. the variables are negatively correlated.
Without a priori knowledge, it is not obvious how the data in Figure 6.6 should
be separated for analysis. especially since the relationships overlap in every dimen-
sion. Discovery by the linearity objective paves the way for local analysis. In fact,
a standard regression can be performed on each subset of data. The F-statistic
value and the multiple r? together give a quantitative indication of the strength
of the linear dependency. As summarized in Table 6.2 the data within each event
exhibits a strong linear dependency, with r? close to 1 and the estimated F-value

F exceeds the critical value Fg.
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Table 6.2: Strength of lin“ea.r dependency

Event | r* F Fg
1 0.992 | 957.6 | 7.7
2 0.983 | 291.9 | 94
3 0.998 [ 2946.0 | 7.9
4 0.973 | 166.0 | 10.1

6.1.2 Noise tolerance

Two aspects of noise tolerance are demonstrated here, recovery of information
tainted with noise and secondly the outright rejection of data with no organiza-
tion. To illustrate the first, consider the simple bivariate data shown in Figure 6.8
where data with a parabolic trend is salted with 20 outliers. The solid line is
the true curve while the dotted line is the result of a quadratic loess fit with the
smoothing parameter set to 1. The presence of outlying points have resulted in a
poor fit with a sum-of-squared error of 118.4. Of course, we can use the bisquare
method [67] to obtain a robust fit, but with pattern discovery the useful information
can be immediately identified without the need of iterative refitting. In Figure 6.9,
pattern discovery with the concentration objective has successfully filtered out the
outliers in the data. Loess fitting can be performed again on the contained data
points, yielding a much improved fit, as the sum-of-squared error plummets to 2.1.
This example confirms that organization can be detected in the presence of out-
liers. In addition, the example shows that pattern discovery can be easily used in
conjunction with existing data analysis tools.

The purpose of the next basic experiment is to exemplify the type of data which
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Figure 6.10: Noise rejection: concentration objective

pattern discovery judges as containing no information according to the discovery
objective. We desire strong discrimination against data that is counter-objective.
Again for ease of visualization, bivariate data is used. For the concentration objec-
tive, data that is uniformly distributed throughout the space of interest is deemed
insignificant since there are no regions of unusual concentration. Discovery on the
data in Figure 6.10 resulted in no significant events. As an example, the event un-
veiled from one sequence of discovery is shown. The residual statistic indicates that

it is indeed insignificant at the 5% significance level, since 0.4464 < z;_g.0s j2 = 1.96.

A lack of dependence is portrayed in Figure 6.11. Here the value of Y is centered
around 3 regardless of the value of X. As anticipated, dependence discovery turns
up no significant events. The event shown is the maximum from one sequence of

discovery. Again, the residual statistic indicates that it is insignificant at the 5%
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Figure 6.11: Noise rejection: dependence objective

significance level.

With linearity, we expect that data governed by nonlinear relationships will not
be detected as significant. However, local subsets of the data may be approximated
by a linear relationship. An example is shown in Figure 6.12. Clearly, the data is not
linear and the dotted regression line fits very poorly. Hence, the event encompassing
the whole data set is insignificant. However, global nonlinearity does not preclude
local linearity and discovery locates a subset of data where a linear model is quite
appropriate. Although I have only exemplified discovery with 2 variables, the noise
rejection properties extend to the multivariate case.

It is worthwhile to mention that a subspace which is judged as lacking orga-
nization by one objective, may very well be tagged as informative by a different
objective. For example, in a highly concentrated region the variables may be sta-

tistically independent. Hence, the definition of organization and noise depend on
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the discovery objective invoked.

6.1.3 Discovery amid non-centralized noise

This section will examine the ability to discover information when the noise dis-
tribution is skewed towards a region of the sample space. Figure 6.13 shows the
nonlinear relationship between intensity and mean angle taken from a physics prob-
lem. The governing equation is

exp(— sin(z))
sin(z)?

y = (1 + cos(2z)?) +4 (6.1)

where § is a Gaussian variable with 0 mean and standard deviation 10~2. From the
governing relationship, 1000 points were generated with additive Gaussian noise.

In addition, the data has been corrupted with 250 uniform background noise points
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(z,y) with 0.89 < = < 2.24 and 0.69 < y < 0.79. Application of low-dimensijonal
pattern discovery resulted in 34 events (Figure 6.14). Notice that the noise has
essentially been filtered out.

We can proceed to make use of the discovered information for predicting inten-
sity values for given mean angles. Based on the data contained in each event, a
centroid point can be computed. These centroids can then be spline-fitted. Inten-
sity values can be predicted for given mean angles, simply by linearly interpolating
between the spline points. The result on a test set is shown in Figure 6.15. Ob-
serve that the predicted values quite reasonably resemble the actual points. The
key point is that discovery does not perform averaging of the data. The presence of
non-centralized background noise, skewed towards the upper portion of the sample
space, would force the mean to occur substantially above the actual curve.

To demonstrate this phenomenon, a 3-layer feedforward neural network us-
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Figure 6.15: Predicted values

Figure 6.16: Sum-of-squared errors

Ing a mean-square error objective function was trained with this data using the

Levenberg-Marquardt algorithm. Even when a large number of hidden units is

commissioned to learn the data, the sum-of-squared error could not be further re-

duced (See Figure 6.16). In fact, with larger networks, over-fitting was observed,

resulting in larger errors. This is attributed to the skewness in the data.

From this example, we observe the important property of robust discovery in

the presence of non-centralized noise.

6.1.4 Scale invariance

Next, I exemplify the important property of scale invariance. Consider the housing

data shown in Figure 6.17 with units in US dollars and miles. The scaled housing

data is the same data set, plotted in Figure 6.18 but in units of Japanese Yen and

kilometers. Each sample point represents the value of a home located at a certain



CHAPTER 6. EXPERIMENTS AND DISCUSSION 167

o e-emee——s-se 600 —
45 o: 0@ °
o ° o ° 5000
«“ -] o
7] 2o o z
3 9°° %‘bo‘b ° o0 © > 4009
g LAY R L g °
S Joo%?ao ° B T, o s
e o rd ¢ =
e ®° o o X0 o
22 00 OO %
: P00 0 i .
S2 ° 5 2000 ¢
z @ b
15
1000}
10
0 2 4 [} 8 10 2 " 0 1 2 3 J‘ 5 [ 7 (]
Distance (mdes) Distance (kim)
Figure 6.17: Housing data Figure 6.18: Scaled housing data

distance from the city centre. When the low-dimensional pattern discovery algo-
rithm was applied, 13 events were discovered in each of the scaled and unscaled
data sets. Figures 6.19 and 6.20 show the discrete pdfs based upon the discov-
ered events. We observe that the shape of the density function is preserved with
scaling. This suggests that the relative magnitude of event density values remains
constant, a necessary and sufficient condition for scale invariance. To demonstrate

the usefulness of scale invariance consider the following hypothetical query.

Is it more likely to find a $170,000 home that is 3 miles from the city
center (Home A) or a $190,000 home that is 5.5 miles from the city

center (Home B)?

Ideally, we should arrive at the same answer, regardless of how the distance (kilo-
meters or miles) and home value (dollars or Yen) are specified. In fact, using the

pattern discovery by partitioning to answer this query, we find that Home A is 2.2
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Table 6.3: Ratio of probability density values before and after data scaling
Home Specification

A (3 miles, $170,000) A (1.86 km, 20,044,700 Yen)
B (5.5 miles, $190,000) || B (3.42 km, 22,402,900 Yen)
Method pdf ratio Answer pdf ratio Answer
Partitioning 5.7 A 5.7 A
Optimization 2.0 A 1.9 A
PNN, 1.2 A 0.6 B
PNN, 1.1 A 1.1 A

times more likely regardless of how distance or home value are specified. Using
pattern discovery by optimization, a similarly consistent answer is obtained. In
Table 6.3, we note that the pdf ratios for partitioning and optimization are dif-
ferent due to deviation in the event locations and sizes. However, the important
point is that the conclusion is consistent with both methods. As mentioned earlier,
with the discovery by optimization, we can only expect approximate invariance, as
suggested by the slightly different pdf ratios before and after scaling.

In contrast, methods based on distance measures are generally scale sensitive.
As an example, consider the probabilistic neural network (PNN) that uses the
Euclidean distance. The PNN is chosen for this illustration because like event-
based discovery, it directly yields an axiomatically true pdf. Table 6.3 indicates
that a seemingly harmless change of scale has reversed the decision of the PNN
(PNN,). Hopefully, the prudent practitioner would normalize the data or optimize
the PNN smoothing parameter to mitigate the effects of scale. The consequence
of normalizing both data sets is shown in the last row (PNN;). The decision is

now invariant to scaling and is consistent with that of event-based discovery.
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Figure 6.19: Discrete pdf for housing Figure 6.20: Discrete pdf for scaled
data housing data

The advantage of event-based discovery is that the often ad-hoc standardization
of feature variables can be avoided and sensitivity to different magnitudes in the

features is minimized.

6.1.5 Partitioning approximation to optimization

The next two experiments show that given a sufficient number of data points,
low-dimensional discovery by the concentration and dependency objectives can be
adequately approximated by criterion-driven partitioning.

When using the concentration objective, we need to show that the partition-
ing and optimization approaches identify similar local optima in the density func-
tion. Consider the bivariate lipid data shown in Figure 6.21. This data is due to
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Scott [105] and represents two lipid measurements, triglycerides and cholesterol,
taken from 320 male subjects with heart disease. Although the data appears uni-
modal, it is actually bimodal [104], as discovery will reveal. Figures 6.22 and 6.23
are the detected events from optimization and partitioning discovery respectively.
In both cases, the concentration objective was used. At first glance, the events
appear quite different. Using the clustering determination criteria discussed pre-
viously, both sets of events yield 2 clusters. The values are reported in Table 6.4
and are indicated by circles in the figures. The coordinates of the centers obtained
from partitioning are within 7% of their optimization counterparts. The estimated
pdf values are a little more dissimilar, but more importantly the discrimination of
the local maxima from the surroundings is maintained. This quality of the approx-
imation is clearly captured in the discrete density plots of Figures 6.24 and 6.25.

Incidentally, the discovered centers agree closely with those found by a mixture of
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Table 6.4: Discovered centers by partitioning and optimization

Method Centers pdf values
Optimization | (186.1,114.4) | 1.35 x 10~*
(233.8,149.7) | 1.2 x 10~*
Partitioning (183.8,116.6) | 1.1 x 10~*
(238.4, 139.5) | 1.05 x 10~

Mixture of (185,122) -
kernels [105] (233,145) -
Self-organizing (185,118) -
map (223,139) -
Fuzzy c-means (193,118) -

(235,171) -

Note: For the self-organizing map, a 6 x 6 grid was used with a neighborhood of 1.
The fuzzy c-means algorithm was invoked with a fuzzy parameter of 3.
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Figure 6.24: pdf from optimization Figure 6.25: pdf from partitioning

Gaussian kernels [105] and independently, by a self-organizing map. Fuzzy c-means
clustering (16, 17] locates a centre with a deviant second coordinate, but otherwise
is also within the same range. From this example, we see that with adequately dense
data, partitioning can approximate optimization with the concentration objective.
Further, in this example, results of both discovery approaches are in agreement
with findings of other credible methods.

With the dependency objective, we desire that discovery by partitioning and
optimization identify similar regions of significant dependence. For this illustra-
tion, I consider two variables used in an environmental pollution study [21]. The
objective is to determine how ozone level, the standard indicator of smog severity,
depends on solar radiation. Discovery by optimization and partitioning both yield
1 significant event at the 5% significance level. To enhance the comparison, the

insignificant events are also shown in Figures 6.26 and 6.27. The leftmost event
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is the significant event in both plots. The important characteristic to compare is
the detected variation in the ozone-radiation dependence. We can consider the
residual statistic as a measure of the strength of the dependency between ozone
concentration and radiation levels. Using the radiation level at the centre of the
event as the abscissa value, we can graph the statistic value as in Figure 6.28. The
graph shows that at low radiation levels, ozone is strongly dependent on radiation
while as radiation levels increase, the dependency generally diminishes. Although a
slight rise in dependence is observed at the highest radiation levels, the dependence
remains statistically insignificant. This fluctuation in the dependency is suggested
by the events of both partitioning and optimization discovery. In Figure 6.29, a su-
perimposed loess curve with smoothing parameter equal to 1 and linear local fitting
further suggests that the dependency tails off at higher levels of radiation. This
variation in dependency is also in line with the coplot analysis of Cleveland [30]. In
this example, we see that discovery by partitioning can also approximate discovery
by optimization when using the dependency objective.

