
Minimum Crossing Problems on Graphs

by

Patrick Young Roh

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2007

c©Patrick Roh 2007

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including any required
field revision, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis will address several problems in discrete optimization. These problems are considered hard
to solve. However, good approximation algorithms for theseproblems may be helpful in approximating
problems in computational biology and computer science.

Given an undirected graphG = (V,E) and a family of subsets of verticesS , the minimum crossing
spanning tree is a spanning tree where the maximum number of edges crossing any single set inS is mini-
mized, where an edge crosses a set if it has exactly one endpoint in the set. The physical mapping problem
in computational biology and the interval routing problem in computer science can both be reduced to find-
ing minimum crossing spanning trees. This thesis will present two algorithms for special cases of minimum
crossing spanning trees.

The first algorithm is for the case where the sets ofS are pairwise disjoint. It gives a spanning tree
with the maximum crossing of a set being 2·OPT+2, whereOPT is the maximum crossing for a minimum
crossing spanning tree. This algorithm is an extension of anapproximation algorithm for the minimum degree
spanning tree due to Fürer and Raghavachari (Journal of Algorithms, 1994).

The second algorithm is for the case where the sets ofS form a laminar family. LetbS∈ Z
+ be a bound

for eachS∈S . If there exists a spanning tree where each setS∈S is crossed at mostbS times, the algorithm
finds a spanning tree where each setS is crossedO(bS · logn) times. From this algorithm, one can get a
spanning tree with maximum crossingO(OPT· logn). This algorithm combines ideas from an approximation
algorithm for multicommodity flows on trees due to Garg, Vazirani, and Yannakakis (Algorithmica, 1997)
and from an approximation algorithm for minimum degree minimum spanning trees due to Ravi, Marathe,
Ravi, Rosenkrantz, and Hunt (Proceedings, ACM Symposium onTheory of Computing, 1993).

The best known approximation algorithm for minimum crossing spanning trees is due to Bilò, Goyal,
Ravi, and Singh (Proceedings, International Workshop on Approximation Algorithms for Combinatorial Op-
timization Problems, 2004). Their algorithm gives a spanning tree with maximum crossingO(OPT · logn+
log|S |). The first algorithm of this thesis has a better approximation when the sets ofS are pairwise dis-
joint. The second algorithm of this thesis has an equivalentapproximation (within a constant factor) when
the sets ofS form a laminar family. However, their algorithm is probabilistic while the second algorithm of
this thesis is deterministic.

Given an undirected graphG = (V,E), and a family of subsets of verticesS , the minimum crossing per-
fect matching is a perfect matching where the maximum numberof edges crossing any set inS is minimized.
A proof will be presented showing that finding a minimum crossing perfect matching is NP-hard, even for
the special case where the graph is bipartite and the sets ofS are pairwise disjoint.

v

Acknowledgements

Thanks to my advisor Jochen Könemann for his guidance, insight and exposing me to problems in discrete
optimization I truly found interesting.

Thanks to the readers for their help in making this a successful thesis.
Thanks to the Department of Combinatorics and Optimizationfor their support and help throughout both

my undergraduate and graduate career.
Thanks to the faculty of the department including Joseph Cheriyan, Bill Cunningham, Steven Furino,

Jim Geelen, Chris Godsil, Penny Haxell, David Jackson, and Nick Wormald for teaching me the beauty of
combinatorics and optimization and pulling me away from theboredom of computer programming.

Thanks to my parents for their support in my pursuit of a higher education.

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Solving real world problems using discrete optimization 1

1.1.1 Solving the k-C1P problem 2
1.2 A natural problem in optimization 3
1.3 A matching problem 3
1.4 Results in this thesis 4
1.5 Outline 4

2 Previous Work 7
2.1 Overview of Previous Work 7

2.1.1 Minimum Degree Spanning Trees 7
2.1.2 Degree of Minimum Spanning Trees 7
2.1.3 Directed Minimum Degree Spanning Trees 9
2.1.4 Minimum Crossing Spanning Trees 9

2.2 Approximation algorithms for the MDST problem 10
2.2.1 Swapping edges in a spanning tree 10
2.2.2 A local search algorithm for the MDST problem 11
2.2.3 An additive 1-approximation algorithm for the MDST problem 12

2.3 Approximation algorithm for BDMSTs 15

3 MCSTs on Disjoint Sets 21
3.1 Algorithm 21
3.2 Analysis 25

4 MCSTs on Laminar Sets 27
4.1 Overview 27
4.2 Background 28

4.2.1 RepresentingS . 28
4.2.2 Multicommodity flows and trees 29

4.3 The Algorithm 34
4.3.1 Extending multicommodity flows on trees 34
4.3.2 Subroutine for forced multicommodity flows 36
4.3.3 Analysis of the subroutine 38

ix

4.3.4 Final Algorithm 40
4.3.5 Performance 40

5 Minimum Crossing Perfect Matchings 43
5.1 Overview 43
5.2 Polyhedral viewpoint 43
5.3 A hard matching problem 45

6 Open Problems and Further Research 49

Bibliography 51

x

List of Figures

2.1 Example of a witness set 10
2.2 Example of a good swap 10
2.3 A sequence of good swaps and how it improves degree 13
2.4 Example of how swaps dont interfere 14
2.5 Example of the auxiliary graphGi . 16
2.6 Examples of how to pair off vertices in a tree. 18

3.1 Example of anS -spanning tree . 21
3.2 The number of edges required to cross sets ofA in a spanning tree ofG 22
3.3 Witness sets for disjoint vertex sets 23
3.4 How a swap is identified for disjoint sets 24
3.5 The induced subgraphs can be disconnected 25

4.1 GraphG with family S and the laminar treeA . 29
4.2 Example of graphG with family S and the corresponding multicommodity flow problem . 30
4.3 Example of checking edges in reverse delete 33
4.4 How ab-matching can have too many components 35
4.5 GraphG, laminar familyS , edgesF ⊆ E, and the corresponding auxiliary graphBF 36
4.6 Pei on the graphBF . 40

5.1 6-cycle graph, 2 disjoint sets, integral solution to MCPM linear program 44
5.2 6-cycle graph, 2 disjoint sets, half-integral solutionto MCPM linear program 44
5.3 A non-integral objective value and dual solution for MCPM linear program 45
5.4 Example of the auxiliary graph for an instance of the 3-dimensional matching problem. . . . 46
5.5 An example of a 3DM and the corresponding MCPM 47

xi

Chapter 1

Introduction

In the real world, there are problems involving finite, countable objects that involve minimizing or maximiz-
ing something such as cost, the number of objects used, size of some set, etc., given some constraints on
how these objects interact. Discrete optimization is an area of mathematics that deals with many of these
problems. This is an area with a rich history of solving some of these problems exactly and in an acceptable
timeframe. However, there are many problems in discrete optimization that are considered difficult to solve,
either exactly or in a reasonable timeframe. One direction mathematicians have taken for these problems is to
find approximation algorithms. These algorithms give solutions within a specific timeframe and are proven
to be within some value of the optimal solution. Given a problem, an algorithm gives anα-approximation
for that problem if for any instance of the problem, it gives asolution whose value is within a factor ofα of
the optimal solution for the instance.

The problems that are considered difficult are divided up into complexity classesbased on the difficultly
of solving or even approximating the problem. The class of problems that can be solved exactly in a reason-
able timeframe is known as P. These problems can be solved by an algorithm that runs in polynomial time.
The main complexity class discussed in this thesis is NP. These are problems where given a solution to a
problem, one can verify if the solution is optimal in polynomial time. P is contained in NP but it is not known
if P=NP or not. In general, mathematicians believe that P6=NP.

The problems discussed in this thesis are at least as hard as any problem in NP. The thesis will present
approximation algorithms for these problems.

1.1 Solving real world problems using discrete optimization

The summary of the following two real world problems comes from [2].
In computational biology, one of the things the human genomeproject is attempting to do is to reconstruct

the relative position of DNA fragments along the genome, given information on their pairwise overlap. This
problem is known as thephysical mapping problem. For an instance of this problem, there exists a collection
of clones and a set of genomic inserts called probes. Each probe defines a single location where a given subset
of clones coincide. Given a probe/clone pair, using biological techniques one can determine whether the clone
contains the probe as a subsequence. The result of concatenating multiple clones from different parts of the
genome and producing a clone that is no longer a simple substring of the chromosome is called chimerism.
The new clone is chimeric. The problem is to construct the order that the probes would occur along the
original chromosome that is consistent with the given probe-clone incidence matrix. The construction can be

1

1. INTRODUCTION

done easily if there is no chimerism. The following is a more formal definition of the problem: Given a probe-
clone incidence matrixA, where the rows are indexed by probes and the columns byclones, the entryai j = 1 if
and only if probei occurs in clonej, otherwiseai j = 0. Given that there is no chimerism, the problem reduces
to finding a permutation of rows such that in each column, the ones are consecutive. This new problem is
known as 1-C1P and can be solved in polynomial time. If there is chimerism and each chimeric clone is a
concatenation of at mostk clones, the problem reduces to finding a permutation of rows such that there are at
mostk blocks of consecutive ones in each column. This new problem is known as k-C1P. More information
on the physical mapping problem can be found in [15].

In network design, given a set of IP routing tables sharing the same host space, one may attempt to
reassign the IP addresses to the hosts such that the maximum size of any IP routing table is minimized. This
is known as theinterval routing problem. The following is a more formal definition of the problem: Let
R= {r1, . . . , rn} be a set ofn routers andH = {h1, . . . ,hm} be a set ofmdestination hosts. Each routerr j ∈ R
has outdegreeδ j and a routing table specifying the outedges to use for each host. The problem is to choose
the IP addresses of themhosts and construct then IP routing tables such that the maximum number of entries
used in a table is minimized. It is known that aρ-approximation algorithm for the k-C1P problem implies a
2ρ · logm-approximation algorithm for the interval routing problem. More information on the problem can
be found in [1].

1.1.1 Solving the k-C1P problem

The k-C1P problem can be solved by reducing it to another optimization problem. Consider a complete graph
G= (V,E), with anm-dimensional cost functionc : E →{0,1}m. Given a tourD of G, let them-dimensional
vectorc(D) = ∑e∈E(D) c(e). Thevector travelling salesman(vTSP) problem is to minimize‖c(D)‖∞ over
all toursD of G.

The k-C1P problem can be reduced to the vTSP problem as follows. LetA be thex×y matrix from the
k-C1P problem. For each row ofA, there is a vertex inG. For each edge(i, j) in G, letc(e) be the XOR-vector
ai XOR aj = {ai1 XOR aj1, . . ., aiy XOR ajy}. Letπ be the permutation induced by a solutionT for the vTSP
problem. LetAπ be the matrix that results by applyingπ to the rows ofA. Letb(Aπ) be the maximum number

of blocks of consecutive ones inAπ . Therefore,b(Aπ) = ‖c(T)‖∞
2 .

Given a spanning treeT of G, let them-dimensional vectorc(T) = ∑e∈E(T) c(e). Thevector minimum
spanning tree(vMST) problem is to minimize‖c(T)‖∞ over all spanning treesT of G. Since Hamming
distance obeys the triangle inequality, using Euler Tour shortcutting techniques, a 2r-approximation for the
vTSP problem can be derived from anr-approximation to the vMST problem. After reducing the k-C1P
problem on a matrixA to the vTSP problem on a complete graphG= (V,E), the vMST problem onG can be
formulated as a minimum crossing spanning tree problem onG.

Let G= (V,E) be an undirected graph andS be a family of subsets of vertices. An edgecrosses S∈S if
it contains exactly one endpoint inS. Theminimum crossing spanning treeis a spanning tree that minimizes
the maximum number of edges crossing any single set inS .

Let Vj = {vi ∈V|ai j = 0}. Let S = {V1, . . . ,Vy}. Each columnj of A can be viewed as a subset of the
vertices ofG. Since the cost of an edge(i, j) is justai XOR aj , thel th coordinate ofc(i, j) corresponds to the
setVl and is 1 if and only if(i, j)∈Vl . Since for any spanning treeT, c(T)= ∑e∈E(T) c(e), theith coordinate of
c(T) is the number of edges ofT crossingVi . Thus, the minimum crossing spanning tree minimizes‖c(T)‖∞.
Given anr-approximation algorithm for the problem of finding a minimum crossing spanning tree, there is
anr-approximation algorithm for the vMST problem.

2

1.2. A NATURAL PROBLEM IN OPTIMIZATION

1.2 A natural problem in optimization

Aside from having real world applications, the problem of finding minimum crossing spanning trees it is a
generalization of a well-known open problem in graph theoryand discrete optimization. Given an undirected
graphG = (V,E), one may want to know whether there is a path inG that uses every vertex inV exactly
once. Such a path is known as a Hamiltonian path. Determiningif G has a Hamiltonian path is in a class of
problems called NP-complete.

The set of NP-complete problems is a subset of the problems inNP. For any given problem in NP, there
exists a polynomial-time computable reduction that converts instances of the problem into an equivalent
instance of a problem that is NP-complete. Thus, given any two NP-complete problems, they are equivalent
in the sense that there exist polynomial-time computable reductions that convert instances of one problem
into equivalent instances of the other and vice versa. However, since any NP-complete problem is essentially
as hard as any problem in NP, there is no known means of solvingany NP-complete problem in polynomial
time. There are also problems that fall under the category ofNP-hard. For an NP-hard problem, there
exists a polynomial-time computable reduction that converts any instance of an NP-complete problem into
an equivalent instance of the NP-hard problem. NP-hard problems are essentially problems that are at least
as difficult as any problem in NP, so there is no known means of solving any NP-hard problem in polynomial
time.

There is a reduction from the Hamiltonian path problem to theminimum degree spanning tree problem.
Given a graphG, the problem is to find a spanning treeT of G such that the maximum degree ofT is
minimized. A Hamiltonian path is simply a spanning tree where the maximum vertex degree is 2. No
spanning tree can have a lower maximum vertex degree except for the trivial cases whereG is the complete
graph on 1 or 2 vertices. Since the Hamiltonian path problem is a special case of the minimum degree
spanning tree problem, the minimum degree spanning tree problem is NP-hard. However, it is a well studied
problem and there exist good algorithms that find spanning trees with close to minimum degree. These
algorithms will be discussed in detail later in this thesis.Further generalizations of this problem have also
been analyzed including adding edge costs to find such trees of minimum cost, looking at directed graph
versions of the problem, and looking at bounds on the vertex degree rather than minimizing the maximum
vertex degree.

The minimum degree spanning tree problem itself can be generalized further. Consider a minimum
degree spanning tree. Each vertex can be considered as a vertex set of size one. One can consider the
“degree” of each set where “degree” refers to the edges with exactly one endpoint in the set. The minimum
degree spanning tree problem can be generalized by considering vertex sets that may be arbitrary. An edge
is considered to “cross” a set if it has exactly one endpoint in the set. The problem is, given a family of
subsets of vertices, to find a spanning tree ofG where the maximum number of edges “crossing” any set is
minimized (i.e. minimize the maximum “degree” of a set). Note that all the edges crossing a specific set form
a cut of the graph. In fact, this new generalized version of the minimum degree spanning tree problem is
just the minimum crossing spanning tree problem. For the rest of the thesis, the minimum crossing spanning
tree problem will be viewed as a problem over a graph and a family of sets instead of cuts. Since both the
Hamiltonian path problem and the minimum degree spanning tree problem are special cases of the minimum
crossing spanning tree problem, the minimum crossing spanning tree problem is NP-hard.

