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ABSTRACT

The Reflexive Instructor with Deliberate Apprentice Architecture

A framework allowing a discourse in autonomy applied to autonomous mobile
robots is developed based on human autonomy. This framework is extended to
mobile robotics and is used to evaluate the level of autonomy in a novel approach
for constructing autonomous controllers called the Reflexive Instructor (RI) with
Deliberate Apprentice (DA) architecture. We claim that the RI/DA architecture
supports the construction of first-order autonomous learning agents restricted

only by their ability to interact with their environments.

The architecture uses simple reinforcement signals provided by the RI component
to train the DA. The DA is responsible for providing control signals to the agent’s
actuators based on received sensor input. Like most reinforcement learning
systems it is not likely to do this very well until it has learned to avoid collisions
and obstacles in its environment. The RI provides a measure of safety in this
respect as it is responsible for taking over control of the agent if the DA makes a
mistake as well as providing an appropriate signal to the DA so it might learn

from the mistake.

The RI/DA interaction is advantageous because it protects the vehicle from its

own ignorance and helps accelerate learning in the DA.
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1. Introduction

Rene Descarte was relaxing in a bar one day.

When an old friend came in and offered to buy him a drink.
Rene said "I think not".

And disappeared.

1.1 Introduction
This chapter introduces many of the concepts that will be discussed and illustrated
in later sections of this work. It presents a framework for the thesis and serves to

introduce many of the motivations behind this research.

1.2 Reflexes

Descartes, is often cited as the person responsible for the first descriptive statement
of involuntary action which we have come to know as a reflex. He makes
reference to it explicitly in the “Passion of the Soul” and it is implicit in his theory
of the automatism of brutes. Speaking of the escape response...

For in certain persons that previous associations disposes the brain in
such a way that the spirits reflected from the image thus formed in
the gland proceed thence to take their places partly in the nerves
which serve to turn the back and dispose the legs for flight ...!

The basic structural element within any nervous system is the so-called reflex arec.
This consists of a series of impulse-transmitting neurons connecting a sense organ
to a control centre such as a brain or spinal cord and then to an actuator such as a

muscle or gland.

! Cited by [Fearing 30)
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Each of the actions elicited by a reflex response serves the creature exhibiting it in
some well defined way. In the majority of instances, they are actions that are
essential for the protection and continued survival of the animal. Take for
example our own response to unexpected heat. We withdraw our hand when it
accidentally touches a hot surface. The response is involuntary and entirely

appropriate as the action saves us from a painful burn.

Many invertebrates such as earthworms, crayfish and roaches exhibit an escape
response when threatened. This is elicited by a sensory stimulus such as seeing an
object move too close or touching something unfamiliar, and initiates an entirely
involuntary sudden synchronous contraction of groups of muscles that move the

animal away from the perceived threat—potentially saving its life.

In each case, the reflex action is involuntary, sudden and in some cases, the animal
may not even be consciously aware of its response. In addition, each reflex, on its
own, is highly predictable and specific. Each stimulus elicits a specific response
which can be relied upon for regularity and continuity.

Our knees, for example, involuntarily jerk when an appropriate area is stimulated
with sufficient force. A receptor sends a signal via a sensory neuron directly to a
motor neuron attached to a muscle which causes our knee to jerk. This will
happen each time this area is stimulated as the entire apparatus is, in some sense,

"hard-wired".

Reflexes serve various purposes. Food on our tongues stimulates the release of
saliva from the saliva gland. Fear triggers the adrenal gland to send adrenaline
into our blood stream. Blinking is a reflex. We, and every other animal having
some form of nervous system, are born into the world a jumble of reflexes
activated by particular stimuli. We have seen that we use reflexes to survive but,

perhaps more subtly, we use reflexes to learn.
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Consider the automatic sitting reflex. If pressure is placed on a new-born’s thighs
and its head is flexed, the child will display the automatic sitting reflex as it rights
itself. The child has no way of knowing how to sit yet it ends up sitting. The
automatic sitting reflex persists for six to eight weeks. This is about the same
length of time a child requires to learn to right itself by grasping stationary objects
around it. When an object is placed in a baby’s hand, the child will flex its fingers
and maintain a strong grip on the object. The grasping reflex lasts from six to eight
months during which time the child learns to locate, target and hold on to objects
of it own accord. In these cases, the child’s reflexes serve as valuable training tools.
They provide consistent responses which address certain stimuli and aid in the
progressive orderly sequence of normal motor development; from the apedal, to
the quadrupedal, to the bipedal level of maturation.

As the child matures, these reflex responses disappear and are replaced with
deliberate action involving the voluntary participation of the child. They learn to
do things deliberately. Let us return, for the moment, to our reaction to pain from
an open flame. When we are young, we learn from this reflex, we begin to
associate "hot” with pain. We determine that we do not like pain and that we
should avoid performing activiies which result in it. We deliberately avoid
touching hot objects. We choose not to touch hot objects.

1.3 Mobile Robotics

Autonomous mobile robotics researchers were quick to pick up on the benefits of
reflex actions if only to support a more plodding planning scheme which could
not react to changing situation quickly. Robots were developed with built-in

reflexes and called reactive systems.

Certain actions are performed by a robot’s actuators when a certain stimulus or
stimuli are detected by the robot’s sensors. The robot responses are preplanned to
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be appropriate in a given situation. This mode of construction was first suggested
by [Braitenberg 86] and systematized by [Brooks 86] in his subsumption architecture
utilizing augmented finite state machines (AFSMs) to create functional units of
behaviour. The intent of subsumption was to provide a framework for designing
the interactions of various behaviors in order that the entire robot would display

emergent behavior from the interaction of its sub-systems.

The development of subsumption was a great leap forward in terms of describing a
systematic means of creating systems which could perform useful work in real
time in an unstructured environment. Unfortunately, the architecture does not
lend itself very well to learning new tasks or to providing a systematic means for
designing subsumption control systems to accomplish those tasks. While AFSMs
provide a good description mechanism, they essentially support only “hard-coded”
behavior. This, in many cases is inadequate for adaptation to changing
environments. In addition, the complexity of the sub-system interactions make

the creation of operational systems problematic.

1.4 Reinforcement Learning

It is possible to build a robot to sense nearly anything. Unfortunately, sensing
alone is insufficient. As raw data arrives it must be processed into a form which
can be utilized. Traditional learning algorithms require input in a relatively rich
form to interact with an internal world model. This is again problematic as the
time to process the input data often mitigates the robot’s ability to cope with the

consequences of it.

The standard reinforcement learning model provides a much simpler
mechanism. An agent (the robot) is connected to its environment via sensors
which produce reinforcement signals indicating the utility of the action performed
by the robot which elicited the signal in the first place. Over time, the learning
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mechanism is rewarded for actions it selects which produce positive

reinforcement signals and punished for negative signals.

Reinforcement learning offers a tantalizing solution to the problem of processing
complex, information-rich signals, as a sparse reinforcement signal can be
extracted from much simpler sensors in real time. Intuitively this is quite easy to
understand as a video image of an approaching obstacle must be converted and
interpreted into some internal representation while the simple on or off signal of

a contact switch can give immediately useful reinforcement.

1.5 Synergy

There have been various mobile robot architectures suggested which have made
use of one or several of these concepts. However, taken together, these areas form
the basis of a powerful new technique for interacting with the environment and

learning from it in real time in an elegant manner.

1.6 Autonomy

A crucial aspect which is sadly lacking in most discussions concerning

autonomous mobile robotics is what one means by autonomy.
Consider the following abstracts;

* A distributed, heterogeneous network of fuzzy control agents has been
developed for reactive behavior-based control of an autonomous mobile
robot..The aim of our mobile robot project is to develop a complete
autonomous creature, with 100% on-board computation and a behavioral
repertoire capable of accomplishing non-trivial tasks. [Goodridge, et al. 94]
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* This paper describes an autonomous dump trucks system called Hazama
Intelligent Vehicle Automatic Control System (HIVACS) being developed to
overcome worker shortage problems and to prevent accidents in heavy
construction sites (i.e. dam construction, road construction, etc.). If this system
applies at the aggregate carriage in RCD (Roller Compacted Dam) construction
site, this system enables two operators to manage five dump trucks without
drivers. It is anticipated that this system enables for 17% of labor-saving in total
workers at a certain dam construction site. Algorithm of unmanned operation
control is based “Yamabico” (sic) robot that is currently under study at
University of Tsukuba. A test vehicle for autonomous dump truck is
developed in this study. [Saito, et al. 95]

The first abstract suggests that the paper will describe an independent robot vehicle
with characteristics similar to living creatures while the second abstract seems to

associate autonomy with some form of loose tele-operation.

Of the thirty nine papers published in the IEEE International Conference on
Robotics and Automation between the years 1988 and 1995 specifically mentioning
autonomy in their titles, not a single one ventures to define what they mean by

“autonomous”.

This is not particularly surprising since the concept of autonomy has provided
perplexing, varied and often heated discussions in fields as diverse as psychology,
philosophy and biology for centuries. While there is certainly no agreement on
how autonomy should be defined there is a rich body of work which can be used to
develop tests for what can be called autonomous behaviours. The tests developed
using the concepts of autonomy from other fields will be applied to the

architecture presented in this thesis.
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1.7 Proposition

This document presents a description, implementation details and evaluation of a
novel autonomous agent control architecture known as the Reflexive Instructor
with Deliberate Apprentice (RIDA). The architecture supports the ability of an
agent to exhibit aspects of autonomy related to mobility which improves its

survivability by learning from experience over time.

The architecture makes use of biologically inspired reflex reactions designed to
respond appropriately to a given situation while at the same time providing
necessary training signals to a learning system. Each control sub-system is
essentially independent of any other yet communicates with other modules in a

strictly hierarchical manner.
In this dissertation;

1. We develop a framework for autonomous mobile robots based on the human
concept of autonomy. This framework is then used to validate the RIDA
architecture in terms of how the architecture supports the framework.

2. We demonstrate how this architecture supports the training of a learning
system while at the same time allowing real time interaction with the

environment while training.

3. We show that the architecture supports the graceful degradation of
performance as control subsystems are removed or become damaged and how

the architecture supports learning in novel situations.

4. We demonstrate how the architecture can be expanded and scaled within its
stated domain to support additional control modules without substantially

changing the existing modules.
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5. A simple control module interaction scheme is developed and demonstrated.

1.8 Organization of this Thesis

Chapter two of this document will revisit the areas of reflex, mobile robotics and
reinforcement learning with an examination of salient terminology and
implementations. The concept of autonomy will be examined from a multi-
disciplinary perspective with the goal of applying the meaning of this concept
from other disciplines to this work.

Chapter three will introduce and discuss the RIDA architecture, its sub-systems
and features. Chapter four will revisit the topic of learning and how it promotes
adaptation. In addition, we revisit the theoretic contributions of this work. Chapter
five will show how a reliable RI was selected and present evidence that reflexes
can be used to improve the learning performance of simple vehicles with arbitrary
intelligent controllers. Chapter six will introduce the framework for autonomy
within which RIDA will be examined and tested. Chapter seven will discuss
several RIDA implementations and examine their performance with reference to
the autonomy framework developed in chapter five. Finally, chapter eight will
discuss certain potential non-traditional applications for the architecture and will

draw conclusions from this work.

A set of appendices have been included which contain technical data and

specifications for the various RIDA implementations.
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2. Terminology, Theory and Literature examination

Philosophy recovers itself when it ceases to be a device for dealing with the problems of
philosophers and becomes a method, cultivated by philosophers, for dealing with the problems of
men.

John Dewey,
"The Need for a Recovery in Philosophy”, 1917

2.1 Introduction
This chapter is intended to provide the reader with appropriate background

information concerning relevant research applicable to this work. It introduces
various terminology and notation which will be used throughout the remainder
of the work. Specifically, the chapter will address issues in;

e Mobile Robotics, including the introduction of various reactive and other

systems devised to address the issue of independent mobility,

* Biological reflexes, including a brief theoretical foundation providing various

examples relevant to biological and mechatronic systems,

* Learning, what it means and how it happens in a biological context,

* Reinforcement learning,

* Neural learning systems, including the theoretical development of the various
learning mechanisms addressed in this work such are reinforcement learning,

* Rapid Reinforcement Learning Using Neural Networks, and

* Autonomous systems from a multi-disciplinary approach. This section will
introduce appropriate terminology and concepts from philosophy, psychology
and biology which will later (chapter 5) be applied to robotics.
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2.2 Mobile Robotics
The dream of constructing an artificial device capable of independent motion and
control is not a new one. Through time, many investigators, entrepreneurs and

schemers have attempted to devise systems which would fend for themselves.

As a classic robotic system, autonomous vehicles were simply a class of robot
formed from a mechanical system designed to perform a specific function (such as
an end-effector or locomotor) but also intended to move through space
independently via the use of an on-board (or close to on-board) controller. Sub-
classes of this type of device have been designed to address land, liquid and aerial
mobility.

Mobile robotics research has essentially fallen into two camps. Those who adhere
to the notion that it is necessary to implement a very hierarchical control structure
based on simplified models of the world and those who believe that a distributed

controller—where sensing is closely followed by action— is more appropriate.

2.2.1 Hierarchical Model Builders

Generally, a hierarchical controller makes decisions based on an internal model of
the environment the controller finds itself in. The model is constructed by
abstracting from direct sensory input. Features are extracted from what is sensed in
hopes of simplifying, what is very often, a large data stream into much simpler

symbols.

Once constructed, plans are made based on the model by yet another sub-
component of the controller that is able to reason using these symbols. Because the
model is now much simpler, reasoning can be carried out at a high level and broad
directives issued like “move to the wall”. This form of reasoning was heavily
influenced by [Simon 69] and his symbol system hypothesis that suggests that
intelligence operates by manipulating symbols of entities in the real world.

10
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If we believe this, then it is possible to remove the reasoning process from the
actual environment in which the actions must happen and endow it with domain
independence. This is significant as the reasoning can take place without reference
to context, the controller is more likely to succeed in an unpredictable

environment where context is constantly changing.

The broad directives issued from the reasoning system must be converted into
actual commands--"move forward, turn right, etc.” and these, in turn, are
converted into extremely low level control signals which manipulate the vehicle’s

actuators.

The first example of a vehicle employing this type of control was “Shakey”,
developed at the Stanford Research Institute [Hart, et al. 68]. Shakey employed a

television camera and a touch sensor as inputs to its controller.

The on-board processor was connected to a much larger off-board computer
through a radio link. Vision and planning were computed off-board while actual
motor controls were generated internally. Relatively complex models were
constructed and movement decisions made and implemented based on these
models. Shakey’s world representation consisted of sets of well-formed formulas
of predicate calculus. Simple English commands could be entered which would

then be converted into formulas for resolution through a generated plan of action.

Shakey’s position within its environment was determined by keeping track of
various markers in conjunction with measuring motion based on wheel rotation.
Slippage often caused it to miscalculate its position. This often caused its modeling
system to miscalculate the placement of objects detected through its vision system

thus resulting in an incorrect model and eventual plan failure.

11
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Shakey’s ability to control itself through a series of layers of software constituting a
hierarchical control structure heavily influenced many who would build such
vehicles in the future.

Between 1973 and 1981, research was conducted at the Stanford University
Artificial Intelligence Laboratory [Moravec 81] on the construction of an off-board
computer controlled, camera equipped, mobile robot. This became known as the
“Stanford Cart”.

The Cart used stereo imaging to locate objects and to determine its next
movement. Nine different views were taken during the model building/decision
making process. The system was reliable for short movements, but reliability came
at a heavy cost—speed. Motion occurred in lurches of one meter every ten to fifteen

minutes.

Of most recent interest was the highly-publicized Dante II experiment [Kaspar 94].
Jointly conducted between NASA and Carnegie-Mellon University, this
experiment in tele-operated and autonomous walking systems attempted to show
the possibility of allowing at least partial autonomous hierarchical control in the
highly unstructured environment of the volcano Mt. Spurr in Alaska.

Dante I was provided with a wide range of vision systems including one for each
if its eight legs, a laser range finder and several cameras mounted on helicopters
hovering overhead. When Dante II was allowed to move in “autonomous mode”
it used the input from these sources to build a model on which it based decisions

on leg position.

Dante I moved more than two hundred feet over several days before losing its
footing and crashing to the crater floor. Despite its ultimate destruction, Dante II
was considered a limited success because of the amount of data collected and
experience that was accumulated through the trial. In addition, Dante II confirmed

12
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that hierarchical control could be made to work in real world environments. For
further discussion of this area see [Antsaklis 89].

2.2.2 Distributed Reactive Systems

The second camp, of more recent origin, consists of those who argue that action
must happen shortly after sensing. If this does not occur, much of the useful
information in the sensing data will change and acting on it will result in
inappropriate or even dangerous behaviour by the robot. Reactive controllers take
action based directly on what is sensed in hopes of reacting quickly enough to
address the situation. This speed is fostered by relatively simple control
mechanisms which are closely tied to both sensors and actuators.

Undoubtedly, the most influential contribution to reactive systems came from
[Brooks 86]. His controversial subsumption architecture has both inspired many
and infuriated others. The next section will provide an overview of this

architecture.

2.22.1 Subsumption

The subsumption (or "Brooksian") architecture is modeled after the close
interaction between sensing and actuation in lower animals like the cockroach.
Brooks argues that instead of building complex agents in simple worlds, we should
follow an evolutionary-inspired path and construct simple agents in the real,

complex and unpredictable world.

From this argument, a number of key features of subsumption result:
* No explicit knowledge representation. Brooks often refers to this as "The world

is its own best model".

e Behaviour is distributed rather than centralized.

13
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* Response to stimuli is reflexive - the perception-action sequence is not delayed
by deliberation on the part of a higher controller.

* The agents are organized from the bottom-up. Thus, complex behaviors are
created from the combination of simpler, underlying ones.

* Individual agents are inexpensive, allowing a domain to be populated by many
simple agents rather than a few complex ones. These simple agents
individually consume few resources (such as power) and are expendable,

making the investment in each agent minimal.

2.22.1.1 Subsumption Architecture Description

The Subsumption architecture is constructed in layers. Each layer provides the
system a set of pre-wired behaviours. The higher levels build upon the lower
levels to create more complex behaviors. The behavior of the system as a whole is

the result of many interacting simple behaviors.

Each layer of the Subsumption architecture is composed of networks of finite state
machines (FSM) augmented with timers. A FSM is a device composed of a set of
states, a finite set of signals it understands (tokens) and a transition function to
map received tokens to acceptable states [Hopcroft and Ullman 79]. The timers
enable state changes after preprogrammed periods of time. In effect, they provide a

degree of fault tolerance when expected signals/tokens are not received.

Each Augmented (A) FSM has an input and output signal. When the input of an
AFSM exceeds a predetermined threshold, the behavior of that AFSM is activated
(ie. the output is activated). The inputs of AFSMs come from sensors or other
AFSMs. The outputs of an AFSM are sent to the agent's actuators or to the inputs
of other AFSMs.

Each AFSM also accepts a suppression signal and an inhibition signal. A
suppression signal overrides the normal input signal. An inhibition signal causes

14
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output to be completely inhibited. These signals allow behaviors to override each
other so that the system can produce coherent action when contradictory control

information is applied .

