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Abstract 

The purpose of this thesis is to investigate the reaction to a purely unexpected slip 

during gait termination and subsequent experiences stopping on the slippery surface in 

participants who are young and healthy, older and healthy and who have Parkinson’s disease 

while on traditional dopamine-replacement medication.  

Gait termination requires control of the forward momentum of the body’s centre of 

mass (COM). This forward momentum must be dissipated and the COM held within a newly 

formed base of support. The challenge of stopping on a slippery surface involves maintaining 

stability while transitioning from steady-state locomotion to steady-state stance. Experience 

with a slippery surface changes postural and gait characteristics to diminish the perturbing 

effect of the slip. The magnitude of the slip response diminishes quickly as the movement 

becomes more efficient.  

Our investigations revealed a typical slip response to a purely unexpected slip during 

gait termination including a lowering of the COM, an increased muscular response to support 

the body, a shortened step and an arm raise. Knowledge of and experience with the slippery 

surface quickly changed the slip response to reduce the perturbing effect of the slip and also 

to increase the efficiency of the response while smoothly transitioning from steady-state 

locomotion to gait termination. 

Parkinson’s disease impairs balance control, the ability to switch between motor tasks 

and also to stop within two steps. The need for a voluntary change in motor programs along 

with difficulty stopping and increased instability makes gait termination a potentially 
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difficult task for someone with Parkinson’s disease (PD). The participants with PD used a 

slower, safer strategy to stop on non-slippery surfaces to compensate for their instability 

compared to age-matched controls. When a slip was first introduced during gait termination, 

the participants with PD continued to be less stable in the plane of progression than the 

control group. Despite the instability, the PD group was still able to integrate a balance-

correcting response into a voluntary gait termination program. The ability to generate 

adaptive strategies to integrate the balance-correcting response into a voluntary gait 

termination program over multiple trials does not appear to be affected by PD; both the 

control group and PD group showed behavioural modifications according to repeated 

exposures to the slippery surface. Although participants with PD seemed slightly less stable 

and walked slower, their behavioural adaptations were similar to the control group.  
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1.1 INTRODUCTION 

The focus of this thesis is the control of dynamic stability during gait termination 

(GT) on a slippery surface. Dynamic stability is the ability to control a moving centre of 

mass within a continually changing base of support. The ability of young and healthy 

individuals to maintain balance while stopping on an unexpectedly slippery surface and their 

subsequent adaptation to that surface reveals how the central nervous system (CNS) 

integrates a reactive, balance maintenance strategy into an on-going motor program. 

Stopping on a slippery surface also investigates the strategies involved to proactively prepare 

for the upcoming perturbation. A study involving participants with Parkinson’s disease (PD) 

investigates how the CNS overcomes the dysfunctional basal ganglia to maintain balance and 

safely complete a stop. The differences between the participants with PD and the age-

matched controls will show the involvement of the basal ganglia in the GT motor program 

and the integration of a reactive strategy into a voluntary motor program. These 

investigations will provide more detail into the neural control of GT, the integration of a 

reactive response with proactive, voluntary movements and the importance of the basal 

ganglia sensorimotor integration abilities required for successful movement. 

1.2 SLIPS 

 Falls and fall-related injuries can be very costly, both on a personal and a population-

based level. The loss of balance incurred by a slip has great potential to result in a fall or a 

fall-related injury (Cham and Redfern 2002). Understanding the mechanics which cause a 
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slip as well as the strategies used to recover balance during a slip can provide useful 

information to develop prevention and training programs designed to decrease falls and fall-

related injuries. 

 Slip responses reflect the ability of the CNS and musculoskeletal system to reduce the 

potential of a slip in a dangerous environment and to recover balance through fall avoidance 

strategies (Cham and Redfern 2001 and 2002; Marigold and Patla 2002; Marigold et al. 

2003). It is important to understand the relationship between gait and falls due to slippery 

surfaces (Cham and Redfern 2001). Defining the mechanical factors which determine slip 

outcomes can provide insight into the physiological variables which may limit the ability to 

prevent a fall resulting from the slip (Brady et al 2000; Cham and Redfern 2001).  

 Slip studies have typically been performed using steady-state gait. Slips have been 

induced using contaminated surfaces (e.g., Cham and Redfern 2001), a low-friction roller 

apparatus (e.g., Marigold and Patla 2002), or an anterior surface translation (e.g., Tang and 

Woollacott 1998). These studies reveal a slip response which includes a lowering of the 

COM (Marigold and Patla 2002; Cham and Redfern 2001), shortened subsequent step (Brady 

et al 2000; Cham and Redfern 2001; Marigold and Patla 2002; Tang and Woollacott 1998), 

an increased muscular response (Chambers and Cham 2006; Tang and Woollacott 1998; 

Tang and Woollacott 1999), and an arm elevation response (Tang and Woollacott 1998; Tang 

et al 1998; Marigold and Patla 2002). The CNS, using proprioceptive cues, responds to the 

slip in anywhere from 90 ms (Marigold and Patla 2002) to 250 ms (Marigold et al 2003) to 
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generate a knee flexor and hip extensor moment (Cham and Redfern 2001; Chambers and 

Cham 2006) to support the upper body and regain balance. 

 Prior experience with and knowledge of a slippery surface dramatically changes how 

someone approaches and travels over the dangerous terrain. In anticipation of a slippery 

surface, step length decreases (Bhatt et al 2006; Brady et al 2000; Lockhart et al 2006), heel 

contact velocity and foot contact angle are reduced for a slower, flatter-footed landing (Brady 

et al 2000; Cham and Redfern 2002; Heiden et al 2006; Marigold and Patla 2002), and the 

strategy changes from purely reactive to proactive adaptations to diminish the destabilizing 

effects of the perturbation (Bhatt et al 2006; Chambers and Cham 2006; Marigold and Patla 

2002). Muscle responses decrease as we rapidly learn how to safely and more efficiently 

maintain balance during the slip (Marigold and Patla 2002). People tend to adopt a more 

cautious gait (Cham and Redfern 2002; Chambers and Cham 2006; Heiden et al 2006) during 

the first few exposures to the slippery surface, but eventually become more confident and 

sometimes even “surf” over the slippery surface (Marigold and Patla 2002). 

1.3 GAIT TERMINATION 

 Gait termination is gaining more attention as a complex, volitional transition between 

the repetitive, rhythmic motion of locomotion and quiet stance. Investigations of GT can 

illustrate how the nervous system prepares, controls and dissipates forward momentum of the 

body (Perry et al 2001). Studies of GT also assess the ability of the CNS to incorporate 

voluntary actions with a motor program not necessarily under voluntary control (Jaeger and 
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Vanitchatchavan 1992). The ability of the CNS to integrate the various neural signals to 

smoothly and safely stop walking is the focus of the following GT studies. 

 During daily walking activity, when confronted with a large obstacle such as a car, 

person, boulder etc., our choice is either to change direction or stop walking. Both turning 

and GT require a decrease in forward momentum and, therefore, may be risk factors for falls 

in certain populations (e.g., elderly). Understanding how GT is achieved may help decrease 

the risk to those populations at risk of falling during transitional movements (Bishop et al 

2004). Identifying strategies used in stopping may help with the etiology and mechanisms of 

types of falls in the elderly (Bishop et al 2004; Jaeger and Vanitchatchavan 1992) and also 

with gait training rehabilitation (Jaeger and Vanitchatchavan 1992). 

 The purpose of GT is to successfully stop ongoing locomotor rhythm by dissipating 

forward momentum to rest in a stable, upright standing posture. Gait termination has three 

basic requirements: 1) a decrease in the forward centre of mass (COM) momentum (Bishop 

et al 2004; Jian et al 1993; Perry et al. 2001); 2) control of foot placement to prepare the base 

of support (BOS) (Bishop et al. 2004; Perry et al. 2001); and 3) control of whole-body COM 

within the BOS limits (Bishop et al. 2004; Perry et al. 2001). The mechanics of GT which 

allow a person to stop successfully include an increased deceleration (braking) and decreased 

acceleration (push-off) through ground reaction forces (Hase and Stein 1998; Jaeger and 

Vanitchatchavan 1992). Most often, where and when we want to stop is known well before 

the task is required, but times arise when we need to stop quickly. If the signal to stop is 

provided within the first 30% of the gait cycle, most healthy people are able to safely and 
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effectively stop within one step (Jaeger and Vanitchatchavan 1992). If the forward 

momentum is not sufficiently controlled, a person may take an extra step or a rise to toes, 

thereby transferring forward to vertical momentum (Hase and Stein 1998), to stop 

locomotion.  

Gait termination on a slippery surface poses a more difficult balance task than 

locomotion over a slippery surface. The goal of GT is to cease COM movement and come to 

rest over a stationary BOS. A slippery surface removes the ability to use the ground reaction 

forces effectively and adds forward movement to the limb which first contacts the slippery 

surface. Examining GT on a slippery surface will show how the CNS maintains balance 

when perturbed during the transition from locomotion to quiet stance.  

1.4 PARKINSON’S DISEASE  

The basal ganglia are an important group of nuclei which function to regulate 

movement. Specifically, the basal ganglia are involved in managing centrally initiated 

movements (Bloem and Bhatia 1004; Morris et al 2001), adapting behaviour to changing 

environmental conditions (Bloem and Bhatia 2004; Dimitrova et al 2004; Frank et al 2000; 

Morris 2006), and controlling output gain for movements (Bloem and Bhatia 2004; 

Dimitrova et al 2004). Parkinson’s disease is caused by the loss of dopamine producing cells 

within the basal ganglia (Bloem and Bhatia 2004) which results in a movement disorder. The 

cardinal features of PD are bradykinesia, resting tremor, rigidity, and postural instability 

(Jankovic and Stacy 1999). PD provides a unique insight into the importance of the basal 

ganglia and their dopaminergic pathways in the control of everyday movement. PD also 
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illustrates how the basal ganglia are involved in and how PD affects the ability to integrate a 

reactive balance-correcting response into the voluntary movement of gait termination. 

Typical Parkinsonian gait includes a stiff, shuffling, slow walk which can often 

include festination when attempting to stop (Bloem and Bhatia 2004; Morris 2006; Morris et 

al 2001). People with PD often exhibit a lack of arm swing, a forward stooped posture and a 

general decrease in movement amplitude seen in a decreased toe clearance, step length, and 

trunk rotation (Carpenter et al 2004; Morris 2006; Morris et al 2001). Traditional medical 

treatment, dopamine replacement therapy, helps increase speed and stride-length in gait but 

do not change the rhythmicity of locomotion (Morris 2006; Morris et al 2001; Vaillancourt et 

al 2004).  

A central or voluntary movement requires the release and cessation of a motor 

program for accurate movement.  The increased inhibitory basal ganglia projections to the 

thalamo-cortical motor circuit in PD (Delong 2000) causes difficulties initiating and 

terminating voluntary movements and also switching between motor programs (Morris 

2006). Previous studies of GT in persons with PD have shown that the GT strategy used by 

PD subjects relies more on a decrease in acceleration rather than an increase in braking. This 

behavior does not change with delayed timing of the gait termination cue (Bishop et al 2003) 

which suggests that GT is operated as a separate program and, therefore, involves the 

common initiation problems that people with PD often experience initiating gait (Abbruzzese 

and Berardelli 2003; Halliday et al 1998; Morris 2006; Morris et al 2001; Nieuwboer et al 

2004). 
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Gait termination on an unexpectedly slippery or moving surface requires the use of a 

purely reactive strategy to maintain balance and safely stop walking. People with PD often 

experience a ‘kinesia paradoxica’ (Bloem and Bhatia 2004) where a quick response to an 

environmental event using unexpectedly good movement ensues. A normal or even faster 

reactive response to perturbations is often recorded despite the hypokinetic force production 

and often inaccurate behavioural output (Carpenter et al. 2004; Dimitrova et al 2004; Horak 

et al 1996; Morris et al 2001; Nieuwboer et al 2004). The instability seen in PD is not 

corrected with medication and is especially apparent for external perturbations (Carpenter et 

al 2004; Frank et al 2000; Horak et al 1996; Morris 2006); therefore, traditional levodopa 

therapy does not provide protection against slips and falls due to involuntary balance 

disturbances. In fact, a majority of falls in PD occur indoors and during the day during peak 

activity and medication levels (Bloem and Bhatia 2004). Testing people with PD while on 

their optimal medication may provide insight into why these falls occur. 

 Unexpected, cued GT requires a change in central set or motor program from 

repetitive locomotion to quiet stance within one stride. Alternatively, preplanned GT allows 

appropriate preparations from the beginning of the task. People with PD often have difficulty 

switching central set (Bishop et al 2003; Dimitrova et al 2004; Frank et al 2000; Morris 2006; 

Tang and Woollacott 1999) which would make cued GT more difficult than preplanned GT. 

Both tasks, however, require a change in motor programs and may pose an equally great 

challenge for someone with PD. 
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 Cued GT, in this thesis, involves a visual trigger. People with PD often rely on 

external sensory information for movement initiation and execution (Abbruzzese and 

Berardelli 2003; Morris 2006; Morris et al 2001). While the basal ganglia are not properly 

controlling voluntary movement in PD, the CNS attempts to use more lateral, associated 

brain areas such as the premotor and parietal cortices, and the cerebellum to compensate for 

BG dysfunction to increase the size and speed of bradykinetic movements (Berardelli et al 

2003; Hanakawa et al 1999; Morris 2006; Morris et al 2001). These parallel pathways of 

processing may allow for easier movement when the visual trigger is used.  

 Sensory gating and sensorimotor integration is another suggested function of the 

basal ganglia (Abbruzzese and Berardelli 2003; Berardelli et al 2003). Abnormal scaling of 

sensory input may be responsible for any inaccuracies in PD movements. Consequently, 

when the CNS ‘bypasses’ the basal ganglia using parallel pathways, it may be attempting to 

use alternate sensorimotor integration areas to properly manage and effectively use the 

ascending sensory information to accurately control voluntary movement. This extraneous 

use of cortical power, however, is suggested to saturate the processing limits which may 

explain why PD have difficulty switching tasks and/or performing more than one task at a 

time (Berardelli et al 2003). 

1.5 SUMMARY AND PURPOSE 

Gait termination on slippery surface is a two-fold challenge: First, a voluntary gait 

termination program must be initiated and, second, a reactive balance-correcting program 

must be generated and integrated into the on-going gait termination program.  This 
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dissertation presents four studies which examine the following questions about the challenges 

of stopping on a slippery surface: First, how does a young, healthy adult integrate a slip 

response into a gait termination program? Is the slip response during gait termination similar 

to that seen in locomotion or does it differ because of the increased demands of gait 

termination over locomotion? The second study examines how experience with and 

knowledge of the slippery surface changes the behaviour during a slippery stop. How quickly 

does an adaptation occur in young, healthy adults? Is the adaptation in gait termination 

similar to that seen in slips during locomotion or does the added challenge of stopping 

change the adaptive behaviour? 

