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Abstract

In this thesis, we are concerned with interval estimation for functions of param-
eters (or functionals). In particular, we explore topics involving profile likelihood-
based interval estimation of functionals in parametric models, as well as models
with “missing” data.

Our study is motivated by the inadequacy of intervals based on the large sam-
ple normal approximation of test statistics when the normality assumption is not
warranted. For example, in parametric settings, interval estimates for functionals
based on the delta method have been known to perform poorly in applications.
Although many univariate problems admit simple transformations that unprove
the large sample approximation, analogous approaches do not necessarily carry
over to multi-parameter settings in a straightforward manner. For missing data
problems. use of the observed information matrix in conjunction with the EM algo-
rithm does not always yield satisfactory interval estimates for essentially the same
reasons. While profile likelihood-based approaches to interval estimation are famil-
lar in parametric statistical inference, its use in missing data and semi-parametric
settings is not as well-known.

Chapter 1 of the thesis introduces the basic elements of likelihood-based inter-
val estimation, with emphasis on using the profile likelihood to construct interval
estimates. We describe the extension of the approach to handle functionals, via
Madansky (1965). A few examples serve to round out the discussion. For paramet-
ric models, it is well-known that a simple correction factor applied to the likelihood
ratio statistic (LRS) improves the quality of the approximation to the reference
x* distribution. This factor is known as the Bartlett correction and has routinely
been applied to tests of hypotheses concerning a parameter vector or a sub-vector

of it. In chapter 2, we derive a Bartlett correction to the LRS for testing a pa-
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rameter function. Unlike the standard approach, our method is based on the basic
assumptions and framework of the Lagrange multiplier technique. In many prac-
tical situations, we show that this approach can yield a simpler implementation.
The improved performance of the corrected LRS is illustrated with examples and
evaluation of coverage probabilities.

In chapter 3, we utilize the Lagrange multiplier technique, in conjunction with
the EM algorithm, to obtain profile likelihood-based CIs for functionals in “missing”
data settings. This yields an alternative interval estimate to those based on the
observed information matrix (such as the approach of Louis. 1982). The resulting
procedures are computationally intensive. but there is a potential gain in other
aspects. To reduce the computational workload. we adapt the EMI algorithin
described by Rai and Matthews (1993) to the parameter function setting.

Chapter 4 is devoted to likelihood-based interval estimation of functionals in
failure time models. We first consider Aitkin and Clayton’s (1980) “formulation™
of the parametric Cox proportional hazards model as a generalized linear model. We
adapt their approach in order to derive likelihood-based interval estimates for comu-
won failure model functionals, such as quantiles and survival probabilities. Next
we consider location-scale failure time models. Therneau (1992) recently fit this
class of models via the method of iteratively reweighted least squares (IRLS). We
demonstrate that IRLS can be conveniently adapted to constrained maximization.
We also show that a Lagrange multiplier argument can be applied to this setting to
provide interval estimates of some other useful functionals which are not available
via the regular profile likelihood approach.

A concluding chapter provides suggestions for future research.
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Chapter 1

Introduction

1.1 Outline of Thesis

In this thesis. we are concerned with interval estimation for functions of parameters
(or functionals). In particular, we explore topics involving profile likelihood-based
interval estimation of functionals in parametric models. as well as models with
“missing” data.

Our study is motivated by the inadequacy of intervals based on the large sam-
ple normal approximation of test statistics when the normality assumption is not
warranted. For example, in parametric settings. interval estimates for functionals
based on the delta method have been known to perform poorly in applications. Al-
though many univariate problems admit simple transformations that improve the
large sample approximation, analogous approaches do not necessarily carry over to
wultivariate settings in a straightforward manner. For missing data problems. use
of the observed information matrix in conjunction with the EM algorithm does not
always yield satisfactory interval estimates for essentially the same reasons. While

profile likelihood-based approaches to interval estimation are familiar in parametric
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statistical inference, its use in missing data and semi-parametric settings is not as
well-known.

For parametric models, it is well-known that a simple correction factor applied
to the likelihood ratio statistic (LRS) improves the quality of the approximation to
the reference x? distribution (for example, Lawley, 1956). This factor is known as
the Bartlett factor and has been applied routinely to tests of hypotheses conceruing
a parameter vector or a sub-vector of it. In chapter 2, we derive a Bartlett correction
to the LRS for testing a parameter function. Unlike the standard approach. our
wethod is based on the basic assumptions and framework of the Lagrange multiplier
technique. In many practical situations, we show that this approach can yield
a simpler implementation. The improved performance of the corrected LRS is
llustrated with examples and evaluation of coverage probabilities.

In chapter 3, we utilize the Lagrange multiplier technique, in conjunction with
the EM algorithm, to obtain profile likelihood-based CIs for functionals in “missing
data settings. This yields an alternative interval estimate to those based ou the
observed information matrix (such as the approach of Louis, 1982). The resulting
procedures are computationally intensive. but there is a potential gain in other
aspects. To reduce the computational workload, we adapt the EM1 algorithm
proposed by Rai and Matthews (1993) to the parameter function setting.

Chapter 4 is devoted to likelihood-based interval estimation of functionals in
failure time models. We first consider Aitkin and Clayton’s (1980) “formulation”
of the parametric Cox proportional hazards model as a generalized linear model.
We adapt their approach to supply likelihood-based interval estimates for common
failure model functionals, such as quantiles and survival probabilities. Next we
consider location-scale failure time models. Therneau (1995) recently fit this class of

models via the method of iteratively reweighted least squares. This is a convenient



Introduction 3

method for adaptation to constrained maximization. We also show that a Lagrange
wultiplier argumert can be applied to this setting to provide interval estimates
of some other useful functionals which are not available via the regular profile
likelihood approach.

The remainder of this chapter introduces the basic elements of likelihood-based
interval estimation, with emphasis on profile likelihood-based interval construction.
We describe the extension of the approach to handle functionals, via Madansky

(1965). A few examples serve to round out the discussion.

1.2 Likelihood-based Interval Estimation

In this section, we briefly review some common approaches for likelihood-based
interval estimation. These are based on the score statistic, the likelihood ratio
statistic and the maximum likelihood estimator (MLE). Let Y = (Y4, .... Y.) be an
observed random vector with cumulative distribution function F that depends on
an unknown parameter § = (6!,...,6P*9). Denote the log likelihood function for
¢ based on Y by £(f) = £. where we suppress the dependence on 8 for notational
couvenience. Confidence regions (CR's) for a sub-vector, say 6, = (6'.....6P), are
often of interest.

The ML approach makes direct use of the MLE 6, = (él, P )- We require the
observed information matrix, which is the matrix of minus the second derivatives
of ¢ with respect to 8, evaluated at § = (6:,6,). Write Ve, (8) for the leading
submatrix of the inverse of the observed information matrix. Then under suitable

regularity conditions (see Cox and Hinkley, 1974), the Wald statistic

W = (6, - 6,)T vz} (8) (61— 6,),
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has an asymptotic X: distribution under the null hypothesis that the true value of
the parameter is ;. A 100(1 — @)% CR for 6, is given by the set

{01|W(91) < X,z,,l-a} '

where x2,_, is the associated (1 — a)—quantile of the chi-squared distribution with
p degrees of freedom. This procedure gives rise to an elliptical CR for 4, , centred
at él.

Another approach is based on the score statistic,
U = S5, va6,(61,62(6:)) S, ,

where

1514
Se, = [0_91

and 2(6;) is the MLE of 4, = (6P*1.....67%9) corresponding to a fixed value of

] 6:=62(6,)

8. Since Sy, is asymptotically normally distributed with zero mean and covariance
matrix vg, 21 (6. 6, 6:)) under the null hypothesis. it follows that &/ is approximately
x; distributed. The score statistic offers computational savings over the previous
approach as the full MLE does not have to be obtained.

A third approach is based on the LRS. Due to its central role in this proposal.

we discuss this method of interval estimation separately in the following section.

1.3 Profile Likelihood-based Inference

In this section, we outline profile likelihood-based interval estimation for vector

parameters, and its extension to include functional parameters. The latter devel-
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opment is a relatively recent innovation that originated with Madansky (1965), and
was utilized more recently by Cox and Oakes (1984) in a survival analysis setting.
Matthews (1988a) applied the methodology in the context of independent binomial
random variables to obtain approximate ClIs for complicated functionals. Some
theoretical properties of the method were discussed by Critchley et al. (1988).
illustrating its scope and generality.

Following the presentation in the last section, approximate CRs for 6, can be
based on the profile log likelihood function (4, 52(91)). The asymptotic th) distri-
bution of the LRS, 2{£(6) — £(8,.6,(6,))}. is well-known. and can be employed to
obtain approximate confidence regions for #,. It is also well-known that the LRS
and the statistics discussed in the previous section are equivalent to first order.
so that higher-order comparisons are generally necessary to assess their relative
merits.

In certain models, the dimension of 8, is “large™ or increases with the sample size
(as in the Neyman-Scott problem). The profile likelihood method is known to be
potentially misleading in such cases, since insufficient information is available in the
satuple for precise estimation of the effects of interest. after eliminating the nuisance
parameters. Numerous methods have been proposed to correct the profile likelihood
in such situations (via conditional likelihood or other adjustments: see for example.
Cox and Reid (1987) and McCullagh and Tibshirani (1990)). The methodology
developed in subsequent chapters assumes that such problematic considerations do
not arise. For most practical problems, this is a reasonable assumption and CRs
based on the profile likelihood are satisfactory.

Madansky (1965) extended the profile likelihood method to obtain Cls for func-
tionals as follows. Suppose we require an approximate CI for some functional,

f(8) € R, where f possesses continuous first partial derivatives with respect to
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§. A profile likelihood for f(f) can be constructed by setting f(4) = w, w € Q,
where Q is the set of values of f for which the constrained MLE § exists. Us-
ing the method of Lagrange multipliers, we find SUPg.£(8)=w £(0) = £(8(w)). From
Critchley et. al (1988). given a fixed w and provided f(w) exists, there is a unique
value of the Lagrange multiplier £ corresponding to this value of w. Therefore. we
can also write f(w) = 6(£). This suggests an alternative way to locate the con-
strained MLEs (which we illustrate in a subsequent section). Under the regularity
couditions mentioned in the previous section, the asymptotic distribution of the
LRS. 2{£(8) — £(6)}. is generally closely approximated by the x?: this fact can be
employed to yield the required CI for f(6). The profile likelihood-based method of
interval estimation for functionals can also be extended to cover the case of multi-
ple functionals, as indicated by Silvey (1959). Generally, intervals obtained by this
wethod better reflect the information in the data, compared to the usual Wald-
type confidence intervals based on the delta method. In the following section. we

illustrate this method of interval estimation.

1.4 Examples

Example 1.1 Estimating the Number Needed to Treat in Independent

Binomial Samples

Counsider the randomized trial reported by Oxner et al. (1992) in which the en-
doscopic injection of adrenaline and ethanolamine was investigated for its efficacy
in adults with bleeding or non-bleeding peptic ulcers. Eligible patients were all
adults admitted to a British district general hospital for suspected gastrointesti-
nal hemorrhage and who had an endoscopy within 16 hours of admission. The

data are summarized in the following 2 x 2 table. In this setting, we assume that
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Table 1.1: Endoscopic injection data for patients with bleeding or non-bleeding
peptic ulcers, from Oxner et al. (1992).

Therapy Number of Events Number Randomized

Control 21 45
Injection 8 48
Total 29 93

Xi ~ B(ni, p;), for « = 1,2. The log likelihood function is

2
{p1,p2) = ) _{zilog pi + (ni — z:)log(1 — p:)} .

i=1

Suppose we are interested in interval estimation of the functional § = (p; —p;)~!. In
wedical terms, 6 is the number needed to treat (see Laupacis et al., 1988) or simply.
NNT. This parameter is especially useful to clinicians due to its interpretation as the
average number of patients that need to receive treatment 2 rather than treatment
1 in order to prevent one adverse event. In epidemiological terms. the NNT is the
reciprocal of the absolute risk reduction (ARR). the difference in the event rates
for the treatment and control arms of the trial.

The procedure for obtaining interval estimates for the NNT is analytically sim-
pler if we first obtain Cls for §=! = p, — p,. The end-points of the interval estimate
for 87! can then be inverted to yield the required CI for §. We note that, due to the
nature of the function ~! over the domain 8 € [—1, 1}, disjoint interval estimates

for 8 might result. We form the augmented log likelihood function

le(pr,p2) = Up1.p2) +€{07" — (P — p2)}-

This is particularly straightforward to maximize with respect to the p;’s. In con-
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Junction with the range restriction for probabilities, we obtain

C mtE— € -4z E—np+ (€ —na)? + 4ty
D= 26 ’ P2 = 26

as the constrained MLEs for p; and p,. The LRS, based on the profile log likelihood
for 671, is given by

W (&) = 2{&(p1,p2) — Upr,52)},

where the unconstrained MLEs p; = % (¢ =1.2). The 100(1 — a)% CI for 87" is
given by the set {£|W(€) < x?,_.}. A repeated bisection routine can be used to
locate the required end-points. For the data in Table 1.1, the approximate 95% CI
for p1 — p2 1s (0.116, 0.474); the corresponding interval for (p; — p,)~! is therefore
(2.11. 8.63).

It is helpful to consider briefly the geometrical details of the above procedure.
Figure 1.1 shows a contour plot of the log likelihood surface for (p;,p,). The surface
attains a unique maximum at the point (p;,p.) (indicated by *+7). The curve (or
line. in this case) § = py — p, is drawn for a range of values of § € [—1.1] (dashed
lines). Given an arbitrary fixed §=* = 65!, the maximum of the slice of the log
likelihood surface. corresponding to the set {(p1,p2) : py — p2 = 6o}, is located.
Provided the constrained maximum exists, there is a unique value of the Lagrange
multiplier. say §, corresponding to this maximum point. In the notation estab-
lished above, the maximum of the log likelihood surface for the constrained set of
(p1.p2) values is therefore (5,(&),52(€0)). The set {(H1(€).52(€)}. or equivalently.
{(P1.P2)16"! € [-1,1]}, is indicated by the dashed curve in the figure. By recali-
brating the { scale in terms of §, we obtain the plot of the LRS based on the profile
log likelihood for the NNT (Figure 1.2).
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Figure 1.1: Likelihood and constraint contours for the NNT based on the data of
Oxuner et al. (1992). The contour levels displayed are 0.1, 0.3, 0.5, 0.7 and 0.9. The
superimposed dashed lines (- - -) are level curves of § = 1/(p; — p,), corresponding
to NNT values of 12 (top left), 6, 3, and 2 (bottom right). The curve (- - -)
indicates the locus of constrained maxima defined by the profile log likelihood of
the NNT.
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Figure 1.2: Likelihood ratio statistic for the NNT based on the data in Table 1.1.
The height of the horizontal dotted line is 3.841 units. The vertical dashed lines
mark the endpoints of an approximate 95% CI for the NNT.

likelihood ratio
statistic

Number Needed to Treat



Introduction 11

Example 1.2 Estimating the Number Needed to Treat in a Failure Time
Setting

A major difficulty arises in comparing the NNT estimates from different studies if
the duration of follow-up differs from trial to trial. In this case, the reported event
rates and NNT estimates are no longer comparable. One solution to this problem
1s to adopt suitable parametric assumptions, such as constant hazards for events
under both treatment regimes, and then rescale the information originally reported
as 2 x 2 tables of response status by treatment group to a common time-frame.
However, as Cook et al. (1995) point out in an unpublished manuscript. when the
observed response is the time until an event of interest is recorded and a failure
timne analysis is possible, such parametric assumptions are unnecessary.

The example in this section is based on the North American Symptomatic
Carotid Endarterectomy Trial (NASCET); see NASCET Collaborators (1991). This
was a large randomized controlled trial that has reported the relative merits of
best medical therapy versus best medical therapy plus carotid endarterectomy in
preventing subsequent strokes in patients with high grade (> 70%) symptomatic
carotid stenosis. Patients were randomized to one of the two treatments and fol-
lowed for an average of approximately two years. The response measurement for
each subject consisted of days since randomization to treatment, with severe stroke
or death as the clinically important outcomes. The status of each sub ject at the
conclusion of the trial was also recorded.

Cook et al. (1995) also analyzed this data set, providing, among other graphical
output, a Kaplan-Meier plot of the occurrence of events over time for the two
treatment groups and the Kaplan-Meier estimates of the NNT at various points in

time. In the following, we obtain pointwise, nonparametric interval estimates of

the NNT, using the profile likelihood-based method.
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Without loss of generality, let ¢;; < ... < tin, and £33 < ... < t,, denote
the distinct event times from the two arms of the trial, with event multiplicities
{dij.7=1,...,n5, i =1, 2} . Let r;; represent the risk set at t;j—. and ¢;; the number
censored at ¢;;+. In this example, we consider deriving a CI for the associated NNT
parameter, 8, = {F,(t)—F»(t)}~*, where Fi(t) is the survivor function for treatment
group :. Let fi(t) denote the corresponding vdensity functions. We assume that
censoring is uninformative in the sense that an observed censoring time ¢ conveys
ouly the information that the latent survival time exceeds ¢t. The likelihood function.

based on the data. is given by

L= [T {A)}*{Fi(t)} [] {fa(t25)}* {Fa(ta;)} .

JED, JED;

where {D;}, j = 1,2, represent the distinct event times for the two groups. Without
iposing distributional assumptions on the failure times, the argument of Kaplan
and Meier (1958) can be used to show that L is maximized over the set of discrete
distribution functions with point masses located at the times in D, UD,.
Accordingly. we define h;; = hi(t;;) = filtij)/ Fi(ti;=), 7=1.....n;. i = 1.2. and
regard the h;; as binomial proportions (i.e., conditioning on the risk sets at each
failure time). More specifically, hi; is the probability of failure at t;;, conditional
on surviving up to ¢;;—. From the preceding argument, the log likelihood for the

data from each arm of the trial can be written as

6(k) = - { dislog(hs) + (ris — dis)log (1 — hiy) } , i = 1.2

i=1

This follows from considering the discrete form of an empirical survivor function,

ie., Fi(t) = [T{1 — hi(t;)}, where I1) denotes product over J» tij < t. The form
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of the log likelihood function is exactly that for independent binomial samples.

The method of interval construction we use is based on the sampling distribution
of the nonparametric LRS. Thomas and Grunkmeier (1975) first used it in the
context of a homogeneous failure time sample subject to right-censorship to derive
confidence intervals for the survivor function. They showed informally that the
LRS in that setting has asymptotically a chi-squared distribution with one degree
of freedom. Cox and Oakes (1984) recently used a Lagrange multiplier argument
in conjunction with the nonparametric LR approach to derive approximate Cls for
the survivor function. The asymptotic sampling distribution of the LRS used in the
preceding work was rigorously derived by Li (1995). In particular, he established
that the LRS used in Thomas and Grunkmeier (1975) is the nonparametric analogue
of the LRS in parametric settings. It is possible to adapt Li’s approach to establish
rigorously the asymptotic distribution of the LRS for our problem.

As in the previous example, it is more convenient to obtain a CI for ;! first.
and then invert the end-points of the interval to obtain the required interval es-
timate for .. Clearly, the unconstrained MLEs are h;; = d;;/ri;. To obtain the
constrained MLEs corresponding to a fixed 6;' = {F|(t) — F»(t)}. we maximize
the log likelihood

Le(h) = &i(h) + ta(h) + {67 — Fu(t) + Fa(t)} .

Since Fi(t) = [Tjs,;<e(1 — hij) = [I*®)(1 — hy;), we obtain the score equations

T4(1 - hy;)
1—hy,

di_mizdy .
hlj 1-— hlj

=0 (4;<t) (1.1)

dpj T2 —dy; 11 = hyj)
— —— -_ t . t -
haj 1 — hy; ¢ 1 — hy; 0 (8 <t) (1.2)
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dij _Tij—dij
. A = t; >t 1.3
R 1= 0 (t;>¢) (1.3)

For t;; > t, the constrained MLEs are equal to the unconstrained estimates,

that is, f;;(t,-,-) = ili(t{j) = g”— For t;; < t, we need to solve equations (1.1) and
ij

(1.2) simultaneously to obtain the constrained ML estimates {A;;(£)}. To facilitate

the numerical work, we reexpress equations (1.1), (1.2) as

_ 4

hyj — Ty (1.4)
_ 4

ARG (2)

for ¢;; < t. Functional iteration (Conte and De Boor, 1980) can be applied to equa-
tions (1.4) and (1.5) to obtain the constrained MLEs of {h;;}. Once the constrained
MLEs {h;;(€)} are known, the value of the LRS

2 (t) i"‘” 1— il{‘
W(€)=2ZZ{dij10g (BJ)‘*'("'ij_dij)log( -J)}

i=1 i 1 —hy;

7

can be determined. A numerical method. such as repeated bisection. can be used
to locate £, > 0 and £_ < 0 such that W(£,) = W(E2) = X} 1-a- These values of
. 1e.. & and £_, and the associated constrained MLEs. iz;,-(f.,_) and iz,-,-(f..), yield
the end-points, {F1(£_) — F3(6-)}~! and {Fi(&) — F2(€+)}™), of the required
100(1 — a)% CI for 4,.

The Kaplan-Meier plot for the NASCET data (Figure 1.3) reveals that the
estimated survival curves corresponding to the two arms of the trial intersect at
approximately 100 days post-randomization. Prior to this time, the medical therapy
arm (Group 1) appears to fare better; thereafter, the therapeutic benefit of surgical

treatment for high grade symptomatic carotid stenosis (Group 2) becomes evident.
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Although it is possible to derive symmetric variance bounds for the nonparamet-
ric survivor function heuristically (cf. Kalbfleisch and Prentice (1980) ) to obtain
interval estimates for the NNT, we have not done so in this case. As seen below, the
normality assumption is inadequate in the present case. Nonparametric, likelihood-
based, pointwise 95% ClIs for 6, at roughly 50-day intervals are displayed in Figure
1.4. The pointwise maximum likelihood estimates of the NNT are denoted by the
symbol “X”.

Since the Kaplan-Meier estimates of the survivor functions for the two arms
of the trial are quite close during most of the first year of follow-up, the resulting
interval estimates during this period are the union of two disjoint intervals of the
form (—oo.;) and (6;,00), where 8, < 0 and 6, > 0. The point estimate for
8, belongs to one of these disjoint parts of the pointwise 95% CI. This unusual
interval estimate can be interpreted as indicating that the NASCET data provide
no evidence that the survival functions for the two arms of the study differ during
the first year following treatment. Subsequently, the 95% pointwise CIs for the
NNT are all continuous intervals of finite length lying below the line 6, = 0, thereby
indicating the long-term advantage enjoyed by patients who received the combined
wedical and surgical treatment and who survived the initial period of treatment
mdifference. The additional information supplied by the NNT interval estimates
indicates that, in the long-run, combined medical and surgical treatment for high
grade symptomatic carotid stenosis should prevent one adverse event for at least

21 months in approximately 9 patients.
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Figure 1.3: Kaplan-Meier estimates of the survival functions, by treatment group.
for the NASCET data.
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Figure 1.4: Nonparametric, pointwise 95% confidence intervals for the time-
dependent NNT approximately every 50 days, based on the NASCET data. Point
estimates are indicated by X. Each confidence interval can be a single, continuous
interval of NNT values of finite length (¢ < 8 or ¢ > 304) or the union of two disjoint
intervals, each of infinite length, that exclude the value 0, 8 < ¢ < 304.
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Chapter 2

Improved Likelihood-based Cls

for Functionals

2.1 Introduction

For parametric statistical inference. a conceptually simple way to improve the
asymptotic x? approximation of the LRS is by means of a multiplicative factor
called the Bartlett correction factor. The basic idea is to scale the LRS by the
inverse of its asymptotic mean (the Bartlett factor). The remarkable effect of this
adjustment is that the resulting pivotal statistic possesses cumulants which differ
from those of x* by terms which are O(n~?), where n refers to the sample size.
This approximation was first given by Bartlett (1937), and a general method for
deriving the correction was provided by Lawley (1956). Barndorff-Nielsen and Cox
(1984) give an account of parametric Bartlett correction, and in particular obtained
the adjustment via the saddlepoint method. It is well-known that the Bartlett cor-
rection unambiguously improves the error rate in the case of continuous random

variables. There is, however, some empirical evidence showing that corresponding

18
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improvements are not guaranteed in the case of discrete random variables (Fry-
denberg and Jensen, 1989). Even in this latter case, Kolassa (1994) asserts that
Bartlett correction does improve accuracy in many cases.

The applicability of Bartlett correction extends to empirical likelihood as well.
DiCiccio et al. (1991) showed that empirical likelihood is Bartlett-correctable: in
particular, a Bartlett factor is available for a wide range of parameters such as
means, variances, covariances, etc. Hall and La Scala (1990) provide a survey of
these results. However, recent work by Lazar and Mykland (1995) demonstrate
that Bartlett correction does not work in the empirical likelihood setting when
forming a confidence region for a subset of the parameters of interest. In addition.
apart from empirical likelihood, no Bartlett corrections are as yet available for the
nonparametric setting.

