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Abstract

This thesis will address several problems in discrete dpéition. These problems are considered hard
to solve. However, good approximation algorithms for thpegblems may be helpful in approximating
problems in computational biology and computer science.

Given an undirected grap@ = (V,E) and a family of subsets of vertice®, the minimum crossing
spanning tree is a spanning tree where the maximum numbelgesecrossing any single set.if is mini-
mized, where an edge crosses a set if it has exactly one amdpaohe set. The physical mapping problem
in computational biology and the interval routing problantomputer science can both be reduced to find-
ing minimum crossing spanning trees. This thesis will pnesgo algorithms for special cases of minimum
crossing spanning trees.

The first algorithm is for the case where the setsstfare pairwise disjoint. It gives a spanning tree
with the maximum crossing of a set being@QPT + 2, whereOPT is the maximum crossing for a minimum
crossing spanning tree. This algorithm is an extension afgmoximation algorithm for the minimum degree
spanning tree due to Furer and Raghavachari (Journal afritthgns, 1994).

The second algorithm is for the case where the set® é6rm a laminar family. Lebs € Z* be a bound
foreachSe .¥. If there exists a spanning tree where eaclBset” is crossed at mosi times, the algorithm
finds a spanning tree where each Sas crossedO(bs-logn) times. From this algorithm, one can get a
spanning tree with maximum crossi@JOPT -logn). This algorithm combines ideas from an approximation
algorithm for multicommodity flows on trees due to Garg, Vari, and Yannakakis (Algorithmica, 1997)
and from an approximation algorithm for minimum degree mimim spanning trees due to Ravi, Marathe,
Ravi, Rosenkrantz, and Hunt (Proceedings, ACM Symposiuifir@ory of Computing, 1993).

The best known approximation algorithm for minimum crogsépanning trees is due to Bilo, Goyal,
Ravi, and Singh (Proceedings, International Workshop opréximation Algorithms for Combinatorial Op-
timization Problems, 2004). Their algorithm gives a spagriree with maximum crossinQ(OPT - logn+
log|-|). The first algorithm of this thesis has a better approxinmatiben the sets of” are pairwise dis-
joint. The second algorithm of this thesis has an equivaeproximation (within a constant factor) when
the sets of form a laminar family. However, their algorithm is probadtilc while the second algorithm of
this thesis is deterministic.

Given an undirected gragh = (V,E), and a family of subsets of verticeg, the minimum crossing per-
fect matching is a perfect matching where the maximum numibeiges crossing any setirf is minimized.

A proof will be presented showing that finding a minimum cimoggerfect matching is NP-hard, even for
the special case where the graph is bipartite and the setsarke pairwise disjoint.
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Chapter 1

Introduction

In the real world, there are problems involving finite, cabié objects that involve minimizing or maximiz-
ing something such as cost, the number of objects used, Beante set, etc., given some constraints on
how these objects interact. Discrete optimization is am afemathematics that deals with many of these
problems. This is an area with a rich history of solving sorh#hese problems exactly and in an acceptable
timeframe. However, there are many problems in discretienigztion that are considered difficult to solve,
either exactly or in a reasonable timeframe. One directiathematicians have taken for these problems is to
find approximation algorithmsThese algorithms give solutions within a specific timefeaand are proven
to be within some value of the optimal solution. Given a peof] an algorithm gives aa-ap proximation
for that problem if for any instance of the problem, it givesodution whose value is within a factor af of
the optimal solution for the instance.

The problems that are considered difficult are divided up @oim plexity classelsased on the difficultly
of solving or even approximating the problem. The class obfams that can be solved exactly in a reason-
able timeframe is known as P. These problems can be solved bigarithm that runs in polynomial time.
The main complexity class discussed in this thesis is NPs&lage problems where given a solution to a
problem, one can verify if the solution is optimal in polyniaitime. P is contained in NP but it is not known
if P=NP or not. In general, mathematicians believe thaNP.

The problems discussed in this thesis are at least as hartygsga@blem in NP. The thesis will present
approximation algorithms for these problems.

1.1 Solving real world problems using discrete optimizatia

The summary of the following two real world problems comesii{2].

In computational biology, one of the things the human genprogct is attempting to do is to reconstruct
the relative position of DNA fragments along the genomeegiinformation on their pairwise overlap. This
problem is known as thphysical mapping problentor an instance of this problem, there exists a collection
of clones and a set of genomic inserts called probes. Eatieplefines a single location where a given subset
of clones coincide. Given a probe/clone pair, using bialabiechniques one can determine whether the clone
contains the probe as a subsequence. The result of conatemailtiple clones from different parts of the
genome and producing a clone that is no longer a simple sndpstf the chromosome is called chimerism.
The new clone is chimeric. The problem is to construct theeotbat the probes would occur along the
original chromosome that is consistent with the given prolo@e incidence matrix. The construction can be
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1. INTRODUCTION

done easily if there is no chimerism. The following is a manerfal definition of the problem: Given a probe-
clone incidence matriR, where the rows are indexed by probes and the columns bys;ldreeentryg;; = 1 if

and only if probe occurs in clong, otherwises;; = 0. Given that there is no chimerism, the problem reduces
to finding a permutation of rows such that in each column, thesaare consecutive. This new problem is
known as 1-C1P and can be solved in polynomial time. If therehimerism and each chimeric clone is a
concatenation of at mokitclones, the problem reduces to finding a permutation of raghk that there are at
mostk blocks of consecutive ones in each column. This new probéekndown as k-C1P. More information
on the physical mapping problem can be found in [15].

In network design, given a set of IP routing tables sharireggdhme host space, one may attempt to
reassign the IP addresses to the hosts such that the maxizeiof any IP routing table is minimized. This
is known as thenterval routing problem The following is a more formal definition of the problem: Let
R={r1,....rn} be asetohroutersand = {hy,...,hn} be a set ofndestination hosts. Each routgre R
has outdegreg; and a routing table specifying the outedges to use for eash fibe problem is to choose
the IP addresses of timehosts and construct tmelP routing tables such that the maximum number of entries
used in a table is minimized. It is known thapaapproximation algorithm for the k-C1P problem implies a
2p -logm-approximation algorithm for the interval routing probleiore information on the problem can
be found in [1].

1.1.1 Solving the k-C1P problem

The k-C1P problem can be solved by reducing it to anothenopdtion problem. Consider a complete graph
G = (V,E), with anm-dimensional cost functioa: E — {0,1}™. Given a touD of G, let them-dimensional
vectorc(D) = ¥ ecg(p) C(€). Thevector travelling salesma(vTSP) problem is to minimizé¢c(D) ||« over

all toursD of G.

The k-C1P problem can be reduced to the vTSP problem as fallbetA be thex x y matrix from the
k-C1P problem. For each row & there is a vertex ifs. For each edgg, j) in G, letc(e) be the XOR-vector
a; XOR g = {a1 XOR 83, ..., ay XOR gy}. Let rbe the permutation induced by a solutibrior the vTSP
problem. LetA™ be the matrix that results by applyimgo the rows ofA. Letb(A™) be the maximum number
of blocks of consecutive ones AT". Thereforep(A™) = w

Given a spanning tre€ of G, let them-dimensional vectoc(T) = ¥ ecg(t) C(€). Thevector minimum
spanning tregvMST) problem is to minimize|c(T)||. over all spanning tree of G. Since Hamming
distance obeys the triangle inequality, using Euler Towrtslutting techniques, arZapproximation for the
VTSP problem can be derived from atapproximation to the vMST problem. After reducing the kFC1
problem on a matriXA to the vTSP problem on a complete grapk- (V, E), the vMST problem o1& can be
formulated as a minimum crossing spanning tree problei@.on

LetG = (V,E) be an undirected graph ard be a family of subsets of vertices. An edgesses & . if
it contains exactly one endpoint $ Theminimum crossing spanning tréea spanning tree that minimizes
the maximum number of edges crossing any single séfin

LetV; ={vi € V|ajj = 0}. Let. = {V4,...,\y}. Each columnj of A can be viewed as a subset of the
vertices ofG. Since the cost of an edgg j) is justa; XOR g, thel™ coordinate of(i, j) corresponds to the
setVi andis 1ifand onlyifi, j) € V. Since for any spanning tréig c(T) = Y ecg(1) C(€), theit" coordinate of
c(T) is the number of edges @fcrossingvi. Thus, the minimum crossing spanning tree minimizEd ) ||o.
Given anr-approximation algorithm for the problem of finding a minimwrossing spanning tree, there is
anr-approximation algorithm for the vMST problem.
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1.2. ANATURAL PROBLEM IN OPTIMIZATION

1.2 A natural problem in optimization

Aside from having real world applications, the problem ofifig minimum crossing spanning trees it is a
generalization of a well-known open problem in graph thesorgt discrete optimization. Given an undirected
graphG = (V,E), one may want to know whether there is a patlGithat uses every vertex M exactly
once. Such a path is known as a Hamiltonian path. Determihi@chas a Hamiltonian path is in a class of
problems called NP-complete.

The set of NP-complete problems is a subset of the probled®ir-or any given problem in NP, there
exists a polynomial-time computable reduction that cotsverstances of the problem into an equivalent
instance of a problem that is NP-complete. Thus, given ayNW-complete problems, they are equivalent
in the sense that there exist polynomial-time computaldectons that convert instances of one problem
into equivalent instances of the other and vice versa. Hewsince any NP-complete problem is essentially
as hard as any problem in NP, there is no known means of sairipdNP-complete problem in polynomial
time. There are also problems that fall under the categorm@®dard. For an NP-hard problem, there
exists a polynomial-time computable reduction that cotsvany instance of an NP-complete problem into
an equivalent instance of the NP-hard problem. NP-hardlpnabare essentially problems that are at least
as difficult as any problem in NP, so there is no known meansleirgy any NP-hard problem in polynomial
time.

There is a reduction from the Hamiltonian path problem torttieimum degree spanning tree problem.
Given a graphG, the problem is to find a spanning trédeof G such that the maximum degree ©fis
minimized. A Hamiltonian path is simply a spanning tree veh#re maximum vertex degree is 2. No
spanning tree can have a lower maximum vertex degree exweifid trivial cases wher@ is the complete
graph on 1 or 2 vertices. Since the Hamiltonian path problera special case of the minimum degree
spanning tree problem, the minimum degree spanning trdggmmois NP-hard. However, it is a well studied
problem and there exist good algorithms that find spanniegstwith close to minimum degree. These
algorithms will be discussed in detail later in this thedisirther generalizations of this problem have also
been analyzed including adding edge costs to find such tfeeénanum cost, looking at directed graph
versions of the problem, and looking at bounds on the verégxeak rather than minimizing the maximum
vertex degree.

The minimum degree spanning tree problem itself can be géped further. Consider a minimum
degree spanning tree. Each vertex can be considered asea gettof size one. One can consider the
“degree” of each set where “degree” refers to the edges wiletly one endpoint in the set. The minimum
degree spanning tree problem can be generalized by comgjdenrtex sets that may be arbitrary. An edge
is considered to “cross” a set if it has exactly one endpairthe set. The problem is, given a family of
subsets of vertices, to find a spanning tre&ofhere the maximum number of edges “crossing” any set is
minimized (i.e. minimize the maximum “degree” of a set). &ltitat all the edges crossing a specific set form
a cut of the graph. In fact, this new generalized version efrttinimum degree spanning tree problem is
just the minimum crossing spanning tree problem. For thieafgbe thesis, the minimum crossing spanning
tree problem will be viewed as a problem over a graph and alfashisets instead of cuts. Since both the
Hamiltonian path problem and the minimum degree spanneeggproblem are special cases of the minimum
crossing spanning tree problem, the minimum crossing spgrree problem is NP-hard.

1.3 A matching problem

In attempting to approximate minimum crossing spanningsr@ne approach involves the useTejoins,
which are a generalization of matchings. Finding matchofggraphs is a well studied problem with many
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1. INTRODUCTION

efficient algorithms. Finding perfect matchings of bip@rtiraphs in particular is considered an easy problem.
Minimum crossing perfect matchings are a generalizatiopesfect matchings. Given an undirected graph
and a family of subsets of vertices of the graph, the minimursging perfect matching problem is to find a
perfect matching of the graph where the maximum number ofgtgrossing” any single set is minimized.

It turns out that this is not an easy problem, even for bipagraphs. This thesis will prove that the problem
is in fact NP-hard, even for bipartite graphs.

1.4 Results in this thesis

This thesis will present three main results. IGR®T denote the maximum crossing of a set in a minimum
crossing spanning tree.

The first result is an approximation algorithm for the minfmarossing spanning tree problem for the
special case where the sets are pairwise disjoint. Theitilgopresented will be an extension of an algorithm
for minimum degree spanning trees by Furer and Raghaviddiodr The following will be proven:

Theorem 1. There exists - OPT + 2-approximation algorithm that runs in polynomial time foproxi-
mating minimum crossing spanning trees over a family ofypiae-disjoint subsets of vertices.

The second result is an approximation algorithm for the mimn crossing spanning tree problem for the
special case where the sets form a laminar family. A familgett is laminar if for any two sets from the
family, either one set is contained in the other or the setslesjoint. The algorithm will be an extension of
an algorithm for multicommodity flows on trees by Garg, Vanir and Yannakakis [12] and borrow ideas
from an approximation algorithm for bounded degree miningpanning trees [19]. Given bounbsfor
each se§ in the laminar family, the algorithm will give a spanningdr@here each s& is crossed at most
loge/sn- b times, wheren is the number of vertices, or show that no spanning treefigatithe bounds. A
spanning tree satisfying the bounds for each set is a bowdssing spanning tree. The thesis will show how
this algorithm for approximating bounded crossing spagtii@es can be applied to approximating minimum
crossing spanning trees. Thus the following wil be proven:

Theorem 2. There is a deterministic @ogn)-approximation algorithm that runs in polynomial time for
approximating minimum crossing spanning trees and bourdessing spanning trees where the family of
subsets of vertices is a laminar family.

