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Abstract

This thesis concerns polarization mode dispersion (PMD) in optical fiber com-

munications. Specifically, we study fiber birefringence, PMD stochastic properties,

PMD mitigation and the interaction of fiber birefringence and fiber nonlinearity.

Fiber birefringence is the physical origin of polarization mode dispersion. Cur-

rent models of birefringence in optical fibers assume that the birefringence vector

varies randomly either in orientation with a fixed magnitude or simultaneously in

both magnitude and direction. These models are applicable only to certain bire-

fringence profiles. For a broader range of birefringence profiles, we propose and

investigate four general models in which the stochastically varying amplitude is re-

stricted to a limited range. In addition, mathematical algorithms are introduced for

the numerical implementation of these models. To investigate polarization mode

dispersion, we first apply these models to single mode fibers. In particular, two

existing models and our four more general models are employed for the evolution of

optical fiber birefringence with longitudinal distance to analyze, both theoretically

and numerically, the behavior of the polarization mode dispersion. We find that

while the probability distribution function of the differential group delay (DGD)

varies along the fiber length as in existing models, the dependence of the mean

DGD on fiber length differs noticeably from earlier predictions.

Fiber spinning reduces polarization mode dispersion effects in optical fibers.

Since relatively few studies have been performed of the dependence of the reduc-

tion factor on the strength of random background birefringence fluctuations, we here

apply a general birefringence model to sinusoidal spun fibers. We find that while,

as expected, the phase matching condition is not affected by random perturbations,

the degree of PMD reduction as well as the probability distribution function of the

DGD are both influenced by the random components of the birefringence. Together

with other researchers, I have also examined a series of experimentally realizable

procedures to compensate for PMD in optical fiber systems. This work demon-

strates that a symmetric ordering of compensator elements combined with Taylor

and Chebyshev approximations to the transfer matrix for the light polarization in

optical fibers can significantly widen the compensation bandwidth.

iii



In the last part of the thesis, we applied the Manakov-PMD equation and a

general model of fiber birefringence to investigate pulse distortion induced by the

interaction of fiber birefringence and fiber nonlinearity. We find that the effect of

nonlinearity on the pulse distortion differs markedly with the birefringence profile.
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Chapter 1

Introduction

1.1 Background

1.1.1 Fiber-Optic Communication Systems

Lightwave communication systems use electromagnetic waves in the near-infrared

region as carriers to transmit information. Fiber-optic communication systems

are lightwave systems that employ optical fibers as a light guiding medium. In

most existing commercial fiber-optic communication links, information is encoded

with square-wave optical pulses in return-to-zero (RZ) or non-return-to-zero (NRZ)

format, c.f. Fig. 1.1 [2, 3].

Before the development of optical communication systems, two major forms of

communication systems were employed. In the first of these, namely, electrical

communication system, information is encoded as electrical pulses and transmitted

through coaxial cable; the other system, i.e., microwave system, uses electromag-

netic waves with frequencies in the range of 1− 10 GHz to transmit the signal [2].

These two systems are limited either by bandwidth due to high frequency-dependent

loss of coaxial cable of the electrical system, or bit rate due to the low carrier fre-

quencies of the microwave system. Fortunately, these two obstacles could be over-

come by using optical communication system, thanks to the invention of the laser

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Digital bit stream 0101110 · · · coded by (a) return-to-zero (RZ) and

(b) nonreturn-to-zero (NRZ) formats.

in 1960 and the breakthrough technology of low-loss optical fibers in 1970. Specif-

ically, the high frequencies ( ∼ 100 THz) of the optical pulses increase enormously

the bit-rate of the system, and the fiber loss has been reduced to below 20 dB/km

in a broad wavelength range around 1 µm. While, for the advantage of low cost,

electrical and microwave transmission technologies are still preferred for short dis-

tances and relatively low bandwidth applications, such as cable TV (Television),

wireless LAN (Local Area Network), CCTV (Closed Circuit Television), and cell

phones, etc, fiber-optic technology is generally used in telecommunications for its

inherently high data-carrying capacity and the exceptionally low loss of the optical

fiber.

The basic building block of all lightwave systems is a point-to-point link which

is simply a connection from point A to point B. The main function of this link is

to transport information at a specified bit rate and bit error rate (BER) over a

specified distance. These links can be classified into two sub-categories: short-haul
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and long-haul. Short-haul links are characterized by the fact that they contain no

repeaters or amplifiers, and are typically of distance up to many tens of kilometers.

Short-haul links are widely used in Metropolitan Area Networks (MANs) or Local

Area Networks (LANs). Long-haul links do contain repeaters to compensate for

loss and/or dispersion, and may be several 1000 km in length. Long-haul links

are widely used as backbones in large-scale terrestrial networks such as Wide Area

Networks (WANs) and undersea intercontinental networks.

One of the major design considerations with point-to-point links is the repeater

(or regenerator) spacing L. This spacing is usually in the range of 20 − 100 km

since various imperfections in the fiber and other optical components in the system

can deform the pulses, causing errors in the transmitted signal. These imperfec-

tions include fiber loss, chromatic dispersion, polarization mode dispersion, fiber

nonlinearity, etc. As a consequence, after propagating a certain distance in the sys-

tem, optical signals need to be regenerated by going through the conversion process

of light-electricity-light in repeaters to completely recover the original digital data

stream within a given BER. Communication systems are usually characterized by

the product of the bit rate B and the repeater spacing L, i.e., BL.

The development of the fiber-optic communication technology started around

1975. While it is only 30 years old, it has progressed rapidly and has evolved through

several generations. The first generation of lightwave systems operates with wave-

length λ = 0.8 µm. Such systems became available commercially in 1980, and the

BL has reached ∼ 1 GHz ·km. The BL product has been increased considerably in

the second generation of fiber-optic communication system operating in the wave-

length near 1.3 µm, where the fiber has minimum chromatic dispersion. By the use

of single-mode fiber, second generation lightwave system, operating at bit rates of

up to 1.7 GHz with a repeater spacing of about 50 km, were commercially available

by 1987. The second-generation lightwave system was limited by the fiber loss at

the operating wavelength of 1.3 µm (typically 0.5 dB/km). Losses of silica fibers

become minimum near 1.5 µm; for example, a 0.2 dB/km loss was realized in 1979

in this spectral region. However, the introduction of third-generation lightwave

systems operating at 1.5 µm was considerably delayed by a large fiber chromatic

dispersion near 1.5 µm. By 2005, thanks to the development of dispersion-shifted
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fibers, the 1.5 µm systems have achieved BL ∼ 100 THz ·km. In the fourth genera-

tion of lightwave systems, optical amplification was used for increasing the repeater

spacing L while wavelength-divison multiplexing (WDM) technology was developed

to increase the bit rate B. The current systems attempt to increase the bit rate

for each wavelength channel. Starting in 2000, many experiments used channels

operating at 40 GHz; migrating toward 160 GHz is also likely in the future.

With the advent of optical amplifiers, fiber losses are no longer a major limiting

factor for optical communication systems. Indeed, modern lightwave systems are

often limited by the dispersion and nonlinear effects rather than fiber losses. In

some sense, optical amplifiers solve the loss problem but, at the same time, worsen

the dispersion problem. As a result, dispersion-induced degradation of the trans-

mitted signal accumulates over multiple amplifiers. The system may then become

dispersion limited, in which case an electronic repeater or dispersion compensation

is necessary. Further, the bit rate has been increased to over 10 GHz for current

communication systems in which dispersion and fiber nonlinearity become impor-

tant issues for long-haul transmission.

1.1.2 Fibers as Light Waveguide

Optical fibers are almost always made from silica which is a dielectric (non-conductive)

material. Due to the phenomenon of total internal reflection, optical fibers are used

as a light-guiding medium to send light energy for communication. Optical fibers

consist of three parts: the core, the cladding, and the coating or buffer. The cylin-

drical core of silica glass is surrounded by a cladding whose refractive index is lower

than the core. Because of an abrupt index change at the core-cladding interface,

such fibers are called step-index (SI) fibers. In a more complex fiber, known as

graded-index fibers, the refractive index decreases gradually inside the core.

Electric Properties of Dielectric material

In order to understand the lightwave propagation in optical fibers, we need some

basic knowledge of electric properties of a dielectric material. When light pulses
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propagate in an optical fiber, an electric field can shift the average position of

electrons in the dielectric fiber, resulting in a polarization of the fiber material.

The effect of polarization P is expressed mathematically by [4]

P = −eneξ(E) (1.1)

where ne is the density of electrons that participate in the polarization and ξ rep-

resents the displacement of the electron position in each molecule induced by the

electric field E.

In many dielectric materials, including optical fibers, the dielectric response to

electric field E is not linear, and the index of refraction can be expressed as

n(ω, |Ẽ|2) = n(ω) + n2(ω)|Ẽ|2 (1.2)

where ω is the angular frequency and Ẽ denotes the electric field in the frequency

domain. While the first term n(ω) on the right-hand of Eq. (1.2) is the usual

refractive index, the second term n2(ω)|Ẽ|2 is a nonlinear correction, referred as

the Kerr effect, in which n2 represents the coefficient of the nonlinear response or

Kerr coefficient. However, for an optical fiber material, the value of n2 is very

small and typically is about 10−12 (m/V )2. For example, for an optical pulse with

a typical power 1 mW and an effective mode area Aeff = 55 µm2, the electric field

of lightwave in fibers has a value around 105 V/m; the nonlinear correction of the

index of refraction is about 1 part in 10−12.

For most of applications, it is sufficient to approximate the polarization as a

linear function of the electric field,

P̃(ω) = χ(ω)Ẽ(ω), (1.3)

and the electric displacement vector, D̃(ω), can be expressed as

D̃(ω) = ε0Ẽ(ω) + P̃(ω). (1.4)

where ε0 = 8.864 × 10−12 F/m is the dielectric constant of the vacuum. Eq. (1.3)

and Eq. (1.4) yield a linear relation between D̃ and Ẽ,

D̃(ω) = ε0ε
∗(ω)Ẽ(ω) (1.5)
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Here, ε∗ is the relative permittivity constant of the material, and the refractive

index is given by

n(ω) =
ck

ω
=
√

ε∗ (1.6)

where k is the wave number.

Single Mode Fiber

When light propagates in an optical fiber, only discrete optical modes are supported

in the fiber core. Depending on the number of supported (or guided) modes, optical

fibers are classified as multimode fiber and single mode fiber. In this thesis, we

mostly consider single mode fibers.

In fact, optical modes are the solutions of the wave equation [5]

∇2Ẽ +
n2ω2

c2
Ẽ = 0 (1.7)

with appropriate boundary conditions; these solutions have the property that their

spatial distributions do not change with propagation. In general, the solutions of

the wave equation have non-zero Ez and Hz; therefore, fiber modes are denoted by

HEmn or EHmn, depending on whether Hz or Ez dominates. While a multimode

fiber allows for a larger number of modes, a single mode fiber is designed to support

only the fundamental HE11 mode at a certain wavelength of operation. Further,

the number of modes supported by a fiber depends on its refractive index profile

and other fiber parameters.

While both single mode and multimode fibers can have a step-index or graded-

index profile, single mode fiber production is almost exclusively step-index because

the performance advantages for single mode graded-index fibers compared to single

mode step-index fibers are relatively small. For a step-index fiber, the refractive

index profile has the form

n =

{
n1; ρ ≤ a,

n2; ρ > a.
(1.8)
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where a is the core radius and ρ is the radial coordinate. An important parameter

in fiber design is the cutoff condition V defined as

V =
2π

λ
a
√

n2
1 − n2

2. (1.9)

A fiber designed such that V < 2.405 supports only the fundamental HE11 mode,

while a fiber with a larger V supports many modes. Hence, V < 2.405 is the single

mode condition. According to Eq. (1.9), a single mode fiber must have smaller core

radius compared to a multimode fiber. Indeed, most single mode fibers are designed

with a ≈ 4 µm, while the typical core radius of multimode fibers is a ≈ 25 µm.

Further, a single mode fiber is also designed such that ∆ = (n1 − n2)/n1 ¿ 1,

which results in negligible axial components Ez and Hz; hence, a single mode fiber

actually supports two orthogonally linearly polarized modes which are degenerate

in an ideal circular fiber.

A single mode fiber exhibits no dispersion caused by multiple modes, which

greatly increase the transmission bit rate and distance. Hence, while multimode

fibers are mostly used in short distance applications such as LAN systems and

video surveillance, single mode fiber is best designed for telecommunications and

high capacity applications, such as multichannel television broadcast systems.

While replacing multimode fiber with single mode fiber has made telecommuni-

cation possible, transmission signals still suffer from chromatic dispersion (CD) and

polarization mode dispersion (PMD). Both CD and PMD cause temporal spreading

of optical bits as they propagate along the fiber. For data rates equal to or higher

than 10 Gb/s, these two effects could cause severe deterioration in optical signals

for long-haul transmission systems [6–8].

While the next section gives a full introduction to PMD, we provide some back-

ground material on chromatic dispersion in the following paragraph. Chromatic

dispersion includes both material dispersion and waveguide dispersion. While ma-

terial dispersion is caused by the variation of the refractive index of silica as a

function of wavelength, waveguide dispersion is due to the waveguiding property of

the fiber. The dispersion associated with the waveguide structure can be designed

to have different signs; therefore the material dispersion and waveguide dispersion

can be balanced at the “zero dispersion” wavelength. While, initially, fiber with
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zero dispersion was manufactured near 1310 nm, dispersion-shifted fibers (DSF)

were developed to move the zero-dispersion point to the 1550 nm region in which

fiber attenuation meets its minimum. Chromatic dispersion is basically compen-

sated through two approaches in modern communication systems: while the most

common technique uses dispersion-shifted fibers, a more expensive solution employs

the chirped fiber Bragg grating [9].

1.1.3 Polarization Mode Dispersion

An single mode fiber supports only the fundamental mode HE11. In general, an

optical wave of arbitrary polarization can be represented as the linear superposi-

tion of two orthogonally polarized HE11 modes. For an ideal fiber formed as a

cylindrically symmetric waveguide, the two HE11 modes are degenerate since they

propagate with the same properties, which is the source of the term “single mode”.

However, random birefringence in real optical fibers removes the degeneracy, re-

sulting in two distinct HE11 polarization modes with distinct phase velocities, vpx

and vpy, and group velocities, vgx and vgy [10–12]. In the time domain, polarization

mode dispersion (PMD) leads to pulse broadening, which in the lowest order yields

a time delay ∆T between the two HE11 modes that is termed differential group

delay (DGD). PMD can also be viewed in the frequency domain, in which the differ-

ence of phase velocities, ∆vp = vpx − vpy, results in the rotation of the polarization

along the fiber length [12,13]. Further, ∆vp is also frequency dependent; therefore,

for a fixed input polarization, the output polarization changes with frequency ω.

Due to the random nature of the fiber birefringence, polarization mode dispersion

is stochastic and hence a far more complex phenomenon than chromatic dispersion.

Polarization effects of optical fibers were first studied in 1961 by Snitzer and

Osterberg. However, they have historically played a minor role in the development

of lightwave systems, since commercial optical receivers detect optical power rather

than optical field and thus are insensitive to polarization. In the last decade,

polarization has become an important issue in lightwave systems as a result of

two developments [14]. First, the advent of the optical amplifier has dramatically

increased the transmission distance, resulting in a non-negligible pulse distortion
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due to the accumulation of polarization mode dispersion (PMD) along fiber length.

Further, the development of transmitter and receiver technologies have increased

the bit rates in optical communication systems. To satisfy the ever-increasing

demand for communication capacity, optical systems are migrating from the current

10 Gb/s to 40 Gb/s or higher. In such high bit rate and long haul communication

systems, PMD effects can be a limiting factor [3, 8, 15–17].

Jones Calculus

To deal with modern polarization effects, we employ Jones Calculus [18]: if we

view an optical system as a black box, the input or output of the box is an optical

field which can be represented as a Jones Vector; assuming a linear response of

the optical system to the input field, the black box can be represented as a Jones

Matrix.

In general, we express the plane-wave components of an optical field as

Ex(z, t) = E0xe
i(κz−ωt+δx)

Ey(z, t) = E0ye
i(κz−ωt+δy) (1.10)

where E0x and E0y are complex quantities. When the common phase κz − ωt is

suppressed, Eq. (1.10) yields

Ex(z, t) = E0xe
iδx

Ey(z, t) = E0ye
iδy . (1.11)

A Jones vector is a 2 × 1 column matrix E used to represent the two components

of the optical field according to Eq. (1.11), such that

E =

(
Ex

Ey

)
=

(
E0xe

iδx

E0ye
iδy

)
, (1.12)

and the total intensity I of the optical field is given by

I = E+ · E = ExE
∗
x + EyE

∗
y = E2

0x + E2
0y (1.13)
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where E+ is the complex transpose of the Jones vector E. Note that Eq. (1.12)

is the general expression of the Jones vector for elliptically polarized light, and the

Jones vector can only be used to describe completely polarized light.