1.3 A matching problem

In attempting to approximate minimum crossing spanning trees, one approach involves the use ofT-joins,
which are a generalization of matchings. Finding matchingsof graphs is a well studied problem with many

3

1. INTRODUCTION

efficient algorithms. Finding perfect matchings of bipartite graphs in particular is considered an easy problem.
Minimum crossing perfect matchings are a generalization ofperfect matchings. Given an undirected graph
and a family of subsets of vertices of the graph, the minimum crossing perfect matching problem is to find a
perfect matching of the graph where the maximum number of edges “crossing” any single set is minimized.
It turns out that this is not an easy problem, even for bipartite graphs. This thesis will prove that the problem
is in fact NP-hard, even for bipartite graphs.

1.4 Results in this thesis

This thesis will present three main results. LetOPT denote the maximum crossing of a set in a minimum
crossing spanning tree.

The first result is an approximation algorithm for the minimum crossing spanning tree problem for the
special case where the sets are pairwise disjoint. The algorithm presented will be an extension of an algorithm
for minimum degree spanning trees by Fürer and Raghavachari [10]. The following will be proven:

Theorem 1. There exists a2 ·OPT+ 2-approximation algorithm that runs in polynomial time for approxi-
mating minimum crossing spanning trees over a family of pairwise-disjoint subsets of vertices.

The second result is an approximation algorithm for the minimum crossing spanning tree problem for the
special case where the sets form a laminar family. A family ofsets is laminar if for any two sets from the
family, either one set is contained in the other or the sets are disjoint. The algorithm will be an extension of
an algorithm for multicommodity flows on trees by Garg, Vazirani, and Yannakakis [12] and borrow ideas
from an approximation algorithm for bounded degree minimumspanning trees [19]. Given boundsbi for
each setSi in the laminar family, the algorithm will give a spanning tree where each setSi is crossed at most
log6/5n ·bi times, wheren is the number of vertices, or show that no spanning tree satisfies the bounds. A
spanning tree satisfying the bounds for each set is a boundedcrossing spanning tree. The thesis will show how
this algorithm for approximating bounded crossing spanning trees can be applied to approximating minimum
crossing spanning trees. Thus the following wil be proven:

Theorem 2. There is a deterministic O(logn)-approximation algorithm that runs in polynomial time for
approximating minimum crossing spanning trees and boundedcrossing spanning trees where the family of
subsets of vertices is a laminar family.

The third result is a hardness proof for the minimum crossingperfect matching problem. The proof will
reduce an arbitrary instance of the 3-dimensional matchingproblem, which is NP-complete, to an instance of
a special case of the minimum crossing perfect matching problem. The following will be proven:

Theorem 3. Finding a minimum crossing perfect matching of a graph is NP-hard, even if the graph is
bipartite and the family of subsets of vertices is pairwise-disjoint.

1.5 Outline

Here is an outline of the rest of this thesis.
Chapter 2 will present previous work done on related spanning tree problems. The chapter will present

three algorithms in detail. Ideas from these algorithms will be used in constructing algorithms for the mini-
mum crossing spanning tree problem.

4

1.5. OUTLINE

Chapter 3 will present the first result of an approximation algorithm for the special case of the minimum
crossing spanning tree problem where the vertex sets are pairwise-disjoint.

Chapter 4 will present the second result of an appoximation algorithm for the special case of the minimum
crossing spanning tree problem where the sets form a laminarfamily.

Chapter 5 will look at the minimum crossing perfect matchingproblem. The main focus of the chapter
will be the third result that the problem is NP-hard.

Chapter 6 will outline some open problems related to minimumcrossing spanning trees and minimum
crossing perfect matchings and potential areas of future research.

5

Chapter 2

Previous Work

2.1 Overview of Previous Work

Many of the results of approximation algorithms are given using the following notation. Letf (n) andg(n) be
positive real-valued functions onn, wheren is from the set of nonnegative integers. If there exists constants
c > 0 andN ≥ 0 such thatf (n) ≤ c · g(n) for all n > N, then f (n) = O(g(n)). If f (n) = O(g(n)), then
g(n) = Ω(f (n)).

2.1.1 Minimum Degree Spanning Trees

Let G = (V,E) be an undirected graph onn vertices. LetH be a subgraph ofG. Given a vertexv ∈ V, let
degH(v) denote the vertex degree ofv in H. Let ∆(H) = maxv∈V degH(v) denote the maximum vertex degree
of H.

Definition 2.1. Given a graphG, aminimum degree spanning tree(MDST) is a spanning treeT of G such
that∆(T) is minimized (i.e. the maximum vertex degree ofT is minimized).

Let T∗ be an MDST for a graphG. Let∆∗ = ∆(T∗). The problem of finding a Hamiltonian path in a graph
G is known to be NP-complete [11]. For a graphG with at least three vertices,G has a Hamiltonian path if
and only ifG has a MDSTT∗ where∆(T∗) = 2. Thus the problem of finding an MDST ofG is NP-hard. The
MDST problem has been well studied and there exist good approximation algorithms for it.

In [9], Fürer and Raghavachari gave a local search approximation algorithm that outputs a spanning tree
with maximum vertex degree at mostb∆∗ + ⌈logbn⌉, whereb > 1 is an arbitrary constant, in polynomial
time. The algorithm is discussed in more detail on page 11. In[10], Fürer and Raghavachari presented a
more complex approximation algorithm that outputs a spanning tree with degree∆∗ +1 in polynomial time.
This algorithm is outlined on page 15.

Since Fürer and Raghavachari’s algorithm gives the best possible approximation, unless P = NP, the focus
has shifted to other problems related to finding MDSTs. In many cases, ideas for approximating MDSTs can
be applied to other areas as this thesis will show.

2.1.2 Degree of Minimum Spanning Trees

Definition 2.2. Given a graphG = (V,E) and a cost functionc : E → Z
+ on the edges ofG, a minimum

spanning tree(MST) is a spanning treeT of G such that the total cost of the edges ofT is minimized.

7

2. PREVIOUS WORK

MSTs are a well-studied combinatorial structure. As with spanning trees, mathematicians have looked at
minimizing the maximum vertex degree of MSTs.

Definition 2.3. Given a graphG and a cost functionc : E → Z
+ on the edges ofG, a minimum degree

minimum spanning tree(MDMST) is a minimum spanning treeT of G such that∆(T) is minimized.

In [7], Fischer extended both algorithms by Fürer and Raghavachari for approximating MDSTs to ap-
proximate MDMSTs. LetT∗ now be an MDMST. Again, let∆∗ = ∆(T∗). The first local search algorithm
was extended to an algorithm that computes an MST with maximum vertex degree at mostb∆∗ + ⌈logbn⌉ in

O(n4+ 1
logb) time. The second more complex algorithm was extended to an algorithm that computes an MST

with maximum vertex degree at mostq·(∆∗+1), whereq is the number of different edge costs, in polynomial
time.

Rather than focus only on minimizing the maximum vertex degree of an MST, there has been a lot of
research on looking at bounding the degrees of vertices and then finding a spanning tree of minimum cost
that satisfies those degree bounds.

Definition 2.4. Given a graphG, a vertex degree boundb, and a cost functionc : E → Z
+ on the edges, a

bounded degree minimum spanning tree(BDMST) is a spanning treeT where every vertex degree is at most
b and the cost ofT is minimized. The degree bound on BDMSTs may also be non-uniform, where the degree
boundb for every vertex is replaced by a degree bound functionb : V → Z

+ that assigns a degree bound for
each vertex ofG.

In [19], Ravi et al. gave an approximation algorithm for the BDMST problem. The algorithm starts with
a set of edgesF = /0, finds edges to connect the components of(V,F), and adds them toF by solving aT-join
problem. Given a boundb on the degree of the vertices ofG, let OPTb be the minimum cost of a spanning
tree where the maximum vertex degree is at mostb. The algorithm gives a spanning tree where the maximum
vertex degree isO(blog n

b) and the cost isO(OPTb log n
b) in polynomial time. The algorithm is outlined on

page 17. Ravi et al. also generalized the algorithm to handleSteiner trees, generalized Steiner forests, and
the node-weighted version of the BDMST problem.

In [16], Könemann and Ravi gave an algorithm, using Lagrangean duality, for finding a BDMST where
the vertex degree bounds are uniform. Given constantsω > 0 andβ > 1, the algorithm gives a spanning tree
where the maximum vertex degree is at most(1+ ω)βb+ logβ n and the cost is at most(1+ 1

w)OPTb. The
algorithm runs in polynomial time.

In [17], Könemann and Ravi’s algorithm was extended to an algorithm for the BDMST problem where
the vertex degree bounds were non-uniform. The new algorithm uses Lagrangean duality combined with
repeated use of Kruskal’s algorithm for solving MSTs. Givena boundbv on the degree of each vertexv∈V,
let OPT be the cost of an MST where each vertexv has degree at mostbv. Given constantsω > 1 andβ > 1,
the new algorithm gives a spanning tree where the degree of each vertexv is at most ω

ω−1βbv +2logβ n and
the cost is at mostωOPT. The running time isO(mn5 logn).

In [3], Chandhuri et al. gave a different approach to finding aBDMST. Their algorithm uses the idea of
push-relabel used to solve network flow problems by Goldbergin [14]. Given a constantβ > 0, the algorithm
gives a spanning tree where the maximum vertex degree is at most 2(1+ β)b+O(

√

(1+ β)b) and the cost
is at most(1+ 1

β)OPTb.
In [13], Goemans gave an approximation algorithm to the BDMST problem with the best known bounds.

The algorithm uses concepts from matroid and polyhedral theory. The algorithm gives a spanning tree with
maximum degreeb+2 and the cost is at mostOPTb or shows that no spanning tree with maximum vertex de-
gree at mostb exists. Since the algorithm outputs a tree of cost at mostOPTb, the algorithm can approximate

8

2.1. OVERVIEW OF PREVIOUS WORK

the MDMST problem as well. He also conjectured that it is possible to improve the approximation of the
maximum vertex degree tob+1, similar to the algorithm of Fürer and Raghavachari for the MDST problem.

2.1.3 Directed Minimum Degree Spanning Trees

The case ofG being a directed graph has also been studied. An analog of MDSTs for directed graphs exists.

Definition 2.5. Given a directed graphG and a rooted noder, a directed minimum degree spanning tree
(DMDST) is a directed subgraphT of G such that the underlying graph ofT is a spanning tree of the
underlying graph ofG, there exists a directed path from every node ofT to r, and the maximum indegree of
a vertex ofT is minimized.

Let T∗ now be a DMDST and∆∗ denote the maximum indegree of a vertex ofT∗. In [8], Fürer and
Raghavachari gave a polynomial time algorithm that outputsa DMDST with indegreeO(∆∗ logn). In [18],
Krishnan and Raghavachari extended the local search algorithm of Fürer and Raghavachari used for MDSTs
to give an algorithm that outputs a DMDST where the maximum indegree of a vertex is at mostc∆∗+⌈logc n⌉
for a constantc > 1. However, the runtime of this algorithm is quasi-polynomial as it runs inO(nlogc n+O(1))
time.

2.1.4 Minimum Crossing Spanning Trees

For the following, letG= (V,E) be a graph onn vertices,H = (W,F) be a subgraph ofG, andS be a family
of subsets of vertices ofG, whereS = {S1, . . . ,Sk}, Si ⊆V, 1≤ i ≤ k. GivenS⊆V, let δ (S)⊆ E denote the
set of edges with exactly one endpoint inS(i.e. δ (S) = {e= (u,v) ∈ E : |{u,v}∩S|= 1}). If e∈ δ (S), then
e crosses S. Let degH(S) = |δ (S)∩F | (i.e. degH(S) is thedegreeof S in H). The notation∆ will be extended
for when a family of subsets of verticesS is defined. Let∆(H) = max1≤i≤kdegH(Si) denote the maximum
crossing ofH overS .

Definition 2.6. Given a graphG and a family of subsets of verticesS , a minimum crossing spanning tree
(MCST) is a spanning treeT of G such that∆(T) is minimized.

Let T∗ be an MCST and∆∗ = ∆(T∗). Note that in this thesis,T∗ and∆∗ will be used interchangably
between the MDST and MCST problem. Letr = maxe∈E |{S∈ S : e∈ δ (S)}| (i.e. an edge ofG crosses at
mostr sets). Note thatk = |S |.

In [15], Greenberg and Istrail extended Fürer and Raghavachari’s local search algorithm for MDSTs to
find MCSTs. However, their algorithm is designed for solvingthe physical mapping problem in computa-
tional biology. For solving the general MCST problem, theiralgorithm gives a spanning tree with a maximum
crossing ofO(r∆∗ + logn) but does not run in polynomial time. The runtime of the algorithm is bounded by
O(klogr) iterations which is not polynomial inn.

In [2], Bilò, Goyal, Ravi, and Singh presented the best known polynomial time approximation algorithms
for the MCST problem. Starting withF = /0, one of the algorithms they present chooses one edge at a time
to add toF . The edges are chosen to connect components of(V,F) and minimize∆(F) until F is a spanning
tree. The algorithm gives a spanning tree with maximum crossing at most 4r(logn)∆∗ in polynomial time.

[2] also presented a randomized-rounding algorithm for theMCST problem. Given a linear program
relaxation for the MCST integer program, the algorithm findsa fractional solution and then rounds the values
with probability based on the fractional solution. The algorithm gives a connected subgraph with maximum
crossingO(∆∗ logn+ logk) with high probability in polynomial time.

9

2. PREVIOUS WORK

2.2 Approximation algorithms for the MDST problem

In this section, two previously known algorithms for the MDST problem will be presented. This section will
describe some key ideas that will be useful in later parts of this thesis. The two algorithms are from [9] and
[10], where Fürer and Raghavachari gave 2 polynomial time algorithms to approximate the MDST problem.
The first will show the key idea ofswappingedges. The second will show a clever way of swapping edges.

The following lemma will help in calculating a bound on the maximum degree of a spanning tree that is
output by the algorithms.

Lemma 2.1. [10] Let W ⊆V. Let p be the number of components when W is removed from G (i.e. removing

the edges of G adjacent to vertices of W leaves|W|+ p components). Then∆∗ ≥
⌈

|W|+p−1
|W|

⌉

.

The lemma usesW as awitness setfor a lower bound on∆∗.

|W|+p−1
|W| = 3

p = 5

W

Figure 2.1: Example of a witness set

2.2.1 Swapping edges in a spanning tree

Let T be a spanning tree ofG. Consider an edge(u,v) not in T. The subgraphT +(u,v) contains a unique
cycleC. By taking any edge(w,z) ∈ C, T + (u,v)− (w,z) is also a spanning tree ofG. Let 〈(u,v),(w,z)〉
denote thisswapof edges ofT.

Let w be a vertex inC. Let k be the degree ofw. If max{degT(u),degT(v)}+1< degT(w), then applying
the swap〈(u,v),(w,z)〉 to T can reduce the degree ofw by one without increasing the degree of another vertex
to k or higher. Such a swap is called agood swapfor w. Applying these good swaps will be the main focus
of the following MDST algorithms.

w

z 〈(u,v),(v,z)〉
〈(u,v),(w,z)〉

s

Good swaps:

y

x
C = {u,v,z,w}
T

u v

Figure 2.2: Example of a good swap

10

2.2. APPROXIMATION ALGORITHMS FOR THE MDST PROBLEM

2.2.2 A local search algorithm for the MDST problem

Given an arbitrary spanning treeT, one could continuously apply good swaps toT until no more good swaps
exist.

Definition 2.7. If no good swaps exist, thenT is calledlocally optimal.

It is not known how to find a locally optimal tree in polynomialtime. However, Fürer and Raghavachari
presented a solution to this problem. One could just apply good swaps for any vertexv where∆(T)−
⌈logbn⌉ ≤ degT(v) ≤ ∆(T), whereb > 1 is an arbitrary constant.

Definition 2.8. If there are no good swaps for any vertexv where∆(T)−⌈logbn⌉ ≤ degT(v) ≤ ∆(T), b > 1,
thenT is calledpseudo-optimal.