The third result is a hardness proof for the minimum crospiedect matching problem. The proof will
reduce an arbitrary instance of the 3-dimensional matghioglem, which is NP-complete, to an instance of
a special case of the minimum crossing perfect matchingl@mebThe following will be proven:

Theorem 3. Finding a minimum crossing perfect matching of a graph is iNfd, even if the graph is
bipartite and the family of subsets of vertices is pairwdsgeint.

1.5 Outline

Here is an outline of the rest of this thesis.

Chapter 2 will present previous work done on related spanttee problems. The chapter will present
three algorithms in detail. Ideas from these algorithms$ beélused in constructing algorithms for the mini-
mum crossing spanning tree problem.



1.5. OUTLINE

Chapter 3 will present the first result of an approximatiayoathm for the special case of the minimum
crossing spanning tree problem where the vertex sets angigexidisjoint.

Chapter 4 will present the second result of an appoximatgorighm for the special case of the minimum
crossing spanning tree problem where the sets form a larfanaly.

Chapter 5 will look at the minimum crossing perfect matchimgblem. The main focus of the chapter
will be the third result that the problem is NP-hard.

Chapter 6 will outline some open problems related to mininauassing spanning trees and minimum
crossing perfect matchings and potential areas of futiseareh.






Chapter 2

Previous Work

2.1 Overview of Previous Work

Many of the results of approximation algorithms are giveingshe following notation. Lef (n) andg(n) be
positive real-valued functions am wheren is from the set of nonnegative integers. If there exists t@ons
¢ > 0 andN > 0 such thatf(n) < c-g(n) for all n> N, then f(n) = O(g(n)). If f(n) = O(g(n)), then

g(n) = Q(f(n)).

2.1.1 Minimum Degree Spanning Trees

Let G = (V,E) be an undirected graph anvertices. LetH be a subgraph oB. Given a vertew €V, let
degy(v) denote the vertex degreewin H. LetA(H) = max,y degy(v) denote the maximum vertex degree
of H.

Definition 2.1. Given a graphG, aminimum degree spanning tré®IDST) is a spanning tre€ of G such
thatA(T) is minimized (i.e. the maximum vertex degre€Tlois minimized).

LetT* be an MDST for a grapt. LetA* = A(T*). The problem of finding a Hamiltonian path in a graph
G is known to be NP-complete [11]. For a gra@hwith at least three vertice§ has a Hamiltonian path if
and only ifG has a MDSTT * whereA(T*) = 2. Thus the problem of finding an MDST &fis NP-hard. The
MDST problem has been well studied and there exist good appadion algorithms for it.

In [9], Furer and Raghavachari gave a local search appmtidgmalgorithm that outputs a spanning tree
with maximum vertex degree at mdsA* + [log,n], whereb > 1 is an arbitrary constant, in polynomial
time. The algorithm is discussed in more detail on page 1110h Furer and Raghavachari presented a
more complex approximation algorithm that outputs a spamtree with degreA* + 1 in polynomial time.
This algorithm is outlined on page 15.

Since Furer and Raghavachari’s algorithm gives the besstiple approximation, unless P = NP, the focus
has shifted to other problems related to finding MDSTs. Inyr@ases, ideas for approximating MDSTs can
be applied to other areas as this thesis will show.

2.1.2 Degree of Minimum Spanning Trees

Definition 2.2. Given a graplG = (V,E) and a cost functio : E — Z* on the edges o6, a minimum
spanning tredMST) is a spanning tre€ of G such that the total cost of the edgesTofs minimized.

7



2. PREVIOUS WORK

MSTs are a well-studied combinatorial structure. As withraging trees, mathematicians have looked at
minimizing the maximum vertex degree of MSTSs.

Definition 2.3. Given a graphG and a cost functior : E — Z™ on the edges o6, a minimum degree
minimum spanning tre@VIDMST) is a minimum spanning tree of G such thatA(T) is minimized.

In [7], Fischer extended both algorithms by Furer and Ragtiaari for approximating MDSTSs to ap-
proximate MDMSTs. Lefl* now be an MDMST. Again, lef\* = A(T*). The first local search algorithm
was extended to an algorithm that computes an MST with maxivertex degree at mobf\* + [log,n] in

1
O(n4+W95) time. The second more complex algorithm was extended togamigim that computes an MST
with maximum vertex degree at mast(A* + 1), whereq is the number of different edge costs, in polynomial
time.
Rather than focus only on minimizing the maximum vertex degof an MST, there has been a lot of
research on looking at bounding the degrees of verticestamdfinding a spanning tree of minimum cost
that satisfies those degree bounds.

Definition 2.4. Given a graplG, a vertex degree bourtg and a cost function : E — Z* on the edges, a
bounded degree minimum spanning t(B®MST) is a spanning tre€ where every vertex degree is at most
b and the cost of is minimized. The degree bound on BDMSTs may also be noretmifwhere the degree
boundb for every vertex is replaced by a degree bound fundiow’ — Z* that assigns a degree bound for
each vertex o6G.

In [19], Ravi et al. gave an approximation algorithm for the\BST problem. The algorithm starts with
a set of edgeB = 0, finds edges to connect the component&/oF ), and adds them t6 by solving aT -join
problem. Given a bountd on the degree of the vertices Gf let OPT, be the minimum cost of a spanning
tree where the maximum vertex degree is at hodthe algorithm gives a spanning tree where the maximum
vertex degree i©(blog{) and the cost i©(OPT,log{) in polynomial time. The algorithm is outlined on
page 17. Ravi et al. also generalized the algorithm to hadtdimer trees, generalized Steiner forests, and
the node-weighted version of the BDMST problem.

In [16], Kbnemann and Ravi gave an algorithm, using Lageamgduality, for finding a BDMST where
the vertex degree bounds are uniform. Given const@nts0 andf > 1, the algorithm gives a spanning tree
where the maximum vertex degree is at mdst- w)Bb+logg n and the cost is at most + 1)OPT,. The
algorithm runs in polynomial time.

In [17], Kbnemann and Ravi's algorithm was extended to go@thm for the BDMST problem where
the vertex degree bounds were non-uniform. The new algoritees Lagrangean duality combined with
repeated use of Kruskal’s algorithm for solving MSTs. Giegdmoundb, on the degree of each vertex V,
let OPT be the cost of an MST where each venehas degree at moby}. Given constante) > 1 andf > 1,
the new algorithm gives a spanning tree where the degreecbfeatexv is at most2; Bby + 2loggnand

the cost is at mosbOPT. The running time i©(mrPlogn).

In [3], Chandhuri et al. gave a different approach to findirCMST. Their algorithm uses the idea of
push-relabel used to solve network flow problems by Goldbefiy]. Given a constant > 0, the algorithm
gives a spanning tree where the maximum vertex degree istt2ffo+ 3)b+ O(+/(1+ B)b) and the cost
is at most(1+ 5)OPT,

In [13], Goemans gave an approximation algorithm to the BDNd&blem with the best known bounds.
The algorithm uses concepts from matroid and polyhedralrthelhe algorithm gives a spanning tree with
maximum degreb+ 2 and the cost is at moS§IPT, or shows that no spanning tree with maximum vertex de-
gree at mosh exists. Since the algorithm outputs a tree of cost at @&k, the algorithm can approximate
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2.1. OVERVIEW OF PREVIOUS WORK

the MDMST problem as well. He also conjectured that it is famlesto improve the approximation of the
maximum vertex degree to+ 1, similar to the algorithm of Furer and Raghavachari ferMiDST problem.

2.1.3 Directed Minimum Degree Spanning Trees

The case 06 being a directed graph has also been studied. An analog ofTd® directed graphs exists.

Definition 2.5. Given a directed grap and a rooted node, adirected minimum degree spanning tree
(DMDST) is a directed subgraph of G such that the underlying graph @f is a spanning tree of the

underlying graph of5, there exists a directed path from every nod@& ab r, and the maximum indegree of
a vertex ofT is minimized.

Let T* now be a DMDST and\* denote the maximum indegree of a vertex1of In [8], Firer and
Raghavachari gave a polynomial time algorithm that outpuP8VIDST with indegre€(A*logn). In [18],
Krishnan and Raghavachari extended the local search @ilgoaf Furer and Raghavachari used for MDSTs
to give an algorithm that outputs a DMDST where the maximutlegree of a vertex is at mosk* + [log. n]
for a constant > 1. However, the runtime of this algorithm is quasi-polynahais it runs inO(n'°%+0(1))
time.

2.1.4 Minimum Crossing Spanning Trees

For the following, letG = (V,E) be a graph om verticesH = (W, F) be a subgraph d&, and.” be a family
of subsets of vertices &, where.” = {S;,..., &}, S CV, 1<i <k GivenSCV, let5(S) C E denote the
set of edges with exactly one endpoinSigi.e. 6(S) = {e= (u,v) € E: [{u,v} NS =1}). If ec 5(9), then
e crosses Setdegy(S) = |0(S)NF| (i.e. degy(S) is thedegreeof Sin H). The notatiom will be extended
for when a family of subsets of vertice® is defined. LeA\(H) = max <i<xdegi(S) denote the maximum
crossing oH over.”.

Definition 2.6. Given a graplG and a family of subsets of verticeg, aminimum crossing spanning tree
(MCST) is a spanning tre€ of G such thatA(T) is minimized.

Let T* be an MCST and\* = A(T*). Note that in this thesisT* andA* will be used interchangably
between the MDST and MCST problem. lret maxce [{S€ . : e€ 3(9)}] (i.e. an edge 06 crosses at
mostr sets). Note thdt = |.|.

In [15], Greenberg and Istrail extended Furer and Raghmris local search algorithm for MDSTS to
find MCSTs. However, their algorithm is designed for solvthg physical mapping problem in computa-
tional biology. For solving the general MCST problem, ttedgorithm gives a spanning tree with a maximum
crossing ofO(rA* 4+ logn) but does not run in polynomial time. The runtime of the alor is bounded by
O(K°9") iterations which is not polynomial in.

In [2], Bilo, Goyal, Ravi, and Singh presented the best kngalynomial time approximation algorithms
for the MCST problem. Starting witR = 0, one of the algorithms they present chooses one edgerata ti
to add toF. The edges are chosen to connect componerig, 6f) and minimizeA(F) until F is a spanning
tree. The algorithm gives a spanning tree with maximum éngsst most 4(logn)A* in polynomial time.

[2] also presented a randomized-rounding algorithm forM@ST problem. Given a linear program
relaxation for the MCST integer program, the algorithm findsactional solution and then rounds the values
with probability based on the fractional solution. The aitfon gives a connected subgraph with maximum
crossingO(A* logn + logk) with high probability in polynomial time.

9
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2.2 Approximation algorithms for the MDST problem

In this section, two previously known algorithms for the MD@roblem will be presented. This section will
describe some key ideas that will be useful in later parthisfthesis. The two algorithms are from [9] and
[10], where Furer and Raghavachari gave 2 polynomial tilgerdghms to approximate the MDST problem.
The first will show the key idea afwappingedges. The second will show a clever way of swapping edges.

The following lemma will help in calculating a bound on theximum degree of a spanning tree that is
output by the algorithms.

Lemma 2.1. [10] LetW C V. Let p be the number of components when W is removed frora.@efinoving

the edges of G adjacent to vertices of W ledWés+ p components). Thek" > P\N“*Tﬁ”ﬂ .

The lemma use®/ as awitness sefor a lower bound o\*.

w
p=5
Wiip-1 _
W =3
O O

Figure 2.1: Example of a witness set

2.2.1 Swapping edges in a spanning tree

Let T be a spanning tree @. Consider an edgg@l,v) notinT. The subgrapfi + (u,Vv) contains a unique
cycleC. By taking any edgéw,z) € C, T + (u,v) — (w,2) is also a spanning tree &. Let ((u,v), (W, 2))
denote thiswapof edges ofT.

Letw be a vertexirC. Letk be the degree aof. If max{degr(u),degr(v)}+ 1 < degr(w), then applying
the swap((u,v), (w,2)) to T can reduce the degreewby one without increasing the degree of another vertex
to k or higher. Such a swap is calledyaod swafor w. Applying these good swaps will be the main focus
of the following MDST algorithms.

T e W v x  Good swaps:
C={uv,zw} ((u,v),(w,2))
z {(uv), (v 2))
W y
S

Figure 2.2: Example of a good swap

10



2.2. APPROXIMATION ALGORITHMS FOR THE MDST PROBLEM

2.2.2 Alocal search algorithm for the MDST problem

Given an arbitrary spanning trde one could continuously apply good swapdtantil no more good swaps
exist.

Definition 2.7. If no good swaps exist, thehis calledlocally optimal

It is not known how to find a locally optimal tree in polynomiathe. However, Furer and Raghavachari
presented a solution to this problem. One could just applydgewaps for any vertex where A(T) —
[log,n] < degr(v) <A(T), whereb > 1 is an arbitrary constant.

Definition 2.8. If there are no good swaps for any vertewhereA(T) — [logyn] < degr(v) <A(T),b> 1,
thenT is calledpseudeoptimal.

In [9], Furer and Raghavachari’s local search algorithmtiie MDST problem is to take any spanning
treeT of G and apply good swaps for vertices of degree at IA&8Y) — [log,n| until T is pseudo-optimal.
Let .7y denote the vertices with degree at ledé T. Note that¥y C .7y 1

Lemma 2.2. [9] Let b > 1 be a constant. Given a spanning tree T, there exists{d\(T) — [log,n]| +
1,...,A(T)} such that.4 1| < b|-7|.