In the Jones calculus, optical components, such as polarizers, waveplates, and

optical fibers, can be represented by 2 × 2 matrices. For a linear system, the

components of the output field can be expressed as linear superpositions of the

input components, i.e.,

Eo
x = Txx(ω)Ei

x + Txy(ω)Ei
y

Eo
y = Tyx(ω)Ei

x + Tyy(ω)Ei
y (1.14)

where Eo
x and Eo

y are the components of the emerging beam, and Ei
x and Ei

y are the

components of the incident beam. The quantities Tij, i, j = x, y, are the frequency

dependent transforming factors. Equation (1.14) can be written in the matrix form

as (
Eo

x

Eo
y

)
=

(
Txx Txy

Tyx Tyy

)(
Ei

x

Ei
y

)
(1.15)

or

Eo = T (ω)Ei, (1.16)

in which the 2× 2 matrix T (ω) is called the Jones matrix, or transfer matrix.

Usually, an optical fiber is considered as a linear medium, and hence can be de-

scribed by its complex transfer matrix T (ω). By further assuming no polarization-

dependent loss, T (ω) takes the form

T (ω) = eβ(ω)U(ω) (1.17)

where β(ω) is in general complex and U(ω) is an unitary matrix,

U(ω) =

(
u1(ω) u2(ω)

−u∗2(ω) u∗1(ω)

)
(1.18)

with |u1|2 + |u2|2 = 1.
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The Principal States of Polarization

The polarization effect of an optical fiber can be fully characterized by its fre-

quency dependent transfer matrix T (ω) [1, 19–23]. For a polarization-maintaining

(PM) fiber with constant birefringence, this transfer matrix has two eigenmodes

which coincide with the two principal axes of birefringence of the fiber. Optical

pulses polarized along these two eigenmodes have a maximum or minimum group

delay. Unlike the PM fiber, the birefringence of real fiber changes randomly along

the fiber length in both magnitude and orientation [14]. However, early in 1986,

Poole and Wagner proved that for narrow-band pulses there exists a set of two

orthogonal input states of polarization for which the corresponding output states

of polarization are independent of frequency to first order [20]. These two input

states are termed the principal states of polarization (PSP). In general, an input

wave initially aligned with a principal state will evolve through varying states of

polarization as it propagates, in contrast to an eigenmode in a PM fiber which prop-

agates unchanged. The statistics of the evolution of the principal states of random

birefringent fibers have been analyzed theoretically [24] and experimentally mea-

sured [24–26]. Later in 1999, Shieh proved that principal states of polarization exist

in random birefringent fibers regardless of the spectral components of the optical

pulses [27]. These PSPs are collective effects of the birefringence over the entire

fiber length, and may not necessarily be correlated with the local fiber birefrin-

gence. In the following, for more insight into PMD phenomena, we briefly review

the derivation of the PSPs for narrow-band optical pulses.

To demonstrate the existence of the PSP, the complex field vectors Ei,o can be

expressed as

Ei,o =

[
Ei,o

x

Ei,o
y

]
= εi,oe

jφi,o ε̂i,o, (1.19)

where j ≡ √−1, εi,o and φi,o are the amplitudes and phases of the input field

(denoted by i) and output field (denoted by o), and ε̂i,o are complex unit vectors

specifying the states of polarization of the corresponding fields. For a constant

input field Ei, the output field from an optical fiber characterized by a transfer
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matrix T (ω) can be calculated according to

Eo(ω) = T (ω)Ei (1.20)

Expressing T (ω) according to Eq. (1.17) and combining the frequency derivatives

of Eq. (1.19) and Eq. (1.20) yields

εoe
jφo

dε̂o

dω
= eβ(U ′ − jkU)Ei (1.21)

where

k = φ′o + j

(
β′ − ε′o

εo

)
. (1.22)

For input states of polarization that give zero dispersion in the output state to first

order, we have
dε̂o

dω
= 0, (1.23)

and Eq. (1.21) becomes

(U ′ − jkU)ε̂i = 0. (1.24)

Solving Eq. (1.24) yields two eigenvectors:

ε̂i± = ejρ

[
u′2−jk±u2

D±

−u′1−jk±u1

D±

]
(1.25)

where

k± = ±
√
|u′1|2 + |u′2|2, (1.26)

D± =
√

2k±[k± − Im(u∗1u
′
1 + u∗2u

′
2)] (1.27)

and ρ is an arbitrary phase. The solutions ε̂i+ and ε̂i− form the input PSPs of the

fiber medium. The corresponding two output PSPs, i.e., ε̂o+ and ε̂o− can be easily

obtained from Eq. (1.20).

The existence of the input PSPs of a random birefringent fiber ensures that an

optical pulse that has a narrow spectral width and is aligned with either of the two

principal states at the input will remain polarized to first order after propagating

through the medium. Further, the input PSPs form an orthogonal pair:

ε̂i+ · ε̂∗i− = 0 and ε̂i± · ε̂∗i± = 1. (1.28)
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The orthogonality of the input PSPs can be used as basis vectors for a phenomeno-

logical description of polarization dispersion. Therefore, an input wave of arbitrary

polarization can be decomposed into two waves, one having polarization ε̂i+ and

the other ε̂i−. These two waves travel with maximum velocity vg+ and minimum

velocity vg− compared to waves in other polarizations; therefore, the principal state

associated with the maximum group velocity is termed fast PSP, while the other

is called slow PSP. The propagation delay difference between these two pulses, one

polarized along the slow PSP, and the other along the fast PSP, i.e., τ = τ+ − τ−,

is termed the differential group delay (DGD). Typical mean values of DGD are 1

to 50 ps for 500-km long fiber, depending on fiber and cable attributes.

Stokes Vector

Instead of using a Jones vector, polarization state of light can also be completely

described by a Stokes vector

ŝ =




s1

s2

s3


 (1.29)

with s2
1+s2

2+s2
3 = s2

0. The parameter s0 is the total intensity of light, the parameter

s1 describes the amount of linear horizontal or vertical polarization, the parameter

s2 describes the amount of linear +45o or −45o polarization, and the parameter

s3 describes the amount of linear horizontal or vertical polarization. The Stokes

parameters can be expressed by the components of the corresponding Jones vector

E = [Ex, Ey]
t as

s1 = ExE
∗
x − EyE

∗
y

s2 = ExE
∗
y + E∗

xEy

s3 = j(ExE
∗
y − E∗

xEy). (1.30)

Usually, these two vectors are normalized for the representation of polarization

states so that E2
x + E2

y = 1 and s2
1 + s2

2 + s2
3 = 1.
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PMD Characterization

While polarization mode dispersion of an optical fiber can be fully characterized

by the Jones matrix T (ω) of the fiber system as a function of light frequency ω, a

convenient representation of the PMD evolutions may be made in terms of a PMD

vector τ = τ p̂, which is a Stokes vector pointing in the direction of the slow PSP

p̂ with a length equal to the DGD τ [11, 28, 29]. The PMD vectors are directly

connected with the transfer matrix T (ω) by:

i
dT

dω
=

1

2
τ (ω) · σ, (1.31)

in which σ = [σ1, σ2, σ3]
t represents the Pauli spin vector, with components

σ1 =

(
1 0

0 −1

)
, σ2 =

(
0 1

1 0

)
, σ3 =

(
0 −j

j 0

)
. (1.32)

If polarized light is launched into an optical fiber with a PMD vector τ (ω), its

output state of polarization is determined by

dŝ(ω)

dω
= τ (ω)× ŝ(ω). (1.33)

In general, for an optical pulse with a carrier frequency ω0 and bandwidth ∆ω,

the frequency dependent PMD vector can be Taylor expanded as [30]

τ (ω) ≈ τ (ω0) + τ ω(ω0)(ω − ω0) + τ ωω(ω0)(ω − ω0)
2 + · · · (1.34)

where τ ω = ∂τ/∂ω and τ ωω = ∂2τ/∂ω2. In Eq. (1.34), τ (ω0), τ ω(ω0), and τ ωω(ω0)

represent first order, second order, and third order PMD, respectively. While higher

order PMD may have non-negligible impact on modern communication for wide-

bandwidth pulses [31–34], for optical pulses in current communication systems, it

is sufficient to describe the PMD up to second order, such that τ (ω) ≈ τ (ω0) +

τ ω(ω0)(ω−ω0). The standard physical picture of the first order PMD considers an

input pulse split into two PSPs according to the orientation of the input polarization

state relative to the slow PSP p̂ [28]. On propagation through the fiber the two

pulses are differentially delayed by the DGD τ . Due to the stochastic nature of the
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PMD phenomena, the PMD vector not only changes with optical frequency but also

varies randomly with time as well as along the fiber length. Both theoretical analysis

and experimental measurement provide strong evidence that the three components

of τ (ω0) = [τ1, τ2, τ3]
t are asymptotically Gaussian distributed and the DGD τ is

asymptotically Maxwellian distributed [35–39]. Moreover, for fiber lengths much

longer than its coupling length, the root mean square of the DGD grows as the

square root of fiber length [19,35,37]. The second-order PMD (SOPMD) describes

the lowest order contribution to the wavelength dependence of the DGD and has

two components: depolarization and polarization dependent chromatic dispersion

(PDCD). SOPMD causes the principal polarization modes to broaden as shown in

Fig. 1.2.

Figure 1.2: Pulse broadening caused by 1st order PMD and 2nd order PMD.

1.1.4 Fiber Birefringence

Fiber birefringence is the physical origin of polarization mode dispersion and can

be fully described by the local, frequency dependent, birefringence vector defined

as b(ω, z) = [β1(ω, z) − β2(ω, z)]/2 [40]. The quantities β1(ω, z) and β2(ω, z)

are the propagation constants (in the absence of polarization-dependent-loss) of

monochromatic light polarized along or orthogonal to the principal birefringence

axis, which is the polarization direction with the smallest group velocity that does

not change to first order with light frequency. However, in many applications the

frequency variation of the birefringence is characterized simply by the birefringence

strength and the group delay per unit length at the carrier frequency ω0, namely
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b(z) = b(ω0, z) and b′(z) = b′(ω0, z) as well as the orientation, θ(z), of the principal

birefringence axis angle with respect to some fixed coordinate direction [30,41,42].

Given the random birefringence vector b(z) of an optical fiber, the evolution of

the PMD vector with distance z is determined according to the dynamical PMD

equation [11,39]
∂τ

∂z
=

∂b

∂z
+ b× τ . (1.35)

In this section, we discuss the birefringence mechanism, existing theoretical models

for generating the random birefringence vector b(z) and experimental studies.

Birefringence Mechanism

Fiber birefringence results from various perturbations that act on a single mode

fiber. These perturbations can be classified as intrinsic and extrinsic perturba-

tions [14, 43]. Intrinsic perturbations, such as the noncircular core and nonsym-

metrical stress fields in the glass around the core region, are introduced by the

manufacturing process. A noncircular core gives rise to geometric birefringence,

whereas a nonsymmetrical stress field creates stress birefringence, c.f. Fig. 1.2 (a).

Although these two birefringence sources are permanent, they are longitudinally

varying along the fiber and may vary from fiber to fiber as well. Fiber birefringence

also results from external forces, such as lateral stress of the fiber, fiber bending, and

fiber twisting c.f. Fig. 1.3 (b). All three forces are usually present to some extent

in spooled and field-installed telecommunication fibers. Due to the dynamic nature

of the extrinsic forces, the resulting birefringence changes unpredictably with time.

In other words, both the intrinsic and extrinsic perturbations exist unavoidably in

real optical fibers, and the magnitude and orientation of the birefringence typically

varies with time, distance along the fiber, and among fiber samples.

Fiber Birefringence Modeling

While the birefringence vector b(z, ω) describes all PMD sources, the detailed struc-

ture of the fiber birefringence map has not been fully understood. To facilitate the

study of PMD phenomena, a statistical model of fiber birefringence was first ad-

vanced in 1991 by Foschini and Poole [30], which we term the Foschini-Poole model.
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Figure 1.3: (a) Intrinsic and (b) extrinsic mechanisms of fiber birefringence.

In this model, the polarization-dependent properties of a single mode fiber is repre-

sented by a real 3×3 rotation matrix which is a product of two matrix components:

a length-independent background component and a small length dependent pertur-

bation. This model predicts that optical fibers have nearly fixed birefringence axes,

varying only slightly but rapidly along the fiber length. Later in 1996, Wai and

Menyuk proposed another two additional birefringent models, namely the fixed and

random modulus models (FMM and RMM) [41]. The FMM assumes a randomly

varying birefringence axis but a fixed birefringence strength, while the RMM as-

sumes that both quantities vary randomly. While earlier PMD studies are based on

the Foschini-Poole model, most recent works have employed the two Wai-Menyuk

birefringent models. The following part of this section will introduce these two

birefringence models, i.e., the FMM and RMM, in greater details.

In the FMM, the birefringence strength b and the specific group delay per unit

length b′ at carrier frequency ω0 are assumed constant along the fiber, and are
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determined by the beat length Λbeat, defined by [44]

b =
π

Λbeat

, b′ =
b

ω0

. (1.36)

The rate of change of the birefringence orientation θ is modeled by a white noise

process gθ(z),

dθ/dz = gθ(z) , 〈gθ(z)〉 = 0 , 〈gθ(z)gθ(z
′)〉 = σ2

θδ(z − z′) . (1.37)

The variance σ2
θ = 2/Lcorr is given by

〈b(0)b(z)〉 = b2〈cos[θ(z)− θ(0)]〉
≡ b2exp

(
− z

Lcorr

)
(1.38)

where Lcorr is the fiber correlation length.

In the RMM, the birefringence vector obeys the Langevin process,

db

dz
= −ab(z) + g(z) (1.39)

where g(z) is an isotropic Gaussian white noise vector with

〈g(z)〉 = 0 , 〈g(z)g(z′)〉 = σ2δ(z − z′) . (1.40)

Eq. (1.39) has the solution

b(z) = b(0) exp(−az) +

∫ z

0

dz′g(z′) exp(az′ − az) . (1.41)

Here a = 1/Lcorr and σ2 = b2
rms/Lcorr are determined by imposing the conditions

〈b(0)b(z)〉 = b2(0) exp(−z/Lcorr) and limz→∞〈b2(z)〉 = b2
rms where brms = π/Λbeat.

If we denote b(n) = b(ω0, n) and b′(n) = b′(ω0, n) as two random series, we can

calculate

b′(n) =
b(n)

ω0

. (1.42)
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Experimental Studies

Early research on fiber birefringence mostly consisted of experimental studies that

focused on limited issues of fiber birefringence, such as the influence of various

fiber imperfections on polarization states [45–48], and measurements of birefrin-

gence strength or fiber beat length of polarization-maintaining fibers [43,49]. More

recently, birefringence parameters of standard single mode fibers, such as birefrin-

gence strength, beat length and correlation length, have been successfully measured

by several techniques such as optical frequency domain reflectometer (OFDR)-based

techniques [50–52], and polarization optical time domain reflectometer (POTDR)-

based techniques [53–59]. Based on these two types of techniques, the spatial

distributions of birefringence have also been indirectly measured and reported

[52,53,57,59]. Figure 1.4 is one of the typical experimental results of spatial distri-

bution of birefringence in a standard (a) step-index (SI) fiber and (b) Dispersion-

shifted fiber (DSF), while Fig. 1.5 presents corresponding histograms of the mea-

sured fiber local birefringence [57]. Experiment studies of fiber birefringence have

revealed three important statistical features. In the first of these, fiber birefrin-

gence not only varies randomly in orientation but also in magnitude, c.f. Fig. 1.4.

Second, the probability density function of the birefringence strength is a Rayleigh

distribution or at least close to a Rayleigh distribution, c.f. Fig. 1.5. Further,

the fluctuation amplitude of the random birefringence strength varies from fiber to

fiber, and is the value of the order of the birefringence strength itself, c.f. Fig. 1.4.

These features are consistent with the prediction of the RMM, but not the FMM

or the Foschini-Poole model.

1.2 Motivation of the thesis

As the data rate continually increases for larger transmission capacity, polariza-

tion mode dispersion (PMD) becomes an increasingly important limitation in fiber

communication systems. While PMD has been studied extensively in the field of

fiber-optic communication, the exact behavior of the birefringence fluctuations in

a fiber and their influence on the evolution of the PMD along the fiber length has
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Figure 1.4: Birefringence spatial distribution of (a) an SI optical fiber and (b) DSF.

not been carefully studied, presumably because of the difficulty of measuring small

birefringence variations over long distances. On the other hand, for a complete

description of PMD and PMD related issues, a detailed birefringence profile is in-

dispensable. Although the random-modulus model (RMM) is the only model that

is consistent with the experimental results of fiber birefringence, c.f. section 1.1.4,

these results are measured for only a limited number of optical fibers. However,

according to the birefringence mechanisms, different manufacturing processes and

external environments may result different statistical features of fiber birefringence.

Therefore, while the existing three simple birefringence models may be applicable

to certain birefringence profiles, general models are still missing for the description
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Figure 1.5: (a) Histogram of the SI fiber local birefringence. (b) Histogram of the

DSF fiber local birefringence. The solid curves represent the data fit by a Rayleigh

distribution.

of a broad range of fiber birefringence. The motivation of this thesis is therefore to

develop improved fiber birefringence models and to apply these models to determine

the detailed properties of PMD as a function of fiber length.

1.3 Organization of the thesis

This section outlines the structure of this thesis. Chapter 1 introduces the back-

ground knowledge, the motivation of the thesis together with its organization.

