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Abstract

This thesis investigates the use of Bayesian networks for the perceptual grouping
of features extracted from images of intensity and range data. A formalism for the
development of Bayesian networks for perceptual grouping is presented that is based on a
decomposition by parts methodology for the structure of the networks. and compatibility
functions for the computation of the conditional probabilities. There exists a very strong
relationship between the formation of a causal network and the process used to decompose
an object into its components. A set of guidelines are presented for the design of a
Bavesian network for perceptual grouping.

Compatibility functions are a measure in the quality of fit between a set of features to
a model that represents a grouping among those features. This model is represented as a
node in a Bayesian network and compatibility functions are used to compute conditional
probabilities in the formation of the grouping based on attributes and relations among
the features. Five different compatibility functions are presented as examples. These
include an edge. surface proximity. planar surface. coplanar surface. and parallel surface
compatibility functions. The edge and surface proximity compatibility functions are
unique in that they rely on computatons both in a 2-D image plane as well as 3-D
space. These algorithms determine a polygonal approximation of a planar surface as well
as a common virtual surface between two polygons in 3-D space.

A unified representation of Bayesian networks and attributed hypergraphs. a Bayesian
attributed hypergraph (BAHG), is developed that allows for the instantiation of multi-
ple Bayesian networks. BAHGs are a subset to attributed hypergraphs allowing for the
specification and maintenance of multiple Bayesian networks without creating multiple
instantiations of nodes that represent the same event. This facilitates the grouping pro-

cess among multiple surfaces since continuity is maintained among groupings that share

iv



common feature sets. Also, a graphical description of the grouping network can be used
to guide the creation of the BAHG. This network can be recursively applied to the fea-
tures extracted from the sensory data. It is this recursive nature of perceptual grouping
that makes the BAHG suitable for computer vision and image understanding problems.

Validation of the use of a BAHG is presented using a BAHG network for the detection
of corners ard continuity among adjacent surfaces. applied to several images of 3-D data

points extracted from a portable range sensor.
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Chapter 1

Introduction and Motivation

1.1 Automated 3-D Environment Modeling

Research in the domain of automated 3-D modeling has primarily focussed on the ex-
traction of 3-D surfaces and volumetric primitives from 3-D sensory data of machined
parts. These types of objects can easily be carried and placed in a controlled environ-
ment and scanned using high resolution active sensors. This is significantly different from
the modeling of large indoor environments where it is necessary to bring the sensor to
the environment. changing the characteristics of the sensed data dramatically. In large
indoor environmeants it is difficult to manipulate the objects and the sensor to achieve
ideal sensory data. The result of this is that surfaces extracted from 3-D data of these
environments tend to be sparse and fragmented. Occlusion among objects in the scene is
common also since little control is available of the environment. Objects occluded from
the sensor and missing data make it necessary to use knowledge about the environment
combined with evidence from sensory data to hypothesize the existence of particular sur-
face groupings. In the modeling of large environments, as opposed to that of machined

parts. the requirement for detail diminishes and the challenge becomes one of trying to
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extract from the sensory data a model containing less detail but still maintaining enough
information to be able to reconstruct the overall shape and size of the environment. This
is not as simple as relaxing the tolerances used for computing the surface models from the
sensory data. but requires an ability to determine the type of information that is relevant
to the model being created.

The inability to group the features extracted from the sensory data has resulted in
the lack of modeling systems that can cope with cluttered environments and sparse data
appropriately. Indoor environments, typically office and home structures. are man-made
environments that contain enough structure to be able to detect the overall shape of a
room. but are nearly always cluttered with items that make it difficult to hypothesize the
overall room’s structure. It is necessary then to develop algorithms that can hypothesize
the existence of particular formations among the surfaces extracted from the data that go
bevond what can actually be detected by the sensor. [t is also important to maintain with
these hypothesized formations a belief value of the existence of the formations. The use
of belief values is important from a user’s perspective in that many automated algorithms
hide from the user the decision algorithims and thresholds used for making those decisions.
\When these are available then some confidence in these results are passed on to the user.

In the past several vears advances in 3-D sensors. computer vision. and mobile robots
have made it possible to have a programmable and versatile mobile sensing unit capable
of being used to register the 3-D features of indoor scenes so that a computer model of the
environment can be reconstructed. The procedure is simple but the actual implementation
of such a system, with current technology. is not easy. The underlying reasons for this are
the inability of the system to cope with sensor motion uncertainties. inconsistent sensory
data resolution over several acquisitions and incomplete data. This has a direct impact

on the ability to group features extracted from the sensory data into useful computer

models.
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Such a programmable robot. shown in figure 1.1. is equipped with several sensors
to detect objects in an indoor environment and is able to estimate the robot’s position.
This particular robot has been fitted with ultrasound, laser. CCD camera. and odometer

Sensors.

Figure 1.1: Programmable mobile robot equipped for environment modeling.

This svstem has been used to autonomously construct 3-D computer models of un-
known environments by programming the robot to traverse about the area to be modeled
and using the sensors on board the robot to register the position of objects in the envi-
ronment relative to the robot’s location [51. 16]. Over a series of sensor frames the data
can then be synthesized to create a 3-D model of the environment. An example of this is
depicted in figure 1.2 for 5 scans placed vertically one on top of the other for a stationary
location of the robot.

Figure 1.2 (a) depicts the 5 intensity images stacked one above the other while fig-

ure 1.2 (b) is an orthogonal projection of the surfaces extracted from the range component
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(a) (b)

Figure 1.2: Multiple range and image scans of 2 mobile robot laboratory.

of the data. One can see from this data that fragmentation and occlusion are common.
This thesis focuses on the extraction and the perceptual grouping of feature sets from
indoor sensory data. of the type shown in figure 1.2. for the purpose of hypothesizing
the existence of formations among those features. In particular. the example used for
the thesis detects corners and continuity among planar surfaces. The proposed approach
maintains and distributes belief values in the hypothesized formations using a Bayesian
network formalism. An approach is presented for computing the conditional probabilities
required for Bayesian formalisms based on compatibility functions that measure how well
a set of features match a proposed geometric model. As well a unified representation
of Bayesian networks and attributed hypergraphs is presented that is termed a Bayesian

Attributed Hypergraph (BAHG). This unified representation is useful in maintaining mul-
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tiple Bayesian network instantiations without multiple feature set nodes. This facilitates

the construction of models from the data.

1.2 Perceptual Grouping for 3-D Geometric Modeling

The term perceptual grouping in the computer vision domain refers to the process of
clustering features for the purpose of extracting a compound feature that exhibits more
structure and form than the original feature sets did. The term “image understanding”
is the process of associating symbolic labels to features or grouped sets of features. It
is svnonvmous to the computer vision domain of “object recognition™ where particular
objects are detected within a set of sensory data points. Early research in perceptual
grouping [66. 67. 65. 74] by cognitive psychologists had focused primarily on the human
perception of basic patterns from images without understanding the image itself. Later.
researchers in the field of computer vision integrated perceptual grouping processes with
object recognition such that it is difficult to separate the two processes.

The segmentation procedures used for the extraction of surfaces for 3-D geometric
modeling are also part of the image understanding process but stop at the recognition
of fundamental generic shapes. like patches. triangles. and planes. instead of a complete
structure that can be composed of these surfaces. These operations can be considered a
form of perceptual grouping since the end result is the clustering of 3-D points to surfaces
that contain more structure and form than the original points.

Geometric modeling of 3-D sensory data is the process of joining and interpolating
among several 3-D feature sets for the formation of structures that contain a combination
of these features sets. Geometric modeling differs from image understanding in that for
geometric modeling there does not exist any detailed prior geometric models that guide

the grouping process but instead generic models are used. For image understanding the
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models tend to contain more detail that are specific to the object to be recognized. Both
geometric modeling and image understanding though share similar underlying function-
alities. They both rely heavily on the perception of continuity. proximity. and symmetry
which are considered as fundamental perceptual grouping processes. Thus geometric
modeling relies on the recognition and grouping of fundamental 3-D shapes. A significant
amount of research has gone into the extraction of surfaces from 3-D sensory data. in
particular for the modeling of small or manufactured parts [8. 63. 17]. This is not an
easy problem. It is also hampered by the ability to gather consistent 3-D data and the
difficulty in the grouping of this data into meaningful structures.

Recent attempts in the modeling of larger indoor or outdoor environments [60. 70.
39. 28] from 3-D sensory data have demonstrated it to be a difficult task. due mainly
to the amount of missing. sparse. and obscured data. In most circumstances a set of
heuristics have had to be declared to decide what and how the surfaces should be joined.
Unfortunately these heuristics tend to be embedded into the algorithms and no formal
approaches are used for estimating the certainty of the grouping procedures. This leads to
svstems that are not easily extendable and with no formalism to measure the confidence

in the grouping.

1.3 Uncertainty Management for Perceptual Grouping

Uncertainty in the quality of the sensory data and missing information have been the main
stumbling blocks in the perceptual grouping of sensory data. This uncertainty is generally
measured as a deviation of the sensory data from a geometric model using a compatibility
function. In most perceptual grouping examples thresholds are used at each stage in the
grouping process to perform a fail or pass decision to check if the structure fits the model.

This introduces a system where it is possible to stop the grouping process at an early
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stage of the processing if the features are not compatible with the model. It does not
allow for other evidence to add support to the grouping. On the other hand. uncertainty
propagation techniques define procedures for the propagation of the uncertainty among

several hypothesized outcomes. This has the following advantages:

e The decision to group a set of features can be performed after all the evidence
has been accumulated allowing for the influence of other information to affect the

decision.

e In principal. it is simple to consider the effect of new evidence by introducing a
new compatibility function into the system. In practice the approach used for

uncertainty propagation will determine how the new evidence is introduced.

Introducing an uncertainty management approach into the perceptual grouping pro-
cess will create a more complex system since it is necessary to combine both the percep-
tual grouping and the uncertainty propagation knowledge. For this reason it is important
to separate the procedural and declarative knowledge to facilitate the management and
updating of the syvstem. In this particular case procedural knowledge is used for the
perceptual grouping algorithms and for computing the certainty values in the group-
ings. Declarative knowledge maintains information about the features extracted from
the sensory data and’the hypothesized groupings. In many circumstances the declarative
knowledge is represented as structures in a procedural type of language and embedded
into a domain specific application. It is difficult to extract the representation used for the
declarative knowledge from the algorithms and it is also difficult to specify any new pro-
cedural knowledge without building a new system. This becomes apparent when applying

Bayesian network techniques to the perceptual grouping of 3-D features where multiple

networks have to be instantiated. Previously, no unified representation for the storage of
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both the perceptual grouping formations and the maintenance of the Bayesian networks
has been reported.

This is where the BAHG offers some advantages over simply using Bayesian networks.
A BAHG maintains the declarative knowledge and belief values in the formation of the
groupings specified by the nodes in the BAHG network. A BAHG also has all the required
attributes and relations among the groupings that can be used to update the belief values
using Bayvesian statistics. A BAHG has added functionality over a Bayvesian network in
that it can maintain several instances of perceptual groupings among surfaces extracted
from the sensorv data. It is also a repository for any declarative knowledge accumulated
by the perceptual grouping process. This consists of surface attributes. relations among
surfaces. causal relations among the groupings. any conditional probabilities required to
compute the belief in the hypothesized surface to surface grouping. Procedural knowledge
for the formation and computation of the conditional probabilities is still required and
is embedded in the construction routines and compatibility functions. These though are
declared explicitly in a BAHG network. BAHGs also allow the use of standard hypergraph
matching procedures in the grouping process. This allows the specification of multiple
surface groupings. a difficult process when using only Bayesian network specification
languages because one has to explicitly define all the nodes and conditional probabilities

of the network.

1.4 Problem Statement and Research Goals

The ultimate goal of this research is to formulate an approach for the perceptual grouping
of 3-D sensory data along with a mechanism for maintaining belief values in the formation
of that grouping. Of particular interest to this thesis has been the grouping of planar

surfaces extracted from 3-D data of large indoor environments. This type of data is
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characteristic of spurious data that can be fairly fragmented when segmented and can
benefit from the integration of evidence from several sources of information.

To achieve this aim the following subgoals were achieved:

e An uncertainty management technique was developed for maintaining belief val-
nes in the perceptual grouping of 3-D sensory data. This approach is based on

formalisms developed for Bayesian networks.

e Random variables that represent perceptual groupings of the 3-D sensory data were

defined. These groupings have a direct correlation with the nodes of a defined

Bayesian network.

e A formalism for the construction of a Bayesian network to represent the causal

relations among several 3-D perceptual groupings was developed.

e A formalism for computing conditional probabilities based on compatibility func-
tions that measure how well a set of features match a proposed geometric model

was developed.

e A representation that unifies the maintenance of declarative knowledge and uncer-
tainty based on the integration of attributed hypergraphs and Bayesian networks
was developed. This representation is defined as a Bayesian Attributed Hypergraph

(BAHG).

e The BAHG can be specified graphically as a network having the added value that
the perceptual grouping process becomes available to the user as a network and not

solely as embedded algorithms.

e The perceptual grouping system was tested using real 3-D sensory data of indoor

environments.
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1.5 Proposed Approach

The system commences the perceptual grouping operation from a set of features extracted
from 3-D range images [25]. Figure 1.3 illustrates the processes that are executed in
the goal of creating perceptual groupings from the 3-D sensory data. These perceptual
groupings are maintained in a Bayesian Attributed Hypergraph.

The processes in figure 1.3 are numbered to signify the order in which they are
executed and the arrows signifv the flow of data. The following processes have been
developed: The Sensor Data Acquisition module used to acquire actual 3-D sensory data
and create an image of 3-D points with their corresponding intensities [25]. The Planar
Surface Ertractor is a module developed by Boulanger [14] and used in this system to
extract the planar surface parametric equations and covariance matrix. An image of the
labeled planar surfaces is also generated. The Polygon Ertractor is an edge extractor
algorithm developed to estimate a polygonal representation using the trim of a planar
surface [30]. This knowledge is represented as a hypergraph. The BAH( Constructor
constructs the BAHG given a BAHG network as an input parameter. The compatibility
functions are executed to compute the required conditional probabilities. The output
of this process is a BAHG that can be used by a Environment Modeling process to
create geometric models from the sensory data. The Encironment Modeling module is
an optional process that has not been implemented but is illustrated here as an example
of a process that uses the BAHG to finally create a model of the environment. The
application domain is indoor environment modeling with a focus on the mechanism for the
management of uncertainty in the sensory data that would lead to the calculation of belief
values in the formation of geometric formations from the sensory data. The Environment
Modeling process uses knowledge in the BAHG and the polygons to construct models of

the environment. The belief values maintained in the BAHG are used to determine if
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surfaces should be joined. Some examples are presented of how this would be performed

in chapter 5 with actual experimental cases demonstrated in chapter 6.

1.6 Thesis Structure

This thesis consists of 6 chapters inciuding the introduction. Chapter 2 is an overview
of perceptual grouping approaches in the domain of computer vision. This is organized
into two major topics: Section 2.1 presents several approaches for computing compat-
ibility measures among feature sets in an image with respect to a reference geometric
model. This can be represented as declarative knowledge computed from the feature sets
that is used for computing a belief value in the formation of a grouping. Section 2.2 re-
views existing methodologies for perceptual grouping. Some of these approaches integrate
uncertainty management procedures into the perceptual grouping process.

Chapter 3 investigates and proposes an approach for the use of Bavesian networks
for the perceptual grouping of surfaces extracted from 3-D points. The chapter aims to
present an approach for the design of a Bayesian network for perceptual grouping and
defines some 3-D compatibility functions used to compute a confidence measure between
a set of 3-D features and a hypothesized model of the grouped surfaces. These confidence
measures are used to compute the conditional probabilities required in the Bayesian
network. Both a general theory is developed and a particular example is given for the
detection of corners and continuity among planar surfaces.

Chapter 5 develops the formalism of the Bayesian Attributed Hypergraph as a special
instance of an attributed hypergraph. This also includes a definition of a graphical
interface for creating a BAHG that is similar to those used for Bayesian networks. This
interface allows for the specification of a particular BAHG network which is used by a

BAHG Constructor process to populate and construct a fully instantiated BAHG. The
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BAHG has added advantages over a Bayesian network (BN) in that it maintains a unified
representation for multiple BNs and therefore algorithms that are required to search across
several surface groupings can perform this operation efficiently without having to match
across separate networks.

Chapter 6 presents an overview of an experimental system used to acquire 3-D range
data that was used to test the proposed compatibility functions and Bayesian network for
the detection of corners and continuity among planar surfaces. The results demonstrate
that the approach does form consistent groupings that are sensitive to the confidence
measures computed by the compatibility functions. The results of the algorithm are
hypothesized perceptual groupings and their associated belief values. No attempt was
made to decide what would be appropriate belief values so as to finally join the surfaces
that would make good corners or continuous surfaces.

Finally chapter 7 summarizes the thesis and makes recommendations for further re-
search and expansion of this work. [t outlines the positive aspects of perceptual grouping
using BAHGs and the limitations encountered with this particular approach.

Figure 1.4 is a diagram that summarizes the contents of the thesis in a visual manner.
In the left column are the chapters that discuss the topics outlined in the boxes of the

right column.
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'Chapter 2

Perceptual Grouping

Perceptual grouping in the domain of computer vision has been used as one of the first
steps in the interpretation of images. Perceptual Grouping in computer vision is a study
into the grouping of features sets extracted from images captured on computer from a
sensor for the purpose of facilitating “Object Recognition™. “Geometric Modeling™. or
“Multi-view Registration™.

All perceptual grouping approaches are based on the early research in psychology
based on the concept known as Perceptual Organization. Perceptual organization has its
crigins in the domain of psychology commencing in the late 19*" century and resulted
in the creation of Gestalt Psychology. These researchers studied how simple sensations
could be grouped into compound. stable perceptions which exhibit form and structure.
Figure 2.1 shows some of the typical groupings that have come to be recognized as crucial
relationships between features and are known as the Gestalt Laws of Organization.