To close this subsection, I remark that the main advantage of the partitioning
approximation is the rapid speed at which significant events can be uncovered in
two or three dimensions. The obvious limitation is that partitioning is of expo-
nential complexity, and thus application to data of higher dimensionality is im-
practical. In fact, the very act of partitioning requires adequately dense data for
meaningful statistical testing. Hence, partitioning is generally ill-suited to sparse
data sets. Furthermore, with its frequency equalization tendency, partitioning is

inclined to over-represent Gaussian-type groupings, resulting in an excess of signif-
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icant events. Despite this hoard of shortcomings, partitioning can be used in the
analysis of 2-dimensional orthogonal projections of the data, where the low dimen-
sionality mitigates the ill effects of its incapacities. The example of Section 6.1.7
will demonstrate that partitioning can thus serve as a starting point for analyzing

high-dimensional data.

6.1.6 Classification properties

Although the focus of pattern discovery is not on classification, an event-based
classifier does exhibit some interesting properties. In this section, I will compare
event-based classification to the stalwart of statistical pattern classification, the
nearest neighbour and to the mainstay of model-free estimators, the multilayer
feedforward neural network. Consider first the nonconvex and linearly insepara-
ble classes of Haykin [61], reproduced in Figure 6.30. The task is to distinguish
between the two interlocking classes on the basis of 100 training points per class.
The test set consisting of 500 points is shown in Figure 6.31. To properly estimate
the error rate, 10 such training and testing sets were generated. In each trial, the
low-dimensional discovery algorithm was applied to the individual classes with the
concentration objective. No more than 19 events per class were detected. Fig-
ure 6.32 is a contour plot of the discrete density function estimated from the events
of one trial. Adherence to the class boundaries is evident. The detected events
were used directly for classification. Table 6.5 reports the results averaged over the
10 trials. For comparison, the performance of the nearest neighbour algorithm and

a 4-layer neural network with architecture 2-5-4-1 are included. We note that the
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Table 6.5: Average classification results for Haykin’s data

Event classifier | Nearest neighbour | 4-layer neural network

Average 7.56 5.60 4.24

Error rate

Average 3.26 ms 14.1 ms <1 ms
Response Time

event-based classifier responds 3 times as fast as the nearest neighbour classifier,
but with a slightly higher error rate. The majority of additional errors committed
by the event-based classifier are actually points which have been rejected. Disre-
garding rejected points, events only err on 0.83% more occasions than the nearest
neighbour and 2.2% more than the neural network.

The robustness of the classifiers are also of interest. Noise, in terms of mis-
labelled training samples were added to each class at varying percentages of the
“clean” data. As shown in Table 6.6, error rates for both the event and the nearest
neighbour classifiers worsen with increasing noise corruption, but the event classi-
fier appears to be more robust. With a different choice of k (# of neighbours) or
perhaps using a different metric, the nearest neighbour error rate may improve [88].
However, without knowledge of the underlying noise density, these choices are not
obvious. The robustness of the neural network is clearly the most impressive. Fig-
ure 6.33 shows that the performance of the pattern discovery classifier is between
that of the neural and statistical classifiers.

In assessing classifiers, the rate of convergence to the Bayes error rate is of theo-
retical interest. For this study, I consider two overlapping bivariate Gaussians with

unit variance. The known Bayes rate is 15.87% and can be achieved with a simple
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Table 6.6: Average error rates for noise corrupted data

Noise level Event classifier | Nearest neighbour | Neural network
10 % 11.2 8.7 4.5
25 % 12.6 16.9 5.0
30 % 134 18.5 5.12
50 % 17.3 27.2 6.34
Rate of increase 0.18 0.44 0.041
(error rate/ % noise)
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Figure 6.33: Error rates with increasing noise
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Table 6.7: Convergence to Bayes rate (15.16%)

Sample size | Event classifier | Nearest neighbour | Neural network
1000 22.5 (17.0) 22.5 16.5
3000 18.58 (16.42) 22.15 15.83
4000 18.11 (16.0) 21.67 15.75
7000 17.80 (15.32) 21.56 15.17

linear discriminant classifier.! The error rates for this experiment are reported in
Table 6.7. Although the event classifier does not converge with remarkable swift-

ness, its error rate does improve more quickly than that of the nearest neighbour.

Based on this example, the event classifier converges at a rate of O( N ~%13) while
the nearest neighbour dawdles along at a rate of O(N~%92%), where N denotes the
sample size. Although the neural classifier exhibits the best convergence to the
asymptotic limit, the performance of the event classifier does not lag far behind. In
fact, by employing kernels as discussed in Section 5.4.4, the event classifier comes
within 1% of the theoretical limit. The corresponding error rates are shown in
brackets in the first column of Table 6.7. Figure 6.34 graphically summarizes the
results of Table 6.7.

In this section, the experiments have illustrated some properties of the event-
based classifier. In particular, we see that the event classifier performs comparably
to other established methods on a linearly inseparable problem. The example also

showed that quite arbitrary decision boundaries can be accommodated. In addition,

1t is argued in the Appendix Section A.5 that an event classifier constructed from maximum
entropy recursive partitioning is Bayes risk consistent.
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the event classifier is seen to be fairly robust to noise corruption and exhibits a

higher asymptotic convergence rate than the nearest neighbour classifier.

6.1.7 High-dimensional discovery and synthesis

The final basic property to be illustrated is the high-dimensional algorithm’s ability
to unearth sub-dimensional groupings in the data. Consider a 20 dimensional arti-

ficial data set embedded with one 8-dimensional cluster and one trivariate cluster

at the following locations,

(le Xz, X51 X77 st X9a Xl'(a XIB) = (—23 _27 53 51 —31 _3, —31 4) (62)
(Xs, X-{, Xg) = (—5, —5, 5)
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Table 6.8: Projections with significant events

Projection | # events Projection | # events Projection | # events
X1X2 1 Xng 1 X7X17 2
X1 X5 1 X2 X7 1 X7X1s 1
X1 X 1 XsX1s 1 X Xp 1
X1 Xs 1 X X7 1 X X1 1
X1 Xy 1 XsXs 1 X X7 1
Xi X7 1 XsXo 1 XsXis 1
X1 X8 1 Xs X7 2 XoXi13 1
X2 X5 1 XsX1s 1 XoX17 1
X2 X7 1 X7 Xs 1 XoXis 1
X Xg 1 XX 1 X17X18 1

Each cluster consists of 25 points normally distributed around the corresponding
center, with identity covariance matrix in the respective dimensions. In addition,
125 points are generated in 20 dimensions according to a uniform distribution within
[—25,25]. On applying the high-dimensional discovery algorithm, 33 events were
detected in the 2-dimensional projections. According to the variables defining the
clusters, there are 28 unique pairwise combinations of the variables and hence we
expect that number of projections to yield significant events. However, in Table 6.8,
we see that some extraneous relationships have arisen, as 30 out of 190 possible pro-
jections sport significant events. Table 6.9 summarizes the number of significant
events synthesized at each dimension. The event synthesis algorithm determines
that no structure exists beyond 8 dimensions, as no significant events are found for
d > 8. This is in agreement with the dimensionality of the embedded patterns.
The single 8 dimensional event is shown in Figure 6.35. The true cluster center

is plotted as an open circle on each axis. Clearly, the 8-dimensional grouping has
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Figure 6.35: The 8-dimensional event revealed by discovery
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Table 6.9: Number of events at each dimension d

# events
33
70
107
93
28
8
1
0

00 ~3 O OV i W N/

\%
oo

been detected. To confirm the detection of the trivariate pattern, we can apply
the cluster test criterion to the 70 3-dimensional patterns. Doing so reveals 16
3-dimensional clusters. The centres in each dimension are plotted as open circles
on the parallel axes of Figure 6.36. The solid line represents the location of the de-
tected 8-dimensional cluster centre. The proximity of the trivariate cluster centres
to those of the 8-dimensional cluster suggests that the former are actually projec-
tions of the 8-dimensional cluster onto R3. The only distinct 3-dimensional cluster,
delineated by the dashed line corresponds to the embedded 3-dimensional pattern.
The detected groupings are quantitatively summarized in Table 6.10.

As a final note, clusters determined in dimensions 4 to 7 are all found to be pro-
Jections of the 8-dimensional event. Hence, there are no distinct clusters in those
dimensions. Further, the spurious events detected in the 2 dimensional projections
do not propagate beyond 5 dimensions. In dimensions of 5 or less, synthesis involv-
ing these spurious events do not give rise to clusters and thus no false patterns are

detected.
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Table 6.10: Quantitative specification of discovered events

Dimension index
o

-1 0 1
Value of variables

Figure 6.36: Discovery of the trivariate group

Feature [ low value ]
high value
Xy | Xo | Xs | Xo | Xg | Xo | Xaz | Xis || 75 | ny
8-dimensional | -2.7 | -2.8 | 2.9 | 249 |-44|-4.1|-46} 2.0 || 3.6 |12
event -121-06|65] 51 (-26]|-23|-13]| 54
3-dimensional - - 1-59]-86 - 4.3 - - 3.5 112
event - - 0 |-2.6 - 5.7 - -
(r; = z-statistic value, n; = observed frequency)

184
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6.2 Case studies

Having illustrated a number of basic properties of event level pattern discovery, I

now proceed to present the analyses of a few real world data sets.

6.2.1 Exploratory analysis and interpretation : Thyroid
disease diagnosis

The first case study illustrates the ability of event level pattern discovery to eluci-
date the most distinguishing characteristics of a multiclass, multivariate data set.
We visit the fairly well-understood area of thyroid gland disease to allow for easy
verification of the discovered patterns. The data is taken from Coomans [33] and
consists of 3 categories, hypothyroidism (deficiency in thyroid hormones), hyperthy-
roidism (excess of thyroid hormones) and euthyroidism (normal thyroid function).
The features are 5 continuous clinical measurements summarized in Table 6.11.
The data for each class is displayed using a parallel axes plot [122] in Figures 6.37
and 6.38. Undoubtedly, it is difficult to extract much information from these plots.

Pattern discovery with the concentration objective was applied to each category.
The most significant events are shown in Figure 6.39 and the upper portion is mag-
nified in Figure 6.40. These plots lend to rapid verification with domain theory.

Consider the following observations.

1. The features T4 and T3RIA represent the 2 types of hormones produced
by the thyroid gland. As expected, the events suggest that the hypothyroid
subjects exhibit a reduced level of these hormones while the hyperthyroid
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Table 6.11: Thyroid data features

Feature # | Measurement Units Symbol
1 T3-resin uptake test % RT3U
2 Total serum thyroxin ung/dL T4
3 Total serum triiodothyronine rg/L T3RIA
4 Basal thyroid-stimulating hormone plU/mL | TSH
5 Maximal absolute difference of the TSH value after injection of | uIU/mL | dTSH
200ug of thyrotropin-releasing hormone (TRH) as compared to
the basal value.

TSH

T3RIA

T4

Figure 6.37: Parallel axes plot of thyroid data Figure 6.38: Zoom-in on features 2-5
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dTSH [
TSH
T3RIA
T4
RT3V
B O
Figure 6.39: Most significant events Figure 6.40: Magnified significant events

subjects are characterized by abnormally high hormone concentrations. The

euthyroid hormone levels fall between those of the two disease states.

2. The events also suggest that TSH is substantially higher in the hypothyroid
case. Again, this is in agreement with physiological principles. In secondary
hypothyroidism, the low-functioning thyroid gland produces very few thyroid
hormones (T3 and T4). The negative feedback that these hormones normally
provide to regulate TSH production is removed and TSH levels soar. The
opposite situation occurs in the hyperthyroid case and is also elucidated by

the significant events.

3. The observation that
dTSH (hypothyroid) > dTSH (euthyroid) > dTSH (hyperthyroid)
can be explained with similar reasoning. Referring back to Table 6.11, we note
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Table 6.12: Event statistics for the most significant events

Category Residual | % Observations in support
Euthyroidism 2.7 5.3
Hyperthyroidism 2.3 14.3
Hypothyroidism 2.6 20.0

Critical value of the statistic is 1.96 at a 5% significance level.

188

that dTSH (the change in TSH) is a measurement obtained after injection

of TRH, a hormone which stimulates the production of TSH. In the hyper-

thyroid case, there is so much inhibition from the excess thyroid hormones

(observation 1), that additional TRH has little effect on TSH production.

The opposite is true for hypothyroidism. In the the normal functioning thy-

roid, injection of TRH increases the production of T3, but the intact negative

feedback maintains TSH at normal levels.

Conventional exploratory data analysis such as parallel axes plots, may qualita-

tively hint at the separable structure in the T4, T3RIA and TSH features. However,

apart from quantifying this information, pattern discovery also sheds light on the

previously obscured structure of the dTSH feature. The quantitative information

communicated by the events are in terms of event boundaries, statistic value and

% of observations supporting each event. Table 6.12 summarizes some of these

findings.

