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Abstract

Recent technological advancements are enabling the vision of pervasive or ubiq-

uitous computing to become a reality. Service discovery is vital in such a computing

paradigm, where a great number of devices and software components collaborate

unobtrusively and provide numerous services. Current service-discovery protocols

do not make use of contextual information in discovering services, and as a result,

fail to provide the most appropriate and relevant services for users. In addition,

current protocols rely on keyword-based search techniques and do not consider the

semantic description of services. Thus, they su�er from poor precision and recall.

To address the need for a discovery architecture that supports the envisioned

scenarios of pervasive computing, we propose a context-aware service-discovery pro-

tocol that exploits meaningful contextual information, either static or dynamic, to

provide users with the most suitable and relevant services. The architecture re-

lies on a shared, ontology-based, semantic representation of services and context

to enhance precision and recall, and to enable knowledge sharing, capability-based

search, autonomous reasoning, and semantic matchmaking. Furthermore, the archi-

tecture facilitates a dynamic service-selection mechanism to �lter and rank match-

ing services, based on their dynamic contextual attributes, which further enhances

the discovery process and saves users time and e�ort. Our empirical results indicate

the e�ectiveness and feasibility of the proposed architecture.
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Chapter 1

Introduction

In the vision of pervasive or ubiquitous computing proposed by Mark Weiser [73] in

1991, data is everywhere, technology becomes invisible in our lives, and a great num-

ber of devices and software components collaborate unobtrusively in a smart space

to provide services. The vision is becoming a reality with advances in network and

sensor technologies, the widespread deployment of network-enabled devices, and the

innovations of the service-oriented computing paradigm. Fortunately, it is becom-

ing feasible to deploy pervasive-computing environments as the required hardware,

such as complex tiny sensors, is becoming available o� the shelf at reasonable cost.

Furthermore, the size of the required sensors and computing hardware continues to

decrease, enabling technology to become e�ectively invisible in our lives.

A crucial challenge facing pervasive-computing environments is the development

of a service-discovery protocol that allows users and applications to discover and

interact with the most appropriate and relevant services, provided and advertised

by many devices and software components in the environment. In addition, service-

discovery techniques in such environments should handle the dynamic appearance

and disappearance of devices and services in a timely, secure, and e�cient manner

that does not violate the privacy of users.

The context-aware computing literature de�nes context as �information that can

be used to characterize the situation of an entity. An entity is a person, place, or
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object that is considered relevant to interaction between a user and an application

including the user and application themselves. [14]� Dan Hon et al. [26] classify con-

textual information into three main categories: computing context (available CPU,

memory, bandwidth), user context (preferences, calendar, personal information),

and physical context (location, time, destination, weather). On the other hand,

context-awareness, which is a key characteristic of pervasive computing, is de�ned

as �a property of a system that uses context to provide relevant information and/or

service to the user, where relevancy depends on the user's task� [14]. Consequently,

context-aware service discovery can be de�ned as the ability to make use of context

information to discover the most relevant services for the user.

Typically, pervasive-computing environments provide various services, which

can be hardware-based, such as a printer or a light, or complex software-based

facilities, such as an online e-commerce service. These heterogeneous services have

di�erent properties, capabilities, interfaces, and invocation schemes. As a result,

many challenging questions arise. How do we standardize the description of these

heterogeneous services? How do we capture their semantics? How do we enable

users/agents to discover and invoke them autonomously? How do we de�ne the

�most appropriate� service? How do we represent the static and dynamic contextual

information about both the user and the available services? Most importantly, how

do we incorporate this information into the discovery protocol to make it context-

aware?

Various service-discovery protocols have been proposed, designed, and imple-

mented. While they share the main goal of providing a mechanism for service

advertisement and discovery, they vary signi�cantly in aspects like the architec-

tural design and working environment (i.e., LANs, mobile ad hoc, Internet). Cur-

rent service-discovery protocols, such as Jini [58], UPnP [59], Salutation [52], SLP

[19], Ninja/SDS [18], INS/Twine [2], and UDDI [10], are not suitable for pervasive-

computing environments due to two main challenges.

First, they rely on a syntactic description of services and on keyword-based

search mechanisms. Thus, they are prone to low precision and recall. Service de-

scriptions can be syntactically di�erent but semantically equivalent. As a result, a

2



user searching for a �print� service would not be able to locate a �printing� service.

Similarly, users searching for �buying� services will not be able to locate �purchas-

ing� services, because they have a di�erent syntactic representation, even though

they have the same meaning. In information retrieval terminology, this leads to

poor recall, where recall is de�ned as the ratio of the number of relevant services

discovered to the total number of relevant services in the environment.

Another important issue is that service descriptions can be semantically di�erent

but syntactically equivalent. As a result, a keyword-based search mechanism, which

most discovery architectures rely on, will return irrelevant services for the user as

�matching� services, due to that fact that a keyword can have multiple meanings

(homographs). Similarly, if discovery is based on a syntactic representation of

interface parameters rather than keywords, irrelevant services will still be discovered

as �matching� services. Consider for example a user searching for a stock quote

service that takes as an input a string and as an output it returns a �oat. Many

services match such a request, and as a result, irrelevant services will be returned

to the user as �matching� services. In information retrieval terminology, this leads

to poor precision, where precision is de�ned as the ratio of the number of relevant

services discovered to the total number of irrelevant and relevant services discovered.

The second main challenge is that the current discovery protocols are not

context-aware; they do not consider contextual information in discovering services,

and as a result, they fail to provide the most relevant and appropriate services

for users [12, 76]. This is crucial for pervasive-computing environments. Consider

for example a user searching for a printing service. The service-discovery protocol

should exploit the context of the user, which could include the location of the user

and her preferences, as well as the context of the service, which could include the

location and the current load of the printer (expressed in terms of queue length).

In this scenario, the protocol should discover the nearest and least-loaded printing

service for the user. Similarly, if the user is searching for a software-based facility,

the protocol should discover the service with the highest Quality of Service (QoS).

Ignoring contextual information during the discovery phase places the burden of

choosing the most appropriate or relevant service on the user, by forcing her to an-
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alyze and understand each matching service description manually � contradicting

two key aspects of pervasive computing, unobtrusiveness and user friendliness.

1.1 Motivating Scenario

To demonstrate the bene�ts and advantages of relying on a semantic service descrip-

tion and incorporating contextual information into service discovery, we present the

following scenario. Alice is a new undergraduate student on campus. She plans to

go out on a Saturday night and eat in a restaurant. She would like to �nd a nearby

restaurant using her PDA and obtain its food menu to determine if the restaurant is

suitable (e.g., vegetarian). Then, she plans to print out a map describing the route

to the chosen restaurant from her current location. Finally, she wants to drive to

the restaurant and park her car freely, assuming that the restaurant does not have

its own parking lot.

Using a typical service-discovery protocol that does not make use of contextual

information nor semantics, after submitting a request for a �restaurant� facility,

Alice's PDA will receive a long list of matching restaurant services. Then, she

has to inspect the description of each restaurant manually and determine if it

is suitable, according to her preferences (i.e., o�ers vegetarian food, nearby) �

a tedious and cumbersome task. In addition, it is possible that many matching

restaurant services will not be discovered, because their syntactic description might

be di�erent than the one used in the service query issued by Alice. On the other

hand, if the discovery protocol utilizes the contextual information about Alice,

such as her location and preferences (e.g., vegetarian food), and the contextual

information about the restaurants, such as the location and available seats, the

nearest restaurants o�ering vegetarian food will be discovered, ranked according

to Alice's preferences, and sent to her PDA, saving her a considerable time and

e�ort. Moreover, if the discovery protocol relies on semantics rather syntax, through

reasoning and semantic matchmaking, irrelevant services that include the word

�Restaurant� in their description will be eliminated, while restaurant services that

4



are advertised using a syntactic representation di�erent than the one used in the

service request (e.g., Bistro or Café instead of Restaurant) will be discovered and

considered as matches.

After choosing a speci�c restaurant, Alice obtains a map describing the route

to the restaurant from her current location (using facilities like GoogleMaps or

MapQuest) and wishes to print it. By exploiting contextual information, such

as her location and preferences, and the location and queue length of the available

printers, the discovery protocol will save Alice the time and e�ort required to inspect

each printer description manually, by discovering and ranking the nearest and least-

loaded printers for her. In addition, if service querying and matchmaking is based

on semantics rather than syntax, with the support of reasoning, services that are

advertised using a syntactic description di�erent from �printer� (e.g., LaserPrinter,

InkJetPrinter) will be discovered and considered for matchmaking. Notice that an

adequate context-aware discovery arhictecture should allow Alice to prioritize her

preferences by indicating their importance (weight). For instance, when seeking

a printer, Alice might want to place a higher importance on the location of the

printer than its current load.

Finally, as Alice drives to the restaurant and approaches it, she needs to park

her car. By exploiting her context (location) and the context of the parking services

(cost, location, current number of free spots), a context-aware discovery protocol

can assist Alice in locating the nearest free parking with the highest number of

available spots.

This motivating scenario illustrates the shortcomings of typical service-discovery

protocols, the advantages of relying on a semantic-based matchmaking mechanism,

and the bene�ts of utilizing contextual information during discovery.
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1.2 Semantic-Based Context-Aware Discovery

We have tackled the two major challenges that prevent current discovery proto-

cols from being suitable for pervasive-computing environments. As for the �rst

challenge, to capture the semantic description of services, set a common under-

standing, and provide a semantic- instead of a syntax-based search facility, we rely

on an ontology-based mechanism to describe services and contextual information.

For describing the semantics of services, the latest research in service-oriented

computing recommends the use of the Web Ontology Language for Services (OWL-

S) [64], which is based on the Web Ontology Language (OWL) [65]. OWL is

currently the de facto standard for constructing ontologies. It is a part of the

Semantic Web project [70], which aims to de�ne and add a standardized machine-

readable meaning to information published on the World Wide Web. By utilizing

this machine-readable meaning, software agents will be able to �nd, integrate, un-

derstand, and �reason� autonomously about information. OWL-S, on the other

hand, is an ongoing e�ort to enable automatic discovery, invocation, and compo-

sition of Web Services (WS). It is an ontology designed to describe the properties

and capabilities of web services. Instead of developing our own service ontology,

we reuse the OWL-S ontology to describe services. However, since OWL-S does

not include a semantic description of contextual information, it does not support

context-aware discovery in pervasive-computing environments. Thus, we extend

the OWL-S ontology to include a semantic description of contextual information,

according to our discovery requirements and goals. Furthermore, we extend the

OWL-S ontology to facilitate new invocation schemes based on the proposed archi-

tecture.

To tackle the second major challenge, making discovery context-aware, we inte-

grate our service-discovery architecture with a context engine responsible for rep-

resenting and maintaining information describing the current situation of service

providers, users, and all services within the environment. Consequently, when a

service request is issued, the discovery protocol coordinates with the engine to re-

trieve contextual information about both the user and the available services, and
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calls a semantic matchmaking algorithm to discover the most suitable ones. Finally,

the protocol re�nes the result by �ltering and ranking the set of matching services

to enhance the overall quality of the result and to save users time and e�ort.

Very recently, Anand Ranganathan et al. [46] proposed a benchmark for eval-

uating pervasive-computing environments. Since service discovery is a vital func-

tionality, the authors identify the following aspects to evaluate di�erent discovery

protocols for such environments.

1. Precision and Recall. Essentially, increasing recall and precision is desir-

able. To achieve this, we use an ontology-based approach to describe services,

enabling the discovery protocol to �understand� and �reason� about services

to discover the relevant ones provided in the environment and to exclude the

irrelevant ones from the result.

2. Context-Sensitivity. Does the discovery protocol consider the contextual

information of the user/services? To satisfy this criteria, we integrate our

architecture with a context engine that maintains contextual information.

By coordinating with this engine, the discovery protocol utilizes the context

of the user and services to discover the most suitable ones.

3. Semantics. Does the discovery protocol rely on semantics or syntax (key-

words) to represent and answer service requests? We designed the architecture

to provide a capability-based search facility that relies on semantics rather

than a keyword-based search mechanism, which leads to poor recall and pre-

cision.

4. Scalability. Does the discovery protocol scale with regards to the number

of devices and services (i.e., large-scale environments)? Addressing this issue

is considered future work, as will be shown.
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1.3 Thesis Contributions and Outline

This thesis addresses the need for a service-discovery protocol that supports

the upcoming pervasive-computing paradigm [73]. Speci�cally, the contributions of

this thesis are as follows.