Proof. Assume to the contrary that for evetye {A(T) — [log,n]| +1,...,A(T)} that|.y_1| > b|-%4|. By
repeating this inequality, the result is

DT =Togom | > B [ZAm)—flogy n)+1]
> b | SAT)-logyn]+2]
> L.
> bllo%n] | Sam)|
> N[ Aml
Since|-#pr)| = 1 and|-Ap(1) - iog,n | < N, this is a contradiction. O

This lemma will help in analyzing the maximum vertex degréa pseudo-optimal spanning tree.

Theorem 2.1.[9] A pseudo-optimaltree T of G has maximum degk€€) < bA* + [log, n] for any constant
b>1

Proof. Given a pseudo-optimal spanning trfeef G and a constarit > 1, choose a correspondingirom
Lemma 2.2. Thereforg”y_1| < b|.#4]. Removing the vertices a4 (i.e. any vertex with degree d) from
T yields a foresF containing treedy,...,T,. Note thatF containsp components. Lefu,v) € E—T be
an edge that connects two componentB ofl + (u,v) contains a unique cycle. Since(u,v) connects two
components of, C contains a vertex ofv € .#4. SInceT is pseudo-optimal, botb andv are in.%4_;.
Therefore, removing any edges adjacent to verticegjn; will split G into at leastp+ |-#4| components.
By Lemma 2.1,

AF > ’Vp+|yd|_1-‘ ]

1 Ha

ConsidefT. Each vertex of7y has degree at leadtand at most.#4| — 1 edges ofl have both endpoints in
4. Therefore removing’y from T leaves

p>d[Al—2(|S —1)

11
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trees and
S A7l -2 Y+ [ -1 [Fal-(d-D+1

A*
- |Si-1] |- 41

By Lemma 2.2,
|A]-(d—1)+1 - d-1
b|yd| ~— b

Therefored < bA* + 1 but by the choice ofl, d > A(T) — log,n+ 1 so

AT >
A(T) < bA* +loggn.

Theorem 2.2.[9] A pseudo-optimal spanning tree can be found in polyndtimize.

Proof. The theorem is proved using a potential function argumeiverza vertexv of a spanning tre@, let
d(v) = 39€0 (V) pe the potential of. Let®(T) = T,y P(v) be the potential oT . Note that

n-3<o(T)<n-32M.

Each good swap performed to get a pseudo-optimal tree redheedegree of a vertexe S whered >
A(T) — [logyn] + 1. The reduction in the potential @f after performing a good swap is at least
(3942.3972)_3.341 — 3.30-2
> 3A(T)—[logyn]-1

A(T)
n
. (¢q>> |
n
Therefore each good swap to get a pseudo-optimal tree redloegotential by a polynomial factor. After

O(n?) good swaps, the potential is reduced by a constant factos@tige number of good swaps@%n®).
|

2.2.3 An additive 1-approximation algorithm for the MDST problem

In [10], Furer and Raghavachari improved on their locatadealgorithm. This algorithm will be presented
in detail because it will later be extended to give an appnation algorithm for the MCST problem where
the sets are disjoint.

Consider a spanning treke of G = (V,E). Earlier a good swag(u,v), (w,z)) was defined as a swap
where maxdegr (u),degr(v)} + 1 < degr(w) = k. This ensured that the degreewbr v did not become
greater than or equal b A situation could occur where there exists a swapv), (w,z)) for w where
max{degr(u),degr (v)} + 1 = degr(w). However, it may be possible to find a good swapuddpr v) and
then the swap(u,Vv), (w,z)) would be a good swap. Figure 2.3 gives an example.

Let A denoteA(T). Instead of reducing the degrees of vertices with degreeastA — [logn], the
algorithm will focus on reducing the degree of vertices/R. The algorithm will start with all the vertices in
a-1 being markedad and all other vertices being markgdod The algorithm will iteratively takd and

12
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Cannot swagu, V) for either(w, z) or (v,w).
Perform swag(x,y), (u,x)) first.
After perfrom swap((u,V), (W,2)).

Figure 2.3: A sequence of good swaps and how it improves degre

mark vertices in/a_1 as good if there exists good swaps for them. The definitiorootiggwap is changed
in order to use the idea of good vertices. A swanv), (w,z)) for wis good whenever bothandv are good.

Consider the new notion of a good swdp, V), (w,z)) for w € .#5_1. Before the swapy andv must be
good vertices. Therefore either dhas degree at mo&t— 2 or 2) u has degreé& — 1 and there is another
good swap that can reduce the degree.@imilarly forv. Therefore there is a sequence of swaps, including
{(u,v), (w,2)), that can reduce the degreevofvithout adding any new vertex t&a.

Given a spanning tre€, let B = .75 1 represent the bad vertices aRfl represent the foredt\ B with
components?, ..., FS . Consider the edges of the forfu,v) € E whereR{, R are the components &
containingu andv respectively and? # FO. These edges are precisely the edges that can potentiatysbe
good swap to reduce the degree of a verteR.ilf such an edgéu, v) is added tdr, thenT + (u,v) contains
a cycleC. Therefore, every bad vertex @has a good swap using,Vv). Given such an edgey,v), the
algorithm will mark each bad vertex € C as good and setit(w) = (u, V) to track the edge that can be used
to reduce the degree of There exists at least one bad vertex®sinceu € F?, ve F?, F0 £ F2. The set
B will then change and a new forest will representT \ B with components, ..., Fpll. This process of
finding edges between components in the forest is contilycepeated. Instead of recalculating e&éh?,
the algorithm will join theF' components containing a vertex in the cyClethe new good vertices i@, and
theF' components adjacent to these new good vertic@siirio one component df'+1.

Eventually, there may be a good swapit(w), (w,w)), where(w,w) is an edge ofl, for a vertexw of
degreeA. The algorithm will markw as good and apply swajwit(w), (w,w)) to reduce the degree f.

If a vertexv in wit(w) has degree at leaét— 1, thenv was marked good earlier and there is a good swap
(wit(v), (v,V)) that the algorithm will apply, wherév,v) is an edge ofT, to reduce the degree of The
algorithm will continuously check ifi € wit(v) has degree at leaat- 1, if so then apply a swap usingt(u),

and check the degree for the verticesniit(u), and repeat until is changed to a new spanning tree with
maximum vertex degree at mastout with w having degreéd — 1 and no new vertices having degeeelf

no vertexw of degree) is marked good and there is no edgesfvith endpoints in different components of
the forestF', the algorithm will return the spanning tree.

Note that the series of swaps to reduce the degreeddes not conflict with each other. Left(w) =
(u,v) andi be the iteration where the good swapit(w), (w,w)) is identified by the algorithmu andv are
in separate componeni& andF! of forestF'. The edges adjacent te are not inF' sincew is bad. If

13
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u has degree at leaét— 1, then there is a good swdmwit(u), (u,u)) where edgesvit(u) and (u,u) are in

Fl. Clearly, swapwit(u), (u,)) will not affect swap(wit(w), (w,w)) sincewit(w) and(w,w) are not inFl.
Similar forv. If bothuandv have degree less thén- 1, then no further swaps are necessary. The same logic
can be inductively applied toandv. See Figure 2.4 for an example.

@ @ g

Fa
X y
T
B
Fi F}
Iteration 1 Iteration 2
Note that a good swafix,y), (u,x)) exists. Note that swag(x,y), (u,X))
u becomes good. is contained insid&?.

Figure 2.4: Example of how swaps dont interfere

Algorithm 2.1 outlines this algorithm formally.
Theorem 2.3.[10] Algorithm 2.1 outputs a spanning tree with maximum eedegree at mogt* + 1.

Proof. Let T be the spanning tree output by Algorithm 2.1. Bef .#»_1 be the bad vertices remaining at
the end of the algorithm. L&t = {Ty,..., Tp} be the components df after removing the vertices iB.

Since there arp components ifr and|B| bad vertices, any spanning tree®fequires atleagi+ |B| — 1
edges. Note that by the termination conditions of the whuigp| there is no edge between components of
in G. Therefore, any spanning tree Gfrequires an edge connecting each componeht wf a vertex inB.
Each vertex irB has degree at leaAt— 1. In any spanning tree @, at most(|B| — 1) edges can be used
to connect vertices dB together. Each of these edges is counted twice in the degfeke bad vertices.
Therefore,

p>[B|(A-1)—2(|B|-1).
Therefore, any spanning tree @fhas at least
P+[Bl-1=[B[(A-1)—2(]B[-1)+|B|-1=|B|(A-2)+1
edges. All of these edges are adjacent to vertic®&s itherefore, a vertex iB has degree at least

{|B|(A—2)+1

>A-1
B| w

14



2.3. APPROXIMATION ALGORITHM FOR BDMSTS

Algorithm 2.1 Computing a spanning tree with maximum vertex degree at fiostl

: Given a connected grafgh= (V,E).

: Find a spanning tre€ of G.

: Let A be the maximum degree of a vertexlin

: Mark allv e ;1 as bad.

. Let FO be the components af\ .#a 1.

i=0.

- while 3(u,v) € E whereF| # F} do

Find all bad vertices in the cycl@,, in T + uvand mark them as good.

if 3 good vertexw of degreeA then
Reduce the degree efby swapping inwit(w) and iteratively performing all other necessary swaps,
and go to step 3.

11:  endif

12:  ObtainF'+1 from F' by joining theF'-components and good vertices along cy@le

13 i=i+1.

14: end while

15: ReturnT.

=

© O N O U WN

[N
o

in T. This is a lower bound foA\A*. ThereforeA < A* +1. O

Theorem 2.4.[10] Algorithm 2.1 will output a spanning tree in polynomiahe.

Proof. The sum of the degrees of the verticeSas 2n— 2. Therefore the number of vertices of degfeis
O(R). Let aphaseof the algorithm be the steps taken to remove a vertex f&Gm There aréD(3 ) phases
required to remove all the vertices fragh. Therefore, there are

" n
@] (k; E) = O(nlogn)

phases in total. Each phase can be implemented in neardy linge using Tarjan’s fast disjoint set union-find
algorithm for maintaining connected components [6]. Thgoetihm runs inO(mna (m,n)logn), which is
polynomial onn, wherea is the inverse Ackerman function. O

2.3 Approximation algorithm for BDMSTs

In this section, an approximation algorithm for the BDMSDlplem will be presented. This section will
describe more key ideas that will be useful in later partsh@f thesis. The algorithm presented here is a
simplification of an algorithm in [19].

The algorithm is constructive: will denote the potential edges chosen by the algorithm fgpanning
tree of G. The algorithm starts witk = 0. For each iteration of the algorithm, a set of edges thaheots
components ofV,F) are chosen and addedFo In each iteration, the edges will be chosen in such a way
that each vertex will have their degree increase by at moite cost of the edges added is at mO§tT,
and at the same time the number of componen{¥'d¥ ) will be reduced by a constant factor. Aft®(logn)
iterations, the grapfV,F) will be connected and will satisfy the approximation guaeas for the cost and
the maximum vertex degree.

The algorithm will use a well-known combinatorial struauwm graphs.
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Definition 2.9. Given a graplG = (V,E) and a set of verticek C V, aT-join of G is a set of edgesl C E
such that the degree of every vertexiofs odd and the degree of every other verte¥ a$ even.

It is well known thatT-joins can be found efficiently [5]T-joins are useful because of the following
lemma.

Lemma 2.3. [19] Given any T -join J, J containgT | /2 edge-disjoint paths. The endpoints of these paths
results in a pairing of the T vertices in J.

Proof. ve T is an odd vertex degree th The sum of the vertex degrees must be even in the componént of
containingv. Therefore there must be some ventex T connected tw in J. Take the shortest pathfrom
anyv € T to another vertew € T. Remove the edges & from J to getJ’. Removev andw from T to get

T’. vandw are paired off togethed’ is aT’-join. By induction,J’ conatinsT’|/2 edge-disjoint paths such
that the endpoints of these paths are precisely the veiticE's O

The algorithm will attempt to find &-join in each iteration. For each componéntf (V,F), exactly one
vertex inC will be in T. By using aT -join, the algorithm will pair-off the components ¢¥, F) with a path
connecting each pair of components. From each path, theséldgeconnect different components(vfF)
will be added td~.

During each iteratiom, the algorithm will construct an auxiliary gragh. Let ¢ be the collection of
components ofV,F). G; is essentially the same graph @sxcept that any edge @ that has endpoints
in the same component &f will have a cost of zero. For each compon€r %, an arbitrary vertex il©
will be assigned td'. For the case wher&’| is odd, a dummy vertexis added td5; with zero cost edges
connecting and the vertices representing component'irz will also be added t@ . By addingzto T, this
will ensure that the size of is even, making th& -join possible. An example of the auxiliary gragh is
shown in Figure 2.5.

7N\ '/'\ '/'\
G ‘/a'\ ‘/b'\ ./Cl\ Gi

| O+—O0+—L0!

ST B N
E oo oel o T
- AL ST ST

\ Q | \:/ I O I

d oo oty

e L .

Oz

Edgesofcose0 - __
Edgesofcost1

All edges have cost 1.

Figure 2.5: Example of the auxiliary graf@

Given the graplG;, the algorithm will find a degree boundédjoin J of minimum cost onG;, where
each vertex o must have degree at mdstThe algorithm is outlined formally in Algorithm 2.2.