The Gestalt Laws of Organization are still regarded as important in the psychology
community. but as shown in figure 2.1 these are mostly still in a qualitative form. Ac-
cording to the Gestalt Law of Pragnan:z, (goodness of form). the pattern mostly perceived

by the human is the one which is the simplest and most stable. Several researchers have

15
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Figure 2.1: Gestalt Laws of Organization.

tried to quantifv the idea of Pragnanz by using such methods as counting the number
of edges [37]. minimizing the information content of a group [36] [64]. using the notion
of non-accidentalness [5-1. 79]. and recently a more comprehensive study usiﬁg energy
minimization methods [57].

Recent clinical experiments [75] have contributed some evidence that humans rely
much more on higher-order structures in detecting regularity in scenes. In that work
it was discovered that humans could detect regularity from dot patterns that contained
mirror. translational. or rotational symmetry more readily if the images being viewed
could be grouped into higher-order quadrangles and would have difficulties in detecting
regularities if only lower-order groupings existed in the dot patterns.

Original studies into perceptual grouping in the computer vision domain concentrated
on the grouping of features into the original Gestalt Laws. The perceptual groupings

offered sufficient constraints among the features so that object recognition. geometric
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modeling. and multi-view registration were enhanced. The basic 5 perceptual groupings
of proximity. similarity. closure. continuation. and symmetry are still widely used in
computer vision in particular for object recognition. Perceptual grouping has also formed
the foundation for indexing criterion in object recognition from 3-D sensory data [31.
19. 27]. This original work focused on the recognition of small objects that could be
easily manipulated. More recent work has moved into environment modeling by partial
recognition of components in the 3-D range data [44. 33] trying to use more generic models
and the aid of humans to complete the models.

Gernerally in the domain of object recognition the term “perceptual grouping” is not
commonly used to describe the constraints among the features that are used to guide the
recognition process. Perceptual grouping has normally been closely associated with the
perception of 2-D images even though many of the fundamental 3-D indexing constraints
are based ou the detection of continuity and proximity. Even though there exists similar-
ities between object recognition indexing constraints and perceptual grouping relations
the significant differences are the object models. In perceptual grouping the object mod-
els tend to be more generic than those used for object recognition and precision tends to
he less emphasized than for object recognition. For perceptual grouping, qualitative re-
lations are more important than precision and the objective is to determine relationships
among the features. This is similar to the objectives for environment modeling where the
more useful information is not object location and dimensions but the general shape and
relationship of the surfaces among each other.

There are many different approaches to perceptual grouping, from deterministic meth-
ods to uncertainty propagation approaches. Deterministic approaches use thresholds for
each grouping stage and grouping decisions are made at an early stage in the process.
Uncertainty in the data is quickly discarded and cannot propagate to any higher levels

in the grouping process. Uncertainty propagation techniques use measures of uncertainty
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of the hypothesized structures from the feature sets and propagate these values among
other hypothesized structures. They are better suited for fragmented data and situations
where evidence from several sources needs to be combined at different points in a decision
algorithm. Uncertainty propagation techniques will generally be more costly than deter-
ministic approaches due to the time taken to propagate the uncertainty throughout the
other hypothesized structures. but are better suited for sensory data that contain many
disjointed features sets. All approaches can lead to exponentially growing computational
times if allowed to hypothesize the combination of all feature sets and therefore some
basic context based heuristics must be used to limit this exponential growth.

In perceptual grouping two very basic issues are being addressed:

e Geometric measures are defined that compute a distance of compatibility between
the set of features to a hyvpothesized perceptual grouping. These measures con-
sist mainly of geometrical and topological relations among the feature sets. These

Perceptual Grouping Measures add to the domain knowledge among surfaces.

e A particular perceptual grouping procedure is required that controls the sequencing
for computing the perceptual grouping measures and instantiates a hypothesis for a
grouping of features. This is the procedural knowledge for the perceptual grouping

operation.

There does not exist any one particular approach for defining geometric measures and
several general approaches have been developed depending on the domain of application.
An overview of some perceptual grouping geometric measures for particular domains will
be presented to introduce the reader to this work. This is followed by a number of
perceptual grouping procedures which can be described by the generic algorithms being

used.
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2.1 Perceptual Grouping Geometric Measures

2.1.1 Measures for 2-D Image Points

Compatibility measures for 2-D points have been more commonly used in perceptual
grouping research that have investigated the psychology of human perception. [t is worth
noting the work in ~Geometric Probability and Stochastic Geometry™ and the overview
article by Small [T1]. The main intention of that research was to determine a probabilistic
model for the behaviour of points that form geometric patterns. An excellent model which
is applicable to a variety of situations involving random points and geometric probability

is the homogeneous Poisson process shown in equation 2.1.

_ (AlArezp(=Al4))

P[N(4) = n] =

(2.1)

where V(.A) is the number of points that reside in the geometric set 4 and A is the
Poisson parameter.

The primary issue then is determining appropriate measures for particular geometric
shapes that are an estimate of their size and shape. These approaches have been imple-
mented for the determination of architectural excavation sites given the positioning of

rocks on the earth’s surface [71].

2.1.2 Measures for 2-D Edges

The most studied area of perceptual grouping in 2-D images has been in the grouping of
edges [33. 58. 31. 68. 38. 22. 78, 62, 55, 72, 2]. Geometric measures have been defined
for the detection of continuity, symmetry, and proximity. Some of the common types of
groupings for lines are shown in figure 2.2.

In an approach based more on psychological experiments, Wagemans et. al. [75]
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Figure 2.2: Common edge groupings.

noticed that humans tended to group points into quadrangle shaped patterns. They
discovered possible groupings among a set of 4 points p;. p,;. px. and p; in an image if

theyv could minimize the following equation.

Z expl"w..pk)‘o(p,'px)|+|"(pk,p.)“’(p..p,)l' (2.2)

P.P;PkPI
for the angles as shown in figure 2.3 defined by a set of 4 points in an image. This equation
tends to zero in the case of existing symmetry for the quadrangle structure (i.e. possible
trapezoids or parallelograms).

Wageman never considered features beyond those of dots in an image but did add

credibility to the belief that humans can perceive invariant patterns that go beyond
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Figure 2.3: Quadrangle structure and angles used for measurement.

simple two line relationships.

Many of the examples presented in the literature look at defining measures among
edges for continuity, symmetry. proximity. and closure but little effort has gone into study-
ing the mathematics of geometry and uncertainty. The work by Durrant-Whyte [23] on
“Uncertain Geometry™ has set the foundation for a mathematical treatment of uncertainty
in geometry. This work though has been primarily used for robotics motion estimation

and not perceptual grouping.

2.1.3 Measures for 3-D Features

Perceptual grouping of 3-D edges have been used for the construction of 3-D wire frame
models of manufactured parts [24] and indoor environments [3]. These early approaches
tended to focus on the grouping of 3-D edges extracted from stereo cameras rather than
on the grouping of surface data. Perceptual grouping of 3-D edges has also been applied in

reducing the amount of time required to match features across multiple sensor scenes [85],
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due primarily to the fact that they are view invariant. Much of the early work in ob-
ject recognition used perceptual grouping among 3-D edges to reduce the search space
among the models. For example. in Grimson's work in object recognition [34] he pro-
posed the use of binary constraints among two 3-D lines in space. These constraints were
angle . distance. and component constraints which are primarily proximity and symme-
try perceptuzl grouping measures. Several excellent survey papers in edge based object
recognition have been published. for example [6. 7].

The core work in the processing of 3-D data has historically been in the domain of
the extraction of surface data from a series of 3-D points. The non-uniformity of the data
has a significant impact in the extraction of surfaces such that it is necessary to consider
as much evidence as can be gathered from the sensor or other sensors for this process.
Surface reconstruction is a low primitive form of perceptual grouping that considers the
grouping of the 3-D data points into surfaces with smooth transitions and continuity.
Several excellent books exist on this subject [8] and Boulanger [15] has a good tutorial
on the analysis of range data.

For 3-D image understanding further relationships among the surfaces are crucial
and perceptual grouping relationships like surface intersections. parallel relations. and
coplanar measures are commonly used to limit the search space. Two common planar
surface relationships are the parallel (symmetry for planar surfaces) and coplanar measure
(continuity for planar surfaces) shown in figure 2.4.

For environment modeling the focus is on the reduction of data and hypothesizing
shape. structure. and relations among the 3-D surfaces. The focus shifts from surface
extraction to the discovery of fundamental groupings among the surfaces so that one can
infer junctions and surface continuity. For example, hypothesizing the existence of cor-
ners and continuous sutfaces is crucial for re-constructing a model from the sensory data.

Several approaches have been proposed for the detection of corners for indoor environ-
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Figure 2.4: Common planar surface groupings.

ments [60. 70. 39] and the detection of ridges and valleys for outdoor environments [28].
Unfortunately the knowledge required to perform these surface groupings has been em-
bedded in procedures that are not easily accessible and none of the approaches have tried
to maintain a belief value in the formation of the groupings. Therefore the results have
to be taken at face value without the ability to determine why particular surfaces were

not joined.

2.2 Perceptual Grouping Approaches

2.2.1 Deterministic Approaches
Production Rules

Production rules are by far the most popular approach to perceptual grouping in which
a set of heuristic rules are used to act upon the geometric measures among the features
sets. These approaches can have positive results if the set of rules are small enough to be

manageable and the data is relatively free of abnormalities. In the domain of wire frame
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modeling the thrust has been in the grouping of edges that form closed polygons. The
most common approach is to develop a set of heuristics to classify the type of junction [12.
55. 35] and proceed with an algorithm to close the set of edges into a polygon. An example
of this type of procedure is the edge tracking algorithm developed by Wong et al. [R3]
that tries to choose the best branching direction that will maintain the tracking within
the same half-plane of the other edges in the group.

Production rules can be deterministic or can use uncertainty values to maintain and
propagate the uncertainty among other heuristics. Uncertainty calculi developed for rule
based systems have shown to have serious shortcomings [42] in particular to coherent
inferencing and for that reason few perceptual grouping systems have been developed
that use uncertainty propagation techniques with heuristic rules. Most. if not all. of the
systems that use production rules have chosen to make a deterministic choice at an early

stage in the grouping process.

Constraint Satisfaction Systems

Another interesting approach to perceptual grouping, used primarily in object recogni-
tion. is the use of constraint satisfaction networks. These were used successfully in 3-D
MOSAIC [76. 4] for hypothesizing polyhedral surfaces from aerial views of buildings.
The underlying theory is based on the concept that faces. edges. and vertices mutually
constrain each other in forming a global interpretation of the objects in the scene. The
approach is one of choosing low-order features which have a high probability of corre-
sponding to individual object parts. The geometrical constraint functions can be both
supportive and competitive in nature.

The network uses geometric constraints among edge features that add or subtract
support in the formation of particular groupings. These groupings were perceptual group-

ings among straight lines that eventually could lead to the detection of “U-contours™ and
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~Rectangles™ among those lines. Mohan and Nevatia have shown that the more complex
operations are: the extraction of parallel line features (O(n?)): and the formation of the
network (nO(np?)). where n is_the number of line segments and p the number of parallel
line segment groups. This concurs with the exponential nature of trying to check for
groupings among all the features.

Constraint searches using interpretation trees [34. 73. 19. 29] have been widely used
for object recognition and again many of the fundamental constraints have been based
on perceptual grouping properties.

In a very comprehensive study into the investigation of perceptual organization in
human and machine vision McCafferty [57] used energy minimization techniques to solve
a set of constraints that could be interpreted as a perceptual grouping. In his approach

the problem was to find the grouping g which minimizes:

ETotailg) = ’\lHEVF’rux:(g)”2 +...+ ’\n”EPG(g)Hz' (2.3}

where Epc; represents geometrical constraint functions that enforce perceptual grouping
and A, represents regularisation parameters. For example. in the above equation Ep,,r
represents a geometrical constraint function for proximity and A, is the regularisation
parameter for proximity. McCafferty expressed the fact that. similar to human percep-
tion there does not exist one ideal grouping but several groupings that can dominate
depending on the regularisation parameters. Therefore he also chose to determine the set

of groupings that minimized the total energy of all the groupings i.e..

J
min Y ETotat(gk)- (2.4)
k=1

This is akin to the multi-resolution problem in computer vision where many possible

perceptions are possible depending on the resolution and context of the domain.



CHAPTER 2. PERCEPTUAL GROUPING 26

2.2.2 Uncertainty Management Approaches

Several approaches have been investigated for either perceptual grouping or object recog-
nition that take into account uncertainty in the reasoning component. These systems

generally offer more information to the user and options of possible perceptual groupings.

Fuzzy Logic Inferencing

Another grouping methodology developed by Kang et al. [45] uses the Gestalt Laws for
grouping and manages the uncertainty in the measures among the features using fuzzy
logic as the basis for making decisions. Fuzzy logic approaches are primarily a heuristic
implementation of perceptual grouping using fuzzy sets instead of discrete values. Some
recent work has investigated the use of fuzzy sets with the grouping of 3-D sensory
data [16] but these systems still suffer from the intractability when many perceptual

grouping rules exist.

Bayesian Networks

Bavesian netwerks have been used in the domain of computer vision for several appli-
cations. Some particular ones worth citing are. object recognition [11. 47. 59. 77. 19].
multi-agent vision systems [43]. road scene recognition [30]. tracking of dynamic objects
in images [32]. and perceptual grouping for 2-D images [68]. The construction of the
Bavesian network is based on the idea of representing the attributes and relations among
the features extracted from the image in a network and using Bayesian probability as
a measure of uncertainty in the formation of groupings. The two principal things to
determine are the causal relations among the feature sets and the geometrical compati-

bility functions that are used as a measure between the feature sets and the hypothesized

groupings.
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Bavesian networks take advantage of a-priori knowledge and use Bayes theory to rep-
resent relational knowledge among the nodes in the network. They leverage on the use
of causal relations among the hypothesized groupings to help design the network. A
significant part of the research is in determining appropriate causal relations among the
feature sets. Bayesian networks also require a formalism to be developed that can com-
pute the conditional probabilities among the hypothesized groupings. This is generally
done by either performing many tests and determining a probability density function or
subjectively.

Bayesian networks offer a relatively simple manner in which to manage uncertainty for
the grouping of features extracted from a sensor. but the difficulties are still in being able
to determine what events are relevant and how to determine the conditional probability
values of these events. Techniques for transforming feature measurements into uncertainty
values are still in their infancy.

An example of a Bayvesian network is the perceptual inference network (PIN) [68].
reproduced in figure 2.3. for the detection of particular polygonal shapes from 2-D edges.

This is a fairly interesting system because it is the closest in similarity to the approach
taken in this thesis and therefore warrants further discussion. The PIN network oper-
ated on a set of ribbons extracted from an intensity image. Similar to other perceptual
grouping processes the most time consuming operations occur at the extraction and first
attempt to group the ribbons based on continuity. This was done using standard graph

matching algorithms with computing complexities in the order O(n3) and O(n?)

Dempster-Shafer Networks

The Dempster-Shafer Theory is an approach for representing and combining uncertainty
from aggregate sources as belief values. It differs from Bayesian formalism in that prob-

ability values can be assigned to subsets of the set of all possible outcomes of a random
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Figure 2.5: Perceptual inference network as specified by Sarkar and Boyer.

experiment instead of only singleton subsets. It also differs in that the law for additivity
for belief in disjoint propositions does not apply. Dempster-Shafer formalisms are suitable
for situations when considering a hierarchy of hypotheses and it may not be clear which
particular subclass of a node actually exists. In other words it is possible to compute a
belief value in the formation of a particular parent node without knowing the beliefs in
each individual subset of the parent.

The hierarchical blackboard object-recognition system called PSEIKI developed by
Andress and Kak [L. 0] is one of the few perceptual grouping systems that use the
Dempster-Shafer formalism for evidential reasoning. It is based on a two panel five level
blackboard that decomposes a model of an object into its sub-parts and then compares

features from these sub-parts to those detected by the sensor. The sensor feature sets are
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grouped based on proximity and junction formations and are compared to those similar
formations in the model.

Dempster-Shafer formalisms are not easv to implement or understand and can lead to
worst case behavior computational times that are exponential in the size of the hvpothesis
set. This has led to the addition of heuristics to the grouping process that can detect
disjoint subsets that would not have to be combined. [n other terms. it becomes necessary
to limit the size of the number of hypotheses by using relational constraints among the
surfaces. Even with these limitations the Dempster-Shafer formalism is a powerful tool
for the management of uncertainty and it is bevond the scope of this thesis to perform a

detailed assessment between Bayvesian and Dempster-Shafer formalisms for scene analysis.

2.3 Summary of Perceptual Grouping

Perceptual grouping is a vital preliminary step for the interpretation of sensory data in
particular computer vision sensor data. [t forms the foundation for object recognition.
computer modeling. and multi-view sensor registration. Perceptual grouping using 2-D
intensity data and edges from stereo systems has been explored since the early 19%0’s.
This has not been the case as much with 3-D surface data. In the domain of 3-D vision
the majority of perceptual grouping operations have been embedded in object recognition
svstems that primarily have dealt with the recognition of manufactured parts. In those
domains verv explicit models have been used as references for computing the compatibility
functions since in most circumstances Computer Aided Design (CAD) data are available
for the components.

Once one tries to create models of large indoor environments the perceptual grouping
of surfaces becomes important in deciding how and which surfaces are to be brought

together. Much redundant data exists and useful CAD models are impossible without
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the grouping of surfaces. It is also important to create an infrastructure that will allow
the accumulation and distribution of evidence and uncertainty. This system must be
expandable to handle different forms of evidence. therefore it must separate procedural
from declarative knowledge to facilitate the addition and removal of information.

This thesis has adopted the use of a Bayesian network for mmanaging the evidence gath-
ered from 3-D sensory data for the purpose of inferring higher order perceptual groupings
of the surfaces extracted from the 3-D data. Bayesian networks offer a well developed
mechanism for the management of uncertainty in reasoning. The use of Bayesian net-

works for the Perceptual Grouping of 3-D data is developed in greater detail in the next

chapter.