• Construction of an OWL-based ontology to facilitate context-aware discovery.

• Design and implementation of a semantic-based discovery architecture that

provides a capability-based search facility and that exploits meaningful con-

textual information to discover and rank the most appropriate services for

users and agents.

• The development of several services with di�erent invocation schemes as a

proof-of-concept for the validity of the architecture.

The remainder of this thesis is organized as follows. In Chapter 2, we present an

overview of Impress [4], the umbrella project for this thesis, as well as an overview of

the Semantic Web technologies, including OWL and OWL-S. In the same chapter,

we discuss the existing approaches towards context-aware discovery and highlight

their shortcomings. The key aspects of the proposed discovery architecture, such as

context representation and publication, service description, service request, service

matchmaking, service ranking, and service invocation, are presented in Chapter 3,

which constitutes the core of the thesis. We discuss the current implementation

status and present an overview of our prototype in Chapter 4. Finally, we conclude

and present future work in Chapter 5.
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Chapter 2

Background and Related Work

In this chapter, we present an overview of the umbrella project for this thesis,

Impress. Then, we provide some background information on the Semantic Web

technologies, including the OWL language and the OWL-S ontology. Afterwards,

we present the current approaches towards context-aware service discovery and

discuss their limitations and shortcomings.

2.1 Impress

The work presented in this thesis is part of an ongoing project at the University

of Waterloo, Impress [4], which aims to turn ubiquitous or pervasive computing

into a reality. The focus of the Impress project is to provide a feasible platform for

ubiquitous computing environments that supports the development of ubiquitous

computing applications. As for the requirements of this platform, it should provide

a mechanism to identify the entities within the environment uniquely, and support

their mobility and heterogeneity. In addition, the platform should provide a secure

communication infrastructure to enable the exchange of information among entities

in a manner that does not violate the integrity of the information or the privacy of

users. The platform should also be extensible.

The above requirements are supported by Jabber [30], an open-source, distrib-
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uted, XML-based instant-messaging system, and hence, the Impress project and

the architecture presented in this thesis are based on it. In 2004, the Internet

Engineering Task Force (IETF) formalized Jabber's XML streaming protocols and

approved them under the name of XMPP, the Extensible Messaging and Presence

Protocol [29].

Jabber de�nes the notion of a unique entity and permits it to exchange uncondi-

tional XML-based messages with other entities in the network, in a secure manner.

In addition, Jabber provides a Publish/Subscribe (�pubsub�) mechanism that suits

the requirements of the context engine and the proposed discovery architecture,

as will be shown in future sections. Furthermore, new functionalities can be in-

troduced into Jabber easily, since it de�nes a clear extensibility method, Jabber

Enhancement Proposals (JEP) [51]. Finally, Jabber has proven to be deployable.

It is running on thousands of servers across the internet and used by millions of

users. Further details on how Jabber/XMPP can be used as a pervasive-computing

platform can be found in [5].

2.2 The Semantic Web

The Semantic Web was invented by Tim Berners-Lee, the inventor of WWW,

HTTP, and HTML. In his own words, he describes it as �an extension of the current

web in which information is given well-de�ned meaning, better enabling computers

and people to work in cooperation� [3].

We currently have an extremely large amount of electronic data available through

the web. Yet, we cannot search it directly to �nd what we want. We cannot directly

locate information regarding all red Ford Mustang cars which are located in the

Kitchener-Waterloo region in Canada with a cost less than $7000. Even though

this information is provided in di�erent web sites (e.g., autonet.ca, autotrader.ca),

it is described in di�erent formats, terminologies, and layouts. Similarly, there is

no standard way to search for all the web pages that have been authored by some

one called Mike Lee, because di�erent pages express this information in di�erent

ways (e.g., �page is created by Mike Lee�, �page is published by Lee, Mike�, etc.).
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Thus, a human is required to visit each web site, understand its content, and �nally

arrive at some conclusions. Google cannot answer the previously mentioned search

requests, since it relies on keyword-based search mechanisms. To summarize, even

though this information we are looking for is available at di�erent locations in the

web, we cannot reach it directly because every website has its own data standards,

terminologies, and HTML layout.

Researchers have tried using arti�cial intelligence techniques, such as natural

language combined with schema matching methods, to make computers �smart�

enough to understand and reason about the data published on the web in order to

answer user requests using a uni�ed query interface. An example of such an e�ort is

the MetaQuerier system [8]. Unfortunately, natural language and schema matching

techniques have proven to be complex and have not yet shown satisfactory results

for querying and reasoning about web data using a uni�ed interface. Instead of

making computers �smarter,� the semantic web project adopts a feasible and a much

more promising strategy, which is making the data �smarter� to allow computers

to understand and reason about it.

The main goal of the semantic web is to introduce a well-de�ned meaning to

data, where this meaning represents a common machine-readable format for inter-

change of data that can be understood by computers. The vision here is that by

using the semantic web technologies, software agents will be able to �nd, share,

combine, understand, and reason about data.

The semantic web is based on the concept of ontologies. An ontology is simply a

formal description of concepts in a real-world domain. It captures the concepts and

the relationships between those concepts in that domain. Thus, an ontology pro-

vides a shared and common understanding of a particular domain. Ontologies are

expressed in a machine-readable format that enables software agents to understand

and reason about the concepts within the domain. The standard World Wide Web

Consortium (W3C) language for creating ontologies is OWL, the Web Ontology

Language, described in the next section.
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2.2.1 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is currently the de facto standard for cre-

ating and representing ontologies. It addresses the shortcomings of previous mark-

up languages, such as XML, XML Schema [66], XML Namespaces [71], Resource

Description Framework (RDF) [68], RDF Schema (RDF-S) [62], and DAML+OIL

[11].

OWL is composed of three main aspects: classes, relationships, and instances.

Classes represents the concepts within the real-world domain. For instance, in a

university ontology, classes Student and Course may exist. Each class is identi�ed

using a global unique identi�er that is composed of a namespace, usually a web

location (e.g., http://www.uwaterloo.ca/Ontology#), and an ID (e.g., Course).

The second main aspect of OWL is relationships, which are captured using prop-

erties, where every property has a domain and a range. OWL provides two main

types of properties: object and datatype properties. Object properties relate two

classes within the ontology. For instance, in the university ontology, the property

enrollsIn has the Student concept as a domain and the Course concept as a range. On

the other hand, datatype properties connect classes and datatypes. For instance,

the hasName property has the Student concept as a domain and the XML Schema

de�nition of a String (XSD:String) as a range. The following OWL code describes

the Student class, Course class, and the hasName and enrollsIn properties.

<owl:Class rdf:ID="Student"/>

<owl:Class rdf:ID="Course"/>

<owl:DatatypeProperty rdf:ID="hasName">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Student"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="enrollsIn">
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<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#Course"/>

</owl:ObjectProperty>

The last main aspect of OWL is instances or individuals. They are analogous to

Java instances of Java classes. Instances within the ontology represent speci�c

elements with actual data. For example, CS338 can be an instance of the Course

concept, while HPLaserJet200 can be an instance of the LaserPrinter concept. The

following OWL code describes an instance of the Student class, Mike, who is enrolled

in CS338, an instance of the Course class.

<Student rdf:ID="Mike">

<enrollsIn rdf:resource="#CS338"/>

<hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Mike Alan

</hasName>

</Student>

<Course rdf:ID="CS338">

<entitled rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Database Management Systems

</entitled>

</Course>

One of the unique aspects of OWL that is not provided by other languages such as

RDF/RDF-S, is that its properties can have speci�c characteristics, such as tran-

sitive, symmetric, or inverseOf. This helps in modeling real-world relationships and

permits software agents to infer or deduce information. For example, assume that

we have a property called hasAncestor, which is stated to be a transitive property.
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Also, assume that in our ontology we know that the instanceMike hasAncestor John,

and John hasAncestor Ali. From this information, an OWL reasoner can deduce that

Ali is an ancestor of Mike. As another example, assume that we have a property

called hasFriend, which is stated to be a symmetric property. Also, assume that we

know that Ali hasFriend John. From this information, an OWL reasoner can deduce

that John is also a friend of Ali. Finally, assume that we have a property called

hasChild, which is stated to be the inverseOf the hasParent property, and we know

that Ali hasChild John. From this information, an OWL reasoner can deduce that

John's parent is Ali.

Another unique functionality that OWL provides is the ability to place value

and cardinality restrictions on properties. For example, it is possible to specify that

the hasFather property cannot have more than one instance (cardinality constraint),

while the hasAge property cannot have a value higher than 150 (value constraint).

2.2.2 Web Services Ontology (OWL-S)

The Web Services Ontology (OWL-S) is an ontology that describes the prop-

erties, characteristics, and capabilities of web services. It is an enhancement of

the DAML-S ontology [61], which describes web services semantically. As a core

goal, OWL-S aims to enable the autonomous discovery, composition, invocation,

and monitoring of web services by relying on a computer-interpretable description

of services. As the OWL-S authors mention [64], automatic web service discovery

�is an automated process for location of web services that can provide a particular

class of service capabilities, while adhering to some client-speci�ed constraints,�

while automatic web service invocation is �the invocation of a web service by a

computer program or agent, given only a declarative description of that service, as

opposed to when the agent has been pre-programmed to be able to call that par-

ticular service.� Automatic service composition, on the other hand, �involves the

automatic selection, composition, and interoperation of web services to perform

some complex task, given a high-level description of an objective.�
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Figure 2.1: Overall structure of the OWL-S ontology

As shown in Figure 2.1, the OWL-S ontology is composed of three main con-

cepts: a ServicePro�le describing the capabilities of the service (i.e., inputs/outputs),

a ServiceGrounding describing the invocation details of the service (e.g., communi-

cation scheme, address, ports, etc.), and a ServiceModel describing the sub-tasks of

the service and their execution order. The latter is used primarly to facilitate the

composition of web services into sub-tasks to accomplish a desired goal.

The ServicePro�le describes the functional and non-functional aspects of a web

service, and is therefore used for discovery. Most importantly, it describes the

service inputs, outputs, preconditions, e�ects, and results. The capabilities (in-

puts/outputs) are expressed using concepts within the ontology or XML schema

data types, while the preconditions and e�ects are described using logical formulas.

In this thesis, we focus mainly on the ServicePro�le (or Pro�le), since it is used for

service discovery. Autonomous service composition and invocation are beyond the

scope of this thesis.

2.3 Existing Context-Aware Discovery Protocols

As [12] and [76] mention, only a few service-discovery architectures consider
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meaningful contextual information to discover the most appropriate services for

users. In this section, we discuss relevant architectures that utilize contextual

information in discovering services.

2.3.1 Location-aware Protocols

The Jini service-discovery protocol enables providers to include a location at-

tribute in service advertisements, and thereby allows users to specify the desired

physical location of a service during the lookup process. Similarly, the service-

discovery protocol used in the Cooltown [21] project is location-aware; it permits

users to discover nearby services. These two protocols exploit context in a limited

manner; they only consider the location of the service or user to discover nearby

services. However, context information is more than location and includes other

meaningful details, as we show. Furthermore, these protocols do not share a com-

mon representation of location information.

2.3.2 Jini with �Context Attribtues�

Lee and Helal [36] realized the limitations of existing discovery protocols and

introduced the concept of a �context attribute� associated with a service, as a

part of its description. The authors augmented Jini with such attributes. In this

extended protocol, service providers describe the context attributes associated with

their services by coding speci�c Java classes, to be evaluated by Jini's lookup service

when a relevant service request is issued. After evaluating all attributes, the lookup

service ranks services according to a ranking expression, which is also de�ned by

service providers, and returns the top matches to the user.

2.3.3 CB-SeC

Context-Based Service Composition (CB-SeC) [44] is a framework designed for

context-aware service discovery and composition. Figure 2.2 gives an overview

of the framework, which is composed of two main layers, a context management
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Figure 2.2: Overview of the CB-SeC framework

unit that receives, aggregates, and presents contextual information, and a service

provisioning unit that handles the discovery, composition, and execution of services.

The framwork relies on a Context Gatherer module, which is responsible for

gathering contextual information using hardware and software sensors. This infor-

mation is then stored in a database, which is queried by a Brokering Agent to locate

the most appropriate services on behalf of users. In service descriptions, providers

can include a Context Function that indicates the dynamic contextual information

associated with a service, such as the load on a printer. This function is exploited

by the Brokering Agent to select the best service among matching services. Fig-

ure 2.3 shows an example of a CB-SeC service advertisement described using an

attribute-value pair representation.

