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Abstract

In order to do more semantics-based information extraction, we require spe-
cialized domain models. We develop a hybrid approach for constructing such a
domain-specific ontology, which integrates key concepts from the protein-protein–
interaction domain with the Gene Ontology. In addition, we present a method for
using the domain-specific ontology in a discourse-based analysis module for ana-
lyzing full-text articles on protein interactions. The analysis module uses a lexical
chaining technique to extract strings of semantically related words that represent
the topic structure of the text. We show that the domain-specific ontology improved
the performance of the lexical-chaining module. As well the topic structure as rep-
resented by the lexical chains contains important information on protein-protein
interactions appearing in the same textual context.

v





Acknowledgments

The completion of this thesis was possible only with the assistance of several very
supportive and kind individuals. First I must thank my supervisor, Dr. Chrysanne
DiMarco. Dr. DiMarco’s help and friendship throughout my time at the University
of Waterloo has been tremendously valuable and is greatly appreciated. Shady,
Matttew, Aaron, Gabe and Zhou, they have given great help to my studies. My
husband, Xiaoyang, and my daughter, Michelle, have been my principal source of
inspiration and support. I could not have completed my work without them.

vii





Contents

1 Introduction 1

2 Survey of
Biomedical Information Extraction 5

2.1 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 GENIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 PASTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Named Entity Recognition and Normalization . . . . . . . . . . . . 11

2.2.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . 11

2.2.2 Named Entity Normalization . . . . . . . . . . . . . . . . . . 19

2.3 Functional Annotation . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Relationship Extraction . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Protein-Protein Interaction Extraction . . . . . . . . . . . . 28

2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Lexical Chaining 35

3.1 Lexical Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Defining a Lexical Chain . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 A Lexical Chaining Algorithm . . . . . . . . . . . . . . . . . . . . . 38

3.4 WordNet: A Linguistic Knowledge Resource . . . . . . . . . . . . . 40

3.5 A Definition of Semantic Relatedness . . . . . . . . . . . . . . . . . 42

ix



4 A Protocol for Constructing
a Domain-Specific Ontology: PPIWordNet 45

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 The Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Overview: A Hybrid Approach . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Related work on ontology construction . . . . . . . . . . . . 49

4.2.2 Our hybrid approach . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Development Methodology . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Process 1: PPI Ontology Capture . . . . . . . . . . . . . . . 52

4.3.2 Process 2: PPI Ontology Construction . . . . . . . . . . . . 59

4.3.3 Process 3: Integrating with Gene Ontology . . . . . . . . . . 63

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Experiment 67

5.1 Purpose of the Experiment . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Hypotheses of this experiment . . . . . . . . . . . . . . . . . 67

5.2 Steps of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Statistical analysis and performance metrics . . . . . . . . . 69

5.3.2 Case study of lexical chains . . . . . . . . . . . . . . . . . . 72

6 Conclusion 75

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Lexical chaining algorithm . . . . . . . . . . . . . . . . . . . 76

6.2.2 PPIWordNet . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.3 Judging the quality of protein-protein interactions . . . . . . 76

A Appendix 79

x



List of Figures

2.1 The architecture of GENIES [22] . . . . . . . . . . . . . . . . . . . 8

2.2 The architecture of NLProt [35] . . . . . . . . . . . . . . . . . . . . 17

2.3 Precision and Recall for Similarity, Snowball, SVM, GPE, and Com-
bined [51] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Classification of a protein C that interacts with a target interacting
protein pair A-B [43] . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Definitions and examples of Lexical Cohesion [36] . . . . . . . . . . 37

3.2 Silber and McCoy’s lexical chaining algorithm . . . . . . . . . . . . 44

4.1 Structure and examples of the Gene Ontology . . . . . . . . . . . . 47

4.2 Structure and examples of the Gene Ontology (Continued) . . . . . 48

4.3 A module for the construction of PPIWordNet . . . . . . . . . . . . 52

4.4 Examples of the seed terms . . . . . . . . . . . . . . . . . . . . . . 60

4.5 The sub-ontology for PPI molecular function terms . . . . . . . . . 62

4.6 The final ontology for PPI molecular function terms . . . . . . . . . 64

4.7 Integration with the Gene Ontology . . . . . . . . . . . . . . . . . . 65

5.1 Steps of the experiment . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Performance metrics of PPIWordNet . . . . . . . . . . . . . . . . . 71