Parkinson’s disease provides a model of the involvement of the basal ganglia in 

voluntary movements. Research suggests that PD affects the ability to initiate motor 

programs, switch between motor tasks and, even when on medication, maintain balance 

during external perturbations. Gait termination is a voluntary movement that must be 

initiated during locomotion; therefore, the third study asks how the basal ganglia are involved 

in switching to gait termination. Also does the involvement of the basal ganglia differ 

between planned and cued gait termination? How will Parkinson’s disease affect the ability 

to integrate a balance-correcting response into the voluntary gait termination? Finally, the 

fourth study examines the effect of PD on the adaptation to a slippery surface. How quickly 

does an adaptation occur? Is the adaptation similar that seen to young, healthy adults? This 

dissertation will describe how the CNS integrates reactive and voluntary movements and, 

using Parkinson’s disease to investigate the function of the basal ganglia, how the basal 
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ganglia are involved in switching locomotor tasks, integrating a balance-correcting response 

into a voluntary movement, and adapting to repeated exposure to a slippery surface. The 

results of this dissertation can be used, at a theoretical level, to understand CNS and basal 

ganglia function during locomotor tasks and during perturbations to locomotor tasks and, at 

an applied level, to generate programs to decrease the incidence of falls related to slipping in 

both the workplace and the community for people of all ages. 
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CHAPTER 2: CONTROL OF DYNAMIC STABILITY DURING GAIT 
TERMINATION ON A SLIPPERY SURFACE* 

 

Please see Appendix A for permission to use the previously published manuscript. * Used 

with permission from the American Physiological Society. 
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2.1 INTRODUCTION 

 Gait termination (GT) is defined as the transient period from repetitive gait to a full 

stop (Jian et al. 1993). Stopping is a great challenge to the body as the nervous system must 

effectively change the body from a dynamic to a static state. Three common ways by which 

to successfully terminate gait include: decreased acceleration of whole-body centre of mass 

(COM) through a flexor synergy in the hind leg (Hase and Stein 1998; Jaeger and 

Vanitchatchavan 1992), increased deceleration of whole-body COM through an extensor 

synergy in the front limb (Hase and Stein 1998; Jaeger and Vanitchatchavan 1992), and an 

energy/momentum transfer through a toe raise (Hase and Stein, 1998) or a momentum 

transfer to another plane of movement (O’Kane et al. 2003). 

 Muscle synergies employed by the central nervous system (CNS) manipulate limb 

movement to alter the centre of pressure (COP) beneath the feet. The COP controls the COM 

during gait termination (Jian et al. 1993) and can influence COM position in three ways (B 

McGowan unpublished observations): First, a change in foot placement, such as an increase 

in step length, will move the COP ahead of the COM and increase the ability to provide a 

braking force. Second, limb loading/unloading strategies can also be used to control the 

COP/COM. A flexor synergy in the limb taking the final step before termination unloads that 

limb thereby decreasing the acceleration and lowering the COM. Loading the limbs in the 

final stance phase, an extensor synergy, increases the braking force and decelerates the COM 

(Hase and Stein, 1998). Limb loading/extension can also raise or shift the COM, thereby 

converting some kinetic energy to potential energy or transferring momentum to another 
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plane in order to dissipate forward momentum (O’Kane et al. 2003). Finally, the excursions 

of the COP within the base of support (BOS) can influence the COM position and assist gait 

termination.  

 A slippery surface removes the ability to effectively manipulate the COP and 

eliminates a large part of COM-control during movement. Previous studies investigating slip 

responses during gait report a rapid onset of a flexor synergy to lower the COM and improve 

stability as well as arm elevation to stabilize the unexpected COM displacement (Cham and 

Redfern 2001, 2002; Marigold and Patla 2002; Marigold et al. 2003). The purpose of the 

present study was to examine the response to an unexpected slip during gait termination. Slip 

responses during gait termination are expected to parallel those measured in steady-state gait 

but increase in magnitude as the loss of COP control during gait termination is hypothesized 

to be more detrimental than during steady-state gait. 

 

L e f t  f o o t

R ig h t  f o o t

W o o d  c o v e r e d  f o r c e p la te

R o l le r s
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+ X

+ Z

W o o d e n  w a lk w a y

Figure 2.1: Lab set-up diagram (not to scale). 

 



 

  17

2.2 MATERIALS AND METHODS 

Gait termination (GT), on a normal and a slippery surface, was investigated in eight 

healthy, young adults [4 males and 4 females, age = 24, +/- 3 (SD) yr]. Experimental set-up 

included a four-inch high wooden walkway with aluminum rollers covering one force plate 

(See Marigold and Patla, (2002) for detailed description of the roller apparatus). A set of ten 

walk-through (WT) trials were performed along the walkway to collect baseline gait data. 

The subject then performed a series of 21 trials, of which a random five out of the first 20 

trials required termination on a set of locked rollers [non-slippery stop (NS) trials]. As the 

subject stepped with the left foot on the first force plate (covered by wood), a monitor at the 

end of the walkway signaled for the subject to stop with both feet on the second force plate 

(covered by the rollers) (Figure 2.1). The 21st trial always signaled the subject to stop. For the 

21st trial, however, the rollers were unlocked without the subject’s knowledge to create a 

slippery surface [slippery stop (SS) trials] and therefore a purely unexpected slip trial. The 

rollers were aligned so the slip was only in the direction of progression (along the x-axis). 

The protocol was approved by the University of Waterloo Ethics committee and safety 

measures were taken to ensure subjects did not fall during SS trials. 

  Two AMTI© force plates were used to collect ground reaction forces sampled at 

2400 Hz. Previous testing (A Oates unpublished observations) of the force plates with the 

wooden platform and roller coverings demonstrated accurate (within 2%) data recording, 

with the exception of the natural frequency and the sensitivity of the system. These system 
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differences were deemed acceptable for this experiment. Force plate data were low-pass 

filtered at 60 Hz and analyzed using a custom program.  

Ground reaction forces represent the algebraic sum of the mass-acceleration products 

of all segments in the body and therefore provide a representation of COM control. Braking 

impulse was calculated as the integration of the horizontal ground reaction force in the 

direction of progression over a set time period. The integration period was determined by the 

length of foot contact on the rollers during the SS trials. This integration period was constant 

for a subject but varied between subjects according to the length of foot contact by each 

subject on the slippery surface (range= 0.12 to 0.35 seconds). The braking impulse and the 

peak braking force were compared between NS and SS conditions. The average range of 

COP movement [calculated as the root-mean-square (RMS) of all deviations in the x- and z-

axis] as well as the maximum range of COP was compared between all conditions. 

 Three Optotrak© (Northern Digital Inc., Waterloo) cameras recorded kinematic data 

from 21 infra-red emitting diodes (IREDs) at 60 Hz to create a 12-segment model for COM 

calculation. IREDs were placed at: xyphoid process and bilaterally at fifth metatarsal, heel, 

lateral malleolus, lateral femoral condyle, greater trochanter, ASIS, acromion process, 

olecranon, radial styloid, medial clavicle. Raw data was processed using Optofix and CofM 

software (MIshac Kinetics) and low-pass filtered at 6 Hz. Step length and width values were 

measured from the heel markers at the point of heel contact on the force plates. To calculate 

the contribution of the arm segments to the slip-recovery response, the arms were removed 

from the COM model to create a 10-segment COM model. The resulting arm-less COM peak 
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displacements and peak momentum profiles were compared to those with arms. (Note: Arm 

marker data was missing for two subjects. These two subjects, therefore, were not included in 

the comparison between the full COM model and the arm-less COM model). Final COM 

position in the x axis, the peak displacements of the COM in the vertical (y axis) and 

horizontal (z axis) were calculated both with and without arms segments for the gait 

termination trials. COM momentum profiles were compared between NS and SS trials to 

identify any momentum transfers during GT. Instantaneous COM momentum values were 

compared at peak values of the NS trials after heel contact on the rollers. 

 Muscle activity was recorded from 10 pairs of bipolar Kendall Meditrace (Chicopee, 

MA) surface electrodes: tibialis anterior (TA), soleus (SOL), rectus femoris (RF), biceps 

femoris (BF), and lower erector spinae (LES), bilaterally) sampled at 2400 Hz (0.5-1K gain 

with a Bortec© AMT-8 amplifier. EMG data was analyzed using a custom-designed Matlab 

program (Mathworks, Natick, MA) which full-wave rectified, filtered (2nd order Butterworth 

with a low pass frequency cut-off of 10 Hz) and aligned the data with heel contact on the 

force plates. For comparison purposes, WT trials and NS trials were compared by aligning 

the data to heel contact on the first force plate. NS and SS trials were compared by aligning 

the data to heel contact on the rollers. These alignment points were chosen to illustrate any 

differences in behaviour that accompanied the differences due to surface conditions.  

Significant muscle activity changes (defined as a change beyond two standard 

deviations of the average muscle activity in the one second before heel contact with a 

minimum duration of 50ms) were determined and difference latencies (average WT trials 
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subtracted from average NS trials and average NS trials subtracted from SS trials) were 

calculated (Marigold and Patla 2002). The differences between WT and NS trials will be 

referred to as latencies whereas the differences between NS and SS trials will be referred to 

as difference latencies. When comparing the WT and NS trials, a significant change in 

activity is reported only when that muscle showed significantly different activity in 60% of 

the NS trials. Pre-planned comparisons, using paired t-tests, were conducted for WT versus 

NS (α = 0.05).  Non-parametric Wilcoxon tests were conducted for the NS versus SS trials 

because of the differences in sample size (n = 35 versus n = 8, α = 0.05).  

2.3 RESULTS 

 Subjects were able to stop successfully on the rollers in 35/40 NS trials. In two 

unsuccessful NS trials (one trial each for two subjects), the subject reported that he/she was 

not paying attention to the monitor at the end of the walkway. For the remaining three 

unsuccessful trials (all within the same subject), the subject seemed to be walking too fast to 

stop with both feet on the rollers. These five unsuccessful NS trials were not included in the 

analysis. All subjects were able to regain balance and eventually stop safely (i.e., without 

falling or requiring assistance to maintain balance) during the SS trials. 

2.3.1  Braking impulse and force 

 Braking force illustrates the amount of force generated to stop forward movement. 

Subjects exerted a significantly lower braking impulse during SS trials compared to NS trials 

(p=0.0120) (Figure 2.2 A and B). The peak braking force, however, did not differ 
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significantly between gait termination conditions (Figure 2.2B). The slippery surface 

prevented the subjects from developing a sufficient braking impulse to stop forward 

progression.  
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Figure 2.2: A) Representative braking force profiles for walk-through (WT), non-
slippery stop (NS), and slippery stop (SS) trials. Braking force (Fx) was recorded in the 
direction of progression. Zero seconds is heel contact on the rollers. (n = 8 subjects).  
B) Braking impulse (units = N.s) and peak braking force averages (units = N) with SE 
for NS and SS trials. * = significant difference between conditions (α < 0.05); n = 8 
subjects. 
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2.3.2 Centre of Pressure 

 The RMS of the COP in all directions differed significantly between both WT and NS 

and NS and SS conditions (Figure 2.3A). In the direction of progression (COPX), the RMS 

was significantly larger in the WT trials compared to the NS trials (p=0.0227) but there was 

no difference in the maximum range of COPX values between the WT and NS conditions 

(p=0.9009; Figure 2.3B). The increased deviation is expected as the COP travels under the 

entire length of the foot as the subjects continue walking past the force plate. Subjects likely 

used their entire plantar surface to move the COP during both static foot placements of WT 

and NS trials; a likely explanation for the lack of difference between the maximum range of 

COPX movement between the WT and NS trials. In the medial-lateral plane (COPZ), both 

the RMS (Figure 2.3A) and maximum range (Figure 2.3B) values were significantly greater 

in the NS trials than the WT trials (p=0.0002 for RMS and p=0.0011 for maximum range). 

As both feet are placed on the force plate during gait termination, the COP has a greater area 

within to move and therefore the increased deviations and ranges of COP values are expected 

when comparing NS to WT trials. 

 A comparison between the NS and SS trials reveals an increase in all four variables 

during the slip (Figure 2.3, A and B): RMS, p=0.0120 for COPX and p=0.0120 for COPZ; 

maximum range, p=0.0170 for COPX and p=0.0120 for COPZ. The increased deviations and 

ranges indicate the foot was not able to remain static on the slippery surface as the foot slid 

forward. Subjects were therefore not able to stop successfully with the same COP pattern.  
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2.3.3 Step Parameters-Length and Width 

 Average step length was 80.8 +/-5.3 (SD) cm for WT trials, 80.3(+/-3.4 cm for NS 

trials and 82.2 +/-3.6 cm for SS trials. Average step width was 26.6 +/-2.8 cm for WT trials, 

28.1 +/-3.7 cm for NS trials and 28.3 +/-2.9 cm for SS trials. Unlike previous investigations 

(B McGowan, unpublished observations) there was no significant difference between WT 

and NS trials in either step length or width. The lack of difference between the WT and NS 

conditions suggests that subjects did not attempt to use changes in step parameters to 
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Figure 2.3: A) Average root mean square (RMS) of center of pressure (COP) in the 
anterior-posterior (COPX) and medial-lateral (COPZ) axes with SE. B) Maximu7m 
range of COP with SE. * = significant difference between conditions (α <0.05, n = 8 
subjects). 



 

  24

terminate locomotion. There were also no differences in step parameters between the NS and 

SS trials which confirms that subjects were unable to anticipate the slippery surface.  

2.3.4 Centre of Mass 

The COM moved significantly more in all three planes during the SS compared to the 

NS trials both with and without arms (Figure 2.4, A and B). In the direction of progression, 
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Figure 2.4: A) Average COM trajectories in the sagittal plane. The dashed lines 
represent the same trials with the arms removed from the COM model. Position (0,0) 
represents heel contact on the rollers. B) Average COM trajectories in the frontal 
plane. The dashed lines represent the same trials with the arms removed from the 
COM model. (n = 6 subjects for A and B). 
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the COM moved on average 51.6 +/- 7.7 cm with arms in the NS trials, 51.4 +/- 6.8 cm 

without arms in the NS trials, 70.8 +/- 11.7 cm with arms in the SS trials and 76.3 +/- 14.5 

cm without arms in the SS trials. In the medial-lateral plane, the COM moved on average to 

the right 2.38 +/- 1.6 cm with arms in the NS trials, 2.56 +/- 1.6 cm without arms in the NS 

trials, 5.55 +/- 2.1 cm with arms in the SS trials and 6.26 +/- 3.3 cm without arms in the SS 

trials. Vertically, the COM lowered on average 0.60 +/- 0.34 cm with arms in the NS trials, 

0.68 +/- 0.35 cm without arms in the NS trials, 3.17 +/- 1.9 cm with arms in the SS trials and 

5.61 +/- 4.2 cm without arms in the SS trials. An increased travel distance demonstrates that 

the subjects were unable to stop forward progression on the slippery surface as effectively as 

stopping on the normal surface; a result supporting the increased deviation of the COPX. The 

large medial-lateral movement parallels the COP data which also showed greater medial-

lateral movements during SS trials compared to the NS trials. Subjects significantly lowered 

their COM during the SS trials in an attempt to regain stability on the slippery surface. 

COM momentum (Figure 2.5A) was significantly different during the SS trials when 

compared to peak vertical NS trial values (Figure 2.5B). Both horizontal velocities were 

significantly greater in the SS trials than the NS trials; subjects were sliding forward and their 

COM was traveling to the right faster than during NS trials when slipping on the rollers. The 

vertical COM momentum was increasing in the NS trials and decreasing in the SS trials. The 

lowering of the COM is likely a response to the slip to stabilize the body and maintain 

balance. The increase in the COMZ momentum could be the result of a momentum transfer 

from A-P to M-L to dissipate forward momentum. 
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Arm movement did not have a significant effect on COM displacement. Arm movement did, 

however, have a significant effect on COM momentum. When peak COM momentum values 

were compared between SS trials using a full or arm-less COM model, there was 

significantly higher forward momentum without the arms in the model (Figure 2.6). The 

increased forward momentum suggests that the arms were effectively used to arrest forward 
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Figure 2.5: A) Average COM momentum profiles. Vertical line indicates heel contact on 
the rollers. Solid lines represent SS trials, dashed lines represent NS trials. B) 
Comparison at peak vertical COM momentum during NS trials with SE. * = significant 
difference between conditions (α <0.05). n = 6 subjects for A and B. 
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momentum during the slip and, as the arms were neither fully flexed nor abducted, the arms 

could have possibly assisted with a transfer of momentum from forward to lateral.  
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Figure 2.6: Average peak COM momentum values compared between a full and an 
arm-less COM model with SE during SS trials. COMX and COMZ values were 
compared at maximum values, COMY values were compared at the minimum value. 
* = significant difference between conditions. (α <0.05). n = 6 subjects. 