The use of AFSMs results in a tight coupling of perception and action, producing
the highly reactive response characteristic of subsumption systems. However, all

patterns of behavior in these systems are pre-wired.

2.2.2.2 Hierarchical and Distributed Control and the Problem with Change

The problem with both these methods of robot construction is that they are brittle
to the problem of mobility—but in different ways. While hierarchical controllers
support the notion of learning in a changing environment, they typically have no
way of doing so quickly. Their preponderance of modeling, reasoning and
translation subsystems makes their ability to respond to a changing environment

quite slow.

Subsumption systems, while avoiding the problem of speed, cannot adapt to an
environment which they were not designed to interact with. Some work has been
done with a Planning and Learning Extension to the basic subsumption
architecture [Mataric 92). These extensions are known as behavior-based
architectures. Mataric describes some modifications to the subsumption
architecture to allow it to recognize by “remembering” features previously
encountered. While the basic architecture is extended, the interactions tend to be
difficult to design and prone to many of the faults attributed to more traditional
hierarchical architectures.

In addition, while the architecture is quite clean, the interaction of the AFSMs is
usually very complex making the creation of a viable controller in a commercial
product impractical. Such controllers typically require many hours of painstaking
“tweaking” to get right.

15
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2.2.2.3 Other Reactive Approaches

In reality, many problems related to mobility can be solved using much simpler
mechanisms than subsumption. Examples of simple reactive systems which avoid
some of the problems of subsumption are not difficult to find. [Zapata, et al 94]
suggests several vehicles capable of collision avoidance using what he calls
deformable virtual zones (DVZ) and simple neural networks. Although learning
is not supported, the vehicles are relatively straightforward to construct.

[Nehmzow, et al. 89, 92] suggest methods for extending the behavioural repertoire
of a mobile robot through the selection of “instinct rules” to an existing controller.
The neural network-based controller learns to apply the available instinct rules to
a given situation through its interaction with the environment, although the

rules themselves are supplied by the designer.

[Ram et al 94] and [Dorigo and Schnepf 93] have suggested using genetic algorithms
as a means for a controller to learn reactive control policies in a given
environment. This method has proven successful but does not address how the

controller is to be supported while it is learning.

2.3 Reflexes

In animals, reflexes are involuntary acts that represent the lowest level of nervous
response to a stimuli and underlie all animal behavior. The intensity and pattern
of stimuli largely shape the strength and type of the reflex that is elicited.
Increasing intensity and frequency of impulses to a nerve centre will reach a
threshold, at which point the response is triggered. Often sensory input is used in
a distributed fashion for various responses at different levels where a reflex
depends on the timing of an incoming signal or perhaps other elements which
modify its activation or perhaps eliminate it altogether.

16
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The most familiar example of a reflex response is the monosynaptic stretch reflex
or "knee jerk". The sensory receptors for this reflex arc are located in muscle
spindles embedded in skeletal muscles. When the kneecap tendon is tapped the
muscle is stretched and the muscle spindles in the thigh muscle are excited.
Because this reflex response involves sensory neurons that directly connect via
synapses with motor neurons in the spinal cord, transmission time is short, and

the thigh muscle quickly contracts, extending the leg.

Important reflex nerve centres related to posture, balance, and eye position are
located in the brainstem. Receptors for these reflexes are found in the vestibule of
the inner ear. These reflexes serve two functions: to stabilize the position of the
head and provide information about its angular and linear acceleration, and to
maintain visual image by stabilizing the eyes during head movement. Individuals
suffering from motion sickness usually experience disturbances of these vestibular

receptors. [Fisher 88]

2.4 Learning

Learning is supported by reflexes. Of particular relevance is the work of [James
1890] who proposed that consciousness conferred on its possessor the ability to
move beyond the confines of mere instinct and respond in a more flexible way to
novel situations. Learning was simply the way that animals, including humans,

adapted to their changing environments.

A significant consequence of James’ and others work was the notion that animal
behavior, and especially learning, could be studied in animals. Of particular
interest to us is the notion of learning behaviours. The term "conditioning” is
used, in psychological parlance, to designate the forms of behavioral learning that

humans share with animals.

17
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One way in which forms of learning can be categorized is as either associative or
nonassociative. The latter kind of conditioning occurs when an organism's
response to a single stimulus changes with repeated experience. Associative
learning occurs when an organism learns to associate two or more stimuli,
changing its response to one or both stimuli as a result of their being experienced
together. At present all learning is considered associative to some degree. For
example, if a person lives near an airport, that person will habituate to the noise of
aircraft. That is, they will cease to notice the constant roar of jets. However, if that
person is then taken to a much quieter area and a jet flies overhead that person
will probably notice it. This suggests the person’s earlier habituation was caused by
their association of the jet sound with their background and indicates that the

response of lack of response is plastic and is even reversible.

Associative learning has been the focus of much research. It is usually described in
two forms: Pavlovian conditioning, and instrumental or operant conditioning.
The first primarily involves modification of innate reflexive behaviour. The
second, of more interest to us, involves modification of behavior by reward and

punishment.

The basic law of instrumental learning is that when a response is followed by a
reward, its probability of recurring in the same circumstances is increased. Rats

press a bar more frequently when they receive food afterward. [Leahey 93]

Punishment can also be used; this involves following a behavior with pain to
eliminate it. The term "negative reinforcement” refers to applying pain and then
removing it when a desired behavior occurs. The effectiveness of such “negative”
methods for the learning process in animals is open to debate. Punishment can in
fact be effective in suppressing behavior, but only if the punishment is severe,
immediate, and inescapable. In any event, punishment does not cause a habit to
be unlearned but only to be suppressed—later to return [Martinez 91]. One need
only own a cat to understand this perfectly.

18
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2.4.1 Reinforcement Learning

A deficiency implicit in many artificial learning schemes is the dependence on
supervision. Input/output pairs are presented to the algorithm creating a “training

by example” paradigm of learning.

Unfortunately, it may not be possible to ensure invariant training examples to the
control mechanism of an autonomous agent. In fact, it may not be possible to
provide richer reinforcement than a very rough error signal. Consider a simple
agent wandering through some environment. Perhaps the agent is equipped with
only rudimentary sensing capability. What can be discerned from one of its sensors
unexpectedly coming in contact with an obstacle? The only data available is that
the agent has hit something. It has no means of ascertaining what actions caused it

to strike the object. The error signal simply indicates one has been struck.

In the standard reinforcement-learning model, an agent is connected to its
environment via perception and action. On each step of interaction the agent
receives as input- (i), some indication of the current state— (s) of the

environment; the agent then chooses an action— (a) to generate as output.

The action changes the state of the environment, and the value of this state
transition is communicated to the agent through a scalar reinforcement signal--(r).
The agent's behavior—(B) should choose actions that tend to increase the long-run
sum of values of the reinforcement signal. It can learn to do this over time by

systematic trial and error, guided by a wide variety of algorithms
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Figure 2-1 Reinforcement Learning [Kaelbling et al. 96]

Reinforcement learning, while very promising, is somewhat problematic. The
controller may perform an action but not receive any reinforcement whatsoever —
the sparse signal problem. For example, a learning controller might be given
control of a vehicle and given the goal of not hitting obstacles. It will have to make
many decisions as it moves through its environment, then after acting on many of
these decisions, the vehicle might strike a wall. What should the controller learn
from this experience? Which of its many actions were responsible for the
collision? It is this problem of assigning responsibility—the credit assignment
problem--to individual actions that makes successful reinforcement learning an

elusive goal.

In [Kaelbling et al. 96]'s words, “Its promise is beguiling—a way of programming
agents by reward and punishment without needing to specify how the task is to be
achieved. But there are formidable computational obstacles to fulfilling the

promise.”

2.5 Artificial Neural Systems

Artificial Neural Systems (ANS) have misleadingly been referred to as "Brain-
like". There is no evidence that biological neurons store information in the form
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of weighted connections. For the most part, no similarity at all has been observed
in the processes of thought in the human brain and the calculations within an
ANS [Hinton 87]. However ANSs are brain-like in that they,

e are adaptive and can be trained,
e are highly parallel processing structures, having large numbers of neuron-like
processing elements, and

e exhibit distributed control.
A basic neuron consists of,

® asoma, or nerve cell, which is the large central body of the neuron,

* the axon, attached to the soma and electrically active, producing the pulse

emitted by the neuron (output),

* the dendrites which receive inputs from other neurons by means of a contact
called a

® synapse, which occurs where the dendrites of two nerve cells meet.

The synapse is capable of changing a dendrite's local potential positively or
negatively depending on the transmitted pulse. The transmissions occur in large

numbers but are very slow, being caused by chemical reactions.

The structure of an ANS consists of layers of processing elements which take a
given set of inputs, perform some form of summation and produce an output.
There is usually an input layer where information is presented to the network.
There may be one or more hidden layers, where this information is manipulated
and an output layer where the network output is presented. The nodes of various
layers are attached by connections. Most commonly this is done by feed-forward
connections, where values move frcm an input layer to one or more hidden

layers and finally to an output layer.
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Each connection from one node to another has a weight associated with it. The
value of the weight is usually between zero and one and may vary over time. Each
node is considered to have a net input which is defined as the sum of all weights
of connection multiplied by the activation value or output of the preceding layer.
In short, the connection with the greater weight has more impact on the activation
of the node being processed. If the activation of a node has a negative value then it
will tend to inhibit the activation of the node it is connected to otherwise it will

excite it.

When values have passed through a network and have modified activation
values and produced an output, it is possible to modify the weights of connections
by backward propagating the error associated with each output unit. The error may
be defined in many ways but usually has something to do with the amount the
actual output was different from the desired output. The change in weight values

is termed learning in the network.

2.5.1 ANSs and Robotics

ANSs are not new to robotics and have been applied to such diverse areas as the
inverse kinematics problem [Iberall 87], trajectory and path planning [Jorgenson
87], sensing [Pati 88], and control [Elsley 88].

2.5.2 Rapid Reinforcement Learning Using Neural Networks

The traditional problems associated with Reinforcement Learning are,
® sparsity of reinforcement information,
e credit/blame assignment, and

¢ slow learning rates.
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To overcome these difficulty, several novel approaches have been suggested.
[Shavlik 96] has suggested the use of human intervention as a means of speeding
learning by increasing the availability of reinforcement information by allowing
an outsider to input “suggestions” to a reinforcement ANS. This has some
advantages but still requires a human operator to be close by to make these

suggestions.

[Nehmzow 92] reports of increasing the behavioural repertoire of a mobile agent
using a connectionist approach to learn certain "instinct rules”. The instinct rules
are provided by the system'’s designer. The selection of instinct rules is determined
through interaction with the environment. The vehicle "Alder" was constructed
and could learn the interaction of several rules in a few tens of learning steps.
Nehmzow points out that fast learning is essential because certain functions like
obstacle avoidance must be learned quickly in order for the robot to remain
functional. However, the automatic creation of instinct rules remains problematic.
It is also unclear whether striking an obstacle could be considered acceptable

behaviour, even if it only happens tens of times.

Let us digress for a moment and examine what happens when a human infant
learns to avoid obstacles. They often learn only after many encounters--sometimes
colliding quite violently with objects. This is quite a different situation than is
applicable to a robot. Not only are infants capable of correcting their actions, but
they are self-healing--an important advantage that artificial systems do not

normally possess.

Ideally, reinforcement learning would take place quickly based on very limited
information which could be attached to specific events in time. The literature
provides several suggestions for making these, somewhat contradictory,

characteristics a reality.
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2.6 Autonomy

The term autonomy came into favor in robotic literature about 1986. Any
examination of the literature from that time until the present will reveal the fact
that there is essentially no agreement about what is meant when one says that a

robot is “autonomous” or displays some form of “autonomy”.

The following are excerpts of abstracts taken from various papers found over
several years in various Proceedings of the IEEE International Conference on
Robotics and Automation. Each one of these papers uses the term autonomy or

autonomous in its title;

e This paper describes the concept of the autonomous mobile robot system,
which comprises a hierarchical autonomous mobile control system, a
localization system based on pattern matching between the data profile from a
laser range finder and an environment map, a method of constructing
environment maps from 3D-CAD of a NPP, and a cableless robot system.
[Igarashi, et al. 95]

e For underwater vehicles to be self-sufficient in an a priori unknown
environment, reinforcement from the environment through altitude sensors
is essential. [Santos, et al. 95]

* This paper presents both [sic] of the hardware and the software architectures for
the multi agent robotic system. For the hardware architecture of the multi
agent robotic system, we show the programmable MARS (micro autonomous
robotic system). This robot can work for one of the agents of the multi agent
robotic system. [Mitsumoto, et al. 1995]

¢ ..The autonomous mobile robot “Yamabico” is used for experiments after [sic]
equipped 12 directional sonar-ring. The on-board controller of the robot decided
its motion based on sonar-ring data every 3 centimeters going forward. We

made many experiments with this autonomous mobile robot, and investigated
the validity and the limits of this method. [Ando and Yuta, 1995]
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® ..On the other hand, the most critical and challenging issue in designing and
programming robotic systems working with some degree of autonomy in
dynamic, unstructured environments, is related to the definition of their
architecture. [Zanichelli 1994]

The concept of autonomy is used in a bewildering array of contexts and referring
to a wide variety of attributes. It is used to refer to the independent completion of
specific tasks, or as a characteristic of a system’s cooperative effort with other
agents. On occasion it seems to refer to a means of describing a system which
follows a plan or is used as a phrase to emphasize the characteristics of other

elements of a particular robot architecture.
[Meystel 91] provides a working, if somewhat loose, definition of autonomy;

“autonomy” is understood as the ability to independently make intelligent
decisions as the situation changes. Such an ability is possible if intelligence
allows a certain level of independence, i.e. if the general goal of motion is
formulated by a human-operator but the specifics of the particular motion
are taken care of by the robot with no direct human involvement. Thus, we
can talk about different degree(s) of autonomy; robots can be generally
controlled by a human operator. However some of the operations can be
planned, controlled, and executed with no human participation: they are
left to the robot’s discretion.

However, this is somewhat lax and open to interpretation and does not suggest

means of answering the question of “How autonomous is autonomous?”

In our view the lack of common terminology or framework for discussing
autonomy has significantly hampered progress in the field if for no other reason
than it is impossible to make comparison between any two autonomous systems.

We will now consider the question of autonomy from a psychological and
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philosophical perspective. Then in a later chapter we will argue that there is strong
evidence that it is feasible and necessary that robotic research should adopt the

terminology, meanings and concepts used in describing human autonomy.

The notion of human autonomy has been well examined in both psychology and
philosophy literature and an entire nomenclature constructed describing various
aspects of it. This is not to imply that there has been agreement in either the

terminology or definition of the concept;

* “The law in thus implementing its basic commitment to man'’s autonomy, his
freedom to and his freedom from, acknowledge(s) how complex man is”
[Goldstein 78]

* “To regard himself as autonomous in the sense I have in mind, a person must
see himself as sovereign in deciding what to believe and in weighing
competing reasons for action.” [Scanlon 72]

* “As Kant argued, moral autonomy is a combination of freedom and
responsibility; it is a submission to laws that one has made for oneself. The
autonomous man, insofar as he is autonomous, is not subject to the will of
another.” [Wolff 70]

* “(Children) finally pass to the level of autonomy when they appreciate that
rules are alterable, that they can be criticized and should be accepted or rejected
on a basis of reciprocity and fairness. The emergence of rational reflection about
rules...central to the Kantian conception of autonomy, is the main feature of
the final level of moral development. “ [Peters 72]

¢ “I am autonomous if I rule me, and no one else rules L.“ [Feinberg 71]

* “Human beings are commonly spoken of as autonomous creatures. We have
suggested that their autonomy consists in their ability to choose whether to
think in a certain way insofar as thinking is acting; in their freedom from
obligation within certain spheres of life; and in their moral individuality.”
[Downie 71}
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* “A personis “autonomous” to the degree that what he thinks and does cannot

be explained without reference to his own activity of mind.” [Dearden 72]

* “[A]cting autonomously is acting from principles that we would consent to as
free and equal rational beings.” [Rawls 71]
* “I, and I alone, am ultimately responsible for the decisions I make, and am in

that sense autonomous.” [Lucas 66]

It is apparent that, although not a synonym for qualities that are associated with
robotic autonomy, it is used in an equal number of bewildering ways. It is
sometimes equivalent to liberty, sometimes it is used to refer to self-rule or
sovereignty, sometimes free will. It is equated with dignity, integrity,
individuality, independence, responsibility, and self-awareness. It is identified
with critical reflection, freedom from obligation, absence of external influence,
determination and execution of self interest. It is related to actions, to beliefs, to
reasons for acting or not acting, to rules, to the will of other persons, to thoughts,
and to principles. About the only features held constant from one interpretation to
another is that autonomy is a feature of people, and that autonomy is a desirable
quality to have [Dworkin 88].

One definition of autonomy is self-determination. The autonomous person is one
who chooses for themselves what to think and what to do. They are self-
governing in that their actions are a result of interests and values that they have
decided upon. Also, these beliefs are arrived at independently, by means of critical
reasoning. The autonomous individual is guided by their own notion of what is

right, best, or at least possible. This has been termed the Autonomy of judgment_
or “thinking for oneself.”

In reality we do not directly ascertain the validity of most of our beliefs. A good

deal of our autonomy is derived from assessing the behaviour of others—we are
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taught. This requires that we have criteria by which to recognize an authority or

when someone’s testimony is dependable.

With the idea of dependence, we come to the matter of constraints or limitations
on our autonomy. External constraints typically interfere with the exercise of
autonomy, as with deception or censorship—being lied to or “kept in the dark” can
severely limit autonomy. Internal restrictions are due to some condition suffered
by the individual rather than outside interference. Typically, they will consist in
deficiencies or “defects” in rationality. For example, stubbornness or stupidity

might restrict autonomy in this way.

While autonomy of judgment is necessary for autonomous thinking and action, it
is not sufficient. Because of either external or internal conditions a person may be
incapable of acting or even choosing based on freely made decisions. Threats

(external) or the possibility of embarrassment (internal) might restrict an action.

Efficacy of will indicates the ability to do what one wills. Deliberateness of will
refers to the extent to which what it is that one wills is the fruit of deliberate
choice. Efficacy of will might more colloquially be called autonomy of action, since

it refers to our ability to act on our decisions or will.

It is easy to see how autonomy of action can be interfered with. Interference can
range from physical limitation to coercion or exploitation. The latter limits the
individual by, “attaching costs to certain forms of action that they would not
otherwise carry.”--For exampie the association of a certain action with pain (pain =

wrong).

[Benn 76] example of the psychopath nicely illustrates how someone could have
autonomy of judgment but lack of autonomy of action. Psychopaths cannot carry
through projects requiring deferment of gratification. Only immediate

consequences of action count as relevant considerations for decision-making.
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The nature of one’s will is relevant to the question of autonomy. Depending on
why one wills what one does, or how the will is formed, it may be more or less
autonomous. What one wills may be determined exclusively by the strength of
one’s desires and impulses. Such a person then acts in accordance with their
strongest prompting. If you are both hungry and tired you will eat if the hunger is
greater than the fatigue and vice versa. This sort of will consists of the most
demanding, urgent force within the individual. Such a will is in some sense less

one’s own, hence less autonomous, than it might be.