5.3 Performance metrics of PPIWordNet (continued) . . . . . . . . . . 72

A.1 The final ontology for PPI method terms . . . . . . . . . . . . . . . 80

A.2 The final ontology for PPI interaction property terms . . . . . . . . 81

xi



List of Tables

2.1 An example of the predicate-argument representation [24] . . . . . . 11

3.1 All noun senses of car in WordNet 2.1 . . . . . . . . . . . . . . . . . 41

3.2 Silber and McCoy’s term-based score function [20] . . . . . . . . . . 43

4.1 The top-ranked 50 discriminating terms . . . . . . . . . . . . . . . . 56

5.1 The experiment results (GO = the Gene Ontology, IP = Interaction
Property, MF = Molecular Function) . . . . . . . . . . . . . . . . . 70

5.2 Lexical-chaining analysis of article “A Conserved Binding Motif De-
fines Numerous Candidate Target Proteins for Both Cdc42 and Rac
GTPases [13]” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



Chapter 1

Introduction

Each living cell is rich in proteins that continuously interact with each other. Knowl-
edge about the identities and functions of interacting proteins contributes signif-
icantly to the understanding of biological processes by providing insight into the
roles of important genes, elucidating relevant pathways, and facilitating the identi-
fication of potential drug targets for use in developing novel therapies.

A large volume of protein-protein interactions has been identified, and informa-
tion about such interactions is now readily available in online databases such as
BIND [6]. However, the information stored in current databases does not allow us
to rank the biological validity of the interactions—it may be the case that inter-
actions occurring under laboratory conditions do not actually occur in the living
cell. A researcher trying to establish the quality of the interactions identified in a
database could read the details of the experiments in each related scientific article,
but this is labourious and time-consuming. If the number of relevant papers is
high, it will be difficult or even impossible for a researcher to manually process all
the articles to assess the value of the interactions. For example, a text query in
BIND for interactions of the single protein Cdc42 will retrieve 512 records, far too
many to be easily read and analyzed by manual methods—there is a clear need for
an automated information extraction system to assist researchers in analyzing the
online literature to better judge the quality of protein-protein interactions.

We set out to develop such an automated information extraction system that
uses a Natural Language Processing (NLP) discourse analysis technique: lexical
chaining. The notion of lexical chaining derives from the concept of textual co-
hesion. A lexical chain is a sequence of semantically related words in the text,
spanning a topical unit of the text, i.e., a set of adjacent words or sentences, or the
entire text. Lexical chaining is the process of extracting and connecting semanti-
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cally related words from a text, then creating a set of word chains that represent the
various topics throughout the text. A core part of the lexical-chaining technique
is the lexical knowledge resource used for determining the ‘semantic relatedness’ of
words.

As the molecular biology literature provides detailed descriptions of protein in-
teraction experiments specifying the individual interaction partners, as well as the
corresponding interaction types, it has been exploited as a resource to derive pro-
tein interactions for interaction databases. We hoped to extract similar information
to confirm or judge the biological quality of the protein interactions. However, we
found that a major barrier to our goal is the lack of a readily available lexical knowl-
edge resource that covers vocabulary in protein-protein–interaction domains. The
most widely used lexical knowledge resource for current lexical-chaining algorithms
is WordNet [3], but WordNet represents only the general English lexicon. We then
explored the use of the most well-known biological ontology, the Gene Ontology
[18]. The Gene Ontology has a hierarchical structure similar to WordNet, which
makes it easy to convert into a WordNet-like lexical knowledge database. However,
the Gene Ontology lacks protein-protein–interaction domain-specific information,
even though it has a broad vocabulary for general biological domains.

In order to extract valuable protein interaction information that can be used
to judge the quality of protein-protein interactions, it is necessary for us to build
a protein-protein–interaction domain-specific ontology. Two types of approaches
have been used for building ontologies: manual methods and automated methods.
An example of a manual method is the one proposed by Uschold and King [49].
Their method involved three stages: identifying the purpose of the ontology (i.e.,
why to build it, how it would be used, range of the users), building the ontology,
evaluation and documentation. Automated methods often rely on corpus-based
statistical approaches that automatically build domain-specific concept structures.
Typically, an automatic approach first selects suitable text corpora to represent the
domains of interest, then finds statistical evidence about terms in the text corpora,
then finally determines relationships between concepts by considering statistical
evidence in text corpora.

This study explores a hybrid approach that combines the corpus-based statisti-
cal method that extracts domain-specific concepts from a protein-protein–interaction
(PPI) text corpus semi-automatically, and a manual method that builds a domain-
specific ontology using the concepts extracted. The PPI domain-specific ontology
was then integrated into the Gene Ontology. We ran experiments using lexical-
chaining analysis to extract information from the protein-protein–interaction liter-
ature using the original Gene Ontology and our expanded PPI-specific Gene On-
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tology. The experiment results clearly indicate that the additional PPI ontology
has a very positive impact on the quality and quantity of information extracted.