The first case study has illustrated that by providing interpretable patterns,

event-based pattern discovery can clearly elucidate the most distinguishing charac-

teristics of a multiclass, multivariate data set.
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Table 6.13: Attributes of chemical-overt diabetes study

Feature # | Measurement Symbol
1 Relative weight RW
2 Fasting plasma glucose FPG
3 Glucose area (glucose intolerance) GA
4 Insulin area (insulin response to oral glucose) IA
5 Steady state plasma glucose (insulin resistance) | SSPG

6.2.2 Local dependencies and locally significant features:

Chemical and overt diabetes

The second example illustrates the abilities to detect interesting local dependencies
and to identify locally important features. The latter differs from traditional feature
selection in that individual regions of the sample space may be characterized by
different sets of features. Here, I will examine a 5 dimensional diabetes data set,
collected to study the relationships among 3 clinical classifications of 145 non-obese
adult subjects: (1) overt nonketotic diabetic (33 subjects), (2) chemical subclinical
diabetic (36 subjects) and (3) healthy (76 subjects). The attributes are listed in
Table 6.13. In the original analysis of Reaven and Miller [99], the last 3 features
were determined as the “primary” variables which captured the natural groupings
in the data. Subsequently, Symons [113] studied the same 3 features in evaluating
various clustering criteria, noting that the heterogeneous and nonellipsoid clusters
are difficult to detect. The present a.na.lysis'will take an unbiased view towards the

5 features and search for dependencies and locally informative features.
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Figure 6.41: Events from dependency discovery: chemical-overt diabetes
Note: In this plot, the values of the RW feature have been scaled by a factor of 100
for visualization purposes.

Local dependencies

Considering the entire data set in the full dimensionality, 5 separate discoveries
with the dependency objective consistently revealed 3 types of significant events, as
exemplified in Figure 6.41. To gain a better understanding, Table 6.14 enumerates
the number of examples from each class falling within individual events. We note
that event 3 describes a dependence among the 5 attributes, exclusively for a subset
of the overt subjects. This event is shaded in Figure 6.41 and reveals a dramatically

unique structure. Referring back to Table 6.14, event 1 indicates that there is also
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Table 6.14: Class memberships of dependency events: chemical-overt diabetes

Number of examples in each class

Overt | Chemical Healthy
Event 1 12 18 1
Event 2 11 16 72
Event 3 10 0 0

a dependency which applies to both the overt and chemical diabetics, i.e. the
disease afflicted subjects. Again from Table 6.14, we see that event 2 contains
mostly healthy subjects but has a substantial disease component as well. This
suggests that there is a dependency most characteristic of the healthy subjects, but
also shared by some of the afflicted patients. To explore these local dependencies
further, one might employ standard fitting procedures, such as regression or one of
the many robust connectionist paradigms. For simplicity, I will only examine the
correlation matrix for the subsets of data falling within each event.

Using Hinton diagrams [85], to display the correlation matrices, we obtain the
plots of Figures 6.42, 6.43 and 6.44. These correlation matrices suggest that differ-

ent dependencies are indeed captured by the events. Some interesting observations

are noted.

1. In Event 1, the dominant negative correlations all involve the IA variable:
IA-FPG,IA-GA and IA-SSPG. These dependencies can be explained by the
basic physiological principle that decreases in insulin response (IA) causes the

levels of glucose to rise (SSPG,FPG).

2. In contrast, Event 2 almost exclusively consists of positive correlations, with
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Figure 6.42: Correlation matrix-Event 1 Figure 6.43: Correlation matrix-Event 2
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Figure 6.44: Correlation matrix-Event 3
In the above diagrams, a shaded square represents a negative correlation while an
empty square represents a positive correlation. The size of the square reflects the
magnitude of the correlation. Note that the main diagonal entries are all unity
and are omitted for clarity.
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the same dominant ones as in Event 1. In addition, all relationships with
SSPG and RW are now positive correlations. With healthy subjects, a rise
in glucose levels reflects an increase in weight. This also applies for subjects
in the advanced stages of the disease. However, in the earliest stages of the
disease, elevated glucose levels cause initial weight loss. This physiological
phenomenon accounts for the inclusion of predominantly healthy subjects in
Event 2, along with a fraction of diabetics, i.e. those in the advanced stages

of the disease.

3. Event 3 is the most different. The dominant negative correlations all involve
GA, ie. GA-RW, GA-IA and GA-SSPG. These relationships all agree with
theory. Increases in glucose intolerance (GA) can cause weight loss (decrease
in RW) and is reflective of damage to the pancreas (decrease in IA) or damage

to the insulin cells (decrease SSPG).

In these observations, I have interpreted the dependencies in terms of the usual
direction in which the variables change. For example, glucose intolerance (GA) is a
negative characteristic and it usually only gets worse (increase) rather than better
(decrease). With this in mind, it is particularly interesting to note that only Events
1 and 3 contain dependencies which suggest illness. Incidentally, these two events
only contain diabetic subjects, with the exception of one healthy person. By this
preliminary analysis, we can already see that the events have successfully captured
interesting and significant local dependencies.

This first experiment with the chemical-overt diabetes data illustrates that pat-

tern discovery can immediately pinpoint potentially unique, local relationships in
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Table 6.15: Chemical-overt diabetes: Number of events at each dimension d

d | Overt | Chemical | Healthy
2 19 21 31

3 5 2 7

4 6] 1 1

S 1 1 1

Note: For this discovery experiment, the significance level was relaxed to a = 0.15
to allow for greater coverage by the crude process of partitioning. Event synthesis
was conducted with a = 0.01.

the data.

Locally significant features

To investigate locally significant combinations of features, we can invoke the event
synthesis algorithm, using the concentration objective. The aim is to seek out
attribute values which have significant joint occurrences. The results of applying
discovery and synthesis to each class are tabulated in the Table 6.15. Computing
class memberships for each event and examining the frequency of support, we find
that overt and chemical classes are strongly represented by the features FPG and
GA, while the healthy subjects cluster most prominently in the GA and IA di-
mensions. Higher dimensional patterns do not offer a better combination of class
homogeneity and statistical significance. To obtain a more refined representation
in these selected dimensions, optimization discovery was performed for the chem-
ical and healthy classes. The partitioning result for the overt class was deemed
acceptable. The final 4 events are sufficient to categorize the subjects with an error

rate of only 8.3%, i.e. 133/145 subjects correctly categorized. The corresponding
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Table 6.16: Rules for chemical-overt diabetes data

OVERT - Features 2 and 3 CHEMICAL - Features 2 and 3

If 120 < Fasting plasma glucose < 203  If 88 < Fasting plasma glucose < 114
and 538 < Glucose area < 972 and 413 < Glucose area < 568
then the subject is OVERT diabetic. then the subject is CHEMICAL diabetic.

OVERT - Features 2 and 3 HEALTHY - Features 3 and 4
If 213 < Fasting plasma glucose < 353  If 289 < Glucose area < 426

and 1001 < Glucose area < 1578 and 73 < Insulin area < 292
then the subject is OVERT diabetic. then the subject is HEALTHY.

classification rules are listed in Table 6.16.

Pattern discovery has revealed that each group of subjects can be adequately
characterized by a distinct group of only 2 features. In particular, the SSPG feature
identified by Reaven and Miller is not needed in the characterization of any of the
natural groupings. Instead, pattern discovery found the FPG factor to be of primary
importance in delineating the diseased groups. Incidentally, FPG (fasting plasma
glucose) is known to be a key clinical indicator of the diabetic state [66]. The
accuracy of the categorization is close to the 5.5% error rate obtained with a 5-10-1
feedforward neural network, using all 5 features. However, pattern discovery offers
greater interpretability through simple rules and via statistical testing, avoids the
use of the full 5 features.

The second experiment with the chemical-overt diabetes data shows that event-
based pattern discovery can detect subsets of features that are significant only in

local subspaces, a generalization of traditional feature selection.
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Table 6.17: Attributes in PIMA diabetes study

Feature # Measurement Symbol
1 Number of pregnancies NP
2 Plasma glucose concentration PG

(glucose intolerance test)

3 Diastolic blood pressure (mmHg) BP
4 Triceps skin fold thickness (mm) SK
5 2-hour serum insulin (zU/mL) SI
6 Body mass index (kg/m?) BMI
7 Pedigree function PF
8 Age (years) AGE

6.2.3 Pattern discovery and classification: Diabetes diag-

nosis in PIMA Indians

In this case study, pattern discovery offers insight into the complications of a
difficult classification problem. The data is a collection of 8 clinical measure-
ments (Table 6.17) taken from 392 female subjects? in the Pima Indian popula-
tion {15, 73]. The subjects are categorized into 2 groups, diabetic and non-diabetic.
This data set has been used in the evaluation of various advanced classification
algorithms [109, 101]. A common result of these analyses is a fairly large error rate,
usually around 25%. The aim of the present investigation is to seek an explanation

for the prevalently poor classification rate by uncovering patterns inherent in the

data set.

To seek significant joint occurrences with the concentration objective, the high-

2The original data set has 768 subjects, but 376 have incomplete measurements. As in many
previous analyses, we study only the complete examples here.
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Table 6.18: PIMA diabetes: events in each dimension d

d | Healthy | Diabetic
2 137 74

3 96 15

4 70 40

b 56 41

6 28 23

7 8 5

8 1 0

dimensional discovery algorithm was applied to each class of subjects (133 healthy,
67 diseased).® Table 6.18 contains the results of discovery and synthesis. Focusing
on the highest dimensional events, we see that a number of obvious patterns have
been identified. Figure 6.45 is a typical example. Based on this plot, the following

predominant characteristics are observed.

1. PG (diabetic)> PG (healthy)
It is important to note that the normal range for this feature is PG< 140,
whereas 140 < PG < 200 suggests impaired glucose tolerance, but is not
considered to be an indication of diabetes mellitus (Type II) [66]. Nonetheless,
for the events shown, healthy subjects seem to fall in the range 74 < PG < 105
while for the disease events, 105 < PG < 181. It appears then, that this could

serve as an important discriminatory feature.

2. SI (diabetic) > SI (healthy)

This second observation is consistent with the insulin resistance syndrome [63],

3 As in other analyses of this data set, 192 examples are reserved for testing.
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Figure 6.45: Example of obvious patterns in PIMA data
Note: The event boundaries for the NP,PF and AGE attributes have been magnified
by factors of 10,10 and 2 respectively, for ease of visualization. The diabetic event
is actually only 7 dimensional as the SK attribute did not appear in the pattern.
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a metabolic abnormality known to occur in Type II diabetic subjects. Defec-
tive insulin cells fail to act on their targets and consequently glucose levels re-
main elevated, stimulating the production of yet more insulin. In Figure 6.45,
although the diabetic range for SI is definitely wider than the corresponding

healthy range, it also considerably overlaps the latter.

Although theory suggests that blood pressure and age would also be higher for
Type II diabetics [62], this was not clearly evident from the discovered events. In
fact, other high-dimensional events seem to suggest that the healthy and diabetic
subject are indistinguishably similar.

Constructing a kernel-based classifier using the two events shown in Figure 6.45,
an error of 47% is obtained. To seek improvement in classification, we explore the
data a little further. Taking the dimensions selected from event synthesis (8 for the
healthy group and 7 for the diseased group), optimization discovery is performed on
each category of data. After one level of recursion, an interesting pattern emerges.
As seen in Figure 6.46, the AGE variable seems to show reasonable separation.
Following up on this hypothesis, it is verified that indeed, less than one-third of the
diabetic patients are younger than 27 years of age. If we refine the event boundary
for the healthy group to reflect this discovery, the error falls to 23%, using just one
kernel for each class. This is slightly better than the results of Smith [109] but
comparable to that of Ripley [101]. The immediate question is how close is this
error to the best achievable error with this data set. Assessment of this error rate,
allows us to dissociate limitations of the data from those of the classifier. For a

given problem, without knowledge of the underlying class densities, this error rate
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Figure 6.46: Result of recursive discovery

Figure 6.47: Overlap estimation
The variable values have been normalized to enhance visualization.
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Table 6.19: Estimates of the achievable error rate

Number of points covered Estimated
(A) (B) (C) (D) Error
Healthy | Diabetic | Overlap Net Rate
(A+B-C) C/D
273 164 114 323 0.353
218 93 50 261 0.192

is difficult to determine. With events, we can obtain a rough approximation.

The unavoidable errors are observations from one class which are completely
indistinguishable from those of the other class, based on the provided attributes.
We can identify such observations as those which simultaneously fall into significant
events for both healthy and diabetic data sets. Performing pattern discovery by
optimization with the concentration objective, on the entire data set, in the full
dimensionality, we find one significant event for each class. Based on these two
events, the estimated error rate is 35.3 %. With one level of recursive discovery,
the estimate falls to 19.2 %. Further recursion did not reveal any more significant
events. The findings are summarized in Table 6.19. The first estimate is considered
pessimistic since without recursion, the concentration objective may not be suffi-
ciently maximized. The second estimate is more indicative of the true overlap and
may be slightly conservative since observations outside the highest concentration
regions are ignored. Figure 6.47 exemplifies some of the confounding observations
on a parallel axes plot. The events and the observations have been normalized to
facilitate visualization. Note that the confusing points, indicated by thin lines, fall

within the intersection of the two events. As shown in Table 6.20, the healthy and
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Table 6.20: Example of confounding observations

NP | PG | BP |SK | SI | BMI | PF | AGE | Diagnosis
2 | 122 | 76 | 27 [ 200 | 35.9 | 0.48 | 26 Healthy
2 [129 ) 74 | 26 {205] 33.2 [ 0.59 | 25 | Diabetic

diabetic values for most of these observations are practically indistinguishable.