Chapter 3

Bayesian Networks for Perceptual

Grouping

In this thesis. Bavesian networks are investigated as a tool for perceptual grouping of
image features. The methodologies developed are generic enough to be applied to intensity
images but examples have been derived primarily for the grouping of 3-D surfaces. The
hypothesis brought forward is that the network be designed using causation principles
but quantification of the network is done in the reverse direction. from data to hypothesis.
using compatibility functions that measure how well a set of features fits a hypothesized
model. All perceptual grouping algorithms take advantage of causation indirectly by
defining models that relate the detected sensory data to the possible geometric formations
among the data. Bayesian networks offer a formalism for representing the causation
among the groupings and an approach for maintaining a belief value in the formation of
those groupings. The Bayesian network allows the encoding of the expected formations
that the sensor may detect when viewing a scene and infer from the features a belief value

of the existence of the grouping of the features.

31
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3.1 Bayesian Networks

A Bavesian network is a particular type of network that uses Bayes probabilistic theory
to manage the uncertainty in the values of the variables of the network. A cansal network
is a directed acyclic graph with the nodes representing a hypothesis of the existence of
a proposition and the arcs signifyving the causal relationship from one proposition to the
next. For example. figure 3.1 shows three simple causal networks that depict the types
of connections by which evidence can be transmitted in Bayesian networks. These three

methods are: serial. divergent. and convergent connections.

Serial Connection

Divergent Connection Convergent Connection

Figure 3.1: The three different types of connections in a Bayvesian network.

Variables in a causal network are random variables that represent events and can have
any number of discrete states. In this thesis only Boolean variables are considered and
these represent the existence of a perceptual grouping.

The network depicts dependencies among the nodes and the type of connection de-

termines how evidence is transmitted along the network. The evidence of a variable is a
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statement of the certainty of the state of the variable. Hard evidence gives the exact state
of the variable and the variable is referred as being instantiated. while soft evidence is a
prediction of the state of the variable. For the perceptual grouping Bayesian networks
proposed in this thesis only the nodes that represent actual sensory features are instan-
tiated. The rest of the nodes represent hypotheses of geometrical formations among the
features.

Several probabilistic quantities can be computed using Bayesian networks. like expec-
tations and best explanations. One of the most common inferences desired involves the
calculation of posterior marginals for a particular set of variables. This is called belief
assessment or belief updating. Belief values in a Bayesian formalism pertains to the com-
putation of the conditional probability P(;le) where 4; is a particular variable and e
are the instantiated variables.

Bayvesian networks use Bayes probability theory to quantify the networks uncertainty
values and offer a compact representation of the joint probability P({") corresponding to
a discourse of variables " = {4;. 4. .. ... 1, } represented in a Bayesian network. All that
needs to be specified to compute a complete joint probability of the Bayesian network are
the conditional probabilities of the variables conditioned on their parents. From P([’)
it is then possible to calculate a belief in the state of event ; given the instantiated

evidence e. i.e. BEL(A;) = P(4;le).

Definition 1 1 Bayesian network is a directed acyclic graph BN = (U. De) where
U= {41, ..... Apenens S PR 4,} are a set of discrete random variables represented as
nodes in a graph and De = {....dey,. ...} is a set of directed edges. The directed edge
de,, connects the node A, to A,. The joint probability of the discourse of variables U is

given as P(U) = [I; P(Ailpa(A:)) where pa(A;) is the parent set of A,.

The foundation of this definition is the relation between conditional independence
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and the concept of d-separation. Evidence among the variables is transmitted as long as
they are not d-separated. This notion is the fundamental concept for the transmission
of evidence in Bavesian networks. If two variables (nodes) are d-separated then they are

conditionally independent.

Definition 2 Tuwo variables in a causal network are d-separated (f for all paths between
A; and A, there is an intermediate variable A, such that either. the connection is serial or
divergent and the variable Ay is instantiated, or the connection is convergent and neither

Ay or any of its children have received evidence.

The concept of d-separation is best explained using the connections depicted in fig-
ure 3.1. For serial connections evidence from node 4, will influence node Aj if and only if
node -, has not been instantiated. [f node 4, is instantiated then variables 4, and 4; are
independent. For divergent connections evidence among the children nodes 4,... 4, will
not. be transmitted through an instantiated parent node 4,. Basically. variables 4, ... .4,
are dependent as long as the value of A, is unknown. Once the state of 4, is determined
then the variables 4,....1, are independent. Convergent connections are slightly more
complicated. Evidence from the parent nodes. 43...4,. is not transmitted among each
other. They are independent of each other. On the other hand if evidence influences the
belief value of A; then the parent nodes. 4;....4,. become dependent and their belief
values change appropriately. The blocking relations described by the d-separation con-
cept are reflected as conditional independence in Bayes theory. The variable 4; and A,
are independent conditioned on variable A3 and therefore P(A,|A4;, A3) = P(A]42).

Several approaches and systems are already available for the development of Bayesian
networks. These include HUGIN [41], JavaBayes [21], ERGO [3], and Microsoft’s Belief
Network software. This thesis leverages on the development of JavaBayes and explores

primarily how Bayesian networks can be used in a more comprehensive system for the
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perceptual grouping of 3-D surfaces.

3.2 Bayesian Networks for Perceptual Grouping

In this thesis Bavesian networks are used for the specification of the grouping of surfaces
and the calculation of belief values in those formations. The nodes in the network repre-
sent the existence of geometric formations resulting from the grouping of the 3-D sensory
data and the arcs connecting the nodes represent a causal relationship among the forma-
tions. For example. a formation of a set of coplanar surfaces causes the existence of two
parallel planar surfaces. In this particular case the environment is being modeled first by
the use of a Bavesian network and evidential reasoning occurs within the Bavesian net-
work. Each parent node in the network can be considered as a hypothesis of a composite
feature that resulted from the evidence represented by the children nodes. This evidence
is reflected as constraints on the attributes and/or relation among the features detected

by the sensors.

3.2.1 Network Structure by Part Decomposition

Deciding on the structure and variables of a Bayesian network is a mutual exercise. This
is done by applying a theory of hierarchical decomposition by parts used for the modeling
of objects [18. 9. 10. 56]. An example of this type of modeling is demonstrated in figure 3.2
that illustrates a cube decomposed into its components that directly maps to the Bayesian
network shown to the right of the decomposition hierarchy.

The process of decomposing by parts can lead to many solutions and must be guided
by the type of sensory data and any intermediate groupings that can be extracted from
that data while gathering evidence for the formation of the object. This is done by

considering the type of constraints that need to be applied to the data so the model
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Figure 3.2: Decomposition by parts of a cube.

is achieved. Traversal from the leaf nodes (feature sets) up to the root node (object)
implies another constraint applied to the data on top of those used by the children. It is
possible to apply all these constraints at one time but this would lead to a complicated
function with little ability to add evidence from other sources into the network. For
example. the simple decomposition of the cube depicted in figure 3.2 has intermediate
formations depicting the planar surfaces and junctions that have been derived from a set
of 3-D points and/or edge data. These two branches in the network account for the the

availability of both range values and edge data. If any of these were not available, the
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associated branch in the network would have to be eliminated.

The leaf nodes in the network tend to correspond to features that are extracted from
the sensor. these are the feature variables and tend to correspond to readily detectable 2-D
or 3-D features. for example. edges. 3-D points. intensity. and/or color. It is at this point
that any hard evidence will be entered into the network. All other intermediate nodes
correspond to hypothesized formations and groupings among the feature sets. These
may also be relevant groupings depending on the goals of the application. For example.
applications interested in the navigation of autonomous vehicles are more interested in
traversable surfaces. For environment modeling the purpose is to detect particular general
surface formations that could be used for extracting overall room shapes.

Throughout this operation it is important to keep in mind that the purpose of the
Bayesian network is to compute estimates of belief in the formation of unknown groupings.
i.e. those that cannot be readily detected but must be hypothesized from the data. The
intermediate variables and root variables symbolize the formation of groupings that are
not readily detectable. This is ideal for the domain of environment modeling from 3-D

data since nearly all formations are hypothesized from the data.

3.2.2 Quantifying the Network

Bayesian networks tend to model causation. the relation of cause to effect but can easily
be converted to model consequences. events to hypotheses. by inverting the direction of
the Bayesian network. This type of network will be referred to as a consequence network
in this thesis due to the fact that it models the inference of evidence to hypothesis. A
network that models cause to effect is of course known as a causal network.

The example depicted in figure 3.2 utilized the principal of decomposition by parts to
create the perceptual grouping Bayesian network for the formation of a cube. Decompo-

sition by parts results in a hierarchical geometric model commencing from an object to
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its components. This can easily be translated directly to a causal network. see figure 3.3
(a). The same network can be inverted and presented as a consequence network as shown

in figure 3.3 (b). These networks are identical except for the direction of the edges.

<D

Quriees) eried @t

(a) Causal Network (b) Consequence Network

Figure 3.3: Causal and consequence networks for the cube formation depicted in figure 3.2.

Mathematically. the networks are similar in that the propagation algorithm for com-
puting the belief at each node does not change. only the direction of propagation in
the network are opposite to each other. The difficulty exists when additional relation-
ships need to be added to the network for the introduction of evidence from new sources
of information. This is apparent from the computation of P(Cube|Sur faces. Vertices)
needed for the consequence network depicted in figure 3.3 (b), where it is necessary to
combine values computed from the nodes Sur faces and Vertices. An approach to this
problem is presented in section 3.3. This thesis then maintains that modeling of the
grouping process should be performed by causation but when actually quantifying the

network this is performed simpler in the consequence direction using algorithms refered
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to as compatibility functions.

Compatibility functions use the attributes and/or relations among the features to
compute the conditional probabilities required for the Bayesian network. see section 3.3.
Compatibility functions. fpg(A), are based on geometric constraints applied on a set of
attributes A computed from the sensory data and measure how well these features match
the perceptual grouping PG. These are not directly the same groupings that are repre-
sented by the nodes in the Bayesian network but are primarily fundamental constraints
applied to the features that when combined with other constraints can lead to the for-
mations depicted by the Bayesian network nodes. These perceptual groupings conform
closer to those fundamental sets defined originally by the Gestalt laws of organization
and depicted in figure 2.1 in chapter 2. i.e. symmetry. proximity. continuity. .... The
difference is that thev have been developed for 3-D surface data. From this point on.
compatibility functions will be referred solely as fpc without the argument A.

For example. the relation between the formation of surfaces from a set of range values
is based upon a proximity compatibility function. fpan, that measures how well the
points represent a planar surface. Beyond this. other compatibility functions are used
to measure lhow well the surfaces conform to a cube. This is similar in concept to the
system developed by Levitt et al. [47] in that the belief values of the nodes in the Bayesian
network represent a probability of the existence of that feature or geometrical formation
of features. [t differs in that these compatibility functions are not derived from the
hierarchical structure imposed by manufacturing parts. but from generic formations of
indoor environments. Data from these environments tend to be sparse 3-D points and
several intermediate groupings are required that are not apparent from manufactured
parts.

Compatibility functions however tend to favor the use of consequence networks over

causal networks. There are two reasons for this. First, compatibility functions deter-
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mine how well evidence fits the desired hypothesized model. For example. the perceptual
groupings presented for 2-D edges in section 2.1.2 offer a good example of how compat-
ibility functions are a measure of how well the evidence fits the desired hypothesized
model. These measures of symmetry and proximity among the edges can be used to mea-
sure how well a set of edges matches common 2-D geometrical shapes like. triangles and
parallelograms. Secondly. compatibility functions cannot model the conditions when the
hypothesized formations do not exist. which is a requirement for causal networks. The
consequence of this is that the conditional probabilities are set to zero for those situations
when the states of the parents are FALSE. When these conditional probabilities are used
in a causal network the result is that the belief value for the formation of the parent
node is unity. i.e. the hypothesized formation exists irrelevant of the values calculated
using the compatibility functions. Basically the result is independent of the compatibility
function and renders the use of these irrelevant in a causal network.

If this procedure is now reversed so that the belief values are computed from evidence
to hypotheses then more meaningful results are apparent since the conditional proba-
bilities are combined to compute belief values in the formation of the hypothesis. This
approach is closer to the Perceptual Inference Network [68] except that the network is
designed using causation and the compatibility functions are associated with particular

links.

3.3 Conditional Probabilities and Compatibility Functions

In order to place each compatibility function on the same level of reference. a mapping
function is used to map the compatibility functions to a certainty value that exhibits the

following properties.

e [t is bounded between the interval (1,0).
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e [t is a decreasing monotonic function. so that a compatibility value equal to 0
signifies a certainty value of 1. This is equivalent to a perfect match between the

features A and the perceptual grouping PG.

Several mappings will exhibit these properties. such as logarithmic. power. linear.
and trigonometric functions. For this particular case the declining S-Curve function.
used extensively in Fuzzy sets [20]. is proposed as a mapping function. The declining
S-Curve favors rapid changes in the mid-section of the curve and small changes at both
the beginning and end points. This reflects the condition where for compatibility values
close to 0 there will not be much change in the certainty value but rapid changes occur
once the value moves away from 0 significantly. This is a desirable property that seems to
conform well with human judgment where for a particular range of values the certainty
in the occurence of a particular formation is high but reduces quickly after a particular
point. This mapping is depicted as a graph in figure 3.4 and represented by equation 3.1

where parameters % and .3 affect the rate of change in the S-Curve.

’

[ 1 > fro=0 |
. 1=2(fpg/7)? — 0< fpc <3
S(fpg.0.4..3) = . (3.1)
2(frc —7)/7)* = 3< fec <1
| 0 - fpc >

Mapping the compatibility function to a certainty value using an S-Curve mapping

offers several advantages to the user over simply using the compatibility function.

e [t offers a clean separation between the definition of compatibility functions and

conditional probabilities.

e [t introduces a subjective measure into the definition of the conditional probability

that can act as a method for defining the resolution of a match of the geometric
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Figure 3.4: A declining S-curve.
features to the hypothesis.

e [t places the results of the compatibility functions on a uniform level. The range
of the values returned from compatibility functions can have unlimited dimension.

the S-Curve mapping places all the results within the same bounds.

The S-Curves are the primary interface to the user and correspond to the manner
in which a user can decide the bounds on the compatibility functions. The values for
.3 and v are determined subjectively or through experimentation. For example, a user
of the system may subjectively decide that two surfaces whose normals are less than

10 Rads apart are parallel and those greater than 20 are not. These values then can
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be used correspondingly as 3 and +. Alternatively. an experiment could be performed
among a number of users to statistically determine the expected values for the angular
difference between the normals that correspond to parallel and non-parallel surfaces. In
the examples given in chapter 6 the values for .3 and 4 were determined subjectively.
The S-curve mappings for the compatibility functions can be used directly as condi-
tional probabilities for nodes with one parent. Take for example any of the nodes in a
serial connection, similar to those depicted in figure 3.1 (a) or children nodes in divergent
connections similar to those shown in figure 3.1 (b). For these type of connections the

conditional probabilities can be stated as.

P(aila;) = S(fpc.0.3.7)
P(-aila;) = 1-8(fpc.0.3.7)

(3.2)

where A4, is the parent of node 4, and the states of any variable 4; are (a,.-a,).

The above example only addresses conditional probabilities when the state of the
parent node is TRUE. i.e. 4, = a; without taking into consideration the condition when
A, = —a,. A complete specification of conditional probabilities requires that all states
of the variables are covered. The compatibility functions do not address this condition
properly and it is necessary to choose values that are logically correct. For single parent
nodes the natural choice for these conditional probabilities are.

P(ai[—-a_,-) =0 (3'3)
P(—ai|-a;) = 1

This implies that if the parent formation 4; does not exist then the grouping 4,
cannot exist either.

For nodes with multiple parents. i.e. convergent nodes, the approach presented above

cannot easilv be applied but must be modified to account for the existence of the other
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parent nodes. Each directed edge de,, has associated with it a compatibility function
and corresponding S-Curve mapping. For the above single parent examples the edge de,
corresponds to the edge between ; and A; and has associated with it a compatibility
function fps and a mapping S(fpg.0.3.~), where PG corresponds to a particular per-
ceptual grouping. With this in mind the following calculation for conditional probabilities
is proposed.

P((lil(lj """ (lm) = H_—\nfpu(.-‘l,)S(fPG(e.-‘n.:L)’O* 3'-/) (; 4)

P(ﬂ(lll(l_,.....(lm) = 1 _Hg,cpa(.-’l,)S(fPG(e.-ln,A.)-(L ‘j".l)

where fpi(e.,.4,) is the result of the compatibility function fpg corresponding to the
edge associated with the nodes 4, and 4;.
Similarly to the single parent case above. when the state of any of the parent nodes

A, is FALSE then the following conditional probabilities apply.

Pla;la,..... A, .... a) =0
! (3.5)
P(—a;la;..... g, .- a) = 1
where the states of pa(4;) correspond to (aj..... Q... Q).

Combining the declining S-curve values as a product is a conservative approach to
the accumulation of evidence since when more evidence items are added the value of the
product lowers. In particular. the weaker S-curve values can quickly lower the overall
conditional probability. therefore having a significant impact. This is important if the
emphasis is on making certain that all the evidence plays a significant role in the belief of
the formations. Other combinations can be used. For example. an average of the S-curve
values or perhaps choose the maximum or minimum S-curve value. The product rule is

a simple and conservative approach without having to analyse the data.
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3.4 Summary

[n this chapter an approach was presented for the definition of a Bavesian network for
the perceptual grouping of features extracted from a sensor. It was demonstrated that
the theory of hierarchical decomposition by parts can be used to create the structure of
the network. Conditional probabilities. required for the network. are determined using
compatibility functions based on geometrical constraints among the features extracted
from the sensory data. It was also demonstrated that the approach of using compatibility
functions can be used for specifving conditional probabilities for the network but imposes
restrictions in the direction of the network to be from evidence to hypotheses. i.e. bottom
up.

The following steps were presented in the construction of a Bayesian network for

perceptual grouping:

e Define a set of variables that represent possible perceptual groupings in the sensory
data by using a decomposition by parts methodology where the desired formation
is decomposed into sub-groupings and finally into the actual sensed features. These
variables are boolean random variables that take on the values TRUE or FALSE to

represent the existence of a particular geometric formation.

e From this decomposition the structure of the Bayesian network will be determined
bv mapping the links from a parent sub-group to its child with a directed edge.
These are causal links representing the cause effect relation between the parent
grouping to the child sub-grouping. During the decomposition by parts procedure
the compatibility functions are defined for each link in the network by consider-
ing what perceptual grouping constraint function could be used in determining a

certainty value in the quality of fit of the data to the perceptual grouping.
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e For each compatibility function define a declining S-curve that will be used to map

the values from the compatibility function to conditional probadbilities.

e Define the conditional probabilities for each link using the procedure defined in

section 3.3.