In this chapter we derive an alternative. and in some cases. simpler way to
obtain the Bartlett factor in the parameter function setting. The motivation for our
approach stems from the Lagrange multiplier technique introduced by Madansky
(1965) to provide likelihood-based interval estimates for functions of parameters.
Madansky’s method is a simple alternative to the usual approach of reparametrizing
the model in termns of the function of interest and other “nuisance” parameters. The
proposed approach is particularly useful when the Lagrange multiplier argument
yields closed-form solutions for estimates of constrained parameters. In this case.
the Bartlett factor can be obtained using the assumptions and framework of the
Lagrange multiplier technique. In section 2.2, we briefly review some basic results
on Bartlett adjustment of the LRS for tests of hypotheses concerning parameter
vectors. Following Lawley (1956), and based on the framework and assumptions
of the Lagrange multiplier technique, we obtain an appropriate Bartlett factor

for likelihood-based confidence intervals for parameter functions in section 3. We
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illustrate our solution in the general case with some examples, and conclude the
chapter by investigating the coverage probabilities of the profile LRS in selected

cases.

2.2 Bartlett Factor for Parameter Vectors : A
Review

Since the derivation of Bartlett factors for parameter functions is based on that for
parameter vectors, a brief introduction to the technique and notation of the latter
case Is included in this section.

We assume a statistical model with full parameter vector § € RP*?, and data
Y generated by the model. We also assume sufficient regularity exists and that
the second partial derivatives £,, (defined below) are of order n. where n is related
to the number of observations. Following Lawley (1956), standard conventions
for denoting arrays and summation are used. According to these conventions. the
indices r.s.t,... range over 1,...,p 4+ q. Differentiation is indicated by subscripts.
so f, = a%‘,-, l., = %,2;5, etc. Let A, = E{{.,}, Arst = E{{,..}, etc., and define
L, =4, L,=4,— A, Lry =Ly — Ay, etc. We further denote (Ars)e = 6—5\5’,4.
(Arat)u = %,ﬁfﬂ and (A,)ew = :o—z,:},g';. The quantities A,,, A,,., etc. are generally of
order O(n). The variables ¢., L,,, L,,., etc. are typically of order O,(n'/?) (this
holds when we have an ii.d. sample, for example). Denote the matrix inverse of
(Ars) by (A™).

Suppose we are interested in the subset 6, = (67+1, ..., 8719) with 6, defined
accordingly as its complement. Let 8, = 6,(6,) denote the MLE of 61, given a fixed
value of 6,. Lawley (1956) showed that E[2{f(d;,6;) — £(6:,8,)}] = p+ e, + O(n"2),
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where

) 1 1 1
€& = ’\r"\tu{zl\r:tu - (/\r:t )u + (/\rt)m} - /\r'/\tu’\w{g/\ﬂv/\amy + Z’\rtu’\auw
- ’\rtv(/\m)u - /\rtu(/\nu)v + (’\rt)u(’\m )u + (’\rt)u(’\m)v} :

Considerable simplification results when Ars =0 = A" for 7 # 5. Such a case
occurs when, for example, the components of § are orthogonal. As indicated by

Lawley. the formula for ¢, in this case is simply

o = 5 S Amn = (erads + Cradea}/Oredus) zzz{ SIS
- ’\"lt(’\"')t - ’\fll(’\ft)t + (Afl) ( rt )l + (’\rn)'(/\rt }/( ’\rr’\a:’\tt) )

where the summation convention has been dropped in this special instance. Based
on the general formula for ¢,, it follows that the expectation of the LRS. 2{[(51 ) —
£(61.62)}, is given by p+ g+ €544 + O(n"2). The term €p+q 1s determined according
to the formula for ¢,, with subscripts and superscripts now running from 1 to p+gq.

Combining these results, the expectation of the LRS

W = 2{6:.6) — £(6,,6,)}
= 2{£(él,é2) - 1(91, 02) - Z(0-1102) + l(glv 92)}
= 2{l(6:,6) — £(6:,62)} — 2{£(6;,6,) — £(6,,65)}
is thus

(P+a+eu) —(P+ &) +0(n7%) =g+ epeg— €, + O(n"2).

The adjusted LRS, W' = (1 + E‘5'35['_—‘2)"1W, possesses cumulants closer to those of

the x2? distribution than the original unscaled statistic. Specifically, the cumulants
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of W' and the x: distribution are equivalent to order n~!. Additional arguments
are. however, required to make the desired conclusion that W' ~ x2 + O(n~?); for

example, see McCullagh (1987).

2.3 Bartlett Factor for Parameter Functions

2.3.1 Derivation

In this section, we consider the problem of deriving the Bartlett factor for the
parameter function case. We continue to assume a fully parametric statistical model
indexed by 4, as defined previously. Before proceeding with the development proper.
we note the possibility of applying the proposed technique to nonparametric settings
for which the nonparametric likelihood function assumes the form of a “parametric”
likelihood. For example, Cox and Oakes (1984) show that the likelihood function
based on a random sample of failure times subject to right-censorship has the form
of a likelihood from independent binomials. However. the connection between this
“parawetric” likelihood and the nonparametric likelihood is not explored here.

It is helpful to think of confidence interval construction for f(8) as a problem
in hypothesis testing, as follows. Consider a fixed value of f(9). say f(8) = w:
let h(f) = f(f) — w. Approximate confidence intervals for f can be constructed
by finding the set of w that are not rejected by the hypothesis Hy : h() = 0. A
natural way of handling this problem is to reparametrize the model in terms of f(9)
and some other “nuisance” parameters, where the latter are chosen to make the
mapping one-to-one. Lawley’s method may then be applied directly to obtain the
Bartlett factor. While this approach is straightforward in principle, at least in the

case of single parameter functions, it can complicate the processes of computing the
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constrained MLEs and the Bartlett factor. For example, for orthogonal parameters.
Ara = A" =0, r # s, which greatly simplifies the computation of €, in the Bartlett
factor. This condition does not necessarily apply under the reparametrized model.
For the case of multiple functions of interest, it may not be straightforward to find
a suitable one-to-one reparametrization of the parameters. This problem is avoided
by our approach; as long as the multiple constraints on the model parameters are
not dependent, our method proceeds along the lines for the single functional case.
In the following. we derive another solution to the problem.

The following derivation utilizes the implicit function theorem (cf. Protter and
Morrey. 1991, chap.14). This theorem provides conditions under which the equation
h(6) = 0 can be solved explicitly for one parameter in terms of the remaining
parameters. The Lagrange multiplier method is valid provided we can perform this
operation (even if only in principle). Even for certain implicitly-defined functions.
it is clear that the equation k(#) = 0 can be routinely solved for one of its variables.
In general. we will rely on results for implicit functions to indicate whether such
solutions exist. For our present purposes, we suppose that k(8) and its first partial
derivatives are continuous on an open set in RP*? containing 8 = f(w). for w € Q.

Without loss of generality, we further assume that
h(8Y, ....67%9"1 Grte) = @

and ah(él....,é”+"_1,é”+q)
d@r+a

£0.

where the LHS of the second term above denotes the first partial derivative of / with
respect to #P*9, evaluated at §. If § is the constrained MLE of 4 (obtained via the

Lagrange multiplier technique), then the assumption h(0~) = 0 is automatically sat-
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isfied. Under these conditions, we can express §°*7 as a function of (8, ..., 8P+3-1),
. 0P*9 = F(6',...,67*971) (Protter and Morrey, 1991, Theorem 14.2).

Following the preceding development, we only need to consider cases where
hk(6) = 0 permits a solution for §7*? in terms of the other parameters. Then
Hy : h(8) = 0 and Hy : § = g(B) are equivalent, for some vector-valued function
g : RPH7L 5 NP where B = (B, ..., BP9 !)T and rank[Z2 ] = p+q—1 (Rao, 1973.
p. 418). For example, for § = (6%,62,6°)7, h(§) = £5&, we have g = (B%,4%)T

and g(B8) = (B.8',8%)7. For a more complicated case, consider a functional in

a failure time setting, h(4) = Xt;<elog(l — hj) — log(l — w), where ¢ is some
arbitrary fixed index ¢ denoting a predetermined censoring time, for instance. The
h;’s are the conditional probabilities of failure at t;. given survival up to ¢;—.
Suppose ca.rd{j :t; < t} = s. We can write g(8) = (8%,....0°71,1 - I.I,_ ﬁ') by
letting (hy..... h,—y) = (B, ...,0*"!). Functionals that afford explicit solution for the
constraint h(@) = 0 in terms of one of the parameters give rise to straightforward
computation of the Bartlett factor, as demonstrated below. For the general case of
functionals that afford explicit solution only in principle, we also indicate how the
Bartlett factor can be calculated.
The LRS, W(¢), based on the profile log likelihood function is defined by

%W({) = sup{(f) — sup {(0)
CIC] 8:h(8)=0
= £(6) — 6)

where 8 is the constrained MLE of 8 under H; and © denotes the unrestricted
parameter space. From the equivalence of Hy : h(f) = 0 and Hp : § = g(8), we have
that £(6) = {(B) under Hy. It is also known that supgepp+e—1 £(8) = SUPg.x(8)=0 £(9)-
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Therefore, under the null hypothesis, it follows that
SW(O) = U0) ~ 1B) = {£) - 46)} ~ {UB) - 1B} (2.1

and we know that, in general, W({) is asymptotically distributed as x?.

The Bartlett factor is obtained by taking the expectation of (2.1). From Lawley
(1956). E[ 2{¢(8) — £(6)} | and E[ 2{£(B) — &(B)} ] are p + ¢ + €peq + O(n~2)
and p + g — 1 + €p4q-1 + O(n7?), respectively. The asymptotic mean of W (¢) is
1 + €54 — €psq—1 With error rate O(n~2). and therefore the Bartlett-adjusted LRS
is (1 + €p4q — €ptq—1)"'W. The Bartlett factor derived here is in fact described
by Barndorff-Nielsen and Blaesild (1986) as the adjustment associated with testing
a submodel of a full model. The preceding derivation highlights their point. As
opposed to the usual approach in which suitable one-to-one reparametrizations
of the parameters must be found. our method is relatively simple. The method
proceeds along the same lines when multiple functionals are of interest. as long as
the multiple constraints on the model parameters are not dependent.

The terms €,44 and €,44_; are generally functions of the unknown parameters.
Le.. €prq = €p4q(0) and e,44-1 = €p1g-1(B). In general, unknown parameters in the
Bartlett factor may be replaced by consistent estimators without affecting the order
of approximation. The technique of Lagrange multipliers can be used to obtain 4.
which is also known to be consistent under fairly general conditions (Silvey, 1959).
For the parameter function setting, we can regard a subset of the original parameter
vector as a nuisance vector. Under Ho, supggpp+e-1 £(8) = SUPg.n(g)=0 £(¥), so that
we can regard f as the nuisance vector. Hence, provided the conditions for ML
estimation of 8 hold, the usual asymptotic properties also continue to apply to the

parameter function setting.
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For the case of a single functional, standard results can be used to establish
the efficacy of the Bartlett correction. This follows since the null parameter space
can be parametrized in terms of the functional (as a new parameter) and p +
q — 1 other parameters (not necessarily the same p + q¢ — 1 parameters from the
unconstrained parameter space). Suitable one-to-one parametrizations can often
be found in this case. For multiple functionals, the preceding approach may not be
so conveniently adapted. We therefore offer the following verification for the single
functional setting; its extension to multiple functionals is straightforward.

We use the result that the rth cumulant of the LRS, 2{¢(6) — £(6,)}. is given by

ke =277 = 1)Ig{1l + ¢ (eptq — &)} + O(n7?).

Let w = f(f) € R. As we have previously shown. under H,, the profile LRS for
f(8) is
W(€) = 2{4(6) — £(8)} = 2{t(6) - £(B)}.

where § € RP* and B € RP*9-'. Alternatively, we observe that £(§) = £(&). To
see this geometrically, recall the plot of level curves (Figure 1.1) in the example
of Section 1.4.1. Mathematically, by the invariance principle, f(6) is the MLE of
£(8). Also, &(B) = l(w.by,...,6,4q-1) via h(f) = 0. Therefore W is equivalent
to 2{{(&) — {(w)}. The rth cumulant of W is therefore 27 ~!(r — DT + (epeqg —
€p+q-1)} +O(n™?) (cf. McCullagh, 1987). By neglecting terms of order n=2 or less.
the cumulant generating function (c.g.f.) of W is given by

Kw(t) = t{1+ (€p+q — €prq-1)} + 22i| {1+ (€ptq — Ep+q-1)}2

8t3 3
+ ETH {1+ (ep+q = €prg-1)} + ...
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[+ <) tf _ ,
= 2 ;'2' 1{1 + (€p+q — €p+q-1)}

r=1

and hence the c.g.f. of W' is

xtf

Ky (t) =Y :2"‘,

r=1

the c.g.f. of a x? random variable.

In general, for testing Hy : h(8) = 0, where h(8) = (hy(8), ..., k.(6))T (r < p+q).
the Bartlett adjustment is given by r + €p+q — €ptg-r- We essentially utilize the
implicit function theorem for systems of equations. In this case. it is also known
that W(£) is distributed approximately as x2 (Silvey, 1959). The above arguruent
can be easily modified to verify the efficacy of the correction in this general case.

Now suppose we want to compute the Bartlett factor for testing Hy : h(6) = 0,
where h has ith component k;(6), i = 1....,7. Assuming that the conditions of the

unplicit function theorem are satisfied. we have
grrati=i = Fi(gt, ... grteTT)

for : = 1....,r. Protter and Morrey (1991) show that, by applying the chain rule.

we get

Ok X (Oh; OF*
o T _ 2 {aokW} =0

k=p+g+1—-r

fori =1...,r, v =1,..,p+ q—r. This can be treated as a system of p+qg—r

equations in p + ¢ — r unknowns, {%}. Since the determinant of the coefficients

%‘f}, k=p+q+1—r,..,p+q,is also assumed not to vanish at the constrained
MLE, this system of equations can be solved uniquely. For the case of one functional

of interest, we can write 77 = F(',...,P+2"1). To calculate the terms in €,,
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and €p4,-1, we apply the preceding result to obtain

OF _ Oh/dF
861 ~ ~ Bh/dgr+e

fori =1,...,p+q—1. Computation of the Bartlett factor is certainly more laborious
when 67*9 cannot be expressed explicitly as a function of the remaining parameters,

but should still be straightforward.

2.3.2 Computational Note

The modified algorithm for computing Bartlett-adjusted confidence intervals for
f(0) e Ris:

1. Set the tolerance level TOL

&

Set the value of the Lagrange multiplier ¢ (or equivalently. w)

3. Calculate 6(¢)

4. Compute the Bartlett factor 1 + b = 1 + b(6)

5. Compute W' = W(£)/(1 + b)

6. Compare W' with the (1 — a)—quantile, e W —x2,_.| < TOL.

stop the iteration and accept the current ¢ value. Otherwise. compute the

updated value of £ and return to step 3.

From the algorithm we obtain (¢, ¢%), from which we can compute the end-
points, f(é(f‘)) and f(é(f"')) of the Bartlett-adjusted, profile likelihood-based CI
for f(#). Obvious changes to the algorithm are required for the case f)eR, 1<
r<p+gq.
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Table 2.1: Occurrence of acute mononucleosis-like syndrome and seroconversion
(from Tindall et. al, 1988).

Occurrences
of acute clinical Cases Controls Total
illness
>1 36 10 46
0 3 15 18
Total 39 25 64

2.4 Examples

2.4.1 Log-odds Ratio in Binomial Sampling

The data summarized in Table 2.1 were collected by Tindall et al. (1988) as part of a
case-control study concerning the possible association between the occurrence of an
acute mononucleosis-like syndrome and the event of seroconversion in individuals
at high risk of infection with the human immunodeficiency virus. Type 1 (HIV-
1). The researchers used retrospective interview techniques to determine that.
during the study period, of 39 male homosexuals whose blood serum changed from
HIV- (seronegative) to HIV+ (seropositive), a total of 36 experienced at least one
occurrence of acute clinical illness. Among the 25 controls, HIV- male homosexuals
who did not undergo seroconversion during the study period. only 10 individuals
suffered one or more episodes of acute clinical illness. In this study, the relative risk,
. of seroconversion among individuals at risk of HIV infection who experienced
one or more episodes of acute clinical illness. might be of interest.

The observed data consist of independent binomial observations, Xi ~ B(n;, p;).

for i = 1,2. The functional of interest, 1, is the odds ratio, { :—;'/8%%}’ or equiva-

lently, the log-odds ratio, w = log %. It is numerically easier to work with w for this
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example; hence, a profile likelihood-based CI for ¢ will be obtained by inverting
the end-points of the interval estimate for w (the details are similiar to Example
1.1 of section 1.4). The constrained MLEs for p;, i = 1,2, in this case are

. Ty —¢ - T2+ §

DL = y D2 =
n) M2

corresponding to a fixed value, &, of the Lagrange multiplier. The Bartlett factor
for this problem may also be found by adopting a suitable 1-1 reparametrization
of the parameters. For example, we can reparametrize the model in terms of w
and § = 122, treating the latter term as the nuisance parameter and working with
the profile likelihood for w. The LRS for testing a fixed value of w is given by
2{/1((21.3 ) — £(w.d)}. However. this approach does not yield a simple (closed-form)
solution for the constrained MLE of §. A univariate root-finding routine can be used
in this case, but much greater numerical effort may be required for multi-parameter
problems. We may also note that. for this parametrization, it is not difficult to find
the value of the Lagrange multiplier corresponding to a fixed w. This indirect
approach may be used to avoid the numerical method of obtaining §. However. it is
not always easy to implement this approach for other functionals of interest (such
as the NNT in the next example). In contrast. the Lagrange wmultiplier argument
can lead to simpler solutions for some multi-parameter problems.

Note that e; may be computed easily using the simplified form for ¢, (see section

2.2). For €, we let p; = 1—2%51%’ which implies, via the constraint, that p, =
%. In this case, further simplification results since
(A = —n1A(B)[1 - A(B)]A1 — n2A(B — w)[1 — A(B — w)] A,

= —1(l1—6p1+6p]) —vs(l — 6 ps +6 p2)
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= A,
(Au) = —mAB)1 - AB{1 - 24(8)} — 2 A(B ~ w)[1 - A(B - w){1 - 24(8 — w)}
= —1n(l—=2p1)—1vy(l—2p,)
= A
(A = —nAB)1 - A(B)lA1 — n2A(B — w)[1 - A(B — w)]4,
= A,

exp(z

l4exp(z)® and

where v; = n;p:(1 — p:). A(z) =

A; =1 —6n,A(B) + 6n,4%(8),
Az =1-6n4(8 — w) + 61, A%(8 — w).

Hence we obtain

€2 = —+— — — —

€ = - —_——
o (4.4)
vy +1n) 2+ )2 \n; n,

—2 —2 1—2p,))2.
t R o 2 T (12}

The constrained MLEs, p;, i = 1,2, can be substituted for p; to obtain a consistent
estimate of the Bartlett factor. Applying these results to the data. we obtain the
adjusted 95% CI for the odds ratio as (4.84, 110.5), while the unadjusted interval is
(4.87. 90.5). Figure 2.1 shows the LRS and Bartlett-adjusted LRS for the log-odds
ratio. For our data, the adjustment is most pronounced at the upper endpoint of
the interval. In contrast, the standard interval based on the maximum likelihood
estimate for ¢ is (4.33, 74.76), while the exact interval is (3.80, 109.5) (Matthews,
1988b). The method for obtaining the exact interval is based on a conditional
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likelihood argument and is discussed, for example, in Chapter 4 of Cox (1970).
While the LRS appears to be reasonably approximated by a quadratic curve, the
ML interval is too narrow; in the long run, the ML method presumably results in

a coverage that is below nominal level.

Figure 2.1: Likelihood ratio statistic for the odds ratio, based on the data in Table
2.1. The solid curve is the uncorrected LRS and the dashed curve is the corre-
sponding Bartlett-corrected LRS. The height of the horizontal dashed line is 3.841

units.

fikelihood ratio statistic
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2.4.2 Number Needed to Treat

A Bartlett-adjusted interval estimate for the NNT parameter in the endoscopic
injection trial (section 1.4) can similiarly be obtained. We find that
1 1 1 1

© = G e, om om

(n_f n_§) B {n:(l ~3p +3p}) | n3(1—3pa + 3p‘;’)}

= n t Vs v} 2v3
1 (n? n? =3 n}(1—2p;) n3(1 - 2p;) 2
- 3\ + P v? + V2 '
1 2 1 2

where the v; are as previously defined. The constrained MLEs for p;, i = 1.2 (cf.
Chapter 1) can be substituted into the preceding formulae to obtain a consistent
estimate of the Bartlett factor. Using the data from section 1.4. the unadjusted
and Bartlett-corrected 95% confidence intervals are, respectively, (2.11. 8.63) and
(2.10, 8.77). Thus, the correction results in a slight elongation of the interval esti-
mate: Figure 2.2 displays the plot of the relevant statistics. By way of comparison.

the usual interval based on the normal approximation is (2.08. 8.33).
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Figure 2.2: Likelihood ratio statistic for the NNT, based on the data in Table 1.1.
The solid curve is the uncorrected LRS and the dashed curve is the corresponding
Bartlett-corrected statistic. The height of the horizontal dashed line is 3.841 units.
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2.4.3 Linear Predictor in a GLM

Cordeiro (1983) derived a Bartlett factor for the regression coefficients in the context
of generalized linear models (GLM). Based on his results, and using the technique
developed above. a Bartlett factor for testing hypotheses of the form Hy : BTx¢ = wy
can be obtained, where xq and wy are known. Some notation is first introduced in
the following.

The probability density function (p.d.f.) of a response variable Y; is of the form
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7(y; 0:, ¢:) = exp{:[yb; — b(6:) + c(y)] + d(¢:,y)}

where b(-), ¢(-) and d(-) are known functions. A more common parametrization of

m in the GLM literature is that of McCullagh and Nelder (1989), viz.

m(y; 0;, ¢:) = exp{(y6: — b(6:))/a(é:) + c(é:,v)}

for some known functions a(-), b(-) and ¢(-). However, this slightly different parametriza-
tion does not require major revisions in the following derivation of the Bartlett fac-

tor. As will become clear below, we only need to substitute a~!(¢;) for ¢; in the for-

mulae for A,,, A, etc.. and the matrix diag{¢;..... ¢n} becomes diag{a~(¢,). .... a~¢n)}.
For GLMs. the linear predictor. n; = 87x;, 8 = (6. ....f35)¥. is related to the mean

of ¥; by a suitable 1-1 function, ie.. E(Y;) = u; = g(1;). By setting the score
equation to zero and solving, we obtain pu; = 3_'5(81:17 It can be shown that. for any

GLM,

n

’\rs = - Z ¢iu}i$ir-'8iav

=1

a6 (df *

/\rat = Z;¢t[ dT] dﬂ (E]‘) W’ i-’lhrzuzitv
\ _ Z“: 4 dzw d*0 &*u 8 dp
Tty — T dT]z d‘f] d173 dT]

i=1

] TirZTisTitLiu,
h

where w = (du/dn)?/V, and V = du/df is known as the variance function. The
remaining terms in the Bartlett factor are easily obtained from these terms. Let
K = {-A}, W = diag{w,, ..., wa} and & = diag{¢1......}. Applying Lawley’s
(1956) results to the GLM setting, Cordeiro showed that

1
& = gir(RHZ3) - §1T<1>Gz<3>(F +G)B1+ I151T<I>F(2z(=’> +32,22,)F81. (2.2)
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where Z = X(XTWeX)'XT = {z;}, 2 = {};} and

L | 1@u [ dv .12 (dV\? &V

. 1dudiu
F = dzag{vzd—nz},

3
6 | LlFE LV 4\
Vdnpdp? V2du \dy

Zq = diag{z...., zpn}.

Now consider the null hypothesis Hy : 8Txo = w. for some fixed value w and

given xo. Without loss of generality, assume that Zgp # 0. Then we may write

w— iz 11 Bikoi

ﬁp =
'B()p
Hence
T Zo1Zip Lo.p-1Zip Wz,
B'xi = Pi(za — —)+... +ﬂp—1($i.p—1 - )+
IUI, Zop Zyp
’
= 7 Vit wuy,
. zi — z; . _ T
where v;, = z—of vij = (zi5 — Ioj;;f) for j=1....p— 1. x; = (z41. veTip-1)” . and

7 = (Br.-...Bp-1)T. Let Xy = {v;;} denote the design matrix under Hy; Z,. Z\*
and Zyy are accordingly defined. Under the null hypothesis. the general form of
Arse Acste Araeu €tc.. is unchanged, except for having v;; in place of z;;. j # p. This
follows because these terms are made up of two types of partial derivatives. The
first type (which includes g—s, %, %, for example) depends only on the choice of link
function, or the relation between the mean response and the canonical parameter.

Their general form is therefore unaffected under H,. The remaining (non-zero)

partial derivatives are {a%;l:}, which under H, are given by {v, = (vy,. ) TH
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Therefore, the structure of H, F and G are unchanged under the null.

Except for substituting the constrained versions of the design matrices for the
unrestricted ones, the derivation of ¢,_, follows the steps taken for ¢, exactly. Using
these facts, it is not difficult to verify that e,_; is computed by substituting Z,.

Z and Zyq into equation (2.2). Therefore

1
€p — €poy = Ztr{<1>.ar(zj - Z22)} - %1T<I>G(z<3’ ~ Z8)(F + G)®1
1

o 1T@F{2(Z2® - Z®"Y + 3(242Z Z4 — Z04Z0Z04)} FE1.