The large number of confounding observations is likely due to the incomplete
abstraction of the expert’s arsenal of diagnostic tools. In clinical diagnosis, addi-
tional information such as symptoms (thirst, polyuria, impairment of visual acuity,
unexplained weight loss) along with other lab tests are taken into consideration [66).
Furthermore, some of the healthy subjects might have been afflicted with impaired
glucose tolerance [62], a ‘risk class’ which had not yet been identified at the time
of this particular study. This would explain their similarity to the diabetics based
on the 8 measurements alone.

In this example, we see that pattern discovery can offer insight into the amount
and type of confusion in a data set. By interpreting events, we can pinpoint dis-
criminatory features. Both pieces of information are valuable to classifier design

and may guide the collection of additional data.

6.2.4 Time-dependent discovery: EMG control signals

In this example, I will explain the application of time-varying pattern discovery
to detect nonstationary changes in the data. The data, shown in Figure 6.48, con-
sists of the low-pass filtered electromyographic (EMG) signals measured from two

forearm muscle sites of a below-elbow amputee subject. The data was collected
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Table 6.21: EMG recording conditions
Time | Residual imb condition

to At rest

t Fatigue

t, | Lifting 500 g load

t3 Lifting 1 kg load

ty Lifting 1.5 kg load

ts | In motion, frontal plane

ts | In motion, sagittal plane

tz | Maximum voluntary contraction

over 200 ms time intervals, under different conditions of the residual limb, as sum-
marized in Table 6.21. Each time slice contains the recordings of five consecutive
muscle contractions. It is known that the EMG signal is nonstationary and zero
mean [92]. However, it has been proposed that the initial 200 ms transient can be
considered locally stationary [69].

With pattern discovery, we investigate the stationarity of the signal by detecting
significant event shifts. Applying the time-dependent discovery algorithm, over the
eight 200ms intervals for wrist flexion, we obtain the plots in Figure 6.49. The con-
centration objective was invoked and the resulting events have been smoothed by
the kernel method and the contours of the pdf at each time are plotted. According
to a 5% significance level, significant event shifts are detected at almost every tran-
sition. The only exception is the change from ¢s and tg, during which the residual
limb remains in motion with only a change in orientation. From £ to t;, the change
from rest to fatigue state is minor. In conditions of fatigue, an overall increase in
EMG amplitude is expected [11], so the available data may not have be an accu-

rate characterization of fatigue. The most dramatic changes in the pdf occur during
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Figure 6.48: Wrist extensions measured under different residual limb conditions
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Figure 6.49: Time-evolution of pdf for wrist extension
Note that to emphasize details of the contours, the vertical and horizontal scales
cover smaller ranges than in Figure 6.48.
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Table 6.22: Example of significant event shift: ¢, to £,

Events
Time E)_ Ez EOUT Totals
i 90 | 23 12 125
ty 67 16 42 125

Totals | 157 | 39 54 250

times of loading, i.e. ¢ to t5. This is expected as during loading, antagonist and
synergist muscles actively contribute to the measured signal, altering its proper-
ties [11]. Note that the outlying signals in Figure 6.49 have little contribution to
the pdf.

In Table 6.22, the significant event shift from ¢, to ; is detailed. The Eoyr
symbol denotes the background event. The table entries are event frequencies for
each time, while the boxed numbers in the £, row are the test statistic values,
measuring the change from ¢, to t,. Based on a 5% significance level, a significant
event shift is detected. The counts in E, and E, have decreased significantly, while
the background total has increased. Subsequently, discovery is applied to the data
at ;. From the pattern discovery analysis, we can conclude that the signal can
only be considered stationary during times, t; and tg, i.e. only when the limb is in
motion in the sagittal and frontal planes.

In this example, it would be difficult to define threshold probabilities for detect-
ing changes. Further, global retraining at every instant of time would be redundant
especially in the intervals [t,,t,] and [¢5,ts]. Event-based pattern discovery on the

other hand, provides an objective means of gauging the significance of local varia-
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tions in the pattern. In so doing, periods of stationary behaviour can be identified

and unnecessary retraining is avoided.

6.2.5 High-dimensional discovery and prediction: Housing

data

The fifth example illustrates the use of pattern discovery to determine ranges over
which dependencies are strongest, and hence candidates for model fitting. The
data set is a collection of 13 factors as listed in Table 6.23 which are believed to
influence housing prices in various towns neighbouring Boston [59]. There are 506
data points in total, with price being the dependent variable.

The number of significant events determined by the event synthesis algorithm,
using the dependency objective, are listed in Table 6.24. An extra column enumer-
ates the patterns related to housing price, the dependent variable of interest. No
events were discovered beyond 12 dimensions. By studying the 11 and 12 dimen-
sional patterns, it becomes evident that housing price exhibits at least two possible
types of dependencies, one for lower priced homes and another for higher priced
homes. In Table 6.25, four 11-dimensional patterns are reported. Of the 21 11-
dimensional patterns, 11 predicted high housing prices, 8 dealt with low housing
prices and 3 covered both ranges. The difference between the high and low price

patterns is striking. Consider the following observations.

1. The price of expensive homes are influenced by extremely low crime rates and

low pollution levels (nitric oxide). The reverse applies for cheaper homes.
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Table 6.23: Attributes for housing price data

Feature # Measurement Symbol
1 Per capita crime rate by town CRIM
2 Proportion of residential land ZN

zoned for lots > 25,000 f¢2
3 Proportion of non-retail acres/town INDUS
4 Charles river variable CHAS
5 Nitric oxides concentration (ppm/10) NOX
6 Average # rooms/dwelling RM
7 Proportion of homes built prior AGE
to 1940
8 Weighted distances to 5 DIS
employment centres
9 Index of accessibility to RAD
radial highways
10 Property tax-rate/$10,000 TAX
11 Pupil-teacher ratio PTRATIO
12 Ethnic Composition Index ECI
13 % lower status of population LSTAT
14 Median value of owner-occupied MEDV
homes in $1000’s
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Table 6.24: Number of events at each dimension d

d | # significant events | # significant events
detected related to median price
2 139 11
3 164 35
4 919 161
5 998 410
6 1294 655
7 1195 711
8 797 540
9 377 285
10 120 100
11 23 21
12 2 2
> 12 0 0

2. Expensive homes are generally more spacious as a larger proportion are zoned
for large lots (30-90%). In fact, zoning is not even a determining factor for

the price of cheaper homes as it never appears in the low price patterns.

3. High-priced homes are noticeably younger than their low-priced counterparts,
ranging from 10 to 50 years old, while cheaper homes typically boast an excess

of 70 years.

4. The neighbourhoods are also substantially different. Frugal homes are close
to highways (radial highway accessibility) and within walking distance to the
city core. In contrast, thrifty homes enjoy quiet comfort away from highways
and the bustle of city centres. Neighborhoods of low-priced homes are zoned

for up to 20% industrial use, while higher priced neighborhoods are zoned a

maximum of 6%.
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Table 6.25: Some 11-dimensional patterns detected in the housing data

If 0.01 < CRIME RATE < 0.06

and 31.92 < ZONING < 98.75

and -0.24 < INDUSTRIAL < 4.65

and 0.39 < NITRIC OXIDES < 0.47

and 7 < NUMBER OF ROOMS < 8

and 9.90 < AGE < 49.30

and 4.02 < DISTANCE < 12.13

and 201.88 < TAX < 363.01

and 12.30 < . PUPIL-TEACHER RATIO <19.89
and 1.98 < . PERCENT LOWER STATUS <823
then 22.00 < MEDIAN PRICE < 50.00

with statistic value 4.850869,

and support 23

If 5.44 < CRIME RATE < 73.53

and 16.67 < INDUSTRIAL < 19.10

and 0.58 < NITRIC OXIDES < 0.74

and 4 < NUMBER OF ROOMS < 7

and 85.40 < AGE < 100.00

and 1.18 < " DISTANCE < 2.36

and 22.59 - < RADIAL HIGHWAYS < 25.23

and 648.68 - < TAX < 691.72

and 7.68 < ETHNIC COMPOSITION < 372.92
and 15.02 - < PERCENT LOWER STATUS < 36.98
then 7.00 < MEDIAN PRICE < 17.20

with statistic value 5.062703,

and support 23

High-priced homes

If 0.01 < CRIME RATE < 0.06

and 31.92 < ZONING < 95.27

and -0.40 < INDUSTRIAL <6.27

and 0.39 < NITRIC OXIDES <0.48
and 6 < NUMBER OF ROOMS < 8
and 9.90 < AGE < 56.40

and 4.08 < DISTANCE < 8.54

and 0.67 < RADIAL HIGHWAYS < 6.33
and 217.76 < TAX < 374.52

and 11.91 < PUPIL-TEACHER RATIO < 18.83
then 22.30 < MEDIAN PRICE < 50.00
with statistic value 5.164617,

and support 26

Low-priced homes

If 4.67 < CRIME RATE < 73.53

and 16.67 < INDUSTRIAL < 19.10

and 0.58 < “NITRIC OXIDES <0.74

and 4 < NUMBER OF ROOMS <7

and 85.40 < AGE < 100.00

and 1.18 < DISTANCE < 2.58

and 648.68 < TAX < 691.72

and 19.48 < . PUPIL-TEACHER RATIO < 20.92
and 7.68 < . ETHNIC COMPOSITION < 372,92
and 15.02 < PERCENT LOWER STATUS < 36.98
then 7.00 < MEDIAN PRICE < 17.20

with statistic value 5.266492,

and support 25

Note: The statistic value is the residual statistic of the event. The support is the

observed frequency.
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5. High-priced homes are associated with lower student to teacher ratios, sug-

gesting a higher quality of education.

6. The tax rate for expensive homes is substantially lower. This may seem
counterintuitive at first, but the rate is only part of the equation. The higher

value of the expensive homes would result in a larger total levy.

7. Social trends are also characteristically different. The patterns reveal a higher
percentage of lower “status” home owners among cheaper homes. Ethnic
composition is not even a consideration for the high-priced dwellings but can

range to very high purities for more humble abodes.

A commonality between the 2 housing prices is that neither seems to depend
on the Charles River variable, which is related to the home’s proximity to the
river. The same differences between high and low priced dwellings propagate to the
two 12-dimensional patterns. We see that pattern discovery immediately reveals a
wealth of information from a voluminous high dimensional data set, which would
otherwise be difficult to interpret.

The 12 dimensions selected by discovery have sufficient predictive power, as the
12-dimension linear fits are comparable to that obtained with the full dimensional-
ity. Other combinations of 12 dimensions yield poorer fits and further reduction in
the number of variables also gives inferior prediction. These findings are reported
in Table 6.26. The last two rows show that prediction improves when we use local
models defined over the detected events. However, random selection of the same
number of models, each accounting for approximately the same number of samples,

yields equally good results. It seems that this data set is governed overwhelmingly



CHAPTER 6. EXPERIMENTS AND DISCUSSION

Table 6.26: Verifying the selected dimensions

2

Dimensionality T Sum-of-squared error
14 0.798 3.14
12 (low price) 0.799 3.14
12 (high price) 0.793 3.22
12 (other combinations) | 0.75 3.82
11 0.77 3.57
12 (event-based) 0.88 2.8
14 (random) 0.89 2.6
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The regressions were performed with the transformations listed in [14, p.231].

Table 6.27: Average values of ’outlying’ high price homes

Crime | Zoning | Industrial | Nitric | # rooms | Age | Distance | Tax | Pupil/ | % lower | Median
rate oxides Teacher | status Price
3.5 0.54 19.2 0.6 7 81 2.3 460 17 4.3 50

by a common linear relationship and that there is little merit in choosing the local,

event-based models.

There is however, an interesting observation about the sample points that are

not covered by events when pattern discovery by optimization, with the dependency

objective is performed in the 12 “high-price” dimensions. A group of 5 high-priced

homes exhibited a dramatically different trend from the other expensive homes.

Their average attribute values are recorded in Table 6.27. A quick comparison

to the patterns in Table 6.25, confirms the remarkable deviation. These expensive

homes are close to the city, explaining the larger industrial zoning, higher pollution,

smaller lots, proximity to highways and higher student to pupil ratio. They are also

very old and a fairly high tax rate is imposed. Another intriguing observation is




CHAPTER 6. EXPERIMENTS AND DISCUSSION 213

that the prediction for these homes is quite poor, when using both global and
local models. Their prices are grossly underestimated. For example, using a global
model, the average absolute prediction error over the 5 homes is 18.2 whereas for
the remaining homes the average is only 2.8, nearly a seven fold discrepancy in
prediction error. It can be reasoned that since these homes resemble the low priced
dwellings, the model would underestimate their value. Perhaps, an alternative
model should be dedicated to these high priced homes.

In this experiment, although the knowledge of local dependencies did not en-
hance prediction, it did serve to verify that a single, global model is for the most
part, satisfactory. However, discovery also identified local deviations from the over-
all dependency which may deserve special attention. Again, a2 comprehensive inter-
pretation of the data set is immediately provided by the significant events, high-

lighting trends for low and high price homes.