2.3.5 Muscle Activity 

2.3.5.1 Non-slippery stops versus walk-throughs  

On average, all muscles, except for the right TA and right RF, showed significantly 

different activity during the NS compared to the WT trials (Figure 2.7 for the right limb and 

Figure 2.8 for the left limb).  Average latencies between WT and NS trials ranged from 

~57ms (right LES) to 332ms (right BF) (Table 2.1). Inhibition was seen in the main 

propulsion muscle of the left limb (SOL) along with the left LES. The left hip and knee 

muscles (RF and BF) co-contracted to slow the swing of the left limb during gait termination. 
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Muscle NS vs. WT n SS vs. NS n

RTA 236 ± 53 4 94 ± 19 8
RSOL 162 ± 91 4 56 ± 24 8
RRF 150 ± 46 3 91 ± 14 8
RBF 332 ± 48 8 66 ± 19 8
RLES 57 ± 17 7 105 ± 38 8

LT

The left SOL was inhibited to prevent acceleration during the toe-off of the left limb. The left 

TA increased its activation to dorsiflex the ankle which provided sufficient toe clearance 

during swing. The LES increased activation bilaterally to stop forward rotation of the trunk. 

The right RF and SOL seemed to generate most of the braking force for the right limb while 

the right TA and BF slightly increased activation levels, probably to support the ankle and 

hip joints, respectively, through co-contraction.   

 

Table 2.1: Difference latencies comparing NS to WT and SS to NS trials. Values are 
means ± SE. n = number of subjects who displayed significantly different muscle 
activation in ≥ 60% of NS trials compared to WT trials and the number of subjects who 
displayed significantly different muscle activation in slippery stop trial (SS) compared to 
NS trials. ^ = difference was inhibitory. Units are in ms. 

A 136 ± 39 8 124 ± 56 8
LSOL 199^ ± 44 7 178 ± 30 7
RF 155 ± 31 8 122 ± 16 8
LBF 136 ± 38 5 36 ± 8 8
LLES 115^ ± 51 5 41 ± 17 8

2.3.5.2 Slippery surface stops versus Non-slippery surface stops.  

All muscles showed significantly increased activity during the SS trials when 

compared to the NS trials (Figures 2.7 and 2.8). The difference latencies ranged from ~36ms 

(left BF) to 178ms (left SOL) (Table 2.1). As the right foot slid forward, the right TA 

increased its activity in an attempt to bring the shank over the foot and, therefore, the COM 
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over the base of support. The increased right SOL activity stiffened the ankle joint and 

increased ankle stability. Both the right RF and BF increased activity to prevent collapse and 

lower the COM, respectively. The co-contraction of both thigh muscles would also increase 

stability at the knee and hip and provide support to the upper body as the COM lowers. The 

bilateral increase in LES activity is likely an attempt to stop forward trunk progression. 
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WT trials  NS trials SS trial 
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Figure 2.7: Representative right limb EMG from one subject. Vertical line 
represents time of heel contact on the rollers. Horizontal axis is time (s). Signal to 
stop at 0s. Vertical axis is arbitrary units. 
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WT trials  NS trials SS trial 
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Figure 2.8: Representative left limb EMG from one subject. Vertical line represents 
time of heel contact on the rollers. Horizontal axis is time (s). Signal to stop at 0s. 
Vertical axis is arbitrary units. 
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2.4 DISCUSSION 

 In this study we show that subjects unload their left limb to decrease acceleration, 

load their right limb to increase braking force and manipulate the COP movement underneath 

the feet to stop successfully. When attempting to stop on a slippery surface each subject 

displayed a slightly different reaction yet a generalized response to the slippery surface 

emerged with included an arm raise, a shortened  final step, and increased lower limb muscle 

activity to support the lowering COM; all strategies were employed to regain stability and 

prevent a fall. The reaction to the slippery surface in the present study is similar to previously 

reported perturbation reactions during locomotion (e.g. Marigold and Patla 2002; Misiaszek 

2003) suggesting a generalized recovery strategy to perturbations during walking that 

attempts to maintain balance and the specific locomotor task. 

2.4.1 Walk-throughs versus gait termination 

GT differed from normal walk-through trials primarily by decreased forward 

propulsion and increased deceleration of the body after the stop signal. There was no push-

off phase after the right foot was placed on the locked rollers through the ground reaction 

forces. Co-contraction at the hip and knee slowed the left leg during the final swing phase, 

while inhibition of the left SOL decreased the push-off forces. The right limb increased its 

braking force through an extensor synergy (increased RF and SOL activity) while the 

remaining muscles in the right limb (TA and BF) provided support through an increase in 

stiffness and, therefore, stability. Trunk movement was controlled through bilateral LES 

activation. Although muscle activity from large groups such as the gluteals and vasti group 
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were not recorded, their activity likely coincided with the BF and RF muscles respectively to 

assist with the extensor synergy and decelerate forward movement. 

Compared to previously reported results (Crenna et al. 2001) the onset of muscle 

activity signaling the initiation of gait termination were much quicker for the right limb 

[average latency ~180ms for the right limb compared to ~330ms for the swing limb in 

Crenna et al. (2001)], whereas the left/stance limb latencies match very closely [150ms for 

the left limb and ~150ms for the stance limb (Crenna et al. 2001)]. There was no clear 

recruitment order evident in our study whereas Crenna et al. (2001) found a distinct distal-to-

proximal activation in the stance limb (our left limb) and a proximal-to-distal activation in 

the swing limb (our right limb). These differences in recruitment order may be related to the 

experimental protocol. The present study used a 25% chance of gait termination while the 

comparable study (Crenna et al. 2001) employed a 50% occurrence of gait termination. 

Higher probability of GT in the study by Crenna et al. (2001) would reduce the variability of 

the program for GT. Perhaps the fewer termination trials in the current study allowed for 

larger variance thereby making it difficult to discern any clear ordering of muscle activation 

patterns. Another source of variance between the two studies could be the selection of trials 

for analysis: The present study included all successful NS trials (i.e., the subject stopped with 

both feet on the rollers) whereas it is unclear if all of the stop trials were included for analysis 

in Crenna et al. (2001). 

Flexor and extensor synergies (Hase and Stein 1998) were used to load and unload 

the limbs for effective gait termination as shown in the kinetic data from the force plates. 
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That is, the flexor muscle activity increase in the left limb decreased the push-off force under 

the left limb. The braking forces under the right limb increased as a result of increased 

extensor activity. Through the flexor/extensor synergies, subjects used the ground reaction 

forces to manipulate the COP and decelerate the COM to a stable, stationary position.  

The muscle activation patterns in the present study are comparable to those of Hase & 

Stein (1998) who reported an inhibition in the left limb (comparatively) SOL and a similar 

latency of left TA activity [150-200ms reported in Hase and Stein (1998), approx 140ms in 

present study]. Differences exist when comparing the latencies of the left and right LES 

muscles; the present study found latencies ~115ms and 57ms, respectively, where Hase and 

Stein (1998) reported a bilateral activation of the LES muscles ~200ms. In general, the 

present study found latencies from ~15-150ms shorter than those reported in Hase and Stein 

(1998). The differences may be due to the stimulus provided to initiate gait termination. Hase 

and Stein (1998) used electrical stimulation of the superficial peroneal (SP) nerve whereas 

the present study used a visual cue. Electrical stimulation of the SP nerve may have slightly 

prolonged activation based on the amount of neural processing involved to perceive the 

signal and initiate GT and also the experience interpreting the cue. A visual cue requires 

perception at the cortical level followed by appropriate cortical-spinal commands to stop 

walking. Stimulating the SP nerve requires perception of the cue, interpretation of the cue as 

a signal to stop walking and then initiation of a GT program: A route that involves a signal 

traveling up the spinal cord to the cortex, cortical processing and subsequent cortical-spinal 

commands to stop walking. The sight of a stop sign is a regular occurrence in everyday life 
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and is easily interpreted as a cue to stop. SP nerve stimulation, however, is not regularly used 

as a cue to stop movement and may have required more processing to understand the 

significance of the cue.    

2.4.2 Gait termination on a normal surface versus a slippery surface 

Gait termination on the slippery surface of the unlocked rollers proved to be a 

balance-challenging task. Normal stopping strategies were insufficient to maintain COM 

trajectories while slipping. Subjects were unable to generate enough braking force to stop the 

forward progression of the COM within the same limits as normal gait termination. In all SS 

trials, subjects shortened their last step with their left leg (i.e., the step that would place the 

left foot beside the right foot on the rollers). This small step enabled the subjects to increase 

their base of support during the SS trials which would allow the ground reaction forces (i.e., 

the COP) under the left foot to corral the COM and help prevent a fall. Subjects also raised 

their arms and lowered their COM to stabilize their body and stop walking.  

Every muscle recorded increased its activity to support the body, stop forward 

movement and restore stability. All of the lower limb muscle activity increased to support the 

legs and the whole-body COM and, most likely, to stiffen the lower limb joints throughout 

balance recovery. The difference latencies between the NS and SS trials suggest that the 

nervous system is able to detect the slip and elicit a behavioural response in as little as 60ms; 

these latencies suggest long-latency reflexes (57ms) as well as voluntary reactions (178ms) to 

the slippery surface (Pearson and Gordon, 2000). The large left TA activity may have created 

a toe lift to prepare for the shortened step. The shortened step and increased TA activity 
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resembles the startle response observed by Nieuwenhuijzen et al. (2000). The startle response 

is an adaptive response in that the nervous system attempts to adopt the most stable posture 

in an unstable situation. The arm raise and increased TA activity helped to stabilize the 

falling COM during the slip. While all subjects were surprised by the slippery surface, it is 

likely that any apparent startle response was initiated as part of a balance recovery program 

to reinstate stability but was not the primary method by which subjects successfully 

terminated gait. 

Medial-lateral plane movement was increased during SS trials as evidenced in the 

larger COP and COM deviations while slipping. This increase in movement cannot be 

attributed to the rollers since they permit slipping only in the direction of progression. A 

counter-clockwise twist of the body, caused by the right foot sliding forward while the left 

foot was behind the rollers, may have initiated the medial-lateral movement by turning the 

body axis from its original alignment. A twist may also have been a reaction to and not a 

consequence of the right foot sliding forward. If the basic GT strategy (involving loading and 

unloading the limbs and COP manipulation) is not effective, the CNS may have attempted to 

transfer part of forward momentum to lateral momentum; a transfer which would involve 

some rotation about the vertical axis.  

To stop successfully on the rollers subjects may have attempted to transfer forward to 

lateral momentum, as seen in previous research on patients with balance deficits (O’Kane et 

al. 2003). Previous GT investigations in both healthy (Hase and Stein 1998) and 

neurologically impaired individuals (O’Kane et al. 2003) observed energy/momentum 
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transfers during gait termination. Hase and Stein (1998) suggested that subjects used a toe-

raise to dissipate forward momentum if they were unable to either effectively dissipate push-

off force or generate sufficient braking force. By transferring momentum between axes, 

subjects in the present study may have utilized a lateral limb load/unload strategy instead of 

an anterior-posterior load/unload strategy found in normal stopping (Hase and Stein 1998; B 

McGowan unpublished observations). O’Kane et al. (2003) reported that both cerebellar and 

vestibular patients used a forward to lateral energy transfer to assist GT. The cerebellar 

patients were unable to control the eccentric muscle activity required to absorb the forward 

momentum while the vestibular patients were not able to detect the amount of acceleration of 

the body until the last step when the visual and proprioceptive systems provided information 

about the velocity of movement. The awareness of a lack of deceleration in the vestibular 

patients during this last step would eliminate the usefulness of a reduced push-off power (i.e., 

it would be too late at that point in GT) and therefore require a large braking force and a 

momentum transfer to effectively dissipate forward momentum. These findings applied to the 

current study suggest that, when traditional stopping strategies such as decreased push-off 

and increased braking forces fail to stop forward progression, subjects attempt to transfer 

forward momentum to lateral momentum to effect safe, stable gait termination. 

Lowering the COM increases stability (Tucker et al. 1998; Marigold and Patla 2002; 

Cham and Redfern 2001) and was a strategy used by all subjects during SS trials. The 

lowering of the COM was likely the result of the flexor synergy often seen in slips (Brady et 

al. 2000; Cham and Redfern 2001, 2002; Marigold and Patla 2002), evidenced by the 



 

  38

increased muscle activity in the hip, knee, and ankle flexors of both limbs. The slip of the 

right foot on the rollers may have passively contributed to the lowering of the COM. Since in 

some subjects, the COM began moving upwards before the foot had stopped sliding forward, 

the observed COM lowering cannot be considered a passive consequence of the foot sliding 

on the rollers. This suggests that lowering of the body COM is most probably an active 

control strategy. 

Arm movement was ineffective on average in altering the COM displacement during 

SS trials. The arms did, however, make a significant difference in the peak forward 

momentum values suggesting the arms helped dissipate forward momentum. The arm 

strategy, therefore, is used to control movement velocity instead of displacement. This 

protective arm elevation strategy is often seen in slips and is coordinated with the lower limb 

slip response (Haridas and Zehr 2003; Marigold and Patla 2001; Marigold et al. 2003; 

Misiasek 2003). The interlimb coordination serves to diminish the whole-body COM 

momentum during the slip, minimize the perturbation and assist in balance recovery.  

2.4.3 Neural mechanisms 

 Normal GT was successfully performed in the majority of trials. The instructions 

given to the subject about the requirement to stop when the visual cue was given allowed 

subjects to plan a GT strategy. The timing of the cue required the subject to stop within one 

step. During this final step, the subject would have had to process the visual cue as a stop 

signal and initiate a GT program involving an extensor/flexor or load/unload synergy in the 

limbs. The number of catch (WT) trials and the timing restraint on the response removes the 
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chance for any anticipatory actions. The change in motor activity from a locomotor to a GT 

program was initiated as early as 57ms and took as long as 332ms on average. The GT 

program was likely initiated by the visual cue and monitored by the visual, proprioceptive 

and vestibular sensory systems. 

 The nervous system initiated slip responses in some muscles in as little as 36ms. 

These initial reactions are suggestive of stretch reflex, or short-latency reactions (Pearson and 

Gordon 2000). On average, most motor activity recorded was between 50 and 200ms 

suggestive of polysynaptic or long-latency reflexes (Pearson and Gordon 2000) and simple 

reaction times (Hase and Stein 1998). It is possible that the vestibular system detected the 

slip through head acceleration (Horak et al. 1994) and initiated extensor activity to support 

the body during the perturbation. Cutaneous receptors on the plantar surface of the foot 

(Perry et al. 2000) and load-sensitive afferents in the ankle extensors (Misiaszek et al. 2000) 

likely detected the slip, and through their afferent feedback, helped initiate a polysynaptic 

response. It is unlikely that the visual system was able to detect the slip and, in sufficient 

time, elicit a visually-based balance-correcting response due to the relative slowness of 

normal visual reaction time (~100ms delay compared to proprioceptive-based balance 

correcting responses (Pearson and Gordon 2000)). Comparison of the slip reaction during GT 

seen here to previous studies involving perturbations to either the support surface (Cham and 

Redfern 2001, 2002: Marigold and Patla 2002: Marigold et al. 2003) or the loading of the 

lower limbs during steady state gait (Misiaszek et al. 2000; Misiaszek 2003) suggests that the 

CNS generates a common balance-recovery strategy when equilibrium is disturbed during 
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locomotor activities. The reaction latencies could be interpreted as responses from spinal and 

supraspinal structures (such as the lateral vestibular nucleus, reticular formation, and motor 

cortex) charged with monitoring locomotor activity and maintaining dynamic balance 

throughout. 

