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Abstract 

This thesis is concerned with the dassitication of 7-dimensional nilpotent Lie alge- 

bras. Skjdbred and Sund have published in 1977 their method of constructing all 

nilpotent Lie algebras of dimension rr given those algebras of dimension < n, and 

their automorphism groups. By using this method, we constmct ail nonisomor- 

phic 7-dimensional nilpotent Lie algebras in the following two cases: (1) over an 

algebraically closed field of arbitrary characteristic except 2; (2) over the real field 

R. 

We have compared our lists with three of the most recent lists (those of Seeley, 

Ancochea-Goze, and Romdhani). While our list in case (1) over C cliffers greatly 

fkom that of Ancochea-Goze, which contains too many errors to be usable, it agrees 

with that of Seeley apart fkom a few corrections that should be made in his Est, 

Our list in case (2) over R contains all the algebras on Romdhani's list, which omits 

many algebras. 
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Introduction 

This thesis is concemed with the classification of 7-dimensionai nilpotent Lie algebras. 
Skjelbred and Sund have published in 1977 their method of constnicting al1 nilpotent Lie 
algebras of dimension n given those algebras of dimension < n, and th& automorphism 
groups. B y using this met hod, we construct all nonisomorphic 7-dimemional nilpotent 
Lie algebras in the following two cases: (1) over an algebraically dosed field of arbitrary 
characteristic except 2; (2) over the real field R. Our lists are given in Chapter 4. 

Many attempts have been made on this topic, and a number of lists have been published. 
To mention just a few: The earliest list is given by Umlauf (1891) [37] in dimensions < 6 
over complex field. Later on Dixmiet (1958) [8] gives a complete list in dimensions 5 5 over 
a commutative field. 

In dimension 6, there are various Lipts obtained by Morozov (1958, over a field of charac- 
teristic O) [20], Shedler (1964, over any field) [34] ,Vergne (1966, over C) [38], Skjelbred and 
Sund (1978, over R) 1361, Beck and Kolman (1981, over R) [3]. Nielsen (1983) [22] compares 
the tables of Morozov, Vergne, Skjelbred and Sund, and Umlauf and gives for the first tirne 
a complete and nonredundant list for nilpotent Lie algebras of dimension 6 over the real 
field. 

In dimension 7, there are ais0 several Lists available: Safiullina (1964, over C) [Z6], [W], 
Romdhani (1985, over R and C) [24] [25], Seeley (1988, over C) [31], Ancochea and Goze 
(1989, over C) [2]. The iists above are obtained using different invariants. By introducing 
a new invariant - the weight system, Carles (1989) [6] compares the lists of SafiuUina, 
Romdhani and Seeley, and has identified omissions and some mistakes in al1 of them. Later 
on in 1993, basing on his own thesis, by incorporating all the previous results, Seeley [33] 
published his list over C. 

Thwe are also other partial classifications concerning some particdar properties of nilpotent 
Lie algebras. Among them are: Favre (1973) [IO] for dpoten t  Lie algebras of maximal rank; 
Scheuneman (1967) [30], Gauger (1973) [Il] and Revoy (1980) [23] for twestep nilpotent 
algebras; Ancochea and Goze (1988) [l] for Worm Lie algebras. 

Various tactics have been implemented. Morozov's classiiication depends heavily on the 
property that a nilpotent Lie algebra of dimension n contains a maximal Abelian ideaI of 



dimension rn 2 1/2((8n+ 1)1/2 - 1) and a dasincation of the representations by nilpotent 
transformations of a low dimensional Lie aigebra. Safiullina's list is obtained by using this 
approach. Magnin (1986) [la] introduces a different approach, to enlarge a smaller algebra 
by adjoining a derivation. He uses t h  method to constnict ail nilpotent Lie aIgebras 
of dimension < 7 having a fixed Lie algebra of codimension 1, and also obtains among 
others results, a new classification of 6-dimensional nilpotent Lie algebras over R (same 
as Morozov's). For dgebraically dosed fields, Favre [IO] and Gauger [Il] give another 
method by regarding di nilpotent Lie algebras as quotients of some "free nilpotent Lie 
algebras". Later Santharoubane (1979) [28][29] fiirther generaiizes this idea and establishes 
a link between nilpotent Lie algebras and Kac-Moody Lie algebras. Skjelbred and Sund 
(1978) [36] reduce the classincation of nilpotent algebras in a given dimension to the study 
of orbits under the action of a group on the space of second degree cohomology of a smaller 
Lie algebra with coefllcients in a trivial module. Seeley assumes knowledge of algebras in 
dimensions less than seven, and considers the upper central series dimensions of a nilpotent 
algebra as an invariant, which are usudy  shared by many non-isomorphic algebras. So he 
&O identifies some further invariants for each typical upper central series dimensions in 
order to sort out various possibilities and resorts to many kinds of techniques trying to get 
all the algebras without redundancy. So essentially, we might Say, and to put in his own 
words, Seeley obtains his list "without machinery, taking the attitude that no reduction in 
the amount of hard work would reault ." ([SI], pp. vi) . 

One phenornenon worth mentioning is: there are only hi te ly  many isomorphism classes of 
nilpotent Lie algebras of dimension less than or equal to 6, whereas in higher dimensions 
there are infinite families of pairwise nonisomorphic nilpotent Lie algebras. In dimension 
7, each infinite family can be parametrized by a single parameter. Seeley (1992) [32] has 
tackled the problem of detennining the number F, of parameters needed to classify the 
laws of n-dimensional complex nilpotent Lie dgebras, and comes up with the estimate that 

2 n(n - l)(n + 4)/6 - 3. In particdar, for dimensions 8 and 10, the number of 
parameters involveci will be respectively 2 4 and > 13, which makes it very difficult to give 
a complete list (as for dimension < 7). Therefore it becomes d the more desirable to have 
a complete and nonredundant list for 7-dimensional dpotent  Lie algebras. 

We use the Skjelbred-Sund method to construct aIl the 7-dimensional algebras. From our 
point of view, this is the best method, as  it provides a systematic approach to construct 
all the algebras, as the readers will see in the following chapters. But before our project 
is carried out, it shodd be noted that many people think otherwise. In talking about this 
method, Seeley [31] [33] said ''it is diflicult to use in practicen . Magnin [18] even daimed t hat 
"le calcul des orbites présentant des difEcultés, elle ne semble pas pouvoir être actuellement 
utilisée pour la classification des algèbres de dimension 7". 

A detaiied illustration of this method will be given in Chapter 2. Unlike many of the previous 
7-dimensional bts, where "trial and enor and good guesswork came into play" ([31], pp. 
vii), we corne up with all the necessary mathematical details that everyone can follow and 



check - both for completeness and nonredundancy. Naturaily we follow Seeley's labelling 
of algebras by using central series dimensions. There are h o  reasons: h t l y  because his 
list is the most reliable one, and secondly &O due to the method we use, which regards al1 
the algebras as central extensions of smaller dimensional Lie dgehras. 

We have compared our list with that of Seeley over C. It tunis out that, although Seeley's 
kt is almost perfect, there are stili some errors - some of them Seeley himself has also been 
aware of. The followùig four corrections should be made: 

[b, c] = g should be replacecl by [b, d] = g , otherwise it is 
isomorphic to 2,3,7A. 

Not a Lie algebra, since Jac(a, b, c) = [a, [b, cl] + [b, [L, a]] + 
[c, [al b]] # O. Should be deleted. 

One should impose a further restriction on the parameter: 
c # 0, l .  If ( = O, or 1, the center has dimension 2, and the 
algebra is isomorphic to 2,4,7p. 

One shodd impose a further restriction on the parameter: 
6 # 1. If = 1, the center has dimension 2, and the dgebra 
is isomorphic to 2,3,5,7~. 

These corrections are necessary, as people stU refer to Seeley's list without being aware of 
some of these errors. In a recent paper by Cairns, Jessup and Pitkethly [SI in 1997, they 
give the Betti numbers of nilpotent Lie aigebras of dimensions at  most 7, where they also 
provide the Betti numbers for 1,3,4,5,7~, which, according to above, should not be there at 
all. 

We have also compared Seeleyk list (as corrected above) with that of Ancochea and Goze's. 
Unfortunately, Ancochea and Goze's list turns out to contain too many errors to be usable, 
with a lot omissions, and among those being listed, many of them are not Lie algebras at 
all, and others occur more than once. 

Before o u .  work, only Romdhani [24] [25] has provided a list for the red  case. A cornparison 
with hiç list of real dgebras reveais that he has also missed many algebras. 

Maple V@ plays a dechive role in our dansincation, and especidy in our cornparisons with 
ali the other lists. It is tot- unimaginable to carry out this project without something 
like Maple, and we do hope that the readers, while reading through the proofs, will ap- 
preciate the power of this interactive cornputer dgebra system, which has been used in 
the computation of (1) the Jacobi identities; (2) the cocydes; (3) the orbits of normalized 
cocydes under the automorphism group; (4) the isomorphism between two algebras, and as 
a special case, the automorphism groups; (5) the derivation algebras; (6) solving all kinds 
of equations, etc., among many other things. 



Now we mention briefly the layout of the thesis. 

In Chapter I l  we introduce some of the basic definitions of nilpotent Lie algebras which are 
used throughout the thesis. 

In Chapter 2, we describe the method of Skjelbred and Smd ,  and include some basic 
introduction to cohomology theory of nilpotent Lie algebras. 

In Chapter 3, we present the list of al1 six-dimensional nilpotent Lie algebras over an 
arbitrary algebraically closed field, followed by the proof that the list is complete and 
nonredundant. Included in the List are the weight system and the generic automorphism for 
each algebra, as we need al1 this information for our construction of 7-dimensional nilpotent 
alge bras. 

In Chapter 4, we present Our lists of al1 indecomposable 7-dimensional nilpotent Lie algebras 
over algebraically closed fields of arbitrary characteristic except 2, and also over R. 

In Chapter 5, we construct al1 indecomposable two-step nilpotent Lie algebras ( Le., central 
extensions of AbeIian algebras), both for the real field and for algebraically closed fields. 

In Chapter 6, we give the proof for the case when the ground field is algebraically closed of 
characteristic not 2. 

In Chapter 7, we give the proof for the case when the ground field is real. 

In Appendix A, we establish the correpondence between Our list and Nielsen's list for inde- 
composable six-dimensional real nilpotent Lie algebras. 

In Appendix B, we compare Seeley's (corrected) list with that of Ancochea-Goze's for al1 
the indecomposable ?-dimensional nilpotent Lie algebras over C. 

In Appendix Cl we compare Our list of indecomposable 7-dimensional nilpotent real algebras 
with that of Romdhani's. 

In Appendix Dl we give a summary of al1 the 7-dimensional indecomposable nilpotent Lie 
algebras as they arise from those of dimensions 5 6 in Our construction. The readers may 
easily identify the central quotients of al1 the seven-dimensional algebras with this list, and 
locate the detaih of the corresponding prooh if they wish. 

In Appendix El we provide sorne of the main Maple programs that have been used in our 
computation. 



Chapter 1 

Some Concepts of Lie Algebras 

In this chapter we introduce some basic definitions and notations that are used throughout 
the thesis. Most of them can be found in any standard books on Lie algebras [15] [lg]. 

1.1 Basic Definitions 

Definition 1.1 Let g be a Lie algebra over a field F .  Let Doe = g, Coe = g, Cog = {O), 

~ ' * ' 0  = [o ie ,  ~ ' g ] ,  @'+le = [Cg,g],  and Ci+l(g) = (z E gl[ztg] c Ci(g)) for any i .  We 
call 

g = ~ O g  > D~~ 3 - - * > D ~ ~ >  O . .  

the derived series of g, 

g = c o e  3 cle 1 - - 3  CLg > - O -  

the lower central series of g, and 

{O) = C o  (g) c cl (0) c c Ck (g) c - - - 

the upper centml S & ~ S  of g. We alro call nspectively 

the lotoer central series dimensions of g and the upper centml sdes dimensions of a. We 
d l  simply denote. t h m  by ( d i m e g ,  dimC1g, -) and (dimC1 (g), dim Cz(g), - *). 

Definit ion 1.2 A Lie dgebm g of dimension n U called f i l i f m  if 

d i m ~ ' ~ = n - k - l  for k l l .  



Definition 1.3 A nilpotent Lie algebm 0 LP called two-step nilpotent (or metabelian) i f  it 
satisfies CZg = { O ) .  

Definition 1.4 The Hkenbeq d g e h  HP of dim-on 2p + 1 i s  defined by the bmckets: 

Definition 1.5 k t  g be a nilpotent Lie uigebm and Der g its den'vation dgebm. The Lie 
algebm g U called chamctcristically nilpotmt i f  every f E Der g is a nilpotent endomorphism 

of e* 

Dekition 1.6 Let F k the free Lie algebm ong-genemtors yi,--- ,y, ([15], p.167). Let 

Fm denote the subspace of 3 genemted by a11 elements of the type [yi,, yi, , , yin] = 
[ O  . , [[Yi,, yi,], - - - , yL-,], y;,,] wh- i j  E {1,2, - - , g) .  3 is p d e d  tmth 3, u the homoge- 
mous componet of d e p e  n, and furth-oir F' = @ j2, Fj. We c d  N (1, g ) = 3/3'+' 
a free nilpotent Lie algebm of closs 1 on  g genemtors. 



1.2 Weight Systems and Decomposability 

Let g be a Lie algebra over an algebraicdy closed field F of characteristic 0. Denote by 
Der g and Aut g its Lie algebra of derivations and the group of autornorphisms. Let T by 
a commutative subalgebra of Der g consisting of semi-simple endomorphisms. T is called 
toms on 0- A torus T on g is called maximal if it is not contained in any other torus of 
larger dimension. A t o m  T on g defines naturally a representation in 9, and the elements 
of T can be diagonalized simultaneously. Therefore g can be decomposed as a direct sum 
of weight spaces, i.e., 

0 = & E T . B ~  

where T* is the dual space of T, and 

Over algebraicdy dosed fields, the conjugacy theorem of Mostow [21] shows that the weight 
system associated with a maximai tom is invaxiant up to a permutation by isomorphim. 
We define the rank of g to be the common dimension of maximal ton over g ,  and denote it 

by rank(g)  

Let T be a maximal toms on g, and 

Let W ( T )  be the set of aU the pairs (a, d a ) ,  where a E R(T) and da the multiplicity of a, 
that is, 

W(T)  = { ( a , d a ) l a ~  R(T), dar=dimga) .  

Deflnition 1.7 The set W ( T )  i s  called the weight system associated to g, or we may say 
that a weight system is just the set of weights together with th& multiplicities. 

Defhition 1.8 Two weight systemr W(T)  and W t ( T t )  are soid to be equivalent if dimT = 
d i m T t  and the linear representotion of T in g às equivalent to that of T' i n  9'. 

Theorem 1.1 [l ûj' The equivalence c h s  of a weight systrm of a Lie algebm g is un in- 
variant of g. 

Let B be the set of ail the weights correspondhg to g/C2g. 

De0nition 1.9 A path in R(T) is a sequmce ,pi ofpoints in R(T) such that Pi+l - 
pi or pi u n  in B for ail 1 5 i < 1 - 1. A connected component of R(T) is an amuise 
connected comportent. 



Theorem 1.2 [IO, 171 Let g be a nilpotent Lie algebm 

1). I f g  = gi @ g2 (direct ideal sum), then rank(g) = rank(gl) + r d ( g 2 ) ;  

2). I f  g is  indecomposable, thm R (T)  ir connected; 

3). If R1, - , Rr a 4  the connected componrnts of R(T) und let &- = @ , , = ~ ~ g ~ ,  then each 
% is an ideal of g ,  and g ï.s a direet pmduct of g;: g = nlSisl &-. Furthemore, gi is 
indecomposable, i .  e. it cunnot be decomposed into the product of two n o m  Lie alge bms. 

Therefore we may use the weight system to detumine the decomposability of an algebra 
over an aigebraically dosed field of characteristic O. Using Cades's work on weight systems 
for nilpotent Lie algebras [6], this ha9 been made quite straightforward. 



Chapter 2 

The Skjelbred-Sund Method 

2.1 Cohomology of Nilpotent Lie Algebras 

W e  will introduce some basic definitions and properties of the cohomology of nilpotent Lie 
algebras in this section. M e r s  may refer to [7] [13] [15] for details. 

Let g be a Lie dgebra, F a field, and consider F~ as a triviai 8-module. 

Definition 2.1 A mapping f : g x * * -  x g(i tirnes ) + U called an i-linear mupping if 
f sen& an i-tuple (21, - , ~ i ) .  zq E 0,  into f (zi, , z;) E F* in such a way that for fized 
values of 21, - - , z,-1, z,+l, - - , x i  the mapping zq -t f (xi, - , x i )  is a linear rnapping of 
g into F ~ .  

Definition 2.2 An i-linear mapping is  skew symmetric or alternattng i f  f takes value O 
when any two of the z, are the sume. 

Ddnition 2.3 An i-dimensional F~-cochain (or simply uan i-i-cochainn) for g is a skew 
symmetric i - h e u r  mapping of g x - x g (i tirnes) into F'. 

The set C ' (0 ,  F') of all i-cochains is a vector space relative to the usual definitions of 
addition and scalar multiplication of functions. 

Definition 2.4 If f Ls a n  i-cochainJ i 1 1, f determines an (i + 1)-dimensional cochain 
df, called coboundary of f ,  defined by the formula 

whem theœ over a n  aqument means that this argument is omitted. If i = O ,  we set df = 0. 
d maps C ( 0 ,  F') linearly into F*) and is cdled the cobundary o p t o r .  



Deiinition 2.5 An i-cochain j is called u coçycle if d j  = O and a coboundary if f = dg for 
some ( i  - 1)-cochatn g .  

The set Z' F') of i-cocydes is the kernel of the homomorphisrn d of C into C'+Il so it 
is a subspace of C. Similarly, the set B ' ( ~ ,  F ~ )  of i-coboundaries is a subspace of C since 
it is the image under d of When i = O, we define F ~ )  = O. Due to a well-known 
resuit in cohomology theory, i.e., 6 = 0, the coboundaries form a subspace of the cocycles. 

Defipition 2.6 We cd1 the factor spce ,  dmoted by H'(~ ,  F') = F ~ ) / B ' ( ~ ,  F') , 
the i-dimensionol c o h o m o l ~  p u p  of g (unth coeficimts in F ~ ) .  

NOW we shall look at some properties of H'(~, F) for i 5 2. For i = O we have = Co = F 
and Bo = O so that 

HO(*, F) = F. 

For i = 1 we have B1 = O so that Hl = 2'. If f E C1(g, F), then (df)(zl, 24 = - f ( [ q ,  4)- 
Therefore f is a 1-cocycle if and only if it vanishes on [g, g]. Hence 

For i = 2, if f E C2(g, F),  then 

(dfI(z11 X 2 1 ~ 3 )  = -f (23, [ ~ l t  221) + f ( 2 2 ,  [ 2 1 t  231) - f (21, [QI 231). 

Therefore, df = O or f E Z2 if and only if the Jacobi identity holds: 

Let B2(g, F)  be the set of ail 2-coboundaries, Le. elements f for which there &ts g E 
Hom(g, F) such that f (2, y) = g([z, y]) for any z, y E g. An immediate consequence follows: 

2.2 The Method 

In this part, we wil l  explain the method described by Skjelbred and Sund [35] for construct- 
ing nilpotent Lie algebras of fixeci finite dimension fkom those of smaller dimensions. 

Firstly, we need to introduce some notations and definitions ([28, 291). 



Since Z2 (9, F*) and Ba (g, F*) are invariant under t h  action, we can define the action of 
Aut g on Fk) as aell. For B E @(g, F), ne  denote B as its - corresponding element in 
H2(g, F) ,  then we rnay -te the action of Aut g on B as 5 4  = B4. 

For B E C2(g, F*) , the kernel of B will be defined as & , with 

Note that 
Fk) = c2(g, F)*, n2(g, Fk) = H ' ( ~ , F ) ~ -  

So for any B E C2(g, Fk), we h t e  

B = (Bi, - , Bk) E c2(g, F ) ~ ,  

Define Gk (HZ (g, F)) to be the Grassrnannian of subspaces of dimension k in l Z 2  (g, F) . There 
is a natural action of Aut g on this Grassmannian. Let &F . @ 6 i k ~  E Gk (H '(gj, F) , 

U CI 

then #(&F @ - $ B k ~ )  = B?F $ $ B ~ F .  It is weil-defhed ([28, 291). 

Denote the center of g by Z ( g ) ,  and if &F @ - - .  $ i i k ~  E G ~ ( H * ( ~ , F ) ,  wnte B = 
(BI , -  ,Bk). Then 

is well-defined, and is &O Aut g stable ([28, 291). 

Let Uk(g)/Aut g be the set of (Aut g)-orbits of Uk(g). 

Theorem 2.1 [35] Let g be a Lie algebra over u field F. The isomorphism classes of Lie 
algebm with center j of dimension k, ;fi g, und without Abelian direct factors, are in 
bijective correspondence tmth the elements in U,(g)/Aut g. 

By this theorem, we may construct alI the nilpotent Lie algebras of dimension n, given 

those algebras of dimension less than n, by central extension. 

We carry out the procedure for constructing 6 and 7-dimensional nilpotent Lie algebras in 
the foilowing way: 

(1) For a given algebra of smalier dimension, ne  List at i h t  its center (or the generators of 
its center), to heip us identify the 2-cocydes satifying n Z ( g )  = 0. 

(2) We also lipt its derived algebra (or the generators of the derived algebra), which is 
needed in computing the coboundsries B2(g,  F). 

(3) Then we compute ail the Zcocydes p(g, F). For each k e d  algebra g with given 
base {zl, 2 2 ,  , 2,)) we may repreaent a 2-cocyde B by a skew symmetric matrix B = 



Cl<;U.5n CijAij, where Aij is the n x n matrix with ( i ,  j) element being 1, ( j ,  i )  element 
being -1 and all the others O. When computing the 2-cocydes, we will just list al1 the 
constraints on the elements Cij of the skew s v e t r k  matrix B. 

(4) We have Z 2  (9,  F) = B 2 ( g ,  F )  8 W ,  where W is a subspace of Z2 ( g ,  F), complernentary to 
B2(g, F ) ,  and B2(gt  F )  = {dfl f E C 1 ( g ,  F )  = e*) (d  is the coboundq operator). One easy 
way to obtain W is as follows. When a nilpotent Lie algebra g of dimension n = r + s has a 

basis in the form ( 2 1 ,  a -  - , z,, z ,+l ,  - . , z,+.), where { z l t  - - , z , )  are the generators, and 
{ z , + ~ ,  - - , z,+.) forms a basis for the derived algebra [ g ,  g ] ,  with z,+t = [z;, , t j t] ,  where 
l < i t <  j t < r + t a n d 1 5 t 5 s .  

Consider C1(g, F) = g* generated by the dual b a i s  

since df;(z ,  y) = - f;([z,  Y]) = O ,  we have g 2 ( g ,  F) =< dgl ,  - , dg. > . Now we have 

For B E W ,  we rnay assume that B ( z C , z j t )  = O, t = 1, , S, otherwise, if B(xic1 Z j , )  = 
ui, j, # O ,  we choose B + q, jt dgt instead. When we carry out the group action on W, we 
do it as if it were done in H 2  (e, F ) ,  and may identify H 2  ( 9 ,  B) with W ,  by cailing al1 the 
nonzero elements in W the normalized 2-cocycles. 

(5) We &O list the dimension of the second cohomology group. 

(6) For a h e d  basis {q, zl, - , z,) of g, a basis for W in (4) is given, and we will simply 
regard it as a basis for ~ ~ ( 9 ,  F )  without causing any confusion. 

(7) An arbitrary element in the second cohomology group is given, together with the action 
of the generic automorphism on it. Keep in mùid that, though the elements are chosen 
from W C Z 2 ( g ,  F ) ,  we regard them as elements from H2(g,  F ) .  The group action on these 
elements is carried out as if they were in lT2(g, F). 

(8) We determine all the representatives of the orbits in the Grassmanian G k ( H 2 ( g ,  F)) 
under the action of the automorphism group that satisfp the condition mentioned in (1). 

(9) With the representatives obtained in (8), we give the list of nonisomorphic central 
extension algebras of g without Abelian factors, i.e., if B is a representative obtained, then 
we can define a Lie algebra structure on g ( B )  = g @ F' by letting 



We &O have the foilowing theorem describing the automorphism group of the new algebra 
g(B) = g $ F~ as obtained by the above method through a 2-cocyde B fiom g:  

Theorem 2.2 [35] Let g be a nilpotent Lie algebru, and a0 E Aut g. Let B E F ~ )  
and g i  n Z ( g )  = O. The the au tomorphh  p u p  Aut g(B) of the eztended oigebm g(B) 
consists of al1 linear operutors of the matriz f o m  

and 

This is a very usefd theorem, which wili be used in our computation of the automorphism 
groups, 

We also like to point out that, fiom the method we described above, it is possible to get 
decomposable Lie algebras (without Abelian factors, but could be the product of two or 
more indecomposable napotent Lie algebras) by central extensions. 