Chapter 4

Compatibility Functions for 3-D

Perceptual Grouping

In this chapter several compatibility functions have been defined for the perceptual group-
ing of 3-D surfaces that use both attributes extracted from the surfaces and their respec-
tive boundaries. These compatibility functions try to measure some generic perceptual
grouping operations among planar surfaces with the intent of detecting corners and con-
tinuity among the surfaces. Later in section 6.2 a Bayesian network is presented that uses
these compatibility functions to compute the conditional probabilities of the network.
Five compatibility functions have been defined. these are: an edge compatibility func-
tion. a planar surface compatibility function. a parallel compatibility function. a coplanar
compatibility function, and a surface proximity function. These 5 compatibility functions
are not dependent on the particular network being deployed but can be used with other
object recognition or perceptual grouping approaches for 3-D surfaces. Some of the com-
patibility functions are relatively simple and are common measurements in the literature.

for example planar surface quality, coplanar surface, and parallel surface measurements.
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Edge quality and proximity are unique approaches developed for this particular thesis.
All approaches have been presented for coherency. Along with the development of the
compatibility functions. examples are presented of the functions applied to actual 3-D
data points. For consistency, the compatibility functions are applied to the same set of
3-D data points depicted in figure 4.1 and figure 4.2. Figure 4.1 is an intensity image
while figure 4.2 is an isometric view of the 3-D data points. The 3-D data is captured at
the same time as the intensity data and stored as an image and can be referenced using

the image coordinates.

Figure 4.1: A typical intensity image of a room captured from the BIRIS portable camera.

This image was taken using a small portable 3-D laser scanner, known as BIRIS [13],
of a laboratory measuring approximately 5m square. A schematic diagram of the top
view of the room is shown in figure 4.3 showing the position of the camera at the center
of the Cartesian coordinates and displaying a scan angle of approximately 140 deg to the

left bottom of the figure.
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Figure 1.2: An isometric view of the 3-D data points corresponding to the points in
figure 4.1.

As one can see there are many missing points and fragmented surfaces. To the right
in the image is a hallway constructed of temporary partitions which can be clearly seen.
but to the left is a series of bookshelves and table tops that are nearly indecipherable by

the human eye.

4.1 Planar Surface Compatibility

Let us assume that the data is normally distributed about a planar surface and therefore
all information about the planar surfaces distribution is available through its covariance

matrix which is defined in the following manner.

(zi — )2 (zi — Zi)yi — 5:) (zi = i)z — %)

Covs, = | (yi — gi)(zi — %) (yi — §i)? (yi — i) (=i — 5) (+.1)
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Figure -1.3: A schematic of the top view of the room where the scan in figure 1.2 was
taken.
where £,. §;. and 3; are the mean values of the r. y. and = values of surface §,.

A compatibility function for determining a quality of fit for the points to the surface
is to take the mean of the squared distance of the points from the planar surface. The
eigenvectors of the covariance vector are used to compute the parametric equation for the
planar surfaces and the distance from a point to that surface can be computed from this

equation. The result is the following compatibility function for planar surfaces from 3-D

points,

. 1
fotanldj) = _V_I;Z dz, (4.2)
° J

where d; is the distance of point j from the surface and .Vp are the number of points that

define the surface.
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The surfaces are extracted from the data using a hierarchical segmentation algorithm
developed by Boulanger [14] and the results of this are presented both as an image map.
see figure 4.4 where each surface has been represented by an intensity gray level value

and labeled. and as a set of reconstructed 3-D points in figure 4.5.

Figure 4.4: Surfaces extracted from the range data of the image in figure 1.2.

One can again clearly see that on the right there is a series of planar surfaces defining
a hallway but to the left the surfaces do not really show any form of coherence. Ta-
ble 1.1 shows the results of applying the planar compatibility function to the surfaces

depicted in figure 1.5. The S-curve value is computed using the following arguments.

S(fotan- 0. .578. 1.156).
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Figure -1.5: Surfaces extracted from the range data of the image in figure 1.1 shown as
reconstructed 3-D points.

4.2 Surface Edge Compatibility

This compatibility function is primarily one that measures how well the edge of a planar
surface defines a polygon that represents that surface. This computation can be performed
using a 2-D image of a set of 3-D points since a polygon in 3-D space can easily be mapped
to a 2-D surface. The advantage of this is the computations are simpler than in 3-D and
the operation can be applied to an image map and therefore can also be used on intensity
images.

The compatibility function is rather simple and involves a ratio of the area defined
by the polygon to the area of the surface itself in the image plane and is computed using
the following equation.

Area(S;) — Area(Pols,)

fedge(Si, Pols,) = Area(S) . (4.3)

where Area(S;) computes the surface area of surface S; based on all the points within

the surface and Area(Pols,) computes the surface area of surface S; based the polygon.
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S, fplan S(fplan) Si fplrxn S(fplan) Si fplun S(fplan)
I 0.00 1.00 13 0.42 0.74 25 0.03 1.00
2 0.27 0.89 14 0.02 1.00 26 0.10 0.9R%
3 0.11 0.98 15 0.06 0.99 27 0.12 0.98
4+ 0.16 0.96 16 0.25 0.91 28 1.00 0.0-4
5 0.16 0.96 17 0.03 1.00 29 0.04 1.00
6 0.62 0.42 18  0.06 1.00 30 0.05 1.00

0.00 1.00 19 0.1% 0.96 31 0.03 1.00
0.08 0.99 20 0.20 0.94 32 0.28 0.88
9 0.35 0.82 21 0.01 1.00 33 0.17 0.96
1 0.06 0.99 22 0.00 1.00 34 1.80 0.00
1L 0.66 0.36 23 0.0V 0.99 35 0.01 1.00

12 0.21 0.93 24 0.01 1.00 {36 0.01 1.00

7

Table 1.1: Example of using the planar compatibility function.

Pols, . around S;. These two values in most situations are not equivalent since the edges
extracted from 3-D data tend to be irregular and noisy.

The challenge is in developing an algorithm to extract a set of straight lines from the
surface’s border that is a reasonable representation of a polygon for that surface. This
is performed by tracking the surface’s border in the image plane and at the same time
computing an estimate for the curvature of the edge. This algorithm is an extension of
the one developed by Gao et al. [31] for the examination of a new invariant measure for
curve detection based on perceptual grouping. This algorithm uses an intensity gradient
operator to determine the edge to track. This same gradient vector can be used to get an
estimate of the curvature of the boundary of the surface since it is applied to one surface
at a time in the image plane. The curvature along the edge is computed as a difference
in a running average of the gradient along the boundary. Currently this filter uses the
average of 3 pixel gradient values and appears to be able to filter the majority of large
changes in the gradient values which are due primarily to the discretization of the image.

The high curvature pixel points can be used as control points in defining a polygonal
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surface which represents the planar surfaces extracted from the 3-D sensor values. This
still results in a large number of points labeled as high-curvature points especially a
great number of continuous high curvature points. In most cases boundaries with many
continuous high curvature points also tend to be representative of fictitious boundaries
caused by sensor degradation rather than actual surface discontinuities. With this in
mind. sections of a boundary edge with many continuous high curvature points can be
represented with a straight line that joins the first point of a set of continuous high
curvature points to the last one in the set.

The edge extracting algorithm was applied to surface 22 from figure 4.4 and the results
are depicted in figure 1.6 (a) along with the polygon that was computed from a selected

set of high curvature points.

Continuous high curvature
points replaced by a straight line.
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Figure 4.6: Boundary of a surface from the scene depicted in figure 4.t and its accompa-
nyving polveon.

The boundary is a chain of dark and gray pixel values. Those pixels with dark values
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are pixels marked as pixels with a curvature above a threshold value. The light gray
pixels are boundary points with a curvature value near 0. Figure 4.6 (b) is a polygon
representation for that surface. Notice how a number of extrusions on the right hand
edge have been replaced with straight line segments. This is where a series of continuous
high curvature points existed. This same algorithm can be applied to all the surfaces
depicted in figure 4. so as to extract the polygonns representing the 3-D planar surfaces.
The results of this operation are depicted in figure 4.7 where the polygons are formed by
connecting the high curvature points (shown as white points) with straight lines (shown

as light gray lines).

Figure 4.7: Boundary edges extracted from the surfaces depicted in figure 1.4.

Table 4.2 shows the results of applying the edge compatibility function to the polygons
and surfaces depicted in figure 4.7. The S-curve value is computed using the following
arguments. S( fedge,0.0.25,0.50).

Several of the smaller surfaces have been removed from the compatibility function
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Si fcdge S(fedge) Si fedye S(fedge) Si fedye S(fcd_qe)
3 042 0.05 16 0.25 0.49 26 0.25 0.52
4 0.37 0.14 17 0.07 0.96 27 0.16 0.79
6 0.33 0.23 IS 0.17 0.78 28 0.32 0.2%
T 020 0.68 19 0.12 0.88 29 0.10 0.93
S 0.21 0.63 20 0.05 0.98 31 Q.06 0.97
9 0.1l 0.05 21 0.6+ 0.00 32 0.16 0.80

10 0.11 0.91 22 0.04 0.99 33 0.00 1.00
i1 0.19 0.71 23 0.14 0.85 34 0.27 0.42
12 0.18 0.75 24 0.21 0.66 35 0.12 0.89
13 0.36 0.16 25 0.11 091 36  0.0® 0.95
14 0.04 0.99

Table 1.2: Example of using the polygon compatibility function.

calculations. These are surfaces 1. 2. 5. 15, and 30.

4.3 Parallel and Coplanar Surface Compatibility

The compatibility functions for parallel surfaces and coplanar surfaces involve the com-
parison of two planar surfaces. A measure of parallelism between two planar surfaces can
be derived by evaluating the length of the vector computed from the cross product of the

normals to the surfaces. This leads to the following geometrical compatibility function.

Sorut(Si. 85} = |Ns, x Ng |, (4.4)

where Ng, and Ns, are the normals corresponding to the planar surfaces S; and S;.
Coplanar surfaces are a more restricted case of parallel surfaces in which the two

surfaces are in fact the same surface if the boundaries were removed and the surfaces

extended. To determine coplanarity two conditions must be satisfied: the surfaces must

be parallel to each other and the angle between the normals of the surfaces and the line
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joining the center point of the two surfaces is approximately 90°. The second restriction
ensures that the two planar surfaces share the same common planar surface. Equation 4.4
can be used for measuring the degree of parallelism while a geometrical compatibility
function based on the dot product between one of the surface normals and the vector
joining the two centre points of the surfaces can be defined as an added constraint. The

following equation as a measure of coplanarity was used.

feopi(Si. S;) =< Ns,.C's, = C's, >. (4.5)

where C's, and C's, correspond to the location of the centers of the planar surfaces 5; and
S, respectively and the < «.b > operator is a dot product operation between vectors a
and b.

Table 4.3. at the end of the chapter. shows the results of applving the coplanar com-
patibility function to the surfaces depicted in figure 4.4. The S-curve value is computed
using the following arguments. S( foop.0.0.1.0.2).

There are many surfaces with f .y and f..pr equal to 0. This is due to the small
value for - that defines surfaces with normal angular deviations greater then 0.2 radians
not to be parallel. [n a similar fashion this limit is placed on the coplanar calculation.
Results again seem cousistent with a person’s judgment when viewing the surfaces in
figure 4.5 and determining if they are parallel or coplanar. There have been no formal
tests performed to determine how well the results match human judgment.

The above surface parallel and coplanar relations rely on the detection of adjacent
surfaces. This is rather simple for adjoining surfaces but relatively difficult for surfaces
separated by undetected sensory readings. It is important to determine surfaces that
may be possible neighbours even across gaps and for that a unique neighbour detection

algorithm was developed that can also estimate among surfaces a common gap.
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4.4 Adjacent Surfaces

Neighbourhood calculations among surfaces is not a simple procedure due to the rough-
ness of surface boundaries and gaps between surfaces. Again. one can take advantage
of the fact that the 3-D data is ordered and stored as an image allowing the neighbour-
hood computation to be performed in the 2-D image plane using the labeled image of the
surfaces and their corresponding boundaries depicted in figures 4.4 and 4.7 respectively.

After the sirface’s boundary has been defined. adjacent surfaces can be determined
by projecting from each pixel on a surface’s boundary out in a direction away from
the surface until it intersects with another surface’s boundary. Unlike conventional re-
gion growing algorithms. this algorithm will mark the particular intersection point with
another adjacent surface’s boundary. This is important in estimating a common region
between surfaces and will become more apparent in section 4.5 when a proximity measure
is defined between two surfaces. In region growing techniques the particular neighbour
associated with a pixel on a surface’s edge is lost as regions are grown outward. Propa-
gation of boundary normais are affected dramatically by noisy edges but this has been
substantiallv minimized by using a polygon representation of the surface.

The result of using this neighbourhood determination algorithm is a larger set of
possible adjacent segments than were originally computed using direct surface to surface
contact. This of course is crucial for fragmented data like the type that is common in the
scanning of indoor environments.

The procedure for the determination of adjacent surfaces and their respective points
on the adjacent surface's boundary is depicted in figure 4.8. The points on the boundary
of surface S> which intersect with the normal projections of surface’s §; boundary are
labeled as adjacent boundary points of S;. The dark points are the extrema adjacent

boundary points while all the other adjacent boundary points (shown in white) are in
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between these two points. The extrema adjacent boundary points define a segment on the
boundary of surface S, that encompases all the adjacent boundary points. The collection
of the adjacent boundary points of surface S, along with their respective corner points
of surface S, can be used to compute a common gap between the two adjacent surfaces.
The determination of this common gap is discussed in greater detail in section 4.5. The
results of the procedure is also shown applied to surface 22 and depicted as an image in

figure 1.9.

Extrema Adjacent Boundary Point

Extrema Adjacent Boundary Point
O Adjacent Boundary Points

Figure -1.8: Adjacent boundary points of surface S; with surface S..

[n this image the poiuts corresponding to the boundary of a segment are the same
gray intensity as their adjacent segment. The black points correspond to the vertices
that define the polygon around the surface. The top and bottom boundary points tend
to be white and signify that their immediate neighbour is the background since no other
surface was detected when the boundaries were projected outwards.

Now that an algorithm has been developed for the determination of neighbouring sur-
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Figure -1.9: Adjacent boundary points for surface 22 and adjoining surfaces.

faces and their corresponding neighbouring boundary points these can be used to decide
which surfaces are neighbours and proceed to compute a surface proximity compatibility

function.
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4.5 Surface Proximity Compatibility

The final step for the detection of corners and continuous coplanar surfaces is based on
a proximity measure between two planar surfaces. Defining a proximity compatibility
function for 3-D surfaces is challenging, because the definition of proximity is not unique
for this type of data. Defining a proximity measure requires one to decide on a viewing
direction to the data and on a definition of distance between the surfaces. The proposed
approach defines a compatibility function among the surfaces by measuring the distance
between the boundary of twosurfaces. This approach is similar to Fan et al. [26] proximity
measure for 2-D lines except it is applied to 3-D data. [n this case the lines are replaced
by surfaces and the gap by the area between the edges of the surfaces. With this in mind

the following measure of proximity is proposed.

_ Area(Gap(Pols,. Pols))

Area(S; + S)) (1.6)

fprur(POIS,~ POISJ~ S;\SJ)

where (fap(Pols,. Pols)) computes a polygon that defines a common gap between the
surfaces S; and S, based on their respective boundaries.

In section 4.4 an approach was presented for the determination of points between the
boundaries of two neighbouring surfaces that could be used for defining a common gap
among the surfaces. An example of a common area was shown in figure 4.8 as a hashed
out polvgon between surface S; and S2. From this polygon it is possible to estimate a
3-D common surface by triangulating the surface and estimating its surface area. The
approach for computing the proximity measure is primarily performed in the 2-D image
space until the actual surface areas are required for computing the proximity compatibility
function. The advantage of performing the computation in the 2-D parametric space is
efficiency, since the shapes of the surfaces and the gap between them are polygons and

computations are much simpler in a 2-D image space than 3-D.
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An approximation for the shape of the gap between the surfaces is done by collecting
the neighbour points and ordering them such that a polygonal surface is defined common

to both surfaces S| and S». This is done in the following manner.

1. Determine the extrema points (dark circles in figure 4.8) of the neighbour points

on Y, that correspond to S,.

2. Determine the segment of the boundary on S, that contains all the neighbour points

including the extrema points.

3. Extract from this segment the corner points. since all that is required to define the

segment are the extrema points and the corner points within the segment.

4. The gap is defined by joining this segment with the segment from the boundary of

Sy that originally defined the neighbour points from the boundary of 5.

With this approach it is possible to get different answers depending on which surface
is chosen as the originator and which as the neighbour. This is due to the fact that the
normal projections are different between the two surfaces, see figure 4.10 (a) and (b} as
an example.

Since for any two surfaces there exists two possible approaches in determining the gap
between the surtaces. one will get two solutions for the proximity compatibility measure
and these can be combined by taking an average of the size of the gap or the union of
the two gaps.

Up to this point all computations were performed in the 2-D image plane while actual
proximity measures must occur using the 3-D surface. To get the correct estimate for the
proximity measure between the surfaces it is necessary to compute the area of the 3-D
surfaces and not the 2-D image polygons. Since these particular surfaces are planar their

areas can easily be computed by using any common algorithm for computing the area of a
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Figure 4.10: Proximity gaps between surface S; and surface S; (a) and between surface
S. and surface 5.

polygon in 3-D space. An estimate of the area of the gap is performed by approximating
it as a triangular mesh [69] and summing the areas of the triangles. This triangular
mesh approximation is necessary because the shape of the gap can be an irregular shaped
surface and not planar.