While Chapter 2 describes our general birefringence models and mathematical al-

gorithms for numerical implementing these models, Chapter 3 applies these models

as well as the two existing models to the studies of polarization mode dispersion

(PMD) in standard single mode fibers. In Chapter 4, the author investigates the

PMD reduction of sinusoidally spun fibers and various procedures for PMD com-

pensation. Chapter 5 finally describes pulse distortion caused by the nonlinear
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PMD. Chapter 6 concludes the thesis.



Chapter 2

Improved Fiber Birefringence

Modeling

To study polarization mode dispersion (PMD) and PMD-related phenomena, two

simple models are generally employed to describe the variation of the birefringence

along a fiber length. These are the FMM and RMM. While the FMM typically

applies to intrinsically stressed or elliptical fibers with large and nearly constant

birefringence strengths in which only the birefringence orientation is susceptible to

small perturbations, the RMM is more relevant to ultra-low PMD fibers for which

both the birefringence strength and orientation vary substantially along the fiber

as a result of random profile fluctuations. However, fiber birefringence results from

both intrinsic profile variations and external perturbations, leading to characteris-

tic birefringence profiles. For example, the amplitude of the birefringence strength

variations may be far larger or far smaller than those of the birefringence orienta-

tion. Further, either the strength or the orientation of the birefringence can vary

independently at different rates as a result of different manufacturing conditions

and external environments. To model as wide a range of birefringence behavior

as possible, we have accordingly considered four models for the longitudinal varia-

tion of the birefringence. Our models A1 and B1 interpolate between the constant

birefringence model and the RMM, while models A2 and B2, which reproduce the

FMM in a certain limit, extend our results to a broader range of birefringence pro-

23
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files. In this chapter, we examine these four models analytically and numerically.

Practical results of the physical application of the models together with a study of

their implications on the statistics of the PMD fluctuations are presented in the

next chapters.

2.1 Langevin Equations

In this section, we propose two procedures, labeled A and B, for simulating birefrin-

gence. Our starting point is the Langevin equation [60], which is employed, as in

the RMM, to generate random fluctuations in the birefringence. Denoting either of

the two orthogonal components of the birefringence vector b(z) by a single variable

x(z), this equation is :
dx

dz
= −a x(z) + g(z) (2.1)

in which g(z) represents Gaussian white noise with

〈g(z)〉 = 0 , 〈g(z)g(z′)〉 = σ2δ(z − z′) . (2.2)

The contribution from −a x(z) in Eq. (2.1) then counteracts the fluctuations in x

that are induced by the random noise g(z), in such a manner that the mean value of

x is zero, which is the expected result for fibers subject to random perturbations.

Polarization-maintaining fibers or fibers subject to systematic stresses, however,

would have a non-zero mean value of x requiring modifications to the model.

To generalize the above Langevin formalism to the case of optical fibers for

which the birefringence vector possesses a non-zero mean amplitude, an additional

term must be introduced. This is done in two ways below.

2.1.1 Procedure A

In our first procedure, Eq. (2.1) is modified through the inclusion of an additional

term

ẍ(z) + k2ẋ(z) + k1x(z) = g(z) (2.3)
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where ẋ(z) and ẍ(z) are, respectively, the first and second derivatives of the birefrin-

gence x with respect to the fiber length z . Here −k2 ẋ(z) and −k1 x(z) effectively

apply damping and restoring forces to the fluctuations generated by g(z) with

k1, k2 > 0. Adjusting the ratio between k1 and k2, therefore changes the magnitude

of the overall fluctuations in x(z).

Eq. (2.3), can be recast in standard fashion as two simultaneous first order

differential equations:

dx

dz
= v(z)

dv

dz
= −k1 x(z)− k2 v(z) + g(z) (2.4)

The parameter v then represents the rate of change of the birefringence. As we

have verified through numerical simulation, Eq. (2.4) evolves into the same stable

solution independent of the initial condition v(0). Therefore, to simply the analysis,

we have set v(0) = 0.

The analytic solution of Eq. (2.4) is given by

x(z) = exp(−λ1z)[c1 + G1(z)] + exp(−λ2z)[c2 + G2(z)] (2.5)

with

λ1 =
1

2
[k2 − (k2

2 − 4k1)
1/2]

λ2 =
1

2
[k2 + (k2

2 − 4k1)
1/2] (2.6)

G1(z) =
1

λ2 − λ1

∫ z

0

g(z′)exp(λ1 z′)dz′

G2(z) =
1

λ1 − λ2

∫ z

0

g(z′)exp(λ2 z′)dz′ (2.7)

and

c1 =
λ2

λ2 − λ1

x(0)

c2 =
λ1

λ1 − λ2

x(0) (2.8)
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2.1.2 Procedure B

In our second procedure, Eq. (2.4) is modified according to:

dx

dz
= v(z) + g(z)

dv

dz
= −k1 x(z)− k2 v(z) (2.9)

This is equivalent to

ẍ(z) + k2ẋ(z) + k1x(z) = k2 g(z) + ġ(z) (2.10)

in which g(z) is the noise source of Eq. (2.2). Although Eq. (2.4) and Eq. (2.9)

only differ in that g(z) is displaced from the first to the second of the first-order

equations, an additional first order fluctuation term, ġ(z) is present in Eq. (2.10).

We will find that the k2 g(z) generates relatively slow background fluctuations while

ġ(z) is instead associated with rapid, small magnitude variations in x(z).

As in procedure A, the analytic solution of Eq. (2.9) is determined by Eq. (2.5)

in which G1(z) and G2(z) are redefined as

G1(z) =
λ2

λ2 − λ1

∫ z

0

g(z′)exp(λ1 z′)dz′

G2(z) =
λ1

λ1 − λ2

∫ z

0

g(z′)exp(λ2 z′)dz′ (2.11)

The constants λ1 and λ2 are again obtained from Eq. (2.6).

As evident from the solution of Procedure B, i.e. Eq. (2.5) and Eq. (2.11), while

the z-derivative ġ(z) appears formally in Eq. (2.10), this has no physical relevance

since the solution for x(z) only involves the term g(z) which is the integral of the

z-derivative ġ(z). However, the presence of the additional z-derivative does lead to

a different physical behavior for x(z) in procedures A and B.

2.1.3 Numerical Realization

To investigate PMD evolution in an optical fiber, we can model the fiber by a

concatenation of N randomly-oriented sections with length ∆z of polarization-

maintaining (PM) fiber with fixed birefringence x(n). The total fiber length is
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denoted by L = N ∆z. The quantities x(n) form a random sequence with n =

1, 2, 3, · · · , N that we construct according to the prescriptions given in this section.

We first express the analytical solution of Eq. (2.5) of Procedure A as

x(n) =
exp(−λ1n∆z)

λ2 − λ1

[
λ2 x(0) +

∫ n∆z

0

g(z′)exp(λ1z
′)dz′

]

+
exp(−λ2n∆z)

λ1 − λ2

[
λ1 x(0) +

∫ n∆z

0

g(z′)exp(λ2z
′)dz′

]

=
exp(−λ1n∆z)

λ2 − λ1

[λ2 x(0) +
n∑

j=1

g̃1(j)]

+
exp(−λ2n∆z)

λ1 − λ2

[λ1 x(0) +
n∑

j=1

g̃2(j)] (2.12)

in which

g̃1(j) =

∫ j∆z

(j−1)∆z

g(z′)exp(λ1z
′)dz′

g̃2(j) =

∫ j∆z

(j−1)∆z

g(z′)exp(λ2z
′)dz′ (2.13)

for j = 1, 2, 3, . . . , n and n = 1, 2, 3, . . . , N .

From Eq. (2.2) and Eq. (2.13), we note that the mean square deviation of g̃i(j)

must satisfy the following condition,

〈g̃2
i (j)〉 =

∫ j∆z

(j−1)∆z

∫ j∆z

(j−1)∆z

〈g(z′)g(z′′)〉eλi(z
′+z′′)dz′dz′′

=

∫ j∆z

(j−1)∆z

∫ j∆z

(j−1)∆z

σ2δ(z′ − z′′)eλi(z
′+z′′)dz′dz′′

=

∫ j∆z

(j−1)∆z

σ2e2λiz
′
dz′

=
σ2

2λi

e2λi(j−1)∆z(e2λi∆z − 1) (2.14)

for i = 1, 2. The quantity g̃i(j) in the j:th section is determined from

g̃i(j) = γ(j)4i(j) (2.15)
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where γ(j) is a random series with −1 ≤ γ ≤ 1 and 4i(j) is the maximum value

of g̃i(j) in the j:th section, namely,

4i(j) =

√
σ2(e2λi∆z − 1)

2λi〈γ2〉 eλi(j−1)∆z. (2.16)

For Procedure A, we therefore obtain

x(n) =
exp(−λ1n∆z)

λ2 − λ1

[λ2 x(0) +
n∑

j=1

γ(j)41(j)]

+
exp(−λ2n∆z)

λ1 − λ2

[λ1 x(0) +
n∑

j=1

γ(j)42(j)]. (2.17)

while the corresponding expression for x(n) in Procedure B is given by

x(n) =
λ2

λ2 − λ1

exp(−λ1n∆z)[x(0) +
n∑

j=1

γ(j)41(j)]

+
λ1

λ1 − λ2

exp(−λ2n∆z)[x(0) +
n∑

j=1

γ(j)42(j)] (2.18)

2.2 Modified Birefringence Models

We now describe methods for generating b(z) and θ(z) in the context of our two

procedures A and B above. In each case, two formalisms are examined. In the first

of these, both b(z) and θ(z) are obtained from the birefringence vector evaluated

at the carrier frequency b(z) = b(ω0, z), while the second generates b(z) and θ(z)

independently. This leads to four birefringence models which we label Model A1,

Model B1, Model A2 and Model B2. We will also demonstrate that models A1 and

B1 reproduce the RMM in an appropriate limit.

The random sequences b(z) and θ(z) can be generated once a physical model

for the birefringence is specified; and the frequency derivative b′(z) is determined

from b(z) by

b′(z) =
b(z)

ω0

. (2.19)
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2.2.1 Model A1

In Model A1, once the two orthogonal components bx and by of the birefringence

vector b(z) are generated according to Procedure A from the parameters k1, k2 and

the variance σ2 of g(z), b(z) and θ(z) are determined from

b(z) =
√

b2
x(z) + b2

y(z)

θ(z) = cos−1(
bx

b
) (2.20)

The variables k1 and k2 can be expressed in terms of the fiber parameters Lf

and ε, c.f. Section (2.3) and Section (2.5), according to

k1 =
1

L2
f

ε

1− ε

k2 =
1

Lf

1

1− ε
. (2.21)

where Lf and ε are defined as

Lf =
k2 +

√
k2

2 − 4k1

2k1

ε =
k2 +

√
k2

2 − 4k1

2k2

. (2.22)

Since k1 > 0, k2 > 0, Eq. (2.21) indicates that 0 < ε < 1. Also, Eq. (2.7) and

Eq. (2.8) yield λ1 6= λ2, or equivalently
√

k2
2 − 4k1 6= 0 according to Eq. (2.6), so

that ε 6= 0.5 from Eq. (2.22). We therefore examine the ranges 0 < ε < 0.5 and

0.5 < ε < 1 separately.

The quantity σ2 can be determined by noting that

brms ≡ lim
z→∞

[〈b2(z)〉]1/2 =
π

Λbeat

. (2.23)

where the limit limz→∞〈b2(z)〉 of the analytical solution Eq. (2.5) is

lim
z→∞

〈b2(z)〉 = 2σ2 λrms (2.24)
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with

λrms =
1

(λ2 − λ1)2

(
1

2λ1

+
1

2λ2

− 2

λ1 + λ2

)
(2.25)

From Eq. (2.23) and Eq. (2.24) we have

σ2 =
b2
rms

2λrms

(2.26)

2.2.2 Model B1

In Model B1, the birefringence vector b(z) is instead obtained from Procedure B

while b(z) and θ(z) are determined as in Model A1 above. The three parameters,

k1, k2 and σ2 still fulfill Eq. (2.21) and Eq. (2.26) after identifying

λrms =
1

(λ2 − λ1)2

(
λ2

2

2λ1

+
λ2

1

2λ2

− 2λ1λ2

λ1 + λ2

)
. (2.27)

2.2.3 Model A2

In Model A2, the birefringence vector b(z) and associated birefringence strength

b(z) can again be generated from k1, k2 and σ2
b as in Model A1, while the values

of θ(z) are determined as in the FMM [41]. Specifically, θ(z) is obtained from an

independent random process according to

dθ

dz
= gθ(z) (2.28)

in which gθ(z) is a Gaussian white noise term satisfying

〈gθ(z)〉 = 0 , 〈gθ(z)gθ(z
′)〉 = σ2

θδ(z − z′) . (2.29)

The quantity σ2
θ can be determined according to

〈cos[θ(z)− θ(0)]〉 =

〈
cos

[∫ z

0

dz′gθ(z
′)
] 〉

= 1−
〈∫ z

0

dz′
∫ z′

0

dz′′gθ(z
′)gθ(z

′′)

〉
+ · · ·

= exp

(
−σ2

θ

2
z

)

≡ exp

(
− z

Lθ

)
. (2.30)



CHAPTER 2. IMPROVED FIBER BIREFRINGENCE MODELING 31

where Lθ is the θ-correlation length. Eq. (2.30) then yields

σ2
θ =

2

Lθ

. (2.31)

2.2.4 Model B2

In our final model, we assume as in Model A2, that the birefringence strength b(z)

and the principal axis angle θ(z) are independent. Further, we insure that θ follows

the white noise process as in the FMM, and describe the longitudinal evolution of

the birefringence strength, b(z), with the Procedure B instead of Procedure A.

2.3 Birefringence Correlation Length

We next describe how the birefringence correlation length, which is a measurable

quantity, can be determined from our model parameters. Considering first models

A1 and B1, we observe that since both b(z) and θ(z) are determined directly from

b(z), the birefringence strength and principal axis angle have the same correlation

length Lcorr. The autocorrelation of the birefringence vector is calculated according

to Eq. (2.5), which yields

〈b(0)b(z)〉 = b2(0)

[
λ2

λ2 − λ1

exp(−λ1z)− λ1

λ2 − λ1

exp(−λ2z)

]
(2.32)

where the variables λ1 and λ2 are defined through Eq. (2.6). However, since Eq.

(2.21), which can be reexpressed as

√
k2

2 − 4k1 =
1

Lf

|1− 2ε|
1− ε

(2.33)

has a different form for ε < 0.5 and ε > 0.5, we generate different expressions for

λ1 and λ2 in the two ranges. From Eq. (2.6), Eq. (2.21) and Eq. (2.33), these are

λ1 =
1

Lf

ε

1− ε
, λ2 =

1

Lf

, for 0 < ε < 0.5 (2.34)

and

λ1 =
1

Lf

, λ2 =
1

Lf

ε

1− ε
, for 0.5 < ε < 1. (2.35)
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Since the autocorrelation of the birefringence vector does not decrease exponen-

tially with length according to Eq. (2.32), we define the correlation length Lcorr

by

〈b(0)b(Lcorr)〉 = b2(0)exp(−1). (2.36)

Eq. (2.32) and Eq. (2.36) then imply

λ2

λ2 − λ1

exp(−λ1Lcorr)− λ1

λ2 − λ1

exp(−λ2Lcorr) = exp(−1). (2.37)

If we introduce the relative correlation length ν ≡ Lcorr/Lf , we find from Eq.

(2.34), Eq. (2.35) and Eq. (2.37)

(1− ε) exp(− εν

1− ε
)− ε exp(−ν) = exp(−1)(1− 2ε) (2.38)

for both ranges of ε. Since ν can be expressed solely in terms of ε, the correlation

length, Lcorr = ν(ε)Lf , depends only upon ε and Lf . The results of a numerical

calculation of ν for 0 < ε < 1, which are displayed with × markers in Fig. 2.1 along

with a polynomial fit (solid line), further indicates that ν > 1 in the entire physical

range of ε, so that the correlation length Lcorr always exceeds Lf .

While the general solution of Eq. (2.38) is complex, an analytical expression for

ν can be derived if either ε << 1 or ε ≈ 1. Note that λ1 ¿ λ2 in these two cases

since
λ1

λ2

=

{
ε

1−ε
, for 0 < ε < 0.5

1−ε
ε

, for 0.5 < ε < 1.
(2.39)

according to Eq. (2.34) and Eq. (2.35). Therefore, Eq. (2.32) can be approximated

by

〈b(z)b(0)〉 = b2(0) exp(−λ1z). (2.40)

If we further assume 〈b(z)b(0)〉 = b2(0) exp(−z/Lcorr) to be consistent with the

definition of Lcorr employed in Eq. (2.36), ν can be expressed analytically for small

and large ε through Eq. (2.34), Eq. (2.35) and Eq. (2.40); namely,

ν =

{
1−ε

ε
, for small ε,

1, for large ε.
(2.41)



CHAPTER 2. IMPROVED FIBER BIREFRINGENCE MODELING 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ε

ν   

Numerical Result
Polynomial Fitting
ν = (1−ε)/ε
ν = 1

Figure 2.1: The relative correlation length ν as a function of ε for 0 < ε < 1. The

numerical results are designated by × while the solid curve represents a polynomial

fit to these values. The ◦ and ¦ markers are calculated from our analytic formulas

for the ε ≈ 0 and ε ≈ 1 regions, respectively.