Fortunately, we have the foilowing lemma by Seeley [31] [33]: 

Lemma 2.3 In u decomposition of a finite-dimensional Lie algebra 11s a direct sum of 
indecomposable ideab, the isomorphism classes of the ideais are unique. If L = AI $ - -$A,  
and L = Cl $ . @ C, are two such decompositions, then r = s; after mordering the indices 
the derived parts D'(Ai) and D'(C;) are equal, Ai S Ci, and a set of of genemtors for Ai 
equals a set of genemtors for Ci modulo adding to each genemtor a vector in Z ( L ) .  

Seeley has also observed that there are 31 decomposable nilpotent Lie algebras in dimension 
7. AU except one have an Abelian siimmand. Therefore it becomes a fairly easy job for 
us to check the indecornposabiiity - we just need to take care of the exceptional case, 

which corresponds to the upper central series dimension (257), and cari be done through 
the cornparison of the orbits. 



2.3 The Examples 

We will illustrate the Skjelbred-Sund method through the following 6 examples. For the 
labelling of the algebras, and also their automorphhm groups, please refis to Chapter 3 or 
4. We wiil explain our notations and conventions dong the way. Make sure that you read 
this part first before you dig into the proofk in the subsequent chapters. Please be reminded 
that whenever we talk about central extensions, we always refer to those extensions that 
are without Abelian factors. 

Example 1 Find the centml extensions without Ahlian factors of dimension 6 mer  any 
algebmically closed field of the olgebm g = NsVzl2 Mth basis zi, 1 5 i 5 5 ,  and nonzero 
bmckets [xi, 221 = 2 4 ,  [zl, z4] = [zt, z3] = xs. 

The derived aigebra [g, g] is generated by 24 ,~s .  Later on we wili just mite '&Derived 
Algebra: 24,  asn or [g, g] : 24,25. 

NOW we need to determine all the 2-cocydes B = ClSieSn CijAij, by using the basis 
(21, . . , z5), as described in (3) of Section 2.2. By checlcing the Jacobi identity, we can easily 
get the following constraints for B to be a 2-cocyde: {CZ5 = C35 = C45 = û, C34 + Ci5 = O), 
and we wiil write UCocycle: C2L = = C45 = O, CM + C15 = on or Z2(g) : CZ5 = C35 = 
C 4 5  = O,  C3,4 + Ci5 = O. 

Since [xi, zz] = 24 ,  [xi, z4] = 2 5 ,  and the derived algebra has dimension 2, we may normaiize 
2-cocycles by requiring B(zl, 2 2 )  = B(zl, z4) = O, as describecl in (4) of Section 2.2, which 
wiU give us the following two extra constraints on B: C12 = C14 = O, and we will write 
"Normalization: C12 = CII = On or W(H2) : C12 = Ci4 = 0. 

Rom the above, it is easy to see that the dimension of H ~ ( ~ ,  F) is 4, and we will write 
"dim H2 : 4". 

Now we can get a baois for W as in (4) of Section 2.2, regarded also as a basis for H ' ( ~ ,  F), 
and mite "Basis: A13, - A34 A23, A24n. 

In this caçe, we are considering the 1-dimensional central extensions of g. We need to fmd a 
set of representatives of the orbits of 1-dimensional subspaces of E * ( ~ ,  F) under the action 
of the automorphism group Aut g. With the chosen basis, we may denote an arbitrary 

element in H~ (e, F) by z := [a, b,  c, d] = + b ( ~ ~ ~  - A%) + cAa3 + dAar When a 
generic element g in Aut g acts on 2, we get g z = atAis + bf(Als - AM) + c'Aw + d'Al4 
mod ~ ~ ( 9 ,  F), We wil l  simply write a -t a', b -t bt, e -t c' and d + 6. In this example we 
have 



As 2 5  is in the center, we m u t  have b # O to ensure that the 2-cocycie does not have x5 in 
its kernei. Since al1 and a22 are not 0, b will remain nonzero throughout. 

By taking al1 = a22 = 1, a21 = Q I  = O ,  a32 = d/b, a53 = -a/b (and ensuring at the sarne 
t h e  that the mat& of g is nonsingular), we make a + O ,  d -r O. 

With these new values for coefficients, the above formulae take simpler form: 

Now we need to take into consideration the characteristic x of F. 

Case 1: x # 2. Set 411 = 0 2 2  = l I  0 2 1  = a32 = a41 = 053  = 0,  a31 = -c/(2b), we obtain the 
representative (1) [a, 6 ,  c, d] = [O,  1, O ,  O].  

Case 2: x = 2. We now have c + ca:1a22. I f  c = O <  then we get the representative (2) 
[O,  1,0, O].  I f  c # O, taking a21 = 031 = 032 = a41 = a53 = O ,  we have 

Make ba:1a22 = ~ a : ~ a ~ ~  by taking a22 = 1 and al1 = c/b to get the representative (3) 

[O,  h l ,  O] .  

(1) and (2) give us the same algebra, denoted by N6,2,3 in Chapter 3. (3) gives us another 
algebra, denoted by (B), which only exists over the field of x = 2. It can be easily seen that, 
when x # 2, it is isomorphic to N6,2,3. It is obvious that (B) and are not isomorphic 
when x = 2, as the corresponding orbits are different . 

Therefore the central extensions of N5,2,~ of dimension 6 are: 

Example 2 Find the centml extensions without Abelian factors of dimension 7 over an 
algebmKally closed field of x # 2 and the mal field R of the algebm g = N5,2,2 Mth ba i s  
2it I 5 i 2 5, and nonzero bmkets  [ z l , z z ]  = zr, [zl, 4 = [ Z Z ,  231 = zs. 



From Example 1, we have 

According to Theorem 2.1, we need to find the representatives of the orbits of 2-dimensional 
subspaces of F), i.e., orbits in Ga(H2(g,  F)). Up to a scalar, we can always identify a 
2-dimensional subspace with the wedge product of two vectors A, B E F), Le. A A B. 

Let A = [a, b, c, d] and B = [al, bll cl, dl] in H 2 ( ~ ,  F ) .  As we require that the kernel of 
(A, B) does not contain any central elements, we have one of b, b1 # O. Therefore we may 
assume A = [a, 1, cl dl, which is always doable - if b = 0, then b1 # 0 ,  switch A and B so 
b # O in Al then multiply A by b-' to get the above form for A. Bear in mind that we can 
multiply any of our vectors by a scdar, as we are dealing essentidy with the subspaces, 
instead of the vectors. 

Rom the discussions in Example 1, as x # 2, a representative for A can be chosen as 

A = [O, 1,0, O]. 

Once we get A, we may assume B = [al,  O ,  cl, dl] because we can replace B by a iinear 
combination B + AA. Although the original B = [al,  bl, cl,  dl] is different from the new 
B = [al, O ,  cl, dl],  we still use the same notation B to denote it, same thing for al,  cl and 
dl. This is the convention throughout the proofs in our Thesis. The readers will be able to 
tell the differences, without causing any confusion. 

In the following we wil l  maidy discuss the case when the ground field is R. The dgebraically 
closed case can be easily obtained with minor adjustments. 

Now to fix A (up to a scalar), we require 431 = a32 = O and a53 = -a11~41. 

For BI we have al -+ aiatl + cla:laal - dialla:l; bl = O -+ O ;  ci + cla:,aZ2 - 2dlaila21a22; 

dl + dlalla;,. 

Case 1: dl # O. As the first step, we make cl = O by  solving for a21, which c m  be done 
by taking al1 = a22 = 1 and a21 = c1/(2d1). With these new values, the formulae above 
become al -t aia& - dialla$l; 61 + O ;  cl = O -+ -2dlalla21a22; di -, d1oli&. 

In the second step, to keep cl = O, we require a21 = 0 ,  which in turn makes al + ola:l, 
61 = q = O and dl + dlalla$21 or B = [ala:l, O ,  0, dlalla&]. 

Case 1.1: al = O. We obtain our first representative Bi = [O,  0,0,1], and A M l  corresponds 
to the 7-dimensional algebra (2357C). 

Case 1.2: al # 0. 

Subcase 1.2.1: aldl > O. Make cria& = dial& in B by solving for a22 and multiply B 
by a scalar, which can be done by taking al1 = 1 and = Jo,ldi, and multiply by a;', 
we will obtain our second representative B2 = [l, O ,  0 ,  11, and A h B2 corresponds to the 
7-dimensional algebra (2357D). 



Subcase 1.2.2: aldl < O. Make ala:l = -d1a1142 in B and multiply it by a scalar, which 
can be done by taking al1 = 1 and a22 = J-ol/d;, and multiply it by a;', we will have 
B3 = [ l  ,O ,  0, - 11, A A B3 corresponds to the 7-dimensional algebra (2357D1). 

(If the ground field is algebraically dosed, thui B2 and B3 are in the same orbit .) 
2 2 Case 2: dl = O. Since bl = dl = O in B, we have a1 + ala:l + clall azl; cl + q a l l  a22. 

Subcase 2.1: cl = O. We obtain BI = [l, 0,0, O], and A A B4 corresponds to (2357B). 

Subcase 2.2: cl # O. Taking ail = 1 and a21 = -al/cl, we make al = O to obtain 
B5 = [O, 0,1, O], and A h Bs corresponds to (2357A). 

Now we have obtained 5 algebras(2357A-D, Dl). We need also to show that they are 
mutuaily nonisomorphic, which can be done by comparing th& corresponding orbits. As 
an example, we will show that (23570) and (235m1) are nonisomorphic over R but are 
isomorphic over an algebraicdy closed field of x # 2. 

For (235?'D), we have A = [O, 1,0, O] and B2 = [1,0,0,1]. Under the group action, 

Compare with (2357Dl), where A = [O, 1,0, O] and B3 = [l ,  0,0, -11, in which case 

If it is in the same orbit of (2357D), then the coefncients of (Ais -Aw) A Az3 and A23 A Af4 
are zero, which give a21 = a31 = O. As the codcients of A13 A (Als - As4) and (Als - 
AM) /\ Aat must be equal, i.e., -a~,aa2a:, = a & 4 2  or a& = -a:,, which has no solution 
over the real field R but do have solutions over algebraically dosed field. Therefore (23572)) 
and (2357Di) are distinct over R and are isomorphic over an algebraically dosed field of 
x # 2. Al1 the other nonisomorphisms can be proved simüarly. 

In some cases, we may also use some other invariants, like minimal numbers, as used by 
Sedey, to separate the algebras (see Chapter 5 for the defmîtion of minimal numbers and 
for examples). 

Therefore the corresponding central extensions of N5,2,a of dimension 7 over R are: 



When the ground field F is algebraically dosed and x # 2, then the central extensions of 
N5,2,2 are (2357A-D), with (2357D)Y (235m1) in this case. 

Remarks: (1) Throughout the computation above, dthough we rnay assign different values 
to the entries of the matrix of g E Aut g, we always ensure that the nonsingularity is 
maintaineci; (2) Quite often, care is required so as not to disturb previous assumptions, 
for example, when we assume b # O, then we preserve it throughout the simplification 
procedure, even though we may not point it out explicitly; (3) By abuse of terminology, 
we refer to the elements in H 2 ( g ,  R) as 2-cocycles (causing no confusion); (4) On some 
occasions, we rnay provide an isomorphism between two algebras, and write it as zi + 
azl + bx2 + . . , etc. Then the x; before the arrow is an element of the basis for the f is t  
algebra (or the "old onen), and the zi's after the arrow are the elements of the basis for the 
second algebra (or the "new onen). 

Example 3 End the central eztensiow of dimension 7 without Abelian factors of N6,3,2: 
[21122] =x3,[21,23] = 261 [~4,25] = 26-  

Z(g): q j ;  [g,~]: 23, 26; z2(g): C16 = C 2 g  = CS( = C35 = C3g = C46 = CSB = 0; 

It is obvious that NsV3,2 has no central extension of the desired type, as all the 2-cocycles 
have 26 in th& kernels. 

Example 4 Find the central extensions of dimension 7 - over an algebmically closed field 
of x # 2 and R - witnout Ahdiun f ~ t ~ s  of N6,1,1: [ x ~ , z ~ ]  = t i + l ,  2 5 i 5 5, [22, xi ]  = 
x;+2, i = 3,4. 



W e  must have b + c # O to ensure that the 2-cocycles do not contain 26 in their kernel. 

Case 1: b = O. Then c # 0, and make c = 1, o = O (solving for to obtain Al = [O, 0,1]; 

Case 2: b # O. Assume fmt that c = O. When a = O, we get A2 = [O, 1,0]. When a # 0, 
we get [aa:, , bai,, O]. If F is a algebraically dosed, we can make it to be A3 = [L, 1, O]. If 
F = R, depending on the Pgns of a, b, we get two representatives Aq = [l,  1, O] if a b  > O 
and As = [l, +O] if a b  < 0. 

Next let c # O. Then make a = O by solving for 042, and get the representative [O, bal,, ca:,]. 
Because we are dealuig with the subspaces of H ~ ( ~ ,  F), we can multiply the representative 
by a nonzero scalar as we N e ,  and keep in minci that b+c # O. So we obtain As = [O, A, 1 - A] 
(with X # 0, l ) .  

It is easy to see that if we d o w  X = 0,1, we can indude Al and A2 in Ag zu special cases. 

Now A3 and Aq correspond to the same algebra, written as (123457H). As corresponds to 
(123457H1), which only exists when the ground field is R, and is isomorphic to (123457H) 
when the ground field is algebraicaily closed, and & corresponds to (123457I). It is obvious 
that (lZ3457H,H1 ,I) are distinct, the corresponding orbits being dinerent. 

Therefore, the central extensions of Ns,i,i of dimension 7 over R are: 

When F is algebraically dosed and x # 2, the central extensions of Ne,l,l are (123457H,I), 
with (1234578)-(123457H1). 

Example 5 Find the centml extensàm of dimensàon 6 mer any algebmicaZly closed ficlds, 
tuithout Abelian factors, of g = N5,2,1: [zl, z;] = x;+l, i = 2,3,4. 



Group Actions: aAls + bA23 f c(A25 - A34: 

One of a ,c  # O (due to the reason that we require the kernel of the desired 2-cocycles 
does not contain any central elements, this is &O a requirement in d the prooh of the 
subsequent chapters, and fiom time to time, we will use this assumption without fmher  
explanation). 

When c # O, make a = O by solving for a21 and b = O by a32 to get [O, 0,1] (corresponding 

to N6.2.2)- 

When c = O, then a # O. Get two representatives depending on whether b = O or not, Le., 

[l, 0, O] (conesponding to N6,z,l) or [l, 1, O] (corresponding to ; 

So the central extensions of Ns,a.i of dimension 6 over any algebraically closed fields are: 

Example 6 Find the centml eztensions of dimension 7 over an algebniically closed field of 
x # 2, without Abelian factors, of g = Ns,2,1: [zl, z;] = t i + l ,  i = 2,3,4. 

Z(g) , [B, g] , w (H ') , dim lZ2, Basis and group actions can ail be found in Exmaple 5. 

As we are considering the 2-dimensional central extensions of Nstz,l, we need to find a set 

of representatives of orbits of the 2-dimensionai subspaces of H~ F) , or representatives of 
the form A A B, where A and B are elunents in H2  (g, F) . 
Let A = [a, b, c] and B = [al, bl , cl]. One of a, c, al, cl # O. According to the discussions of 
Example 5, WLOG, we may let A be (1) [l, 0, O], (2) [l, 1, O] or (3) [O, 0,1]. 

Case 1: A = [l, 0, O]. Then B = [O, bl, cl]. Fu A (up to a scalar, which put no restrictions 
on the entries of the automorphism group at d). 

Subcase 1.1: cl # O. Make cl = 1 (by multiplying a scalar) to get B = [O, bl, 11. Consider 
the group action on B: 

By fixing A, we can always make a1 = O by linear combination. Make further bl = O by 
solving for a32 to get B = [O, 0,1], with A A B correspondllig to (2345ïC). 

Subcase 1.2: cl = O. Then b1 # 0, and get B = [O, 1,0], with A A B corresponding to 
(23457A). 



Case 2: A = [1,1, O]. Then assume B = [O, 61, cl]. To fix A (up to a scalar), we require 
a22 = of1. 

Subcase 2.1: cl # O. Make cl = 1 to get B = [O, bl, 11. Rom Subcase 1.1, we have 
9 B = [afla21, 6141 + 2a:la42 - alla323 ail]- 

Can make both al  = b1 = O by solving for a21 and a42 respectively to get B = [O, 0.11, with 
A A B corresponding to (234570). 

Subcase 2.2: cl = O. Then bl # O to get B = [O, 1, O]. But A A B will become Subcase 1.2. 
So we omit it. 

Case 3: A = [0,0,1]. Then B = [ui,bl,O]. To fix A (up to a scdar), we may set 0 2 1  = 
432 = a42 = O. Consider the group action on B: 

B = [ w 4 a 2 2 ,  bl"1142,OI. 

Subcase 3.1: a l  # O. If bl = O, then B = [Il 0,0], and A h  B is the same as Subcase 1.1, 
omit it; If bl # O, we have B = [l, 1, O], and A A B W the same as Subcase 2.1, omit it. 

Subcase 3.2: a l  = O. Then bl # O to get B = [O, 1, O], with A h  B correponding to (23457B). 

To prove that (23457A-D) are distinct, we let Vl be the subspace generated by AIS and 
and V the space generated by AIS, AB and - A3+ Then VI is a submodule under 

Aut g. Now it becomes obvious that (2345'7A) is different fiom all the other three algebras 
in that only its corresponding 2-cocycles (i.e., A and B) are in VI. 

To show that (23457B) is dinerent fiom (23457C,D), we just need to compare their orbits. 
For (23457B), we have A = [O, 0,1] and B = [O, 1, O]. Under the group action, we have 

A -+ [a~1a21a2212ar1a22a42 - a u  aj2, a:lai2] and B + [O, a1142 01- Then 

A A B + a:,a2la;,~ls A A23 + a:l4,(~2s - AM) A A23. 

It is obvious that (23457C,D) cannot be in the same orbit. Therefore (23457B) is not 
isomorphic to (23457C.D). 

Similady we can prove that (23457C) and (23457D) are distinct. 

Therefore the central extensions of N5,2,1 of dimensions 7 over an algebraically dosed field 



Chapter 3 

Nilpotent Lie Algebras of 
Dimension < - 6 

3.1 Notations 

In this chapter, we will give a complete List of all the niipotent Lie algebras of dimension 6 
over an algebraicaliy dosed field F of any characteristic X .  

We will firstly present the List, induding all the dgebras of dimension 5 5, which was 
obtained by Dixmier [8], together with their types, r d ,  weight systerns and automorphism 
groups, and we will follow by providing the details of the proof for the classification of the 
6-dimensional nilpotent Lie algebr as. 

As pointed out by Dixmier, for algebras of dimension lesr than 6, their structure constants 
can be chosen to be independent of the characteristic x of the ground field. For dimension 
6, we h d  that the only exception is when the characteristic equah 2. 

Shedler [34] has obtained a list of ail the bdirnensional nilpotent Lie algebras for any field 
But his work has never been published, and his proof also contains many errors. Here we 
reconstruct all the û-dimensional nilpotent algebras over algebraically closed fields. Our list 
agrees with that of Shedleris when x # 2. When x = 2, Shedler has missed one algebra, 
i.e., (B) of Example 1 in Section 2.3. 

We will fkst give the list for all the aigebras over algebraicdy closed field of characteristic 
x # 2, and then follow by those of characteristic x = 2. 

The algebras have been ordered by the increasing lexicographie order of their types: the 
dimension of the algebra, its r d ,  the sequence of dimensions of its upper and lower central 
se!ries. 

We now explain o u  notations: 



- The k-th algebra of dimension i and rank 3,  and when there is only one algebra 
with the specific dimension and rank, we simpiy denote it by Ni  j- 

-(i, j ,  . lm, n, - , ), where il j ,  . and m, n, e are respectively the dimensions of the 
upper and Iower central series. 

- [a,@, y, - -1: The weight system of the corresponding Lie algebra L with respect to a 
maximal t o m  of the automorphism group of L. More precisely, the basis vectors z; are 
weight vectors, CE is the weight of 21, /3 of x2, etc. 

- CQ: The central quotient algebra L/Z  where Z is the center of L. 

- Aut L: The automorphism group of L. We use our Maple package to compute the generic 
element of this automorphism group, except for the case Ns,s,l. In generd, it is easy to 
figure out which m k a l  toms of Aut L is used when we consider the weight system 
mentioned above- When Aut L is not connected, its identity component is denoted by 
Auto L and u is a representative of the other component (as all the groups here have at 
most two cornponents) . 
- R, and S: The unipotent radical &, and the Levi factor S of Aut L. By GL;L we denote 
the direct product of m copies of GLl. 

- q: i-dimensional Abelian Lie algebra. 

The matrices of the automorphisms are of course nonsingular, which imposes some obvious 
restrictions that are not stated explicitly. 



3.2 The List 

3.2.1 Algebras of Dimensions 5 5 

INDECOMPOSABLE ALGEBRAS 

Dimension 1 

Dimension 2 

Dimension 3 

N3.2 : [x i ,  221 = 23; 
- a Heisenberg Lie algebra, free dpotent of class 2 with 2 generators; 

- (L3/3,1); 

- [a, PB a+ BI; 
- CQ: N2,2; 

- Aut N3,2 : 

a11 a12 O 

a21  a22 O 

a31 a32 alla22 -al2a21 

with dim R, = 2 and S = GL2. 

l 1  
Dimension 4 



with dim R, = 5 and S = GL:. 

Dimension 5 

where u = alla42 + ozlasa - a:la31, v = a:la32 + a21a;11 dim R, = 7 and S = GL1. 

with dim& = 7  and S = GL:. 
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where e = a11a22 - 012021, dim& = 6 and S = GL2.  



where A satisfis A'JA = J, with 

u is an arbitrary Cdimensional vector, dim& = 4, and S = (GLl x S p 4 ) / Z 2 .  

- [ a . B 1 7 , ~ + B l a + y ] ;  

- CQ: N3,3; 

-  AU^ N5,3,2 : - 
al1 0 0 O O 

a21 a22 a23 0 0 

a31 a32 a33 0 0 

a41 a42 a43 a11 a22 all a23 

a51  a52 a53 al1 a32 011 a33 , 

with dimR, = 8 and S = GL1 x GL2. 

DECOMPOSABLE ALGEBRAS 

Dimension 2 

Dimension 3 



Dimension 4 

with d h R ,  = 5, S = GLl x GL2. 

Dimension 5 

O as4 a55 

with d i m a  = 8, S = GL;. 



3.2.2 Algebras of Dimension 6 over Algebraically Closed Fields of x f 2 

INDECOMPOSABLE UGEBRAS 



- [a, 301,4a, 5a,6a, 7a]; 





with dim& = 8 and S = GL:. 



where u = alias2 - a22a41, v = -a11a22a311 w = a11a22a32, d i m a  = 8 and S = GL: x Z2. 





-= [ :  ; l e [ ;  ;]@[O -1 - I l ,  O 

with u = -a22 (asl + ar1 ) ,  and dim& = 10, and S = GL: x 22. 



and 

with dimR, = 8 and S = G L ~  x Za. 



with dim& = 12 and S = GL:. 



where 

DECOMPOSABLE ALGEBRAS 



where u = a 



N6,4.1 : N5.3.1 x al; 

- Aut NgCVl : dim R, = 9, and S = S' x GLi, with S' = (GLi x Sp4)/Z2. 

-011 0 0 O O O 

a21 a 2 2  a23 O 0 0 

a31 a32 a33 O 0 0 

a41 a42  a43 a11422 alla23 a46 

4 5 1  a 5 2  a53 al1032 011633 a56 

_ @31 -2 a63 0 0 %6 

with dim& = 13, and S = GL: x GL2. 



where u = alla22 - a2lal2, u = a n q 4  - a34a43, dim& = 8, and S = GL; x Z2. 

with dimR, = 11, and S = GL2 x GL3. 

3.2.3 Algebras of Dimension 6 over Algebraically Closed Fields of x = 2 

In addition to the algebras over algebraicaiiy closed fields of x # 2, we have the foilowing 5 
extra indecomposable algebras for x = 2: 



- CharacteristicalIy nilpotent Lie algebra; 

Remarks: (1) This algebra was k t  obsmed by Bratzlavsky [4], which turns out to be the 
only characteristically nilpotent Lie dgebra in dimension 6 when x = 2; (2) When x # 2, 
this algebra is isomorphic to N6,1,1, which is not characteristically nilpotent. In fact, in this 
case, the smcrllest algebra which is characteristicdy nilpotent is of dimension 7 (see Favre 

[91) - 



3.3 The Proof for 6-Dimensional Algebras 

From the description of Skjdbred and Sund's method, it is easy to see that, if is a 
central extension of g  without Abelian factors , then the dimension of Z(g') cannot ex- 

ceed dim F). So an indecomposable 6 dimensional nilpotent Lie algebra cannot be 
a central extension of any 2-dimensional dpoten t  Lie algebra. Furthemore the only 3 
dimensional nilpotent Lie algebra that has nontrivial central extensions of dimension 6 is 

the Abelian dgebra. So we wilI start from considering its central extensions. The 
5-dimensionai Abelian algebra NsV5 has no 6 dimensional central extensions either, as al1 
the skew symmetric bilinear maps are singular on a 5 dimensionai vector space. 