6.2.6 Multivariate outliers: Virus data

In high dimensions, outliers are generally difficult to detect because they distort
measures of location, scale and orientation [9]. Further, unlike the univariate case,
outliers may arise as a result of systematic errors in a single dimension, a combina-
tion of dimensions or all dimensions. As a result, characterization of multivariate
outliers is extremely challenging [51].

In this last case study, I exemplify the use of pattern discovery to detect outliers
in high-dimensional, sparse data. The data set is composed of 18 measurements

made on the protein coats of 38 Tobamoviruses, a type of rod-shaped virus which
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affects various crops [45]. Each measurement is the number of amino acid residues
per molecule of coat protein. Due to the sparsity of this data set, outlier detec-
tion by thresholding density estimates is ineffective. In fact, concentration discov-
ery consistently yielded negative events, reflecting the emptiness of 18-dimensional
space. Fortunately, pattern discovery provides another alternative. Qutliers can be
detected as observations which deviate significantly from the dependencies of the
majority.

Discovery in the full 18-dimensions with the dependency objective yielded 3
events, one strongly significant event and 2 mildly significant events, covering a
total of 23 observations. This leaves 15 observations as candidate outliers, worthy
of further investigation. Normally, we might proceed to obtain independent evi-
dence to validate the outliers using methods such as linear constraints, Principal
components, Andrews Curves [4], correlation test or gap test. Fortunately, some of
this analysis has been previously conducted.

In the projection pursuit analysis of Ripley [101], point #2 was identified from
among hundreds of views as a likely outlier. Fortuitously, from a linear constraint
perspective, the sum of components of each observation also sheds additional light
on possible outliers. Figure 6.50 is a box plot of the total amino acid residues for
the 38 observations. The whiskers extend to plausible points while the cross-hairs
indicate outliers. The boxplot identifies 8 outliers, only 6 of which are visible due
to multiplicity of the totals. Of these 8 outliers, 4 are in common with the points
isolated by pattern discovery. Figures 6.51 and 6.52 are plots of these outliers, with

low and high total sums, respectively, alongside the significant event. The events
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Figure 6.50: Box plot of total amino acid residues. The observation number appears
beside each outlier.

are displayed with dotted lines and the outliers, with solid lines.

We can now easily interpret the type of deviations which render these points
suspicious. Consider observation #2, the one starting with a lower X; value in
Figure 6.51. It has substantially lower component values than the main event for
X1, X2, X3, X4, X5, X14 and Xy and a higher value for X;5. On the other hand,
the other observation on this plot, #38, is peculiarly low in its X}, X2, Xe, Xo, X11
and X4 values along with an unusually high value for X and X;. The candidate
outliers in Figure 6.52 possess similar types of subdimensional deviations. Thus,
pattern discovery not only identifies suspicious points, but also reveals how they
are different from the mainstream. Note that although candidate outliers were
diagnosed on the basis of dependency, knowledge of the actual high-dimensional

relationship was not required.
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Figure 6.51: “Low” outliers (#2,#38)

Figure 6.52: “High” outliers (#12,#13)
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This final experiment shows that event-based discovery offers a straightforward
approach to the detection of elusive high-dimensional outliers in sparse data. In
addition to flagging suspicious points, discovery hints at the nature of the marginal

and joint deviations.

6.2.7 Summary

The experiments of this chapter show that event-based pattern discovery can con-
tribute valuable information to the collective understanding of a data set. As
shown in the analysis of the housing and chemical-overt diabetes data, multivariate
data sets can be directly unraveled by the synthesis algorithm, revealing subdimen-
sional clusters and dependencies. With the thyroid diagnosis and PIMA diabetes
data, discovery offers straightforward interpretation through simple rules and event
plots. Throughout the chapter, we see that the detection of significant events can
also complement other data analysis tools for classification, prediction and outlier
detection. Tables 6.28 and 6.29 summarize the various experiments, the discovery

objectives invoked and the illustrated properties.
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Basic experiments
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Experiment Data set Discovery Nlustrated properties
Objective
Discovery by Artificial Concentration, | Types of
different criteria Dependency, | organization detected
Linearity by discovery
Noise tolerance Artificial Concentration, | Types of
Dependency, “noise” that is
Linearity rejected by discovery
Non-centralized noise Artificial Concentration | Robustness to
non-centralized
noise
Scale invariance Housing data Concentration | Scale
insensitive pdf
estimates
Partitioning Lipid data Concentration | 2-dimensional
Approximation to discovery by
optimization Environment data | Dependency | partitioning
Event classifier Artificial Concentration | Convergence rate,
Robustness to noise
High-dimensional Artificial Concentration | Detection of
Discovery sub-dimensional

clusters
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Table 6.29: Summary of experiments

Case studies

Experiment Data set Discovery Illustrated properties
Objective

Exploratory analysis | Thyroid disease | Concentration | Interpretability

and interpretation of discovered
patterns

Local dependencies Chemical-overt | Dependency, | Local dependencies,

and significant diabetes Concentration | Locally important

features features

Pattern discovery and | PIMA diabetes | Concentration | Revealing data’s

classification limitations

Time-dependent EMG data Concentration | Detection of

Discovery stationary patterns

Pattern discovery and | Housing data Dependency | Detection of local

prediction dependencies and
deviations

Multivariate outliers Tobamoviruses | Dependency | Unveiling

(virus data) high-dimensional

outliers in sparse data




Chapter 7

Conclusion

7.1 Summary of research completed

In this thesis, I have proposed a framework for pattern discovery, based upon proba-
bility theory and the definition of events in Euclidean space. An event is character-
ized by its volume, observed frequency, probability and statistic value. Patterns are
defined as statistically significant events according to a discovery objective. Three
such objectives are formulated and the pattern discovery problem is cast as an
algorithm in mathematical optimization. The statistical backbone of event-based
discovery is the test of homogeneity in a 2-way contingency table. The appropriate
expressions have been derived for the statistical testing of candidate events. To
perform discovery, a genetic algorithm is employed, guided by the sequential and
recursive search strategies.

For low-dimensional data, the hierarchical maximum entropy discretization ap-

proach [126], is revised to satisfy theoretical constraints. Enhancements, including

220



CHAPTER 7. CONCLUSION 221

boundary refinement and adaptive parameters, are instrumental in providing a
good approximation to optimization when the data is sufficiently dense. From the
discovered events, a number of extensions are immediate. A probabilistic descrip-
tion and a general kernel method arise from the detected events and subsequently a
classifier can be constructed. Tracking of temporal patterns is based on the concept
of significant event shifts while event synthesis employs a bottom-up procedure to
handle high-dimensional data.

Experiments illustrated the ease of applying and interpreting the wealth of infor-
mation contained in events. Through various case studies, pattern discovery is seen
to be a useful nonparametric tool in exploratory analysis, local feature selection

and outlier detection.

7.2 Summary of contributions

The following list summarizes what I believe to be theoretical contributions of this

thesis to pattern analysis, and especially to an event-based approach.

A) An event level framework for continuous data. A bridge is established
between probability theory and pattern discovery on the basis that
events are the fundamental information bearing entity in R%. It is shown
that some existing intelligent data analysis methods can be understood
from an event level perspective. A unique characteristic of this frame-
work is its natural accommodation of local organization in subspaces of

less than the full dimensionality.
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B) Consistent probability density estimate. It is argued that pdf estima-
tion using maximum entropy recursive partitioning is asymptotically

consistent.

C) Discovery by residual analysis. A unique application of a 2-way contin-
gency table, with product-multinomial sampling is proposed for pattern
discovery. The large sample maximum likelihood estimate of the resid-
ual variance is derived and a test of homogeneity of proportions is put
forth as the main statistical hypothesis. Based on this construction,
data of any dimensionality can be analyzed by a 2 dimensional table.
Furthermore, different discovery objectives can take advantage of a com-
mon contingency table. The connection between Haberman’s formula

and projection matrices is established.

D) Discovery as optimization. Pattern discovery is posed as a general
mathematical optimization problem, befitting of any discovery objec-
tive. Specifically, objective functions for concentration, dependence and

linearity are formulated.

E) Support for projections. Theoretical arguments are given in support of
synthesizing low-dimensional orthogonal projections by different discov-

ery objectives.

From the methodological front, the following contributions are considered rele-

vant to pattern discovery.
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A)

D)

Enhanced recursive partitioning. The original hierarchical maximum
entropy discretization scheme of Chiu [126] is revamped to adhere to
theoretical assumptions. The development of boundary refinement and
prescriptions for an adaptive partition size and an adaptive significance

level, greatly enhance the applicability of recursive partitioning.

Recursive and sequential optimization. The idea of recursive optimiza-
tion is proposed as a way to converge upon local optima by successive,
crude searches. In particular, its viability with a genetic algorithm has
been demonstrated. Another novel idea, sequential discovery is pre-
sented as a method to remove known structure and resume the search
in a reduced space. The combination of these ideas is supported by the
successful optimization of the non-smooth and discontinuous discovery
objectives. It is believed that the recursive approach could be applied

to general optimization problems.

High-dimensional discovery. The curse of dimensionality is overcome
by assembling high-dimensional events from low dimensional orthogo-
nal projections. The combination of statistical testing and a new event
synthesis procedure enables the detection of subdimensional organiza-

tion. High-dimensional and sparse data sets can be directly analyzed.

General kernel method. For the purpose of obtaining a smooth represen-
tation, pattern discovery provides the infrastructure to simultaneously

determine the number of kernels, their location and their respective
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E)

bandwidths. The only restriction is that the covariance matrix is pos-
itive definite. The progression from a discrete to continuous estimate,
from compact to infinite support, eliminates the need for iteratively

training the kernel parameters.

Time-dependent discovery. Using categorical analysis, event-based dis-
covery provides a new, objective measure of significant changes over
time. Unlike ad-hoc thresholds, the measure of a significant event shift
is problem independent and facilitates the tracking of dynamic patterns

while circumventing full retraining at every time instant.

7.3 Directions for future work

The theory developed in this thesis suggest some natural generalizations.

A)

Abstract events. The concept of an event can be generalized further.
Discovered events in Euclidean space R¢ can be invertibly mapped into
points in an abstract space, T. Discovery can then be performed in T,
where the discovered events now represent significant joint occurrences
or dependencies among the original events in R¢. These abstract events

could be applied in the investigation of relationships among events.

Small sample estimates. The developed residual test statistics are based
upon asymptotic assumptions which may be violated when the expected
cell counts dwindle [58] or when dimensionality explodes. Low sample

scenarios may arise even with dense data, after several rounds of recur-
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C)

sion. A resampling statistic [42] may be more viable in such circum-

stances.

Imprecise events. Events can be naturally generalized to have graded
rather than crisp boundaries. These imprecise events would constitute
fuzzy membership functions and could be applied to the analysis of data

with possibilistic uncertainties.
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The experimental findings suggest that several issues deserve further attention

in future work.

A)

B)

Improved GA. The presently employed genetic algorithm is sluggish.
The incorporation of elitism may hasten discovery of local optima by
retaining sets of highly significant events across generations. In addi-
tion, diploidy and dominance [12] may further enhance the discovery of
significant events by maintaining a broader diversity of genes within the

population.

A better low-dimensional approximation. Although partitioning pro-
vides acceptable coverage and speed, the resulting representations can
be profusely extravagant. A better low-dimensional approximation may
adopt a maximum cohesiveness rather than a maximum entropy strat-
egy. The former would be more akin to the the preservation of local
structure as promoted by techniques such as projection pursuit. How-
ever, if the optimization of events can be sufficiently accelerated, then

a low-dimensional approximation would be redundant.
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C) Event synthesis with projection pursuit. To expand the scope of de-
tectable high-dimensional structure, event synthesis may be combined
with projection pursuit, where the latter determines “interesting” pro-

Jjections for merging.



Appendix A

Proofs of propositions

A.1 Derivation of the asymptotic distribution

In this section, I step through the derivation of the asymptotic distribution of the
residual statistic. The derivation follows closely the approach of Christensen [26,
p-388-9] in the derivation of the distribution os a different cell statistic. I will first

clarify some required notation and definitions.

A.1.1 Notation and definitions

The 0,0, 0, and O, notation for describing limiting behaviour of real numbers and
random variables is used. See [19, pages 459,475]. Let F be a function which maps
from R* to R* with F(x) = (fi(x), fo(x),..., fe(x))’. The derivative, d_.F' denotes
the ¢ x s matrix of partial derivatives, d; F' = [gf;—] A log linear model is assumed
to be of the form,

g = log(m) = Xb (A.1)
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where m is the vector of expected frequencies, X is the model matrix and b is the
vector of estimated parameters. In the maximum likelihood estimation of log-linear
model parameters, a log-likelihood function suitable for all sampling schemes is (26,
p.368],

f(b)=n'y —JI'm (A.2)

where J is the vector of 1’s. From (A.1) it is evident that £ = u(b) = Xb and
m = m(b) = exp(Xb) are both functions of b. To find maximum likelihood

estimates (MLE) of model parameters, the first derivative of f(b) is set to 0.
dyf(b) =d,f dpp = (n—m(b)))X =0 (A.3)

The MLE of b is denoted b = b(n) and is defined implicitly as the unique solution
to Equation (A.3). The uniqueness stems from the fact that f(b) is strictly convex
(See Christensen [26, p.369]). In this way, the MLE b uniquely defines the MLE
m = m(n) = m(b). The question of existence of MLE’s for log-linear models is

rigorously addressed in Haberman [57].

