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Abstract

This thesis deals with modeling and classification of multidimensional linear sys-
tems. In a behavioural framework, two representations of such systems are used:
AR representations and ARMA representations. Three first-degree ARMA rep-
resentations: Dual Pencil, Pencil. and Descriptor representations are defined and
recasting methods between them are given. Several rank conditions which allow
these recasting methods to result in equivalent representations with fewer auxiliary
variables are found. With respect to each first-degree model a definition of order
is given and some necessary rank conditions which allow reduction of order are
derived. All AR representations of a given behaviour are associated with a vector
space generated by their row spaces. A definition of order for each AR represen-
tation associated with this vector space is given and it is shown how to obtain a
minimal order AR representation from any given AR representation using primary
decomposition of polynomial equations and their p-adic valuations. A survey of the

existing work that shows its limitations and extent is given.
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Chapter 1

Introduction

Multidimensional (n-D) system analysis has gained increasing importance over the
last two decades. but the modeling of such systems is still one of the fundamental
developments to be completed. One approach has been to generalize 1-D state space
concepts. However. due to some major differences between the algebraic structure
of 1-D and n-D systems. these generalizations and their corresponding results have

been somewhat limited.

Inherent in the classical approaches is the concept of past. present and future in
the operating time domain. In the n-D case. there is no natural analogue to this.
Consequently, different possibilities. sometimes infinite. exist for state-updating
equations. Additionally, any imposed past will have several present states at any
given “time”. In the 2-D case the ‘present’ is given by a line; in n-D, a hyperplane
of dimension n» — 1. Thus two notions of state can be distinguished: each of these
hyperplanes (of dimension n-1) constitutes a global state, analogous to the 1-D state
variable, whereas each point in the hyperplane constitutes a local state. Therefore

two kinds of system properties, local and global, can be characterized.
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w
dynamical system environment

external
variables

Figure 1.1: Behavioural modeling of a dynamical system

Many results in 1-D system theory over a field K are related to the Euclidean
character of K[z]. These tools are no longer available in the n-D case which really
belongs to the study of commutative Noetherian rings. These differences. among

others. indicate that another approach may be desirable.

In this thesis I adapt to n-D systems an approach that was originally introduced
by J.C. Willems in [55] in the study of 1-D cases. and was generalized to 2-D by
Rocha [47]. A dynamical system is viewed as an entity which interacts with its
environment through variables called ezternal variables. (see Fig.1.1) The system
laws govern the relationships between the external variables of the system and give
rise to a family of admissible trajectories for the external variables . The set of all

admissible system trajectories is called the system behaviour.

A mathematical description of a system by means of equations constitutes a
representation of the system. In many situations it is convenient to work with rep-
resentations which contain auxiliary variables in addition to the external variables.
These additional variables will be called internal variables (sometimes referred to

as latent variables [57]).

A typical example of internal variables is given by the state variables which are
normally introduced in order to write the dynamical equations of a given system

as first-degree equations.
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Some interesting differences between the classical models and the behavioural

models should be noted:

e In some situations, it is not convenient or possible to have a priori knowledge
of the division of the system external variables into inputs and outputs. The
behavioural approach can deal with these situations. as well as the classical

context where such a priori knowledge is given or assumed.

¢ A dynamical system is characterized by a set (the system behaviour). rather

than a function such as an input-output map.
The above idea will be illustrated by examples:

Example 1 In seismology it is often of interest to measure the signal velocities
i z, y, and z directions, since seismic waves penetrate formations of different
characteristics, with different velocities. Let a 3-D wvelocity filter be such that it
passes the signals whose velocities fall within a given cone-shaped region in the (f. k)
space, where f is frequency and k is a 2-D wave number having two components
kz and ky, and given by k = (k2 + kj)l/2 [26]. Then the behaviour of the system.
determined by the geophysical structure, is the set of velocities v = (v,, vy.v.) which

are compatible with the geophysical laws and given by

B = {(vz.vy.v.) : R® = R®|v falls within the given cone-shaped region}. (1.1)
Example 2 A 2-D discrete modeling of natural self-purification process of a river
is given be the following equations [13]:

B((h+ 1)At, (k + 1)Al)
§((h+1)At, (k+1)Al) = kAtB(hAL KAL) +

(1 — ki At)(B(hAL, kAl) + ing(hAt, kAL)). (1.2)

(1 — ko At)(8(RAL, KAL) + ing(hAL, kAD)), (1.3)
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where Al is length equal to v.At. for the time step At and the river velocity v.
B(t.l), is the concentration of ozygen needed for complete biochemical oridation
(BOD) of the pollutants , §(t.1) is the dissolved ozygen (DQ) concentration deficit
with respect to the saturation level. ing(t,1), and ins(t,1) are BOD and DO sources
respectively, and ky and ks are two constants reflecting the self-purification process.
due to the degradation of the originally discharged pollutants by bacteria. and the

reaeration process, taking place at the water/atmosphere surface.

Then the behaviour of the system is the set of all possible concentration levels

of BOD and DO which satisfy (1.2) and (1.3). that is

B = {(ing.ins) : Z* - R?| such that (1.2) and (1.3) are satisfied}. (1.4)

Example 3 [47]: A mathematical description of a discretized monochromatic im-
age on a plane can be given by a function g : Z® — IR® which associates with each
pizel at position (t1.ts) € Z* the corresponding gray-level g(t,, t2). After simplifying
the situation by restricting attention to edges with a pre-specified orientation. say
vertical edges, enhancement of an image with gray-level function g1 ts given by the
construction of a second itmage whose gray-level function g, is obtaz’nqd from gy by

the following equation:

g2t t2) =gi(ta+ Lty + 1) —gi(by — Lots + 1) + g1ty + 1.4,

—qi(ty = L.ta) + ity + 1,8, — 1) — gy (b1 — 1,8, — 1). (1.5)

The 2-D dynamical system corresponding to this process has g, and g, as system

variables and is characterized by the behaviour

B = {(g1.92) : Z* > R?| such that equation (1.5) is satisfied }. (1.6)
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1.1 Owutline of thesis

An outline of this thesis is as follows:

Chapter 2 contains a literature survey. Two commonly used n-D state space
models, namely those of Roesser and Fornasini-Marchesini, are listed. as well as
implicit representations of linear systems by Aplevich. and a definition of minimal
bases for polynomial-matrix models of multivariable linear systems by Forney is
given. Definitions of order and minimality with respect to these models are quoted.
and order reduction algorithms and necessary and sufficient conditions suggested in
the literature are closely examined and their restrictions and limitations are stated.
Some minor new results relating to these models will be given. This will also allow

us to place these models in the context of the work presented in this thesis.

In chapter 3, the behavioral models of multidimensional dynamical systems are
formally defined. After giving a self-contained exposition of behavioural models
of dynamical systems. some of the possible representations of these models will be
stated: specifically the AR, ARMA. and MA models. In particular, a special type
of ARMA model which is first-degree in the internal variables and zero-th degree
in the external variables will be described. Different representations of this form
will be described and a systematic way to obtain an equivalent representation of a
different form will be given. This will also include the embedding of n-D Roesser

and Fornasini-Marchesini models in the given first-degree form.

In chapter 4. definitions of order and minimality with respect to this order
for the ARMA representations described in chapter 2 is given. Some necessary

conditions under which a representation is minimal will be derived.

In chapter 5. some basic algebraic definitions and results with respect to polyno-

mial equations are given: multivariate polynomial factorization, p-adic valuation.
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and then a definition of order for AR representations will be given. It will be shown
how to find a minimal basis for polynomial equations describing an AR representa-
tion. It will be shown that all AR representations with the same external behaviour

can be related to the AR representation given by this minimal basis.
Chapter 6 contains conclusions and suggestions for further work.

For brevity in exposition. throughout this thesis the 2-D case will be emphasized.
In cases where brevity is not sacrificed. the results will be stated in the general n-D
format. Situations where the generalization from the 2-D case to the general n-D

case is not immediate. or in fact not possible. will be noted.

In the appendix. n-D (n > 2) generalizations of a known 2-D result. namely
the relationship between n-Dimensional Roesser and Fornasini-Marchesini models
1s given.

An outline of new contributions made in this thesis is as follows:

e In this thesis. since only linear systems are analyzed. the term first-degree will
refer to the degree of the operators used in polynomial equations describing
a system. In chapter 2. a survey of the existing first-degree models is given
and their corresponding definitions of minimality are also placed into their
context. Some new results which show the extent and limitations of previous

conditions for minimality of previous models are also given.

o In chapter 3, three new first-degree ARMA representations are defined. Re-
casting methods between the given first-degree ARMA representations are
developed. Rank conditions which allow these recasting methods to result
in an equivalent first-degree representation with a smaller number of internal
variables are given. It is also shown how to recast a given AR representation

into the given first-degree ARMA representations and vice versa.
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e In chapter 4. new definitions of order for first-degree ARMA representations
are given. Necessary rank conditions which characterize a minimal order

first-degree ARMA representation are found.

e In chapter 5. a new definition of order with respect to AR representations of
a given dynamical system is given and primary decomposition of polynomial
equations and their p-adic valuations is used to find a least order AR repre-
sentation for a given system. It is shown how all AR representations and a
minimal order AR representation of a given system correspond to different

bases of the same vector space.

e In the appendix, the relationship between two commonly used n-D state space

models of Roesser and Fornasini-Marchesini for n > 2 is derived.



Chapter 2

Previous work

New first-degree ARMA models will be described in the next chapter. Chapter 4
contains certain minimality results. In order to place these results into the context
of the existing first-degree ARMA models. in this chapter I will give a literature
survey of first-degree n-D models. namely the Roesser model and the implicit model.
I have also included Fornasini-Marchesini models, despite the fact that they are
not in first-degree form. since they are commonly used in practice. Definitions of
order and minimality with respect to these models are quoted. and order reduction
algorithms and necessary and sufficient conditions suggested in the literature are

closely examined and their restrictions and limitations are illustrated by examples.

In section 2.1, the Roesser model for n-D systems is given. This is followed
in subsection 2.1.1, with the definition of a minimal order Roesser realization for
a single-input, single output (SISO) system with strictly proper transfer function.
Some of the differences that set minimality of n-D systems apart from their 1-D
counterparts, and some of the suggested conditions that characterize minimality are

given. This subsection is concluded by showing that there is no known method to
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obtain a minimal Roesser model from an arbitrary transfer function. with the only
exception being the causal SISO system with a transfer function which is separable
in the denominator or numerator. One of the methods that achieves a minimal

realization for such systems, the Hinamoto and Fairman method. is given.

In section 2.2, a survey of definitions and results, similar to the ones given in
section 2.1. is given for Fornasini-Marchesini models. This includes the generaliza-
tion of Fornasini-Marchesini models to behavioural models by Rocha. In subsection
2.2.1, after giving a definition of minimality and stating the difference between the
definition of order for Roesser models and Fornasini-Marchesini models. a survey of
attempts by Fornasini-Marchesini to obtain a minimal model realization is given.
Of particular interest are the method of obtaining minimality associated with a
non-commutative power series using the B. L. Ho algorithm. and attempts to solve
the minimal realization problem for the commutative case using a corresponding

non-commutative power series and an inverse map.

In section 2.3, implicit models of linear systems. definition of order and mini-
mality with respect to the defined order. and necessary conditions for minimality
suggested by Aplevich are given. An illustrative example shows that the suggested

conditions are not sufficient.

Another result presented in this thesis is the classification of minimal order AR
representations which will be given in chapter 5. The main result in chapter 5
draws on Forney’s work on polynomial-matrix models in 1-D . In section 2.4. I will

give a summary of the result by Forney which will be used.
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2.1 The Roesser Model

The Roesser model [49] allows the generalization of certain analysis. structure. and
design results for one-dimensional state space systems by allowing the local state
of its model to be divided into an horizontal and a vertical state which are prop-
agated, respectively, horizontally and vertically by first-order difference equations.
Extensions of the Roesser model to n-D can be found in [4]. [31]. [28]. and [22].
Also. with the growing interest in singular systems, 2-D (n-D ) Roesser models are

generalized as follows([27] [36], [37]):

I:Eu Elz] [::"(HLj)J [Au Ay [zh(i.j)] [Bl} .
. = o+ u(:.7)(2.1)
By Exnf | z¥(¢.7+1) Ay Asa | [ 2¥(4.7) B,
y(e.7) = [Cl Cz] [

Example 4 Consider ‘e hyperbolic partial differential equation [{0]

T(z. IT(z.
9 (gz f —% ~ T(z.t) + u(t) (2.3)

with initial and boundary value conditions:

T(z.0) = fi(z). T(0.t) = fa(2) (2.4)
Let
T(i.j) = T(EAz.jAL).  u(j) = u(jAt) (2.5)
dT(z.t) _T(i.j)—T(i —1,5) dT(z.t) _T(.j+1)—T(.5) (26)
oz Az ’ gt = At | -

If we define zh(i.j) = T(i — 1.j) and z°(i.j) = T(i.), then by rewriting (2.3) in
the form

T(i.j+1) = a;T(5.5) + a2T(i — 1. 7) + Bu(j) (2.7)
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where a; =1 — -ﬁ—:’: — At, and a; = %, and B = At; we obtain the Roesser model
zh(z + 1, 5) 0 1] [zh:.5) 0 .
.. = N e u(7). (2.8)
z%(z,7 + 1) ay ay| | z(¢.j) B

The suggested definition of order for a Roesser model realization of a given input-
output behaviour is the dimension of the vector z in (2.1) and (2.2). In the following
subsection, we investigate minimal order Roesser realizations and necessary and

sufficient conditions for such realizations. as well as differences between 1-D and

n-D cases.

2.1.1 Minimality

In 1-D state-space representations. the importance of minimal representations is
due to factors such as uniqueness of system identification, economy. and more
importantly. describing the input-output behaviour via concepts of controllability
and observability. The original Roesser model [49] was defined for 2-D systems with
quarter-plane causal transfer functions. Given a SISO 2-D causal system. let the
highest powers of two operators in the denominator of its transfer function be. say
n and m. Then a commonly used definition of minimal order is a Roesser model
with state vector of dimension n +m [34], however as will be shown in the following
pages minimality in n-D (n > 2) has a field dependent nature. To the authors’s
knowledge, there has not been a definition of minimality for SISO systems with
improper transfer functions. Furthermore, despite the reduction schemes for multi-
input, multi-output (MIMO) Roesser realizations (for example. see [46] and [45])

the definition of minimality for such systems is unclear.

Before investigating necessary and sufficient conditions suggested for minimality

of SISO 2-D Roesser models, several distinctions should be made between 2-D (n-D)



CHAPTER 2. PREVIOUS WORK 12

minimal systems and 1-D systems:

1. It has been proven that all minimal realizations of a given 1-D transfer
function are equal modulo a bijection on the state-space (i.e. a change of basis).

However, as the following example will show, this is not the case for n-D systems:

Example 5 Consider the transfer function

2L — 22

H(z, z,) = e (2.9)
Then
$1i+1,' 0 -1 .'Bli.- 1
Ry B U [ A L
za(t,j + 1) -1 0 z2(2,7) 1
zy(i.7)
y(i.j) = [-1 1][ ] J (2.11)
z2(z.7)
and
zi(t+ 1,5 0 1] |=zi(s5 1
] - [ [
zy(t, 7 + 1) 1 0) [z5(:.7) 1
zy (2. 7)
y(i,j) = [-1 1][ , ]] (2.13)
To(i. 7)

are minimal realizations of the same transfer function (2.9). but they are not alge-

braically equivalent. in the sense that we cannot find a non-singular matriz T such

l:zl(i’j)} _r [z’l(i-j)] .
zz(iaj) .'II{_;(’I..])

2. The dimension of a minimal realization depends on the field in which the entries

that

of the matrices in equations (2.1) and (2.2) are chosen.

Example 6 [34] Consider the transfer function

zy+ 22
2129 —1

H(Zu Zz) =

(2.14)
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It will be shown that although it is possible to get a Roesser realization of order 2

for the above system if the constants are taken over field of complez numbers. the

smallest realization over real numbers is of order 3.

Assume to the contrary, that there ezists a realization of order 2 over reals in

the Roesser form for

Then we have

or

2122 — @222} — A1122 + A11Q2] — Q12831 = 2122 — L.
which itmplies that
@22 = ay1; = 0. aj2aq; = 1. or @y = —

Let ay; = a = a1 = a~!. Then we have

or
crbiza — crabs — caa™thy + cabyzy = 21 + 25,
which implies
cabhh = 1 =2b, = i and b #0

5]
Cgbg =1

0 = Clbza-{-Cgb]_a—l

(2.18)

b122 - abg
[e1 e = z1+2, and D =0.(2.19)
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or
b by _,;
— —a  =0.
bla + bza
Multiply both side of the above equation by z—:*a to get the equation
by ,
=a" +1=0,
by

which clearly has no real solutions.

However, It is also easy to show that a possible Roesser realization over reals is

given by
0 -1 0 1
A=(-1 0 0|,B=]0].C=[1. O. 1]. (2.20)
0 -1 0 1

This shows that a Roesser realization of order 2 is only possible if constants are
taken over the complez field. whereas realization over reals has to be at least of

order 3.

3. Unlike 1-D systems, where a state-space realization is minimal if and only
if it is controllable and observable. it has been shown that local controllability
and observability [49] are neither necessary nor sufficient conditions for minimality.