This thesis makes several significant contributions to the study of biomedical
information extraction. We develop an innovative approach to biomedical infor-
mation extraction that uses NLP discourse analysis based on a lexical-chaining
technique. We present a hybrid methodology for constructing a domain-specific
ontology for use in lexical-chaining analysis, and use our methodology to develop a
protein-protein–interaction ontology extension to the Gene Ontology. We provide
experimental results that indicate the use of a domain-specific ontology improves
the performance of information extraction based on lexical-chaining analysis. We
also investigate several metrics for lexical chains and the possibility of using these
metrics to judge the biological validity of protein-protein interactions.

This thesis consists of six chapters. Chapter 1 introduces the motivation and
methodology for our study. Chapter 2 reviews relevant research in biomedical infor-
mation extraction, including the state-of-the-art of systems using NLP techniques.
In Chapter 3, we introduce the lexical-chaining technique and present the details of
the lexical-chaining algorithm we adopted in our study. In Chapter 4, we describe
our methodology for constructing a domain-specific ontology for use in the lexical-
chaining analysis module. In Chapter 5 we conduct an experimental evaluation of
the constructed domain-specific ontology, and compare its performance in analyz-
ing protein-protein–interaction texts to an existing biological ontology, the Gene
Ontology. The Chapter 6 concludes the thesis with a summary and suggestions for
future work.
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Chapter 2

Survey of
Biomedical Information
Extraction

2.1 Information Extraction

Information Extraction (IE) is the process of extracting information from natural-
language text, one of the most prominent techniques currently used in Text Mining.
Text mining, as Hearst [27] put it, is “the discovery by computer of new, previ-
ously unknown information, by automatically extracting information from different
written resources”. Text mining is different from traditional Information Retrieval
(IR). Information Retrieval focuses more on the larger units of text such as docu-
ments, and usually the information retrieved is delivered in the form of complete
documents. For example, an information retrieval task could be helping users find
documents that satisfy their information needs. On the other hand, text mining
is also different from pure Natural Language Processing (NLP), even though some
natural language processing techniques are widely used in text mining. Natural
language processing is a general description for all attempts to use computers to
process the languages naturally used by humans. It aims to understand the mean-
ing of the whole text, while text mining focuses more on solving a specific problem
at a time, i.e., identifying needed information, detecting certain relationships of
interest, and so on [17]. Information extraction has been particularly useful in text
mining tasks. Rather than mining ‘a nugget of gold’ from a sea of irrelevant in-
formation, Information Extraction aims to assemble/discover new knowledge from
vast amount of texts when none of these is particularly valuable alone.
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In order to evaluate system performance, developers of information extraction
applications have adopted several standard evaluation metrics from information
retrieval including precision, recall, and a combined metric, F-measure [30]. Recall
measures how much relevant information the system has extracted from the text;
precision measures how much of the information that the system returned is actually
correct. Often these two measures are antagonistic to one another, and the decision
as to which measure is more important may be dependent on the application. F-
measure balances recall and precision by using a weight parameter β. The formulas
to calculate the three measures are listed below:

R = recall =
# of correct answers given by system

total # of possible correct answers by system

P = precision =
# of correct answers given by system

# of answers by system

F =
(β2 + 1)PR

β2P + R

Biomedical information extraction has attracted increasing attention in recent
years. The volume and complexity of published biomedical research is expanding at
an impressive and even intimidating rate. As of 2006, MEDLINE1 contains over 15
million bibliographic citations from more than 5,000 biomedical journals worldwide;
over 623,000 total references were added in 2006 alone.

It is difficult and often impossible for researchers to find what they are look-
ing for within this huge sea of data. For example, researchers trying to assess
the biological validity of interactions of a protein could read the details of the ex-
periments in each related scientific article, but a text query in a protein-protein
interaction database such as BIND [6] for interactions of the single protein Cdc42
will retrieve 512 records, far too many to be easily read and analyzed by manual
methods. There is a clear need for automated information extraction solutions to
assist researchers in processing and analyzing biomedical literature. Biomedical
information extraction has focused on the following three tasks:

Named Entity Recognition:
Identifying gene and protein names in biomedical text.

1MEDLINE is the National Library of Medicine’s premier bibliographic database covering
the fields of medicine, nursing, dentistry, veterinary medicine, the health care system, and the
preclinical sciences.
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Named Entity Normalization:
Mapping genes to their unique identifiers in organism databases.