In [9], Fürer and Raghavachari’s local search algorithm for the MDST problem is to take any spanning
treeT of G and apply good swaps for vertices of degree at least∆(T)−⌈logbn⌉ until T is pseudo-optimal.
Let Sd denote the vertices with degree at leastd in T. Note thatSd ⊆ Sd−1

Lemma 2.2. [9] Let b > 1 be a constant. Given a spanning tree T, there exists d∈ {∆(T)−⌈logbn⌉+
1, . . . ,∆(T)} such that|Sd−1| ≤ b|Sd|.

Proof. Assume to the contrary that for everyd ∈ {∆(T)−⌈logbn⌉+ 1, . . . ,∆(T)} that |Sd−1| > b|Sd|. By
repeating this inequality, the result is

|S∆(T)−⌈logb n⌉| > b · |S∆(T)−⌈logb n⌉+1|

> b2 · |S∆(T)−⌈logb n⌉+2|

> .. .

> b⌈logb n⌉ · |S∆(T)|

≥ n · |S∆(T)|.

Since|S∆(T)| ≥ 1 and|S∆(T)−⌈logb n⌉| ≤ n, this is a contradiction.

This lemma will help in analyzing the maximum vertex degree of a pseudo-optimal spanning tree.

Theorem 2.1. [9] A pseudo-optimal tree T of G has maximum degree∆(T) < b∆∗+⌈logbn⌉ for any constant
b > 1.

Proof. Given a pseudo-optimal spanning treeT of G and a constantb > 1, choose a correspondingd from
Lemma 2.2. Therefore|Sd−1| ≤ b|Sd|. Removing the vertices ofSd (i.e. any vertex with degree≥ d) from
T yields a forestF containing treesT1, . . . ,Tp. Note thatF containsp components. Let(u,v) ∈ E−T be
an edge that connects two components ofF. T +(u,v) contains a unique cycleC. Since(u,v) connects two
components ofF , C contains a vertex ofw ∈ Sd. SInceT is pseudo-optimal, bothu andv are inSd−1.
Therefore, removing any edges adjacent to vertices inSd−1 will split G into at leastp+ |Sd| components.
By Lemma 2.1,

∆∗ ≥

⌈

p+ |Sd|−1
|Sd−1|

⌉

.

ConsiderT. Each vertex ofSd has degree at leastd and at most|Sd|−1 edges ofT have both endpoints in
Sd. Therefore removingSd from T leaves

p≥ d|Sd|−2(|Sd|−1)

11

2. PREVIOUS WORK

trees and

∆∗ ≥
d|Sd|−2(|Sd|−1)+ |Sd|−1

|Sd−1|
=

|Sd| · (d−1)+1
|Sd−1|

.

By Lemma 2.2,

∆∗ ≥
|Sd| · (d−1)+1

b|Sd|
≥

d−1
b

.

Therefored ≤ b∆∗ +1 but by the choice ofd, d ≥ ∆(T)− logbn+1 so

∆(T) ≤ b∆∗ + logbn.

Theorem 2.2. [9] A pseudo-optimal spanning tree can be found in polynomial time.

Proof. The theorem is proved using a potential function argument. Given a vertexv of a spanning treeT, let
Φ(v) = 3degT(v) be the potential ofv. Let Φ(T) = ∑v∈V Φ(v) be the potential ofT. Note that

n ·32 ≤ Φ(T) ≤ n ·3∆(T).

Each good swap performed to get a pseudo-optimal tree reduces the degree of a vertexv ∈ Sd whered ≥
∆(T)−⌈logb n⌉+1. The reduction in the potential ofT after performing a good swap is at least

(3d +2 ·3d−2)−3 ·3d−1 = 3 ·3d−2

≥ 3∆(T)−⌈logb n⌉−1

= Ω

(

3∆(T)

n

)

= Ω
(

Φ(T)

n2

)

.

Therefore each good swap to get a pseudo-optimal tree reduces the potential by a polynomial factor. After
O(n2) good swaps, the potential is reduced by a constant factor andso the number of good swaps isO(n3).

2.2.3 An additive 1-approximation algorithm for the MDST problem

In [10], Fürer and Raghavachari improved on their local search algorithm. This algorithm will be presented
in detail because it will later be extended to give an approximation algorithm for the MCST problem where
the sets are disjoint.

Consider a spanning treeT of G = (V,E). Earlier a good swap〈(u,v),(w,z)〉 was defined as a swap
where max{degT(u),degT(v)}+ 1 < degT(w) = k. This ensured that the degree ofu or v did not become
greater than or equal tok. A situation could occur where there exists a swap〈(u,v),(w,z)〉 for w where
max{degT(u),degT(v)}+ 1 = degT(w). However, it may be possible to find a good swap foru (or v) and
then the swap〈(u,v),(w,z)〉 would be a good swap. Figure 2.3 gives an example.

Let ∆ denote∆(T). Instead of reducing the degrees of vertices with degree at least∆− ⌈logn⌉, the
algorithm will focus on reducing the degree of vertices inS∆. The algorithm will start with all the vertices in
S∆−1 being markedbadand all other vertices being markedgood. The algorithm will iteratively takeT and

12

2.2. APPROXIMATION ALGORITHMS FOR THE MDST PROBLEM

u

x
Perform swap〈(x,y),(u,x)〉 first.
After perfrom swap〈(u,v),(w,z)〉.

Cannot swap(u,v) for either(w,z) or (v,w).y

w

v T

z

Figure 2.3: A sequence of good swaps and how it improves degree

mark vertices inS∆−1 as good if there exists good swaps for them. The definition of good swap is changed
in order to use the idea of good vertices. A swap〈(u,v),(w,z)〉 for w is good whenever bothu andv are good.

Consider the new notion of a good swap〈(u,v),(w,z)〉 for w∈ S∆−1. Before the swap,u andv must be
good vertices. Therefore either 1)u has degree at most∆−2 or 2)u has degree∆−1 and there is another
good swap that can reduce the degree ofu. Similarly for v. Therefore there is a sequence of swaps, including
〈(u,v),(w,z)〉, that can reduce the degree ofw without adding any new vertex toS∆.

Given a spanning treeT, let B = S∆−1 represent the bad vertices andF0 represent the forestT \B with
componentsF0

1 , . . . ,F0
p0

. Consider the edges of the form(u,v) ∈ E whereF0
u ,F0

v are the components ofF0

containingu andv respectively andF0
u 6= F0

v . These edges are precisely the edges that can potentially bein a
good swap to reduce the degree of a vertex inB. If such an edge(u,v) is added toT, thenT +(u,v) contains
a cycleC. Therefore, every bad vertex onC has a good swap using(u,v). Given such an edge(u,v), the
algorithm will mark each bad vertexw∈C as good and setwit(w) = (u,v) to track the edge that can be used
to reduce the degree ofw. There exists at least one bad vertex onC sinceu∈ F0

u , v∈ F0
v , F0

u 6= F0
v . The set

B will then change and a new forestF1 will representT \B with componentsF1
1 , . . . ,F1

p1
. This process of

finding edges between components in the forest is continuously repeated. Instead of recalculating eachF i+1,
the algorithm will join theF i components containing a vertex in the cycleC, the new good vertices inC, and
theF i components adjacent to these new good vertices inT into one component ofF i+1.

Eventually, there may be a good swap〈wit(w),(w,w̄)〉, where(w,w̄) is an edge ofT, for a vertexw of
degree∆. The algorithm will markw as good and apply swap〈wit(w),(w,w̄)〉 to reduce the degree ofw.
If a vertexv in wit(w) has degree at least∆− 1, thenv was marked good earlier and there is a good swap
〈wit(v),(v, v̄)〉 that the algorithm will apply, where(v, v̄) is an edge ofT, to reduce the degree ofv. The
algorithm will continuously check ifu∈wit(v) has degree at least∆−1, if so then apply a swap usingwit(u),
and check the degree for the vertices inwit(u), and repeat untilT is changed to a new spanning tree with
maximum vertex degree at most∆ but with w having degree∆−1 and no new vertices having degree∆. If
no vertexw of degree∆ is marked good and there is no edge ofG with endpoints in different components of
the forestF i , the algorithm will return the spanning tree.

Note that the series of swaps to reduce the degree ofw does not conflict with each other. Letwit(w) =
(u,v) andi be the iteration where the good swap〈wit(w),(w,w̄)〉 is identified by the algorithm.u andv are
in separate componentsF i

u andF i
v of forestF i . The edges adjacent tow are not inF i sincew is bad. If

13

2. PREVIOUS WORK

u has degree at least∆−1, then there is a good swap〈wit(u),(u, ū)〉 where edgeswit(u) and(u, ū) are in
F i

u. Clearly, swap〈wit(u),(u, ū)〉 will not affect swap〈wit(w),(w,w̄)〉 sincewit(w) and(w,w̄) are not inF i
u.

Similar forv. If bothu andv have degree less than∆−1, then no further swaps are necessary. The same logic
can be inductively applied tou andv. See Figure 2.4 for an example.

x y

B

T

u becomes good.
Note that a good swap〈(x,y),(u,x)〉 exists.

is contained insideF2
1 .

Note that swap〈(x,y),(u,x)〉
Iteration 2

yx

u

F1
4

F1
3

F1
6

F1
5

F1
2F1

1

Iteration 1

u
v

z

w

F2
4

F2
3

F2
2

F2
1

Figure 2.4: Example of how swaps dont interfere

Algorithm 2.1 outlines this algorithm formally.

Theorem 2.3. [10] Algorithm 2.1 outputs a spanning tree with maximum vertex degree at most∆∗ +1.

Proof. Let T be the spanning tree output by Algorithm 2.1. LetB⊆ S∆−1 be the bad vertices remaining at
the end of the algorithm. LetF = {T1, . . . ,Tp} be the components ofT after removing the vertices inB.

Since there arep components inF and|B| bad vertices, any spanning tree ofG requires at leastp+ |B|−1
edges. Note that by the termination conditions of the while loop, there is no edge between components ofF
in G. Therefore, any spanning tree ofG requires an edge connecting each component ofF to a vertex inB.
Each vertex inB has degree at least∆−1. In any spanning tree ofG, at most(|B|−1) edges can be used
to connect vertices ofB together. Each of these edges is counted twice in the degreesof the bad vertices.
Therefore,

p≥ |B|(∆−1)−2(|B|−1).

Therefore, any spanning tree ofG has at least

p+ |B|−1≥ |B|(∆−1)−2(|B|−1)+ |B|−1= |B|(∆−2)+1

edges. All of these edges are adjacent to vertices inB. Therefore, a vertex inB has degree at least
⌈

|B|(∆−2)+1
|B|

⌉

≥ ∆−1

14

2.3. APPROXIMATION ALGORITHM FOR BDMSTS

Algorithm 2.1 Computing a spanning tree with maximum vertex degree at most∆∗ +1

1: Given a connected graphG = (V,E).
2: Find a spanning treeT of G.
3: Let ∆ be the maximum degree of a vertex inT.
4: Mark all v∈ S∆−1 as bad.
5: Let F0 be the components ofT \S∆−1.
6: i = 0.
7: while ∃(u,v) ∈ E whereF i

u 6= F i
v do

8: Find all bad vertices in the cycleCuv in T +uvand mark them as good.
9: if ∃ good vertexw of degree∆ then

10: Reduce the degree ofw by swapping inwit(w) and iteratively performing all other necessary swaps,
and go to step 3.

11: end if
12: ObtainF i+1 from F i by joining theF i-components and good vertices along cycleCuv.
13: i = i +1.
14: end while
15: ReturnT.

in T. This is a lower bound for∆∗. Therefore,∆ ≤ ∆∗ +1.

Theorem 2.4. [10] Algorithm 2.1 will output a spanning tree in polynomialtime.

Proof. The sum of the degrees of the vertices ofT is 2n−2. Therefore the number of vertices of degree∆ is
O(n

∆). Let a phaseof the algorithm be the steps taken to remove a vertex fromS∆. There areO(n
∆) phases

required to remove all the vertices fromS∆. Therefore, there are

O

(

n

∑
k=2

n
k

)

= O(nlogn)

phases in total. Each phase can be implemented in nearly linear time using Tarjan’s fast disjoint set union-find
algorithm for maintaining connected components [6]. The algortihm runs inO(mnα(m,n) logn), which is
polynomial onn, whereα is the inverse Ackerman function.

2.3 Approximation algorithm for BDMSTs

In this section, an approximation algorithm for the BDMST problem will be presented. This section will
describe more key ideas that will be useful in later parts of this thesis. The algorithm presented here is a
simplification of an algorithm in [19].

The algorithm is constructive.F will denote the potential edges chosen by the algorithm for aspanning
tree ofG. The algorithm starts withF = /0. For each iteration of the algorithm, a set of edges that connects
components of(V,F) are chosen and added toF. In each iteration, the edges will be chosen in such a way
that each vertex will have their degree increase by at mostb, the cost of the edges added is at mostOPTb,
and at the same time the number of components of(V,F) will be reduced by a constant factor. AfterO(logn)
iterations, the graph(V,F) will be connected and will satisfy the approximation guarantees for the cost and
the maximum vertex degree.

The algorithm will use a well-known combinatorial structure on graphs.

15

2. PREVIOUS WORK

Definition 2.9. Given a graphG = (V,E) and a set of verticesT ⊆V, aT- join of G is a set of edgesM ⊆ E
such that the degree of every vertex ofT is odd and the degree of every other vertex ofV is even.

It is well known thatT-joins can be found efficiently [5].T-joins are useful because of the following
lemma.

Lemma 2.3. [19] Given any T-join J, J contains|T|/2 edge-disjoint paths. The endpoints of these paths
results in a pairing of the T vertices in J.

Proof. v∈ T is an odd vertex degree inJ. The sum of the vertex degrees must be even in the component ofJ
containingv. Therefore there must be some vertexw∈ T connected tov in J. Take the shortest pathP from
anyv∈ T to another vertexw∈ T. Remove the edges ofP from J to getJ′. Removev andw from T to get
T ′. v andw are paired off together.J′ is aT ′-join. By induction,J′ conatins|T ′|/2 edge-disjoint paths such
that the endpoints of these paths are precisely the verticesin T ′.

The algorithm will attempt to find aT-join in each iteration. For each componentC of (V,F), exactly one
vertex inC will be in T. By using aT-join, the algorithm will pair-off the components of(V,F) with a path
connecting each pair of components. From each path, the edges that connect different components of(V,F)
will be added toF .

During each iterationi, the algorithm will construct an auxiliary graphGi . Let C be the collection of
components of(V,F). Gi is essentially the same graph asG except that any edge ofG that has endpoints
in the same component ofC will have a cost of zero. For each componentC ∈ C , an arbitrary vertex inC
will be assigned toT. For the case where|C | is odd, a dummy vertexz is added toGi with zero cost edges
connectingzand the vertices representing components inC . zwill also be added toT. By addingz to T, this
will ensure that the size ofT is even, making theT-join possible. An example of the auxiliary graphGi is
shown in Figure 2.5.

cb

fed

a a

T

Edges of cost= 1
Edges of cost= 0

z

Gi

F

G

All edges have cost= 1.

C3C2C1

f

e

d

b c

Figure 2.5: Example of the auxiliary graphGi

Given the graphGi , the algorithm will find a degree boundedT-join J of minimum cost onGi , where
each vertex ofJ must have degree at mostb. The algorithm is outlined formally in Algorithm 2.2.

Similar to how theT vertices inJ can be paired off by edge-disjoint paths contained inJ, the following is
true for trees.

16

2.3. APPROXIMATION ALGORITHM FOR BDMSTS

Algorithm 2.2 Finding an approximate minimum cost spanning tree with bounded degree

GivenG = (V,E) onn vertices, costsc : E → Z
+, degree boundb.