An example of this is shown in figure .11 that shows the gap computed between
surfaces S;rand S;3. The gap surface had to be triangulated and is shown in figure 4.11
(a) as an image and in figure 4.11 (b) as a 3-D surface along with Sjrand Sy3.

Table +4.4. at the end of the chapter. shows the results of applying the proximity
compatibility function to the adjacent surfaces depicted in figure 4.4. The S-curve value
is computed using the following function S(fprez,0.0.25,0.5). and the gap size is set to
the average of the two surface area results.

Several comments can be made about these results. In some situations the proximity

compatibility function returns drastically different values when the originating surface
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Figure 4.11: Triangulated proximity gap between surfaces 5,7 and 53.

is switched with the neighbouring surface. For these situations both results have been
displayed in the table. For example. surfaces 6 and 20. 10 and 31. 16 and 34. and 23 and
31 have dramatically different proximity values for the reciprocal direction. The primary
reason for this difference is that the shape of the boundary between the two surfaces are
very different. in particular the segment of the boundary that is considered as common to
both. This is a pitfall in the algorithm but perhaps not a deterrent since it offers another
clue that the surfaces more likely are not part of the same surface but two completely
different surfaces. When the shape of the gap between the surfaces is nearly the same
from the perspective of the two surfaces there exists a sense of symmetry as well as

proximity. These two measures give a strong indication of a fragmented surface instead
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of two separate surfaces. For this thesis an average value for the proximity measure was
used and no attempt was made to integrate any knowledge about boundary symmetry.
Note that a proximity measure was not available for all adjacent surfaces. For example
surfaces 20 and 3. 22 and 35. and 22 and 36 do not have any proximity values. This
has to do with the fact that the algorithm cannot determine a polygon between adjacent
surfaces due to the numerous intersections that can occur when the points are so close
to each other. The algorithm tries to correct for this but eventually fails if it cannot
remove all the intersections. A recommendation for this is to determine this gap by
directly computing the distance between two adjacent points and integrating along all
the adjoining points between two surfaces. For coplanar surfaces this area will approach

zero but for non coplanar surfaces the area can be fairly significant.

4.6 Summary

In this chapter. compatibility functions were presented that compute a measure of fitness
in a perceptual grouping for a surface or a set of surfaces. These compatibility functions
measiure. the planar quality of a surface. how well the boundary represented a polyvgon
for a surface. a measure for parallel and coplanar surfaces. and a proximity measure
among surfaces. Examples were presented of these algorithms applied to an actual set
of 3-D points to demonstrate their actual performance. Along with these results were
computations of S-curve values that are used to compute the conditional probabilities in
a Bayesian network used for grouping the surfaces. It is now possible to actually compute
belief values for the formation of corners and continuous surfaces. This procedure though
results in numerous unrelated Bayesian networks and an inability to specify the grouping
operation in a graphical declarative manner. To be able to perform any further reasoning

on the results it is better to develop a unified representation of knowledge extracted from
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the sensory data and uncertainty in the perception of that data. This representation is

developed and presented in chapter 5 and referred to as a Bayesian attributed hypergraph.
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S, SJ fprll S(fprll) fcopl S(fcapl) Si SJ fprll S(fpr.'l) fcopl S(fcopl)
3 33 0.26 0.00 -0.64 0.00 16 34 0.42 0.00 0.41 0.00
3 18 0.23 0.00 0.26 0.00 17 36 0.06 0.84 0.54 0.00
27 0.96 0.00 0.93 0.00 1T 19 0.73 0.00 -0.35 0.00
6 10 0.76 0.00 -0.56 0.00 18 36 1.00 0.00 -0.89 0.00
6 20 0.6 0.00 0.68 0.00 18 33 0.18 0.01 -0.35 0.00
6 23 0.1 0.00 -0.36 0.00 20 33 045 0.00 -0.71 0.00
T 14 099 0.00 -0.60 0.00 20 34 0.98 0.00 -0.63 0.00
T 21 0.01 1.00 0.00 1.00 20 23 0.12 0.31 -0.50 0.00
T 35 0.05 0.39 1.00 0.00 21 24 0.04 0.93 1.00 0.00
X 22 1.00 0.00 0.99 0.00 21 35 0.05 0.85 0.84 0.00
X 36 1.00 0.00 0.97 0.00 22 35 1.00 0.00 0.47 0.00
X 1% 0.10 0.7 0.07 0.73 22 25 0.98 0.00 -0.74 0.00
3 33 0.17 0.05 0.33 0.00 22 29 0.24 0.00 -0.92 0.00
9 19 0.07 0.76 0.02 0.98 22 36 0.02 0.98 0.73 0.00
9 16 0.79 0.00 0.98 0.00 23 31 0.24 0.00 -0.87 0.00
9 34 091 0.00 0.52 0.00 24 35 0.02 0.99 -0.01 1.00
9 I8 0.76 0.00 -0.38 0.00 25 29 1.00 0.00 -0.65 0.00
10 33 0.07 0.73 0.61 0.00 26 31 0.06 0.85 -0.07 0.73
10 31 0.11 0.44 0.80 0.00 27 33 0.22 0.00 0.37 0.00
10 28 0.32 0.00 0.50 0.00 27 32 0.24 0.00 0.02 0.98
1 23 0.21 0.00 0.93 0.00 27 28 0.19 0.01 0.92 0.00
12 22 1.00 0.00 -0.90 0.00 27 31 0.07 0.74 -0.18 0.02
12 17 1.00 0.00 0.91 0.00 28 31 0.22 0.00 -0.82 0.00
13 36 1.00 0.00 -0.36 0.00 32 33 045 0.00 -0.95 0.00
13 17 1.00 0.00 0.45 0.00 33 34 0.97 0.00 0.23 0.00
14 22 0.08 0.69 -0.08 0.72

Table 4.3: Example of using the parallel and coplanar compatibility functions.
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Si SJ fpro.r S(fpro.t) Si 51 fpro.r S(fpror.)
3 33 0.02 1.00 13 17 0.04 0.99
3 18 0.01 1.00 4 22 0.15 0.83
4 27 0.01 1.00 16 34 0.36 0.15
6 10 0.06 0.9% 34 16 0.01 0.99
6 20 0.01 0.99 17 36 0.15 0.81
20 6  6.36 0.00 17 19 0.09 0.93
6 23 0.07 0.97 1S 36 0.15 0.83
T4 0.02 1.00 I8 33 0.02 1.00
T 21 001 1.00 20 33 0.16 0.80
T35 0.02 1.00 20 23 0.01 1.00
S 22 0.08% 0.95 21 24 2.10 0.00
8 36 0.14 0.85 21 35 0.02 1.00
S 18 0.19 0.70 22 25 0.38 0.12
33 0.05 0.93 22 29 0.40 0.07
9 19 0.03 0.99 23 31 0.52 0.00
9 16 8.33 0.00 31 23 0.0} 0.99
9 34 0.04 0.9% 24 35 0.02 1.00
9 1% 0.02 1.00 25 29 0.04 1.00
10 33 0.17 0.77 26 31 0.02 1.00
10 31 0.33 0.24 27 33 0.07 0.96
31 10 0.01 1.00 27 32 0.0l 1.00
10 28 0.15 0.81 27 31 0.02 1.00
il 23 0.18 0.74 27 28  0.08 0.95
12 22 0.01 1.00 28 31 0.0l 1.00
12 17 0.0t 1.00 32 33 0.I7 0.76
13 36 0.05 0.98 33 34 0.02 0.99

Table -1.4: Example of using the proximity compatibility function.
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Chapter 5

Bayesian Attributed Hypergraphs

[t is necessary to define a suitable representation for maintaining the features extracted
from the sensorv data and for the models hypothesized from those feature sets. Along
with the hypothesized models is the need of a belietf value in the formation of those
models. Previous chapters. in particular chapter 3. have dealt primarily with the proce-
dural knowledge required to compute belief values in the formation of groupings from the
sensory data. This chapter introduces a representation. called the Bayvesian Attributed
Hyvpergraph that is a unified representation for declarative knowledge and the knowl-
edge required for the updating of belief values using Bayesian networks. [t is a generic
representation that is not influenced by the limitations that are imposed by the use of
compatibility functions but can be used by different approaches.

A BAHG maintains one representation for the grouping of sensory features but may
contain several instantiations of Bayesian networks representing the formation of higher
order groupings. This is required when analyzing computer images for the formation of
perceptual groupings from feature sets due to the combinatorial checking among those
feature sets. If a unified representation is not maintained several separate instantiations of

the perceptual groupings occur and it becomes an unmanageable task to determine which
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of these are the same grouping. This will be demonstrated in more detail in section 5.3.
Another advantage of a BAHG is that conventional graph operations can be performed on
the BAHG that allow for the grouping of several feature sets where the number of feature
sets is not known priori. This is not easily specified with conventional BN development
environments where the number of feature sets must be explicitly mentioned. Fortunately
this limitation is not a limitation imposed by the Bayesian network itself but primarily a
problem with the creation and instantiation of the network. It is important to still allow
the user to explicitly specify multiple feature groupings in some language and use the
compatibility functions to create groupings from multiple feature sets.

BAHGs also facilitate decisions that must be taken after the sensory data has been
grouped. For example. in the domain of environment modeling. sensory data is grouped
to hvpothesize a formation not readily detected by the sensor. After using a Bavesian
network to compute the belief value in that formation it is necessary to act upon that
knowledge and construct a model using the hypothesized formation. This is a separate
procedure than that of maintaining belief values in the perceptual groupings. A unified
representation. like the BAHG. facilitates this process by acting as the common repository
of declarative knowledge.

This chapter will present a definition for the BAHG and an approach to the creation of
a BAHG for perceptual grouping that uses a graphical network interface and compatibility

functions.

5.1 Bayesian Attributed Hypergraph (BAHG)

Bayesian Attributed Hypergraphs are an extension of Attributed Hypergraphs (AHGs)
which have been used successfully for object recognition in the early 1990s [81. 26. S0.

52. 82]. Most of this previous work had focussed on the construction and definition of
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AHGs from existing Computer Aided Design (CAD) models and the comparison of AHG's
derived from models to those extracted from sensory data. All of these approaches use
rule-based heuristics as the knowledge that guides the pattern matching process. Rule-
based systems are difficult to maintain and develop because the dependencies among
the variables are not easy to model and do not offer a declarative manner to express
the often hierarchical structure seen in perceptual grouping and object recognition. In
most circumstances decisions on the goodness of the sensory data were done at an early
stage in the process and therefore evidence cannot be accumulated throughout the object
recognition procedure.

BAHGs on the other hand maintain belief values in the formation of hyperedges and
represent instantiations of Bayesian networks that are used to update these belief values.
Because a Bavesian network approach is taken. the dependencies among the hyperedges
are specified using a BAHG network which is similar to a Bayesian network but allows for
the specification of construction functions for creating the hyperedges. and PDF functions
for computing the conditional probabilities. The BAHG is an instantiation of a type of
hyperedge so it is necessary to present a number of formal definitions for attributed graphs

and hypergraphs.

Definition 3 An attribute pair is an ordered pair (A,. A;) where A, is an attribute

name and Ay is the attribute value.

Definition 4 An attribute set is an m-tuple {p;. p2. ---. pm} where each element is
an attribute pair. The attribute set of a surface. for example. could be

S = [(type. planar). (parameters. (ny. na. n3)). (color, red)].

Definition 5 An attributed vertex is a verter associated with a verter attribute set.

An attributed edge is an edge associated with an edge attribute set.
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Definition 6 in attributed graph is a graph G, = (V,, 4A;) where
Vi, ={ty. -+, tp. -+, Uy, ---. Uy} is a set of attributed vertices and
Ay ={---. apg. ---} is a set of attributed edges. The edge ap, connects vertices v, and

v,. If the edges are directed. we call them arcs.

Attributed graphs have been used extensively for representing attributes and relations
among geometric features either for sensory perception or computer graphics. The funda-
mental features used as examples in this thesis. i.e. planar surfaces and their respective
boundaries. have been originally represented as attributed graphs. A simple example is
the line drawing of a room depicted in figure 5.1 (a). It is a typical drawing of a room
that the human has little difficulty in perceiving the shape and structure of the room.
The processing required on this drawing is simpler than is required for actual sensory
data since there is no noise in the image and the detection of junctions among the edges
is relatively easy. Figure 5.1 (b) is the attributed graph representation for this room that
depicts the lines and junctions among those lines.

This attributed graph is a direct representation of what is depicted in the image.
i.e. the lines and the types of junctions among the lines. It is fairly limited as one can
tell by the fact that it cannot represent the actual lines that form a particular type of
junction but simply represents all the lines that connect to the line. For example line /s
has 4 connections with other lines. Three of these are “T-junctions™ while the other is a
“Y-junction™. The attributed graph can differentiate between these connections but only
among any 2 set of lines. Therefore. the “T-junctions™ are properly represented with one
attributed edge between the two lines forming the “T-junction”. but the “Y-junction™ is
formed between 3 lines and requires two edges to represent this connection. The result is
that the node representing lg will contain 5 edges instead of 4 representing the particular

tvpe of connections.
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Figure 5.1: Line drawing of a room (a) and its attributed graph representation (b).
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Hvpergraphs on the other hand are a representation in which an arbitrary number of
features extracted from the sensory data can be grouped based on a compatibility func-
tion. So for the above example using line g, all that is required are 4 hyperedges that
can represent the particular junctions. Hypergraphs are ideal for representing the per-
ceptual grouping of feature sets since the hypothesized formations are easily represented
as hyperedges. Hypergraphs and attributed hypergraphs are defined in the following

manner.

Definition 7 A hypergraph is defined as an ordered pair H = (V. E'} where
V={vy. ---. tn } are vertices and E = { €,. ---. €n } are the hyperedges which are

subsets of X such thate; #0. i=1. ---. mand | JZ,¢; = X.

Definition 8 An attributed hypergraph (AHG) H, = (V,. E,) consists of a set of
attributed vertices V', and a set of attributed hyperedges E,. The attributes of the rertices
are similar to those of attributed graphs. The attributes of a hyperedge are mappings from
the set of vertices in the hyperedge into a range which provides a description of the set.
The range can be (1) an attributed graph defined on the verter set. (2) a set of nominal

or ordinal values. (3) a geometrical configuration of that set. or (1) a set of hyperedges.

Using the data in the attributed graph depicted in figure 5.1 (b) it is possible to
perceive certain formations from the image and represent them as hypergraphs. This
is demonstrated in figure 5.2 where several surfaces have been perceived from the lines
and their respective junctions. For a line image one can use the approach developed by
Wong et al. [83] based on the concept of trying to extract closed polygons from a set of
edges. The hyperedges can represent the actual edges that form the surfaces while the
attributed graph cannot.

Even with this simple example of a line drawing, that is free of noise imperfections,

a great deal of perception is occuring and ambiguity of the definition of a surface still
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Figure 5.2: An attributed hypergraph showing surface formations hypothesized from the
attributed graph in figure 5.1.

exists. For example. from the lines defined in figure 5.1 it is not clear how surface 5, is
defined. Using the lines [5./y.and /s is ambiguous because it encompasses S3. on the other
hand if lines l>. ls. and [7 are incorporated into the definition then only portions of line
l; define S5. These examples just emphasize the difficulties associated with interpreting
even clean line drawings.

Hypergraphs can also be presented as hierarchical networks since the nodes that are

part of the hyperedge can be considered as the children of the hyperedge. The children can
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be other hyperedges and therefore it is possible to create hierarchical directed networks
similar to those used for Bavesian networks and hierarchical decomposition.

AHGs are very generic representation that are very powerful for object recognition
and perceptual grouping but do not have a mechanism for maintaining beliefs in the
formation of groupings among feature sets. Bayesian networks are a natural fit with
AHGs because they can be considered as hypergraphs [61] instead of simple directed
graphs. Therefore. it is natural to combine the strengths of these approaches. Bayesian
networks are designed as a mechanism for reasoning with uncertainty. They do not try
to maintain any other type of declarative knowledge or describe an approach for the
management of multiple instantiations of Bayesian networks required for many image
analvsis problems. A solution for this is to formulate an AHG that can maintain levels
of belief in the formation of the hyperedges and from the AHG be able to formulate
Bavesian networks to maintain the belief values. This differs from creating a table that
points to several Bayvesian networks and instead tries to approach the problem from an
attributed hypergraph perspective. With this in mind the following is a definition for a

Bayesian attributed hypergraph.

Definition 9 1 Bayesian Attributed Hypergraph BAHG, = (V.. E}) is an AHG
where the vertices V,, are hyperedges and all the hyperedges have associated with them a
belief value. The hyperedges must contain the following attributes: state.bel'. pdfi.and
basisi. Attribute state defines the states the hyperedge represents. Attribute bell main-
tains a belief in the states of the hyperedge. Attribute pdft is a set of conditional proba-
bilities conditioned on the basis hyperedges. Attribute basis' is a list of hyperedges that
represent the parents of E.. The indez i allows for multiple instantiations of Bayesian

networks.

One of the strengths of a BAHG is the ability to maintain multiple instantiations
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of Bayesian networks while only requiring single instantiations of the hyperedges. For
each Bavesian hyperedge there may be several belief. conditional probabilities. and basis
that pertain to an instance of a particular Bayesian network. Figure 5.3 shows a BAHG

representation for the formations of corners from the surfaces depicted in figure 5.2.

Figure 5.3: A Bayesian attributed hypergraph showing the formation of surfaces and
coplanar surfaces represented in the AHG in figure 5.2.

The BAHG is shown now as a hierarchical directed graph because it is not possible
to represent hierarchical structures using the freehand drawn bubbles in figure 5.2. The
elements that form the hyperedge are depicted using directed edges from the parent
hyperedge to the children elements. In a BAHG all nodes are considered hyperedges
so the elements that form the hyperedge are themselves hyperedges. In this particular
BAHG two corner formations are depicted: Corner' and Corner’ that are formed from
surfaces S;. S2. and Sg and Sy, S,, and S5 respectively. This particular BAHG also is
indexed with i and j to represent two distinct Bayesian network paths and two corner

instantiations. Section 5.3 gives a more detailed justification and presentation of the
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maintenance of multiple Bayesian networks using a BAHG. For now it suffices to simply
show this as a split node.