2.3.4 Context-sensitive Superstring

Robinson and Indulska [49] presented a context-sensitive discovery protocol as

an extension to Superstring [48], a service-discovery framework that uses a struc-
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Attributes*

service-identifier = "pai-acc121";

num instances       = 3 ; number of allowed instances

type  = "W-service"; //Web or M-service

isMobile = "No"; //whether the service can move to other places

description = "accommodation booking service";

provider-identifier = "PAI"; 

input-parameters = {Int Num of Persons, Int Num of Days, String Contact Name};

output-parameters = {XML Doc accommodation Details};

price = 5; //e-coins per invocation

Capsule*

location = "pai-acc.diuf.com.ch";

protocol = https; 

port = 80;

Constraints & Requirements*

diskfree >  20; //Kbytes

memoryfree >=  128; //Kbytes

OpSys =  "Palm OS, Linux"

Context Function //represents the sensitivity of the service to context

CoF =  ping iiufps31.unifr.ch 

Figure 2.3: Sample CB-SeC service description
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tured peer-to-peer network to propagate service advertisements and requests. Their

architecture enables service providers to include context attributes in service de-

scriptions. Nevertheless, these attributes are only considered for matchmaking if

included in service requests. Dynamic service ranking and selection is supported.

However, in contrast to CB-SeC and the extended Jini protocol, de�ning a ranking

expression is the responsibility of the requesting user.

The context-sensitive Superstring protocol supports persistent queries, enabling

it to notify the requesting user of new matching services, and query relaxation, a

mechanism by which service queries (requests) are weakened if no exact matches

were found.

2.3.5 Issues with Current Protocols

Even though the protocols and frameworks described above incorporate context

awareness in the discovery process, they su�er from a major drawback, which is

their reliance on a syntactic representation of contextual information and service

descriptions. Thus, unlike the architecture presented in this thesis, which also incor-

porates context awareness, they do not support capability-based search, semantic

matchmaking, autonomous reasoning, or unambiguous knowledge sharing. Further-

more, they are prone to poor precision and recall, since they rely on keyword-based

search mechanisms. We tackle these issues by utilizing concepts from the semantic

web, and the context-aware and service-oriented computing paradigms.

Recently, Tom Broens et al. [7] proposed a service-discovery architecture that

incorporates contextual information into discovery and utilizes semantic-web tech-

nologies. Similar to this thesis, the authors of [7] use the OWL language to construct

the ontologies describing services and contextual information. However, while they

create their own ontologies, we extend the OWL-S ontology, since it is rich and gen-

eral enough to describe any service, it facilitates the autonomous invocation of web

services, and it is the standard ontology for describing the properties and capabili-

ties of web services in computer-interpretable form. Unlike this thesis, the authors

of [7] process the contextual attributes in Boolean format only (e.g., nearby / not

nearby), so they can use �concept lattices� [74] to rank matching services. This
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technique su�ers from a major limitation. Assuming that there are two match-

ing services, which are considered to be �nearby,� since their architecture relies on

Boolean contextual attributes, it fails to determine which service is nearer to the

user (i.e., the most suitable service). Similarly, it fails to determine which printer

has the minimal load (queue length). It will return a list of matching printers with a

queue length less than a certain value, failing to identify the most suitable printers.

In addition, unlike the proposed architecture in this thesis, their protocol does not

facilitate a weighting mechanism by which users can place a higher importance on

speci�c attributes than others. In other words, their architecture does not enable

a user looking for a printing service to place a higher importance on the location

of the printer than its load. Another di�erence between the two architectures is

the mechanism by which contextual information is stored and processed. Tom

Broens et al. [7] store the actual values of contextual attributes into a database

containing the ontology classes and instances. However, since such attributes are

dynamic and change frequently, it is ine�cient to update the ontology whenever

their values change, especially since the current OWL processing tools are in their

infancy. In contrast to their approach, for the sake of �exibility and performance,

we store the actual values of dynamic contextual attributes in a pubsub system that

is engineered for e�ciency, and store their references in the ontology instances.

Finally, Cuddy and Lut�yya [12] present a context-aware service-selection mech-

anism that considers and assigns weights to static and dynamic contextual in-

formation associated with services. They integrate this selection mechanism into

the Service Location Protocol (SLP). We base our dynamic service-selection tech-

nique on their mechanism, which ranks services based on the values and weights

of their associated contextual attributes. However, in addition to service selection,

we present the design and implementation of a complete context-aware service-

discovery architecture. Moreover, instead of using attribute-value pairs to describe

services, and static and dynamic contextual information as in [12], we rely on an

ontology-based approach. Furthermore, the architecture presented in this thesis is

designed to include a standardized mechanism by which services, whether software-

or hardware-based, can register and publish contextual information, to be used for
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dynamic service-selection and ranking.

Next, we discuss the design decisions and the key aspects of the proposed ar-

chitecture, such as context representation and publication, service description, ad-

vertisement, request, matchmaking, ranking, and invocation.

21



Chapter 3

Architecture

In this chapter, the key aspects of the proposed discovery architecture are dis-

cussed, including how services are described semantically (service description), how

services are advertised and how their contextual information is published (service

advertisement), how users or software agents request services (service request), how

the discovery protocol locates services that satisfy the request (service matchmak-

ing), and how it uses the contextual information to rank the matching services

(service ranking).

3.1 Overview

Our architecture is designed for use in a pervasive-computing platform, which

should provide a mechanism to uniquely identify the entities within the environ-

ment, enable them to exchange information in a secure fashion, and support their

mobility and heterogeneity. Since Jabber supports these requirements, we have

based our pervasive-computing environment on it. The overall structure of the ar-

chitecture is presented in Figure 3.1. As the �gure shows, the main entities in the

architecture are the users/agents, services, a discovery component, and the context

engine, where each entity is identi�ed using a unique Jabber ID (JID). The JIDs of

the discovery component and context engine are advertised using Jabber's simple,
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Figure 3.1: Overall structure of the discovery architecture

syntax-based, built-in discovery protocol [23].

The contextual information and service descriptions are expressed using a mach-

ine-readable ontology that is shared among all the entities. The context engine is

responsible for acquiring and maintaining the contextual information, while the

discovery component is mainly responsible for storing service advertisements and

answering service requests sent by the users/agents. To determine the JID of the

discovery component, �rst time users/agents send a simple discovery query de�ned

by the built-in discovery protocol to the central Jabber server, which responds

with a list of supported features and services (e.g., multi-user chat, context engine,

discovery component), along with the JIDs of the entities that provide them.

For the sake of �exibility and extensibility, the context engine and discovery

component are separate. However, whenever a service request is issued by a user,

the discovery component coordinates with the context engine, by obtaining its JID

using Jabber's discovery protocol, to retrieve the contextual information about the

user and the available services. Afterwards, the discovery component calls a se-
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mantic matchmaking algorithm, which exploits the machine-readable format of the

ontology to reason about the available services and discover the most appropri-

ate ones, based on the retrieved contextual information. Finally, the component

ranks the matching services and returns a description of the top-ranked ones to the

user/agent.

If the description of a matching service is satisfactory, the user/agent can uti-

lize it according to its invocation scheme. This invocation can be manual or au-

tonomous. In the latter case, a software agent or program inspects the results of

a discovery query, understands the necessary invocation details (e.g. input/output

messages, communication scheme), and invokes the service by supplying appropri-

ate inputs (which might be provided by the user). On the other hand, manual

invocation requires a software agent to be pre-con�gured by a human that inspects

the invocation details manually and programs the agent accordingly. In this the-

sis, since the focus is on designing and developing the core functionalities of a

discovery protocol that supports the envisioned scenarios of pervasive computing,

we currently adopt a manual invocation approach. However, since we rely on the

OWL-S ontology to describe services, we capture the semantic description of the

arguments used in invoking services. Thus, our architecture can be extended to

support autonomous service invocation by developing a component that is capable

of interpreting the inovcation details of a web service and invoking it �on the �y�

without any pre-con�guration or pre-programming. This component can be devel-

oped based on tools like the OWL-S API [55], which enables the execution of web

services described using the OWL-S ontology with a minor pre-con�guration e�ort.

3.2 Shared Ontology

Both the contextual information and service descriptions are represented us-

ing an ontology-based approach. Using a shared ontology, we facilitate knowledge

sharing, enable reasoning and capability-based search, and ensure a common un-

derstanding among all entities in the environment. Instead of creating our own

ontologies from scratch, we exploit the re-usability feature of ontologies and ex-
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tend available ones. For representing contextual information, we use the Standard

Ontology for Ubiquitous and Pervasive Applications (SOUPA) [9]. SOUPA is an on-

tology designed to �model and support pervasive computing applications.� It reuses

concepts from other ontologies, such as DAML-Time [24], DAML-Space [25], and

FOAF [6], and represents generic concepts in pervasive-computing environments,

such as person, agent, time, space, and event. Figure 3.2 shows an overview of the

SOUPA ontology.

Even though the publicly available SOUPA ontology provides an adequate se-

mantic representation of contextual information, which is the main reason we use

it, it lacks a clear semantic description of services. Thus, for describing services, we

utilize the OWL-S ontology and extend it (Section 3.4.1) based on our discovery

requirements and goals. This combined ontology is shared among all the entities in

the environment, including the context engine, the discovery component, services,

users, and providers.

Our approach assumes that all the entities in the environment use the same

global ontology. In large-scale environments, this might not be practical, as some

entities may use other ontologies to describe the same concepts. In this case,

ontology mapping techniques, such as those in [37, 38, 54], can be used to overcome

this issue. Notice that ontology mapping is a common issue in any system that

relies on ontologies for knowledge representation and sharing, and not only the

architecture presented in this thesis.

3.3 Context Engine

The context engine maintains information about the environment, providers,

users, and services. This information is obtained from software and hardware sen-

sors (context sensors) as well as from the services in the environment, and is stored

in the shared-ontology database as RDF triples [68] after possible aggregation and

other processing. However, to support continuous queries and facilitate context

exchange and collection, the actual values of contextual information are stored in a

pubsub system. In other words, the context engine stores references to the pubsub
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Figure 3.2: The SOUPA ontology
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nodes in the shared-ontology database. In order to retrieve the value of a contex-

tual attribute, a SPARQL query [69] is sent to the context engine, which parses

the query and retrieves the actual value(s) from the corresponding pubsub nodes.

Details on how the pubsub nodes are referenced in the ontology and on how ser-

vices publish the value of the contextual information are described in Sections 3.4.1

and 3.4.2, respectively. Further information about the context engine can be found

in [34].

3.4 Service Discovery

The discovery component is mainly responsible for storing service advertise-

ments and coordinating with the context engine to answer service requests issued

by users/agents. As mentioned previously, incorporating context-awareness into the

service-discovery process enables the discovery of the most appropriate services. A

few of the existing discovery-protocols exploit context in a limited sense by con-

sidering only the location of services and users [12, 76]. The architecture proposed

in this thesis not only considers various semantically-described contextual infor-

mation to discover the most appropriate services, but it also facilitates a dynamic

service ranking and selection mechanism, which in turn, saves users e�ort and time.

Various aspects of the discovery component are described in this section.

3.4.1 Service Description

In order to capture the semantic description of services, set a common under-

standing, and provide a capability- instead of a keyword-based search facility, we

rely on an ontology-based mechanism to describe services. Even though OWL-S

is tailored for web services, we believe it is rich and general enough to describe

any service. Yet, web services, unlike most services in pervasive-computing envi-

ronments, do not have any physical-location limitation and can be invoked from

anywhere. Furthermore, OWL-S does not include a semantic description of contex-

tual information. Thus, in its current state, OWL-S does not support context-aware

discovery in pervasive-computing environments. We therefore extend the OWL-S
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Figure 3.3: The ServiceContextAttribute class

ontology to include a semantic description of the dynamic and static contextual in-

formation associated with services, and to facilitate new invocation schemes based

on the proposed architecture. Note that before extending the OWL-S ontology, we

customized it by removing the concepts/classes required for service composition,

since it is a complex problem and beyond the scope of this thesis.

Given that OWL-S does not support context-aware discovery, we extend it by

adding a new class, ServiceContextAttribute. This new class captures the description

of contextual information associated with services, information that is not provided

by SOUPA or any other ontology, such as the load on a printer, the number of

available tables in a restaurant, the status of a light, or the number of free spots in

a parking service.