Definitions of local controllability and observability are given by Roesser [49] to be:

Definition 1 : A state zo = z(i1.12) is controllable in the rectangle [(0.0). (ny,n2)]
if and only if when all boundary conditions are zero. there ezists some pair (0.0) <
(h.k) < (n1,n2) and some input pattern such that z(h,k) = zo. A Roesser realiza-
tion 15 called locally controllable if all the states are controllable. This was proved
to be equivalent to having controllability matrix Q to have full rank, where Q is
defined to be

Q = [M(OO)M(()- 1)7 sM(Oan)v M(l,O) 7M(n1vn2 - 1)]7 (221)
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where
| B . 0 .
M(i.j7) = A1 + At B where A™ is the transition matriz
0 2

and the transition matriz is defined to be

A = ALOQiNT L A0 gig- (¢.4) > (0,0)
A%0 — . 491 — A A ao= | 00
. 0 0 Azl A22
A~ = AT =, for jzLixzl

Definition 2 : A state zo = z(i),¢s) is observable [(0.0), (r1.m2)] if and only if
there is no non-zero initial state such that for zero boundary conditions and zero in-
puts, the output is also zero. A Roesser realization is called locally observable if all
the states are observable. This was proved to be equivalent to having to observability

matrix O to have full rank. where O is defined to be

0O = [CT, CT(ALO)T, . CT(Anl.n-_-—l)T]T. (222)

Example 7 [34] Consider the transfer function

H(zy,2) = %1— (2.23)
The Roesser realization of this transfer function
0 0 1 1
A=10 0 1].B=|1],C=[-1 1 0 (2.24)
1 0 O 0

is locally controllable and observable. However, it is also easy to verify that another
Roesser realization of H(z,z2) of smaller order is given by

w=|® Mopo|Y eon 2.95
—[_1 0 L - 1 ’ —[ ], ("" )
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ezhibiting the fact that local controllability and observability do not imply minimal-
ity. Also. for the transfer function

22(21 + Z9 — 1)
(z2 — 1)(2122 -2 — Zz)

H(Zl,22) =

the realization

,C=[1 1 1 (2.27)

= O

1 1
A=]1 1|, B=
0 1

© = =

i35 clearly minimal. However this realization is not locally observable since the ob-

servability matriz does not have full rank.

Different definitions of controllability and observability have been suggested to es-
tablish a connection between these concepts and minimality. Some of these are the
notions of separate local controllability and observability, global controllability and
observability, and modal controllability and observability [34]:

Definition 3 Partition matrices Q and O in the previous definitions to be

ng na Qh }nl

—~~
0=[0"..07). Q=
Q"] }ne
Then. z"(i.j) and z°(i,;) are separately locally observable (separately locally con-

trollable) if and only if O* and O (Q* and Q”) are separately of full rank.

Definition 4 Define the controllability map, C to be

CZU-—)XQ‘Q
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and the observability map. O to be
O: XO,O - y

where U 1is the space of past inputs, and Xop = (z"(0.7).2%(:.0)).i.7 € Z+ is the
global initial state. and Y is the space of future outputs. Then the Roesser model is
is globally controllable if and only if the controllability map C is a surjective map.

and s globally observable if and only if the observability map O is an injective map.

By using the notions of separate local controllability and observability Kung et
al [34] were able to show that separate local controllability and observability are
necessary conditions for minimality. However. it was shown that neither separate
local controllability and observability nor global controllability and observability
are sufficient conditions for minimality. To tackle this problem. Kung et al sug-
gested the following definition and proposition for 2-D systems based on notion of
coprimeness. A detailed treatment of algorithms testing for relative coprimeness of

n-variate polynomials can be found in {7].

Definition 5 : C. A in (2.1)-( 2.2) are modally observable if

ZIInl 0
C. —A (2.28)
0 Zg[n..,
are right coprime.
Definition 6 :A, B in (2.1) are modally controllable if
Z]_Inl 0
—-A.B (2.29)
O Zg[n._,

are left coprime.
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Conjecture 1 The realization of a dynamical system given by the equations (2.1)
and (2.2) ts minimal if and only if A.B are modally controllable and C. A are

modally observable.

The major difficulty with such a conjecture is that the existence of such realizations
cannot be guaranteed on the field of rationals and even their existence on the
complex field has only been proven when the degree of z; and z» in the denominator

of the transfer function are equal to one.

It should be noted again that the definition of minimal order realization in the
above is only given for regular SISO Roesser models and is not applicable to many
systems which cannot be realized in this form. A simple example of a system which
does not have a Roesser model realization is one where input-output behaviour is

given by the equation z;y = zyu.

The difficulty with the conjecture posed by Proposition 1. as well as close ex-
amination of other suggested conditions of minimality have shown that there is
no known method of obtaining a minimal Roesser model from an arbitrary given
transfer function. The only exception is the causal SISO systems with a transfer
function which is separable in the denominator or numerator. In the remainder of
this subsection, the Hinamoto and Fairman method of obtaining a minimal order
Roesser realization from a non-minimal Roesser realization or directly from the

input-output data for regular, separable SISO 2-D transfer functions will be shown.

In the 2-D case, where the denominator (or numerator) of the causal transfer
function is separable, that is the denominator (or numerator) can be written as the
product of two 1-D polynomials. it has been shown that a corresponding Roesser
realization can be reduced to have a minimal order. It is also possible to obtain a

realization of this order using a generalization of the B. L. Ho algorithm. It is easy
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to see that separability of the denominator implies that the matrices A,» or A, in
(2.1) are null matrices, since the denominator of the transfer function will be given

by (211 — A11)(z2] — Ass). Roesser [49] had shown transformations in the class of

Ty: O
T = (2.30)
0 T

state space realizations given by

where T; and T, are non-singular matrices and 0 is the null matrix of appropriate

dimension., will not affect the transfer function.

Let a regular Roesser realization of form (2.1)-(2.2) be given for a strictly proper
SISO transfer function with highest degree in z; of m and in z» of n. Hinamoto
and Fairman [25] showed that a realization of order m + n can be obtained from a

given realization using a similarity transformation of the form (2.30) for

Ty = [Bi. AubBy. --- AT'B)™! (2.31)
T = [C7. (Cada)T. --- (C2ATYTT. (2.32)

If(A.B.C ) represent a Roesser realization of order m + n. then we have

[0 0 0 a (wu Way -+ Wy |
1 0 --- 0 a Wy Was o+ Wpa
/iu = 0 1 0 az .A21= W13 Wiz -+- Wpa
00 --- 1 anj [ Wim Wom - Wpm |
0 1 0 0
0 0 1 0
Ay =
0 0 O 1
By B2 Ps Brm
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and

B, = [1,0, "’-0]T~ éz = [w01, Wo2: "'-wOrrn]T

C" = [1- 01 ST T, O]’ C:'1 = [w107 Wao, . wnO]
where the a;'s and f3;’s are real numbers satisfying

AT'By = a1By+azAnBy+---+a,AN'B;
C2A%, = BiCsr + 2C2A0 + -+ + BnCr AT

and the two-dimensional Markov parameters, w;; are given by
Wi = CIAiIIBl
Wo; = CgAg;]'Bz
wi; = ChAl;'AnAT'B;, for (i.5) > (0.0).
The canonical representation can also be found directly from the Markov parameters

using a generalization of the B. L. Ho algorithm. The Markov parameters w;; are

defined such that for zero boundary conditions the following equation holds:

yi.3)=), Y, wmuli—h.j-k) (2.33)

(0.0)<(h k)< (4,5)

Define a sequence of Markov parameters. W; to be
Wi = {wi07 Wir, =y Wy, Wio1 4,7 ° 3 Wiy, wOi}-

Assume that some upper bound. say N. is known for the sequence {W:}. It will

follow that the obtained realization will always have an order less than or equal to
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2N. Define horizontal and vertical Hankel matrices to be A and H respectively. as

W W W W
W WM WM .
2N = : : N « (2.34)
i W :
_WLN) * * * *
r WL(N) Wz(N) I,i/l(vl\i)1 W1(VN) 1
W i W o«
ﬁI(vA],V)' = : : ® * (2.35)
wi Wi . *
_WI(VN) * * * * J

where the *'s indicate the corresponding entries that do not effect the rank of either

H or H matrices. It was shown that

N N-1

n = Zrankf?l(\;\zﬂ.i - Z rankfl}fi)i_i (2.36)
i=1 i=1
N . N-1 .

m = Y rankAQ",, .~ rank AL, (2.37)

i=1 i=1

where H,-(J-N) and [:Igv) are defined as in (2.34)-(2.35). It is easy to show then that a
canonical realization corresponding to the Markov parameters is given by (A. B. C)

of page 20.

2.2 The Fornasini-Marchesini Model

The Fornasini-Marchesini approach to the algebraic realization problem of 2-D sys-

tems is to use input-output maps to obtain state space representations by Nerode
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equivalence classes of inputs (for details see [14]). Howes r, such (Nerode) repre-
sentations are usually infinite dimensional and pose difficulties in describing the dy-
namics of systems in terms of a recursive ‘updating equation’. Fornasini-Marchesini
were the first to overcome these difficulties by introducing the notion of local state
vs. global state in the 2-D case. To explain these notions. let P be a partially
ordered set. A cross-cut C C P is a set of points such that if i € P exactly one of
the following holds true: [42]

(i) i < j for some j € C

(ii) i ecC

(iii) ¢ > j for some j € C

Thus, a cross-cut C partitions P into three distinct sets of points. identified by (i).

(i) and (iii) which we will call past. present and future respectively. with respect to
C. There are usually infinitely many possibilities for selecting the set C.

Define the following partial ordering for integer pairs:
(h.k) < (¢.7) if and only if h <zand k < j

(h.k) = (i, ) if and only if h = and &k = j
(h k) < (2. 7) if and only if (h,k) < (2.5) and (h, k) # (3. 5)

In Z x Z, using the above partial ordering, a cross-cut C has the following charac-

teristic properties: [17]
(i) if k>4, k> j, (h.k) and (i,5) cannot belong simultaneously to C

(ii) if (h,k) € C, then C intersects the sets {(h = 1,E), (R, k+1),(h -1,k +1)}
and {(k + 1,k),(h,k—1).(h + 1,k — 1)} and does not contain the set {(h +
Lk),(h,k+1)}
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(o} Q Qo @ [~ o -]

Q =] o o o o

o ~C
o o o o o
o [+] 4 Q o -]
[=] [+] 4 o [<] o

Figure 2.1: Examples of cross-cuts of Z x Z

(iii) for any (¢.7) in Z x Z, the relation (h.k) < (i.j) cannot be satisfied by

infinitely many elements (A, %) in C.

Figure 2.1 illustrates two examples of cross-cuts of Z x Z. A finite dimensional local
state z is assigned to each point (h.k) of the plane. The global state X¢ on the

separation set C is defined as follows:
Xe = {z(h.k): (h.k) €C}

A distinction between global and local state in 2-D should be made. since unlike
the 1-D case where the separation between past and future is given by a pownt (i.e.
the present). in the 2-D case of planar domains such as Z x Z. for the simplest
case. the present will be given by a line. The global state is then defined on the
lines which constitute the propagation front analogously to 1-D state variables. A
local state is assigned to each single point of the domain and the collection of all

its values along a propagation front will constitute a global state.

Assuming that the system is linear, and shift invariant, Fornasini-Marchesini
proposed the two following models for updating the finite dimensional local state

space. First [14]
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z(h+1,k+1) = Aoz(h.k)+ Aiz(h+1.k)
+ Asz(h.k+1)+ Bu(h.k) (2.38)
y(hk) = Cz(h.k) (2.39)

referred to as the first kind!, or [17] the second kind

z(h+1.k+1) = Ajz(h.k+1)+ Asz(h+1.k)
+ Byu(h.k + 1) + Bou(h + 1. k) (2.40)
y(h,k) = Cz(h,k) (2.41)

where (h.k) € Z x Z partially ordered by the product of ordering
z(h.k) : Z x Z — IR" is a map whose value at time (k. k) is called
the local state at time (h.k),
w(h.k) : Z x Z — R is the input with value u(h. k) at time (k.k)
y(h.k) : Z x Z — R is the output with value y(h.k) at time (h. k)

Ag. A;. As. By. B, are real matrices of appropriate dimensions.

A generalization of the two proposed models was given by Kurek [35] :

z(h+1.k+1) = Aoz(h.k)+ Aiz(h.k+ 1)+ Asz(h + 1.k) (2.42)
+ Bou(h,k) + Biu(h.k+ 1) + Bou(h + 1, k)
y(h,k) = Cz(h,k)+ Du(h,k) (2.43)

The n-D implicit generalization of the above is given by Kaczorek [28]:

E'z,-l+1,,~2+1,...‘;,,+1 = (244)

1Sometimes this is referred to the case where Ao is identically zero [16].
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Aoy iy onin + Z Ajzih---‘i,-_l.i,-+1.i,~+1v---.i,, +
=1
+ Z Ajkzi|.---.t.j_l,ij+1.ij+x.-‘-.ig_l.l'k+1.ik+|,---.in + R
1<j<k<n
n
+ Z Al Gl nTiy Ly 41 g 4 Loin 1 T
J=1
n
+ Bou;, iy, i, + Z Bjtiy iy i1y i +
=1
D Bty L e et g o
15j<k$n
n
+ Z Bl.---.j-l.j-{-l.---.nuil+1.---.i,—-1+1.ij.i,-+|+1.--».i,,+1
Jj=1
Yirizein = CZipiyoin + Dy iy e (2.45)
Example 8 [{1]: Consider the following system for u(z.t).v(z.t). f(z.t) and
z €(0.1) t>0.
Ju
— = v 2.46
Oz ( )
Ou dv
— = — + 2.47
ot dz f ( )
Discretizing the equations above, we have
Uit1.j+1 — Ui j41 9
= Viii1. 2.48
Az 1.3+1: ( )
Uit1j+1 — Wit1;  Vitlj — Vij41 - 249
At A.’E + fl.J ("" )

Equations (2.48) and (2.49) are in the form (2.42) and (2.43)for

and

10
E= ,A1
10

1 Az 0 O 0
0 _KA;E ’ A2 = 1 2_; ’ BO = At . (2'50)
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In the following chapter, it will be shown how the first-degree Roesser model of

the previous section and the implicit models of the following section are special cases

of first-degree ARMA representations. Regular and singular Fornasini-Marckesini

models were also generalized to behavioural models by Rocha [47]: In the first

model, equations describing the model is given by

Exz+ Fz21z2 4+ Gzaxz + Hzy 2oz =0

Mw+ Nz =0.
where
Ey Fi 0
E = E’-) . F= 0 G= Gg . H=
Es Fs G3

H3

E;. F;. G;. H;, M., and N are constant matrices (over the given field) of appropriate

dimensions. M is full row rank, and

i[E F G H]has full row rank
ii im(E)N im(H) = {0} = im (F)N im (G)

iii Any 1-D polynomials M;.M, such that

E,+ Fz; E,+ Fiz
M, G =0, M, E,
Gs + H3z Es + F3z,
will also satisfy
0 0
M, E, = Ki\(Ey + Fiz1), M, G,
E; + F3z; Gs + H3z,

for some 1-D polynomial matrices K, K in z, z; 1.

= K>(E, + F1z,),
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iv Any 1-D polynomials M3.M, such that

Es 4+ G2z, E; + Gozy
M, F =0, M, E, =0.
F3 + H3z, E; + G3z,
will also satisfy
0 0
M; E, = K3(E2 + Gaz2). M, Fy = K4(E2 + Gaz2).
E3 + G3z, F3+ Hjz,

for some 1-D polynomial matrices K. Ky in z,, z; 1.

Such a representation does not require any preferred direction of propagation for
the state values. However. because of the static nature of the relationship between
the state variables z and the external variable w, the model may require a larger

number of state variables than other models.

In the second model, a free auxiliary variable, referred to as the driving variable

v. is used to obtain the following realization:

S(z)z = 0 (2.53)
231r = (AIZ + Ag).’l} + (B]_Z + B'_))‘U (254)
w = Cz+ Dv (2.55)

where z = 2,251 and A;’s, B;'s. C, and D are constant matrices and S(z)isalD
polynomial matrix in z.

This model can be treated as a generalization of the regular Fornasini-Marchesini
model, and hence it is not hard to show that not every AR 2-D system representa-
tion has an ARMA realization of this form ( for example, an AR system described

by Z1wy = Zgﬂ)g).
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The definition of order for either model is not given: but one may suggest the
dimension of the state variable = to be used as the system order. Also. it may be
possible to use the conditions on the matrices E. F, G. H. and M of the first model

to establish some reductive algorithms.

2.2.1 Minimality

In this subsection. after giving a definition of order for Fornasini-Marchesini models.
a survey of attempts to obtain a minimal order Fornasini-Marchesini model for a
given system will be given. This is achieved by associating a non-commutative
power series with the transfer function of the system. solving the minimal realization
problem for the non-commutative case using a generalization of B. L. Ho algorithm.

and then using an inverse map to obtain a realization for the commutative case.

The order of a given Fornasini-Marchesini model is defined to be the dimension
of the local state space and hence a minimal order realization is the one in which the
smallest dimension for the state vector is used. It should be noted that a minimal
order realization no longer corresponds to a realization where the dimension of local
state z is the sum of the sum of the highest power of =, and z, in the denominator

of the transfer function describing the system. as the following example will show.

Example 9 We already showed in ezample 7 that the smallest Roesser realization
obtainable is of order two. whereas a generalized Fornasini-Marchesini realization
of the form (2.42)-(2.43) of order one is given by Ag = 1. A; = A, = 0, By = 0.
By = —1, and B, = 1. However. note that the state vector is not updated using

only first order equations.

Similar arguments to those made in the earlier section with respect to minimality

can be made with the following modifications:
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e Fornasini-Marchesini {15] showed that every minimal realization is locally

reachable and locally observable.

e Global reachability and observability are sufficient but not necessary condi-

tions for minimality. [18]

It has already been shown in the previous section how the B. L. Ho algorithm can
be used to obtain a minimal Roesser realization for the case where the denominator
of the transfer function is separable. Let & be the space of past inputs and Y the
space of future outputs. Also, let the input-output map be characterized by the

linear map s. which is defined by

siuel= Y (s(u).ziz)zizf ey (2.56)
i+35>0

where (s(u), z{zg ) represent the coefficient of zizJ in the formal power series s. In

this framework we have assumed commutativity between z; and z,. Define the

(infinite) Hankel matrix H(s) associated with the power series g to be :

[ (s.1) (s.21) (s.22) (s.21%)  (s.z121)
(s.21)  (s.2.%) (s,z122) (s.2:%)
H(s) = | (s.22) (s.z221) (3,22%) (5.222:%) (2.57)

(s.21°)  (s.2:%) (s,2122,)

Fliess [11] proved that the rank of #(s) is finite if and only if s is a power series
representing a rational function with separable denominator. It should be noted

that

(a) We have already shown that there are many systems with non-separable trans-

fer function which have finite realization ( see example 9).
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(b) The rank of the Hankel matrix as defined above does not always correspond
to the order of a minimal realization as following example will illustrate.