Functional Annotation:
Associating proteins/genes that interact with one other.

Among many information extraction techniques, NLP techniques are now widely
used in biomedical information extraction. A typical NLP approach usually involves
a simple recognition of basic grammatical features (e.g., each word’s part-of-speech),
and then a ‘shallow’ syntactic analysis using targeted grammatical rules to identify
elemental units (e.g., noun phrases, verb phrases) within the sentence.

A detailed survey of representative work on these specific tasks will be given later
in this chapter. First we will describe two systems, GENIES [22] and PASTA [24],
to demonstrate the utility of NLP techniques in biomedical information extraction.

2.1.1 GENIES

GENIES (Genomics Information Extraction System) [22] is a component of a com-
prehensive information extraction system called GeneWays. The creators of Ge-
neWays had ambitious goals to perform massive automated extraction, analysis,
visualization, and integration of molecular pathway data. As the core component
of GeneWays’s NLP module, GENIES’ responsibility is to extract and structure in-
formation related to molecular pathways by parsing full-text articles collected from
the websites of scientific journals.

The architecture of GENIES is shown in Fig 2.1. GENIES consists of six compo-
nents: two internal knowledge sources (Lexicon and Grammar) and four processing
components (Term Tagger, Preprocessor, Parser, and Error Recovery).

The manual construction of the knowledge sources takes significant effort. The
creators of GENIES manually developed an ontology for the signal transduction
domain and built a semantic grammar along with manually derived syntactic and
semantic constraints [42].

The first step in text processing is the part-of-speech tagging of the input text.
The Term Tagger [32] used BLAST techniques, specialized rules, and external
knowledge sources, such as GeneBank [10] and Swiss-Prot [7], to identify and tag
genes and proteins. BLAST (Basic Local Alignment Search Tool) [5] is a heuris-
tic algorithm that attempts to optimize the process of DNA and protein sequence
comparison. The Term Tagger made use of BLAST by mapping sequences of text
characters into sequences of nucleotides, which can be processed by BLAST.
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Figure 2.1: The architecture of GENIES [22]

Secondly, the Preprocessor segments articles into sentences, words, or atomic
multi-word phrases. Words and phrases that are not tagged in the previous step
can be further identified through lexicon lookup.

Thirdly, the Parser uses grammatical rules to recognize, fill semantic patterns,
and generate target output. GENIES’ target output can be viewed as a list of
elements and relations that link the elements. Elements are tagged with type
and value. Relations usually are more complex and in some cases nested. As an
illustration, the sentence “phosphorylated Cbl coprecipitated with Crkl, which was
constitutively associated with the C3G” will generate the following target output:

[action, attach,
[protein, Cbl, [state, phosphorylated]],
[protein, Crkl, [action, attach, [protein, Crkl ], [protein, C3G]]]]

In the output, there is one nested relation (attach in line 1) and one primary
relation (attach in line 3), corresponding to coprecipitated with and associated with
respectively; the primary attach relation links protein element Crkl with C3G, while
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the nested relation links Cbl with Crkl.

Lastly, the Error Recovery module uses various strategies to parse sentence
components to improve precision.

GENIES’ performance was measured against human experts. After processing
a 8000-word article selected from Cell2, GENIES obtained 96% precision and 53%
recall. With this satisfyingly high precision, GENIES shows promising capabilities
to extract valuable and complex information from biomedical text. However, the
evaluation was only performed on a single article, so that more thorough evaluation
needs to be done. GENIES also only extracts information on a single-sentence basis.
In the next section, we will describe another system, PASTA [24], which deals with
multiple sentences.

2.1.2 PASTA

Gaizauskas et al. [24] described the PASTA (Protein Active Site Template Acqui-
sition) project, whose goal is to extract detailed information of the roles of amino
acids in protein molecules, to place the information into structured representations,
and to generate a database of protein-active sites from both scientific journal ab-
stracts and full articles. PASTA uses a pipeline architecture consisting of four
principal stages:

Text preprocessing.
This stage consists of three activities: section analysis, tokenization, and
sentence splitting.

1. Section analysis: Use a set of regular expressions to identify those sec-
tions in a text that are considered relevant for information extraction.

2. Tokenization: Segment the relevant text sections into the smallest pro-
cessing atoms. For example, word Cys128 will have two tokens: Cys and
128 ; compound protein name casein kinase will also have two tokens:
casein and kinase.

3. Sentence splitting: Segment the text into sentences.

Terminological Processing.
This stage contains three modules: morphological processing, lexical lookup,
and terminology parsing. A protein name casein kinase is used as an example
to illustrate each module’s functionality.