In conclusion, muscle responses to slipping are comparable to responses found in 

previous experiments (Cham and Redfern 2001, 2002; Marigold et al. 2003; Marigold and 

Patla 2001) as are the arm responses (Marigold et al. 2003) and shortened step (Cham and 

Redfern 2002; Marigold et al. 2003) suggesting a general balance recovery strategy when a 

slippery surface is encountered during GT. This recovery strategy includes an overall 

increase in muscle activity to increase lower extremity joint stiffness, lowering of the COM, 

a shortened step, and arm elevation; all designed to increase stability and maintain balance 

during the slip. Gait termination on a slippery surface employs the same recovery strategy 

but includes an arm raise to stop forward progression and transfer forward to lateral 

momentum to stop safely and prevent a fall. 
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CHAPTER 3: ADAPTATION TO GAIT TERMINATION ON A SLIPPERY 
SURFACE IN YOUNG, HEALTHY ADULTS 
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3.1 INTRODUCTION 

This study examines the changes in gait termination with knowledge of and 

experience with a slippery surface. Previous research investigating unexpected perturbations 

during gait, including a slip perturbation, describes a typical lowering of the body’s centre of 

mass (COM) (Oates et al 2005; Marigold and Patla 2002), an arm raise (Oates et al 2005; 

Misiaszek 2003), and a shortened subsequent step (Marigold et al 2003). The muscle activity 

in the lower limbs increase to prevent collapse (Ferber et al 2002; Cham and Redfern 2000; 

Misiaszek et al 2000) and persist with the planned motor program (Marigold et al 2003; Tang 

et al 1998b) whether it is continued gait or gait termination (Oates et al 2005). 

Prior experience with a slippery surface causes changes in various postural and gait 

characteristics to diminish the perturbing effect of the slip.  Adaptations include shorter steps 

(Brady et al 2000; Cham and Redfern 2002; Heiden et al 2006; Myung and Smith 1997), 

diminished arm responses (Marigold and Patla 2002), increased margin of stability between 

the COM and the base of support (Marigold and Patla 2002) and a decreased foot-floor angle 

to decrease the shear forces required to prevent a slip (Brady et al 2000; Cham and Redfern 

2002; Marigold et al 2003; Marigold and Patla 2002),. The magnitude of the muscular 

response diminishes quickly, often in one trial, as the response to the slip becomes more 

efficient (Henry et al 1998; Marigold et al 2003; Marigold and Patla 2002; Tang et al 1998b). 

In these previous studies, both prior experience and knowledge could account for the 

observed adaptive behaviours.   
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There can only be one truly unexpected slip. After being alerted to the possibility of a 

slip, behaviour changes in preparation for the surface (Brady et al 2000; Cham and Redfern 

2002; Heiden et al 2006; Marigold and Patla 2002; Myung and Smith 1997). We wanted to 

control behaviour in order to examine the adaptive changes in response to the slippery 

surface and not in expectation of a slippery surface. We therefore provided knowledge of 

when a slippery surface occurred so the adaptive behaviours would be present only during 

the slippery stops and not during the non-slippery stops. The purpose of this study is to 

examine the organization of the adaptation to a slippery surface during gait termination in 

young healthy adults. We hypothesize that adaptations to the slippery surface will occur 

within the first two trials after an unexpected slip and that behaviour will change from a 

supportive (a reactive strategy to prevent collapse during the stop) to a surfing (a proactive 

strategy to maintain stability during the stop) strategy. 

3.2 MATERIALS AND METHODS 

3.2.1 Protocol 

The adaptation to stopping on a slippery surface was investigated in eight young, 

healthy participants (four males and four females, mean age +/-SD = 24, +/- 3 years). 

Experimental set-up included a four-inch high wooden walkway with aluminum rollers 

covering one force plate (See Marigold and Patla, (2002) for detailed description of the roller 

apparatus).As the subject stepped with their left foot on the first force plate (covered by 

wood), a monitor at the end of the walkway signaled for the subject to stop with both feet on 



 

  45

the second force plate (covered by the rollers) (figure 3.1 shows the set-up of the laboratory 

during testing). After a series of random stop trials within walk-through trials, the rollers 

were unlocked without the knowledge of the subject to provide a slippery surface. The 

subject was then signaled to stop during this trial to produce a purely unexpected slip trial 

(unexpected slippery stop trial). The rollers were aligned so the slip was only in the direction 

of progression and participants slipped on and over the top of the rollers. (Data reporting 

comparisons between non-slippery stops and the first slippery stop have been reported 

previously; Oates et al 2005).  

After the first slip trial the subject was informed that the display would randomly ask 

the person to stop on the rollers. In five of the stop trials the rollers were unlocked to create a 

slippery surface and the display at the end of the walkway read “Stop Slippery”. These trials 

were called the cued slippery stop trials. The other five stop trials were non-slippery stops 

and the display at the end of the walkway read “Stop”. These trials were called the cued non-

slippery stop trials.  These ten stop trials (five slippery, five non-slippery) were randomly 

placed within fifty walk-through trials to discourage anticipation of the stop trials. The 

protocol was approved by the University of Waterloo Ethics committee and safety measures 

were taken to ensure participants did not fall during any of the trials.  

3.2.2 Kinetics 

Two AMTI© force plates were used to collect ground reaction forces sampled at 2400 

Hz. Previous testing (A Oates unpublished observations) of the force plates with the wooden 

platform and roller coverings demonstrated accurate (within 2%) data recording, with the 
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exception of the natural frequency and the sensitivity of the system. These system differences 

were deemed acceptable for this experiment. Force plate data were low-pass filtered at 60 Hz 

and analyzed using a custom program (MIshac Kinetics).  

Braking impulse was calculated as the integration of the horizontal ground reaction 

force in the direction of progression over a set time period. The integration period was 

determined by the length of foot contact on the rollers during the unexpected slippery stop 

trials. This integration period was constant within a subject but varied between subjects 

according to the length of foot contact by each subject on the slippery surface (range= 0.12 to 

0.35 seconds). The peak propulsive force and the propulsive impulse (integrated propulsive 

force) were calculated for the entire time propulsion was created by the trail/left limb and 

compared between conditions. The braking and propulsive impulses and the peak braking 

and propulsive forces were compared between unexpected slippery stop, cued slippery stop 

and the average of the cued non-slippery stop trials conditions. 

3.2.3 Kinematics  

Three Optotrak© (Northern Digital Inc., Waterloo) cameras recorded kinematic data 

from 21-IREDs (infra-red emitting diodes) at 60 Hz to create a 12-segment model for centre 

of mass (COM) calculation. IREDs were placed at: xyphoid process and bilaterally at the 

fifth metatarsal head, heel, lateral malleolus, lateral femoral condyle, greater trochanter, 

ASIS, acromion process, olecranon, radial styloid, and medial clavicle. Raw data was 

processed using Optofix and CofM software (MIshac Kinetics) and low-pass filtered at 6 Hz. 

For two of the participants, the marker data on the elbows were inadequate to provide 
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sufficient time periods over which to observe the COM movement; therefore, the arms were 

removed from the COM model to create a 10-segment COM model.  

Peak downward displacement of the COM was calculated from the time of heel 

contact on the rollers for 500ms. Values of the peak downward COM position were 

normalized to the average value during walk-through trials to account for different heights of 

the participants. The anterior-posterior (A-P) positions of the COM and the heel marker of 

the lead limb were compared to show the difference at heel contact on the rollers during gait 

termination. The angle of the foot at heel contact on the rollers was calculated using the heel 

and 5th metatarsal markers (θ = tan-1(vertical metatarsal position – vertical heel position/ A-P 

metatarsal position – A-P heel position)). Qualitative assessment of the video data showed 

that the arm raise was produced with a fairly straight arm and, therefore, the maximum height 

of both arms was calculated as the maximum height of the marker on the radial styloid within 

the first 500ms after heel contact on the rollers. Values were normalized to the slippery stop 

trial to account for different arm lengths and body heights.  

Figure 3.1: Diagram of laboratory set-up and display screens. Diagram is not to scale. 
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 The forward velocity of the COM at heel contact of the trail limb on the wood-

covered force plate was measured to demonstrate any changes in the forward velocity 

approaching the rollers. Time to slow was defined as the time when the COM forward 

velocity fell below the average minus two standard deviations of the average forward 

velocity of the walk-through trials. The time to stop was defined as the time when forward 

velocity fell within the average plus two standard deviations of the average velocity (over 

500ms) one second after the right heel contact on the rollers of the cued non-slippery stop 

trials (as reported in Oates et al 2005). 

3.2.4 EMG  

Muscle activity was recorded from 10 pairs of bipolar Kendall Meditrace® (Chicopee, 

MA) surface electrodes: tibialis anterior (TIB), soleus (SOL), rectus femoris (RF), biceps 

femoris (BF), and lower erector spinae (LES), bilaterally) sampled at 2400 Hz (0.5-1K gain 

with a Bortec© AMT-8 amplifier). EMG data were analyzed using a custom-designed Matlab 

program (Mathworks, Natick, MA) which full-wave rectified and filtered (2nd order 

Butterworth with a low pass frequency cut-off of 10 Hz) the data. The EMG was integrated 

(iEMG) from the time at which the participant received the signal to stop (trail-limb heel 

contact on the first force plate) for one second. The time of signal was chosen as the 

alignment point for the iEMG calculations to show any modifications that may occur before 

stepping on the rollers. One second of examination was chosen to include the reaction to the 

signal and the first step onto the rollers. 
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 Statistical analysis was performed using SPSS 14.0 for Windows© (Chicago, Ill.). A 

one-way repeated measures design was used with the unexpected slippery stop, cued slippery 

stop trials 1 thru 5, and the average of the cued non-slippery stops to test for adaptive 

changes. Post-hoc analysis was done using Tukey’s tests (α =.05). Reported trends are based 

on qualitative observations and do not imply statistical significance. 

3.3 RESULTS 

3.3.1 Kinetics 

Figure 3.2 shows the results of the peak and integrated braking force over the 

unexpected slippery stop, cued slippery stop trials and the average of the cued non-slippery 

stop trials. Both peak braking force and integrated braking force showed a significant trial 

effect (peak F=16.854, p<.001; integrated F=58.262, p<.001). The peak braking force 

significantly diminished after the unexpected slippery stop trial (cued slippery stop 1 p=.004, 

cued slippery stop 2 p<.001, cued slippery stop 3 and 4 p=.001, cued slippery stop5 p<.001). 

The integrated braking force also significantly decreased compared to the slippery stop trial 

(cued slippery stop 1 p=.012, cued slippery stop 2-4 p<.001, and cued slippery stop 5 

p=.001). The average of the cued non-slippery stop trials used significantly greater amounts 

of braking force compared to the cued slippery stop trials (peak braking force: all cued 

slippery stop trials p <.001, integrated braking force: all cued slippery stop trials p<.001). 

The integrated braking force was smaller in the unexpected slippery stop trial compared to 
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the average cued non-slippery stop trials (p<.001), but the peak braking force in the 

unexpected slippery stop trial was not different than the average cued non-slippery stop trials.  

The changes in the peak braking force and braking impulse after the first slip suggests 

a change in the gait termination strategy. The propulsive forces (integrated or peak 

maximum) of the trailing limb showed no significant trial effect. The lack of change in the 

propulsive forces suggests the participants did not decrease propulsion to stop walking.   

Braking Impulse

3.3.2 Kinematics 

 The approach velocity showed a significant trial effect (F=2.668, p=.028). The first 

and second cued slippery stop trials were significantly slower than the unexpected slip (cued 

slippery stop 1 p=.023, cued slippery stop 2 p=.027) which suggests that after the first slip 
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Figure 3.2: Average braking force impulse (left vertical axis) and peak braking force 
(right vertical axis) (+/- SE). * indicates significant difference in the average braking 
impulse from that trial and the other trials indicated by the vertical lines. ^ indicates 
significant difference in the peak braking force from that trial and the other trials 
indicated by the vertical lines.  (CNS = average of the cued non-slippery stop trials, 
CSS = cued slippery stop trials, SS = unexpected slippery stop trial). 
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trial, participants slowed their walking but quickly returned to their pre-unexpected slip 

speed after the two cued slippery stop trials. Figure 3.3 shows the average approach velocity 

for the unexpected slippery stop, the cued slippery stop and average of the cued non-slippery 

stop trials. The time to slow showed a significant trial effect (F=3.149, p=.012). The time to 

slow for the cued slippery stop 2 trial was earlier than the cued slippery stop 5 (p=.005) but 

there is no trend over the trials. There was also a significant trial effect for the time to stop 

(F=3.004, p=.016). No post-hoc differences were revealed between trials yet there is a trend 

of an increased time to stop in the cued slippery stop trials after the first unexpected slippery 

stop.  

Figure 3.3: Average velocity one step before rollers (+/- SE). * indicates a significant 
difference between that trial and the other trials indicated by the vertical lines. (CNS = 
average of the cued, non-slippery stop trials, CSS = cued slippery stop trials, SS = 
unexpected slippery stop trial). 
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Figure 3.4 shows the peak downward displacement in the COM during the time 

between heel contact on the rollers and 500 ms after heel contact. There was no significant 

trial effect in the vertical displacement of the COM (F=1.192, p=.329); however, plotting the 

data shows that participants dropped their COM lower in the slippery stop trial when 

compared to all of the cued slippery stop trials and the average of the cued non-slippery stop 

trials. 

The average distance between the lead limb heel marker and the COM in the anterior-

posterior plane is plotted in figure 3.5. The plot shows a significant decrease in distance 

between the heel and the COM over the cued slippery stop trials (F=5.286, p<.001). Post-hoc 

analysis revealed an adaptation within two trials after the first unexpected slip: a significantly 

decreased distance between the lead heel marker and the COM in cued slippery stop 2 
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Figure 3.4: Peak downward displacement of the COM (+/- SE). Values are normalized to 
the average value during walk-through trials. (CNS = average of the cued non-slippery 
stops, SS = unexpected slippery stop, CSS = cued slippery stop). 



 

  53

(p=.012), cued slippery stop 3 (p=.014), cued slippery stop 4 (p=.001) and cued slippery stop 

5 (p=.024) when compared to the unexpected slippery stop trial.   

 The angle of the foot at heel contact on the rollers significantly changed between 

trials (F=9.829, p<.001), as shown in figure 3.6, and demonstrated an adaptation within two 

trials after the first, unexpected slippery stop. When compared to the slippery stop trial, the 

foot landed significantly flatter for all of trials except the first cued slippery stop trial (cued 

non-slippery stop average p=.001, cued slippery stop 2-5 p<.001). The cued slippery stop 1 

trial showed a significantly larger foot angle at heel contact than the cued slippery stop 2 

(p=.013), cued slippery stop 3 (p=.016), and cued slippery stop 4 (p=.007). The flatter foot 

after the unexpected slippery stop trial in subsequent trials including the non-slippery stops 

suggests an overly cautious foot-landing strategy for a non-slippery surface. 
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Figure 3.5: Average distance between the lead limb heel and the COM in the A-P 
direction at heel contact on the rollers (+/- SE). * indicates a significant difference 
between that trial and other trials indicated by the vertical lines. (CNS = average of the 
cued non-slippery stops, SS = unexpected slippery stop, CSS = cued slippery stop). 
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Figure 3.7 shows the average heights of the right and left arm raises for all conditions. 

There was a significant trial effect in both the left (F=5.400, p<.001) and right (F=3.488, 

p=.007) arms. The left arm was raised significantly higher in the unexpected slippery stop 

trial when compared to the cued slippery stop 2 (p=.006), cued slippery stop 3 (p=.027), cued 

slippery stop 4 (p=.004) and the average of the cued non-slippery stop trials (p<.001). The 

left arm was also higher in the first cued slippery stop trial compared to the average of the 

cued non-slippery stop trials (p=.048). Interestingly, the right arm raise was lower in the 

slippery stop trial compared to the cued slippery stop 1 (p=.009) and cued slippery stop 2 

trials (p=.021). Thus the left arm showed adaptive changes within two cued slippery stop 

trials but the right arm did not as the response in the right arm became more like that seen in 

the first, unexpected slippery stop trial. 