Similar to how theT vertices inJ can be paired off by edge-disjoint paths containedl ithe following is
true for trees.
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Algorithm 2.2 Finding an approximate minimum cost spanning tree with bledrdegree

GivenG = (V,E) onn vertices, costs : E — Z*, degree bound.
F=0,i=1
while There are more tha®(b) components ifr do
Let% = {Cq,...,Cp} be the set of connected component$\afF ).
Construct auxiliary grapts; = (M, E;) with costsc’ : E; — Z™ as follows.
LetG =G. LetT =0.
for Eache= (u,v) € E do
if ue Cy,ve C,, Cy #C, then
Setc'(e) = c(e).
else
Setc/(e) = 0.
end if
end for
for EachCj € ¢ do
Add an arbitrary vertex ofj to T.
end for
if |¢’| is oddthen
Add zto V.
Add edgee = (v,z) to E; with costc(e) =0,V e T.
AddztoT.
end if
Find a degree boundd&djoin J of minimum cost orG;.
FromJ, add the corresponding edges®fo F.
i=i+1.
end while
Contract the components @f and find an MSTM of the resulting graph.
F=FUM.
Output an MST of-.

Claim 2.1. [19] Let Q be a tree, S V(Q), |S is even. There is a pairing of the vertices in S such that the
unique uv-paths between each pairv) are edge-disjoint.

Proof. If |S§ = 2, there is a unique path @ with endpoints between the two vertices3nlf | > 2, rootQ
at an arbitrary vertex. Letv be the vertex furthest fromsuch that the subtrderooted atv contains at least
2 vertices fronS. Any path between two vertices fro8that is contained ifR must usev.

If ve SandR contains exactly two verticasandw from S, v andw can be paired off ifk by a pathP. P
is completely contained iR. TakingQ and removing the subtrdeand the edge connectiijto the rest of
Q gives a new tre€’ with special vertice§ where|S| = | — 2. P is disjoint fromQ'.

If [SNR| >3 or|SNR =2 andv ¢ S, then consider two verticagsw € SN R paired off by a pattP.
TakingQ and removing?, except the vertey, along with the subtrees rootedwandw, gives a new tre&’
with special vertice§ where|S| = |S| — 2. P is edge-disjoint fron®' .

Figure 2.6 shows some examples of how this induction on #eedfithe tree is done. By induction on the
number of special vertice§' contains a pairing of the vertices 8 such that the paths between each pair
are edge-disjoint. O
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ve Sand|SNR| =2 ISNR =3
Q r Q '
\' v
w P oS S uwoos S
S= {vaaslst}lP:{\vaa pl} S= {U,W,S:]_,SQ},P:{U,V,W}
/ r
Q r Q
v
S1 ) S1 )

Figure 2.6: Examples of how to pair off vertices in a tree.

The claim will help prove the following lemma.

Lemma 2.4. Let T be given by iteration i of Algorithm 2.2. There exists-pih of G; of cost at most OR;T
that has no vertex with degree more than b.

Proof. Assume thatV,F) has an even number of components. The odd case is similasideom BDMST

Q of G. Let the vertices of be special vertices iQ. By Claim 2.1, there is a pairing of thlevertices using
paths inQ. LetJ be the union of these paths. Since each patirhastices for endpoints and each vertex of
T is the endpoint of exactly one pathis aT-join of G;. The vertices ofQ have degree at mobt Therefore
the vertices ofl have degree at mobt In G;, edges either have the same cost as they ha@ointhey have
no cost. Therefore, since the total costpis OPT, the total cost ol is at mostOP ;. O

Now it is proven that finding & -join in Algorithm 2.2 is possible for every iteration. Ugithis, one can
prove the efficiency of the algorithm.

Definition 2.10. Given a graplG = (V, E) and a vertex degree bound functionV — Z*, ab-factor is a set
of edgedV C E such thatlegy (v) = by, VW e V.

Lemma 2.5. A degree bounded T -join of minimum cost can be found in patyaldime.

18
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Proof. Let G = (V,E) be a graph with edge costs E — Z* and vertex degree bourt Let T CV. The
T-join J is constructed using-factors. The bound functidm: V — Z* is set such thaby is eitherd ord — 1
wherev € T if and only if by is odd. For each vertexe V, d/2 loops are added wheves the endpoint. Set
the cost of each loop to zero. A minimum cdstactorM on G can be found in polynomial time [5]. Let
be M without any loops. The total cost dfis equal to the total cost dfl. Removing the loops maintains
the parity of each vertex degree. Sindesatisfies the degree constrainiss a degree boundet-join. If
there is anothef -join K of lower cost, then loops of zero cost can be added to eacbxvedf K until the
vertex degree of is equal tob,. This would give &b-factor will lower cost tharM, a contradiction. Thus]

is a degree boundeitjoin of minimum cost. Sincé/ is found in polynomial timeJ is found in polynomial
time. O

Lemma 2.6. [19] Algorithm 2.2 finishes in polynomial time after(log 7 ) iterations.

Proof. Note theT-join J found in each iteration of Algorithm 2.2, whefle contains a vertex from each
component ofg (and possiblyz). By Lemma 2.3, finding results in a pairing of the components @t
Each pair of components is connected by a path. From eachtpatbdges connecting componentgoére
added td=. After adding these edgeis,will contain a path between each pair of components' oThus, the
number of components ifY, F) will decrease by a constant factor during each iterationcé&the algorithm
starts withn components and stops to compute an MST when the number oéctathcomponents 3(b),
there aréD(log ) iterations. By Lemma 2.5, thE-join J in each iteration of Algorithm 2.2 can be solved in
polynomial time. Thus, the algorithm runs in polynomial&m O

Lemma 2.7. [19] The maximum degree of a vertex in the spanning tree abiypAlgorithm 2.2 is Qblogp).

Proof. In each iteration, edges are addedrtonly after finding theT -join J. The vertices o8 have degree at
mosth. Only edges of that connect components @fare added té. Thus, in each iteration, the degree of
the vertices inV,F) increase by at mo&t By Lemma 2.6, Algorithm 2.2 finishes aft@(logp) iterations.
At the end of Algorithm 2.2, each vertex Bfhas degree at mo€t(blog ). The same holds for any spanning
tree ofF at the end of the algorithm. O

Theorem 2.5. [19] Algorithm 2.2 outputs a spanning tree that has maximemex degree (blogy), total
cost QOPT,log ), and runs in polynomial time.

Proof. By Lemma 2.4, the total cost of the edges addeé tduring each iteration is at mo&iPT,. By
Lemma 2.6, there ar®(log{) iterations. At the second last step of the algorithm, theesdagded td-
form an MST ofG/%, the graphG where each component &f is contracted to a single vertex. The cost of
the edges from the MST added is at m@#tT,. Therefore, the cost d¥ is O(OPTylogg). An MST of F
will not have more cost so the total cost of the spanning trepui by Algorithm 2.2 iD(OPT,log ). The
maximum degree is given by Lemma 2.7. The runtime is givendmina 2.6. O
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Chapter 3

MCSTs on Disjoint Sets

3.1 Algorithm

Let G= (V,E) be a graph,” = {S,..., &} be a family of subsets of vertices, afid be an MCST. Let
A* = A(T*). This chapter will present an approximation algorithm fog MCST problem where the sets of
. are pairwise disjoint. This algorithm will use similar idefiom Algorithm 2.1. Instead of starting with
any arbitrary spanning tree as in Algorithm 2.1, the aldpontwill focus on a special type of spanning tree.

Definition 3.1. Let G = (V,E) be a graph an&C V. LetG[§ = (S,E’) be the subgraph d& with vertices
Sand edge&’ which are the edges @& with both endpoints irs. G[S is the subgraph o& inducedby S.

Definition 3.2. Let G be a connected graph. Let = {S,,...,} be a family of pairwise disjoint sets of
vertices ofG. LetT be a spanning tree @. T is an.”-spanning tree o6 if both T[S] andG[S] have the
same number of components for egle ..

T—

S S S S
This is an.”-spanning tree. This is not an¥’-spanning tree.
T[S1] has only 1 component T[S1] has 2 components.

just asG[S;] has 1 component.

Figure 3.1: Example of axy’-spanning tree

.-spanning trees are easy to find by simply finding a maximalsipg forest on each vertex set.iff
and then extending that to a spanning tre&of”-spanning trees are useful due to the following lemma.

Lemma 3.1. Let G be a connected graph. Let = {S,,..., S} be a family of pairwise disjoint vertex sets
of G. If T is a spanning tree of G, then there exists&@rspanning tree TwhereA(T’) < A(T).
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3. MCSTS ON DISJOINT SETS

Proof. Let T be a spanning tree @ which is not an-spanning tree. There is a s&tc .7 whereG|[S]
has less components th&fS]. Therefore there is an edgen G[S] which can connect two components in
T[S]. The graphrl + e has a cycleC containinge. C has two edge$ andg crossingS sinceeis connecting
two components of [S]. Thereforel’ =T 4+ e— f is a spanning tree d whereA(T’) < A(T). O

From the above lemma, we can conclude that focusingZespanning trees is sufficient. This is equiv-
alent to contracting each component@fS], S € .7 into a single vertex. The next lemma will provide
the machinery to find a bound on the results of the algorithmsingthis lemma, an analogous result to
Lemma 2.1 about witness sets for pairwise-disjoint setsbeatierived. Given a spanning trée= (V,F) of
G=(V,E)andSCV,letdr(S)={e=uveF: [{uv}insg =1}

Lemma 3.2. Let G= (V,E) be a connected graph. Let = {S,...,S} be a family of pairwise disjoint sets
of vertices of G. Let T be a’-spanning tree of G. Let/ C .. Let F= {F,...,Fq} be the components
of T\ Uacy A (the tree T with any vertices in a set il removed along with any adjacent edges). Let
R={ee or(A) : Ac «/}. If there is no edg¢u,v) € E such that .= F,v € Fj,i # j, then every spanning
tree of G must have at lead}| edges crossing sets i

Proof. Letr = |Rj and .« = {S,,...,S,}. SinceT is a spanning tree, removingedges fromT yields

r +1 components. Let’ be a spanning tree & with I’ < r edges crossing sets i’. Then removing
the edges crossing sets.ifi leaves’ + 1 < r + 1 components. Suppose thiS,|U...UTI[S,] hasm > 0
components. Sinc€ is an.”-spanning tree, the’[S,]U... UT’[S,] hasm’ > m components. Thus the
components remaining i \ U, AareF’ = {F{,...,F} } where

g=r+1-m<r+1-m=q.

However, since there is no edgev) € E(G) such thati € F,ve Fj,i # j, GV \ Uac.» Al hasq components.

S
S /\.
S
7 ={S1,%, S}
o ={S}
m=2,q=2,r=3 F={F.,F}

Figure 3.2: The number of edges required to cross setg of a spanning tree db

Thereforeq’ > q, contradicting our previous result. O
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3.1. ALGORITHM

From this lemma we get a lower bound #5t. The following corollary is the version of Lemma 2.1 about
witness sets for disjoint vertex sets instead of vertices.

Corollary 3.1. Let. be a collection of disjoint sets of vertices of a connectaphrG. Let T be an/-
spanning tree of G. Let/ C . such that T\ Jac., A has components & {F,...,Fq}. Let R={ec or(A):
A€ o/}, If there is no edgéu,v) € E(G) such that u= F,v € Fj,i # |, then

(5]

7 =1{81, S}

T A=
-
A =3

Figure 3.3: Witness sets for disjoint vertex sets

The algorithm to be presented will start with aft-spanning tred and perform edge swaps to reduce
the number of edges crossing a set, similar to Algorithm 2.1.

Let A denoteA(T). Let.sf = {Se . :degr(S) > i}. Note that# C .#_1. This notation for MCSTs
is analogous to the use of; for vertices in MDSTs. Similar to Algorithm 2.1, the focustbie algorithm
presented in this chapter will be on reducing the size/pf

The algorithm initializes with all the sets i#fp_; as bad and any other set good. Any edg&afossing
a bad set is considered bad (ieds bad ifec 5(S) whereS € .7 is bad). All other edges @ are considered
good.

Just like swaps for MDSTs, an ed@e v) will be added tdT and a bad edgev, z) from the unique cycle
of T + (u,v) will be removed. Consider the swafu,v), (w,z)). Letw € Sy € .7, z¢ Sy, whereSy is a bad
set. This would makéw,z) a bad edge. The swap is good fay if edge(u,Vv) is good. When applying the
good swap((u,V), (w,z)) for Sy, Sy becomes good and so do all edgesiy). If ze S, € . andS; is bad,
S, becomes good as well as the edged(§;).

Applying a good swag(u, V), (w,z)) for Sy to T, wherew € Sy € . andz ¢ S (i.e. (W, 2) crossesSy),
will reduce the degree @&, in T. Before the swap(u, V) is a good edge. Therefore either(i))v) does not
cross any set or 2, V) crosses only good sets. For the second case, either eaclsefduas degree at most
A—2, or it has degreA — 1 but there is some other good swap that can reduce its degree.

Given an.”-spanning tred, let 2 = ./A_1 represent the initial bad sets aRd represent the forest
when the vertices in bad sets are removed filoalong with any adjacent edges. LR=19, - Fr?o denote the
components oF°. Any edge of the forn{u,v) € E, whereF, F? are the components & containingu
andv respectively andr # F?, is a good edge that can potentially be in a good swap to rettheceegree
of a set in./a_1. If such an edg€u,v) is added toT, thenT + (u,v) contains a cycl€. If a bad setSy
has a vertex o, then there is an edge GfcrossingSy. Therefore, every bad set that has a verte tmas
a good swap usin@u,v). Given such an edgg,v), the algorithm will mark each bad s& containing a
vertex ofC as good and setit(Sy) = (u,Vv) to track the edge that can be used to reduce the degrég of
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3. MCSTS ON DISJOINT SETS

There exists at least one bad set containing a vertéxsificeu € F2, v e F?, F{ # F0. The set# will then
change and a new foreist will representT \ (Us-#S) with component§11, . Fr}l. This process of finding
edges between components in the forest is repeated. Insteadalculating eack'*1, the algorithm will
join theF' components containing a vertex in the cyClehe new good sets containing vertice€irand the
F' components adjacent to the new good sefE into one component d¥ 1. Figure 3.4 shows an example
of this process of finding'.