2http://www.cell.com/
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1. Morphological processing: Identify tokens that contain interesting bio-
chemical affixes such as -ase or -in. Token kinase thus may be identified
as a ‘protein head’ term based on the morphological affix -ase, while
casein may be identified as ‘protein modifier’ term based on the affix
-in.

2. Lexical lookup: Use a series of finite state recognizers to identify and if
possible classify the token-sequences. Token casein and kinase may be
identified as a compound term based on their position in the text.

3. Terminology parsing: Use a rule-based terminology parse to analyze,
assemble, and classify the identified token/token sequences to single
multi-token unit. casein kinase will be recognized as a protein name
by a grammatic rule such as:

protein –>protein modifier, protein head, numeral.

Syntactic and Semantic Processing.
At this stage, text is processed on a sentence-by-sentence basis. Each sen-
tence is transformed into a semantic representation by applying the NLP
syntactic analysis (part-of-speech tagging and phrasal parsing) followed by
the transduction of grammatical form into a predicate-argument semantic
representation. As an illustration, the predicate-argument semantic represen-
tation derived from the sentence Ser154, Tyr167 and Lys171 are found at the
active site is shown in Table 2.1.

Discourse Processing and Template Extraction.
At this stage, the semantic representations from multiple sentences are linked
by making inferences using a predefined domain model, which is made up
of a concept hierarchy, inheritable properties of concepts, and inference rules
associated with concepts. Then the linked semantic representations are fur-
ther merged/added into the domain model. Following the discourse process,
a template-writing module scans the final domain model for information rel-
evant to the templates and eventually generates filled templates.

The preliminary experiments for the PASTA system achieved an average of 94%
precision and 88% recall for terminology recognition and classification on a test set
of 52 abstracts.

Although there was a lack of thorough evaluation, PASTA and GENIES were
among the first systems that demonstrated the feasibility of automatically building
a structured knowledge base directly from the literature using NLP techniques with
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Predicate Arguments
residue(e1) name(e1,‘Ser154’)
residue(e2) name(e2,‘Tyr167’)
residue(e3) name(e3,‘Lys171’)
set(e4) member(e4,e1), member(e4,e2), member(e4,e3)
find(e5) lobj(e5,e4)
active site(e6) at(e5, e6)

Table 2.1: An example of the predicate-argument representation [24]

promising test results. In the following sections, we will survey the achievements
and efforts for the major Information Extraction tasks.

2.2 Named Entity Recognition and Normaliza-

tion

One of the initial challenges of Information Extraction systems is to recognize the
entity names in the text. This task includes two steps: Named Entity Recognition
(NER) and Named Entity Normalization (NEN). Named Entity Recognition is the
identification of text terms that refer to concepts of interest in specific domains,
whereas Named Entity Normalization is the mapping of these terms to the unique
concept to which they refer. The targeted entities in the biomedical domains include
genes, proteins, chemicals, cells, and organisms, etc.

2.2.1 Named Entity Recognition

The Named Entity Recognition problem has attracted extensive attention and many
techniques have been well-developed, but it still remains a challenging task in
biomedical domains. This is largely because the entity names in biomedical do-
mains are much more complex than in other domains. The naming conventions in
biomedical domains have the following characteristics ([52], [35]):

Descriptive naming convention.
Without the standardized gene-naming rules in biology, biomedical entity
names are often derived from descriptive terms and vary considerably in style
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from organism to organism. Moreover, the conventions for new gene/protein
names often depends partially on the author’s style. The descriptive style of
naming makes it difficult to identify the left boundaries of such names.

Conjunction and disjunction.
Two or more biomedical entity names may share one head noun due to con-
junction or disjunction, e.g., ‘91 and 84 kDa proteins’ consists of two entity
names: ‘91 kDa proteins’ and ‘84 kDa proteins’.

Unknown words.
With the explosive growth in the volume of biomedical literature, new entity
names are being created constantly, and only later will be recognized by
domain experts through repetition of use. This consequently results in the
low coverage of existing biomedical dictionaries.

Acronyms and Abbreviation.
Acronyms and abbreviations are frequently used in biomedical domains. Be-
cause of the ambiguity of acronyms and abbreviations that refer to multiple
terms, sometimes across multiple domains, the classes of acronyms or abbre-
viations cannot be resolved by use of dictionaries alone, and are very much
dependent on the context.