There is a higher level at which our deliberations may proceed. We can assess and
make decisions about who we are and what we wish to become. We can take up
the question of what sort of person to be and what kind of life to lead. This sort of

deliberation goes beyond the ordering of priorities.

“Overall” autonomy is strengthened through flexibility: the ability to respond
creatively and constructively to a variety of circumstances; this includes the ability
to adapt to change. John Dewey contrasts the development of a chicken’s ability to

that of a human’s.

The chick, which can peck accurately at food shortly after hatching, quickly
develops its expertise in behavior because it stems from only a few original
tendencies. Its immediate efficiency, however, is “like a railway ticket,...good
for one route only.” Whereas, “A being who, in order to use his eyes, ears,
hands and legs, has to experiment in making varied combinations of their

reactions, achieves a control that is flexible and varied.” [Dewey 63]
First-order autonomy is autonomy exercised in the particular decisions which

occupy us in the ordinary course of life: where to live, whom to marry, what

vocation to pursue..These everyday decisions can be made more or less
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autonomously, depending, as we have seen, on our resources, abilities, and

freedom from restrictions. [Benn 76]

Autonomy may also be viewed as moral self-governance--the individual
authoring his moral principles, obeying moral laws which are self-imposed. The
autonomous individual does not simply conform to some conventional standard
of conduct. Rather, they rationally ascertain for themselves what is desirable for
any rational individual. This is autonomy not in the sense of being governed by
contingent desires or ambitions, but governed by the rewards of a dispassionate,
disinterested reason. This is what we will refer to as Second-Order Autonomy.

While this is all well and good for humanity there is no necessary link between
autonomy of the human and the notion of autonomy we may mean for
something as mundane as a mobile robot. If it were possible to associate these two,
robotics could draw on a vast array of terminology with specific meaning. Clearly
this would be advantageous as it would become possible to compare functionality
and characteristics on an “apple for apple, orange for orange” basis. We submit that
this has not been the case in the past and would be a useful addition to any

discourse on autonomous vehicles.

2.7 Conclusion

This chapter has introduced the concepts and terminology which will form the
basis of the arguments we use to build a framework for autonomous mobile robots
in which we will place and test the RIDA architecture. In addition we have
introduced the algorithms and control concepts on which the RIDA architecture is
based. This will be used to develop a test-bed for the architecture in chapter six.
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3. The Reflexive Instructor with Deliberate Apprentice Architecture

There ought to be a law so a man knows whether he is doing right or wrong.

Senator Thomas Dodd

3.1 Introduction

This chapter introduces, develops and explains the Reflexive Instructor with
Deliberate Apprentice (RIDA) architecture. The function of each element in
the architecture is introduced, formally explained and illustrated with
appropriate reference to existing techniques. The behaviour of a RIDA system
is discussed and an example is used to illustrate RIDA's nature. Several
conventional learning mechanisms are used to illustrate how such a scheme

might be selected or rejected to act in the RIDA hierarchy.

We argue that RIDA is a flexible and reliable means of controlling a vehicle.
Its performance is good, reliable and straight forward in its potential

implementation.

3.2 RIDA Architecture Description
RIDA consists of two independent yet related sub-systems,
e the reflexive instructors (RI), and

¢ the deliberate apprentice (DA).

The sub-systems interact in a way best thought of using a pedagogical analogy.
The DA is, in a sense, a student attempting to learn a control task. The RI
components are elements which ensure that as the DA learns by making
mistakes, it is "guided” by correcting signals to eventually learn the task. The
Deliberate Apprentice attempts to send control signals to the actuators it is
attached to. We use the term "Deliberate” in the philosophical sense of a
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deliberate choice and not in the sense of deliberation or internal
examination. The RI(s), in turn, monitor the control signal and either does
nothing if the control signal is appropriate or intervenes by over-riding the
DA’s signal and injecting its own signal which is deems to be more
appropriate—much as a teacher might correct the spelling of an errant pupil-
the result is correct but produced both through the action of the pupil and the
teacher. Continuing the analogy, as the pupil understands they have been
corrected, the activated RI informs the DA that its signal was inappropriate

and was corrected.

The selection of which RI is activated is accomplished via a strict precedence
hierarchy. Individual RIs are activated as the sensors they monitor send the
appropriate activating signals. For example, a collision avoiding RI might be

activated by a whisker sensor touching an object.

There is no restriction on which RI can be activated or how many may
attempt to control the vehicle, however only one control signal is sent to the
actuator and only a single reinforcement signal is provided to the DA. This is
accomplished by replacing control signals from lower precedence RIs with
those of higher precedence signals. Replacement is also carried out with the

reinforcement signal.

Figure 3.1 depicts the relationship between modules within RIDA and how
they sample sensed data. Individual RlIs need not be attached to the same
sensors as the DA or to the ones attached to other RIs for that matter. Note
that only a single DA exists within the confines of the architecture.
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Figure 3-1 The RIDA model.

The architecture presents a hierarchical control scheme which places the RlIs
in a position where they are the ultimate arbiters of the control signals which
reach the actuator. The RlIs defer to the control signals of the DA so long as
the DA’s control signals do not result in any of the RIs’ activation.

3.2.1 Comparison with simple Reinforcement Learning

[Sutton et al. 91] and [Barto 92] provide a working definition of

reinforcement learning:

If an action taken by a learning system is followed by a satisfactory
state of affairs, then the tendency of the system to produce that
particular action is strengthened or reinforced. Otherwise, the
tendency of the system to produce that action is weakened.

This definition is illustrated in figure 3-2 where the environment provides
reinforcement--R to some form of learning mechanism which receives input
from the environment, makes decisions and consequently produces output.

The cycle continues with more reinforcement.
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Figure 3-2 Reinforcement Learning.

The interaction between RI and DA is similar to that which underlies various
reinforcement learning models where reinforcement is provided to a
learning mechanism by the environment within which a particular action
took place. However RIDA improves on simple reinforcement addressing

two important reinforcement deficiencies.

1) Reinforcement learning models typically are capable of sending only
sparse reinforcement signals indicating, at best, the degree to which a
control system has done something right or wrong.

2) Simple reinforcement models, while indicating the suitability of a
controller’s control signals, do not intervene in the controller’s

“decision”-which is allowed to proceed on an erroneous path.

The RI portion of RIDA is fully capable of providing control signals when
necessary. In addition, although the RI is capable of passing simple
reinforcement signals to the DA it is possible to pass a much richer signal if

necessary.

34



Reflexive Instructor with Deliberate Apprentice Alexander Ferwom

3.2.2 Comparison with Supervised Learning Model

Because a richer indication of appropriate behaviour can be accommodated
through the RI reinforcement signal, RIDA shares some similarities with

supervised learning models (SLM) as shown in figure 3-3.

Supervised Correction Signal
Learning -————
Mechanism

Error
Measurement

Figure 3-3 Supervised Learning.

In supervised learning, the control signal (C) generated by the learning
mechanism is compared with a reference control signal (CX) and the
appropriate adjustments made to the knowledge representation within the
mechanism via a correction signal. This model has the unfortunate
characteristic of inevitably requiring some form of off-line learning as the
initial control signals sent by the SLM will, in all probability, be quite
inappropriate—possibly leading to the physical destruction of the system being

controlled.

Because the RIDA architecture supports the initial "ignorant” state of the DA,
this problem is avoided. The RI is always capable of sending an arguably
appropriate control signal to the actuators.
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3.3 RIDA Formalism

The following sections introduce each component of the RIDA architecture,
explain their function and interaction. The RIDA description will be followed
by several examples where RIDA might be applied to existing systems.

3.3.1 Assumptions

The RIDA architecture exists in an environment represented by figure 3-4.

v X]..m

g
g RIDA
£ Components
=
43
v C1..p.DA

Acuators

l1..n

Figure 34 Environmental System Assumptions.

It is assumed that data is gathered from the environment by sensors .,
through s, where m is the number of sensors provided. The sensors need
not be limited to individual units (such as single contact switches) but can be
combined into subsystems as long as the subsystem is capable of producing a
single sensed value per subsystem label. These individual values are x,

through x,,.
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This form of sensor arrangement is shown in figure 3-5 and has been reported
by [Dorigo 93], [Brooks 91] and others. In this case the sensors s through s,

provide input to an integration function £ which produces the final output

X;.

Figure 3-5 Multiple Sensor System Producing Single Output Signal.

The sensor data x is distributed to the DA and RI components capable of
making use of it as determined by the system designer. Clearly, certain values
of x will be inappropriate for certain RI components as they may be incapable

of making use of it.

The sensed values are received by RIDA and used to make control decisions
as will be discussed in the following sections. RIDA can issue p+1 individual
control signals where p is the number of RI components in the RIDA
hierarchy. C; through C, are the potential control signals generated by the RI
components, and Cp, is the control potential signal generated by the DA
component. These signals govern the actuators 4, through A, where n is the

number of actuators subject to RIDA influence.
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3.3.2 General Description and Conventions

The RIDA architecture forms a cascading control system where a control
system is taken to mean an interconnection of components forming a system
configuration that will provide a desired system response [Dorf 92] and
components of the system provide individual responses which can be
overridden by responses higher in the hierarchy. A process or element being
controlled can be represented by the block diagram given in figure 3-6.

Input———- Process & OQutput

Figure 3-6 Process to be Controlled.

The input elements of the system are provided by what is labeled as
“environment” in figure 3-4 and sampled by "sensors". While the output is

provided by "actuators” which respond to control signals.

Initial control signals are generated by a DA component. As RI components
are activated they inhibit the control signals of the DA and RI components
which are less trusted members of the hierarchy then themselves. Eventually
only a single RI element is left in the chain and its activation inhibits all

other components.

3.3.2.1 Hierarchy of Control

The concept of a hierarchy of control is derived from work involved with
complexity regulation of the selection of nonlinear models of physical
phenomena. Statistics literature provides various examples of limiting
model complexity including [Rissanen 78] and an information theoretic
criterion by [Akaike 74]. Although these criteria differ from each other
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considerably, they share a common form of composition as described by
[Haykin 91] in equation 3-1:
( 3-1)
Model - complexity log - likelihood . model - complexity
criterion ~ | function penalty

The log-likelihood function is simply a performance measure of the model,
while the penalty associated with the complexity of the model reduces the
likelihood that it will be selected. The problem with this formulation lies in

the selection criteria for these two elements.

A RIDA hierarchy attempts to limit the complexity of the control model by
replacing the log-likelihood function with a series of empirically reliable RI
components whose performance measurement is left to other RI components
deemed by the system designer to be more reliable. By making this
assumption we can eliminate the model-complexity penalty. However, this
means that considerable effort must be exerted by the designer to ensure
adequate performance of the RI and DA interactions. This is a continuing

limitation of RIDA, as there are no automatic means of creating a hierarchy.

3.3.3 The Deliberate Apprentice

The following section describes the DA component of the hierarchy. While
there can be many RI components only a single DA is allowed. The DA

component is shown in figure 3-7.
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Figure 3-7 The DA Component Architecture.

The signals X, pmprue are a subset of the available sensors signals x,

pprop
consisting of those signals which can be interpreted by the learning

component of the DA which will be discussed in the next sub-section.

The learning component makes control decisions based on the sensor data
and issues a tentative control signal @,,. The signal is tentative because it is
subject to being overridden by the inhibition signal ip,. The inhibition signal
is provided in order to prevent the learning component from issuing a
control signal which would be inappropriate as determined by the activation
of one or more RI components. The reinforcement and inhibition function

Ap4 is governed by the reinforcement signalsR, through R, coming from

activated RI components, where p is the number of RI components.
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Apa passesR, to the learning component, where 4 is the number of the RI
component which has inhibited all lower ranking activated RI components as
will be discussed in the next section. Ap, also produces the inhibition signal

ips based on equation 3-2.

(3-2)

_ gactive if R active
ipa = {inactive otherwise

Tps is the DA control signal transfer function. It acts as a gate for the passage
of the tentative learning component control signal @p,. This signal will
become the actual DA control signal to reach the actuators based on equation
3-3.

(3-3)

Co. = {<pm if i, inactive
DA ™ l\inhibited if i active

The success of the DA component hinges largely on its ability to learn the
control task. This is usually limited by the speed of convergence to a solution
state of the learning component of the DA. The following section discusses

the issues associated with choosing an appropriate learning component.

3.3.3.1 The Learning Component

While great strides have been made in purely reactive systems by Brooks and
others, their inadequacies become apparent when they are actually
constructed. In order for such an agent to be effective in its intended
environment, its designer must have anticipated everything that the vehicle

is likely to encounter.
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Inevitably, the designer must redesign after observation in an iterative
process until the vehicle functions effectively. While this may be considered
an advantage by some [Brooks 86], it is also a severe limitation. One cannot
send an autonomous agent to a distant planet and continue to tweak it into

correct behaviour.

Most autonomous systems researchers have, at least tacitly, seen the
advantage of a system which is capable of adapting through learning. In some
cases-—-subsumption for example—this has lead to an existing architecture
undergoing considerable revision in order to accommodate learning [Mataric
92].

RIDA has not taken this approach. While a RIDA vehicle can function with
merely its reflexive components, inherent learning allows much better

performance and allows a path for graceful degradation of service.

3.3.3.1.1 Motivation for selecting a Learning Component

In order to change the behaviour of an agent and allow it to adapt
successfully, it must learn from its experience within its environment. For
the learning component to be considered successful it must meet two

criterion.

L. It must learn quickly otherwise the system’s performance would be little
better than that of the RI’s. Thus the system would be doing nothing more
than reacting to its environment most of the time.

2. The learning component must learn the task adequately [Kaelbling 96] as
opposed to perfectly [Watkins 92] since the price for perfect performance
might be extended learning time—revisiting the concern of the first

criterion. Of course, inadequate learning might actually lead to even worse
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performance than a controller with the same task relying solely on a

reactive strategy.

Slow learning is a common thread running through much of the literature
concerning learning algorithms. In a comprehensive review, [Lin 92]
performed simulations involving eight distinct learning methods. While
each successfully learns to adapt to an environment, they did not do so in real
time. Each learning technique required between tens and hundreds of trials

before a behaviour was successfully learned.

To accomplish the goals of rapid learning and adequate performance, several
learning algorithms were examined as potential candidate learning

components. These included,

* Single Layer perceptron [Rosenblatt 62]

* Multi-layer perceptron [Bryson and Ho 69]

® Associative Reward Penalty (ARP) [Barto and Anandan 85]
* Rapid Reinforcement Network [Fagg, et al. 94]

We will now examine these in some depth.

3.3.3.1.2 Single Layer Perceptron

The perceptron relies on the simple delta learning rule [Widrow and Hoff 60}
to update its weight matrix. This is given by equation 34,

(3-4)
w;(t+1) = w;(¢) + nAx; (1)
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where w; is an individual weight at time Z, 7 is a gain function controlling

the learning rate and x; is an input signal.

While a perceptron is capable of solving only linearly separable problems, it
can usually do this very rapidly with few presentations of training data if the
learning rate is set relatively high. Several simulations were run in
attempting to teach a perceptron an input pattern which represented a wall at
various aspect angles. Typically the perceptron learned these within ten

iterations.

The perceptron’s speed was considered a significant advantage even though it
is well understood that the perceptron has severe architectural limitations
[Minsky and Papert 69] which do not allow it to address some of the more
difficult aspects of credit assignment.

3.3.3.1.3 Multi-Layer Perceptron

The multi-layer perceptron, or the backward error propagation algorithm, has
been applied to a wide variety of learning tasks. The network architecture
consists of two or more layers of weight matrices which are capable of finding

non-linear mappings between an input and a goal in finite time.

The model of each artificial neuron in such a network includes a nonlinearity
at the output. The nonlinearity is a smooth and differentiable at all points. A
commonly used form of nonlinearity that satisfies this requirement is the
sigmoidal nonlinearity as exemplified by the logistic function shown in
equation 3-5,

(3-5)

1

Vi= 1+exp(-v;)
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where v; is the net internal activity level of neuron j, and y; is the output of
the neuron. The learning rule is derived from [Rumelhart et al. 1986] and

given in equation 3-6.

(3-6)
Awj;(n) = aAw;(n = 1)+ nd(n)y;(n)

where « is the momentum of learning, n is the learning rate, § is the error
signal and Awj is the change in the weights of a neuron in the network's

memory matrix. This equations is usually termed the generalized delta rule.

In simulation, it was found that a multi-layer perceptron would be quite
unsuitable since its learning rate required was too slow to be tenable,
requiring several hundred repetitions of training data to learn of the existence
of a single wall. Since each iteration implied a collision with a wall, this was

clearly unacceptable.

3.3.3.1.4 Associative Reward Penalty
A learning procedure attributable to [Barto 85] [Barto and Anandan 85] [Klopf
82] applicable to stochastic environments is the Associative Reward Penalty
algorithm (ARP). The algorithm relies on a set of stochastic output units
governed by the Ising spin model shown in equation 3-7 [Peretto 84],

(3-7)

1
1+ expﬁn"

Prob(s =+1)=

Where s, represents an output unit activation, A =Xw;V, representing the

weighted sums of the inputs V filtered through the weight matrix W, and T
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the pseudo-temperature of the unit controlling the noise level within the

system as a whole [Glauber 63].

There is no exact error measurement, simply the reinforcement signal--r,
received from the environment. If we assign r = +1 as a positive
reinforcement (reward) and r = -1 as a negative reinforcement (penalty). From
the reinforcement signal it is possible to construct a target output pattern.
Each Processing element in an ARP network can be thought of as similar to
the one shown in figure 3-8.

Vi

v2

vn

Figure 3-8 An ARP Processing Element.

Input pathways labeled V1 through Vn carry non-reinforcing input signals,
each of which has an associated weight w. The input labeled r is the
reinforcement pathway. Output is through path y. When the network is to
update its weights the signal r is received by all elements simultaneously thus

allowing a single reinforcement signal to be used [Hertz et al. 91].

AnARP network has many interesting features to recommend it for use in

an inconsistent and noisy environment.
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* Networks constructed in this way have been shown to achieve similar
performance to a network trained with backward error propagation in
learning a complex task’.

* Such a network is capable of learning on-line and will continue to do so
throughout its operation.

* The reinforcement signal is global, avoiding the problems associated with

error assignment and propagation.

While these attributes are admirable, the networks typically require hundreds
of performance trials to learn even simple tasks. Although ARP is a very
promising network architecture it was abandoned due to its slow learning

rate [Elgersma 94].

3.3.3.1.5 Rapid Reinforcement Network

Since the number of actions of a mobile robot is limited by its actuators, it is
common practice to attempt to map what the sensors perceive to actions the

actuators can actually perform.

[Fagg et al. 92] have suggested a means for performing this mapping
employing a modified feed-forward, winner-take-all neural network to
perform the selection of the next action and using a punishment/reward
signal to act as a reinforcement generator. The is called a Rapid
Reinforcement Neural Network (RRNN). We will concentrate on this work

as it will be employed later in the construction of our model.