As shown in Figure 3.3, every instance of the ServiceContextAttribute class has

three properties: actualValue, polarity, and txtDescription. The polarity indicates the

desired value of the contextual attribute. It can be 0, to exclude the attribute from

service ranking, +1, or -1, to indicate whether large or small values of the attribute

are desired, respectively. For example, any instance of the PrinterLoad class, which is

a subclass of ServiceContextAttribute, has a polarity of -1, denoting that the load on a
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printer should be as small as possible, while any QoS instance has +1 as its polarity,

indicating that is should be as high as possible. The actualValue property refers to

the pubsub node where the actual value of the attribute is published. The following

OWL code describes the PrinterLoad class as a subclass of ServiceContextAttribute

with a value restriction of -1 on its polarity.

<owl:Class rdf:about="#PrinterLoad">

<rdfs:subClassOf rdf:resource="#ServiceContextAttribute"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#polarity"/>

</owl:onProperty>

<owl:hasValue rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">-1</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

In the architecture, the static information about a service, such as the service name

and description, is stored in the ontology database. However, the dynamic contex-

tual attributes, such as the load on a printer, should not be stored in the shared

ontology, since they change frequently. It is impractical and ine�cient to update

the ontology whenever the actual value of a dynamic attribute changes, especially

since the current OWL processing tools are in their infancy. It is more e�cient

and convenient to store the values in a separate pubsub system, and store static

references to the pubsub nodes in the OWL-based ontology. The following OWL

code describes an instance of the PrinterLoad class, identi�ed as HPLaser2020_Load,

along with its polarity, textual description, and pubsub node where the load is being

published (actualValue).
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<hasSCA>

<PrinterLoad rdf:ID="HPLaser2020_Load">

<actualValue rdf:datatype="http://w3.org/XMLSchema#string">

pubsub.otter.uwaterloo.ca/home/otter.uwaterloo.ca/engine/302921/

</actualvalue>

<attrDescription rdf:datatype="http://w3.org/XMLSchema#string">

The number of jobs in queue for this printer

</attrDescription>

<polarity rdf:datatype="http://w3.org/XMLSchema#int">-1

</polarity>

</PrinterLoad>

</hasSCA>

Having de�ned the semantics of contextual attributes associated with services, we

extend the ServicePro�le class to include two new properties: locatedIn, which indi-

cates the physical location of the service (assumed to be static), and hasSCA, which

connects the ServicePro�le and ServiceContextAttribute classes, allowing services to

have multiple dynamic contextual attributes. In addition to the location, custom

static contextual information is captured and represented in the ontology, such as

the pagesPerSecond and hasColor concepts, which are inlcuded in the Printer class

(a subclass of ServicePro�le), as will be shown below.

An overview of the extended OWL-S ontology is shown in Figure 3.4. The

service pro�le captures the service name, description, location, provider informa-

tion, capabilities (inputs/outputs), and static and dynamic contextual attributes.

Both the service name and textual description are represented as strings. The lo-

cation of a service is captured using the locatedIn property and represented using

a concept from the SOUPA ontology, GeographicalSpace. It is a subclass of Space

with three properties, spatiallySubsumes, spatiallySubsumedBy, and hasCoordinates.

The spatiallySubsumes property is de�ned to be transitive. It is also de�ned to be

the inverseOf another property, spatiallySubsumedBy. The hasCoordinates property

has the LocationCoordinates class as its range, which captures the GPS longitude
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Figure 3.4: The extended OWL-S ontology

and latitude of the location. Using the GeographicalSpace concept, the discovery

protocol can reason about locations and determine nearby services. Dynamic con-

textual information of services is captured using the hasSCA property, which has

the ServiceContextAttribute class as its range. As for the service capabilities, the in-

puts and outputs are expressed using the hasInput and hasOutput properties, which

point to a Parameter class. Any instance of a Parameter has a type (parameterType),

which can be an OWL class (e.g., Book) or a primitive/custom type de�ned by XML

Schema [66] (e.g., xsd:int, xsd:date, xsd:customType), and an optional value. As for

the service grounding, we have extended the OWL-S ontology to support two new

invocation schemes, SOXGrounding and AdhocGrounding, described in Section 3.4.6.

In pervasive-computing environments, the de�nition of a service is very broad. It

can be hardware-oriented (such as a printer or a light), software-oriented (an online-

shopping or text-translation service), or an abstract service with no groundings

(restaurant, theatre, or parking). It is important to incorporate all three types of

services in the discovery architecture to assist users or agents in the environment.

Typically, di�erent services have di�erent concepts and contextual attributes. Thus,
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Figure 3.5: Hierarchy of service pro�les

a hierarchy of service pro�les can be used to express common understanding and

prevent redundancy and confusion. Since there is no standard OWL-S ontology for

hardware or software services, we created a preliminary hierarchy by extending the

Pro�le with various classes, shown in Figure 3.5, to be shared among the entities

in the environment. Referring to the hierarchy, any instance of the Printer class

can have custom concepts, such as supportsColor and pagesPerSecond, with ranges

as XSD:Bool and XSD:Integer, respectively. Fortunately, using OWL-S restrictions,

it is possible to guarantee that related services have the same set of SCAs (e.g., all

printers must have a load).

Figure 3.6 shows the OWL code for a LaserPrinter instance, identi�ed as HPLaser-

2020 (�ctitious model name), which is located in DC3326 (an instance of Geograph-

icalSpace), includes custom properties (supportsColor and pagesPerSecond), and has

contextual information de�ned by an instance of the PrinterLoad class, identi�ed as

HPLaser2020_Load.

We present the following example to demonstrate the advantages of the semantic-

based approach that we adopted, aside from enabling knowledge sharing, capability-

based searching, and setting a common understanding. Consider a user looking for

a facility with the following criteria.

(i) a printing service (Printer)
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<LaserPrinter rdf:ID="HPLaser2020">

<serviceName rdf:datatype="http://w3.org/XMLSchema#string">

HPLaser2020

</serviceName>

<locatedIn rdf:resource="#DC3326"/>

<supportsColor rdf:datatype="http://w3.org/XMLSchema

#boolean">true

</supportsColor>

<pagesPerSecond rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">3

</pagesPerSecond>

<hasSCA>

<PrinterLoad rdf:ID="HPLaser2020_Load">

<actualValue rdf:datatype="http://w3.org/XMLSchema#string">

pubsub.otter.uwaterloo.ca/home/otter.uwaterloo.ca/engine/302921

</actualvalue>

<attrDescription rdf:datatype="http://w3.org/XMLSchema#string">

....</attrDescription>

<polarity rdf:datatype="http://w3.org/XMLSchema#int">-1

</polarity>

</PrinterLoad>

</hasSCA>

<textDescription rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">This instance describes the HPLaser2020 printer

</textDescription>

</LaserPrinter>

Figure 3.6: Sample service-pro�le instance
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(ii) located in the University of Waterloo (WaterlooUniversity)

Also, assume that the following information is stored and represented in our

shared ontology.

(1) HPLaser2020 is an instance of LaserPrinter

(2) LaserPrinter is a subClass of Printer

(3) HPLaser2020 is locatedIn ShoshinLab

(4) WaterlooUniversity spatiallySubsumes DavisCenter

(5) DavisCenter spatiallySubsumes ShoshinLab

Using an OWL reasoner, the discovery protocol can deduce from (1) and (2)

that HPLaser2020 is a Printer service, which satis�es (i). Likewise, since spatially-

Subsumes is a transitive property, the protocol can deduce that WaterlooUniversity

spatiallySubsumes ShoshinLab, and then further deduce that HPLaser2020 is located

in the University of Waterloo, satisfying (ii). Thus, with the support of reasoning,

the protocol identi�es HPLaser2020 as a matching service, even though its descrip-

tion does not match the service request syntactically.

3.4.2 Service Advertisement

Having explained how services are described and classi�ed, we discuss how

providers can construct service advertisements to be stored and queried by the

discovery component. It is time-consuming to describe a service by constructing

an OWL description manually. A tool is required to support service providers in

constructing the description and advertisement of their services. Through the tool,

providers select the type of service they want to advertise from the hierarchy of

service pro�les. Once the type has been chosen, the tool queries the shared on-

tology to retrieve the information the provider is required to �ll in, including the

service description, capabilities (inputs/outputs), and optional grounding. Once

the provider �lls in the information and submits the advertisement, it is converted
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from a web form into an OWL description, which is then stored in the ontology

database.

The contextual information about the service can be classi�ed into low-level

and derived context. Low-level contextual information is obtained from the service

directly and published to the pubsub system without any processing. In contrast,

it may be desirable to aggregate the contextual information or process it before its

publication, as it may be obtained in a raw format using various low-level sensors.

If so, a context processor (a component of the context engine) fetches the raw value,

processes it, and �nally publishes the resulting values.

As mentioned, the context engine is responsible for maintaining the contextual

information and constructing the appropriate pubsub nodes. Figure 3.7 gives an

overview of the context registration and publication process. As a �rst step, ser-

vices register with the context engine and specify the desired type of contextual

information to be published. For example, a printing service can register with the

context engine and publish contextual information de�ned by the PrinterLoad class.

This is done by sending an XML message that indicates the desired contextual

attribute, which must be a subclass of ServiceContextAttribute (e.g., PrinterLoad),

and the URI of the service-pro�le instance. An example of a registration message is

shown in Figure 3.8. Consequently, the context engine creates a new pubsub node

using an XML message like the one shown in Figure 3.91, a new instance of the

chosen ServiceContextAttribute subclass (e.g., HPLaser2020_Load), and stores the

address of the new pusub node into the actualValue property of this new instance.

Afterwards, the engine sends the address of the pubsub node to the service in an

XML message similar to the one shown in Figure 3.10, so it can start publishing

the actual value.

3.4.3 Service Request

Service discovery protocols can be classi�ed into two main categories, directory-

based and directory-less protocols. In the latter, all communication messages, such

1In the �gure, due to space limitations, the actual pubsub node is aliased to 3954
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Figure 3.7: Overview of the context registration and publication process

<iq type="set" to="engine@otter.uwaterloo.ca/ContextEngine">

<query xmlns="http://impress.com/context-engine">

<serviceURI>http://otter.uwaterloo.ca/Services.owl#MyPrinter</serviceURI>

<SCA>http://otter.uwaterloo.ca/Services.owl#PrinterLoad</SCA>

</query>

</iq>

Figure 3.8: Context registration request

<iq type="set"

from="engine@otter.uwaterloo.ca/ContextEngine"

to="pubsub.otter.uwaterloo.ca"

id="publish2">

<pubsub xmlns="http://jabber.org/protocol/pubsub">

<create node="home/otter.uwaterloo.ca/engine/3954"/>

</pubsub>

</iq>

Figure 3.9: A Jabber message to create a new pubsub node
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<iq from="engine@otter.uwaterloo.ca/ContextEngine" type="get"

id="RMTqg-6" to="printer@otter.uwaterloo.ca/Printer" >

<query xmlns="http://impress.com/discover#context">

<PubSubNode>

pubsub.otter.uwaterloo.ca/home/otter.uwaterloo.ca/engine/3954

</PubSubNode>

</query>

</iq>

Figure 3.10: Context registration response

as service advertisements and requests, are exchanged between service providers and

users directly by means of broadcast or multicast. In contrast, in directory-based

schemes, such as the architecture proposed in this thesis, service providers register

their services with a particular node (e.g., a Jabber server) or a group of nodes in

the network. Afterwards, users can locate the advertised services by browsing or

sending service requests (service queries) to the directories. We identify three main

requirements for a service request.

• Simplicity. The request should be expressed in a simple way. Discovery

protocols should not require the user to construct long, complex queries. This

responsibility should be placed on the discovery protocol and not the user. For

example, assume that service descriptions are stored in a relational database.

Users will �nd it inconvenient and time-consuming to construct complex,

nested SQL queries in order to discover services. Ideally, users should be able

to specify the desired properties/capabilities of the service using a simple

form. The discovery protocol should convert this request message to the

corresponding query, which can be long and/or complex.

• Flexibility. A service request should be �exible; it should enable the user to

search for services by a combination of one or more search criteria. Also, the
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system should not impose rigid restrictions on the format of the request.

• Semantic-based. A service request should be based on semantics and not

syntax, since the latter leads to undesirable low recall and precision.

In the proposed architecture, service requests are expressed using a Jabber/XMPP

information-query (IQ) message, and sent from the user to the discovery component.

As a basic requirement, the request must include the desired category of service,

namely the service pro�le. Optionally, the desired service location and capabilities

(inputs/outputs) can be included in the request.