0 | J—
S S S Fs
- = - i
, \\/ X\/ N . =
N /
~ ~
_>
o T 6 0 o
F F F FS

Bad sets are# = {S, S, S3}. Choose edgéu, v).
CycleC = {u,v,x,w}.
Swap((u,v), (w,x)) is identified.w € S, x € S.

Bad sets are# = {S3}.
Swap((u,v), (w,X)) is contained insid&L.

Figure 3.4: How a swap is identified for disjoint sets

Eventually, similar to Algorithm 2.1, either a set of degeés marked good or there are no edges
connecting different components of the forE&t If a setS, € .7, is marked good, then there is a good swap
(wit(Sy), (w,w)), where(w,w) € 6(Sy) is an edge off, that the algorithm will apply to reduce the degree
of Sy. However, ifwit(Sy) crosses a s&, € .#a_1, then further swaps are required to ensure no new sets
are added to”a. Since the se§, would have to be good in order to have a good swap witflS,), there
must be a good swap f&, that the algortihm has already identified. The algorithmi ahleck if S, has a
wit(Sy) value, and if so then apply a good swap usiitf Sy) to reduce the degree &§,. The algorithm will
then repeat the previous step on the sets containing thee®dfwit(Sy). This process is repeated uriilis
changed to a new”’-spanning tree with any set of having maximum degree at masbut with S, having
degreeA — 1 and no new set of” having degred\. If no set of #, is marked good and there is no edge of
G with endpoints in different components of the forEstthe algorithm will return the”-spanning tree and
the remaining bad sets will be a witness set that gives dicat# of the quality of the solution.

Note that as with Algorithm 2.1, the series of swaps to redineelegree 08, does not conflict with each
other. Letwit(Sy) = (u,v) andi be the iteration where the good swépit(Sy), (W,w)), (W,w) € d(Sw), IS
identified by the algorithmu andv are in separate componefisandF! of forestF'. The edges crossing
Sy are not inF sinceSy is bad. Ifuis in a setS, of degree) — 1, then there is a good swawit(S,), (u,u)),
(u,u) € (&), identified at iteratiorj < i. Note that edgewit(S,) and(u,u) are inF) ™ and sincej + 1 <1,
Rt C Fl. wit(Sy) and (w,w) are not inFi since the swagwit(Sy), (w,W)) was identified at iteration
Therfore, swapwit(S,), (u,u)) will not affect swap(wit(Sy), (w,w)). Similarly, the same argument holds
for for v. Swaps fou andv do not interfere with each other sinEé+ F!. The same logic can be inductively
applied toS, with the subgrapl| andS, with the subgraplf.. Note thatS, # S, sinceT is an.s-spanning
tree. Refering back to Figure 3.4, note how the identifiedsteaF' is contained in a component Bf+1.

Algorithm 3.1 outlines this algorithm formally.
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Algorithm 3.1 Algorithm to find an MCST given disjoint sets of vertices

1: Given a connected grafgh= (V,E).

: Find any.-spanning tred of G.

: Mark all sets in#a 1 as bad and 168° = T\ (Us..», , S) with component§?, ..., Fy .

i=0.

. while 3(u,v) € E whereF| # F} do

Find all bad sets which contain a vertex in the cy@lgin T + (u,v) and mark them as good.

if 3 good selSy € S5 then
Reduce the degree &y by swapping inwit(Sy) and iteratively performing all other necessary
swaps, and go to step 3.

9:  endif

10:  ObtainF+1 from F! by joining theF'-components and good sets.#f along the cyclé€,y.

11 i=i+1.

12: end while

13: Return tre€T .

O NAaR W

3.2 Analysis

Theorem 3.1. Algorithm 3.1 returns a tree whee < 2A* + 2.

Proof. Let T be the tree computed by Algorithm 3.1.Tf was the starting tree of the algorithm, note that
is an.”-spanning tree since none of the edge% f§],1 <i < p have been removed. L&# C .#5_1 be the
collection of bad sets that remain after the algorithm eheés$.# = Fq, ..., Fp be the set of trees that remain
after removing all the vertices in the bad sets#nfrom T. The while loop of the algorithm ensures tliat
has no edges with endpoints in different treeszaaf The number of edges crossing the sets4os:

C>|#(B-1)-d

whered is the number of edges crossing two setsAnThusd < (1/2)|4|(A). Note that in the MDST case,
d <|%| — 1. Here a similar assumption is not possible since each gtlsabgrapfi [S] on a setS € ./
may be disconnected. In general, the number of double cdwatiges is not bounded by2| + c for any
constant.

S ={8,9}
The subgraph$[S;] andT[S]
are disconnected.

Figure 3.5: The induced subgraphs can be disconnected

Therefore,
C>(1/2)|B|A— | 4.

We also know that all these edges are incident to verticesdrséts of4. By Corollary 3.1, one of the sets
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in % has at least

{%w . {(l/@l@?—wq .82

edges crossing it in any spanning treefTherefore,

A*EA__Z

and so,
A< 2N+ 2.

Theorem 3.2. Algorithm 3.1 runs in polynomial time.

Proof. Letn= |V(G)|. Since the sets of” are pairwise disjoint, there are at mostets. Each set contains
at mostn vertices. Each vertex is adjacent to at most1 vertices. Therefore for any spanning tieef G,

degr(S)<n-n-(n—1)<n.
£

The number of setSwheredegr (S) = Alis O(”Ks). Algorithm 3.1 reducedegr (S) for a setSby one through
eachphase(steps 3-10). Each phase identifies a good edge connectingomwponents of', finds the cycle
Cuv, the bad edgevz, and the bad s&. One phase can be done in polynomial time. The maximum dejree

T is decreased by one (h(%s) phases. The number of phases is

0 (i:-;) = O(n®logn®) = O(n®logn).

In summary,

Theorem 1. There exists A" + 2-approximation algorithm that runs in polynomial time fguaroximating
MCSTs over a family of pairwise-disjoint subsets of vestice
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Chapter 4

MCSTs on Laminar Sets

4.1 Overview

Definition 4.1. Let . = {S,...,&}, S CV,1<i <k, be a family of subsets of vertices of a graph=
(V,E). 7 is alaminar family if§N'S; # 0 impliesthatS C Sjor§;C §,1<1i,j <k

In this chapter, the focus will be on a special case of MCSTerevthe sets in” form a laminar family.
Approximating the MCST of a graph will be done by approximgta related type of spanning tree.

Definition 4.2. Given a grapl, a family of subsets of vertice®’, and a bountb on the degree of any set of
-, abounded crossing spanning tré@CST) is a spanning trek of G with the maximum degree of a set
in . being at mosb. As with BDMSTSs, the degree bounds may be non-uniform, whtezelegree bounil

for every set is replaced by a degree bound fundbiorv” — Z* that assigns a degree bound for each set of
.

The algorithm to be presented will find a (non-uniform) BC®1d laminar family of sets. Given a bound
bi on the number of edges crossing eachSset., the algorithm will find a spanning tréewhere each set
S is crossed(b; - logn) times, or indicate that there is no spanning tree which eesach sef at mosth;
times. This algorithm can be used to approximate an MCSTTLé&ie an MCST ofs andA* = A(T*). Since
1< A* <n-1, one can perform a binary search on the possible valuis dfetb denote the possible value
of A* given by the binary search. The algorithm can attempt to fispbaning tree where the degree bobind
for each se§ € .7 is set tab. If no such tree exists, the algorithm will fail to find a spargitree and increase
b for binary search. If the algorithm outputs a spanning tréb every set of” having degre®©(b-logn),
the algorithm will seb lower. Eventually, the binary search will identify the lostg@ossible valu&* might
be and the algorithm will give a spanning tree with every $e¥ohaving degre©(A* - logn).

The algorithm is constructive. It will start will a set of ottial edge$ = 0 for the final spanning tree
T. In each iteration, a set of edges will be chosen to adél.tdhe edges will be chosen such that each set
S € & is crossed at modt times. If aftera iterationsF spans the grap@, then a spanning tree of these
potential edges will be a spanning tree@®ivhere each s& is crossed at mo€d(a - by;) times.

In order to bound the value af, the algorithm will borrow ideas from Algorithm 2.2. The alithm will
start with a set of potential edgés= 0. Thus(V,F) is a graph containing components. In each iteration,
the edges will be chosen such that when they are addedtte number of components (i, F) will reduce
by a constant factor. AftéD(logn) iterations, the number of components will be reduced to Bneill be a
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spanning subgraph @&, anda = O(logn). Algorithm 2.2 used -joins to reduce the number of components.
However, findingT -joins that cross any set o a bounded number of times is a hard problem, which will
be proven in the next chapter. Instead another approackes tesing the following combinatorial structures.

Definition 4.3. Given a laminar family of subsets of vertice$ = {S;,...,Sy} and a bound functiofb :
. — 77, amaximum crosgree-cut b-matchingis a set of edges (possibly choosen multiple timdsyf
maximum cardinality such that each &t .7 is crossed at mos times.

Note that if the cross-free-cbtmatching spans the graph and is connected, then a spameagftthe
edges irM is a BCST for the bound functidn

The concept ofnulticommodity flows also important. For the following definitions, I&tbe a set of
elements calledommoditiesConsider a grap® = (V,E). For each elemerje Q, let there be a vertex pair
(spstq), Sy tq € V. Letc: E — Z* be a capacity function on the edges.

Problem 4.1. The maximum multicommodity flowroblem is to route flow of each commoditye Q
between(sy,tq) such that the flow along each edge E is no more tharc(e) and the total flow of all the
commodities ofQ is maximized.

Definition 4.4. Given a maximum multicommaodity flow problem on a graphamulticutis a set of edges
M such that for any commodity € Q, there is nasy, tg-path inG\ M.

The problem of maximum multicommodity flow can be restricasdollows.

Problem 4.2. Given a specifi¢sy, tq)-path for eacly € Q, the forced multicommodity floyroblem is to
route flow of each commodity along the specifi¢sy, tq)-path such that the flow along each e@geE is no
more tharc(e) and the total flow of all the commodities @fis maximized.

Note that the forced multicommaodity flow problem is essédiytia path-packing problem. This problem
is essential for the algorithm presented in this chapter.

During each iteration, the algorithm will run a subroutinehoose the edges to add®oThe subroutine
will borrow ideas from [12] which will be outlined later in ith chapter. The algorithm in [12] is for the
maximum multicommodity flow problem on trees and gives adpproximation. The paper also contains a
reduction from the problem of finding a maximum cross-fraebematching to that of finding a maximum
integral multicommodity flow on trees. The subroutine wilrform a similar reduction of choosing edges
to add toF to a forced integral multicommodity flow problem. This retdan will be done in multiple
steps. The subroutine will then find a constant factor apgpration of the corresponding forced integral
multicommodity flow problem by extending the ideas of [12kityy the solution to the corresponding forced
integral multicommidty flow problem, a set of edges will besbn to add té¢-. The constant factor of the
approximation will give a constant-factor reduction of twmponents ofV, F).

4.2 Background
4.2.1 Representing?

7 is by our assumption a laminar family of subsets of vertidab® graphG = (V,E). Given any two sets
of ., either one is contained in the other or they are disjointis Tives a natural hierarchy to the sets of
.7 where a set is considered “higher up” than any set contaimétd iOften, hierarchal structures can be
represented by rooted trees.

As in [12], we can represen¥’ as a rooted tred = (V/,E’), called alaminar tree The laminar treé\ is
constructed as follows:
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e Foreach se§ c .7, add a vertextoV’. Add a root vertex toV’.
e For each inclusion-wise maximal s&tc ., add the edgé,r) to E'.

e For every other se§ € .7, if §; is the inclusion-wise minimal set containigg add the edgéi, j) to
E’ (later refered to ass.

e Construct the functiog:V — V' as follows. For each vertexc V, if § is the inclusion-wise minimal
set containing, letg(v) =i. If vis not contained in a set, then igiv) =r.

Figure 4.1 gives an example of a laminar tree.

r
A
3 5
1 2 4
< ={5,9,%,%,S} g(vi) =1,9(v2) =2,9(v3) =T,
S ={n},S={v},S={vi,}, g(va) = 4,9(vs) = 4,9(ve) =5
St ={Va,V5},S = {Va,Vs5,V6}

Figure 4.1: Grapl® with family .7 and the laminar treA

Note that not only does the laminar tree maintain the hida@structure of the sets of’, but the function
g encodes in which sets each vertex is containegiMf=i,v € V,i € V', then for each vertekon the unique
ir-path inA, ve §; € . in G. Because of the functiog, intuitively one could view each vertéxof A not
just as the s&f € .7 but as the “inside” of§ and the subtree &t rooted ai represents precisely everything
contained irS.

4.2.2 Multicommodity flows and trees

In [12], Garg et al. reduce finding a maximum cross-freekemtatching on a grapt = (V, E) to finding a
maximum integral multicommodity flow on the correspondiaminar treeA = (V/,E’). The reduction is as
follows.