Temporal Credit/blame Assignment
The problem of assigning credit or blame to the action which was most
responsible for an agent’s situation can best be described by analogy. A person

? Stacey, D.A. (1994), The University of Waterloo, Personal Communication concerning her
implementation of an ARP network at the University of Washington.
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is driving their car and takes a wrong turn on a road. They continue to drive
and miles down the road they come to a stop at a cliff. The salient question is
what caused them to be in the situation they are in? Was it the action they
took the split second before they came to a stop or was it the wrong turn they
made? Obviously the wrong turn was significant but in order to assign blame
appropriately, the action must be remembered and somehow avoided in the
future.

[Klopf 82] and [Barto et al. 83] suggest a method for reducing the difficulty of
determining credit by developing an evaluation function which employs a
temporal component. They introduce the concept of eligibility expressed in

the equation 3-8:

(3-8)
w;(t+1) =w;(t) + ar(t)e;(2)

where a is a positive constant determining the rate of change of w;, r(t) is
the reinforcement at time r, and ¢(t) is the eligibility at time zof input
pathway z.

The concept is quite elegant. Whenever certain eligibility conditions hold for
input pathway Z, then that pathway becomes “eligible” to have its weights
modified, and it remains eligible for a period of time after the condition has
occurred. If the raw reinforcement signal improves performance, then the
weights of the eligible pathways are changed so as to make the element more
likely to do whatever it was that caused it to do what it did. A negative signal
makes it less likely.

Klopf proposed that a pathway should reach maximum eligibility a short time
after the occurrence of the association of an input pathway and the firing of
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an output element and decay towards zero after that. This implies a decay rate

applied to e(#) as shown in equation 3-9,

(3-9)
e (t+1)=38e,(t) +(1—8)y(t)x;(t)

where O0<=4§<=1 and determines the decay rate. Each pathway, of course,
would have its own eligibility. Barto demonstrated a simple network which
learned the pole balancing problem [Widrow et al. 64].

While this method adds temporal information, the action which should be
most rewarded or blamed could fall outside the window provided by
temporal decay. [Sutton 88] suggests a mechanism for predicting the outcome
of a certain actions by using previous experience. Rather than predictions
based on predicted and actual outcomes, this method assigns credit by means

of temporally successive predictions.

In our case we are particularly interested in current and past reinforcements.

This is accomplished by equation 3-10,

(3-10)
R (t) = R(t) + AP(x(t + 1)) — P(x(t))

Where R(t) is the reinforcement received at time z. 4 is the discount factor
for future reinforcement. P represents the predictions both current (z+1)
and previous () and x is the state of the system at time z. R(z) is a
modified reinforcement signal which measures the deviation of the actual
reinforcement from that which was expected by a prediction mechanism. This

means that if R >0 the system performed better than expected and R <O it
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performed worse. Sutton points out that this can be used as an internally

generated reinforcement signal during every performance step.

The prediction mechanism itself can be any linear learning function, both
Sutton and Fagg suggest a linear neural network such as an ADELINE
[Widrow 60] as being adequate to the task.

3.3.3.1.6 Implementation with a RRNN as Learning Component

In the case of a RRNN the network produces the output ¢@,, as shown in
figure 3-9. The action selection units select from potential actions "L", "LF",
"F", "RF", and "R". These stand for "left", "left forward”, "forward", "right
forward" and "right" respectively. As an action is selected, the signal is
encoded and passed to the transfer function T,, where its eventual

transmission to an actuator is governed by equation 3-2.

Actign SefectionNUnits

L LF F RF R

= o/

¢DA

Figure 3-9 The Output of a RRNN as part of the DA.

The complete RRNN algorithm is provided in appendix C.
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3.3.4 The Reflexive Instructor

The following section describes an arbitrary RI component of the hierarchy.
While there is only a single DA component there can be many RI
components. The kth RI component in a hierarchy is shown in figure 3-10.

Xappropriate

Rk+1..p

Figure 3-10 A RI component.

The signalsx,,,,opnize are a subset of the available sensors signals x, .
consisting of those signals which can be used by the activation function 9,

of the reactive component of the RI.
The activation function is specific to the type of RI which is implemented and

the activation policy associated with it. For example a single whisker sensor

might provide activation if its contact is closed, or the function might become
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active only if a certain number of sensor inputs is received. In any event,
B¥(.), produces the tentative control signal @,. The signal is tentative because it
is subject to being overridden by the inhibition signal i,.

The inhibition signal is provided in order to prevent the RI, component
from issuing a control signal which would be inappropriate as determined by
the activation of one or more RI components which are higher ranking than
it is. The inhibition signal is produced by the inhibition function A, which is
governed by the reinforcement signals R,,, through R, coming from other
activated higher ranking RI components, where p is the number of RI
components. Inhibition is governed by equation 3-11,

(3-11)

_ {active if R active
b = inactive otherwise

where R, is an active reinforcement signal.

The tentative control signal «, is passed through the RI, transfer function
©;. This function, similarly to the DA transfer function, acts as a gate for the
passage of the tentative RI, control signal «,. This signal will become the
actual Rl control signal to reach the actuators based on equation 3-12.

(3-12)

C, = {a, if {, inactive
k — \inhibited if i, active

() is also responsible for producing a reinforcement signal R, which will

inhibit lower ranking RI components and the DA component if activated.
The activation of R, is governed by equation 3-13.
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(3-13)

R = {act.ive if @, active and i, inactive
k — linactive otherwise

It should be noted that each RI component can be described using figure x-x
except the highest ranking RI component RI, which, by definition, has no

higher ranking RI supporting it. In this case no reinforcement signal will
inhibit its control signal and it architecture is a slight modification of figure 3-
10 and is shown in figure 3-11.

Xappropriate

¥

Figure 3-11 The Final RI Component.
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3.3.5 Assembling the RI and DA Components

We can assemble the components described in previous sections to form a
RIDA hierarchy as shown in figure 3-12. There are essentially two forms of
data pathways in the RIDA architecture, reinforcement and control. All
reinforcement paths are indicated by heavy lines, while control paths are
represented by lighter lines.

RI, Rl g RI

Figure 3-12 The Assembled RIDA Components.

The DA component can be seen on the far left of the diagram. It is the least
trusted and lowest ranking component of the hierarchy. As one moves from
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left to right components become more trusted and inhibit the control signals
of all the components they out-rank. For example, the tentative control signal
@pa of the DA can be inhibited by any of the RI components shown. RI
components Rl; and RI,,, are two typical RI components where RI,,,'s
reinforcement signal R,,, will inhibit RI, and the DA component. RI, is
shown on the far right of the figure. By necessity R, is the highest ranking

component and receives no supporting inhibiting input.

3.3.6 RIDA Applicability Examples

The following sections provide several examples of how RIDA might be used
in control problems. The first example describes how RIDA might be applied
to a fictitious design problem and is used as an illustration of how RIDA
components can be assembled. The second example uses the subsumption
architecture as described by [Brooks 86] to develop a highly reliable RI
component, in this way using subsumption as a building block for RIDA.

3.3.7 An Example RIDA Hierarchy

As an illustration of the RIDA concept, let us turn first to a specific design
problem. Suppose a mobile robot was designed with three different sensors as
shown in figure 3-13. A let us further assume that the mission of the robot is
to navigate around an unknown environment where there are an unknown

number of obstacles and potential dangers such as cliffs.

We could create a RIDA cascading control hierarchy to address this unknown
environment assuming there exists an appropriate learning component
which is capable of learning to navigate in an unspecified way using sonar as

input.
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Figure 3-13 An example RIDA Cascading Hierarchy.

Figure 3-14 is the block diagram for the configuration of the RIDA
components to implement this system. The Sonar passes signals to the
Navigation learning component which makes decisions concerning where to
go next. If the vehicle contacts an obstacle the touch sensor interacts with the
first RI component which overrides the DA control signals to the actuators. If
the vehicle is in real danger of falling off a cliff, the second RI components
overrides both the DA and the first RI component.
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RIy RI

Figure 3-14 Specific RIDA Design

The cascading failures are shown in figure 3-15. Because of the gradual nature

of the failures the system as a whole continues to be viable for an extended
period.

Figure 3-15 Graceful Degradation of Service
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3.3.7.1 RI Implementation Using Subsumption

As an illustration of selecting and implementing an RI component we turn to
the Augmented Finite State Machine (AFSM) based subsumption architecture
as described in [Brooks 86]. Brooks defines of competence in autonomy tasks.
Level 0 competence is defined as "Avoid contact with obstacles” (whether the

objects move or are stationary).

An AFSM is depicted in figure 3-16.

Inhibitor

Inputs AFSM Outputs

Supressor

Figure 3-16 An AFSM.

The inputs could come from the environment in a similar manner to figure
3-4 or could come from other AFSM involved in a loosely coupled
organization. The AFSM is augmented with timers which either allow or
disallow activity of an AFSM if a required input is not received after a certain
amount of time. Supressors and Inhibitors modify the behaviour of the
individual AFSMs.

Brooks uses the AFSMs to Describe a level 0 competence module as shown in
figure 3-17.
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robot —1 feel i -
+ force | force || heading | M 3
heading forward
sonar [~ | map
encoders
halt
collide

Figure 3-17 Level 0 Control System as Described by Brooks.

Each box in the diagram represents a single AFSM module. The primary
sensors are the sonar which are attached to the forward area of the robot.
Collisions are handled by the "collide” AFSM which sends an appropriate
signal to the "forward" AFSM to stop movement. This signal is, in turn,
passed on to the vehicle's actuators involved in forward motion. As a whole
or in parts, this design has been used in various vehicle designs [Brooks
86][Brooks 87][Brooks 89] and has proven to be quite effective in collision

avoidance tasks.

It is possible to employ this module as an RI component of a RIDA hierarchy

as shown in figure 3-18.
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/ / / Environment / /

Acuators

Sensors

X]

RII

Figure 3-18 Using Level 0 Controller as RI Component.

It is assumed that the AFSMs responsible for "turning” and "forward"
command signals are communicating with a differential steering actuators
through the @; path. x is the signal coming from the vehicle's sonar, x, and
x; are the incoming telemetry signals from the disk encoders or similar
devices on the actuators. The modules command signal G, will override any
command signals sent from the DA and are passed through ©, unmodified to

the DA component on RI activation.
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By incorporating subsumption in a RIDA hierarchy we can extend learning in
a relatively straightforward way to subsumption as long as a sufficiently
capable DA is employed. In addition a library of highly reliable low level

subsumption modules are available for more capable RIDA vehicles.

3.4 RIDA Rationale
The RIDA architecture is able to address several important issues which have
gone unresolved in the field of autonomous vehicle design. These are the
problems of,

* reliability, and

* suitability.

3.4.1 Reliability

The fact that an architecture, such as the one being proposed is plausible, does
not provide sufficient grounds for its deployment. There must be some level
of confidence that the RIDA architecture will be at least as reliable as existing

control mechanisms.

Fortunately the architecture is capable of incorporating existing systems
within it. If an existing controller is capable of operating within an
environment it should be possible to incorporate the controller as the RI side
of a RIDA module. In this way we guarantee that the performance will be no

worse than an existing system.

The RIDA architecture is reliable for several reasons,

e There is no single point of failure as the RI or the DA will always be
active. If the DA fails completely, the RI is capable of controlling the
system in a degraded state. This is also the case when the RI is
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disabled. A trained DA will continue to issue control signals to the
actuators it controls.

* Redundancy is achievable by provisioning more than a single RI. In
this way, individual failures have minimal impact on the overall

performance of the system.

® Loosely coupled reinforcement signals mean that the DA is not
dependent on a single RI sending a timely signal. Even if no signal
is sent at all, the system is in no worse shape than if it had only the
DA.

Of course, there are no miracles. Sensor failure or the inappropriate selection
of RI or DA elements could all lead to catastrophic system failure. However,
the appropriate selection of control elements and the careful design of the RI
and DA interaction should help mitigate this concern.

3.4.2 Suitability

In short, where can this architecture best be applied? Safety critical
applications are certainly potential candidates. It is possible to envision such
an architecture applied to vehicle mobility systems designed to enter
extremely hazardous environments such as nuclear reactors or chemical fires.
Planetary exploration is another potential area as a RIDA equipped vehicle
would not be completely reliant on a human operator millions of miles away

sending control signals delayed by minutes or hours.

Because an RIDA module provides a degree of fault tolerance in its gradual
degradation in response and the fact that a system constructed in this way is
able to learn and adapt the architecture is well suited to many types of
mobility systems. For example, it should be possible to construct a RIDA for
the control of robotic household appliances such as vacuum cleaners that

learn to avoid furniture.
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3.5 Conclusion

This chapter has introduced the RIDA architecture with respect to mobility
control. The various features of the architecture have been addressed and
comparisons made with other learning systems. We have shown how the
architecture can be used to support the training of an arbitrary learning
component, how The RI and DA elements interact, and how it supports the

graceful degradation of the controller system as a whole.
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4. Learning, adaptation and the Deliberate Apprentice

Go Soothingly in the grease mud, as there lurks the skid demon.

English translation of Japanese traffic sign

4.1 Introduction

In this chapter we discuss the value of incorporating learning as one of the
characteristics of the RIDA architecture for the purposes of adaptation. In addition
we revisit the theoretical contributions of this work.

4.2 Learning as an aid to adaptation

While great strides have been made in purely reactive systems by Brooks and
others, their inadequacies become apparent when they are actually constructed. In
order for such an agent to be effective in its intended environment, its designer

must have anticipated everything in it that the vehicle is likely to encounter.

Inevitably, the designer must redesign after observation in an iterative process
until the vehicle functions effectively. While this may be considered an advantage
by some [Brooks 86), it is also a severe limitation. One cannot send an autonomous

agent to a distant planet and continue to tweak it into correct behaviour.

Most autonomous systems researchers have, at least tacitly, seen the advantage of
a system which is capable of adapting through learning. In some cases—
subsumption for example—this has lead to an existing architecture undergoing

considerable revision in order to accommodate learning [Mataric 92].

RIDA has not taken this approach. While a RIDA vehicle can function with
merely its reflexive components, inherent learning allows much better

performance and allows a path for graceful degradation of service.
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Subsumption, and other strictly reactive systems, have had a tendency to design
individual behaviours into their reactive subsystems and then have used learning
to perform higher level tasks such as navigation. In effect, learning is treated

simply as an adjunct to the primarily reactive systems.

As an illustrative example, several educational manufacturers will soon start
marketing a version of the famous Genghis walking robot [Brooks 89] which is
capable of learning navigational tasks. One can argue that even if the learning
system were to fail it is unlikely the walking system will since they are
independent. However, if the terrain changes in a way that makes walking very
difficult, it is impossible for Genghis to adapt beyond its original design since it is
fettered by its original assumptions. By applying a RIDA approach to the walking
problem it should at least be feasible to adapt to change at this fundamental level.

4.3 Theoretical Contribution

Chapter 3 discussed several learning algorithms. Each has seen implementation in
a mobile robot somewhere and has proven to learn a task. The problem is not
learning but the speed of learning needed to adapt to an environment not
conforming to the system designer’s plan and a plan for failure because of it. This
is where RIDA’s theoretical contribution lies.

As we will see, RIDA contributes to the speed of learning of the algorithm selected-
-making it learn substantially faster than it would on its own. In addition, because
the architecture addresses and depends on failure, a robot adhering to the
architecture is better able to cope with an unpredictable environment --where
failure is guaranteed to be the norm until successful learning occurs. In addition
the architecture ensures that the vehicle plant continues to function by allowing

for graceful degradation in performance.
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Graceful degradation has not been well addressed in the literature. [Brooks 89]
makes explicit reference to planning for failure however, there is no mention of
how one plans for failure one did not predict due to poor prediction. For example,
various investigators have made reference to fast reactive systems being able to
cope with the random conditions associated with a lab environment--the constant
rearrangement of furniture, the movement of people—all of these are very well
addressed by a system which predicts them and has made allowance for sensing

this environmental behaviour.

These systems, like many before them, have approached this problem from the
perspective of omnipotence. The investigator has used as many a priori sources of
information about the environment as possible to compensate for any possible
anomaly. This is fine in a lab environment but has been shown to be highly

dubious in an environment where a vehicle must fend for itself [Kaspar 94].

The problem of failure arises when the predicted and instantiated system cannot
cope with a situation which has not been predicted. The result, more often then
not, is catastrophic system failure. RIDA approaches failure from a local
perspective. Because the learning system assumes it is learning, it can also learn
from the reflexive system designed to save it. Failure is simply another part of
learning, and is compensated for by an instructor which prevents unrecoverable

damage to the vehicle.

Reflexive systems have been devised. Learning systems have been created. An
architecture which addresses the realities of learning speed, the inevitability of
insufficient planning by a robot’s designer, the lack of global knowledge associated
with an environment which cannot be predicted and the necessity to cope with all

of them simultaneously would well describe the theoretical contribution of RIDA.
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4.4 Conclusion

In this chapter we have discussed the significance of learning in adaptation and
shown that speed of learning is essential for effective adaptation. We have
reiterated that the improving learning speed and planning for inevitable failure

are some of the significant contributions of this work.
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5. Selecting A Reflexive Instructor

A noble heart embiggens the smallest man.
Jebediah Springfield

5.1 Introduction
This chapter describes the RI which was used to confirm the validity of the RIDA
architecture. It explains how the RI functions, how it can be constructed and

rational for its selection.

The RI was selected on the basis of qualitative reliability, which is appropriate for a
controller which is the “final line of defence” against failure (note that in
biological systems reflexes are normally the first line). Various trials were
conducted to ensure this reliability in several RI strategies and to confirm that

these strategies could co-exist on a single vehicle.

5.2 Motivation for selecting a Reflexive Instructor
Clearly the success of RIDA is based on reliable RIs. A reliable RI must have certain
characteristics;

* It must be simple and effective. This is because its activation is critical to

the successful learning of the DA,

* It must have a high probability of doing the right thing. Since the RI is
the primary teaching vehicle of the DA, the RI must be “correct” as
much as possible, and

e It must be simple to construct otherwise it becomes difficult to

implement.
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5.3 Prototype Reflexive Instructors. The SOLENODON trials

The SOLENODON trials were undertaken to select several appropriate reflexive
instructor sub-systems for a RIDA implementation. Several reactive control
strategies were examined and empirically evaluated in an unstable test-bed

vehicle.

The approach taken in this study was to create a vehicle which was extremely
difficult to control. Preferably any intelligent control system would find it
impossible to master the fine control of such a vehicle. The point of this being that
we would be able to compare how well different controllers deal with the inherent

unmanageability of the task and how perspective RIs might help them.

A situation is cited by [Norman 86] in discussing the difficulties novice sailors
have in learning to steer a compass course using the tiller of a boat. He proposed
that "even a task that has but a single mechanism to control a single variable can
be difficult to understand, to learn, and to do." Similar systems are evident in
nature. For example the Haitian solenodon runs on its toes with a "stiff ungainly
waddle, following an erratic almost zigzag course...Moreover, when a solenodon is
alarmed and tries to put on speed it is as likely as not to trip over its own toes or
even tumble head-over-heels." [Burton 69).