Revoy [23] has obtallied a complete List for ail the 2-step nilpotent Lie algebras of dimension 
< - 7 with the number of generators 5 4. There are 3 such aigebras of dimension 6, Le., 
L6,11 L6,2 and Ls13 in his Iist, which are the central extenisons of 3 or 4 dimensional Abelian 
Lie algebras. 

3.3.1 Extensions of 3-Dimensional Algebras 

Central extensions of N3,3 : 

Z(g): 21, zzl 23; [g, $1: 0; dim HZ: 3; Basis: Ai2, Al& AZ3; 

There is only one 3-dimensional subspace, therefore the only representative for G ~ ( H * ( ~ ,  F)) 
can be chosen to be Al = [l, 0, O], A2 = [O, 1, O], A3 = [O, 0,1], corresponding to N6,3,6. 

So the central extension of N3,3 of dimension 6 is: 

Remark: Revoy [23] has also obtained this algebra ( L e , J .  We can see that the Skjelbred- 
Sund method works quite well in this case. 

3.3.2 Extensions of PDirnensional AIgebras 

Central extensions of IVdlz : 

Z ( g ) :  24; [*, $1: 23, 24; Z2(g): C14 = C3( = O; W(H2): C12 = Cl3 = O; d i r n ~ ~ :  2; Basis: 

A149 A23; 

There is only one 2-dimensional subspace in F). Then the only representative in 
G ~ ( R ' ( ~ ,  F)) can be chosen to be A = [l, O] and B = [O, 11, correspondhg to NB,~.?. 

So the central extension of N4,0 of dimension 6 is 



Central extensions of N4,3: 

Let VO be the subspace generated by A14 and AM, it is a submodule under the group action. 

Let L be any two-dimensional subspace of F). Denote L = A B, where A, B E 

HZ(& F)- 

Case 1: L n Vo # O. Then we assume that in A, both a = c = O. As one of b, d # O, we can 
always make b = 1 and d = O to assume A = [O, 1,0,0]. Fixing A, we require a12 = O and 
alla44 = 1. Now assume B = [a,O,c,d] and one of a , c #  O. We have a + a a 1 1 6 + ~ ~ 2 1 6 ;  
b = O + aalla34 + casla% + da21a44; c + caz2S; d + Ca22034 + da22a44. 

If c # O, then make a = d = O by solving for a21 and a% respectively to get (1) B = [O, 0,1, O], 
with A  A B corresponding to N6,~.J. 

If c = O, then a # 0, depending on whether d = O or not, we get two representatives for 
B: (2) B = [l, 0,0, O] (which can be e a d y  showed to be in the same orbit as A h  B, where 
A = [O, 0,0,1] and B = [O, 0,1,0], corresponding to Nstst4) and (3) B = [ l ,  0,0,1] (A A B 
corresponding to NB ,S). 

Case 2: L n V o  = O. Then at least one of a ,  c in both A and B are nonzero. Assume 
A = [l, b, c, dj. Make b = c = O in A, and depending on whether d = O or not, we get two 
representatives for A = [1,0,0, O] and A = [l, 0,0,1]. 

For A = [1,0,0,0], -me B = [O,b,c,dj. Then c #  O and one of b , d #  O. FU A (up to a 
scalar), we require al2 = a34 = O. NOW in B, we have 

a = O -+ O (by subtracting a multiple of A fkom B); b + ballac4 + da21a44; c + ca2*6; 

d d a 2 2 ~ 4 4  ; 

If d # O ,  make b = O and get (4) B = [O, 0,1,1] ( A h  B correspondhg to N6,2,9). 

If d = O, then b # O and get (5) B = [O, 1,1, O] (A A B corresponding to Ne,z,io). 

For A = [l, 0,0,1], assume B = [O, b, cl dl, with c # O. To fix A (up to a scalar), we require 
a~ = a:,, a12  = 0, a34 = -021011. Then 

Subcase 2.1: x # 2. We can make o = d by solving for a21 and subtract a multiple of A from 
B to make both a = d = O. Then depending on b = O or not, we get two representatives 
for B: (4') B = [O, 1,1, O] (A A B conesponding to and (5') B = [O, 0,1, O] ( A  A B 
corresponding to N6,2,io). 



We prove at f i s t  that the following two pairs are isomorphic: (4) and (4'), (5) and (5'). 

For (5') and ( 5 ) ,  take z l  + 22, 2 2  + 21, 23 + -23, 24 + -24, 2 5  + -26 and 26 -+ - 2 5 .  

To show the nonisomorphism between the algebras, we just need to compare the algebras 
among the same group as f'li~ws: 

Group 1: (l), (2) and (3); 

Group 2: (4) and (5'). 

Ln Group 1, take (1) as an example. To show (1) is not isomorphic to (2) and (3), we just 
compare their orbits. In (l),  A = [O, 1,0, O] and B = [O, 0,1, O]. Under the group action, we 

have A * [O, alla44 1 0, al2a44] and B j [a21b1 a2laSS 1 a2261 0220341- 

So the wedge product is 

Now compare with (2) and (3), we know the coefficients of Air A A2= , A2,4 A A13 and 
ha4 A AZ3 are zero, i.e., alla22a44 = 612a21644 = a12a22uu = O, as 044 # 0, we must have 
a22 = 0, and a12a21 = 0, which is impossible, so (1) cannot be isomorphic to (2) or (3). 

Similady we can prove the distinctness between ail the other algebras. 

Subcase 2.2: x = 2. Now we consider two subcases: 

Subcase 2.2.1: d = O. Then we can make a = d = O by taking a21 = O. And depending on 
b = O or not, we get two representatives for B: (6) B = [O, 1,1, O] (A A B corresponding to 
(E)) and (5") B = [O, 0,1, O] (A A B corresponding to N.,2,ia, which can be seen easily Gom 
the isomorphim given between (5) and (5 ' ) ) .  

Subcase 2.2.2: d # O. Then depending on b = O or not, we get two representatives for B: 
(4"): B = [O, 0,1,1] or (7) B = [O, 1,1,1] (A A B  corresponding to N6,2,9). 

Rom Subcase 2.1, we know that (6) is isomorphic to (4) when x # 2. Now we compare the 
orbits of (4) with both (6) and (7) under the condition that x = 2. 

In (4), A = [l, 0,0, O] and B = [O, 0,1,1]. Then under the automorphism group, A + 



Compare with (6), if (6) and (4) are in the same orbit, we would require that the coefficients 
of A13 ,\ A24 and A14 A Aa3 to be zero, which give us 

and leads to the singularitiy of the automorphism group. Therefore (4) and (6) cannot be 
isomorphic when x = 2. 

Compare with (7), if (7) and (4) are in the same orbit, then the coefficients of A13 A Al4, 
A13 A A,,, Al, A A24, A14 A h23, A24 /\Al4 and A24 A are aIl equal (nonzero), while the 
co&cient of A14 A is O. A simple computation shows that we can indeed find a set of 
solutions while maintaining the nonsingularity of the automorphism group. Therefore (7) 
and (4) are isomorphic. 

So the central extensions of of dimension 6 are: 

Central extensions of 

According to Revoy [23], the central extension of N4,4 of dimension 6 is: 



3.3.3 Extensions of 5-Dimensional Algebras 

Central extensions of NsPl : 

Z ( g ) :  X s ;  [8, 01: 21, 24 ,  2 5 ;  Z2(g): C15 - C 2 4  = 0 ,  Cs + C 2 5  = 0 ,  C35 = C.45 = 0; W ( H 2 ) :  
C12 = C13 = Cl4 = 0; dim H2: 3; Basis: A15 + Az4, A23, Aas - A34; 

Group Action: =(Al5 + hzr) + bA23 + c(AZ5 - A 4  

2 2 a + au!, + ca:lazl; b + - 2 a ~ : ~ a ~ ~  + bai1 + ~ a ~ ~ ( 2 a : ~ a ~ ~  - ai2 - c + car1; 

One of a, c # O. When c # O ,  make a = O b y  solving for a i l ,  and b = O by  solving for ~ ~ 3 2 ,  

and get the representative [O ,  0,1] (corresponding to N611,a). 

When c = O ,  then a # 0,  get a + aafl and b + -2aa:la21 + If x # 2. make 
b = O by solving for oz1 and get [l, 0, O] (corresponding to NsPll1 ) ; I f  x = 2, then we have 
b -+ bai, , and get two representatives [l, 0, O] (correspondhg to NBllV1 ) for b = O and [l, 1, O ]  
(corresponding to (A))  for b # 0. 

So the central extensions of Nsll of dimension 6 are: 

The central extensions of N5,2,1 can be found in chapter 2, Example 5. 

The central extensions of N5,2,2 can be found in chapter 2, Example 1. 

Central extensions of NS,*,3: 

Case 1: x # 2. 

Subcase 1: b2 - ac # O. Assume b # O. Then we can make a = c = O by  solving for a21 and 



Choose appropriately a21 and a22 to ensure that the automorphism is nonsingular, we get 
the representative [O,  1, O ] ,  corresponding to NeT2 

Subcase 2: b2 - ac = O. h u m e  c # O.  Makuig a = O by solving for 0 1 2 ,  we get a22 = 
-6al2/c. Plug in the f o r d a  for b, we have b + (ualla12 - b2aila12/c+ ba12a21 - ba12a21) = 
O ,  since b2 = oc. So we have the representative [O,  0 ,1] ,  which contains the central element 
2 4  in its kernel. Therefore we omit it. 

Case 2: x = 2. Then we have a + ( a ~ ~ ~ + c ~ ~ ) b ,  b + (aallal~+balia22+ba12a21+~a21a22)6, 
c -+ (a<* + cd2)&. I f  both a, c = O ,  we get [O, 1, O] (corresponding to and if one of 

a, c # O ,  make c = 1 and a = 0 ,  get [O,  1,1] (corresponding to ( C )  ) . 

So the central extensions of N5,2,3 of dimension 6 are: 

Central extension of &,3,1: 

It is obvious fiom this basis that all the elements in H ~ ( ~ ,  F) have xs in its kemel, so it 
does not have any central extension without Abelian factors. 

Central extensions of N5,3,2: 

Z(g): 2 4 ,  25; [g ,g] :  Z2(g): C4!j = 0 ,  C25 - CM = 0; W(HZ): C12 = C13 = 0; d h H 2 :  

6; Bsis :  A14, A15, A23, Am A 2 5  + A34, A35; 
Group Action: aA14 + bAl5 + cA23 + dA24 + e(Als + AM) + f A35; 

Case 1. x # 2. A s  one of dl e, f # O, otherwise the 2-cotyles wilI contain some nontrivial 
elements fiom the center in theh kernel. 



When e2 - df # O, we can always make e = 1. Then we further make d = f = O by solving 
for a22  and a23 respectively to get 

Choose appropriately a 2 2  and a23 to ensure that the automorphism is nonçingular, we will 
get the representative [O, 0,0, O, 1, O] (corresponding to N6s,l). 

When e2 = df, we can make d = e = O and f = 1 instead. Since e2 = df, by solving for a 2 2  

to make d = O, we get a22 = - e ~ ~ ~ / d .  Plug in the expression for et  we have 

So we have d = e = 0, and assume f = 1. Now we can further make b = c = O by solving for 
a 5 2  and 031. Now we need a # O and get a representative B = [l, 0,0,0,0,1]  (corresponding 

to N6.2.6) 

Case 2. x = 2. Then d -t dalla:2 + f allai2; f -t dailG3 + f alla&. 

When both d, f = O, then e # O, we can make a = b = c = O and get a representative 
[O, 0 ,0 ,0 ,1 ,  O] (corresponding to Nelsll). When one of d, f # O, make d = O and f = 1. If 
e # O, then make a = b = c = O and get the representative [O, 0 ,0,0,1,1]  (correponding to 
(D)), If e = O ,  Then make b = c = 0, and require a # O to get [l, 0,0,0,0,1]  (corresponding 

to Nt3,2,a)* 

So the central extensions of N5,3,2 of dimension 6 are: 

Central extensions of N5,3,3: 

Group Action: aA14 + bA15 + chz3  + dA25; 



Both a, d # O. Make b = 0, and get two representatives depending on whether c = O or not, 
Le., [l,  0,0,1] (corresponding to Ness) or [l, 0,1,1] (corresponding to Ns,l,4). 

So the central extensions of N5,3,3 of dimension 6 are: 

Central extensions of N5,4: 

Group Action: aA13 + Ar4 + bAls + + dA24 + eA25 + f A45; 

One of a, d # 0. Can always make a = 1 and d = O. Make b = O by solving for 034, c = O 
for a35. Now fix a, b, c, d and we have 

So we have al2 = 0,  and we can solve for 034 and a35 to keep b = c = O. If e # O, we can 
solve for (let a52 = O) to make it O. Then we require g # O (to ensure that the kernel of 
the cocyles do not contain z4). With g # O, we can make further f = O by solving for ~ 4 2 .  

So we get the representative [l, 0,0,0,0,0,1], corresponding to Ngti2. 

So the central extension of &,4 of dimension 6 is: 



Chapter 4 

List of 7-Dimensional Nilpotent Lie 
Algebras 

In this chapter we Iist the presentations of al1 nonisomorphic indecomposable 7-dimensional 
nilpotent Lie algebras in the following two cases: (1) over algebraicdy closed fields of 
characteristic # 2 and (2) over the real field. A multiplication table for each algebra is 
given, with nonzero brackets only. 

Over the algebraicdy closed fields, there are 6 one parameter continuous families, and 119 
isolated algebras in total (when x = 3, there are 120). Over the real field, in addition to 
the algebras in the first list, we find 3 one parameter continuous families and 21 isolated 
algebras, which makes it a total of 9 one parameter continuous families and 140 isolated 
dgebras in this case. 

We follow Seeley's labelling of algebras when F is algebraically closed, i.e., each algebra 
is labelled by its upper central series dimensions plus an additional letter to distinguish 
nonisomorphic algebras. For example, the algebras having a center Z of dimension 3, and 
a second center Z2 of dimension 7 are listed as (37A), (37B), (37C) ,and (37D) - in total 
4 algebras. The aigebra in our list having the same label as  an aIgebra in Seeiey's list are 
always isomorphic. However, our presentations of the Lie algebras may be Merent fiom 
those of Seeley's. If this is the case, then an explkit isomorphism can be always found in 
the proof where the algebras arise, for example, see (27A) and (27B) in Chapter 5. 

When the ground field is R, we may get more algebras. In this case, we will use Li to 
denote those algebras that are isornorphic to L over C. For example, if we consider al1 the 
algebra~ with the upper central series dimension (37) over R, we get two more algebras, 
denoted by (37B1) and (37Di), meaning that over C, these two algebras are isomorphic to 
(37B) and (37D) respectively. 

For the oneparameter continuous families, a variable X is used to denote a structure constant 
that may take on arbitrary iralues (with some exceptions) in 1". An invariant I(X) is given 



for each farnily in which multiple values of X yield isomorphic algebras, Le., if I (XI) = I(X2), 
then the two corresponding aigebras are isomorphic and conversely. 

The 6 one-parameter continuous families over algebraicaliy dosed fields ( x # 2) are: 

(1234571) : X arbitrary. 
(12457N): X arbitrary, with invariant I(X) = X + A-'. 
(1357M): X # O. 
(1357N): X arbitrary. 
(13578): X # 1. 

1-x+x2 (147E): X#O,l,withinvariantI(X)=~&. 

Unlike in Seeley's List over C, we no longer List separately those algebras which are just 
special cases of the families of the same upper centrai series dimensions. To be exact, as 
(lZ3457G), (1245ïM), (1357K) and (147C) in Seeley's iîst are respectively the special cases 

of (1234571) by taking X = 1, (12457N) by t a h g  X = 0, (1357M) by taking X = 1/2, and 
(147E) by taking X = 1/2, instead of listing them separatdy, we include them in (123457I), 
(1357M) and (147E) respectively as special cases. That is why our list has 119 (for x # 3) 
isolated aigebras while Seeley's has 124, with the merging of the above 4 algebras and also 
the deleting of (13457H), which is not a Lie algebra at all. 

We also want to point out that in our list, (147E) becomes (247P) if we let X = O or 1, 
(1357s) becomes (235513) if X = 1, (1357M) becomes (2357B) if X = O. Although it is more 
natural to indude all these special cases in the corresponding continuous families, we still 
list them separatdy, due to their different upper central series dimensions. 

Over R, there are 3 additional one-paramet er families: 

(12457N2): 1 0. 
(1357QRS1): X # O, with invariant I(X) = X + A-'. 
(147E1) : X > 1. 

The reason we use the notation (1357QRSi) is that because over Cl if X = 1, this algebra 
is isomorphic to (13574); if X = -1, it is isomorphic to (1357R), and for d l  other X # O, it 
is isomorphic to (1357S,X > O). When X = O, it becomes (235733)- 

Some special features are: (i) Except in the case when x = 3, where we obtain an extra 
algebra (147F), the structure constants of all the algebras can be chosen to be integers and 
independent of the characteristic of the ground field; (ii) When the ground field is changed 
fiom C to R, we may get more dgebras. The only aigebta that has three different real 
forms is (13574). AU the other algebras have at most two nonisomorphic real forms. 

Caries [6] obtains a table giving the union of the tables of [24], [26] and [31] according to 
the weight systems. He considers in particular the Iïmit points of all the one parameter 
continuous families. Readers may refer to [6] for more details. We want to mention that 
the basis for each algebra in ou. list has been chosen so that it also diagonalizes a maximal 
torus. 



4.1 List of 7-Dimensional Indecomposable Nilpotent Lie Al- 
gebras over Algebraicdy Closed Fields (X # 2) 

Upper Central Series Dimensions (37) 

Upper Central Series Dimensions (35 7) 

Upper Central Series Dimensions (27) 

Upper Central Series Dimensions (257) 



Upper Central Series Dimensions (247) 



Upper Central Series Dimensions (2457) 



Upper Central Series Dimensions (2357) 

Upper Central Series Dimensions (23457) 

Upper Centrai Series I&amions (17) 

UDDW Central Series Dimensions (1571 



Upper Central Series Dimensions (147) 

- .  
[XII 2 2 1  = 2 4 3  [zlt 231 = - z 6 t  [zlt z5] = - 2 7 ,  

[ ~ 2 ~ 2 3 ] = 2 5 ,  [ 2 2 1 z ~ ] = b t  [ 2 3 t 2 4 ] = ( 1 - x ) 2 ~ .  

When A = O or 1, it is isomorphic to (247P). 
(147F): (for x = 3 only) 

[ 2 1 1 2 2 ]  = 2 4 9  [z1t  231 = -x6 t  [21 ,  2 5 1  = 2 7 1  

[ 2 1 t ~ 6 ] = 2 7 i  [ 2 2 t 2 3 ] = Z 5 t  [2zt  241 = 271 

lz2> 26] = Z7' [ ~ 3 , 2 4 ]  = 2 7 -  

Remark: (147C) in Seeley's list is a specid case of (147E) by taking X = 1. 

Upper Central Serics Dimensions (1457) 

Upper Central Series Dimensions (137) 



Upper Central Series Dimensions (1357) 



[ 2 1 , 2 2 ]  = 231  [ 2 1 * ~ 1 ]  = 2 5 ,  [ 2 1 t ~ ~ I  = 2 7 ,  

[ZI, x6] = z7, [22 9 231 = 261 [22 I 241 = 2 6 ,  

[22,  251 = 27, [22,2d = A z ~ ~  [23,24] = 27; 

When X = 1, it is isornorphic to (2357D). 
Remark: (1357K) in Seeley's list is a special case of (1357M) by taking X = 1/2. 

Upper Centrd Series Dimensions (13457) 

Remark: (1 

[21,2;]=z;+lli=2,3141 [ ~ 1 , ~ s ] = x 7 .  [ ~ 2 ' ~ 3 1 = z 6 ,  
[22' 251 = [ ~ 2 ,  261 = 271 [ ~ 3 >  241 = 

3457H) in Seeley's kt is not a Lie algebra, should be deleted. 



Upper Central Series Dimensions (12457) 

[ q ,  xi] = z;+li i = 2,3, [=il 241 = 26 ,  

[ 2 2 , 2 5 ]  = 26,  [239 251 = 2 7 ;  

[xi, z;] = 2;+1, i = 2,3, [XI$ ~ 4 1  = 26 ,  

[22,25] = 26 + 27, [=a, 251 = 27;  

[xi, ~ i ]  = x;+l, i = 2i 3i [ ~ i ,  241 = 26 ,  

[z2, x61 = 2?, [=si 241 = -27; 
[xi, xi] = zi+ll i = 2,3, [zl, x;] = =;+a, i = 4> 5, 
[z2, z61 = Z7, ["si 241 = -27; 
[zi, ~ i ]  = x;+li i = 2,3,  [zi, 241 = 26,  

[ ~ 2 > 2 3 ]  = 2 6 ,  [22 ,24]  = 2 7  

[z3,251 = 27; 
[21, zi] = 2;+l, i = 2> 3, [21, 241 = 2 6 ,  

[q, zi] = z;+l,i = 5,6,  [zs, 241 = -27; 
[zl, z;] = 2i+li i = 21 3> [21, 241 = 261 

[22  1 231 = 261 [22, z;] = 2;+ll i = 5i 6 
[ z l t z i ] = ~ i + i i  i = 2 , 3 , 5 , 6  [ 2 2 , ~ ] = 2 j + ~ , j = 3 , 4 ,  
[ ~ l , ~ i ]  = ~ i + l ,  i =  2 ,3 ,5 ,6  [ z ~ , z ~ ]  = z ~ + ~ ,  j = 3 , 4 ,  
[23,24] = 27; 
[2ii +à] = Zi+l, i = 2 ,3 ,5 i  6 [tir 241 = 2 7 ,  

[22r 241 = 2 6 s  [ 2 2 , 2 5 ]  = 27 ,  

[XI, zd = fi+i,  i = 2,3 ,5 ,6  [xl, 241 = ~7~ 

[ 2 2 , 2 4 ]  = 26, [231 x4l = 27; 
[x~,s;] = ~ ; + l ,  i = 2,3 ,5 ,6  [ z ~ ~ z ~ ]  = zj+a1 j = 3>4!  
[z3, 241 = 27 ,  [23i 251  = -z7; 

One parameter family, with invariant I ( X )  = X  + A-'. 
[21, xi] = 2i+l, i = 2 ,3 ,5 ,6  [q, z4] = 27, 
[22,24] = 26, [22i 251 = A271 

[23,24] = 27,  [23, 2 5 1  = -27; 
Remark: (12457M) in Seeley's List is just a specid case of (12457N) by taking A = 0. 

Upper Central Series Dimensions (12357) 



Upper Centrd Series Dimensions (123457) 

[xil zi] = Zi+lv 2 5 i 5 5, [zi, = 271 [z2,  231 = 2 5 ,  

[22r 241 = 261 [22,25] = A279 [23t 041 = (1 - A)27- 

Remark: (1234570) in Seeley's List is a special case of (1234571) with X = 1. 



4.2 List of 7-Dimensional Indecomposable Nilpotent Lie Al- 
gebras over the Real Field 

Each of the algebras in the list of Section 4.1 can be interpreted as a Lie algebra over R. 
In the case of infinte families, we have to restrict the parameter A to take real dues. The 
exceptionai algebra which occurs in the case x = 3 should be omitted. In addition to these 
algebras, we have the following 24 extra indecomposable algebras over the real field R. 

U D D ~ ~  Central Series Dimensions (37) 

U ~ w e r  Central Series Dimensions (257') 

Upper Central Series Dimensions (247) 

Upper Central Series Dimensions (2457) 



Upper Central Series Dimensions (2357) 

Upper Centrai Series Dimensions (147) 

Upper Central Series Dimensions (137) 

Upper Central Series Dimensions (1357) 

(1357Fl): [xi, 221 = 23, [XI, 231 = 2.1, [221 xi] = 0i+2, i = 31 4, 
[221251 = 27, [24, z61 = 27 ;  

(1357P1): [xi 221 = 23, [zi, x i ]  = xi+21 i = 315, [22123]  = 2 6 9  

[XI, 241 = 259  [z?,z6] = -27, [23 , 241 = 2 7 ;  

(135741): [ ~ l ,  221 = 23, [ ~ i ,  ~ 3 1  = 2 5 ,  [ ~ i ,  2s) = 2 7 ,  

[22 1 231 = 26 1 [22 1 241 = 26 1 [ 2 2  1 24 = -27; 

(1357QR&): One parameter family, with invariant I(X) = X + A-' and X # 0. 
[21 1 221 = 23  [ ~ 1 1 2 3 ]  = 2 5  r [ 21>24]  = 2 6  

[~1 ,25]=27 ,  [ ~ 2 > 2 3 ] = - ~ 6  [~2,24]  = 2~ 1 

[ ~ 2 ~  261 = A27 [23,24] = (1 - x)27- 

When X = 1, (1357QRs1)S (13574) over C; 
When X = -1, (1357QRSl)~(1357R) over C. 
(1357QRS1, X # O, f 1) becomes (1357S, X > 1) over C. 
When X = O, it becomes (2357D). 