Consider an edgéu,v) € E. The edgee = (u,v) € E will be represented by a commodigwith the
corresponding vertex pafise, te} = {g(u),g(v)} in A. SinceA is a tree, theste-path is unique.

Currently, each vertex gk exceptr represents a set it. There is also a functiogmapping each vertex
v of G to the vertex ofA representing the set containiuglf each vertex of A is viewed as representing the
“inside” of the setS € ., it would be helpful if something represented the “borddrSowhere edges cross
S (ie.5(S)).

In A, there is a uniqué -path. For any verter where the uniquerr-path inA contains the vertek Sy
is contained irf§ in G. For any vertey3 where the uniqué -path inA contains the verteg, S is contained
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in Sg in G. For any other vertexin A, § and$; are disjoint inG. Intuitively, if the vertexi represents the
“inside” of the setS;, the first edgees = (i, j) on the path fromi to r represents the “border” &.

To find an integral multicommaodity flow oA, flow is pushed for each commodity between the corre-
sponding vertex pair. As each commodity represents an €d@eeach unit of flow pushed of for a given
commodity will represent the corresponding edgeSimeing chosen once. Whenever an eége (u,v)
crosses a s&§ in G, the corresponding(u)g(v)-pathP. uses the “border” edges. Given a sef, letb;
be the bound on the number of edges to ci®sga the cross-free-cut-matching. Thus, for edges in A,

a capacity will be set where(es) = b;. This will ensure that for any given integral multicommagditow
satisfying the capacity functior) the corresponding cross-free-diamatching will not violate the bounia
for setS. See Reduction 4.1 for a formal outline of reducing an instaof finding a maximum cross-free-cut
b-matching to finding a maximum integral multicommodity flow.

Reduction 4.1Reducing finding a maximum cross-free-bumatching to finding a maximum integral mul-
ticommodity flow
Given graphG = (V,E); laminar family. = {S;,..., %}, S CV, 1 <i <k; functionb: .7 — Z*;
Construct laminar treA = (V' E’) and functiong.
Construct capacity function: E' — Z* wherec(eg) = b(S).
for Eache=uve E do
Letebe a commodity wherés, te) = (g(u),g(v)).
Let P; be the uniqueste-path inA.
end for

_ g(vi) =1
Egi :g g(vz) =2 c(e)
B 9(va) =T
b(S) =9 | gy —4
b(Sy) =2 g(vs) =4
b(S)=6 | give)=5 .
y:{&a&v%v&a%} P91:{1737r7574}lP92:{4}1
S_I. = {Vl}asz = {V2}7S3 = {VlaVZ}a Pe3 = {1737 r 514}1 PEA, = {21 31 r7574}a
Sy = {Va,V5}, S5 = {Va, Vs, Ve } Pe; ={2,3,1}, P = {1,5}, P, = {5,4}

Figure 4.2: Example of grap® with family . and the corresponding multicommaodity flow problem

Note that the reduction keeps track of the unigte-path inA for eache. SinceA is a tree, eackcte-
path is unique and keeping track of these paths is not negestawever, the laminar tree will be extended
to a larger graph that is not a tree. It is there that the pathst e known and thus a forced integral
multicommodity flow must be used instead of a regular intagraticommaodity flow. This will be explained
in further detail later in this chapter.

By finding a maximum integral multicommodity flow @ one has a maximum cross-free-bunatching
onG. As stated earlier, if thdi-matching was connected and spanr®gne could take the-matching and
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find a bounded crossing spanning treefAlthough finding an integral multicommaodity flow on trees is
NP-hard, Garg et al. [12] present a 1/2-approximation plrigoel algorithm for integral multicommodity
flows on trees.

Consider a multicommodity flow problem on a tige= (V’, E’) with edge capacities: E' — Z* andq
commodities with vertex pairs,ti), 1 <i < g. LetP be the uniqueti-path inA.

The linear program for the multicommaodity flow problem Ais:

q
maximize zl fi
i=

subject to pri < Ce ecE/,
i:ech

fi > 0, 1<i<aq
The corresponding dual (the linear programming relaxdtiofinding a minimum multicut) is:
minimize z OeCe
ecE’
subject to Epde > 1, 1<i<q,
ecH

de > 0O, ecE.
The corresponding complementary slackness conditions are
1. i>0 = de=1.

ech

2. de>0 = fi = Ce.
i:egp,

Rather than enforce these complementary slackness camlithe first one will be relaxed to:
ecH

This relaxed first condition implies that for each commodityere there is flow, the path used to push flow
for that commaodity will contain at most two edges in the naulti Note that in order to findlamatching, an
edge for théb-matching is chosen if in the multicommaodity flow problem ttweresponding flow has a value
of at least one. The flow that the algorithm finds should be oicl that if f; > 0, thenf; > 1. Maintaining

an integral flow is sufficient for satisfying this requiremen

Lemma 4.1. [12] If a multicommodity flow F and multicut M satisfy the re&d complementary slackness
conditions, then the amount of flow in F is at least half theazdty of M.

Proof. Given tharnF andM satisfy the relaxed complementary slackness conditieh§, tepresent the flow
of F for commodityi andde = 1 if eis in M, de = 0 if eis not inM.

q q
fi > = defi by the relaxed first complementary slackness condition
2" = 225

1
il s I
ZeezE,ee;.

1 .
= 3 z deCe by the second complementary slackness condition
ecE’

Y
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O

Corollary 4.1. [12] Given a multicommodity flow F and a multicut M that sagsfthe relaxed complemen-
tary slackness conditions, the flow F is at least half the a@iithe maximum integral multicommaodity flow
(it fact, it is at least half the value of any multicommodityd).

Proof.
1 .
amount of flow ofF > > capacity ofvi

1 . . .

> > capacity of minimum multicut
1 . . .

> > maximum multicommaodity flow
1 . . . .

> > maximum integral multicommodity flow.

O

The algorithm from [12] uses Corollary 4.1 by doing the follng. Given the treéA = (V/,E’), the
algorithm picks an arbitrary vertexe V' and rootsA atr. If Ais a laminar tree, theA is already rooted. For
any other vertex € V', letlevel(v) denote the length of the unique-path inA. Given verticess,v € V', let
the lowest common ancesttea(u, v), be the vertex on the unique-path with the lowest level. Note that
is the lowest level vertex iA.

The algorithm iterates through each verteXAdfom highest level to lowest level. For each venexV’,
the algorithm will greedily attempt to push flow for any comality i wherelca(s,tj) = v without violating
any of the edge capacities. Note that by forcing the edgecitégmto be integral, greedily pushing flow
will result in the flow being integral. Whenever the flow on thége is equal to its capacity, the edge is
considered to beaturated As each edge oA is saturated, it is added to an orderedDstlf multiple edges
are saturated at the same time, they are addBdnaarbitrary order. After the algorithm has iterated thrbug
every vertex ofA, D will be a multicut. This is because the algorithm will it izte through every commodity
and will push as much flow as possible Dfwas not a multicut, then some commaodity can push more flow,
contracting the fact that flow was pushed greedily. The #@lgorwill go through the edges iD in reverse
order of their addition and remove any edge that is not neadertler forD to still be a multicut. This step
is calledreverse deletelt turns out thateverse deletés sufficient for making sure that the final flow and
the multicutD satisfy the relaxed complementary slackness conditiotgorshm 4.2 outlines the algorithm
formally.

Given asti-pathP, Ica(s, t) splitsP into two pathsP! andP?.

Lemma 4.2. [12] After reverse delete in Algorithm 4.2, for any commuydlivith positive flow and £ 1,2,
IP'nD| < 1.

Proof. Without loss of generality, consider pa@i. Assume thatP'ND| > 2. Lete,€ € PLND. Letebe
the edge further away from the raotLetv = Ica(s,t;).

If € was saturated befoewas, there was saturated while flow was being pushed for a commatlity
Letu=Ica(s,t;). Since€ is saturated, thelevel(u) < level(v). But then flow should have been pushed for
commodityz before commodity, a contradiction.

If € was saturated the same tirmevas, for any commodity with positive flow one, either€e also has
flow for z or flow was pushed for beforee was saturated and another edge would have been added:to
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Algorithm 4.2 Approximating the maximum integral multicommodity flow irees
Given treeA = (V' E’), edge capacities: E' — Z™, vertex pairgs,ti), 1 <i <q.
Set flow to 0, multicub = 0.
for v €V in nonincreasing order of levelb

for Each(s,t) wherelca(s,tj) = vdo
Greedily push flow frong tot; while satisfying capacity constraints.

end for

Add every edge saturated Bbin arbitrary order.
end for
Letey,...,q be the ordered list of edgesin
for j=1to1ldo

If D—{ej} is a multicut ofA, thenD =D\ {g;}.
end for

is not needed i for the first case because &f eis not needed i for the second case because the other
edge inD would be looked at aftez by reverse delete, a contradiction.

Thus,€ was saturated aftewas and was checked first by reverse delete. Stigstill in D after reverse
delete, there is a commodigynot usinge. Thus,u = Ica(s,,t;) is somewhere betweemande'.

t

S

Figure 4.3: Example of checking edges in reverse delete

Since commodityi has positive flow, when flow was pushed for commodityanother edge’ was
saturated. Algorithm 4.2 looked atbeforev becauseal has a higher level than Thus,e” is still in D when
reverse delete checksaind should have removega contradiction. O

Corollary 4.2. After reverse delete in Algorithm 4.2, for any commoditythvpiositive flowR ND| < 2.

Thus, the integral multicommodity flow and multicut given Algorithm 4.2 satisfies the relaxed com-
plementary slackness conditions and therefore by Coyodldr gives a 1/2-approximation for the maximum
integral multicommodity flow. However, when applying thigarithm to the problem given by Reduction
4.1, there is no guarantee that the resulting integral oartmodity flow will correspond to a cross-free-
cut b-matching that is connected. Algorithm 4.2 will be alteradhe next section to force some form of
connectivity guarantee in the corresponding cross-freé-enatching.
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4.3 The Algorithm

4.3.1 Extending multicommodity flows on trees

Consider a maximum cross-free-duinatching problem with an additional constraint thatlbhmatching is
connected. Applying Reduction 4.1 will produce a maximutegnal multicommodity flow problem where
the connectivity constraint is lost. The problem is that¢he no simple way of identifying the components
of theb-matching from the laminar tre&.

The algorithm will start with a set of potential edges= 0 and try to reduce the number of components
of (V,F) by a constant factor in each iteration by adding edgés tdssume thaF is a set of potential edges
chosen for a cross-free-ciHmatching. In order to track the number of components in tagly(V,F), the
laminar treeA will be extended to a new graph, denotedBpy As edges are added Foafter each iteration,
the grapiBg will change as well.

Let 4 = {Cy,...,Cp} be the components ¢¥,F). In each iteration, the number of components can be
reduced by at least a factor of 1/2 if each componef#t & connected to another component by a new edge.
Only edges connecting different component§\gf ) in G will be considered. The integral multicommodity
flow problem to find these edges will be constructed as follows

Initialize the construction of the grafr = (V, E) and the forced integral multicommodity flow problem
with the laminar treeA and the maximum integral multicommodity flow problem givgnReduction 4.1.
Note that in each iteration, the integral multicommodityfloroblem will only use commodities correspond-
ing to edges o6 that connect components Of, F ). For each vertexin the original graplt, add the vertex
v and the edgév,g(v)) to Be. This is equivalent to adding every vertex subset of sizeto#. Since these
“sets” are not part of”, the capacity of each of these new edges will be set to

For each componef; € ¢, add the vertices;, ¢, G to B and the edgéc;, c{). Intuitively, the new flow
problem will have flow between components.will act as a starting vertex for flow leaving. ¢; will act
as an ending vertex for flow enteri@y. In theb-matching problem, there is the possibility of choosing too
many edges between a small number of componelitg f1) while other components have no adjacent edges
added td=. An example is in Figure 4.4. This will be prevented by fixingagacity of 1 to the edgei,c/),
representing at most one unit of flow leaving compor@ntFor each vertex € C, add edgesyv,c/) and
(v,C) with capacityeo. Now Be contains the component structure(wfF) in relation to..

A forced integral multicommodity flow problem is being usedce the graptBg is not a tree and thus
there may exist multiplecte-paths for any givere € E. The unique path used by each commoditior
the regular integral multicommodity flow problem énencoded which sets a¥ are being crossed by the
edgeein G. Similarly, each commoditg in the forced integral multicommaodity flow problem must use a
path inBg that still encodes which sets of are being crossed by the edge G. For each commoditg
given by Reduction 4.1, |6% = {vo,...,Vq} be the uniquete-path inA, wheree = (u,v) in G, g(u) = Vo,
g(v) = vg. In B, there will be two commodities; andey. Letu e C, € 4 andv € C, € ¢. The paths for
each commodity will bé%, = {cy,c),,u,Vvo,...,Vq,V,Cy} andPs, = {Cy,C{,V, Vg, ..., Vo, U,Cy}. Note that since
each edge of the forrfti, ¢/) has capacity one, two commodities instead of one are redjfareeach edge of
G. If only one commodity was used per edgeGfeach edge o6 would have to be assigned to a specific
component ofV, F) but each component may use at most one edde tof connect to another component.
This could potentially decrease the value of the optimaltsah.

The way to construdBr from A and the corresponding forced integral multicommodity flowtpem is
given formally in Reduction 4.3. Figure 4.5 gives an exangiléhe forced integral multicommodity flow
problem.

Note that there was a rooted vertexn A. r is still a vertex inBg. Just ag played a crucial role
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A clique containingx points.
Each vertex is in its own set.

Each vertex on the top level
is connected tar vertices.

a vertices

Given this graplG, start with no edges chosen for thenatching. There are(a + 1) components.
Set the boundh = a + 2 for every se§, 1<i < a, bg1 = a?.