A.1.2 Derivation

In a nutshell, the approach is to write the desired difference, € = n — 1 as a linear
function of n — m, whose asymptotic distribution we know. Then, employing the
delta method, the limiting distribution of the residual is obtained.

Two lemmas from Christensen [26] will be used in the derivation. They are

included here for reference.
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Lemma 1 Let a be a scalar and let n be a g x 1 vector of counts, then m(an) =

arn(n)

Lemma 2 Let p = 3. then a(p) = p

To obtain n — h as linear function of n — m, the idea is to write the Taylor series
expansion for m as an implicit function of n, around m. Equivalently, expand m
as a function of the sample proportion, s = § around p. where p = % This
equivalent approach will facilitate the use of some proven results. The expansion
1s,

m(s) = m(p) + dut(p)(s — p) + O(|[s — p||) (A.4)

where ||z|| = (; 22)'/%. By a sequence of manipulations this equation will yield

the desired asymptotic result. First, consider the derivative, d,m(n). Using the

chain rule, it can be written as,
d.ia(n) = d;rar d,b (A.5)

The derivative of b is obtained by applying the corollary to the implicit function

theorem [26, pp.387-8|.
d.,b = (X'D(th) X)X’ (A.6)

Here, D(m) is a diagonal matrix with the elements of m on the main diagonal. To
compute the derivative of m note that m = exp(X b). The g X p matrix of partial

derivatives is,

dyri(n) = D(rh) X (A.7)
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Substituting (A.6) and (A.7) into (A.5). we have that
d.m(n) = D(m(n))X(X'D(m(n))X) 1 X’ (A.8)

Recall that in Equation (A.4) we require d,m(p). Since (A.8) is true for any n, we

can substitute p = mN~! in place of n, obtaining
d.th(p) = D(m(p)) X (X'D(mh(p))X) ' X' (A.9)

Fortunately, lemma 2 states that m(p) = p. This leads to the simplification
D(m(p)) = D(p). For simplicity. we’ll just denote D(p) as D. Now the derivative

can be compactly written as,
d.m(p) = DAD™! (A.10)

where A = X(X'DX)~'X’'D. Substituting this derivative into Equation (A.4) and

rearranging terms we have,
m(N'n)—m(N'm)-DAD Y (N 'n—N"'m)=O(]|[N"*n~ N"'m||) (A.11)

where s and p have also been replaced by their respective definitions. By applying
lemmas 1 and 2 in Christensen [26, p.387], the first 2 terms on the left-hand side
simplifies to N~'th — N~!m. Furthermore, the right-hand side is the difference
between the sample proportion and its mean and thus by Tchebychev’s Inequality
is Op(N~1/?) or equivalently. 0,(1). Incorporating this information and multiplying
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through by N'/2, Equation (A.11) becomes,
N~'?m — N™?m — DAD™Y(N™'?n ~ N~Y?m) = o,(1) (A.12)

Multiplying through by —1. adding and subtracting N~'/?n and letting N — oo

we arrive at,
N™Y*n —m) - (I - DAD™')N~'*(n —m) 2 0 (A.13)

The difference between N~'/?(n—r1h) and (I—DAD~')N~/?(n—m) approaches
0 in probability as N — co. Hence, by Rao [98, p.101], we know that the 2 expres-
sions have the same limiting distribution. The limiting distribution of N='/?2(n—m)

is given by the large-sample multinomial result,
N~Y*(n —m) 2+ N(0, D(p)(I — Ay)) (A.14)

where Ag = JJ'D(p) is an orthogonal projection matrix. By a trivial application

of the delta method, we obtain,
N~Y%*n — ) 25 M(0,(I — DAD™Y(D(I ~ Ao))(I — DAD™Y)) (A.15)

Finally, by exploiting the fact that A is idempotent and that AgA = Ay, we obtain

the large-sample distribution of the simple residual,

N~Y*(n - 1) 2+ (0, D(I — A)) (A.16)
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where A = X(X'DX)"'X'D.

A.2 Closed-form estimate of the asymptotic vari-
ance of the residual

In this section, I attempt to link the the compact expression for the asymptotic
covariance matrix given in Equation (4.23) to the more common expressions such
as, D(m)(I— A(rh)) which are built around the projection matrix A. In particular,
the focus here is to highlight the connections between the generating class and
the projection matrix. To the best of my knowledge. no prior attempt has been
made to point out these equivalences. This understanding is crucial to the proper
application of Equation (4.23).

For definitions of generating and intersection classes and decomposability the

reader is referred to [57].

Generating class induces a projection matrix

We shall begin by relating the generating class to an orthogonal projection matrix.
Suppose we have a table of g counts given by the vector n = (n1,ns,...,n,). Sup-
pose further that the log-linear model of interest is both hierarchical and decompos-
able. Thus, there exists a closed-form estimate h. in the form of Equation (4.22).
Let the generating class be § = {51, 5a,...,S¢}. Consider the j** element, S; with
L; = L(S;) distinct levels. For S;, define a g x 1 binary-valued vector, v;;. This

vector selects the cells which contribute to the marginal sum of the k*» level. A
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1 is placed in the positions corresponding to the selected cells and 0’s are placed
everywhere else. Such a vector can be formed for each of the k levels, k=1,...,L;,

so that associated with each element S; is a set of vectors,
{ij, k= 1,...,LJ'} (Al?)

Each column vector, v;; determines a linear vector space M(S;z)!, spanned by a

single vector,

M(S;k) = span(viji) (A.18)

The following proposition allows us to use these vectors to write the subspace

associated with each generating element, ;.

Proposition 3 The set of L; vectors {vi}, k = 1,...,L; associated with the

generating element S; has the following properties:
(1) Lj < q, where q is the number of cells in the table.

(1) The vector of ones, J is always representable by the vectors {v;i}.

Proof:

Consider the j** generating element S; with L; levels. The g x 1 column vector
Vijk. composed entirely of 1's and 0’s, selects the cells contributing to the marginal
sum of the k** level, k = 1,..., L;. Note that the i** cell, i = 1,...,¢, is selected

exactly once by the set of vectors, {vjr}. As a result, these vectors are mutually

'All the linear vector spaces referred to here are subspaces of R9, with vector addition and
scalar multiplication defined as in Euclidean space.
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orthogonal,
Vik - Vi1 = 0 Vk 7-‘ l (A..lg)

and hence linearly independent.

Statement (i) To verify statement (i), consider a table with z variables. Let
the i** variable have L; > 2 levels. The total number of cells in the table will be
g =L; x Ly x ... x L,. Since only tables of 2 or more variables are of practical
interest, we see that ¢ > L;. i1 =1,...,z.

Statement (ii) Let v be a vector within span{v;}, i.e.,

Lj
v = Z aijk (AQO)
k=1
where ai. € R, for all k. If we set, &; = a2 =... = ar; = 1, we have,
L
v = Z vir=J (A.21)
k=1

where J is the vector of 1’s. The last equation is true because each of the ¢ cells is

selected exactly once by the vectors {v;z, k=1,...,L;}.

¢

Applying the above proposition, the subspace of R? determined by Sj; is thus,

M(SJ) = span({v,-k, k=1.... 3 LJ}) (A.22)
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The vectors {v;;} can be written for each S;. Therefore, a generating class, § =

{S1....,Sc} will give rise to the vectors,
{vie, 7=1,...,G, k=1....,L;} (A.23)
The subspace determined by the generating class S is given by,
M(S) =span({vje, j=1,....,G, k=1,...,L;}) (A.24)
The next proposition relates the subspace M(S) to the model matrix, X, of a

log-linear model.

Proposition 4 Let M(S) be defined as above. Let X be the ¢ x p model matriz

for a log-linear model, logm = Xb. Let x be a column of X. Then,
(1) Every column of X is contained in M(S). i.e., x € M(S)
(ii) col( X) = M(S)
Proof:
Let V ={vj,j=1,....G, ,k=1,...,L}. We know that any p linearly indepen-
dent column vectors selected from V forms an equivalent parameterization of X for

the log-linear model, log m = Xb [26]. Define a matrix M = [M; M ... M,|, where

M; are the column vectors that span M(S). Note that,

M,cV (A.25)
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for all . This is true because M(S) def span(V). Hence, M is a parameterization

of the model matrix X and we can write,
col(M) = col(X) = M(S) (A.26)

¢

The subspace M(S) is therefore equivalent to the column space of the model
matrix X, that is, C(X). We can always form the standard perpendicular projection

matrix onto C(X) with the inner product defined with D.
P=XXDX)'X’ (A.27)

Since P is a perpendicular projection onto C(X), C(P) = C(X) [27]. This first
set of arguments shows that the projection matrix P is induced by the generating

class S.

Decomposition of M(S)

Next we argue that decomposability of the generating class implies decomposability
of the subspace, M(S). Suppose that a generating class S is decomposable into S;
and S;. We know that S; and S» both determine subspaces, which, in general need
not be orthogonal. From the previous section, we know that together, the linearly

independent subset of vectors of M(S;) and M(S,) determine the subspace M(S).
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(M(S1)NM(S2)) N M(S2)
P ™
[ M(S1) N M(Ss)
M(S1)

Figure A.1: Decomposition of M(S)

Hence, we can write,

M(S) = MESHUM(S:)\ [MS)NM(S2)])
= M(S;) ® Space unique to M(S,)
= M) e [(MESINMES) NMES)]  (Aa28)

Here, 1 signifies the complement space and @ is the direct sum. The last equality
can be understood by looking at Figure A.1. The space M(S) is decomposed into
a direct sum of 2 complementary subspaces. This is done to facilitate the matrix

decomposition discussed next.
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Decomposition of projection matrix

Recall that since P projects onto M(S), C(P) = M(S). Therefore, Equation (A.28)

allows us to write P as a combination of projections,
P=P+P; (A.29)

where P, is a projection matrix onto M(S;) and Pz is a projection matrix onto
(M(S1) N M(S2))" N M(S-). The projection Pz can be further decomposed. De-
fine a matrix P, which projects onto M(S.) and a matrix P; which projects onto

M(S1)NM(S2). The range space of Pz can now be written as,
(MSHNM(S) N M(S2) =C(Po)* N C(Py) (4.30)

From the combinations of projections [10, 27|, we know that the matrix P, — P,
projects onto this space if P,DP; = P;DP, = P;. Fortunately, we can always write

P, as 2 projection matrices onto complement subspaces,
Pg = P_1 -+ ng . (A.31)

where P,; projects onto the same space as Ps;, namely, C(P3) = M(S;) N M(S)
and P;; projects to the complement of M(S;)NM(S;) in M(S). By a simple

substitution of Equation (A.31), we see that,

P,DP; = (Py + P2)DPy = Ps (A.32)



APPENDIX A. PROOFS OF PROPOSITIONS 239

and P3DP2 = P3D(P21 + ng) = P3

We conclude therefore that P, — P; projects onto (M(SI)ﬂM(Sg))J‘ﬂM(Sz).

Finally, we can write the decomposition of P as
P=P +P,—Ps (A.33)

where P projects onto M(S), P, projects onto M(S;), P, projects onto M(S2) and
P projects onto M(S;) N\ M(S,). Note that the diagonal matrix D is nonsingular

and thus we can relate the column spaces as follows [27],
C(PD)=C(AD+ P,D —- P3D) (A.34)

Hence, post-multiplication by D does not affect the validity of the decomposition

and we have,

PD=PD+ P,D-PD (A.35)

Before going on, we will need the following proposition to bring the intersection

class into the discussion.

Proposition 5 Let T be the intersection class between Sy and S,. Then,

M(8)M(S2) = M(T) (A.36)
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Proof:

Consider the generating class S with G elements. Let M be a number less than
G. Denote the subclasses of the generating class as S; = {5, 55,...,Sy-1} and
Sz = {SM,Sm+1,....5c}. Let F = {8; N S;} with S; € S; and S; € S;. If the

intersection class is empty, i.e., 7 = {0}, then we know by Proposition 3, that,
M(S) M(S:) = 3 (A.37)

By definition [57] however. we have that M(F) = J when 7 is empty, so that the
proposition is verified when 7 = {0}.