Figure 3.6: Foot angle at lead limb contact on the rollers (+/- SE). * indicates a 
significant difference between trials. (CNS = average of the cued non-slippery stops, 
SS = unexpected slippery stop, CSS = cued slippery stop). 
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Right arm Left arm

3.3.3 Muscle response 

Figure 3.8 is a stacked plot of the average integrated EMG (iEMG) values for all 

conditions and both limbs. Table 3.1 displays all of the values displayed in figure 3.8. The 

values in Table 3.1 are normalized to the unexpected slippery stop trial (trial/SS trial = 

value). The lead limb SOL showed no significant trial effect (F=1.353, p=.256). The TIB 

muscle activity demonstrated a significant trial effect (F=11.026, p<.001) with a significant 

adaptation by the fourth cued slippery stop trial. The lead limb BF muscle also resulted in a 

significant trial effect (F=8.800, p<.001) and was significantly different by the fourth cued 

slippery stop like the lead limb TIB. Activity in the lead limb RF muscles showed a 

significant trial effect (F=15.813, p<.001) and with a significant decrease by the second cued 
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Figure 3.7: Peak arm raise height normalized to the unexpected slippery stop trial as 
indicated by the dashed line +/- SE (value = trial/SS trial). * indicates a significant 
difference from the SS trial, ^ indicates a significant difference between trials. (CNS = 
average of the cued non-slippery stops, SS = unexpected slippery stop, CSS = cued 
slippery stop). 
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slippery stop trial. A significant trial effect was seen in the lead limb LES muscle (F=11.311, 

p<.001) and showed a similar pattern to the lead limb RF activity in that there was a 

significant adaptation by the second cued slippery stop.  

Figure 3.8: Stacked plots of the average integrated EMG trends for each muscle in the 
lead (top plot) and trail (bottom plot) limb (+/- SE). (CNS = average of the cued non-
slippery stops, SS = unexpected slippery stop, CSS = cued slippery stop). All SS values 
are = 1.0. 
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LSOL 1.05 0.99 1.00 0.85 0.90 0.86
LTA 1.00 0.83 0.88 0.74 0.72 0.65

All of the trail limb muscles showed a significant trial effect (SOL F=3.109, p=.013; 

TIB F=6.098, p<.001; BF F=12.756, p<.001, RF F=11.905, p<.001, and LES F=6.978, 

p<.001). The TIB and RF muscles showed adaptations by the fourth cued slippery stop trial. 

The BF significantly decreased its activity by the second cued slippery stop trial. Despite 

significant trial effects, the SOL and LES muscles did not show any significant decreases in 

activity compared to the first unexpected slippery stop.  

3.4 DISCUSSION  

With repeated exposure and information about the surface characteristics, participants 

adapted to stopping on the slippery surface. While some of the original slip response 

remained (arm raise and increased muscle activation), the magnitude of those responses 

diminished throughout the cued slippery stop trials and each participant was able to stop 

safely in all conditions. The movement pattern seemed to change from a reactive supportive 

strategy to a proactive surfing strategy where the COM remained elevated and the COM was 

Muscle CSS1 CSS2 CSS3 CSS4 CSS5 CNS Avg.
RLES 0.98 0.70 0.69 0.65 0.69 0.59
RBF 1.10 0.86 0.80 0.68 0.73 0.57
RRF 0.91 0.62 0.67 0.54 0.58 0.45
RSOL 0.98 0.94 1.04 0.86 0.91 0.94
RTA 0.99 0.87 0.88 0.72 0.77 0.56

LLES 1.22 0.96 0.89 0.81 0.85 0.76
LBF 1.06 0.66 0.68 0.56 0.55 0.50
LRF 1.03 0.77 0.87 0.62 0.71 0.54

Table 3.1: Average iEMG values normalized to unexpected slippery stop trial (trial/SS 
trial) as shown in figure 3.8. 
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positioned closer to the leading edge of the BOS. The adaptive changes occurred quickly, 

most often within one trial of the unexpected slippery stop, as summarized in table 3.1. 

The ground reaction forces under the lead foot illustrate the reactive changes that 

occur with repeated exposure to the slippery surface. The decreased peak braking force and 

braking force impulse over the subsequent cued slippery stop  trials demonstrates that the 

participants did not use the same strategy to stop on the slippery surface as in the first 

unexpected slip and in the cued non-slippery stop trials (Cham and Redfern 2002; Heiden et 

al 2006). With knowledge of the slippery surface, participants did not use an increase in 

braking force applied through the lead limb to stop walking and this change occurred 

immediately after the first slip experience. The similarity in the peak braking force for the 

unexpected slippery stop trial and the average cued non-slippery stop trials shows that 

participants attempted to use a similar braking strategy in the first slip exposure. The 

participants did not significantly decrease the amount of propulsive forces to stop on the 

slippery surface. The consistency in the propulsive force suggests that gait termination was 

facilitated by a means other than increased braking or decreased propulsion and that this 

parameter was not proactively manipulated to cope with the slippery surface.  

 The differences in the approach velocity demonstrate that participants proactively 

slowed their walking speed after the first, unexpected slip but then returned to pre-slip 

walking velocity with repeated trials. The initial slowing shows an increased cautiousness 

during those gait termination trials that used a slippery surface (Heiden et al 2006). The 

return to pre-first slip velocity demonstrates that participants were able to accommodate the 
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slippery surface within two trials without slowing their walking velocity.  The delayed time 

to slow in the final cued slippery stop  trial suggests that participants felt confident in their 

ability to stop on the slippery surface and did not attempt to slow their forward progression 

earlier in order to aide gait termination.  

A lowering of the COM is used in the first, unexpected slip (Oates et al 2005) but is 

not used in subsequent slip trials. This change in reactive behaviour shows that participants 

immediately altered how they stopped on the slippery surface, using the knowledge that the 

surface was slippery by elevating their COM (Marigold and Patla, 2002). Qualitative 

observations confirm these data as participants seemed to “surf” the rollers rather than 

lowering their bodies during the slip trials. The decreasing distance between the heel and the 

COM position in the anterior-posterior direction at heel contact shows that participants kept 

their COM closer to the lead limb during repeated trials on the slippery surface in a proactive 

manner; this adaptation also occurred early (after two experiences on the slippery surface). 

By keeping their COM close to the lead limb, the participant is able to move the COM within 

the newly-formed base of support faster (Bhatt, Wang and Pai 2006), and facilitate gait 

termination. This surfing strategy which is also seen in locomotion over a slippery surface 

(Marigold and Patla 2002) helps to keep the COM within the BOS during the slip until either 

the slip has ended or stability has been regained by stepping outside of the slippery surface 

(e.g., shortened subsequent step). 
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Table 3.2: Summary table for dependent measures showing when adaptation occurred 
after the unexpected slippery stop trial (SS). Information in parentheses indicates when 
one trial was significantly different from the SS trial but the change did not persist 
across trials in that condition. No difference from the SS trial is indicated by n.d. 

Dependent Measure Trial adaptation occurred
Peak braking force CSS1
Braking impulse CSS1
Peak propulsive force n.d.
Propulsive impulse n.d.
Walking velocity (CSS1 and CCS2 < SS)
Time to slow (CSS2 < SS)
Time to stop n.d.
Peak downward COM movement n.d.
Distance between COM and lead heel CSS1
Angle of foot CSS1
Right arm raise CSS1
Left arm raise CSS2
Lead limb iEMG:
Soleus n.d.
Tibialis Anterior CSS4
Rectus Femoris CSS2
Biceps Femoris CSS4
Lower Erector Spinae CSS2
Trail limb iEMG:
Soleus n.d.
Tibialis Anterior CSS4
Rectus Femoris CSS4
Biceps Femoris CSS2
Lower Erector Spinae n.d.

 

 A flatter foot is important in adapting to the slippery surface as shown by the 

decreasing foot-floor angle at contact on the rollers. The flattened foot allows for increased 

surface-area contact with the slippery surface and reduces the shear forces between the heel 

and the surface (Brady et al 2000; Cham and Redfern 2002; Heiden et al 2006; Marigold and 

Patla 2002; Marigold et al 2003). The significant change in the foot-floor angle shows that 

the participants were able to quickly (after the first cued slippery stop trial) alter their foot 
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landing angle as a proactive measure to reduce the amount of slippage on the rollers. The 

presence of a flattened foot in the cued non-slippery stop trials suggests an overly cautious 

step onto the rollers and, perhaps, mistrust in the protocol (i.e., that the rollers were actually 

locked and not slippery) after being once deceived for the unexpected slippery stop. The 

awareness of the possibility of a slip occurring may have been enough of a stimulus to cause 

the adaptive behaviour in the absence of the slippery surface (Heiden et al 2006). 

 Any arm raise occurred after the slip was initiated and, therefore, is a reactive 

component of the motor program for gait termination on a slippery surface. When the left and 

right arm raises are examined separately, the left arm shows some early adaptation through a 

diminished arm raise with subsequent slip trials. The right arm also shows a change in 

behaviour after the first slip but, opposite to the left arm, the right arm raises higher in the 

first two cued slippery stop trials. The diminished response in the left arm could be due to an 

elimination of a startle response (Nieuwenhuijzen et al 2000), an attempt to create a smooth 

transition into gait termination (Marigold et al 2003; Nieuwenhuijzen et al 2000) or simply 

an increased comfort with the slippery surface (Marigold and Patla, 2002). The increased 

response in the right arm may be a pre-planned action to control stability while stopping on 

the slippery surface (Marigold et al 2003; Tang and Woollacott 1998a) in an attempt to 

increase stability on the side of the body which is experiencing the slip to aide in the smooth 

transition from a stabilizing response during the slip to stance.  
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 All of the muscles examined showed attenuation in the response over repeated cued 

slippery stop trials. The decrease in the response shows an adaptation to the slippery surface 

and an ability to use prior knowledge of the surface characteristics and influence this reactive 

element of the slip response (Marigold and Patla 2002). The sustained magnitude of the 

responses in both the lead and the trail limb ankle extensors suggests that these muscles are 

imperative in the gait termination program. The ankle extensors in both limbs are used to 

stabilize the ankle joints throughout GT regardless of the surface characteristics; the lead 

limb ankle extensors would be ineffective in generating a braking force on the rollers (as 

supported by the kinetic data from the force plates) but must have been required to generate 

sufficient force to stabilize the lead ankle during the slippery stops (Chambers and Cham 

2006). An increased push-off from the trail limb would be inappropriate for any situation of 

gait termination; thus the trail limb ankle extensors must have functioned to provide stability 

to the ankle joint in the slippery and non-slippery stops. 

 The thigh and trunk musculature quickly diminished the magnitude of their response 

in the following cued slippery stop trials as the participant became more efficient at stopping 

on a slippery surface. The TIB for both limbs and the BF for the lead limb did not show an 

adaptation until the fourth cued slippery stop suggesting they are important in the slip 

recovery response and require repeated exposures to the slippery surface to change motor 

patterns. 
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 If the participants did not use an increase in braking force or a decrease in propulsive 

force to stop walking, how was gait termination completed? Each muscle increased its 

activity beyond what was used in the walk-through trials. The increase in muscle response 

would stiffen the joints in the lead/supporting limb and slow the forward movement of the 

swing limb which would help decrease the forward momentum of the body. The elevated 

COM in the cued slippery stop trials compared to the slippery stop trial also suggests that 

participants allowed their COM to remain elevated during the stops instead of dropping again 

as in steady-state locomotion. Finally, at heel contact on the rollers in the cued slippery stop 

trials, COM was held closer to the new base of support to allow a smooth transition from 

steady-state gait to gait termination despite the slippery surface.  

A limitation to this study involves the external validity of the slip on the rollers. The 

rollers used to cause the slip are one-dimensional and, therefore, do not fully imitate a slip in 

a real-world environment which would allow a slip in both horizontal planes (Troy and 

Grabiner 2006). In addition, participants could have used the wooden platform at the end of 

the rollers to aid in their recovery from the slip whereas, on real ice or on a contaminated 

surface in a workplace, the boundaries of the slippery surface may be too large to use the 

edges in the slip recovery (Troy and Grabiner 2006). While the constraints of the laboratory 

potentially facilitated the slip recovery, we are confident that we were able to elicit a genuine 

slip response which can be generalized to every day slips during gait termination. 

  In conclusion, the ability of young, healthy adults to stop on a slippery surface 

quickly adapts within two exposures and becomes more efficient with knowledge of the 
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surface characteristics and repeated exposure. Most of the proactive and reactive changes in 

behaviour occur immediately after the unexpected slippery stop with the exception of the left 

arm (took two trials to show an adaptation) and the lower limb musculature (took two to four 

trials to show an adaptation). The lead limb and the distal segments especially seem to have 

the most influence on the gait termination and slip recovery responses in maintaining balance 

and stopping safely on a slippery surface as their responses took the longest to show a change 

in the motor program for gait termination on a slippery surface. 
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CHAPTER 4: CONTROL OF DYNAMIC STABILITY DURING GAIT 
TERMINATION ON A SLIPPERY SURFACE WITH PARKINSON’S 

DISEASE 
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4.1 INTRODUCTION 

 Gait termination is a challenging task requiring control of the forward momentum of 

the body’s centre of mass (COM). This forward momentum must be dissipated and the COM 

held within a newly formed base of support. Stopping involves increasing the amount of 

braking force to slow forward progression and decreasing the amount of propulsive force 

used to move the body forward (Hase and Stein 1998; Jaeger and Vanitchatchavan 1992). If 

these strategies are unsuccessful, other movements such as another step or a rise-to-toes 

(Hase and Stein 1998) may be taken in order to stop safely. This voluntary change in motor 

programs, from walking to stopping, may pose a problem to people with Parkinson’s disease 

(PD) who have difficulties switching between tasks (Abbruzzese and Berardelli 2003).  

 Typical Parkinsonian gait (a stiff, shuffling, slow walk) can include festination when 

attempting to stop (Bloem and Bhatia 2004; Morris et al 2001). This festination suggests a 

poor control over the ability to stop within one or two steps. Research shows that traditional 

dopamine replacement therapy can restore Parkinsonian gait to more normal speeds and 

stride-length but may cause more instability due to increased mobility and variability caused 

by the medication (Horak et al 1996; Morris 2006; Morris et al 2001). The need for a 

voluntary change in motor program along with difficulty stopping makes gait termination a 

potentially difficult task for someone with Parkinson’s disease. 

 The instability seen in PD in response to an external perturbation is not corrected with 

medication (Carpenter et al 2004; Horak et al 1996). A slip during gait termination, therefore, 

would pose an even greater threat to someone with PD than gait termination alone.  A slip 
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during a stop requires the integration of a balance-recovery response into the voluntary gait 

termination program. Past research on automatic postural responses shows that the relative 

timing of balance-correcting movements is unaffected by PD despite decreased force output 

(Carpenter et al 2004; Dimitrova et al 2004; Horak et al 1996; Morris et al 2001; Nieuwboer 

et al 2004). Thus, the response of someone with PD should occur within the same time period 

as a healthy control but may be diminished in magnitude. 