F = /0, i = 1
while There are more thanO(b) components inF do

Let C = {C1, . . . ,Cp} be the set of connected components of(V,F).
Construct auxiliary graphGi = (Vi ,Ei) with costsc′ : Ei → Z

+ as follows.
Let Gi = G. Let T = /0.
for Eache= (u,v) ∈ E do

if u∈Cu, v∈Cv, Cu 6= Cv then
Setc′(e) = c(e).

else
Setc′(e) = 0.

end if
end for
for EachCj ∈ C do

Add an arbitrary vertex ofCj to T.
end for
if |C | is oddthen

Add z to Vi .
Add edgee= (v,z) to Ei with costc(e) = 0,∀v∈ T.
Add z to T.

end if
Find a degree boundedT-join J of minimum cost onGi .
FromJ, add the corresponding edges ofG to F .
i = i +1.

end while
Contract the components ofC and find an MSTM of the resulting graph.
F = F ∪M.
Output an MST ofF .

Claim 2.1. [19] Let Q be a tree, S⊆V(Q), |S| is even. There is a pairing of the vertices in S such that the
unique uv-paths between each pair(u,v) are edge-disjoint.

Proof. If |S| = 2, there is a unique path inQ with endpoints between the two vertices inS. If |S| > 2, rootQ
at an arbitrary vertexr. Let v be the vertex furthest fromr such that the subtreeR rooted atv contains at least
2 vertices fromS. Any path between two vertices fromS that is contained inRmust usev.

If v∈ SandRcontains exactly two verticesv andw from S, v andw can be paired off inRby a pathP. P
is completely contained inR. TakingQ and removing the subtreeR and the edge connectingR to the rest of
Q gives a new treeQ′ with special verticesS′ where|S′| = |S|−2. P is disjoint fromQ′.

If |S∩R| ≥ 3 or |S∩R| = 2 andv 6∈ S, then consider two verticesu,w ∈ S∩R paired off by a pathP.
TakingQ and removingP, except the vertexv, along with the subtrees rooted atu andw, gives a new treeQ′

with special verticesS′ where|S′| = |S|−2. P is edge-disjoint fromQ′.
Figure 2.6 shows some examples of how this induction on the size of the tree is done. By induction on the

number of special vertices,Q′ contains a pairing of the vertices inS′ such that the paths between each pair
are edge-disjoint.

17

2. PREVIOUS WORK

v

s2s1w

Q r

v∈ Sand|S∩R|= 2

Q′

|S∩R|= 3

u

r

w

r

v

v

S= {u,w,s1,s2}, P = {u,v,w}S= {v,w,s1,s2}, P = {w,v, p1}

p1

s2s1

Q′

Q

s2s1

r

s1 s2

Figure 2.6: Examples of how to pair off vertices in a tree.

The claim will help prove the following lemma.

Lemma 2.4. Let T be given by iteration i of Algorithm 2.2. There exists a T-join of Gi of cost at most OPTb
that has no vertex with degree more than b.

Proof. Assume that(V,F) has an even number of components. The odd case is similar. Consider a BDMST
Q of G. Let the vertices ofT be special vertices inQ. By Claim 2.1, there is a pairing of theT vertices using
paths inQ. Let J be the union of these paths. Since each path hasT vertices for endpoints and each vertex of
T is the endpoint of exactly one path,J is aT-join of Gi . The vertices ofQ have degree at mostb. Therefore
the vertices ofJ have degree at mostb. In Gi , edges either have the same cost as they have inG or they have
no cost. Therefore, since the total cost ofQ is OPTb, the total cost ofJ is at mostOPTb.

Now it is proven that finding aT-join in Algorithm 2.2 is possible for every iteration. Using this, one can
prove the efficiency of the algorithm.

Definition 2.10. Given a graphG= (V,E) and a vertex degree bound functionb : V → Z
+, ab-factor is a set

of edgesM ⊆ E such thatdegM(v) = bv, ∀v∈V.

Lemma 2.5. A degree bounded T-join of minimum cost can be found in polynomial time.

18

2.3. APPROXIMATION ALGORITHM FOR BDMSTS

Proof. Let G = (V,E) be a graph with edge costsc : E → Z
+ and vertex degree boundd. Let T ⊆V. The

T-join J is constructed usingb-factors. The bound functionb : V → Z
+ is set such thatbv is eitherd or d−1

wherev∈ T if and only if bv is odd. For each vertexv∈V, d/2 loops are added wherev is the endpoint. Set
the cost of each loop to zero. A minimum costb-factorM on G can be found in polynomial time [5]. LetJ
beM without any loops. The total cost ofJ is equal to the total cost ofM. Removing the loops maintains
the parity of each vertex degree. SinceM satisfies the degree constraints,J is a degree boundedT-join. If
there is anotherT-join K of lower cost, then loops of zero cost can be added to each vertex v of K until the
vertex degree ofv is equal tobv. This would give ab-factor will lower cost thanM, a contradiction. Thus,J
is a degree boundedT-join of minimum cost. SinceM is found in polynomial time,J is found in polynomial
time.

Lemma 2.6. [19] Algorithm 2.2 finishes in polynomial time after O(log n
b) iterations.

Proof. Note theT-join J found in each iteration of Algorithm 2.2, whereT contains a vertex from each
component ofC (and possiblyz). By Lemma 2.3, findingJ results in a pairing of the components ofC .
Each pair of components is connected by a path. From each path, the edges connecting components ofC are
added toF. After adding these edges,F will contain a path between each pair of components ofC . Thus, the
number of components in(V,F) will decrease by a constant factor during each iteration. Since the algorithm
starts withn components and stops to compute an MST when the number of connected components isO(b),
there areO(log n

b) iterations. By Lemma 2.5, theT-join J in each iteration of Algorithm 2.2 can be solved in
polynomial time. Thus, the algorithm runs in polynomial time.

Lemma 2.7. [19] The maximum degree of a vertex in the spanning tree output by Algorithm 2.2 is O(blog n
b).

Proof. In each iteration, edges are added toF only after finding theT-join J. The vertices ofJ have degree at
mostb. Only edges ofJ that connect components ofC are added toF . Thus, in each iteration, the degree of
the vertices in(V,F) increase by at mostb. By Lemma 2.6, Algorithm 2.2 finishes afterO(log n

b) iterations.
At the end of Algorithm 2.2, each vertex ofF has degree at mostO(blog n

b). The same holds for any spanning
tree ofF at the end of the algorithm.

Theorem 2.5. [19] Algorithm 2.2 outputs a spanning tree that has maximum vertex degree O(blog n
b), total

cost O(OPTb log n
b), and runs in polynomial time.

Proof. By Lemma 2.4, the total cost of the edges added toF during each iteration is at mostOPTb. By
Lemma 2.6, there areO(log n

b) iterations. At the second last step of the algorithm, the edges added toF
form an MST ofG/C , the graphG where each component ofC is contracted to a single vertex. The cost of
the edges from the MST added is at mostOPTb. Therefore, the cost ofF is O(OPTb log n

b). An MST of F
will not have more cost so the total cost of the spanning tree output by Algorithm 2.2 isO(OPTb log n

b). The
maximum degree is given by Lemma 2.7. The runtime is given by Lemma 2.6.

19

Chapter 3

MCSTs on Disjoint Sets

3.1 Algorithm

Let G = (V,E) be a graph,S = {S1, . . . ,Sk} be a family of subsets of vertices, andT∗ be an MCST. Let
∆∗ = ∆(T∗). This chapter will present an approximation algorithm for the MCST problem where the sets of
S are pairwise disjoint. This algorithm will use similar ideas from Algorithm 2.1. Instead of starting with
any arbitrary spanning tree as in Algorithm 2.1, the algortihm will focus on a special type of spanning tree.

Definition 3.1. Let G = (V,E) be a graph andS⊆V. Let G[S] = (S,E′) be the subgraph ofG with vertices
Sand edgesE′ which are the edges ofG with both endpoints inS. G[S] is the subgraph ofG inducedby S.

Definition 3.2. Let G be a connected graph. LetS = {S1, . . . ,Sk} be a family of pairwise disjoint sets of
vertices ofG. Let T be a spanning tree ofG. T is anS -spanning tree ofG if both T[Si] andG[Si] have the
same number of components for eachSi ∈ S .

T

S2 S2

This is not anS -spanning tree.This is anS -spanning tree.
T[S1] has only 1 component
just asG[S1] has 1 component.

T[S1] has 2 components.

S1 S1

Figure 3.1: Example of anS -spanning tree

S -spanning trees are easy to find by simply finding a maximal spanning forest on each vertex set inS
and then extending that to a spanning tree ofG. S -spanning trees are useful due to the following lemma.

Lemma 3.1. Let G be a connected graph. LetS = {S1, . . . ,Sk} be a family of pairwise disjoint vertex sets
of G. If T is a spanning tree of G, then there exists anS -spanning tree T′ where∆(T ′) ≤ ∆(T).

21

3. MCSTS ON DISJOINT SETS

Proof. Let T be a spanning tree ofG which is not anS -spanning tree. There is a setSi ∈ S whereG[Si]
has less components thanT[Si]. Therefore there is an edgee in G[Si] which can connect two components in
T[Si]. The graphT +e has a cycleC containinge. C has two edgesf andg crossingSi sincee is connecting
two components ofT[Si]. ThereforeT ′ = T +e− f is a spanning tree ofG where∆(T ′) ≤ ∆(T).

From the above lemma, we can conclude that focusing onS -spanning trees is sufficient. This is equiv-
alent to contracting each component ofG[Si], Si ∈ S into a single vertex. The next lemma will provide
the machinery to find a bound on the results of the algorithm. Using this lemma, an analogous result to
Lemma 2.1 about witness sets for pairwise-disjoint sets canbe derived. Given a spanning treeT = (V,F) of
G = (V,E) andS⊆V, let δT(S) = {e= uv∈ F : |{u,v}∩S|= 1}.

Lemma 3.2. Let G= (V,E) be a connected graph. LetS = {S1, . . . ,Sk} be a family of pairwise disjoint sets
of vertices of G. Let T be anS -spanning tree of G. LetA ⊆ S . Let F = {F1, . . . ,Fq} be the components
of T \

⋃

A∈A A (the tree T with any vertices in a set inA removed along with any adjacent edges). Let
R= {e∈ δT(A) : A∈ A }. If there is no edge(u,v) ∈ E such that u∈ Fi,v ∈ Fj , i 6= j, then every spanning
tree of G must have at least|R| edges crossing sets inA .

Proof. Let r = |R| andA = {Si1, . . . ,Siτ}. SinceT is a spanning tree, removingr edges fromT yields
r + 1 components. LetT ′ be a spanning tree ofG with r ′ < r edges crossing sets inA . Then removing
the edges crossing sets inA leavesr ′ + 1 < r + 1 components. Suppose thatT[Si1]∪ . . .∪T[Siτ] hasm≥ 0
components. SinceT is anS -spanning tree, thenT ′[Si1]∪ . . .∪T ′[Siτ] hasm′ ≥ m components. Thus the
components remaining inT ′ \

⋃

A∈A A areF ′ = {F ′
1, ...,F

′
q′} where

q′ = r ′ +1−m′ < r +1−m= q.

However, since there is no edge(u,v)∈E(G) such thatu∈Fi ,v∈Fj , i 6= j, G[V \
⋃

A∈A A] hasq components.

m= 2, q = 2, r = 3

S1

S2

S3

F2

S = {S1,S2,S3}

A = {S2}

F = {F1,F2}

T

F1

Figure 3.2: The number of edges required to cross sets ofA in a spanning tree ofG

Thereforeq′ ≥ q, contradicting our previous result.

22

3.1. ALGORITHM

From this lemma we get a lower bound for∆∗. The following corollary is the version of Lemma 2.1 about
witness sets for disjoint vertex sets instead of vertices.

Corollary 3.1. Let S be a collection of disjoint sets of vertices of a connected graph G. Let T be anS -
spanning tree of G. LetA ⊆S such that T\

⋃

A∈A A has components F= {F1, ...,Fq}. Let R= {e∈ δT(A) :
A∈ A }. If there is no edge(u,v) ∈ E(G) such that u∈ Fi ,v∈ Fj , i 6= j, then

∆∗ ≥

⌈

|R|
|A |

⌉

.

S1 S2

S = {S1,S2}

A = S

∆∗ = 3

⌈

|R|
|A |

⌉

= 3

F1 F4F3F2

T

Figure 3.3: Witness sets for disjoint vertex sets

The algorithm to be presented will start with anS -spanning treeT and perform edge swaps to reduce
the number of edges crossing a set, similar to Algorithm 2.1.

Let ∆ denote∆(T). Let Si = {S∈ S : degT(S) ≥ i}. Note thatSi ⊆ Si−1. This notation for MCSTs
is analogous to the use ofSi for vertices in MDSTs. Similar to Algorithm 2.1, the focus ofthe algorithm
presented in this chapter will be on reducing the size ofS∆.

The algorithm initializes with all the sets inS∆−1 as bad and any other set good. Any edge ofG crossing
a bad set is considered bad (i.e.e is bad ife∈ δ (Si) whereSi ∈S is bad). All other edges ofG are considered
good.

Just like swaps for MDSTs, an edge(u,v) will be added toT and a bad edge(w,z) from the unique cycle
of T +(u,v) will be removed. Consider the swap〈(u,v),(w,z)〉. Let w∈ Sw ∈ S , z 6∈ Sw, whereSw is a bad
set. This would make(w,z) a bad edge. The swap is good forSw if edge(u,v) is good. When applying the
good swap〈(u,v),(w,z)〉 for Sw, Sw becomes good and so do all edges inδ (Sw). If z∈ Sz ∈ S andSz is bad,
Sz becomes good as well as the edges inδ (Sz).

Applying a good swap〈(u,v),(w,z)〉 for Sw to T, wherew∈ Sw ∈ S andz 6∈ Sw (i.e. (w,z) crossesSw),
will reduce the degree ofSw in T. Before the swap,(u,v) is a good edge. Therefore either 1)(u,v) does not
cross any set or 2)(u,v) crosses only good sets. For the second case, either each goodset has degree at most
∆−2, or it has degree∆−1 but there is some other good swap that can reduce its degree.

Given anS -spanning treeT, let B = S∆−1 represent the initial bad sets andF0 represent the forest
when the vertices in bad sets are removed fromT along with any adjacent edges. LetF0

1 , . . . ,F0
p0

denote the
components ofF0. Any edge of the form(u,v) ∈ E, whereF0

u ,F0
v are the components ofF0 containingu

andv respectively andF0
u 6= F0

v , is a good edge that can potentially be in a good swap to reducethe degree
of a set inS∆−1. If such an edge(u,v) is added toT, thenT + (u,v) contains a cycleC. If a bad setSw

has a vertex onC, then there is an edge ofC crossingSw. Therefore, every bad set that has a vertex inC has
a good swap using(u,v). Given such an edge(u,v), the algorithm will mark each bad setSw containing a
vertex ofC as good and setwit(Sw) = (u,v) to track the edge that can be used to reduce the degree ofSw.

23

3. MCSTS ON DISJOINT SETS

There exists at least one bad set containing a vertex ofC sinceu∈ F0
u , v∈ F0

v , F0
u 6= F0

v . The setB will then
change and a new forestF1 will representT \ (∪S∈BS) with componentsF1

1 , . . . ,F1
p1

. This process of finding
edges between components in the forest is repeated. Insteadof recalculating eachF i+1, the algorithm will
join theF i components containing a vertex in the cycleC, the new good sets containing vertices inC, and the
F i components adjacent to the new good sets inT into one component ofF i+1. Figure 3.4 shows an example
of this process of findingF i .