By designing such a vehicle, any mechanism controlling the vehicle—the intended
DA, is forced to either fail to achieve successful control or rely on a lower level
control mechanism-the RI, to take over control on impending failure. In this way,

the RI can be examined on its own merits employing an arbitrary DA.

In the SOLENODON vehicle (discussed in the next section), the DA subsystem was
replaced with a manual controller allowing remote operation by a human. This
enabled the operator to manipulate the vehicle conveniently and provided a

means for testing the RI subsystem independent of the DA.
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5.3.1 The RI Tasks
Two tasks were selected as potentially useful candidates for aiding overall control;

* The first task was to avoid collisions and consequently keep the vehicle from
risking damage. The RI was designed to keep the body of the vehicle from
touching any vertical surfaces which would be detected by whisker sensors.

* The second task was to aid in finding and tracking a light source. The RI in this
would shift the vehicle in the appropriate direction to “jog” the vehicle in the
direction of the light detected by its photo resistor banks.

5.3.2 SOLENODON IV
A relatively simple functional and robust six legged walking vehicle was

constructed to provide the test bed. Such a vehicle was selected because,

* it allowed for very tight turns—a capability seen as very important for
escaping situations which might lead to getting stuck, and

* mechanical walking is far less stable—in the sense that "tipping over" and
falling are more likely than in wheeled motion. The reduced "steadiness" of
walking adds to the complexity of the control task, making it much more
difficult to master for the human participants in the trial. This would
ensure dependence on the RI to achieve good performance. Thus the

reflexive systems would be tested and not the human drivers.

Several designs were prototyped, the one shown below was finally implemented
in a working mobile robot. It provides sufficient steadiness to allow walking,
sufficient unsteadiness to require the activation of the RI and flexible enough to
make tight turns in place. The vehicle could be controlled remotely via a tether to
twin joy sticks controlling the direction of motion of the left and right drive trains.
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Figure 5-1 Solenodon IV (Schematic View)

Figure 5-2 Solenodon 1V (3/4 view)

Sensing for the vehicle was very simple, employing momentary contact micro-
switches activated by a set of sensors inspired by a cat’s whiskers. In addition banks
of photo resistor were provided to enable the light seeking function of the vehicle.
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The original design was employed in an earlier study called EMMA as described in
the appendices.

5.3.3 The Collision Avoidance RI

In order for the vehicle to be reliable the reflexive instructor must be able to take
over control of the vehicle the moment a control error has been detected. Also, the
RI must behave as a "trusted” sub-system in the sense that it must have a high
probability of reacting correctly.

With these goals in mind, several RIs were designed to take input from the
vehicles whiskers and react appropriately when one or more was activated. Status
LEDs were supplied to indicated which sensors were active and what circuit was

engaged. These would eventually supply an analog signal to the DA.

The simple RI circuits consisted of Resistor/Capacitor (RC) elements designed to
throw Double Pole/Double Throw (DPDT) relays when momentary contact micro-
switches were closed. Because the power requirements of such a circuit is quite
low, an extra battery of cells could be slung under the vehicle without affecting its
performance and making the system completely independent of the tether. This

controller is a modified version suggested by [Jones and Flynn 93].
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Figure 5-3 The Solenodon Collision Avoidance RI
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5.3.4 Simple RI collision avoidance control strategies

All the active control strategies were designed with the following goals in mind, if

the vehicle made contact with an obstacle,

* break contact with the surface the sensors contacted, effectively eliminating
any danger, and

* veer the vehicle to one side and thus reduce the potential oscillations
possible if the vehicle simply backed up (only to move forward and hit the

obstacle again.)

LYt LSS

\ /)
N

Figure 5-4 RI reacting to contact with one of its sensors

Five control strategies were devised to allow the RI circuits to aid in the control of
the vehicle. These were based on observations from the EMMA study (see
appendix B).

The first RI strategy was to do nothing. The human operator of the vehicle would
be allowed to control it without the interference of an RI. This provided a base
case. In order for a RI strategy to be considered useful it must perform better than

this strategy.
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Figure 5-5 RI strategy One

The second strategy involved shunting power to the opposite legs of the vehicle
and reversing their motion for a brief "sustain” period governed by the RC
constant of the circuit (< 1 sec). This can be paraphrased as "what ever the legs
were doing on this side of the vehicle, do the opposite on the other side for a short
time". For example, if the vehicle came into contact with an obstacle with its left
whisker and the vehicle's left legs were moving forward at the time than control
strategy 2 would make the right legs move in reverse. In this situation the strategy
would have a tendency to swing the vehicle away from the obstacle.

Obstacle

)Iehicle

in
Collision
Figure 5-6 RI strategy two and three

In the third RI strategy the sustain time was increased to about 1.5 seconds.

The final two strategies involved the same cross connections as above except the
power would no longer be shunted from the human controller but would come
from the power supply slung under the vehicle. When a switch was closed a relay
would fire and force the other side's legs to back-up. This can be paraphrased as
"Whatever side of the vehicle comes in contact with an obstacle, have the other
side’s legs backup.” Note that this is a subtly different strategy then IL Instead of
shunting power from one side to the other, additional power is supplied
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involuntarily to one side of the vehicle, thus powering its legs without human

intervention.

Obstacle

/
7

Vehicle
in
Collision

Figure 5-7 RI Strategy four and five

Strategy four provided a short sustain period and strategy five allowed a longer

sustain.

5.3.5 Testing the Control Strategies

In order to test the various control strategies a course was constructed in an arena
consisting of two straight paths connected by a 180 degree turn. The course was 920
cm long and was lined with 47 pylons and one vertical wall. The pylons were
evenly spaced forming the path. The lane the vehicle traveled had a minimum
width of 23 cm and a maximum width of 35 cm at the curve.

Figure 5-8 The track after a run
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The SOLENODON is 16 cm wide (whisker to whisker) and 23 cm long (whisker to
extended rear leg). Each pylon could be displaced by the vehicle should it come in

contact with one.

Four volunteers were selected as operators. Each operator was given the
opportunity to "drive” the test vehicle for at least 15 minutes prior to the actual
trials. The test vehicle had no sensors active at that time, although the drivers
were aware of the control strategy of the vehicle they were driving during the

trials.

The goal given to each of the human operators was to move the vehicle through
the course as quickly as possible while minimizing the number of collisions. For
the purposes of these trials a collision was defined as "any non-sensor contact with
a vertical surface”. An observer was assigned to count the incidents of collisions
with either walls or pylons. A vehicle traveling the path could make contact with
individual pylons or the wall several times with each contact counted by the

observer.

5.3.5.1 RI 1 Performance

The results of four trials without an RI strategy are shown below. Although each
driver could control the vehicle fairly well, fine control was impossible due to the
vehicle’s inherent unsteadiness. Most collisions were caused by "unexpected"”
turns of the vehicle as it walked erratically.

Sensor Obstacle | Time of Run |
Contacts Collisions (seconds)
N/A 7 47

N/A 11 45
N/A 15 47
N/A 12 50

Rl W N =

Table 5-1 Results with no control strategy
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5.3.5.2 RI 2 Performance

This RI seemed to work quite well as long as the vehicle stayed mostly in the
centre of the path. Two of the drivers attempted to move very close to the pylons.
This set up an oscillation condition in which the vehicle became very unstable
and knocked two or three pylons out of the way before the operators could regain

control and proceed.

Several of the drivers commented that the vehicle was difficult to control in
‘rogue” situations because the control signals they were supplying were being
reversed by the vehicle's RI circuit and this confused them.

Obstacle | Time of Run |
Collisions (seconds) }
28 2 55

24 2 50
24 6* 67
27 5* 60

Table 5-2 Shunted Control with short sustain time (Asterisks indicate strong collision condition
observed in trial)

5.3.5.3 RI 3 Performance

When the sustain time was increased, the rogue behaviour remained, as can be
seen from the results of driver 2, and additional problems were observed. Most
drivers learned quickly that they could stop the vehicle by releasing the controls
however they did not like this technique as it tended to increase the amount of
time it took to move around the course. Driver 4 had a very difficult time with
this type of control.
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‘Sensor
Contacts

Collisions

Obstacle |

Time of
(seconds)

Alexander Ferworn

31

5

67

25

40

70

21

8

61

Bl Wl N =

27

7

64

Table 5-3 Shunted Control with long sustain time

5.3.5.4 RI 4 Performance

All drivers found that this strategy served them best in the given task. In fact

several of the drivers commented that keeping the vehicle moving forward was

much easier with the assistance of the RI circuit.

Driver

Sensor

Obstacle

Contacts Collisions (seconds)
1 29 2 41
2 26 2 47
3 24 3 43
4 23 2 48

Table 5-4 Cross Connected reactive control with short sustain time

5.3.5.5 RI 5 Performance

The longer sustain time proved to be disappointing once again. The uncontrolled

backing had a tendency to hit obstacles with much greater force than a human

operator would have. Even a casual observer would note that simply maintaining

control of the vehicle was much more difficult for the operators.
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" Driver Sensor | O
Contacts Collisions (seconds)
1 27 5 63
2 27 6 58
3 25 9 65
4 31 8 60 I

Table 5-5 Cross Connected control with long sustain time

5.3.6 Observations

Cross connections between sensors and actuators proved to be quite useful. It is
interesting to note, however, that this is not the control strategy employed in the
reflex actions of animals. The SOLENODON withdrew when the opposite sensor
was activated. In biological systems exhibiting a simple crossed extension reflex,
the sensor that caused the reflex is normally the one withdrawn. The reason for
this is that the sensor on a biological system is normally on the actuator that
caused the reflex to be initiated in the first place. This is not true on the
SOLENODON where the sensors are mounted on the vehicle body not on the

actuator itself.

It also became apparent that, whatever reflex is chosen, it should not be
maintained for long periods of time. A short sustain period tends to be quite

helpful.

5.3.7 The Light Seeking RI

As with the collision avoidance RI, the light seeking RI must also perform reliably
and accurately. The RI circuit was replaced with a simple analog comparator-based
light seeking RI designed to “jog” the controlled vehicle towards a detected light
source without actually taking over control of the vehicle for long periods of time.
The circuit is very elegant in its operation. Once a certain threshold of light has
been surpassed by the circuits photo-resistor, the op amp allows current to flow to
the drive train farthest from the light source. Eventually the vehicle is jogged
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toward the direction of the light. Once past a certain point the “blinders”
(Appendix C EMMA I1.5) mounted in front of the photo resistors block the light
and the drive train loses power returning control of the vehicle.

Right Eye

oV s~z %w i

DPDT 5V

Left Motor

Figure 5-9 Half of Light Seeking RI circuit

5.3.8 Testing the Control Strategy

Several trials were made with the controller in a darkened room with single and
multiple light sources. The goal given to the operators was to move toward the
light using the SOLENODON vehicle equipped with a manual controller and the

light seeking RI. In all cases the human operators were able to regain control from
the RI even if the operators did not wish to move toward the light and the RI did.
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5.3.9 Multiple RI Coexistence
Once it had been confirmed that the RIs could be constructed, an integration test

was performed to ensure that both Rls could exist on the same vehicle at the same
time without providing conflicting control information. This test was essential
since any realistic control task would require the presence of more than one

behaviour producing controller [Brooks 86].

The vehicle was released into a darkened room containing several light sources
and various obstacles without its human controller. The vehicle traveled about
the arena, moving towards various light sources it detected and avoiding
collisions with obstacles it encountered with its whiskers. From this we concluded

that the two RI subsystems were compatible and could coexist on a single vehicle

5.3.10 Observations

The second RI is fundamentally different from the first. The collision avoidance
RI becomes active when a higher controller has failed to detect an impending
collision. It moves away from potential impending damage. The light seeking RI,
on the other hand, draws the vehicle toward light, rather than avoiding
something it seeks something and becomes active only when it detects it and the
higher level controller has failed in doing so. One RI prevents motion towards

something, the other prevents motion away from something.

5.4 Conclusion

In this chapter a series of experiments were conducted which were conducted with
the SOLENODON IV test-bed vehicle in order to select a reliable, robust and
simple RI which could be used to teach a DA. The result of the work in this
chapter adds weight to the argument that a reflexive control mechanism can be
beneficial when interacting with a far more complex one (a human operator)

assisting real time control. The strategy developed in this chapter will be seen
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again in Chapter six during the autonomy tests when it is applied to the complete
RIDA model.
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6. Experimental Design

Ensure training is hard, realistic and of an intensity and duration expected in operations.

CFP 309(3) Chap 17 Pg 17.7 Para 4E.

6.1 Introduction

In this chapter we argue that it is possible to apply the concepts, characteristics and
terminology associated with human autonomy to robotic systems. We do this in
order to develop a framework for describing and measuring just how autonomous

an autonomous agent is.

Within this framework we examine the question of autonomous mobility and
develop a set of experimental tests which allow us to determine if a robotic system
is, in fact, autonomous with respect to mobility. The framework and tests will
then be applied to the RIDA architecture in the next chapter.

6.2 Linking Autonomy and Robotics

Assuming this notion has merit, there is relevant discourse in biology
(Autopoiesis) defining and describing “living” beings in terms of their mechanical
components, their interactions and relationships [Varela 79]. Machines and biology
have been, and continue to be, closely associated. From the zoological figures
present in astronomical formations to models of flight to present-day discussions
concerning “thinking computers” and the computing brain, runs the compelling
notion that the mechanism of living things is inextricably bound to what we know

as life.
Often, the mechanical implementation of an entity is used to dismiss any notion

of animal life being autonomous. The assertion is made that because of the

mechanical nature of biological systems, there are no purposes in animal nature
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[Bonner 80]. Its apparent purpose is similar to the purposes of machines-—-they do
what they are designed to do. So, if machines are not the same as living creatures,

why is it that the comparison is so easily made?

The mechanisms that define a machine like a mobile robot as an entity, and
determine the nature of interactions and transformations it may undergo, we call
the organization or architecture of the machine. The actual relationships that hold
between the components that constitute a particular machine is its structure. The
organization of a machine (or system) does not specify what components should
be used to construct the machine as a system; it only specifies the processes and
behaviours that these must generate to constitute the machine [Braitenberg 86].
Therefore, the organization of a machine is independent of the properties of its
components, which are essentially arbitrary, and a given machine can be realized
in many different ways by many different kinds of components. [Varela 79]. The
validity of this argument can be seen in many places. Few people think of the
individual components of an automobile when they think of the concept of “car”

yet they know the functionality that they associate with being “car-like”.

Biological systems are also defined by their mechanisms and are therefore
machines of a particular class. The argument commonly made is that a living
entity is defined by its organization independent of its structure or the material
that physically embodies it. You are more than what you eat, or more accurately,
you are independent of what you eat. In short, a biological life form is defined not

by its components but by their interaction.

Any biological system can be treated in terms of the properties of its actual
components as a physical system. There is no limitation whatsoever on doing so,
except for the number of variables that one might have to consider. But this is
only a complexity problem--all be it a profound one. Eventually, one should be
able to have a physical description as accurate as required of any biological system.

Of course, some biological systems are much easier to describe than others--an
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amoebae versus a kitten for example. Weather this is, in fact, possible to fully

realize is still a matter of some debate and is not necessarily relevant to this

argument.

Since humans are biological systems, and by extension, physical systems this
measure could be applied to humanity as well. This is a very important link as it at
least allows us to argue that autonomy--as a philosophical concept-is applicable to
at least one describable physical system and, by extension, should at least be

examined in other physical systems.

Therefore, it should be possible to examine the autonomy of a mobile robot in
terms of the autonomy of a human. While mobile robots may fail this
examination—-as animals might, they must still be examined using the same

criteria.

Autopoiesis does not specifically address the concept of autonomy but it creates an
essential link between mechanical and biological systems, at least at the descriptive
level. Although machines are not commonly thought of as alive, it is possible to
extend the notion of the autonomy of a human to that of the autonomy of a

machine.

6.3 The Autonomy Framework

It is important to note at this point that there exists no framework for measuring
autonomy in robotic systems. Typically, measurement is very task oriented, where
tasks are selected based on a particular skill set rather than a set of characteristics.
The vehicle either succeeds in the tasks or it fails. While tests may be duplicated
between individual robots, there is no set of common terminology or means for
making comparisons—even at the conceptual level. We propose to build some

common understanding based on human autonomy concepts. From the preceding
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discussion and our literature review of chapter 2 we can form the following

framework for the classification of autonomous agents.

Autonomy can be examined on at least two levels—described as first and second
order autonomy. When we refer to an agent exhibiting first order autonomous
behaviour we refer to an agent’s ability to make individual choices on its own. If
these choices are made by some internal process of reasoning then we can refer to
this as gutonomy of judgment. If the reasoning is carried out with the assistance or
interference of outside agents then there exists a dependence which is a restriction
on an agent’s autonomy from which one could argue this makes the agent less
autonomous then one in which reasoning is carried out completely
independently. This is somewhat problematic as the means for reasoning can
often influence the results of the reasoning and the means were provided by an
external agent. Efficacy, or Autonomy of action refers to an agents ability to actually
carry out decisions it makes internally. Restrictions on autonomy may be affected
by internal deficiencies or external limitations. Since a simulated agent cannot
actually carry out their decisions they are less autonomous than instantiated

agents because they lack efficacy.

If the nature of the decision making changes over time then the agent is said to
"learn”. This allows a more flexible agent and therefore one which is more
autonomous than a non-learning agent. If the nature of the decisions made
substantially change through internal deliberation then a first order autonomous
agent is also second order autonomous agent. This implies that previous decisions
are examined in totality and decision made based on their combined efficacy rather

than on an individual basis.

While this framework is not complete it will serve to describe and illustrate the
aspects of autonomy which the RIDA architecture can address. This framework in
itself is a significant theoretical contribution as this type of linkage is not assumed

in research today. One need only examine the controversy surrounding reactive
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control vs. model building. There has been no means for promoting discourse in
the area. One might not agree with the notion that most reactive systems address
first order autonomy problems but at least there is some common ground for

discussion.

6.4 Placing RIDA in the autonomy framework

We claim that the RIDA architecture supports the construction of first-order
autonomous learning agents restricted in efficacy only by their ability to interact
with their environments. While RIDA may support second order autonomy, no

evidence is presented here to support this claim.

6.5 Tasks for measuring RIDA within the framework

Five separate tasks have been devised to provide confirmation of our claim with
respect to the low level spatial mobility problem [Rashotte 85] in which an animal-
-in rashotte’s case—is observed moving around in its environment and metrics
applied to its ability to do so successfully. While Rashotte focused on optimal
behaviour we will consider only the effectiveness of an agent’s behaviour in low
level tasks.

Each task is provided to demonstrate a different aspect of autonomous behaviour.
Taken together, the tasks support our claim with respect to spatial mobility.

The tasks are;

* Task 0: Reflexive avoidance of objects

e Task 1: Learned avoidance of objects

e Task 2: Learned stimulus seeking

e Task 3: Learned behaviour change

e Task 4: Cascading RIDA control hierarchy within the first-order limitation
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6.5.1 Task0:
The simplest of all spatial tasks is the avoidance of objects. This is accomplished
through a detection-action sequence where the object is perceived and an effort

made to deliberately move away, stop or take other action.