Example 10 Consider a 2-D system described by the transfer function s = T—i-_zﬁfgz-:-hnz—g=

(—1+—2ﬁ2_*72). A generalized Fornasini-Marchesini model of order one can be given
by Ao =A,=A>=-1,By=0, B, =1, and B, = —1. However,
21 — 22

1+Zl+22+2123

x5
= (21— z2) Z(—l)k(zl + z2 + 21 25)F
k=0
2 2
= z1+tz22—2{ —2z120— 2z, + -

Then the Hankel matriz is given by

H(s)=| 1 -2 -1 0 --. . (2.58)

.

Clearly rank H(s) > 1, so the rank of the Hankel matriz does not correspond to the

order of a minimal realization.

The Fornasini-Marchesini approach to constructing 2-D minimal realizations was to
first associate a given commutative power series s to a noncommutative power series
o via a map, say ¢. Then, an extension of earlier works of Fliess to noncommutative
formal power series was used to obtain a minimal realization for o. Finally the

inverse map of ¢ was used to obtain a realization for s.[16].

To obtain a minimal realization, given a noncommutative power series o, Fornasini[12]

proposed a generalization of the B.L. Ho algorithm as follows:
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Define words to be n-tuples n = (w;,,wi,.---.w;,).0 < n < oo where w;;, €
{z1. 22}, Vi.j and the length of 7 to be i,. If 5 = (w;, . wi,,---.w;,) and € =
(25, ¥s, -+ uj,) are two possible words, define their product né to be their con-
catenation

qf:(w,-l,w,-z,---.w,-,,.ujl.uj:.---.u,-m) (259)

Writing w; in place of the 1-tuple (w;), a word 7 can be written as

n> 0. (2.60)

n

= W;, Wi, -~ -W;

Then a noncommutative ring of formal power series K < £;.£» > in two variables

&1.&2 and with coefficients in a given field K can be defined such that o € Kk «

&1.&2 > can be written as

o= > (0. w)w (o.w) € K. (2.61)
all possible words w

Now we can form the (infinite) Hankel matrix (o) associated with the power series
g:
[ (0.1)  (0.&) (0.&2) (0.&%) (0.6:62)
(0.&) (0.&°%) (0.6&) (0.6%) (0.6°%6)
H(o) = | (0:62) (0.6&) (0.&%) (0.6:67) (2.
(0.6%) (0.&°) (0.6%6)

[V
(o]
[SV]
e

L -

The element in the (v,w) position of this matrix is simply given by (o, vw). Also,
ordering in this lexicographical manner allows us to talk about, say, the ith row
(or column) of H(o). Partition H(o) in row and column blocks indexed by capital
letters. For example, Hprn(0) is the composition of the Mth row and theNth

column where the Mth row (theNth column) block includes all rows (columns) of
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H(o) whose indices are words of length M — 1(N — 1). These block matrices are

of finite dimension and contain 2(M-1+(N-1) elements. Also denote by Hasxn(o):

( Hia(o) Hizlo) --- Hin(o) -
Harew(o) = Haa(o) Haz(o) --- Ha (o) (2.63)
| Hma(o) Huma(o) - Huwn(o) |

Then the rank of the Hankel matrix H(a), n, is

n, = sup rankH (o). (2.64)
M.N

This rank, whenever finite, provides the dimension of the minimal realization of

Fornasini-Marchesini form of o.

Denote by H"(o) the infinite matrix whose element in the (w.v) position is
given by (o, wrv) for all possible words w and v. Note that in general H" (o) does
not constitute a Hankel matrix, except for »r = 1. Apply the same partitioning to

H" (o) as those of the Hankel matrix (i.e. Hi, p(a). Hirxn (7))

Assume that some upper bound on the dimension of the minimal realization
ne is known and n, =rank H(o) < oo. If Denoting the row length of #(c) by L’
and the column length of H(o) by L”. then the following steps lead to a minimal
realization of o of the form o = C(I — A6 — A»¢;) "' B:

1. Find nonsingular matrices P and Q such that

I.|o
PHLIXLH(O’)Q = [ :, (265)
0 0

2. Compute

Neg

A; = [I,,,

0 ] PHE. ,.(0)Q [ J i=1,2 (2.66)
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]
0
B = [ L. o]P’HUan(a) : (2.67)
-Ou
I,
¢ =[10 - O]HL'xL"(O')Q,: } (2.68)
0

Next. let K[[2;. 22]] be the commutative ring of formal power series variables
z1.z2. Define homomorphism ¢ to be ¢ : K <« &.6 >— K{[z1. 22]] such that
(k) =k, Yk € K. ¢(£1) = 2z1. and ¢(€2) = 2.

Consider a given (commutative) transfer function s € K[[z;.z,]]. Pick any
o € K < &.& > such that ¢(0) = s. Then a minimal realization of o can be

related to a realization of s since

#(0) = $(C — (I — A1y — As6s)'B) = C — (I ~ A1z; — Aszy) !B = s.

Finding minimal realization of o. subject to the constraint ¢(o) = s. requires
solving several nonlinear equations corresponding to the ranks of some finite sub-

matrices of the Hankel matrix associated with o:

Let the highest powers of z; and z, in s be n; and n, respectively, and assume
an upper bound on the rank of #(c¢) is known and is equal to say m. Also. let
P=m+ [21372] where [z] is equal to the smallest integer n such that n > z.

Define ' to be the set of words w in ¢; and & such that
T ={w:|w| <2P, w#&"&" VA £},

where |w] is defined to be the length of w and is equal to n if w = (&soes&in)-
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Let KT be the space of I' indexed sequences of elements of K. For every sequence
{k*} € KT, define a corresponding polynomial w({k¥}) to be
() = kw+ Y (0. 88)EE - Y k&S
werl i+j<2P welNZiJ
where =*7 denotes the set of words made of i &1’s and j &'s respectively.
Then the corresponding rational noncommutative power series ¢ whose Hankel

matrix has minimal rank of say g, subject to ¢(c) = s. is the power series for which

q is the smallest value such that

e

= {{k"}: {k*} € K*, rankHp,p(x({k*})) < q} q<m  (2.69)
Vo = {{;*}: {k"} € K*, rankHp,(p.(r({k*})) < q} ¢ <m (2.70)
Uy = {{k"}: {k*} € KT, rankH p,1)xp(n({k*})) < q} g<m (2.71)
(Ty — Tou)N(Va=Vou) N (U, —Upy) #0 (2.72)

and

rank Hp, p(c) = rank Hp,p,1(0) = rank Hp ., p(0) = q. (2.73)

Several possible limitations to this technique should be pointed out

1. A priori knowledge for an upper bound of rank of H(o) is needed.

2. The minimal realization for a commutative power series is defined in terms
of the minimality of the realization of an associated noncommutative power

series.

3. Finding the smallest ¢ such that (2.69)-(2.72) are satisfied, is equivalent to
a number of conditions on the minors of the corresponding submatrices of
the Hankel matrix which can be expressed as a system of nonlinear algebraic

equations.
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2.3 The Implicit Model

In this section, we will look at the implicit representations of linear systems. mini-
mal order with respect to-these representations, and necessary conditions for min-
imality suggested by Aplevich [2]. It will be shown by an example that these

conditions are not sufficient for minimality.

Consider the n-D system described by the behavioural equations

Iy

[Ey+ Fildi. - Ea + FaMa .Gl | | =0, (2.74)

Tn
| w ]

where the A; are distinct linear operators, w is the external vector. the T; are

internal vectors of dimension n; > 0, and F;, E;, and G are constant matrices of

appropriate dimensions.

In {2]. a detailed study of 1-D dynamical systems represented by these repre-
sentations was given. The order of these systems was defined to be the dimension
of z. equal to the number of operators needed. Using this definition of order. four
rank conditions which proved to be necessary and sufficient for minimality were
found. It was also shown that other definitions in the literature for proper systems
and polynomial matrix fraction descriptions are special cases of this definition of

minimality. The rank conditions established have been defined for the other first

order representations by Kuijper [33].

It has been suggested ([2], chapter 10) that a natural generalization of the order
of the models described by (2.74), is to consider the order with respect to each

operator, say m;, and let the order of the representation to be n = Y ;ni. The
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following four rank conditions have been proven to be necessary for minimality of

systems described by (2.74):

Let F; and E; denote the matrices [Fi,---.F,] and [E.---, E,] respectively
with blocks F; and E; deleted.

Condition 1 F; has full column rank.
Condition 2 [F;, E;. F:, G] has full row rank.
Condition 3 [E; + AF;, E;, F:, G] has full row rank for all A € C.

Condition 4 [E; + AF;] has full column rank for all A € C.

One has to observe that different representations of a given dynamical system of
the same order may have different numbers of the given operators. as the following
example will show. This may be of importance if reduction of the size of one

operator may be more costly than reduction with respect to the others.

Example 11 Consider the dynamical system described by the transfer function
(1 — z122)y = (21 + 22)u. In the following pages. it will be shown that any minimal
implicit realization of this dynamical system over real numbers will be of order three.

Two third order minimal implicit realizations of this system are given by:

For Ay = [z, 2, 5]

1 0 0] [0 1 0] 0 —-1]
01 0 1 00 0 0
F1 = 9 E]_ = N G1 = (2.75)
0 0 1 0 1 0 0 -1
(0 0 0] 1 0 1] | -1 0
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and for Ay = [z1. z;, z3]

1 00 0 1 0 0 -1
0 10 0 0 1 0 0
Fg = Eg = G1 = . (276)
0 0 1 0 1 0 0 -1
0 0 0] 1 0 1] | -1 0

However, the first representation requires A to have one z; and two z». whereas the

second representation has two z; and one z,.

To show that smallest realization of form (2.74) over reals is of order 3. we will
use a similar argument to the one used in ezample 6.

Assume that there ezists an order 2 real realization of form (2.74) of 1 -
2122, 21 + 22 Y . In chapter 5. it will be shown that a necessary condition of
minimality is th1fzt [F G] be of full rank. Using this and any of the following (if

necessary)

1. add a constant multiple of one row to another,

2. scale y and u by a real constant a # 0. (i.e. ;ﬁly‘- has the same transfer function

s ¥
as &),

3. a change of basis in the internal variable by multiplying by a real constant

a#0. (teznew = az,jy),

In this fashion, it is always possible to make the given implicit realization look like
one of the following cases without affecting the external behaviour:
1 0 Eu E12 0 —G12

Case 1 0 1 E21 Egz 0 —Gzz s
0 0 FE3 Ez —1 Ga
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[1 Fi» E;y Eyz 0 0
Case 2 |0 Fy, Esy Es 1 0 |,
|0 F32 E3 Ezp 0 -1
[Fiy, 1 Eyy Ei, 0 0
Case 3 | Fy, 0 FEs FE. -1 0
Fs, 0 FE3 FE;, 0 1

e -

(1 0 By Eiz -Gny 0
Case 4 0 1 E21 Egz —Ggl 0
|0 0 Es; Ese Gy -1

It is easy to see that case 1 just reduces to ezample 6 and as was shown. it cannot

happen if the constants are taken over reals.

Case 2 cannot occur since we must have

z1+ By Fiazo + By
det =z + 2. (2.77)
Ey Farzo + Eo,y
or
Fraz120 + Eozzy + B\ Faszo + By Eyy — EpEyy = 21 + 2. (2.78)
which implies that
-1
Fyp =0. Eza =1, Fis = — and Ey; = Ey2Eo;.
Ey
We also must have
—(Fr222 + E1)
[Es1 Fipz2 + Es; | =2z1z9 — 1, (2.79)
21 + Eu
which implies
-1

Esg = 0, Fgg = 1, G,Tld E31 = -
Ey,
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Let Ey;, = a. The above equations imply that
a’ = -1,
which clearly has no real solutions.

For case 3 to happen, we must have
Fuzi+ By 22+ Ep,

det
Faz + Exy Es»

or
—Fanziz0 + F11E922) 4+ Es12z0 + —E12F312) By Eoy — E13Es = 21 + 2za.
which implies that

! and Elg = EnEgg.

22

Fgl = 0. Egl = 1. Fll =

We also must have
—(22 + E12)

[ Fa12) + Eqy Es3 | [
Fi,z2, + By

} = 2122—1.

which implies

-1
F31 = 0. E;n = 0. and E32 = —=.
Ey
Let Ey; = a. The above equations imply that
a’=-1
which clearly has no real solutions.
Cuse 4 cannot happen since we must have
z1+ By Ey,
det =21+ 29
Ey z2 + Eay

or

212 + 21 B9 + 22 B4y + E11Eay — Ey3Eyy = 21 + 2o,

which is impossible. regardless of values of F;; or E;;.

39

(2.82)

(2.83)

(2.84)



CHAPTER 2. PREVIOUS WORK 40

The next example will illustrate that conditions (1-4) are not sufficient for mini-

mality as defined above.

Example 12 (ezample 7 revisited): The third order Roesser realization given for

the transfer function describing

(1 — z122, 21 — 23] [ZJ

can be rewritten in the form (2.74) for A = (21, 22, 22] and

1 0 0 0 0 -1 0 -1
0 1 0 0 0 -1 0 0

0 0 1 -1 0 O 0 -1
[0 0 0] -1 0 1| -1 o0

It is easy to see that conditions 1-4 hold. since

(1 0 0
0 1 0
(a) rank = 1. and rank =2,
0 0 1
L0 ] [0 0]
(b)
[1 0 -1 0 0 0 —1]
0 0 -1 10 0 0
rank = 4,
0 0 0 01 0 -1
00 1 00 -1 0
1 0 0 1 0 -—1]
001 0 0 O 0
and rank = 4,
0 0 -1 0 0 -1
(0 0 -1 0 -1 O |
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(c)

[-1+X 0 -1 0 0 0 -—1]
0 0 -1 1.0 0 0
rank _ =
0 0 0 01 0 -1
0 0 1 00 -1 o0 |
(A -1 0 1 0 -1]
0 -1+X2 0 0 0 o0
and rark =
0 0 -1 0 0 -1
0 0 -1 0 -1 0|
[ A ] [0 —17
0 A -1
(d) rank =1VA € C, and rank VAeC.
-1 A0
| -1 L0 1]

4 YieC

4 ViecC

41

However. an implicit realization of order 2 can be written for A’ = [z,. 2] and

1 0 0 1 0 1
F'=10 1],E=]|1 0|.G=|0 -1
0 0 1 1 -1 0

2.4 Polynomial-Matrix Models

(2.86)

In chapter 5, I will show how an n-D version of the generalized theorem due to

Forney can be used to classify all AR representations of a given dynamical system

and will show how to obtain a minimal representation of a given class. In this

section, this theorem and some of its related concepts will be given.

Many 1-D system analysis problems have been solved using polynomial matrices

to represent system external behaviours. Popov, Rosenbrock, Wolovich and Forney
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are a few of many who successfully have used this approach (For an extensive list

of references of these authors and others, see Kailath [29]).

The work in particular that we are interested in. is that of Forney [21]. Consider
a k x n matrix G whose entries are rational functions in some indeterminate z with
coefficients is some field F, that is F(z). Forney showed how to find a minimal
basis for the row space of G, that is the vector space Vg generated by the set of all

linear combinations of the rows of G.

To accomplish this. definitions of order for G. as well as a minimal basis for Ve
must be given. Forney defined the degree of a polynomial n-tuple g = (g1.---.gn).
deg (g) to be the greatest degree of the components g;, 1 < i < n. Then the order
of G was simply defined to be the sum of the degrees of rows of G. Furthermore. a
minimal basis of Vg was defined to be any k& x n polynomial matrix G- such that
G" is a basis of Vi and it has the least order among all possible polynomial bases

of Vg.

The main resulting theorem was:

Theorem 1 Consider the polynomial matriz G € F¥xn(z], for some field F and
indeterminate z with orderm = my + - - - + my, where the m; are the degrees of rows
gi of G, 1 <t < k. Then G is a minimal order basis for the row image Vg if and

only if any of the following equivalent statements hold:

1(a) G is nonsingular modulo p(z) for all irreducible polynomials p(z) € F|z], and
1(b) the high order coefficient matriz Gy, has full rank.
2(a) The GCD of the k x k minors of G is 1, and

2(b) their greatest degree is m.
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3(a) Ify = xG is a polynomial n-tuple, then x must be a polynomial k-tuple. and

3(b) degy = mazicick(degz; + degg;).

4 The row degree. deg g; are such that for all integers d > 0. the dimension of
vector space of all polynomial n-tuple in Vg with degree less than d. over the

base field F is equal to Zi,degg;(d — degg;).

This theorem and its results are closely related to those of Popov. Rosenbrock and
Wolovich. However, one of the interesting points about this theorem. besides its
simplicity and elegance, is the fact that Forney realized that this theorem can be
reformulated using the language of p-adic valuations (see appendix in pp- 516 of
21]).



Chapter 3

Models of n-D Dynamical Systems

Some of the results in this thesis are based on the behavioural model of n-D systems.
first introduced in chapter 1. One of the purposes of this chapter is to give a formal
introduction to the behavioural model. Different representations of behavioural
models will be defined, with recasting techniques for obtaining representations of

different forms.

Section 3.1, is a self-contained exposition of several possible behavioural models.

specifically the AR, ARMA, and MA models.

In section 3.2, ARMA representations of first-degree in the internal variables
and zeroth-degree in the external variables will be described. A realization method
for obtaining an externally equivalent ARMA representation from an AR represen-
tation will be given. A systematic way to obtain an equivalent representation of a
different first-degree form will be also given. A condensed survey of Grobuer bases
is also included, and will be used to find externally equivalent AR representations

from given first-degree ARMA representations.