F1
4S3

w

u v

x

F1
3

Swap〈(u,v),(w,x)〉 is identified.w∈ S1, x∈ S2.
CycleC = {u,v,x,w}.
Bad sets areB = {S1,S2,S3}. Choose edge(u,v).

Bad sets areB = {S3}.

S1
S2

T

F1
2

S1 S2 S3 F0
5

Swap〈(u,v),(w,x)〉 is contained insideF1
1 .

w

u v

x

F0
4F0

3F0
2F0

1 F1
1

Figure 3.4: How a swap is identified for disjoint sets

Eventually, similar to Algorithm 2.1, either a set of degree∆ is marked good or there are no edges
connecting different components of the forestF i . If a setSw ∈ S∆ is marked good, then there is a good swap
〈wit(Sw),(w,w̄)〉, where(w,w̄) ∈ δ (Sw) is an edge ofT, that the algorithm will apply to reduce the degree
of Sw. However, ifwit(Sw) crosses a setSv ∈ S∆−1, then further swaps are required to ensure no new sets
are added toS∆. Since the setSv would have to be good in order to have a good swap withwit(Sw), there
must be a good swap forSv that the algortihm has already identified. The algorithm will check if Sw has a
wit(Sw) value, and if so then apply a good swap usingwit(Sw) to reduce the degree ofSw. The algorithm will
then repeat the previous step on the sets containing the vertices ofwit(Sw). This process is repeated untilT is
changed to a newS -spanning tree with any set ofS having maximum degree at most∆ but withSw having
degree∆−1 and no new set ofS having degree∆. If no set ofS∆ is marked good and there is no edge of
G with endpoints in different components of the forestF i , the algorithm will return theS -spanning tree and
the remaining bad sets will be a witness set that gives a certificate of the quality of the solution.

Note that as with Algorithm 2.1, the series of swaps to reducethe degree ofSw does not conflict with each
other. Letwit(Sw) = (u,v) and i be the iteration where the good swap〈wit(Sw),(w,w̄)〉, (w,w̄) ∈ δ (Sw), is
identified by the algorithm.u andv are in separate componentsF i

u andF i
v of forestF i . The edges crossing

Sw are not inFi sinceSw is bad. Ifu is in a setSu of degree∆−1, then there is a good swap〈wit(Su),(u, ū)〉,
(u, ū) ∈ δ (Su), identified at iterationj < i. Note that edgeswit(Su) and(u, ū) are inF j+1

u and sincej +1≤ i,
F j+1

u ⊆ F i
u. wit(Sw) and (w,w̄) are not inF i

u since the swap〈wit(Sw),(w,w̄)〉 was identified at iterationi.
Therfore, swap〈wit(Su),(u, ū)〉 will not affect swap〈wit(Sw),(w,w̄)〉. Similarly, the same argument holds
for for v. Swaps foru andv do not interfere with each other sinceF i

u 6= F i
v. The same logic can be inductively

applied toSu with the subgraphF i
u andSv with the subgraphF i

v. Note thatSu 6= Sv sinceT is anS -spanning
tree. Refering back to Figure 3.4, note how the identified swap for F i is contained in a component ofF i+1.

Algorithm 3.1 outlines this algorithm formally.

24

3.2. ANALYSIS

Algorithm 3.1 Algorithm to find an MCST given disjoint sets of vertices

1: Given a connected graphG = (V,E).
2: Find anyS -spanning treeT of G.
3: Mark all sets inS∆−1 as bad and letF0 = T \ (

⋃

S∈S∆−1
S) with componentsF0

1 , . . . , F0
p0

.
4: i = 0.
5: while ∃(u,v) ∈ E whereF i

u 6= F i
v do

6: Find all bad sets which contain a vertex in the cycleCuv in T +(u,v) and mark them as good.
7: if ∃ good setSw ∈ S∆ then
8: Reduce the degree ofSw by swapping inwit(Sw) and iteratively performing all other necessary

swaps, and go to step 3.
9: end if

10: ObtainF i+1 from F i by joining theF i-components and good sets ofS along the cycleCuv.
11: i = i +1.
12: end while
13: Return treeT.

3.2 Analysis

Theorem 3.1. Algorithm 3.1 returns a tree where∆ ≤ 2∆∗ +2.

Proof. Let T be the tree computed by Algorithm 3.1. IfTα was the starting tree of the algorithm, note thatT
is anS -spanning tree since none of the edges inTα [Si],1≤ i ≤ p have been removed. LetB ⊆ S∆−1 be the
collection of bad sets that remain after the algorithm ends.Let F = F1, ...,Fp be the set of trees that remain
after removing all the vertices in the bad sets inB from T. The while loop of the algorithm ensures thatG
has no edges with endpoints in different trees ofF . The number of edges crossing the sets ofB is:

C≥ |B|(∆−1)−d

whered is the number of edges crossing two sets inB. Thusd ≤ (1/2)|B|(∆). Note that in the MDST case,
d ≤ |B|−1. Here a similar assumption is not possible since each induced subgraphT[Si] on a setSi ∈ S

may be disconnected. In general, the number of double counted edges is not bounded by|B|+ c for any
constantc.

T

S2

S1

are disconnected.

S = {S1,S2}

The subgraphsT[S1] andT[S2]

Figure 3.5: The induced subgraphs can be disconnected

Therefore,
C≥ (1/2)|B|∆−|B|.

We also know that all these edges are incident to vertices in the sets ofB. By Corollary 3.1, one of the sets

25

3. MCSTS ON DISJOINT SETS

in B has at least
⌈

C
|B|

⌉

≥

⌈

(1/2)|B|∆−|B|

|B|

⌉

≥
∆−2

2

edges crossing it in any spanning tree ofG. Therefore,

∆∗ ≥
∆−2

2

and so,
∆ ≤ 2∆∗ +2.

Theorem 3.2. Algorithm 3.1 runs in polynomial time.

Proof. Let n = |V(G)|. Since the sets ofS are pairwise disjoint, there are at mostn sets. Each set contains
at mostn vertices. Each vertex is adjacent to at mostn−1 vertices. Therefore for any spanning treeT of G,

∑
S∈S

degT(S) ≤ n ·n · (n−1)< n3.

The number of setsSwheredegT(S) = ∆ is O(n3

∆). Algorithm 3.1 reducesdegT(S) for a setSby one through
eachphase(steps 3-10). Each phase identifies a good edge connecting two components ofF i , finds the cycle
Cuv, the bad edgewz, and the bad setB. One phase can be done in polynomial time. The maximum degreeof
T is decreased by one inO(n3

∆) phases. The number of phases is

O

(

n

∑
k=2

n3

k

)

= O(n3 logn3) = O(n3 logn).

In summary,

Theorem 1. There exists a2∆∗+2-approximation algorithm that runs in polynomial time for approximating
MCSTs over a family of pairwise-disjoint subsets of vertices.

26

Chapter 4

MCSTs on Laminar Sets

4.1 Overview

Definition 4.1. Let S = {S1, . . . ,Sk}, Si ⊆ V,1≤ i ≤ k, be a family of subsets of vertices of a graphG =
(V,E). S is a laminar family ifSi ∩Sj 6= /0 implies thatSi ⊆ Sj or Sj ⊆ Si , 1≤ i, j ≤ k.

In this chapter, the focus will be on a special case of MCSTs where the sets inS form a laminar family.
Approximating the MCST of a graph will be done by approximating a related type of spanning tree.

Definition 4.2. Given a graphG, a family of subsets of verticesS , and a boundb on the degree of any set of
S , abounded crossing spanning tree(BCST) is a spanning treeT of G with the maximum degree of a set
in S being at mostb. As with BDMSTs, the degree bounds may be non-uniform, wherethe degree boundb
for every set is replaced by a degree bound functionb : S → Z

+ that assigns a degree bound for each set of
S .

The algorithm to be presented will find a (non-uniform) BCST for a laminar family of sets. Given a bound
bi on the number of edges crossing each setSi ∈ S , the algorithm will find a spanning treeT where each set
Si is crossedO(bi · logn) times, or indicate that there is no spanning tree which crosses each setSi at mostbi

times. This algorithm can be used to approximate an MCST. LetT∗ be an MCST ofG and∆∗ = ∆(T∗). Since
1≤ ∆∗ ≤ n−1, one can perform a binary search on the possible values of∆∗. Let b denote the possible value
of ∆∗ given by the binary search. The algorithm can attempt to find aspanning tree where the degree boundbi

for each setSi ∈S is set tob. If no such tree exists, the algorithm will fail to find a spanning tree and increase
b for binary search. If the algorithm outputs a spanning tree with every set ofS having degreeO(b · logn),
the algorithm will setb lower. Eventually, the binary search will identify the lowest possible value∆∗ might
be and the algorithm will give a spanning tree with every set of S having degreeO(∆∗ · logn).

The algorithm is constructive. It will start will a set of potential edgesF = /0 for the final spanning tree
T. In each iteration, a set of edges will be chosen to add toF. The edges will be chosen such that each set
Si ∈ S is crossed at mostbi times. If afterα iterationsF spans the graphG, then a spanning tree of these
potential edges will be a spanning tree ofG where each setSi is crossed at mostO(α ·bi) times.

In order to bound the value ofα, the algorithm will borrow ideas from Algorithm 2.2. The algorithm will
start with a set of potential edgesF = /0. Thus(V,F) is a graph containingn components. In each iteration,
the edges will be chosen such that when they are added toF , the number of components in(V,F) will reduce
by a constant factor. AfterO(logn) iterations, the number of components will be reduced to one,F will be a

27

4. MCSTS ON LAMINAR SETS

spanning subgraph ofG, andα = O(logn). Algorithm 2.2 usesT-joins to reduce the number of components.
However, findingT-joins that cross any set ofS a bounded number of times is a hard problem, which will
be proven in the next chapter. Instead another approach is taken using the following combinatorial structures.

Definition 4.3. Given a laminar family of subsets of verticesS = {S1, . . . ,Sp} and a bound functionb :
S → Z

+, a maximum cross- f ree-cut b-matchingis a set of edges (possibly choosen multiple times)M of
maximum cardinality such that each setSi ∈ S is crossed at mostbi times.

Note that if the cross-free-cutb-matching spans the graph and is connected, then a spanning tree of the
edges inM is a BCST for the bound functionb.

The concept ofmulticommodity f lowis also important. For the following definitions, letQ be a set of
elements calledcommodities. Consider a graphG= (V,E). For each elementq∈ Q, let there be a vertex pair
(sq,tq), sq,tq ∈V. Let c : E → Z

+ be a capacity function on the edges.

Problem 4.1. The maximum multicommodity f lowproblem is to route flow of each commodityq ∈ Q
between(sq,tq) such that the flow along each edgee∈ E is no more thanc(e) and the total flow of all the
commodities ofQ is maximized.

Definition 4.4. Given a maximum multicommodity flow problem on a graphG, amulticut is a set of edges
M such that for any commodityq∈ Q, there is nosq,tq-path inG\M.

The problem of maximum multicommodity flow can be restrictedas follows.

Problem 4.2. Given a specific(sq,tq)-path for eachq∈ Q, the f orced multicommodity f lowproblem is to
route flow of each commodityq along the specific(sq,tq)-path such that the flow along each edgee∈ E is no
more thanc(e) and the total flow of all the commodities ofQ is maximized.

Note that the forced multicommodity flow problem is essentially a path-packing problem. This problem
is essential for the algorithm presented in this chapter.

During each iteration, the algorithm will run a subroutine to choose the edges to add toF . The subroutine
will borrow ideas from [12] which will be outlined later in this chapter. The algorithm in [12] is for the
maximum multicommodity flow problem on trees and gives a 1/2-approximation. The paper also contains a
reduction from the problem of finding a maximum cross-free-cut b-matching to that of finding a maximum
integral multicommodity flow on trees. The subroutine will perform a similar reduction of choosing edges
to add toF to a forced integral multicommodity flow problem. This reduction will be done in multiple
steps. The subroutine will then find a constant factor approximation of the corresponding forced integral
multicommodity flow problem by extending the ideas of [12]. Using the solution to the corresponding forced
integral multicommidty flow problem, a set of edges will be chosen to add toF . The constant factor of the
approximation will give a constant-factor reduction of thecomponents of(V,F).

4.2 Background

4.2.1 RepresentingS

S is by our assumption a laminar family of subsets of vertices of the graphG = (V,E). Given any two sets
of S , either one is contained in the other or they are disjoint. This gives a natural hierarchy to the sets of
S where a set is considered “higher up” than any set contained in it. Often, hierarchal structures can be
represented by rooted trees.

As in [12], we can representS as a rooted treeA = (V ′,E′), called alaminar tree. The laminar treeA is
constructed as follows:

28

4.2. BACKGROUND

• For each setSi ∈ S , add a vertexi to V ′. Add a root vertexr to V ′.

• For each inclusion-wise maximal setSi ∈ S , add the edge(i, r) to E′.

• For every other setSi ∈ S , if Sj is the inclusion-wise minimal set containingSi , add the edge(i, j) to
E′ (later refered to aseSi .

• Construct the functiong : V →V ′ as follows. For each vertexv∈V, if Si is the inclusion-wise minimal
set containingv, let g(v) = i. If v is not contained in a set, then letg(v) = r.

Figure 4.1 gives an example of a laminar tree.

3 5

1 2 4

g(v1) = 1,g(v2) = 2,g(v3) = r,
g(v4) = 4,g(v5) = 4,g(v6) = 5

v1 v2
v3

v4

v6
v5

S = {S1,S2,S3,S4,S5}

S4 = {v4,v5},S5 = {v4,v5,v6}

G

S1 = {v1},S2 = {v2},S3 = {v1,v2},

A
r

Figure 4.1: GraphG with family S and the laminar treeA

Note that not only does the laminar tree maintain the hierarchal structure of the sets ofS , but the function
g encodes in which sets each vertex is contained. Ifg(v) = i,v∈V, i ∈V ′, then for each vertexj on the unique
ir -path inA, v∈ Sj ∈ S in G. Because of the functiong, intuitively one could view each vertexi of A not
just as the setSi ∈ S but as the “inside” ofSi and the subtree ofA rooted ati represents precisely everything
contained inSi .

4.2.2 Multicommodity flows and trees

In [12], Garg et al. reduce finding a maximum cross-free-cutb-matching on a graphG = (V,E) to finding a
maximum integral multicommodity flow on the corresponding laminar treeA = (V ′,E′). The reduction is as
follows.

Consider an edge(u,v) ∈ E. The edgee = (u,v) ∈ E will be represented by a commoditye with the
corresponding vertex pair{se,te} = {g(u),g(v)} in A. SinceA is a tree, thesete-path is unique.

Currently, each vertex ofA exceptr represents a set inS . There is also a functiong mapping each vertex
v of G to the vertex ofA representing the set containingv. If each vertexi of A is viewed as representing the
“inside” of the setSi ∈ S , it would be helpful if something represented the “border” of Si where edges cross
Si (i.e. δ (Si)).

In A, there is a uniqueir -path. For any vertexα where the uniqueαr-path inA contains the vertexi, Sα
is contained inSi in G. For any vertexβ where the uniqueir -path inA contains the vertexβ , Si is contained

29

4. MCSTS ON LAMINAR SETS

in Sβ in G. For any other vertexz in A, Si andSz are disjoint inG. Intuitively, if the vertexi represents the
“inside” of the setSi , the first edgeeSi = (i, j) on the path fromi to r represents the “border” ofSi.

To find an integral multicommodity flow onA, flow is pushed for each commodity between the corre-
sponding vertex pair. As each commodity represents an edge of G, each unit of flow pushed onA for a given
commodity will represent the corresponding edge inG being chosen once. Whenever an edgee = (u,v)
crosses a setSi in G, the correspondingg(u)g(v)-pathPe uses the “border” edgeeSi . Given a setSi , let bi

be the bound on the number of edges to crossSi in the cross-free-cutb-matching. Thus, for edgeeSi in A,
a capacity will be set wherec(eSi) = bi . This will ensure that for any given integral multicommodity flow
satisfying the capacity functionc, the corresponding cross-free-cutb-matching will not violate the boundbi

for setSi . See Reduction 4.1 for a formal outline of reducing an instance of finding a maximum cross-free-cut
b-matching to finding a maximum integral multicommodity flow.