+

In this case. we note also that the reparametrization (S, weiBp) = (Br. ... Bp-1.8).
where § = 87x,, is 1-1 and leads to €p—1 In a straightforward way as well. However.
it can be more difficult to find suitable 1-1 reparametrizations if one is interested
in a simultaneous confidence region for multiple linear predictors. This problem is
briefly discussed below. [ Note. For given values of the multiple linear predictors.
it is helpful to link confidence region construction to a test of hypothesis. Under
the null. one is therefore testing a subset of the transformed parameters. i.e.. the
linear predictors of interest.]

Since the constrained MLE f is a consistent estimator for f under regularity
conditions. we can substitute it into the expression for the Bartlett factor. The S-
Plus glm() function can be used with an offset. We note briefly that the approach
of Nyquist (1991) or a Lagrange multiplier argument can also be used to obtain an
iterative procedure for computing 8. The latter follows from the same approach
used in Kim and Taylor (1995). Let 8 = (XTW&X)~*XTW &z denote the unre-
stricted MLE of 3, where z is the adjusted dependent variate. The iterative scheme

Is given by
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B+ = B+ (XTWEX) x0T {xo(XTWEX) x0T} {w — Txo}.

where the elements on the right side of the equation are evaluated at ™).
Bartlett factors for linear combinations of linear predictors can be derived in the
same way. Animportant example of a functional in this class is the difference in risk
score between two subjects with covariate values x; and x,. In the GLM context.
this can represent the difference in means. rates or log-odds ratio between two
individuals with distinct covariate values. The null hypothesis is Hy, : BT (x;—x2) =

w € R. Since we can express 3, as

p-1
Bp = (Z1p — T2p) " H{w — Z:lﬂj(zlj — z25)}.
i=
the form of ¢, , here is identical to the earlier expression, with the appropriate
modification to the design matrix.

In industrial quality improvernent experiments. quite often one is interested in
the optimnum combination of factor levels that maintains the mean response at some
desired level. while minimizing process variability. In this context. it might be of
interest to compare the variability of the product (or process) at two prescribed
settings of the factors involved. In the following example. we assume constant
dispersion. although the joint modelling of both mean and dispersion as functions
of covariates might be a better approach in the industrial setting; see, for example.
McCullagh and Nelder (1989, p. 357). When the variance of the responses Is some
suitable function of the mean (e.g. Gamma. inverse Gaussian distributions). we can
usually obtain the required Bartlett-adjusted interval estimates. Consider the case

of Gamma random variables with different means but common shape parameter.
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The Gamma(y;, v) density is given by

v

w(yi: pov) =T (v) (;) y*"lexp (—i_yi) ,  ¥:i2>0,

and therefore var(y;) = p?/v. We assume the usual GLM set-up, with y; = g(n:),
7 = BTx;. For analytically simpler results, we consider the null hypothesis H, :
log ﬂ(y_:l = w, Le., Hy : log%: = w. For the reciprocal link function i.e.. the
canonical link. Hy is equivalent to specifying that 2log % = w, which implies

2

-1
Z ﬂj(’ﬂli - 1'21') .
1

i=

.Bp = (1:21) - 7zlp)_
where v = exp(w/2). Hence, under Hy.

-1
m = PATx = tﬁj{xﬁ + (%)(’Yfﬂu - I5)}.
i=1 2p ~ TT1p
By defining the elements of the design matrix, v;;. as the expression in the brace
brackets. the computation of €,_; proceeds in the usual way. Another common
choice for the link function is the log link, log s = 7, in which case Hy : 7, = 12t+w/2.
The details are similiar to the previous case and are omitted.
A Bartlett-adjusted confidence region for a set of linear predictors may also
be obtained. This can be useful. for example, in a logistic regression context in

which one is interested in making simultaneous inference on a finite number J of

n

L g = BTy .
rm+ 1 = B7x; and x; are

survival probabilities. p;, j = 1,...,J. where p; =
fixed and known covariates. Consider then q < p linear predictors of interest,
m = BTxi, i =1,...,q. Welet X denote the ¢ x p matrix with ith row given by

x;T. Given {wi} and {z;;},i=1,...,q, j = 1,..., p, we have the set of q constraints
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{w; = BTz;}. We rewrite the constraints as
Xqﬂ(") =0 Xp_q,B(”"”

where X, = {z;;}, 4, j=1,...,q, Xpuqg = {zi;}, ¢, F=q+1,...,p, Q = {w:} and
(') are the partitions of the coefficient vector conforming to each X matrix. For ¢
small, this can be solved with some effort for 89 in terms of 3%°~9) and the method
proceeds in a straightforward way.

Remark.  Barndorff-Nielsen and Blaesild (1986) derived a method of obtain-
ing the Bartlett factor in a distinct problem setting. although their applications
also included a GLM. Basically. their correction factor applies for testing the null
hypothesis that the original p model parameters can be expressed as linear com-
binations of ¢ < p parameters. Suppose the original model is indexed by § € R”.
The null model is reparametrized as § = By, where 8 € R, g < pand y is a
known vector. As shown in their paper. the constrained portion of the Bartlett
factor may be obtained from the quantities computed in the unrestricted portion.
using a series of translation formulae. Hemnce their method and ours address dif-
ferent problems. For example, their method does not handle the case of obtaining
a Bartlett-adjusted confidence region for p linear predictors (or a subset of them).
given the fixed covariate values.

The following examples illustrate some of the procedures discussed in this sub-

section.

Example 2.4.3a Mean Lifetime in Exponential Survival

For uncensored exponential lifetime data, Lawless (1982, example 6.3.2) obtained

interval estimates for the mean survival time based on an exact method and a large-
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sample normal approximation. However, due to the moderate size of the sample.
the normal approximation did not perform very well. Using the same data. we
illustrate below the effect of a Bartlett correction on interval estimation for the
wean lifetime of a given subject.
For the exponential regression model, it is assumed that, given x, the p.d.f. of
T is
f(tlx) = p~texp (—%) . t>0.

Following Lawless (1982). we also assume a logarithmic link function, log u = 4Tx.
It is straightforward to verify for this model that. except for Z (and hence Z!3
and Zy). the other matrices in equation (2.2) are given by the identity matrix. Let
wy = exp(Po + P1Z0) denote the mean lifetime for a subject with covariate value z,.
We have Z = X(XTX)™*XT, and using (2.2). we obtain

& = ~17Z4 _ i{tr(Zj) -172,22,1}

6
1

1
= = 3 —-17T - Z)Z41.
5 2. 2 1 Zq(I - Z) 241
where [ denotes the identity matrix. Under the constrained model, the linear
predictor for the ith subject is 7; = log wy + B1(z; — z¢). The design matrix for the
constrained model. X,. has elements {z: — zo}. Similiarly, Z, = Xg(Xg'Xg)‘ng'.
Therefore

1 1
0= 52 2 — 71" Zao(l = Zo) Zao1.
.2

For this example, both portions of the Bartlett factor do not depend on S (€; does
not even depend on w). The term w affects only the constrained MLEs for the
regression coefficients, i.e., it enters in the LRS 2{£(3) — £(3)}.
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Table 2.2: Failure time, ¢;, in weeks and white blood count, from Feigl and Zelen
(1965).

ti WBC I t,' WBC ;
65 2300 3.36 143 7000 3.85
156 750 2.88 56 9400 3.97
100 4300 3.63 26 32000 4.51
134 2600 341 22 35000 4.54
16 6000 3.78 1 100000 5.00
108 10000 4.02 1 100000 5.00
121 10000 4.00 9 52000 4.72
4 17000 4.23 65 100000 5.00
39 5400 3.73

Lawless (1982) considered the above data from Feigl and Zelen (1969). consist-
ing of the failure time in weeks and white blood count (WBC) of 17 leukaewia
patients. In the table, z = log,, WBC. Using these data, we consider estimating
the mean life. uo, for a subject with z = 4. The approximate 95% CI based on
the profile likelihood for o is (36.4. 96.1). The Bartlett correction yields the in-
terval (35.9, 98.2). while the exact confidence interval was found by Lawless to be
(37.9. 102.0). At the lower end-point, both likelihood-based intervals yield very
similiar estimates. The Bartlett-adjusted interval is however more accurate at the

upper limit. and its length is also closer to that of the exact interval.

Example 2.4.3b ED Level in Logistic Regression

Duncan et al. (1984) report the results of a study initiated to investigate the effect
of premedication on the dose requirement in children of the anaesthetic thiopentone.
The study involved observations on 490 children aged 1-12 years. These patients

were divided into 4 groups, three of which received different types of premedication.
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Table 2.3: Dose-response data for patients treated with TDP.

Dose (mg/kg) Number of Responses Total

2.0 7 15
2.5 14 21
3.0 15 20
3.5 13 14
4.0 11 12
4.5 ) 8
5.0 10 11
9.5 22 22
6.0 13 14

No premedication was administered to the fourth group of patients. All the children
subsequently received an injection of 2.0-8.5 mg/kg of thiopentone in steps of 0.5
wg/kg. The anaesthetic was administered to each patient over a 10-second interval.
Twenty seconds after the injection, the eyelash reflex was tested; if the eyelash reflex
was disabled. the patient was considered to have responded to the anaesthetic.

In the following, we apply our method to only a subset of the data. viz.. to
a group of 137 patients who were premedicated orally with TDP (trimeprazine.
droperiodol and physeptone) and atropine; see Table 2.3. A binary logistic regres-
sion model is often appropriate for the analysis of dose-response data. We assumne

the observed data consist of independent Y; ~ B(n;,p;), where

= {Bld — )}
" l+exp{B(d—7)}’

for : = 1...., k. Equivalently, \; = logit(p;) = B(d; — 7). A better parametrization
is given by logit(p;) = a + B(d; — d), where d is the average dose level: however, we

stick with the present model for purposes of illustration. Define the parameter of
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interest. the ED100p, to be the dose w, satisfying
logit(p) = Ap = B(wp — ),
so that w, =y + '—\ﬁz The log likelihood function for v and g is

k
l(7.8) = Y {wlogp:+ (ni —y:)log(1 — p:)}
i=1

k k
d_uiB(di — ) = >_milog[ 1+ exp{B(d: — 1)} ].

i=1 =1

For this model, the iterative weights w; = n;p:(1 — p;). and & = diag{n;}. The
Joint unrestricted MLEs can be obtained using commonly available software. e.g.
glm() in S-Plus. For a fixed value of wp. we substitute v = w, ~ '—\[f into the linear
predictor. and the constrained estimate of 3 can routinely be obtained using the
glin() function by specifying a regression model with offset and no intercept term.

To obtain the Bartlett factor for a fixed value of w. we note that

H = diag{—p(1 - p)(6p® — 10p + 1)}.
F = diag{p(1 - p)(1 — 2p)}.
G = 0,

where p = =B Ty

T l4exp(n)’

1
& = Ztr(@HZdz)+%IT‘DF(2Z(3)+3ZdZZd)F@1,

1 1 1
= 7 Z nhizl; + 5 > zh(nifu)(nifis) + 1 Y zij(nifazis) (n fi5235).
i 1,5 i.7

where h;; and f;; are the ith diagonal elements of H and F, respectively. The
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constrained version of the design matrix is Xo = {d; —w,}. The term ¢, is straight-
forward to compute, and p; can be estimated consistently by p; = 1:‘;;3 ;:‘;i_’”.
Based on the data in Table 2.2, we obtain the following. The unadjusted
and Bartlett-adjusted 95% CIs for the ED50 are (1.26, 2.42) and (1.16. 2.43).
respectively. The corresponding interval based on the normal approximation is

(1.54. 2.59).

Figure 2.3: Likelihood ratio statistic (solid curve) and corresponding Bartlett-
corrected statistic (dashed curve) for the ED50. based on the data in Table 2.3.
The height of the horizontal dashed line is 3.841 units.

likehhhood ratio statistic

log(€D50)

Figure 2.3 shows the LRS and its Bartlett-adjusted version. It also indicates clearly

the inadequacy of the normality assumption in this case. The unadjusted 95%
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Table 2.4: Inhalation test data from CIBA-GEIGY, from Racine et al. (1986).

Dose Number of Number of
(mg/ml)  Animals Deaths

422 ) 0
744 ) 1
948 ) 3
2069 ) )

likelihood-based interval for the ED90 is (3.59. 6.40), compared to the adjusted
interval of (3.5. 6.66). The interval estimate based on the normal approximation
is (3.43. 5.64). Figure 2.4 shows the relevant curves. Compared to the ED50. the
Bartlett factor has a larger effect on the interval estimate of the ED90.

To provide an indication of the potential difference that can result from a
Bartlett correction in an application, we consider a small sample below. The data
suimarized in Table 2.4 were obtained from an inhalation acute toxicity test car-
ried out at CIBA-GEIGY and reported in Racine et al. (1986). Using the model
adopted in Example 2.4.3b. we obtain the unrestricted MLEs. 7.930 and 6.797. for
/3 and 7. respectively. For illustration. we consider interval estimation of the ED50
aud ED90. The MLE of the ED50 is 895. and its approximate 95% profile likelihood-
based Clis (726.4, 1225.2). The Bartlett-adjusted interval is (670.1, 1451.8). There
is a substantial (57%) increase in length of the likelihood-based interval as a re-
sult of the Bartlett correction. Even on the log dose scale, the increase is about
48% over the unadjusted interval estimate. This contrasts with the situation in
Example 2.4.3b. The normal approximation yields the symmetric interval estimate
(880.0. 910.8). which clearly does not reflect the asymmetry in the given likeli-
hood. For the LD90, we obtain an MLE of 1181.1, and a profile likelihood-based
95% CI of (932.9, 2779.1). The Bartlett correction yields the interval estimate
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(812.8. 4705.5). These are in sharp contrast to the normal approximation which
gives (1072.7, 1300.5).

Figure 2.4: Likelihood ratio statistic (solid curve) and corresponding Bartlett-
corrected statistic (dashed curve) for the ED90, based on the data in Table 2.3.
The height of the horizontal dashed line is 3.841 units.

likelihood ratio statistic

For small samples, the Bartlett correction can result in a very conservative
interval estimate for the ED50 and ED90, relative to the interval estimates based
on the uncorrected profile likelihood and the normal approximation. An indication
of this conservative effect is the substantial overlap between the Bartlett-adjusted

intervals for the ED50 and ED90 based on the inhalation data. In a subsequent
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section. we conduct a more systematic evaluation of the Bartlett adjustment in

terms of coverage probabilities of the likelihood-based interval estimate.

Example 2.4.3c Quantiles for Normal Samples

Suppose we have a random sample, Y; ~ N(u.a?).i = 1.....n. We are interested in
obtaining an interval estimate for the pth quantile y, = u+ zp0, where z, is the pth
quantile of the standard normal distribution. For uncensored data, Lawless (1982)
describes an exact method based on the noncentral t distribution. We compare
below intervals based on the exact method. the profile likelihood and the Bartlett-
adjusted profile likelihood.

Since the normal linear model is a special case of the GLM framework. we can
analyze this case using the preceding techniques. However. we also can obtain
simple closed-form expressions for the constrained MLEs using standard methods.
which we indicate briefly as follows. The score equations based on the augmented

log likelihood function are

e _, , _

a—#' =g Ei :(y, —p)—€=0. (2.3)
o¢ )y
3; nel+ o™ - (yi —p)® = €2, = 0. (2.4)

where ¢ denotes a fixed value of the Lagrange multiplier. Equation (2.3) implies
p =§—n"'€o?, which is substituted into equation (2.4) to yield a quartic equation
m a.

n71¢% 0t — fy,0° — no? + (n - 1)s? =0,

where s? = (n—1)~!' £;(y: — 7)*. This equation can be solved routinely by standard

numerical methods but is more tedious to implement. Alternatively, let Wp = Yp,
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Table 2.5: Interval estimates for selected data from Snook and Ciriello (1991).

Exact Interval Profile-based  Bartlett-adjusted
Male  (46.649, 56.025) (46.374, 55.458) (46.346, 55.450)
Female (23.882, 27.461) (23.756, 27.626) (23.735, 27.620)

for some fixed w,. We can substitute g = w, — u,7 into the log likelihood function

and maximize it with respect to . The resulting score equation

=—=—-——{(rn-1)s* - n(wp — u,,a')z} =0

1s quadratic and hence admits a closed-form solution for the constrained estimator
7. For numerical illustration, we consider just two cases from the data of Snook
and Ciriello (1991), who conducted an ergonomic trial to study a variety of man-
ual handling tasks consistent with worker capabilities and limitations. The sample
size. mean and standard deviation for males performing carrying tasks are. re-
spectively, 38, 32.45 and 10.98. The corresponding data for females are 27. 19.03
and 3.93. Based on the normality assumption and assuming a 95% level of con-
fidence, we obtain the exact, unadjusted and Bartlett-adjusted profile likelihood-
based CIs for yg.10, shown in Table 2.5. A smaller data set involving 23 ‘lifetimes’
of deep groove ball bearings was also analyzed; the data can be found in Ex-
ample 5.2.2 of Lawless (1982). For this data set, the exact interval for Yo.10 1S
(23.379, 39.592). The corresponding unadjusted and Bartlett-adjusted likelihood-
based Cls are (24.369, 40.210) and (24.239, 40.174), respectively. For these mod-
erate size samples, profile likelihood-based intervals compare quite well with the

exact intervals. The Bartlett correction does not always improve accuracy in a
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given case; however, in the examples the length of the interval is increased slightly
by the adjustment. From a computational viewpoint, both exact and approximate
methods require iterative schemes. In the exact method, two quantiles for the non-
central ¢ distribution have to be located numerically; for our examples, this task
seews to be more time-consuming than locating the end-points of the LRS. In the
wethod which substitutes for the parameter i into the log likelihood, the numerical
burden is relatively lower since each iteration requires only about 1-2 steps to locate
the constrained MLEs corresponding to a fixed value of w. In contrast, the exact
wethod can require up to 100 iterations to locate both quantile points. Overall.

the approximate method is a feasible alternative for computing interval estimates

in mwoderate-size samples.

2.5 Coverage Probabilities

In this section, we investigate the coverage probabilities of the Bartlett-adjusted

LRS. based on some of the preceding examples.

2.5.1 Odds Ratio in Binomial Sampling

Exact coverage probabilities were calculated for different combinations of (p,.p,)
and n;. n»,. Two sample configurations, (0,0) and (n1.n2), provide no informa-
tion on 3. Hence, the coverage probabilities should be conditioned on the non-
occwrrence of these two events. The coverage probabilities in Table 2.6 were cal-
culated on this basis. The first row of each combination of probabilities gives the
exact coverage probability of a nominal 95% confidence interval generated by the

Bartlett-adjusted LRS. The second row is the corresponding quantity for the un-
adjusted LRS.
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From the tables, we find that the Bartlett-adjusted LRS possesses coverage
probabilities at least equal to those of the unadjusted LRS, over the parameter
combinations considered. The Bartlett factor appears to yield best effects, roughly,
for those (pi,p2) pairs on the “perimeter” of the tables. This is especially evident
in Table 2.6c. However, the correction can at times result in a conservative interval
estimate. As noted by Williams (1986), the uncorrected intervals. in contrast. tend
to be anti-conservative. The results also appear to indicate “convergence” to the

nominal coverage level as sample size increases.
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92

Table 2.6 Exact conditional coverage probabilities for nominal 95% CIs based on

the Bartlett-adjusted (upper row) or unadjusted (lower row) LRS of the odds
ratio, ¥ = {p1/(1 — p1)}/{p2/(1 — p2)}, in independent binomial sampling

with sample sizes n, and n,.

a.n, =n, =20

P2
pp 010 025 050 0.75 0.9
0.10 0.976 0.931 0.929 0.949 0.975
0.929 0.924 0.927 0.925 0.906
0.25 0.931 0949 0.950 0.951 0.949
0.924 0.948 0.941 0.930 0.925
0.50 0.929 0.950 0.957 0.950 0.929
0.927 0.941 0.957 0.941 0.927
0.75 0.949 0951 0.950 0.949 0.931
0.925 0.930 0.941 0.948 0.924
0.90 0.975 0949 0.929 0.931 0.976
0.906 0.925 0.927 0.924 0.929
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b. ny =n, =30

D2
D1 010 025 050 0.75 0.90

0.10 0.947 0.943 0.941 0.934 0.936
0.926 0.932 0936 0.931 0.913
0.25 0.943 0.951 0.950 0.959 0.934
0.932 0.940 0.946 0.943 0.931
0.50 0.941 0.950 0.948 0.950 0.941
0.936 0.946 0.948 0.946 0.936
0.75 0.934 0.959 7.950 0.951 0.943
0.931 0.943 0.946 0.940 0.932
0.90 0.936 0.934 0.941 0.943 0.947
0.913 0.931 0.936 0.932 0.926
c. 2n; = ny = 40
P>
pp 010 025 050 075 0.90

0.10 0.953 0.942 0.945 0.947 0.950
0.928 0.927 0.915 0.924 0.922
0.25 0.948 0.948 0.951 0.949 0.947
0.941 0.942 0.946 0.941 0.931
0.50 0.944 0953 0.945 0.953 0.944
0.938 0.942 0.945 0.942 0.938
0.75 0.947 0949 0.951 0.948 0.948
0.931 0.941 0.946 0.942 0.941
0.90 0.950 0.947 0.945 0.942 0.953
0.922 0924 0.915 0.927 0.928
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d. n; =n, =40

P2
D1 010 025 050 0.75 0.9
0.10 0.941 0.950 0.948 0.951 0.940
0.935 0.940 0.947 0.937 0.928
0.25 0.950 0.950 0.950 0.956 0.951
0.940 0.946 0.949 0.956 0.937
0.50 0.948 0.950 0.943 0.950 0.948
0.947 0.949 0.943 0.949 0.947
0.75 0.951 0.956 0.950 0.950 0.950
0.937 0.956 0.949 0.946 0.940
0.90 0.940 0.951 0.948 0.950 0.941
0.928 0.937 0.947 0.940 0.935

2.5.2 Number Needed to Treat

Table 2.7 gives the exact coverage probabilities for the Bartlett-adjusted and unad-
Justed LRS for the NNT parameter considered in Example 1.1. The nominal level
of confidence is 95%.

The results here also show that the coverage of the Bartlett-corrected LRS uni-
formly equals or exceeds that of the unadjusted LRS for the (p1,p2) pairs considered.

However, the improvement in coverage is not as marked as in the odds ratio setting.
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Table 2.7 Exact coverage probabilities for nominal 95% Cls based on the Bartlett-
adjusted (upper row) or unadjusted (lower row) LRS of the NNT. (p1—p2)t.

in independent binomial sampling with sample sizes n; and n,.
a. ny=mn, =20

P2
P1 0.10 0.25 0.50 0.75 0.90

0.10 0.961 0.942 0.952 0.942 0.970
0.915 0.934 0.952 0.936 0.969
0.25 0.942 0.949 0.948 0.948 0.942
0.934 0.948 0.943 0.930 0.936
0.50 0.952 0.948 0.957 0.948 0.952
0.952 0.943 0.957 0.943 0.952
0.75 0.942 0.948 0.948 0.949 0.942
0.936 0.930 0.943 0.948 0.934
0.90 0.970 0.942 0.952 0.942 0.961
0.969 0.936 0.952 0.934 0.915
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b. ny =n, =30
p2
P1 0.10 025 050 0.75 0.90
0.10 0.946 0.947 0.947 0.943 0.951
0.925 0.937 0.944 0.943 0.922
0.25 0.950 0.951 0.948 0.948 0.943
0.940 0.940 0.946 0.948 0.943
0.50 0.947 0.948 0.948 0.948 0.947
0.944 0.946 0.948 0.946 0.944
0.75 0.943 0.948 0.948 0.951 0.947
0.943 0.948 0.946 0.940 0.937
0.90 0.951 0.943 0.947 0.947 0.946
0.922 0.943 0.944 0.937 0.925
c. 2n; = n, = 40
P2
P1 010 0.25 050 0.7 0.90
0.10 0.951 0.939 0.946 0.936 0.927
0.926 0.933 0.945 0.936 0.927
0.25 0.951 0.948 0.949 0.946 0.948
0.950 0.942 0.947 0.939 0.937
0.50 0.953 0.951 0.945 0.951 0.953
0.948 0.947 0.945 0.947 0.948
0.75 0.948 0.946 0.949 0.948 0.951
0.937 0.939 0.947 0.942 0.950
0.90 0.927 0.936 0.946 0.939 0.951
0.927 0.936 0.945 0.933 0.926
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2.5.3 ED100p in Dose-Response Study

Since the sampling distribution for a table of dose-response data is the product of
independent binomials, exact coverage probabilities can also be calculated for this
example. For our purposes, we looked at 13 different dose-response models shown
in Table 2.8.

The model involved a three-point assay, with dose levels d;. d,. d3, and equal
sample sizes n; = 20, ¢ = 1,2,3. Let p = p(d;.d,,d3) denote the vector of response
probabilities, given dose levels (d;.d,,d3). The nominal level of confidence is 95%.
and the coverage probabilities were calculated for wg,, wes and wo.9. Coverage
probabilities for intervals based on the unadjusted and Bartlett-adjusted LRS were
obtained for the dose-response models in Table 2.8.

The results again show the Bartlett-adjusted LRS to be more conservative rel-
ative to the unadjusted LRS. Roughly speaking. the correction appears to be most
efficacious for those combinations of p < 0.5. The Bartlett correction results in
coverage probabilities that appear to tend to 1 as p nears 1. In contrast. over the
same range the uncorrected LRS yields coverage probabilities slightly below the

nowminal level, in most cases.