Cascaded construction.
A biomedical entity name may be embedded in another biomedical entity
name. Consider the named entity kappa 3 binding factor. Its annotation
<PROTEIN><DNA>kappa 3 </DNA>binding factor </PROTEIN> has
two right boundaries at 3 and factor, which correspond to the embedded
named entity in the DNA category and the nested named entity of the Protein
category, respectively.

There are three basic approaches to Named Entity Recognition: rule-based,
dictionary-based, and context-based. In a rule-based approach, entity names are
extracted by applying a set of manually developed rules that exploit surface cues
and use simple linguistic and domain knowledge ([23], [37]). In a dictionary-based
approach, a long list of patterns that cover terms from the dictionary and their vari-
ations is first constructed. The text is tokenized and each textual n-gram segment
in the text is scanned for matches to the patterns in the list [31]. The context-based
approach is the most popular one. With this approach, the recognizer is trained
on an annotated corpus by using statistical machine-learning techniques, such as
Hidden Markov Models (HMM) [41], Support Vector Machines (SVM) [19], etc.
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The machine-learning classifier is used to determine the text regions corresponding
to entity names.

Each of these approaches has its advantages and disadvantages, but they need
not be used in isolation. Mika and Rost [35] constructed a system that com-
bined dictionary-based and rule-based filtering with several SVMs to identify pro-
tein names in MEDLINE abstracts. We will describe an example of each approach
below.

2.2.1.1 Fukuda et al. (1998)

Fukuda et al. [23] pioneered the automated identification of protein names. Before
Fukuda, the best-known strategy was to prepare proper-noun dictionaries and a
syntactic pattern dictionary. However, the performance of this strategy depended
heavily on the quality of the proper-noun dictionaries used so that preprocessing
was necessary in which patterns were used to extract compound words as a word.
Fukuda et al. proposed a method, PROPER (PROtein Proper-noun phrase Ex-
tracting Rules), which extracts entity names using surface cues on character strings
in biomedical documents. This method uses the characteristics of proper-noun
descriptions in these research fields, and does not require pre-existing dictionar-
ies of proper nouns. For example, protein names are classified into three cate-
gories according to their properties such as the occurrences of uppercase letters,
numerals and special endings, etc. As a result, PROPER can extract names with
high accuracy, regardless of whether the name is a known/unknown word or a
single/compound word.

In this study, the targeted entity names included protein names, protein domain
names or motifs, sites, fragments, and elements, etc. Fukuda et al. further defined
two types of terms, core-terms and feature-terms, to categorize individual words.
Core-terms are words which provide core information such as protein names and
have recognizable surface features, such as capital letters, numerals, special sym-
bols, so that they can be clearly distinguished from general words. Feature-terms
describe the domain-specific functions and characters of compound words, and can
be used for classification of the compound words. In the following phrase, EGF
receptor, EGF is the core-term, and receptor is the feature-term. The process flow
of PROPER is summarized as follows:

1. The text is split into sentences, tokenized, and then tagged using a part-of-
speech tagger.
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2. Next, all words which are syntactically predicted to be a core-term are ex-
tracted as candidate words, e.g., words with uppercase, numerical figures, etc.
Words which are semantically unacceptable as core-terms are then removed
from the candidate word list.

3. Adjacent core-terms and feature-terms are concatenated by matching against
surface rules and/or part-of-speech rules. In this step, noun phrases without
conjunctions and prepositions are reconstructed.

4. Noun phrases generated in the last step are further combined at the sentence
basis by applying several simple patterns.

5. Improper part-of-speech annotations are removed to achieve high recall.

The system was evaluated on 30 MEDLINE abstracts on SH3 domain and
50 MEDLINE abstracts for signal transduction. The results showed precisions on
various levels ranging from 90% to 96% with recall roughly in the same range as
well.

2.2.1.2 Narayanaswamy et al. (2003)

Narayanaswamy et al. [37] described a name entity extraction system that was
inspired by Fukuda’s method. They improved upon Fukuda’s method in two ways:
first, they improved the precision and recall significantly; secondly, they recognized
not only protein and gene names, but also other types of names. Their target entity
names included protein/gene names, protein/gene parts, chemical names, chemical
parts, source terms (e.g., cells, cell parts, organisms, etc.), and general biological
terms that could not be classified into the above classes.

The approach taken was symbolic, based on a set of manually developed rules.
These rules exploited surface cues and simple linguistic and domain knowledge to
identify the relevant terms in the biomedical literature.