A sample request for a printer service in the University of Waterloo is shown

in Figure 3.11. The user, alice@otter.uwaterloo.ca, sends an information-query

(IQ) message to the discovery component, which is uniquely identi�ed as discov-

ery@otter.uwaterloo.ca. The request includes the desired pro�le (Printer) and lo-

cation (WaterlooUniv). Notice that both are expressed using concepts from the

ontology (semantics), rather than keywords (syntax).

To provide a capability-based search functionality, in addition to the location

and service pro�le, users can specify the desired capabilities (inputs/outputs) in

the request message, which is usually the case when users search for software-based

services. A sample service request for an e-commerce service that takes as an input

the concept of a Book and returns as an output the concept of Price is presented

in Figure 3.12, where both Book and Price are de�ned as concepts in the ontology,

rather than keywords.

We now discuss the proposed service-request format based on the requirements

identi�ed earlier. First, it is simple. Unlike most OWL-S matchmakers, such as [31]

and [56], it does not require the user or software agent to construct OWL classes or

complex queries written in languages like RDQL [63], SquishQL [42], OWL-QL [16],

or SPARQL [69]. Instead, the proposed service-request scheme relies on a simple

XML-based request format and places the responsibility for constructing complex

queries on the discovery protocol itself. Second, the request format is �exible; it
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<iq type="set" from="alice@otter.uwaterloo.ca"

to="discovery@otter.uwaterloo.ca/Discovery">

<query xmlns="http://impress.com/discover#">

<profile>http://otter.uwaterloo.ca/Services.owl#Printer</profile>

<location>http://otter.uwaterloo.ca/Services.owl#WaterlooUniv</location>

</query>

</iq>

Figure 3.11: Sample service-request message

does not restrict users or software agents to search by a speci�c criteria. The re-

quest may include the desired pro�le only, a combination of a pro�le and location,

a combination of a pro�le and a set of inputs and/or outputs, or a combination of

all attributes. Last, as pointed out earlier, the request is expressed using seman-

tics (ontology classes/instances) rather than syntax (keywords), as can be seen in

Figures 3.11 and 3.12.

Software agents can be programmed easily to issue service requests using this

XML-based scheme. Human users, on the other hand, require a user-friendly inter-

face that enables them to express their requests in an unobtrusive mechanism. Since

our key focus is to design and develop the core functionalities of a discovery archi-

tecture in a pervasive computing environment, as ongoing work, with the aid of the

Human-Computer Interaction (HCI) concepts and tools, we plan to develop several

discovery applications that run on top of the discovery protocol to assist users in

specifying/saving their preferences and locating/invoking particular services. These

discovery applications (or agents) should provide a user-friendly interface and con-

vert users' requests into the corresponding XML-based service-request messages, to

be sent to the discovery component. Figure 3.13 shows the interface of a sample

application, PrinterFinder, developed to use the discovery protocol to assist users

in locating and exploiting nearby printers. Once the user submits the request, the

application converts it into the appropriate XML code and sends it in a Jabber

message to the discovery component, which can be located using Jabber's simple,
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<iq type="set" from="alice@otter.uwaterloo.ca"

to="discovery@otter.uwaterloo.ca/Discovery">

<query xmlns="http://impress.com/discover#">

<profile>http://otter.uwaterloo.ca/Services.owl#Software</profile>

<inputs>

<input>http://otter.uwaterloo.ca/Services.owl#Book</input>

</inputs>

<outputs>

<output>http://otter.uwaterloo.ca/Services.owl#Price</output>

</outputs>

</query>

</iq>

Figure 3.12: Capability-based service-request message

built-in discovery protocol. Then, the component parses the request, performs the

matchmaking, and sends the results to the discovery application, which in turn,

understands the semantics of the matching service, including its invocation infor-

mation, displays its details to the user in a friendly manner, and enables her to use

it accordingly.

3.4.4 Service Matchmaking

Service matchmaking is the process of matching the user's service request against

the available service descriptions. In this thesis, the service request is expressed us-

ing an XML message, while service descriptions are stored as OWL data in RDF

triples. Many languages have been proposed and implemented to query RDF/OWL

data, including SquishQL [42], RDQL [63], RQL [33], OWL-QL [16], and SPARQL

[69]. The SPARQL query language is based on RDQL and SquishQL. It is consid-

ered an enhancement with more features and improvements. It does not impose
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Figure 3.13: Interface and architecture of the PrinterFinder application

rigid constraints on the query as in languages like RQL, and it is expected to be-

come the standard W3C method for querying RDF data. Furthermore, it has stable

open-source implementations. For these reasons, we chose SPARQL as a language

to query the service descriptions stored in the shared-ontology database.

Once the discovery component receives a request, as a �rst step, it parses it to

determine the requested service-pro�le. Second, by utilizing the semantics, it ex-

pands the request according to the hierarchy of services and locations. For instance,

if the user located inWaterlooUniv is looking for a Print service, as in Figure 3.11, the

component expands the request to include LaserPrinter and InkJetPrinter services,

by exploiting the OWL subClassOf property. Similarly, by exploiting the spatially-

Subsumes and spatiallySubsumedBy properties of the GeographicalSpace class, the

location WaterlooUniv is expanded to include any space it subsumes (e.g., Shoshin-

Lab, DC3326). Subsequently, the discovery component coordinates with the context

engine to retrieve the contextual information about the user (e.g., location and pref-

erences). Currently, as for the user context, we only consider the location. However,
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1 PREFIX impress: <http://otter.uwaterloo.ca/Services.owl#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX spc:<http://pervasive.semanticweb.org/2004/06/space>

4 SELECT ?service

5 WHERE

6 {

7 { (?service, rdf:type, impress:Printer) .

8 (?service, impress:locatedIn, impress:WaterlooUniv)

9 }

10 UNION

11 { (?service, rdf:type, impress:Printer) .

12 (?service, impress:locatedIn, ?x) .

13 (?x, spc:spatiallySubsumedBy, impress:WaterlooUniv)

14 }

15 }

Figure 3.14: A SPARQL query to �nd matching services

the architecture can be extended to include user preferences and weights.

Once the request has been expanded and the contextual information about the

user has been retrieved, as the third step, the component constructs and sends a

SPARQL query to the shared-ontology database to retrieve the matching services,

according to the search criteria speci�ed in the request. Figure 3.14 shows a sample

query to answer the service request presented in Figure 3.11.

The �rst three lines de�ne aliases for the namespaces used (PREFIX) in the

query. As can be seen, the query consists of two main parts, the SELECT and

WHERE clauses, similar to SQL queries. The SELECT clause indicates what the query

should return. On the other hand, the WHERE clause consists of triple patterns to be

matched against the triples in the RDF data. Essentially, it speci�es the conditions

used to �lter the results. For example, line 7 speci�es that the service must have
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a type property, which is de�ned in the RDF ontology, with the Printer class as its

range, while lines 12 and 13 together specify that a service must have a locatedIn

property with any instance X as a range, where X must have a spatiallySubsumedBy

property with WaterlooUniv as its range. Since the type property is de�ned to

be transitive and the spatiallySubsumedBy property is de�ned to be the inverseOf

spatiallySubsumes, the query result will include all services (pro�les) that are either

a direct instance of the Printer class, or an instance of a subclass of the Printer class,

which are located in or (UNION) spatially subsumed by the University of Waterloo.

As a result, a list of matching services is returned to the discovery component. Note

that OWL does not support re�exive properties yet [67].

To illustrate how software-based service requests are handled, Figure 3.15 shows

the SPARQL query used to answer the service request presented in Figure 3.12,

which requests services that take as an input the concept of a Book and return

the concept of a Price. Recall that in the OWL-S ontology, any parameter has a

type, which can be an OWL class or a primitive/custom datatype de�ned by the

XML Schema. Accordingly, the query shown in Figure 3.15 returns instances of the

Software pro�le that take any input parameter X and return any output parameter

Y, provided that X's type is Book and Y's type is Price.

A number of OWL-S matchmaking algorithms have been proposed and imple-

mented [31, 39, 56]. Unlike the architecture presented in this thesis, they only

consider the functional capabilities (inputs/outputs) described by the OWL-S ser-

vice pro�le, and do not incorporate the non-functional aspects, such as service

location and category (pro�le hierarchy), into the matchmaking process. However,

they expand the service request based on the subsumption relationships between the

requested and advertised inputs/outputs. For instance, assume that the following

information is available in the ontology.

(1) BusinessBook is a subclass of Book

(2) Service1 accepts Book as input and returns Price as output

(3) Service2 accepts BusinessBook as input and returns Price as output

(4) Service3 accepts ISBN as input and returns Book as output
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1 PREFIX impress: <http://otter.uwaterloo.ca/Services.owl#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 SELECT ?service

4 WHERE {

5 ?service rdf:type impress:Software .

6 ?service impress:hasInput ?x .

7 ?x impress:parameterType "impress:Book"

8 ?service impress:hasOutput ?y .

9 ?y impress:parameterType "impress:Price"

10 }

Figure 3.15: A capability-based SPARQL query

(5) Service4 accepts ISBN as input and returns BusinessBook as output

Since BusinessBook is subsumed by Book (a more general concept), if the user

is looking for a service that takes Book as an input and returns Price as an out-

put, both Service1 and Service2 will be considered matches. However, if the user is

looking for a service that takes BusinessBook as input and returns Price as output,

Service1 will not be considered a matching service because its input (Book) may

have extra or di�erent attributes compared to BusinessBook. Likewise, if the user

is looking for a service that takes ISBN as an input and returns Book as an output,

both Service3 and Service4 will be considered matches, as they satisfy the request.

However, if BusinessBook were chosen as the output instead of Book, Service3 will

not be considered a matching service because its output (Book) violates the expec-

tation of the user. In other words, the user is interested in services that return

information about business books only. This example illustrates the functionality

and use of expanding a capability-based request based on subsumption relation-

ships. Currently, in the proposed architecture, the service location and category

(pro�le) are expanded. However, the architecture can be extended with the algo-

rithms presented in [31, 39, 56] to support this capability (input/output) expansion
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functionality.

3.4.5 Dynamic Service Selection and Ranking

Typically, after executing the service request and retrieving information about

matching services, discovery protocols send a response message containing the re-

sults to the user. Afterwards, the user inspects the result and selects one of the

matching services accordingly. If the selected service is not satisfactory, the user

re-inspects the result and selects another service, until she �nds one that satis�es

her requirements. This service selection process is tedious and hard as users might

not be knowledgeable enough to di�erentiate among matching services to select the

most suitable one [76]. Motivated by this fact, we incorporate a service selection

and ranking mechanism into the proposed architecture to enable the discovery of

the most suitable services, and as a result, save users time and e�ort.

Figure 3.16 presents an overview of the ranking strategy. As the �rst step, after

obtaining a list of matching services, if there is more than one, the discovery com-

ponent extracts the dynamic contextual information associated with each matching

service, by retrieving the polarity and actualValue of every instance of ServiceCon-

textAttribute associated with a matching service, using a SPARQL query such as

the one shown in Figure 3.17. As an example, for a matching Print service that

publishes the current load of the printer, the discovery component obtains the po-

larity and sends a query to the context engine, which fetches the actual value from

the appropriate pubsub node. Notice that using OWL-S restrictions, it is possible

to guarantee that relevant services have the same set of SCAs.

Second, having obtained both the polarity and actual value for every attribute,

the discovery component constructs a ranking table for each matching service. The

ranking table consists of a list of contextual attributes along with their weight,

actual value, and polarity. The weight represents the �importance� of the attribute

in the discovery phase. Currently, in order for the architecture to be as unobtrusive

as possible, all attributes are weighted equally. However, this can change according

to user requirements, which can be stated explicitly in the request message or

implicitly through stored preferences. For instance, Alice might be interested in
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Figure 3.16: Overview of the ranking strategy

PREFIX impress: <http://otter.uwaterloo.ca/Services.owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX soupa: <http://pervasive.semanticweb.org/ont/2004/06/space#>

SELECT ?attribute ?pol ?actual

WHERE {

impress:ServiceURI impress:hasSCA ?attribute

?attribute impress:actualValue ?actual

?attribute impress:polarity ?pol

}

Figure 3.17: A SPARQL query to obtain the polarity and actualValue
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Table 3.1: Ranking table for a printer service

ServiceContextAttribute actualValue polarity weight

PrinterLoad 14 -1 0.50
Distance 21 -1 0.50

Table 3.2: Ranking table for a text translation service

ServiceContextAttribute actualValue polarity weight

QoS 28 +1 1.00

locating the nearest printer regardless of its current load. Her request can be

achieved by assigning a higher weight for the location than any other attribute (e.g.,

load). The proposed architecture can be extended to support such functionality.