 The purpose of this study is to investigate how PD affects the ability to switch motor 

programs from a steady-state locomotor pattern to gait termination (GT) and to examine the 

ability of someone with PD to integrate a reactive, balance maintenance strategy into a 

planned GT program. Comparing persons with PD to age-matched controls during planned 

and cued GT on both a stable and a moving surface will illustrate the effect of PD on the GT 

motor program and the balance recovery response. We hypothesize that PD will negatively 

affect the ability to quickly change motor programs in that the PD group will take longer to 

stop and will be less stable than the control group in the non-slippery conditions. We also 

hypothesize that, due to the lack of protection from an external perturbation while on 

medication, the PD group will be less stable than the control group while stopping on a 

slippery surface.  
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ID Age UPDRS H & Y
1 71 31.5 2.5
2 68 36 2
3 67 40 3
4 62 42.5 2
5 51 36.5 2
6 78 44 3
7 63 7 1
8 73 29 2
9 62 24 2

Table 4.1: Age, motor UPDRS score, and Hoehn and Yahr score for PD participants 

4.2 METHODS AND MATERIALS 

4.2.1 Protocol 

 Nine participants with idiopathic PD (age 66.3 +/- 7.3 years SD) and ten age-matched 

controls (age 65.4 +/- 7.3 years SD) participated in this study (see table 1 for PD participant 

characteristics). All PD participants were on their usual medication during testing. Before 

data collection, a modified Unified Parkinson’s Disease Rating Scale (UPDRS) examination 

was administered to examine the motor capabilities of individuals with PD where a higher 

score represents more disability. The severity of Parkinsonism, as measured by the Hoehn 

and Yahr scale ranged from 1 to 3. All participants were able to walk independently and 

reported that they were free of orthopaedic, psychological, or other neurological disorders 

which could affect their ability to perform the tasks. A safety harness was worn throughout 

data collection. All participants provided written, informed consent for protocols approved 

by the Institutional Review Board for OHSU which stated that the plate may unexpectedly 
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move underneath their feet when stepped on. Approval for this protocol was also obtained 

through the University of Waterloo’s Office of Research Ethics.   

All participants experienced four types of trials: 1) Walk-through trials were when the 

participant walked to the end of the room towards a set of lights. The lights were round, 

approximately 10 cm in diameter, resembled the red brake lights on a small motor vehicle 

and were located at eye level at the far end of the room. These trials provided baseline gait 

information and allowed the participant to become familiar with the laboratory set-up. 2) 

Planned non-slippery stop trials involved stopping on stationary force plates in the middle of 

the room. The lights at the end of the room were illuminated the entire time of the trial and 

the participants knew from the beginning of the trial that they were going to stop on the force 

plates. The planned non-slippery stop trials show how PD affects the ability to generate a 

stop over multiple steps. 3) Non-slippery stop trials involved cued GT on the same stationary 

force plates. The non-slippery stop trials were randomly placed throughout a series of 20 

trials. The lights at the end of the room were controlled by placing an infrared light beam 

positioned at left foot contact (one step) before reaching the force plates. When the light 

beam was interrupted during the non-slippery stop trials, the lights illuminated. The 

participants were informed that if the lights illuminated then they were to stop with both feet 

on the force plates. Participants were not told to try to step on the force plates but to walk 

normally towards the end of the room. Their starting location was manipulated so that they 

would step on the right force plate with their right foot. The participant received the signal to 

stop on the left limb (here after referred to as the trail limb), stepped on a force plate with the 
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right limb (here after referred to as the lead limb) and then finished gait termination with the 

trail limb on a force plate next to the lead foot. If the lights did not illuminate then they were 

to continue walking to the end of the room. The non-slippery stop trials show how PD affects 

the ability to stop within one step. 

The final trial condition was 4) the slippery stop trial. The slippery stop trial 

immediately followed the series of non-slippery trials and participants were given the same 

instructions as the non-slippery stop trials. When the participant stepped on the first force 

plate (always with the lead foot) the plate moved forward rapidly and unexpectedly, 

mimicking a slippery surface.  The plate movement was controlled using a force-integration 

function where the plate continued to accelerate until it reached its maximum displacement 

(an average of 14.7cm forward at 0.47m/s). This perturbation is similar in displacement but 

slower in slip velocity to previous investigations of stopping on a slippery surface (Oates et 

al 2005).  The slippery stop trials show how PD affects the ability to integrate a balance-

correcting response to an external perturbation while stopping within one step. 

4.2.2 Measurement 

 Kinetic data were captured from custom-made force plates using a QNX data 

collection system (sampling rate = 480 Hz) and used for identifying foot contact on the 

moving force plate. A high-resolution Motion Analysis System (Santa Rosa, CA) with 7-

video cameras, sampling at 60 Hz, provided 3-dimensional spatial coordinate information 

about body segment displacements. Markers were placed on multiple anatomical landmarks 

bilaterally including the ear, acromion process, olecranon, styloid process, anterior superior 



 

  72

iliac crest, greater trochanter, lateral femoral condyle, lateral malleolus, heel and fifth 

metatarsal, and on the xyphoid process. 

4.2.3 Analysis 

 Step length and width were calculated from the heel markers of both feet. Step length 

was defined as the anterior-posterior (A-P) distance from the trail limb heel marker to the 

lead limb heel marker in subsequent steps. Step width was defined as the absolute medial-

lateral (M-L) distance between heel markers in subsequent steps. A 12-segment centre of 

mass (COM) model was calculated using a custom-designed MATLAB program 

(Mathworks, Natick, MA) with marker data low-pass filtered at 6Hz. COM velocity was 

calculated by differentiating the COM displacement. The time to slow was defined as the 

time when the COM velocity in the anterior-posterior plane fell below the average minus two 

standard deviations of the average forward velocity of the COM during the walk-through 

trials. The time to stop was defined as the time when forward velocity fell within the average 

plus two standard deviations of the average velocity (over 500ms) one second after the right 

heel contact on the first force plate of the planned non-slippery stop trials. The time to slow 

represents the beginning of gait termination; the time to stop represents the completion of 

gait termination. 

A margin of dynamic stability was calculated using the method developed by Hof et 

al (2005) which calculates an extrapolated COM position (xCOM) using the equation: xCOM 

= COM position + COM velocity / √ (g / l), where g = acceleration due to gravity and l = 

vertical height of the COM. The position of the xCOM was compared to the position of the 
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marker on the fifth metatarsal on the foot that was stepping (i.e., to the right foot during the 

first step of GT and to the left foot during the second step of GT) at the time of foot contact.  

This analysis incorporates both the relative position of the sagittal COM with respect to the 

foot and the velocity of the COM. The magnitude of the difference in the horizontal planes is 

the dynamic margin of stability. 

Data were entered into a 2 x 2 (group x condition) ANOVA to compare average 

values between the non-slippery stop trials (planned and cued), and non-slippery stop and 

slippery stop (both cued) trials as separate analyses. Significance level was set at α = 0.05.  

4.3 RESULTS 

4.3.1 Planned versus Cued non-slippery stops 

 The PD group walked significantly slower than the control group with mean values of 

1.259 m/s for the control group and 0.916 m/s for the PD group. The slowness in the PD 

group is representative of the bradykinetic nature of Parkinson’s disease. The forward 

velocity of the COM at heel contact before GT (the last step before the force plates) was 

similar within groups for both conditions. Figure 4.1 illustrates the average heel contact 

locations for both groups in all three conditions (controls are represented by dark squares, PD 

by light squares). For the first step of GT onto the force plates the PD group showed a 

significantly shorter step in both the planned and the cued non-slippery stops (F =8.380, p 

=0.007). PD also had a wider step for the first step of GT onto the force plates in both 

planned and cued non-slippery stops (F =17.462, p <0.005).   
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Figure 4. 1: Comparisons for step length and width for PD and control groups. The 
rectangles on the plots are the position of the force plates; in figure D, the dashed 
rectangle is the final position of the moving right force plate. (0, 0) is the location of 
the lead heel contact on the force plate. The squares (dark are control, light are PD; 
error bars are SD) show the location of the left heel contact in A-C and right heel 
contact after the force plate has moved forward in D. The squares closest to (0, 0) 
are the terminal position of the left heel (A-C) or right heel (D). The lower squares 
in A-C are the location of the left heel contact preceding gait termination. * 
indicates a significant difference between groups (vertical line = significant 
difference in step length, horizontal line = significant difference in step width). 

The margin of dynamic stability during GT of both groups in all three conditions is 

illustrated in figure 4.2. The control group was significantly more stable than the PD group 

(i.e., had a larger margin of stability) in the anterior-posterior (A-P) plane in the first step of 

non-slippery GT (F =8.365, p =0.007). Both groups were significantly more stable in the 

medial-lateral (M-L) plane during the first step for the planned stop trials compared to the 
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First Step

Second Step

cued non-slippery stop trials (F =8.193, p =0.007,). In the final step of GT, the control group 

was more stable than the PD group in the A-P plane (F =4.361, p =0.044) but there was no 

difference between groups in the M-L plane (F =2.575, p =0.118). 

 Both groups were able to slow and stop with similar timing for the planned and the 

cued non-slippery stop.  Mean values of the time to slow for the control and PD groups were 

215 ms and 224 ms after the signal was (cued stop) or would have been (planned stop) given. 
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Figure 4.2: Dynamic stability during the first and second step of gait termination (+/- 
SE). * indicates a significant difference between groups or trials. The control group is 
represented by the dark bars, the PD group is represented by the light bars. (PNS = 
planned slippery stops, NS = cued non-slippery stops, SS = unexpected slippery stop). 
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Figure 4.3: Forward COM velocity tracings showing time to slow and time to stop in 
representative control and PD participants. The triangle-shape represents time to 
slow, the circle represents time to stop. Time of zero seconds is heel contact on the 
force plate. The light lines represent the cued non-slippery stop trials, the dark lines 
represent the unexpected slippery stop trial. The shaded area is the time during which 
the platform moved forward. * indicates a significant difference of the group averages 
between conditions. 

Mean values of the time to stop for the control and PD groups were 945 ms and 946 ms after 

the signal was (cued stop) or would have been (planned stop) given.   

4.3.2 Non-slippery versus slippery stops 

 The PD group walked significantly slower than the control group (F =31.428, p 

<0.005) with mean values for the PD and control groups of 0.953 m/s and 1.291 m/s 
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respectively. The forward velocity of the COM at heel contact before GT (the last step before 

the force plates) was similar for both conditions within each group. For the first step of GT 

onto the force plates the PD group showed a significantly shorter step in both the non-

slippery and slippery stop conditions (F =6.010, p =0.02) (figure 1). PD also had a wider step 

for the first step of GT onto the force plates in both the non-slippery and slippery stop 

conditions (F =7.121, p =0.012).  Step length was significantly longer in the final step for 

slippery stop trials in both groups when compared to the non-slippery stop trials (p <0.005, F 

=18.195). There was no significant difference between groups for the step width in the final 

step of the slippery stop trial (F =0.998, p =0.327). 

 The dynamic stability during GT of both groups in all three conditions is illustrated in 

figure 4.2. The control group was significantly more stable than the PD group (i.e., had a 

larger margin of stability) in the anterior-posterior (A-P) plane in the first (F =4.275, p =.046) 

and second (F =3.517, p =.069) step of GT in the non-slippery and slippery cued GT 

conditions despite a slightly higher p-value in the second step results. The final step of the 

slippery stop trial was more stable (had a larger stability margin) than the final step for the 

non-slippery stop trials in the A-P plane for both groups (F =10.301, p =0.003). The 

increased margin of dynamic stability in the slippery stop trials is likely due to the increased 

forward displacement of the foot caused by the anterior displacement of the force plate. 

Similar to the planned non-slippery stop trials, there was no difference between groups in the 

M-L plane for the slippery stop trial (first step F =0.607, p =0.441; final step F =0.001, p 

=0.978).  
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 All participants slowed significantly earlier during the slippery stop trials (F =5.620, 

p =0.024) but stopped later during the slippery stop trials (F =18.041, p <0.005) when 

compared to the non-slippery stop trials (figure 4.3). When aligned with HC on the right 

force plate, the mean time to slow for both groups was 0.209 ms (non-slippery stop) and 

0.089 ms (slippery stop). The mean time to stop for both groups was 0.905 ms (non-slippery 

stop) and 1.280 ms (slippery stop). 

4.4 DISCUSSION 

4.4.1 Planned versus cued non-slippery stops 

Congruent with past research on persons with Parkinson’s disease (Bishop et al 2006; 

Bloem and Bhatia 2004; Morris et al 2001), this study found that the PD group walked 

slower and had shorter steps than the age-matched controls. This finding was significant 

despite the PD group being on their dopamine replacement medication. The step width 

differs from previous findings of transitional movements (Morris et al 2001) in that the PD 

group displayed a wider step during the first step of gait termination. Despite being equally 

stable to the control group in the medial-lateral plane, the PD participants were less stable 

throughout both steps of GT in the anterior-posterior plane. The increased step width during 

GT may have been an attempt by the PD group to enhance their stability as they stopped. 

 Both groups created a larger, lateral margin of stability at the start of GT when the 

stop was planned compared to when it was a cued stop, but were equally stable during the 

final step of the stop in both conditions. The increased stability margin may have been a 
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deliberate, stability-enhancing action that took more time to execute than the cued GT trials 

allowed for in that first step.  The PD group, therefore, was able to take advantage of the 

opportunity for motor planning in the same manner the control group did. Also, both the 

control and PD groups were able to slow forward progression and stop within a similar time 

which suggests that Parkinson’s disease does not affect the ability to stop within a normal 

amount of time.  

Both planned and cued non-slippery stops performed in this study required the 

participant to initiate the GT command. Planned GT allowed the motor program to be 

generated and carried out over multiple steps. Cued GT required the motor program to 

change from continuous gait to a stop within two steps. The PD group was able to stop safely 

and effectively in both conditions. Their increased step width may have been a strategy used 

to compensate for the diminished stability in the plane of progression but overall, the PD 

group was able to perform both planned and cued GT similar to age-matched controls. The 

timing of the gait termination program was similar between groups despite the decreased 

walking velocity of the PD group one step before the force plates. The stability of the timing 

of the movements suggests a common strategy used for both planned and cued gait 

termination (Bishop et al 2003). 

4.4.2 Non-slippery versus slippery stops 

 The approach velocity at the time the signal to stop was given is similar for both 

conditions suggesting that the participants did not anticipate the stop or the slip trial. The 
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increased step length after the slip is due to the forward movement of the foot on the force 

plate and does not indicate any behvioural modification resulting from the slip.  

The ability of both groups to slow their forward progression faster in the slippery stop 

trials than the non-slippery stop trials suggests that the CNS of both control and PD 

participants recognized that the slip caused unwanted movement forward so they 

compensated quickly to try and stop the excess movement. The participants were not able to 

completely stop within the same time frame as a non-slippery stop suggesting that, although 

they recognized and began to slow forward progression faster, the slip required more time to 

stabilize and completely stop on the moving surface. 

Past research has suggested that dopamine replacement therapy does not increase the 

ability of someone with PD to effectively handle external perturbations (Carpenter et al 2004; 

Frank et al 2000; Horak et al 1996). The major difference between the participants with PD 

and the age-matched controls were the step width and dynamic stability in the plane of 

progression. The instability may be a consequence of the increased mobility produced by the 

medication and the increased step width may be an attempt to correct for this instability 

during GT.  

In summary, the participants with PD were able to accurately stop in all conditions. 

Their strategy was slower and safer than the age-matched controls. When there is opportunity 

to plan the stop multiple steps in advance, both groups increased their M-L dynamic stability 

during the first step of GT. The cueing did not have any other effect on the participants in 

that they were able to perform both the planned and the cued GT within the same time frames 
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of each other. The unexpected slip during GT did, however, change the behaviours of both 

groups by slowing their forward progression earlier than in a non-slippery. The generalized 

slip response seen in previous studies examining slips during gait (e.g., Marigold and Patla 

2002 (low friction apparatus), Tang and Woollacott 1999 (unexpected anterior platform 

translation) and gait termination (Oates et al 2005 (low friction apparatus)) was seen in both 

the control and PD group which suggests the CNS develops a patterned response to a 

slippery perturbation that is not affected by age or PD. Parkinson’s disease did not seem to 

affect the ability to integrate a balance correcting response with a voluntary movement such 

as gait termination but did cause instability throughout gait termination in the plane of 

progression. Future research should question how quickly these groups are able to adapt to 

stopping on a slippery surface and if Parkinson’s disease affects the ability to modify their 

behaviours. 
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CHAPTER 5: ADAPTATION TO GAIT TERMINATION ON A SLIPPERY 
SURFACE WITH PARKINSON’S DISEASE 
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5.1 INTRODUCTION 

Stopping on a slippery surface requires a reactive balance-correcting response to be 

integrated into a voluntary, gait termination program. Knowledge of and experience with the 

slippery surface allows the use of feed forward control to increase stability and stop more 

safely and efficiently (Bhatt et al 2006; Marigold and Patla 2002). The behavioural 

adaptations when encountering a slippery surface include a decreased step length when 

approaching the surface (Bhatt et al 2006;  Brady et al 2000; Cham and Redfern 2002; 

Lockhart et al 2006; Moyer et al 2006), flattened foot (Brady et al 2000; Cham and Redfern 

2002; Heiden et al 2006; Marigold and Patla 2002; Moyer et al 2006), diminished arm raise 

(Marigold and Patla 2002; Marigold et al 2003; Tang and Woollacott 1998), decreased 

muscular effort (Marigold and Patla 2002) and lengthened subsequent step (Marigold et al 

2003; Myung and Smith 1997; Tang and Woollacott 1998).  