Now consider the case when 7 is not empty. Let {vj.,j =1,....M — 1, =
1,...,L(j)} represent the vectors associated with S;. We can construct M(S;)
by selecting all the columns for S;, the first generating element, and then adding

linearly independent columns from other generating elements. In other words,
M(8) =span({vu}, 1) k=1,...,L (A.38)

where I'y are the columns associated with generating elements, S, to Sar—; which
are linearly independent of {v;;}. The same procedure can be repeated to construct
M(S2),

M(S;) = span({va},[2) k=1,...,Lx (A.39)

where I'; are the columns associated with generating elements, Sar41 to Sg which

are linearly independent of {vs}.
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Now suppose that S; and Syr have a common variable, say W, i.e., $;N S;=W.
Define an index set Z such that if 1 € Z then vy; is a vector which selects the kt*
level of W. Now let {v%} represent the subset of {v;} in which the k** level of W

is selected.

{vi} ={vi.i €T} (A.40)

Then, by summing the vectors {v¥} , we can form the column vector, w;. associated

with the k** level of W. Thus, for each level k of W, we can write the associated

vector as,

W = Zvli = ZV,&, (A41)

ieT

where the summation is over all vectors in which the kt* level of W is selected.
This is always possible because the marginal sum for a variable W, contained in
S1. can be obtained from the marginal sum of S), simply by summing over all levels
of variables in S; other than W. We can write Equation (A.41) for each level of
W. Thus, there will be L, new vectors, where L., is the number of levels in the
variable W.

The same procedure can be repeated with the columns of Sis to extract the
columns associated with the common variable W. Hence, we can conclude that

each vector in the set {w;} lies in both the columns associated with S; and those

of SM, i.e.,

wr € span({vy, i1=1,...,L;}) (A.42)

Wi € span ({VM,', 1=1,..., LM}) (A43)
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for k=1,...,L,. Now note that the vectors {w} select the marginal sums of W

and determine the subspace M(W) = M(S; N Sar),
span({wr}) = M(S; N Sar) (A.44)
Therefore the intersection of M(S;) and M (S-) is given by,
M(S) N M(S2) = M(S51 N Sur) (A.45)

If we continue this procedure of checking elements in S; € S; and S; € S2 in a

pairwise fashion, we will obtain,

M(S)YM(S2) = M{S10 Sum, 510 Sarery - S 0 Sg})
= M(T) (A.46)

¢

Thus, in the above discussion, we can consider the matrix P; as projecting onto

. M(T).

Recursive decomposition

The above decomposition of the projection matrix can be recursively applied to
Py, P, and P; until there is a projection matrix corresponding to every level of

every generating and intersecting class element, i.e. there is a projection onto every
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M(Sje) and M(Tj).

PD = P D+ P,D - P;D (A.47)

= (Pu+ Pia — Pi3)D + (Pay + Paz — Py3)D — (P3y + Py; ~ Ps3) D
'“G L(S,) G—-1L(Tj)
= (Z IR LECIEDDY P(Tjk)) D
7 k=1 7 k=1

where P(S;) is the projection matrix onto M(S;x) and P{T}:) is the projection
matrix onto M(Tjx). The number of levels in S; and T; have been indicated by

L(S;) and L(T}) respectively.

Simplifying projection matrices

Consider the projection matrix P(Sjt) = vje(vj' DVji) v, corresponding to the
k** level of the generating class element S;. The expression v;'D(h)v;; basically

computes the marginal sum for the k** level of generating element S;, that is,
ij'D(Iil)ij = Iilsj“ (A.48)
Hence, we can write the projection matrix as,

1 ,
P(Sjk) = m-vjkvjk (A49)

The main diagonal of the ¢ x ¢ matrix v;zv;’ is just the elements of v;z. We can
g qxq kVj J j

make 3 observations about the matrix v;v;i/,
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1. The matrix consists entirely of 1's and 0’s.
2. Each of the g diagonal elements corresponds to exactly 1 cell in the table.

3. The non-zero diagonal elements correspond to cells which contribute to the

k** marginal sum.

Hence, the non-zero diagonal entries of the matrix P(S;x) are simply —5--.
m

When we sum over all the & levels of S;. we obtain the the projection matrix

onto M(S;), namely,
' 1
P(S5;) = Z P(Sjk) = Z mvjkvjk, (A.50)

Note that the vectors {v;i} consist of only 1's and 0’s and are mutually orthogonal.
Along with the above observations, we see that no two matrices, v;;v;' and vvjl',
k # [, will have non-zero entries in the same position. Hence, the non-zero main
diagonal entries of P(S;) are the L; inverted marginal totals, m—_ﬁ; corresponding

to S;. In particular, the i** diagonal entry is given by,

diag; (P(S;)) = =— (A.51)

i

where mJi* is the only marginal sum of S; to which cell ¢ contributes. For the sake

of brevity, we will not explicitly write the dependence of the right-hand side on the
cell 7.
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When we sum P(S;) over the generating class elements j = 1,....G, the it*
diagonal entry of the resulting matrix becomes,
G ¢ 1
diag; 2_,: P(S;) | = ; =5 (A.52)

In fitting the log-linear model, the initial constraint was that the marginal sums of
the estimated expected frequencies must equal those of the observed frequencies.
Hence, we can replace marginal totals ;ﬁ-;; with n—j; The same arguments apply
for simplification of the intersection class projection matrices. The diagonals of the

matrix PD are thus given by,

[ G G-1
diag,(PD) = |diag; (Z P(SJ-)) — diag; (Z P(Tj))] x diag;(D(rh))

j=1
[ G G-1
1 1 ) X
- z]: mSe EJ: rh:r,-,.} x diag; (D(m)) (A.53)
G 1 G-1 1
= mg; —5; — ; —

Asymptotic variance

The last step is to recognize that A(m) = PD(m), where P is the projection
matrix of Equation (A.27). Therefore, the i* diagonal element of the asymptotic

covariance matrix, D(m)[] — A(rn)] is written as,

'Q)

= diag,(D(h)) [diag,(]) — diag; (A(rn)]) (A.54)
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For brevity of notation, we can omit the level subscript k£ and remember that the

level is implied by the generating element j.

A.3 Recursive partitioning: Estimation of the max-

imum entropy of a partition

In reference to Section 5.1.3, recursive partitioning has a natural interpretation as
the estimation of the maximum entropy of the initial partition. The entropy of a
partition of g cells is defined as [107. 72],

q
H(P,,Ps,....P) =3 P.log P (A.55)

k=1

where P; are cell probabilities. The maximum entropy of a partition is achieved

when all probabilities are equalized,

J =

Hmaz = H(

- P

K|

. %) * A(q) (A.56)

Q

Suppose that we partition a sample space into Q¢ cells and that M < Q9 of these
cells are repartitioned. From the definition of entropy [107, p.393], we know that
the branching property is satisfied. Hence, the maximum entropy of the initial

partition into Q¢ cells can be approximated as,

~ ~ M Qd Y ~
AQY) = H(Pyr,...,Poa_p) + D3 Pi 4z;(Q%) (A.57)

j=1li=1
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where P; is the probability estimate for the * cell and A,; is the estimated maxi-
mum entropy of the partition of cell 7. The subscript 2 indicates that this estimate
is obtained from the second level of partitioning. We see that the approximation is
recursive. Eventually, at the rt* level of recursion, the estimate A,(Q%) will equal
the true A(Q9) = log(Q?). or perhaps due to a lack of observations may become
smaller than some threshold value. In either case, the recursive estimation would
cease.

To clarify, consider a simple example of 4 levels of recursive partitioning in 2-
dimensions, where at each level, only 1 cell is repartitioned. Let the partition size
be Q = 2. Further suppose that at the fourth level of recursion, true frequency
equalization is achieved. The estimates of the maximum entropy at each level of

recursion are then,

4
Ai(4) = H(PLP.Ps)+ ) PuAs(4) (A.58)

i=1

4
As(4) = H(Py, Pia, Pis) + Z Ps4;A3(4)

i=1

4
Az(4) = H(Paar, Piaz, Puas) + z PiysAg(4)

i=1

At the final level of recursion, we have A4(4) = log(4) as the true value of the
maximum entropy. The partitioning and the associated probabilities are shown
in Figure A.3. To obtain a numeric value for the maximum entropy of the initial

partition, simply back substitute each equation into its predecessor.
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4
- - X
Pia Pz '
1
............................... X
1 i >
3 3 . Py
|
1 1 Pys ! P
1 4 )
S v e mm e m e mm ]
A ; .
P41 : P42
1
P1 P2

captionExample of recursive partitioning for maximum entropy estimation
A.4 Termination condition

In the derivation of the large sample variance of the residual [57, 2, 34, 26], the
central limit theorem is applied to the summation of multinomials, yielding an
asymptotically normal distribution. For this approximation to hold, the expected
cell frequency should be sufficiently large, typically at least 25 samples. Let (min
denote this minimum expected cell frequency. We therefore constrain the expected

frequency given by Equation (4.28),

(n1; + n2;5) 2 (min (A.59)

N =

m; =

If we substitute for n,; using Equation (4.34) and solve for the event volume, v;,

we arrive at a lower bound for v;.

v; > 1:7‘7‘1(:?(2(,,,,-,l —n,y;) = lower bound (A.60)
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If the volume of an event falls below this lower bound, partitioning should not

proceed. This condition is expressed by the second termination criterion.

A.5 Asymptotic consistency

The fundamental measure of correctness of a classification rule is its unconditional
error rate, R,, in the limit of an infinite training sample. A rule is Bayes risk
consistent or efficient if

lim R, = R" (A.61)

n—oc

where R® is the Bayes error rate or Bayes probability of error. This is the optimal
error rate achievable and can occur only if the class conditional densities are com-
pletely specified. Here. I will argue that marginal maximum entropy partitioning
1s asymptotically Bayes optimal by showing that with infinite recursion, it provides

consistent density estimates.

Definition 16 A refinement, {Eny1}. of a set {E,} is defined by the following

property.
For every E; € {E,+1} 3 ezactly one F; € {E,} such that E; C F; (A.62)

Alternately, we may interpret each F; as being refined into Q¢ subsets E;, such that

F: = U¥, E;.

We need to verify that marginal maximum entropy partitioning (MMEP) does

in fact cover all the data.
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Proposition 6 Given any sample space @ C R populated with N data points,
x € R¢, marginal mazimum entropy partitioning will cover each x with ezactly one

d-dimensional cell.

Proof:

Suppose that we are given a sample space  C R¢ and marginal maximum entropy
partitioning is applied to each dimension, 7. 7 = 1...d. Let Q be the number of
partitions formed in each dimension. It is clear that in each dimension, there will
be Q disjoint subsets Ej;, Ej,. ... Ejo of the original data Q, i.e., @ = UL, Eji, Vj.

Therefore, every x will be contained in exactly 1 subset of each marginal partition.
Q
Y Ig(x)=1 Vj (A.63)
=1

Here, Ig;,(x) is the indicator function of the cell Ej; as defined previously. Next
note that the intersection of d subsets. one from each of the marginal partitions,
will yield a unique subset, i.e., E7 = ﬂ?=1 E;x(;)- Here K(j) € {1,...Q} selects one
subset of each marginal partition and J = Z?=1 K(j)10%7 defines the composition
of the resulting subset. The uniqueness of E7 is due to the fact that for each j, the

sets Ej; are disjoint. The disjointness property can be expressed as,
Es((Q\ Ejxiy) =0 V5 (A.64)

This means that no other intersection of marginal partition subsets can contain

points in Es and therefore E7 is uniquely determined. The uniqueness is summa-



APPENDIX A. PROOFS OF PROPOSITIONS 251

rized by,

=1 =t \k=1 =1

Q4 d Q Q¢
Z Ig,(x) = H (Z IEJ.,‘(X)) =1 Vxe Q= U E; (A.65)
¢

So we have established that when applied to a given sample space, MMEP will in
fact cover each data point uniquely, with a d-dimensional cell.
Next we characterize the behaviour of the estimate as the number of available

samples becomes very large.

Proposition 7 Suppose MMEP is recursively applied to a sample space 2 C R¢ of

N points. If N — oo then,

1. The mazimum number of allowable recursions, Tmgr, increases at the rate

InN.

2. The ratio 5 — 0. where n. is the number of points in the cell containing x

at the ** recursion.
3. The volume of cells, Vy — 0, but NVy — oo

4. For each data point x, there will be a cell center c such that, |c — x| < ¢,

O<excl

Proof:
To prove the first item, we find a lower bound on the maximum number of recursions

Tmaz. Let £ represent the minimum allowable number of points per cell and let Q;
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be the number of partitions at the i** level of recursion. For one particular subspace

of the sample space, we may write,

£= H (Qld) N (A.66)

i=1

We note that if Q,.;, = min; Q;, then

11 1 1\
a@ o Ql'ma: S (Qmin) (A67)

Using this result in (A.66) and taking logarithms yields,

1n$51nN+drmuln<Q1. ) (A.68)

Rearranging, we arrive at a lower bound for r,
Tmaz > AlDN — B (A.69)

where A = m—ém and B = Aln{. As A and B are constants with respect to N,

then rp.- grows approximately as In N. Therefore, 7, — 00 as N — oo.