A spanning tree satisfying the bounds exists by finding a paliengtha on the clique,

and choosing all the edges crossig 1.

If all the edges in the clique insid&1 are chosen for the-matching,

for eachS, 1<i < a, three of the edges that crc§sandS, . ; can be added to tHematching.
The resultisa (a — 3) + 1 components.

Figure 4.4: How &-matching can have too many components

Reduction 4.3Constructing the forced integral multicommodity flow preisl on the grapBg
Given graptG = (V, E); laminar family.” = {S,,...,S}, S CV, 1<i <k; functionb: .7 — Z™; edges
FCE
Let4 = {Cy,...,Cp} be the connected componentydfF).

LetF C E be the edges d& that have endpoints in different componentgof
Apply Reduction 4.1 t¢V, F) to getA = (V',E’).
LetBr = (V,E) whereV =V'UV, E = E’, edge capacities remain the same.
for Eachv eV do _
Add edgee = (v,g(v)) to E. Setc(e) = co.
end for
for Each componer@; € ¢ do
Add verticesci, ¢/, C toV.
Add edgee = (¢, c/) to E. Setc(e) = 1.
for Each vertex € C; do _
Add edge® = (v,c),€ = (v,Ci) to E. Setc(e),c(€) = .
end for
end for _
for Eache= (u,v) € F do
Conside: = {vo, ..., Vq} given by Reduction 4.1 whegu) = Vo, g(v) = Vq.
Let ey, e be two commaodities in the forced integral multicommodityfiproblem.
Letue C,,veC,.
LetPy, = {cu,C,U, V0, ..., Vg, V,Cy}.
LetPes, = {Cv,C,V, Vg, ..., V0,U,Cy}.
end for

35



4. MCSTS ON LAMINAR SETS

S ={9,9,9,%.5}
S ={wn}, S ={wn},S={vi,w},
St ={Va,V5},S = {Va,V5,V6}

b(S) =4

b(S) =3

b(S) =9 Pu, = {C1,¢;,v1,1,3,1,5,4,V5,C2}
b(S) =2 Ru, = {C2.€,V5,4,5,1,3,1,v1,C1}
b(S:)) = 6 le = {Clacl aV4a4aV5aC_2}

¢ = {C13C23C3} PXZ = {CZaClZaV5a4aV4aC_1} _
Py1 = {027 C/27V25 27 37 rVvs, C3}

Cy={vy,V. Cs

Ci = }Vi V:i Py2 = {033 C/37V3a r 37 27 V2_702}

Car= 7 le = {0270/ 7V5747 57V61C3}
3= {Va,Ve} P, = {C3,C;,V6,5,4,Vs,C; }

Figure 4.5: Graplé, laminar family., edged= C E, and the corresponding auxiliary graBh

in Algorithm 4.2, r will play a crucial role in the algorithm for the forced intad) multicommodity flow
problem. Here is a summary of the reductions. Instead ofrftn@éi BCST directly, the goal is to find

a connected maximum cross-free-tumatching onG. Reduction 4.1 take& and produces a maximum
integral multicommodity flow problem on the laminar trAe During each iteration of the final algorithm,
there will be a seF of potential edges already chosen. Each iteration will uséuRtion 4.3, which uses
Reduction 4.1, to switch from finding the connected maximuoss-free-cub-matching to a forced integral
multicommodity flow problem on a graf:. The following subsections will show how edges are added to

F.

4.3.2 Subroutine for forced multicommodity flows

In this section, we will outline a subroutine to connect thenponents ofV, F). The main idea will be to find
edges ofc — F that are connecting components. Adding one of these eddgews/tauld reduce the number of
components o by 1. In the subroutine, Reduction 4.3 will give an auxiliéoyced integral multicommaodity
flow problem with an optimal solution corresponding to a detdges ofG where each component &f is
being connected to some other component. The subroutihéheii find a 1/3-approximation to the forced
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4.3. THE ALGORITHM

integralmulticommodity flow problem in a way similar to howg®drithm 4.2 works.

Similar to Algorithm 4.2, the subroutine will be a primalalwalgorithm on the linear program for the
forced multicommodity flow problem. The forced multicomnitgdlow problem requires that each commod-
ity has a unique path it can flow on. Thus, we can use a linegrano similar to the one for multicommodity
flows on trees for the forced multicommodity flow problemBmn _

The forced multicommodity problem is @ = (V, E) with edge capacities: E — Z* andg commodi-
ties with vertex pairgs,ti), 1 <i < g. LetR be the assignedt;-path inBr. Note thatq will decrease as
edges are added Boin each iteration.

The linear program for the forced multicommodity flow prables:

q
maximize § fj
2,
subjectto Y fi < c., ecE,
i:e;P,
fi > 0, 1<i<q
The corresponding dual is:
minimize Zdece
ecE
> 1, 1<i<q,

subject to Zﬁ de
ecH
de>0, ecE.
The corresponding complementary slackness conditions are

1. i>0 = de=1.

ech

2. de>0 = fi = Ce.
i:egp,

For the complementary slackness conditions, the submutitirequire a more relaxed first condition:

fi>0= de < 3.
i e; e

A proof analogous to Lemma 4.1 and Corollary 4.1 shows thttdffinal algorithm outputs a flow
and a set of edgeld that satisfies the relaxed complementary slackness consljitthen the flowr is at
least 1/3 the value of the maximum integral forced multicardity flow. This proof is postponed to the
next subsection. Note that integral solutions to the dushefforced multicommaodity flow problem do not
correspond to mutlicuts. This is because they do not bloekyesste-path inBg. However, they do block
each giverste-pathPe. _ _

For each vertex € V, let the level ofv, level(v), be the distance fromto the vertex € V. LetF denote
the edges o6 with endpoints in different components @f,F). Let &2 = {P.: e€ F } be the paths given by
Reduction 4.3. For each pala € &, let the apex oP, apexP:), be the vertex of lowest level iR.. The
subroutine will greedily push flow on the path &f with the apex with the highest level. Just like Algorithm
4.2, the edge capacities are integral. Thus, greedily pgditow implies that the flow is integral. As each
edge ofBr becomes saturated, it will be added to an orderedlisNote thatD is a feasible dual solution
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4. MCSTS ON LAMINAR SETS

to the forced multicommodity flow problem. The algorithmeatipts to push flow for every commodity and
either adds an edge on the corresponding pabhafter pushing some flow or an edge of the path is already
in D because no more flow can be pushed on that edd@kislhot feasible for the dual, then some commodity
can push more flow, contradicting the fact that flow was pugreddily. If multiple edges oBr become
satruated at the same time, they are adddd to arbitrary order. As with Algorithm 4.2, a reverse delete
step will be performed ob such that the final flow anB will satisfy the relaxed complementary slackness
conditions.

The subroutine for connecting component$\afF ) is given in Algorithm 4.4.

Algorithm 4.4 Subroutine for adding edges o
GivenG = (V,E); laminar family.¥ = {S,,..., &}, S CV, 1 <i <k; functionb: .¥7 — Z; set of edges
FCE.
Apply Reduction 4.3 to get the forced multicommodity flow plem onBg = (V,E).
LetD = 0.
for v €V in nonincreasing order of levelb
for P € & whereapexXP:) =vdo
Push flow alond? while satisfying capacity constraints.
end for
Add every edge saturated Bbin arbitrary order.
end for
Letey,...,eq be the ordered list of edgesin
for j = a down to 1do
if D—{ej} is a feasible dual solution of the forced multicommodity flpmblem onG then
D=D\{ej}.
end if
end for

4.3.3 Analysis of the subroutine

Consider a tre@. One can easily orient the edgeslo$uch that every vertex has out-degree of at most one.

Claim 4.1. Assume that G has a BCST T and a set of edges F have alreadytmsmmc The forced integral
multicommodity flow problem oneBrom Reduction 4.3 has a feasible flow of valldé — 1.

Proof. Consider the graple/% obtained fromG by contracting each componeite % to a single vertex
representin@i. The edges of in G/% form a spanning subgraph &/%". Let T’ be a spanning tree of that
subgraph. One can orient the edge3 oo that every vertex has out-degree at most one. ConsideicRea
4.3 on(V,F). Each are of T’ can be represented by a path on the auxiliary gipby either patHe, or
Pe,. If the tail of e is componenC: and the head oé is componenC;, choose inBr the path where the
first edge ig(ct,¢f) and the last vertex is,. Choosing the proper paths B to represent the arcs af is a
feasible forced integral multicommodity flow d@¢. Thus, if|¢’| = p then there is a feasible forced integral
multicommodity flow ofp—1 onBg. O

Note that each compone@t of ¢ is represented by the edge,c/) with a capacity of one iBg. This
means that if any feasible forced integral multicommoditywfln B containsj paths, then the corresponding
edges ofG have endpoints in at leagtdifferent components div,F). However, the paths may correspond
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to cycles inG/%. In the worst case, the cycles could be of length 2 (i.e. thsifde flow contains one unit
of flow for a commaodity representing an edge@from componenC, to componenCg and vice versa).
Therefore, a feasible flow of valuecorresponds to edges 6/ ¢ that reduce the number of components of
(V,F) by at leastj/2.

Lemma 4.3. A maximum forced integral multicommodity flow gn &rresponds to a set of edges of G that
when added t¢V, F) will reduce the number of components by a factor of 1/2.

Proof. Combining the previous argumentand Claim 4.1, finding a maxn forced integral multicommodity
flow on Bg will ensure that adding the corresponding edgds twill reduce the number of componentsén
by a factor of 1/2. O

Lemma 4.4. Let D be given by the subroutine, Algortihm 4.4. D is a feasibtegral solution to the dual of
the forced multicommaodity flow problem.

Proof. ConsidemD in the subroutine just before the reverse delete step. Tiw®stine iterates through each
pathPy, ec E, 1 <i <2, in nonincreasing order of the level of the apex of each, @il attempts to push
flow along that path. If no flow was pushed By, then there was a saturated edgm the pattP,. zwould
have been added @ when it became saturated so there is an edd& ém D. If some flow was pushed on
Py, then flow was pushed until an edgéecame saturated. Therefaraould have be added . Thus,
each pattP,, ec E, 1 <i <2 has an edge iD. ThereforeD a feasible integral solution to the dual of the
forced multicommodity flow problem before the reverse deitép.

During the reverse delete step, edges are removed@ramly if the result would still be a feasible dual
solution. Thus, the subroutine returns a feasible integpiaitionD to the dual of the forced multicommodity
flow problem. O

Lemma 4.5. Consider the end of the subroutine after the reverse delefe $etR, ec E,1<i<2bea
path with positive flow. Thejf\ ND| < 3.

Proof. Only edges of finite capacity can beln

Note that the laminar tre& = (V’,E’) is a subgraph oBg (refer to Reduction 4.3). For eaél, ec E,
1 <i < 2 where the flow is positive, consid® NE’ (the part ofPy on the laminar tree subgraph). See
Figure 4.3.3 for an example.

Lemma 4.2 implies thgP, ND| < 2.

The only other edge oR, with finite capacity, besides the onesBh is the edg€C; ,Cﬁ) with capacity
one at the begining d%,. Thus|P; ND| < 3. O

Thus, the forced integral multicommodity flow abdoutput by the subroutine satisfy the relaxed com-
plementary slackness conditions. In the worst cBsis,an optimal solution to the dual of the forced multi-
commodity flow linear program. The result is the followingaitary.

Corollary 4.3. The flow output by Algorithm 4.4 is at least 1/3 the size of aimarm forced multicommodity
flow in B:.

By taking the edges d& that correspond to commodities with positive flow, then Lear¥h8 and Corol-
lary 4.3 proves the following lemma about Algortihm 4.4.

Lemma 4.6. Given a graph G= (V,E) and a subgraphV,F),F C E, of G, Algorithm 4.4 can find a set of
edges XC E\ F such that the edges of X cross each set & at most htimes and adding the edges X to
(V,F) will reduce the number of components by a factor of at rp6ét
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laminar tree
A= (V' E)

4 co=m
"] vertices ofG

G cle=0

component
structure
cle)=1

Py NE = {(u,v),(v,w)}

Figure 4.6:P; on the grapiBr.

4.3.4 Final Algorithm

The final algorithm will use the subroutine to continuousiigladges td- and reduce the number of com-

ponents of(V,F) until F is a spanning subgraph &. Given the 1/6-approximation of the subroutine, the

algorithm should finish afte[rlog'(%w times through the subroutine. If not, then the assumptiandlBCST

exists is false for the given bound functibnAlgorithm 4.5 outlines the final algortihm.

4.3.5 Performance

Assuming a spanning tree exists which satifies the crossisigictions, the subroutine finds at least 1/6 of

the remaining edges needed for a connected spanning shbgfr&p After running the subroutine Itag;n

times, the resulting graph will be connected and spannirig Each time through the subroultine, no set
. . . ogn '

? € . is crossed more thdn times so the spanning tree Bfcrosses each s& no more thaqm b

imes.

Each conversion to the auxiliary graph can be done in polyabtime. During each time through the
subroutine, each flow is pushed only once so the subroutiderg inO(|E|) = O(n?) time. Thus the
algorithm runs in polynomial time.

In summary,

Theorem 2. There is a deterministic @ogn)-approximation algorithm that runs in polynomial time for
approximating MCSTs and BCSTs where the family of subsegtstides is a laminar family.
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Algorithm 4.5 Approximation algorithm to find BCST-L

Given: connected grapB = (V,E); laminar family. = {S,...,S}, S CV,1<i<kb: ¥ - Z".
F := 0, count:=0.
while F is not a spanning subgraph@fdo

Use the subroutine, Algorithm 4.4.