Example of ranking tables for a printer and a text translation service are shown in

Tables 3.1 and 3.2, respectively.

As the third step of the ranking strategy, the discovery component computes a

score for each matching service based on its ranking table. Assuming that the total

number of contextual attributes for a matching service is n, the polarity of the ith

attribute is Pi, the actual value of the ith attribute is Vi, and the weight of the ith

attribute is Wi, a score S is computed for each service using the following equation.

S =
n∑

i=1

Vi × Pi ×Wi

For example, the printing service with the contextual attributes presented in Ta-

ble 3.1 has S = (14×−1× 0.50) + (21×−1× 0.50) = −7 +−10.5 = −17.5

Notice that some of the contextual attributes can be published directly (low-

level context), such as the load on a printer. On the other hand, some attributes

might require some sort of processing or aggregation before publication (derived

context). For example, the status of a light might be obtained as a string (e.g.,

�o��, �on�) and normalized to an integer value (i.e., 0/1). Likewise, the distance
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between the user and a matching service is not provided directly. It is computed

by considering the GPS coordinates of the user and the service, which are captured

using instances of the LocationCoordinates class. Also, notice that there could be a

signi�cant di�erence in the magnitudes of the contextual attributes. Thus, to ensure

a fair ranking, the actual values of contextual attributes should be normalized

and mapped to a scaled value of 0 to 100. This can be achieved using various

methods. One approach is to use a linear, Min-Max normalization technique, where

the minimum and maximum values of each contextual attribute in a ranking table

are identi�ed (e.g., minimum and maximum load among all matching printers is

3 and 40, respectively). Then, based on these Min-Max values, the contextual

attributes are normalized to a value between 0 and 100.

After performing the necessary processing, normalization, and computing a

score for each matching service, as the �nal step, the discovery component ranks

the services and returns the top ones to the user in a Jabber/XMPP XML mes-

sage, according to an adjustable threshold. An example is shown in Figure 3.18. In

this example, the discovery component located three printing services, computed

a score for each based on the location and load, and �nally returned the URIs of

the top-ranked ones to the user/agent. Algorithm 1 gives a general overview of the

service matchmaking and ranking process used in the architecture.

3.4.6 Service Invocation

Discovering services is not enough. An adequate mechanism is required to en-

able users or software agents to utilize a service once it is discovered and considered

suitable. This process of utilization, which involves communication protocols, net-

work addresses and messages, is referred to as service invocation. Current discovery

protocols provide three di�erent levels of support for invocation [76]. At the basic

level, the protocol provides the user/agent with only the location (network address)

of the service. In this case, the responsibility for de�ning the functional operations

and communication scheme is placed on the service. At the next invocation level,

the protocol de�nes the communication scheme for the service (e.g., RPC), in addi-

tion to the location of the service, as in Jini, which relies on and de�nes a Remote
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<iq from="discovery@otter.uwaterloo.ca/Discovery" type="get"

to="alice@otter.uwaterloo.ca">

<query xmlns="http://impress.com/discovery-results">

<matching-services>

<service>http://otter.uwaterloo.ca/Services.owl#HPLaser2020</service>

<service>http://otter.uwaterloo.ca/Services.owl#HPLaser5000</service>

<service>http://otter.uwaterloo.ca/Services.owl#MyInko</service>

</matching-services>

</query>

</iq>

Figure 3.18: Top-ranked services returned in an XML message

49



Algorithm 1 Service matchmaking and ranking
1. Receive service-request containing service pro�le SP

2. Expand request (location/pro�le) and form SPARQL query Q

3. Execute Q and retrieve semantically-matching services SMS

4. If (number of SMS > 1)

4.1 For each matching service MS in SMS

4.1.2 For each ServiceContextAttribute SCA in MS

4.1.2.1 weight = 1 / #SCA

4.1.2.2 polarity = MS .SCA.polarity

4.1.2.3 PubSubNode = MS .SCA.actualValue

4.1.2.4 actualValue = getValueFromEngine(PubSubNode)

4.1.3 Construct ranking table for MS

4.1.4 Compute score for MS

5. Order services descendingly and return top-ranked ones.

Method Invocation (RMI) scheme. At the third level, in addition to the service

location and communication scheme, the protocol de�nes the functional operations

and message formats of the service, as in UPnP, Salutation, and UDDI.

As the OWL-S authors mention, autonomous service invocation refers to �the

invocation of a web service by a computer program or agent, given only a declarative

description of that service, as opposed to when the agent has been pre-programmed

to be able to call that particular service� [64]. To provide a complete discovery

architecture, decrease the responsibilities placed on the user/agent, and facilitate

autonomous service-invocation, we adopt the third invocation level, where the archi-

tecture de�nes the necessary details to utilize the service, such as its location, under-

lying communication scheme, and operational messages. These details are captured

using the ServiceGrounding concept in the shared-ontology database. Having based

our discovery architecture on Jabber/XMPP, we extended the OWL-S ontology to

describe the invocation of Jabber-based services, by de�ning two new classes, Ad-

hocGrounding and SOXGrounding, as subclasses of ServiceGrounding. In the following
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<iq type="set" to="light@otter.uwaterloo.ca" id="exec1456">

<command xmlns='http://jabber.org/protocol/commands'

node='turnOn'

action='execute'/>

</iq>

Figure 3.19: Sample ad-hoc command

sections, we discuss the invocation schemes provided by Jabber/XMPP, along with

their advantages and disadvantages, and present the details of these new grounding

classes.

3.4.6.1 Jabber Adhoc Commands

The simplest Jabber/XMPP invocation mechanism is a command-based scheme,

Jabber Ad-hoc Commands (JAC) [43]. JAC de�nes a clear protocol that allows Jab-

ber entities to publish, execute, and attach payloads to custom commands. These

commands can be a one-time request, or can be executed in multiple stages through

a command session. For instance, a Jabber entity can publish a restart and a turnOn

command, which can be one-time requests. Likewise, it can publish a con�gure com-

mand, which can be a multi-stage command that, once executed, provides the user

with extra parameters to submit (e.g., service type to con�gure). For the sake of

simplicity, we consider one-time commands only, however, the architecture can be

easily extended to support multi-stage commands.

When ad-hoc commands are sent to an entity as XML messages de�ned by JAC,

the entity can parse them and take action accordingly. An example of a turnOn

ad-hoc command sent to an entity identi�ed as light@otter.uwaterloo.ca is presented

in Figure 3.19.

The JAC scheme is suitable and convenient for simple command-based services
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<iq type="get" from="alice@otter.uwaterloo.ca"

to="discovery@otter.uwaterloo.ca/Discovery">

<query xmlns="http://impress.com/discover#">

<profile>http://otter.uwaterloo.ca/Services.owl#Light</profile>

<location>http://otter.uwaterloo.ca/Services.owl#DC3326</location>

<inputs>

<input>http://otter.uwaterloo.ca/Services.owl#DimLight</input>

</inputs>

</query>

</iq>

Figure 3.20: Capability-based request for a light service

that do not require much interaction or input from users, such as a light service.

Therefore, we represent the ad-hoc commands associated with a service as its in-

puts. For instance, a Light service can have a hasInput property with an instance

of the Input class (a subclass of Parameter) as its range. This instance has a para-

meterType property with the TurnLightOn concept as its range. The TurnLightOn

concept is a subclass of a new concept in the extended OWL-S ontology, AdhocCom-

mand. This semantic-based description enables the discovery protocol to provide a

capability-based search facility, as explained earlier. Figure 3.20 shows a request

for a light service located in room DC3326 that supports the DimLight capability

(input). Details on how the JAC invocation information is captured semantically

are presented in Section 3.4.6.4.

3.4.6.2 Jabber RPC Extension

Jabber/XMPP has a simple RPC extension [1], which de�nes a technique to

transport XML-RPC encoded requests and responses over Jabber/XMPP. The Sim-

ple Object Access Protocol (SOAP) is an extension and enhancement of XML-RPC.

It is more sophisticated, �exible, and is known as the de facto standard for exchang-
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ing structured information in decentralized environments. Because of these facts

and the signi�cant semantic coupling required between XML-RPC senders and re-

ceivers, Jabber's RPC extension is not used.

3.4.6.3 SOAP Over XMPP

The SOAP Over XMPP (SOX) scheme [17] enables Jabber entities to trans-

port SOAP envelopes through Jabber/XMPP XML messages. Basically, it enables

the development of web services that utilize Jabber/XMPP as a transport mecha-

nism instead of HTTP. Generally, SOAP envelopes can be sent and received through

HTTP or SMTP messages. Unlike HTTP, Jabber/XMPP is capable of transporting

synchronous and asynchronous messages, and unlike SMTP, it transports asynchro-

nous real-time messages in a fast and e�cient manner. By using SOX, web services

will not require complex protocols, such as WS-Routing [41] and WS-referral [40],

to support users behind a �rewall, or users without a static, public IP address.

The service-oriented computing paradigm recommends the use of web services

for developing software systems. Web services have many advantages, including

component reusability, interoperability between applications, open standards and

protocols, and ease of distributed integration (loosely coupled structure). For these

reasons, the architecture presented in this thesis supports web services that use

Jabber/XMPP as a transport mechanism. Normally, the interface of a web service

is described using the Web Services Description Language (WSDL) [60], which is

an XML-based language that describes the invocation details (e.g., communication

protocol, message formats) of a web service, in a syntactic manner. Details on how

the SOX invocation information is captured semantically are presented in the next

section.

3.4.6.4 AdhocGrounding and SOXGrounding

The SOX scheme supports the invocation of complex software services. It is

more �exible and sophisticated than the XML-RPC scheme. Yet, the JAC scheme

is more suitable and convenient for simple command-based services that do not

require a complex SOAP-based invocation mechanism or much interaction from
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users. We support both schemes in our discovery architecture by creating two new

service-grounding classes, AdhocGrounding and SOXGrounding.

These groundings describe the semantics of the invocation details. They fa-

cilitate the invocation of services by providing a mapping from an abstract to a

concrete speci�cation of service capabilities. In other words, as described by the

OWL-S authors, �the central function of an OWL-S grounding is to show how the

(abstract) inputs and outputs of an atomic process are to be realized concretely

as messages, which carry those inputs and outputs in some speci�c transmittable

format� [64]. We note that in OWL-S, there are two types of services, one that

consists of a single process (atomic), and one that consists of multiple composed

processes (composite). For this thesis, we only consider atomic services, as service

composition is a complex problem beyond the scope of this thesis.

A description of the AdhocGrounding class is shown in Figure 3.21. This class

speci�es the address of the Jabber/XMPP entity that provides the service (xmppPro-

vider), the version of the JAC protocol used (jacVersion), and the mapping of

the abstract service inputs to their concrete realization within the JAC scheme

(AdhocMapping). For clari�cation, an instance of the AdhocGrounding class asso-

ciated with a light service-pro�le is shown in Figure 3.22. As can be seen in the

�gure, the instance de�nes the service location, which is the address of the Jabber

entity that provides the service, as xmpp:light@otter.uwaterloo.ca. It also de-

�nes the mapping between the abstract inputs, which are de�ned using instances

of the Input class with parameter types DimLight and TurnLightOn (subclasses of

AdhocCommand), and their corresponding concrete ad-hoc commands.

The SOXGrounding class is more complicated than the AdhocGrounding one,

since SOAP-based web services are far more complex than command-based JAC

services. As mentioned previously, the interface of a web service is described using

a WSDL document that captures the invocation details of the service, in a syntactic

form. The structure of a WSDL document is shown in Figure 3.23.

The <types> elements indicate the datatypes used by the web service and are

described using XML Schema. These datatypes can be primitive (e.g., XSD:int,

XSD:string) or custom (e.g., XSD:customType). The <message> elements describe
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AdhocGrounding

AdhocMapping

hasMapping
XSD:
String

supportsjacVersion

Input

owlsParameter

Profile

XSD:
String

command

XSD:
String

xmppProvider

Figure 3.21: The AdhocGrounding class

the messages used in the operations provided by a web service, where a message

consist of one or more parts captured using the <part> elements. For instance,

a text-translation web service can have two messages. The �rst message (msg1 )

consists of two parts, the translation mode (inPart1 ) and the text to be translated

(inPart2 ), while the second message (msg2 ) consists of one part only, the translated

text (outPart1 ). Notice that a part has a name and a type. To indicate the

operations that the service provides, the <portType> element is used. It describes

the input and output messages used in each operation, which must belong to a

certain port. In other words, a service can have multiple portTypes, where every

portType has one or more operations. For instance, the text-translation service

can have a portType named translationPortType with an operation called translate

that takes msg1 as an input and returns msg2 as an output. Binding details,

including the transportation mechanism (e.g., Jabber, HTTP, SMTP) used by each

portType, are captured using the <binding> elements. Finally, the <service>

element describes the service name and location, according to the chosen transport

mechanism.