Reduction 4.1Reducing finding a maximum cross-free-cutb-matching to finding a maximum integral mul-
ticommodity flow

Given graphG = (V,E); laminar familyS = {S1, . . . ,Sk}, Si ⊆V, 1≤ i ≤ k; functionb : S → Z
+;

Construct laminar treeA = (V ′,E′) and functiong.
Construct capacity functionc : E′ → Z

+ wherec(eSi) = b(Si).
for Eache= uv∈ E do

Let e be a commodity where(se,te) = (g(u),g(v)).
Let Pe be the uniquesete-path inA.

end for

v2
v1

e3

e5

e7

e1
e6e4

e2

G

v5

v6
v4

v3

S4 = {v4,v5},S5 = {v4,v5,v6}

S1 = {v1},S2 = {v2},S3 = {v1,v2},
S = {S1,S2,S3,S4,S5}

Pe5 = {2,3, r}, Pe6 = {r,5}, Pe7 = {5,4}
Pe3 = {1,3, r,5,4}, Pe4 = {2,3, r,5,4},
Pe1 = {1,3, r,5,4}, Pe2 = {4},

g(v6) = 5
g(v5) = 4
g(v4) = 4
g(v3) = r
g(v2) = 2
g(v1) = 1b(S1) = 4

b(S2) = 3
b(S3) = 9

b(S5) = 6
b(S4) = 2 3

6

2 4

3 5

r

2

c(e)

A

9

1

4

Figure 4.2: Example of graphG with family S and the corresponding multicommodity flow problem

Note that the reduction keeps track of the uniquesete-path inA for eache. SinceA is a tree, eachsete-
path is unique and keeping track of these paths is not necessary. However, the laminar tree will be extended
to a larger graph that is not a tree. It is there that the paths must be known and thus a forced integral
multicommodity flow must be used instead of a regular integral multicommodity flow. This will be explained
in further detail later in this chapter.

By finding a maximum integral multicommodity flow onA, one has a maximum cross-free-cutb-matching
onG. As stated earlier, if thatb-matching was connected and spanningG, one could take theb-matching and

30

4.2. BACKGROUND

find a bounded crossing spanning tree ofG. Although finding an integral multicommodity flow on trees is
NP-hard, Garg et al. [12] present a 1/2-approximation primal-dual algorithm for integral multicommodity
flows on trees.

Consider a multicommodity flow problem on a treeA = (V ′,E′) with edge capacitiesc : E′ → Z
+ andq

commodities with vertex pairs(si ,ti), 1≤ i ≤ q. Let Pi be the uniquesiti-path inA.
The linear program for the multicommodity flow problem onA is:

maximize
q

∑
i=1

fi

subject to ∑
i:e∈Pi

fi ≤ ce, e∈ E′,

fi ≥ 0, 1≤ i ≤ q.

The corresponding dual (the linear programming relaxationfor finding a minimum multicut) is:

minimize ∑
e∈E′

dece

subject to ∑
e∈Pi

de ≥ 1, 1≤ i ≤ q,

de ≥ 0, e∈ E′.

The corresponding complementary slackness conditions are:

1. fi > 0 ⇒ ∑
e∈Pi

de = 1.

2. de > 0 ⇒ ∑
i:e∈Pi

fi = ce.

Rather than enforce these complementary slackness conditions, the first one will be relaxed to:

fi > 0⇒ ∑
e∈Pi

de ≤ 2.

This relaxed first condition implies that for each commoditywhere there is flow, the path used to push flow
for that commodity will contain at most two edges in the multicut. Note that in order to find ab-matching, an
edge for theb-matching is chosen if in the multicommodity flow problem thecorresponding flow has a value
of at least one. The flow that the algorithm finds should be one such that if fi > 0, then fi ≥ 1. Maintaining
an integral flow is sufficient for satisfying this requirement.

Lemma 4.1. [12] If a multicommodity flow F and multicut M satisfy the relaxed complementary slackness
conditions, then the amount of flow in F is at least half the capacity of M.

Proof. Given thanF andM satisfy the relaxed complementary slackness conditions, let fi represent the flow
of F for commodityi andde = 1 if e is in M, de = 0 if e is not inM.

q

∑
i=1

fi ≥
1
2

q

∑
i=1

∑
e∈Pi

de fi by the relaxed first complementary slackness condition

≥
1
2 ∑

e∈E′

de · ∑
e∈Pi

fi

=
1
2 ∑

e∈E′

dece by the second complementary slackness condition

31

4. MCSTS ON LAMINAR SETS

Corollary 4.1. [12] Given a multicommodity flow F and a multicut M that satisfies the relaxed complemen-
tary slackness conditions, the flow F is at least half the value of the maximum integral multicommodity flow
(it fact, it is at least half the value of any multicommodity flow).

Proof.

amount of flow ofF ≥
1
2

capacity ofM

≥
1
2

capacity of minimum multicut

≥
1
2

maximum multicommodity flow

≥
1
2

maximum integral multicommodity flow.

The algorithm from [12] uses Corollary 4.1 by doing the following. Given the treeA = (V ′,E′), the
algorithm picks an arbitrary vertexr ∈V ′ and rootsA at r. If A is a laminar tree, thenA is already rooted. For
any other vertexv∈V ′, let level(v) denote the length of the uniquevr-path inA. Given verticesu,v∈V ′, let
the lowest common ancestor,lca(u,v), be the vertex on the uniqueuv-path with the lowest level. Note thatr
is the lowest level vertex inA.

The algorithm iterates through each vertex ofA from highest level to lowest level. For each vertexv∈V ′,
the algorithm will greedily attempt to push flow for any commodity i wherelca(si ,ti) = v without violating
any of the edge capacities. Note that by forcing the edge capacities to be integral, greedily pushing flow
will result in the flow being integral. Whenever the flow on theedge is equal to its capacity, the edge is
considered to besaturated. As each edge ofA is saturated, it is added to an ordered listD. If multiple edges
are saturated at the same time, they are added toD in arbitrary order. After the algorithm has iterated through
every vertex ofA, D will be a multicut. This is because the algorithm will it iterate through every commodity
and will push as much flow as possible. IfD was not a multicut, then some commodity can push more flow,
contracting the fact that flow was pushed greedily. The algorithm will go through the edges inD in reverse
order of their addition and remove any edge that is not neededin order forD to still be a multicut. This step
is calledreverse delete. It turns out thatreverse deleteis sufficient for making sure that the final flow and
the multicutD satisfy the relaxed complementary slackness conditions. Algorithm 4.2 outlines the algorithm
formally.

Given asiti-pathPi, lca(si ,ti) splitsPi into two pathsP1
i andP2

i .

Lemma 4.2. [12] After reverse delete in Algorithm 4.2, for any commodity i with positive flow and j= 1,2,
|P j

i ∩D| ≤ 1.

Proof. Without loss of generality, consider pathP1
i . Assume that|P1

i ∩D| ≥ 2. Let e,e′ ∈ P1
i ∩D. Let e be

the edge further away from the rootr. Let v = lca(si ,ti).
If e′ was saturated beforee was, thene was saturated while flow was being pushed for a commodityz.

Let u = lca(sz,tz). Sincee′ is saturated, thenlevel(u) < level(v). But then flow should have been pushed for
commodityzbefore commodityi, a contradiction.

If e′ was saturated the same timee was, for any commodityz with positive flow one, eithere′ also has
flow for z or flow was pushed forz beforee was saturated and another edge would have been added toD. e

32

4.2. BACKGROUND

Algorithm 4.2 Approximating the maximum integral multicommodity flow in trees

Given treeA = (V ′,E′), edge capacitiesc : E′ → Z
+, vertex pairs(si ,ti), 1≤ i ≤ q.

Set flow to 0, multicutD = /0.
for v∈V in nonincreasing order of leveldo

for Each(si ,ti) wherelca(si ,ti) = v do
Greedily push flow fromsi to ti while satisfying capacity constraints.

end for
Add every edge saturated toD in arbitrary order.

end for
Let e1, . . . ,el be the ordered list of edges inD.
for j = l to 1do

If D−{ej} is a multicut ofA, thenD = D\ {ej}.
end for

is not needed inD for the first case because ofe′. e is not needed inD for the second case because the other
edge inD would be looked at aftereby reverse delete, a contradiction.

Thus,e′ was saturated afterewas and was checked first by reverse delete. Sincee is still in D after reverse
delete, there is a commodityznot usinge′. Thus,u = lca(sz,tz) is somewhere betweene ande′.

e′

si sz

u

v

e

ti

r

e”

tz

Figure 4.3: Example of checking edges in reverse delete

Since commodityi has positive flow, when flow was pushed for commodityz, another edgee′′ was
saturated. Algorithm 4.2 looked atu beforev becauseu has a higher level thanv. Thus,e′′ is still in D when
reverse delete checkseand should have removede, a contradiction.

Corollary 4.2. After reverse delete in Algorithm 4.2, for any commodity i with positive flow|Pi ∩D| ≤ 2.

Thus, the integral multicommodity flow and multicut given byAlgorithm 4.2 satisfies the relaxed com-
plementary slackness conditions and therefore by Corollary 4.1 gives a 1/2-approximation for the maximum
integral multicommodity flow. However, when applying this algorithm to the problem given by Reduction
4.1, there is no guarantee that the resulting integral multicommodity flow will correspond to a cross-free-
cut b-matching that is connected. Algorithm 4.2 will be altered in the next section to force some form of
connectivity guarantee in the corresponding cross-free-cut b-matching.

33

4. MCSTS ON LAMINAR SETS

4.3 The Algorithm

4.3.1 Extending multicommodity flows on trees

Consider a maximum cross-free-cutb-matching problem with an additional constraint that theb-matching is
connected. Applying Reduction 4.1 will produce a maximum integral multicommodity flow problem where
the connectivity constraint is lost. The problem is that there is no simple way of identifying the components
of theb-matching from the laminar treeA.

The algorithm will start with a set of potential edgesF = /0 and try to reduce the number of components
of (V,F) by a constant factor in each iteration by adding edges toF. Assume thatF is a set of potential edges
chosen for a cross-free-cutb-matching. In order to track the number of components in the graph(V,F), the
laminar treeA will be extended to a new graph, denoted byBF . As edges are added toF after each iteration,
the graphBF will change as well.

Let C = {C1, . . . ,Cp} be the components of(V,F). In each iteration, the number of components can be
reduced by at least a factor of 1/2 if each component ofC is connected to another component by a new edge.
Only edges connecting different components of(V,F) in G will be considered. The integral multicommodity
flow problem to find these edges will be constructed as follows.

Initialize the construction of the graphBF = (V̄, Ē) and the forced integral multicommodity flow problem
with the laminar treeA and the maximum integral multicommodity flow problem given by Reduction 4.1.
Note that in each iteration, the integral multicommodity flow problem will only use commodities correspond-
ing to edges ofG that connect components of(V,F). For each vertexv in the original graphG, add the vertex
v and the edge(v,g(v)) to BF . This is equivalent to adding every vertex subset of size oneto S . Since these
“sets” are not part ofS , the capacity of each of these new edges will be set to∞.

For each componentCi ∈ C , add the verticesci ,c′i , c̄i to BF and the edge(ci ,c′i). Intuitively, the new flow
problem will have flow between components.ci will act as a starting vertex for flow leavingCi . c̄i will act
as an ending vertex for flow enteringCi . In theb-matching problem, there is the possibility of choosing too
many edges between a small number of components in(V,F) while other components have no adjacent edges
added toF . An example is in Figure 4.4. This will be prevented by fixing acapacity of 1 to the edge(ci ,c′i),
representing at most one unit of flow leaving componentCi . For each vertexv ∈ Ci , add edges(v,c′i) and
(v, c̄i) with capacity∞. Now BF contains the component structure of(V,F) in relation toS .

A forced integral multicommodity flow problem is being used since the graphBF is not a tree and thus
there may exist multiplesete-paths for any givene∈ E. The unique path used by each commoditye for
the regular integral multicommodity flow problem onA encoded which sets ofS are being crossed by the
edgee in G. Similarly, each commoditye in the forced integral multicommodity flow problem must use a
path inBF that still encodes which sets ofS are being crossed by the edgee in G. For each commoditye
given by Reduction 4.1, letPe = {v0, . . . ,vq} be the uniquesete-path inA, wheree= (u,v) in G, g(u) = v0,
g(v) = vq. In BF , there will be two commoditiese1 ande2. Let u∈ Cu ∈ C andv∈ Cv ∈ C . The paths for
each commodity will bePe1 = {cu,c′u,u,v0, . . . ,vq,v, c̄v} andPe2 = {cv,c′v,v,vq, . . . ,v0,u, c̄u}. Note that since
each edge of the form(ci ,c′i) has capacity one, two commodities instead of one are required for each edge of
G. If only one commodity was used per edge ofG, each edge ofG would have to be assigned to a specific
component of(V,F) but each component may use at most one edge ofG to connect to another component.
This could potentially decrease the value of the optimal solution.

The way to constructBF from A and the corresponding forced integral multicommodity flow problem is
given formally in Reduction 4.3. Figure 4.5 gives an exampleof the forced integral multicommodity flow
problem.

Note that there was a rooted vertexr in A. r is still a vertex inBF . Just asr played a crucial role

34

4.3. THE ALGORITHM

Each vertex is in its own set.
A clique containingα points.

S2
S1 Sα

...............

...
α vertices

Each vertex on the top level
is connected toα vertices.

Given this graphG, start with no edges chosen for theb-matching. There areα(α +1) components.
Set the boundbi = α +2 for every setSi , 1≤ i ≤ α, bα+1 = α2.
A spanning tree satisfying the bounds exists by finding a pathof lengthα on the clique,
and choosing all the edges crossingSα+1.
If all the edges in the clique insideSα+1 are chosen for theb-matching,
for eachSi, 1≤ i ≤ α, three of the edges that crossSi andSα+1 can be added to theb-matching.
The result isα(α −3)+1 components.