The results of Eq. (2.41) for 0 < ε < 0.1 and 0.8 < ε < 1 are presented as the

lines marked ◦ and ¦ in Fig. 2.1. Evidently good agreement is achieved between

the approximate and exact expressions in both regions.

In models A2 and B2 the fiber birefringence is instead defined through the

four parameters Λbeat, Lf , ε, and Lθ. Accordingly, two different correlation lengths

Lcorr,1 = νLf and Lcorr,2 ≡ Lθ are associated with the birefringence strength b(z)

and the principal axis angle θ(z), respectively.



CHAPTER 2. IMPROVED FIBER BIREFRINGENCE MODELING 34

2.4 Limiting Behavior

In this section, we demonstrate that models A1 and B1 interpolate between the

constant birefringence model and the RMM, while models A2 and B2 reproduce

the FMM in a certain limit.

Considering first models A1 and B1 for ε → 0, k1 = 0, k2 = 1/Lf from Eqs.

(2.21), we find that Eqs. (2.6) and Eq. (2.25) imply λrms → ∞ so that σ2 = 0

from Eq. (2.26). Together with our assumption that v(0) = 0, Eqs. (2.4) and (2.9)

then yield b(z) = b(0), implying that the effective birefringence is constant while

Eq. (2.41) indicates that Lcorr → ∞. For ε → 1, Eq. (2.41) instead reduces to

Lcorr = Lf . Accordingly, Eq. (2.3) and Eq. (2.10) yield

1

k2

ẍ(z) + ẋ(z) +
1

Lcorr

x(z) =
1

k2

g(z) (2.42)

and
1

k2

ẍ(z) + ẋ(z) +
1

Lcorr

x(z) = g(z) +
1

k2

ġ(z). (2.43)

Further, since k1, k2 >> 1 when ε → 1 from Eq. (2.21), the first term 1/k2 ẍ(z)

in both Eq. (2.42) and Eq. (2.43) is far smaller than the remaining terms while

1/k2 ġ(z) of Eq. (2.42) can be neglected in comparison to the first noise term g(z).

Consequently, both Eq. (2.42) and Eq. (2.43) yield the governing equation of the

RMM [41], as will be verified numerically in the following section.

On the other hand, in models A2 and B2, when the parameters are chosen

such that the birefringence strength remains nearly constant, the orientation of the

birefringence vector still varies so that for ε → 0, the FMM is recovered.

2.5 Numerical Results

In this section, we investigate the longitudinal evolution and statistical properties

of the random birefringence through numerical simulations.

We first demonstrate that ε is closely related to the magnitude of the stochastic

birefringence fluctuations. In Fig. 2.2, we display numerically generated curves of
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b(z) and θ(z) for z < 50 m with Λbeat = 20 m and Lf = 12 m for models A1 and

B1. The random series of vectors g(z) have here been chosen identically for all

calculations. The dashed, dotted, and solid lines correspond to ε = 0.01, ε = 0.22,

and ε = 0.99 respectively. As is evident from Fig. 2.2, the behavior of b(z) and θ(z)

varies markedly with ε. In particular, the fluctuations of b(z) and θ(z) increase with

ε and are respectively of the order of the birefringence strength or the principal axis

angle in models A1 and B1 in the limit of ε → 1. The corresponding RMM results

for b(z) and θ(z) obtained by applying the RMM to the same sequence of noise

vectors g(z) overlap with the solid curves of Model A1 or Model B1 for ε = 0.99.

Further, observe that the birefringence magnitude contains additional rapid and

small fluctuations as a function of propagation length in Model B1 compared to

Model A1, except when ε ≈ 1. This effect is especially pronounced for ε ≈ 0, as

expected from the additional noise term ġ in the B models. The birefringence maps

generated by Model A2 or Model B2 are qualitatively similar to those of Model A1

or Model B1, respectively. We have further found that the birefringence magnitude

is Rayleigh distributed in all four models, consistent with experimental results [54].

The above results have established that ε is roughly proportional to the mag-

nitude of stochastical fluctuations in the fiber birefringence. While ε lies in the

range 0 < ε < 0.5, our model more closely describes birefringence fibers with small

birefringence fluctuations; while ε in the range 0.5 < ε < 1.0, our model applies

to fibers with pronounced random birefringence variations, possibly originating in

fluctuating physical environments.

To characterize the randomness of the birefringence, we calculate the probability

density function (pdf) of the birefringence strength b based on our four general

models by varying both fiber length and ε. We find that, for any value of 0 <

ε < 1, this pdf of b approaches the Rayleigh distribution with increasing fiber

length. However, the pdf approaches the Rayleigh distribution more rapidly for

larger ε. Moreover, for a finite fiber length, while the pdf deviates from the Rayleigh

distribution as ε decreases, this deviation is not significant for 0.20 < ε < 1. To

illustrate this, we plot in Fig. 2.3 the pdf of the birefringence strength b of fiber

length z = 3 km for (a) ε = 0.99 , (b) ε = 0.60 , (c) ε = 0.20 and (d) ε =

0.01. The birefringence strengths are generated for a fixed set of random values,
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g(z), based on Model B1 with Λbeat = 10 m, Lf = 15 m. The solid curves are

the corresponding best fitting Rayleigh pdfs. Our numerical simulation indicates

that our general models are consistent with experimental histogram for the fiber

birefringence strength c.f. 1.5.

2.6 Conclusions

We have introduced four birefringence models that simulate the evolution of bire-

fringence along an optical fiber by adding a restoring force to the Langevin equation.

Unlike the standard Langevin equation, the birefringence is described by the mod-

ified equations as a random variable with a non-zero mean value but effectively

arbitrary fluctuation amplitude. Consequently, the method can be fit to a broad

range of observed fiber birefringence behavior that can result from different intrinsic

properties and/or external physical environments. Further, we have demonstrated

that the fixed and random modulus model can be recovered as limiting cases of the

formalism, which however can model fibers with any relationship between the mean

birefringence vector magnitude and the mean amplitude of fluctuations in both the

magnitude and the direction of the birefringence. Since birefringence properties

may differ not only among optical fibers but also may change for a single fiber

depending on the external environment, such models, which allow the birefringence

correlation lengths and the extent of the perturbation fluctuation to be adjusted

separately, could be required for the accurate predictions of certain statistical prop-

erties.
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Figure 2.2: The variation of the birefringence strength b and axis rotation angle θ

with fiber propagation distance z < 50 for a fixed set of random values, g(z) with

Λbeat = 20 m and Lf = 12 m. The dashed, dotted and solid curves are generated

with ε = 0.01, 0.22, 0.99 in model A1 and B1. The RMM method results overlap

with those of model A1 and B1 for ε = 0.99.
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Figure 2.3: The probability density function (pdf) of the birefringence strength

b of fiber length z = 3 km for (a) ε = 0.99 , (b) ε = 0.60 , (c) ε = 0.20 and (d)

ε = 0.01. The birefringence strengths are generated for a fixed set of random values,

g(z), based on Model B1 with Λbeat = 10 m, Lf = 15 m. The solid curves are the

corresponding best fitting Rayleigh pdfs



Chapter 3

Application of Various

Birefringence Models to

Polarization Mode Dispersion

Since polarization mode dispersion (PMD) originates from fiber birefringence fluc-

tuations in both the magnitude and orientation along the length of an optical fiber

or waveguide [43], a complete description of PMD requires knowledge of the detailed

statistical structure of the fiber birefringence map. To examine the statistical prop-

erties of the PMD, three simple models, i.e., the Foschini-Poole model, the FMM

and RMM have been employed in statistical studies of the PMD for standard [61]

and spun [62, 63] fibers. While the probability distribution functions (pdf) of the

DGD for all models share the same Maxwell distribution for long fiber lengths, the

statistical features of the PMD of short fibers and of the DGD of periodically spun

fibers differ substantially. Since birefringence profiles not only differ among fibers,

but also change with time within a single fiber as a result of environmental fluc-

tuations, installed fibers have more birefringence fluctuations than spooled fibers.

For the stochastic characterization of a broad range of birefringence profiles, we

have introduced in Chapter 2 four additional physical fiber birefringence models,

designated Model A1, Model B1, Model A2 and Model B2. Of these, models A1

and B1 interpolate between the constant birefringence model and the RMM, while

39
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models A2 and B2 extend the FMM. While most previous studies have focused

upon the long fiber length regions, in this chapter we will examine the stochastic

properties of the PMD of random birefringence fibers at all length scales based on

the FMM and RMM, and our improved models.

3.1 Transfer Matrix

Our evaluation of the DGD employs the transfer matrix formalism [11] in which

the fiber is modeled by N sections of polarization maintaining (PM) fiber. The

transfer matrix of the fiber then takes the form

M(ω) =
N∏

n=0

Mn(ω) . (3.1)

Mn(ω) represents the solution of the ordinary differential equation for the two

orthogonal polarization components of the electric field in each PM section n,

namely [40] ,

Mn(ω) =

(
m11 m12

m21 m22

)
(3.2)

with

m11 = m∗
22

= cos[(b(n) + b′(n)ω)∆z] + i cos(θ(n)) sin[(b(n) + b′(n)ω)∆z]

m12 = m21

= i sin(θ(n)) sin[(b(n) + b′(n)ω)∆z] .

where b(n), b′(n) and θ(n) are calculated according to the corresponding birefrin-

gence models.
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3.2 Polarization Mode Dispersion Based on Wai-

Menyuk Models

Although experimental measurements of statistical properties of the random bire-

fringence appear consistent with the Random Modulus Model (RMM) [54], most

theoretical studies have instead actually employed the Foschini-Poole model and

the FMM [39, 61, 64] due to their relative simplicity. In this section, we employ

both the RMM and FMM to compute the evolution of DGD for fiber lengths less

than or of the order of the birefringence correlation length.

3.2.1 Numerical Realizations

For the following numerical realizations, a linearly birefringent single mode fiber is

approximated as N sections of a polarization maintained (PM) fiber with section

size ∆z, i.e. L = N · ∆z, and birefringence vector b = [b cos θ, b sin θ]t, which

implies a birefringence strength b(ω, n) = b(ω, n∆z), group delay per unit length

b′(ω, n) = b′(ω, n∆z), and birefringence angle θ(n). In this subsection, we introduce

mathematical algorithms for generating b(n) and θ(n) based on the FMM and

RMM.

Fixed Modulus Model

In the FMM, the birefringence strength is assumed to be a constant, i.e., b(n) = b.

In the following, we introduce the procedure to generate the randomly varying

birefringence angle θ(n).

According the definition of gθ(z), c.f. Eq. (1.37), the rotation angle between

the birefringence axes of adjacent PM fiber sections can be expressed in the form

∆θ(j) =

∫ j∆z

(j−1)∆z

gθ(z) dz

for j=1, 2, 3, · · · , n. The mean square value of the angular displacement is therefore
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given by

〈∆θ2(j)〉 =

∫ j∆z

(j−1)∆z

dz′
∫ j∆z

(j−1)∆z

dz′′ 〈 gθ(z
′)gθ(z

′′) 〉

=

∫ j∆z

(j−1)∆z

dz′
∫ j∆z

(j−1)∆z

dz′′ σ2
θ δ(z′′ − z′)

=
2∆z

Lcorr

. (3.3)

In our simulations, we generate the random variable ∆θ(j) for each section j ac-

cording to

∆θ(j) = γ(j) ·∆θmax (3.4)

where γ is a random number in the range of (−1, 1). The maximum rotation

between sections is then

∆θmax =

(
∆z

2Lcorr〈γ2〉
)1/2

, (3.5)

and the birefringence axis angle θ(n) for the n:th section relative to the input axis

is

θ(n) =
n∑

j=1

γ(j) ∆θmax . (3.6)

Random Modulus Model

In the RMM, we generate the random vector b(n) in the following manner. First,

we rearrange Eq. (1.41) so that it does not contain the continuous vector g(z) as

follows

b(n) = [b(0) +

∫ n∆z

0

g(z′) exp(az′) dz′] exp(−an∆z)

= [b(0) +
n∑

j=1

∫ j∆z

(j−1)∆z

g(z′) exp(az′) dz′ ] exp(−an∆z)

= [b(0) +
n∑

j=1

G(j) ] exp(−an∆z) (3.7)
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where

G(j) =

∫ j∆z

(j−1)∆z

g(z′) exp(az′) dz′ , (3.8)

for j=1, 2, 3, · · · , n and n=1, 2, 3, · · · , N.

Further, Eq. (1.40) and Eq. (3.8) require that the mean square of G(j) satisfy the

condition,

〈G2(j)〉 =

∫ j∆z

(j−1)∆z

∫ j∆z

(j−1)∆z

〈g(z′)g(z′′)〉 exp(az′ + az′′)dz′dz′′

=
σ2

2a
exp[2a(j − 1)∆z] [exp(2a∆z)− 1] . (3.9)

Similar to what is done in FMM, we generate G(j) for the j:th section as,

G(j) = ~γ(j)4max(j) . (3.10)

Here ~γ is now a random vector with −1 < |~γ| < 1, while 4max(j) is the maximum

value for G(j) in the j:th section. Since the mean square value of G(j), Eq. (3.9),

is different in each PM fiber section j, we employ 4max(j) = 4c exp[a(j − 1)∆z],

where 4c is a constant. Note that the value of 4max(j) is different in each section

in RMM but remains constant in the FMM. Combining Eq. (3.9) and Eq. (3.10),

now yields

4max(j) =

[
b2
rms

exp(2a∆z)− 1

2〈γ2〉
]1/2

exp[a(j − 1)∆z] (3.11)

so that

b(n) = [b(0) +
n∑

j=1

~γ(j)4max(j) ] exp(−an∆z) . (3.12)

3.2.2 Numerical Results

We first calculate the DGD and its probability density function (pdf) for the FMM

and RMM. We then study the relative deviation,

δrms =
τrms − τ ∗rms

τ ∗rms

, (3.13)
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of the root-mean-squared DGD from its analytical value

τ ∗rms = 2b′ [2zLcorr + 2L2
corr exp(−z/Lcorr)− 2L2

corr]
1/2 , (3.14)

as well as the deviation of the mean DGD from its asymptotic value for large z,

namely

δmean =
〈τ〉 − 〈τ〉asym

〈τ〉asym

, (3.15)

where 〈τ〉asym = [8/(3π)]1/2 τrms. Our calculations are performed for fiber lengths

ranging from zero to several fiber correlation lengths, with birefringence parameters

Λbeat = 10 m, Lcorr = 15 m, and Dpmd = 0.2 ps/(km)1/2. The fiber length z is

normalized as L = z/Lcorr.

In Fig. 3.1 we display the results for the FMM of our Monte Carlo simulations

after 106 fiber realizations for the pdf of DGD for fiber lengths L = 0.01, 1, 5, 10,

20, and 100. In subplots (e) and (f), the Maxwell distribution is also plotted for

comparison. In all our graphs, the Maxwell distributions are given by the mean

DGD determined by the the Monte-Carlo simulations. We observe that for L < 1,

indicating that the fiber length is shorter than the correlation length, the pdf is

highly peaked with a long tail in the low DGD side and zero probability density for

DGD close to zero. For larger fiber lengths, the pdf gradually develops an extended

tail for large DGD, c.f. subplot (d), and increasingly approximates a Maxwell

distribution as in the last subplot. The pdf of DGD for the RMM differs markedly

from that of the FMM, as shown in Fig. 3.2. In this case the pdf is initially

nearly symmetric at very short propagation distances. While the pdf approaches

a Maxwell distribution as L increases from 0.0 to 0.825, it again distorts in the

direction of low DGD as L increases further. The distortion reaches a maximum

at L ' 2.5. but subsequently approaches the Maxwell distribution asymptotically.

The two distributions nearly coincide for L > 100. For longer fiber lengths, the

evolution of the tail of the pdf at large DGD, which gives rise to the physically

important system outage events is shown in Fig. 3.3. Here the dotted curves are

the base 10 logarithmic plot of the pdf ρ computed with the Monte-Carlo method

for L=20, 100 and 1000, based on (a) the FMM and (b) the RMM , while the

solid curves are the corresponding Maxwell distributions. While as expected, both
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methods yield the Maxwell distribution asymptotically, this curve is approached

from above for the RMM and below for the FMM.
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Figure 3.1: The probability density ρ as a function of the DGD, τ . The dotted

curves are the results of Monte-Carlo simulations based on the FMM for L equal

to (a) 0.01, (b) 1, (c) 5, (d) 10, (e) 20, (f) 100, while the solid lines in (e) and (f)

are Maxwell distributions.

In Fig. 3.4 (a) and (b) we display the relative deviations δrms and δmean as

functions of log(L) for the FMM and RMM, respectively, computed for 12 different

fiber lengths from L=0.03 to L=100. The values for δrms, which are represented by

the symbol ◦ in the figures, nearly vanish (zero is indicated by the dashed-dotted

line) in both models, which implies that our calculated results for the rms DGD
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Figure 3.2: The probability density ρ as a function of the DGD, τ . The dotted

curves are the results of Monte-Carlo simulations based on the RMM for L equal

to (a) 0.01, (b) 0.5, (c) 0.825, (d) 2.5, (e) 20, (f) 100, while the solid lines in (c) -

(f) are the Maxwell distributions.
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Figure 3.3: The variation of the pdf ρ with the DGD τ in a logarithmic (base 10)

scale, for L=20, 100, and 1000 based on (a) the FMM and (b) the RMM. The

dotted curves are the Monte Carlo simulation results while the solid curves display

the Maxwell distributions.
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Figure 3.4: The relative deviations δmean and δrms plotted as functions of log(L)

for (a) the FMM and (b) the RMM. The symbol ∗ corresponds to the δmean while

the symbol ◦ represents the δrms. The dashed-dotted lines indicate zero deviation.