BAHGs are generic structures that do not constrain the direction of computation of
the belief values of the nodes. They simply store relations. belief values and conditional
probabilities that allow Bayes theory to be applied in order to compute the belief values in
the hyperedges. How and where these values are obtained are not part of the definition
of the BAHG and can be specified or computed using compatibility functions. When
BAHGs are applied to the perceptual grouping process using compatibility functions the
direction of computation is important and the arrows of the BAHG shown in figure 5.3
need to be inverted.

One of the unique differences between this network and a typical Bayesian network
are the instantiation of multiple sub-Bayesian networks within the BAHG. This can sim-
plifv the computation of conditional probabilities significantly and also allows for the
specification of a generic BAHG network. see section 5.4. that can be used to construct

the BAHG recursively.

5.2 Reasoning using the BAHG

The simplest form of reasoning that can be performed using the BAHG is to search for
connections among the nodes in the BAHG. This is usefull when the BAHG is being cre-
ated and when it is used for further reasoning after the belief values have been computed
for each hypothesis. Because the BAHG is a particular instantiation of an AHG then
it inherits the features common to all AHGs as well as the ability of using any graph
matching techniques on the BAHG. For example. connectivity among surfaces is impor-
tant during the process of detecting corner formations among the surfaces. Figure 5.4 is

part of the AHG depicted in figure 5.2 showing the formation of surfaces S;. S,. and Sg
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from the lines.
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Figure 5.4: An attributed hypergraph showing surface formations for surfaces .5;. 5. and
Ss.

This is one of the first steps in the formation of the BAHG and figure 5.4 can be
considered as the first laver in the BAHG depicted in figure 5.3. The knowledge required
to make the corner hypothesis is located in the BAHG by searching for surfaces with
common lines that form a "Y-junction”. In this example the lines {;, I5. and [ are shared
among two surfaces and form a “Y-junction™. Since the Bayesian knowledge sources are
treated as attributes of a hyperedge then the knowledge required to form the Bayesian
networks as well as the networks themselves are maintained in the BAHG.

Another example is in the use of the BAHG for performing some particular action

after belief values have been computed for the hyperedges. This type of action is either
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planning a path among the surfaces or trying to decide which surfaces should be connected
so that a model can be created from the sensory data. Later, for the actual experiments
using 3-D range data in chapter 6 several examples are presented that use the BAHG to

decide which surfaces are to be connected.

5.3 Maintaining Multiple Bayesian Network Instantiations

Most cause effect relationships in a Bayesian network can be represented as a simple
divergent node as that depicted in figure 5.5 {a) that models the hypothesis H and a

number of feature sets. Fs; ... Fs; that are a result of the hypothesis.

© d)

Figure 5.3: Multiple instantiations in a Bayesian attributed hypergraph.

When this network is applied to a number of feature sets, for example in an image.
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then a multiple number of networks are instantiated. An example of this is depicted in
figure 5.5 (b) where two particular networks have been created for the hypothesis H’ and
H" from the feature sets Fs; and Fsy. and Fs; and Fs3 respectively. The drawback
of this is that nodes are duplicated and no relationship exists between each individual
network. For problems where feature sets are combinatorial. like in image analysis. it
would be beneficial to maintain one representation for a particular feature set. When the
networks are combined the conditional probabilities are affected and the network is no
longer the same as that originally depicted. For example. figure 5.5 (c) is the combined
network of H’ and H" that use one instantiation for the feature set F's,. This results in
conditional probabilities for Fs; conditioned upon both A’ and H” while previously Fs»
would be conditioned solely on H' or H”. In many circumstances there exists an approach
to compute P({Fs;|H) but none would exist for multiple instantiations of H. Figure 5.5
{c) implies that the feature set Fs, is dependent on both A" and H"”. This may be a true
statement but requires an approach to dvnamically compute the conditional probabilities
based on the number of instantiated hypotheses. It is then difficult to use a declara-
tive approach to specifving the network. The use of compatibility functions and those
procedures outlined in section 3.3 can be used for computing these dynamic conditional
probabilities. but a simpler representation was chosen that maintains an independent re-
lationship among each instantiated network using a single representation for the feature
set. This new structure is represented in figure 5.5 (d) using the new feature set node
Fs» that has two sets of knowledge sources for maintaining separate conditionals and
belief values in the knowledge sources A's’ and Ks”. The individual Bayesian networks
are indexed. in this case with single and double quotes. so as to differentiate them. The
advantage of this is a simpler computation for beliefs but unfortunately multiple beliel
values depending on the Bayesian network. Fortunately it is primarily the feature sets

that have the multiple instantiations and not the eventual hypotheses. This condition



BAHGs R2

was also depicted in the example of the BAHG in figure 5.3 that detected the occurrence

of corners from the line drawing of the room in figure 5.1 (a).

5.4 Constructing a BAHG for Perceptual Grouping

A general procedure for the formation of an AHG from CAD models was developed by
Weichung et al. [80] and is similar to the construction by parts methodology used in CAD
environments. This approach has been extended to be used for the construction of BAHGs
for perceptual grouping. This procedure has two components. a BAHG network which
is similar to a Bayvesian network but contains pointers to construction and conditional
functions and a BAHG constructor that reads the BAHG network and creates the BAHG
from that information.

An example of a BAHG network is depicted in figure 5.6 for a general type of network.
This BAHG network shows the information required in a node as an expanded window
to the right of node V'. Here the name of the node. the states. a constructor function and

a function for computing the conditionals are specified.

e e Attributes for Node V

Label: \%

Q States: [True False]
* Constructor: VConstructor

PDFConstructor:  ConvergentNode

Figure 5.6: Example of a BAHG network and its associated attributes.

The Label for the Node is used as a base name for labeling the BAHG hyperedges.
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Each instantiation of this particular hyperedge adds a numeric value to the base name. i.e.
¥1.Va. ...V, The hyperedge constructor is V' Constructor which will be used to determine
what hyperedges are collected from the BAHG to form this particular hyperedge. This
information is partially available from the network by looking at the children of a par-
ticular hyperedge except that the constructor function can control this procedure. This
construction is generallv performed in a bottom up direction from detected feature sets
to hypothesized formations. Fortunately when using compatibility functions this in fact
is the preferred method for computing the belief values so that it simplifies the computa-
tion required for the conditional probabilities. The PDF constructor in this example is a
generic PDF constructor named ConvergentNode that uses the compatibility functions to
determine the conditional probabilities using the approach described for convergent nodes
in section 3.3. The other generic PDF constructor is one for nodes with one parent. A
feature in the BAHG constructor that is useful is the subscripted indices that signifyv the
grouping of similar feature sets. This is a very common occurrence in perceptual grouping
where several similar features are grouped according to a compatibility function.

The formation of a BAHG is performed by a process known as a BA HG Constructor
and depicted in figure 5.7 at the end of the chapter. [t reads the BAHG network and
uses that declarative knowledge and relations among the nodes to construct the BAHG
representation.

The BAHG Constructor is a process that uses the information in the BAHG network
to perform two principal functions: create the hyperedges of the BAHG along with their
respective conditional probabilities and then interfaces with any conventional Bayesian
network package to compute the belief values in the formation of the hyperedges.

This particular BAHG illustrates several possible situations that can arise in the
construction of the BAHG. Two instantiations of a BN have been created: indexed using

the superscript m and n. The BAHG maintains separate conditional probabilities and
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belief values for these instantiations. This BAHG represents 4 hypothesized perceptual
groupings from the sensorv data. these are represented by the roots of the BAHG and are
G™. G". H™. and H". The perceptual groupings G™ and H™ caused the fundamental
feature sets labeled as X ™. };™. and Y™ while the perceptual groupings ™ and H" caused
the feature sets labeled as X". Y;*, and Y. The BAHG maintains only one instantiation
of a hyperedge of a particular perceptual grouping. The subscripted labels signify that two
different instantiations of that hyperedge are to be considered in the creation of the parent
hyperedge. For example. the nodes Y; and Y specify that two different instantiations of
the same hyperedge Y are to be considered as possible candidates in the formation of the
hypothesis V". This is not unusual in pattern recognition where similar feature sets are
often combined to form groupings.

At this point it is necessary to consider the direction of the network for computing
the conditional probabilities. s the network depicting a causal network or a consequence
network? This is important because the network for perceptual grouping is formed from
evidence to hypotheses and depending on rhe type of network the construction process
differs slightly. The following procedure deals with the construction of a BAHG evaluated
in the hypotheses direction. bottom-up. since the use of compatibility functions requires

this tvpe of computation.

e Construct an AG of the elementary features extracted from the sensor. These can
be intensity edges for 2-D data and surfaces for 3-D data. The edges in the AG

represent an adjacency relation among the elementary features.

e Create the hyperedges that represent the features extracted from the sensory data.
These nodes will be instantiated as TRUE when evaluating the network. These
hyperedges are special in that they do not require any construction procedure but

simply a transition from the attributed graph nodes to a hyperedge so as to maintain
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consistency among the hyperedges of the BAHG. If the network is a consequence
network then set the conditional probabilities for these nodes to (0.5.0.3) to repre-

sent an unbiased prior probability.

e Commencing with one of the existing hyperedges. construct the parents for this
particular hyperedge using the Constructor function and making certain that each
parent has the same value for an index. Note that each of the construction proce-
dures uses a compatibility function to determine a quality of fit of the components

to the hypotheses.

e After the parents have been constructed execute the PDF(onstructor function to
compute the hvperedge’s conditional probabilities. These PDF(onstructor func-
tions use the procedures developed in section 3 to compute the conditional proba-

bilities from the results of the compatibility functions.

e Repeat this process for all the nodes required to be constructed in the BAHG.

The construction process for a BAHG that is based on a causal network is similar
except that the conditional probabilities cannot be computed at the same time as the
hvperedge gets created. This is because the compatibility functions rely on the construc-
tion of the parent nodes and in a causal network the children are constructed before the
parents. while in a consequence network the reverse condition persists.

After the BAHG has been constructed the BAHG Constructor goes through the
BAHG computing the belief values in the existence of the hyperedges based on any con-
ventional Bayesian network algorithm. Currently the JavaBayes [21] package is used and
it is based on a generai algorithm for probabilistic inference known as variable elimination
adapted from Zhang and Poole [84].

Another advantage of using the unified BAHG representation is that it allows the
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specification for the grouping of multiple features without having to know apriori the
number of features to group. This can be done by taking advantage of the connected
nodes in the BAHG. It is possible to specify the grouping of a set of features that are
connected in the BAHG using a compatibility function to measure the quality of the
grouping and then compute a conditional probability for that grouping. This is done by
encoding the grouping procedure into the Constructor function and using the knowledge

of adjacency declared in the BAHG to guide the grouping process.

5.5 Summary

The BAHG network is an interface to the user for specifving the construction of the
BAHG. It offers a mechanism for specifyving the construction and PDF functions that
represent the procedural knowledge required to construct the BAHG hyperedges with
their respective conditional probabilities.

The BAHG is a unified representation of attributed hypergraphs and Bayesian net-
works. The desire to do this comes from the need to integrate declarative knowledge into
one representation along with the belief in the formation of hypotheses infered from the
data. Even though the BAHG is not application dependent it is better suited for domain
applications where a Bayesian network has to be applied recursively across a set of or-
dered data points. like an image. In this type of data. features are shared among several
formations and one formation may not be the only cause of the feature. The BAHG be-
comes important when other procedures have to act upon the knowledge collected from
the grouping process. For example. in the creation of models of indoor environments from
planar surfaces it is necessary to use the grouping knowledge stored in the BAHG to join
surfaces and remove surfaces that do not convey any added information to the shape

of the room. This knowledge can also be used for other application specific tasks like
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object recognition. path planning, dynamic object tracking. and surface reconstruction.
Most Bayesian networks that are used in the computer vision domain maintain separate
representations for domain knowledge and uncertainty management. The result of that is
the embedding of the knowledge gathered from the image processing into the algorithms
so this knowledge becomes unavailable for further use.

For the specification of the construction of a BAHG the BAHG network has been
developed. The strength of the BAHG network is the ability to specify declaratively a
structure for the grouping of sensory data. The BAHG network allows for the specifica-
tion of construction functions and therefore force the packaging of these procedures to
particular nodes in the network. This declarative approach is extremely vital in helping
to explain how a BAHG was created. This is akin to packaging the procedural knowledge

required to construct the BAHG and compute new declarative knowledge at each node.
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Chapter 6

Experimental Tests and Results

This chapter covers the details of an experimental implementation of a Bayesian At-
tributed Hypergraph Network for the detection of corners and continuous surfaces uti-
lizing data acquired from a compact laser camera called BIRIS [13]. This is the same
sensor that was used for acquiring the data used in the examples to test the compatibility

functions for perceptual grouping of 3-D data that were presented in chapter 4.

6.1 The BIRIS Range Camera

The BIRIS range measuring camera is composed of a standard CCD camera. a laser
projector. and a modified lens. The lens is modified so that the iris is replaced by a
double aperture iris. hence the name Bi-IRIS. The effect of the double iris is to create an
out of focus image on the CCD so that any ray of light from a light source contacts the
CCD at two different spots. figure 6.1.

The offset in the two contact spots can be used to measure the distance of the light
source from the camera. The complete BIRIS system consists of a laser projector mounted

at an offset from the BIRIS detector as shown in figure 6.2. The result is a compact laser

89
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Double Iris

Light Source B

Light Source A

Figure 6.1: Method of computing range in the BIRIS sensor.

ranging device. the size of a standard CCD camera. without any moving parts. The sensor
has a high immunity to ambient light and the ability to discriminate false measurements

due to the selective region in which the reflected laser light can fall on the CCD sensor.

Figure 6.2: The BIRIS laser ranging system.

To acquire more data than a single point the projected laser light goes through a

cylindrical lens resulting in a projected plane of laser light, figure 6.3 (a) and therefore
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eliminating the need of mirrors to scan the beam. The plane of light is aligned in the same
direction as the vertical scan of the camera and therefore it is only necessary to measure
the offset in the reflected stripe on the image plane along the horizontal scan. With a
real-time dedicated processor it is possible to compute the range and intensity data at
video rates. One acquisition (in 1/30%* s) from the sensor results in the computation of
256 range and intensity values along the projected plane of light reflected on the CCD

detector. The characteristics of this particular version of the sensor are shown in table 6.1.

Laser power 24 mW. (two 12 mW laser projectors)
wavelength 680 nm (visible red)

Field of view 19 deg.

Focal Length 20 mm

Accuracy 3mm @l m. l4mm@2m. 42 mm @ 3 m
Range 0.5m-50m

Table 6.1: Specifications for the BIRIS range sensor.

Figure 6.3: The BIRIS laser ranging system used for these experiments.
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To acquire more data than that of a single acquisition the BIRIS sensor was mounted
onto a pan and tilt unit. figure 6.3 (b). The ability to tilt the sensor is crucial in being
able to acquire more data. since the field of view of the sensor is fairly limited.

When the Biris Laser Scanner is panned at a constant speed for a fixed tilt angle
the result is a rectangular image of dimension 256 x .N,,. where .V, is the number of
acquisitions taken during the panning sequence. This process can be repeated for several
different tilt angles so that a number of registered scans can be acquired. This thesis

focuses primarily on the grouping of features taken from a single scan.

6.2 The BAHG Network: Detecting Corners and Continu-
ity

For the experiments one network has been developed that models the detection of corners
and continuity among planar surfaces. This BAHG network. depicted in figure 6.4. models
the grouping of surfaces and their respective edges into corners and continuous surfaces.

This particular example is a consequence network depicting the belief values computed
from evidence to hypotheses. This direction tends to be more natural for the application
of the compatibility functions to the grouping process. Figure 6.4 is a perceptual grouping
model depicting the existence of corners (Cor) and continuous surfaces (Con) from the
existence of coplanar surfaces (Cop). parallel surfaces (Pll). vertices (Ver) . polygons
(Pol), and finally a set of 3-D points (3DPt) and their respective edges (Edg). The
3-D points and edges are the only instantiated nodes in the network since they represent
actual sensory data. the other nodes are hypothesized formations that contain belief
values computed from the instantiated evidence.

This particular structure decomposes the formation of corners and continuous surfaces

by relaxing one particular constraint among the grouping for each level in the network
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Continuity
(Con)
CoPlanar
(Cop)

Attributes for Node Pll

Label: PlI

States: [True, False/

wn@s=— | Constructor: PrilFunc
PDFConstructor: SerialNode

Attributes for Node Pol H

Label: Pol i

States: [True, False/
=== | Constructor: PolFunc
PDFConstructor:

3D Points
(3DPt; )

Figure 6.4: A Bavesian attributed hvpergraph network for the detection of corners and
continuity among planar surfaces.

as one traverses the network from top to bottom. This is a decomposition by parts
operation with intermediate nodes that depict the relaxation of one single constraint at
a time. This ideally leads to the use of one compatibility function for the computation of
the conditional probability required at the node. In practice this is the case when similar
geometrical features are being grouped. for example for the formation of parallel surfaces
among two polygons one compatibility function (fyr4) is all that is required. For the

grouping of dissimilar features. like the combination of 3-D points and their respective
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edges. two separate compatibility functions are required: one for the edges (f.qze) and
the other for the formation of planes from the 3-D points ( foian)-

Vertices are the complementary to parallel surfaces so that they also use the parallel
surface compatibility function to determine the conditionals. This particular formation
is inserted so that all the conditional probabilities are computed based on the existence
of the polygons. Some original instantiations of this network had the corners directly
hypothesized from the absence of the parallel surface formation. The drawback of this
assumption is that the absence of a formation can be caused by the absence of formations
in the children. The result is an intuitively wrong result for the formation of corners from
the absence of well formed polygons. This is an important point to consider when the
network is being designed.

The coplanar formations apply the coplanar compatibility function (f.,pi) to deter-
mine the conditionals for this particular node and finally. the conditionals required for
the evaluation of continuity and corners are determined using the proximity { fpr.-) com-
patibility functions.