The task has several characteristics associated with it:

o Single Behaviour: The majority of research which has been conducted with
autonomous vehicles has concentrated on developing a robot which is capable
of exhibiting only a single type of behaviour supporting a specific task: that of
avoiding collisions. Clearly this is a standard which must be addressed.

® Reflex Only: A rigid relationship exists between the stimulus of perceiving a
wall with a sensor and the reaction to it which is moving away from the
collision. In biological systems, a reflex response provides an animal, including
humans, with protective behaviour. Such responses have been shown to be
present in animals which have been isolated from birth and are thus
considered instinctive. Reflex responses are elicited independent of

environmental factors.
o Instinctive Reactive Response: Instinctive reflexive behaviours have been

shown to be quite useful in a number of species;

A female digger-wasp emerges from her underground pupa in spring.
Her parents died the previous summer. She has to mate with a male
wasp and then perform a whole series of complex patterns connected
with digging out a nest hole, constructing cells within it, hunting and
killing prey such as caterpillars, provisioning the cells with the prey,
laying eggs and finally sealing up the cells. All of this must be
completed within a few weeks, after which the wasp dies. [Manning
7]
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The diagram below illustrates a vehicle exhibiting a very simple reflex response to

a collision stimulus.

I\

Figure 6-1 Reflexive Collision Avoidance

6.5.2 Task1

While reflex is useful, learning can be even more so. Take for example the

development of lions;

Born quite helpless, it is sheltered and fed by its mother until it can
move around. It is gradually introduced to solid food and gains agility
in playing with its litter mates. It has constant opportunities to watch
and copy its parents and other members of the group as they stalk and
capture prey. It may catch its first small live prey when 6 months old,
but it is 2 years or more before it has grown sufficiently to feed itself.
Its behaviors, and particularly the methods and stratagems it uses in
hunting, may change according to circumstances throughout its life.
[Manning 79]

Like task 0, Task 1 involves the avoidance of collision but in this instance the
difficulty of the task is increased by forcing a learning component. While many
creatures go through their entire lives being dominated by reflexes, once learning
is introduced a wider of ranges of response is possible giving at least the promise of

adaptation to unexpected circumstances.

Like the previous task, this one also has certain characteristics:
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* Single Behaviour: While the behaviour is generated in a more complex way, it
is still obstacle avoidance.

® Reflexive and Learned Response Coexist: Instead of having only a single
mechanism for obstacle detection and avoidance, two mechanisms are
available to the vehicle. In fact, the vehicle could “learn” to avoid obstacles
through their interaction. If the vehicle can learn to avoid obstacles, it is

arguably better suited to a changing environment.

Figure 6-2 Learned Obstacle Avoidance

* Simple Decision Making supporting an argument for first order autonomy:
When the vehicle has learned to avoid obstacles by acting on a stimulus, it can
be said to have at least some low level form of enhanced first-order autonomy
as it is making decisions to avoid obstacles rather than simply acting in a
reflexive manner. While the response to an obstacle may be rather simple, the

vehicle has “decided” to do this on its own.

6.5.3 Task2

Having learned a single task, it is necessary to experiment with learning a second,
unrelated task. Learning, one thing is rather limiting to say the least. In task 2 we
simulate feeding. Feeding is considered the successful locating, tracking and
contacting a source of sustenance. In the case of the arena this sustenance is

supplied by the light source.
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In the vehicle interaction with the light, it must somehow learn to associate it
with “good”. At the same time the vehicle cannot abandon its previously learned

skill obstacle avoidance.

The characteristics of this task are:

® Multiple Tasks with consistent goal: Task 0 and 1 both concentrated on obstacle
avoidance, this task adds light tracking/feeding. The vehicle is responsible for
the selection of appropriate response independent of external influence.

® Diminishing Reflexive and Sustained Learned Response: As with task 2, this
task requires learning as well as inherent reflexive behaviour. Unlike the
previous task however, finding and moving towards the stimulus is
considered good and would somehow be rewarded, where in task 0 and 1
moving towards a wall resulted in some form of “bad” resulting in either a

punishing collision or negative reinforcement of some form.

We can observe this type of positive learning in infant children. They have reflex
responses which causes them to suck on objects. This is very useful when feeding.

Eventually feeding becomes its own reward and the reflex response disappears.

Selection of Choice of Actions: With more than one skill, the vehicle now must
select between behaviours. This is because the intense light source is near a
potential obstacle—a wall. Demonstrating this ability increases the autonomy of the
vehicle since only secondary external influences were used to make the

autonomous choice possible.

Figure 6-3 Learned collision avoidance and light seeking
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6.5.4 Task 3

In task 2 the vehicle learned to follow light. Task 3 consists of modifying this
response. The intent is to demonstrate the state of satiation. This might occur after
the vehicle were near the light for some period of time and now other--more
pressing needs--might take over. Again, some form of compelling negative
stimulus could be used to attempt to force a change in what the vehicle considers
“good”. The vehicle must be encouraged to move away from the light even
though it has presumably received positive reinforcement when it first found the

light.

N\

>0z
Vi)

Figure 6-4 Learned collision and light avoidance

The characteristics of this task are:

* Multiple Tasks with changing goal: In this task a previously learned behaviour
is overridden with the help of negative reinforcement. This is similar to the
behaviour we see in most animals--humans for example. When we are
hungry, the food we eat may taste very good—encouraging us to eat more.
When we have eaten too much, we begin to feel uncomfortable, perhaps with
nausea. At this point we have received negative reinforcement and stop eating.
In either case we were not in direct control of the reinforcement mechanism

yet it profoundly affected our behaviour.

The same must be true of the vehicle. Initially attracted by light it will be repelled
by it in the end.
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® Diminishing Reflexive with Sustained Learned Response: Similar to task 2
¢ Selection of Choice of Actions: Similar to task 2

6.5.5 Task4

This task is rather different then the preceding four. There is a requirement that
there be some mechanism to promote an architecture whose principles are
reusable as the number of interacting control mechanisms function. This is

essentially to address the cascading control aspects of RIDA.

As more and more mechanisms interact, their interactions can become quite
complex. For example, consider the low-level autonomous robot “Herbert”
developed at MIT [Brooks 89]. The vehicle could move around an office picking up
coffee cups and returning them to a central room--however it could only do this
successfully once, as the complex interactions of its various controllers made it

very prone to failure.

Task four requires the application of the control principles in a specific architecture
claiming to promote first order autonomous behaviour to be applied in more than
a single instance. For example, if a controller learned to avoid obstacles, could it be

used to teach another controller to do the same and possibly better?

6.6 Conclusion

In this chapter we have linked the notion of human autonomy to that of
autonomous behaviour exhibited by mobile robots. A careful literature
examination has shown that this approach has never been applied before, and has
lead to significant disparities in how investigators conduct experiments, gather
results and report them. By forming a bridge between the disciplines we are able to
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utilize discipline and implementation independent terminology which, for the

first time, provides a rudimentary set of common metrics.

Because of this linkage, we are free to explore the nature of the tasks which would
demonstrate a level of autonomy in a robot based on associated psychological and
philosophical thinking. We described a framework for measuring an autonomous
vehicle’s "autonomy” and from this framework we developed a set of tests which
could be applied to a vehicle conforming to the RIDA architecture. In essence, we
have described a method for validating claims made concerning autonomy in

mobile agents.
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7. Testing the RIDA Architecture against Autonomy Tasks

Profanity is the one language that all programmers understand.
Anon.

7.1 Introduction

In this chapter we present the experimental results of several tests run against the
complete RIDA architecture in simulation. The chapter begins with a brief
description of the simulation environment, followed by a section for each of the
five tests conducted within the Autonomy framework described in chapter five.
Within each section, the test vehicle and arena configuration, test results and
observations will be discussed with reference to the RIDA architecture and how
the architecture supports each autonomy task.

7.2 The Simulator and Playback Modules
The simulator and playback modules which instantiate the RIDA architecture and

provide the arena environment, were written in the C programming language
and support several different vehicle designs employing the RIDA control

mechanism.

7.2.1 Experimental Environment

In order to make valid comparisons between individual performances of desperate
vehicles it is essential to do so in a consistent environment. The environment
selected was relatively simple yet provided certain characteristics which promoted

the testing of autonomy characteristics,

e Multiple stimuli: A light source provides one of these and walls provide

appropriate surfaces for tasks such as collision avoidance.
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e Ease of Construction: The facility itself is rather straightforward to construct
and can be easily replicated in many environments with limited material
effort.

e Multiple Chambers: The central wall provides the ability to shield one side of
the arena from the other thus promoting the testing of goal seeking.

Investigators involved in mobile robotics are often criticized for experimentation
in unrealistic and simulated environments [Brooks 86] and, indeed, the arena is
one such environment. However, the arena has been designed to allow useful
measurement. Since its boundaries are fixed, comparisons can be made and
conclusions drawn from comparisons of several different trials of different

vehicles. Results are thus replicable and can be used to measure other vehicles in a

meaningful way.

While an environment such as a lab might provide a slightly more “natural”

setting, objective measurement becomes problematic as boundaries are ever

changing.

7.22 The Simulator
The simulation environment consists of several logical sub-components;

» The simulator engine which interacts with the Deliberate Apprentice and arena
generator components by responding as a vehicle would employing its own
Reflexive Instructor.

o The arena generator is responsible for maintaining the arena image on the
screen, and generating new views as time passes, commands are implemented
and telemetry information is received.

e The Deliberate Apprentice component interacts with the arena generator in a
“black box” mode. The DA accepts the sensor input from the arena, makes
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decisions and issues commands. It receives reinforcement from the simulator

engine.

The relationship between these components is shown in the diagram below;

Deliberate
Apprentice
Component

*
¢ 2
a '
e o
o g
a w
[
(7
Simulator
Engine
5
N

Output

Figure 7-1 Simulator Architecture

While each vehicle was separately designed for the individual low-level
autonomy tasks, they shared sensing and mobility characteristics. In any time step,
the vehicle could move one “step” in any of the defined directions [Brooks 86).
The vehicle could not reverse, this restriction was placed on all vehicles as no
sensors faced backwards.
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) )

FRONT

BACK

Figure 7-2 Permitted Movement

For the purposes of the simulation sensors were assumed to be perfect and no

actuator dynamics were included.

7.2.3 The Sensor Array

Several sets of sensors were simulated based on the characteristics of data obtained
from various manufacturers and empirically through the EMMA experiments

(appendix C).

The basic set of sensors are the whiskers used to detect collisions. These were
designed to attach to micro-switches whose signal would be filtered through a de-

bounce circuit and sent to the controller. These sensors were used in pairs.

All light sensors were assumed to be shielded photo-resistors similar to those
employed in the EMMA experiments. It was found that these devices provide a
basic linear response to light when relatively close to a light source. This linear
response can be extended to several feet depending upon ambient light conditions,
the quality of the photo-electric sensor and the intensity of the light source. Their
response is reduced exponentially as they are placed beyond a certain threshold.

The sonar employed shares the characteristics of shielded Polaroid sonar sensors-—
being able to detect and accurately measure distances of objects from between 6
inches to 30 feet. This range is broken into 3 discrete distances which are sent back
to the controller by a simple quantizer circuit. These signals throughout these
trials were near (from 0 feet to 1 step), middle (from 1 to 5 steps), and far (beyond 5
steps).
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7.2.4 The Playback Module

The playback module was created to replay and demonstrate the motion of the
vehicles without the need for the simulator itself. Essentially, the playback module
reads vehicle telemetry information files and produces the appropriate vehicle
positioning in the arena and telemetry read outs. This is shown in the diagram

below. The L’s refer to light sensors while the S’s refer to sonar.

"ARENA IDITH RI ﬁ%
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Figure 7-3 Screen shot of simulator running
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7.3 Task 0: Reflexive avoidance of objects

7.3.1 Description of Task

The walls of the arena were employed as obstacles. A vehicle placed in the arena

had the task of avoiding collision with any of its surfaces.

Task 0 is the implementation of reflexive avoidance of objects. This implies that
the behaviour is specifically designed and built into the vehicle and becomes an
inherent characteristic of it. Many examples of this behaviour mechanism can be
found in nature ranging from the knee jerk reaction in humans to the escape
mechanism of various insects. In addition, variations on this task are quite

common in the literature [Brooks 86][Fagg et al. 94].

As no DA was required for this test a simple RI was implemented. The function of
the RI can be described as "If a collision is detected, turn slightly away from where
it happened.” which is essentially the RI proposed in chapter 4.

7.3.2 Description of Vehicle
A vehicle was devised employing a single RI component shown in figure 7-4.

Actuation 1 Motor Motor

Figure 7-4 Specific configuration for test 0. The vehicle is equipped to react to the environment but
not to learn from it.
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Sensing was accomplished via twin whisker sensors and the RI controller was

similar in design to that employed in EMMA I

7.3.3 Discussion of Results

Four separate measured trials were made with this vehicle. The path of the
vehicle for the second run is shown in figure 7-5 and is typical of the result. Note
the vehicle reacts to collisions, in many cases, by continuing to collide. (Each dot

on the perimeter of the diagram represents a collision)

L -l

1 2 3 4 5 6 7 8 9

Figure 7-5 Trial run for test 0.

In this trial the vehicle is started at row 2 column 2 and orientation 0. At the end
of the trial the vehicle had collided with walls 37 times out of 100 time steps

allocated for the test, with collisions concentrated at the corners of the arena.

The vehicle simply continued in a straight line path until it collided. The RI
caused it to deflect slightly right or left and then the vehicle attempted to move
further. This rather naive approach to collisions was successful to the extent that
the vehicle could find a new unobstructed path after every collision. However, the
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vehicle spent considerable time attempting to clear its way past a collision. This is
very similar to what occurred in the EMMA experiments and is quite common
among other autonomous systems employing similar reflexive mechanisms

[Zapata et al. 93] and is often cited as a weakness of purely reactive control systems

[Green 93].

Figure 7-6 reflects this characteristic as collisions continue to occur as the
simulation progressed. This is not surprising since the controller has no
mechanism for learning from past events. To avoid collisions in the future. The
graph measures the rate of collisions per 10 time steps. For a vehicle to improve
its performance, its collision rate should drop over succeeding 10 step increments
(The graph would slope downward). This is not the case with this controller as

there is no inherent ability to improve its performance over time

10 7

Collislons per 10 time steps
W H [6)] [+ 2] ~ [} o

N

1 2 3 4 5 6 7 8 9 10
10 time step increments

Figure 6 Task 0 showing collisions per 10 time steps.
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7.4 Task 1: Learned avoidance of objects

7.4.1 Description of Task

This task is similar to task 0 but employs a much more capable vehicle equipped
with the entire RIDA architecture. Again, the obstacles are supplied by the walls of
the arena. A vehicle could be said to successfully complete this task if it produced
substantially fewer collisions than that of a vehicle employed in task 0. This would
confirm that learning had taken place. Learned response is the focus of much
literature including [Fagg et al. 94][Najand et al. 92][Nehmzow et al. 93]. The focus
of learning in this task was the transferal of the inherent skill provided by the RI
to the much more capable DA.

7.4.2 Description of the Vehicle

The vehicle used for task 1 is shown in figure 7-7 below. The vehicle is equipped
with touch sensors connected to the RI and sonar which is connected to the DA. At
first the DA did not know how to utilize the sonar sensors as this ability was never
provided to it. The RI again employs twin sets of whiskers to detect collisions. In
addition, a set of 5 sonar detectors were added and connected to the DA. The DA in
this case employed a modified rapid reinforcement neural network architecture
[Fagg et al. 94] as described in chapter 2. The intent of the design was to promote
learning of the neural network-based DA from the RI through negative
reinforcement generated by the RI as it detects the obstacles.
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Figure 7-7 Specific configuration for test 1.

7.4.3 Discussion of Results

Figure 7-8 shows the results of the second of four parallel recorded trial runs
conducted employing a RIDA equipped vehicle (on the left) and a vehicle
equipped with only a DA (on the right). The diagram on the right shows the path
of the non-RIDA vehicle. The path of the vehicle clearly exhibits the collision
behaviour shown by vehicle 0 with no indication of improved performance over
time. The diagram on the left illustrates the improved performance of the RIDA
vehicle which initially collides with the walls of the arena but than quickly learns

to avoid them by employing the sonar sensors.
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At the end of the trial the RIDA equipped vehicle had collided with walls 11 times
out of 100 time steps allocated for the trial showing a marked improvement over
test 0. The test also confirms that the DA learns more quickly when supported by
an effective RI. Note that no further collisions occurred during the last third of the
trial. In contrast the simple reinforcement network equipped vehicle collided 64
times and continued to collide until virtually the end of the trial.

The RIDA vehicle incurred far fewer collisions and managed to traverse more of
the actual arena in the same number of time steps than the vehicle on the right
which was fettered by a series of collisions which lead to other collisions
substantially hindering its progress. Of interest is the pattern that the RIDA vehicle
exhibits. One can clearly see that the vehicle has actually discovered a form of wall
following as it moves about the arena. The circular motion evident in the lower
right quadrant of the left diagram occurred at the end of the trial and is a condition
which is inherent in reinforcement learning methods and was also observed in
[Fagg et al. 94].

-] [ L] &~ (2] N 2

-] [ N & W

° 1 2 3 4 s 6 7 8 9 ¢ 2 3 4 s 6 7 9

Figure 7-8 Test 1 trial run showing both results (with RI and without).

Figure 7-9 illustrates that after an initial “training set” of collisions, the RIDA
controller stopped employing the RI and become wholly reliant on the DA for
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guidance. Note that after an initial collision-free run the collision rate increases as
the DA learns. After the peak the collision rate quickly falls and finally no further
collisions occur. Since the non-RI vehicle continued to collide throughout the
trial, clearly the RIDA performance is better.

Collisions per 10 time steps

0 - i t f t 2 g \ 4
1 2 3 4 5 6 7 8 9 10

10 time step increments

Figure 7-9 Test 1 with RI and DA active.

Of particular interest is the next graph (figure 7-10). The curve labeled with
diamonds (RIO0) is the same curve plotted in task 0. Since it is incapable of
improving its performance, the curve continues to meander up and down as
collisions continue. The curve labeled with triangles (NRI10) was produced by the
vehicle equipped with only a reinforcement network controller (a DA with no RI).
What is interesting to note is that the RIDA vehicle (labeled with squares, RI10)
performed better then both of the other vehicles--meaning it incurred fewer

collisions. Also of interest, the vehicle employing only reflexes still outperformed
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the reinforcement network vehicle, although this performance would eventually

be reversed as the reinforcement network learned the task.

[ —&— RI00 Collisions —48—— RI10 Collisions ~—dc—— NRI10 Collisions R

§

10

9

8

Coliislons per 10 time steps
N

1 2 3 4 5 6 7 8 9 10
10 time step increments

Figure 7-10 Test 0 vs. Test 1 with and without RI.

One can see that the RIDA equipped vehicle was able to
* learn the task quickly, and
* outperformed both of the vehicles employing more traditional designs.