The solid curves are polynomial fits to the δmean data.
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nearly coincide with the analytic predictions, Eq. (3.14). While for large L, δmean

for both models approaches zero, however, this occurs monotonically in the FMM,

while in the RMM, δmean first decreases from positive to negative values before

subsequently rising to zero. A polynomial fit yields L = 0.825 for the zero point

location. The accuracy of our results was further established by repeating our

calculation for different values of ∆z.

3.3 Polarization Mode Dispersion Based on Im-

proved Models

In the previous section, we have examined the statistical properties of the PMD

based on the FMM and RMM. In this section, we investigate the stochastic proper-

ties of PMD based on our four improved models. In the following, we first review the

four models, with emphasis on the physical implications of the defining equations

and their applicability to different fiber birefringence maps. We then derive rela-

tionships between the root mean square DGD and the statistical parameters of the

birefringence variations. The corresponding results of numerical PMD simulations

are presented in the final subsection.

3.3.1 Model Descriptions

To motivate our subsequent numerical studies, we first briefly review the models

of fiber birefringence presented in section 2.2. In this context, we derive analytic

formulas for the root mean square DGD for certain of these models.

To calculate the statistical variation of b(z) and θ(z) with z requires an appro-

priate birefringence model. In two of our models, labeled A1 and B1, b(z) and θ(z)

are obtained from the orthogonal components bx and by of b(ω0, z) according to

Eq. (2.20).

In the FMM, θ(z) follows a Wiener process, while in the RMM, bx(z) and by(z)

obey two independent Langevin equations. In both cases, a random birefringent

variable x(z) with zero mean results [41], where x(z) denotes either of the two
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birefringence components bx(z) and by(z). While this behavior is expected in bire-

fringent fibers subject to random perturbations, the birefringence in polarization

maintaining fibers or fibers subject to systematic stresses fluctuate around a non-

zero mean value. For this case, we introduced the modified Langevin equation, Eq.

(2.3) for Model A1, and Eq. (2.10) for Model B1, respectively. Here k1, k2 > 0, and

g(z) represents a Gaussian “white noise”. While only a single term g(z) appears

in Eq. (2.3), an additional first order term, ġ(z), is included in Eq. (2.10). As

discussed in Chapter 2, g(z) in Eq. (2.3), or k2g(z) in Eq. (2.10), leads to far

slower and larger-amplitude fluctuations in the birefringence x(z), than does the

extra term ˙g(z) in Eq. (2.10).

Since the asymptotic behavior of x(z) is independent of the initial condition,

we set v(0) = 0 in Eq. (2.3) which yields the analytical solution Eq. (2.5)- Eq.

(2.8). The analytical solution of Eq. (2.10) is also given by Eq. (2.5) with G1(z)

and G2(z) now defined by Eq. (2.11).

Despite the similar forms of the analytical solutions to models A1 and B1, the

latter formalism predicts a relatively slowly varying birefringence as a function of

fiber length while the former yields additional high-frequency but small magnitude

fluctuations, c.f. Fig 2.2. Additional distinguishing features of the two models will

be discussed in section 3.3.2.

To relate the three parameters appearing in Eqs. (2.3) and (2.10), i.e., k1, k2,

and σ2, to physically meaningful quantities, we first observe that σ2 is defined as the

variance of Eq. (2.2) and is consequently related to the beat length Λbeat through

σ2 =
π2

2λrmsΛ2
beat

, (3.16)

where λrms is calculated according to Eq. (2.25) for Model A1 and Eq. (2.27)

for Model B1. The quantities λ1 and λ2 are given in terms of k1 and k2 by Eq.

(2.6). We can further relate k1 and k2 to two physical parameters, the random

fluctuation strength parameter ε and the correlation length Lcorr. For mathematical

convenience, we introduce the inverse coupling strength Lf = Lcorr/ν where ν is

expressed in terms of ε by Eq. (2.38). We can relate k1 and k2 to ε and Lf , or

equivalently ε and Lcorr. Solving Eq. (2.38) numerically then demonstrates that
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Lcorr increases from Lf to ∞, as ε decreases from 1 to 0. Note that ε (0 < ε < 1)

corresponds to the mean fluctuation amplitude of the fiber birefringence, while Lf

equals the shortest fiber correlation length Lcorr when ε → 1. In terms of these

parameters, k1 and k2 can be rewritten as in Eq. (2.21). Models A1 and B1

interpolate between a constant-birefringence model when ε → 0 and the random

modulus model (RMM) for ε → 1. Consequently, depending on the values of ε and

Lf , models A1 and B1 describe a broad range of fiber birefringence profiles.

Because models A1 and B1 generate both b(z) and θ(z) from the same random

process, the fluctuations in both the birefringence strength and orientation are of

the same order. This behavior appears reasonable for fibers with small intrinsic

birefringence, for which both the birefringence strength and orientation should typ-

ically be affected in the same manner by small perturbations. However, for fibers

with relatively large intrinsic birefringence, small perturbations could affect the

birefringence strength less than the birefringence orientation. Therefore, we pro-

posed two additional models, A2 and B2, in which b(z) and θ(z) are influenced by

independent random processes. In these procedures, which again employ the three

parameters ε, Lf and Λbeat, b(z) is calculated in the same manner as models A1

and B1, but θ(z) is governed by an independent equation, i.e., Eq. (2.28). In Eq.

(2.28), gθ(z) is an uncorrelated noise term with variance σ2
θ = 2/Lθ where Lθ is the

correlation length of θ. While the FMM is again recovered in the limit of ε → 0,

models A2 and B2 extend the FMM to a broad range of birefringence profiles.

For example, to limit the excursion of b(z) while ensuring that θ(z) exhibits large

amplitude variations, ε should be set to a small value, typically 0 < ε < 0.5.

Since the random variations of the PMD originate from birefringence fluctua-

tions, we can compute its statistical properties from our models. For long fibers,

the most significant of these is the mean DGD since the probability density distri-

bution of the DGD is known to be Maxwellian in this limit. Therefore, the root

mean square DGD is a key quantity that we will now examine for the representative

case of Model B1. While the same analysis applies to Model A1, models A2 and

B2 of course lead to more complex formulas, as they predict different correlation

lengths for b(z) and θ(z).
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Accordingly, we first consider the defining equation,

∂τ (z, ω)

∂z
=

∂W (z, ω)

∂z
+ W (z, ω)× τ (z, ω) (3.17)

in which τ = [τ1, τ2, τ3]
t denotes the PMD vector, and W = [2bx, 2by, 0]t with bx

and by the two components of the birefringence vector b. The frame of reference is

rotated by τ̃ = R(z)τ with

R(z) =




cos θ(z) sin θ(z) 0

− sin θ(z) cos θ(z) 0

0 0 1




such that the birefringence vector is in the τ1 direction. Since the DGD, τ , which

equals the magnitude of the PMD vector, is invariant under rotations, we have

〈τ 2〉 = 〈τ̃1
2 + τ̃2

2 + τ̃3
2〉 (3.18)

where 〈τ̃1
2 + τ̃2

2 + τ̃3
2〉 is determined by Eq. (3.17) in the rotated frame together

with Eq. (2.10).

We further assume that b(ω, z) = ρ(ω)b(z) in which b(z) = b(ω0, z) is the

birefringence strength at the carrier frequency and ρ(ω) is a deterministic function

of frequency. Following the procedure of [41], we arrive at

∂〈τ 2〉
∂z

= 4ρω〈bτ̃1〉
∂〈bτ̃1〉

∂z
= 2ρω〈b2〉+ 〈bxvx + byvy

ρb
τ̃1〉+ 〈bxvy − byvx

ρb
τ̃2〉 (3.19)

Here we have denoted the frequency derivative of ρ by ρω. The root mean square

DGD is defined as τrms ≡
√
〈τ 2〉.

Since the general solution of Eq. (3.19) is complex, we first consider two special

cases. For ε → 0, which corresponds to an optical fiber with a constant birefrin-

gence, Eq. (2.10) yields vx(z) = 0 and vy(z) = 0 for the initial condition v(0) = 0.

Eq. (3.19) then yields the root mean square DGD of a polarization-maintaining

fiber, namely, τPM
rms ,

τPM
rms =

2π

ωΛbeat

z. (3.20)
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In ε → 1 limit, Model B1 reproduces the RMM. Comparing Eq. (2.10) to the

Langevin equation for the RMM [41] gives

vx = −bx/Lf , vy = −by/Lf . (3.21)

The corresponding expression for the root mean square DGD,

τRMM
rms =

2π

ωΛbeat

[2zLf + 2L2
f exp(−z/Lf )− 2L2

f ]
1/2, (3.22)

then follows from Eq. (3.19) and Eq. (3.21).

In general, as ε increases from 0 to 1, the stochastic fluctuation amplitude in-

creases monotonically, resulting in a stronger coupling between the two polarization

modes and hence a smaller PMD. That is, in general τRMM
rms < τrms < τPM

rms . Note

that if Lf is replaced by Lcorr, Eq. (3.22) yields the formula,

τ ∗rms = 2
π

ω0Λbeat

[2zLcorr + 2L2
corr exp(−z/Lcorr)− 2L2

corr]
1/2 , (3.23)

for the root mean square DGD of the FMM and RMM. Since Lcorr = ν(ε)Lf where

0 < ε < 1, τ ∗rms in Eq. (3.23) depends on the three parameters, ε, Lf and Λbeat of

Model B1.

While Eq. (3.23) transforms into Eq. (3.20) and Eq. (3.22) in the two limiting

cases discussed above, in general it predicts different mean DGD values than Model

A1 and B1, as we demonstrate explicitly in the subsequent section. Further, as

mentioned above, none of these equations are applicable to models A2 and B2,

which possess independent correlation lengths for b(z) and θ(z).

3.3.2 Numerical Results

In this subsection, we investigate the statistical properties of the PMD through nu-

merical simulations. In particular, we first examine the root mean square DGD and

then the evolution of the probability density function (pdf) of the DGD with fiber

length, since knowledge of these values enables the estimation of many additional

properties associated with polarized light propagation in fibers.
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For simplicity, our numerical studies of the root mean square DGD, τrms, are

confined to Models A1 and B1, which require three parameters ε, Λbeat and Lf .

Given these parameters, a series of birefringence values is generated based on the

defining equations of the corresponding models. The DGD is then calculated with

the standard transfer matrix formula from these values. After repeating this calcu-

lation, we evaluate the ensemble average of the root mean square DGD τrms.

We now investigate the variation of τrms with respect to ε, Λbeat and Lf . Consid-

ering first the dependence of τrms on ε for 0 < ε < 1, Λbeat = 15 m and Lf = 10 m,

we obtain the × and ◦ markers in Fig. 3.5 for models A1 and B1 at z = 200 m,

where each value in this and our subsequent curves are averaged over 105 real-

izations. Clearly, while τrms differs in the two models, in both cases it decreases

monotonically with ε in the interval [0, 1], as noted in Section 3.3.1. Further, for a

given ε, τrms is always larger for Model A1 than for Model B1, which is expected

as a result of the additional fluctuation source term and thus larger polarization

coupling in Model B1, c.f. Section 2.5 and Fig. 2.2. The analytic values for the

root mean square DGD, τ ∗rms given by Eq. (3.23) as a function of ε, Λbeat and

ÃLf are displayed as the solid curves in Fig. 3.5 and in the two subsequent fig-

ures respectively. The correlation lengths in Eq. (3.23) are calculated according to

Lcorr = ν(ε) Lf and Eq. (2.38), which yields Lcorr = 106 Lf , 100 Lf , 1.78 Lf , 1.01 Lf

for ε = 10−6, 0.01, 0.60, 0.99. While the simplified analytic expression is valid for

ε → 0 and ε → 1, the results of Model A1 or B1 do not agree with Eq. (3.23) away

from these limiting values.

We display next in Fig. 3.6 the base 10 logarithm of τrms as a function of

Λbeat for 0 < Λbeat < 30 m. These results are calculated with Model B1 for ε =

0.01, 0.60, 0.99, Lf = 10 m and z = 100 m. Since longer beat lengths imply reduced

birefringence, τrms is a decreasing function of Λbeat for all three ε values. Similarly,

τrms decreases for larger ε since greater random fluctuations yield enhanced modal

coupling.

That the variation of τrms with Lf is highly dependent on the value of ε is

further evident from Fig. 3.7, which displays the results of Model B1 at z = 100 m

for ε = 10−6, 0.01, 0.60, 0.99 and Λbeat = 10 m. Evidently, for ε ≈ 0, corresponding

to a polarization maintaining (PM) fiber, the PMD, namely τrms, is nearly constant
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over the interval 0 < LF < 30. Further, as expected, this value of ε maximizes τrms

since a PM fiber has a greater PMD than fibers with random birefringence. For

large values of ε, however, τrms increases quadratically as a function of Lf . For

intermediate values of ε such as ε = 0.01, τrms grows rapidly for small Lf and then

slowly approaches a maximum value for large Lf .

While the polarization mode coupling predicted by any model of random bire-

fringence effects induces full mode mixing in the long-length limit, leading to a

square-root dependence of DGD on length, the approach to this asymptotic behav-

ior differs among birefringence models. Specializing to Model B1, we display in Fig.

3.8 the variation of τrms, again averaged over 105 realizations, with the normalized

fiber length L = z/Lf for L < 50, ε = 0.01, 0.10, 0.20, 0.99, Λbeat = 15 m and

Lf = 10 m. As expected, for the nearly constant birefringence case ε = 0.01, τrms

increases linearly with L, while it grows approximately quadratically for ε = 0.99.

In the remaining cases, ε = 0.10, 0.20, τrms is a linear function of L at small fiber

lengths but becomes quadratic as L →∞. To demonstrate this explicitly, we plot

τrms as a function of
√

L for ε = 0.20, 0.60, 0.99 in Fig. 3.9 together with linear

least-square fits to these curves, as indicated by solid lines. Clearly, for all three

values of ε, τrms approaches a linear function of
√

L at sufficiently long fiber lengths.

Further, the curves are increasingly linear at shorter fiber lengths for larger ε.

Finally, we examine the evolution of the pdf of DGD, ρ , with fiber length

as in Section 3.2. The DGD, τ , is evaluated with our four models, while we

employ 106 realizations and evaluate the pdf for Λbeat = 20 m, ε = 0.60 and

Lf = 12 m. For models A2 and B2, we set the correlation length of θ, Lθ =

10 m . The pdf curves will be evaluated at normalized fiber lengths given by

L = 1.5, 2.5, 5, 10, 20, 100, 500, 1000.

In Fig. 3.10, we display the base 10 logarithm of the pdf, ρ, of the DGD as

a function of τ for L = 20 and L = 100, where the results for the models A1,

B1, A2 and B2, are displayed in separate subfigures (a)-(d), respectively. The

corresponding curves for L = 500 and L = 1000 are presented in Fig. 3.11. The

solid lines of these curves are the corresponding Maxwell distributions. The pdf here

approaches the Maxwell distribution from above in models A1 and B1, and below

in models A2 and B2 as the fiber length increases from L = 20 to L = 100 while it
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Figure 3.5: τrms as a function of ε according to models A1 (×) and B1 (◦) for a

fiber length L = 200 m with beat length Λbeat = 15 m and Lf = 10 m. The solid

line is the analytic value for the root mean square DGD, τ ∗rms.
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Figure 3.6: τrms as a function of Λbeat according to Model B1 for ε = 0.01, 0.60, 0.99

for a fiber length z = 100 m with Lf = 10 m. The solid line is the analytic value

for the root mean square DGD, τ ∗rms.
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Figure 3.7: τrms as a function of ÃLf according to Model B1 for ε =

10−6, 0.01, 0.60, 0.99 for a fiber length z = 100 m with Λbeat = 10 m. The solid

line is the analytic value for the root mean square DGD, τ ∗rms.
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Figure 3.8: τrms as a function of fiber length L according to Model B1 for ε =

0.01, 0.10, 0.20, 0.99 with Λbeat = 15 m and Lf = 10 m.
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Figure 3.9: τrms as a function of
√

L according to Model B1 for ε = 0.20, 0.60, 0.99

with Λbeat = 15 m and Lf = 10 m. The solid lines are linear least-square approxi-

mations to the corresponding curves.
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Figure 3.10: The base 10 logarithm of the pdf ρ as a function of DGD τ for L= 20

and 100 according to models (a) A1, (b) B1, (c) A2, and (d) B2. The dotted curves

are numerical simulations, while the solid curves are the Maxwell distributions.
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overlaps with the Maxwell distribution for all four models at L = 1000. Moreover,

for the same parameter values, models A1 and B1 predict a different mean DGD

than models A2 and B2. Therefore, as discussed in Section 2, the mean DGD

depends upon the details of the birefringence, and cannot be accurately predicted

by a simple approximation such as Eq. (3.23).
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Figure 3.11: The base 10 logarithm of the pdf ρ as a function of DGD τ for L= 500,

and 1000 according to models (a) A1, (b) B1, (c) A2, and (d) B2. The dotted curves

are numerical simulations, while the solid curves are the Maxwell distributions.