¢

Counsider a sequence of cells, Ei, & = 1...r, containing a point x, i.e. x € B, C
E._, C...C E,. Byrepeated application of Proposition 6 to each level of recursion,

we know such a sequence of refinements exist. Let n, be the number of points in
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E.. For fixed N, note that

> — r— N
n, = ==t o _Dr=2 = (A.70)

TQF T QL. T T L, @F

Rearranging,

n, 1 .

— =———5 where@;>1Vi A.7T1
N Hi:]. Q:i Q ( )

Weknowthatr—)ooandthus'—I'VL—>0asN—+oo.

<
To prove that the volume decreases to 0, we note that in a particular subspace,
-1
Vn = Vatoba [ | oL, (A.72)
i=1 1t

where Vgiosar is the constant global volume of the space occupied by the data. As

@: > 1lfor all z, and r — o0 as N — oo, therefore \}im Vn = 0. However, we need
¥ =0

to show that Vi decreases slower than 1/N. Let @; = (%)1/ 4 where ¢ denotes the
minimum number of points per cell. This is a crude upper bound for Q;. Thus we

may write the volume as,
r(N)

Vn = Vot [ i (A.73)

i=1 '
where we have written r(N) to indicate that = is a function of N. Multiplying both

sides by N, we obtain.
r(N) N
NVn = Vaiosat€ H — (A.74)

=1 n;
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We know however that hm —A—f = 0 and therefore we conclude that NVy — oo as

N — co.
O

Consider again the sequence of cells Ey, £ = 1...r, that contain x. Let c; be the

centers of Ey. Let hi; be the length of the j** dimension of Ey,

r—1 1
hkj = hlj H A Q,‘ >1 (A75)

=1 t

where h,; is the original length, prior to any recursion. Define the diagonal of the
cell By as diag(E) = \/—‘J _, hi;. For x € Eg,

[lx — cil| £ diag(Ek) (A.76)

where ||| is the Euclidean norm. Since Q; > 1, ht; — 0 and therefore diag(Er) — 0
as T — oo. We conclude then that there exists an R such that for » > R and

0 <e<<1,||lx—-c|| <e Inother words, ¢, can be arbitrarily close to x.

%
We are now ready to state the results describing the asymptotic properties of the
pdf estimate.

Proposition 8 Suppose we have a sample space @ € R? from which we indepen-

dently draw N samples x according to the probability law f(x). The pdf estimate,

Fx) =3 Iei(x) nE"_ (A.77)
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based upon the final set of cells, {E;}, i =1... K, of a sequence of recursive mazi-

mum entropy partitions of ) is asymptotically unbiased, i.e., for x € Q,
E[f(x)] — f(x) asN = oo (A.78)

Here, E[-] denotes ezpectation over different random samplings.

Proof:

For a test point X;.,. contained in the cell E; of the final partition,

E[f(xtest)] = E[JEE,-] (A.79)
= E[W (A.80)

P
= Vi (A.81)

In the last equation we have exploited the fact that the number of points n; falling
within the cell E; is binomially distributed with probability P = [g. f(x)dx, i.e.,
n; ~ Bin(N, P). Hence. E[n;] = NP.
Assuming that f(x) is continuous and bounded on E; and that E; is connected,
then we may apply the mean valﬁe theorem to evaluate P. In other words, 3¢ € E;
such that

[, flx)dx = FQV(ED (4.82)

where V(E;) = [p, dx. Employing this result in (A.81) yields,

E[f(%wn)) = f({) (€ E; (A.83)
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Now let c; be the centre of E;. By Proposition 7, we know that as N — oo,

I{-cll < & (A.84)

thc,g - QII < € (A.85)
where 0 < ¢, €2 << 1. To relate { and x.,. we make use of the triangle inequality,

[ = Xeestl] < 1I€ = cill + [ Xbeae — <] (A.86)

< &g +e6 (A.87)

Hence as N — oo, || — X¢ese|| = O, implying that { — X;,:. This leads to the

conclusion that as N — oo,
E(f(Xeest)] = f(Xteat) (A.88)

¢

Proposition 9 The pdf estimate (A.77) when applied under the conditions as in

Proposition 8, has asymptotically vanishing variance, i.e.,

Var[f(x)] — 0 asN = oo (A.89)
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Proof:

For a test point x that falls inside a cell E;,

Var[f(x)] = E[f(x)’] - B[f(x)]* (A.90)
_ E[l V”V%}_E[N”W] (A.91)
- Nzlvg (Em?] - Ena]?) (A.92)
- N;A%P(I—P) (4.93)

In the last inequality, we again have used the fact that n; ~ Bin(N, P) and thus
Var[n;] = NP(1—P). Again if we assume that f(x) is bounded and continuous over
E; and E; is connected then we can apply the mean value theorem. Substituting,

P = f({)Vw, C € E;, in (A.93), we obtain

Varlf(x)] = 1{[ (‘2 _f (26)“ (A.94)

By Proposition 7 we know NVy — oo as N — oo and thus the variance vanishes

as N — oo.

¢

By Markoft’s Theorem [90, p.212] we know that asymptotic unbiasedness (Propo-
sition 8) and vanishing asymptotic variance (Proposition 9) imply the mean square

convergence of f to f. le.

E((f(x) - f(x)))] — 0 as N = oo (A.95)
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By Tchebycheff’s Inequality [90, p.113] we know that mean square convergence
implies convergence in probability.

Since the recursive partitioning process is applied independently for each class,
the above results imply that each class density estimate converges in probability to

the respective true density.

A.6 Scale invariance

We verify Equations (5.13) and (5.14). For the sake of clarity, variables will be
written explicitly in terms of events. By the frequency equalization tendency of

MMEP, we see that along the k** dimension of Q', the partition points will occur

at

a'1 = "ai, a'2 = Y2G2,..., a;_. = YkQd (A.96)

where a;, a,, . . ., aq are the partition points along the k** dimension of Q. Extending
this argument to every dimension, & = 1,...,d., we immediately see that event

volumes are related as.

v(E}) = Tv(E;) (A.97)

where I' = [[¢_, 7&. The frequency equalization tendency also ensures that event

frequencies are invariant,

n(E;) = n(E;) (A.98)

This result directly verifies Equation (5.13). To verify Equation (5.14), simply
substitute the density definition (5.6) into both sides of (5.14). Simplifying we
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arrive at,
n(E:) v(E;) _ n(&;) v(Ej)
v(E:) n(E5)  v(E}) n(E))

(A.99)

Using the relations, (A.97) and (A.98), the result (5.14) follows immediately.

A.7 Concentration: Justification for projection

In order to prove proposition 2, we need to show that each component of Vaziz; f (x)
is bounded by a non-negative integrable function defined on R¢ [6]. Due to the
symmetrical form of the kernels ¥i(x). the partial derivatives of f(x) with respect

to any of the variables are structurally equivalent. Thus, we only need to verify

that,
9f(x)
<
25 <o (4.100)
where y = {z;,...,z;....,z4}, j # . Here, g(y) is a non-negative integrable

function of {z;, 7 # i}. The above inequality must hold for all values of x =
{z1....,z4}. Since f(x) is a finite weighted sum of the kernels Ye(x),k=1,...,N,
it suffices to show that the partial derivative of a single kernel with respect to z; is

bounded, i.e.,

1

) a0y

We now proceed with the verification of (A.101). Recall that the k** kernel has the

form,

(%) = Aexp(—(x = ) B5 (x - 1)) (A-102)
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where A = WQIT—E)”? is a constant for the given kernel. Let us first write the
exponent (x — pi)' Tyt (x — pi) of the kernel 9 (x) explicitly. Denote the elements
of Z;' as a;; and recall that £5' is symmetric. The following decomposition is true

foranyi,2=1,...,d.

d
(x—pe) Bt (x — ) = aal@i — pa)?® + D (s — pa)(z; — pj)  (A.103)
—
i
d
+ Za_.,-j( #kg) + Z Z Qim (Tt = pt)(Tm — piem)
ij=1 =1 m=]
iR #i m#l

&ef '+ T +T5+ Ty

Basically the terms have been separated into 2 groups. The first 2 terms are the
perfect square and cross-product terms that contain z;. The last 2 terms are the
perfect square and cross-product terms which do not contain z;. For the sake of
brevity, I will denote these terms respectively as, Ty, T, T3 and T and their sum
asT =T+ T+ Ts+ Ty

Consider now the absolute value of the partial derivative of vy (x) with respect

to z;,
Or(x) oTy 0T -ir
I—a— 4152 T 321 (A.104)

= A | —ou(zi — i) ——Zau —pi) | €777 (A.105)
J—'l
J#i
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By the triangle inequality, we have that

s, L AlE L
lqgk—;) < Alas(pe — z:) e + 3 > aij(prj — z5)| €77 (A.106)
1 j.=1
JjFt

This serves as an upper bound to (A.105). Hence, we only have to verify that
each term is integrable with respect to {z;,7 # i}. Let us consider each term
individually.

Although the absolute value signs imply that there are 2 cases to consider in
the first term, we will just examine the positive case, a;;(pr: — z;) > 0. Treatment
of the negative case is similar. Note that a;;(ur — z:) is independent of z; and thus

is taken outside the integral with respect to {z;,j # ¢}. Specifically,

/ Aa’—ii(#k{ - zi)e—%T = Aa,-,-(,u,ﬂ- - 2:,') /; e"%T (A107)
= Aca(pi—2:)2 [ T (A.108)

(243

where the last equality arises from the symmetry of e~1T about tr- Recall that

T is just (x — )’ L~ (x — pr). Since X! is positive definite, the quadratic form,
(x — pi)' 27 (x — pr) > 0 and the first term is therefore Riemman integrable.

Now consider the second term. Applying the triangle inequality again, we ob-

tain,

A& —L d -1

2 > asilpes — )| €T < S| Y o — 25)] | €737 (A.109)
j= j=1
ok i
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Again, the absolute value suggests that each term in the summation entertains a
positive and negative case. For the same reasons, we can just examine the positive
situation. It is not hard to see that the integral of the right-hand side of (A.109)
will be finite when integrating over small values of z;. For large values of z;, each

term in the summation can be approximately written as,

A 1 2 1
5 i (ki = 2;) exp (—;(z,- - #kj)') exp | =5 D (21 — put)® (A.110)
= =1
1]

since the quadratic terms will dominate. The integral of this expression can be
evaluated first with respect to z; and then with respect to the other variables.
z;,l # j. We notice that the first part of this expression has the form ye¥" which
is clearly Riemann integrable. The second exponential is of the form e* which is
also integrable. In conclusion, the expression on the right-hand side of (A.106) is

Riemann integrable and hence Lebesgue integrable and is thus a valid upper bound.



Appendix B

Data : Simulation Procedures and

Internet Sources

B.1 Simulated data

B.1.1 Concentration: 2 bivariate clusters

The data consisted of 100 uniform background noise points generated in the in-
terval [0,8]. Two clusters were located respectively, at Cy(X;,X,) = (6,5) and
C2(X1,X2) = (2,2). Thirty points were generated around each cluster centre, ac-

cording to a bivariate uniform random distribution.
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B.1.2 Dependency: nonlinear relationship in bivariate data

One-hundred (100) bivariate uniform random points were generated between —5

and 20. Thirty (30) points were sampled from the nonlinear dependency,
5 !
X2 = 5cos (5){1) +§ (B.1)
where ¢ is a standard normal random variable.

B.1.3 Linearity: 3 planes

The data is governed by the system of equations,

c+(y+U)—(z2+U) = 8 (B.2)
6 —(y+U)—-(z4+0U) = 1

=2z+y+U)+(z+U) = 17

where U is a standard uniform random variate. Twenty-five (25) points were gen-

erated on each plane for a total of 75 observations.

B.1.4 Noise tolerance

The defining equation of the underlying trend is,

y = 4(z — 2)% (B.3)
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Zero-mean Gaussian noise with variance 0.09 was added to each y. A total of 67
points were generated according to this equation from z = 1 to z = 3. In addition,
30 outliers were added. These outliers were centered around the mean of y and

were given a variance of 9.

B.1.5 Noise rejection

For the concentration discovery example, 100 bivariate uniform random data points
were generated. Each variable ranged from 0 to 5. For the dependency example,
the data is simply 81 univariate Gaussian points centered around 3, with variance

0.09. Finally, the linearity data was generated according to the pair of equations,

z = Scos(f)+0.14 (B.4)

y = 4Sin(9)+608(0)+015 (B's)

where 9 is the standard normal variable and f ranged from 0 to . A total of 32

points were generated at constant intervals within this range of 4.

B.2 Real data sets

The availability of the real life data sets are summarized in Table B.1.
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Table B.1: Location of real life data sets

Data set Location

Thyroid disease http://www.ics.uci.edu/ mlearn/MLSummary.html
Chemical and overt diabetes | http://1ib.stat.cmu.edu/datasets/Andrevws

PIMA diabetes http://wuw.ics.uci.edu/ mlearn/MLSummary.html
Housing data http://1ib.stat.cmu.edu/datasets/boston

Virus data http://1lib.stat.cmu.edu/datasets/pran

Lipid data D.W. Scott [104]

Environment data http://lib.stat.cmu.edu/datasets/visualizing.data
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