Table 2.8 Exact coverage probabilities for nominal 95% CIs based on the Bartlett-
adjusted (upper row) or unadjusted (lower row) LRS of the ED100p. wy. in
independent binomial sampling with sample sizes n; = 20, i = 1.2.3.

p ED10 ED50 ED90

0.057, 0.069, 0.083 0.955 0.947 0.942
0.918 0.942 0.938

0.114, 0.190, 0.299 0.954 0.950 0.957
0.943 0.945 0.950
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Table 2.8 (Cont.)

p

ED10

ED50

ED90

0.310, 0.400, 0.500

0.359, 0.404, 0.451

0.268, 0.404, 0.557

0.350. 0.380, 0.400

0.404, 0.450, 0.500

0.301. 0.352. 0.407

0.500, 0.590. 0.680

0.670. 0.720. 0.760

0.856. 0.858. 0.860

0.845, 0.855. 0.865

0.920, 0.936, 0.948

0.949
0.933
0.948
0.939
0.946
0.936
0.956
0.942
0.958
0.949
0.956
0.942
0.957
0.948
0.970
0.944
0.980
0.946
0.981
0.942
0.994
0.940

0.946
0.935
0.948
0.935
0.948
0.935
0.955
0.943
0.959
0.944
0.956
0.945
0.957
0.946
0.963
0.951
0.980
0.940
0.978
0.941
0.990
0.939

0.943
0.937
0.952
0.932
0.947
0.937
0.957
0.935
0.958
0.948
0.959
0.937
0.963
0.945
0.969
0.944
0.979
0.941
0.976
0.944
0.987
0.915
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Chapter 3

Confidence Intervals via Profile

Likelihood-based Methods with
the EM Algorithm

3.1 Introduction

The EM algorithm has commonly been employed to obtain estimates of scalar or
vector parameters in incomplete data settings. Corresponding measures of precision
for these estimates are usually based on the observed information and obtained
by the method of Louis (1982). These measures of precision are based on the
assumption of asymptotic normality of the estimates derived by the EM algorithm.
It would be useful to consider obtaining more appropriate estimates of precision in
situations where the normality assumption is not warranted.

For this reason, a profile likelihood-based approach for obtaining interval esti-

wates is considered in this chapter. While this approach is familiar in parametric

39
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statistical inference, its application in ‘incomplete’ data settings is not widespread
nor well documented. particularly where the object of interest is a functional (as
opposed to a parameter vector or subset of it). The idea of using a profile likeli-
hood approach in the missing data context originated from Turnbull and Mitchell
(1984) who obtained approximate interval estimates for the quantiles of a survival
distribution. Although the basic idea of Turnbull and Mitchell (1984) is in principle
straightforward, its implementation via the EM algorithm may not be a trivial task
in general. For example, for the statistical analysis of carcinogenicity trials, De-
wanji and Kalbfleisch (1986) indicated that the profile likelihood approach may be
used to obtain interval estimates for complicated functions of the model parameters.
However. the potentially intensive computations involved led them to develop an
alternative approach based on the normal approximation. Usually. for constrained
models. there is no guarantee that the M-step continues to yield closed-form ex-
pressions for updating the estimates. A major advantage of the EM algorithm is
thereby lost. To reduce the computational burden. we adapt the approach of Rai
and Matthews (1993) to the parameter function case considered in this chapter.
and illustrate the procedure through some examples.

Kim and Taylor (1995) have recently described an EM algorithm for estimat-
ing mnodel parameters subject to linear restrictions. By utilizing the linearity of the
functional and a Lagrange multiplier argument, they showed that profile likelihood-
based CIs for a linear functional can be obtained directly from the algorithin. We
extend and apply the Lagrange multiplier technique to various missing data scenar-
ios where the functional of interest may be nonlinear in the parameters. The ob-
Jective is to obtain profile likelihood-based CIs for more general functionals. When
closed-form solutions are not readily available in the M-step for the Lagrange mul-

tiplier approach, we adapt the approach of Rai and Matthews (1993) as a possible
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solution.

General notation and the basic EM algorithm are first presented in section
3.2. We extend the algorithm to deal with the interval estimation of functionals.
first via a direct profile likelihood approach and then via Lagrange multipliers. As
iterative solutions are usually required, we also adapt the EM1 algorithm of Rai and
Matthews (1993) to the parameter function setting and verify its self-consistency.
In section 3.3 we illustrate the methods by example. A final problem we explore
is the possible use of the novel method described in Gu (1996) to derive interval
estimates for functionals, as well as its relation to the usual approach (based on

profile likelihood).

3.2 The EM Algorithm and the Lagrange Multi-
plier Method

The Basic EM Algorithm

In this chapter. we will assume a parametric statistical model indexed by parai-
eter § € © C RP. We consider only cases where the missing data mechanism is
uninformative in the sense of Little and Rubin (1987). Let T and T, denote the
complete and observed data, respectively. For example, in a failure time setting.
Teos can be the tuple (z,v), where z = min{T,c}, v is a function that indicates
whether a subject is censored and c is the observed censoring time. The complete
data, T, in this case is the failure time that would have been observed for each
subject in the absence of censoring. We represent the complete data log likelihood
by
£o(0) = £o(6; T)
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and the observed data log likelihood by
£8) = £(6: Tos) -

Since £(8; Tws,) can be a complicated function with no obvious maximum and a
complicated form for the information matrix, direct maximization may be tedious or
even intractable. The EM algorithm attempts to circumvent or reduce the difficulty
of this problem by utilizing an indirect maximization argument. Let £,(8': T'|T.s.,)
denote the log likelihood arising from the conditional density of T given T.s,. The
EM algorithm utilizes the simnple identity,

U6')=Q(6'.6) — R(6".6) (3.1)

where Q(8'.6) = E[€y(6'; T)|Toes; 6] and R(6'.6) = E[£,(8';T)|T.,.6]. It is impor-
tant to note that 8 is an argument of the complete data log likelihood. while 6 is
the parameter of the conditional distribution of T' given T, which is used to com-
pute the conditional expectation. Since R(8'.8) < R(6.86) for any §.4. by Jensen's

inequality. and
£46) - £(6) = [Q(F',0) — Q(6.6)] — [R(6',6) — R(8,6)], (3.2)

it follows that £(6") > £(6), provided §' is chosen to maximize Q(6', ). Generalized
EM (GEM) algorithms were also defined in Dempster et al. (1977), where 8’ is
chosen at each M-step to give a non-decreasing Q.

The steps of the EM algorithm can be summarized as follows. In the E-step
of the algorithm, given a current estimate §(™) of §, we compute Q(6’,6(™) as a

function of the argument §’. In the M-step we maximize Q(6',6'™) with respect
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to 6 to obtain the updated estimate, #(™*1). An attractive feature of using the
EM algorithm is that by appropriately “redefining” the problem, relatively simpler
complete data solutions may be utilized. In particular, closed-form solutions for
the MLEs might be available in the M-step. Under fairly general conditions. the
sequence {6/™} will converge to the MLE § which maximizes the log likelihood
€(0: Toe.). Theoretical properties of the EM algorithm are discussed in Wu (1983).

Interval estimates for @ will often be of interest as well. However, additional
work will be required since the EM algorithm does not automatically generate
measures of precision for the estimates. When sample sizes are “sufficiently large.”
Cls for 6 can be based on the method of Louis (1982). His formula for computing
the observed information matrix works by taking expectations. conditional on the
incomplete data. of complete data quantities. One shortcoming of the method is
that the required algebra can be difficult for some problems, especially when the
complete data information matrix has to be derived. It is also known that. since
the observed data do not generally constitute an i.i.d. sample. the large sample
normality of the likelihood function is not assured. Asymptotic standard errors
based on the information matrix are therefore more questionable in the incomplete
data case. In the subsequent development. we assume sufficient regularity exists so

that likelihood-based inferences remain valid.

The EM1 Algorithm

There may be instances where the M-step of the EM algorithm does not admit a
closed-form solution, so that an important advantage of the algorithm is lost. A
common strategy in this case is to utilize a numerical tool such as the Newton-
Raphson algorithm to implement the M-step. This will increase the numerical

burden, but more importantly, it is not difficult to encounter problems with con-
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vergence.

A possible solution to these problems was proposed by Rai and Matthews (1993).
who employed a slight modification of the EM algorithm at the M-step, giving the
so-called EM1 algorithm. Briefly, their recommendation is to replace the usual
M-step with a one-step maximization, as follows. Let

62
IE™) = — o2 o gm

so that. for example,
8%Q
)= ——=_1g_s.
where = = h6'™) + (1 — h)8(™*1) 0 < h < 1. We assume that I(8™)) and I(6")
are positive definite (we may not need the positive definiteness of I(8~)). Given the

current value of 6. say §™). the EMI1 algorithm chooses an ™. 0 < 5™ < 1. to

update the value of § according to
gimtt) = glm) 4 s(m) 1=1(g(m)) g(glm)) (3.3)

where S(6™)) = &éeéo‘,lle=g(m) and ' is a current estimate of §. This is equivalent
to performing one cycle of the Newton-Raphson algorithm. with step length s(™) at
the mth cycle. Rai and Matthews (1993) verified the self-consistency of this version
of the EM algorithm in the exponential family setting and also demonstrated its
efficiency. For completeness, we give a more general proof, as follows. By a Taylor
series expansion of Q(8(™*1),§(™)) about (™ (partial derivatives are with respect

to the argument 8(™+!)), we obtain

Q(gm+1) glm)y — Q(g(m)_g(m)) = (g(m+1) _ g(m))TS(g(m)) - é(g(mﬂ) — 8tmhT «
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I(67)(81™+1) — gim)
= ‘5,('")5'(9(1'"))T[—l(g(m))[[p - %s(m) x
Lo™) I~ (6™)]S(6™)

by equation (3.3). Hence, given 0 < s{™) < 1, we only need to show that I=tetmn[r,—
3s(™ [(6=)I71(8'™)) | > 0. We observe that. for a non-terminal iterate, S(e™)) #£ 0.
Further, I7*(6(™) > 0. So for sufficiently small s(™ [-1(§(m)) [ L—3st™1(67) 171 (8'™)) ]
can be made nonnegative definite. A similar proof can be found in McLachlan and
Krishnan (1997). The EM1 algorithm will prove useful for the interval estimation

of functionals in subsequent sections.

Interval Estimates for Functionals

Now suppose we are interested in obtaining an interval estimate for a functional
f(8) € R: we assume that %é exists for § € ©. The conventional approach uses
Louis™ (1982) method to derive the observed information matrix first. The delta
wethod is then applied to obtain the variance of the estimate for the functional.
However. we shall be concerned with a profile likelihood-based approach to the
problem.

Consider the hypothesis Hy : f(6) = w. Suppose that Hy can be explicitly
expressed as Hy : 8 = g(B) for some vector-valued function g and parameter vector
B € RP¥4~! (cf. chapter 2). Then under H, the complete data log likelihood.
£(B:T). can be maximized in the usual way via the EM algorithm. In general,
since the estimating equations for B do not always yield closed-form solutions for the

parameter estimate, a numerical method such as the Newton-Raphson algorithm is
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required. Let G(8) = &. The Newton-Raphson algorithmn for S is given by

aB
2 a
GO | ] OB B~ g =G0 22 (a

where %35— and a—aa%gf are evaluated at (™). It is well-known that the numerical
scheme given by (3.4). commonly employed in the M-step of the EM algorithiu.
does not always perform satisfactorily.

From the previous subsection, we see that insertion of an appropriate step size
into equation (3.4) leads to a corresponding EM1 algorithm for the parameter
function case, via (3.3). The self-consistency of this algorithm also follows from
the proof above, by observing the following. Since G(8) is assumed to have rank
p +q— 1, we can apply a standard result (Rao and Toutenburg (1995)) to deduce
that {G(8)TI(6'™)G(B)}, and hence {G(B)TI(6)G(B)}~ . are positive definite.

Before proceeding further with the profile likelihood method in the missing data
context, it is appropriate at this point to cousider. at least briefly. any theoretical
Justification for using the profile likelihood to obtain interval estimates for function-
als. It is well-known in parametric statistical inference that, under mild regularity
conditions. the maximized relative log likelihood has an approximate x,z, distribu-
tion. where p is the number of restrictions on the parameter vector under the null
hypothesis. An analogous result was obtained by Owen (1988) for the nonparamet-
ric setting. Subsequent papers (e.g., Li, 1995: Murphy. 1995) rigorously established
the asymptotic distribution of the nonparametric LRS for interval estimation of
some functionals in censored survival data models. At present, there are no general
arguments that similiarly apply to the use of the profile likelihood in missing data
contexts. Since the EM algorithm is essentially a numerical tool for maximizing

the observed data log likelihood. we have to individually establish the asymptotic
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distribution of the LRS for each missing data problem. The other alternative is to
use the observed information matrix, which is also questionable in view of the data
not necessarily being i.i.d. (see Little and Rubin, 1987, pp. 88). Specifically. the
asywptotic normality of the MLE does not hold in general for correlated data.

A related point concerns the important assumption of data which are ‘missing
at random’ (MAR), which we make throughout this chapter. Its importance is
underscored by the fact that when data are not MAR.. maximum likelihood inference
based on the observed data log likelihood can lead to inconsistent MLEs (Little
and Rubin, 1987). This implies that interval estimation of functionals under these
conditions will also be inconsistent (since for each w, Hy defines a distinct estimation

problem as in the unconstrained estimation of the model parameters).

A Lagrange Multiplier Formulation

We may also consider a Lagrange multiplier approach to the problem of obtaining
profile likelihood-based interval estimates for functionals. In the “missing data”
context. this technique has not been fully utilized nor studied, except for Kim and
Taylor (1995) who used the EM algorithm to test linear hypotheses Hy : A8 = a.
where A is a known ¢ x p matrix with rank(A4) = q < p, and a is a known g x 1 vector.
They developed a restricted version of the EM algorithm based on N ewton-Raphson
iteration and a simple Lagrange multiplier argument. To provide the motivation
for our adaptation of the Lagrange multiplier technique to general functionals, we
briefly outline the key steps leading to the algorithm of Kim and Taylor (1995).
Let £(fy) represent the log likelihood for § based on a completely observed
random sample y. Let Sy and Iy represent the score function and observed in-
formation matrix, respectively. The restricted log likelihood function is Le(8ly) =

£(0ly) — €T (a — AB), where £ is a vector of Lagrange multipliers. The score func-
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tion and observed information matrix for the restricted log likelihood are clearly
Spr = Sy + AT¢ and Iz = Iy. Now let ng) denote the estimate of § at the mth

cycle of the Newton-Raphson scheme, i.e.,

0gn+l) - 0£27'l)_*_11—{1'5vR

= 05" + Iz Sy + I;AT¢

this follows from the relations between the restricted and unrestricted score and
information matrices.

An important step in their derivation is to recognize that 0};’" + Ig'Sy =
85"+ [6%™], where 8571645 denotes the estimate of 8 in the (m + 1)th cycle
of the unrestricted Newton-Raphson scheme. based on the mth cycle estimate.
HK"’ . The preceding step of their method therefore depends crucially on the linear-
ity of the restrictions. The resulting expression for 9},{"*” 1s substituted into the

constraint.

a— A6y V(65" + I*AT€) = 0.

This is solved for £. which is finally substituted into the expression for g to yield
O =6V + [P AT(ALFAT) M (@ — ABSIBE)

This algorithm generates the “alternating™ sequences {65"'}, {65"}. m = 0.1.2. ...
of estimates, and terminates when 65{") has converged. For application to missing
data problems, the score function and information matrix are replaced by %—?— and
%25%', respectively.

To conclude this brief summary of Kim and Taylor’s method, note that an

important assumption of their derivation is the requirement that the sequence of
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iterates {§4")} satisfy the constraint for all . Results in numerical analysis (Gill
et al. 1992, pp. 157-61) show that the sequence of iterates are feasible provided
Hg)) 1s a feasible point. For problems with a small number of constraints, suitable
feasible initial points can usually be found without difficulty. Numerical methods
may be necessary as the number of constraints increases. To summarize. Kim
and Taylor’s version of the EM algorithm can be useful in the kinds of situations
counsidered in their paper. In particular. when closed-form solutions exist for the
unrestricted estimates. their algorithm is most useful since it provides a simple
way of computing the constrained estimates: no analytical expressions for these
quantities are required.

In the following, we expand the “scope” of the Lagrange multiplier technique
to handle nonlinear functionals. When Hy : A(f) = 0 can be expressed as H, :
¢ = g(B) implicitly. we may proceed as follows. The obvious modification of the
EM algorithm at the E-step consists of deriving the conditional expectation of a
constrained log likelihood function. in place of the usual complete data log likelihood

£y(6:T'). Therefore. at the E-step we calculate

Qe(6.6) = E{l(6';T) + Eh(8')|Tons: 6}
= Q(6'.6) + ER(8),

where k(8') = w — f('), for some arbitrary fixed value of w and Lagrange mul-
tiplier £. In principle. the function Q¢ is easy to maximize at the M step of the
algorithm. If a closed-form exists for the constrained estimator, the method pro-
ceeds as in unconstrained problems. In this case, an important advantage of the
profile likelihood approach is that the complete data information matrix does not

need to be derived. Where no closed-form solution is readily available. an EM1
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algorithm based on earlier arguments can also be implemented. given a fixed value
of the Lagrange multiplier. That is, we can apply the algorithm

azQ O%h (m+1) (m)y _ _(m) 3Q oh ]
[3939T+£6066T O =0 = 30 +55) (3.5)

where 0 < s < 1. The positive definiteness of the first term on the LHS of equation
(3.5) is guaranteed provided ¢ %T > 0. For linear functionals. the term ¢ aga%
disappears, so the usual assumptions suffice.

The argument of Cox and Oakes (1984, p.171) described at the beginning of
this section can be adapted to establish the self-consistency of this constrained
version of the EM algorithm. For the constrained problem, we seek to maximize
the Lagrangian function, £(6') +£k(6'). From equation (3.2), it follows immediately

that 6" should be chosen to maximize Qe(8'.96).

A Computational Note

Given an arbitrary value of f(§) = w. it might be difficult to identify a suitable
mnitial value for B in general. The problems caused by a poor starting value are
well-known in the case of the Newton-Raphson algorithm. However. in applications
the EM algorithm tends to be less sensitive to the choice of starting value. In our
numerical examples. we find this to be the case when the M-step admits closed-form
solutions. Choice of initial values can be more crucial when the EM1 algorithm is
employed. An ad hoc procedure to obtain the upper bound of the CI for fis as
follows (the same technique applies for the lower bound). First identify f(é) =w,
and then let  be the initial value for the next iteration, for some w > &. This
approach is adopted in our numerical examples. However, we note that in our

examples the above procedure does not always work well for the Lagrange multiplier
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form of the EM1 algorithm.

3.3 Examples

3.3.1 Profile Likelihood Approach
Example 3.1

By considering a homogeneous random sample of failure times as a special case of
grouped multinomial data. Cox and Oakes (1984. pp. 175-77) derived the product-
limit estimator of the corresponding survivor function in an alternative way. Their
approach. while being more “indirect.” does offer some interesting insights on the
versatility of the EM algorithm and. furthermore, covers more general censoring
schemes than right-censoring.

In their derivation. the basic statistical model takes the form of a multinomial
trial with p categories {a;..... a,}. with associated outcome probabilities {my..ccomp}
For a random sample of n subjects. the complete data consist of the multinomial
frequencies K; which record the number of failures at a;j. 7 =1.....p. Each subject
¢ observed to fail at a; can be regarded as yielding the complete information S; =
{a;}. If subject i is censored at a; then S; = {@j+1.@j42,....ap}. where a, is the

terminal failure time. The complete data log likelihood function

p-1
lo(x',K) =Y K;logm; + K,log(l — 7, — ... — L

=1
is linear in the complete data sufficient statistics {K;}, j =1,....p — 1. Hence

p—1
Q(r ,mw) = Z E(K;|S,m)logn; + E(K,|S,m)log(l — 7, — ... — Tpo1)s

I=1
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where E(K;|S.7) =T, %‘Jsﬁi, 9i; = 1if aj € S, 0 otherwise. and |S;| = ¥, 7;.
Suppose the functional of interest is the survivor function. F (t)=1-x1® 7rJ
Let 1 - x; = w. Solving for T, weget m =1—w— Yacice 7rJ Therefore, under

the constraint, the complete data log likelihood function €, becomes

p-1
ZK,-logﬂ';-+Kplog(w— > 1r;)+Kllog(1—w— PSR

i=2 t<j<p 2<j<t

The score equations are

9% _K; _ S =0, 2<j<t (3.6)
I T l—w—=3am
o K K t<j<p (3.7)

Equation (3.6) implies that

while (3.7) implies

Cowbining the E and M-steps, we get

_ E(K;|S.7) . .
= (1 w)m, if a; <t
7 w—B(K;1Sm)

otherwise
- B(K|57)’

as the constrained EM estimates for {;} corresponding to a fixed value of w. We
compute 2{{(7%) — {(7(w)} and compare it with the relevant x? quantile point.

These steps are iterated until the end-points of the interval are obtained. [For this
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problem, Li (1995) and Murphy (1995) have established the asymptotic distribution
of the LRS.]

The preceding estimate is analogous to what Turnbull and Mitchell (1984) ob-
tained in the context of carcinogenicity trials. Their interval estimate for the median
survival time for subjects with tumours was obtained by renormalizing the unre-
stricted EM estimates of p; (= m; in our case) to satisfy the constraint introduced.
Tlus simple device of renormalization may be very inconvenient to implement when
waultiple functionals are of simultaneous interest.

To obtain an approximate interval estimate for the median survival time ,s
using our approach, we proceed along the following lines. First set 1—3(!) x; = 0.5.
where ¢ is an arbitrary. fixed value for the median survival. The constrained MLEs
for ; corresponding to each fixed choice for ¢ are found using the same method
discussed above. yielding a nonparametric profile likelihood for the median survival
time. To obtain an approximate 95% CI for tys. we locate the abscissa for this
profile likelihood corresponding to a drop of two log units from the unconstrained
maximum. As noted by Turnbull and Mitchell. it is difficult to ascribe an exact level
of confidence for intervals derived in this manner, even though they may usefully
be regarded as approximate 100(1 — a)% Cls.

For a simple numerical illustration, consider the data in Table 3.1 showing the
remission times of leukaemia patients (Gehan, 1965). Censored observations are
indicated by an asterisk. The treatment group received the drug 6-mercaptopurine
(6-MP) while the other subjects served as controls. Treatment allocation was ran-
domized. It has been pointed out that the study design was not a routine random-
ized controlled trial and that the censoring scheme was in fact sequential in nature
(cf. Cox and Oakes (1984); Venables and Ripley (1994)). These aspects of the trial

should be taken into account in a detailed analysis of the data. For our present
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Table 3.1: Remission time in weeks, Gehan (1965).

6-MP 6 6~ 6 6 T 9° 100 10 11* 13 16 17°
19© 200 22 23 25- 32= 32" 34~ 35"

control 1 1 2 2 3 4 4 9 ) 8 8 8
8 11 11 12 12 15 17 22 23

Table 3.2: Interval estimates for the median survival. « = 0.10.

Group  Profile Likelihood Kaplan-Meier MLE
6-MP (16. NA) (16. NA) 23
Control (3. 11) (5. 12) 8

purposes. we shall ignore these caveats. and implement our method of obtaining
an interval estimate for the median survival time in both treatment and control
groups. The results are summarized in Tables 3.2 and 3.3.

The Kaplan-Meier interval estimates were obtained by fitting the survival curves
and finding the time ¢ for which S(¢) < 0.5. i.e.. the lower and upper limits are
the intersection of a horizontal line at 0.5 with the lower and upper confidence
bands for S(¢). If the upper confidence band for S(¢) does not reach 0.5. the upper
limit is unknown, hence the NA symbol. We note that. although this is a standard

Table 3.3: Interval estimates for the median survival. a = 0.05.

Group  Profile Likelihood Kaplan-Meier MLE
6-MP (13, NA) (16, NA) 23
Control (3, 12) (4, 12) 8
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wethod of obtaining interval estimates for quantiles, the resulting interval estimates
do not possess the ascribed confidence level. This follows since the confidence
intervals based on the Kaplan-Meier estimate are point-wise confidence intervals
for the survivor function, evaluated at fixed time points. Hence, the likelihood-

based approach ought to be the preferred solution to this estimation problem.

Figure 3.1: Nonparametric likelihood ratio statistic for the median survival in the
6-MP group of leukaemia patients, based on the data in Table 3.1.

Likelihood ratio statistic
2
t

5 10 15 0 %5 30 k-

Note that in the case of likelihood-based interval estimates, a value of NA is ob-
tained for the 6-MP group because the MLE occurs at the final death point. For
the data in this example, the profile likelihood-based intervals are longer in three
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out of four cases. For the control group, they also tend to be more asymmetrical.
Figures 3.1 and 3.2 display the nonparametric likelihood ratio statistics for the two

groups of subjects.

Figure 3.2: Nonparametric likelihood ratio statistic for the median survival time in
the control group of leukaemia patients, based on the data in Table 3.1.
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Example 3.2

Consider a variance components problem discussed in Little and Rubin (1987. p.

149) and Kim and Taylor (1995). The model suggested is

Yij = a; + €5, (3.8)
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where the parameters a; describe the primary effects of interest and the residuals €ij
denote the secondary effects, ¢ = 1,...,J, j = 1....,n;. The modelling assumptions
are

a; ~ N(p,02) iid.,
e;j ~ N(0,02) 1pid..