We now examine evolution of the pdf of the DGD with fiber length at all length

scales. To simplify the discussion, we first compute the variance of the deviation of
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our pdf, ρ(n), from the Maxwell distribution, ρm(n), with the same mean DGD,

δv =
M∑

n=0

(ρm(n)− ρ(n))(τ 2
b (n)− τ̄ 2

b )

τ̄b =
M∑

n=0

ρτb(n) (3.24)

in which we typically employ M = 40 histogram bins. Figure 3.12 displays the

variation of δv with log(L) as L increases from 1.5 to 1000 for Model A1 (◦), Model

B1 (×), Model A2 (¦), and Model B2 (∗). The solid line further designates δv = 0.

Evidently, the Model A1 and Model B1 curves, as well as the Model A2 and Model

B2 curves nearly overlap, indicating that the statistical properties of procedures A

and B are similar, despite the differing birefringence behaviors. Moreover, although

δv → 0 as L →∞ for all four models, the approach is monotonic for Model A2 or

B2, while for Model A1 and B1, δv first crosses zero at L0 = 2.16 for Model A1 and

L0 = 1.61 for Model B1, after which it asymptotically approaches zero.

As implied from Equation (4.2), δv = 0 is a necessary but not sufficient condition

for the pdf to coincide with a Maxwell distribution. To investigate further the

convergence of the pdf to a Maxwell distribution, we display the pdf as a function

of the DGD for L = 1.5, 2.5, 5, 10, 20, 100, 500, 1000. These graphs confirm that

the evolution of the pdf in models A1 and B1 is similar to that of the RMM, while

the curves for models A2 and B2 resemble those of the FMM, which is explained

by the relatively large value of ε, as we will discuss at the end of this section. That

is, for models A2 and B2, the pdf approaches a Maxwell distribution monotonically

with fiber length as predicted by our previous results for δv. However, for models

A2 and B2, while the δv curves indicate the major features of the pdf results,

the pdf evolves rapidly towards the Maxwell distribution for L ≤ L0, which leads

to a distorted curve in the vicinity of L0. The pdf then deviates further from the

Maxwell distribution until L ∼ 5. For L > 5, the pdf again approaches the Maxwell

distribution asymptotically.

The pdf at L = L0 is plotted on a linear scale in Fig. 3.13 (a) and (b) for Models

A1 and B1, while the pdf at L = 1000 is given in Fig. 3.13 (c) for Model A1 and

(d) for Model B1 for comparison. The solid curves are the Maxwell distributions
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Figure 3.12: δv as a function of log(L) from models A1 (◦), B1 (×), A2 (¦), and

B2 (∗). The solid line designates δv = 0.
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Figure 3.13: The variation of the pdf ρ with DGD τ for (a) Model A1 at L = 2.16

, (b) Model B1 at L = 1.61, (c) Model A1 at L = 1000, and (d) Model B1 at

L = 1000. The solid curves are the corresponding Maxwell distributions.
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with the corresponding mean DGD values. While δv = 0 at L = L0, δv ' 0.1 and

δv ' 0.2 at L = 1000 for models A1 and B1 respectively, for which δv = 0 is only

approached asymptotically for large L. Clearly, the pdf of the DGD resembles a

distorted Maxwell distribution for models A1 and B1 at L = L0, unlike the pdf at

L = 1000, which, as expected, agrees nearly perfectly with the Maxwell curve.

That our results for models A1 and B1 approximately reproduce those of the

RMM, while those for models A2 and B2 are close to the FMM is related to the

relatively large values that we have employed for ε. For small ε, the form of the

pdf of the DGD can be substantially modified. To illustrate, we have calculated

the pdf and δv for L = 100 in Model B1 as a function of ε with 0 < ε < 1. The

dependence of δv on ε is displayed in Fig. 3.14. Evidently, δv decreases with ε,

indicating that the pdf of the DGD deviates more substantially from the Maxwell

distribution for smaller ε. Moreover, for 0 < ε < 0.5, δv falls rapidly with ε while

δv varies more slowly for 0.5 < ε < 1. This at least partially explains the similarity

of our previous curves for models A1 and B1 with ε = 0.6 with those of the RMM,

which is obtained from Model A1 or B1 when ε → 1.

3.3.3 Conclusions

We have examined the predictions of the two existing models of fiber birefringence

for the PMD of short fiber lengths. While our FMM calculations agree as expected

with the analysis of J. Yang etc. [61], the evolution of the pdf of the DGD for the

FMM differs rather unexpectedly from the RMM result for fiber lengths close to or

shorter than the correlation length (although the models of course agree in the limit

of long fiber lengths). Further, for long but finite fiber length, the FMM yields a

smaller outage probability than that predicted from the Maxwell distribution while

the RMM instead predicts a larger outage probability. Our results could potentially

be employed experimentally, possibly with an efficient non-invasive method for

measuring the evolution of the PMD over numerous short lengths of a given fiber

to determine the physical properties of the birefringence.

We have also examined the statistical properties of the PMD based on the four

models proposed in Chapter 2 through both theoretical analysis and numerical
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Figure 3.14: The variation of δv with ε for Model B1 with L = 100.
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simulations. The models can be adapted to a broad range of birefringent fibers,

ranging from nearly polarization-maintaining fibers to fibers with very large polar-

ization mode coupling. Further, they generate different fluctuation behavior for the

birefringence along the fiber and therefore lead to different formulas for the root

mean square DGD as a function of longitudinal distance. These statistical prop-

erties could in principle be employed to distinguish between different birefringence

behavior through repeated measurements on short optical fiber segments, possibly

subject to time-dependent environmental fluctuations. In Chapter 4, we will derive

analogous results for spun fibers.



Chapter 4

Polarization Mode Dispersion

Mitigation through Compensation

and Spun Fibers

Polarization mode dispersion (PMD) mitigation can be achieved through two ap-

proaches. The first is to compensate the PMD in already installed systems. Because

PMD fluctuates in time, the compensation must be applied in-site and dynamically,

greatly complicating the development of compensators and adding substantially to

their expense. The second approach is to design low-PMD fibers. One proce-

dure for manufacturing low PMD fibers involves spinning the fiber during the fiber

drawing process [65, 66]. Generally, the fiber is rotated with tractors, which in-

duces a similar rotation of the fiber’s birefringence axis along the fiber length. This

spinning can be applied at either a constant or a variable rate. The latter proce-

dure appears to reduce PMD more than the former. Spinning was implemented

in fiber manufacturing about a decade ago to reduce the PMD of transmission

fibers. Experimentally, the PMD coefficient was reduced from 1.0 − 0.1ps/
√

km

to 0.05− 0.01ps/
√

km [67–69], which as we see, is in almost exact agreement with

the results of this chapter. Accordingly, in this chapter, we study both approaches.

In section 4.1, we examine PMD reduction of sinusoidally spun fiber, while second

4.2 introduces different procedures for PMD compensation and mitigation.

69
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4.1 The PMD Reduction of Sinusoidally Spun

Fibers

PMD reduction in spun fibers was initially examined under the assumption that

the birefringence magnitude was constant or slowly-varying [65, 66, 70–74]. Later,

the effects of random birefringence variations were included with the aid of two

physical birefringence models, i.e., the random-modulus model (RMM) and the

fixed-modulus model (FMM) [62, 63, 75–77]. The two methods predict different

PMD properties [63], indicating the importance of an accurate statistical model of

the fiber birefringence. In this section, we study sinusoidal spun fibers based on

a modified random modulus model (MRMM) denoted as Model B1 in Chapter 2.

While in the FMM and RMM, the amplitude of the birefringence fluctuations are

either zero or a fixed value, the MRMM enables this amplitude to be set arbitrarily.

Accordingly, in this section we simulate PMD reduction and the DGD statistics of

spun fibers with arbitrary birefringence profiles.

4.1.1 Numerical Results

We now consider fibers subjected to a sinusoidal spin function A(z) = A0 sin 2πz/p,

where p and A0 are termed the spin period and amplitude, respectively. We first

investigate the PMD reduction as a function of both the fiber parameters and the

spin amplitude, and then compare the evolution of the probability density function

(pdf) of the DGD along fiber length in spun fibers to that of standard fibers.

The degree of PMD reduction through spinning is often specified through the

spin-induced reduction factor (SIRF), defined by [76]

SIRF =
τ s
rms

τrms

. (4.1)

Here τ s
rms is the root mean square DGD of the spun fiber and τrms is that of

standard fiber. In our numerical studies, we model a linearly birefringent single

mode fiber of length z by N sections of PM fiber with a section size ∆z = z/N

that is much shorter than both the polarization beat length Λbeat and the inverse
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coupling strength Lf . Random sequences of the two orthogonal components of the

birefringence vector b(n) are then generated from the MRMM, c.f. Chapter 2.

From these values, we compute the evolution of the birefringence along the fiber

length, i.e., the principal birefringence axis angle θ(n) and the birefringence modulus

b(n). Assuming that fiber spinning rotates the birefringence axis without affecting

the birefringence strength [75] results in ϑ(n) = θ(n) + A(n) for the principal

birefringence axis angle. The differential group delay (DGD) of both spun and

standard fibers is then evaluated with a transfer matrix method from the computed

birefringence as a function of length c.f. Chapter 3. PMD statistics, such as the

root mean square DGD and the pdf of the DGD, are estimated by repeating our

calculations for 105 realizations.

In the MRMM, the fiber birefringence is characterized by three parameters, ε,

Lf and Λbeat, that vary among fibers and further depend on the environmental

properties. We accordingly first calculate the variation of the SIRF with respect

to these three parameters for a spin period p = 4 m and amplitude A0 = 2.75 rad.

As is evident from Section 2.5 and Fig. 2.2, the value of ε determines the main

characteristics of the random birefringence profile. Thus, while for 0 < ε < 0.5

the profile varies randomly with small fluctuation amplitude, for larger ε, in the

range 0.5 < ε < 0.9, the birefringence variations become pronounced. To investi-

gate the influence of the fiber spin on PMD reduction in the presence of random

birefringence, we first display in Fig. 4.1 the SIRF ( × ) as a function of ε for

0 < ε < 1 with Λbeat = 10 m and Lf = 5 m for a fiber length z = 500 m. In this

figure, the corresponding result for a PM fiber is also plotted as a point denoted by

◦. Evidently, the SIRF is larger for large ε and increases monotonically with ε for

ε > 0.4, indicating that the PMD reduction is less effective for more pronounced

random birefringence variations. This is expected, since for PM fibers, periodic si-

nusoidal spinning reduces the PMD to zero due to precise phase matching; however

the fluctuations of the birefringence result in a certain average deviation from the

phase matching condition and therefore gives rise to a corresponding increase in

the reduction factor.

Fig. 4.2 displays the SIRF as a function of Lf for 0 < Lf < 30 m with Λbeat =

10 m and z = 500 m. The three curves are computed with ε = 0.01 ◦, ε = 0.20×
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Figure 4.1: The SIRF (×) as a function of ε for 0 < ε < 1 with Λbeat = 10 m,

ÃLf = 5 m and z = 500 m. The point indicated by ◦ is the PM fiber result.
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Figure 4.2: The SIRF as a function of Lf for 1 < Lf < 30 m with z = 500 m,

Λbeat = 10 m, and ε = 0.01 ◦, ε = 0.20 ×, and ε = 0.90 ¦. The dashed line

corresponds to the PM fiber results.
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and ε = 0.90 ¦, while the corresponding result for a PM fiber is presented as the

dashed line in the figure. In the MRMM, ÃLf varies inversely with the correlation

(coupling) length such that the mode coupling induced by birefringence fluctuations

is enhanced when ÃLf → 0. Hence, for Lf < 10 m, the SIRF decreases with Lf and

increases with ε, while for Lf > 10 m, the SIRF is small and nearly independent

of Lf , and is further nearly identical for all three cases. Indeed, for values of Lf

approaching zero, the large effective random mode coupling removes considerably

the spin-induced PMD reduction, especially for large ε. Moreover, as ε decreases

from 0.90 to 0.01, the SIRF curves vary less with Lf , and therefore approach the

behavior of PM fiber, for which the PMD is independent of Lf , c.f. Fig. 3.7. This

is expected, since in the limit of ε → 0, the MRMM reduces to a PM fiber model.

The curves in Figs. 4.1 and 4.2 for the PMD of spun fiber as a function of the

random birefringence fluctuation strength ε and the inverse coupling length Lf are

new results of our model.

Next, in Fig. 4.3, we display the SIRF as a function of beat length for 0 <

Λbeat < 30 m, with Lf = 5 m and z = 500 m. As in Fig. 4.2, the three SIRF

curves correspond to ε = 0.01 ◦, ε = 0.20× and ε = 0.90 ¦, while the dashed

line is the PM fiber result. As expected, the SIRF of the three ε values becomes

nearly independent of the beat length for Λbeat > 10 m as for PM fiber when Λbeat is

much longer than the spin period. For Λbeat < 10 m the SIRF fluctuates noticeably

at small ε. This behavior is similar to that of a periodically spun PM fiber, for

which a large maximum appears at Λbeat = 2.1 m together with two more smaller

maxima at Λbeat = 25 m and 28.5 m. While the first maximum is still noticeable

for ε = 0.20, 0.01, the secondary maxima are not visible in these two curves. For

ε = 0.9, the large birefringence fluctuations effectively suppress the first maximum

as well. In addition to the novel curves shown above for the variation of the PMD

reduction factor with beat length for different random birefringence profiles, our

results for PM fiber are slightly different from the previously reported results of [66].

We now implement the MRMM to study the variation of the SIRF with spin

amplitude A0 for 0 < A0 < 5 rad for different random birefringence profiles with

p = 4 m, Λbeat = 20 m and ε = 0.01, 0.20, 0.90. Since the resulting curves depend

strongly on Lf , we present results for Lf = 1 m, Lf = 5 m and Lf = 25 m in Figs.
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Figure 4.3: The SIRF as a function of Λbeat for 1 < Λbeat < 30 m with z = 500 m,

ÃLf = 5 m, and ε = 0.01 ◦, ε = 0.20 ×, and ε = 0.90 ¦. The dashed line again

corresponds to a PM fiber.
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4.4, 4.5, and 4.6, respectively, with z < 100 Lf , which is sufficient to illustrate the

asymptotic behavior. In these three figures, ◦, × and ¦ indicate the ε = 0.01,

ε = 0.20 and ε = 0.90 values, respectively. For short sinusoidal spin periods, i.e.,

p ¿ Λbeat, both the PM fiber and the RMM predict that the PMD reduction is

optimal when the spin amplitude satisfies the phase matching condition J0(2A0) =

0, where J0 is the zeroth-order Bessel function of the first kind [65]. Accordingly,

for all Lf and ε, our curves have local minima at A0 = 1.20, 2.75, 4.33, .... That is,

the phase matching condition yields an optimum solution for the spin amplitude for

short spin periods, independent of the birefringence profile variations. Moreover,

the SIRF is an oscillating function of the spin amplitude with a monotonically

decreasing average value. Other aspects of the curves depend strongly on ε and

Lf . For example, for Lf = 1, the local minima of the SIRF are pronounced for

large ε, but vanish for ε = 0.01. This again demonstrates that the PMD reduction

factor of spun fiber increases when the random birefringence is large (for small Lf )

because of the resulting changes in the relative phase of the two fiber modes. As

is evident from our curves for Lf = 5, 25, the three curves nearly overlap, with

minima close to zero (except for the third minimum for Lf = 25 m). While our

results for ε = 0.9 are similar to those of the RMM [76], the variation of the PMD

reduction as a function of the spin amplitude for different birefringence profiles has

not been examined previously.

For short period PM fibers, sinusoidal spinning yields periodic fluctuations in

the DGD as a function of length when the phase matching condition is satisfied [65].