Parkinson’s disease (PD), caused by decreased dopaminergic activity from the basal 

ganglia, is a disease causing movement and balance difficulties (Abbruzzese and Berardelli 

2003; Frank et al 2000; Horak et al 1996;Morris 2006). Parkinson’s disease disrupts the 

ability to adapt to new environments, learn a new skill and can limit the ability to quickly 

change motor programs (Bishop et al 2006; Morris 2006). PD also affects sensorimotor 

integration and can interfere with the integration of a reactive and proactive motor program 

(Abbruzzese and Berardelli 2003). As PD progresses, gait termination can become more 

difficult as people with PD may exhibit festination when attempting to stop (Bloem and 

Bhatia 2004; Morris 2006). Traditional dopaminergic replacement therapy seems to have 
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little effect on the ability to handle external balance perturbations (Carpenter et al 2004; 

Frank et al 2000; Horak et al 1996; Morris 2006; Morris et al 2001). Developing a proactive 

gait termination to minimize the reliance on a reactive strategy may be very difficult for a 

person with PD even with optimal medication. External cues, such as a light source or 

planned stop location may help someone with PD rely more on the frontal area of the brain to 

successfully complete a stop within similar time-lines as age-matched controls (Morris 2006; 

Morris et al 2001). 

This study investigates the ability of someone with PD to integrate a reactive, 

balance-correcting response into a proactive, voluntary gait termination program. The effect 

of experience with and knowledge of the slippery surface as well as the abilities to plan a 

movement strategy within one step and over multiple steps is examined in participants with 

PD and age-matched controls. The differences in behaviours between the participants with 

PD and the control group will show how the basal ganglia is involved in the integration and 

planning elements of gait termination on a slippery surface. We hypothesize that PD will 

affect the ability to develop a stable, proactive response to stopping on the slippery surface in 

that the PD group will take longer to show adaptations and will be less stable than the control 

group.  
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8 73 29 2
9 62 24 2

5.2 METHODS 

5.2.1 Protocol 

Nine participants with idiopathic PD (age 66.3 +/- 7.3 years SD) and ten age-matched 

controls (age 65.4 +/- 7.3 years SD) participated in this study (see table 1 for PD participant 

characteristics). All PD participants were on their usual medication during testing. Before 

data collection, a modified UPDRS examination was administered to examine the motor 

capabilities of individuals with PD. The severity of Parkinsonism, as measured by the Hoehn 

and Yahr scale ranged from 1 to 3. All participants were able to walk independently and 

reported that they were free of orthopaedic, psychological, or other neurological disorders 

which could affect their ability to perform the tasks. A safety harness was worn throughout 

data collection. All participants provided written, informed consent for protocols approved 

by the Institutional Review Board for OHSU. Approval for this protocol was also obtained 

through the University of Waterloo’s Office of Research Ethics.   

All participants experienced four types of trials: 1) Walk-through trials for baseline 

ID Age UPDRS H & Y
1 71 31.5 2.5
2 68 36 2
3 67 40 3
4 62 42.5 2
5 51 36.5 2
6 78 44 3
7 63 7 1

Table 5.1: Age, Motor UPDRS score and Hoehn and Yahr stage for PD participants. 
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gait information, 2) one unexpected cued slippery stop to measure the effect of PD on the 

first slip response during gait termination (previously reported in Chapter 4), 3) five planned 

slippery stops to show the effect of PD on the ability to plan a slippery stop over multiple 

steps with repeated exposures, and 4) five cued slippery stops to show the effect of PD on 

adaptation to stopping on a slippery surface within one step with repeated exposures. The 

participants were asked to walk to the end of the room towards a set of lights. The lights were 

round, approximately 10 cm in diameter, resembled the red brake lights on a small motor 

vehicle and were located at eye level at the far end of the room. If the lights did not 

illuminate then they were to continue walking to the end of the room. If the lights illuminated 

then they were to stop with both feet on the force plates. The lights at the end of the room 

were controlled by placing an infrared light beam positioned at left foot contact (one step) 

before reaching the force plates. When the light beam was interrupted during the cued stop 

trials, the lights illuminated. The participant received the signal to stop on the left limb (here 

after referred to as the trail limb), stepped on a force plate with the right limb (here after 

referred to as the lead limb) and then finished gait termination with the trail limb on a force 

plate next to the lead foot. Participants were not told to try to step on the force plates but to 

walk normally towards the end of the room. Their starting location was manipulated so that 

they would step on the right force plate with their lead foot. 

After a series of cued non-slippery stop trials (see chapter 4), participants stepped 

with their lead limb on to the force plate which moved forward quickly and unexpectedly 

mimicking a slippery surface (unexpected slippery stop).  The plate movement was 
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controlled using a force-integration function where the plate continued to accelerate until it 

reached its maximum displacement (an average of 14.7cm forward at 0.47m/s). This 

perturbation is similar in displacement but slower in slip velocity to previous investigations 

of stopping on a slippery surface (Oates et al 2005). After the first unexpected cued slippery 

stop trial, participants then performed a series of five planned slippery stop trials in a row. 

For the planned slippery stop trials, the lights at the end of the room were illuminated the 

entire trial. Participants knew at the start of the trial that they were going to stop on the force 

plates and that the right force plate would slip underneath their lead foot. The participants 

then performed a series of five cued-slippery stop trials where they were asked to stop only if 

the lights illuminated. The cued slippery stop trials were randomly placed among 15 walk-

through trials and participants were told that if they were asked to stop, the force plate would 

move forward under their lead limb. The planned slippery stops were always performed after 

the unexpected, cued slippery stop and before the cued slippery stop trials. This order was 

chosen to allow practice with knowledge of the stop and the slippery surface (planned 

slippery stops, the easier task) before requiring a stop within one step on a slippery surface 

(cued slippery stops, the more difficult task) as it was hypothesized that the PD group would 

be less stable and this grouping of trials would decrease the chance of a fall.  

5.2.2 Measurement 

 Kinetic data were captured from the custom-made force plates using a QNX data 

collection system (sampling rate = 480 Hz) and used for identifying foot contact on the 

moving force plate. A high-resolution Motion Analysis System (Santa Rosa, CA) with 7-
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video cameras, sampling at 60 Hz, provided 3-dimensional spatial coordinate information 

about body segment displacements. Markers were placed on multiple anatomical landmarks 

bilaterally including the ear, acromion process, olecranon, styloid process, anterior superior 

iliac crest, greater trochanter, lateral femoral condyle, lateral malleolus, heel and fifth 

metatarsal, and on the xyphoid process. 

5.2.3 Analysis 

 Step length and width were calculated from the heel markers of both feet. Step length 

was defined as the anterior-posterior (A-P) distance from the trail limb heel marker to the 

lead limb heel marker in subsequent steps. Step width was defined as the absolute medial-

lateral (M-L) distance between heel markers in subsequent steps. Qualitative assessment of 

the video data showed that the arm raise was produced with a fairly straight arm and, 

therefore, the maximum height of both arms was calculated as the maximum height of the 

marker on the radial styloid within the first 500ms after heel contact on the rollers. Values 

were normalized to the slippery stop trial to account for different arm lengths and body 

heights.  

A 12-segment centre of mass (COM) model was calculated using a custom-designed 

MATLAB program (Mathworks, Natick, MA) with marker data low-pass filtered at 6Hz. 

COM velocity was calculated by differentiating the COM displacement. The peak downward 

COM displacement was determined after heel contact on the slippery surface. Time to slow 

was defined as the time when the COM velocity in the anterior-posterior plane fell below the 

average minus two standard deviations of the average forward velocity of the walk-through 
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trials. The time to stop was defined as the time when forward velocity fell within the average 

plus two standard deviations of the average velocity (over 500ms) one second after the right 

heel contact on the first force plate of  previously performed planned non-slippery stop trials 

(see chapter four). The time to slow represents the beginning of gait termination; the time to 

slow represents the completion of gait termination. 

A margin of dynamic stability was calculated using the method developed by Hof et 

al (2005) which calculates an extrapolated COM position (xCOM) using the equation: xCOM 

= COM position + COM velocity / √ (g / l), where g = acceleration due to gravity and l = 

vertical height of the COM. The position of the xCOM was compared to the position of the 

marker on the fifth metatarsal on the foot that was stepping (i.e., to the right foot during the 

first step of GT and to the left foot during the second step of GT) at the time of foot contact.  

This analysis incorporates both the relative position of the sagittal COM with respect to the 

foot and the velocity of the COM. The magnitude of the difference in the horizontal planes is 

the dynamic margin of stability. 

Some participants took one or more extra steps (i.e., beyond the first step with the 

lead limb and the second step with the trail limb) during the slippery stop trials. The number 

of extra steps was counted and analyzed using a Chi-square analysis (α = .05) to identify any 

group or trial effects. Discrete data were entered into a group (two levels) by trial (11 levels) 

one- way repeated measures ANOVA to examine any effects of group or experience over the 

slip trials (α = 0.05).  The one-way ANOVA was chosen due to the blocked nature of the 

trials; the cued slippery stops always followed the planned slippery stops. Planned 
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comparisons were made using Tukey’s studentized range (HSD) post-hoc tests: To determine 

when a change in behaviour occurred within conditions, the unexpected slippery stop was 

compared to the trials of the planned slippery stops and also the trials of the cued slippery 

stops, separately. To determine how the condition (planned versus cued) affects behaviour, 

the first cued slippery stop was compared to the final planned slippery stop.  Any interaction 

effects between groups and trials were analyzed in a one-way repeated measure ANOVA 

with each group separately (i.e., one level for group and 11 levels for condition). All post-hoc 

differences are reported with a significance level of α = 0.05. Reported trends are based on 

qualitative observations and do not imply statistical significance. 

5.3 RESULTS 

5.3.1 Group effects 

Participants with PD walked slower than the age-matched controls (F=14.18, 

p=.0015) with mean velocities of 1.0 m/s and 1.33 m/s for the PD and control groups, 

respectively. There were no differences in the time to slow or stop, step parameters, arm 

raises, or peak downward COM displacement. The PD group had a significantly smaller M-L 

margin of dynamic stability than controls (PD = 10.41 +/- 0.21 (SE), CT = 11.98 +/- 0.20 

(SE)) during the first step with the lead limb onto the force plate (F=5.19, p=.0359) when 

averaged across trials. The only significant interaction in the analysis was the A-P margin of 

dynamic stability during the second step of GT (F=1.98, p=.0389). There was a trial effect 

within the PD group (F=2.281, p=.022) but there were no significant differences that fell 
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Figure 5.1: Average number of extra steps taken (+/- SE). (SS = unexpected cued 
slippery stop, PSS = planned slippery stop, CSS = cued slippery stop). 

within the planned comparisons. The control group showed no significant trial effect during 

the second step of GT for the margin of dynamic stability in the plane of progression. Chi-

square analysis revealed that participants in the PD group took more extra steps than the 

control group (p=.005) (figure 5.1). Qualitative observation of figure 5.1 and the differences 

between the PD and control groups over the subsequent slippery stops suggests that the PD 

group showed less adaptation (i.e., smaller decreases with repeated experiences) than the 

control group. 

5.3.2 Trial effects 

There was a significant trial effect in the walking velocity (F=14.18, p=.0015). The 

second planned slippery stop was slower than the unexpected slippery stop but the remaining 

planned slippery stops were similar to the unexpected slippery stop. The velocities for the 
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cued slippery stops were similar to the unexpected slippery stop across all cued, slippery stop 

trials. There was a significant trial effect in the time to slow (F=2.51, p=.0079) and in the 

time to stop (F=6.06, p<.0001). Both groups slowed their forward progression later in the 

second planned slippery stop compared to the unexpected slippery stop. There was no 

difference in the time to slow between the unexpected slippery stop and the cued slippery 

stops. The time to stop in the first and second planned slippery stops was later than the 

unexpected slippery stop. There was no difference in the time to stop between the unexpected 

slippery stop and the cued slippery stops. 

Step length showed a significant trial effect during the first step with the lead limb 

onto the force plate (F=6.44, p<.0001) and during the second step with the trail limb of gait 

termination (F=9.79, p<.0001) (figure 2).  During the first step of gait termination, step 

length decreased from the unexpected slippery stop by the third planned slippery stop. The 

step length values for all of the cued slippery stops were shorter than the unexpected slippery 

stop. The step with the trail limb increased immediately after the unexpected slippery stop 

trial and was longer for all of the following planned and cued slippery stop trials.  

There was a significant trial effect in step width during the first step with the lead 

limb onto the force plate (F=2.77, p=.0034) and during the second step with the trail limb 

(F=4.97, p<.0001) (figure 5.3). During the first step, the step width was wider for the third 

planned slippery stop trial compared to the unexpected slippery. Step width increased after 

the unexpected slippery stop during the subsequent step with the trail limb throughout all of 

the planned slippery stop trials and the final three cued slippery stop trials.  
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The margin of dynamic stability showed a significant trial effect during the first step 

in the A-P (F=6.68, p<.0001) and M-L planes (F=2.83, p=.0029), and a significant 

interaction during the second step in the A-P plane (previously discussed in the group 

effects). The margin of dynamic stability in the plane of progression was lower in the final 

four planned slippery stops and all of the cued slippery stops when compared to the 

unexpected slippery stop trial during the first step onto the force plate. There were no 

differences between trials for the second step with the trail limb in the margin of A-P 

dynamic stability. The margin of dynamic stability in the M-L plane during the first step onto 

the force plate was smaller for the unexpected slippery stop compared to the third planned 

slippery stop. There was no difference from the unexpected slippery stop in any of the 

subsequent trials during the second step in the margin of M-L dynamic stability. 
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-40

-20

0

20

40

60

80

100

SS
PSS1

PSS2
PSS3

PSS4
PSS5

CSS1
CSS2

CSS3
CSS4

CSS5

St
ep

 L
en

gt
h 

(c
m

)

Second step

*

*

Figure 5.2: Step length during the steps onto the force plate (lead limb) and subsequent, 
second and final step of gait termination (trail limb) (+/- SE). * indicates a significant 
difference between that condition and the others indicated with a vertical line. (SS = 
unexpected cued slippery stop, PSS = planned slippery stop, CSS = cued slippery stop).
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Figure 5.3: Step width during the first step onto the force plate (lead limb) and the 
second, final step of gait termination (trail limb) (+/-SE). ^ indicates a significant 
difference in the first step and * indicates a significant difference in the second step 
between that condition and the others indicated by the horizontal lines. (SS = 
unexpected cued slippery stop, PSS = planned slippery stop, CSS = cued slippery stop). 

There was no trial effect seen in the peak downward COM movement (F=1.03, 

p=.4195) suggesting that participants lowered their COM equally during all slip trials. Both 

the right (F=2.85, p=.0027) and left (F=7.33, p<.0001) arms, however, showed a significant 

trial effect in the height of arm movement used during the slips. The right arm showed no 

differences within our planned comparisons but the left arm was raised higher during the 

unexpected slippery stop compared to the final planned slippery stop, and the final three cued 

slippery stop trials (figure 5.4).  
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Figure 5.4: Average left arm raise for both groups normalized to unexpected cued 
slippery stop trial (+/- SE). (Value = trial/SS trial). * indicates a significant difference 
between that trial and the unexpected cued slippery stop trial (dashed line).  (PSS = 
planned slippery stop, CSS = cued slippery stop). 