U ~ v e r  Centrd Series Dimensions f 12457) 

Upper Central Series Dimensions (12357) 

Upper Central Series Dimensions (123457) 



Chapter 5 

Two-Step Nilpotent Lie Algebras 

ui this chapter, we consider all the central extensions of Abelian algebras - Nstc, NSv5 and 
N4,4 - over both algebraicaliy dosed fields of characteristic # 2, and over the real field R. 

Central extensions of Ns16 = e: 

In this case, we have Aut Nsg = GLe. To make sure that the central extension does not 
have any Abelian direct faetors, we require that the skew-symmetric matrix corresponding 
to the 2-cocycles to be nonsingular, therefore by a classical result on the canonical form for 
nomingular skew-symmetric matrices (see [16] for example), we can immediately obtain a 

representation in Ul(g)/Aut g as A12 + AM + As6, which corresponds to the algebra (17). 

Therefore the corresponding central extension of NG16 of dimension 7 over any field is: 

Central extensions of NSp5 = 05: 



Assume a # O. Choose 021 = a31 = a41 = a51 = O. Then make b  = c = d = O by mlving for 
a23, a24 and a25  respectively. To fix b, c, d, we require that a23 = az4 = a25 = 0- 

Choose al2 = 432 = a42 = 452 = O, we can make e = f = g = O by solving for ~ 1 3 ,  alq and 
al5 respectively. To fix e, f ,g ,  we require that a13 = a14 = a15 = 0. 

Now 

i f o n e o f h , i , j # O ,  t h e n r n a k e h # O , a n d i =  j = O a n d g e t g e t c a s e l :  a # O ,  h f  O, while 
b = c = d = e =  f = g = i =  j=O,i .e .  Al =[1,0,0,0,0,0,0,1,0,0].  

If all h = i = j = O, then we get case 2: only a # 0, and all the others are zero, or 
A2 = [1,0,0,0,0,0,0,0,0,0]. 

- Case 1: Al = [l, 0,0,0,0,0,0,1, O, O]. Choose 013 = al4 = a15 = a23 = a24 = a25 = a31 - 
a 3 2 = a 3 5 = a l 1 = a 4 2 = a 4 5 = O ,  wewiUfix b = c = d = e =  f = g = i =  j = 0 .  

Assume B = [O,b,c,d,e, f ,g ,h , i , j ] .  One of d ,g , i , j #O.  



j -+ aaia55 + aqqja55; 

Subcase 1.1: One of d ,  g # O. Make d # O and g = O. Fix g = O, we require that al2 = 0. 
Assume al1 = a51 = O. Make b = c = O by solving for a53, and as4 respectively. Make a = h 
by solving for a52, and further make them to be zero by subtracting a multiple of A from 
B. 

Subcase 1.1.1: One of i, j # O. Make i # O and j = O. 

Now by taking al2 = a34 = a52 = 053 = a54 = 0, a = O -+ O; b = O + O; c = O + 0;  
d + allda55; e + az2(eaW+ fala); f + a z ~ f a 4 4 ;  g = 0 + O; h = O -+ O; i + a33ia55; 

j = O + O .  

Now if f # O, make e = O by solving for a43, to get a representative: 

if f = O, depending on e = O or not, we would have two representatives 

and 

B3 = [0,0,0,1,1,0,0,0,1,0]. 

Subcase 1.1.2: Both i = j = O. Taking al2 = a52 = a53 = 454 = 0, we have a = O + 0; 
b = O -+ O; c =  O + O; d  -t altdu5s; e -t a22(ea33+ fu43); f + aZ2(eas4+ fad4);  g = O  + 0; 
h = O + O ; i = O + O ;  j = O + O .  

If one of e, f # O, make e = 1 and f = O to get a representative 

If both el f = O, then get Bs = [O, 0,0,1,0,0,0,0,0, O]. 

Subcase 1.2: Both d = g = O. Then one of i, j # O. Make i # O and j = O. Taking 
a34 = O, we have a = O -t O; b -+ a l l ( b a ~  + COIS) + a21(eaU + fa43) + ~ ~ ~ ( - i a ~ ~ ) ;  
c al1 ( e a u )  + a21 ( f a44) ; d 0; e -t a12 (bu33 + ~ ~ 4 3 )  + a22 (ea33 + f ~ 4 3 )  + a52 (-ia33) ; 
f -t a12(caM) + a22 f a44 g + O; h + a=(ha4 + ia5& i + a33ia55; j = 0 -+ 0. 

Make b = e = h = O by solving for as1 , 452 and ag4. I f  one of cl f # O, then make c = 1 
and f = O, we get a representative Bs = [O, 0,1,0,0,0,0,0,1, O]. If both c = f = O, then we 
have Bs = [0,0,0,0,0,0,0,0,1, O]. 



Care 2: A2 = [l, 0,0,0,0,0,0,0, O]. To fix A up to a scalar, we require that al3 = al4 = 
a15 = a23 = a24 = a25 = O. Let B = [O, b, c, d ,  e, /, g, h, i, j ] ,  we have 

g -b all(ba35 + C a 5  + da55) + a22(ea35 + f a45 + ga55) + 032 (iaS!j)~52(-ia35) ; 

Makeg=Obysolvingfora32,e=Obya51,d=Obyu31, b=Obya51 .  Nowoneofc, f # O ,  
make c = 1 and f = O. We can always make a = O by subtracting a multipIe of A from B. 
So we get the representative for B as 8, = [O, 0 ,1 ,0 ,0 ,0 ,0 ,0 ,1 ,  O] 



Now we are going to  prove that 

(1) The representatives Al A Bi, Al A B3, and Al A B4 are in the same orbit, and correpooding 
to (27B). 

Consider the corresponding algebraç: 

1 = 26, [zl, 25) = 27, [23,24] = 261 

1 = 27, (231 251 = 27; 
, = Zg, [zl, XS] = 2 7 ,  [23, z4] = z6, 
' = 27, [23,25] = 27; 
= 26, [ x ~ ,  251 = 2 7 ,  [ ~ 3 , 2 4 1  = 269 

1 = 27. 

(2) The representatives Al A B2, Al A Bs, Al A B6 and A2 A B7 are al1 in the same orbit, 
conespondhg to (27A). 

Consider the corresponding algebras: 

(2.4) (2.1): Taking 21 + - x i ,  2 2  -t 25 ,  xs + -21 + 23, 2 4  + z2 + 24, 
2 5  3 -24,  26 3 -27, 27 + -26; 

-(2.4)-(2.2): Taking21 + z l ,  2 2  + 25 ,  2s +zs, 2 4 j z 2 ,  2 5  + x 4 ,  

X6 -) 2 7 ,  27 3 26; 

(2.4) 2 (2.3): Taking 21 + 23, 2 2  + 2 5 ,  23 + z2, 2 4  + -24, t s  + 21, 

26 + 27, 27 -t -xg. 

Now alI we need to prove is that (1.3) and (2.4), which correspond to (27B) and (27A) 
respectively, are not isomorphic. We can compare their orbits again, but here instead, we 

use the ad hoc argument used by Seeley [31] to compare the so called minimal numbers. 

For a given algebra, we consider ail the nonzero elements in g/[0, g] and look for an ordered 
basis {xi + [g, g], - - , 2, + [g, 01) with the smallest 



(called the minimal number) in Iexicographic order, where Im(a) is the image of the adjoint 
image of a. This is obviously an invariant for Lie algebra, and it  offers us a very effective 
way to distinguish two algebras. 

and dimIm(zl) = 2, and we can prove that 

is the minimal number. I t  is easy to see that the first 4 numbers dim Irn(z2), dimIm(z3), 
dim Im(x4), dim I m ( x 5 )  are already the srnaIlest, being 1. 

Consider the image of z = z l  + a22 + bz3 + cx4 + dz5.  

therefore any element containing properly 21 wdi have an image of dimension 2. So 
(1,1,1,1,2) is the minimal number. 

In (27B), the minimal number is going to be (1,1,1,2,2), with the corresponding ordered 

b=is as ( ~ 3 ,  24,zs, 21,22}. 

Hence (27A) and (27B) are not isomorphic. 

Therefore the central extensions of Ns,s of dimension 7 over any field (not necessarily alge- 
braically closed) are: 

Remark: The correspondence between the above and the algebra in Seeley's list are: (27A)- 
2,7A: xi + -e, 2 2  + b, 23 + c, 2 4  -t a, xs -t d, z e  + g and 2.r -t f; (27B) -t 2,7B: 
z l - t d + e , z ~ + 3 a + b - c , z ~ + - e , z ~ + 2 a + 2 b - c - d - e , z ~ + - a , z ~ - t - f + g  
and 2 7  + f .  

Centrai extensions of N4,4: 



c + aE:: + bE:: + CC:: + dçij + ex:: + flg; 
d + aXff + b~:: + CC:: + dCW + e ~ z  + f ~ = ;  

e -t aX:: + bc:: + CC:: + dçz + eX:: + f 2:; 

f +a~;+bXg+cE:+dCg+eEs:+fx~;  

Now let A = [a, b,  c, d, e, fl. It is obvious that one of a,  b ,  c, d, e, f is nonzero. Make a = O 
and b = 1 to get A =  [O, 1,c,  d, e, f l .  
Let a21 = a41 = a42 = a43 = 0, we can make c = d = f = O by solving for a34, 012, al4 
respectively, and get A = [O, 1 ,0 ,  O, e, O]. 

Depending on e = O or not, we can obtain the two representatives Al = [O, 1,0,0,0,  O] and 
A2 = [O, 1,0,0,1,  O]. It is easy to check that Al and A2 are indeed in dinerent orbits. 

Case 1: A = [O, 1,0,0,0, O]. To fi A, we require that a = O + Ci: = 0; b = 1 + = i; 
c = o + C : ~ = O ; ~ = O + X : : = O ; ~ = O + Z : ~ = O ;  f = o + ~ f , = o .  
We may just choose al2 = al4 = a32 = a33 = a34 = O and a13 = -l/a3i. 

Now assume that B = [a, O, c, d, e, fl, under the group action, 

a + a~:: + CC:: + dCi3 + ex:: + f a3ia42; 

As one of a ,  c, d, e, f # 0. We may assume a = 1 in B, hence 

A=[0,1,0,0,0,0],  B = [ l , ~ , c , d , e ,  f]. 

If e # O, then make a = c = d = f = O by taking 424 = 042 = 1, a22 = a41 = q4 = 0, and 
solve for azl, all, a23 and a43 to get the representative 

Case 1.1: A = [0,1,0,0,0,O],B = [O,O,0,0,1,0]. 

We cannot make both d = f = 0, for otherwise the automorphism g o u p  is going to be 
singular. Take a 4  = O and a24 = a42 = 1, make d = O by solving for a22 ,  make c = O by 
solving for al1 . Then by taking al1 = a23 = = 0, we have a + f aal a42 ; b = O + O (by 
subtracting a multiple of A f?om B); c = O -+ O; d = O + O; e = O -+ O; f + al3a24. 



Depending on f = O or not, we get two representatives for B: Case L2:B = [O, 0,0,0,0,1]; 
and Case 1.3:B = [1,0,0,0,0,1]. 

Case 1.1: A = [O, 1,0,0,0,0] and B = [0,0,0,0,1,0]. To fix A and B, we require that 
a12 = 0x4 = 0 2 1  = a23 = a32 = a s  = a41 = 043 = a« = O, al1 = (a13a3i + l)/a13, and 
a24 = - l / ~ ~ ~ -  

One of a, c # O, we may assume a = 0, for otherwise we can solve for a22 to make it to be 
zero. So c # O. Set al3 = O to get a + calla42; b = O + O; c + O; d + O; e + O; f -+ 0. 

Then we have the representative C = [1,0,0,0,0, O], with (1) A h B A C corresponding to 
(37B). 

Case 1.2: A = [0,1,0,0,0,0], and B = [0,0,0,0,0,1]. To fi A and B (up to a nonzero 
scalar), we require that a12 = 031 = a32 = a u  = a41 = a42 = 0, , alla22a~a44 # O. 

Now consider C = [a,O, c,d,e,O]. Under the group action, a -t aalla22; b = O += O 
(By subtracting a multiple of A from C); c + a(alla24 - ~ ~ ~ a ~ ~ )  + ca11a4~ + ea21a44; 
d + a(-al3a22) + c(-almz) + da22a33 + eG22a43; e + u ( - u ~ ~ u ~ ~ )  + ea22q4; f = O + O 
(By subtracting a multiple of B from C). 

One of a, d, e # O. If a # O, taking a21 = a43 = O and make c = d = e = O by solvi~g 
for ~ 2 4 ,  a13 and al4 respectively to get a representative of C: Cl = [ l ,  0,0,0,0, O], with (2) 

A l\ B h Cl corresponding to (37B). 

If a = O and e # O, then we can make c = d = O by solving for a21 and a43, and get the 
representative C = [O, 0,0,0,1, O], with (3) A A B A C corresponding to (37B) 

If a = e = O, then d # O, depending on c = O or not, we may obtain two representatives 
Cl = [O, 0,0,1,0, O] and Ca = [O, 0,1,1,0, O], with (4) A A B 1\ Cl corresponding to (37A) 
and (5) A A B A C2 corresponding to (37C). 

Case 1.3: A = [0,1,0,0,0,0] and B = [1,0,0,0,0,1] . To fix A and B (up to a nonzero 
scalar) we require that al2 = ai4 = a24 = 031 = 032 = a34 = O, a11 = a33a44)/a22, 

al3 = -a33a42/a22* 



If e = O, then one of a, C, d # O. If c # O. Make a = f by solving for ara, and further make 
them to be zero by subtracting a multiple of B from C. Then taking a42 = O and depending 
on whether d = O or not, we may get t ao  representatives: (6) C = [O, 0,1,0,0, O] (A A B A C 
corresponding to (37C)) and (7 )  C = [O, 0,1,1,0, O] (A I\ B A C corresponding to (37B1)). 

If c = O, then we may assume a = 0, for otherwise a # O, make d = O to get C = 
[1,0,0,0,0,0], which is in the same orbit as (2). If a = 0, thui d # O to get (8) C = 
[O, O, O, 1,0, O] (corresponding to  (37C)). 

If e # O, make a = f by solving for a23, and further make them to be zero by subtracting 
a mdtiple of B from C. Make c = O by solving for a21,  d = O by a43. Then we get the 
representative, C = [O, 0,0,0,1,  O], with (9) A A B C corresponding to (37B). 

Case 2: A = [O, 1 ,0,0,1,  O]. To fix A (up to a scalar) , We rnay choose 0 2 3  = a33 = a32 = 

a43 = a u  = a s  = O, a24 = -1/a42, 413 = -1/a31, a41 = a14a31a42, 021  = a31(a12 + 
~14a42a22)/~42. 

Now assume B = [a,O,c,d,e, fl. After fixing A, we have 

One of a ,c ,d ,e ,  f # O, we cari make a = 1. Taking al4 = O, then 041 = O and a 2 1  = 
alza31. Make c = O by choosing al1 = O.Then by fixing al1 = al4 = 422 = O, we have 
a = 1 + Ci: + ea42al2a31+ f a31alz; b = O + a12/~42;  c = O -t O; d + O; e -+ - u ~ ~ / u ~ ~  - e; 

f -, ll(a31a42)- 

Make b = e by sloving for alz, and fùrther make them to be zero by subtracting a multiple 
of A fiom B. Now taking al1 = a12 = a14 = 022 = O l  and get a = 1 + fasla4z; 6 = O -, 0; 
c = O + 0; d = O -+ O; e = O + O; f + l / ( a ~ ~ a 4 ~ ) .  

Depending on whether f = O or not, we have the following three representatives: (i) 
f = O, then a = O and make f = 1, B = [0,O10,0,0,1]; (ii) f < O, make a = -f = 1, 
B=[l,O,O,O,O,-l];(iii) f > O ,  m a k e a =  f =1, B=[1,0,0,0,0,1] .  

Subcase (i): It can be easily shown that it is in the same orbit as Subcase 1.3. So we just 
omit it. 

Subcase (ü): A = [O, 1 ,0,0,1,  O], B = [1,0,0,0,0, -11. To fix A and B (up to a scalar), we 
require that al1 = a21 = a31 = a22 = 424  = a33 = as4 = a 4  = 0, a12 = -a43, a13 = 442, 

ai4 = -1/a32, a23 = -an, or1 = l /a32 .  

Now consider C = [a, b, c, d, O, O]. Under the goup action, we have a + car3/a32; b -+ 
c(-ad2/a3& c + c; d + aas~a43 + b(-ataa32) + CE:: + dG2; e + b + ca42/a32; f -+ 

-a + ca43/a32- 

If c # O, make a = - f by solving for a43, and fùrther make a = f = O by subtracting a 



multiple of B fiom C. Similady, make b = e by solving for 442, and further make b = e = O 
by subtracting a multiple of A fiom C. Then taking a43 = a42 = O, we have a = O + 0; 
b = ~ - t ~ ; c + c ; d + d ~ ~ ; e = O + ~ ;  f =O+0.  

Then we get the following representatives for C: (IO) if d = O, then C = [O, 0,1,0,0, O], 
with A A B A C corresponding to (37B1); (11) if cd > O, then C = [0,O, L,l,O,O], with 
A A B AC corresponding to (37D); (12) if cd < O, then C = [O, 0,1, -1,0, O], with A A B A C  
corresponding to (37D1). 

If c = O, then a = -f = b = e = c = 0, and d # O. We get the representative C = 
[O, 0,0,1,0, O], with (13) A h B /\ C corresponding to (37B1). 

Consider C = [a, b, c, d, O, O]. Then a + au:la32/a41 + ba11a32 + ~ ( a ~ ~ a ~ ~  + a41a43); b + 
c + c(afl-ail); d + 

b(-alla32a43/a4l+a3~a~2)+~(~~33~~3)+d(a:1a:2/a:1-~2) ; e = O * a(-allaX!) -ba4la32+ 
c(-alla43 - a41a42); f = O -aa4la32 + b(-aila32) f c(-011042 - 041a43); 

If c = O, then when at  least one of a ,  b # O, make d = O by solving for a42- Now depending 
on the values of a, b, we can make either a = f or b = e, and fiirther reduce them to be 
zero, and by choosing properly the values of a l l ,  we may obtain the two representatives 
C = [O, 0,0,0,1, O], which is the same as (9), so omit it; and (14) C = [O, 0,0,0,0,1]. When 
a = b = O, then d # O, we get C = [O, 0,0,1,0,0], which is the same as (13), so omit it. It 
can be shown that (14) corresponds to (37D). 

If c # O, make a = f and b = e by solving for a43 and a42 respectively, and further 
reduce them to be zero by linear combination. Then take a42 = a43 = 0, if d = O, we 
get the representative C = [O, O, 1, O, 0, O], which is the same as (IO), so omit it. If d # O, 
depending on whether cd > O or cd < O, we obtain two representatives C = [O, 0,1,1,0, O] 
and C = [O, 0,1, -1,0, O], which are the same as (11) and (12) respectively, so omit them. 

Now we consider ail the 14 algebras: 



A) We will show that ( l ) ,  (2), (3) are all isomorphic to (37B). 

C) (5), (6) and (8) are isornorphic to (37C). 



minimal number (1,1,1,3) ,  corresponding to the ordered ba- 

sis {xi, 23i 24,223; 
minimal number (1,1,2,2) ,  corresponding to the ordered ba- 
sis (21,  24,  22,233; 
When the field is R, the minimal number is (2,2,3,3), cor- 
responding to the ordered basis {x2, z s , z l l  z4}; when the 
field is algebraically dosed, it is the same as (37B); 
minimal number (1,2,2,3),  corresponding to the ordered ba- 

sis {x1,23,z41 22); 

minimal number (2,2,2,2), corresponding to the ordered ba- 

sis (21 i X 2 , ~ 3 , ~ 4 1 -  
When the field is R, the minimal number is (3,3,3,3) ,  cor- 
responding to the ordered basis {xl, z2,23, z4); when the 
field is algebraicdy dosed, it is the same as (37D). 



Therefore the central extensions of N4,4 of dimemional 7 are: 



Chapter 6 

Algebras over Algebraically Closed 
Fields 

In this chapter we will consider the central extensions over algebraicdly closed fields of 
characteristics # 2. For those algebraç whose central extensions give rise to new algebras 

over the real field, their proofk can be found in Chapter 7. 

Some of the algebras we obtain have different presentations fiom those of Seeley, in that 
case, an isomorphism is provided. 

6.1 Extensions of CDimensional Algebras 

AU the 7-dirnensiond nilpotent Lie algebras without any Abelian factors have at most a 3- 
dimensional center (considering the dimension of F)). So we just consider the central 
extensions of algebras of dimension at Ieast 4. 

Central extensions of : 

N ~ J  : [21, zi] = 2i+lr i = 2,3; 

Z ( g ) :  24; [g, g]: ~ 3 ~ 2 4 ;  Z2(g): Ca4 = CM = 0; W(H2):  Ciz = CI3 = 0; dim Hz: 2; 

As the cohomology group is of dimension 2, then G3(H2(g, F)) = O, hence N4v2 has no 
central extensions without Abelian factors of dimension 7. 

Central extensions of N4,3: 

Z(G): zs, z4; [g, g]: 23; z ~ ( ~ ) :  CM = O; W ( H ~ ) :  C12 = 0; dim H f :  4; Basis: Ais, Ai4, A23, 

A24; 

Group action: aAi3 + M l 4  + cAa3 + dA24; 



One of a, c # O and one of b, d # O in A A B A C, where A, B and C are of the form 
4A13 + bAi4 + cA23 + dA24. 
Let A = [a, b, c1 4, B = [al, L i ,  c i ,  dl], C = [az, 62, ~ 2 ,  da]- 

As one o f  a,  c # O ,  we can assume that a = 1. B y  subtracting scalar multiples of A fiom B 
and C, we rnay let a1 = a2 = 0. 

We may assume that at least one of bl and bq iS not zero. For otherwise, one of c l ,  cz is 

nonzero, we can make bl or b2 # O ,  as bi + c;azla34 + 
Now we rnay assume b1 # O (simply by switching B and C if necessary) and make b2 = O 
(by subtracting a scalar multiple of B nom C). 

Case 1: cz # O.  By making a = bl = c2 = 1, we may let, with respect to the wedge product, 

Considering the action of the group on A, B, C, we have 

W e  can make a2 = b2 = O by  letting a21 = O and d2 = O b y  solving for az4. Also rnake 
dl = O b y  solving for al2, and what is left can be changed into 

And depending on whether d = O or not, we get two representatives for A / \  B C: ( 1 )  A = 
[i, 0, O, O ] ,  B = [O, 1,0, O ] ,  C = [O, 0 ,1 ,  O] (corresponding to (357B)); and ( 2 )  A = [1, 0 ,0 ,1] ,  
B = [O, 1,0, O ] ,  C = [O, 0 ,1,  O] (corresponding to (357C)). 

Caçe 2: cz = O. Then d2 # O. And get, WLOG, 

Acting the automorphism group on A A B A C ,  we have 



Let a21 = O, we make bz = O, Also make c = O by solving for al2, and get, 

Depending on whether ci = O or not, we get the following two representatives for Ah B /r C: 
(3) A = [l,  0,0, O], B = [O, 1,0, O] and C = [O, 0,0,1] (corresponding to (357A)), and (4) 
A = [l,  O, 0, O], B = [O, 1,1, O] and C = [O, O, O, 11. But we can show that (4) and (2) are in 
the same orbit. 

By comparing the orbit, aU the algebras (357A,B,C) can be easily showed to be àistinct. 

Therefore the corresponding central extensions of N4,3 are: 



6.2 Extensions of 5-Dimensional Algebras 

Central extensions of N~J :  

Z(8): [glg): 23, 24 ,  z2(g): = C45 = 0, C15 - CZ4 = 0, C25 + C34 = 0; w(H'): 
Ct2 = Cl3 = C14 = O; dim H2: 3; Basis: A15 + A25 - Am, &3; 

a + aa& + baflaz1; 

b + bar,; 
3 2 c -t ca:, + 2ba:1a42 - ballc& - 2aa:la21 - ballaal; 

Consider the wedge product of A = [a, b, c] and B = [a1, bl, cl]. 

One of a, b, al, bl is nonzero, can always choose a # O (for example, if both a = al = O, then 
b or b1 # O. Make a or ai # 0, and switchùig A and B if necessary). So assume A = [l, b, cl, 
and by subtracting fiom B a multiple of A to get B = [O, bi, cl]. 

Case 1: bl # O. Then take B = [O, 1, cl] and A = (1, O, cl. Observe the group action on B, 
we have 

B = [a:la21 t a:, ~ 1 4 ~  + 2&a42 - .11az2]- 

Make both al = cl = O by solving for a21 and a42 to get B = [O, 1, O]. Consider again the 
group action on both A and B, we have 

Now we can make c = cl = O by solving for a21 and ~42. By subtracting a rnulitiple of A 
from B, we can also make al = O and get 

A = [1, O, O], B = [O, 1, O]) 

corresponding to  (23457G). 