Add edges td- if the corresponding flow in the subroutine was positive.
count= count+ 1.

if (V,F) is connectedhen
Output spanning tree ¢V, F).
else ifcount> [ logn Wthen

log(6/5)
No BCST exists.
end if
end while
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Chapter 5

Minimum Crossing Perfect Matchings

5.1 Overview

In analyzing the MCST problem for laminar sets, one possipfgroach to the problem is to look at a related
T-join problem. As shown with Algorithm 2.2, the BDMST probiecan be approximated by connecting
components using structures related tpins. In a similar way, the MCST problem could be approxiaca
Finding T-joins is considered an easy problem. However, findingins that minimizes the maximum
number of times a set is crossed turns out to be a hard proBlepecial case of thé-join problem is when

T is the entire vertex set of a graph and the graph itself hasfagtenatching.

Definition 5.1. Given a grapl& and a family of subsets of verticeg, aminimum crossing per fect matching
(MCPM) is a perfect matchiniyl of G such thatA(M) is minimized.

This chapter will show that finding an MCPM is NP-hard.

5.2 Polyhedral viewpoint

One natural question is whether the linear programmingagian for the MCPM integer program is integral.
Here the focus will be on the linear program for bipartitepdra
The integer program for the MCPM problem on a bipartite gréph (V,E) is:

minimizeA
subject to Z/XW
ue

1 WweV

Y

- Z Xuv+ 4 0 VSev

uved (9

m

{0,1} YuveE
0.

Xuv

A

Y

The constraink,, € {0,1} is relaxed tox > 0 in the linear programming relaxation. The dual of the Imea
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program is:
maximize Z/yv
ve

subject toy, +y — Z zs < 0 VuveE
Se.:uved(S)
s < 1
37
Zs

v

0 VSe.”.
The complementary slackness conditions are:

1. x>0 = y+w= Z Zs
Suved(S)

2. zs>0 = z Xav = A
uved(S)

LetM* be an MCPM for the grap®. LetA* = A(M*). Consider the simple example in Figure 5.1.

O

O

Figure 5.1: 6-cycle graph, 2 disjoint sets, integral soluto MCPM linear program
However, Figure 5.2 is a half-integral solution with a bett&lue forA than Figure 5.1.

1/2 1/2

)
N\

Value ofxe next to eacle.

1/2 1/2
A=1

@)

1/2 1/2

Figure 5.2: 6-cycle graph, 2 disjoint sets, half-integcdison to MCPM linear program

In fact, just lettingG be an even length cycle agd consist of pairwise disjoint vertex sets can result in
solutions to the linear program relaxation where even theabive value is not integral.

The solution given in Figure 5.3 satisfies the complemergtagkness conditions and the objective value
is non-integral.
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1/3 -2/3 2/3

4/3
281 = 1/3,232 22/3.
A=4/3. 2I3

-4/3

1/3 2 213

Figure 5.3: A non-integral objective value and dual solufior MCPM linear program

5.3 A hard matching problem

In this section, a reduction will be presented to show thatifig an MCPM is NP-hard. In order to do so,
it must be possible to take any instance of an NP-completel@mand reduce it in polynomial time to an
instance of MCPM.

Definition 5.2. Given three pairwise dsjoint sets of elemeéMsX, andY, where|W| = |X| = |Y|, and a set
of triples.7 CW x X x Y, athreedimensional matching3DM) is a subset of triples itiZ7 such that each
element oW U X UY is contained in exactly one triple.

The problem of finding a 3DM of maximum cardinality is NP-cdetp [11]. The reduction will reduce
an instance of the problem of finding a 3DM of maximum cardipab an instance of the MCPM problem.
The instance of the MCPM problem will be the special case witlee graph is bipartite and the sets:ifi
are pairwise disjoint.

Consider an instance of the 3DM problem with the three ¥éts {wy,...,Wq}, X = {X1,...,Xq}, and
Y = {y1,...,Yq}, and triples7 C W x X x Y. Without loss of generality, assume that each element of
WUXUY is contained in at least one triple. Construct an auxiliagpdG = (V,E) as follows:

e For eaclx; € X, construct a vertex; € V.
e Foreachy €Y, construct a vertey, € V.

e For each triplgwi,x;,yx) € .7, construct the verticesjx, ajjx € V and the edge&jx, aijk ), (@ijk,X;),
(&jk,Yk) € E.

e Foreachw; € W, construct the vertex s&, = {ajjk. aijk : (Wi, Xj,¥k) € 7 }.
See Figure 5.4 for more detail.

Let.” = {Sy:we W}. Note thatxj,yx & Sw, forall xj € X, yk €Y, Sy € 7. ajk andajx € Sy, if and
only if i = a. Thus.¥ is a family of pairwise disjoint subsets gt

Consider the partitiofA, B) of V whereA = {x; : Vj} U{ajj« : Vi, j,k} andB = {yi : Vk} U{ajjk : Vi, j, k}.
There is no edge is with both endpoints i or both endpoints iB. ThusG is a bipartite graph.
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5. MINIMUM CROSSING PERFECT MATCHINGS

W= {W17W23W3}! X = {X15X25X3}! Y = {Y17YZ7Y3},
T = {(Wr,X1,Y2), (W1,X2,Y3), (W2,X3,¥1), (W3, X1,Y2) }

Figure 5.4: Example of the auxiliary graph for an instancthef3-dimensional matching problem.

Note that each tripléw;, xj,yk) € 7 corresponds to the verticgsjy, jjx }-

Observatiorb.1 By the construction o6, eacha;jx € V is only adjacent t@;j andx; € V. Similarly, each
agjjx €V is only adjacent t@;jx andyy € V. Thus, in any perfect matchirg of G, either(a;j, ajjx) € M or

both(xj,a;jk) and(yk,a_ijk) e M.

Observatiorb.2 Eacha;j, andajjx €V is contained in the s&y, € .. By the construction oB, eachx; e V

is only adjacent t@jx, V(Wi,X;,Yk) € 7. Similarly, eachy, € V is only adjacent t@ji, V(Wi,Xj,Yk) € 7.

Thus, every edge adjacent to gnor yi vertex crosses a s&; € .. Thus, given a perfect matchig of

G,AM) >0,

Lemma 5.1. Given a set € .# and a perfect matching M of GV N 8(Sy, )| is even.
Proof. S = {aijk. aijk - (Wi,Xj,yk) € 7 }. By the construction o6, the edges crossingy, ared(Sy) =

{(Xj, ajk), (Y- @ijk) = (Wi, Xj,¥k) € 7 }. From Observation 5.1(x;,ajjx) € M if and only if (yk,ajjx) € M.
Thus, the edges i N d(Sy; ) can be paired off. O

Corollary 5.1. Given a perfect matching M of @(M) > 2.

Proof. By Observation 5.2 and Lemma 5.1. O

Observation5.3. |W| = |X| = |Y| =q. LetM be a perfect matching d. By Observation 5.2, the edges
adjacent to eack; € X andyx € Y must cross a set of”. Therefore, there must be at leastétiges inM
that cross the sets i¥. Since there arg sets, ifA(M) = 2, then each set ¥’ has 2 edges crossing it.

The following will show that there is an MCPMI of G, whereA(M) = 2, if and only if there is a 3DM
T C .7. This will be done by showing that the trip{ev, xj,yi) € T if and only if the edgéa;jx, ajjx) ¢ M.

Theorem 5.1. Given a bipartite graph G= (V,E) and a family.” of pairwise-disjoint subsets of V, finding
an MCPM is NP-hard.

46



5.3. AHARD MATCHING PROBLEM

Proof. Consider an instance of the 3DM problem and its auxiliarpbi@. LetT C .7 be a 3DM. Construct
a matchingM of G as follows. Consider each trip(evi,xj,y«) € 7. If (Wi,xj,yk) € T, let (ajj,ajj) € M.

If (wi,xj,yk) € T, let (xj,aij) and(ajk,yk) € M. Since each element &f is in exactly one triple irT, for
eachx; € V, only one edge itM hasx; as an endpoint. The same holds for egckt V. Note that vertices
ajjk. aijk € V correspond to the triplewi, X, yik) € 7. Thus, eachaj € V is the endpoint of only one edge in
M. The same holds for eacly € V. Thus,M is a matching. Note that every andyy € V is the endpoint
of some edge iM or elseT is not a 3DM. Also note that evergjx andajjx €V is the endpoint of some
edge inM or else triple(wi,X;j,yk) ¢ -7. Thus,M is a perfect matching. Each s&} € . correspondsto an
elementy; € W. By the construction o, 2 edges ob(S,,) are added td/1 whenever there is a triple i
containingw;. SinceT is a 3DM,|MNd(Sy )| = 2, VSy, € .. Thus,A(M) = 2. By Corollary 5.1M is an
MCPM.

Conversely, consider an MCPM of G whereA(M) = 2. By Observation 5.3, each sgf € .# has
exactly two edges crossing it. By Observation 5.1, the €ggeajx) € 5(Sy ) isinM if and only if (&, yk) €
0(Sy,) is in M. SinceA(M) = 2, there is exactly one edda;j, ajx ), with both endpoints s, that is not
in M, VSy, € .. When(xj,ak), (aijk) € 0(Sw) and (ajjx,aijk) € M, the corresponding triple i is
(Wi, X;j,Yk). Choose these corresponding triples to fdrm 7. Note that these triples account for every edge
in M which crosses a s&,, € .. Eachw; € W occurs inT exactly once since there is exaclty one edge not
in M with both endpoints ity € .. Eachx; € X occurs inT exactly once sinc#l is a matching and every
edge withx; as an endpoint crosses someSgte .. Similarly, the same holds for eaghe Y. Thus,T is
a 3DM. O

W = {wy,Wa, W3}, X = {X1,X2, X3}, Y = {y1,¥2,¥3},
T = {(Wr,X1,¥2), (W1,X2,Y3), (W2,X3,¥1), (W3, X1,Y2) }
T= {(W17X27y3)7 (W23X3ayl)a (W37X17y2)}

Figure 5.5: An example of a 3DM and the corresponding MCPM

Note that the proof of Theorem 5.1 was based on finding a mimrowossing perfect matchirlg of G
whereA(M) = 2. By Lemma 5.1, any approximation algorithm for the MCPMigem which finds a perfect
matching ofG will find a perfect matchindg/l with A(M) even. The next largest even number after 2 is 4.
This results in the following corollaries about the hardnesapproximating this problem.
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5. MINIMUM CROSSING PERFECT MATCHINGS

Corollary 5.2. There is no polynomial tim@ — €)-approximation algorithm to the minimum crossing perfect
matching problem which finds a perfect matching, unless P = NP

Corollary 5.3. There is no polynomial time +1-approximation algorithm k@ tminimum crossing perfect
matching problem which finds a perfect matching, unless P = NP

One can also consider the bounded crossing perfect matptobtem, where the number of edges cross-
ing each set is bounded. The proof of the theorem shows tleat &tting the bound to 2 is still NP-hard.
Another problem to consider is the minimum crossingpin problem.

Theorem 5.2. The minimum crossing T -join problem is NP-hard.
Proof. If G has a perfect matching, by settifig=V we get that thd -join problem is NP-hard as well.(1
In summary,

Theorem 3. Finding an MCPM of a graph is NP-hard, even if the graph is Istfta and the family of subsets
of vertices is pairwise-disjoint.
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Chapter 6

Open Problems and Further Research

The problem of approximating a general MCST to within arldgctor is a wide-open problem. Currently,
there is no proof of whether such an approximation is posgibhot in polynomial time.

The approximation for the special case of finding MCSTs when family of subsets of vertices is
pairwise-disjoint could possibly be reduced to an additeaestant. One possible way of achieving this
is to extend the methods used by Goemans for BDMSTSs [13].

The algorithm for MCSTs on a laminar family of subsets of &g is dependent on an approximation
algorithm for multicommodity flows on trees. The algoritheguires logn iterations in order to construct the
spanning tree. An open problem is finding some way of buildirggspanning tree in a constant number of
iterations. This would eliminate the logactor in the approximation guarantee. Of special inteisehbw
approximation algorithms for weighted multicommodity flewn trees [4] could be applied to MCSTs and
other related problems.

The algorithm for MCSTs on a laminar family of subsets of e could possibly be extended further to
finding aO( f (i) -logn)-approximation for the case where the family of subsets dfaes could be partitioned
into i laminar families.

This thesis has displayed how ideas for some problems capdied to approximating MCSTs. Recent
ideas like push-relabel [3] and matroid and polyhedral th¢b3] being applied to MDMSTs may also be
applicable to MCSTs. Even improving special cases of MCSiEh sis the pairwise-disjoint sets case may
be possible.

A natural extension where little is known is when a cost fiorcts added to the edges. As some algo-
rithms for MDSTs generalize to MDMSTs and BDMSTSs, algorithfor MCSTs may extend to approximate
minimum crossing minimum spanning trees and bounded ecrgssinimum spanning trees. Goemans work
[13] may apply to the cost version of finding MCSTs where thmifa of subsets of vertices is pairwise-
disjoint. Weighted multicommaodity flows on trees [4] may jpip the cost version of finding MCSTs where
the family of subsets of vertices is laminar.

Minimum crossing perfect matchings is not a problem thatdesen considered in detail. Future research
could look at proofs on approximation hardness or finding polynomial time approximation algorithms,
even for the special case where the graph is bipartite arfdhiéy of subsets of vertices consists of pairwise-
disjoint sets. Since perfect matchings are generally diffio alter, focus on the case of the graph being
complete seems be a logical starting point.
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