Sα+1

Figure 4.4: How ab-matching can have too many components

Reduction 4.3Constructing the forced integral multicommodity flow problem on the graphBF

Given graphG = (V,E); laminar familyS = {S1, . . . ,Sk}, Si ⊆V, 1≤ i ≤ k; functionb : S → Z
+; edges

F ⊆ E
Let C = {C1, . . . ,Cp} be the connected components of(V,F).
Let F̄ ⊆ E be the edges ofG that have endpoints in different components ofC .
Apply Reduction 4.1 to(V, F̄) to getA = (V ′,E′).
Let BF = (V̄, Ē) whereV̄ = V ′∪V, Ē = E′, edge capacities remain the same.
for Eachv∈V do

Add edgee= (v,g(v)) to Ē. Setc(e) = ∞.
end for
for Each componentCi ∈ C do

Add verticesci ,c′i , c̄i to V̄.
Add edgee= (ci ,c′i) to Ē. Setc(e) = 1.
for Each vertexv∈Ci do

Add edgese= (v,c′i),e
′ = (v, c̄i) to Ē. Setc(e),c(e′) = ∞.

end for
end for
for Eache= (u,v) ∈ F̄ do

ConsiderPe = {v0, . . . ,vq} given by Reduction 4.1 whereg(u) = v0, g(v) = vq.
Let e1,e2 be two commodities in the forced integral multicommodity flow problem.
Let u∈Cu, v∈Cv.
Let Pe1 = {cu,c′u,u,v0, . . . ,vq,v, c̄v}.
Let Pe2 = {cv,c′v,v,vq, . . . ,v0,u, c̄u}.

end for

35

4. MCSTS ON LAMINAR SETS

Pw2 = {c2,c′2,v5,4,5, r,3,1,v1, c̄1}

Px1 = {c1,c′1,v4,4,v5, c̄2}
Px2 = {c2,c′2,v5,4,v4, c̄1}
Py1 = {c2,c′2,v2,2,3, r,v3, c̄3}
Py2 = {c3,c′3,v3, r,3,2,v2, c̄2}
Pz1 = {c2,c′2,v5,4,5,v6, c̄3}
Pz2 = {c3,c′3,v6,5,4,v5, c̄2}

c′1

c1

c̄3

c′3

c3

c̄2

c′2
c̄1

c2

Pw1 = {c1,c′1,v1,1,3, r,5,4,v5, c̄2}

3

2

6

3

c(e)

4

1

9

4

2

v1
v5 v6v2

v3 v4

c(e) = 1

v4

v6
v5

G

v1

v2 v3

w

zx

y

F

C = {C1,C2,C3}

C1 = {v1,v4}

C2 = {v2,v5}

C3 = {v3,v6}

c(e) = ∞
BF

b(S1) = 4
b(S2) = 3
b(S3) = 9
b(S4) = 2
b(S5) = 6

S = {S1,S2,S3,S4,S5}

S1 = {v1},S2 = {v2},S3 = {v1,v2},
S4 = {v4,v5},S5 = {v4,v5,v6}

5

g(v1) = 1
g(v2) = 2
g(v3) = r
g(v4) = 4
g(v5) = 4
g(v6) = 5

r

Figure 4.5: GraphG, laminar familyS , edgesF ⊆ E, and the corresponding auxiliary graphBF

in Algorithm 4.2, r will play a crucial role in the algorithm for the forced integral multicommodity flow
problem. Here is a summary of the reductions. Instead of finding a BCST directly, the goal is to find
a connected maximum cross-free-cutb-matching onG. Reduction 4.1 takesG and produces a maximum
integral multicommodity flow problem on the laminar treeA. During each iteration of the final algorithm,
there will be a setF of potential edges already chosen. Each iteration will use Reduction 4.3, which uses
Reduction 4.1, to switch from finding the connected maximum cross-free-cutb-matching to a forced integral
multicommodity flow problem on a graphBF . The following subsections will show how edges are added to
F .

4.3.2 Subroutine for forced multicommodity flows

In this section, we will outline a subroutine to connect the components of(V,F). The main idea will be to find
edges ofG−F that are connecting components. Adding one of these edges toF would reduce the number of
components ofC by 1. In the subroutine, Reduction 4.3 will give an auxiliaryforced integral multicommodity
flow problem with an optimal solution corresponding to a set of edges ofG where each component ofC is
being connected to some other component. The subroutine will then find a 1/3-approximation to the forced

36

4.3. THE ALGORITHM

integralmulticommodity flow problem in a way similar to how Algorithm 4.2 works.
Similar to Algorithm 4.2, the subroutine will be a primal-dual algorithm on the linear program for the

forced multicommodity flow problem. The forced multicommodity flow problem requires that each commod-
ity has a unique path it can flow on. Thus, we can use a linear program similar to the one for multicommodity
flows on trees for the forced multicommodity flow problem onBF .

The forced multicommodity problem is onBF = (V̄, Ē) with edge capacitiesc : Ē → Z
+ andq commodi-

ties with vertex pairs(si ,ti), 1≤ i ≤ q. Let Pi be the assignedsiti-path inBF . Note thatq will decrease as
edges are added toF in each iteration.

The linear program for the forced multicommodity flow problem is:

maximize
q

∑
i=1

fi

subject to ∑
i:e∈Pi

fi ≤ ce, e∈ Ē,

fi ≥ 0, 1≤ i ≤ q.

The corresponding dual is:

minimize ∑
e∈Ē

dece

subject to∑
e∈Pi

de ≥ 1, 1≤ i ≤ q,

de ≥ 0, e∈ Ē.

The corresponding complementary slackness conditions are:

1. fi > 0 ⇒ ∑
e∈Pi

de = 1.

2. de > 0 ⇒ ∑
i:e∈Pi

fi = ce.

For the complementary slackness conditions, the subroutine will require a more relaxed first condition:

fi > 0⇒ ∑
e∈Pi

de ≤ 3.

A proof analogous to Lemma 4.1 and Corollary 4.1 shows that ifthe final algorithm outputs a flowF
and a set of edgesM that satisfies the relaxed complementary slackness conditions, then the flowF is at
least 1/3 the value of the maximum integral forced multicommodity flow. This proof is postponed to the
next subsection. Note that integral solutions to the dual ofthe forced multicommodity flow problem do not
correspond to mutlicuts. This is because they do not block every sete-path inBF . However, they do block
each givensete-pathPe.

For each vertexv∈ V̄, let the level ofv, level(v), be the distance fromv to the vertexr ∈ V̄. Let F̄ denote
the edges ofG with endpoints in different components of(V,F). Let P = {Pe : e∈ F̄} be the paths given by
Reduction 4.3. For each pathPe ∈ P, let the apex ofPe, apex(Pe), be the vertex of lowest level inPe. The
subroutine will greedily push flow on the path ofP with the apex with the highest level. Just like Algorithm
4.2, the edge capacities are integral. Thus, greedily pushing flow implies that the flow is integral. As each
edge ofBF becomes saturated, it will be added to an ordered listD. Note thatD is a feasible dual solution

37

4. MCSTS ON LAMINAR SETS

to the forced multicommodity flow problem. The algorithm attempts to push flow for every commodity and
either adds an edge on the corresponding path toD after pushing some flow or an edge of the path is already
in D because no more flow can be pushed on that edge. IfD is not feasible for the dual, then some commodity
can push more flow, contradicting the fact that flow was pushedgreedily. If multiple edges ofBF become
satruated at the same time, they are added toD in arbitrary order. As with Algorithm 4.2, a reverse delete
step will be performed onD such that the final flow andD will satisfy the relaxed complementary slackness
conditions.

The subroutine for connecting components of(V,F) is given in Algorithm 4.4.

Algorithm 4.4 Subroutine for adding edges toF

GivenG = (V,E); laminar familyS = {S1, . . . ,Sk}, Si ⊆V, 1≤ i ≤ k; functionb : S → Z
+; set of edges

F ⊆ E.
Apply Reduction 4.3 to get the forced multicommodity flow problem onBF = (V̄, Ē).
Let D = /0.
for v∈ V̄ in nonincreasing order of leveldo

for Pe ∈ P whereapex(Pe) = v do
Push flow alongPe while satisfying capacity constraints.

end for
Add every edge saturated toD in arbitrary order.

end for
Let e1, . . . ,eα be the ordered list of edges inD.
for j = α down to 1do

if D−{ej} is a feasible dual solution of the forced multicommodity flowproblem onG then
D = D\ {ej}.

end if
end for

4.3.3 Analysis of the subroutine

Consider a treeT. One can easily orient the edges ofT such that every vertex has out-degree of at most one.

Claim 4.1. Assume that G has a BCST T and a set of edges F have already been chosen. The forced integral
multicommodity flow problem on BF from Reduction 4.3 has a feasible flow of value|C |−1.

Proof. Consider the graphG/C obtained fromG by contracting each componentCi ∈ C to a single vertex
representingCi . The edges ofT in G/C form a spanning subgraph ofG/C . Let T ′ be a spanning tree of that
subgraph. One can orient the edges ofT ′ so that every vertex has out-degree at most one. Consider Reduction
4.3 on(V,F). Each arce of T ′ can be represented by a path on the auxiliary graphBF by either pathPe1 or
Pe2. If the tail of e is componentCt and the head ofe is componentCh, choose inBF the path where the
first edge is(ct ,c′t) and the last vertex is ¯ch. Choosing the proper paths inBF to represent the arcs ofT ′ is a
feasible forced integral multicommodity flow onBF . Thus, if |C | = p then there is a feasible forced integral
multicommodity flow ofp−1 onBF .

Note that each componentCi of C is represented by the edge(ci ,c′i) with a capacity of one inBF . This
means that if any feasible forced integral multicommodity flow in BF containsj paths, then the corresponding
edges ofG have endpoints in at leastj different components of(V,F). However, the paths may correspond

38

4.3. THE ALGORITHM

to cycles inG/C . In the worst case, the cycles could be of length 2 (i.e. the feasible flow contains one unit
of flow for a commodity representing an edge ofG from componentCα to componentCβ and vice versa).
Therefore, a feasible flow of valuej corresponds to edges ofG/C that reduce the number of components of
(V,F) by at leastj/2.

Lemma 4.3. A maximum forced integral multicommodity flow on BF corresponds to a set of edges of G that
when added to(V,F) will reduce the number of components by a factor of 1/2.

Proof. Combining the previous argument and Claim 4.1, finding a maximum forced integral multicommodity
flow onBF will ensure that adding the corresponding edges toF will reduce the number of components inC

by a factor of 1/2.

Lemma 4.4. Let D be given by the subroutine, Algortihm 4.4. D is a feasible integral solution to the dual of
the forced multicommodity flow problem.

Proof. ConsiderD in the subroutine just before the reverse delete step. The subroutine iterates through each
pathPei , e∈ E, 1≤ i ≤ 2, in nonincreasing order of the level of the apex of each path, and attempts to push
flow along that path. If no flow was pushed onPei , then there was a saturated edgez on the pathPei . zwould
have been added toD when it became saturated so there is an edge ofPei in D. If some flow was pushed on
Pei , then flow was pushed until an edgez became saturated. Thereforez would have be added toD. Thus,
each pathPei , e∈ E, 1≤ i ≤ 2 has an edge inD. ThereforeD a feasible integral solution to the dual of the
forced multicommodity flow problem before the reverse delete step.

During the reverse delete step, edges are removed fromD only if the result would still be a feasible dual
solution. Thus, the subroutine returns a feasible integralsolutionD to the dual of the forced multicommodity
flow problem.

Lemma 4.5. Consider the end of the subroutine after the reverse delete step. Let Pei , e∈ E, 1≤ i ≤ 2 be a
path with positive flow. Then|Pei ∩D| ≤ 3.

Proof. Only edges of finite capacity can be inD.
Note that the laminar treeA = (V ′,E′) is a subgraph ofBF (refer to Reduction 4.3). For eachPei , e∈ E,

1 ≤ i ≤ 2 where the flow is positive, considerPei ∩E′ (the part ofPei on the laminar tree subgraph). See
Figure 4.3.3 for an example.

Lemma 4.2 implies that|Pei ∩D| ≤ 2.
The only other edge onPei with finite capacity, besides the ones onE′, is the edge(Cj ,C′

j) with capacity
one at the begining ofPei . Thus|Pei ∩D| ≤ 3.

Thus, the forced integral multicommodity flow andD output by the subroutine satisfy the relaxed com-
plementary slackness conditions. In the worst case,D is an optimal solution to the dual of the forced multi-
commodity flow linear program. The result is the following corollary.

Corollary 4.3. The flow output by Algorithm 4.4 is at least 1/3 the size of a maximum forced multicommodity
flow in BF .

By taking the edges ofG that correspond to commodities with positive flow, then Lemma 4.3 and Corol-
lary 4.3 proves the following lemma about Algortihm 4.4.

Lemma 4.6. Given a graph G= (V,E) and a subgraph(V,F),F ⊆ E, of G, Algorithm 4.4 can find a set of
edges X⊆ E \F such that the edges of X cross each set Si ∈ S at most bi times and adding the edges X to
(V,F) will reduce the number of components by a factor of at most5/6.

39

4. MCSTS ON LAMINAR SETS

A = (V ′,E′)
laminar tree

r

c̄1

Pei

u

Pei ∩E′ = {(u,v),(v,w)}

v

w

c(e) = 1
structure
component

vertices ofG

c(e) = ∞

c(e) = ∞

c1

c′1

BF

c̄2

c2

c′2

Figure 4.6:Pei on the graphBF .

4.3.4 Final Algorithm

The final algorithm will use the subroutine to continuously add edges toF and reduce the number of com-
ponents of(V,F) until F is a spanning subgraph ofG. Given the 1/6-approximation of the subroutine, the

algorithm should finish after
⌈

logn
log(6/5)

⌉

times through the subroutine. If not, then the assumption that a BCST

exists is false for the given bound functionb. Algorithm 4.5 outlines the final algortihm.

4.3.5 Performance

Assuming a spanning tree exists which satifies the crossing restrictions, the subroutine finds at least 1/6 of
the remaining edges needed for a connected spanning subgraph of G. After running the subroutine log6/5n
times, the resulting graphF will be connected and spanningG. Each time through the subroutine, no set
Si ∈ S is crossed more thanbi times so the spanning tree ofF crosses each setSi no more than logn

log(6/5)
·bi

times.
Each conversion to the auxiliary graph can be done in polynomial time. During each time through the

subroutine, each flow is pushed only once so the subroutine isdone inO(|E|) = O(n2) time. Thus the
algorithm runs in polynomial time.

In summary,

Theorem 2. There is a deterministic O(logn)-approximation algorithm that runs in polynomial time for
approximating MCSTs and BCSTs where the family of subsets ofvertices is a laminar family.

40

4.3. THE ALGORITHM

Algorithm 4.5 Approximation algorithm to find BCST-L

Given: connected graphG = (V,E); laminar familyS = {S1, . . . ,Sk}, Si ⊆V, 1≤ i ≤ k; b : S → Z
+.

F := /0, count:= 0.
while F is not a spanning subgraph ofG do

Use the subroutine, Algorithm 4.4.
Add edges toF if the corresponding flow in the subroutine was positive.
count= count+1.
if (V,F) is connectedthen

Output spanning tree of(V,F).

else ifcount>
⌈

logn
log(6/5)

⌉

then
No BCST exists.

end if
end while

41

Chapter 5

Minimum Crossing Perfect Matchings

5.1 Overview

In analyzing the MCST problem for laminar sets, one possibleapproach to the problem is to look at a related
T-join problem. As shown with Algorithm 2.2, the BDMST problem can be approximated by connecting
components using structures related toT-joins. In a similar way, the MCST problem could be approximated.
Finding T-joins is considered an easy problem. However, findingT-joins that minimizes the maximum
number of times a set is crossed turns out to be a hard problem.A special case of theT-join problem is when
T is the entire vertex set of a graph and the graph itself has a perfect matching.

Definition 5.1. Given a graphG and a family of subsets of verticesS , aminimum crossing per f ect matching
(MCPM) is a perfect matchingM of G such that∆(M) is minimized.

This chapter will show that finding an MCPM is NP-hard.

5.2 Polyhedral viewpoint

One natural question is whether the linear programming relaxation for the MCPM integer program is integral.
Here the focus will be on the linear program for bipartite graphs.

The integer program for the MCPM problem on a bipartite graphG = (V,E) is:

minimize∆
subject to∑

u∈V
xuv = 1 ∀v∈V

− ∑
uv∈δ (S)

xuv+ ∆ ≥ 0 ∀S∈ S

xuv ∈ {0,1} ∀uv∈ E

∆ ≥ 0.

The constraintxuv ∈ {0,1} is relaxed tox≥ 0 in the linear programming relaxation. The dual of the linear

43

5. MINIMUM CROSSING PERFECT MATCHINGS

program is:

maximize ∑
v∈V

yv

subject toyu +yv− ∑
S∈S :uv∈δ (S)

zS ≤ 0 ∀uv∈ E

∑
S∈S

zS ≤ 1

zS ≥ 0 ∀S∈ S .