Case 2: bl = O. Then cl # O and get B = [O, 0,1] and A = [l, b, O]. Consider the group 
action on both A and B, we have 

Now depending b = O or not, we can get 

A = [1, O, O], B = [O, 0,1], 

A = [O, 1, O], B = [O, O, 11, 



as when b # O, we can make a = O, corresponding respectively to (234573) and (23457F). 

The non-isomorphisrn between ail the algebras can be easily proven by cornparhg their 
orbits. 

Therefore the corresponding central extensions of N5.i are: 

The central extensions of N5,2,1 can be found in chapter 2, Example 6. 

The central extensions of can be found in chapter 2, Example 1. By switching 23 
with 2 4 ,  and a6 with 2 7  in (2357AlB,C), and in (2357D) by taking zl + 2zi fx2,  zl+ 21, 

23 + -ka +4x4, 2 4  + 2z3, 2 5  3 4x5 + 2 ~ ~ ~  x g  + 2 x 7 ,  2 7  + 8z6, we get exactiy the same 
representation as in Seeley's paper. 

The central extensions of can be found in chapter 7. 

Central extensions of N5,3,1 : 

z(e): 2 5  ; [g1 g]: 2 5 ;  Z2(g): C I S  = C15 = C35 = C45 = 0; w ( H 2 ) :  C l z  = C3q = 0; 

It is obvious that all  the elements in E12 (g, F) have x5 in their kernels. So there is no desired 
centrai extension. 

The central extensions of N5,S,2 can be found in chapter 7. By the following transformations, 
we can get the ëxactb the same presentations as in Seeley's paper. In (247C), switch 
and 27; In (247D), take zl + a, 2 2  + cl 23 -+ b, 2 4  + e, 2 5  + dl 26 + g and 2 7  + f ;  In 
(247E), switch 26 and 27; In (247F), take x l  + a, 2 2  + - b  + cl 23 -t b + c, z4 + -d + e,  

z 5 + d + e , z 6 +  f+g,andz7+-f+g;In(247G),zl+a+b,z2+b+c,z3+b-c, 
x 4 + d + e , z s + d - e 1 z 6 - t  f + g a n d x 7 +  f - g ; I n ( 2 4 7 H ) , t a k e x i + o + b + c ,  
z2 -t 2(b + c), 23 -+ -2(b - c), 24  + 2(d + e), 2 5  + -2(d - e), ze + 4(f + g) and 
2, -t -4(f - O ) ;  In (247J), take zl -b -a+c, 2 2  + b, za + c, 2 4  -+ -d, 2 5  + -e, 26  + -g 
and 2 7  + - f; In (247K), switch za and 27; In (247M), z l  + a, z~ -+ c, 23 + -6, 24 + el 
2 5  3 -d, 2 6  -+ f and z7 + g;  In (247N), switch ze and 27; In (2470), take z l  -t -a, 
2 2  -t -c, 23 -t b,  x d  + e, zs -t -d,z6 -t -g and 2 7  + f ;  In (247Q), take z l  + a, 2 2  + c, 
23 + -b,  2 4  -t e ,  x 5  + -d, ze 4 f and 27 + -9. 

Central extensions of 



Group action: aA14 + b&s + + dA25; 

Let A = [a, b, cl d] and B = [alt bl, cl, dl]. WLOG, we assume that a # 0, and let A = 
[ l ,  b ,  cl d] and B = [O, 61, ci, di]. 

Case 1: dl # O. Then assume B = [O, bl, cl, 11. We have al = O + O; bl -t blallass + 
a21055 = O; (Solve for a2i.) cl + ~ ~ a ~ ~ a ~ ~ ;  dl = 1 + a21a55 = 1- 

Depending on whether ci = O or not, we get BI = [O, 0,0,1] and Ba = [O, 0,1,l] .  

Subcase 1.1: With Bi = [O, 0,0,1], we assume A = [l, b, c, O]. Then a = 1 -t a:,azz = 1; 
b + 411045 + bulla55 = O (Solve for u ~ ~ ) ;  c -t ca11a22; d + O. 

Depending on whether c = O or not, we get Al = [l ,  0,0,0] (A1 A B1 corresponding to 
(2457B)) and AI = [ l ,  0,1, O] (A2 A B1 corresponding to (24571)). 

Subcase 1.2: With B2 = [O, 0,1,1], assume A = [Il b, cl O]. Similar discussions would lead 
to Al = [l ,  0,0, O] (Al ri B2 correspondhg to (24573)) and A2 = [l, 0,1, O] (A2 h B2 corre- 
sponding to (2457J)). 

Case 2: dl = O. Then B = [O, 61, ci, O]. 

Subcase 2.1: If cl # O, then depending on whether b1 = O or not, we can get two represen- 
tatives Subcase (2.1.1) Bi = [O, 0,1, O] and Subcase (2.1.2) B2 = [O, 1,1,  O]. 

Subcase 2.1.1: With Bi = [O, 0,1, O], we may let A = [LI b ,  O,d], and rnake b = O, then d # O 
to get a representative A = [l, 0,0,1] (A A Bi corresponding to (2457H)). 

Subcase 2.1.2: With Bz = [O, I l l ,  O], we rnay assume that A = [l, b, O, dl, then make 6 = 0: 
and depending on whether d = O or not, we get two representatives for A: Al = [ l ,  0,0, O] 
(Al A B2 corresponding to (24570)) and Az = [l, 0,0,1] (Aa A B2 corresponding to (2457K)). 

Subcase 2.2: If cl = O, then b1 # O. Assume B = [O, 1,0,0] and A = [ l ,  O, c,dj. Now 
a = 1 -t = 1; b = O + allads + daaiass; c + calla:,; d + da22ass. 

We easily get four representatives for A: Ai = [l, 0,0, O] (Al AB corresponding to (2457A)), 
A2 = [ i l  O , @ ,  11 (A2 A B corresponding to (2457C)), A3 = [l, 0,1, O] (A3 A B corresponding 
to (2457F)) and 4 = [ l ,  0,1,1] (4 A B corresponding to (245m)).  

It is fairly straightforward to show that ali the dgebras are distinct by comparing their 
orbits. 

Therefore the corresponding central extensions of &,3,3 are: 



Remark: By taking zl + a, 2 2  -t Q, z3 + c, t 4  + d, z5 + -e, 2 6  + f + g and t . ~  + -g,  

we will get the exact presentation of (2457J) as in Seeley's paper. 

The central extensions of NsP4 can be found in Chapter 7. 



6.3 Extensions of 6-Dimensional Algebras 

The central extensions of can be found in Chapter 2, Exampie 3. Notice that 
(123457G) of Seeley is just a special case of (12345TI) by taking A = 1. 

Central extensions of N6,1,2: 

z(g): 26; 91: 23, 4 ,  25, 26; Z2(g): C16 = C26 = C35 = C36 = C45 = C46 = C56 = 
O. Cu + C2S = O, CIZ = CZ4; W(HZ): CIZ = C13 = CI4 = CZ5 = O; dimHz: 2; Basis: 
A15 + AM, A23; 

It is obvious that aU the cocydes have 26 in its kernel. So there is no central extension of 

N6.1,~ at 

Central extensions of fillls: 

z(g):  26; [gl 81: 23, 24, 25 ,  26; zz(g): c 2 6  = c35 = c36 = c 4 5  = c 4 6  = c 5 6  = 0, c34 + 
C25 = 0, C16 = C2(; W(H2): Cl, = Cil = Ci4 = Cls = O; dimH2: 3; Basis: Ale + 
A24t A23, A25 - A34; 

Group action: a(Als + Aar) + BAz3 + c(A25 - A34; 
a + au!,; b -t bar l  + c ( ~ a ~ ~ a ~ ~  - allai2 - a!la21); c + c&; 

We have a # O. 

Case 1: c = O. Then b goes to bail, get [aa&, bar1, O]. SO i f b = O, we get [1, 
correspondig to (123457D); And if b # O, we get [l, 1, O], conesponding to (1234573); 

Case 2: c # O. Make b = O by solving for 4 2  and get [aa:l, O, ca?l], and make it to [1, O,  11, 
corresponding to (123457F). 

Therefore the corresponding central extensions of are: 

Central extensions of Ne,l ,r: 



Group action: aA14 + bA15 + c(Ala + A2r + A3s) + dAzs + e(A26 - A%): 

3 2 3 a + 4 1  + ~ ( 2 a 2 1 4 ~  + a52af1) + e(all%l - 2a4zall - 41a21a52 + a ; 1 ~ 1 +  aj2all); 
2 2 -aa21a:l + ba:l + c(a11-5 - allazl + a:1a31) + da21a:l f e(a2la65 + a2la:larl); 

c + ca?, + ea:la21; 

d + c ( - ~ i a : ~  + &a52) + da:l + e(a:l%s - 2a42ai1 - a:1a21a52 + a3141 + a:1a5~ + &ail); 

e + ea:,; 
One of c , e #  0. 

Case 1: e # O. W e  can make a = c = d = O by solving for a51, a21 and -5 respectively. What 
is left is b, and it goes to bat1 after we fix a ,  c, d. So we have two different representatives in 
this case: [O, 0,0,0,1] (b = O) (corresponding to (12457F)) and [O, 1,0,0,1] (corresponding 
to (12457G)) (b # O); 

Case 2: e = O. We should have c # O. Can make c = 1, and a = b = d = O by solving for 
a52, 0 6 5  and a21 respectively. And we have iii) [O, 0,1,0, O], corresponding to (124573). 

Therefore the corresponding centra1 extensions of are: 

Central extensions of N6,2,1: 

Group action: aAle + bAi3 + c(Aa5 - 4%): 

Case 1: c = O. We can get representatives [l, 0, O] (when b = 0) ( corresponding to 
(123457A)) and [l, 1, O] (when b # O) (corresponding to (l23457B)). 



Case 2: c # O. Make b = O by solving for a42 and get [1,0,1] (corresponding to (123457C)). 

Therefore the corresponding central extensions of are: 

Central extensions of N6,2,2: 

It is obvious that there is no central extension. 

The central extensions of can be found in Chapter 7. By taking zl + a, x2 -i b, 
23 -+ d ,  2 4  -+ C, 2 5  + e, x6 + f and X G  + g, we can get the exact presentations of 

(12357A), (12357B) and (12357C) as in Seeley's paper. 

Central extensions of 

Case 1: e = O. Then 6 # O. Make a = c = O by solvuig for a65 and a52, get two 
representatives [O, 1,0,0, O] (when d = O) (corresponding to(12457A)) and [O, 1,0,1, O] (when 
d # O) (correspondhg to (IMWB)). 

Case 2: e # O. Make b = c = d = O by solving for a21, a42 and QS, get two representa- 
tives [O, O, O, O, 11 (when a = O) (corresponding to (12457C)) and [l, 0,0,0,1] (when a # 0) 
(corresponding to (l2457D)). 

Therefore the corresponding central extensions of Nstztr are: 



The central extensions of &,2,s can be found in Chapter 7. 

Central extensions of NslzVs: 

Z ( g ) :  zg; [g, g]: 24,  E S ,  26;  Z2(g): Clb = C26 = C36 = C45 = Cd6  = C56 = O, C34 -C25 = O; 
W(H2): C12 = C13 = C14 = 0; dim H2: 5; Basis: Ais, A23, Az4, A25 + AS, A35; 

It is obvious that all the elements in H2(g, F) have x6 in its kernel. Therefore there is no 
central extension of N6,21e. 

Central extensions of &,2,7: 

2 2 a -+ ua~a:,a22 + ca~la2iu22; b + bollu22 + d ~ ~ ~ a f ~ a ~ ~ ;  c + d + dallai2; 

One of (a, c )  and one of {b, d}  are nonzero. If a = O (or b = O), then b # O (or a # O). If 
c = O  (or d =  O), then d # O (or c #  O). 

Case 1: d # O. Make b = O by solving for 021. Then a # 0, and obtain two represen- 
tatives [1,0,0,1] (when c = O) (corresponding to (13457F)) and [l, 0,1,1] (when c # O) 
(corresponding to (l345ïI)). 

Case 2: d = O. Then b # O and c # O. Make u = O by solving for a21 to get the representative 
[O, 1,1, O], corresponding to (l3457G). 

Therefore the corresponding central extensions of NsIz17 are: 



Central extensions of &,2,8: 

Then one of {a, b) and one of { b ,  c, f )  are nonzero. And one of {b, f )  is also nonzero. 

Case 1: f # O. Then make b = c = e = O by solving for a42,aa,a62 and a # O. Mdce 
a = f = 1, we may get the orbit 0, O ,  dallai2, O, a:J. This d give us a one 
parameter representative [l, 0, O, A, 0,1], corresponding to (l357N). 

Case 2: f = O. Then b # O. Make c = e = O by solving for a21 and ~ 4 .  We may get 
the fouowing orbit [ a ~ f ~ a ~ ~ ,  ba:la22 , 0, -aulla22a42 + balla22a42 + dallai2, 0, O]. If a # b, 
then make d = 0, and get the orbit [aaf1a2,, ba:la22, 0 ,0 ,0 ,  O] (as now we require that 
a + b # O) ,  which can be reduced to a one parameter representative [l- A, A, O, 0,0, O] (with 
X # O), corresponding to (1357M). If a = b, then depending on whether d = O or not, we 
get two representatives [l, 1,0,0,0,  O] and [l, 1,0,1,0,  O], corresponding to (l355.L). And the 
representative [l, 1,0,0,0,  O] is just a special case of the one parameter representative. 

Therefore the conesponding central extensions of N612,a are: 



[22,23] = 2 7 ,  [22i 241 = 2 5 1  
1 

[z2,  z6] = 5zi1 [23iz4] = f ~ 7 ;  
(1357M): One parameter familyl with X # O 

Remark: (135710 of Seeley's is just a special case of (1357M) by taking A = 1/2. 

The central extensions of can be found in Chapter 7. Notice that (1) By taking 
21 -+ a, 2 2  -+ - 6 , ~ s  + -c- d, 2 4  + -c, 2 5  + -el 2 6  -+ f, x7 + -g,  we can get the exact 
presentation of (13574) as in Seeley's paper; (2) By taking 21 -t a, 2 2  -t b, 23 -t c + d, 
2 4  -t c, 2 5  -t e, 26 -+ f, ZT -+ 9, we can get the exact presentatiom of (1357R) and (13578) 
as in Seeley's paper. 

The central extensions of N6+2,io can be found in Chapter 7. By taking zl + 6, 2 2  + al 
23 + -c, 2 4  -+ -dl 2 5  + - f ,  2 6  -+ -el 2 7  + -g,  we can get the exact presentations of 
(13570) and (1357P) as in SeeIeyls paper. 

Central extensions of N6,2,11: 

e + da:la5t3 + 
One of {a, d) and one of (1, e) are nonzero. One of {a, b )  and one of {d, e) are nonzero. 

Case 1: d # G. Make a = c = e = O by solvhg for azl, a42, as6 respectively. Then b # 0, 
and get a representative [O, 1,0,1, O], correspondhg to (134573); 

Case 2: d = O. So a # O and e # O. Make b = c = O by solving for and respectively 



to get a representative [l, 0,0,0,1], corresponding to (l3457D). 

Therefore the corresponding central extensions of N6,2,11 are: 

Central extensions of N6,3,1 : 

It is obvious to see that N6,3,1 has no central extension. 

The central extensions of N6,3,2 can be found in Chapter 2, Example 3. 

Central extensions of N6,3,s: 

Group action: aA13 + bA16 + cAz4 + dAzs + e(Azo - A34) + f A46; 

d + dallai2; 

e + ealla22a44 + f ~ 1 1 ~ 4 4 ~ 4 2 ;  

f ' falia:; 

One of {b, f) is nonzero, and also d # O. Can always make c = 0. 

Case 1: f = O. Then b # O. Make a = O by solving for a42 to get two representatives 
[O, 1, O, l,O,O] (when e = O, corresponding to (13576)) and [O, 1,0,1,1,0] (when e # O,  
corresponding to (1357H)); 

Case 2: f # O. Make b = e = O by solving for 041 and a42 respectively to get two 
representatives [O, O, 0,1,0,1] (when a = O, corresponding to (13571)) and [l, 0,0,1,0,1] 
(when a # O, corresponding to (1357J)). 

Therefore the corresponding centrd extensions of Ns,s,s are: 



Remark: By taking zl + b, 2 2  + a, 2 3  -+ -c, 2 4  + d, 2 5  -+ -eV 2 6  + f, 27 + g in al1 the 
four algebras above, we can get the exact presentations as in Seeley's paper. 

The central extensions of IVagq4 can be found in Chapter 7. By taking 2 1  -t b.  2 2  + a, 
2 3  + -c, 2 4  + -d, 2 5  + -el zs -P - f, 27 + -g for alI the algebras there, we can get the 
exact presentations as in Seeley's paper. 

Central extensions of N6,3ts: 



One of (c, g) is nonzero. Can alwags make c # O and g = O. To fix g = O, we require that 
6 1 2  = O. Let a21 = a31 = = a51 = a52 = 653 = ~ g l  = -2 = O, we have 

Make h = O by solving for asd, f = O for a33, a = O for -, 6 = O for ~ 4 2 ,  d = O for 064. 

Now take ~ 6 3  = a42 = as4 = = O &O, and get a + O; b + O; c + ~~~~~6; d + 0; 
e + ea:,-A-'; f + 0; g + O; h + 0; 

Depending on whether e = O or not, we get two representatives [O, 0,1,0,0,0,0, O] (when 
e = O), corresponding to (137C), and [O, 0,1,0,1,0,0, O] (when e # O) ,  corresponding to 
(l37D). 

Therefore the corresponding central extensions are: 

Remark: (1) By taking z l  + a + i d ,  2 2  -t b+ c, 23 + d, 2 4  + b, 2 5  + t e  + f, +e -t e and 
27 + 9 ,  we may get the exact presentation of (137C) as in Seeley's paper; (2) By taking 
21 + -a, 22 + -c, 23 + di 2 4  + O, 2 5  + f, ZB + -el 27 + g,  we can get the exact 
presentation of (137D) as in Seeley's paper. 

The central extensions of &,3,6 can be found in Section 6.4. 

Central extensions of N6,3,7: 

Group action: aAlr + )Ale + cA23 + d(AiS - AM) + eA2g; 

Case 1: d # O. Then make a = c = e = O by solving for ail, a42 and a 5 6  respectively. Then 
b # O, we get a representative [O, 1, O, 1, O], corresponding to (13457C); 



Case 2: d = O. Then a # O and e # O. Make b = O by solving for a21 and get two represen- 
tatives depending on whether c = O or not, i.e., [l, 0,0,0,1] (when c = O, corresponding to 
(13457A)) and [1,0,1,0,1] (when c # O,  corresponding to (13457B)). 

Therefore the corresponding central extensions N6,3,7 are: 

Central extensions of Naos: 

One always have b # O and one of (f, g )  is nonzero. Since b # O, make a = c = O by solving 
for a53 and as6 respectively. 

Case 1: g = O. Then f # O. Make e = O by solving for a32 and make d = O by solving for 
063 and get a representative [O, 1,0,0,0,1,  O], corresponding to (1357A); 

Case 2: g # O. Make d = f = O by solving for -2 and a32 respectively and get represen- 
tatives [O, 1,0,0,0,0,1] (when e = O, correspondhg to (1357B)) and [O, 1,0, O, 1,0, 11 (when 
e # O, corresponding to (1357C)). 

Therefore the corresponding central extensions of N6,3,0 are: 



Remark: By switching 23 and in ail the algebras above, we can get the exact presentations 
as in Seeley's paper, 

Centrai extensions of 

A little bit of calculation will show that any element in H2 has none trivial kernel in the 
center of Nevas. So Nsas does not have the desired centrai extension. 

Central extensions of N6,4,1: 

It is obvious that al1 the elements in F) have 2 5  in the kernel, so N6,1,1 has no central 
extension. 

The central extensions of Ns,4,a can be found in Chapter 7. 

Central extensions of N6,4,3: 

Group action: aAl4 + bAls + cAls + dA23 + eA25 + f + 9AS6; 
a -t aa:l aZ2; 

+ g ( a 5 5 ~  - -sase); 

We have a # O and g # O. Make b = c = e = f = O by solving for a45, ad=, wa and 0 5 2  



respectively (letting -5 = a56 = O), and get two representatives [l, 0,0,0,0,0,1] (when 
d = O) (corresponding to (145711)) and [l, 0,0,1,0,0,1] (when d # O) (corresponding to 
(1457B)); 

Therefore the corresponding central extensions of N6,4,3 are: 

Central extensions of N6,4,4: 

Group action: aAn + bA14 + cA15 + dA23 + eA24 + f + gA3= + hh46; 
The automorphism group of N614,4 has two components, therefore we have 

One of {c,  f )  and one of {g ,  h )  are nonzero. W e  c m  always make c # O, g # O and 
f = h = O. Make a = b = d = O by solving for a53, a54 and -2 respectively. Now by taking 
012 = a34 = a53 = = a43 = 054 = a21 = O, we can make a = b = d = f = h = 0, and 
depending on whether e = O or not, we may obtain two representatives [O, 0,1,0,0,0,1, O] 
(when e = O) (corresponding to (137A)) and [O, 0,1,0,1,011, O] (when e # O), corresponding 
to (137B); 

Therefore the central extensions of N6,4,4 are: 



Rernark: There is an error in Seeley's paper about (137B), instead of having [z2, z4] = 2 7 ,  

he had [z2, z3] = 27, which was not a Lie algebra at ail. 

Central extensions of 

Z(g): 23, 24, z5, 2 ~ ;  [B, g]: 23; Z2(g): Cw = C35 = C36 = O; W(H'): Cl2 = O; dim H ~ :  11; 

Basis: A13, A141 A151 A169 A238 A241 A251 A261 A451 A461 A56; 

Group action: aA13+ bA14 +cA15 +dA16+eA23 + f A24 +gA25 +hA26 +iA45 +jA46 +kA56; 

One of {a, e) is nonzero. We can make a # O and e = O, then by taking a21 = a41 = a51 = 
-1 = a54 = ~ g q  = O, we can make b = c = d = O by solving for a s ,  a35 and a36 respectively. 
One of ( i ,  j ,  k) is nonzero. We can always make k # O and i = j = O, as the coefficients 
of i, j ,  k are just the the second compound matrix of a nonsingular matrix. And we need 
f # O -  

Now take al2 = = a= = a35 = as6 = a41 = as1 = -1 = 454 = (204 = as6 = -2 = 
( ~ g ~ = a ~ 2 = O , w e c a n f i x b = c = d = e = i =  j =  O and g + f a22a4s + ga22655; 



h + f a22a46 + ha22a66; 
Make g = h = O by solving for ad5 and a46 and get representative [l, 0,0,0,0,1,0,0,0,0,1] .  

Therefore the central extensions of N 6 , ~  are: 



6.4 Extensions of N6,3,6 

Although we can use the same procedure as we do to aU the other algebras to get the 
desired central extensions, we find it very difF~ult to manipulate the parameters involved. 
So instead we use an ad hoc method to deal with this case, which will give us a slightly 
different invariant than the one used by Seeley. 

Let V be a vector space of dimension 3 with a basis {a, b,  c). Because N6,3,e is a fiee 
nilpotent Lie algebra, by some standard arguments [Il] [23], we have 2 V $ A2V. 
And isomorphicdy, &,3,6 can be written as: 

Center: d, el f ;  

[el el: 4 e, f; 
To find 2-cocydes, we need to find ail 4 : V @ ri2V x V @ A ~ V  + F such that they satisfy 
the Jacobi identity 

As Z(g) = h2V, it is obvious that for 6 to be a cocycle, 4 must wnish on A2V x h2V. 

By normaiizing the cocydes, we require that d(a, b )  = #(b, c) = #(cl a) = O, which meam 
that 4(V, V) = 0. 

So for q5 : V ~ A ' V  x V@ h2V -t F to be a cocycle, we only need to check that the restriction 
4 : V x v F satisfies the Jacobi identity. 

For x ,  y , z  E VI we define det(z, y,z) E F by 

Explici tly, if 

By direct computation, we have 



Therefore q5 is a normalized cocyde if and oniy if for q5 : V x h2V -t F, 

The Levi factor of the automorphism group of Nazr6 is G = GL(V),  and its unipotent 
radical R, acts trivially on 1 1 ~ ( ~ ,  F), i.e., ~ ( u ( x  j, u(y) A o ( x ) )  = &(z, y A 2). 

Because the set of d the bilinear maps corn V x h2V to F is isomorphic to the dual space 
(V @ A~v) '  of V @ A ~ V ,  we can show that, taking into account the previous statement, 

F) is isomorphic as a G-module to  a submodule of (V x h2v)', which will be denoted 
by (V @ A~V);, and where G = GL(V). 