The chi-square analysis revealed a significant trial effect for the number of steps 

taken beyond normal gait termination but does not allow for post-hoc comparison. The plot, 

however, suggests that participants took more extra steps during the planned slippery stops 

than the unexpected slippery stop and the cued slippery stop trial (based on trend) (figure 

5.1).  

There seemed to be some trend in the data showing a regression towards the 

behaviour seen in the unexpected slippery stop when conditions change from planned to cued 

slippery stops. These trends were not significant suggesting that the type of knowledge (in 

advance during the planned and within one step during the cued slippery stops) does not 

affect the adaptation to the slippery surface. 
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5.4 DISCUSSION 

Both the control and the PD group showed adaptations to their behaviour while 

stopping on a slippery surface. The PD group showed very similar behaviour to the control 

group suggesting that PD did not affect the ability to integrate a balance-correcting response 

into a proactive, voluntary gait termination program. The similarity also suggests that the 

basal ganglia are not involved in the integration and planning elements of gait termination, or 

in adapting these movements, on a slippery surface. Adaptations included a shorter step onto 

the force plate, a longer and wider subsequent step, and a diminished arm raise. These 

adaptive changes usually occurred within three trials of the unexpected slippery stop. 

5.4.1 Integration of reactive and voluntary postural adjustments during gait 

termination are preserved in PD 

Parkinson’s disease seemed to have little effect on the ability to integrate a balance-

correcting response into a voluntary gait termination program or the ability to develop an 

adaptive strategy to effectively deal with the slippery stops. The PD group walked slower and 

was less stable than the control group as they took more extra steps and had a smaller margin 

of M-L dynamic stability during the first step onto the force plate. The interaction effect 

shown in the A-P margin of dynamic stability during the second step showed no difference in 

the planned comparisons and is, therefore, not a significant behavioural change. The PD 

group did, however, seem to show a slower adaptation in the number of extra steps than 

controls which may reflect instability during the slippery stops which required more extra 

steps to stop safely. 
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People with PD are able to use external cues, visual or sensory, to initiate motor 

commands from cerebral sources other than the basal ganglia (Abbruzzese and Berardelli 

2003; Morris 2006; Morris et al 2001). The PD group may have used the visual cue of the 

lights during the cued, slippery stop trials and the feedback from the lead limb during the slip 

to help initiate the gait termination and slip-response programs, respectively. Because PD 

disrupts the ability to use central set to adapt voluntary movements (Morris 2006) and 

external reactions caused by changes in the base of support (Horak et al 1996) the external 

cues may have initiated the motor programs from regions within the CNS other than the basal 

ganglia (Morris 2006; Morris et al 2001).  

The participants with PD in this study were able to show similar adaptations to the 

slippery surface as age-matched controls in both planned and cued slippery stop trials. 

Previous research suggests that one set of motor commands is used in both planned and 

unplanned (cued) gait termination in persons with Parkinson’s disease (Bishop et al 2006). 

Since there was no significant difference between the last planned slippery stop and the first 

cued slippery stop, a single strategy may have been developed and used for both planned and 

cued slippery stops.  

5.4.2 Adaptations to gait termination were observed for planned and cued 

slippery stops 

All participants showed behavioural adaptations to the slippery surface encountered 

during gait termination. Table 2 is a summary of when the independent variables changed 

significantly from the first unexpected slippery stop trial. Only those variables which showed 
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a persistent change are considered an adaptive change. The decreased velocity in the second 

planned stop is likely the cause for the earlier time to slow in the second planned slippery 

stop. After the unexpected slip, it takes longer to stop in the following two planned slippery 

stops and then behaviour becomes similar to the unexpected slippery stop. This change in the 

time to stop is not likely an adaptation as it did not persist over the following slippery stop 

trials but rather was an adjustment to the slippery stop while a movement strategy was being 

developed. The lack of difference between the cued slippery stops and the unexpected 

slippery stops in the walking velocity, time to slow and time to stop suggests that none of 

these measures affects the adaptation to stopping on a slippery surface. 

Changes in behaviour during the step onto the force plate (pre-slip) show proactive 

adaptations to the slippery surface where changes in behaviour during the second step (post-

slip) show adaptations to the reactive component of the motor program for GT on a slippery 

surface.  Grouping measurements in one dimension show how stability is controlled in that 

plane (step length and margin of A-P dynamic stability in the plane of progression and step 

width and margin of M-L dynamic stability in the lateral plane). 

Proactive adaptations in the plane of progression took longer to adapt (maintain a 

difference from the unexpected slip) during the planned slippery stops than the cued slippery 

stops. Step length was decreased by the third planned slippery stop but the decrease in the 

cued slippery stop was seen in the first trial. The margin of A-P dynamic stability took two 

trials to show an adaptation in the planned slippery stops and only one in the cued slippery 

stop trials. One proactive adjustment was seen in the lateral plane at the third planned 
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slippery stop:  The step width increased thereby increasing the base of support. The increased 

base of support is also reflected in the increased margin of M-L dynamic stability during the 

third planned stop when compared to the first unexpected slip. Because these increases only 

occur in one trial, the effect cannot be interpreted as an adaptation.  

Table 5.2: Summary table for the dependent measures showing when an adaptation 
occurred. The comparisons were with the unexpected slippery stop (SS). Information in 
parentheses indicates when one trial was different from the SS trial but the change did 
not persist across trials in that condition. No difference from the SS trial is indicated by 
n.d. 

Dependent Measure Planned slippery stops Cued slippery stops
Walking velocity (PSS2 < SS) n.d.
Time to slow (PSS2 < SS) n.d.
Time to stop (PSS1 and PSS2 > SS) n.d.
Step length: Lead limb PSS3 n.d.
Step length: Trail limb PSS1 CSS1
Step width: Lead limb (PSS3 > SS) n.d.
Step width: Trail limb PSS1 CSS3
Margin of dynamic stability:
A-P lead limb step PSS2 CSS1
A-P trail limb step n.d. n.d.
M-L lead limb step (PSS3 > SS) n.d.
M-L trail limb step n.d. n.d.
Peak downward COM movement n.d. n.d.
Left arm raise PSS4 CSS3
Right arm raise n.d. n.d.

 

Reactive changes in the plane of progression occurred only in the step length and not 

in the margin of dynamic stability. The adaptations to step length occurred in the first trial for 

both planned and cued slippery stops.  The quickness of the adaptation suggests the reactive 

component is more effective at adapting to the slippery surface than the proactive component 

and, therefore, adjusts earlier. Adaptations in the lateral plane were seen only in the step 

width and occurred later in the cued slippery stops than the planned slippery stops.  The 
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delayed adaptation in the cued slippery stops suggests that knowledge of when the stop will 

occur can be used to develop a slip response strategy in the M-L plane.  

The arm raises can be considered as part of the reactive component to the slip 

response strategy as they occur after the slip. The arms took longer to show an adaptation 

than any other behaviour that did show an adaptation and may, therefore, be an integral part 

of the balance correcting response to gait termination on a slippery surface.  

The lack of difference between the final planned and first cued slippery stop trials 

suggests that there is no difference in generating a slippery stop response over multiple steps 

compared to within one step. The similarities may also be due to the repeated experiences 

(one unexpected and six planned slippery stops) leading up to the first cued slippery stop. 

Because the cued slippery stop trials always occurred after the planned slippery stop trials 

there is no way to completely remove the effect of experience and examine any difference 

between planning and cueing GT on a slippery surface with the protocol used in this study.  

The age of participants and the external validity of the imposed slip must be 

considered when discussing the results of this study. Both groups had a mean age over 65 

years and could be considered older adults. Previous research into the adaptations to slips 

during locomotion reveal differences in the behaviour of older adults when compared to 

younger adults performing the same task. These studies have shown that older adults are 

more cautious and may change their gait earlier (Lockhart et al 2006) when approaching and 

traveling over a slippery surface by walking slower and with shorter steps (Lockhart et al 

2005 and 2006; Moyer et al 2006; Tang and Woollacott 1998). Age seems to slow the 
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reaction time and diminish the power of the slip response (Chambers and Cham 2006; 

Lockhart et al 2005; Tang and Woollacott 1998) which may increase the frequency of taking 

an extra step (Tirosh and Sparrow 2003). The adaptive changes to stopping on a slippery 

surface are similar to young, healthy adults, but seem to require at least one more experience 

with the slippery surface to show adaptive changes (chapter 3). Age does not affect the 

ability to adapt to a slippery surface and develop a slip-response strategy as seen in this study 

and others (e.g. Lockhart et al 2006; Moyer et al 2006; Tang and Woollacott 1998) but may 

limit the flexibility of this slip-response strategy to adapt to different slipping situations 

(Tang and Woollacott 1999). 

The perturbation used in this study was a moving force plate programmed to mimic 

the feeling of a slippery surface. The external validity of this slip is limited in that research 

shows (Troy and Grabiner 2006) that true slips (such as those on an ice surface) are more 

destabilizing than platform slips. The platform slips also offer an end-point to the stop which 

may mechanically aid in the slip-recover process where real-world slips may not have a 

boundary close enough to help recovery. The platform will also sustain larger lateral loads 

than ice which can be manipulated to aid in the slip recovery. Additionally, the feedback 

from a moving platform or a surface causing the foot to move forward creates a different type 

of feedback from that received when the foot slides over a slippery surface. Perry et al (2000) 

found that afferent information from the cutaneous receptors in the foot detect the boundaries 

of the BOS are important in controlling the responses to balance perturbations. For this 

protocol, the cutaneous afferents did not receive the same information while sliding with the 
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force plate that they would have received had the foot slid over the floor. The addition of 

cutaneous afference may have aided in the slip recovery and enabled a quicker adaptation to 

the slip. 

In summary, the PD group walked slower and was less stable than the control group 

while stopping on a slippery surface. Parkinson’s disease did not seem to affect the ability to 

integrate a reactive response into a voluntary movement or to adapt the movement strategy to 

repeated experiences on the slippery surface. Adaptations to the slippery surface included a 

shortened step onto the slippery surface, an increased subsequent step length, increased step 

width and a diminished arm response. Proactive adaptations occur within three experiences 

with the slippery surface. During planned slippery stops, reactive adaptations occur within 

two trials in the plane of progressions and within one trial in the lateral plane. During cued 

slippery stops, reactive adaptations occur within one trial in the plane of progression and 

within three trials in the lateral plane. The arm response persists longer than any other 

behaviour that shows an adaptation and, therefore, seems to be important in maintaining 

stability while stopping on a slippery surface. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 



 

  107

6.1 DISCUSSION 

Investigation into the control of dynamic stability on a slippery surface revealed a 

generalized slip response. The slippery surface reduces the possible use of friction and, 

therefore, the manipulation of ground reaction forces in the gait termination program. The 

COM lowers, arms raise, and the trail limb steps shorter to help stabilize balance during the 

slip. The muscles of the lower limb increase their activity to support the lowering body 

weight and prevent collapse. The difference in the forward momentum with and without the 

arms shows how the arm raise helps to diminish forward momentum and safely complete the 

stop. The body also increases the momentum of the COM in the M-L plane perhaps as a 

result of a transfer of forward to sideways momentum to dissipate the forward momentum 

caused by the slip and also because of the greater amount of friction in the M-L direction. 

The slip response may originate from multiple levels within the central nervous 

system. During the initial part of the slip, spinal reflexes can monitor the position of the 

limbs and length of the muscles. Early muscular responses (~40 ms after the perturbation) 

would reflect the ability of the spinal cord to correct for an unexpected change in muscle 

length (Pearson and Gordon 2000). Later muscular and behavioural responses reflect 

supraspinal regulation of the motor program to control dynamic stability and effectively 

complete the gait termination program. The cortex, cerebellum, lateral vestibular nucleus, 

and reticulo-spinal tract (Pearson and Gordon 2000), for instance, could be monitoring body 

and limb position to correct for any deviations caused by the slip. Further exposure to the 

slippery surface, with knowledge of the surface characteristics, develops an adaptive 
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movement strategy. This motor learning would involve not only the supraspinal structures 

monitoring dynamic stability but include those areas of the brain involved in motor learning 

such as the cerebellum (Ghez and Thach 2000) and basal ganglia (Seger 2006). 

Adaptation to stopping on a slippery surface involves proactive strategies to prepare 

for and minimize the effect of the slippery surface. Stopping on a slippery surface cannot be 

completely proactive as the slip is not entirely predictable and some reactive response will 

remain within the movement. The available friction at the shoe-floor interface is decreased in 

a slip and, therefore, manipulation of the ground reaction forces diminish with repeated 

exposure as does the angle of the foot on contact with the slippery surface. The flattened foot 

increases the contact surface area to accommodate for the lack of friction under the foot by 

increasing the size of the BOS. The COM remains elevated and is moved forward before the 

slip in order to keep the COM closer to the newly-formed base of support. This elevated and 

forward strategy allows participants to “surf” on the slippery surface while stopping. The 

amount of arm movement and muscular activity throughout the slippery stop also decreases 

suggesting an increased efficiency and ease with the task over repeated trials. All of these 

adaptations occur quickly within one or two exposures. 

Parkinson’s disease caused lower walking velocities, shorter steps and instability 

during gait termination on a non-slippery surface. A widened step may be a compensatory 

strategy to control for the diminished stability in the plane of progression. Parkinson’s 

disease did not affect the ability to pre-plan gait termination. Gait termination within one step 

is also possible for someone with PD suggesting that the ability to switch from steady-state 
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locomotion to a gait termination program, whether over multiple steps or within one step, is 

preserved despite a diminished dynamic stability. This ability to stop, however, may become 

more difficult as the disease progresses, stability continues to decline and festination 

becomes more prominent (Morris 2006). 

Parkinson’s disease continued to cause a slower walking velocity and instabilities 

with repeated exposure to the slippery surface. Parkinson’s disease did not affect the ability 

to learn adaptive gait termination strategies. The presence of external cues available during 

the trials, however, may have enabled parallel-processing outside of the basal ganglia to 

facilitate the adaptation to look more like controls (Morris 2006, Morris et al 2001). 

The adaptive strategies seen in the PD participants with repeated exposure include a 

decreased step length and diminished margin of A-P dynamic stability when stepping onto 

the slippery surface. A decreased step length keeps the COM closer to the boundaries of the 

dynamic BOS showing feed-forward control of dynamic stability to minimize the 

perturbations and facilitate a smooth transition between locomotion and gait termination. The 

BOS increased by means of a longer and wider step to complete the stop. A larger BOS 

increases stability and the area in which the COM can move and stabilize. The diminished 

arm raise over subsequent trials shows an increased ease with stopping on a slippery surface. 

In both the control and PD groups, these adaptations occurred within two or three trials after 

the unexpected slippery stop, just slower than the young, healthy adults.  
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6.2 CONCLUSIONS 

Gait termination on a slippery surface evokes a generalized slip response involving a 

lowering of the COM, a shortened subsequent step, an arm raise and an increase in the 

muscular activity to control dynamic stability. In young, healthy adults, this slip response is 

diminished over repeated trials as an adaptive movement strategy is developed to stop more 

efficiently on the slippery surface. Parkinson’s disease causes slowness in movement and 

instability in the dynamic balance during gait termination on a non-slippery surface. 

Parkinson’s disease does not affect the ability to integrate a balance-correcting response into 

a voluntary gait termination program. The ability to adapt motor patterns in anticipation of a 

slippery surface was not affected by PD yet the slowness and instability remained. Practice 

with a slippery surface may help someone with PD develop appropriate balance maintenance 

strategies. This training should include measures to increase dynamic stability to prevent 

future falls and fall-related injuries. 
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