44
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3.1 Modeling

In chapter 1. we give a set-theoretic framework which characterizes a (n-D) dynam-
ical system as an entity which is embedded in its environment and which interacts
with it through external variables. The system is defined by the set of all tra-
Jectories which satisfy the system laws. This set is called the system behaviour.
Formalizing the notion of behaviour yields the following definition of dynamical

systems:

Definition 7 A dynamical system Y is defined by a triplet (T.W.B). where T =
Ti x Ty x --- Ty is an indez set, W is a signal space where system variables take

their values. and B C W7 is the behaviour of the system.

The level of generality used above allows for easy introduction of some typical.

general properties of dynamical systems:

linearity A dynamical system Y = (7.W.B) is linear if W and B are linear

subspaces of W7 .

shift-invariance A dynamical system S = (T, W.B) is shift-invariant if T is
an additive semigroup and Y(Ty = (t;,,ti,.--- .4}, Ta = (tj,.t5,.- -+, ¢;,) and

completeness A dynamical system >, = (T, W,B) is complete if {w € B} «
{w|x € B| for all finite X C T}.

We will mostly be assuming that the discrete time set is 7 = Z" and W = IR? and

will be concerned with the behaviours that are linear, shift-invariant, and complete.
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Another notion which arises with respect to behavioural modeling is that of
internal variables. Internal variables are normally introduced in order to facilitate
writing the dynamical equations of a given system. A typical example of internal
variables is given by the state variables. Definition(7) can be rewritten to include

internal variables:

Definition 8 A dynamical system, Y _, is defined by a quadruple (T.-W.X.B.).
where T = Ty x T3 x ---T, is an index set. W is a signal space where system
variables take their values, X is the set of internal variables. and B, C(Wxx)T

is the extended behaviour of the system.

Let the projection P be defined such that P,(w.z) = w and P(w.z) = z. We
will refer to B, = P.B. as ‘internal’ behaviour and B, = P,B as the "external’

behaviour of the system.

3.1.1 Parameterization

The dynamical model defined in the last section is an abstract mathematical ob-
Ject, and the difference between such an object and its representation by means
of equations should be emphasized. As an example of such equations let £ be an
abstract set, normally taken to be E = {0,1}. Then B can be represented by the
equations induced by a map f : WT — E such that B = {w € W|f(w) =0}. It
has to be noted that even though the behaviour of a dynamical model is untque,

the same is not true of the equations which describe the model.

It is also possible to use concrete parameters, such as polynomials, matrices,
and matrix polynomials to determine the equations that induce a mathematical

model for a given linear, shift-invariant dynamical system.
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Next we will look at some of the possible representations of these models: specif-

ically ones which are known as AR, ARMA, and MA models.

AR-representation: External behaviour may be expressed by a linear relation-
ship between external variables in Definition 7 at different points of the time
set, ylelding the so-called Autoregressive(AR) representation. For 7 = Z" and

W = IR?, AR-representations are described by equations of the form:

Z Z Z Rtl ia, t1 + 1.1 ts + 29 L ta + in) =0 (3’1)

in=anin_1=Gn_1  i1=a
for all T = (%;.t5,--.t,) € Z™ and b; < i; < q; Vi 1<j<n

where R; s,..:, € IR for some positive integer g. In other words. Y is de-
scribed by g scalar linear equations with entries of R;, i,....i, as parameters and
Wy, W, -+, w, as the variables. It is often convenient to write the above equation

in the polynomial form:

R(z)w =0 (3.2)
where z = (z1. 23, -+, za), 2; is the shift operator in the i-th direction. and
n-l
D O SIS o U (3.3)
x,,_a,, ln_ =an-1 tl =a;

Note that this defines B = ker R(z) where R(z) is a linear map from (R%)=" to
(R7)=".

It should also be noted that a n-D system which is linear, shift-invariant, and
complete always has an AR-representation, and that all n-D systems parameterized
by AR-representations are linear, shift-invariant, and complete. The proof of this
statement in n-D is similar to the proofs given in 1-D by Willems (see [56], page
567) and in 2-D by Rocha (see [47], page 15), and hence will be omitted.
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ARMA and MA-representations: Internal behaviour may be defined through a
linear relationship between external and internal variables in Definition 8 at points
of the time set. This will yield the so-called Autoregressive-Moving-Average
(ARMA) representation. A dynamical system (Z". IR? x IR". B.) can be written in

the polynomial form:
R(z)w = M(z)¢ (3.4)

where w : Z" — IR?. £ : Z" — R", R(z) € R%[z] and M(z) € R°"[z]. First-
degree representations are often of interest since they provide an easy updating
scheme for behavioural equations. In this thesis, we are interested in a special type
of ARMA model which is first-degree in the internal variables and zeroth-degree in
the external variables. In the next section, we will give some of the possible ARMA

representations of this form.

A special class of ARMA-representation is the one where there are no constraints
on the internal variables. These representations are called Moving-Average(MA)

representations. In polynomial form MA-representation can be written as:
w = M(z)¢ (3.5)

where M(z) € R*"[z].

3.2 Realization

In this section, we will give two different forms of ARMA representations which are
first-degree in the internal variables and zeroth-degree in the external variables and
we show their relationships to an AR representation of an n-D system. The first

form is

FAQEé+E¢+Gw =0 (3.6)
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where FF € R7**, A = diag[z;,, z;,,-- -, z:, |,with %; in {l.---.n}for j =1.--- . h.
possibly not all distinct, Q € R*™™, E € RI*™. G € R

It is easy to see that the implicit representation (2.74) in the previous chapter
1s a special case of (3.6) for Q = I of appropriate dimension. In contrast with 1-D
systems, the matrix () has been included to allow change of basis in the space of z.
while preserving the presentation as first-degree. The presence of Q can affect the

number of internal variables needed. as the following example will show.

Example 13 Consider the 2-D input-output system described by the transfer func-
tion (z122—1)y = (z1+22)u. We have already shown that the smallest Roesser model
realization for this transfer function requires a state vector of dimension three (see
ezample 6 in page 12), and the smallest implicit model realization requires an inter-
nal vector of dimension three (see ezample 11 in page 36). However. a realization

of the form (3.6) with a smaller number of internal variables is given by:

zz 0 0 1 0 1 1 0 0
&1 y
0 =2 0 0 1 + 12 1 ¢ + | -1 -1 = 0.
2 u
0 0 =z |1 172 0 —1/2 1/2 —1/2

(3.7)
In fact, I will show in chapter { that the minimum number of internal variables

needed for a representation in from (3.6) is two.

The second form is

FAQt = Et (3.8)
N¢E = w (3.9)

where N € R"”*™. Using a terminology similar to 1-D [33], we refer to (3.6) as a dual

pencil representation and (3.8)-(3.9) as a pencil representation. If decomposition



CHAPTER 3. MODELS OF N-D DYNAMICAL SYSTEMS 50

Yy
of the external variable into inputs and outputs is also known (ie. w = [ ] ). we
u

have the following first-degree descriptor representation

FAQ¢ = Af+ Bu (3.10)
y = C&+ Du, (3.11)

for some matrices A, B, C and D with entries in IR.

In the remainder of this section. systematic ways to obtain equivalent dual
pencil, pencil and descriptor representations from an AR representation will be

given, as well as the reverse. These methods will be illustrated by examples.

Using the definition of external behaviour given in page 46, define two represen-
tations to be erternally equivalent if they have the same external behaviour. For
example, two AR representations given by Rjw = 0 and R,w = 0 are equivalent if
kerR; = kerR,. Similarly, the AR representation in (3.2) and pencil representation
in (3.8)-(3.9) are equivalent if kerR = N(ker(FAQ — E)).

The matrix operations used in the following subsections to obtain equivalent
representations of different forms are pre- and post-multiplication by a constant
matrix. deletion of inactive internal variables, and deletion of rows corresponding
to redundant constraints. These operations are the same as transformations used

in [51] and preserve external equivalence.

It should also be easy to see then that the (implicit) Roesser state space model
(2.1)~(2.2) is of descriptor form (3.10)-(3.11) for Q an identity matrix and F, A
square constant matrices. The following recasting methods then allow for embed-
ding of Roesser models in any of the above representations. Fornasini-Marchesini
models are also included since I will show in the Appendix A how to obtain an

equivalent Roesser representation for a given Fornasini-Marchesini model.
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3.2.1 Recasting the AR representation as a dual pencil rep-

resentation

A direct representation of an n-D system of form (3.6) will be obtained from the
AR-representation (3.2). Without loss of generality, assume that the polynomials in

R(zy.---.z,) are linear with respect to all their indeterminates. because any mono-
k, times kntimes
mial z ... 2% can be considered as (z1++-21)---(Zn - - zn). For clarity. introduce

the intermediary operators, s; = ... = Sky = Z1.Sky4l = = Spy4ky = Za,vc-.
These operators can always be replaced by their corresponding z;'s at the end of

the algorithm. Rewrite (3.2) as
(Al'g,..._mslsg ---8Sm + Al'g,..._m_13132 ceSm—1+ - A181 + AQ)‘UJ = 0. (312)

where the A;'s are constant matrices of appropriate dimension. Let I,, and 0, be
n X n square identity and zero matrices. An equivalent representation of form (3.6)

1s given by inspection:

[ I ] [ ]
t 0
Iy
0[ [4[ . Izm—ll Il
—F = 04 . E= Iy » (3.13)
Oy
02m—l[ R Izm’ll 4
and
G= [Ho,Hl,"',Hzm—l], (3.14)

where H; = Ay,,...4,, where the d;’s are the locations of ones if j is written in binary
form. For example, Hg = A,3 since 6 = 110 which has ones in locations 2 and 3, or

Hy3 = A,34 since 13 = 1101 which has ones in locations 1, 3, and 4. In the above, Q
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is an appropriate identity matrix. The justification of the method is based on two
facts. One is that for any given field K and indeterminate $1,+++, 35, a polynomial
in K[z;,---,s,] can be considered to be a polynomial in K[s,][s]--- [$a]. The other

is that any equation in the form:

(A131 + Ao)‘w =0 (315)

N
=0. (3.16)
I Al w

For example, if polynomials in (3.2) are linear with respect to indeterminate s,, s-.

can be rewritten as

and s3, rewriting (3.2) in the form
(Ao+ A1sy + Azsa + Azss + A125182 + A1381 53 + Agas2ss + A123818283)w = 0, (3.17)

and then applying (3.16) recursively twice yields

[ —s;] —s,] O —s3f 0 0 0 Ao &1
I 0 —s89l 0 ~s3l 0 0 Ay &
0 I 0 0 0 —s3] 0 A, €22
0 0 I 0 0 0 —s3f Ap €31
0 0 o I 0 o0 o A|lem| " ¥
0 0 0 0 I 0 0 Az a3
0 0 0 0 0 I 0 Az €34
L0 0 0 0 0 0 I Auml|w]

In the above example, if any rows of A3, A;3, As3 or A,z3 are zero, the corresponding
internal variables are zero by inspection and can be removed from the equations.
This reduction of the dimension of internal variables required, as well as other

reduction criteria will be formalized in the following chapter .
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It is straightforward to prove by induction that F, A, Q, E, and G are given as
described above, and to see that at each stage the behavioural polynomial matrix
equations describing the external vector can be considered in two parts, for example
as P(s1,-++,8n_1)w+3,Q(31,- -, 8,1 )w. Now, by the induction hypothesis, (3.16)
can be applied to both P(sy,---,s,_;) and Q(s1,---.82z,_1) with the addition of an
n to the indices of corresponding matrices H of Q(s,,---, Sn—1) due to the factor
zn. Writing the indices in binary form, and using the fact that in each step. say the

i-th, a new internal vector of dimension 2:~!g is added. will complete the proof.

This method will be illustrated by the following example.

Example 14 Consider the 2-D AR representation:
Z129 F4 Z;’
w=0. (3.19)
21 + 22 z% + 2120+ 1 2129
Introduce s; = z; and s, = 33 = 2,, so (3.19) can be rewritten as
3182 31 S283
w = 0. (3.20)
S1 + 82 S283+8182+1 182

Rewriting this as (9.17), the only non-zero coefficient matrices are

[0 0 0 01 0 0 0 0
Ay = ~,A1= ,Az-_— .
_O 1 0_j 1 0 0 1 0 0
1 0 0 0 01
A12 = 7A23= °
_0 1 IJ 0 1 0

Because Aj, A3 and A,,3 are zero in (3.18) z31, 232, and z34 are identically zero
and can be removed to get

[~z —z, ] 0 0 A f&]
I 0 —z,I 0 A, €
0 I 0 —z,I A, £22 | =0. (3.21)
0 0 I 0 Az {&as
0 0 0 I Ax| | w
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Thus a representation of form (3.6) is given by Q = I, A = diag(z1 5, 2215, 2215 22 15],

-, =I, 0 0 0 0 0 0

0 0 -L 0 Ib 0 0 0

F=10 0 0 -IL E=1{0 I, 0 0

0 0 0 0 0 0 L 0

0 0o o0 o | (0 0 0 5]

and

000101100 0]
G=]011000201 0 1
0000O0GO0GO0T1 10

It should be noted that the above elementary approach can also be used to rewrite
an equivalent first-degree representation of a general ARMA representation.

3.2.2 Recasting the dual pencil representation as a pencil

representation

To obtain a pencil representation from a dual pencil, and hence from an AR repre-
sentation, assume that [F. G] has full row rank. Otherwise, the reductive methods
of next chapter can be used to find an equivalent representation such that this
assumption holds. Rewrite (3.6) in the following block matrix form:
AQ¢
(F E G}| ¢ =0. (3.22)
w

K.
Pre-multiplying by a non-singular matrix K = [ 1:' , post-multiplying G by a

2

w,
permutation matrix J = [J;, J5], and letting JTw = [ ] , equation (3.22) can be
W2
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rewritten as

AQ¢
K.\F K.E 0 L 3
0 K:E I M

=0, (3.23)

w

[ W2 |

for some constant matrices L and M, and can be rewritten in pencil form:

[K1FAQ, 0] “l_ [-K\E, —L] [ ¢ } (3.24)
-‘LU2_ Wy
-'lUl 1 ['—KgE —A/I] [ E }
= . (3.25)
-‘u}zd 0 I Wa

Example 15 Consider the dual pencil representation obtcined in the previous ez-
€azn
ample. Let £33 =
332

pre-multiplying by a non-singular matriz which does the following row operations,

] . Since [F G is not full row rank (i.e. rank = 9),

Rg & Rio,—(Ro + Rs) + Ryo — R0, followed by a change of basis which is repre-
sented by the column operations Kg + K¢ - K, —Ks + K7 — Koz, will imply that
&332 can be set identically to zero, and hence can be eliminated from the equations.
Pre-multiply the resulting equations by a non-singular matriz P which does the fol-
lowing sequence of row operations: —R7; + Rg — Rs. —R7+ Ry — Ry, —Rs + Rs —
R3,—Rs + Rz — R to get a pencil representation of form (3.8) and (3.9) for
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A = diag(z\ I, 2212, 2,15, z,15],

100000 o0
101000 0 0] 010000 0
01010000 001000 0|[é&]
00001000A0001000 fa1
000 00T1UO0 0 000 010 0 22 |
000 00O0TGO0T10 000 00 1 0] |é&s]
000000 0 1] 000 000 1
000 001 —1]
(000 00 0 0 0
000 0 0 -1 1|T[¢é&]
1000 0 -1 1]/|é
(3.26)
0 1 0 1 -1 0 0O €20
0010 0 0 0 /[&su]
0001 -1 0 o0
[ & ]
w, 0000 ~1 0 0
€n
w, =10 000 0 -1 1 (3.27)
&2z
ws 0000 0 0 -1
&1

3.2.3 Recasting the pencil representations as a descriptor
representation

To convert (3.8) and (3.9) to form (3.10) and (3.11), assume that a partition of the

external variable into inputs and outputs is known. Then equations (3.9) can be

AN M|y 3.28
o)=L = [1] 628

written as
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for some permutation matrix P = [PT, PT|T. An equivalent descriptor representa-

tion of (3.8) and (3.28) can be written trivially as

FAQ] [E 0 5,90
o 167 N2£+_Iu- (3.29)

y = N¢ (3.30)

It is possible to get a descriptor representation of (3.8) and (3.28) with fewer internal

o

Q
variables if in (3.8), column rank [ > column rank(@. Taking the same approach

P,
as in [33], let € = Hn = [H,, Ha, H3n be a change of basis and P = [ 1] be a

)

non-singular matrix such that (3.8) and (3.28) can be rewritten as

FA[QH, 0 0]n = [EH, EH, EHs|n (3.31)
y N\H, N,H, N\ H;]| [n
Pu| = |PNH, I 0 | |n (3.32)
Pyu PNH, 0 0 | |ns

where QH, is full column rank. From (3.32), it can be seen that 7, can be solved
explicitly in terms of 7, and u. Eliminating 7, from (3.31) and (3.32) yields the

following descriptor representation:

F M EH, - EH,PN,H, EH3]|[m EH,P
[ofwam o[2]-] |+ %]

3 PN, H, 0 173 —P
(3.33)
Yy = [NlHl-—NIHgPlNzHl N1H3]17+N1H2P1u. (3.34)
Example 16 Consider the 2-D pencil representation given by:
zz 0 0 1 0 -1
10 17" & 2 1 17"
0 2z 0 0 1 -1 L = &2 | (3.39)
1 20 1 0 1

0 0 z||-1 0 1 & €3
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0 2 1 & y
1 -1 0 & = uy (3.36)
0 1 0 fs U2

Since Q is not full column rank, a change of basis € = Hn which is represented by
the column operation (—K, + K,) + K3 — Kj, and pre-multiplication by a non-

singular matriz P which is represented by the row operation 2R, + R, — R, yields

s = —72 + uz2. An equivalent descriptor representation is given by
-1 01 z 0 O 1 0 2 2 0 -1
m /) uy
1 20 0 z O 0 1 [ ] =|1 -1 [ ] +10 1 [ ]
72 12 Ua
0 0 O 0 0 =z -1 0 1 1 -2 0
(3.37)
m u
y=[-3 2][ J-i—[O 3] ] (3.38)
72 Uz