Although the DGD is not periodic in a randomly birefringent fiber, an optimum

PMD reduction can still be achieved. To illustrate, we display in Fig. 4.7 the

SIRF calculated with the MRMM as a function of normalized fiber lengths L with

Lf = 15 m, Λbeat = 20 m and ε = 0.01 ◦ , ε = 0.20 ¦, and ε = 0.90 ×. The PM fiber

result is shown as a dashed line with 4 markers. To satisfy the phase matching

condition, J0(2A0) = 0, we have further set p = 4 m and A0 = 2.75. While the

SIRF oscillates periodically with L for all values of ε, as ε increases, the oscillation

amplitude decreases, leading to larger PMD reduction factors. As expected, the

curve for ε = 0.01 nearly overlaps that for a PM fiber, while the SIRF is less periodic

for ε = 0.90, as previously observed from the RMM calculations [65].
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Figure 4.4: The SIRF as a function of spin amplitude A0 for 0 < A0 < 5 rad with

Lf = 1 m. Here the spin period p = 4 m, while Λbeat = 20 m and ε = 0.01 ◦,
ε = 0.20 ×, and ε = 0.90 ¦.
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Figure 4.5: As in Fig. 4.4 but for Lf = 5 m
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Figure 4.6: As in Fig. 4.4 but for Lf = 25 m
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Figure 4.7: The SIRF as a function of fiber length L. Here the spin period p = 4 m

and amplitude A0 = 2.75 rad, while Λbeat = 20 m and Lf = 15 m. The curves

marked ◦, ¦, × and 4 correspond to ε = 0.01, ε = 0.20, ε = 0.90 and PM fiber,

respectively.
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A central result of this section is that the MRMM predicts that the PMD

reduction for sinusoidal spun fibers varies with the form of the birefringence profiles,

such that as the random fluctuation strength ε is varied from 0 to 1, the behavior of

the SIRF as a function of fiber parameters and spin amplitude interpolates between

that of PM fiber and the RMM predictions, c. f. Fig. 4.1 - 4.7

We finally investigate the pdf of the DGD of sinusoidally spun fibers as a function

of fiber length. This study parallels our previous analysis of standard fibers in

Chapter 3. Since the pdf of the DGD approaches the Maxwell distribution for long

fiber lengths, we plot the variance of the deviation of the computed pdf distributions

ρ(n) from the Maxwell distribution ρm(n) with the same mean DGD, namely,

δv =
M∑

n=0

(ρm(n)− ρ(n))(τ 2
b (n)− τ̄ 2

b )

τ̄b =
M∑

n=0

ρ τb(n) (4.2)

in which M = 40 histogram bins are employed. The variation of δv as a function of

log(L) for sinusoidal spun fiber with spin period p = 4 m and amplitude A0 = 2.75

is calculated in the presence of random birefringence described by Λbeat = 20 m,

Lf = 15 m, and ε = 0.9 and ε = 0.2. The results are compared with those of

corresponding unspun fibers in Fig. 4.8 for ε = 0.9 and Fig. 4.9 for ε = 0.2

respectively. Since the pdf:s approach the Maxwellian distribution at different rates,

we have employed 0.5 < L < 3000 in Fig. 4.8 with ε = 0.9, and 0.5 < L < 10000

in Fig. 4.9 with ε = 0.2. For comparison, Figs. 4.8 and 4.9 display the different

curves plotted instead with the same length scale. In all cases, the lines marked

+ and ◦ correspond to the unspun and spun fiber results, while the dotted and

dashed curves are polynomial least-square fits. While the four curves for δv possess

zero crossings at small L, this does not imply that the pdf is an exact Maxwell

distribution since higher moments of the pdf:s may deviate from the Maxwellian

values. In fact, graphs of the actual pdf:s display noticeable deviations from the

Maxwell distribution for short fiber lengths, but approach the Maxwell distribution

asymptotically as L → ∞ as indicated by the solid line in Figs. 4.8 and 4.9.

Further, δv oscillates with fiber length for spun fiber but not for unspun fiber.
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Figure 4.8: The variation of δv with log(L) for ε = 0.90 and L = 0.5, 1, 2.5, 10, 50,

100, 200, 400, 800, 1500, 3000. The spun fiber results with spin period p = 4 m and

amplitude A0 = 2.75 rad are compared with those of unspun fiber with Lf = 15 m

and Λbeat = 20 m. + and ◦ are the unspun and spun fiber results, and the dotted

and dashed curves are polynomial least-square fits to these curves. The solid line

is computed with δv = 0.
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Figure 4.9: As in Fig. 4.8 but for ε = 0.20 and L = 0.5, 1, 2.5, 10, 50, 100, 200,

400, 800, 1500, 3000, 5000, 10000.
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The distance at which the pdf becomes approximately Maxwellian increases in

Figs. 4.8 and 4.9 as ε decreases towards zero. If we define Lm as the length at

which δv decreases to |δv| = 1, we observe from our figures that for both ε values

considered, Lm is proportional to the correlation length Lcorr for both spun and

unspun fibers. Thus Lm increases by a factor of five when ε is decreased from

0.90 to 0.20 since Lcorr = ν(ε)Lf , and the ratio of ν for ε = 0.20 and ε = 0.90

is ν0.2/ν0.9 = 5.13. Finally, the rate at which the pdf becomes Maxwellian is also

far smaller for spun fibers compared to unspun fibers. That the pdf possesses

significantly different features as a function of fiber length for spun and unspun

fibers is a second central result of this section.

4.2 Polarization Mode Dispersion Compensation

For existing long haul 10 and 40 GHz optical transmission systems, considerable

effort has been expended on the theoretical and experimental analysis of electrical

and optical PMD compensation in the last decade [78–82]. In this section, we

examine PMD compensation formalisms that replace the 2 × 2 transfer matrix

relating the input and output polarization vectors of an arbitrary optical element

with products of exponentials of individual matrices. In our first Taylor-series

methods, which extend the procedures of Refs. [83] and [1], suitably symmetrized

exponential products are employed to enhance computational accuracy at a given

order. Up to second order, the physical process corresponding to each individual

exponential operator has been experimentally realized [84], and the third-order

operator could be implemented in a manner similar to that of Ref. [85] (note,

however, that if the bandwidth of the incoming pulse is small, any fiber behaves

as a first-order element, for which simplified optical and electrical techniques are

available [81] ).

Since the Taylor procedure does not successfully compensate the PMD of large-

bandwidth signals, other authors have expanded the transfer matrix in a Fourier se-

ries [86] or applied an iterative least-squares fit to minimize the calculated deviation

of the PMD over a given frequency interval from experimental measurements [87].

In this section, we instead describe the PMD behavior of each fiber realization in
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terms of modified exponential products derived from a Chebyshev polynomial ap-

proximation to the observed PMD [88]. Similar to the Taylor expansion procedure,

we also employ a proper symmetrization of the noncommuting matrix operators to

ensure a large Chebyshev compensation bandwidth.

This work was performed in collaboration with other students and my thesis

advisor. My contribution consisted of co-developing the theory and independently

programming numerical implementations.

4.2.1 Taylor Series Approximation

In this subsection, we introduce procedures that lead to improved accuracy or

bandwidth compared to the results of Ref. [1] through the inclusion of additional

compensator stages.

Polarization evolution in a linear optical fiber medium in the Jones represen-

tation is described by a complex 2 × 2 frequency-dependent transfer matrix T (ω)

according to Eout = T (ω)Ein, where Ein and Eout denote the incoming and outgo-

ing optical field polarizations, respectively. PMD is then characterized through a

three-dimensional Stokes space PMD vector τ which can be obtained from

D(ω) ≡ −1

2
τ · σ =

dT

dω
T−1(ω), (4.3)

in which σ represents the Pauli spin vector. Once the analytical expansion of T (ω)

has been found, PMD compensation (PMDC) can be accomplished by implementing

the inverse of the approximate T (ω) after the fiber system [1,84,89].

In Ref. [1], T (ω) is expanded in the vicinity of a reference frequency ω0 as a

product of exponentials of increasing powers of the frequency deviation according

to

T (ω0 + ∆ω) = T (ω0)e
∆ωN1e

1
2!

(∆ω)2N2e
1
3!

(∆ω)3N3e
1
4!

(∆ω)4N4 · · · . (4.4)
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From Eq. (4.4), the matrices Ni can be expressed as

N1 =
dT

dω
|ω0T

−1
0 (4.5)

N2 =
d2T

dω2
|ω0T

−1
0 −N2

1 (4.6)

N3 =
d3T

dω3
|ω0T

−1
0 − 3N1N2 + N3

1 (4.7)

N4 =
d4T

dω4
|ω0T

−1
0 − 4N1N3 − 6N2

1 N2 − 3N2
2 −N4

1 . (4.8)

The exponential expansion according to Eq. (4.4) has the advantage that differ-

ent orders of PMD can be treated as separate subsystems and subsequently con-

catenated. However, this expansion is not necessarily optimal, as it ignores the

non-commutativity of the matrix product.

Alternative procedures can be obtained through other forms of the solution of

the underlying differential equation

dT

dω
= D(ω)T (ω). (4.9)

For example, to express the solution of this equation as a single exponential of a

Taylor series, we can expand

D(ω) =
∞∑

n=0

Dn+1

n!
∆ωn (4.10)

in which Dn+1 denotes the nth derivative of D(ω) with respect to frequency.

To express the solution of Eq. (4.9) in the form

T (ω) = T (ω0)e
S1∆ω+

S2
2!

∆ω2+
S3
3!

∆ω3+···, (4.11)

we equate the expressions for dT
dω
|ω0 ,

d2T
dω2 |ω0 ,

d3T
dω3 |ω0 · · · , evaluated by using Eq. (4.9),

with the corresponding expressions obtained from Eq. (4.11). We find that

dT

dω
|ω0 = D1 = S1

d2T

dω2
|ω0 = D2 + D1D1 = S2 + S1S1

d3T

dω3
|ω0 = D3 + 2D2D1 + D1D2 + D1D1D1

= S3 + 1.5S2S1 + 1.5S1S2 + S1S1S1, (4.12)
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so that

S1 = D1 (4.13)

S2 = D2 (4.14)

S3 = D3 +
1

2
[D2, D1], (4.15)

or

S1 = N1 (4.16)

S2 = N2 (4.17)

S3 = N3 +
3

2
[N1, N2] (4.18)

S4 = N4 + [N3, N1], (4.19)

where [A,B] denotes the commutator of A and B.

We observe that while the first two characteristic matrices S1 and S2 equal the

corresponding matrices of Eyal’s method, matrices of higher orders such as S3 and

S4 differ from those of Eyal’s method due to non-commutativity of these matrices,

which was neglected by Eyal etc.

To further break Eq. (4.11) into products of individual exponential operators,

we employ the standard formula [90,91],

ex(A+B) = e
A
2

x eBx e
A
2

x + O(x3), (4.20)

which yields

T (ω) = T (ω0)e
S1
2

∆ωe
S2
2

∆ω2

e
S1
2

∆ω + O(∆ω3), (4.21)

with obvious higher-order extensions according to Ref. [90]. Hence, unlike, e.g.,

the compensator proposed in Ref. [84], which does not incorporate the commutator

appearing in S3, residual PMD effects up to second order can be fully eliminated

by implementing the expression:

Tres(ω) = e−
S1
2

∆ωe−
S2
2

∆ω2

e−
S1
2

∆ωT−1(ω0)T (ω). (4.22)
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4.2.2 Chebyshev Polynomial Approximation

An alternative technique evaluates the transfer matrix T (ω) using type I Chebyshev

polynomials [88] scaled to the interval |ω − ω0| < ∆ωc, where ∆ωc represents the

desired bandwidth on the interval of interest. In particular, we express the transfer

matrix in the form

T (ω) = eF (ω)

= eF0+F1∆ω+F2∆ω2+F3∆ω3+···, (4.23)

in which the matrix F (ω) ≡ ln[T (ω)] is approximated with (M-1)th-order Cheby-

shev polynomials (an expansion into the first M Chebyshev polynomials) [92].

Specifically, we first approximate the components of F (ω), f i(ω) for i = 1, 2, 3, 4,

according to the standard polynomial approximation formula,

f(x) ≈
M−1∑

k=0

ck · Pk(x)− 1

2
c0, (4.24)

with x ∈ [−1, 1]. In Eq. (4.24), Pk(x) is the Chebyshev polynomial of order k, and

ck is the corresponding coefficient,

ck =
2

M
·

M∑
j=1

f(xj) · cos

[
πk(j − 0.5)

M

]
, (4.25)

with

xj = cos

[
π(j − 0.5)

M

]
. (4.26)

Scaling f(x) according to x = 2∆ω/∆ωc yields

f i(ω) = f i
0 + f i

1∆ω + f i
2∆ω2 + f i

3∆ω3 + · · · , (4.27)

and hence

Fn =

[
f 1

n f 3
n

f 3
n f 4

n

]
, (4.28)

with n = 0, 1, 2, 3, · · · .
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As in the Taylor approximation procedure, Eq. (4.23) can be further approxi-

mated as the product of exponents of individual operators through operator sym-

metrization formulas according to Eq. (4.20). Applying the simplest three-operator

expansion yields

Tres(ω) = e−
F1
2

∆ωe−
F2
2

∆ω2

e−
F1
2

∆ωT−1(ω0)T (ω). (4.29)

The Chebyshev polynomial approximation of the transfer matrix described

above follows a different procedure from the co-authored paper [93]. Nevertheless,

the numerical simulation yields similar results, c.f. section 4.2.3 and Ref. [93].

4.2.3 Numerical Results

We now examine numerically the compensation error associated with the opera-

tor expansions above and effect a comparison with the approach of Ref. [1]. To

quantify the error, we observe that, since in the absence of loss the transfer matrix

after compensation, Tres(ω), is a 2×2 unitary matrix, its eigenvalues form complex

conjugate pairs. The magnitude of their difference therefore describes the devi-

ation of the matrix from an identity matrix representing a perfect compensator.

Further, since diagonalization is equivalent to reorienting the measuring appara-

tus to the principal states of polarization, the eigenvalue difference coincides with

2 sin(∆ωτres/2), where τres is the residual DGD. Hence, we define residual as the

absolute difference between the two eigenvalues of the residual matrix Tres(ω). The

residuals after a standard compensator based on the three procedures have been

calculated as a function of a normalized frequency ∆ν = ∆ω τ̄/(2π). In these cal-

culations, we employ τ̄ = 30 ps, and ∆ω ∈ [−2π/τ̄ ,−2π/τ̄ ] or ∆ν ∈ [−1, 1]. The

results are averaged by 104 realizations.

To calculate the Jones matrix T (ω) of an optical fiber, we consider the fiber as

N linearly birefringent sections with random orientations. Thus,

T (ω) =
N∏

n=1

Tn(ω) (4.30)
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where Tn(ω) is the transfer matrix of the n-th fiber section and is calculated ac-

cording to

Tn(ω) = P (ω) Sn (4.31)

with

P (ω) =

[
e−

iωτs
2 0

0 e
iωτs

2

]
(4.32)

and

Sn =

[
cos( ξn

2
) ei ϕn+φn

2 i sin( ξn

2
) ei ϕn−φn

2

i sin( ξn

2
) e−i ϕn−φn

2 cos( ξn

2
) e−i ϕn+φn

2

]
. (4.33)

In Eq. (4.32), τs =
√

3π/8 τ̄ is section DGD and τ̄ is the mean DGD of the fiber.

The angles ξn, ϕn and φn in Eq. (4.33) are independent random variables. The

probability density function (pdf) of ξn, ϕn are uniformly distributed between 0

and 2π, while the pdf of cos(ξn) is uniformly distributed between −1 and 1.

We first display Fig. 4.10 (a) and (b) histograms of the residuals for (a) asym-

metric compensation of Ref. [1] according to Eq. (4.4) and (b) Taylor expansion

with symmetrized exponential product approximations according to Eq. (4.21),

respectively. In these graphs, the results of first- to third-order compensations are

superimposed as indicated by the legend. Evidently, symmetrizing the exponen-

tial product yields an improvement in the bandwidth at the cost of introducing an

additional operator (compensator element).

Next, in Fig. 4.10 (c) we display histograms of the residuals for the symmetrized

operator products associated with the first- to third-order Chebyshev procedures

of Eq. (4.24). In this calculation, a Chebyshev polynomial approximation is per-

formed over the frequency interval |ω − ω0| < M∆ω1 given by 2π∆ω1 = ∆νc/τ̄

with ∆νc = 0.07 [93]. Note that only odd-order Chebyshev polynomial expansions

possess zero residuals at the center frequency, since the Chebyshev approximation

then exactly coincides with the transfer matrix at the zero of the subsequent even-

ordered Chebyshev polynomials, one of which lies in the origin.

Although the residuals in Fig. 4.10 (c) are far larger than those of Tayler-series

methods near the origin, c.f. Fig. 4.10 (a) and (b), the residual is suppressed over a

broader frequency domain for the Chebyshev compensator. In fact, the bandwidth
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measure, 2π∆ω1 = ∆νc/τ̄ , employed in Fig. 4.10 (c) and Fig. 4.11 (b) is valid

only if the DGD of the fiber realization is, on average, less than or equal to the

average DGD [81]. Although most statistical realizations of the fiber obey this

rule, a significant fraction does not, leading to rapidly oscillating transfer matrices

T (ω). The accuracy of the Chebyshev fit is therefore degraded, increasing the

corresponding residual values. This yields the local maxima near the center of the

graph of Fig. 4.10 (c), which reflect the contributions from all fiber samples.

To further demonstrate the advantage of Chebyshev approximation over Taylor

approximation, we display in Fig. 4.11 the histograms of the residuals when Eq.

(4.11) and Eq. (4.23) are employed directly without further breaking into products

of individual exponential operators for (a) Taylor approximation and (b) Chebyshev

approximation, respectively. While, the bandwidth of Taylor compensator increases

noticably with the order only up to the third order, the compensation bandwidth

associated with Chebyshev approximation increases more significantly with the

order and nearly linearly up to the fourth order, c.f. Fig. 4.11.