Denote by (El *) the G-module E = EndF(V) with the action 

is an isomorphisrn of G-modules, as we have for any g E G, 

It follows easily that e acts on the basis of V @ A ~ V  as 



a @  ( b A  c) + 

a @  ( a h  b) -+ 

b @  ( C A  a) + 

c @  ( & A  c) + 
l 

c @  (a/\ b)  + 

The dual G-module of (E, *) is isomorphic to the G-module (E, O) where 

Indeed the map 

defined by 

a : (E, O) -+ ( E ,  *)' 

Q(T)(S) := tr(TS) 

is an isomorphism, since 

(9 - *(T))(S) = *(T)(g-' * S) 
= tr(T O (9-' * S)) 
= tr(T O det(g)-'9-' O S O g) 
= tr(det (g)-'g o T o g-' o S) 
= tr((gi3T) O S) 
= *(saT)(s) 

Hence 
g @(T) = @(gOT). 

Hence &(a @ ( b  A c) )  = projector on Fa with kernel Fb + Fc. 



The operaton ~ ( b  8 (c h a)) and ~ ( c  @ (a A b)) have similar descriptions. 

In particular, 
& ( O @  (b h c)) + &(bQ (CA a)) + E ( c @  ( a h  b)) = idv. 

It foilows that the transpose map 

E= : ( E ,  *)' c, (Y 8 A?v)* 

induces an isomorphism of the G-module of linear functions that vanish on idv with the 
G-modules (V @ h2V)8. 

We have 
O(T)(idv) = tr(T o idv) = tr(T) 

and so E: O O induces an isomorphism of G-modules 

where 
Eo = ker(tr) = {T E E : tr(T) = 0). 

So we have proved the foilowing 

Theorem 6.1 The G-module H ~ ( ~ ,  F) is isomorphic to (Eo, O). 

It is an easy tact that any element in (Eo, O) is in the same orbit as one of the following 
three elements: 

(iii) 

Now we try to find the conesponding elements in H (g, P) for (i) , (ii) and (iii) . 



For an arbitrary element T in (E, O), we have the Gmodule isomorphism E' O 9 : (E, CI) H 
(V @ h2V)* with 

where v E V @ A ~ V .  

In (i), we have 

T =  

Therefore frorn (6.2), if the diagonal elements of a(v) are a, P ,  y,  we have 

Let ~ = ( b ~ c ) @ a + ~ ( c h a ) @ b + ( ( a ~ b ) @ c ~ ~ ' @ ( A * ~ ) ' .  Then 

Combining (6.3) and (6.4), we have 

It is easy to check that 

and all the other combinations are zero, which in tunr will give us the algebra 

(147E) : 
[a,b]=d, [ b , c ] = e ,  

[c,aI=f,  [a,el=F9, 

[b, fl = Tg, [c, dl = (-€ - d g -  

We may assume that none of €, 9, ( = -(-rl equals 0, otherwise * would have some nonzero 
element of Z ( g )  in its kernel. 

By taking = -1, q = A and C = -€ - 7 = 1 - A, we get exactly the same family as in 

Seeley's paper, i.e., 



In (i), for two elements diag(c, q,  C) and diag(Ef, q', Cf) to be in the same subspace, we should 
have = TC, 7' = TT, <' = TC,, where C' = -Q - q'. Let 

and it iç obvious that I is an invariant. 

Therefore I(X)  = -3 = is an invariant for (147E), with A # 0,1. It is obvious 

that (147C) is just a special case of (147E), by letting X = 1/2. 

It is interesting to observe that, up to a constant factor, this invariant has the same ex- 

pression as the so cailed j-invariant of the eiliptic curve = z (z - 1) (z *) (see 1141, pp.83). 
Seeley uses a somewhat dinerent expression for his invariant in this case. 

In (ii), when x # 3, as 3c = O, we have = O, then it is easy to see that the corresponding 
cocycle will contain a nonzero element of Z ( g )  in its kernel. So we just consider the case 
when x = 3 and ( # 0. Then we have 

And its corresponding cocycle is 

[; i p l -  



It is easy to check that 

The corresponding algebra is for x = 3 ody: 

Li (iii), when C = 0, the corresponding cocyde will contain a nonzero element of Z(g) in its 
kernel. And when E # O,  we have 

Its corresponding cocycle is 

Q = (b A c) @ (a+ b) + ( c h  a) 8 b - 2(a h b) @ c. 

It is easy to check that 

Its conesponding dgebra is 

which is isomorphic to (147D) of Sedey's paper, an isomorphism froom (1) to (147D) can be 
given as: a + 1/2c, b + b, c + a, d + -1/2e, e + -d, f -+ -1/2 f and g + 4 / 4 9 .  

Therefore the central extensions of N6&3 of dimension 7 are: 



Remark: (147C) is a speùal case of (147E) by taking ( = 1/2. 



Chapter 7 

Algebras over the Real Field 

In this chapter, we wili consider the central extensions of the dgebras of dimensions 5 6 
over the real field. We only provide the proofk for those cases where some new algebras 
arised due to the change of the ground field. Our proofk also apply to the case when the 
fields are aigebraically closed with x # 2, with some minor modifications. 

As we have discussed in Chapter 5 ,  two new algebras arise fiom the central extensions of 
the 3-dimensional Abelian Lie algebras. No new algebra arises from the central extensions 
of 4dimensional algebtas. Therefore we start by considering the central extensions of 5- 
dimensional nilpotcnt Lie algebras. 

7.1 Extensions of 5-Dimensional Algebras 

The centrai extensions of N5,2,2 over R can be found in chapter 2, Example 2. 

Central extensions of NS,2,3: 

Let A := alla22 - a12azi. Then a -t (au:, + 2balla21 + cail)A; b -t (aalla12 + b(a11a22 + 
a12a21) + ca21a22)A; c + (aa:2 + 2bana21+ ca&)A. 

Let A = [a, b ,  cl and B = [al, bi, ci]. It is obvious that in A one of a, b, c # O. May assume 
a = 1 and have A = [l, b, c] and B = [O, bl, cl]. By taking a21 = O wiii ensure that a = 1 in 
A. 

Now in B one of bl, cl # O and (as aZ1 = 0) al = O + O; bl + b3a11a32; cl + (2bla12a22 + 
sa:,)A- 



If bl # O, make cl  = O by solving for al2, and obtain the representative for B: Bi = [O, 1, O]. 

If bl = O, then cl # O and obtain another representative for B: BI = [O, 0,1]. 

Case 1: Bi = [O, 1, O]. Then A = [l, O, cl. To fix B1 (up to a scalar), we require al2 = a21 = 0. 
Consider the group action on A: a = 1 + a:,& b = O + O; c + cai2A. 

Subcase 1.1: c = O. we obtain the representative for A: Al = [l ,  0, O], with Ai A Bi 
corresponding to (24WM). 

Subcase 1.2: c # O. Then A + [&, 0, caiz). If c > O, then we obtain the representative A) = 
[l ,  0,1], with A2 A B1 corresponding to (2457L); If c < O, then we obtain the representative 
A3 = [1, 0, -11, with A3 A Bi corresponding to (2457L1). 

Case 2: B2 = [O, 0,1]. Then A = [l ,  b, O]. To fix B2 (up to a scalar), we require a21 = 0. 
With B2 being fixeci, we can always rnake c = O in A by linear combination. 

Consider the group action on A: a + a:1 A; b + (allali + ~ u ~ ~ u ~ ~ )  h 

We can obviously make b = O by solving for 012 and obtain the representative A = [l, 0, O], 
with A B2 &O corresponding to (2457L). 

At fist we show that (1) A2 A Bi and (2) A A & are in the same orbit, as bath of them are 
corresponding to (245ïL). Compare the corresponding algebras: (1) [z 1, ~ i ]  = zi+ll i = 2,3,  

[Z1, 241 = 27, [zl, x5] = [22, 241 = [ ~ 2 , ~ 3 ]  = 25, [ZZ, 251 = 27; and (2) [zl ,  zi] = z;+l, = 
2,3, [ZI, 241 = 26, [ ~ 2 ,  231 = 25 , [22.25] = 27- 

To prove the non-isomorphism among (2457L, 2457L1, 2457M), we show that they are in 
Merent orbits. 

Consider (2457L), Le., A /\ Ba, under the group action, A = [l, 0, O] + A [ U ? ~ ,  allalz,  a:2], 
and B2 = [O, 0,1] + A[a:,, ~ 2 1 ~ 2 2 ,  ai2]. Then 

Compare (2457L) and (245Rd), then the coefficients of Al4/\Aas and (Al5 + h24) hA25 are 
zero. Then we have alza2z = O and alla22 + al2a21 = 0, which will lead to the singularity 
of A. 

Compare (2457L) and (2457L1), we would have 



Simplification wouid lead to 02, + a& = O, which has a solution over algebraically closed 
fields (and at  the same t h e  maintain the nonsingularity of the automorphism group) , but 
not over the real field. 

Thetefore, as real Lie algebras, (2457L) and (2457L1) are not isomorphic. 

Similarly we can prove that (2457L1) and (2457M) are not isomorphic. 

Therefore the correspondhg central extensions of N5,2,3 are: 

Central extensions of N5,3,2: 

Z(g): 2 4 ,  x5; [gl g]: 24,  x5; Z2(g): C4S = O, CzS - CM = O ;  W(H2):  C12 = CI3 = 0; dim H2: 
6;  Bai s :  A14i A15r A231 A241 A25 + A349 A35; 

Let Vl be the subspace generated by A14, Alsr A23, V2 the subspace generated by Al4, Ais, 
Aas+AUl A35i and V3 = VI n V2. It is easy to see that aii Vil V2 and V3 are submodules 

under the group action. 



Let L be any tw~dimensiond subspace of F). Assume L = A ri B, with A and B of 
the form a h  + bA15 + cA23 + dA24 + e(A25 + A 4  + f A35. 

Among A and B, we have the following restrictions: (1) e # O; or (2) one of a,  d # O ;  or (3) 
one of b, f # 0. 

Case 1. L e VI, or a t  least one of d, e, f # O in A. When eZ - df > O, we can make e = 1 
and b = f = 0, and &O a = b = c = O to get subcase (a) A = [0,0,0,0,1,0]. When 
e2 - df = O, make d = e = O and f = 1. W e  can make further b = c = O by solving for 
a31 and a52 respectively. Depending on whether a = O or not, we get two subcases: (b) 
A = [O, O, 0,0,0,1] and (c) A = [l, 0,0,0,0,1]. When e2 - df < O, we can make e = O and 
d = f = 1. W e  c m  further make a = b = c = O by solving for a21, a31 and a43 respectiveIy 
to get (d) A = [O, 0,0,1,0,1]. 

Subcase 1.1: L c V2. Or c = O in both A and B. 

Subcase 1.1.1: L n V3 = O, or we have at  least one of d, e, f # O in B, consider the following 
cases: 

Assume B = [a, b, e, d,O, fl. Then if a23 = 032 = O ,  then a -t aa:laz2; b + ba:1a33; 
c + ca22as3 +da2aa4s + f(-aslas); d -t dalia&; e = O + O; f + fallaj3. 

If instead 0 2 2  = am = 0, we have a -r ba:la32; b -t aa:la23; c + c(-a32a23) + da23a42 + 
fas2aaa; d -+ falla:2; e = O + O; f + dal1&. 

As one of f, d # O, we can always =urne f # O by the group action above. And if both 
f ,  d # O, we can always make a = 1 when one of a, b # O. Make c = O. Depending on the 
Aues of a,  b, d, we get all the following representatives for B: (1) B = [O, 0,0,0,0,1] (when 
a = b = d = O, A h B corresponds to (247I)); (2) B = [O, 0,0,1,0,1] (when a = b = 0, 
df > O, A A B corresponds to  (247F)); (3 )  B = [O, 0,0,1, O, -11 (when a = 6 = O, df < 0, 
A h B corresponds to (247F1)); (4) B = [O, 1,0,0,0,1] ( a  = d = O,b # O, A A B corresponds 
to (247J)); (5) B = [1,0,0,0,0,1] (b = d = O ,  a # O, A h B corresponds to (247K)); (5') 



B = [l, 1,0,0,0,1] (ab # O, d = O, A A B corresponds to (247K)); (6) B = [l, 0,0,1,  O, 1] 
(one of a, b # O, df > O, A I\ B corresponds to (247H)); (7) B = [ l ,  0,0,1,0, -11 (one of 
a ,  b # O, df < O, A A B corresponds to (247H1)); (8) B = [ l ,  1 ,0,1,0,1]  (abdf # O, f = 1, 
A A  B corresponds to (247G)); (9) B = [l ,  1 ,0 ,1 ,0 , f l  (abdf # 0,f # 0, l ) .  We wiU show 
that when f < O, it wil l  become (247H1) and when f > O and f # 1, it  will becomes (247H). 

It is obvious that each pair of (247F) and (247Fi), (247H) and (247H1) are isomorphic over 
the algebraicaily closed field. We will prove later that they are different over the real field. 

The isomorphism between (5) and (5') wil l  be s h o w  later on. 

Subcase 1.1.1.2: A = [O, 0,0,0, O, 11. Fix A, we require a31 = a32 = a52 = O and a& = 1. 

Assume B = [a, b, c, d, e, O]. We must have e = 0, for otherwise we can change it into Subcase 
1.1.1.1, as e2 - df = e2 > O. Now with e = O and d # O, make d = -1 by rnultiplying B 
by -l/d, then A + B = [*, *, *, -1,0,1], which can be changed into Subcase 1.1.1.1 as well. 
So we omit this case. 

Subcase 1.1.1.3: A = [1,0,0,0,0,1]. To fix A, we require 0 3 2  = a52 = 0, a31 = -a11a23/a331 
a:1a22 = ail& = 1. 

Assume B = [a, b ,  c, dl e, O]. We will also omit this case, as by exactly the same argument 
as in Subcase 1.1.1.2, it  can be changed into Subcase 1.1.1.1. 

Subcase 1.1.1.4: A = [O, 0,0,1,0,1]. To fi A, we may let a21 = a31 = O, a 2 2  = a33, and 
al l  = a22 = a33 = 1, 0.42 = 043 = a52 = a53 = O. Now consider B = [a, b,  c, d, e, O]. We must 
have e = 0, for otherwise we can change it into Subcase 1.1.1.1, as e2 - df = e2 > O. Now 
with e = O and d # O, make d = 2 by multiplying B by 2/d, then subtracting fiom A by B,  
A - B = [*, *, *, -1,0,1], which can be changed into Subcase 1.1.1.1 as well. So we omit 
this case. 

Subcase 1.1.2: Now consider the case when L n V3 # O, which means B E V3. 

Subcase 1.1.2.1: A = [O, 0,0,0,1,0]. To fix Al we require a21 = 031 = O,  a42 = a53, 

a22a32 = 01 a23a33 = 01 and al1 (a22a33 + a23a32) = 1- 

Assume B = [a, b, O, 0,0, O]. Then if az3 = a32 = O, then a + aa:p22; b + ba:,a33. 

If instead a22 = a s  = O, we have a -t ba:la3r; b -t aa:lazs. 

As one of a, b # O, we can always assume a # O and get two representatives for B: (10) 
B = [l ,  0,0,0,0, O] (A A B corresponds to (247D)) and (11) B = [l, 1,0,0,0, O] (A A B 
corresponds to (24ïE)). 

Subcase 1.1.2.2: A = [O, 0,0,0,0,1]. Fix A, we require a31 = a32 = a52 = O and a l l a k  = 1. 

Assume B = [a, b,  0,0,0, O]. 

a + aafl aa2; 



b + aa?,az3 + ba:la33; 

As a # O, make b = O to get a representative for 8: (12) B = [l, 0,0,0,0, O], corresponding 
to (247B). 

Subcase 1.1.2.3: A = [l ,  0,0,0,0,1]. To fix A, we require 032  = (152 = Ot (131 = - a l l a & ~ ,  

a:1a22 = al& = 1. Assume B = [a, b,0,0,0, O]. Then a + aa:la22; b + aat1aZ3 + b a : , ~ ~ ~ .  

If a # O, make b = 0, and we wïll get exactly the same algebra as (12). Therefore we assume 
a = O and b # O to get (13) B = [O, 1,0,0,0, O], corresponding to (247C). 

Subcase 1.1.2.4: A = [O, 0,0,1,0,1]. To fix A, we rnay choose a22 = a33, a23 = -a32, 

a21 = a31 = 0, a52033 = (033043 - 023042 + a32a53)- 

Then for B = [a, b, 0,0,0, O], we have a -t ao:,azi + ba:la32; b -t -au:, a32 + ba:,a3,. 

One of a, b # O, we can make a = 1 and b = O to get (14) B = [l, 0,0,0,0,  O], with A r\ B 
corresponding to (247E1). 

Subcase 1.2: L if V2, which means c # O in B. 

Subcase 1.2.1: A = [O, O, O, O, 1, O]. Let B = [a, b, cl d, O, fl. Compare with the cornputation 
as in Subcase 1.1.1.1, rnay assume d = f = O. If one of a, b # O, we can similarly assume 
a # O. Depending on the values of b, we get the foiiowing representatives for B: (15) 
B = [l, O, l , o ,  O, O], corresponding to (247Q). and (16) B = [l, I l l ,  0,0, O], corresponding to 
(24ïR). 

If both a = b = O, then get the representative: (17) B = [O, 0,1,0,0, O], corresponding to 
(24ïP). 

Subcase 1.2.2: A = [O, O,O,OtO,l]. Assume B = [a, b,c, d,e,O] with c # O. Compare with 
the computation as in Subcase 1.1.1.2, may assume d = e = O and get a + aa:,az2; 
b -t aa:,a23 + b ~ & a ~ ~ ;  c + c a 2 ~ 0 ~ .  

As a # O, make b = O to get a representative for B (18) B = [ l ,  0,1,0,0, O], corresponding 
to (247M). 

Subcase 1.2.3: A = [l, 0,0,0,0,1]. h u m e  B = [a, b,  c, d, e, O]. Compare with the corn- 
putation as in Subcase 1.1.1.3, we rnay assume that d = e = f = O. Then a + aa:,az2; 

2 b + aa:,a13 + )allam; c + ~ 0 2 2 ~ ~ 3 .  

If a # O, make b = O to get a representative for B: (18') B = [1,0,1,0,0, O], corresponding 
to (Mm). 

If a = O, then depending on the values of 6, we get subcase (19) B = [O, 0,1,0, 0, O] (corre- 
sponding to (247N)) and (20) B = [O, 1,1,0,0, O] (corresponding to (2470)). 

Subcase 1.2.4: A = [O, 0,0,1,0,1]. Let B = [a, b, c, d, e, O]. Compare with Subcase 1.1.1.4, 
we may assume that d = e = O to get B = [a, b, c, 0,0, O]. Compare with 1.1.2.4, we have 



If one of a, b # O, make a = 1 and b = O to get (21) B = [l, 0,1,0,0, O], corresponding to 
(24?R1). and if both a = à = O, then we have (22) B = [O, 0,1,0,0, O], corresponding to 
(24?P1). 

Case 2. L c VI, or d = e = f = O in both A,B.  Then one of a,& # O. Make a = 1 
and b = O in A. Depending on whether c = O or not, we get two cases: Subcase (2.1) 
A = [1,0,0,0,0,0] and Subcase (2.2) A =  [1,0,1,0,0, O]. 

Subcase 2.1: L c V3, or both A, B E V3. For A = [ l ,  0,0,0,0, O], we require b # O in B and 
get (23) B = [O, 1,0,0,0, O], corresponding to (2NA). 

Subcase 2.2: L (t V3. For A = [L, 0,1,0,0,0], to fix it, we require a23 = O, = 1, 
and a2aa33 = 1- Assume B = [a, b,0,0,0,0], with b # O. Now a + aa:,oZ2 + ba:,as2; 
b -t bo:,a=. 

Make a = O and get (21) B = [O, 1,0,0,0,0], corresponding to (247L). If we consider 
A = [l ,  0,0, O, O, O], we get a representative which is in the same orbit as (24). So we omit 
this case. 

At fist we will show that the foilowing pairs are isornorphic: (5) and (59, (18) and (18'). 
We wili prove this by providing an isomorphism between the two algebras: 

To show that (5) and (5') are in the same orbit, we may take al1 = a22 = a33 = a42 = a53 = 
1, a23 = a31 = 1/2, and 0 2 1  = 1/4, and th& will map A A B of (5) to that of (5'). 

For the isomorphism between (18) and (18'), we can actually establish an isornorphim 
between the two algebras: 21 + 21, 2 2  + -22 + 25 ,  23 + 23, 2 4  + - 2 4 ,  2 5  + 25, 
26 + -26 - 2 7  and 2 7  -+ 2 7 .  

For (9), when f > O and f # 1, an isomorphism between (9) and (247H) is (let a be a 
2 

solution to the equation f = (fi,) ): z l  -t ,&x1 + ,&,x2 + A x 3 ,  ~t + a ~ 2  + 23, 

as 1 a2 a2 
23 w22 - & ~ 3 t  2 4  + ' & ~ 4  + & ~ 5 ,  x5 A24 - ~ 2 5 1  26 + a 2 6  f 

and + - &,z6 + &,x7; when f < O, an isornorphim between (9) and (247Hi) 

We can ais0 show that over the the algebraicaily closed field, (2473) and (247&), (247P) 
and (247P1), (2478) and (247R1) are isomorphic. (As the isomorphism between (247F, Fi, 
H, Hl) can be read off easily fiom the proof.) Let a be a root of z2 + 1 and P be the root 
of x4 + 1. Then 



To show that ail the algebras (247A-R), (247Ei), (247Fi), (247H1), (247Pl), and (24781) 
are distinct, we just need to compare the algebras among the same groups as follows: 

Group 1: (247A); Group 2: (247L); Group 3: (247B, C, Dl El El); Group 4: (247F,F1, G, 
HlH1, I,J, K); Group 5: (247M, NIO,PIQIR, Pl, Ri). 

Take (247F) as an example. We will prove that it is distinct fiom all the other algebras in 
Group 4. We have in this case A = [O, 0, 0,0,1, O] and B = [O, 0,0,1,0,1]. Then under the 
group action, 

and 

Consider the wedge product AA BI and the corresponding coefficients are: (let 6 = 022a33 - 

Compare the coefncients of A h  B with that of (247Fi). If they are Wmorphic, then the 
coefficients of A2( A (A25 + Am) and (A25 + A%) A A35 are equal (nonzero), while all the 

2 others are zero. Then a22a23 - a33032 = O and ai2 - 032 = g3 - a&. It is easy to see that 
when it is.over R, then it has no solution ( o t h e h e  the automorphism group is singular, 
or, 6 = O). (Notice that if it is over an algebraicaily dosed field of x # 2, then it  has a 

solution .) 

Compare with (247I). Then the only coefficients that is nonzero is a:,(& - ai3)6 # 0, and 
all the others are zero, whidi indude that G2 - g2 = aiaa23 - as032 = 0, and leads to 
a& = 4, contradiction. Therefore (247I) and (247F) are not isomorphic. 



Al1 the other algebras can be proved similarly. 

Therefore the corresponding central extensions of N5,&2 are: 

[ z l ,  xi] = z;+z,i = 2,3,4 
[ z l ,  z;] = q + z ,  i = 2,3,4 
[xl> z;] = z;+2, i = 2,3, 

[ 2 z 1  251  = ~ 7 ,  

[z1,zi] = z;+zl i = 2,3,4 

k a ,  251 = 27, 

[z l1 xi] = xi+z1 i = 2,3,4 
[ X  1, zi] = 2 ~ ~ 2 )  i = 2) 3> 

[ X J ~  241 = 27, 

[ 2 1 1  x;] = 2;+zi i = 2) 3, 

[23.24] = 27, 

[ z l ,  z;] = z;+z1 i = 2,3) 4 

[ 2 2 ,  251 = 27, 

[ z ~ ~ x ~ ]  = xiC2,i = 2,3,4 

[23124]  = 27, 

[xi,  z;] = 2 i + Z 1  i = 2,3,4 

[23, 241 = 27, 

[ z l ,  zi] = Z;+zl i = 2,3, 

[ ~ 3 1 2 5 ]  = 27; 

[x l ,  ~ i ]  = ~;+2* i = 2,3 
[23,24] = 27, 

[ z l l  z;] = z;+2, i = 2) Q 1  4 

[23,241 = 27,  

[ z l ,  z;] = x;+2, i = 2,3,4,5 
[z l , z i ]  = z;+z,i = 2,3,4 
[x i1  z;] = ~ ; + ~ , i =  2) 3, 

[ 2 2 , 2 3 ]  = 271 

[zl ,z;]  = 2;+2)i = 2,3!4  



Central extensions of Ns,4: 

Z ( g ) :  2 3 ,  ~ 4 , ~ s ;  [g) g]: 23; z ~ ( ~ ) :  CM = O,  C35 = O; W(H*):  CI2 = O; dim H2: 7; Basis: 

A131 A14, Ais) A23, A24, A2s) A45; 

Group action: aA13 + bA14 + cA15 + dA23 + eAt4 + fA2s + gA45; 

Let 6 := - a12a21. 

9 + g(a44455 - a54a45); 

Let VI be the subspace of F) generated by hl3, Air, Ais, A239 A24, Aas, V2 the 
subspace generated by Ai4, Al5) Aa5, A451 and V3 the intersection of Vl and V2. By 
the group action above, we know that all Vi and V3 are submodules of F). 



Let L be any tw~dimensiond subspace of H2(g ,  F) with the desired property. Then it is 
obvious that L n Vl # O and L < V2. Denote L = A A B, where A, B E H2 (g, F) . 