3.2.4 Recasting the descriptor representation as a pencil

representation

A pencil representation equivalent to a descriptor representation (3.10)-(3.11) can

be written trivially as

[ €] K3
FAQ 0 ~ [A B (3.39)
| ]_6“ [ ]_EJ
c DIfe] i
[ ] ¢l - [[ 0] y]. (3.40)
0 I|le) 0 If|u

It is possible to get a pencil representation with fewer internal variables if [F, B]
is not of full row rank. Pre-multiplying (3.10) by a non-singular matrix P =
(PT, PT, PF]T, post-multiply u by a permutation matrix J = [J1, J2), letting
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u
JTu = [ 1] and using a change of basis £ = [H,, H,|n allows equation (3.10)

U2
to be rewritten as
P F P,AH, P, AH, P BJ];, P,BJ,
n n u
0 |A[QH, QH._,][ ‘}: P,AH, P,AH, ‘}4- I  BRBL||
12 72 U2
0 0 P3AH, 0 0
(3.41)

where P, F and P;AH; are full row and column rank respectively. This implies 7,
can be set identically to zero, and an externally equivalent pencil representation of

(3.10) and (3.11) is given by

PFA[QH, 0] ["‘J -

U2

n
[PLAH, — (P,AH,)P,AH, PIBJ2—(P1AH2)PzBJ2][ 1] (3.42)
Uz

Yy CH1 - (DJ]_)PzAHl DJ;; - (DJ1)PzBJ2
n
w | = —P,AH, —P,BJ, Yl (3.43)
u
(/%] 0 I 2
Example 17 Consider the 2-D descriptor representation:
[ 1 0 1] i [1 0 0 0] _ _
& €1
0 1 zz 0 O 1 01 0 0 01 1
3! 3
1 0 0 0 2 0 0 1 0 0O = |0 0 0 O
& &
-1 2 1 0 0 =z 0 0 11 ¢ 21 01 ¢
0 0 o] - 1 0 0 of ™
[1 -1 1]
0 1 1 Uy
+]0 0 O ug |,
0 0 1 U3
[0 0 0}
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(3.44)

y=[1 -1 0 1]é+([1 1 —1]u. (3.45)

Since [F, B] is not full row rank (i.e. rank = §), pre-multiply by the non-singular
matriz P = [PT, PF, PT|T which does the following row operations, R3 < R,,
—(R1+R2)+R3 — Rs, (R1 —2R2)+R4 — R4, R3 — R4. Then P3A = [1, 0. 0, 0]

30 {1 can be set identically to zero and an equivalent pencil representation is given

by:
e
1 0 O zz 0 O 0 1 0 00O &s
01 0[|0 2z 0|1 000 o0f|é&]|=
0 0 1 0 0 F4] 0 1 1 00 U2
[ U3 |
6]
00 0 0 o07]é&
0 1 1 1 1|]é (3.46)
1 -2 -1 -2 -1 Up
y ] L [é&T
[ (11 2 3 —11(°>°
ux fs
0 1 1 2 0 ¢ (3.47)
u = .
2 0 00 1 0 *
Uug U2
|0 000 1]
S | U3 |
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3.2.5 Recasting the pencil and dual Pencil representations

as AR representations

Recasting the pencil into dual pencil representations is obvious, since a pencil rep-

resentation can always be rewritten as:

Fla -B 0 0 3.48
0 Q€+_Nf+IW—- (3-48)

It is always possible to eliminate the internal variables in a dual pencil represen-
tation to produce an externally equivalent AR representation. The Grobner basis

algorithm can be used. First, we give a brief introduction of this algorithm.

Grobner basis

Most of the discussion in this thesis depends heavily on computation with multi-
variate polynomials. In this section, I give a brief overview of the Grobner basis
algorithm which among many of its applications allows for the simplification and
solution of equations represented by the given multivariate polynomials. For more
details. the reader is referred to [1] [5], [8]. and [9]. This algorithm has been success-
fully applied to some of the existing problems in multidimensional system theory
such as obtaining a first-degree pencil representation for autonomous behaviours
by Fornasini et.al.[19], solving the canonical Cauchy problem by Oberst [44], and
finding a computational scheme generating the system behaviour by Rocha [48]. 1
will discuss in chapter 5 how some of the work presented in that chapter can be

implemented and may be extended using a Grobner basis.
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Consider a system of equations of the form

P1(-'131"“71=n) =0

n(z1,---,z,) =0
where the p;’s are elements of the ring R of n-variate polynomials with coefficients
over some field F. Denote the set {p1,---,pr} by P and the solution set of the
system by X. Often, there is more than one set P for a solution set ¥. In fact. any

polynomial in the ideal generated by P, that is

k
I={<P>}={<pi,--,pp >} = {Zaip.-, a; € Flzy,---.z,]},
i=1

also has the same solution set. The set P is said to be a basis for this ideal. The
general idea of the algorithm is to compute a ‘simpler’ basis P’, one for which the
system P’ is easier to solve. It should be noted that by the Hilbert basis theorem.

any ideal I C F(zy,---, z,] has a finite generating basis.

First, the definition for the degree of a multivariate polynomial will be given. A
key ingredient of the notion of degree is the ordering of the terms for polynomials

in Flzy,---,z,].
Identify any monomial x* = z{'-..z2" by the n-tuple of exponents a =
(a1,--+,an) € F}. Any order used must be a total order; that is, given any x°%,x?,

exactly one of the following three relations must hold:
x*<x?, x*=xfor x*>x°.

The total orderings used in practice are based on some pre-defined but possibly
arbitrary ordering of the first-degree monomials, the variables themselves. Suppose,
without loss of generality, that z, > z, > --- > z,. Let a = (a1,+++,a,) and

B = (B1,--+,Pn) € F}. Then the following are three commonly used total orderings:
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Lexicographic order x* >, x? <= {the first indices a; and f; from the left,
which are different, satisfy a; > S;.

Graded Lexicographic order x* >, x? <= ( Z o > Z Bi or Z a; = Z B;

i=1 i=1 =1

and x© Slex xﬂ)

Graded Reverse Lexicographic order x* > grlez xP = (Z a; > Z,@; or

=1 i=1

Za; = Zﬂ; and the first coordinates «; and f; from the right. which

a;—c:ldxﬁ'erex‘l—t satisfy a; > ;).

Two polynomials f and g are equivalent with respect to an ideal if their dif-
ferences belongs to the ideal. The first question is for a given polynomial f and
a system of polynomials P, how to reduce f to a polynomial g of smaller order
that is equivalent to f with respect to the ideal generated by P. Assuming that
an acceptable ordering is chosen, and given non-zero polynomials f.g, and A in
k[zy,---.Za). f reduces to g modulo h (f —4 g) if the leading monomial of f is
divisible by the leading term of h and

Ie(f)
== e

where lc(f).lc(h) are leading coefficients of f and A respectively, and u is some
monomial in k[z,---,z,]. A polynomial f is said to be reduced with respect to an
ideal [ if its leading monomial is not a multiple of the leading monomials of some
element in /. Furthermore, f is said to be completely reduced with respect to I if

none of its monomials is a multiple of the leading monomial of some element in I.

Definition 9 A Grébner (or standard) basis of an ideal I in R with respect to a
given ordering, is a generating set of polynomials P for which the reduction of any

element of I yields zero.
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A Grobner basis is called reduced if each polynomial in the basis is completely

reduced with respect to all the others.

Some useful theorems on Grébner bases which are due to Buchberger are as

follows [8].

Theorem 2 Every ideal has at least one Grobner basis with respect to each accept-

able ordering.

Theorem 3 Two ideals are equal if and only if they have the same reduced Grébner

basis (with respect to the same order).

Theorem 4 A system of polynomial equations has a finite number of solutions (in
complez space) if and only if each variable occurs in one of the leading monomials

of the corresponding Grobner basis for the lezicographical erdering.

Modifications to the original Buchberger algorithm and additional results can be

found in the earlier cited references and their bibliographies.

Next, use a lexicographical ordering z; > --+ > z, > w; > - --wp. The ordering
between x variables, and w variables can be chosen arbitrarily. as long as x > w.
For monomial X, and X in x variables only, and monomial Y; and Y- in w variables

only, define an elimination order with x variables greater than w variables to be:
X1 > XoYs <= {X) > X, or X; = Xzand Y; >, Ya}.

Let I be the non-zero ideal in R(z;,---,zn,wy,---,w,] which corresponds to the
polynomial equations given by the dual pencil representation of the system. Let G
be a Grobner basis of this ideal with respect to the elimination order defined above.
Then G N R[w,---,wp) is a Grobner basis for the ideal I N Rw,--- ,wp). (For
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more details, see discussion on ‘Elimination’ in [1] page 69, ‘Elimination Theory’

in [9] page 114, or ‘Implicitization of Rational Parameterizations’ in [5] page 328).

Example 18 Consider the pencil representation obtained in the previous ezample.

Its Grobner basis (computed using Maple) is given by

> gbasis([z_1*x_3, -z_2*x_2+x_3+x_4+u_2+u_3,
> -z_3*%(x_3+x_4)+x_2-2%x_3-x_4-2%u_2-u_3,
>=u_1+x_3+x_4+2%u_2,
> —y-x_2+x_3+2%x_4+3%*u_2-u_3],
> [x_2,x_3,x_4,y,u_1,u_2,u_3],plex);
[(-1 +2z.223+2.2) x2+ (-z_.3+1) u?2-z_3u_3, x_3,
(-1 +22.2)u2+(z.2-1)us3+ (-1 +2_2z3+z.2) x_4,
(-1 + 2,22 3+2z_2)y+(-32_22z3+2_3+2_2)u?
+ (z.22_3+2.3+32z_2-3) u3,
(-1 +2z.223+2z.2)ul+(1-~22z2z23) u?2+ (z_2-1) u_3]

As can be seen, the last two equations contain of y, uy, ua, uz only, and corre-

spond to an equivalent AR representation given by

[y ]
—1+ 2923 + 2o 0 —32223+ 23+ 20 zazz+ 23+ 32, — 3 Uy
[ 0 —1 4 2923 + 25 1 — 22924 z;—1 ] U
us

(3.49)



Chapter 4

Minimality of ARMA

Representations

In chapter 2, we have shown that the minimality of the first-degree representations
considered is an open problem, and not all necessary and sufficient conditions for
the ordering implied by the suggested definitions are known. This also implied that
the existence of a minimal first-degree representation of the given form cannot be
guaranteed. In this chapter definitions of minimal order for first-degree ARMA
representations introduced in chapter 3, Dual Pencil representations and Pencil
representations, are given. Some necessary conditions under which representations

are minimal will be derived.

4.1 Dual Pencil Representations

In this section, I will give a definition of minimality for the dual pencil representa-

tion introduced in chapter 3.

66
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As previously pointed out, implicit representations given by (2.74) can be thought
of as a special case of dual pencil representations (3.6) for Q = I of appropriate
dimensions. A natural definition of minimality is to require that the system be
described by as few equations, as few operators, and as few internal variables as
possible. But there is no guarantee that all these quantities can be minimized simul-
taneously. It may be that more than one definition of minimality will be required.

as in [50]. The following is another possible working definition of minimality:

Definition 10 Associate with every dual pencil representation of a given system,
FAQE+ B¢+ Gw = 0,

with F € K9*" A = diaglz;,.zi;,.--.2,], Q € K"™ E € Ko™ G ¢ K9: q
triple (g.h,m) € Z3. Define a partial order on these triples such that (g.h.m) <
(¢'.h'.m') ifand only if g < g'. h < ', and m < m'. The dual pencil representation
given by (3.6) is called minimal if there is no other dual pencil representation with

an associated triple for which (¢', k', m’) < (g, h,m).

The existence of a minimal first-degree representation is guaranteed since a lower
bound on the partial ordering on the triples, namely (0,0,0) does exist. However,
this minimal representation may not be unique, since it is possible to have two
minimal representation with corresponding triples (g, h,m) and (¢’.h’,m’) such
that say g > g’ but A < h’. Furthermore, with every given triple, there may be
more than one corresponding representation, since in the suggested definition of
minimality h and m deal with the total number operators and internal variables
respectively. For example, it may be possible to have two minimal realization with
the same associated triple but with different numbers of individual operators as the

following example will illustrate.
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Example 19 In ezample 13 on page 49, we showed that one realization of the
transfer function (1 — z122)y = (21 + z2)u in the form (3.6) is given by F\ = I3.

Ay = [z1, 22, 25], and

1 0 1 1 0 0
=10 1|, BEy=]2 1 |, G=]-1 -1]|. (4.1)
1 1/2 0 —1/2 1/2 -1/2

We will show below that this representation is a minimal order Dual Pencil Tepre-
sentation, and any other minimal Dual Pencil representation will have an associated
triplet of (3,3,2). For ezample, another minimal Dual Pencil representation of this

system is given by Fy = I3, Ay = [z1, z1, 25], and

1 0 -1 1 -1 0
Q=0 1f. E,=|-2 1|, Gy=|-1 -1}. (4.2)
1 0 1 -1 0 0

However, A, has one z, and two z; operators. whereas A, requires two z; and one

z3 operators.

To show that minimal realizations of form (2.74) will have an associated triplet
of (3,3.2), we will use the fact that A has to have at least one z, and one 2z9. Then
propositions 2 and 3 of to follow show that two conditions of minimality are that of
(F, G] has full row rank, and Q has full column rank. Finally, we will use similar
arguments to in ezample 11 on page 36. These conditions will reduce associated
triplets of possible Dual Pencil representations of smaller order to (3,3,1), (3,2,2).
(3:2,1), (2,3,2), (2,3,1), (2,2,2), (2,2,1), (1,3,2), (1,3,1), (1,2,2), and (1.2,1).
We will show how Dual Pencil representations with associated triplet of (3.2,2) and
(3,2,1) cannot describe a system with the transfer function given in this question.

The arguments for the other triplets are similar, and will not be given here.
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Case 1: Associated triplet of (3,2,2)

Since Q must be full column rank, it is alway possible to rewrite any Dual Pencil
representation with an associated triplet of (3,2.2) to look like
Fu Fi En Ep Gu Gi
z1 O 1 0 T y
Fy Fyp + | Ean Ep +|Ga Ga =0.
0 =2 0 1 T4 u

F31 F32 ESI E32 G31 G32

This is the same as the implicit model realization problem of ezample 11. and as
shown on page 36, cannot happen.

Case 2:Assoctated triplet of (3.2,1)

Any Dual Pencil representation with this associated triplet can be rewritten in one

of the three following forms:

[1 0 ) En Gu Gi
(a) F=1[0 1 . Q= [Q ] ,E= Egl . G = G21 Gzz , OoT
21
|0 0 Ej3 Ga1 G2
1 Fip ] ( 1 [ By ] (0 Gz |
(b)FZ 0 0 N Q= ,E= E21 . G = 1 Ggg . oT
| Q21
_0 0 R _E31_ _0 G32J
[1 Fio) F 1 [ By ] (G 0]
(C)F= 0 0 . Q= ,E= Egl s G = G21 1
| Q21 |
_0 0 i _E:u_ _G31 OJ

Case 2(a) yields the following relations between the internal and ezternal variables:

(21 -+ Eu):l: = —Guy bt Guu, (44)
(Q2122 + En)z = —Gay— Gaau, (4.5)
E31.’B = —G31y - Gszu. (4.6)
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Similarly, for case 2(b) we have

((z1 + F12Q2122) + Eiy)z = —Ghou, (4.7)
Enz = —y—Gapu, (4.8)
Esz = —-Gsqu, (4~9)

and for case 2(c) we have

((z1 + F12Q2122) + Eyy)z = —Ghyu, (4.10)
Eyz = -Gy — u, (4.11)
Eynz = -Gay. (4-12)

It is easy to see that none of the three cases described above can produce input-output

relations described by (2,22 — 1)y = (21 + z2)u.

It will be shown that the following rank conditions are necessary for minimality

of ARMA models of the form (3.6).
Proposition 1 If (3.6) is minimal. then [F. G| has full row rank.

Proof: Rewrite (3.6) in the following block matrix form:

AQ¢
[F E G} ¢ =0. (4.13)
w
Assume rank [F,G] = g — 7, * > 0. Then there exists a non-singular matrix
PF PG

P = [P, PT]T such that P[F, G] = [ J, where [P, F, P,G] is full row

0

T

rank. There also exists a change of basis £ = [H1, H,] [ ] such that P,EH =

72
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[0, P,EH,] with P,EH, of full column rank. and such that (4.13) can be rewritten

as:

PIF ™ PIEHI PIEHg U)! PlG
A[QH, QH,] + +
0 T]z 0 PgEHg T]g 0

Since P, EH, is full column rank, this implies that 77, can be set identically to zero.

w=0. (4.14)

Eliminating 7, from (4.13) will yield the externally equivalent model:
PlFAQHlfh +P1E'H1771+P1G’UJ =0, (415)

with reduced internal vector. and fewer equations. O

Next. suppose that for a given representation of the form (3.6), [F. G] has full
row rank. Then, it is alway possible to rewrite the representation given by (3.6)
in state space form. This provides a tool for generalizing existing and forthcoming
results on minimality of state space models as shown below. There exists a non-

singular P = [PT, PT|T such that:

(4.16)

P F PG
PIF 6= [ ]

0 PG

where P, F and P,G are both full row rank. There always exists a state-space
representation equivalent to the model represented by (3.6), if there is a freedom
to define the entries of w as inputs u and outputs y, since P, and P, can be chosen

such that:
PF 0 B
= , (4.17)

PF PG

0 PG

PIF Gl:[ 0 -I D

u

Yy
for some matrices B and D. Letting w = [ ] and P,E = A, P,E = C we have:

—~PIFAQ¢ = A€+ Bu (4.18)
y = C&+ Du. (4.19)
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Proposition 2 If (3.6) is minimal. then Q has full column rank .