4.3 Conclusions

In this chapter, we first examined the statistics of the DGD in sinusoidally spun

fibers with a general model of fiber birefringence. We find that the PMD reduc-

tion effect induced by sinusoidal spinning can be suppressed by a factor of over

10, which agrees very well with the experimental measurements [68, 69]. Further,

the simulation results show that the PMD reduction effect is more significant in

fibers with large random birefringence. Moreover, our results of the PMD reduc-

tion factor interpolate between the predictions of the PM fiber and those of the

RMM and therefore display somewhat different features than those of previous

authors. The pdf of sinusoidally spun fibers also differs markedly from that of stan-

dard fibers at shorter fiber lengths, although it still asymptotically approaches the

Maxwell distribution at very long fiber lengths. Such a qualitative understanding

of birefringence effects could enable the partial determination of the fiber birefrin-

gence from repeated experimental measurements as well as provide insight into the

range of parameters required to achieve near-optimal DGD compensation in smaller
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Figure 4.10: Variation of the residual with the normalized parameter ∆ν after the

first- to third-order (a) asymmetric compensation of Ref. [1], (b) Taylor approxima-

tion with appropriate symmetrization of the operator products, and (c) Chebyshev

approximation with appropriate symmetrization of the operator products. The

results are averaged with 104 realizations with τ̄ = 30 ps.
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Figure 4.11: Variation of the residual with the normalized parameter ∆ν after the

first- to third-order for (a) Taylor approximation according to Eq. (4.11) and and

(b) Chebyshev approximation according to Eq. (4.23), without further breaking

into products of individual exponential operators.
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fiber lengths. We then presented two general procedures for enhancing the effec-

tive bandwidth of PMD compensators. While the residual PMD of a compensator

resulting from a Taylor expansion can be significantly reduced by appropriate sym-

metrization of the operator products, the Chebyshev approximation can, at least

in principle, significantly widen the compensator bandwidth.



Chapter 5

Nonlinear Polarization Mode

Dispersion

5.1 Introduction

Although glass fiber is a highly linear material, it has a non-zero nonlinear refractive

index due to the Kerr effect [94–96]. With the advent of the erbium-doped optical

amplifier, light signals can be transmitted through fibers over transoceanic distance

without regeneration. However, both polarization mode dispersion (PMD) and

nonlinearities accumulate over the entire distance, resulting in a non-negligible pulse

distortion for high bit rate communication systems [97]. Moreover, the interaction

between fiber birefringence and nonlinearity may lead to further complications [98–

100].

While PMD has been extensively studied in the linear region based on various

birefringence models, the properties of PMD in the presence of fiber nonlinearity

requires more investigation. In previous work, Menyuk showed that the coupled

nonlinear Schrödinger equation (CNLS) applies to birefringent optical fiber [44,101,

102]. Later on, Marcuse derived the Manakov-PMD equation [40]. This equation

not only leads to a rapid numerical scheme for determining the signal evolution,

but also isolates different physical effects in separate terms of the equation that
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have transparent physical meanings. Using this equation as a starting point, signal

propagation in nonlinear birefringent optical fibers was investigated in [40].

For numerical simulations of pulse propagation in the presence of both fiber

birefringence and nonlinearity, appropriate fiber birefringence models are essential.

While different birefringence models predict distinct stochastic properties of linear

PMD, c.f. Chapter 3, early studies of PMD and nonlinearity either assumed con-

stant birefringence [101,103,104] or employed a simple birefringence model, i.e., the

fixed modulus model (FMM) [105–107]. In this chapter, we study nonlinear pulse

propagation properties based on a modified random modulus model (MRMM), i.e.

Model B1 in Chapter 2. Since the Manakov-PMD equation is the basic governing

equation for pulse propagation in nonlinear birefringent fibers, section 5.2 briefly re-

views the derivation of this equation for completeness. We then discuss in the next

section the numerical simulations of pulse distortion due to linear and nonlinear

PMD. The last section contains the conclusion.

5.2 Derivation of The Manakov-PMD Equation

In this section, we review the derivation of the Manakov-PMD equation according

to [40].

Optical signals in fibers can be distorted by several effects. Firstly, the signals

suffer the usual polarization mode dispersion for a non-zero b′. Secondly, the signals

undergo chromatic dispersion if β′′ 6= 0 (we assume that β′′1 ≈ β′′2 = β′′). Finally,

the weak nonlinearity of optical fibers yields a dependence of the refractive index

on the light intensity. Taking all these effects into account, the propagation of

the light pulses along a random birefringent fiber can be described by the coupled

nonlinear Schrödinger equation,

i
∂A

∂z
+ bΣA + ib′Σ

∂A

∂z
− 1

2
β′′

∂2A

∂t2

+ n2k0

[
|A|2A− 1

3
(A†σ2A)σ2A

]
= 0. (5.1)

Here, A = (A1, A2)
t is a column vector with elements A1 and A2 which are the

complex envelopes of the two polarization components. The z -coordinate measures
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distance along the fiber axis, while the t-coordinate represents retarded time -

the time relative to the moving center of the signal. The last term of Eq. (5.1)

corresponds to nonlinear effects caused by the Kerr coefficient n2, c.f. Eq. (1.2) in

Chapter 1. The matrix

Σ = σ3 cos(2α) + σ1 sin(2α) (5.2)

is defined in terms of the Pauli matrices

I =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]

σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
. (5.3)

While b is the birefringence strength which varies randomly along the fiber length

according to the birefringence model MRMM, the orientation of the principal bire-

fringence axis relative to the laboratory frame, α, is assumed to be only a weak

function of frequency. The birefringence orientation was denoted as θ = 2α in

previous chapters.

To obtain the Manakov-PMD equation, two separate steps are required. Firstly,

the field A is transformed from the fixed coordinate system to a coordinate system

that rotates with the principal axes of the fiber. The new field is designated by the

vector Ψ = [U, V ]t that is related to A as follows:

Ψ = R−1A

=

[
cos(α) sin(α)

− sin(α) cos(α)

][
A1

A2

]
(5.4)

Secondly, for fast numerical computation, the vector Ψ is further transformed to a

new field vector Ψ̄(z, t) = [Ū , V̄ ]t via a unitary matrix T (z), i.e.,

Ψ(z, t) = T(z)Ψ̄(z, t). (5.5)

T is the solution to the ordinary differential equation

i
∂T

∂z
+ Σ̃T = 0 (5.6)
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with the initial condition

T(z = 0) ≡
[

1 0

0 1

]
. (5.7)

Σ̃ in Eq. (5.6) can be expressed as

Σ̃ =

[
b −iαz

iαz −b

]
(5.8)

where αz = dα/dz, and the matrix T is a special unitary matrix so that it has the

form

T(z) ≡
[

u1 −u2∗
u2 u1∗

]
, (5.9)

with the additional constraint |u1|2 + |u2|2 = 1.

According to Eq. (5.4) and Eq. (5.5), the vectors A and Ψ̄ are related to

one and another by a simple unitary transformation. Since the electrical output

current from a realistic detection system is given by |A|2 = |Ψ̄|2, either vector can

be employed to describe the electric field. In fact, after these transformations, the

coupled nonlinear Schrödinger equation, Eq. (5.1), yields ∂Ψ̄(z, t)/∂z = 0 in the

linear continuous wave (CW) limit. In other words, Ψ̄ is frozen on the Poincaré

sphere in this limit, and for present communication systems with nonlinear optical

pulses, its evolution is still quite slowly varying on the length scale of hundreds of

kilometers that is associated with the scale lengths of PMD, chromatic dispersion,

and nonlinearity. The slow variation of Ψ̄ enables integration of the resulting

equation with a larger step size, greatly increasing the computation speed.

Substituting theses transformations into Eq. (5.1) yields the Manakov-PMD

equation

i
∂Ψ̄

∂z
− 1

2
β′′

∂2Ψ̄

∂t2
+

8

9
n2k0|Ψ̄|2Ψ̄

= −ib′σ̄
∂Ψ̄

∂t
− 1

3
n2k0(N̂− 〈N̂〉). (5.10)

The second term on the left-hand side of Eq. (5.10) includes the effect of chromatic

dispersion, and the third term on the left-hand side of Eq. (5.10) incorporates the

effect of Kerr nonlinearity averaged over the Poincaré sphere with the 8/9 factor.
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It has been shown that the first term on the right-hand side of Eq. (5.10) gives rise

to linear PMD effects. Finally, the second term on the right-hand side of Eq. (5.10)

yields nonlinear PMD. Physically, it is due to incomplete mixing on the Poincaré

sphere, and was found to be negligible in the parameter regime in which current

communication fibers normally operate. When the right-hand side vanishes, Eq.

(5.10) reduces to the Manakov equation.

While σ̄ = T†σ3T, one can show that N̂ = [N̂1, N̂2]
t and 〈N̂〉 = [〈N̂1〉, 〈N̂2〉]t,

where

N̂1 = z2
1(2|V̄ |2 − |Ū |2)Ū − z1(z2 − iz3)(2|Ū |2 − |V̄ |2)V̄

− z1(z2 + iz3)Ū
2V̄ ∗ − (z2 − iz3)

2V̄ 2Ū∗

N̂2 = z2
1(2|Ū |2 − |V̄ |2)V̄ − z1(z2 + iz3)(2|V̄ |2 − |Ū |2)Ū

− z1(z2 − iz3)V̄
2Ū∗ − (z2 + iz3)

2Ū2V̄ ∗, (5.11)

and

〈N̂1〉 =
1

3
(2|V̄ |2 − |Ū |2)Ū ,

〈N̂2〉 =
1

3
(2|Ū |2 − |V̄ |2)V̄ , (5.12)

with z1, z2 and z3 the Stokes parameters of the CW wave, defined as

z1 = i(u1u
∗
2 − u∗1u2)

z2 + iz3 = i(u2
1 + u2

2). (5.13)

5.3 Numerical Results

In this section, we employ a more general model, namely the MRMM or Model

B1 in Chapter 2, to examine the distortion of a pulse that propagates through a

nonlinear birefringent fiber. Specifically, we first generate a longitudinally-varying

birefringence vector according to the MRMM. Then the Manakov-PMD equation is

numerically integrated along this birefringent fiber, following the approach in [40].

In our calculation, we employ the following parameters: the wavelength λ =

1.55 µm, the effective mode area Aeff = 55 µm2, the Kerr coefficient n2 = 2.6 ×
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10−20 m2/W and a total fiber length z = 2000 km. Fiber loss and chromatic disper-

sion are not considered here for simplicity, since it can be canceled with a dispersion

map [108]. As the input pulse pattern we use a 10 bit pseudorandom pulses in NRZ

(nonreturn to zero) format with pulse width 25 ps corresponding to a signal rate

of 40 Gb/s. As in [40], we also use the low-pass Bessel filter to slightly round the

pulse edges in order to avoid the high harmonics of its fourier transform. These

pulses are shown in Fig. 5.1 in units of mW with a peak power of 10 mw.
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Figure 5.1: Power of the input optical pulses consisting of 10 pseudorandom bits.

According to the MRMM, the linear PMD is determined by fiber birefringence as

characterized by the fiber beat length Λbeat, the inverse coupling strength Lf and the

amplitude of random birefringence fluctuation ε, c.f. Chapter 2 & 3. To illustrate

the dependence of birefringence parameters on the nonlinear PMD we simulate the
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output waveform after the input pulse train of Fig. 5.1 has propagated through a

birefringent fiber with different combinations of these parameters. In Fig. 5.2, we

first display the output pulses for a low PMD fiber with birefringence characterized

by Λbeat = 25 m, Lf = 12 m and ε = 0.9. The solid curve (a) is calculated with

only the linear PMD term or with both the linear PMD term and the Manakov

term in Eq. (5.10), while the dotted curve (b) includes also the nonlinear PMD

term. Although adding the Manakov term in our example leaves the distortion

nearly unaffected, the pulses are slightly reshaped due to the nonlinear PMD. We

can increase the linear PMD in our model in two ways. In the first of these,

while keeping ε = 0.9, we decrease the beat length for a larger mean birefringence

strength and increase the inverse coupling strength to reduce the coupling effect.

For the second approach, we find that the effect of linear PMD can be increased

by decreasing the value of ε. While Figure 5.3 displays output pulse distortion

for Λbeat = 10 m, Lf = 20 m and ε = 0.9, Fig. 5.4 shows corresponding results for

Λbeat = 25 m, Lf = 12 m and ε = 0.1. While these two approaches indeed effectively

increase the linear PMD as indicated in Chapter 3, the distortion induced by the

nonlinear PMD also become evident, c.f. Fig. 5.3 and Fig. 5.4. As a common

feature for three combinations of Λbeat, Lf and ε, the Manakov term does not

noticeably contribute to the pulse distortion, c.f. Fig. 5.2, Fig. 5.3 and Fig. 5.4.

Further calculation indicates that the Manakov term will only cause distortion when

a much higher pulse power is used.

5.4 Conclusions

We have applied a general model of fiber birefringence to examine the distortion of

a pulse resulting from both birefringence and nonlinearity. In contrast to the results

reported in [40], we have found that the nonlinear PMD can be suppressed by a

large degree of random birefringence. Further, our numerical simulation indicates

that some choices of birefringence parameters not only increase the linear PMD,

but also enhance the importance of the nonlinear PMD.
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Figure 5.2: Power of the output optical pulses for fiber length z = 2000 km with

a fiber birefringence characterized by Λbeat = 25 m, Lf = 12 m and ε = 0.9. The

solid curve (a) is calculated with only linear PMD term or both linear PMD term

and the Manakov term in Eq. (5.10), while the dotted curve (b) includes also the

nonlinear PMD term.
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Figure 5.3: As in Fig. 5.2 but for Λbeat = 10 m and Lf = 20 m.
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Figure 5.4: As in Fig. 5.2 but for ε = 0.1.



Chapter 6

Conclusions

In conclusion, we have proposed four new statistical models for the description of the

evolution of optical fiber birefringence with fiber length. While current models are

actually the limiting cases of our formalism, our models can be adapted to a broad

range of birefringent fibers. In addition, we have also introduced mathematical

algorithms that simplify the numerical implementation of these models. We have

then employed the birefringence models to examine PMD stochastic properties in

all fiber length regions through both theoretical analysis and numerical simulations.

The PMD statistics are found to vary with the birefringence model used, and these

differences are compared and analyzed. Similar studies were also conducted for spun

fiber, which revealed several differences compared to standard fibers. While fiber

spinning has proved to be an effective technology for manufacturing low-PMD fiber

and for compensating the PMD of already installed fiber systems, several general

procedures have been developed for the design of broad-band PMD compensators.

In last part of this thesis, we applied one of our general models to the studies of

the interaction between the PMD and nonlinearity. We have found a non-negligible

pulse distortion due to the nonlinear PMD that has not previously been reported.

Overall, our four general fiber birefringence models extend PMD and PMD related

studies in optical communications field. For example, the applications of our models

on both standard single mode fiber and spun fibers have uncovered many new

features of the PMD statistics. Therefore, our models may benefit the design of

105
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low PMD fiber for both standard and spun fibers.

As well, we have demonstrated that our models of fiber birefringence are con-

sistent with all the experimental studies of which we are aware. As expected, the

flexibility of our models may lead to predictions that can be experimentally verified

once improved measurement techniques for birefringence variations are developed.

For example, as the resolution of the measurement of spatial distribution of bire-

fringence strength improves, experimental results for short fibers can be compared

to our numerical results. Further, while the PMD distributions obtained from dif-

ferent birefringence models display the same qualitative characteristics in the long

fiber length region, these models differ in their predictions for the statistical behav-

ior of the PMD at short fiber lengths. Although experimental techniques allow a

determination of PMD in fibers of arbitrary length [109–112], experimental studies

of the PMD statistics are currently focused in the long length region, as the PMD

only significantly affects the pulse response after propagation through long fiber

lengths. We believe that in future, more careful studies of local birefringence prop-

erties will become available from which the predictions of different birefringence

models can be tested.

For future work, our general birefringence models and their applications could

be extended in the following directions. First, while this thesis studies only first or-

der PMD, an examination of higher-order PMD and joint PMD probability density

distributions [113], which are conceivably more sensitive to the birefringence prop-

erties, would also be of interest. Second, our general birefringence models assume

linear birefringence, which is applicable to most modern optical communication

fibers. However, several experimental measurements of non-negligible circular bire-

fringence in some fibers have been recently reported [52, 58, 59]. For more general

applications, our birefringence models can be extended to include circular bire-

fringence. Further, theoretical and experimental studies have demonstrated that

solitons are not only stable to the perturbation of dispersion and energy variation

but also robust to PMD [104, 114–119]. These could be extended by our models,

although the results are of course very unlikely to change appreciably. Moreover,

the mathematical algorithms employed in our birefringence models may also be

modified for modeling mode coupling induced by nonlinear processes such as stim-
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ulated Raman scattering (SRS) and four-wave mixing (FWM) [120]. Because of the

higher sensitivity of these processes to small deviations from the phase-matching

condition, our models could be of importance in this context.



Appendix A

Acronyms Used in Thesis

BER Bit Error Rate

CD Chromatic Dispersion

CW Continuous Wave

CCTV Closed Circuit Television

CNLS Coupled Nonlinear Schrödinger Equation

DGD Differential Group Delay

DSF Dispersion-Shifted Fiber

FWM Four-Wave Mixing

FMM Fixed Modulus Model

LAN Local Area Network

MAN Metropolitan Area Network

MRMM Modified Random Modulus Model

NRZ Non-Return-to-Zero
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OFDR Optical Frequency Domain Reflectometer

PM Polarization-Maintaining

PMD Polarization Mode Dispersion

PSP Principle State of Polarization

PDCD Polarization Dependent Chromatic Dispersion

POTDR Polarization Optical Time Domain Reflectometer

PDF Probability Distribution Function

RZ Return-to-Zero

RMM Random Modulus MOdel

SI Step-Index

SOPMD Second-Order PMD

SIRF Spin-Induced Reduction Factor

SRS Stimulated Raman Scattering

TV Television

WAN Wide Area Network

WDM Wavelength-Division Multiplexing
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