If we treat the a; and Yi; as missing and observed data, respectively, we can
obtain an EM algorithm for estimating 6 = (u,02.02)T (Little and Rubin, 1987. p-
151). The complete data log likelihood is given by

a; _ 2
R T I R 0 D= SR

Maximizing (3.9) with respect to 6 yields the complete data MLEs.

g = N o
g, = N7'Y ol —4?

(X

f.J"__ = (Zni)—l{ZZ(yu J:) +an '.—Cli }

where ;. = ;7' Ty

Little and Rubin utilize Bayes theorem to show that the conditional distributions
of the primary effects. «;, given the value of the data {yi;} and 6, are independent
and normally distributed with mean w;u + (1 — w;)y;. and variance v;, i = 1,....n;.
ie.

[l {yi5}, 6] ~ N(wip + (1 — w;)iii.. ;)

independently, where w; = ¢;%y; and v; = (672 + n; o7%)~!. Applying the E-step
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of the algorithm, it is straightforward to show that the updated MLE of 6 at the

conclusion of cycle m + 1 of the algorithm has components

(a,i)(m+1) — 1{2 [ (m) (m)+(1 t(m) y‘.] +ZV( )} (m))z.

and
)(m+1) (Zn‘)-l{ Zz(yu —§:) + 2 n‘_[wx(m)Z(#(m) _ !7;.)2 + V‘!m)] )

where w(m) denotes the value of w; based on the mth cycle estimates. Kim and
Taylor (1995) used their restricted EM algorithm to test the hypothesis Hy : 02 =
Qo?. for some fixed value Q. by rewriting Hy as a linear hypothesis. Note that
in their example, N = [ and n; = J (i = 1.....I). Alternatively. we may use
the following procedure. For a fixed value of 2. substituting Qo2 for 52 yields the

cowplete data log likelihood under Hy as

158y — o) 15 (o —p)?  IJ I ,
2 e T 9 Qo2 - —log(a ) — loo(Qae) (3.10)

Let (z,6%)T denote the complete data coustrained MLEs of (u,02)T. Clearly
£ = fi. while
52 = LY — )+ Q7T (i — )2
: I(J+1)
2y — ¥ )+ J YT — )+ Q-I[Zi a? - 255 a; + Iﬁzl
I(J+1)

The E-step is straightforward to implement since we already obtained E( a;ly, p™, (a2)(m))
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Table 3.4: Variance components data cited in Kim and Taylor (1995).

Unit Yij
1 76 64 85 75
2 98 75 81 66
3 49 63 62 46
4 74 71 85 90
5 66 74 81 79

and E(cally, u™), (¢2)™)). We obtain
AT = (1+ JQ)"Ha"™ + 797} .
where §. = (IJ)™' X, &, yi;. and

G = (417 @+ S T

— J 5 (m) = ~(m) -
T+ DAoL A" 20— IE™)? + 034! }

as the constrained EM estimates for (u,s2)T. We illustrate this alternative ap-
proach with the following data. Table 3.4 contains the data on Apex Enterprises
from Neter et al. (1985). Each row represents the evaluation ratings given by a
personnel officer to four candidates selected at random. Five personnel officers were
randomly selected to give ratings. Kim and Taylor applied their algorithm to these
data. obtaining the profile likelihood-based 90% CI (0.131, 2.466) for ol/c?. In
coutrast, we obtained (0.070, 3.599).

The same procedure can be used on a variety of linear model designs. In par-

ticular, Laird (1982) provides a general framework on which the preceding method
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might be applied.

Example 3.2 (Cont.)

The variance components example considered previously admitted a convenient
closed-form solution for the constrained MLEs at the M-step. In general. even for
linear functions of parameters, such simple solutions are not available. The EM1
algorithm may be useful for these cases. and can be an attractive alternative to
Kim and Taylor’s (1995) algorithm especially when there is no closed-form solution
for the unconstrained estimates and the number of linear constraints is small.

For illustration, we consider the simple case of one linear function of interest.
with Hy : 8Txy = w € R. By expressing 8, as a function of the other parameters.

we obtain the matrix G = {%}. with the identity matrix [,_; as its first p — 1 rows.

Lol Lo,p-1
Zop Lop

as 1ts pth row. As usual. zo; denotes the jth element of xq. Using this approach on

and

the variance components data in Table 3.4. we obtained the same interval estimate.
Le. (0.070. 3.599). For our data, we found that the EM1 algorithm was quite
stable with respect to the choice of a starting value (although we might also want
to verify that different choices lead to different rates of convergence. in future
work). Convergence was also quite rapid for a selection of different starting values.
In addition, as in the case of Rai and Matthews (1993), setting s®) = 1, Vp, was

sufficient to ensure convergence.
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Example 3.3

In this example, we consider using the EM1 algorithm to obtain approximate Cls
for some important functionals in the context of carcinogenicity studies incorpo-
rating numerous interim sacrifices. The data from such studies are incomplete in
the sense that the time to occurrence of tumour in live animals is not clinically
observable: the presence or absence of tumour is determined by autopsy following
the death or sacrifice of the animal. If tumour onset was observable, standard non-
parametric survival analysis methods could be used to analyze important quantities
such as tumour incidence. Animal survival and sacrifice experiments are cormmonly
used to provide important information for identifying carcinogens and estimating
carcinogenic effects.

Hoel and Walburg (1972) first investigated data from carcinogenicity studies
involving occult tumours in live animals. They made a useful distinction between
rapidly lethal tumours and incidental tumours. In the former, time to death follow-
ing tumour onset is short, and therefore it is a good proxy for the time to tumour
ouset. Hence an analysis may be based on time to death with tumour. On the
other hand. incidental tumours have no effect on the death rate and the proportion
of deaths with tumour provides an estimnate of the tumour prevalence at that time.
Other papers (e.g. Kodell and Nelson (1980). Dinse and Lagakos (1982) and Turn-
bull and Mitchell (1984)) utilize cause-of-death information. while McKnight and
Crowley (1984) and Dewanji and Kalbfleisch (1986) provide extensive surveys of
nonparametric methods of estimation in occult tumour studies. In both the latter
papers, numerous interim sacrifices are required for analyses.

For the present example, we shall not be concerned with the relative merits of
the preceding approaches to analyzing occult tumour data but will instead illustrate

the use of the EMI algorithm in deriving interval estimates for some functionals.
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We refer to the basic framework described by Dewanji and Kalbfleisch (1986).
who addressed the problem of providing a nonparametric estimate of the tumour
incidence rate. We suppose that n animals are subjected to insults with a carcinogen
and followed over time. Let X, represent the time until occurrence of tumour
(J = 1) or until death without tumour (J = 2). Let X, represent the time (from
the start of study) until death with tumour. We also assume a discrete time setting
for X;.71=1.2.
Let
M) = P(Xy =w.J = j|X, 2u). j=12,

’\ll(tlu) = P(Xz = tlJ = l.Xz Z t,Xl = 'll.), t= u,u+ 1,....M,

where v = 1.2..... M. We further assume an independent scheme for determining
the time of sacrifice Y; for the ith animal. Specifically. we have P(Y; = j) = gj-
J=1...Mand ¥ ¢q; = 1. We also define the survivor functions

Sl( ) P X1 > u) H[l bt /\2(‘0)]

v<u
Sg(tlu) = P(Xg > thI =u,J; = 1) = H [1 - /\11('0'11.)], t>u.
u<lv<t
whereu =1,2,.... M.
The parameter vector for this model is A = (A (1),.... A\ (M). Az(1). e Aa(M).

A (11), A1a(2[1), ..., Aun (M| M))7, since only transition probabilities up to time M
can be estimated. Dewanji and Kalbfleisch (1986) used the EM algorithm to obtain
closed-form estimates for A. Since tumour onset is unobservable, they specified a

complete data problem in place of the original one. In this complete data formula-
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tion, we suppose that the data consist of the processes

NJ(u) #{i:XlizquIiS},iin:j}y j= 1,2.

Nu(tle) = #{{: Xu=u,Xn=¢J;=1Y; > t},
Yo(t) = #{i:Yi=t < Xy},
Yl(tlu) = #{'L : Xl,' =u S Y, =t< Xzi.Ji = 1}

where Xy;, X7; and J; denote the values of X1, X, and J respectively. for the ith
animal. The process Nj(u) represents the number of tumour onsets occurring at
time v and N,(u) the number of deaths without tumour at time u. Likewise.
Nii(t|u) is the number of deaths at time ¢ of animals with onset time u. The process
Yy(t) records the number of tumour-free animals sacrificed at ¢. while Yi(t|u) is the
number of animals with tumour onset at time u and sacrificed at time t. We also let
Ry(u) denote the number of animals at risk of death without disease or of turmour
onset at time u—, and Ry (t|u) the number at risk of death at time t— with disease

ouset at u < ¢. The complete data likelihood function is given by

M
Ly = H( /\l(u)N‘(“)/\g(u)NZ(“)[l — Ar(u) — /\z(u)]Rl(“)"Nl(u)-N’.'(u) %

u=l

M
H{/\u(tlu)N“(tlu)[l _ /\11(t|u)]R“("“)‘N“("")} ):

t=y

this is easily maximized to give the complete data MLEs

Ai(w) = Njw)/Ri(u), j=1,2,
Aultlu) = Ny(the)/Ru(tlu). t>u, u=1.2,... M.

for the Markov version of the problem. Let Ny;(¢) and Y1(t) denote respectively
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the numbers of deaths and sacrifices with tumour present at time ¢. In the E-step.

Dewanji and Kalbfleisch (1986) obtain

E{Ni(w)INu(-), 1(), A™} = 37 [Nu(t)P™(w,t) + Yi(t) R™ (u. )],

t>u

E{Nu(tlu)|Nu(-). Y, (m)} = Nll(t)P(m)(u~t)~,
E{Yl(t|")|N11(‘),Yl(')"\(m} = Yi(t)R"™) (u,t).

where

/\1(1&)51(11.)/\11(tlu)s:(tl'U)

Plut)=P(X,=u.J=1X,=¢t) = Toce A1(v)S1(v) Arn(E|v) Sa(t[v)

/\I(u)Sl(u)Sz(t + ll'll,)
Lozt A(v)S1(v)S2(t + 1|v)

R(‘U..t) = P(X1 ='U.IX1 S t < Xz.J= 1) =

These follow by noting that, conditionally on the set {Ny,(-). DAY N (u).
N1 (t|u) and Yi(t|u) are binomial variates. Suppose we are interested in interval
estimates for functions of A. For example, the cumulative hazard for tumour onset

at time ¢.

A(t) = Z Ar(u).

u=1

the subdistribution function.

Ri)=P(X, <t,J=1)= Z AL(u)Si(u),

u=l

or the prevalence of disease among surviving animals at time ¢,

Luce A1(u)51(u)Sa(t]u)
S1(8) + Luge A1(u) 51(u) Sa(t[u)

P(t) =
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may be of interest.
Let us consider Fy(t). We begin by fixing Fi(t) = w € [0.1]. Since there is no
apparent closed-form solution for the constrained estimator in this case. we apply

the EM1 algorithm. We first solve for A;(1) as

A1) < 2= L= B
1 —~(¢)
where y(t) = ¥}, A1 (u) [T cpcu{Aa(¥)} and As(u) = 1 — A1(v) — A2(v). The com-
ponents of the matrix G = % are not difficult to obtain in this case. Moreover.
the analytical effort required for the delta method is comparable to that used here:
in the delta method we need to compute %g, for a functional f. Most of the work

involves finding

(1- 2y
A (t) _ J Mycoc;{Ma(v)} — ‘v(t)—zg,{;\:\ii()jl)]l(v(iAs(u)}. 2ci<t—1
I (7) [T1cuce As(v). j=

| 0. J>t

and

As(F)
0, it

By (t) _ _‘Y(t)—z,-=-_.{4\l(i)n,o.(,rf\s(v)}’ 2<j<t—1
9r2(7)

The unconstrained EM estimates for A admit closed forms (and hence do not re-
quire computation of quantities such as a—?\%%-). Second derivative matrices are.
however. required in the EM1 algorithm for obtaining the constrained estimates.
In general, this might involve considerable additional computation, but in many
practical instances (including this one), 5%%- is readily obtained.

For the prevalence function P(t), we proceed in an indirect route. We shall
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S1(¢)
At (u) Sy (u)S2(tju) "

that V(¢) is a2 monotonic function in ¢ and the 1 — 1 relation P(t) = {1 + Vit)}!

first obtain an approximate CI for V(t) = 5= By using the fact

u<lt
between V'(t) and P(t), we can obtain a corresponding interval estimate for P(t).

Let V(t) = w, for some w € [0, 1]. Note that

2 M(w)S1(w)Sa(thu) = M (1){p(t) = 8(2)} + (L — A2(1))d(2).

u<t

where

p(t) = H (1 = Au(v[1)).

é(t) = Z{'\l(J) H As(u) H (1 —/\11(1’”))},
j=2 2<u<j j<u<t

and we define [[,cu <2 As(u) = 1. We can also re-express S,(t) as

(1= 200){ II As(v)} = M(){ I] As(v)}.

1<u<t 1<u<t

Substituting these into the constraint. we can solve for A,(1) as

(1 = A2(1)) MMicvee Aa(v) — w(1 = A2(1))4(2)
[Ticvce As(v) + w{p(t) — a(¢)}

o ~ wp(t)
= (1 ,\2(1)){1 n1<u<t,\3(v)+w{p(t)—J(t)}}'

A(l) =

Now we need to work out the matrix G for this case. This involves computing the

quantities
A7) H25u<j As(v) ngu«[l - ’\ll(vlj)]
a4(t) _ ) 0-T 000 ey i 230 i 1= (010} o< iy
A (5) 2s() 4=J3

0. j>t
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0, ji=1
90) _ | s-3l 000 [heee 50 ey climdntotly j<t
9Aa(7) 2303 RS
0, 72>t
0, i=1.Vj
94(¢) M ] M) [T co cell =211 (v19))
—_— —_ 2<e<i i<v<Lt . < g
A7) 1-Au1 () 251t 1<t
0, L,j 2t

Given these partial derivatives and corresponding ones for p(t) (which are straight-
forward). it is relatively easy to obtain the partial derivatives of A;(1) with respect
to the other parameters; see the appendix.

Berlin et al. (1979) report the results of a comparative assay with serial sac-
rifice data. For our purposes, we consider the data summarized in Tables 3.5 and
3.6 below: Dewanji and Kalbfleisch (1986) provide a complete listing of the data
categorized according to the disease of interest. Table 3.7 displays some interval
estimnates for the prevalence function. The level of confidence is 0.95. To obtain
the left and right endpoints of each interval. we used the unrestricted MLE as a
starting point for the iteration. For the glomerulosclerosis data. this choice proved
to be satisfactory. Figures 3.3 and 3.4 display the likelihood ratio statistics for V()
tor both irradiated and control groups at ¢ = 201 — 300. In both cases. the normal

approximation appears to be adequate.
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Table 3.5: Summary of the data for glomerulosclerosis as the disease of interest.
Control group

t 0- 101- 201- 301- 401- 501- 601- > 701
100 200 300 400 500 600 700

N, 1 9 8 5 6 4 2 1

Nu 1 16 95 71 98 127 177 138

Y, o8 41 19 9 2 1 1 0

Y 14 24 44 31 37 32 32 15

Table 3.6: Irradiated group

t 0- 101- 201- 301- 401- 501- 601- > 701
100 200 300 400 500 600 T700-

N, 4 61 65 24 12 5 6 2

Ny 4 144 257 204 150 99 65 9

Yo 56 43 16 2 1 1 1 0

Yi 11 25 50 41 38 30 26 2
Table 3.7: Interval estimates of prevalence.

Control group Irradiated group

t P, CI P, CI
201 — 300 0.7092 (0.6937. 0.7208) 0.7722 (0.7587, 0.7911)

301 — 400 0.7750 (0.7658, 0.8066) 0.9389 (0.9372. 0.9400)
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Figure 3.3: Likelihood ratio statistic for V(t) = S1(8)/{uce M(u)S1(u)S2(tu)}
during the interval 201 < t < 300 days, based on the data for irradiated animals
summarized in Table 3.5. The height of the horizontal dashed line is 3.841 units.
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3.3.2 Lagrange Multiplier Approach

The following examples illustrate the Lagrange multiplier approach. In particular,
they show that a Lagrange multiplier approach can be useful in “missing” data
contexts by simplifying the analytical work in some cases. For certain models and
functionals, numerical computations can potentially be relieved by using a Lagrange

wultiplier argument.
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Figure 3.4: Likelihood ratio statistic for V(t) = S1(8)/{Euge M () S1(u)Sa(t]u)}
during the interval 201 < t < 300 days, based on the data for control animals
summarized in Table 3.5. The height of the horizontal dashed line is 3.841 units.
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Example 3.4

Recall that the survivor function was the functional of interest in Example 3.1. A

Lagrange multiplier approach can also be implemented, as follows. Define
Qe(n',m) = Q(n',m) + &{w — F(t)}.
At the M-step. the score equations for {w;} are

6Q,5 _ E(K,-IIS,w) _ E'(K,,!S,ﬂ) +E=0

Om; T P
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for {j : a; < t}, and

0Q¢ _ E(Kj|S,m) E(Kpl|S,m)

on; ; T,

=0

(€)%, [(n 46?46 T2, BUK;15:7)

for {j :a; > t}. Let A({,5.7) = TS ST

he score equations

can be solved to yield

E(K;|S.m)22d, (jia; < t)

1-EA(E.5.x)°
E(K;[S.m)A(E S.7), (5:a;>1)

as the EM estimates for {w} corresponding to a fixed value of €.

Combining the E and M-steps. we obtain an iterative procedure for computing
the constrained MLEs {7}. We can compare the observed LRS. 2{l(#) — (%)} with
the relevant x? quantile point, and obtain the limits of the Lagrange multiplier.
[-.&+]. These can be used to yield the required CI for F(t). The procedure
ewployed here may be contrasted with the approach of Thomas and Grunkmeier
(1975). who obtained a simpler expression for the constrained MLEs. However.
the approach used here can be extended easily to handle more general patterns of
missing data. as indicated in Cox and Oakes (1984).

A simple extension of the previous example is to consider two independent
samples of failure times. As in Example 1.2, we can obtain an interval estimate
of the NNT parameter via this approach. Following the notation of the preceding
example. let S, = (S11,...,51n,) and S, = (Sa1,..., S2n,) represent the observed
data from the two samples, where n; is the number of observations in sample i, { =

1.2. The atoms of distinct failure times for each sample are denoted by {ai;}.
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t=1,2; j=1,...,n; The NNT parameter in this continuous-time setting is

(t) (t)

{A®) - F)} = Do m = Y my}t,

where () denotes summation over subjects with failure times less than ¢, for the
respective samples. As in Chapter 1, it is simpler to first obtain an interval estimate
for F,(t) — F»(t). and then invert the result to obtain the corresponding interval
estimate for the NNT. By using arguments similiar to those employed in Example

3.1. we obtain the constrained estimates

— { I__I\Ele(KllelJrl)s (] a5 < t)

71'1]' = )
AlE(Kljlsl,ﬂ'l). (] - Qyj Z t)

7}2]- _ ﬁ\é\;E(KleSgﬂ'z) (] g < t)
/\zE(KzJ',Sg,Trz). (] L Qaj 2 t)

where

E+mn \/(f +7ny)? —4¢ Zalth E(K,j|S1.m1)
AI = AI(SI.”I&E) = 962 E(K IS b
28 Loy, >t 15191. 1)

§—mn2t \/(f —n2)* + 463, 50 E(K24]S2.72)

A = /\2(52.71'216) = 26 Zﬂzjzt E(K2j|5277r2)

and m = (w1, ..., m1n, )T, T2 = (721, .-y T2, )T denote the current estimates of the

parameters.
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Example 3.5

In Example 3.3, interest centered on interval estimation of A(t), Fi(t) and P(t).
However. we did not discuss the interval estimation of A(t) then as a Lagrange
wultiplier approach is simpler. Let A(t) = w, for some w > 0. By differentiating
the Lagrangian. & + £{w — A(t)}, with respect to the parameters, we can easily
obtain the score vector. Asin Example 3.1, only the score equations for Ay (u).u <t

are affected:
NMi(u)  Ri(u) = Ni(u) — Ny(u)
A1(u) As(u)

—£=0,
where Az(u) = 1 — A;(u) — Az(u). These equations can be solved explicitly to yield

Ny (u)As(u)

Y . u<t
A{u) = { ﬁii:))-Nx(u)—Nz(u)%,\;(u)
Ry(u)* u>t
Na(u)ds(u)
:\2(u) = { f,l(“)‘Nl(")-Nz(u)’ vt
R;(u)‘ u >t
where
: £ — Ri(u) £ /(Ri(u) — €)? — 46(Ry(u) — Ny(u))
/\3(-(L) = \/ {R]_(IL)—NI(u)—-Nz(u)}_

26(Ry(u) — Ny(u))

In this case, the EM1 algorithm is not required. However, we need to numerically
evaluate which root of the solution is feasible. Since the constraint does not affect
the E-step, we can substitute the conditional expectations of {N,(u)} and {Ry(u)}
into the preceding formulae.

Next, we show that when a Lagrange multiplier argument is applied to the
case of F\(t), relatively simple numerical techniques can be used at the M-step

of the EM algorithm; in particular, fixed-point methods can be used in place of
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Newton-type iterative schemes (as used in the EM1 algorithm). Consider fixing
Fi(t) = w. We form the Lagrangean, £, + &{w — Fi(t)}. from which the partial
derivatives with respect to the parameters are straightforward to obtain. Clearly.
the estimating equations for {A;(kli)}, k > 4, Vi, {A\(5)} and {A205)}. 7 > ¢.
are the same as those for the unrestricted model; these can be solved explicitly in
terms of the observed data and the previous cycle updates. However, closed-form
estimates are not available for the remaining parameters. To tackle the problem.
the obvious strategy is to use the EM1 algorithm to update these parameters. given
the matrix of second partial derivatives for the parameters concerned. We shall not
implement this approach here. A numerical illustration of the Lagrange multiplier
form of the EMI algorithm will be considered in Example 3.7. Instead. we poinut
out the following alternative numerical approach which can potentially relieve the
nuerical burden (cf. Example 1.2).

It is straightforward to show that the estimating equations for the parameters

in Fy(¢) can be written as

Ny(3) [1 = da(s) ] |
Ri(3) = No(3) + € [1 = TL(05:6) - Fi(D) ]

Na(d) [1 - () | _
Ri(§) = Mi(5) — € [ Fi(t) - L, M(D)51(3) |

for j < t. Given the previous estimates and the observed data, this is a fixed-point

Ag) =

system of equations which can potentially be solved by the method of functional
iteration. A fixed-point system of equations can similarly be obtained for the case
of P(¢). Finally, we note that when the usual profile likelihood approach is used,

the score equations cannot be similarly written as a fixed-point system of equations.
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Example 3.6

When the complete data belong to the regular exponential family, Dempster et. al.
(1977) show that the EM algorithm yields an intuitively appealing result. Sup-
pose the density of T; is a regular member of the exponential family in its natural

parametrization, i.e.,
fi(t;0) = exp[67 Si(t) + Au(t) + B:(8)],

where S;(t) is a p x 1 vector of linearly independent functions of ¢, Ai(t) is a scalar
function of ¢ and B;(f) is a scalar function of the natural parameter §. It can be

shown that the E and M-steps in this case combine to give
E(S|6') = E(S|Tus: )

as the updating scheme, where S = (S(t),.... Sp(¢))T. This resembles the esti-
mating equation for the complete data setting which equates each element of the
score vector to its expected value. An attractive result of this is that computer
programmes for the complete data problem can be utilized in the corresponding
wissing data case.

Cousider the interval estimation of the functional f(#); let us assume a fixed
value for f(d), say f(f) = w. For constrained maximization, the E-step is un-
changed, while the M-step is obtained by a simple modification to that for the
unrestricted problem. The E-step consists of computing E(S|T.,; ). as before. In

the M-step. we solve for 6" in

E(S|6') + 5% = E(S|T...: ).



Profile Likelihood Methods with EM 96

where k(') = w — f(§'). This follows by setting %ﬁ = 0 and noting that
%—l E(S|To,;6) (from the unconstrained problem). In general, numerical
methods are required to solve the resulting system of eqﬁations. Unfortunately.
complete data computer code cannot be applied as routinely as was possible for
the unconstrained maximization problem. Specially written programmes appear
unavoidable. However, in chapter 5 we indicate a possible numerical method to
reduce the computational load.

To illustrate the constrained estimation procedure. consider the case of a par-
tially observed normal random sample (Little and Rubin. 1987, p- 93). Assume
that we have a random sample X; ~ N(g. ), i = 1....,n, of which [ are observed.
Yoo = (Y1,..,Y1)7. and n — [ are missing at random. Here § = (6,,6,)T. where

6, = £. and 6, = _7_ and § = (T, Y. T, Y2)T. Suppose we are interested

in obtaining an approximate 100 (1 —a)% CI for the functional f(e) = ';9_" = (Z)%

F73

the square of the coefficient of variation. In the E-step, we obtain

6
B Y | Yo 8 o Sy )26,

i=1

2 1

{
2 — 2 — i — =
BOUYE | Yoan:0) = 3wk + (m = Dl gz = 55-).

For the M-step. we also need

E]Y: | 6) = —nb,(26,)"

\2
B 16) =n [ 1L - aay)- ik
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The E and M-steps together yield the updating equations for (i, o)T

_l)l‘v

I
=1

n[(#)? + ()] - (B® + %)

i=1
[note for unconstrained maximization, ie., € = 0, this system is easily solved].