Proof: Rewrite (3.6) in the following block matrix form:

AQ¢
[F E G]| ¢ | =o. (4.20)
w
Assume rank Q = k < m. Then there exists a non-singular matrix H = [H,. H,]

T

and a change of basis { = [H;, H,] [ J such that QH = [QH,;. 0] with rank

N2
QH, = rank Q, and non-singular P = [PT, PT|T such that PEH, = [

PgEH-_»J
with P, E H, of full row rank, such that (4.20) can be rewritten as:

PIF ™ PlEHl 0 m PlG
A[QH, 0] + + w=0. (4.21)
PgF 2 PgEH]_ PgEHg N2 PzG

Then because P, E H, has full row rank. 7, and the corresponding equations can be
dropped. leaving the externally equivalent model:

PiIFAQHm + PLEHn; + P,Gw = 0, (4.

(3]
(8]
N

with reduced internal vector. and fewer equations. O

Proposition 3 Assume (within pre-multiplication by a permutation matriz) that
in (3.6) A = diag[zi In,. -+, 2 In,], fori; in {1,---,n}, and some positive integers
hy,-- -, he. Block partition F and Q into [Fy,---, F)] and [QT,-- -, QTIT respectively,
where each F;,(Q:) ¢ = 1,---.t has full columns (rows). If (3.6) is minimal. then
each F;,(Q;) has full column (row) rank .

Proof: Assume that F), (Q,) is not full column (row ) rank. Equation (3.6) in

block matrix form can be rewritten as the following:

t
<F1zil In, Q) + Z F:,‘ZjIm;ij> £+ E{+Gw = 0. (4.23)

=2
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Then there always exists a non-singular matrix H = [H,, H,] (P = [PT. PT|T)
PQ
such that F1Q, = [F1H,, 0)H™'Q,, (or F1Q, = F, P! 10 ' ) where FyH, is

full column rank of say k (or P,Q; is full row rank of say p). It is clear from (4.23)
that h; — &k (or h; — p) z,-,-’s can be deleted to get

t
<(F1H1)Z,'l Ik(H—lQl) + ZszijIthj> £+ Ef + Gw = 0 (424)
i=2
(or
t
((F]_P_I)Z{I IP(P1Q1) + Z szij[thj> f + Ef + Gw = 0, ) (425)
j=2
where the number of the operators is reduced . O

Conjecture 2 If (3.6) is minimal, then [FAQ + E] must be full column rank for
all A = diag[Ay, Az, - -+, Am] € K™*™, where K is the field in which constant values

are taken.

I will show how this conjecture allows us to deal with cases such as example 7
and example 6 which were extensively used in chapter 2 to examine the minimality

conditions for Roesser and implicit models.

Example 20 (ezample 7 revisited): It is easy to check that [FAQ + E] looses
rank for A = I and —1I, that is z, = z; = +1 (see page 40). For example, it is
straightforward to show that the third column is equal to the negative of the sum of
first and second columns, evaluated at (21,22) = (1,1). Let H™! be the elementary

matriz that adds the first and second columns to the third column. i.e.

1
H'=|0
0

o = O
= e
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Rewrite the original dual pencil equation as

(FAQ + E)H 'HE + EH'HE + Gw = 0.

Let HE =1 or
1 0 -111& & —& T
0 1 -1 L) =[&—-6&]| = 12
0 0 1 &3 €3 M3
This yields the following matriz equation:
S [m]
( zz 0 z-1 0 -1 '
T2
0 29 2z,—1 0 -1 0
= 0. (4.26
1 0 z-1 0 o]|™ )
y
11 0 -1 0|
L 2

I will show how n3 can be removed to obtain a dual pencil representation in n,. 1.
y, and u. To do this, use row operations on matriz equation (4.26) over the field
of rational real functions in z, and z,. For the conjecture to be true, this should
always yield to first-degree equations in the remaiming 1 terms. and zeroth-degree
equations in ecternal variables. The row operations used for ({.26) are as follows:

ziRl3 + Ry - R), —2—R,. —(22 — 1)Ry + R, — R,, —(z2 = 1)R, + R; — R;.

Z1za2—1
;12'32, (z122 = 1)R;, (2122 = 1)R3, ~z;R3 + R2 = Ry, —2,Rs + Ry — Ry, $Rz-
1
21 20~1

R;. Removing 13 form the matriz equation (4.26), yields the following dual

pencil representation:

o
2 1 0 -17]|™
n
1 =z 0o -1|]"|=o. (4.27)
y
11 -1 0
| u |
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1 0 -1
Using A = —I, the same approach as above can be taken for H=' = |0 1 -1

0 0 1
to get ancther minimal representation of the dynamical system given by:

’
1
!
2

7
~1 z 0 -1 = 0. (4.28)
y
-1 1 -1 0
| ]

Example 21 (ezample 6 revisited): It was shown that the smallest real gain real-

ization of the dynamical system described by the AR representation [1-21z0 2z 4+

)
A [ J = 0 is of order 2. (see page 36)
u

It is easy to check that [FAQ + E| is full column rank for all A = diag[z,, z9] €
RR?**?. However. if the constants are taken over the field of complez numbers, it
is straightforward to check that [FAQ + E] losses rank for A = diag[i, —i] and
A = diag[—i,i]. For ezample, it can be shown that the second column is equal to —i
times the first column plus ¢ times the second column. Taking a similar approach

as the previous ezample, let

1 -2 0
H'=10 1 0|, and H¢ =n.
0 — 1

Using the following row operations: z;Ry+ Ry, — Ry, ﬁRl, —(z2+1)R1+ Ry —
Rz, (1:22 — 1)R1 + R3 — R3, iRs, (2'122 — l)Rz, (2122 - 1)R3, —Zle +'LR3 b 4 R3,

—23R3 + Ry = R, mi_l R,, zﬂ;_le and removing 1, yields the following dual
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pencil representation:

T

) 2
T -z 0 1 = 0. (4.29)
Yy
1 1 -1 0
[ U]

4.2 Pencil Representations

In this section, I will give a definition of minimality for the pencil representations
introduced in chapter 3, similar to the notion of minimality for dual pencil repre-

sentations introduced in the previous section.

Definition 11 Associate with every pencil representation of a given system given

by (3.8)-(3.9):

FAQ¢ = E¢
Nf = w,

with F € K9* A = diag[z;,,zi,,-+-.2,], Q € KM™ E € Ki*m N ¢ K¥*m. 4
triple (g, h,m) € Z3, with a partial order similar to the one in the last definition.
The representation given by (3.8)-(3.9) is called minimal if there is no other pencil

representation with an associated triple for which (g',h',m') < (g, h.m).

All the rank conditions found for dual pencil representations in the previous
section are also applicable to pencil representations, since a pencil representation

can always be rewritten as:

o 2] oo

In particular, the two following propositions are immediate.
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Proposition 4 If the dual pencil representation given by (3.8)-(3.9) is minimal,
then F has full row rank .

FAQ-E
Proposition 5 If (3.6) is minimal, then N maust be full column rank

for all A = diag[Ay, Ay, -- -, An] € K™X™,

We conclude this chapter by pointing out again that not all necessary and
sufficient conditions for the ordering implied by definitions given is this chapter are
known. However these definitions allow sufficiency conditions to be investigated,

and provide a framework for investigation.



Chapter 5

Minimal AR representations

In this chapter, a classification of externally equivalent AR representations will
be given. A definition of order associated with any given AR representation and
consequently a definition of minimality of polynomial bases describing an AR repre-
sentation will be given. An n-D generalization of Forney’s result [21] will be stated

and proved, and an example illustrating the theorem will be given.

Sections 5.1 and 5.2 deal with the computational aspects of obtaining a minimal
basis for an AR representation. namely factorization of multivariate polynomials
over the given fields, and p-adic valuations with related concepts. These sections
are a condensed survey of some of the classical and recent results dealing with
these two topics. Readers familiar with these works can skip over this section to

the following one which is the main result of this chapter.

Section 5.3 uses the concepts introduced in sections 5.1 and 5.2 to give an n-D
generalization of a theorem due to Forney. The proof of this theorem, as well as an

example illustrating its result, will be given.

78
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5.1 Multivariate polynomial factorization

In this section we summarize some of the algorithms used in factorization of mul-
tivariate polynomials, basic algebraic definitions, and results for polynomial equa-
tions that will be needed in the following section. For more details the reader is
referred to textbooks such as [7], [23], and papers such as [30], and [54]. The reader
is assumed to be familiar with the axioms of a commutative ring R. as a set together

with two binary operations + and x such that

(R, +) is an abelian group
X is commutative and associative

the distributive laws hold in R

The commutative ring of interest is the ring of multivariate polynomials in inde-
terminate z1,---,z, with coefficients in F, for some arbitrary field F. written as
F[x] = F[zy,---.z,]. The a quotient field is F(x). A commutative ring R with
an identity and no zero divisors is called an integral domain. The elements in R
which have an inverse are called units. Elements a and b of R such that a = ub for
some unit u in R are called associates. An element 0 # r € R is called irreducible if
whenever T = ab, either a or b is a unit. An element 0 # p € R is called a prime if
it is not a unit and whenever p|ab, either p|a or p|b. An integral domain R is called
a Unigque Factorization Domain (UFD) if for all its non-unit elements 0 # r € R,

the following properties hold:

o 7 can be written as a finite product of irreducibles p; of R.

o This decomposition is unique up to associates.
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It is easy to show that F[x]| is a UFD. It is also easy to prove that in a UFD
a non-zero element is a prime if and only if it is irreducible. henceforth we will
use these two notions interchangeably. This is the property which we will utilize
for factorization in F(z,,---,z,),n > 2, since many of the existing definitions and
results in 1-D rely on the fact that F(z,) is also a principle ideal domain. a property
which does not hold for n > 2.

The remainder of this section deals with factorization of multivariate polyno-
mials over Q, R. C, and F where F is an arbitrary field. First a summary of
discussions of factorization over rational numbers, which has long history. will be
given. In the following subsections, extensions of these methods to reals and com-
plex coeflicients, as well as to polynomials with coefficients in an arbitrary field

using algorithms suggested by Trager and Gianni will be shown.

5.1.1 Factorization over Q(z)

The problem of testing a polynomial for irreducibility and factoring polynomials
into irreducibles has a long history and can be traced back to Schubert. Eisenstien.
and Kronecker {30]. However, most of the present work stems from the work of
Berlekamp [6], Zassenhaus [59], and Wang [54] [53], (in the case of multivariate
integral polynomials).

The factorization problem over Q can be converted to factorization over Z by
multiplying the polynomial by the least common multiple of its coefficients. The
main idea of factorizations over integers is to reduce the problem of factoriza-
tion of multivariate polynomials to those of univariate polynomials by identifying
Z[zy,--+,zn] as Zlzs,---,z,)[z1], factorizing this univariate polynomial over Z,,

where p is a prime number, then lifting the solution in Z,[z,] to a desired solu-
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tion in Z[z,] by solving certain nonlinear equations, and extending this solution
to Z[z,,---,z,] by an ideal-adic version of Newton’s method, for solving nonlinear

equations. Here are some basic definitions which will be needed.

Definition 12 Let p be an n-variate polynomial in Z[z,.---,z,]. Ezpress p as a
univariate polynomial in T, of degree ky with coefficients in Z(z,,-- -, z,], i.e.

ky
p(zlt"'vzn) = Zpi(th"'ﬁzn)z; (5.1)

i=1

where p;(T2,+ -+, Tn) € Z[zy,---.z,]. The content of p (cont(p)) is the g.c.d. of all
the coefficients p;. The primitive part of p (pp(p)) is defined as pp(p)= p/cont(p).

p s called primitive if the p; s are relatively prime.

It is 2 known classical result (Gauss’ lemma) that the product of any two primitive
polynomials is itself primitive. So, factorizing an n-variate polynomial reduces to
the subproblems of factoring the content and the primitive part of p. Therefore.
assume that the given polynomial p is primitive and monic. p is square-free if it has
no repeated factors. One can test p for being square-free by checking for common
roots of p and its partial derivative with respect to z;. The g.c.d. algorithm can be
used to write p as a product of square-free polynomials. Henceforth. assume that
p is a monic, square-free primitive polynomial.

First. consider factorization of an univariate polynomial, say p(z) € Z[z]:

¢ Choose a prime ¢ such that g does not divide p or dp/dz. This will ensure

that p remains square-free modulo gq.
e Factor p into irreducible polynomials in Z, using Berlekamp’s algorithm:
Berlekamp’s factorization algorithm: Suppose that in Z, p(z) is a polyno-

mial of degree n and factorizes into r irreducible polynomials p;(z), that is

p(z) =pi(z)---pr(z) modyg, (5.2)
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where the p; are relatively prime (otherwise p is not square-free). Furthermore.

suppose there exists a polynomial v(z) such that
v(z)=s; modp; i=1,---.7, (5.3)

for some integers s; modulo q. By the Chinese Remainder Theorem (CRT). the
degree of v(z) is less than that of p(z). For such a polynomial v if s; # s; for
some z,J € 1,--- .7, then ged(p, v — s;) is divisible by p;, but not by pj- Hence. the
calculation of the ged(p,v — s;) will lead to a decomposition of p-

Fermat’s little theorem implies that for any polynomial f (z),

f(z)? = f(z?) modgq.

Also in Z,, we have

v(z)?! =37 =s; =v(z) modp;,

and by CRT

v(z)?* =v(z) modp(z).

Hence

v(z?) =v(z) modp(z). (5.4)

We know that the degree of v(z) is less than p(z). Suppose v(z) can be written as
v(z)=vot+viz+ - +vaz" €2, i=1,---,n— 1.

Berlekamp’s basic idea was to solve the problem of finding the coeficients v; of
all possible v, as a system of linear equations in the v; using (5.4). Let gii € Z,

0 <7 <n—1 besuch that

2 = gjn1z™ -+ giaz +gjo  modp(z).
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Consider the polynomial v(z) as a vector of its coefficients v = (vg, - -+, vn_;). It is
easy to see that v can be found from the equation vQ = v where
do.0 T qon-1
Q=
Gn-10 °°° 4n-1n-1
e Now assuming that using the algorithm above, we have a complete factoriza-

tion of p(z) € Z, such that

p(z) =pi(z)---pr(z) modg,
we will show how the factors p; can be lifted to some factors pi(z) in Z[z] using the
two conditions which have to be met:

L. p(z) = py(z) - - - pr(z).

2. pi(z) =pi(z) modq it=1.---,r.

The existence of solutions subject to the two conditions above is guaranteed
by a classical result known as Hensel's lemma. There are a variety of results in
the literature which go under this name, however their common feature is that the
existence of an approximate solution of an equation implies the existence of an

exact solution, and subject to some given conditions an approximate solution is a

“good enough” solution. The equation in question here is the nonlinear equation
F(p---p.) =p(z) ~py -+ p, = 0.

Hensel’s lemma: Let p(z) be a polynomial over the integers. Let ¢ be a prime

and pi(z),- -, p-(z) € Z, be relatively prime polynomials over Z, such that
p(z) =pi(z)---pr(z) modg.

Then for any integer k > 1, there exists polynomials p¥ - .- p* € Z 4 such that
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o p(z) = pi(z)---pf(z) modgF,

* pf(z) =pi(z) modp(z) i=1,---,r.

Hensel’s lemma allows us to lift factors to Z . for k > 1. Calculate an integer bound
N such that all the coefficients of all factors of p(z) in Z[z] are absolutely bounded
by N using one of the existing methods. Choose k such that ¢* > 2N. Then the
factors in Z; or some products of them will give us all the irreducible factors of

p(z) in Z[z].

The factorization of polynomials in n variables (n > 2) is done in the same way
as the one-variable case. The first n — 1 variables are fixed to obtain a polynomial
in one variable. A modified version of Hensel’s lemma can be used to find a 1-
D factorization. These factors then can be lifted to Z[z,,- - .Zn] by an inverse

reduction and trial divisions.

In the following subsections, two algorithms due to Trager [52]. and Gianni and
Trager [24] will be discussed. One uses the extension of the algorithms discussed
above over extension fields of Q which includes all coefficients of a given polynomial
to obtain a factorization. The other uses the Grobner basis algorithm to give a

factorization over any arbitrary field.

5.1.2 Factorization over R(x) and C(x)

The main idea of the following algorithm by Trager [52] is to obtain a factorization
over R or C by using an extension field of Q which contains all the coefficients of
the given polynomial. The factorization problem over the required extension field
is then reduced to factorization over Q using a function called norm. Once the

factorization is obtained over @, the factors can be lifted to those over R or C by
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using the relationship between the norms of the factors and the actual factors. In

the following, definitions and the algorithm will be formally defined.

Definition 13 Let K be an eztension field of F (i. e. K is a field such that F C K ).
An element o € K is called algebraic over F if a is a root of some non-zero
polynomial f € F[x|. K is called an algebraic extension of F' if every element in

K is algebraic over F.

For example. i € C is algebraic over Q, as is any element in R and C which can be
obtained through addition, multiplication or exponentiation (including factors of
powers) which includes almost all the coefficients necessary for describing dynamical

systems.

First consider the 1-D factorization problem by fixing all but one of the variables.
say . The factors once obtained can be lifted to the n-D ones by trial and error
similar to the one in the last subsection. It is a known fact that for any K an
extension field of F and a € K an algebraic element over F, F(a) is isomorphic to
F[z]/ < p(z) > where p(x) € F[x] is the unique monic irreducible polynomial of a
of degree, say h > 1. Also any element 3 € F(a) can be written uniquely in the

form of

ﬁ=f0+fla+"’+fh—1ah-1? fteF'

p(z) is referred to as the irreducible (or minimal) polynomial of a.

Definition 14 Let p(z) be the unique, monic irreducible polynomial of a over F.
The conjugates of a over F are defined to be the remaining distinct roots of p(z),

say ag,---,ap.
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Let B € F(a) be represented as 8 = fo+---+ fo_1a"!, f; € F: then the conjugates
of 3, B; are defined to be

;Bi=f0+flai+"'+fh_1a?—l. fori =2,--- h.

Norm(p) is defined to be the product of all the conjugates of 3 in F(a).