Case 1: L Vi, or g # O in A. We may assume A = [a, b,c,d,e, f ,  l ]  and B = 
[al, bt, cl, dl, el,  fl, O]- To fk A, we require that g = 1 + a44a55 - a54045 # 0, which is 
always true, as a ~ a 5 5  - ~ 5 ~ ~ ~ 5  is a factor of the determinant of the automorphism group 
AutNSv4. 

Choose al2 = O. We can make bl = cl = O by solving for a34 and a35 respectiveiy. Assume 
that a l 2  = O, we now have a l  = 1 + a116 = 1; bl = O -+ a l l a s  + a21(ela44 + fias4) = O 
(solve for a34); cl = O + alla35 + aa1 (ela45 + fiass) = O (solve for ~ 2 ~ ~ ) ;  dl = O -) 0; 

el + ~22(ela44 + fla54); fi + a22(ela45 + fla55); 91 = O 0- 

If a t  least one of el,  fi # O, then make el = 1 and fl = O to get Bi = [l,O,O,Oll,OIO]. If 
both el = fi = O, then get Ba = [1,0,0,0,0,0, O]. 

Subcase 1.1.1: L n V 2  # O, or A E V2. For Bi = [1,0,0,0,1,0,0], we rnay assume A = 
[O, b, c,O,e, f ,  11. To fix BI, we require 0 1 2  = a35 = a45 = O , a s  = -021a~/a11, 0116 = 1 
and ~ 1 2 ~ 3 4  + ag2a44 = 1. NOW consider A. By taking also a54 = O, we have a = O -+ 0; b + 
allba44 + a2lea44 - a51u44; c + a11ca55 + uzl f a55 + (~41455; d = 0 + O; e -t a22ea44 - a52a44; 

f a22fa55 + a42a55; g = 1 3 a44a55- 

We make a = b = c = e = f = O by taking a21 = as1 = a41 = as2 = a42 = O and get a 

representative for A: (1.l.la) A = [O, 0,0,0,0,0,1] (A /i B corresponds to (%TH)). 

For B2 = [l ,  0,0,0,0,0, O], we assume A = [O, b, c, O, el f,  11. To fix B2, we require a12 = 
a34 = a35 = O and a:1a22 = 1. Now consider A, a = O + O; b -+ ali(ba44+casr)+a21(ea44+ 

f 054) + (a41a54 - a51a44); c all(ba45 + ca55) + azl(ea45 + f a55) f (041055 - a5la46); 
d + 0; e + a22(eau + f a54) + (a42as4 - ~ 5 2 ~ 4 4 ) ;  f + azz(ea4s + f ass) + (aaass - ~ 5 2 ~ s ) ;  
9 + (a44a55 - a54a45). 

By taking a45 = a54 = O, we can make b = c = e = f = O by solving for asl,  a41, a52 and 042 

respectively to get A = [O, 0,0, O, 0,0, 11. But this gives us  a decomposable algebra (1.1.1 b) 

N4.2 x N3.2: [Zi, 221  = t 3 ,  [% 231 = 26, [z4, zs] = 2 7 -  

Subcase 1-1.2: L n V2 = O,  or A # V2, i.e., one of a, d # 0. 

For Bi = [l, O, O, 0,1,0,0], we may assume A = [O, b, c, d ,e ,  f ,  11. To fix BI, we require 
012 = a35 = a45 = O , a s  = -a21aM/a11, a116 = 1 and a2aa44 = 1. Now consider A. By 
taking also a54 = 0, we have a = O -t b + allbu« + a 2 1 ( d a ~  + ea44) - a~la44; c -t 
a11ca55 +a21f +a41a55; d + d~2a6; e -t a22(das4+ ea«) - (152444); f + u22f a55 +a42a55; 



We make a = b = c = e = f = O by taking a21 = a51 = a41 = a52 = a42 = O.  Because 
d # O ,  we get a representative for A: (1.1.2a) A = [O, 0,0,1,0,0,1] ( A  A Bi corresponds to 
(257L)). 

For Bi = [l, 0,0,0,0,0,  O ] ,  we assume A = [O,  b,  c, d, e ,  f ,  11. 

To fi B z ,  we require 0 1 2  = a% = a35 = O and a:1a22 = 1. NOW consider A, a = O + O ( B y  
subtracting a multiple of B2 nom A, we can dways make a = O ) ;  b + all(ba44 + + 
a21(ea44+fa54)+(a41a54-a51a44); c a11(ba1~+~a55)+a21(ea45+fa55)+(a41a55-a51a45); 

d + da224 e + a22(ea«+f a54) + (042054 - a52a4.4) ; f + a22(ea45+ f a55) + (a42a55 - 4 5 2 ~ 5 )  ; 
9 + (a44055 - a54a45)- 

By taking a45 = a54 = O ,  we can make b = c = e = f = O by solving for asl,  a41, as2 and 
a42 respectively. As d # O ,  we get (1.1.2b) A = [O, 0,0,1,0,0,1] ( A  A B2  corresponds to 
(25ïK)). 

Subcase 1.2: L n  Vj # O ,  or al = dl = O in B. In this case, it is obvious that we ais0 have 
L < V2, or A 4 V' or one of a,d # O in A. 

Then B = [O, bl, c l ,  O ,  e l ,  f i ,  O ]  and one of bl, c l ,  e l ,  fi  # O.  May assume el = 1. al = O + 0; 
bl + all(bla44 + ~ 1 0 5 4 )  + a21 (a44 + fla54); cl ' all(bla45 f ~ 1 0 5 5 )  f a21 (a45 f f i ~ 5 5 ) ;  

d i  = 0 + 0; et = 1 + a12(ha44 + cia54) + a22(a44 + f iasr) = 1; fi + a12 (ha45 + ~ 1 0 5 5 )  + 
a22(a45 + fla55); gl = O + O* 

Make bl = fi  = O by solving for a21 and a45. Now we get al = O + O ;  bl = O + 
ailc~as.l+ a21a44 = O ;  (a21 = -clalla54/ad4) cl + a t l c la~5  +a2la45; dl = 0 + O ;  el = 1 + 
a12cm4 + 022044  = 1; fl = O + a12~1a55 + 0 2 2 0 4 5  = 0;  (a45 = - c l a m ~ ~ / a 2 2 )  g1 = O + 0- 

Substitute a21, a45 into c l ,  combining with the fact that alzcla54 + a22a44 = 1, we get 

Depending on whether cl = O or not , 
and B2 = [O, 0 ,1 ,0,1,0,  O]. 

we get two representatives for B :  Bi = [O, 0 ,0 ,0,1,0,  O] 

Subcase 1.2.1: For Bl = [0,0,0,0,1,0,0], we assume A = [a, b,c,d,O, f , l ] .  To fix B I ,  we 
require a21 = 045 = O and a22aa = 1. NOW consider A. a + aaiib; b -t all(aa34 + Bad4 + 
ca54) + (allasr - ma«); c + ail (as + ~ ~ 5 5 )  + 0 4 1 ~ 5 5 ;  d + a a i d  + daad; e = 0 + 
a12(aau + + +asr) + a12(das4 + f a 5 4  + ( m a s 4  - a 5 2 w )  = O (By subtracting a multiple 

of Bl); f 012 (a035 + ca55) + a22(da35 + f ~ 5 5 )  + a42a55; g = 1 a44055 = 1- 

Make b = c = f = O by solving for asl ,  a41 and a42 respectively. Now i f  a # O ,  make a = 1 
and d = O by solving for 012  to get (1.2.la) Al = [l, 0,0,0,0,0,1] (Ai h Bi corresponds to 



(257E)). If a = O, then d # 0, and get (1.2.lb) At = [O, 0,0,1,0,0,1] (A2 A B1 corresponds 
to (257F)). 

Subcase 1.2.2: For Ba = [O, 0,1,0,1,0,0], we may assume A = [a, b, c,d,O, f, 11. To fix B2, 
we require that 

a21a44 + alla54 = 0, alla55 + a21Ch5 = 1, 
m a 5 4  + 0 2 2 ~ 4 4  = 1, a12a55 + a22a45 = 0, 

Now consider A. a -+ aall6 + dalld; b -t all(aaa + b u  + cas4) + a21(da34 + f aS4) + 
(a41as4 - a51a-44); c + all(aa35 + bu45 + ca55) + a21(da35 + f u s )  + (a41a55 - a51045); 
d -t au126 + da224 e + al2(aa34 + + cas4) + a 2 2 ( d a ~  + f a5.i) + (a4aas.l - a s 2 ~ 4 ) ;  
f -t a12(aa35 +bu45 +ca55) f aZ~(da35 f f a55) f ( a 4 2 a ~ ~  - a53445); g = 1 -# (a44055 -a54~45). 

Taking a l 2  = a21 = a45 = a54 = O, we make 6 = c = e = f = O by solving for asi, a41, a52 
and a42 respectiveiy. Now for A, we have 

As one o f a , d  # O, we can make a = 1 and d =  O to get (1.2.2) A = [1,0,0,0,0,0, l] ( A A  Ba 
corresponds to (2570)). 

Case 2: L c VI, or g = O in A, B. One of a,d # O. Make a = 1 and assume that 

A = [l ,  bl c, d, e, f, O] a d  B = [O, bl ,  C l ,  dl ,  ei, fi1 O]. 

Bearing in mind that to fbc A, we require al1 + dazl # 0. 

Subcase 2.1: L n V 3  = O. Since A E Vl, this case is the same as B # V3, or dl # O 
in B. Assume dl = 1, B = [O, al, cl, 1,  el, fi, O]. Now consider BI by taking a21 = 0, 
a l  = O + O; bl + all (bla4* + claa); ci + ail (blads + ciass); dl = 1 -t ~ ~ 2 ~ 6  = 1; el  + 
a12(bla44+cla~4) +a2l(a~+ela44+fla54); fi j al2(bla4s+clas~) +a22(a3S+elaCi + f l a ~ ~ )  ; 
91 -, O- 

Make al = el = fi = O by solvùig for a21, a34 and u35. Now B = [O, bl, cl ,  1, O, 0, O]. Taking 
= al2 = a34 = a35 = O1 a1 = O -t O; 61 + al l(blau + C ~ Q S &  cl + al l (b1a~i  + cla55); 

dl = 1 -+ ~~~6 = 1; el  = O + O; fi = O + O; gl  + 0. 

If one of bl, cl # O, then make cl = 1 and bl = O to get Bi = [O, 0,1,1,0,0, O]. If both 
bl = cl = O, then get B2 = [O, 0, O, 1, O, 0, O]. 

Subcase 2.1.1: For Bi = [0,0,1,1,0,0,0], we assume A = [l, b,c,O, e, f,O]. To fix Bi,  we 
require = ag4 = 054 = 0, a35 = -a12u55/a221 a11055 = ail& = 1. Consider A, we have 



One of b, e # O. If b # O, then assume b = 1 and make e = O by solving for al2, make c = d 
by solving for a45 and further make both c = d ='O by subtracting a multiple of Bi fiom 
A. Now taking a12 = a35 = a45 = 0, a = 1 3 allb = 1;  b = 1 + alla:, = 1; c -+ O; d -+ 0; 
e = O + O; f + faz2aS5;g -0. 

Now if f = O, we obtain the representative: Subcase (2.1.14 Al = [l, 1 ,0 ,0 ,0 ,0 ,  O] (Al A Bi 
corresponds to (2571)); If f # 0, and f > O, we have Subcase (2.1.lb) A2 = [l, 1 ,0 ,0 ,0 ,1 ,  O] 
(A2 h Bi corresponds to (25751)); if f < O, A3 = [l, 1,0,0 ,0 ,  -1,0] (we Will omit this cése, 

as we c m  show that it is in the same orbit as (2.1.1~) below, which has a simpler form). 

We can make c = d and subtracting a multiple of B fiom A to make c = d = O and get 
(2.1.1~) 4 = [ l ,  0 ,0 ,0 ,1 ,0 ,  O] (& A B1 corresponds to (2575)). As it tunis out to be in the 
same orbit = (2.1.1b), and because (2.1.1~) hasi a simpler forxn, so we omit (2.1.lb) instead. 

One of b, c # 0, for otherwise the 2-cocycles wiil contain some none trivial elements of the 
center in the kemel. Make b = 1 and c = O. Make e = O by solving for a~z.  Then f # 0, 
and get A = [l, 1,0,0 ,0 ,1 ,  O] (A h B2 corresponds to (2571)). And it can be easily shown 
that A A B2 is in the same orbit as  (2.1.la), so we omit it. 

Let a21 = O. When both bl = cl = O, we can easily get a representative for B: Subcase 
(2.2.1) 

B1=[O,O,O,O,O,l,O]. 



Make cl = 1 and bl = el = O. Then make fi = 1 to get Subcase (2.2.3) 

Subcase 2.2.1: With Bi = [0,0 ,0 ,0 ,0 ,1 ,0] ,  we assume A = [l, b,c,d,e,O,O]. To fix B 1 ,  
we need a21 = a54 = O and a22a55 = 1. Consider A, a = 1 -t alid; b -r al l (as  + 
c + a11(a35 + bals + ~ ~ 5 5 ) ;  d + 0126 + da226; e -t a12 (a= + b a ~ )  + a22 (da% +- ea44); 
f = O -t a12 (a35 + bud6 + euss) + aZ2 (da3S + ea45) ( B  y subtracting a multiple of BI we can 
always make f = O ) ;  g = O -t O. 

We can make b = c = d = O by solving for a%, a35 and 412 respectively. Now e # O. So we 
make e = 1 and get subcase (2.2.1) A = [l, 0,0,0 ,1 ,0 ,  O ]  ( A  h Bi corresponds to (257C)).  

Subcase 2.2.2: With B2 = [O, 1 ,0 ,0 ,0 ,1 ,  O], we assume A = [l, b, c ,  d ,  e ,  0 ,  O] .  To fix B2, we 
require 

alla44 + a21a54 = 11 alla45 + 421a55 = 0 ,  
aizaei + a2zas4 = 0 ,  ai2045 + a22a55 = 1 

By talcing a21 = 0 4 5  = O ,  we can make c = d = O and b = f by solving for a3s1 0 1 2  and 
a34 respectively. Then by subtracting a multiple of B fkom A, we can make b = f = 0. 
Now depending on e = O or not, we may obtain the following two representatives for A: 
Subcase (2.2.2~~) Al = [1,0,0,0,0,0,  O ]  (Al A B2 corresponds to (257B)) and Subcase (2.2.213) 
Aa = [l, 0,0,0 ,1 ,0 ,  O] ( A 2  h B 2  corresponds to (257D)). 

Subcase 2.2.3: With B3 = [O,  0 ,1 ,0 ,0 ,1 ,  O ] ,  we assume A = [l, b, c, d, el O ,  O] .  To fix B3,  
we require a54 = O and (all + a2i)ass = 1 and (al2 + a22)ass = 1. Then for A, we have 
a = 1 + aiid + da214 b + a l l ( a ~  + k 4 )  + a 2 l ( d a ~  + e a ~ ) ;  c + all(a3s + bu45 + cass) + 
a2i(da3s + ea45); d + a126 + da226 = (al2 + da22)b; e + a l 2 ( a ~  + ba44) + aa2(da34 + ea4& 
f a12(a35 + bu45 + ~ ~ 5 5 )  + a22(da35 + ea45); g -f O* 

I f  d = 1, then make a = d = 1. Taking a21 = O ,  we can make c = f ,  by subtracting 
a multiple of B3 fiom A, we have c = f = O. Then we need e # O to get the desired 
representative: Al = [l, 0,0,1 ,  1, O ,  O ] ,  Al A B3 correponding to (%TA). 

I f  d # 1, we can make b = d = O and c = f by solving for a s ,  al2 and a35. Then we need 
e # O to get A2 = [l, 0,0,0 ,1 ,0 ,  O ] ,  with Aa A B3 corresponding to (257C), hence it is in the 
same orbit as (2.2.1), we omit it. 

Now we get all the possible representatives for the desired orbits, with the correponding 
aigebras: 



To prove that ail the algebras are dintinct, we consider the following four groups of algebras: 

Group 1: (257A-D): L C VI and L n  V3 # O; 

Group 2: (257I,J, Ji): L C Vl and L n V3 = 0; 

Group 3: (257E,F,G): L VI, L nV3 # O and L V2; 

Group 4: ( 2 5 7 ~ ~ ~ ) :  L v1, L n v3 = O a d  L n v2 = o. 
Group 5: (257B): L VI, LnV3 = O and LnV2 # 0. 

We just need to prove that ail the dgebras among the same group are distinct. 



If (257B) could me mapped to  (257A), then the coefFtcients of A l 3 ~ A I 4 ,  A13AA241 A23~A141 
A2= A A24 are zero, i.e., 

It is easy to see that there is no solution to the above system of equations, for otherwise the 
automorphism group is going to be singular. Hence (257A) and (257B) are not isomorphic. 

Compare (257B) with (257C), exactly the same thing wiil happen. So they are not isomor- 
phic. 

Compare (257B) with (257D), the coefficients of Az3 A A14, As3 A Ais, A23 A A14, A 

will be zero, while that of A14 A Aar is not. It is obvious that a12 rnust be zero. As the 
coefficients of A13 A A14 and Ais A A25 are not zeso, we have alla44 + ~ 2 1 ~ 5 4  # O and 
~ 1 2 ~ 4 5  + a22a55 # O. As the codcient of A14 A25 equais O, we will have a34 = O since 
a l 2  = O and al1 # O. Similady we can prove that a35 = O by considering the coefficient of 
A15 A A24. The fact that both aw = a35 = O wiU make the coeflicient of A14 A A24 to be 
zero, a contradiction. Therefore (257B) and (257D) are not isomorphic. 

Now we need to check whether (257B) is decomposable or not. Take ( l . l . lb ) ,  then A = 
[O, 0,0,0,0,0,1] and B = [l, 0,0,0,0,0, O]. By simply looking a t  the coefficients of A A B, it 
is obvious that (257B) and (1.l.lb) are not isomorphic, Le., (257B) is indecomposable. 

Similady, we can prove that al1 the other algebras are distinct and indecomposable. 

In order that the basis for (257A) will also diagonalize a maximal torus, we make the 
following basis transformation: XI -+ X I ,  xz + XI  + 2 2 ,  23 -+ x3, 2 4  -+ ZQ, 2 5  + 25, 
2 6  -+ 2s and 27 + 27 .  

Therefore the corresponding central extensions of N5,4 are: 



Remark: To get Seeley's presentations, (1) In (257B), by switching 2 4  and 25;  (2) In (257F), 
by taking x l  + 4 ' 2 2  + a+b; (3) In (257L), by taking zl + b, x 2  -t a, 2 3  + -c, z4 + -d ,  
z ~ - + e ,  z6 + -9 andzr+ -f. 



7.2 Extensions of 6-Dimensional Algebras 

The central wctensions of NgVlvl can be found in chapter 2, Example 4. 

Central extensions of 

Z(g): 26; (8, 01: 24, x l ,  26; Z2(g): C25 = = C36 = C45 = C46 = CSB = 01 CI5 f CZ4 = 
0, C16 + Gs;W(H2):  Ci2 = C14 = Cls = O; dunH2: 4; Basis: Al3, Al6 - AJs, Am, A24; 

Care 1: d = O. Then we obtain the representatives [O, 1.0, O] (when c = O, corresponding 
to (l23WA)), [O, 1,1, O] (when c # O and bc > 0,corresponding to (12357B)) and [O, 1, -1, O] 
(when c # O and bc < O, corresponding to (12357Bl)). 

Case 2: d # O. Then make c = O by solving for a21 and get a representative [O, 1,0,1] 
(corresponding to (12357C)); 

Therefore the corresponding central extensions of Nesvo are: 

Central extensions of N6,2,s: 

Group action: aAir + )(Al6 + AM) + cAzs + d(A16 - Aa5); 

Notice that the automorphism group of hiu two components, we have respectively 



and 

(2): a * -c and b * -d simultaneously. 

One of b, d # O. Because of (2), we may aiways assume that b # 0. 

Case 1: d = O. We can get five representatives [O, 1,0, O] (when a = c = O) (corresponding 
to (l2457H)), [O, 1,1, O] when (a = O, c # O) (corresponding to (l24WI)), [l, 1,0, O] (when 
a # O, c = O) (corresponding to (12457K)), [l, L , 1 ,  O] (when ac > 0) (corresponding to 
(12457J)) and [l, 1, -1, O] (when oc < O) (corresponding to (12457J1)); 

Case 2: d # O. We can get representatives [O, 1,  O, 11 (when a = c = O) (corresponding to 
(12457L)), [l ,  1,0,1] (when one of a, c # O, we may assume a # O using (2)) (corresponding 
to (12457M)); And when both a # O, c # O, we can get a one parameter representative 
[1, 1, A, 11 (correspondhg to (12457N)) for any X # O. Combining (1) and (2), we can show 
that [l, 1, A-', 11 is in the same orbit. So we rnay introduce the invariant I(X) := A + A-' 
for this representative. 

Therefore the corresponding central extensions of Nslzls are: 

[211 xi] = zi+l, i = 21 3,5,6 [zi1 241 = ~ 7 8  [22r23] = 251 

[z2 1 243 = 2 6  1 [z2r 251 = A271 [~2126] = 271 

[23, al = 27, [zs, 251 = -27; 
(12457M) in Seeley's iist is a speciai case of (12457N) with A = 0. 

Central extensions of N6,2,g: 

As the automorphism group of N6,2,g has tao components, we have 





e -t balla2242 + 2 ~ a l l a i 2 4 ~  + e ~ l l 4 ~ ;  

One of {b, c) and one of {c, e) are nonzero. 

Case 1: b # O. Make a = c = d = O by solving for 031,012, and a41 to get the representatives 
[O, 1,0,0,1] (when be > O), corresponding to (1357P) and [O, 1,0,0, -11 (when be < O), 
corrsponding to (1357P1). 

Case 2: b = O. Then c # O. Make a = d = e = O by solving for w, as4, a12 to get the 
representative [O, 0,1,0, O], corresponding to (13570). 

Therefore the corresponding central extensions of N6,2,10 are: 

Central extensions of NsVavr: 

Group action: aA13 + bA14 + c(Ala + Au) + dAzs + eA26 + f A46; 

Case 1: f = O. So c # O and make a = b = O to get a representative [0,0,1,1,Ol0], 
correspondiog to (l357D). 

Case 2: f # O. Make b = c = O and get the representatives [0,0,0,1,0,1] (when a = 0, 
corresponding to (1357E)), [ l ,  0,0,1,0,1] (when a # 0, and of > O, corresponding to 
(1357F1)) and [l, 0,0,1,0, -11 (when a # 0, and a f < O, corresponding to (l357F)). 

Therefore the corresponding central extensions of are: 



Central extensions of N6,4,2: 

One of e ,  f ,  h # 0 ,  for otherwise any element in the orbit will have none trivial kernel in the 
center of 

Case 1: f2 - eh # 0.  

Subcase 1.1: f - eh > O. We may assume that f # 0, for otherwise eh # O ,  then we can 
make f # O by using the group action. If eh = O ,  then it is easy to make e = h = O by 
solving for al3 and a32. And if eh # O, then make h = e = O by solving for a23, a32, say 

we can ensure that a2za33 - 423492 # O ,  i.e., the nonsingularity of the automorphism group. 

Let a23 = a32 = O ,  then make a = b = d = g = i = O by solving for aal, a21, a53, a56, a46 

respectively. So c # O .  Now we have a = O + f allal1as2+ f all a z 2 ~ 3 1  ; b = O + f alla21a33+ 



Take a23 = 432 = a31 = a21 = a46 = a53 = a56 = O and solve for al1 and w, we can get the 
representative [O, 0,1,0,0,1,0,0, O], corresponding to (l47A). 

Subcase 1.2: f2 - eh < O. Then eh > 0, and we cannot make either e or h = O. We rnay 
assume f = 0, for example, let a23 = O and solve for a32 wili make f = 0. 

Then take a23 = as2 = O, we may fkther make a = b = d = g = i = O by solving for 
a21, 031, 053, a46 and as6 respectively. Then we are left with c + call-6; e -+ eaiiai,; 
h + haiia&. 

Then since eh > O, we can get the representative [O, 0,1,0,1,0,0,1,  O], corresponding to 
(147A1). 

Case 2: f2 - eh = O. Then one of et h # O. Assume that h # O, then make e = O, which 
will automatically result in f = O. Now a # O. Make b = c = d = i = O by solving for a23, 
a4s1a5z and a56 respectively. Then g # 0, and get a representative [1,0,0,0,0,0,1,1,0], 
corresponding to (l47B). 

Therefore the central extensions of Nôlr12 are: 



7.3 Extensions of N6,3,6 

The discussion is the same as that of complex case. And we also have Theorem 6.1 as in 
Chapter 6. The ciifference arises only when we consider the number of orbits in (Eo, O). In 
the reaI case we wiU have 4 orbits instead, as follows: 

M e n  aii the three eigenvalues are real, we have 

(iii ) 

When there are nonreal eigenvalues, assume they are E and f ,  then it  must be in the same 

with > 1. 