Fortunately, the OWL-S ontology contains a class, WSDLGrounding, which pro-

vides a mapping from the abstract OWL inputs/outputs described in the Service-

Pro�le to the concrete capabilities provided by a web service and described using a

WSDL document. A WSDLGrounding instance indicates the WSDL version used,
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SRV:
LightAdhocGrounding

OWL:
LightMapping2

hasMapping

MyInput2

owlsParameter command

1.2

“TurnOn”

xmppProvider

XMPP:light@otter.uwaterloo.ca

jacVersion

OWL:
LightMapping1

hasMapping

MyInput1

owlsParameter command

“Dim”

DimLight TurnLightOn

parameterType parameterType

AdhocCommand

Figure 3.22: Sample AdhocGrounding instance
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<definitions>

<types>

...types details...

</types>

<message>

<part name=�...� type=�...�/>

</message>

<portType>

<operation>

<input message=�� />

<output message=�� />

</operation>

</portType>

<binding>

...binding details...

</binding>

<service>

...service details...

</service>

</definitions>

Figure 3.23: WSDL document structure
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the URI of the WSDL document, the URI of the WSDL operations along with the

URI of the service that provides the operations, and �nally, a mapping between

the conceptual inputs/outputs to the corresponding WSDL input/output message

parts. For example, referring to the text-translation service example, assume that

the conceptual inputs are represented using two instances of the Input class, Input-

Text and TranslationMode, and one instance of the Output class, TranslatedText. In

this case, a WSDLGrounding instance should provide the following mappings.

(i) map InputText to the WSDL URI of inPart1

(ii) map TranslationMode to the WSDL URI of inPart2

(iii) map TranslatedText to the WSDL URI of outPart1.

In addition to these mappings, the grounding instance should capture the fol-

lowing URIs.

(i) URI of the WSDL input and output messages, msg1 and msg2

(ii) URI of the WSDL operation that uses msg1 and msg2, transport.

(iii) URI of the service, WSDL document, and the WSDL version in use.

The SOXGrounding class is similar to the WSDLGrounding class despite some

minor changes required to suit our customized and extended version of OWL-S.

It is important to note that the architecture presented in this thesis facilitates

autonomous service invocation, since it captures the semantics of the invocation

details. However, without a special component that is capable of �understanding�

these semantics and invoking the corresponding matching service �on the �y,� it

still requires human e�ort to invoke services (manual invocation). The design and

development of such a component is beyond the scope of this thesis.

In this chapter, we discussed various aspects of the proposed discovery archi-

tecture, including the ontologies used to describe services semantically, how service

advertisements are constructed and sent, the mechanism by which services register

and publish contextual information, the format and structure of service requests,

the details of the matchmaking process used to discover the most suitable services,

and the strategy by which services are ranked and returned to the user. Next, we
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discuss the implementation details of the architecture and the prototype used to

assess its feasibility and e�ectiveness.
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Chapter 4

Implementation

4.1 Overview

We have implemented the proposed architecture as well as di�erent services with

di�erent invocation schemes to assess its feasibility and e�ectiveness. In this chap-

ter, various implementation details of our prototype are presented and discussed.

As a pervasive computing platform for our prototype implementation, we use

Ejabberd [53], an open-source implementation of Jabber/XMPP, since it is stable

and has a strong open-source community due to its wide use. In addition, Ejabberd

has many built-in components that provide useful functionalities, such as pubsub,

multi-user-chat, and HTTP polling. The entities (e.g., services, users, components)

in the environment are addressed uniquely. They exchange information expressed

in XML-based messages through a central Ejabberd server, which provides an ade-

quate level of security using protocols such as the Transport Layer Security (TLS)

[28], the Simple Authentication and Security Layer (SASL) [27], and the Secure

Socket Layer (SSL) [45].

The proposed ontology extensions and additions are constructed using Protégé

[57], an open-source ontology editor developed by the medical informatics depart-

ment at Stanford University. To store and read the shared-ontology data, we use
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Jena [22], a Java-based semantic-web framework developed by Hewlett Packard.

We use the built-in OWL reasoner in Jena to perform semantic reasoning. Along

with Jena, we use the ARQ query engine [20] to query the ontology instances using

the SPARQL language. To support knowledge sharing and exchange, the ontology

classes and instances are published on the web.1

Using the Smack API [32], which is an open-source Java library that provides

an implementation of various XMPP functions, we developed the PubSub API to

provide basic pubsub functionalities. This API permits Jabber entities to create a

new pubsub node, publish values to it, and obtain the value (payload) of a speci�c

node.

The context engine is a Jabber entity based on the Smack API. It relies on

the PubSub API to create and fetch the values of pubsub nodes according to the

queries and context registration requests. These requests are expressed using cus-

tom information-query (IQ) messages, and are sent from the discovery component

and services to the engine, which processes them accordingly. An extension to the

Smack API was required to support the custom IQ messages.

Similar to the context engine, the discovery component is a Jabber entity based

on the Smack API. The discovery component constitutes the core module of the

architecture. It is implemented according to the strategies and algorithms presented

in this thesis. By extending the Smack API, the component parses service requests

expressed in custom IQ messages and sent by Jabber entities. When a request is

received, the component processes it and calls a semantic matchmaking algorithm,

which coordinates with the context engine and sends SPARQL queries to the shared-

ontology database to obtain a list of services that match the request semantically.

Finally, the component returns the top matches to the user in a custom IQ message,

based on the ranking strategy presented in this thesis.

The XFire software package [15] is used to develop Jabber-based web services

that are invoked using the SOX scheme. XFire is a Java-based SOAP framework

that supports many transport mechanisms, such as HTTP, Jabber/XMPP and JMS

1http://otter.uwaterloo.ca/Services.owl
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(Java Messaging Service). JAC-based services, on the other hand, were developed

by extending the Smack API to handle ad-hoc command requests and responses.

4.2 Implemented Services

In order to evaluate the feasibility and e�ectiveness of the architecture, we

developed four di�erent services as Jabber components with di�erent invocation

schemes.

4.2.1 X10 Light Service

The �rst service is a hardware-oriented light service developed using Java. This

service is capable of controlling a real lamp using an X10 interface [75]. By sending

the desired ad-hoc command, which is consequently parsed by the service using the

extended Smack API and translated into an equivalent X10 command, the green-

colored lamp can be dimmed, turned on, or turned o�. The service is composed of

two main modules. One module handles authentication and communication with

the Jabber server, while the other handles the received ad-hoc commands and sends

either the corresponding X10 messages to the lamp or an error message back to the

user, depending on the validity of the requested command. Figure 4.1 shows an ad-

hoc command sent to the service to turn o� the lamp, while the response appears

in Figure 4.2.

The description of the service was created using Protégé. The pro�le of the

service is an instance of GreenLight, a subclass of Light, identi�ed as MyGreenLight.

It captures the service name, location (DC3326), the supported ad-hoc commands

(as instances of the Input class), and the dynamic contextual information (as in-

stances of the LightStatus class) associated with the service. With the support of

the engine, the service publishes the status of the light, which can be obtained us-

ing the X10 API [72]. An instance of the AdhocGrounding class is used to describe

details for invoking the service, including a mapping between the conceptual inputs

of the service and its supported ad-hoc commands. Figure 4.3 shows the OWL code
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<iq type="set" to="light@otter.uwaterloo.ca/Light"

id="exec1456">

<command xmlns='http://jabber.org/protocol/commands'

node='turnOff'

action='execute'/>

</iq>

Figure 4.1: An ad-hoc command to turn o� the light

<iq from="light@otter.uwaterloo.ca/Light"

type="get" to="alice@otter.uwaterloo.ca" id="xpb7q-8" >

<command xmlns="http://jabber.org/protocol/commands"

status="completed" node="turnOff"

sessionid="config:3616Z-700" >

<note type="info">

Command has been successfully executed

</note>

</command>

</iq>

Figure 4.2: Response to the turn o� ad-hoc command
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<GreenLight rdf:ID="MyGreenLight">

<serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

MyGreenLight</serviceName>

<hasSCA>

<LightStatus rdf:ID="MyGreenLight_Status">

<attrDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>An attribute describing the status of the light</attrDescription>

<polarity rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</polarity>

<actualValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>pubsub.otter.uwaterloo.ca/home/otter.uwaterloo.ca/engine/

MyGreenLight/MyGreenLight_Status</actualValue></LightStatus>

</hasSCA>

<hasInput rdf:resource="#DimLightInput"/>

<hasInput rdf:resource="#TurnOnInput"/>

<hasInput rdf:resource="#TurnOffInput"/>

<supports>

<AdhocGrounding rdf:ID="GreenLightGrounding">

<jacProvider rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

xmpp:light@otter.uwaterloo.ca/Light</jacProvider>

<hasMapping>

<AdhocMapping rdf:ID="AdhocMapping_5">

<command rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

turn_off</adcommand>

<owlsParameter>

<Input rdf:ID="TurnOffInput">

<parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/Services.owl#TurnOffLight</parameterType>

</Input></owlsParameter></AdhocMapping></hasMapping>

<jacVersion rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

1.2</jacVersion></AdhocGrounding></supports>

<locatedIn rdf:resource="#DC3326"/>

<textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

A service that controls a green light</textDescription>

</GreenLight>

Figure 4.3: Light service pro�le
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representing the service pro�le and grounding instances.

4.2.2 Printing Service

The second service is a software-based printing facility represented as a web

service. It accepts the location (URL) of a �le/document as an input and sends it

to a physical printer in the network. It is invoked using the SOX scheme and can be

extended easily to accept the actual �le/document as a SOAP attachment rather

than a URL. Figure 4.4 shows a print request that consists of a Jabber-based SOAP

envelope containing the URL of the �le to be printed, while Figure 4.5 shows the

response message sent to the user. This service is composed of three main modules.

One module manages authentication and communication with the central Jabber

server, while another handles the SOAP requests/responses using the XFire API.

The third module is the actual implementation of the web service functionalities.

As for dynamic contextual information, the printing service has a load (queue

length) that is described using an instance of the PrinterLoad class and published

by the service to the pubsub system with the support of the context engine. The

actual value of the load can be obtained using the LPQ UNIX command or a Simple

Network Management Protocol (SNMP) module.

4.2.3 Text Translation Service

The third service, also software-based, is a text translation facility that re-

ceives two inputs, a text to be translated (InputText) and a translation mode

(TranslationMode), and produces a single output, the translated text (TranslatedText).

As mentioned, these are represented using concepts within the ontology to enable

capability-based search. Like the printing service, it is developed as a web service,

invoked using the SOX scheme, and composed of three main modules. Figure 4.6

shows a request to translate a string from English to French. This request is ex-

pressed in a Jabber-based SOAP envelope containing both inputs. Once the service

receives it, the service processes it accordingly and returns the result to the user,

as shown in Figure 4.7.
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<iq id="AT988Jq0-13" to="printer@otter.uwaterloo.ca/Printer"

from="alice@otter.uwaterloo.ca" type="get">

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>

<m:print xmlns:m="http://otter.uwaterloo.ca/wsdl/printer.wsdl">

<m:in0>http://otter.uwaterloo.ca/test.ps</m:in0>

</m:print>

</soap:Body>

</soap:Envelope>

</iq>

Figure 4.4: A SOX-based request to print a document

<iq from="printer@otter.uwaterloo.ca/Printer"

type="result" id="AT988Jq0-13" to="alice@otter.uwaterloo.ca/Psi" >

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<printResponse xmlns="http://otter.uwaterloo.ca/wsdl/printer.wsdl">

<out>print successful</out>

</printResponse>

</soap:Body>

</soap:Envelope>

</iq>

Figure 4.5: A SOX response message to a print request
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<iq id="AT9889Jq0-13" to="translation@otter.uwaterloo.ca/Translation"

from="alice@otter.uwaterloo.ca" type="get">

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>

<m:translate xmlns:m="http://otter.uwaterloo.ca/wsdl/translation.wsdl">

<m:in0>en-fr</m:in0>

<m:in1>hello world</m:in1>

</m:translate>

</soap:Body>

</soap:Envelope>

</iq>

Figure 4.6: A SOX-based translation request

Since this service is software-oriented, we present its dynamic contextual infor-

mation using an instance of the QoS class. Similar to the previous services, this

value is published by the service to a speci�c pubsub node with the support of the

context engine.