7.5 Task 2: mixed goals--avoid collisions and find the light

7.5.1 Description of Task
Task 2 requires the adoption of two unrelated skills. Having learned a single task
(collision avoidance), this task attempts to ensure a degree of scaleability. It forces a

control architecture to deal with learning a second, unrelated task.
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In this case the unrelated task is the ability to “feed”. Feeding is considered the
successful locating, tracking and contacting of a light source positioned within the
arena (row 2 column 2). The same DA as test 1 is employed to learn this task
except that the reinforcement policy was altered to employ positive reinforcement
if the vehicle moved toward the light of its own accord .

The light-seeking RI receives its input from two out-lying light sensors. When one
of these two sensors detects a light source it “jogs” the vehicle in that direction. If
the DA had already sent control information to accomplish this then the RI's
signal is irrelevant since it matches that of the DA and it is effectively ignored. If
the DA attempts to move away from the light the RI takes over, jogs the vehicle,
and sends a negative reinforcement signal to the DA.

Again, the vehicle incorporates a collision RI employing negative reinforcement.

7.5.2 Description of the Vehicle

Figure 7-11 shows the next vehicle configured for task 2. Being very similar to the
previous vehicle, this one adds light sensing to its list of capabilities—~using and
array of photo diodes. The five light sensors were mounted in the same positions
as the sonar giving the same angular coverage. The DA remained the same as task
1 but an additional RI was added as described above. In this case the RI reflexively
draws the vehicle to the light. It is important to note that if the DA persists in
attempting to move away from the light it can since the RI only jogs the vehicle
controls. This ensures that the vehicle is not locked into a simple reactive control

policy.
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Figure 7-11 Vehicle Specific configuration for test 2.

7.5.3 Discussion of Results

Five runs were completed from different starting locations in order to facilitate the
DA's learning. In the trial results shown in the table 7-1, the vehicle was started
first at row 3 column 2 and orientation 7. Once the light was found the vehicle
was placed at (2,7,2), (8,6,4), (3,8,3), and (0,9,7). In parailel, a second vehicle without
benefit of an RI was run at the same time as the RIDA vehicle. The "#Time Steps”
columns indicate the length of time it took the vehicle to find the goal while the
"collisions” columns indicate the absolute number of collisions experienced
during that time. The rates of collision are provided as well. One can see that the

RIDA vehicle found the goal faster in all but the fourth case and in all cases its

collision rate was lower.

110



Reflexive Instructor with Deliberate Apprentice Alexander Ferworn

non-RIDA Vehicle RIDA Vehicle
Start #Time | Colli- | Collisions/time step | #Time | Colli- | Collisions/time step
Steps | sions Steps sions
(3.2,7) 22 7 0.32 10 0 0.00
(2,7,2) 198 60 0.33 212 57 0.26
(8.6,4) 76 8 0.11 34 1 0.03
(3.8,3) 379 15 0.04 90 3 0.03
(0,9,7) 97 5 0.05 65 2 0.03

Table 7-1 Performance of different vehicle configurations

From this one can see that both vehicles experienced a reduction in the number of
collisions as the simulation progressed. As in task 1 the RIDA vehicle
accomplished the learning of the light-seeking task much faster than the other

vehicle.

The Light RI also had a role to play in successfully finding the light source. This is
evident if we graph the relationship between the number of times the light RI is
activated and the number of times the DA is given positive Reinforcement per 10
time step increments, shown in figure 7-12. As the simulation continued, the
number of times that the Light RI (curve labeled with diamonds) became active
approached zero while the DA continued to receive positive reinforcement
(labeled with squares). This means that the DA had discovered how to find and
follow light without the use of the RL
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Figure 7-12 Light seeking RI's relationship to positive reinforcement.

The Light Rl is initially activated often when the vehicle detects the light source,
indicating that a lot of jogging is going on. However, the DA quickly learns to
move towards the light and the light RI remains essentially dormant from that

point on. The reflex is thus effectively suppressed.

7.6 Task 3: mixed goals--avoid the light and avoid collision

7.6.1 Description of Task

This task is almost the reverse of task 2. Once a vehicle’s controller has learned the
locating of light and the avoidance of collisions this task provides a slight twist in
that one of the tasks is reversed. In this case that task is light seeking which
becomes light avoiding. This reversal of behaviour is common and is evident in

many systems we use every day. We are attracted to food when we are hungry and
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this attraction fades as we become satiated [Sheperd 88]. We actually change our

goals from the location of food to other more pressing matters.

7.6.2 Description of the Vehicle

The identical vehicle as task 2 was employed except the RI function was modified
to jog the vehicle away from the light source and to punish a DA which attempts
to move towards it of its own accord. Positive reinforcement is employed if the

vehicle moves away from detected light on its own.

A DA having been trained over 200 time steps learning task 2 was employed in

RN

% Deliberate Apprentice f %?é

@
Control /

Light-aveiding
Reflexive Instructo

Collision-aveiding

R!ﬂe_ﬁvel_m

Actuation { Motor Motor

I

Figure 7-13 Specific vehicle configuration for test 3.
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7.6.3 Discussion of Results

Figure 7-14 indicates the performance of a RIDA equipped vehicle deployed in the
third trial run of four measured tests. One can see that the rate of positive
reinforcement obtained by the RIDA vehicle is approximately twice that of a
vehicle learning through simple reinforcement. In addition the rate of activation
of the light-avoiding RI dwindles as the trial progresses. As the vehicle moves
through the arena it continues to receive positive reinforcement (labeled with
triangles) as the vehicle in test 2 did. Note that the collision-RI curve (labeled with

diamonds) is quite shallow indicating minimal activation.

It should be stated that this is not what happens in a biological system. We do not
like food when we are hungry and then immediately detest food when we are
satiated (which is what is being modeled in this test), but the test indicates that the
response of seeking and avoiding can be quickly assimilated even if they do not

reside in the learning mechanism at the same time.
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Figure 7-14 Test 3 vehicle performance characteristics with RI active.

7.7 Task 4: Cascading RIDA control: Reliable DA becomes RI to teach new DA

7.7.1 Description of Task

Test 4 was designed to show that an architecture is scaleable within its problem

domain. In this case the test is designed to show that once a DA is trained it can

form the basis of a very reliable RI and, in turn train another DA.

The results shown are for trial zero of four. The trial was conducted in 2 phases.

The first phase consisted of a 200 time step training cycle in which a modified

perceptron ANS learned from a reinforcement collision avoidance RI based on the
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DA created in Test 2 Trial 1. In addition there was a Low level collision avoidance

RI activated on failure of the Upper level RI.

7.7.2 Description of the Vehicle

The vehicle used in this task employed a trained rapid reinforcement network
created during test two as higher-level Rls. This RI received sensory input from all
the sonar sensors. Its task was to send negative reinforcement signals to the DA
when it encountered a collision. In addition, since this RI was able to make use of
a richer set of sensor inputs and make decisions based on learning, the RI was able
to send a richer signal to the DA consisting of a set of control information which it
would have sent to the actuators had it been the DA. This is significant because the
new DA can now make use of both the reinforcement signal and a correct response
and what was reinforcement learning becomes supervised learning allowing us to

select from a wider range of learning methods.

A simple linear perceptron neural network was selected as the new DA for this
task. An additional low level RI was employed similar to vehicles 1, 2, and 3. Its
task was support the more advanced RI in case of its failure. Whiskers and sonar

were the only sensors employed in the test.
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Figure 7-15 Specific vehicle configuration for test 4.

7.7.3 Discussion of Results

Three trials were conducted with very similar results. During the DA training
phase, the Reinforcement higher level RI fails in 1 case in the 200 time step
allowed for training the new DA. This was successfully compensated for by the
lower level RI. The training phase for the first trial is shown in figure 7-16. As the
training progressed the perceptron became better at the avoidance task through the
training received via the RI components. One can see that after the 120th time
step the new DA had learned to avoid collisions. Appendix D describes the
implementation of this further.
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Figure 7-16 Training of Perceptron DA by Reinforcement RI.

During the performance phase of the trial, the Perceptron was allowed to control
the vehicle without benefit of any RL It quickly discovered a collision-free path
and repeated it until the end of the 100 step performance phase. Only one collision
occurred in this particular trial--when the vehicle was released. This is shown in

figure 7-17.
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Figure 7-17 Performance of Perceptron DA after training.

7.8 Conclusion

In this chapter we have examined the RIDA architecture in the autonomy task
framework developed in the previous chapter. We confirmed that the architecture
supports all the tasks, requiring only relatively simple changes to the vehicles
involved. From this result we can draw the conclusion that the RIDA architecture
support first order autonomy when dealing with the mobility problem. This result
is independent of the learning algorithm employed, as can be seen in the different
capabilities of the rapid reinforcement network and the perceptron. The
architecture can be scaled by training the DA which suits the task at hand. This
might mean the training of a more capable DA by a lesser RI (as seen in tests one
through three) or the training of a less capable DA by a very capable RI (as

demonstrated in test four).
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8. Relevance

Daddy gone?

Charlotte Ferworn

8.1 Introduction

In this chapter we focus on the five areas outlined in chapter one. We recap what
has been discussed, reiterate how it has been demonstrated and discuss the
significance of each item. Within this context, we go on to suggest areas where the

RIDA architecture could be employed to enhance existing systems.

8.2 Revisiting the goals of this work

* We developed a framework for autonomous mobile agents based on the

human concept of autonomy.

We argued in chapter five that common ground between psychology, philosophy
and robotics could be found when discussing autonomy and that the terminology
and concepts introduced in chapter two could be applied to robotics. The linkage
was forged when biological systems were examined as machines, taking into
account humanity’s membership in this class. We demonstrated that with this
linkage, a new way of examining autonomous vehicles and tasks is possible and
necessary. Necessary because there is currently no common ground to examine
“autonomous” systems in any kind of objective framework. Individual
investigators end up comparing the merits of individual vehicles rather than the

merits of the design methodology and principles the vehicle follows.

We have introduced such a framework to the literature based on notions of first
order and second order autonomy. First order, or autonomy of action, has been

displayed by various mobile robots including those employing reactive

120



Reflexive Instructor with Deliberate Apprentice Alexander Ferworn

mechanism as pioneered by [Braitenberg 84] and successfully implemented by
[Brooks 86]. However, it is an unresolved problem to apply reactive techniques to
achieve the reflective nature of second order autonomy. When a mechanism

cannot learn it cannot miraculously improve to change its fundamental nature.

While second order autonomy has not been demonstrated by RIDA, this
architecture among others [Nehmzow 94][Fagg 95], has the potential for reflection.

We went on to place the RIDA architecture within this framework. The placement
of RIDA allowed us to suggest tests which either would confirm or deny RIDA's
place in the framework. This, in turn, allowed us to test RIDA in meaningful ways
with test situation which support the framework.

It must be emphasized that the literature does not use this methodology for
examining vehicle architectures. In many cases authors rely on the capabilities of
their vehicles to suggest tests which they can pass. We are suggesting that it is
more appropriate to pick tests to confirm the placement of an over all architecture

within our framework for autonomy.

* We demonstrated how the RIDA architecture supported the training of a
learning system while at the same time allowing real time interaction with the

environment while learning occurred.

Chapter six discussed the implementation of two learning systems selected from
the literature. One very simple—the perceptron requiring supervised training, and
another complex system implementing a reinforcement learning scheme. We
demonstrated that both disparate learning algorithms could be incorporated into
the RIDA model and could, in fact, coexist.

We demonstrated that the presence of a RI component not only protects the

vehicle from the fall-out of erroneous decisions made by a high level controller--
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the DA, but it also can contribute to improving the speed of learning in the DA.
This became amply clear in the startling reduction in training time experienced by

the rapid reinforcement DA when a RI was present.

It was also shown that the RI component plays a vital role as a safety system as the
vehicle learns. The trials conducted in chapter 4 illustrate this as human operators
were significantly aided in a difficult control task by employing an appropriate
reliable RI.

It was also demonstrated that by employing both a RI to provide reinforcement to
a DA a richer set of information is possible. While reinforcement signals can be
provided by the RI it is also capable of providing a correct response when an error
has been made by the DA. In this way both reinforcement and supervised learning

were demonstrated.

* We showed that the architecture supports the graceful degradation of the
vehicle’s performance as control subsystems are removed or fail due to damage

or through other unforeseen circumstances.

We began in chapter three with the understanding that a high level controller is
likely to fail. In chapter five we presented alternative low level controllers for
collisions avoidance and light seeking which could be, for the most part, depended
upon to “rescue” the high level controller. We tied these notions together in

chapter four when they were described as features of RIDA.

In addition, this work contributes to classic reinforcement learning by suggesting a
workable method for extending the available time for learning through action of
the RI. In this way, slower learning is not as much of a problem as in systems
which employ reinforcement learning alone. Because the RI also provides an
indication of what the correct action might be, it also has been shown to provide a

richer reinforcement signal.
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* We demonstrated how the architecture can be expanded allowing cascading Rls
to coexist without substantially changing the existing modules.

In chapter six we demonstrated in autonomy test four, three levels of RIDA
interaction when we employed a Perceptron DA backed by a Reinforcement
network RI which itself was backed by a collision avoiding reactive system RI. In
this way we demonstrated layers of controllers in a strict but effective hierarchy
interacting to protect the vehicle from damage and support the DA.

* We developed a simple yet effective scheme for tying the RI and DA modules
together

We presented the basic RIDA architecture in chapter three. We argued that the DA
must be allowed to make decisions and the RIs must be allowed to intervene and

correct those decision. This was confirmed in chapter six.

8.3 Continuing Work

Since the completion of this work two promising areas have been pursued. These

will be introduced in the following sections.

8.3.1 N-CART, The Natural Selection Research Group and Autonomous Vehicles
Independent work has started to implement a full version of the RIDA

architecture within the Natural Selection Research Group at the University of
Guelph and at Ryerson Polytechnic University in the Network-Centric Applied
Research Team (N-CART).

At Ryerson it is currently the focus of an undergraduate student research project.
The initial tasks will be those described in chapter five. It is planned that the
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vehicle will be able to successfully negotiate the classrooms, lounges and students

on the computer science floor at Ryerson.

At Guelph the autonomy architecture is being used in a masters thesis project to
simulate certain biological reflexes accompanied by learning. This work is nearing

completion with a successful implementation of RIDA.

8.4 The Real Time Problem

The RIDA presents an architecture which supports the graceful degradation of a
controller’s performance. In addition, it has been shown that The RI portion of the
architecture can be used to speed the learning of the DA portion by providing a
richer signal to the learning algorithm. However, the selection of the DA is still
problematic. While the Rapid Reinforcement network provided a workable
solution to the problem of slow learning in a spatial task, it is obviously limited in

its applicability to other, more complex tasks.

Work must continue in the area of rapid learning, as clearly the need for speed is
applicable to all areas of robot control. There have been fruitful efforts
demonstrated by [Dorigo 93] and others in applying genetic-based approaches, but
the development of rapid learning techniques applicable to a wide range of control

tasks is still an unresolved issue.

8.5 After word

We have introduced several unique theoretical contributions including a
framework for autonomy and a workable architecture for the implementation of
reliable learning first level autonomous agents called the RIDA architecture. We
have demonstrated the feasibility of constructing agents employing this
architecture and have argued the benefits of relying on a complete architecture

124



Reflexive Instructor with Deliberate Apprentice Alexander Ferworn

supporting graceful degradation, the ability to attach additional RI controllers
when desirable and provide reliability.
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Appendix A: Sample Simulator Telemetry Information

Current .
Raw English
Column Current Reinforcement  Description of

Ctlnzrrent \ Orientation Signal Event
OW\ / / /

2 23 -1.0 Light-RI: Force left to light
2 2 5 -1.0 Light RI: Force right to light
13 3 0.0 OK: Moved left
135 -1.0 Light RI: Force right to light
Ryn . 1 26 1.0 Light-seeking: +ve reinforcement
Termination 124 -1.0 Light-RI: Force left to light
Indicator 0 15 1.0 Light-seeking: +ve reinforcement
013 -1.0 Light-RI: Force left to light
\ 0 2 2 1.0 Light-seeking: +ve reinforcement
f
Summary Collisions: 12
Information No reinforcement: 23
atﬁnu?l‘)f +ve reinforcement: 17

Light RI: 10

9 45 0.0 ***Run Starts***

8 4 4 0.0 OK Moved left & forward

7 5 3 1.0 Light-seeking: +ve reinforcement

Figure A-1 Example telemetry information
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Appendix B : The EMMA experiments

Introduction

These experiments extended our notion of continuous diverse mobility in an
autonomous vehicle. By utilizing commonly available construction material and
employing techniques which promote certain behaviors, a series of Electro-
Mechanical Mobile Animats (EMMAs) were constructed.

The goal of this work was to push the realm of what is possible using only simple
techniques. Perhaps surprisingly, these devices share many characteristics with
more elaborate mobile robots. Even more importantly, these EMMAs not only
function in their target environment but are equipped to survive in them and in

some cases can adapt to changing environments.

The Environment

A standard "Arena" was selected as the target environment for each EMMA. The
arena is essentially a bathroom, but for the vehicles it is a flat surface surrounded
by walls with a number of discrete obstacles which is in a constant state of change
as people and cats enter and exit the room, obstacles are placed in the room and
then removed again. The arena was modified by adding a high intensity light
source attached to one of the walls. This light source acted as a power source for
various EMMAs.
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Figure B-1 The Arena

EMMA I: Foraging

When we think, work or play we are constantly using energy and must eventually
refuel. If we fail to refuel in a timely manner we stop functioning. This is also true
of any artificial autonomous vehicle. Various Animats have been constructed
which are designed to seek a "docking station” when their source of energy is
spent. This solution was considered in the design of EMMA I but was quickly
rejected. For a docking station to be viable, any vehicle relying on it must be
equipped with a means of finding the station when required and successfully
orienting itself for refueling.

To avoid these problems a relatively inefficient but highly effective means was
selected for refueling. The power source for EMMA I was a battery of 4 1.2 volt
Nickel-Cadmium cells connected in series. These cells can be recharged by a
regular battery charger. Instead, a solar panel was employed to produce a
recharging current of 7.2 volts. This simple circuit is illustrated below.
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D1 = IN914 Diode

D ¥
|

Figure B-2 Solar recharging circuit

Making it possible to recharge the cells did not mitigate the necessity of finding a
location which could produce enough light energy to recharge them. Ideally
EMMA I would be able to find the light source in the arena to recharge. This
implied the ability to search —or forage for energy- would be the prime behavior
of EMMA L

A simple crossed connection mechanism for moving towards a light source was

suggested by [Braitenberg 86]. This design is illustrated below.

Left Right
Sensor \-<)'J Sensors

Left Right
Motor Motor

Figure B-3 Braitenberg's crossed connections

As the a sensor comes in contact with whatever it is sensing, it allows the opposite

motor to turn more quickly thus turning the whole vehicle towards the source.
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Photo resistors were selected as the left and right sensors. A modified Braitenberg

circuit is illustrated below.

WY WY
L R R2 R R1, R2 =5021/4 watt
e i resistors in bright light
£ and MegaQ resistors in
‘ tgl darkness.
_— —:l- @f |t Q1,02 = 2N2222A
e transistors.
r —— T
a r
C a
k c
| |k
— ——
Left Right
Motor Motor

Figure B-4 EMMA I search circuit

When a photoresistor is in contact with a bright light source, its resistance is
reduced which allows more current to reach the transistor's base which, in turn,
causes the motor on the opposite side of the photoresistor to turn faster. In this
way EMMA T has a tendency to turn toward the light.