These may be re-expressed in the form

(m+1) _ -1 % Lo (my (glmti))d
J7 =n Z;y;+(1—;)# —zfm’
(m+1) -1 (M) (m)y2 (m+1)y2 (a.(m+1))4
(o ZJ, +(1- —)[ TN = W 2

where (u(™, a™)T denotes the estimate of (u.a)T at the mth cycle of the EM
algorithm. Given a fixed € and current estimates (x™. 5™)T a numerical method
(e.g. fixed-point iteration) is required to obtain the updated estimates. The LRS
can be computed and compared with the relevant X3 quantile.

In some problems. by using a suitable monotone transformation of the func-
tional of interest. one might obtain closed-form expressions for the M-step. For our
example. instead of f(§) = —362} = (%)2. consider 1/f = (£)?>. Then the vector of
derivatives with respect to 4 is (& s 2:,) The E-step remains unchanged. while the
M-step becomes

0' 0' 01
it Z — )= .

@)2 1 T 2 ]
"’[4(0;)2‘%} A (‘W‘ﬁ> (3.12)
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From equation (3.11), we obtain
8, = A\6,,

{ []
Shui-(n- Ak

&3

where A; = . This can be substituted into equation (3.12) to give

0,(nA? — 26A? — 24,) = 2n,

where A, = 31_ y2 + (n — l)(% - ﬁ) Hence we choose

_ 2n

6, =
27T nA? —26A% - 24,

as the current update. given the data. previous estimates and a fixed value of the

Lagrange multiplier.

Example 3.2 (Cont.)

Closed-form expressions can similarly be obtained at the M-step for Example 3.2.
if we consider log ?} instead of %‘i} Given a fixed value of the Lagrange multiplier.

. the M-step gives

9 I 1 ~(m-pP? €
R il DV i B
LA 1J

1 (yij —)® | €
do? 20‘3+22 ol +}?_O’

O ) e

and the equation for u is unchanged. Hence,

— z (o — )
I+2¢°

~2
a
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Table 3.8: Results of Apex data analysis.

(19, (602, (6)2) ¢ (a,82,52) %
(71. 20, 200) 1.294 (71, 120.026, 8.536) 0.071
(71, 8, 114) -1.607 (71, 61.506, 221.383) 3.599

=ryla=l
TS IJ-2"
and i = [7'¥; a; as before. For numerical illustration. we consider the Apex data
of Example 3.2. For this data set, we find that the EM algorithm is sensitive to
the choice of starting values. Various starting values were used and the final log
likelihood values were compared to obtain the constrained MLEs. We also found
that. in contrast to the profile likelihood approach. the unrestricted MLE was not
a suitable starting point for both end-points of the interval estimate: the algorithm
could not increase the log likelihood from this initial position. Table 3.8 suminarizes
the details of the procedure; the level of confidence is fixed at 0.90. In the table.
(1, (aL9)2, (0”)?) denotes the starting value of our iteration, while (2.52.52)
represents the constrained MLE. For negative £ values, it took 8-9 iterations for
convergence while only 1-2 iterations were required for each positive £ value. We
also used the Lagrange multiplier form of the EM1 algorithm to obtain an interval
estimate for 2 directly. Let £ = £y + &{w — %} and 8 = (4,02, 52)T. We obtain

I

ot a; — IJ i — Q) ol a; —
£ oL ARl L R e

4
0'2
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Table 3.9: Results of Apex data analysis using the EM1 algorithm with Lagrange
wultiplier.

=2

(O, (), (s ¢ (2.52.52) 7
(71, 7. 114) -47.65 (71, 100.326, 7.932) 0.079
(71, 116, 41) 6.06 (71, 58.795. 210.227) 3.575

The M-step clearly does not yield a closed-form solution for §. To implement the

. as .
M-step numerically, we also need zgzér. i.e..

I i
o 0 -5 !aaau!
0 or — L X ol % &
2a% 1 &3 a8 al al
(ai— I (ai-p)?
R 2] my ~ T

This algorithm was also sensitive to the choice of starting value, so different starting
values were used and their respective log likelihood values compared to determine
the constrained MLE. The results are summarized in Table 3.9. The number of
iterations for each fixed £ value is comparable to those required for the calculations
snwmarized in Table 3.8. However. the total number of iterations required to locate

the end-points of the interval estimate is greater in this case since |¢| is larger.

3.4 EM Algorithm and Decomposable Likelihoods

Recently. Gu (1996) developed versions of the EM algorithm by suitably decom-
posing the likelihood function of the data (typically called the incomplete data
likelihood). A novel feature of his method is that, given the mathematical form of
the likelihood function, the @ function can be written down without specifying the

probability structure associated with the corresponding complete data likelihood.
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Using this approach, closed-form parameter estimates for certain models were de-
rived and shown to be conmsistent with those based on the usual EM algorithm.
In the following, we describe the basic approach derived by Gu, and clarify some
points concerning the method. We then utilize the Lagrange multiplier argument

to derive interval estimates for functionals in some models.

3.4.1 Introduction

Gu’s approach deals with likelihoods of the form

log L(¢) = ) _ a;log pi(¢) .

i€l

where a; > 0, pi(¢) > 0, I is an arbitrary index set, and ¢ € Q is the unknown
parameter (vector). An example of such a likelithood was encountered in Example
3.1. We further suppose that p;(¢) admits a simple decomposition, viz.. p;(¢) =
Y jer, fi(¢). where f;(4) > 0 for any j € I;, and I; represents a subset in a partition
of the index set I. Based on the form of the likelihood function. Gu defined the Q

function

‘16) =S a; log fi(#) .
Q(4[¢) Z %Emﬁ(fﬁ) og fi(¢)

where 3-; and 3°;;) denote ;e and 3¢y, respectively. Gu's generalization of the
EM algorithm counsists of the following steps:

E-step. Compute Q(¢'|¢).

M-step. Maximize Q(¢'|¢) with respect to ¢’
The algorithm can be shown to satisfy the same basic properties as the usual EM
algorithm. In fact, Gu states that the generalized version of the EM algorithm

yields the usual version under certain conditions (see below).
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We can make the following observations concerning the generalized algorithm.
The first pertains to the generality of the algorithm. Specifically, the algorithm
is applicable when the complete data model can be expressed in the form of a
multinomial distribution. Another comment concerns the rate of convergence of
the modified algorithm. In Example 1 of Gu (1996), it was noted that different
decompositions of the likelihood led to different rates of convergence to the unique
parameter estimates. The example presented data in which 197 animals are dis-

tributed multinomially into four categories, so that the observed data consist of
Y = (¥1.92.y3,y4) = (125.18.20. 34).

A genetic model for the population specifies cell probabilities

1 1 1 1 1
(§+Z7r.z(1—7r),4—(1—7r).z1r),

with 0 < m < 1. The observed data log likelihood is

1 1
{(m) = y1log(5 + Zﬂ’) + (y2 + y3)log(l — ) + y4log 7.

-

For this log likelihood, Gu obtained two decompositions. resulting in the following

Q functions,

' - 1/2 7"/4 7 ’ '
Q]_(Tflﬂ') = y11/2+7r/410g1/2+y1m10g7l’ +(y2+y3)lo°(1—7r)+y4lo°1r.
3 4 1-
Qs ('|) wr/ gm0

/A +(1—m)2 8" T 3at (1= 7)/2
+ (y2 +ys)log(l — ') + yslog n'.

Ay (r

1(m+3s and

The values of 7 that maximizes these Q functions are, respectively, —
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Table 3.10: A comparison of the convergence rates of the two versions of the EM
algorithm in Example 1 (Gu, 1996).

(k+1) _ A (x® (k+1) _ Az (xlEh)
T = A (»(M)+38 T = A,(x1‘52+a(wlki)

k w(¥) |k} — 7= (k) [wt® — 7=

0 0.2000000 0.4268215 0.2000000 0.4268215

1 0.5441658 0.0826574 0.3456391 0.2811824

2 0.6153352 0.0116863 0.4530849 0.1737366

o 0.6267936 0.0000276 0.5935573 0.0332642

10 0.6268215 0.0000000 0.6250739 0.0017476
ym (i, T50) Where

A(m) = 1257 /(2 + ) + 34.
Ax(m) =375 /(2 +m) + 34

and

B(x) = 250(1 — w)/(2 + ) + 38.

Using these decompositions, Gu performed a comparison of their convergence rates:
a portion of the numerical results are reproduced in Table 3.10. Gu noted that
the first decomposition was uniformly superior and therefore remarked that careful
consideration is required for selecting a suitable decomposition of a given likelihood.
For this particular example, we find that the difference in convergence rates can be
explained by the proportion of ‘missingness’ induced by the decomposition. This
follows from the relation

8°Q R
T 06047 T DpdgT

I(4|Yobs) =

which has the well-known interpretation:



Profile Likelihood Methods with EM 104

Observed information = complete information - missing information.
Dempster et al. (1977) established that the rate of convergence of the EM algorithm
is related to the preceding quantities. They showed that the greater the proportion
of missing data, the slower the rate of convergence. Specifically, if the EM iterates

¢ converge to ¢. then for ¢™) near ¢-,

g™ — 47| = Alg™) — ¢7].

where A is the ratio of the missing to the complete information for scalar ¢ or the
largest eigenvalue of the corresponding matrix for vector ¢. Hence for the first
decomposition in Gu's example, A = 0.1328. while for the second decomposition.
A = 0.5517. Further research into these aspects of Gu's version of the EM algorithin

in the multi-parameter and constrained parameter settings would be desirable.

3.4.2 Application to Constrained Maximization

In this subsection. we shall explore the use of Gu’s simplified EM algorithin to yield
interval estimates for functionals in some problems. As in the case of the usual
EM algorithm, standard arguments show that Gu's version of the EM algorithn
coutinues to be self-consistent for the constrained parameter setting. Instead of
delving into more theoretical properties of the algorithm. we shall illustrate the use

of the algorithm for some simple constrained problems.

Example 3.7

This example is taken from Gu (1996). We consider a failure time experiment
involving a control group, labelled 0, and J dose groups. Let A;j(t) be the hazard

function for group j at time t. A restricted proportional hazards model is defined
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by
Aj(t) = Ao(t)8;

where 0<0;<1,1<j<J,and §y =1. Let ¢, < --- < t,, denote the m distinct
failure times from the sample; for convenience we denote Aj(tx) by Aj(k). For these

data. the log likelihood function can be written as

J m J m

7=0 k=1 j=0k=1

where I;;. is the multiplicity of failures from group j at #;, and Aji is the number of
subjects in group j surviving beyond t.. By using the decomposition 1 — Aj(k) =

{1 = A(B)} + {Ao(k)(1 — 6;)}. Gu obtained

M«
[\/Js

QN.6'|N.8) = Lt log X;(k)

-
Il
c
-
Il
-

+
M-
NE

“
1]
(=]
»~
Il
-

(1= fir)Ajelog{As(k)(1 — 6;)}

+
M-
[\’Js

A
]
c
=
|
-

fieDjilog{l — A (k)}.
where f;. = % Closed-form solutions for the parameter estimates can be
easily derived by maximizing Q.

For this problem. the cumulative hazard of failure for dose group r. >4 A (u),
might be of interest. (We focus on just one cumulative hazard as we can extend
the method easily to include more cumulative hazards.) We find that it is simpler
to first obtain an interval estimate for log ¢ _, A, (u), and then to exponentiate the
end-points of the interval to get the desired interval estimate. The augmented @
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function is given by
t
Qe(X,61A.0) = QN 8'|A,8) + £lw — log{6. 3 Xy(w)}].
u=l
Maximizing Q¢ with respect to 8 is straightforward. For j # r, the constrained

estimate for 8; is equal to the unrestricted estimate, i.e.,

. = e Lk
TS {Lin + (1= fir)Ap}

while
0' — Zk [rk -f
i Zk[rk_£+2k(1_frk)Ark .

For k > t. the constrained estimate of Ay(k) is the same as the unrestricted one.

_— Z}:U L
Ao(k) = iju{(l —wir)Aj}

where wj;. = 'l%:(T)' For k < t. we do not obtain closed-form estimates. However.
7

a siuple numerical procedure such as functional iteration can be applied to

§/8 + 46{Ts L + Tl — f) Az}

Ao(k) = 2%

where

§=¢=3"Li-Y(1— fu)Ai =Y fixlsn 3 dolu).
k k u=1

&
For a fixed £, we compare 2{{(},§) — £(X,8)} with the relevant (1 — a) quantile
point of the chi-squared distribution with 1 df. If these are discrepant, we adjust
the value of £ accordingly and iterate. Because of the nonparametric setting in

which the likelihood function arose, it is difficult to assign an exact confidence level
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to the resulting interval estimate. These intervals are nevertheless usefully regarded
as approximate 100(1 — a)% confidence intervals.

Example 3.8

Frydman (1992) considers a three-state Markov process with irreversible transitions
and interval-censored data. She develops a nonparametric maximum likelihood pro-
cedure for the estimation of the parameters of this model. In particular, joint MLEs
of F. the distribution function of time in the first state. and A,, the cumulative
intensity of transitions from state 2 to state 3. were obtained. Gu (1996) obtained
equivalent estimates for this model, using his novel approach. In both cases how-
ever. no interval estimates for the functionals were provided. In Frydman's solution.
the complicated form of the likelihood function mitigates against a likelihood-based
approach. Gu’s method opens up the possibility of a tractable likelihood-based ap-
proach. We illustrate this with a few functionals mentioned in Frydman (1992).
after first outlining some notation.

Consider the log likelihood function derived by Frydman:

J I N M
Lz,A) = Zlog > bz + Z dulog An + Y Y log(1 — A)
=1 i=1

n=1 m=1 G,

M I
+ Y log{}° II (1= A)aimzl,
m=1 =1 (r;,Rm]
where d;; and a;,,, are indicator variables. d, is a positive integer, G,, iIs an interval

such that
N
> log(l—A,) = > log{l — A.I(t € Gn)}.
Gm

n=1
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t.. ri. Ry are positive real numbers, and

N
H (1 - ’\n)aimzi = {1 - ’\nI(t; € (riv R—m])}aimzi .
(ri-Rm) n=1
Frydman parametrized the nonparametric likelihood function in terms of (F.A2).

and showed that maximum likelihood estimation of these “parameters” is equivalent

to maximizing £(z, A) with respect to (z, ). subject to

I
Yom=1 >0 (1<i<I).
i=1

and

0<A. <1 (1<n<N).

Gu (1996) shows that the Q function is given by

.o i:i iz
Q(z.A|z.A) = 22 log z;
j=li=1 Zg:l deZP
N ’ M [
+ D odalogh i+ > Slog(l —A))
n=1 m=1Gmn

~

QA 24 H(rR ](1 - An) ' '
Ltm {log (1-2A,)+logz},
1 Zpe1 G2 sy (1 — An) (,gm]

+
Mk

1z

e
1]

which is easily maximized with respect to (2, A’). For a fixed time point s, consider

interval estimation for the distribution function F(s).

0, s<
Fls)=9q Si_ 12, m<s<ly (1<i<I-1)

11 327'1
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where the /;’s and r;’s are real and ordered, ;, < r; < [, Sra<--- <l <7 Let

Jijzi Qi 24 n(r.',R,,.](]‘ - /\"')

pim(z. ) =3 +)

j 2p JPJ'ZP m Zp Apm Zp H(r,,.R,,.]( 1- ’\n)

This maximization problem is very similiar to the one considered in Example 3.1.
Using the Lagrangian with multiplier £, we easily obtain the constrained MLEs for

z as
5 = meahim(zA), {i:rm < s}
‘ Aptim (2. A), {i:s<m}

where

_ - i pim(2A) £ (€~ TX, i (2 ) +4E T, i (2. )

A 26 S (2. )

The form of the constrained MLE for A is the same as that of the unrestricted

estimate. Analogous processes for the cumulative intensity,

N_ ’\nl t- <t . t < trna::
Az((O.t])={ Zs MnllE S8). 0 <

undefined. t > tmar

lead to the constrained MLEs

i 2 Gmile D)+ Bmi(2, ) £ (C+ dmi(2,0))? = (85 < 1),
" 21(t7 < ¢)

for t < tpngz. where

(mi(2.A) = da+ €It < t)+ Tmi(2.A),
¥imZi s, R, (1 — An)
2,£=1 Qpm2p H(r,,,R,,.](l — An) -

7mf(z7 ’\)
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The constrained MLEs for z are unchanged in form. Even simpler closed-form
estimates for the parameters exist, when the functional of interest is the conditional
survivor function in state 2, G,(v) = ﬁr:l{l —Ad(s < t; <v+3)}, s, v being
fixed. In this case, it is easier to obtain an interval estimate for log G,(v). and
transform accordingly to obtain the interval for G.(v). The constrained MLEs for

A are easily found to be

N dn

’\n = .
I+ L I(t; € Grn) + i Con Yemi(2, NI (t;, € (ris Rn)) + €L(s < £2, < v + s)’

the constrained MLE:s for z are unchanged in form.

Let us consider the cumulative intensity for transitions from states 1 to 2.

0. S<11

A((0.5]) = {

Tre1zp(1 =R z) ™ m<s<ly,. 1<i<I

and undefined. otherwise. Given the form of this function, no closed-form estimates
for z are available. We shall use the EM1 algorithm to obtain the constrained MLEs
nuwerically. For a fixed s. r; < s < [;4, we set A1((0.5]) = w. for an arbitrary w.

This equation is solved explicitly for z;,

i—1 p-1 i—1

zi={w - Zz,,(l - Z z) 1 - sz}.

p=1 k=1 k=1

It is relatively straightforward to obtain g—::}, J=1,...,t—1, and %%, so that the
EM1 algorithm is not difficult in principle to implement. We can also consider the
following procedure for easing the numerical burden. This involves alternatively
estimating z, given A, and vice versa. Thus, in the M-step of the algorithm for 2.

9z, 8zg
L2 8
we only need 3z, and 929:T "



Chapter 4

Profile Likelihood-based Interval
Estimation in Failure Time

Models

4.1 Introduction

In this chapter. we consider alternative ways of deriving profile likelihood-based con-
fidence intervals for functionals in various failure time models. Specifically. we look
at the parametric Cox proportional hazards (PH) model first. The standard way to
derive likelihood-based interval estimates in this setting is to maximize the full like-
lihood subject to the constraint imposed by the functional. This method however
requires specially written programmes for each application. Aitkin and Clayton
(1980) showed that the parametric Cox model can be fit by a clever manipulation
of the model into a GLM. We shall adapt their approach to yield likelihood-based

interval estimates for some common failure time functionals. This approach makes

111
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use of available software and is easy to implement. The proposed method is ex-
tended to the semi-parametric Cox model with piecewise-constant baseline hazards.
as well as to failure models with nonlinear predictors.

Another formulation of parametric survival models was discussed in Therneau
(1995). leading to the accelerated failure model as a special case. Maximum like-
lihood estimation in this case is carried out by iteratively reweighted least squares
(IRLS). Again, likelihood-based interval estimation of functionals requires specially
written programmes since the usual survival packages supply standard errors based
on the normal approximation. Using the IRLS formulation, we show how pro-
file likelihood-based interval estimates for some common functionals can be easily
obtained using available software. Nevertheless. there are some other useful func-
tionals which are not handled by the regular profile likelihood approach. For these

functionals, a Lagrange multiplier argument facilitates interval estimation.

4.2 The GLM Approach for Parametric Models

4.2.1 Introduction

While Cox's (1972) semi-parametric regression model is commonly used in biomed-
ical work, parametric Cox failure time models can be useful in certain applications.
In this section, we focus on the GLM formulation of the parametric Cox model
described by Aitkin and Clayton (1980). This novel approach facilitates the use
of GLIM (or other generalized linear model software) to fit proportional hazard
regression models to right-censored survival data. Based on this method, common
parametric failure time distributions such as the exponential, Weibull or extreme

value distributions may be fit by expressing the likelihood in each case as a “Pois-
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son” likelihood with a log-linear model for the “Poisson” mean.

Our interest lies in the interval estimation of functions of the model parameters.
Usually, interval estimates for the regression coefficients can be derived by assuming
the MLEs are asymptotically normal. The delta method can then be used to
derive the asymptotic standard errors for the MLE of the functional. Since the
normality assumption may not always be warranted, especially in the presence of
woderate to heavier levels of censoring. a likelihood-based approach is desirable.
The standard approach of obtaining such intervals would be via regular profile
likelihood, i.e., to maximize the likelihood with respect to the parameters. subject
to the constraint imposed by the functional. This involves a considerable amount
of programming to suit each specific model and functional. Our proposed method
wakes use of the available software and is easy to implement. In the following. we
briefly describe the GLM approach of Aitkin and Clayton (1980). We then adapt
their approach to obtain likelihood-based interval estimates for some unportant
functionals in common failure time models.

Let t;. ¢ = 1,....n represent the event times of n individuals. Let w; denote
the corresponding indicator variables, taking the value 1 for uncensored. and 0
for censored events. The density and survivor functions for the failure times are
denoted by f(t) and S(t), respectively. The hazard rate for the sth individual with

covariate value x; is assumed to be given by

h(t:;xi) = A(ti: v) exp(BTx;).

where A(t:) represents the parametrized baseline hazard function, indexed by the

vector 7. Under the assumption of independent censoring, the likelihood function
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1s given by

L = TT{ F@™Ser—= }

=1

= TT{ [\t 7) exp(B87x0)]™ exp(—Aftii7))e?™ }
= TT{ le™] M m)/Adtn)]™ 3,

where p; = A(ti;7) exp(8Tx;) and A(t:v) = J5 Mu;v)du. Aitkin and Clayton make
the unportant observation that the first term in L has the form of the likelihood
function for n independent “Poisson” variates w; with means p;. The log-linear
wodel for the hazard implies a log-linear model for the “Poisson” mean i le..
log ui = log A(ti:v) + BTx;. Since the second term of L does not depend on . a
simple iterative procedure to estimate (8.7)7 is to begin with an initial estimate
of . Using GLIM (or any software that can handle GLMs). we fit the Poisson log-
linear model with fixed offset. log A(¢:v). The estimates of 8 are then substituted
into the likelihood equations for v, and solved to yield an updated estimate for .
These steps are alternated until convergence criteria are met. Compared to a direct
waximization of L through simultaneous solution of the likelihood equations. the
present approach is more convenient to implement since it utilizes GLM software
to estimate the regression coefficients. In some common models. 4 is also available
in closed-form. given 8.

The matrix { (%7} 1s easily obtained from the GLM fitting procedure, while
{ %;} and g% have to be calculated separately. These may be combined to yield
the observed information. In general, the variances of 3 will be underestimated by

the output of any GLM routine since 4 was assumed known.
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4.2.2 Likelihood-based Interval Estimation

In this section, we explore a new approach to obtain profile likelihood-based interval
estimates for functionals in common parametric failure time models. We shall focus
on the case where, under the constraint imposed by the functional, the model for
the log “Poisson” means retains its log-linear form. The estimation procedure for
these models then follows directly from Aitkin and Clayton’s approach. A few
useful functionals fall under this category, e.g.. BT(x; — xz2). A(to; x1)/A(ty: x3).
where ¢y denotes a fixed (known) time point, and x;. x; are two distinct (known)
covariate values. When the constrained model is nonlinear in the log “Poisson”
means. we also indicate briefly a possible solution to the problem via the simple
technique of linearization.

We consider firstly the case where the log-linear model applies under the con-
straint. For illustration. suppose the functional of interest is S(to: xo) = exp{—A(ty:7)
c”T"°}. where xo denotes a fixed and known covariate vector. and #, is a fixed time.
Compared to a full likelihood approach. our method is fairly easy to implement
for this functional and the survival distributions in question. particularly since
the constrained estimator for v continues to admit a closed-form solution and the
constrained estimates for 3 are also obtained by fitting a log-linear model for the
“Poisson” means. Assume a fixed value of S(to; Xo), say S(to;Xo) = w. w € [0.1].

Provided zo, # 0, we can solve for 3, as

p-1
By = -zf; [ log{—log(w)} — log A(to:7) — 3" Bjs0; | .
ij=1
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Hence, under Hp : S(tp; Xo) = w, the likelihood function is

L =TT 1 (w)e™ | At ) /Altsv) 1™,

where

p—-1
p; = Altiy) [ P log { logw} + Zﬂjzﬁ} .

i=1

Loj

L j#p.

Zij = Ti; — Zip
Op

Given w and an initial estimate, 7%, of v, we fit the log-linear model,

log ;= log A1) + Z1og { 81 Zﬂ:z,,

The updated value. p*). of 4 is used in the score equations for v to obtain 'V,
These steps are iterated till convergence, and the LRS is compared to the relevant
quantile point of the chi-square distribution with one degree of freedom. The value
of w is then increased or decreased. accordingly. with the next cycle. The interval
estination of quantiles may also be of interest. A simple but computationally
intensive solution for interval estimation of @p. the pth quantile of the failure time
distribution, consists of finding the set of ¢, such that the 100(1 — a)% CI for
S(tv.Xo) covers (1 — p).

Consider the following simple cases discussed in Aitkin and Clayton (1980).