As presented in section 3.3 the compatibility functions are first mapped to values
bounded between 0 and 1 using the declining S-curve function §(fpc.0. 3.~). Table 6.2

lists the values used for the arguments .3 and ~ that were used in the declining S-curve

mapping.
Compatibility 3 v Units
proximity 0.25 0.50 unitless
coplanarity 10 20 Rads
parallel 10 20 Rads
planarity 0.578 1.156 cm
edges 0.25 0.50 unitless

Table 6.2: Values for the arguments J and « for particular compatibility functions.
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These values were subjectively selected but the selection follows a certain reasoning.
The proximity value of 0.25 represents the desire to consider surfaces with gaps whose
areas are smaller than 1/4 the sum of the areas of the two neighbouring surfaces as
proximal. anyvthing beyond 0.5 is not proximal. This same argument can be applied to
the edge compatibility value since it is also a ratio of areas. Surfaces are considered
parallel if the surface normals are within 10 rads with respect to each other. and they are
not parallel if bevond 20 rads. Coplanarity is similar to parallel surfaces and share the
same arguments. The parameter values for the quality of the surface being considered as
a plane was determined by computing the average of the variance of the data points of a
typical set of points gathered from the BIRIS sensor.

With this in mind the conditional probability equations are the following.

P(Pol,|Pt3D;. Edg;)) = S(fpian-0.0.578. 1.156)S( fedge. 0.0.25.0.50)

P(PII|Pol;. Pol,) = S(fpru.0.10.20)
P(Ver|Pol;. Pol,) = 1 —8(fpru.0.10.20) 6.1)
P(C'op|PIl) = S(feopi- 0. 10.20)

P(Cor|Ver) = S(fyror-0.0.578. 1.156)

P(Con|Cop) S(foror+0.0.578. 1.156)

The BAHG network in figure 6.4 is similar to a conventional Bayesian network inter-
face except for the specification of the Constructor and PDFConstructor functions
as well as the subscripted labels of the nodes Edg, Pt3D, and Pol. Each individually
labeled node has a particular Constructor function that creates each node in the BAHG
and their associated compatibility function values. This is depicted for the Parallel and
Polygon nodes. In the following examples the compatibility values have been computed

apriori using procedures developed from the algorithms described in chapter 1 and the
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results are stored on file. The Constructor functions read this information from a file
instead of an attributed hypergraph. The PDFConstructor functions use results from
the compatibility functions to compute the conditional probabilities. Since this network
is a consequence network then these steps can be performed at the same time the node
is created. Note that the Parallel node uses the generic PDFConstructor function
SerialNode that is used for serial connections because only one compatibility function is
used in this case. unlike the case for the Polygon node that uses the Convergent.Node

PDFConstructor function.

6.3 Test Data Case 1: The Robot Lab

Figure 6.5 is an example of a typical scan taken by the BIRIS Laser Scanner of part of a

robot laboratory room at the Institute for Information Technology.

(a) (b)

Figure 6.3: Intensity image and 3-D data of a scan from the BIRIS sensor.

The layout of the room is approximately the shape of that shown in figure 6.6.
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Figure 6.6: A schematic of the top view of the robot lab showing sensor position.

This image size is 256 x 256 pixels and was taken using a tilt angle of 0° and a pan
angle of 60°. [t is an ideal set of real test data because it contains possible corners and

large planar surfaces.

6.3.1 The Planar Surfaces and Boundaries

The results of performing the segmentation on the range data in figure 6.5 are shown
in figure 6.7 as both an intensity image and an orthographic projection of the 3-D data.
The individual segments in the intensity image are shown using separate gray values to
represent each segment. The advantage of maintaining the points in an image is that one
can take advantage of the already established ordering in the 2-D image.

The surface boundaries and their respective high curvature points are depicted in
figure 6.8 (a) and (b) respectively. The high curvature points are highlighted as white
points while the edge is in gray pixels. Note that the representation of the surfaces in

figure 6.8 (b) is a polygon created by using the high curvature points as the polygon
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(b)

Figure 6.7: Surfaces extracted from the 3-D Points. label image (a) and orthographic
projection (b).

points.

(®)

Figure 6.8: Boundaries extracted from the surfaces.
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These results are represented as two separate attributed graphs in the code and saved

as files for access to other processes when required.

6.3.2 Results

Results are presented in two manners: an example of a BAHG is shown of part of the
sensory data showing some belief values and a table is presented depicting the belief in
the formation of corners and continuous surfaces among neighbouring surfaces.

Reflecting back onto the labeled surfaces in figure 6.7 (a) a view depicting the grouping
of surfaces Syg. Si3. and S;- is shown in figure 6.9. These particular surfaces are right
in the center of the image and show both the formation of a corner and that of two
continuous surfaces.

The Edg; and Pt3D; hyperedges are instantiated as TRUE and therefore have be-
lief values of 1.0 associated with them. Also the only common nodes shared among the
Bavesian networks represented in this BAHG are the Pol; nodes. [n this case the corner
and continuity formations labeled ("oryy and C'on,; respectively correspond to the group-
ing of surfaces Sy3 and S, while the corner and continuity formations labeled ("or(5 and
('on,; correspond to the grouping of surfaces Sy3 and Sjg. These are arbitrary labels
that correspond to the sequence in which the grouping was performed. In this example
there are 25 total surface groupings of which the belief values are presented in table 6.3.

The majority of the belief values are close to 0. This is especially true for the continuity
among surfaces. The principal reason for this is the stringent values for .3 = 10 and 7 = 20
rads that result in very few parallel surfaces. In turn this will result in more corners being

detected than continuous surfaces.
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Con 3 Con ;s
Bel: 0.0 Bel: 0.70

Cor 5 Cop 2, Cor 5 Cop ;5
Bel: 0.77 Bel: 0.0 Bel: 0.01 Bel: 0.75

Ver 2 Pl »; Ver ;5 Pll ;5
Bel: 0.78 Bel: 0.0 Bel: 0.01 Bel: 0.75
Pol 10
Bel: 0.94

Figure 6.9: A partial view of the robot lab BAHG for surfaces S10. S13. and 5y7.

6.3.3 Analysis of Results

The majority of the results are close to the expected formations if one was to look at the
room and group the surfaces. The first important point is that the formation of a corner
is counter to the formation of continuous surfaces. The belief values reflect this in the
foilowing manner. When the belief of the formation of a corner is high the belief in the
formation of a continuous surface is low. and the converse is true. The exception to this
are cases where both values are 0.0 which occur when the proximity between the surfaces
is relatively large.

Using the BAHG it is rather simple to infer why these low values in both corners

and continuity exists, it is simply a matter of searching through the graph looking for
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S: S; Cor Con Comment Si S; Cor Con Comment

1 6 0.32 0.0 S(foror low 10 12 0.32 0.0 OK Jump Edge
1] 9 087 0.0 OK 10 13 0.01 0.72 OK
15 00 00 S(fuan(Sy))=00110 15 00 00 OK Jump Edge
4 1T 0.0 00 S(foun(S:))=00!10 17T 09 00 OK

5 10 0.0 00 S(foan(Ss))=00}{10 18 00 00 OK Jump Edge
5 13 00 0.0 S(fuan(Ss))=00| 11 14 00 00 OK Jump Edge
5 1T 0.0 0.0 S(fpan(Ss))=0.0] 1L 16 0.0 0.0 OK Jump Edge
6 9 063 0.0 S(fedge(Se)) low | 12 15 0.0 0.0 OK Jump Edge
6 12 0.0 0.0 OKJumpEdge |13 17 077 0.0 OK

S 1l 0.0 00 S(fuen(Ss))=00]15 18 00 00 OK Jump Edge
S 14 00 00 S(foun(Ss))=00]16 17 0.02 027 S(fpan(Sis)) = 0.0
9 10 087 0.0 OK 1T I8 0.0 0.0 OK Jump Edge
9

12 022 0.0 OK Jump Edge |
Table 6.3: Belief values in surface corners and continuity in figure 6.7 (a).

occurrences in low compatibility values. Table 6.3 also lists a small comment for each
grouping that mentions reasons why the belief values for particular surface formations
are low. Low values for both corner and continuity do not necessarily signify bad results
they can reflect situations where the edge shared by the two adjacent surfaces is in fact
a jump edge and the surfaces cannot form either a corner or continuous surface. This is
the case for surfaces that are adjacent to the robot’s surface (S;;). those being surfaces
Ss. Sis and Si4. The same holds true of the surfaces corresponding to the poles (5);. 55
and Sys) where all of the surfaces adjacent to these have corresponding low belief values
for being possible corners or continuous surfaces. These results suggest that another
surface grouping, known as a discontinuity, should perhaps be introduced to the model.
Discontinuities are generally not considered a perceptual grouping formation but certainly
do add knowledge that can be used for interpreting a scene.

In other circumstances. in particular surfaces Sy and Ss. the belief values in the

formation of the polygons are so low that of course there cannot be any formation of
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corners and continuous surfaces. Some results are not so positive. It would have been
desirable to have surfaces S;¢ and S)7 to result in a high belief value of being a continuous
surface. This was not so. the reason was the low planar surface compatibility value of
surface Sis. This low certainty value is reflected throughout any other formations where
surface Sy is involved. Therefore. low belief values in any formations suggest a need to
search for the source of this low value. It is difficult. though. to determine if the low
value is real or caused by a computational error without using redundant compatibility

functions.

6.3.4 Environment Modeling

One of the strengths in using a BAHG representation is that continuity among the surfaces
is still maintained as well as belief values in the formation of surface groupings. [n this
particular case a very simple procedure is to search through the BAHG and collect those
hyperedges that share similar surfaces and significant belief values in continuity and
corner values. This is easier presented to the user as an attributed graph where the edges
represent possible corner or continuous surfaces and the attribute value is a tuple of the
respective belief values in those formations.

For environment modeling. detecting continuity allows the joining of surfaces and
more realistic models to be created. Figure 6.10 is an attributed graph representing the
formation of corners and continuity among the planar surfaces that have been extracted
from the BAHG in figure 6.9.

The edges connecting the nodes in figure 6.10 have been classified into 3 different types
based on the belief values. The dotted edges are connections with belief values greater
than 0.7 and are considered as connected surfaces. The dashed edges represent surfaces
that are unconnected. clearly the belief values for both corner and continuity are 0. The

solid edges represent an unknown relationship among the surfaces. The belief values are
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Unknown relation
=sssee:  Connected surfaces
- Unconnected surfaces

Figure 6.10: An attributed graph modeling the formation of corners and continuous
surfaces.
somewhere between 0.2 and 0.7 and may have resulted in connected surfaces if the belief
values had been high enough and therefore require further investigation. The results of
the grouping procedure can also be summarized as an image. shown in figure 6.11 . which
depicts those surfaces that are continuous and/or corners as one intensity. surfaces that
are in the foreground in another intensity. and those surfaces with poor results in dark.
This is then an example of one of the simplest forms of reasoning that can occur using
the BAHG and that would be harder to extract if simply multiple Bayesian networks had

been maintai,ed instead of the BAHG.
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Figure 6.11: Grouping of surfaces with belief values > 0.7.

6.4 Test Data Case 2: A Wall and Ceiling Junction

The next case is representative of a scan taken from the junction of a wall to a ceiling.
Unlike a simple line drawing of a wall to ceiling junction. in this case part of the wall
extends out like a column extending from the ceiling to the floor and the ceiling is pop-
ulated by a number of light fixtures that are not detected by the sensor. Figure 6.12 is
the intensity image from the camera that corresponds to the top scan of the composite
image introduced in the introduction as 1.2 (a).

This particular example has an abundance of more continuous surfaces than that
presented in case 1 and the surface quality is much higher. This had to do with a couple
of reasons. the range data is not as far and the laser power source was improved.

This image size is 256 x 512 pixels and was taken using a tilt angle of 30° and a pan
angle of 140°. Figure 6.13 is an orthographic projection of the 3-D data points taken for

this acquisition.
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Figure 6.12: Intensity image of a wall and ceiling junction.

6.4.1 The Planar Surfaces and Boundaries

The results of performing the segmentation on the range data for the wall and ceiling
junction are shown in figure 6.14 as an intensity image where one uniform intensity value
represents a planar surface. For clarification the same segments can be displayved as a set
of range values as depicted in figure 6.15.

The surface boundaries and their respective high curvature points are depicted in
figure 6.16. The high curvature points are highlighted as red points while the edge is in
a white color.

The boundary extractor was applied to the labeled image that was processed before
hand with an erosion morphological operator. This can result in the further segmentation
of the surfaces. as depicted in surfaces S;2 and Sys in figure 6.16, resulting in the boundary
tracking algorithm choosing only one of the segments and ignoring the other. This can be

corrected by maintaining all boundaries that have been tracked about a surface instead
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Figure 6.13: Orthographic projection of the 3-D points for the wall and ceiling junction.

of the first tracked boundary.

6.4.2 Results

The BAHG network depicted in figure 6.4 was applied to the attributes computed from the
surface segmentation process and boundary extraction routines. Results are presented as
a table since it is difficult to present the full BAHG without sacrificing readability. Again
the grouping process is applied only to neighbouring surfaces reducing the combinatorial
complexity among all surfaces dramatically. A total of 27 surfaces were extracted from the
image resulting in 14 possible binary groupings of which 3 resulted in the inability of the
proximity procedure to determine a common surface reducing the pairing combinations

to 41. The belief values in the formation of corners and continuous surfaces are presented

in table 6.4.

6.4.3 Analysis of Results

The comments in table 6.4 refer to particular reasons why combinations have low belief

values. Those surface combinations that appear to have reasonable results have a com-
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Figure 6.14: Labeled image of surfaces extracted from range values in figure 6.13.

ment of OK beside them. One of the first things to note is the low compatibility value in
the formation of the edges for surfaces S3. Sy. Sa2. and Sy resulting in low belief values
in the formation of ~Corners™ and ~Continuous™ surfaces. Surfaces S3 and Sy are small
and lead to bad results in the calculation of the boundary. The further segmentation of
surfaces S, and S35 due to the erosion operation will have to be dealt with further by
considering multiple boundaries for a surface or in some other fashion. Not all surface
pairings that have low ~“Corner™ and ~Continuity”™ belief values are bad results they may
be caused by legitilnate =Jump Edges™. The only manner to distinguish these two cases is
to look at the belief value in the formation of a “Polygon™. A high belief in the formation

of a “Polygon™ and low values for coplanar and proximity will signify a ~Jump Edge”.

6.4.4 Environment Modeling

Similar to the situation presented for the “Robot Lab™ test case it is possible to look for

continuity among surfaces with reasonable belief values as corners or continuous surfaces.
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Figure 6.15: Orthographic projection of the surfaces depicted in figure 6.14.

This again can be shown as an attributed graph where the edges represent possible corner
or continuous surfaces and the attribute value is a tuple of the respective belief values in
those formations and shown in figure 6.17.

The gray edges in figure 6.17 are connections with belief values greater than 0.7 and
are considered as connected surfaces that consist of both corners and coplanar continuous
surfaces. There are a total of 14 of these surfaces out of 29 possible surface combinations
that had good polygonal representations. Out of the left over 15 surface relationships.
9 have belief values in the range of 0.2-0.7 and are classified as unknown while 6 are
definitely unconnected surfaces. Similarly the results of the grouping procedure can also
be summarized as an image. shown in figure 6.18 . which depicts those surfaces that are
continuous and/or corners as one intensity and surfaces with poor results in dark. In this

case there are no surfaces that can be considered to be in the foreground.



CHAPTER 6. EXPERIMENTAL TESTS AND RESULTS 109

Figure 6.16: Boundaries extracted from the surfaces.

6.5 Summary of Experimental Results

In this chapter an example was presented of a BAHG network for the detection of corners
and continuity among planar surfaces extracted from an ordered set of 3-D points. The
example presented the design of the BAHG network as a decomposition of parts of con-
nected surfaces into individual surfaces with particular constraints like parallel. coplanar.
and vertices. The surfaces themselves are polygons and these are formed from a pla-
nar surface with an associated boundary. The five compatibility functions of proximity.
parallel. coplanar. edges. and planar were used to determine the required conditional
probabilities for computing the belief values in the corner and surface continuity forma-
tions. When the BAHG network is applied to a particular set of data a BAHG is formed
that contains multiple instantiations of Bayesian networks between adjacent surfaces in
the data.

The BAHG network example was applied to two sets of 3-D sensory data. one taken
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S, §; Cor Con Comment S; S; Cor Con Comment

1 7 0.13 0.63 S(foru) low 9 23 091 0.0 OK

1 15 022 057 S(fprit) low 10 12 0.06 025 S(fedge(S12)) low
1 24 0.15 0.65 S(foru) low 10 16 0.01 0.92 OK

2 4 0.0 00 S(fedge(Ss)) =00 {10 2¢ 0.0 0.0  Bad Adjacency

2 10 0.80 0.0 OK 11 22 0.0 0.0 S(fedgelS2))=0.0
2 24 0.03 0.7 OK 12 25 0.0 0.0 S(fedge(S2s)) =0.0
2 25 00 0.0 S(fedge(S2s))=0.0|13 25 0.0 0.0 S( fedge (525)) = 0.0
3 % 0.0 0.0 S(fedge(S3))=0.0 | 14 15 092 0.0 OK

3 11 0.0 00 S(fedge(S3))=~00 |14 27 002 0.0 OK Jump Edge
3 22 0.0 0.0 S(fedge(S22))=0.015 24 0.02 0.87 OK

5 9 0382 0.0 OK 15 27 089 0.0 OK

5 14 005 0.90 OK 16 24 0.08 0.0 Bad Adjacency

6 9 042 0.0 S(fedge(Se)) =05 |16 25 0.0 0.0  S(fespe(S25)) =0.0
6 11 0.21 0.0 S(fedge(Ss))=0.5 | 16 27 0.05 0.75 OK

T 9 0.16 0.0 OK Jump Edge |20 21 0.01 0.91 OK

T 15 0.19 0.63 S(fprt) low 20 22 0.0 0.0 S(fedge(S22)) =0.0
X 22 0.0 0.0 S(feage(S22))=0.0 |20 23 0.0l 0.79 OK

9 11 005 0.0 OKJumpEdge |21 22 0.0 0.0 S(fegge(S2))=0.0
9 14 095 0.0 OK Jump Edge |21 23 0.0 0.89 OK

9 15 008 0.0 OK Jump Edge {24 27 0.50 0.50 S fproc) = 0.5

9 21 065 0.0 OK Jump Edge

Table 6.11: Belief values in surface corners and continuity in figure 6.13 (a).

of a robot laboratory and the other from the junction of the ceiling with a wall. The
robot lab example is representative of a situation of several fragmented planar surfaces
that were occluded by the robot and other objects in the environment. The wall ceiling
example contained less fragmented surfaces and several examples of continuous and corner
surfaces. For both tyvpes of data the same values for v and 3 were utilized since they
are invariant to the quality of the data. Grouped data surfaces from both test cases
demonstrated expected results. Those surfaces that were not grouped. and should have
been. were due to poor perceptual grouping values that were caused by noisy data or in

some cases faulty tracking of a surface’s boundary.
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Figure 6.17: Attributed graph of the formation of corners and continuous surfaces.