The complementary slackness conditions are:

1. xuv > 0 ⇒ yu +yv = ∑
S:uv∈δ (S)

zS

2. zS > 0 ⇒ ∑
uv∈δ (S)

xuv = ∆

Let M∗ be an MCPM for the graphG. Let ∆∗ = ∆(M∗). Consider the simple example in Figure 5.1.

∆(M∗) = 2

M∗

Figure 5.1: 6-cycle graph, 2 disjoint sets, integral solution to MCPM linear program

However, Figure 5.2 is a half-integral solution with a better value for∆ than Figure 5.1.

∆ = 1

Value ofxe next to eache.
1/2

1/2

1/2

1/2

1/2

1/2

Figure 5.2: 6-cycle graph, 2 disjoint sets, half-integral solution to MCPM linear program

In fact, just lettingG be an even length cycle andS consist of pairwise disjoint vertex sets can result in
solutions to the linear program relaxation where even the objective value is not integral.

The solution given in Figure 5.3 satisfies the complementaryslackness conditions and the objective value
is non-integral.

44

5.3. A HARD MATCHING PROBLEM

1/3

2/3

1/3
2/3

1/3

2/3

1/3

2/31/31 -2/3 4/3

-4/32-5/3

5/3

-4/3

4/3

-1
∆ = 4/3.

xe

yv

zS1 = 1/3, zS2 = 2/3.

2/3

S2S1

Figure 5.3: A non-integral objective value and dual solution for MCPM linear program

5.3 A hard matching problem

In this section, a reduction will be presented to show that finding an MCPM is NP-hard. In order to do so,
it must be possible to take any instance of an NP-complete problem and reduce it in polynomial time to an
instance of MCPM.

Definition 5.2. Given three pairwise dsjoint sets of elementsW, X, andY, where|W| = |X| = |Y|, and a set
of triplesT ⊆ W×X×Y, a three-dimensional matching(3DM) is a subset of triples inT such that each
element ofW∪X∪Y is contained in exactly one triple.

The problem of finding a 3DM of maximum cardinality is NP-complete [11]. The reduction will reduce
an instance of the problem of finding a 3DM of maximum cardinality to an instance of the MCPM problem.
The instance of the MCPM problem will be the special case where the graph is bipartite and the sets inS

are pairwise disjoint.
Consider an instance of the 3DM problem with the three setsW = {w1, . . . ,wq}, X = {x1, . . .,xq}, and

Y = {y1, . . . ,yq}, and triplesT ⊆ W × X ×Y. Without loss of generality, assume that each element of
W∪X∪Y is contained in at least one triple. Construct an auxiliary graphG = (V,E) as follows:

• For eachx j ∈ X, construct a vertexx j ∈V.

• For eachyk ∈Y, construct a vertexyk ∈V.

• For each triple(wi ,x j ,yk) ∈ T , construct the verticesai jk , āi jk ∈V and the edges(ai jk , āi jk), (ai jk ,x j),
(āi jk ,yk) ∈ E.

• For eachwi ∈W, construct the vertex setSwi = {ai jk , āi jk : (wi ,x j ,yk) ∈ T }.

See Figure 5.4 for more detail.
Let S = {Sw : w∈W}. Note thatx j ,yk 6∈ Sw, for all x j ∈ X, yk ∈Y, Sw ∈ S . ai jk andāi jk ∈ Swα if and

only if i = α. ThusS is a family of pairwise disjoint subsets ofV.
Consider the partition(A,B) of V whereA= {x j : ∀ j}∪{āi jk : ∀i, j,k} andB= {yk : ∀k}∪{ai jk : ∀i, j,k}.

There is no edge inG with both endpoints inA or both endpoints inB. ThusG is a bipartite graph.

45

5. MINIMUM CROSSING PERFECT MATCHINGS

ā112 a123 ā123

Sw1 Sw2 Sw3

a112 a231 ā231 ā312a312

x1 x2 x3 y1 y2 y3

W = {w1,w2,w3}, X = {x1,x2,x3}, Y = {y1,y2,y3},
T = {(w1,x1,y2),(w1,x2,y3),(w2,x3,y1),(w3,x1,y2)}

Figure 5.4: Example of the auxiliary graph for an instance ofthe 3-dimensional matching problem.

Note that each triple(wi ,x j ,yk) ∈ T corresponds to the vertices{ai jk , āi jk}.

Observation5.1. By the construction ofG, eachai jk ∈V is only adjacent to ¯ai jk andx j ∈V. Similarly, each
āi jk ∈V is only adjacent toai jk andyk ∈V. Thus, in any perfect matchingM of G, either(ai jk , āi jk) ∈ M or
both(x j ,ai jk) and(yk, āi jk) ∈ M.

Observation5.2. Eachai jk andāi jk ∈V is contained in the setSwi ∈S . By the construction ofG, eachx j ∈V
is only adjacent toai jk , ∀(wi ,x j ,yk) ∈ T . Similarly, eachyk ∈V is only adjacent to ¯ai jk , ∀(wi ,x j ,yk) ∈ T .
Thus, every edge adjacent to anx j or yk vertex crosses a setSwi ∈ S . Thus, given a perfect matchingM of
G, ∆(M) > 0,

Lemma 5.1. Given a set Swi ∈ S and a perfect matching M of G,|M∩δ (Swi)| is even.

Proof. Swi = {ai jk , āi jk : (wi ,x j ,yk) ∈ T }. By the construction ofG, the edges crossingSwi areδ (Swi) =
{(x j ,ai jk),(yk, āi jk) : (wi ,x j ,yk) ∈ T }. From Observation 5.1,(x j ,ai jk) ∈ M if and only if (yk, āi jk) ∈ M.
Thus, the edges inM∩δ (Swi) can be paired off.

Corollary 5.1. Given a perfect matching M of G,∆(M) ≥ 2.

Proof. By Observation 5.2 and Lemma 5.1.

Observation5.3. |W| = |X| = |Y| = q. Let M be a perfect matching ofG. By Observation 5.2, the edges
adjacent to eachx j ∈ X andyk ∈ Y must cross a set ofS . Therefore, there must be at least 2q edges inM
that cross the sets inS . Since there areq sets, if∆(M) = 2, then each set inS has 2 edges crossing it.

The following will show that there is an MCPMM of G, where∆(M) = 2, if and only if there is a 3DM
T ⊆ T . This will be done by showing that the triple(wi ,x j ,yk) ∈ T if and only if the edge(ai jk , āi jk) 6∈ M.

Theorem 5.1. Given a bipartite graph G= (V,E) and a familyS of pairwise-disjoint subsets of V , finding
an MCPM is NP-hard.

46

5.3. A HARD MATCHING PROBLEM

Proof. Consider an instance of the 3DM problem and its auxiliary graphG. Let T ⊆ T be a 3DM. Construct
a matchingM of G as follows. Consider each triple(wi ,x j ,yk) ∈ T . If (wi ,x j ,yk) 6∈ T, let (ai jk , āi jk) ∈ M.
If (wi ,x j ,yk) ∈ T, let (x j ,ai jk) and(āi jk ,yk) ∈ M. Since each element ofX is in exactly one triple inT, for
eachx j ∈ V, only one edge inM hasx j as an endpoint. The same holds for eachyk ∈V. Note that vertices
ai jk , āi jk ∈V correspond to the triple(wi ,x j ,yk) ∈ T . Thus, eachai jk ∈V is the endpoint of only one edge in
M. The same holds for each ¯ai jk ∈V. Thus,M is a matching. Note that everyx j andyk ∈V is the endpoint
of some edge inM or elseT is not a 3DM. Also note that everyai jk andāi jk ∈ V is the endpoint of some
edge inM or else triple(wi ,x j ,yk) 6∈ T . Thus,M is a perfect matching. Each setSwi ∈ S corresponds to an
elementwi ∈W. By the construction ofM, 2 edges ofδ (Swi) are added toM whenever there is a triple inT
containingwi . SinceT is a 3DM,|M∩δ (Swi)| = 2, ∀Swi ∈ S . Thus,∆(M) = 2. By Corollary 5.1,M is an
MCPM.

Conversely, consider an MCPMM of G where∆(M) = 2. By Observation 5.3, each setSwi ∈ S has
exactly two edges crossing it. By Observation 5.1, the edge(x j ,ai jk)∈ δ (Swi) is in M if and only if (āi jk ,yk)∈
δ (Swi) is in M. Since∆(M) = 2, there is exactly one edge(ai jk , āi jk), with both endpoints inSwi , that is not
in M, ∀Swi ∈ S . When (x j ,ai jk), (āi jk) ∈ δ (Swi) and (ai jk , āi jk) 6∈ M, the corresponding triple inT is
(wi ,x j ,yk). Choose these corresponding triples to formT ⊆T . Note that these triples account for every edge
in M which crosses a setSwi ∈ S . Eachwi ∈W occurs inT exactly once since there is exaclty one edge not
in M with both endpoints inSwi ∈ S . Eachx j ∈ X occurs inT exactly once sinceM is a matching and every
edge withx j as an endpoint crosses some setSwi ∈ S . Similarly, the same holds for eachyk ∈Y. Thus,T is
a 3DM.

ā112 a123 ā123

Sw1 Sw2 Sw3

a112 a231 ā231 ā312a312

x1 x2 x3 y1 y2 y3

T = {(w1,x2,y3),(w2,x3,y1),(w3,x1,y2)}

M

W = {w1,w2,w3}, X = {x1,x2,x3}, Y = {y1,y2,y3},
T = {(w1,x1,y2),(w1,x2,y3),(w2,x3,y1),(w3,x1,y2)}

Figure 5.5: An example of a 3DM and the corresponding MCPM

Note that the proof of Theorem 5.1 was based on finding a minimum crossing perfect matchingM of G
where∆(M) = 2. By Lemma 5.1, any approximation algorithm for the MCPM problem which finds a perfect
matching ofG will find a perfect matchingM with ∆(M) even. The next largest even number after 2 is 4.
This results in the following corollaries about the hardness of approximating this problem.

47

5. MINIMUM CROSSING PERFECT MATCHINGS

Corollary 5.2. There is no polynomial time(2−ε)-approximation algorithm to the minimum crossing perfect
matching problem which finds a perfect matching, unless P = NP.

Corollary 5.3. There is no polynomial time +1-approximation algorithm to the minimum crossing perfect
matching problem which finds a perfect matching, unless P = NP.

One can also consider the bounded crossing perfect matchingproblem, where the number of edges cross-
ing each set is bounded. The proof of the theorem shows that even setting the bound to 2 is still NP-hard.
Another problem to consider is the minimum crossingT-join problem.

Theorem 5.2. The minimum crossing T-join problem is NP-hard.

Proof. If G has a perfect matching, by settingT = V we get that theT-join problem is NP-hard as well.

In summary,

Theorem 3. Finding an MCPM of a graph is NP-hard, even if the graph is bipartite and the family of subsets
of vertices is pairwise-disjoint.

48

Chapter 6

Open Problems and Further Research

The problem of approximating a general MCST to within a logn factor is a wide-open problem. Currently,
there is no proof of whether such an approximation is possible or not in polynomial time.

The approximation for the special case of finding MCSTs when the family of subsets of vertices is
pairwise-disjoint could possibly be reduced to an additiveconstant. One possible way of achieving this
is to extend the methods used by Goemans for BDMSTs [13].

The algorithm for MCSTs on a laminar family of subsets of vertices is dependent on an approximation
algorithm for multicommodity flows on trees. The algorithm requires logn iterations in order to construct the
spanning tree. An open problem is finding some way of buildingthe spanning tree in a constant number of
iterations. This would eliminate the logn factor in the approximation guarantee. Of special interestis how
approximation algorithms for weighted multicommodity flows on trees [4] could be applied to MCSTs and
other related problems.

The algorithm for MCSTs on a laminar family of subsets of vertices could possibly be extended further to
finding aO(f (i)· logn)-approximation for the case where the family of subsets of vertices could be partitioned
into i laminar families.

This thesis has displayed how ideas for some problems can be applied to approximating MCSTs. Recent
ideas like push-relabel [3] and matroid and polyhedral theory [13] being applied to MDMSTs may also be
applicable to MCSTs. Even improving special cases of MCSTs such as the pairwise-disjoint sets case may
be possible.

A natural extension where little is known is when a cost function is added to the edges. As some algo-
rithms for MDSTs generalize to MDMSTs and BDMSTs, algorithms for MCSTs may extend to approximate
minimum crossing minimum spanning trees and bounded crossing minimum spanning trees. Goemans work
[13] may apply to the cost version of finding MCSTs where the family of subsets of vertices is pairwise-
disjoint. Weighted multicommodity flows on trees [4] may apply to the cost version of finding MCSTs where
the family of subsets of vertices is laminar.

Minimum crossing perfect matchings is not a problem that hasbeen considered in detail. Future research
could look at proofs on approximation hardness or finding anypolynomial time approximation algorithms,
even for the special case where the graph is bipartite and thefamily of subsets of vertices consists of pairwise-
disjoint sets. Since perfect matchings are generally difficult to alter, focus on the case of the graph being
complete seems be a logical starting point.

49

Bibliography

[1] V. Bilò and M. Flammini. On the IP routing tables minimization with addresses reassignments. In
Proceedings, 18th International Parallel and DistributedProcessing Symposium, 2004.

[2] V. Bilò, V. Goyal, R. Ravi, and M. Singh. On the crossing spanning tree problem. InProceedings,
International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages
51–60, 2004.

[3] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. A push-relabel algorithm for approximating de-
gree bounded MSTs. InProceedings, 33rd International Colloquium on Automata, Languages and
Programming, Part I, Lecture Notes in Computer Science, pages 191–201. Springer, 2006.

[4] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand flow in a tree. InProceedings,
30th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer
Science, pages 410–425. Springer, 2003.

[5] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Optimization.
John Wiley & Sons Inc., New York, 1998.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge,
1989.

[7] T. Fischer. Optimizing the degree of minimum weight sapnning trees. Technical Report TR 93-1338,
Dept. of Computer Science, Cornell University, Ithaca, NY 14853, 1993.

[8] M. Fürer and B. Raghavachari. An NC approximation algorithm for the minimum degree spanning
tree problem. InProceedings of the 28th Annual Allerton Conference on Communication, Control and
Computing, pages 274–281, 1990.

[9] M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree to within one from
the optimal degree. InProceedings, Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 317–324, New York, 1992. ACM.

[10] M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one of opti-
mal. Journal of Algorithms, 17(3):409–423, November 1994.

[11] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York, 1979.

[12] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dualapproximation algorithms for integral flow
and multicut in trees.Algorithmica, 18:3–20, 1997.

51

BIBLIOGRAPHY

[13] M. Goemans. Bounded degree minimum spanning trees. In47th Annual IEEE Symposium on Founda-
tions of Computer Science, Berkeley, 2006.

[14] A. V. Goldberg. A new max-flow algorithm. Technical Report MIT/LCS/TM-291, Massachussets
Institute of Technology, 1985.

[15] D. Greenberg and S. Istrail. Physical mapping by STS hybridization: Algorithmic strategies and the
challenge of software evaluation.Journal of Computational Biology, 2(2):219–273, 1995.

[16] J. Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree-bounded
minimum spanning trees.SIAM J. Comput., 31(6):1783–1793, 2002.

[17] J. Könemann and R. Ravi. Primal-dual meets local search: Approximating MSTs with nonuniform
degree bounds.SIAM J. Comput., 34(3):763–773, 2005.

[18] R. Krishnan and B. Raghavachari. The directed minimum-degree spanning tree problem. InProceed-
ings, Foundations of Software Technology and Theoretical Computer Science, volume 2245 ofLecture
Notes in Computer Science, pages 232–243. Springer, 2001.

[19] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, andH. B. Hunt. Many birds with one stone:
Multi-objective approximation algorithms. InProceedings, ACM Symposium on Theory of Computing,
pages 438–447, 1993.

52