Exponential Distribution
We assume A(t;y) = A(t) = ¢, so that f(t) = exp(BTx — teﬁr"). Since

A(t)/A(t) = t~! is independent of unknown parameters, the iterative scheme just
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involves the first part of L. We only need to fit the log-linear model

log ;4:- = logt; + :ip og{ log(w) } Zﬂ,zzg
op

=1

Weibull and Extreme Value Distributions

We assume A(t;y) = t7, which implies that A(¢;v)/A(t;vy) = v/t.

initial estimate, 7(®), we fit the model

. P
log u; = 7 log t; + ?{log(— logw) — 7@ logto} + Y Bjzi; -
Op

i=1

The log likelihood function is

£=log v(3_wi) + X (wilog u; — p;)

ignoring constant terms. The score equation for 7.

al Z w; Zip \ —
a Z(w, (o t; i lootoj—O

can be solved to yield an updated estimate for v as

2,’ w;
Xi(; — wi)(log t; — 22 log to) -

¥ =

117

Given an

As noted by Aitkin and Clayton (1980), by transforming t to exp(t), we obtain

the Weibull density. Hence the preceding iterative procedure can be used to obtain

an interval estimate for S(¢y;Xo) in the case of the extreme value distribution. We

only need to substitute ¢ for log t.
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Generalized Extreme Value Distribution
The Weibull and extreme value distributions are members of a more general
family of distributions, viz.. the generalized extreme value distribution with density

function

f(t) = adt’ 1t exp(—e““), —o<t<oo.a>0.
For this distribution, A(t;y) = exp(at®) and A(¢;v)/A(t;7) = adt®~!. Omitting
constant terms, the log likelihood function is

{ =dloga + dlogd + (6 — l)zw,-logt,- + Z(w;logy; — ).

where d = 37, w;. Given an initial estimate for v = (a.d)7. we fit the model

-1

log u; = at? + —”{loo( logw) — ato’} + Zﬁ:zu

=1
The likelihood equations for (a. )T in this case are
0[ d . § r;
— = —_— T — . t; — =r é = .
aa a + ;(TU :ut) ( T xoptu ) 0
al d § I; 8
% - 3-+Zw,logt +aZ w; — ;) (tilogt;—itu logtu)zo.

where the constrained MLEs of a and § satisfy

13

[aZ(y, w;) (t log ¢; ——to octo) Zw,logt}
Zop

a = d [Z(ﬁ;—w;) (t“ Ting, )]— ,
Zop

St
I

Given starting estimates for (a,d)7, the likelihood equations can be used in the
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same way as in Aitkin and Clayton (1980) to update the estimates.

Extension to the Piecewise Exponential Cox Model
In this subsection, we consider extending the previous methods to a version of

the Cox PH model which is popular in epidemiology. This model is given by
Ai(t) = Ajexp(BTxi),  t€(aji.qi], j=1,....M,

where A; are (unknown) constants and we partition the observation interval into
M subintervals. This implies a constant hazard within each subinterval.

Aitkin et al. (1989) also comsidered this model and showed that two simple
approaches could be employed to fit this model. The first method they describe
follows that of Aitkin and Clayton (1980) and is practicable provided the number of
observations is not large. i.e.. less than several hundred. The other method outlined
by Aitkin et al. is similar and is based on recognizing that the likelihood equation
for 3 is identical to that for a related Poisson distribution. We shall focus on the
first of these two methods and show that likelihood-based interval estimates for
S(ty: Xo) can be derived using the approach proposed earlier in this section. This
will be useful since. for the methods described in Aitkin et. al (1989). standard
errors for AT = (A;.....\y) are not available from their fitting procedure. Hence
other methods are required to obtain the standard errors of both # and . As seen
in the previous chapters, the profile likelihood-based method has the advantage
that explicit standard errors for both 8 and A are not required to compute interval
estiinates for functions of these parameters.

First we describe the setup leading to the likelihood function. The ith subject
experiences a sequence of “censorings” at a;, a,, ..., and either genuine censoring or

death at ¢;, where ay,_, < t; < ay;. Let h;; denote the hazard function for the ith
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subject in the interval [; = (a;_,, a;], with
hi; = Aj exp(87x;).

Let w;; and e;; denote the censoring indicator and exposure time for subject i in

I;. respectively. Then
5i5(t) = exp(—hi;t)

is the conditional survivor function for sub ject ¢ in [;, and the contribution of this

subject to the likelihood is
L; = H hi Sii(ei;)-

The complete likelihood function is

H L;
HH%" exp(—by;)/ IIH ei;’

where 8;; = e;;A;exp(8Tx;). This gives us the familiar “Poisson” representation

with a log-linear model for the mean.
log 6;; = log e;; + log A; + 87 x;.

It is not difficult to show that, given ,é, ;\j satisfies

by Zx Wij .
\; = R 9 ji=1,..M,

ZzeR €ij exP(.B x,)
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where R; is the risk set in I;.

Now we may consider the interval estimation of S (to; Xo) using the first ap-
proach. ie., adapting Aitkin and Clayton's (1980) method to the Cox model.
Let ty € (ar—1,ar] be a fixed time point. We also define eoj = aj — aj-; for
J = 1l...k—1. and ey = to — ar_;. Then, log S(to: x0) can be written as
—(X;j Ajeo; + Areor) exp(BTx0) and hence it would be easier to work with this

functional instead of S(to:Xo). Setting log S(ty: xo) = w € [0. 1], we solve for 3, as

p-1
= -1 —w B e
Bp = zq, {Iog (Ej Ajeo; + ,\ke%) Zﬂ,zoj}

i=1

This implies a log-linear model for 4;;.

p-1
' I —Ww
lgﬁ:lo‘t-*-la,\.*.l 1 )}+ Vi
0g 7;; 0g ¢ij Og Aj Zop{og (Z,‘/\jeo;"*‘/\keuk ;ﬂ.v ¢

where v;; = z;; — :1:,-,,:—21-. J = l....p — 1. Given initial values for \;. this model
1 4

can be fit in the usual manner. To update the Aj, we use the following likelihood

equations. For {j : a; > ¢}, the likelihood equations are the same as those for the

unrestricted model. yielding the constrained MLEs

X = ZieR, Wij

7 = = .
Licr, ¢ijexp(ATx;)

For {j : a; < to},
ot .
o - .-ez;;,-(l —Tip)(wi; — 6;;),
where
— Zip€o;/ Top
Zj z\jeo_-,' + Areor

Tjp
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By setting % = 0, we obtain after some rearrangement,
7

X_ — 2{ Wiy
] = ~r T ~1 )
2 €0y + Tip{ i zipwij — A s Tipeii0;5}

where the summations above are over R;. This set of equations is in the form of
a fixed-point system and the usual numerical methods may be applied. However,
convergence to the constrained MLE is expected to depend on suitable choice of
starting values for A;. As noted previously, this approach is impractical when the
number of observations is large. This method is most likely to be useful in small to
moderate sample size situations. since the standard assumption of normality may

not be appropriate then.

Nonlinear Models
In this brief remark. we indicate how Aitkin and Clayton's approach can be
adapted when the constrained model for the “Poisson” means is nonlinear in the
regression coefficients. This is especially useful for obtaining profile likelihood-based
interval estimates for other functionals of interest in the failure time context that
cannot be obtained using the methods described previously. Although there are
many ways to handle nonlinearity, we shall only consider the simple technique of
linearization here. Aside from the simplicity of this technique. it also fits nicely
into the previous GLM framework.
Under the constraint of interest, the model for the “Poisson” means can be
written as
p—-1
log 1; = g(x;6) + 2. Bz
j=

where g is a nonlinear function of § = (4, ..., Bp-1)T. For a suitable choice of initial
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Table 4.1: Interval estimates for survival probabilities.

to 6-MP MLE (6-MP) Control MLE (Control)
10 (0.553, 0.869) 0.75 (0.142, 0.422) 0.265
16 (0.481, 0.846) 0.70 (0.072, 0.345) 0.180
23 (0.417, 0.824) 0.64 (0.031, 0.283) 0.120

values. 6, the approximation

d
g(x;8) = g(x; 60) + (6 — oo)Ta—jla=a.,

is appropriate. Using this approximation. the constrained model becomes

799

log p1; = g(x: 8,) — 62 T

p—1 ) 3g
lo=ss + Y Bilzi; + {55 l6=6, }3)-

I=1 ag
where {g‘gIG=gu }; denotes the partial derivative of g with respect to the j component
of 8. evaluated at 6,. Given a suitable 6. this model can be fit in the usual way.
The multiple functional case can be similiarly handled.

A Numerical Example

For a simple application of the methods discussed so far. consider the two-
sample data on remission times of leukaemia patients (Gehan, 1965; see Table 3.1).
Approximate 95% CIs for S(to;zo) are displayed in Table 4.1, for a selection of
ty values. The calculations assume that remission times in each group of patients
follow a Weibull distribution. The proposed procedure shows up the asymmetry in
the interval estimate. Figures 4.1 and 4.2 show the likelihood ratio statistics for

the respective survivor functions for the two groups at 10 weeks. If we assume an
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extreme value distribution for the remission times. we obtain for the 6-MP group
at 10 weeks an interval estimate of (0.622, 0.906); the corresponding estimate for
the control group is (0.195, 0.489). These estimates are quite similiar to the ones
obtained from the Weibull model.

Figure 4.1: Likelihood ratio statistic for interval estimation of the survival proba-
bility at 10 weeks in the 6-MP group of leukaemia patients (see Table 3.1). The
height of the horizontal dashed line is 3.841 units.
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Next we consider a simple application of the linearization technique for the

Weibull model. Suppose one is also interested in the ratio, %E:—:—ff} where ¢ is a
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Figure 4.2: Likelihood ratio statistic for interval estimation of the survival proba-
bility at 10 weeks in the control group of leukaemia patients (see Table 3.1). The
height of the horizontal dashed line is 3.841 units.
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fixed time. x; = (1.1)T and x; = (1.0)7. This is a measure of the relative rates

of survival for the treatment and control groups. For analytical simplicity. let us

cousider obtaining an interval estimate for log {;2:3—::;} first. and then invert the
end-points of the interval estimate to obtain the corresponding values for g%:—::%

By setting log {M} = w, w > 0, we obtain

S(to;!g)

Fo = log {Ao(to§’7)(1 - e"')} '
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Table 4.2: Interval estimates for the ratio of survival probabilities.

to 95% CI MLE
10 (1.811, 5.795) 3.034
16 (1.786, 9.865) 3.781
23 (2.241, 22.176) 5.755

This implies the following log-linear model for the “Poisson” mean.

t
log p; = vlog (t—) + logw — log[1l — exp(B:)] + Brz1:-

i
0
The linearization technique gives us the approximation.

logpu; = ~log (:—;) +log w — log[1 — exp( {U))]

w_exp(Bi") o _exp(B")
tA exp(B8i") — 1 +ﬂ‘{"“ exp(B”) ~ 1]

{0) is an initial estimate for B;. Table 4.2 displays the approximate 95%

CIs for 3oXi) a¢ 5 sample of ¢ values. This result provides evidence of a higher

S(ta:ixz)

where

rate of survival for the treatment group at the given time points. Figure 4.3 shows
the likelihood ratio statistic for the log survival probability ratio at 10 weeks. Nu-
merically, the implementation for this example was fairly straightforward in that
the routine was stable with respect to the choice of starting value for 83,. For in-
terest, we also obtained interval estimates for the survival ratio from an extreme
value model; these are summarized in Table 4.3. The results are similiar to those

of Table 4.2.
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Table 4.3: Interval estimates for the ratio of survival probabilities (extreme value
model).

to 95% CI MLE
10 (1.791, 4.495) 2678
16 (1.701, 8.440) 3.579
23 (2.298, 34.261) 6.753

Extensions to more difficult contexts, such as multivariate GLMs, is an area for

future research.

4.3 An IRLS Approach for Parametric Models

4.3.1 Introduction

An alternative approach for analyzing parametric survival models is based on the
class of univariate location-scale models. Lawless (1982) provides a comprehensive
summary of statistical methods for such models. based on data that are right-
censored. Many standard statistical software routines implement maximum likeli-
hood estimation for the parameters in location-scale models. The asymptotic co-
variance matrix of the MLEs is routinely used to generate standard errors and con-
fidence intervals for parameters. Recently, Therneau (1995) proposed a novel way
to estimate the parameters of the survival model, using the iteratively reweighted
least squares (IRLS) method. His approach is implemented via the survreg() func-
tion in S-Plus, and provides a convenient way to analyze the effect of covariates

on response time in common parametric survival distributions, while taking into
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Figure 4.3: Likelihood ratio statistic for interval estimation of the log survival
probability ratio, 6-MP versus control at 10 weeks, based on the remission times in
Table 3.1. The height of the horizontal dashed line is 3.841 units.
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account the effects of various types of censoring. A detailed and far-ranging dis-
cussion of the scope of IRLS, covering applications to generalized linear models.
quasi-likelihood. robust regression. etc., was presented by Green (1984).

In this section, we show how the IRLS approach can be adapted to supply
likelihood-based intervals for important functionals in location-scale lifetime mod-
els when responses are subject to right-, left- and interval censoring. For right-
censored failure times, Lawless (1982) obtained likelihood-based interval estimates
for functionals such as quantiles, using primarily the Newton-Raphson algorithin

when the ML equations do not admit closed-form solutions. In general, Green
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(1984) indicated that the IRLS method tends to be more stable numerically. While
the survreg() function also routinely supplies standard errors of estimates based on
the normality assumption, these might not always be appropriate, especially when
samples are small to moderate size or when censoring is heavy. The techniques we
propose are simple to implement since they utilize existing routines in S-Plus; how-
ever, other packages can potentially be used as well. We begin by briefly outlining
Therneau’s adaptation of the IRLS approach to the parametric failure time setting.
Subsequently, we indicate how the IRLS approach can be modified to yield profile
likelihood-based CIs for several important functionals in the failure time context.

Let the data be represented by (#,¢¥,x;), i = 1,....n, where tt < t¥ are times
and x; is the covariate vector for the ith subject. As usual, define 7; = 8Tx;. For
a failure time, ¢! = ¢¥ = ¢;. For right-censored subjects. t{ = ¢; and t* = co. For
left-censored subjects. ¢ = 0 and t¥ = ¢;. All other choices of t! and t¥ correspond
to interval-censored observations. We assume that

2= a(t;) — BTx; ~f

T

for some distribution f and differentiable function a. Define 2! = [a(#!) — BTx;]o!
and z}' = [a(t?) — BTx;]o . The likelihood function arising from the observed data
Is
L=TLA)/oTL [ f@dsT] [~ fis)asTL [ fls)ds.
D R 7z c == T %
where the sets D, R, £ and T represent uncensored, right-censored, left-censored

and interval-censored observations, respectively. The log likelihood is

£=3 lo1(z) ~log o] + 3" ga(2l) + Y gs(2¥) + 3 ga(2h. 22) .
D R c z
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where the g's are the logarithms of the individual terms (except for o~!) in L.

It is easy to verify that

at = d
% = Sy = 0 e
i=1 t
328 s azg T
_ . - _ " 4.2
36,08 ,Z=1{"'"”“an3} (R )

where X denotes the n x p matrix of regressors. U = {aa—;;"-,}, and D = {—%’;‘_1}
(Note that the observations are independent. so %ém = 0 for ¢ # j: this means D
should be diagonal). For a fixed o, numerically maximizing £ with respect to 3. via
the Newton-Raphson algorithm. is equivalent to an IRLS regression with weights
D and adjusted dependent variate  + D~'U. where = X3. This was shown by

Therneau as follows. The Newton-Raphson iterative scheme is given by
‘B(mﬁ-l) — ﬂ(m) + (XTD(m)X)—leU(m) .

or equivalently.
(XTDM X A+ = xTytm), (4.3)

where D™) and U'™) are the matrices D and U evaluated at the mth cycle of the al-
gorithm. and Al™ = glm+1) — g(m) j5 the mth cycle update. Adding X7 D™ X 3(m)

to both sides of equation (4.3), we get
(XTD(M)X)ﬁ(mH) = (XTD("‘))(T)("‘) + (D(m))—lU(m))

where 7(™ = X (™). The IRLS scheme iterates between the estimation of B and a;

this is unlike the case of exponential family models in GLMs, where ¢ is estimated



Profile Likelihood-based Interval Estimation 131

after 3 is obtained. The latter follows from the fact that o drops out of the score

equations for 3, and can therefore be estimated separately from f.

4.3.2 Likelihood-based Interval Estimation

The standard approach to obtaining likelihood-based interval estimates is to directly
maximize the log likelihood function with respect to the parameters under the
constraint imposed by the functional. This is usually implemented numerically by
the Newton-Raphson algorithm. However, it is not possible to use some standard
packages (e.g. SAS) to implement the constrained maximization entailed. so that
special programs have to be written for each failure time model and functional of
interest.

The methods we describe in this section offer a simple way to obtain these
interval estimates using any software that implements the IRLS approach. For
some common functionals of interest, a regular profile likelihood approach. coupled
with some manipulation of existing computer code. is usually sufficient to yield the
desired likelihood-based CIs. However, this may not work for other functionals. In
these cases. the Lagrange multiplier technique introduced in chapter 1 may prove
useful. We employ the same argument for this parametric failure time setting. For
the functionals considered, this technique is attractive in the sense that the IRLS
regression model continues to apply under the constraint.

In the following, we consider the regular profile likelihood approach and show
how to adapt the survreg() function to the parameter function setting. First. for
p € [0, 1], we define Q, = inf{t : S(¢;x) < 1 — p} to be the pth quantile point for
the distribution of T'. The corresponding quantile point for f is denoted by gp. For
fixed £y, let S(to;Xo) represent the survivor function for a subject with covariate

value Xo. For illustration, we will obtain a likelihood-based interval estimate for
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S(tu; xo0). We set S(to; Xo) = w, where w € [0, 1]. For many practical cases, we can
also assume that a(-) is a monotonic function. In this case, since P(T > ty:x%q) =

P(Z > ﬂﬂ);ﬂ—r""), we obtain

a(to) - ﬂTXQ

=1-w-
a
Solving for ,. we obtain
a(ty) —oq-. 1 =
pp= It LS,
Zop Zup j=u

provided z¢, # 0. For a fixed value of o and g;_,,. this sets up an IRLS regression
with modified weights and adjusted dependent variates. To see this. we substitute

the expression for 3, into the log likelihood. obtaining the constrained log likelihood

l = Zgl(z-i) —log o + 292(z£i) + 293(3:‘;) + 294(Z£i~ z%).
D R c I

where

p-1
z;
Nei = Op {a(to) —oq1-u} + > _ Bivij,
P

z =1

:l:,'p

Vij = Zi5 — Zoj -

l

=g

In the same way, (z.;, z%) now represent the end-points of the censoring interval for

the zth “incomplete” observation. For notational simplicity, we will suppress the
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subscript 7 in most of the subsequent development. It follows that

ot.

= T .
aﬂj - (V U')J
L. T
a5~ DV
where V = {v;},7=1,...,p—1,U. = {f:‘,%}, D. = {_an_a.:gn—.,'}’ and g.;,7 = 1,....4,

are the respective g;'s with 2. as arguments. Hence, maximizing £. with respect
to B is equivalent to an IRLS regression with weights D. and adjusted dependent
variate, n. + D-1U..

The elements of U. and D. can be obtained routinely by applying the chain
rule. However. it is not difficult to see that they are equivalent to the elements of U
and D. except for a change of argument from z to z., by noting the following. The
partial derivatives of the g;’s with respect to z. and z are essentially identical. The
partial derivatives of z with respect to 7 are identical to those of z. with respect to

1).. For the constrained model, we therefore have

9g-1 _ Dz 9gu

on. on. Oz.

f(z)

f(z.)

0g.4 9z* 9.4 02! 8g.4

an. on. 0z¢  On. 8z
_ | f(2) = f(&)
= —0o

= —0'—1

F(z2) - F(2l)
32g.1 _ % 2 029.1 3g.1 822.
— \oyg.) 9z 0z. on?

a_-zf"(z-) _ (89-1)2
f(z.) on.




Profile Likelihood-based Interval Estimation 134

0gs _ [(022\" Bgus | 09 P2t | (02L)? B%g. | 994072
oz \9n.) 8(z2)* " Bzr onz " \n.) B()? T 9z In?

- [ £(z2) = £(2) ] _ (agq){

F(z}) - F(Z) 9.

Given these formulae and a fixed initial value for o, an IRLS regression can be
performed to supply the estimates of 8. Since B and & have to be estimated jointly
(unlike the solution involving GLMs; see section 4.2), we also need to keep track of
the changes to the derivatives involving o as follows.

We can relieve the burden of the computations by taking note of the following.
For any given term. the chain of partial derivatives employed correspond to their
unrestricted counterparts, e.g., in place of g—; we have %. The partial derivatives of
the g;'s with respect to z. and z are identical. except for a change in the argument.
The partial derivatives of z with respect to 7 are identical to those of z. with

respect to 77.. Wherever it is clear to do so, we make use of these facts, together

with the form of the partial derivatives under the unrestricted model, to obtain

the corresponding terms under the constrained model. Let §; = z.; — Q-u L.
»
= z¥% — ql_w:—")% and & = z!; — ql_“,:—;f. In the following. we suppress the

subscript ¢ for notational simplicity. We obtain

dg-1 = o 0g-1
Olog o 0o

_ 0z.0g.

- 03_0’ 0z.

f(z.)

ien

094 _ 094
Olog o 0o

022 8.4 , 02400
0o 9z¢ Qo 0%
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- 39-4 - 39-4
- 1 1l
= 0o [ - 5“—21‘ -0 'é ] }

g f(z2) — 8'f(2l)
~ P(z2) - F(2)
azg-l o2 azg-l 0g.1
9(log )2 do2  Qdlogo
2
_ | (02) Pgu | 09u0%2 ] | 99
7 (30) 32 | 9z 952 | T Ologo

09-1

[ " ’ 2 ‘
_ g a-zaz{f (Z-)_(f(z-)) }+250-2f(2-)}+

fz)  \f(z) f(z.)
_ 8f(z)+3f () ([ 8ga )
- f(z.) dlogo
9%g.q ,0%g.s 094

J(log 7)? 7 oa Odlogo
= o? [ (az:‘)’ Og.s | 020z, 0%y | 094 %22

37 ) 9(z*) | o Br 022921 T Dz Dot

TRy (R i ¢ N G () )
= 7l (J){F(zl‘)—F(Zf) (F(Z?)"F(Z') }

094

dlogo

cagua | _FEFE) VL e 2 f(2Y) dg.4
*oe JI{F<z:‘>—z~“(z£)} O e = P T Dleg e
_ (6")2f'(zf)-(6’)2f’(z‘.)+6“f(z:*>—o"f(zi)_( 9g-4 \’
- F(z¥) — F(Z) Odlog o
az9-1 _ 329—1
OlogcOn. 03031].

%az. 8%g., + 9g., 8%z.
7| 90 9n. 8(z.)? " B=. Badm.

= o—[_a-la(—a-l) o, ag“(a-z)]

d(z.)? Jz.
_ s f(z)  9gu 991 )
= ) " on (”aloga
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+ .-

”aq. 0o 0(z¥)? o 9z¢82t 7 0z* On.0co

10 (z™) = 8 (z)  Bgea 8g-4
o F(z%) — F(zY) ~ on- (l+ aloga) ]

Oz [ 9z 8%g.s = 0z 0%g.4 J 8g.4 0%z

In the derivations, ~-.-” indicates similiar computations for terms involving z!.
p )

The computation of the partial derivatives of g, and g; make use of the formulae
for g4. by setting the appropriate value for the integral limits. That is, z* = oo for
ga. and 2! = —oo for gs.

The implementation of the constrained maximization step is not as straightfor-
ward. however. Under the constrained model. we saw that

P—

1
Z;.
Tei = —ﬁ{a(tu) —0qi-u} + Bjvij
zop 1

j=
is the form of the linear predictor for subject i. If we use this form directly to
construct the model equation in survreg(). the routine application of survreg() will
not work. since the model equation now explicitly involves o. In theory. we need
to plug in the re-estimated o in the model equation after each complete cycle of
the IRLS method. i.e.. after having estimated 3 given an initial value for o and §3.
There does not seem to be an easy way of implementing these steps. apart from a
substantial modification of the internal code of survreg().

To overcome the above problems, an indirect approach requiring only minor
modification of the internal code of survreg() can be utilized, as follows. First. we
observe that z.; can be written as
a(t:) — {Z2a(to) + T2, Bjvis} L i

91-w
.'Bop

Zai =
a

’ :B,',,
= z-i + —ql —w
Zop



Profile Likelihood-based Interval Estimation 137

where z; = G(AL——";‘ and 7.; = ;zi%a(to) + %21 Bjvij. By specifying a model with
offset %a(to), where x,T = (Z1ps---» Tnp), survreg() routinely computes z.;. The
required terms, z.;, can then be obtained by a relatively simple change in the code,
namely adding fo%ql-“, to z.. This takes care of the partial derivatives with respect
to 77.. For the partial derivatives involving o, there is the additional change from
z to 4. Since 4 is simply z_, this change is also quite easily effected in the code.
As in the case of unconstrained maximization of the log likelihood, the numerical
properties of the IRLS approach in the constrained parameter problem are not
easy to establish. While the sequence of estimates is expected to converge in many
practical instances, it is difficult to establish sufficient conditions for convergence:
see Green (1984).

Another important functional in the life data context is the quantile point for
subjects with given covariate value. Suppose we are interested in the pth gqunantile
lifetime. @,, for subjects with given covariates z. i.e.. Qp = inf{t: S(t,zy) < 1-p}.
An approximate 100(1 — a)% CI for Q, is given by

{w:B,5) - UB.5) < x>./2}.

where (8,4)T are the unrestricted MLEs and (8.5)T are the constrained MLEs
under Hy : @p = w. for some fixed w > 0. Analogous to other problems discussed
in this section, we have P(T > w;xo) = P(Z > 5(”);&) = 1 — p, which implies

that
a(w) — BTxo
— =i
The remaining steps follow very closely those taken for the survivor function. and
are omitted. The method discussed in this section appears to be easiest to imple-

ment for functions of B not involving o, provided n maintains its linear form under
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Hy. For linear functions of 3, under the null hypothesis we have

o alt) —n.