Unknown relation =-=-=- Connected surfaces = — Unconnected surfaces
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It was shown that the BAHG can be used to infer the surfaces that should be connected

either as coplanar or corner surfaces. These connected surfaces can then be used to create

a more complete geometric model of the scanned environment. Even though it is possible

to determine good candidates to be joined no algorithm was developed to actually join

these surfaces. The difficulty in joining a set of surfaces. is determining what sections of

the surface are to be extended and joined. A possible solution for this is to use the limits

computed of the common surface between two neighbouring surfaces. see section 4.5. as

a guideline in joining the surfaces. Surfaces to be connected can be extended within that

common area until they intersect . A more challenging issue is to determine how these

new hypothesized surface sections are to be represented in the BAHG since they are not

composed of real 3-D points. These issues are all beyond the scope of this thesis.
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H Continuous and Corner E Low Belief Values D Isolated Surface

Figure 6.18: Grouping of surfaces with belief values > 0.7.

A threshold belief value of 0.7 was used as to determine which surfaces are considered
to be grouped. This value was arbitrarily chosen and is fairly low. This is a consequence
of two factors: First. the approach taken for the combination of certainty values at a
convergent node was the product rule which favours low certainty values and secondly
the propagation of uncertainty in a Bayesian network is also a product of conditional
probabilities and is sensitive to low belief values. So to achive relatively high belief
values in the formations all the evidence must have high certainty values associated with
them. The strength in the BAHG representation is the explicit manner in declaring
the grouping process. using the BAHG network and compatibility functions. and in the

modular decomposition of the grouping that allows for easier addition of new evidence.



Chapter 7

Conclusions and Future Work

[n this chapter a summary of the work presented in the thesis is provided along with a
review of the contributions to the perceptual grouping of 3-D surfaces for the purpose of
environment modeling. This is followed by suggestions of future work based on problems

and limitations that were identified throughout the period of this research.

7.1 Summary

The motivation of this thesis is to develop an approach for the detection of higher level
formations among 3-D surfaces so that rational decisions can be made for the joining of
surfaces. The main characteristics of sensory range data are: (i) They are susceptible to
highly non-linear and non-gaussian levels of noise that lead to over segmentation of the
data when surfaces are extracted, (ii) redundant information is common when a good
signal is received from the sensor making it important to derive algorithms that can
remove some of the redundant information, (iii) sparse surfaces are more often the norm
due to the inability of the sensor to detect uniformly throughout a full acquisition. For

indoor environments, occlusion among objects is common thus leading to irregular shaped

113
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boundaries for the surfaces. The ultimate goal is to develop an approach that could be
used to bridge the gap between detailed sensory data and abstract labeled groupings
among surfaces extracted from the sensory data.

[n the attempt to meet this goal it became relevant that to simply create a set of
procedures that could perform the grouping process would not benefit the research com-
munity on a whole. The general outcome of these systems are that procedural knowledge
and representations are so tightly connected that it becomes difficult to separate the two
forms of representation and re-use them. It is also difficult to determine how decisions
were made by the system. In a similar fashion it is also important to maintain a belief
value in the formation of groupings among the features extracted from the sensor data.
This added information gives the user of the system a basis on the quality of the decision
process.

This thesis presented an approach for the specification and management of procedu-
ral and declarative knowledge required in the grouping of 3-D surfaces for the modeling
of large environments. The approach developed is a Bayesian attributed hypergraph
(BAHG) which combines the benefits of attributed hypergraphs and Bayesian networks.
Attributed hypergraphs have been shown to be a powerful tool for the representation of
declarative knowledge in the form of attributes and relationships. On the other hand
Bavesian networks offer a structured approach to reasoning with uncertainty. Their use
of a network to represent independent relationships has a natural fit to the concept of
decomposition by parts used for the automated modeling of 3-D sensory data. Procedu-
ral knowledge is still maintained as algorithms coded in a programming language. like
C/C++. but now are packaged as construction functions for the BAHG that rely heavily
on the use of compatibility functions. These also behave as measures in the quality of fit
between the 3-D data and their respective models.

Certain intermediate goals were required in achieving the ultimate goal of grouping
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3-D surfaces for environment modeling. These intermediate goals were the following:

1. Algorithms had to be developed to extract from the sensory data surfaces and
their corresponding boundaries. For indoor environments this corresponds to planar

surfaces and their respective polygonal boundaries.

2. The adaptation of an existing uncertainty management technique for the grouping
of 3-D surfaces. This corresponded to the adaptation of Bayesian networks for the
grouping of 3-D surfaces and the use of compatibility functions to compute the

corresponding conditional probabilities.

3. The development of suitable perceptual grouping compatibility functions for 3-D

planar surfaces.

4. The development of a unified representation for uncertainty and geometric model-

ing. This of course is the Bayesian attributed hypergraph.

The result was the implementation of a BAHG along with a graphical interface (a
BAHG network) and several compatibility functions for measuring the planar. coplanar.
and proximity quality between surfaces and the boundary and planar quality of the polyg-
onal surfaces. The primary input is a set of 3-D range points and intensity values with
the final output being a Bayesian attributed hypergraph (BAHG). The BAHG contains
enough information about the 3-D polygonal surfaces so that a geometric model of the
environment can be constructed. The BAHG was implemented using the .Java object
oriented language along with the BAHG Constructor.

This implementation was tested on the detection of corners and continuity among
planar surfaces for actual 3-D range data of indoor environments. This particular data is

prone to noise, fragmentation and occlusion and therefore grouping is rather difficult.
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7.2 Research Contributions

While the domain of application for this work is in the modeling of indoor environments
from 3-D sensory data the main contributions are in the management of uncertainty for
the grouping of features extracted from this data. Much less effort was placed on the
actual modeling component. I[nstead a framework was developed for the specification
of the grouping of surfaces and management of uncertainty in that grouping process.
The end result is a representation that maintains belief values in geometric formations
that can be further used as knowledge for operations requiring geometric properties.
i.e environment modeling. path planning, and/or virtual reality. In this section several
contributions to the research community are highlighted and comparisons are made to
other work in this domain. These contributions are primarily the contents of chapters 3.

4. and 3.

7.2.1 A Framework for Managing Uncertainty for the Grouping of 3-D

Surfaces

A framework was developed for the management of uncertainty for the grouping of 3-D
surfaces based on Bayesian networks. [t was felt that Bayesian theory for uncertainty
management was sufficiently developed to be applied to the domain of computer vision
and 3-D surface grouping. The use of Bayesian networks to the computer vision domain is
not unusual especially in the community for object recognition. What is of interest is the
approaches used for constructing the network and the computing of the conditional prob-
abilities. The particular framework presented uses a decomposition by parts approach to
define the structure of the network and a set of compatibility functions for computing the
conditional probabilities. It proposes that the network be designed from the top down and

that each level of the network corresponds to a particular constraint among the features
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to be grouped. These constraints are directly related to a compatibility function that
measures the quality of fit of a feature or set of features to the hypothesized model rep-
resented by the node. This is generally different from most conventional uses of Bayesian
networks to the domain of computer vision. In most circumstances conditional probabili-
ties are static and computed from statistical experiments that relate the probability of the
formation of the child node given the parent nodes. For these types of systems evidence
is entered at the leaf nodes and propagated throughout the network. It is not clear how
one could introduce evidence to non-leaf nodes without instantiating those nodes and
therefore removing all other circumstantial evidence via the principal of ~d-separation™.
In the approach taken in this thesis the evidence is reflected as conditional probabilities
and none of the internal nodes between the root and leaf nodes get instantiated. The
consequence of this is that the network will not handle apriori probabilities and must be

computed in a bottom-up fashion from evidence to hypotheses.

7.2.2 Compatibility Functions for 3-D Perceptual Grouping

Since compatibility functions are a crucial part of the construction process for a Bayesian
network several compatibility functions were developed. In some circumstances these
compatibility functions required new innovative approaches to be developed. in particular.
the estimation of proximity. neighbourhood. and polygonal representations of the surfaces.
These are all related to the surface’s boundary. which comes as no surprise since it is the
component of a surface that is the most difficult to detect using 3-D range data. The
other compatibility functions. planar and coplanar. are derived from known geometric
principles.

Estimating the surface’s boundary as a polygon requires filtering of the edges and
computing high curvature points along the edge as well as the replacement of continuous

high curvature sections with straight lines. This leads to a fast algorithm with linear
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complexity O(n). where n is the number of points in an edge.

The determination of a common region between surfaces is akin to a region growing
operation with the exception that the complete edge is not grown but the line segments
are translated until collisions with other surface boundaries are detected. This is ideally
suited for determining common regions among surfaces while region growing would result
in an exaggerated common region if the surfaces were relatively far apart. This type of
determination of a common region among surfaces is not common in 2-D computer vision
because there does not exist in that domain large gaps between surfaces. As well. in the
3-D computer vision community the majority of surface reconstruction has occurred with
dense 3-D range data of small parts. Fragmentation is more common in data from large

environments where the sensor’s limitations are stretched to the limit.

7.2.3 A Unified Representation for 3-D Modeling and Uncertainty Man-

agement

From this research a unified representation integrating the positive attributes of attributed
hypergraphs and those of Bayesian networks was developed. The driving force for this
comes from the desire to integrate declarative knowledge into one representation along
with belief values in the formation of groups among the data. The Bayesian attributed hy-
pergraph (BAHG) was implemented and it incorporates the model of Bayesian networks
for uncertainty management along with the model of hyperedges. The necessity of this
comes from the concept of separating the process of gathering. compressing. and filtering
sensory data from the actual processes that reason using this data. This idea was empha-
sized by Fayek [28] when he made the claim that it is rare that a system addresses both
the sensing and reasoning components. It is not sensing and reasoning that are separated
but the declarative knowledge acquired from the gathering, compressing. and filtering

of sensory data and the procedural knowledge that uses that information to perform a
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particular action. For example. the BAHG maintains knowledge of the surfaces and their
respective polygonal borders and the hypothesized groupings among those surfaces and
the environment modeling module acts upon this knowledge to create coherent models
of the environment. This knowledge is particular to certain types of applications. object
recognition. path planning. dynamic object tracking. and surface reconstruction and the
environment modeling module can be replaced by appropriate modules to perform those
particular applications. Other systems that have used Bayesian networks in the com-
puter vision domain have maintained a Bayesian network separate from the declarative
knowledge gathered from the data. When some action has to be performed on that data
then the application module must query both the Bayesian network and the declarative
knowledge.

One of the greatest advantages of using a BAHG is the organizational nature of
the BAHG. The use of a BAHG network to specify the grouping process extracts that
knowledge from being embedded in some code. Any declarative knowledge is maintained
in the BAHG and procedural knowledge used for the formation of the BAHG is packaged
as construction functions at each node. This is as valuable as the computation of belief
valiues but has not been emphasized greatly in the literature. [t is now possible to use

the structure to determine quickly how the grouping process occurred.

7.3 Conclusions

What commenced as an investigation into a representation and approach for the removal
of detail generally common in 3-D data resulted in the development of a framework for
the management of uncertainty for the grouping of 3-D surfaces. Eventually the outcome
of this was a representation, the BAHG, that allowed a declarative specification of the

grouping procedure with procedures to construct the BAHG. Along with this was the
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introduction of compatibility functions that compute a quality of fit of the sensory data
to hypothesized perceptual grouping formations from the sensory data. The collected use
of these compatibility functions lead to the formations depicted for each hyvperedge of the
BAHG. To use the compatability functions as viable conditional probabilities they are first
mapped to certainty values. between 0.0 and 1.0. using a declining S-curve that requires
the specification of two controlling parameters v and 3. These values are set intuitively
and for most compatibility functions are invariant to the quality of the sensoryv data.
therefore allowing the use of the same values over several test cases. These certainty
values are used directly or combined with other certainty values to compute conditional
probabilities. The BAHG with their belief values can be used to reason about the creation

of models of indoor environments.

7.4 Suggestions for Future Work

Perhaps the most valuable contributions in any thesis are the recognition of faults and
fundamental limitations to approaches that can be improved with new research. The
approach presented in this thesis. like other systems. has its limitations that need to be
addressed. These problems can either be fundamental research directions or in some cases

practical issues that have come up many times but have not been addressed properly.

7.4.1 Use of Compatibility Functions in a Causal Network

The original directions of this research investigated the use of compatibility functions in
causal networks. Causal networks are intuitively a better way to think about the exis-
tence of particular formations caused by hypothesized models. It also allows the use of
a priori knowledge about the models to be represented as conditional probabilities. i.e

a top-down specification. The problem is the introduction of evidence into the network.
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Causal networks require that this introduction be placed at the leaf nodes. if not then the
network may become separated due to the concept of “d-separation™ and evidence below
the ~d-separation”™ point is ignored. [n some applications this is a positive feature but in
this example the desire is to maintain the uncertainty throughout the grouping process.
A causal network would then require the leaf nodes to represent perceptual grouping
constraints like parallel. coplanar. etc...and the internal nodes again hypothesized for-
mations.

As was presented in section 3.2.2. compatibility functions are not well suited for com-
puting the conditional probabilities in causal networks. These limitations just emphasize
the fact that compatibility functions measure evidence and are not a measure of a priori
knowledge of the existence of a particular formation. Other approaches must be used and
the simplest is to experimentally measure the frequency of the occurence of particular
formations given the existence of their parent formations. Another approach is to ex-
perimentally determine a probability in the existence of a perceptual grouping given the
existence of a parent formation for particular children formations. This has some simi-
larities to the work by Levitt et al. [47] except that the notion of compatibility functions
was not exploited there instead patterns among the features in a particular camera view
was used. This combination of compatibility functions and the use of a prior conditional

probabilities has not been investigated properly.

7.4.2 Bayesian Networks for the Segmentation of 3-D Range Data

This thesis relied on a completely separate procedure for the extraction of surfaces from
the 3-D range data. This algorithm, developed by Boulanger [14], also leverages Bayes
theory of probability to determine which points would make adequate surfaces. As was
mentioned in section 2.1.3. the core work in 3-D range data is in the formation of surfaces

from this data. This is commonly referred to as range data segmentation and in itself
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is a form of perceptual grouping of 3-D points. The concept is to seek the surface that
would have generated a particular 3-D point. This same principal has been applied to
the detection of boundaries in intensity images [18]. Recent extensions to Boulanger’s
work [14] have included color as well as range into the segmentation procedure. Eventually
a Bavesian network can be defined that combines multiple evidence and desired groupings
into the segmentation procedure. This would have to be a recursive algorithm maximizing
the most probable surface given the evidence. In this manner. the segmentation process

can be driven by particular evidence instead of simply the best fitting points to a surface.

7.4.3 A Library of 3-D Compatibility Functions

There is a necessity for a collection of 3-D compatibility functions. To my knowledge
no one has vet composed a review of these functions for 2-D edges let alone for 3-D
surfaces and edges. These functions can be used by many algorithms for 3-D computer
vision. Again. these functions appear in nearly all types of work in 3-D object recognition.
tracking. scene analysis. and environment modeling but no attempt has been made to

collect them into one reference source.

7.4.4 Uniform Declarative Representation

Throughout this thesis the attributed hypergraph and Bayesian attributed hypergraph
have been presented as a uniform approach for the representation of declarative knowledge
in the grouping of sensory data. This thesis has not been one of the first attempts
in using attributed hypergraphs as the mechanism for unifying representations across
several processes. [ronically there still does not exist a data base facility that allows the
instantiation of persistent attributed hypergraphs. If such a facility existed knowledge
could be more easily shared across multiple procedures as well as testing and developing

could be greatly enhanced. This lack of an attributed hypergraph database could possibly
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be attributed to the fact that attributed hypergraphs have been used more for representing
knowledge and generally the artificial intelligence community have not been active in the
data base and information storage and retrieval domain until recently.

Object oriented techniques are ideally suited for the design of attributed hypergraphs
and was used in the implementation of the BAHG. Even though attributed graphs are
used extensively for the representation of knowledge in computer vision and other domains
there has been a limited effort placed on the development of persistent attributed graphs

and little or no effort into the development of a generir persistent hvpergraph library.

7.4.5 Extracting Structure for Environment Modeling

The original ambition of this thesis was to formulate an approach that would allow a
user to enter context based information on the detail wanted in the grouping process.
[t is a recognized fact that one of the problems with range data is that all the detail
that is possible to record is recorded. This leads to more data than is desired. Only for
manufactured parts is this detail desired. For environment modeling. shape and structure
are generally more desirable in particular for the creation of models for virtual reality. In
that domain it is possible to use inaccurate models overlayed with texture maps to give
a realistic appearance. The difficulty is how to specify the desired granularity and also
the segmentation of components from 3-D range data. This is not a problem of having
loose tolerances in the segmentation procedure but it is more an issue of the detection of
continuity of a surface and an understanding of the environment. Several examples can

be presented that bring the point across.

e The Brick Wall: A brick wall is composed of a number of planar surfaces separated
by channels. How can this brick wall be modeled as one complete flat surface

ignoring the channels between the bricks?
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e The Door Handle: A door is composed of a number of parts. the door itself and

the door handle. Can the door and handle be extracted as separate components

without having holes in the door?

e Windows in a Wall: This is a similar problem to that of the door handle. Can

the wall be extracted from the sensory data without the windows?

All of these questions require contextual knowledge to determine how to decompose
the data extracted from the sensor. The challenge is to develop a generic approach that

can address these types of problems.
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