Like Fukuda’s method, Narayanaswamy et al. categorized two types of terms,
core-terms and functional-terms, and proceeded to identify these terms using similar
procedures. However they differed from Fukuda et al. in the following aspects:

Classification.
While Fukuda et al. did not deal with classification, Narayanaswamy et
al. associated each extracted term with its classification (protein/gene, pro-
tein/gene parts, chemical, chemical parts, and source).
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Abbreviations.
A simple algorithm was used to identify abbreviations and associate each
identified abbreviation with its classification. Their algorithm was based on
the observation that the first occurrence of an abbreviation typically occurs
within the parenthesis following the original term.

Core-terms.
Two types of core-terms were further defined: protein c-terms and chemical
c-terms. General core-terms are extracted by applying surface rules similar to
Fukuda et al. Among the general core-terms, chemical c-terms were identified
through the recognition of chemical root forms based on the International
Union for Pure and Applied Chemistry (IUPAC) chemical naming conven-
tions and other morphological features such as suffixes. Protein c-terms are
identified solely on the basis of suffixes such as -ase.

They evaluated the system on 55 MEDLINE abstracts collected by searching
for acetylates, acetylated, and acetylation. The test set had a good proportion
of protein, protein part, and chemical names. The evaluation showed precision,
recall, and F-measure values of 90.39%, 95.64%, and 92.94%, respectively. The
authors also ran Fukuda’s system on their test set. They claimed that their system
substantially outperformed Fukuda’s, and that the difference in precision could be
largely attributed to the presence of chemical and source names.

2.2.1.3 Kou et al. (2003)

Kou et al. [31] proposed a novel dictionary-based Named Entity Recognition method
that was part of a larger image and text extraction system, SLIF. Their systems’s
characteristics required focusing on identification of entities from a fixed list that
could change over time and considering recall to be more important than precision.

Their method was a novel approach that combined a dictionary-based method
with a statistical machine-learning method, Hidden Markov Models. The basic
idea was to combine a dictionary with a Hidden Markov Model to perform a ‘soft-
matching’3 of phrases in the text to entries in the dictionary.

Kou et al. constructed a protein name dictionary by extracting the ‘protein
name’ field from the PIR-NREF database4. They integrated the entries in the

3An approach that uses a text-similarity measure such as string edit-distance or vector-space
cosine similarity to flexibly match textual items.

4http://pir.georgetown.edu/pirwww/search/pirnref.shtml
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dictionary into a Hidden Markov Model, so that each sequence of states in the
Hidden Markov Model corresponded to a single entry from the dictionary. The
text was first stripped of stop words, and then tokenized. Then the tokenized
text was passed through the dictionary-integrated HMM and resulting sequences
of feature vectors were classified.

This method was evaluated on three datasets: University of Texas5, GENIA6,
and YAPEX7. They achieved precision values of 73.4%, 49.2%, and 67.8% respec-
tively; recall values were 47.8%, 66.4% and 66.4% respectively.

2.2.1.4 Zhou et al. (2004)

Zhou et al. [52] described a named entity recognizer, PowerBioNE, which also
adopted a statistical machine-learning technique, a Hidden Markov Model. Their
system dealt with various special characteristics of naming conventions in biomed-
ical domains, including descriptive naming conventions, conjunction and disjunc-
tion, unknown words, abbreviations, and cascaded constructions. They claimed
their system was the first system to deal with cascaded entity names.

In order to deal with these special characteristics, Zhou et al. incorporated into
a HMM-based named entity recognizer a comprehensive set of evidential word for-
mation patterns (i.e., capitalization, digitalization, etc.), morphological patterns
(prefix, suffix), part-of-speech patterns, head noun triggers (the major noun of a
noun phrase), special verb triggers (i.e., bind, inhibit, activate), and name alias
features (i.e., abbreviations, short forms, etc.). The idea was to assign each output
an appropriate tag, which contained boundary and class information, so that the
sequences with the most likely tags would be extracted according to their likeli-
hoods.

Zhou et al. evaluated the PowerBioNE system on GENIA V3.0 and GENIA
V1.1. For GENIA V1.1, they selected 590 abstracts as the training data and 80 as
the test data; for GENIA V3.0, they selected 1800 abstracts as the training data
and 200 as the test data. Their results showed a precision of 66.5% and recall of
66.6% for GENIA V3.0 with a precision of 63.1% and recall of 61.2% for GENIA
V1.1.

5ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/ proteins.tar.gz
6http://www-tsujii.is.s.u-tokyo.ac.jp/ genia/topics/Corpus/posintro.html
7http://www.sics.se/humle/projects/prothalt
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2.2.1.5 Mika et al. (2004)

Mika et al. [35] described a named entity recognizing system, NLProt, which com-
bined a pre-processing dictionary-based and rule-based filtering step with several
separately trained Support Vector Machines to identify protein names in MEDLINE
abstracts. Figure 2.5 shows the architecture of NLProt.