If this circuit were left as the only mechanism, it would fail to bring EMMA to an
appropriate recharging point as the tracks would move EMMA past the maximum
light source. This occurs because as long as R1 and R2 in the diagram receive light
from the source their resistance will be relatively low and the vehicle will not stop

optimally.

To avoid this situation a simple solution was adopted. The solar panel was placed
to partially obscure the photoresistors. This has the benefit of allowing the sensors
to pick up a bright light source and move towards it when the source is in the

distance. Once the tracks have moved EMMA I under the light source a shadow is
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cast on the sensors which raises their resistance and stops the vehicle directly
under the light source. This is illustrated below.

Figure B-5 EMMA I moving, stopping and recharging

Figure B-6 EMMA [
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Figure B-7 EMMA I typical trajectory in the arena

Lessons Learned from EMMA I

Several important lessons were learned,

1) The solar panel is capable of recharging EMMA's power pack in about
12 hours under a 100 watt light source.

2) Differential steering using tracks allowed EMMA to negotiate small
obstacles and maneuver very quickly.

3) There is no need for a special docking station with its associated
docking problems using this technique. As long as the vehicle finds

the source it will stop in the vicinity of it.

EMMA II: Following and Wandering

While the ability to refuel is essential, it leads to quite boring behavior. EMMA I
would find a light source sufficiently strong to attract it, and stop directly under it.
EMMA I would only move if the light source moved or another light source

attracted its sensors.
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EMMA II was designed to move around its environment. It is interesting to note
how successful an insect like a cockroach is at moving around its environment
[Dalcomyn 93]. One of the goals of EMMA II was to develop movement which is
similar to that of a cockroach [Pearson 76] of course EMMA's movement would be
on tracks and not legs.

Of particular interest was a cockroach’s ability to follow the edge of a wall. This
behavior may not be intelligent but it does tend to keep the insect out of harm's
way. When not following a wall, a cockroach will wander until it finds one. This
behavior can sometimes be observed when the lights are turned on in a room full
of roaches. It also seemed like a reasonable goal for EMMA.

Several solutions to wall following and wandering have been proposed. [Beer and
Chiel 90] simulated this behavior using neural networks consisting of dozens of
model neurons heavily connected. [Jones and Flynn 93] suggest an analog Resistor-
Capacitor circuit designed to back the vehicle out of trouble when necessary. Both
solutions were considered to be a bit complex for the nature of the problem.

Instead, the circuit illustrated below was employed in EMMA IL.

S1,S2 = SPST NC micro-contact
switches.

LM,RM = Left motor and right
motor respectively.

Figure B-8 Contact switches used to promote wall following in EMMA II
In order for EMMA II to actually follow a wall it must find one. Since there is no

world model within EMMA, a bit of entropy was used. The differential steering
mechanism used in all the EMMASs employ two motors. Although the motors are
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very similar, one has a tendency to spin faster than the other. This, in conjunction
with differing component friction, causes EMMA to tend towards one side. In our
case EMMA II liked to move slightly left. This left movement causes EMMA II to
seem to prefer walls on the left, this turned out to be rather important.

When one of EMMA's sensors comes in contact with a wall surface, the power is
cut to the motor on the opposite side. This power loss allows the other motor to
move EMMA away from the wall until the sensor loses contact with the wall and
the stalled motor begins to spin again. Because the vehicle has a tendency to move
left, EMMA is soon in contact with the wall once more and the process is repeated.
In this simple way wall following is achieved. With this arrangement, wandering

behavior is a simple matter. When there is no wall present, EMMA II will wander!

This leaves the problem of tight corners. The previous set of sensor "whiskers" are
inadequate to prevent getting stuck in a corner. As the vehicle follows a wall and
strikes an orthogonal wall it will surely become stuck. The solution to this is quite
simple. A second set of whiskers were added to the first and directed forward.
Additionally, the right-hand switch was replaced with one which required more

force to activate than the left-hand switch. This arrangement is shown below.

Restof
Vehide

Figure B-9 Modified Whiskers on EMMA II

The forward whiskers come in contact with the intersecting wall. As the left
whisker touches the wall it disconnects the right motor and EMMA swings around
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the corner wifhout getting stuck before the right switch is depressed. This situation

is illustrated below.

N\l

Rest of
Vehicle

Figure B-10 EMMA II negotiating a corner

There is another situation which could conceivably trap EMMA. This situation
can be thought of as a narrowing blind ally. Initially the entrance is wide enough
to allow the whisker sensors to pass without activation but then becomes so
narrow that both whiskers are activated at once and the vehicle halts. For this
situation the SPST momentary contact switches were replaced with DPDT
switches. When both DPDT switches are activated a separate RC circuit, similar to
the roach circuit of GARBOT III, is used to reverse the right-hand track for a
specified period, effectively turning EMMA around to a clear path.

()

———

Figure B-11 Typical EMMA II trajectory in arena
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Figure B-12 EMMA 11

Lessons Learned from EMMA II

1) Simple switches are, for the most part, capable of performing fairly
sophisticated control tasks.

2) By modifying the whisker extensions on the contact switches, the
repertoire of behaviors can be extended without adding additional
circuitry.

3) Many approaches used in the past to solve this simple control problem
have been overly complex and costly.

4) This solution to the control problem has the benefit of simplicity and
robustness. EMMA 1I eventually achieved a peak performance of

about 40 minutes of continuous movement before the power cells

ran low.

EMMA I1.5: Switching Behaviour

EMMA I was capable of feeding, EMMA II was capable of exploring. It was now
necessary to fuse the behavior of both these vehicles into one. The required
behavior is one of general exploration until fuel is low (hunger) then look for a
way of recharging (eating) and then continue wandering. Clearly, one did not want
the creature to constantly feed or have the creature completely drain its cells before
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refueling. In fact, there is some evidence that this type of behavior might be
governed by simple hysteresis loops governing the desire to feed or drink in some
animals [Booth 78][Toates and Oatley 70].

An analog circuit was devised which could accomplish this. The creature would
function mostly as EMMA II would—searching the arena. While searching, all
current to the drive motors would be coming from the primary cells. The primary
cells would also be holding closed 3 low-power DPDT relays 2 of these relays would
serve as shunts passing electricity to the drive motors. The other relay would
connect the EMMA I solar cells to the secondary power cells for recharging from
ambient light.

When the primary cells are almost exhausted, the relays will flip open. This will
direct power from the secondary cells to the motors and cause sensing to come
from the photocells. In turn the third relay will connect the solar cells to the
primary power cells. When the vehicle arrives at a good feeding area, it will stop
until the primary cells are recharged. When this occurs the relays again flip closed
and EMMA 115 can go on its way. In this way the behavior is modified to suit the

circumstances. A simplified circuit is shown below.
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Figure B-13 EMMA I1.5 behaviour modification circuit

When EMMA I1.5 was constructed it moved basically as indicated. Two successful
runs were made starting with fully charged primary and secondary power cells.
The vehicle wandered around the arena for about 35 minutes to 40 minutes until

the relays opened.

In the first run EMMA successfully found the feeding station and fed for about
four hours and then began to wander again. This EMMA wandered for about 10
minutes until its left- hand contact whisker became jammed in a crack and
damaged the contact switch at which point the trial was stopped. As previously
mentioned, the cycle time for recharging from solar cells is about 12 hours. It was
surmised that the primary cells were not being fully charged before the relays fired.
To improve charging a Zener diode was placed in series with the primary cells.
Since the diode had a 6 volt conduction voltage, the cells charged for a longer
period of time before the relays fired.
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In the second run EMMA found a light source it liked better in a reflection coming
from a wall outside the arena. Manual intervention (turning it around) was

needed to get EMMA back to the correct feeding station. The trial was stopped soon
after this.

EMMA 115 is capable of extremely complex behavior yet the creature is limited by
its inability to adapt to a changing environment. This is generally true of all
subsumption systems' The behavior is "hard coded" into the AFSMs which makes
them quite inflexible. While it is possible to add new AFSMs or change their
connections, this must be done through manual intervention which may not be

feasible in a changing environment.

A changing environment is not that hard to envision. In the case of the arena
suppose the bathtub overflowed to partially flood the arena—-how would the tracks
work? A predator might be introduced or considerably more obstacles added.
These situations must be anticipated by the system designer. It would be useful if
the Animat could adapt to these new situations without intervention.

Figure B-14 EMMA IL.5
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Lessons Learned
1) Subsumption can lead to complex behavior which is suitable for a
relatively stable environment.
2) Subsumption architecture creatures are incapable of learning from

their environment or adapting to a new one.
3) There are situations in which the ability to adapt and to learn from the

environment are essential.

EMMA III: Defence

One of the problems experienced by EMMA I and II was not unique to these
vehicles. As part of the arena environment objects can come and go—including
Dave the cat. The EMMAs are generally good at avoiding obstacles but they are
incapable of deterring a potential predator from attacking them. The goal of
EMMA TIII was to create a creature capable of defending itself from external attack
(in this case a tabby pulling at EMMA's wires). A number of different non-lethal

options were available.

Initially a pump was connected to a series of contact switches. The intention of this
arrangement was to shoot a stream of water straight up in hopes of hitting the
predator. This behavior is similar to that of a skunk except the skunk is capable of
more accuracy. The technique was abandoned when it became apparent that the
stream of water simply annoyed the cat and made him even more determined to

attack.

Another approach was successfully implemented using a series of camera photo-
flashes. The capacitors of the flash circuits were charged by two of the four nickel-
cadmium cells. The flashes had the characteristics of a fast recharge cycle, brilliant
flash and minimal current requirements. 5 flashes were distributed around the
body of a test bed vehicle, made from a stripped down EMMA 1I.
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Each flash had an SPST momentary contact switch protruding from the body of the
vehicle. All flashes were capable of operating and recharging independently. This
defensive technique is very similar to the way a porcupine defends itself using its
quills. The vehicle could move around the arena and not activate any of the
flashes but if one of the contacts were touched a temporarily blinding flash would
result. This technique proved very effective.

} o auel
L}

+1_2VGND

Momeoatary
Coatact

Trigger +2.49V

éulr—jlgﬁ
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Figure B-15 EMMA III (the photo-pine)

The trial was conducted in the dark except for the shielded arena light source
illuminating a small section of floor. EMMA III wandered for about 5 minutes and
was then assaulted by the cat. Two flashes were activated. Dave lay down and
closed his eyes. The vehicle wandered for about 10 more minutes before the trial
was stopped. Dave the cat had lost all interest in trying his luck and never came

near the arena again that day.
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Figure B-16 EMMA III
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Appendix C :The Rapid Reinforcement Network Architecture and
Algorithm

The following is a brief description of the algorithm derived from the work of
[Fagg et al 94], [Barto et al 83], [Widrow and Hoff 60], (Klopf 82], and [Sutton, 88]. The
operation of each part refers to the diagram above it.

Reinforcement Network

5 Sonar (3 units each -
Near, Middle and Far)

Q00RO 2000 2 e

A\’
Feature Detector Units
E sve G] YY) m F
4N—fk—-N->
(el eee &

‘~\\ Wss\
~
\\ \\
\“ \\\ s\
~ . “
] -~ -~ ~
L LF F RF R o A S~ A
~ ~
a ag 2, 23 a4 \\\ o 4
-/ To temporal difference linear network

Figure C-1 Rapid Reinforcement Network Architecture with Input and Output shown
Initialization

Assign random values between -1 and 1 to all Vj; and W;;.
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Feed Forward Operation

n
For all i=1..p fi= h§ I(ShV;u') +& where ¢ represents random noise.

For all i=1..p
1if fl =MAX { i}
Wumexi = { i-N<k<=i+N
0 otherwise

Where N defines a local neighborhood of feature detectors,
g; = Winner, * f,
For all j=1..q

p

a,., = MAX{A}
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Feed Backward Operation
Avhi =0oR' ehi
where ep; =8ep: + (1-0)(s,8; vy;)

forallh=1..n, forall i = 1..p, 8 determines
the trace decay rate where 0 <=8 <1. ¢ is
the learning rate where 0 <= ot < 1.

Ale = a'R‘e'ij
A
where eij'=8'e'ij + (I-S'XglAJWu)

A
forallj=1.q,foralli=1.p, Aisa
vector where all elements are zero except
for the jth where j is the winning action,
' determines the trace decay rate where
0 <= &' < 1. o' is the learning rate where
O0<=a<1.

Temporal Difference Linear Network

From Reinforcement Network

- -~ -

S ~ ~ \
0

R'

Figure C-2 Temporal Difference Network Architecture
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Initialization
Assign random values between -1 and 1 to wi for i = 1..p and Q. 1is the discount
factor for future reinforcement, 0 <1 < 1.

Feed Forward Operation

Plxyap) = f(}i:l(wisi)*f@)

1if x>0
X} -1 otherwise

R' =R+ AP(x,, ) - P(x,)
d=rRK.R

Feed Backward Operation
AG=ad

AWi = agld
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Appendix D : Implementation Details

The following describes the implementation/simulation details of the vehicles
employed in autonomy tests 1 through 4 of this work.

Vehicle 1

Recall that the vehicle is equipped with a sonar semi-ring of five sensors attached
to the DA component and a left and right set of contact sensors attached to the RI
component. Figure D-1 shows the interconnections between components of the

simulation of test 1.
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Figure D-1 RIDA Vehicle 1 Implementation Detail.

The portion of the diagram labeled with a circled 1 is the sonar semi-ring
consisting of 5 sonar sensors which are described in section 7.5.3. Each is able to

send an encoded signal back to the DA input units (2 in the diagram). The signals
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are either "near”, "middle" or "far" and activate the appropriate input unit in the
rapid reinforcement neural network (RRNN) input layer. In each case, if that
particular input unit is on it receives a value of 1.0 with the other receiving 0.0
inputs. The RRNN filters the signal through its feature detector units and
eventually selects an action to perform in its action selection units (3 in the

diagram).

The selected action is encoded (4 in diagram) and the appropriate control signals
sent to the vehicles differential drive motors (8 in diagram). If one of the vehicles
whisker sensors detects an object the RI component (labeled 5) is activated and it
activates the reflex circuit as indicated in 6. In simulation this amounts to a quarter
turn in the direction away from the obstaclee Head on contacts are treated
stochastically with an even probability of moving left or right. The RI component
sends a reinforcement signal of -1.0 to the RRNN linear network (labeled 7) which
allows the RRNN to update its weights with this information.

The RIDA architectural diagram is shown in figure D-2.
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Figure D-2 Vehicle 1 RIDA Architecture

The sonar provides input to the DA while the touch sensors provide input the RL

Both components attempt to gain control of the actuators.

Vehicle 2

Recall that vehicle 2, like vehicle 1, is equipped with a sonar semi-ring of five
sensors attached to the DA component and a left and right set of contact sensors
attached to the RI component. In addition vehicle 2 is equipped with a semi-ring
of 5 light sensors which are described in section 7.2.3. Figure D-2 shows the
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interconnections between components of the simulation of test 2. For clarity, the
Contact RI is not shown but is identical in location and function as in vehicle 1.

3 Photo-diodes (3 units S Sonar (3 unis each -
each - Intense, mid and Weak Near, Middle and Far)
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Figure D-3 RIDA Vehicle 2 Implementation Details.
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The portion of the diagram labeled 1 are the sonar semi-rings consisting of 5
sonar and 5 light detecting sensors assumed to have the characteristic response of
photo-diodes (linear over short distances). The sonar is identical to vehicle 1. Each
light sensor is able to send an encoded signal back to the DA input units (2 in the
diagram). The signals are either "near”, "middle" or "far" and activate the
appropriate input unit in the RRNN input layer. The RRNN filters the signal
through its feature detector units and eventually selects an action to perform in its
action selection units (3 in the diagram). The selected action is encoded and the
appropriate control signals sent to the vehicles differential drive motors (7 in
diagram). The collision detection RI functions in the same manner as in vehicle 1

and is the lowest level RI component in the hierarchy.

If one of the vehicles peripheral light sensors (L0 and L4) detects light, the vehicle
is jogged toward the light by the light-seeking RI (shown at 4) unless there was a
collision (see figure 04) in which case the collision RI inhibits this response. In
addition the light-seeking RI generates a reinforcement signal according to the
reinforcement policy shown at the bottom of the diagram. The signal is 1.0 if the
vehicle had already moved in that direction (meaning the DA had initiated the
action) or -1.0 if the DA had failed to move to the light and the RI moved for it.
The 2 bit buffer (shown at 5) stores this signal until the linear network (6) in the
RRNN can make use of it.

The RIDA architectural diagram is shown in figure D-4.
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Figure D-4 Vehicle 2 RIDA Architecture

In the case of vehicle 2, the collision avoidance RI is the lowest level RI in the
hierarchy. It is capable of inhibiting both the DA and the light-seeking RI. Note
that in this case a richer reinforcement signal can be sent allowing both positive

and negative reinforcement.

Vehicle 3
Essentially vehicle 3 is implemented in the same manner as vehicle 2 with the

following exceptions;
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1. The reinforcement policy is reversed for the light-avoiding RI. This means that
if the DA moved towards a light source it received a -1.0 reinforcement with a
1.0 reinforcement if it moved away as measured over 2 time steps. No
reinforcement was provided if no change in light was detected.

2. The control policy for the light-avoiding RI was reversed in that the vehicle
was jogged away from detected light based on the peripheral light sensor
readings.

Vehicle 4
Vehicle 4 was intended to demonstrate that a trained DA can take the place of an

RI. In this case one of the RIs became a RRNN trained in one of the previous tests.
The RRNN was replaced as DA by a simple linear perceptron. Figure D-5 shows
the implementation details of vehicle 4.
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Vehicle 4 was equipped with a sonar semi-ring and contact sensors only (shown at
1). Sonar input was provided to the perceptron DA input layer in a slightly
modified manner. Instead of encoding near, middle and far distances, only a single
distance measure was encoded—called near. An object was near if it was within
three steps of the sensor. In this case the input unit was provided a signal of 1.0,
otherwise the signal was 0.0.

The perceptron filtered the input through its weights and produced an output
which was interpreted (at 3) and appropriate control signals to a comparator. The
sonar sensors were also connected to the RRNN RI which also interpreted their
output and sent its control signals to the comparator as well (shown at 4). This also

occurred with the collision avoidance RI (at 5).

The comparator actually implemented the RIDA cascading hierarchy by comparing
the control signals of the DA with those of the RRNN RI and the collision
avoidance RI. If the DA control signals were different it was assumed to be wrong
and the comparator would generate an appropriate training set based on either the
RRNN RI or the other RI. If these two disagreed the collision avoidance RI was
assumed to be correct. In this way the hierarchy was maintained. Although
somewhat unrealistic, the training set was used in an off-line training session for
the DA. In addition the comparator would pass the appropriate control signals to

the vehicle's motors (shown at 6).

The RIDA architectural diagram is shown in figure D-6.
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Note that the hierarchy maintained by the comparator is illustrated here.
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