It is easy to show that Norm(8) € F, for any 8 € F(a). As stated earlier,
the Norm function can be used to convert the factorization problem in F(a) to
a factorization in F. The following theorem will show the relationship between

factors of the Norm of a given polynomial and its factors.

Theorem 5 [52] If B(z. a) is an irreducible polynomial over F(a). then Norm/(3)

s a power of an irreducible polynomial over F.

By allowing for a proper substitution for z [52], it is always possible to ensure the
Norm(B) is square-free and hence obtain a complete factorization of 3 over F (a)[z]

by calculating the ged of B and all the factors of Norm(g3).

5.1.3 Factorization over arbitrary fields

In this subsection the algorithm for factorization of polynomials with coefficients
in an arbitrary field, given by Trager and Gianni, which uses the Grébner basis

algorithm will be given.

Theorem 6 [2{] Let f,€ F[zy,---,z,] be a given polynomial in all the n vari-
ables to be factorized. Consider a total degree ordering with z, greater than the
other variables. Suppose J is ¢ mazimal ideal in F[z,,--- ,Zn] and g and h two

multivariate polynomials are in all the n variables such that
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1. f =gh mod J,
2. The ideal generated by g, h, and J is the whole ring F(z,,---.z,],

3. The ideal generated by the leading coefficient of f with respect to z; and J is

Flza, -, z,].

Then the reduced Grobner basis of the ideal generated by f, g*. and J* for suffi-

ciently large k € N contains a unique polynomial gi. of least degree such that

(a) glgr modJ,
(b) gilf.

The description of the methods in the above two subsections is only intended to
give an overall sketch of factorization of polynomials in several variables and it

should be noted that the factorization problem remains an active area of research.

5.2 p-adic valuations

In this subsection, I will give a definition of p-adic valuation for multivariate poly-
nomials and polynomial vectors. In the following section, these notions will be
used to define an order associated with an AR representation of a given dynamical
system and to show the relationship between different AR representations of the
given system. p-adic analysis is of particular interest and importance in many areas
of mathematical research such as number theory and representation theory. This
is equally true of the general notion of a valuation together with some of its related

concepts.
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[ will give the definition of a valuation with respect to R = C(zy,---,z,). This
and related concepts can be defined over more general fields. For more details on

p-adic valuations the reader is referred to textbooks such as [3], [32] and [39).
Admissible definitions of order for a n-variate polynomial were given in chap-

ter 3. Using any admissible ordering, a polynomial can be written in descending

order of its monomial terms. The largest monomial is referred to as the leading

n

monomial and the (multi-)degree of the given polynomial is taken to be Za; if
i=1

glex or grlex are used and «, if lex ordering is used.

The non-archmidean p-adic valuation to be used is an integer valued function
v:C(zy,--+,z,) - CU oo such that for all &,,k, € C(zy,---.Tn) the following

axioms hold:
(1) »(0) = oo,

(i) v(kikz) = v(ky) + v(ke),

(iii) v(ky + k2) > min(v(ky), v(k2)).

The following two valuations which satisfy the axioms above will be used.

Let p be any irreducible integer polynomial, and kA any nonzero polynomial in
C(z1,---.za). By the discussion in the earlier section, it is always possible to write
k as

k=p,
v
where p € C, v,v € C[z,,--+,z,], and p fu, p fv. Define v,(k) to be p. It is easy
to check that axioms (i)-(iii) hold.

The other valuation which will be used is denoted by v., and for k = %, u,v €

Clzy,---,2z,] is equal to deg v - deg u. Again, it is straightforward to check that

the required axioms hold.
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Both valuations are defined to be trivial on the constant polynomials in the
sense that for all k € Q, the valuation is equal to oo if k£ = 0 and 0 otherwise.

It should be noted that for any 0 # k € C(zy,---.z,), and all irreducibles p
D vp(k) = —veo(k).
p

Next, we extend these notions to polynomial vectors. Consider a vector V over
C(z,,---.z,) of dimension n. An extension of a p-adic valuation v on C(z,, - -. z,) 2
R to a norm on R" is defined as a integer value function T : R* — C U oo. such

that T|z = v and for all k € R and a,b € R" the following axioms hold:
(i) T(0) = oo,

(ii) Y(ka) = v(k) + T(a),

(iii) T(a + b) > min(Y(a), T(b)).

Suppose {e;,- -, en} is a basis of V. Then every a € V can be written uniquely as

n

a=2am,

1=1

for some a; € C(zy,---,z,).
The norm we are going to use is defined as:
To(a) = miin vp(ai), YTx(a)= miin Vo (ai)-
It is easy to check that the axioms (i)-(iii) hold.

We conclude this section by defining the p-adic residue for a given polynomial

vector, and defining orthogonal vectors.

It is easy to show that for any k € C(z,,---,z,) and any irreducible polynomial
p, k can be represented by a (possibly infinite) p-adic power series:

k=pk+p k4,
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where k; € C(z;,---,z,) and p = (k). Then the p-adic residue of a given poly-
nomial vector a = (a;,---,a,) € C*[z1,---.z,) is defined to be the n-tuple of

coefficients of pT»(®) in the power series expansions of the a;.

Next, consider a vector g and let & = {g;,---, g} be a k-vector set such that
k
g=> hig;,
Jj=1

for some h; € C(z,.---,z,). By property (iii) of norm definition in the previous
page
vo(g) 2 mJjnup(hjgj),

for all irreducibles p. The set ¥ is called p-orthogonal if
vp(g) = min vy (h;g;).

for a given p, and called globally orthogonal if it is p-orthogonal with respect to all
the p’s.

5.3 Classification of AR representations

In chapter 3, it was shown that a minimal-order Roesser realization, obtained from a
proper 2-D single-input, single-output transfer function, with degrees n and m with
respect to the operators z; and z,, was defined to have an order equal to n + m.
As has been pointed out earlier, contrary to the 1-D case [56], generically, the
transfer function is not proper for n > 2. Furthermore, to the author’s knowledge,
a definition of order with respect to multi-input, multi-output systems has not
been defined. An interesting question in its own right is the existence of more than

one (possibly infinitely many) transfer functions describing the given dynamical
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system. In the behavioural setting, one can pose the question of how different AR
representations of a given behaviour are related. In answering this question. I will
define equivalence classes of AR representations. After giving a definition of order
for AR representations, I will show how one can find a least-order representation

for a given dynamical system.

Consider a behaviour of a system described by two AR representations R;w = 0
and R,w = 0, where w is the set of external variables with values in some K -valued
vector space V, for some field K, and R; and R, two polynomial matrices with
the number of columns equal to the dimension of V', and the number of the rows
(possibly different) equal to the number of equations. From the algebra of vector
spaces, the row spaces of R, and R, are identical. Hence, it is always possible to find
polynomial matrices X and Y such that XR; = R,, and YR, = R,. Polynomial
matrices X and Y can be computed using any mapping that takes a basis of X
to a basis of Y and vice versa. In other words, all AR representations of a given
behaviour form an equivalence class of the polynomial matrices R;, where any two

members of this class have the above property.

Next, for a given equivalence class and a one of its representative R; we define

order of R;, and show how a least-order representative of this class can be found.

In [21] (appendix, pp. 516), Forney showed that p-adic valuations can be used
to define a minimal basis for a rational vector space over a ring of polynomials
in one variable, say F[z] for some field F. In 1-D, this may not represent the
most practical way of obtaining such minimal bases compare to the other existing
methods, due to the fact that F[z] is an Euclidean domain. However, as pointed
out earlier in this thesis, F[x] is no longer an Euclidean domain in the n-D (n > 2)
case. Hence, using the fact that F[x] is still a UFD, a generalization of Forney’s

result can provide a powerful method of classifying the vector spaces over F(x).
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Certain differences between the 1-D and n-D case should t : pointed out:

e Definition of the degree of a polynomial is not unique.

¢ v, and v, are not the only possible valuations over F(x).

First. we need the following definitions:

Let P be the set of all irreducibles in F[x] and P~ be the index set of p’s of the

valuations v, where either p € P, or v, = v; that is P~ = P U {oo}.

Definition 15 For a rational function m-tuple a, the defect of a is defined as

defla) = — ) _ T,(a).

PEP*

It is easy to see that def(a) is always non-negative. Furthermore. for any polynomial
h, 0 # h € F(x). we have
def(ha) = — ) Ty(ha) = — Y y,(h) — Y T,(a) = def(a).
pEP* peEP* pEP*
As in the 1-D case, this implies that for a m-tuple a of rational functions. def
a = deg a, since if h is chosen to be the ratio of the least common multiple of
the denominators of all entries of a divided by the greatest common divisor of the

numerators, ), ., Tp(a) = 0 and T.(a) = -deg a.

Definition 16 For a k x m matriz G with entries in F(x) and rows g;, define the

order of G to be ) def g;.

Definition 17 Let V be the k-dimensional vector space span of the rows of a k xm
matriz G over F(x). Define k x m matriz G’ over F(x) to be a minimal basis for

V if G’ is a bastis for V' and it has the least-order among all bases for V.



CHAPTER 5. MINIMAL AR REPRESENTATIONS 93

The following theorem is a restatement of Forney’s result for the n-D case. The

proof is new.

Theorem 7 Let k x m matriz G be a basis for a k-dimensional row-space V of
polynomial n-tuple over F(x), and let order of G be S def g;. where g; are the

rows of G. The the following statements are equivalent:

1. G is a minimal basis for V.

2. [Glp has full rank over the residue class field F, of polynomials modulo p. for
allp e P-.

3. Let h € Z be the minimum p-valuation obtainable over all the k x k minors

of G, then
k
h=Y T,(g) VpeP

=1

4. The rows of G are globally orthogonal.

Proof: The logical order of the proof is:

3
1=>g=>4=>1.

(1 = 2) Assume that G is a minimal basis. Also, assume to contrary, that (Glp

is not full rank over F, for some irreducible polynomial p. That is,

k
3f: € F, such that Z fi[gilp = 0 mod p.

=1
Note that deg f; < degp. Let
g = Z_f,-g,-. (5.5)
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It is easy to see that
87, = filgil, = 0 modp.

This implies that g’ is divisible by p, and g’/p has degree

deg(g'/p) degg' — degp

IN

max(deg f; + deg g;) — degp
max(deg g;) since deg f; < degp,

A

where the maximum is only taken over g; for which f; # 0. Without loss of
generality, say g is the row for which this maximum was obtained. Using (5.5). g,

can be replaced by g'/p to get a basis of lower order, which is a contradiction.

(2 & 3) Let N = (n;;) be any k x k matrix. let o be any permutation on the
set {1.---.k}, and €(o) the sign of the permutation o. Then the determinant of N
is given by [10]:

det N =" €(0)n0(1)1M0(2),2 * - P (i - (5.6)

This implies that
k
vp(any k x k minor) > E To(g:)

i=1
Assume that the p-valuations of all & x k minors of G are always greater than the

minimum value k. We are going to show that [G], cannot have full rank over F,

for some irreducible polynomial p € P~.

Let, for a given p, v,(g:) = a;, i = 1,---, k. Consider the k x k minor for which
each column has the entry with factor p of power a; in the g;-th row. The term
corresponding to the product of terms of power a; cancel out (mod p) if and only
if there exists a linear combination of the rows of [G], which are congurant to zero

mod p.
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(2 = 4) Assume [G], has full rank over F, for all irreducible polynomial p € P~.
Let ¢’ = Zf=1 h;g: for some h; € F. By the definition of p-adic norm,

vp(g)) 2 minvy(hig)) for all p € P~.

If v,(¢') > min;vy(h;g:) for some p € P~, and min; vp(hig:) = h,g, for some
k

8 € 1.---.k, then this implies that v,(k,g,) has been canceled out by Z vp(higi).

Py
But this is contradicts [G], having full rank over F, for all irreducible polynomial
peE P
(4 = 1) Assume the g; are globally orthogonal. If G is not a minimal basis for
V. then there exist a matrix G’ which is also a basis for V., and has smaller order

than order of G. Let gj.---,g; be the rows of G’. Since rows of G are a basis for

V.wehaveforj=1,--- k:

k
g = kg for ks € F(x).

i=1
Since the g; are globally orthogonal

z Tp(g_;') = Z Yp(ksig:)

pEP* pEP*

= min ) Tp(k;g:),

pEP*
but order G’ < order G implies that
k k
DD TN >D Y Tole) (5.7)
J=1 peP* i=1 peP*
Let r € 1,---,k be such that

o Ta(el) > ) Talgl)

pEP* pEP*
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forjel,---,k and 7 # r. Then (5.7) implies that

D Toler) > min Y Ti(g),

pEP* pEP*
> min Z ‘I‘p(k,-;g,-) ij{ € F(x),
pEP*

which is a contradiction. O

The following example will illustrate this theorem.

Example 22 Consider the 2-D behaviour described by the AR representation Gw =
0, where G s given by:
[ 29 —1 22— z1z3 —za+ 21 2125 — Z}2a — 2o + 212

L2

23

2 2 2 2
— 2129 — 29+ 24 0 ~ziz3+ z}ze + 2z — 2zt zyzg — 22—z + 2,

(5.8)
Let the ordering of monomials be given by the total degree with z, > z,. Factoring

over R(z1,2;), G can be written as

[ P1 PPz paps ] 5:9)
pip2 0 papaps
where py = 2z~ 1, pp = z2 — 21, pa = 2122 — 1, and ps = —z; + 1. Then we have
0 0 —(z-1)
[Glp, = . (5.10)
0 0 (z-1)3

Label the rows of G as g, and g,. Let

g2 = (—p4)g1+8

= 0 modp,;.

Then

821/171 = [Pl — P1D4 0]-
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Note that degg, > degg;. Replace the second row of G by gs/p; to get
p P1p2  DP2P3
G = [ P ] . (5.11)
pr —pips O
It is easy to check that [G"]I,l is full rank. However,

z7—-1 0 O
(= l:zl—l 0 0} ’
which clearly is not full rank. Let g}, = g} — g5 where gl,i = 1,2 are rows of G'.
Then g1,/p> is given by
812/p2=[0 p: ps].
Note that degg; > deggs. Replacing the first row of G, by gl,/p, yields
o - [0 P2 sz _ [ 0 Z, — 2y 2129 — 1] . (5.12)
pp —pps O z2—-1 nizztz—2z2+1 0
Similarly, [G"|p;,t = 1,---,4 is full rank. Hence G" represents a least-order AR

representation of the behaviour in (5.8).

It is elementary algebra to show that the above reduction is equivalent to pre-

multiplying G by a non-singular matriz X of rational functions such that XG = G,
where X is given by
P1tps -1
X = [ nmp2 PIPZJ .

—Ps 1
P D1

Similarly, G = YG' for
p 1
Y = [ ’ ] .
P2Ps D2



Chapter 6

Conclusions and Suggestions for

Future Work

The work in this thesis covers two fundamental questions:

1. what is the relationship between different representations of the same be-

haviour?

2. under what conditions is a given representation minimal?

In modeling and classification of n-D dynamical systems, I have used behavioural
models of two forms, namely AR and ARMA representations. For ARMA repre-
sentation, I have considered Dual Pencil, Pencil, and Descriptor representations in

a behavioural setting of linear, time-invariant dynamical systems.

With respect to the first question, in chapter 5 the relationship between all AR
representations of a given behaviour which forms an equivalence class was given.

In chapter 3, I presented a realization method for obtaining equivalent first-degree

98
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ARMA representations from AR representations. In the same chapter. the relation-
ship between equivalent Dual Pencil, Pencil, and Descriptor representations was
also given. Some rank conditions were found which allow us to find an equivalent
first-degree model of a different form with fewer auxiliary variables. The relation-
ship between the two well known models of Roesser and Fornasini-Marchesini was

given in the appendix of this thesis.

The second question was dealt with in chapters 4 and 5. In chapter 5. I have
associated a definition of order to AR representations of a given dynamical system
and have given necessary and sufficient conditions under which a given AR repre-
sentation has the least possible order. In chapter 4, a definition of minimality for
Dual Pencil and Pencil representations was given. Some necessary conditions under
which these two representations are minimal were found. In chapter 2, I also gave
a literature survey of minimality definitions and conditions for some known n-D

models and examined the minimality conditions using illustrative examples.

Through the work presented in this thesis, I have shown how to classify all AR
representations of a given behaviour and how to obtain a least order representation
for a given class. This naturally includes the definition of order associated with
input-output systems with improper transfer functions, as well as the multi-input
multi-output case, and shows the relationship between different representations of

such systems.

I have brought together a summary of existing models from a diverse back-
ground, which together with the work done in this thesis shows that the definition
of minimality for first-degree ARMA representations is model dependent. Also, I
have illustrated the complexity of minimality issues of n-D representations com-
pared to their 1-D counterparts. This complexity is due partially to the presence of

more than one operator in the representation of a given behaviour and may imply
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for instance that reducing the degree of one operator in the representation is more
costly than reducing the degree needed for some other operator. The generality
of the Dual Pencil and Pencil representations and the corresponding definitions
of minimality provides a framework for investigating conditions that characterize

minimal first-degree representations.

Future work which naturally follows from the results presented. some of which

has been mentioned in the body of this thesis, includes the following:

e Youla and Gnavi [58] have shown that zero-, minor-, variety-. and factor-
primeness do not imply equivalent characterizations of polynomial matrices
for n-D systems with n > 2. In an upcoming paper. Fornasini and Valcher
[20] have illustrated the differences between the 2-D and n-D case of these
properties and have found conditions under which these properties of a given
polynomial matrix can be equivalent. The theorem in chapter 5 used to
classify the AR representations may be strengthened using this and related

results.

o The links between Oberst’s works ‘On the minimal number of trajectories de-
termining a multidimensional system’ [43] and ‘Canonical Cauchy’s problem’
for input-output systems [44], and the definition of minimal AR representa-

tion in chapter 5 should be investigated.

e It has already been shown that some of the known reduction algorithms for
Roesser models may affect stability [46], [45]. Existing or new stability condi-

tions should be used to ensure that reduction methods used preserve stability.