-t pa 3

where 7.; is a linear function of (i, ...,8,-1)7. Thus, to fit the constrained model
we simply specify a model with fixed offset and no intercept term, in the model
equation for survreg(). No modification of the internal code of survreg() is needed

in this case.

A Numerical Example

Table 4.4 summarizes lung cancer data from Glasser (1965). The response vari-
able. Y. is the logarithm of survival time in days for patients with primary lung
tuinours. The starred values denote censored observations. Age (in years) and per-
formance status are two covariates available for modelling the survival experience
of this group of patients. The performance ratings 1-3 indicate complete hospital-
1zation, 4-6 indicate partially confined to hospital and 7-10 indicate ability to care
for oneself. For purposes of illustrating the methods discussed previously. let us

suppose the model
Yi=Bo+ Biz1i+ Pozoi + €. i=1....n,

1s adequate, where ¢; ~ N (0, 0?) and independent.



Profile Likelihood-based Interval Estimation 139

Table 4.4: Lung cancer data from Glasser (1965).

Log survival time (y) Age (z;) Performance status (z,)

1.94 42 4
2.23 67 6
1.94 62 4
1.98 52 6
2.23 o7 5
1.59 58 6
2.13 995 6
1.80 63 7
2.32 44 )
1.92 62 7
2.15° 51 7
2.05° 64 10
2.48" 94 8
2.42° 64 3
2.56" o4 9
2.56° 57 9

By using our proposed method, we obtain the following approximate 90% CIs
for S(ty:xo), where xo = (o1, z02)T; see Table 4.5. We arbitrarily set ¢, = 2.015
and zy; = 56.625 years. Figures 4.4 and 4.5 show the LRS for S(to; xg). for the
last two groups of patients in Table 4.5, i.e.. values of 5 and 7 for performance
status. The numerical implementation for this example was fairly straightforward.
However. at times the survreg() routine fails to converge in the default number of
steps specified in the internal controls. We simply increased the default until the
likelihood values converged.
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Table 4.5: Interval estimates for S(£o;Xo) for patients aged 56.6 years.

o2 90% CI MLE
3 (0.322, 0.883) 0.633
5 (0.624, 0.905) 0.821
7 (0.782, 0.968) 0.932

A Lagrange Multiplier Approach

The method used in the previous section may not work for some functionals. An
example is S(¢o,%1)/S(t0,X2). which can be regarded as a measure of the relative
wagnitude of the probability of survival at ¢, for two distinct subjects with covariate
vectors. X;. Xz. If we set S(to.x;1)/S(to.X2) = w. where w is some fixed value of
the functional. in general it is not possible to solve explicitly for 4, (or some other
parameter) in terms of the remaining parameters. Another useful functional is
S(t1.x0)/S(t2,%0), where xq is a fixed covariate value. and ¢t,. ¢, denote distinct
times. This functional can be used to assess the change of probabilities from one
point to another. Other functionals which are not easily handled by the method of
the previous section are P(t; < T < t3;x%;) and P(t) < T < t2:%x1)/P(t, < T <
t2:Xz2). where x;, X2 are known, distinct covariate values. In some failure timme
contexts. the latter functional may usefully be regarded as the relative risk of an
event in the interval [t,, ¢,).

A Lagrange multiplier argument can be applied to obtain likelihood-based Cls
for functionals that can be expressed as linear combinations of gi, t=1,....4. Some
useful functionals in the failure time context, including the preceding omes, can be
expressed in this manner. An advantage of this approach over the usual profile
likelihood approach is that an IRLS regression also applies under the constrained

model. Therefore, with some modification of the computer code, we can continue
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Figure 4.4: Likelihood ratio statistic for interval estimation of the survival probabil-
ity for lung cancer patients aged 56.6 years who were partially confined to hospital,
based on the data in Table 4.4. The height of the horizontal dashed line is 3.841

units.

Likelihood ratio statistic

T : T T T
42 -1.0 08 46 04

Standard nomal quantle

to use the survreg() function in S-Plus.

We introduce the method by considering a simple example. Consider the interval
estimation of S(to, Xo), which was also performed earlier. It is easier to first obtain
an interval estimate for log S(to,Xo), and then invert to obtain the corresponding
estimate for S(fo,%o). Since S(fo,Xo) = P(Z > z), where z5 = “(ﬂ;LT"", we

maximize the augmented log likelihood

te = £ — £g2(20)
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Figure 4.5: Likelihood ratio statistic for interval estimation of the survival prob-
ability for lung cancer patients aged 56.6 years who lived at home. based on the
data in Table 4.4. The height of the horizontal dashed line is 3.841 units.
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with respect to B to obtain the constrained MLEs corresponding to a fixed value
of log S(ty. £o). Given a fixed value of €. we obtain

3

aﬂ; ‘Z zi]a £ UJa (44)
6215 e 62 9? gz
aﬂjaﬂk t_z;zx]ztka 2 E TojTok 5 5 a 2 (45)

where 79 = 8Txo. The implementation of these steps proceeds as follows. For easy

exposition, we split the implementation into two simple parts. each corresponding
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to whether £ > 0 or £ < 0. For £ < 0, we can write the preceding equations as

6[5 - hi “ag _ T .
ap; = i‘:‘;zqaﬂi = (X" U.);,

o2t &

98:35x = gxijmikd; = ~(XTD.X);.
where
e { -gj,_,a,z z= L..n
—1612%. i=0
0-(2..2 fai)
om One'” O
and

D, = diag{d;}.

This leads directly to another IRLS regression which can be carried out by survreg().
provided we account for the additional term in the score vector and information
watrix.

For { > 0. equations (4.4) and (4.5) can be viewed as the original unrestricted

model terms less an “adjustment” term,

14
é_ﬁé - (XTU)j = Z9j(Uz)n+1.
8%t
6ﬂj6€ﬂk = —{(X" DX);t. - zo;zardo}.

Simple modifications to the code will enable us to implement the constrained maxi-
mization step for £ > 0. Similar adjustments are entailed for the partial derivatives

involving o.
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It is not difficult to extend the procedure to linear functionals of g;, namely.
% | aig:. where a; are real numbers (usually, a; = *1). For linear functions of
B. it appears that the direct substitution method is easier to use, even though we
can still employ the Lagrange multiplier technique. To see the latter, we note that
for linear functionals. the information matrix is unchanged. Therefore, we only
ueed to modify the score function terms accordingly (see above). The convergence
properties of the proposed procedure are not known at present. It is possible that
the procedure might break down either by not converging or by converging to points
other than the constrained MLE.

For a numerical illustration, consider the data of Glasser (1965) again. Let us
suppose interest centers on a comparison of the relative rate of survival between
patients who are able to care for themselves (Group 1). and those who are either
confined to hospital or partially confined to hospital (Group 2). That is. we consider
the model

Yi=ao+ ayvii +avai +€6;. i =1.....n.

where the ¢;’s satisfy the independent. normal assumptions, v, is age and

1, 2€ Group 1

V2 =
0, <€ Group 2

A one-tailed test of a; = 0 is significant at the 5% level, so the model will be used
to demonstrate the Lagrange multiplier approach. We define x; = (1, 56.625, 0)T
and x; = (1, 56.625, 1)7. Using our approach, we obtain an approximate 95%
CI for %i:;—:;%; we use the same value £, = 2.015 for illustration. This is given

by (0.717. 0.862); the MLE is 0.766. This result provides evidence of superior

survival experience for Group 1 patients at the given time point and age profile.
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Numerically, the convergence criterion in survreg() could not always be met in the
default number of iterations, so that we adopted the same remedy as in the previous
example.

Remarks. For linear functions of 8, an alternative Lagrange multiplier ar-
gument may be used to obtain constrained MLEs for 3, along the lines of Kim
and Taylor (1995). To illustrate, consider interval estimation of o = ATxo. Let
Se¢ and I, represent the score and information matrix based on the augmented log
likelihood £¢; the Lagrange multiplier is £. These are related to the corresponding
unrestricted quantities via S¢ = S + €xq and Iz = I. Let (™) and ﬂém) denote the
unrestricted and constrained estimates, respectively, at the mth cycle of a Newton-

Raphson iteration. Then

ﬂém+1) — ﬂém)+[{15£
= BM 4+ 175+ €17'%,

= BB™) + €17 %0

where ﬂ("‘“)(ﬂém)) = ﬂém) + I71S. Substituting this expression into the constraint

v = w. and solving for £, we get
€= (%717 %0) ™ {w = (B™D(B{™))Txo } .
This is substituted into the Newton-Raphson iteration to obtain
B = BUHI(BEM) + (x0T 17 x0) ™ {w — (B™HI(BE™)) 0} 1o

We obtain a similiar solution when there is more than one linear constraint; for

additional details, see Kim and Taylor (1995). O



Chapter 5

Further Work

This thesis has explored the profile likelihood approach to interval estimation of
functionals in various settings. The proposed procedures are computationally in-
tensive compared to the standard approach based on the normal approximation.
However. with modern computing facilities. the likelihood-based approach will be-
come increasingly easier to implement.

In chapter 2, we proposed a simple method of obtaining a Bartlett correction for
functionals in parametric inference. It would be of interest to also derive a Bartlett
factor in this setting more directly. i.e.. by explicitly accounting for the Lagrange
multiplier in the computation of the Bartlett factor. Cordeiro (1993) provided useful
wmatrix formulae for computing the Bartlett factor in two distinct situations. viz.. in
tests of null hypotheses which specify a parameter vector in the presence of nuisance
parameters, and for testing a scalar parameter which is orthogonal to the remaining
parameters. These ideas may be utilized in future work to provide more easily
accessible formulae for the Bartlett factor of Chapter 2. Currently, there is also
some interest in the derivation of appropriate Bartlett factors for the nonparametric

and semi-parametric settings. For the latter, some results were obtained by Gu

146
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and Zheng (1993) for the semi-parametric Cox proportional hazards model with a
single covariate. Although no Bartlett correction is known for the nonparametric
setting apart from empirical likelihood, Mykland (1995) provides arguments for
the existence of such correction factors. His arguments can be summarized as
follows. In parametric inference, it is well-known that, in practical problems, the
LRS is preferrable to the studentized score statistic for interval estimation (cf.
chapter 1). This idea is exploited in Mykland (1995) who proposed a “likelihood”
construction (called dual likelihood) for martingale-based inference. The concept of
dual likelihood can be used in particular to construct a dual likelihood ratio statistic
which is useful for hypothesis testing and interval estimation. It is then argued
that dual likelihood can essentially be regarded as a likelihood in the usual sense.
Further. for independent data, the dual LRS coincides with the nonparametric
LRSs derived from nonparametric considerations. For example. in the case of right-
censored survival data from a homogeneous population, the dual LRS for testing a
fixed value of the cumulative hazard function is the same as the nonparametric LRS
based on the point process likelihood (assuming continuous cumulative hazard). It
may therefore be argued that the existence of a Bartlett factor for empirical and
point process LRSs follows as a corollary to the existence of such a correction for
the parametric setting. We hope to use these ideas in future work.

In Example 3.6 of chapter 3, we proposed a Lagrange multiplier solution to the
constrained maximization problem in the important context of exponential family
models. Since numerical solutions are unavoidable in general, it may be worthwhile
to find algorithms which are superior in terms of ease of implementation. In this
short note, we point out a useful technique which can be applied to that setting.
This technique arises from the fixed-point thcorem in analysis, but its connection

to the EM algorithm has not been fully exploited thus far. Our adaptation of this
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technique to the “missing” data context is motivated by a recent paper of Navidi
(1997) which focuses on the one-parameter exponential family model. He shows that
E(516) and E(S|To,; ) are both increasing functions of 6 in a neighbourhood of the
MLE 4, with E(S|6) increasing more rapidly. Further. E(S|T.e,: 8)— E(S|0) = £(8).
Hence,

E(S|0) = E(S|T.:9),

which is identical to the algorithm derived in Cox and Oakes (1984).

By a graphical illustration, Navidi then showed that the EM estimates converge
mouotonically to 4. In fact, these findings are closely related to the fixed point
theory in analysis. Briefly. for some differentiable function f : R — R. the theory
sets sufficient conditions for the existence of a fixed point zq of f, i.e.. flzo) = =
The same conditions establish that the iteration defined by zpt1 = flzn). n =
1.2..... converges to zo under the assumptions of the theorem. The connection to
Navidi's work is seen most directly for the normal distribution with mean p¢ and
known variance 2. Cousider a single random variable from this distribution. The

canonical parameter 6 is x in this case. and E(S|8') =6 = ¢ . Hence.
' = E(S|Tuni p)

defines the updating scheme according to the EM algorithm, and we can also deduce
by the fixed point theory that this algorithm converges to the MLE. 4. This suggests
an alternative implementation for the EM algorithm.

For brevity, let F(8) and G() represent E(S|8) and E(S|T..4;8), respectively.
and let H(6) = G(8) — F(6). Given that F'(§) > G'(6). the problem is to find
the value of § satisfying H(f) = 0. This problem is thus equivalent to finding
the zeroes of H, and is discussed, for example, in Protter and Morrey (1991). Its



Profile Likelihood-based Interval Estimation 149

solution makes use of the fixed point theorem. Additional conditions are required.
which we outline in the following. Suppose then that we desire to locate the zeroes of
f: R > R. We assume that f(z) is differentiable on I = [a, b], with f(a) and — f(b)
contained in [0, b—a), and there exists some k, &’ such that —1 < &’ <f(z)<k<O
for all z € I. Then, there exists an z, € [a, b] such that f(z,) = 0. Furthermore,
for any z, € [a, b], the iteration z,4; = f(z,), » = 1,2, ... converges to zo. For
our problem, the conditions need to be checked in each application, even though it
is known that for the function of interest H. H'(§) = l"(é) < 0. This result thus

yields the iteration
6"+ = E(S|Top,; 6™) — E(S16™)

as a feasible alternative to the usual updating scheme. Given a suitable choice
of (™), this yields a convenient way to implement the EM algorithm for scalar
6. This numerical scheme will be considered in subsequent work. It would also
be very useful to see whether a multivariate version of the above works as well.
This algorithm could then be applied to the constrained maximization problems
encountered in Example 3.6.

As a general theoretical basis for profile likelihood-based intervals remains elu-
sive, numerical investigation of their coverage properties and comparisons with
results based on the usual normal approximation will be helpful. This research will
undoubtedly involve a substantial amount of computational effort.

In chapter 4, we described some techniques for obtaining likelihood-based in-
terval estimates for failure time functionals. It would be desirable to evaluate the
coverage probabilities as well as other properties of the proposed methods. For

the IRLS approach, the convergence properties of the technique in the constrained
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maximization setting are not known at present, and are an area for future work.

In many biomedical applications, interest focuses on the effect of covariates on
response measurements. To date, the most popular model in biomedical work is
the Cox (1972) proportional hazards regression model. It would be useful to see
if the techniques discussed in Section 4.2 could be adapted to yield likelihood-
based interval estimates for functionals in this semi-parametric Cox model. In the
following. we summarize some preliminary work on this problem, as well as indicate
future research directions for this area.

Suppose the lifetimes of n subjects are distributed independently with hazard

function

At. zi(£)) = Ao(t) exp{B7 zi(¢)}

where Ag(t) is an unknown baseline hazard function. 8 € RP is a p-dimensional
vector of regression coefficients, and z;(t) € RP represents a known p-dimensional
covariate for subject i at time ¢. Then the full likelihood function based on the

observed data is
L= H [/\O(ti)exp{ngzi(ti)}eXp{—/0 Ao(u) exp{BT z;(u }du,}] )
By defining Y’ (u) = exp{A z:(v)}[{x < t;} and YB(u) = ¥, Y2(u). we can write

= H Y,, { HY" (£:)Ao(t: }exp{ /0°° Yﬁ(u),\o(u)du} .

Let R; = {7 : t; > t;} represent the risk set at ¢;. The first term of the preceding

expression,

Y2(t:) exp{B z(t:)}
Lp(B) = H Yo (z) l:I Tjer, exp{f'z;(t:)}’
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is the Cox partial likelihood, and may be used to estimate . By assuming Ao
to be piecewise constant on intervals of length e, Johansen (1983) showed that

8 = sup Lp(B) and
. () 1
Ale) = Z YA(t)

Jointly maximize the full log likelihood. In equation (5.1), the arguments {¢;} are

(5.1)

the distinct event times less than ¢. The estimators [\(t) and ﬁ can be interpreted
as nonparametric (or generalized) maximum likelihood estimators. Alternatively.
one mnay assume that A, is piecewise constant between distinct failure times. In this
case. the Breslow estimator is obtained (Breslow. 1974). It is known that equation
(9.1) coincides with the Breslow estimate of A on intervals of the form (t;. tiv1].

The asymptotic distribution theory of standard test statistics has been covered
in detail by various authors; see, for example, Fleming and Harrington (1991).
Some key findings are summarized as follows. Analogous to standard likelihood
theory. the usual proofs in the censored data context focus on establishing the
approximate normal distribution of the score vector. since this result leads directly
to the asymptotic distribution for 3. Confidence intervals for B or subsets of it are
commonly based on the approximate normal distribution of 3. While the partial
LRS is also used in inference about 3 (or subsets of it), we have not seen its use in the
case of parameter functions. The Breslow estimator also has an asymptotic normal
distribution: the joint asymptotic distribution of 3 and the Breslow estimator can in
turn be used to yield an approximate normal distribution for S(t.xg). the survivor
function for subjects with given covariates xq.

In some applications, a confidence interval for the linear predictor may be of
interest. For example, in a binary logistic regression model, one may wish to obtain

confidence bounds on the probability, p(Y|x), of a response (Y = 1) conditional on
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a given vector of covariates x. The usual approach is to find a confidence bound for
the linear predictor n = 87x first, and then use the one-to-one relationship between
1 and p(Y'|x) to obtain the required interval for p(Y'|x).

Alho (1992) used a profile likelihood-based method to construct confidence in-
tervals for the linear predictor in generalized linear models. His approach can also
be adapted to the Cox partial likelihood to obtain a corresponding interval esti-
mate for the linear predictor in the PH model. We assume, for the time being,
that all the covariates are fixed, i.e.. not time-dependent. To test the hypothesis
Hy : BTzg = w, for some arbitrary fixed z¢ and w. the S-Plus routine coxph() can
be used with the appropriate modification of the covariate matrix to yield the con-
strained MLEs for the regression parameter 3. The partial likelihood ratio statistic
(PLRS) for testing H, is given by

Wp = 2{€p(B) - tp(3)}.

where £p(3) = log Lp(B). B is the maximum partial likelihood estimnator (MPLE).
and f3 is the constrained partial likelihood estimnator when 37z¢ = w. Analogous to
a parametric setup. the PLRS may be used to obtain likelihood-based intervals for
the linear predictor in the usual way. Assuming zy, # 0, under Hy we may write
Ly Bizo:

w— i
,Bp = :
Zop

which leads to the constrained form of the linear predictor, 87z; = Ty + WYip-
where y;, = :—;’:, vi; = (255 — zojzi;’:) for 3 =1.....p—-1. % = (z,-l,....z,-.,,_l)T. and

¥ = (B1s .-, Bp-1)T. Under Hy, the likelihood function is, up to a proportionality
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- Y (t) Y4, . _ [T v -
L= 1:[1/1 it 1:[}’ (£:)Mo(t:) }exp{ /0 Y7 (u)Ao(u)d } ,

where Y(u) = exp{yTy;i + wysp}[{u < t;} and Y"(u) = T, ¥ (). Given a fixed
value for w, the first term of this expression is the partial likelihood for . Therefore.
we can obtain the constrained MPLE, 7, by appropriately modifying the design
wmatrix of the regression problem. The constrained MPLE can be obtained by
specifying a fixed offset wy;, in the S-Plus routine coxph() and substituting the
adjusted covariates y;; for z;;. Subject to sufficient regularity conditions. Wp ~ x3
under Hy. An approximate 100(1 — a)% CI for the linear predictor thus consists
of the set {w: Wp(w) < x},_.}. We note that the above steps carry over without
modification when the covariates are time-dependent.

It may also be of interest to derive the joint MLEs of 8 and Ag(t) under H,. By
utilizing the piecewise constant assumption for Ay, and following the same argument

ontlined in Johansen (1983). it can be seen that 8 and

(t) 1

Al =2 7,

Jointly maximize the constrained likelihood function. This follows since the score
equations for Ag are unchanged in form, under Hj,.

Some heuristic ideas can be utilized to obtain profile-based CIs for S (t.z). the
survivor function for an individual with covariate value z. We continue to assume
that the baseline hazard rates are piecewise constant. In some studies. e.g. popu-
lation or demographic studies, reliable information on baseline parameters may be

available, perhaps based on historic data from comparable studies, censuses, etc.
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For the continuous-time PH model, assuming that the survivor function Sy(t) is
known from such sources of information, the methods of the last section can be
adapted to yield likelihood-based interval estimates for S (t,2z) = Su(t)”"pwrz’.
Usually no information is available on Sy(t) apart from the assumption of its
functional relation to S(t.z), i.e., the proportional hazards assumption. In this
case. we can utilize Johansen’s approach to derive an iterative procedure to obtain
au interval estimate for S(t,z). Consider a fixed value of S(t,z), say S(t.z) = w.
For convenience. we take ¢ to be a time point just after a death time. t;, i.e. set

t = t;+. Solving for B,. we get

1 —log(w p-l
b= [log{——Ajft‘) ’} -3 pin

assuming z, # 0. Substituting 8, into the likelihood function, we obtain

Zip, —logw +Ty -
L= H{Z T y’}IiI XP{ 1 Au(t) }H{’\U Ze j}exp{ / z\u(u)ZY (te)edu}

as the likelihood function under the nuli hypothesis. The first term of L is the
partial likelihood for 7. and can be maximized in the standard way to give the

MPLE, 4. Given ¥, the next step is to maximize with respect to Aq,

log L(7. Ao) = Z(%f){log(—logw)—long(t)}+Zlong<t,->— [ %) T ()

- Z ){log( log w) — log[z Dot )/ B+ Slog do(s)
- Zz\o(t )/ Zexp[ Zip log{ }+,3Tx,]I{u < t;}du.

In the above equation, we expressed Ao(t) as ; Ao(t:) J, L:nfo, ) @ Note that, for
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t; > t.

9%, Ao) _ LR log{ ok} +6Tx; u,
i = W) /.Ze ) Hu <t}

while

PI¥ z,', i, nfo. ¢ du

225 Aolt;) Ji n[o. €] du

fI no, t] ZL’P Jl%f%:ﬁ')*—ﬁ X du
" i Ao(t:) S, :]duz)‘o(t)/z 2 e I{u < ti}

dlog L(%, Ao) los{'\—"’(‘f-HﬂTx
—_ T = ¢ i < t.¥d
Bra(t) Ao(t / Z ' {ustj}du+

for t; < t. By assuming, as in Johansen (1983). that ), is piecewise constant on

intervals of length e. the likelihood equations for ¢; < ¢ turn out to be

-1

; T2 4+ T, dolt) i, Su(22) Y (u)du
) = [ [ ¥i(u)du - e }

where Y, (u) = exp{z—z"f log[—A—L"(st-)ﬁ] + BTx:}{u < t}. The likelihood equations for

t; >t can be solved to give

= [/;' W(u)d‘u] - .

Given the constrained estimates, we compare the observed value of the LRS cor-
responding to the current value of w with the relevant y? quantile. Based on this
comparison, we either accept the current value of w as an endpoint of the interval
estimate for S(¢.z), or increase (decrease) the current value appropriately. The
procedure halts when both end-points are located.

For future research, it would be desirable to see if the methods described above
could be implemented, as well as to look into interval estimates for other functionals.

Numerical evaluation of the coverage properties of these interval estimates, at least
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in the simplest cases, would be desirable.



Appendix A

Some Partial Derivatives for

Example 3.3

Some partial derivatives used in the EMI algorithm to obtain an interval estimate

for the prevalence function, P(t). Let

a(¢) = M(2) JT 0= @2+ { M0G) I As(e) IT 1= Auleli)] 3

2<u<t =3 I<u<j J<u<t

v(t) = II (1= An(n),

L) = { II Xa(v) +wir(t) - 8(8)]}*,

and

Alt)= T Aa(v) +wlr(t) - 8(2)].

I<u<t
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__1=-2(1) {w'y(t) [Hl(-z« +w a&(:! ]} . 2 S J <t

T(t) Aa(7) a(7)
aA (1)
={ _1=2(1 95(t) .
) Fort {er(t) [« RGH]}- 7=t
0, J>t

i 0] _ 1-%() 24(t) .
{1 “H.<.<‘As(u)+uh(:)-s(e)1} T(e) (t)[ axzm]}’ J=

dAi (1) 1-22(1 I coe, Asv) o6 (¢ .
i)~ |~ oo L + o]} 2<j<t
% j=t

o) _ ) e Em A - e} 1< <t
a/\u( ll) 0. j>t

For2 <k<t,

OM(1) _ — ety (), k<j<t
6'\11(j|k) 0

j2t

dAi (1)

— =0.
3/\11(]”9)

for k > t.
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