To find the correspondhg elements in R) for (i)-(iv) , we may use the sarne argument 
as in the algebraically closed case. 

For (i),let *=  ( b ~ c ) @ a + ~ ( c ~ u ) ~ b + ~ ( a ~ b ) @ c ~  v'@(A2V)'. Then 



and 

P ( Q , ~ A c )  = & q ( b , c ~ a )  = q , P ( c , a ~ b )  = C =  -(-q, 
with all the other combinations are zero, which in turn will give us the algebra 

with the invariant I(A) = -3 = w, and X # 0 , l  as in the cornplex case. 

It is obvious that (147C) is just a speciai case of (147E), by letting X = 1/2. 

In (ii), it is easy to see that the corresponding cocycle will contain a nonzero eIement of 
Z(g)  in its kernel. So we just omit it. 

In (iii), when ( = 0 ,  the corresponding cocycle will contain a nonzero element of Z(g)  in its 
kemel. And when < # O, we have 

Its  corresponding cocycle is 

And it is trivial to check that 

And its corresponding dgebra is 

[ a , b ] = d ,  [ b , c ] = e ,  [ a , c ] = - f ,  

(1) : [al el = 47, [ % f l  = 9 ,  [a, fl = o, 
[c, d] = -2g. 



which is isomorphic to (147D) of Seeley's paper, an isomorphism from (1) to (147D) can be 
given as: a -+ 1/2c, b -+ b, c + a, d + -1/2e, e -+ -d, f + -1/2 f and g + -1/4g. 

In (iv), its corresponding cocyle is 

And it is easy to check that 

And its corresponding algebra is 

with < > 1, and corresponds to (147E1). 

Therefore the centrai extensions of N6,3,6 of dimension 7 are: 

(147D) : 

[a, bl = 4 [a, CI = -f t 

[a, el = gt [a, fl = 9,  

[bt cl = et [h fl = gt 
[cl c q  = -29. 

1-A+AZ ' (147E): I ( X )  = ,--, X # O, 1 ( À = 1/2 gives (147C)) 

[a, a1 = 4 [a, CI = -ft 
[at el = -SI [a, cl = et 

[b, fl = Ag, [c, 4 = (1 - A)!& 
(147E1): (A > 1) 

[a, 4 = 4 [a, cl = - f t  

[at fl = -As, [br CI = e, 

[a, el = As, [b, fl = 5, 
[c, d] = -29. 



7.4 Four More Real Algebras and Their Extensions 

7.4.1 The Four Algebras 

In the real field R, apart fiom all the algebras already listed over C, we have 4 more algebras, 
which we wiii fist in the foiiowing, with their correspondhg automorphism groups. The 
notation La means that, as a Lie algebrzs over R, La and L are nonisomorphic algebras, 
but are isomorphic over the complex field C. 

Our real6-dimensional list is based on Nielson's List, and the correpondence between these 
two lists can be found in Appendix A. 



Auto : 

and 

with a = a22 cos 8,  b = a22 sin 9 ,  z = a43 +as3 sin 19, y = -a42 +a53 cos d ,  u = -a22a41 cos 8 - 



7.4.2 The Extensions 

Central extensions of &,2,5a: 

One of b, d # O. Make b = 1 and d = O to get A = [a, 1, c, O]. Set a12 = O, then we have 
a+ aa:,; 6 = 1 -+ a:,; c +  d = O -+ O. 

Case 1: c # O. When a = O, we get a representative for A: A = [O, 1,1, O], corresponding to 
(12457N1) (the reason we use this notation is because it is isomorphic to (12457NJ = 1) 
over C). When a # O, then we get A = [outl, a:,, ca:,, O]. Now it is easy to see that we get 
a parameter A in A: [l, 1, A, O] for X # O, corresponding to (12457N2). By the group action 
(2), we may change A tu [- 1, O,  A, -11, and by (1) again and letting al1 = O, we would 
get [ai2, -af2, -af2X, O], which is in the same orbit as [l, 1, -A, O] if we take al2 = -1. 
Therefore an invariant for this parameter could be chosen as K(X) = IXI. 

Ca4e 2: c = O. Now depending on whether a = O or not, we get two representatives for A: 
A = [O, 1,0, O], corresponding to (12457L1), and A = [l, 1,0, O], which can be included in 
(12457N2) as a special case by choosing X = 0. 

Therefore the central extensions of are: 



Central extensions of N6,2,8a: 

Oneofa,c#O, and when c =  O, then a # O  and a+b#O.  Make a #  O and c =  0,whichis 
always possible over R. Fix c = O and let al2 = O, we get o + ao:,; b + bu:,; c = O -t O; 

d -t a(+42 + &31) + b(-a:1a41); e + aallbIgrl+ ba:la3a + 
Make d = e = O by solving for as1 and w, depending on whether b = O or not, we get two 
representatives for A: A = [l, 0,0,0, O], and A = [A, 1 - A, O, 0, O], with X # 0, l .  Combining 
these two, we may just assume X to be any nonzero real numbers. Using (2), we know that 
A is in the same orbit as [l, X - 1,0,0, O]. Since A # O in A, we can multiply A by 1 / X  and 
get [l, - 1, O, O, O], now it is easy to see that K(X) = X + 1 / A  can be used as an inmriant 
for A. This new algebra will be denoted by (1357QRSl), since over C, when X = 1, it is 
isomorphic to (13574); when X = -1, it is isomorphic to (1357R); and for al1 the other 
X # O, it becomes (1357S, A > O, X # 1). 





One of b , c , g , h #  O. Make b # O and c = g  = h = O. Take 0 3 1  = a32 = 0,  as1 = as2 and 
4 1 2  = a22, then we have 

Now make a = d = e = g = h = O by  solving for as2, -3, a64, 013 and a23 respectively. 
Then choose further al3 = a23 = a51 = 4 5 2  = 053 = a54 = -1 = ( ~ 6 2  = ( ~ 6 3  = am = O, to 
get a =  O + O ;  b  -t b(-2a:2a43); c =  O -t O ;  d = O + O ;  e = O  + O ;  f + fa&; g = 0 + 0;  
h = O + O .  

Depending on whether f = O or not, we get two representatives [O ,  1 ,0 ,0 ,0 ,0 ,0 ,  O ] ,  corre- 
ponding to (13?A1), and [O, 1 ,0 ,0 ,0 ,1 ,0 ,  O ] ,  corresponding to (137B1). 

Therefore the central extensions of N6949sa are: 



Appendix A 

Cornparison with Nielsen's List 

For &dimensional nilpotent Lie algebras, Nielson [22] presents a kt of 24 indecomposable 
non-isomorphic algebras over the real field R and calculates a correspondhg connected and 
simply-comected Lie group and its coadjoint orbits, and related data for each algebra. He 
also compares his List with those of Morozov [20], Skjelbred and Sund [35], Umlauf [37] and 
Vergne [38]. 

In this part, we indicate the correspondence between our list and Nieken's list: 



Appendix B 

Comments on Ancochea-Goze List 

In this appendix, we discuss the list of indecomposable complex nilpotent Lie algebras 
of dimension 7 obtained by Ancochea-Bermudez and Goze [2] . The List was originally 
published in &ch. Math. in 1989, which missed a lot of algebras and also contained many 
errors. Later on the Iist was incorporatecl as part of the book "Nilpotent Lie Aigebrasn by 
Goze and Khakimdjanov [12], with some adjustments and more dgebras. This book was 

published in 1996, three years after Seeley's paper [33] appeared in Trans. AMS. We have 
compared all the indecomposable algebras in Seeley's list with this one, and as it  turns out, 
Ancochea-Goze's kt still misses many algebras, while some are not Lie dgebras a t  all, and 
others are included more than once. 

Beiow we will present the results of our cornparison conceniuig Ancochea-Goze's Est: (1) 
At f i s t  we will point out those that are not Lie algebras at  d l ,  by providing 3 elements 
which fail the Jacobi identity. We make no efforts in correcting the mistakes; (2) Secondly, 
we will list ail the algebras which have been induded more than once, together with an 
isomorphism between them; (3) Thirdly, we point out the correspondences between the two 
lists by using the upper central series dimensions as our invariant, also mentioned are the 
algebras that are misçing fkom Ancochea-Goae list. 

B.1 Decomposable or non-Lie Algebras 

In this section, we will point out those algebras which are decomposable or not a Lie 
algebra at all. In total, we found two decomposable algebras, and ten classes which are not 
Lie algebras, including an infinite f d y .  



ni": Decomposable, ta+''=< 22, x3,24 > x < 21 - 2 2 ,  23 + 
271Z5t26 >. 

ni2': Decomposable, F(z2 - x3) is an Abelian direct factor. 

n:: Not a Lie algebra, with Jac(zl, 26, z7) # 0. 

n;: Not a Lie algebra, it has obviously a typo, with [xe,z7] = 
1 1 
~ 2 3  + 223- 

n 7 :  Not a Lie algebra, with Jac(zlI 25, z7) # O. 
n;2'a: Not s Lie algebra, with Jac(zl,z5,z7) # O .  

n:': Not a Lie algebra, with Jac(zl, 25, zl) # O. 
n 7 :  Not a Lie aigebra, with Jac(zl, 24, x7) # O. 

np: Not a Lie algebra, with Jac(zl, 24, z7) # 0. 
n:Oo: Not a Lie algebra, with Jac(zl, 2 4 , ~ ~ )  # O. 
ni2': Not a Lie algebra, with Jac(zl, 22, x4) # O. 
np2: Not a Lie algebra, with J x ( z l t  24, x7) # 0. 

B.2 Algebras That Occur More Than Once 

In this section, we list aU the algebras that have appeared more than once. For those 
algebras with different presentations, we also provide an isomorphism between them. When 
we mi te  A Z B, it means that A and B are isomorphic but of different presentations, then 
the isomorphism given is fiom A to B. If the algebras are of exactly the same presentation, 
we sirnply write A = B. 



B .3 Cornparison of Ancochea-Goze's and Seeley's Lists 

In this section, we estabiish the correspondence between these two lhts. We compare, of 
course, the conected Seeley's, which in the case F = C is identicai to our kt in Chapter 
4 (&O see the Introduction for comments) with the modified and updated version of the 
Ancochea-Goze list as presented in the book [12]. Also mentioned are the aigebras that 
are missing from Ancochea-Goze list. We use the upper centrai series dimensions as the 
invariant. 

Missing: none. 

ni4' S (27A); ntd6 Z (27B). 
Missing: none. 

nF7 L* (24711); n;O1 (247B);np 1 (247C); n;6 1 (2473); 
n;3 Z (247B); n;l 2 (2470); ny 2 (247H); ny S (2471); 
n:* Z (247.7); n$ (247L); np6 1! (247N); n7' S (2470); 
i (247Q);~t;~ (247B). 

Missing: (247D), (2HK), (247M), (247P). 

n i  S (235711); np S (2357B); np S (2357D). 
Missing: (2357C). 



Missing: none. 

Missing: none. 

Missing: none. 
(147) : 

ni" Z (147B); 
nio5 S (147E) by taking X to be a root of z2 - z + 1; 
n:27'a 2 (147E)( (Compare the invariant for ( in (147E)). 
Missing: (147A), (147D). (Notice that (147C) in Seeley is a 
special case of (147E)) 

Missing: none. 
(137): 

n:l8 S (137A); niZS S (137B); ni1' 2 (137C). 
Missing: (l37D). 

(1357): 
n;' Z (1357A); n:' G (1357B); 7 ~ ; ~  S (1357C); 
n:2 "L (13573); n;l S (1357F); 2 (1357G); n:3 
(1357H);n:~ E (13571); np 2 (1357J); n7 S (1357L); $la 

S (1357M)*; n?" S (L357N)A; 
nT2" % (1357S), in the original A-G list, v$*la is not a Lie 
aigebra, but after [xs, zs] = 2 2  is replaced by [zs, ze] = - m z ,  
we have the above isomorphisrn. 
Missing: (135?D), (1357O), (1357P), (l35?Q), (1357R). No- 
tice that (1357K) in Seeley is a special case of (1357M). 

(13457) : 
n:' 2i (13457A);n:' 2 (13457~);n;~ 2 (13457C); 
n:9 Z (13457D); n? S (13457E);nt0 E (13457F); n:' 
(1345713); nr S (134571). 
Missing: none. Notice that (13457H) in Seeley is not a Lie 
dgebra. 



(12457) : 
ni5 1 (12457A); n:7 2 (12457B); n;' -L (12457C); "L 

(12457D); np 1 (124573); nT r (124570); ni6 2 (12457K); 
np 2 (12457L); 
n:''= E (12457N)*. In A-G list , there is no restriction on a 
at d, compare X in (12457N). 
n+4 P (12457NJ = -1). 
Missing: (l2457F), (l2457H), (l2457I)) (l2457J). Notice that 
(12457M) in Seeley is just a special case of (12457N) by taLing 
X = o. 

(12357) : 
nf E (12357A); n? (12357B); - (12357c). 
Missing: none. 

(123457) : 
n7 2 (123457A);n: 1! (123457B); n: 1! (1234573); 
n: S (123457F); n: (123457H); niP 1 (1234571)A; n; a 
special case of (123457I), with X = 1; 
Missing: (l23457C), (l23457D). Notice that (123457G) in 
Seeley is a special case of (1234571). 



Appendix C 

Cornments on RorndhaniSs List 

In this appendix, we discuss the list of indecomposable real niipotent Lie algebras of dimen- 
sion 7 obtained by Romdhani [Ml [25]. Carles [6] has compared Seeley's list with Romdhani's 
over the complex field. Readers who are interested in more details should refer to [6]. Car- 
les has a very nice discussion especially about the behaviour of the six continuous families 
t here. 

Here we compare our list of 7-dimensional indecomposable real nilpotent Lie algebras with 
that of Romdhani [24][25]. Also mentioned are the algebras that are mWing fiom his list, 
which are many in numbers. We use the upper central series dimensions as our invariant. 
Our purpose is more on the correspondence between the two lists, hence we make no effort 
in making corrections or providing the details of the isomorphism. 





(157): 
g7,129 (157). 
Missing: None. 

(147) : 
hr g7.113 =97.115 (147Al);g7,114 %7.116 2 (147A); g7.112 - 

A#O - 
(147B);g7,ss Y (147D); &$: (147E); g7,, = (147E1). 
Missing: None. (Notice that (147C) in Seeley is a special case 

of (147E)) 

(13457) : 
gr.51 (13457A); g7.50 (13457B); g7.39 Y (13457C); g7,49 
1 (134573)); 
97.38 - (134573); g 7 ~ 9  - (13457F); 97.26 (13457G); g7,25 
(134571). 
Missing: None. Notice that (13457H) in Seeley is not a Lie 
algebra. 





Appendix D 

An Overview of the Construction 
of the 7-Dimensional Algebras 

Here we give the summary of all the Fdimensional indecomposable nilpotent Lie algebras as 
they aise nom those of dimensions 5 6 in our construction over algebraically closed fields 
of x # 2. The teaders may easily identify the central quotients of all the 7-dimensional 
algebras with this list. 

With regard to the number of aigebras: Over the algebraically closed fields, there are 6 
one parameter continuous families, together with 119 isolated algebras when x # 3 or 120 
isolated algebras when x = 3 (the extra algebra is (147F)), 

Over the real field, there are, in addition, 3 one parameter continuous families and 21 
isolated algebras. 

D -1 Algebras over Algebraically Closed Fields 

Abelian Algebras and Their Ext ensians 

Four-Dimensional Algebras and Their Extensions 



Five-DMensiond Algebras and Their Extensions 

(23457E-G). 
(23457A-D). 
(2357A-D) . 
(2457L, M). 
None. 
(247A-R) . 
(2457A-K) . 
(257A-L) . 

Six-Dimensional Algebras and Their Extensions 

(1234571. 1). (123457G) in Seeley's kt is just a special case 
of (1234571) by taking X = 1. 
None. 
(123457D-F) . 
(12457EG). 

(123457A-C) . 
None. 
(12357A-C) . 
(12457A-D). 
(12457H-L, N). (12457M) is just a special case of (12457N) 
by taking X = 0. 

None. 

Nstzqï: (13457F, G,I). (13457H) in Seeley's list is not a Lie algebra 
and should be deleted. 

N6,2,B: (1357L-N). (1357K) in Seeiey's k t  k jjut a specid case of 
(1357M) by taking X = 1/2 .  



(1357D-F). 
(137CD). 
(l47D ,E) (and also(147F) if x = 3). (147C) in Seeley 's list is 
a special case of (147E) by t aking X = t /2. 

(13457A-C) . 
(l357A-C). 
None. 
None. 
(147A, B). 



D .2 Algebras over the Real Field 

In addition to the above dgebras over algebraically dosed fields of x # 2, we have the 
foliowing indecomposable algebras over R. 

Abelian Algebras and Their Extensions 

Five-Dimensional Algebras and Their Extensions 

Six-Dimensional Algebras and Their Extensions 

(135741) - 
(1357QRSl). The reason we use this notation is because over 
C, if A = 1, (1357QRS1)Y (13574); if X = -1, (1357QB1)S 
(1357R); and for other A, it corresponds to (1357s). 
(1357P1). 



Appendix E 

Maple Programs 

In this part we provide the main Maple V programs that we have used in our computation. 

E.1 Introduction 

A Lie algebra is uniquely determined by its structural constants, which can be naturally 
regarded as a tdimensional matrix in Maple V. Therefore we may expect that the compu- 
tational systems such as Maple V are going to play a more and more important role in the 
research of Lie algbras and related topics. 

ALI of our routines are to be used together with the Linear Algebra Package provided by 
Maple V, through the command uith (linalg) . 
For example, the Heisenberg Lie algebta 

can be denoted in Maple V as 

The procedures a d a b l e  are for the computation oT: 

- the Lie algebra conditions (including the J acobi identity and the anticommutativity) ; 

- the cocydes; 

- the group actions; 

- the isomorphism between two algebras (ïnduding automorphism groups); 

- derivation algebras. 



E.2 The Programs 

E.2.1 Lie Algebra Conditions 

CIIlling Sequence: 

c h e c k l i e  ( Algebm, Dimension) 

Parameters: 

Algebrcr - An algebra in the form of a fdimensional matrix 

Dimension - The dimension of the given algebra 

Synopsis: 

- To check whether an aigebra is a Lie algebra or not by checking the Jacobi identity and 
the anticommutativity. 

- Input is an algebra and its dimension. 

- If the algebra is NOT a Lie dgebra, then the output wiU specify the vectors where the 
anticommutativity or the Jacobi identity fails; If the algebra is a Lie algebra, the output 
will give a confirmation. 

Procedure : 

check-lie: =proc (A ,d 

local  i , j , k ,  1, m ;  

f o r  i from 1 by 1 to n  do 
f o r  j from 1 by 1 t o  n do 

f o r  k  from 1 by 1 t o  n do 

i f  A[i, i ,  k]<>O then 
RETURN('1nput is NOT a Lie algebra ( ' , i , i , k , ' ) = ' ,  

A[i,i ,k],  ' i s  not zero' ) ;  
e l i f  A(i, j ,k]+A[j ,i,k]<>O then 
RETURN('1nput i s  NOT a Lie algebra. , , , k  . ' )+  

( ' , j , i , k , ' ) = ' .  ~ [ i , j , k ] + ~ [ j , i , k 7 , < i s  not zero1) ;  

else 

for 1 from 1 by 1 t o  n do 
if  

simplify(sum(~[i .  j,ml*AErn,l,kI+Acj , l .m~*Acm,i , ld 



+ A [ l , i , m ] * A ~ ,  j ,k],  m=l. .n))<>O 
then 

RETUR.N(' Input is HOT a Lie algebra---the Jac(' , 
i,j,l, ') is not zero'); 

fi ; 
od ; 

fi; 
od ; 

od ; 

od ; 

print('Yes,  input IS a Lie algebra');  
end : 

Calling Sequence: 

cocycle (LieAZgebni, Dimension) 

Paramet ers: 

LieAlgebnr - An Lie algebra in the form of a 3-dimensionai rnatrix 

Dimension - The dimension of the given algebra 

Synopsis: 

- To compute the cocycles of a given Lie algebra. 

- Input is the given Lie algebra and its dimension. 

- Output is the set of constraints on the entries of the cocycles expressed as antisymmetric 
matrices. 

Procedure : 

local i , j , k , h ,  v,u,u,C,eqns,e,f,g; 



for i to n do 
for j from i+l to n do 
for k from j+1 to n do 
for h to n do 

vch] :=L[i ,  j ,h] ; 
uCh1 :=L[j ,k,hJ ; 
v[h] :=L[k,i,h] ; 

od: 

eqns:=eqns union multiply(transpose(e),multiply(~,~))+ 

multiply (transpose (f 3 ,maltiply (C ,n) + 

multiply (transpose Cg) ,multiply (C ,d ) ; 
od: 

od: 
od: 
print ( 'The cocycles are ' , eqns) ; 
end : 

Comments: The output will give us some constraints on the entries of the antisymmetric 
rnatrix regarded as cocycles. 

E.2.3 Isomorphisms 

Calling Sequence: 

isom ( L i e A l g e b d ,  LieAlgebm2, Dimension) 

Parameters: 

Lie- l l lgebd,  LieAlgebm2 - Two given Lie aigebras 

DimensMn - The common dimension of the two given algebras 

Synopsis: 

- To compute the isomorphism between two dgebras (automorphism group can be obtained 
when the two algebras are identical). 

- Input are two given algebras and theh common dimension, 



- Output is the isomorphism between the two given Lie aigebras (or the automorphism 
group when the two algebras are identical). 

Procedure : 

local i ,  j , k, s , r ,  eqns , t  ,TEST, h d r e  , s o l s ,  l,Sl ,S2 ,C;  

C : =matrix (n , n) ; 
Andre : =matrix (n , n) ; 
TEST : =O ; 

eqns : ={ ); 

f o r  i t o  n-1 do 
for j from i+i t o  n do 

for Z t o  n do 

eqns:=eqns union SI-S2=O; 

od: 

od: 
od: 

s o l s  := [solve(eqns)] ; 
t:=nops(sols); 
f o r  i t o  t do 
for j t o  n do 

for k t o  n do 
h d r e [ j  ,k] :=subs(sols[i] ,C[ j  ,a) ; 

od: 
od: 

if simplif y (det (Andre) ) oO then 
print (Andre) ; 
print ('The det i s  ' , simplif y (det (Andre) ) ; 



TEST:=I ; 
fi: 

od: 

if TEST=O then 
print('These two algebras are not isomorphicc); 
fi: 
end : 

Comments: in some cses  Maple V may give some error info, and not be able to fînd the 
automorphism. Then we need to use the automorphism group theorem given by Skjelbred 
and Sund to compute it. 

E.2.4 Group Actions 

Calling Sequence: 

orbit ( AutomorphismGroup, Dimension, Element frmn F) ) 

Parameters: 

Automorphism-Gmup - The generic automorphism for the given algebra in the form of 
a 2-dimensional matrix 

Dimension - The dimension of the given algebra 

Elernent from ~ ~ ( 9 ,  F )  - An element of Ha (g, F) , written as a linear combination of the 
basis vectors 

Synopsis: 

- To compute the group actions on an arbitrary element in H2(0, F). 

- Input is the automorphism group of the given Lie algebra, the dimension of the dgebra 
and an element fiom H (9, F) . 
- Output are the correspondhg entries under the group action. 

Procedure : 

local x,B,y; 



x:=transpose(aut); 
y:=multiply(x,multiply(B,aut)); 

print(y1; 
end : 

Comments: This program applies to the case when dimH2(e, F )  = 5, and the antisym- 
metric elernent from H2(8 ,  F) has nonzero values a, b,  c, d, e at (il  j ) ,  @, q )  , (r ,  s) , (u, v )  and 
(w ,  2). The above program can be adjusted according to the different dimensions of the 
HZ(8 ,  F). Refer to Chapter 2 for the computation of normalized cocydes. 

33.2.5 Derivation Algebras 

Calling Sequence: 

derivat ion ( LieAlgebm, Dimension) 

Parameters: 

LieAlgebra - A &en Lie algebras 

Dimension - The dimension of the given algebra 

Synopsis: 

- To compute the derivation of a given Lie aigebra. 

- Input is a given algebra and its dimension. 

- Output is the derivation algebra. 

Procedure : 

derivation: =proc(A ,n) 

l o c a l  i, j ,k, t, sl,s2,1,DD sols,eqns, Andre; 
eqns :={ ); 
D:=matrix(n,n) ; 
Andre : =matrix(n,n) ; 

fori ton-ldo 
for j from i+1 to n do 

for 1 to n do 
sl:=sum(~[i, j ,k]*~[k,l] ,k=ll .n) ; 
~2:=siim(A[k, j,l]*~[i,k]+~[i,k,l~*D~j ,kl .d ; 
eqns:=eqns union sl=s2; 



od: 

od: 

od: 

sols : = [solve (eqns)] ; 
t : =nops (sols) ; 

f o r  i t o  t do 
for j to n do 

for k to n do 
An&e C j . k] : =subs (sols Ci1 ,D C j , kl ) ; 

od: 

od: 

print ( Andre) ; 
od: 

end : 
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