¢ Future work should focus on finding all necessary and sufficient conditions
for minimality of first-degree ARMA representations. These conditions will
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be reformulated for the existing n-D models. Recasting methods should be
modified to preserve minimality. This may also require using Grobner ba-
sis algorithms similar to the one used by Fornasini et al [19] in state-space
realization of autonomous AR systems. These conditions should also be ex-
tended to the known n-D models. It may also be possible to give definitions
of controllability and observability for first-degree ARMA representations and

establish a connection between these two concepts and minimality.

e Applications of results of this thesis to areas such as gain scheduling and
signal processing should be thoroughly investigated.



Appendix A

In this appendix an equivalent Roesser model is obtained for an arbitrary Fornasini-
Marchesini model in n-dimensions, and vice-versa. Both the regular and singular

cases are covered.

Although for 2-D systems, this relationship has been extensively studied [14].
[34], [38], the relationship between the general n-D Roesser and Fornasini-Marchesini
models has not been made explicitly clear. Such a relationship is useful since often
in the early stages of modeling of a given physical system a Fornasini-Marchesini
model is obtained, whereas an equivalent first order Roesser model would simplify
analysis. We are going to give a systematic way to translate between local-state
models. via a simplified notation. The extension to n-D requires careful attention
to notation and has not appeared in the literature. The development is explicit.

and is illustrated by examples.
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A.1 Equivalence of n-dimensional Roesser and Fornasini-

Marchesini models

In the models considered; the notation z(Z;,---.7,) will represent a variable de-
pendent on n independent indices, written as a vector Z = (3,,---,%,). Then the

general n-D Roesser model can be written as:

E —— A —— B
| &1l +tea)| —————m——[2(D)] ——
Ey Ein R An -+ A . B,
32(1- + 82) . . 122(1) .
. = : : . + u(ZT)
Enl E'nn Anl s Aﬂﬂ Bn
| (T + en) | EXis)
(A.1)
[ £1(T) ]
. . z,(T) .
y(I) = [ Cy, -+-, Ca ] + Du(T). (A.2)
C | 2a(7) |

where e; is a vector which is zero except in the j-th entry, where it is 1.
Using a similar notation, with ¥V = (1,1,--.,1), the general n-D Fornasini-
Marchesini model can be written as:

Ez(IT +V) = Aoz(T) + Z A;z(T +¢5) + Z Ajpz(T +ej+ex) + -+

i=1 1<j<k<n

+) Arjrjerenz(Z +V — ) + Bou(T) + > " Biu(T +e;) +

j=1 1=1

+ D Bau(T+ejte)+ -+ Bijorjrrnuw(+V —e;), (A3)

1<j<k<n j=1
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y(I) = C=(T) + Du(I). Viy,ig, o in 20 (A4)

The above equations are a direct n-D generalization of the model given by Kurek
[35]. Generalizations of the two proposed Fornasini-Marchesini models [14], [17] can
be obtained by setting appropriate A’s and B’s in (A.3) to zero. As a notational

example, a 3-D Fornasini-Marchesini model has the form:

Ez(I +V) = Aoz(I) + A1z(T+e1) + Arz(I+es) + Asz(T+es) + Apaz(I+e;+es)+
Awsz(Z+ertes) + Azz(T+ez+es) + Bou(T) + Biu(T+er) + Byu(I+es) +
Byu(I+es) + Biou(I+ei+ez) + Biau(T+ei+es) + Basu(T+estes).  (A.5)
y(Z) = Cz(Z) + Du(T). (A.6)

To recast the Roesser model (A.1), and (A.2) into the Fornasini-Marchesini form

(A.3) and (A.4), consider one of the following:

Case 1: If the matrix £ is non-singular, both sides of (A.l) can be pre-
multiplied by E-! to obtain a regular Roesser representation. and thus without
loss of generality, assume that £ = I, the identity matrix. An equivalent Fornasini-
Marchesini model can be obtained by the substitutions: z(Z) = #(Z). C = C.

D=D,E=E=1,A 1. ;i 1:1.m = [Ght]mxm, Where

Ahk for h =1
Qpl = )

0 otherwise

and m = 377 | n;, where n; is the order of z;(z). Similarly, Bia.iclivrn =

[bhk]m Xpy where

{ By, forh=1
bhk= y

0 otherwise
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where p is the order of the input vector, and all other A; and B; are equal to zero.

Case 2: If the matrix E is singular, an equivalent Fornasini-Marchesini model
can be obtained by allowing:

z(I)
5:1(1'-{-61—62)

z1(Z+e,—e3)

z(l’) _ il(I+-51—8n)

in(I+en—'el)
Zn(I+en—es)

Zo(Z+en—en_1) J

D = D, Cixmn = [C’ 0.---.0], where [ is the order of the output vector. In
addition, E = [Jy,:--,J,], where Jp = diag[E'u,---.E"nn], and J, = [w]mx(n_l)nj

where
B f(y=zandz<k)or(y=z—1and z > k)
Wey = .
= 0 otherwise
1.e.
(B, 0 0 0 0] "0 0 0 0]
0 E» 0 0 O Ey 0 0 0
Jo = 0 0 Ei3 0 0 |, i=]|0 E 0 0
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J2 = 0 E32

o
o

N
Il

0 0 0 FEn
) ) 0 0 0 0 0

Finally, let A1 s....ic1i41,n = [@ht)mxmn, Where

Ay, forh=iand1<k<n
Ap) =
0 otherwise

and By s...i—1i+1,-n = [bhk]mxp, Where

Bh forh=1:
bhr =

0 otherwise

and all other A; and B; are equal to zero.

Case 1 is the n-D generalization of the one given in [14]. The justification of
both cases is based on the following: let z; be an operator that has the effect of

advancing the i-th subscript of the function upon which it is operating, i.e.
z(Z + &) = z;z(T). (A.7)
Then assuming the necessary boundary conditions, the equation

Y Eigi(T+e;) + Eagi(T+e) = Y 4:Aa(T) + Bau(T), i=1,---,n (AS8)
j=1 k=1
J#i

can be rewritten as
) Ey#i(T+ej+V—e) + Exgi(T+V) = Y Aude(T+V-e) + Bau(T+V—e;(A.9)
k=1

=1
i
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The corresponding z, E, A, B,and D of an equivalent Fornasini-Marchesini model
can be obtained by associating the vectors and matrices used in the Roesser model

with the corresponding quantities in the Fornasini-Marchesini model.

To recast the Fornasini-Marchesini model (A.3) and (A.4) into the Roesser form
(A.1) and (A.2), let z; be defined as above, so for example, the 3-D Fornasini-
Marchesini model given in (A.5) can be rewritten as:

Ez1z0z32(T) = (A.10)
Aoz(I)-i-Alzl:c(I)+Agzgz(I)+A3Z3z(I)+Auzlzg:t:(I)+A132123z(I)+A2322231:(I)+
BQ‘U,(I) + 31Zlu(I)+Bng’lL(I)+B323‘U.(I)+3122122u(z)+3132123U(I)+3232223u(z).

Let u =dim z(Z). Define the partial state z,_; of dimension 2"~2y to be:

—M n-—-2 N n—-2
( ? ? Kon-z  Hpnos

. : : [z(I-i-en)J B : : [z(I):l
T mManeisy Npneiy | | w(T 4 en) ' ' uI) |

E 0 Kzn—l_l Nzn-l_l

(A.11)

where K; = Ay,..4,, where the d; are the locations of ones if 7 is written in
binary form. For example, K5 = A3 since 5 = 101 which has ones in locations
1 and 3, or K3 = A,;34 since 13 = 1101 which has ones in locations 1. 3. and
4. Similarly H; = By,,.q4,, Mj = A4,,..ayn, and N; = By, .4, n, for example
Hy = B4, M7 = Ajz35, and Nyg = Byyss.

Next, recursively define the partial states z,, of dimension 2™ 'y for m =
2,--- . n—1:

—Mzn—m—l Ngn—m-l Kzn—m—l Hgn—m-l

: : z(Z + en) : : [-’c(I)]
Tpn—m = : : - : : +
uw(Z + e,) u(Z)
—Man-m_;  Nya-2_, Kan-m_;  Nan-m_;
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z"_l'zn—m—l_*_l (I + en_l)

+[2n—m-l

t,

Ln—1,2n-m (I + €n—1 )

+ e +[2n-m—l

108

LTn—m+1,27—m—141 (Z + €n-m+1)
A.12)

Zn-mt1.2n-m(L + €n_my1)

The partial states defined above correspond to the partial states #,(Z) to Zn—1(T)

of an equivalent Roesser model, and propagate only in the i-th direction for i =

1.---.n — 1. Then the equivalent Roesser model can be obtained by the substitu-

tions:
z(I)
and
I
I 1—2“
Opxu Ly,
02;.;)( 2p
04ux4u
0
I,
A = 12“

[ 2.(T)

= zn—l(I)
z(Z)

u(Z)

[2n-2“

02n —2“x 2n—2“

12"’2;; Kzn—l_l Hzn—l_l J

(A.13)
—-A, B,
-M, N
. (A.14)
—Mzn—l_z Nzn—l -2
E 0 ]
0
H,

H, (A.15)
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and

B =[B",0,---.0T C=[0.---.C.0, D=0D

It should be noted that if the only non-zero B is By, the last column of £ and A
can be removed to reduce the order of the introduced state.
As an example, in the 2-D case, a Roesser equivalent of a second-order Fornasini-

Marchesini model results in:
| el R B | P B
= + u(Z). (A.16)
0 FE z(Z + e,) I A, z(T) 0
I) = [0 C] [z‘(I)J + Du(T) (A.17)
y (D) . :

which is the same as the one given in [38]. For a 4-th order general Fornasini-

Marchesini model, the above method implies that:

- F$1(I+61)
[I I 0 I 0 0 0 -—A, B,
z21(Z+es)
6 0 I 0 I 0 0 -—A4 By
za2(L+ez)
0 00 00 I 0 —Ay By
z31(Z+e3)
0 0 0 0 0 0 I —Ay2s By
T3(T+es) | =
0 00 00 0 0 —A3 By
z33(T+ej3)
0 0 0 0 0 0 0 —Aj34 By
z34(L+e3)
0 0 0 0 0 0 0 —Ayy By
z(Z+eq)
(0 0 0 00 0O E 0
| u(T+eq) |
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z(I)

—_—l
- 31(1) -
FOOOOOOOAQO [ B,
1!21(1)
I 0 00 00 0 A B; 0
.’822(1-)
0 I 0 0 0 0 0 A, B, 0
2:31(1)
0 07 0 00 0 A B 0
z32(Z) | + u(Z) (A.18)
0 0 0 I 00 0 A, B; N
333(1)
0 000 I 0 0 A3z By 0
334(1)
0 0 0 0 0 I 0 A3 By 0
z(T)
00 0 0 0 0 I Aps B 0 |
" i u(Z) i -
y(Z) = [0 0 0 C 0]z(T)+ Du(T). (A.19)

The justification of the method is based on two facts: one is that for any given field
K with indeterminates z,,---, z,, a polynomial in K [Z1,---,Zn] can be considered

to be a polynomial in K[z,][z,]-- - [za]. The other is that any equation in the form:

Alzlz -+ AQ.’B + Blzlu + Bo‘u =0 (A20)
can be rewritten as
T
—-21[ Ao Bo
z | =0. (A.21)
I A B
u

Hence, n — 1 recursive applications of (A.21) to (A.3) will yield (A.13), (A.14), and
(A.15). For example, (A.10) can be written as:

I

z | =0,a.22)

[—211 Ao + Azzp + Azzz + Agszaz By + Bz, + B32z3 + Bajzas
I A+ A1azz + Ajazz — Ezp25 By + By3z; + Biszs

u
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- -31-
(—21[ —Zz[ 0 Ao + A323 BO + B3Z3
T2
I 0 —22[ A1 + A1323 B]_ + sza
z3| =0 (A.23)
0 I 0 Az + Aszzz By + Bazzs
z
| 0 0 I A12 - EZ3 Blz ]
| u |
which in the Roesser form, is:
- F:cl(I+e1)' _ - -ZI(I). -
I 0 —-A43 B, 0 0 0 A4 0 [ By
z3(I+e2) z2(Z)
0 I -A;;3 Bis I 0 0 A B 0
23(I+€2) 23(1) + u(I)(A.24)
0 0 —Ay3 By 0 I 0 A4, B, 0
z(Z+e3) z(I)
0 0 E 0 | |0 0 I A5 B [ 0 ]
| u(Z+e3) | L u(Z) |

It is straightforward to prove by induction that M, N, K, and H are given as
described above, and to see that at each stage the polynomial describing the rela-
tionship between the state vector and the input can be considered as two part. for
example as P(z1,--+, zn—1) + 2,Q(21, - -, 2z._;). Now, by the induction hypothesis.
(A.21) can be applied to both P(zy,--
of an n to the indices of corresponding M, N, K, and H of Q(zy,---, Zn-1) due to

*»Zn-1) and Q(zy,-+.2n-1) with the addition

the factor z,. Writing the indices in binary form, and using the fact that in each

step, say the i-th, a new state of dimension 2°~!y is added, will complete the proof.
7

The algorithms above will be illustrated by the following further examples.
Example 23 and 24 show respectively transformations of given regular and singular
Roesser models into Fornasini-Marchesini models (i.e. cases 1 and 2). Example 25
shows how to obtain an equivalent Roesser model to a given (singular) Fornasini-

Marchesini model.
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Example 23 Consider the 4-D regular Roesser model described by the following

equations:
(21T + e1) ] (-1 0 1 0 47[z@D] [1]
23T + e2) 0 2 0 -3 0 £1(T) -1
(T +e)| = 1 0 0 o0 o© L) + | 0 | w(@)
2T + e3) 0 0 -5 1 0 £1(T) 1
| 22T + e4) | |1 -1 0 1 -1] [#(T)] [0 ]
[2}(T) ]
£3(Z)
y(Z) = [1,0,1,0,-1] | £X(T) (A.25)
i3(I)
| 24(Z) |

A Fornasini-Marchesini representation of the model described by these equations

can be rewritten by letting:

z,(Z)

23(T)

z(I) = | #3(T)

23(Z)

54(1”

where the only non-zero A; or B; are

[0 0 0 0 0] [0 0 0 0 07 [0 0 0 0 O
0 0 0 0 O 0 6 0 0O 0 20 -3 0
Aip3=0 0 0 0 0 |,A524=|0 0 0 0 O0f|,Amiss=1|1 00 0 o0
0 0 0 0 O 0 0 -5 1 0 000 0 O
1 -1 0 1 -1] 0 0 0 0 O] 0 0 0 0 O]
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(-1 0 1 0 4] 07 0] [ 0] (1]
0 0 0 00 0 0 -1 0
A234=10 0 0 0 0),Bis3=|0]|,Bi24=|0|,Byagq=| 0 |, Bazsa=|0],
0 0 0 00O 0 1 0 0
| 0 0 0 0 O] 1 0] | 0] | 0 ] | 0]
or

E(I + V) = A123$(I+61+82+63) + A124$(I+€1+€2+e4) + A134.'B(I+€1+€3+64) +
+Azzaz(I+ert+estes) + Brzsu(T+e +ertes) + Bragu(I4e,+eates) +

+Bm4u(I+e1+e;;+e4) + 323411(1--*-62‘{'63-{-64).
and

y(Z) = Cz(I) where C =[1,0,1,0,-1].

Example 24 Consider the 2-D singular Roesser model described by the following

equations:
1 01 £1(T+e,) -1 2 0 z1(7) 1
1 0 0 Z3(T+e2) = 1 -1 1 £2(I)| + | 0| »(T)
0 0 1 £2(T+es) -2 0 5 (1) 1
1(T)
y(Z) = [-1,1,0] [ 23(T) (A.26)
z3(Z)

A Fornasini-Marchesini representation of the model described by these equations

can be rewritten by letting:
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[ 2(T) ]
z5(7)
-2
(m = | P
z;(Z+e1—ey)
23 (T—ey+e,)
| £2(Z—e1+e,) |
and
1 0 0 0 0 1 0 0 0 0 0 0
E = 0 0010 O0|],AA=]1 -11000
|0 01 0 0 0O -2 0 5 0 00
(-1 2 0 0 0 O 0 1
A, = 0 000O0O,By=|0],B=]0],
(0 00000 1 0

or

Ez(I+V) = Aiz(T+e)+ Awx(T+e;) + Biu(T+e;) + Byu(T+es),
y(Z) = Cz(I) where C =[-1,1,0,0,0,0]. (A.27)

Example 25 Consider the 3-D Fornasini-Marchesini model described by the fol-

lounng equations:

E _ Ao A:
1 1] |zY(T+V) IR z1(T) 0 1} [z}(T+e,p)
,:0 0 [2:2(1'-{- V)] - [—1 0} [:1:2(1')] * [0 1] [ }(Z+e,) J+
Az A2s By

—N—

e e N
F2 —3 :BI(I+61+€2) 0 -2 ZI(I+€2+63 1
+ + +| |uw@+
0 1 z*(T+ei+e,) 6 1 z2(Z+ez+e3) 0
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B, Bs Bis
——

- 0 1
+ [ 11J u(Z+e)+ [ J u(T+es)+ l:l] u(I+ei+es),

2

y(}.) = [-2 3] ["'I(I)] +2u(T).
z2(T)

Let

z11(Z)
z12(Z)
z21(7)
2(I) = | z22(2)
z!(T)
zX(I)
u(Z)
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(A.28)

(A.29)

Then using the method described earlier, as in (A.24), an equivalent Roesser form

for (A.28), and (A.29) results in:

1000 0 0 07 000000 1 1 01
01 0 0 0 2 000000 -1 0 o0
0010 0 01 100000 0 0 -1
0001 0 01 010000 0 0 1
00000205,(1)=001000010
0000 -6 1 0 000100 0 1 o0
0000 1 10 000010 2 -3 0
0000 0 0 ol 000001 0 1 ol

E(I)+

y(Z) = [0 0 0 0 0 0 —2 3 0]ZZ)+2u().

u(T)A.30)

(A.31)
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