As for the invocation details of the service, it is described syntactically using a

WSDL document, shown in Figure 4.8, and described semantically using an instance

of the SOXGrounding class, which refers to the WSDL document and provides a

mapping of the conceptual inputs/outputs to the corresponding WSDL entities,

as shown in Figure 4.9. The mapping is very similar to the example presented in
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<iq from="translation@otter.uwaterloo.ca/Translation" type="result"

id="AT9889Jq0-13" to="alice@otter.uwaterloo.ca" >

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<translateResponse

xmlns="http://otter.uwaterloo.ca/wsdl/translation.wsdl">

<out>bonjour tout le monde</out>

</translateResponse>

</soap:Body>

</soap:Envelope>

</iq>

Figure 4.7: A SOX response message to a translation request
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<wsdl:definitions

........namespace aliases..................

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://otter.uwaterloo.ca/wsdl/translation.wsdl">

<wsdl:message name="translateRequest">

<wsdl:part name="mode" type="xsd:string" />

<wsdl:part name="text" type="xsd:string" />

</wsdl:message>

<wsdl:message name="translateResponse">

<wsdl:part name="out" type="xsd:string" />

</wsdl:message>

<wsdl:portType name="TranslationPortType">

<wsdl:operation name="translate">

<wsdl:input message="tns:translateRequest" name="translateRequest" />

<wsdl:output message="tns:translateResponse" name="translateResponse" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="TranslationXMPPBinding" type="tns:TranslationPortType">

<wsdlsoap:binding style="document" transport="http://jabber.org/protocol/soap" />

<wsdl:operation name="translate">

<wsdlsoap:operation soapAction="" />

<wsdl:input name="translateRequest">

<wsdlsoap:body use="literal" />

</wsdl:input>

<wsdl:output name="translateResponse">

<wsdlsoap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="Translation">

<wsdl:port binding="tns:TranslationXMPPBinding" name="TranslationXMPPPort">

<wsdlsoap:address location="translation@otter.uwaterloo.ca/Translation" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Figure 4.8: WSDL document of the translation service
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<SOXGrounding rdf:ID="JabberTranslationSoxGrounding">

<wsdlVersion rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">1.1</wsdlVersion>

<wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl</wsdlDocument>

<wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl#translateRequest

</wsdlInputMessage>

<wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl#translateResponse

</wsdlOutputMessage>

<wsdlInput>

<WsdlInputMessageMap rdf:ID="WsdlInputMessageMap_9">

<owlsParam rdf:resource="#TranslationMode"/>

<wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://otter.uwaterloo.ca/wsdl/translation.wsdl#mode

</wsdlMessagePart>

</WsdlInputMessageMap>

</wsdlInput>

<wsdlInput>

<WsdlInputMessageMap rdf:ID="WsdlInputMessageMap_8">

<owlsParam rdf:resource="#InputText"/>

<wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://otter.uwaterloo.ca/wsdl/translation.wsdl#text

</wsdlMessagePart>

</WsdlInputMessageMap>

</wsdlInput>

<wsdlOutput>

<WsdlOutputMessageMap rdf:ID="WsdlOutputMessageMap_10">

<owlsParam rdf:resource="#TranslatedText"/>

<wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://otter.uwaterloo.ca/wsdl/translation.wsdl#out

</wsdlMessagePart>

</WsdlOutputMessageMap>

</wsdlOutput>

<wsdlOperation>

<WsdlOperationRef rdf:ID="WsdlOperationRef_11">

<operation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://otter.uwaterloo.ca/wsdl/translation.wsdl#translate

</operation>

<portType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl#TranslationPortType

</portType>

</WsdlOperationRef>

</wsdlOperation>

<wsdlService rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl#Translation

</wsdlService>

<wsdlPort rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://otter.uwaterloo.ca/wsdl/translation.wsdl#TranslationPortType

</wsdlPort>

</SOXGrounding>

Figure 4.9: The SOXGrounding instance of the translation service
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Section 3.4.6.4.

4.2.4 Italian Restaurant Service

The last service is an Italian food restaurant. It is an abstract service with no

invocation scheme. It registers with the context engine and publishes contextual

information de�ned by instances of the AvailableTables and AvailableParkingSpots

classes.

4.3 Discovery Scenarios

After presenting and discussing the implementation details of the architecture,

we present an overview of the services and the prototype implementation in Fig-

ure 4.10. To test the e�ectiveness of the architecture in matchmaking and discov-

ering the most suitable services, we created three copies of the pro�le instance for

each service, with di�erent values of contextual information.

Recall that the location of each service is provided at the time of service ad-

vertisement, while the location of the user is assumed to be supplied by location-

tracking devices and processed/represented by the context engine. On the other

hand, the dynamic contextual information, such as the current status of the light,

the queue length of the printer, the number of free tables and parking spots in the

restaurant, and the QoS of the translation facility, are published by the services

with the support of the context engine. Note that we have not yet developed the

discovery applications, which should run on top of the discovery protocol and pro-

vide unobtrusive interfaces for users to express their requests. Thus, we constructed

the service requests, assuming that they have been formulated by the discovery ap-

plications. Likewise, we invoked the services manually, as we have not yet designed

and developed the service invocation component.

We tested the discovery protocol with various scenarios. When a user (Al-

ice) located in WaterlooUniv (an instance of GeographicalSpace) requests a Printer

service (an instance of Pro�le) by sending the appropriate XML-based service re-

quest, the discovery protocol retrieves the Alice's contextual information (location)
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Figure 4.10: Prototype design
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with the support of the context engine, expands the request to include LaserPrinter

and InkJetPrinter printers that are located in or subsumed by WaterlooUniv (e.g.,

ShoshinLab, DC3326), and constructs a SPARQL query based on the expanded re-

quest to locate matching services. Finally, by ranking the matches according to

their dynamic contextual information with the support of the context engine, the

protocol identi�es the nearest printers with the least load, and sends the URI of

the top-ranked ones to the discovery application that Alice is using, in a Jabber

message. Through this URI, the application is capable of identifying and �under-

standing� the invocation details and utilizing the service accordingly.

Similar to the above scenario, when Alice is located in Toronto and she requests

a Restaurant service, the discovery protocol retrieves the Alice's contextual infor-

mation (e.g., location, preferences) with the support of the context engine, expands

the request to include ItalianRestaurant pro�les that are located in or subsumed by

Toronto, and constructs a SPARQL query to locate the matching restaurants. Af-

terwards, through the ranking strategy, the protocol locates the nearest restaurant

with possibly the largest number of available tables and parking spots, and sends

Alice the results.

If Alice requests a software service like the text-translation facility, which is

advertised without a physical location, using a capability-based service request (e.g,

Figure 3.12), the protocol expands the request immediately and converts it into the

corresponding SPARQL query to �nd and return the URIs of the services with

the highest QoS value. Then, by inspecting the grounding details, the discovery

application can enable Alice to utilize the translation facility accordingly.

For a light service-request, only the location is considered during service rank-

ing, since the status of the light has a polarity of zero. However, we return that

information as it might be meaningful for the requesting user.

This chapter has discussed the design and implementation details of our pro-

totype, including the APIs and software components used for the development of

the architecture, the details of the implemented services along with their contex-

tual information, and the discovery scenarios used to assess the e�ectiveness and

feasibility of the proposed scheme. Next, we conclude the thesis and discuss our
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future work plans.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Pervasive or ubiquitous computing is becoming a reality. In that paradigm, ser-

vice discovery is a fundamental component that enables users or services to request

and discover services. Current discovery protocols rely on a syntactic representation

of service descriptions and on keyword-based search mechanisms. As a result, when

a syntax-based service request is issued, many matching services with a di�erent

syntactic representation are not discovered, even though they suit the requirements

of the user. Likewise, many irrelevant services are considered matches just because

they have a syntactic representation similar to the request. In other words, since

they rely on a syntactic representation of information, current protocols su�er from

poor precision and recall. Furthermore, they do not incorporate contextual infor-

mation about the user and services into the discovery phase, and as a result, they

are not capable of discovering the most suitable services.

The work presented in this thesis addresses the need for a discovery protocol to

support scenarios of pervasive and ubiquitous computing. Through the protocol,

using shared ontologies (semantics), software agents or users located in unfamiliar

areas are capable of requesting various software- and hardware-oriented services

using their handheld devices, and exploiting the most appropriate ones.
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The context-aware service-discovery mechanism we propose exploits useful con-

textual information within pervasive-computing environments to discover the most

appropriate and relevant services for the requesting user/agent. We constructed

an OWL-based ontology that facilitates context-aware discovery by extending and

customizing other ontologies to capture the semantic description of services and

contextual information. The proposed discovery scheme relies on this ontology to

support knowledge sharing, common understanding, reasoning, capability- rather

than keyword-based search, and semantic matchmaking of services. To enhance

the overall quality and save users time and e�ort, the scheme includes a dynamic

service-selection mechanism that ranks and �lters matching services according to

their dynamic contextual information. Our prototype demonstrates the feasibility

and e�ectiveness of the proposed architecture.

5.2 Future Work

As future work, we plan to investigate the following.

• Large-scale discovery. The implementation of the architecture proposed in

this thesis relies on a central Jabber server. To support large-scale discovery,

we plan to investigate the possibility of having multiple Jabber servers, where

each server represents a local pervasive environment and has its own context

engine and discovery component. Accordingly, these servers can coordinate

with each other and exchange context/service information to answer service-

requests issued by local and remote users belonging to di�erent environments.

For instance, if a local Jabber server fails to �nd any matches for a service

request, it can propogate it to other servers, which might locate a matching

service and return its details to the local server. This can be facilitated

through a structured peer-to-peer network (i.e., Chord [13], Pastry [50], or

CAN [47]), an unstructured peer-to-peer network (e.g., Gnutella [35]), or a

directory node that maintains a list of Jabber servers (e.g., LDAP).

• Discovery preferences. Currently, in order for the architecture to be as
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unobtrusive as possible, the weights of contextual attributes are set equally.

We plan to research mechanisms that enable users to specify and store dis-

covery preferences in an easy manner. This includes enabling users to specify

the importance (weight) of a speci�c contextual attribute, and enabling them

to specify general preferences. We plan to study the available OWL-based on-

tologies that model user preferences and incorporate/extend the most suitable

ones to achieve the desired discovery goals.

• Rich service requests. Currently, service requests are expressed using a

�exible, simple, and XML-based Jabber message. It can include a combina-

tion of a desired pro�le, location, inputs, and outputs. We plan to enrich this

message format to include custom pro�le parameters and contextual informa-

tion to be considered in the matchmaking process. For instance, a user may

issue a request for printing services with a PrinterLoad value less than �ve,

a pagesPerSecond value over ten, and a supportsColor instance with a TRUE

value.

• Service advertisement tool. We have used the Protégé ontology editor to

create the pro�le instances for the prototype services. However, we plan to

accomplish this in the future by developing the service advertisement tool as

a JSP webpage that queries and stores data in the shared-ontology database

using the Jena API.

• Discovery applications (service request tool). The discovery architec-

ture presented in this thesis enables users to issue XML-based service requests

to �nd matching services. Software agents can be programmed easily to is-

sue such requests. On the other hand, people require a user-friendly tool to

express their service requests and preferences in an unobtrusive manner.

• Autonomous service invocation. Recall that the architecture presented

in this thesis facilitates autonomous service invocation by capturing the se-

mantics of the service-invocation details. However, a special component is

required to let software agents or discovery applications �understand� these
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semantics and utilize matching services accordingly. Without this compo-

nent, when a user/agent receives a URI of a matching service, a human e�ort

is required to inspect the invocation scheme and construct the invocation

messages.

• Service noti�cation. We plan to develop a mechanism that provides users

with a service subscription facility as in UPnP. Through this facility, users

can subscribe to speci�c services. Once the description or the status of the

service changes, interested user/agents can be noti�ed. Fortunately, the built-

in pubsub framework provided by Jabber can be used as a basis for this

functionality.

• Performance evaluation. Currently, semantic-web development tools are

in their infancy. In the future, when the tools become adopted and more

stable, we plan to asses the performance of the proposed discovery scheme

in terms of the time required to process a service request, perform service

matchmaking and ranking, and the e�ort/time required to utilize Jabber-

based services using resource-limited devices.
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