Figure 2.2: The architecture of NLProt [35]

First, the input text was ‘sliced’ into individual samples by a ‘sliding window’
approach. Secondly, these contiguous samples of tokenized words were pre-filtered
through a prepared dictionary. The dictionary was a list of all SWISS-PROT +
TrEMBL [7] protein/gene names with each name linked to its associated database
identifier. Thirdly, the resulting words were passed to the three SVMs: SVM1,
SVM2, and SVM3. Each of the SVMs was trained on a specific part of the samples:
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SVM1 focused on the centers (i.e., names), SVM2 on the contexts surrounding the
names, and SVM3 on the overlap between the two. Fourthly, the output values
from the three SVMs were combined with a dictionary, and in turn generated the
final score for each sample.

Mika et al. evaluated their system on GENIA. They selected 180 abstracts as
the training data for the first three SVMs, 15 as the training data for the fourth
SVM, and five as the test set. They then rotated through all abstracts, such that
each abstract was used for testing exactly once. Their result showed that the use
of both SVMs and a dictionary achieved an average precision of 75%, and recall of
76%.

2.2.1.6 Summary

It is difficult to compare the performance and efficiency of various approaches be-
cause of the use of different training and test data. In general, each approach has
its respective advantages and disadvantages.

Dictionary-based approaches have several advantages over the other approaches.
They can make use of the huge amount of information in curated databases; they
require no training, therefore can perform more uniformly over different data sets;
they also can be easily followed by the entity normalization process as they often
provide identifiers for recognized words. However, dictionary-based approaches
have two fundamental problems. The first is a large number of unknown words
and false positives caused mainly by name variations, which typically results in low
recall compared to the other approaches. The second problem arises because the
extractors often become outdated when the dictionaries upon which they are based
on become outdated.

Manually constructed rule-based systems demonstrate reasonable performance
on biomedical texts because many entity names have recognizable word-format
patterns like capitalization, digitalization, etc. The advantages of the rule-based
methods include an ability to use the volumes of information in curated databases,
the lack of need for less descriptive models, the lack of need for domain knowledge,
and the ready extension using linguistic knowledge due to conceptually obvious
rules. However, a disadvantage of rule-based systems is that rules need to be
manually constructed and maintained. Another disadvantage is that these systems
do not provide identification information on recognized terms, which simplifies the
entity recognition process, but on the other hand is a serious drawback to the entity
normalization process.
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The context-based approaches have been shown to have the best performance
among all three types of approaches, but they are often the most complex to im-
plement. These approaches often require extensive training whereas the training
collections for gene and protein normalizations are few. In principle, they do not re-
quire updating when the set of entities changes. However, machine-learning–based
extractors do depend on the specified dictionary of entities in the test data being
available at training time. It is unclear how they would perform on different test
sets, hence they may not be readily applicable to different data.

2.2.2 Named Entity Normalization

A natural follow-up task to Entity Name Recognition is Entity Name Normaliza-
tion [16]. Named Entity Recognition and Normalization are the fundamental tasks
in biomedical text mining. Gene and protein named-entity recognition and nor-
malization are often treated as a two-step process. While the first step, NER, has
received considerable attention over the past few years, normalization has received
much less. A typical NER system usually uses a combination of hand-built dictio-
naries, approximate string-matching, and parameter tuning based on the training
data. The most common obstacles that a NER system might face are: name vari-
ations, synonyms, acronyms, and so forth. Below we describe three systems ([16],
[51], and [40]), which each tackles one of the problems above using its own novel
approach.

2.2.2.1 Cohen (2005)

Cohen [16] developed a dictionary-based NER system that required no training
or manually built dictionaries. An integrated list of terms from several online
database was constructed by extracting the standard symbol, unique identifiers,
name, synonyms, and aliases from each of these databases. The input text was
segmented into sentences, and each segment was then searched for the terms in
the integrated dictionary. Cohen selected a total of five online databases: MGI8,
Saccharomyces9, UniProt (the curated SwissProt portion only)10, LocusLink11, and
the Entrez Gene database12.

8http://www.informatics.jax.org
9http://www.yeastgenome.org

10http://www.pir.uniprot.org
11http://www.ncbi.nlm.nih.gov/LocusLink
12http://www.ncbi.nlm.nih.gov/entrez
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To increase the performance of the system, Cohen adopted the following strate-
gies:

Re-processing database:

1. Generate orthographic variants for each term in the list by iteratively
applying a few simple rules, such as replacing internal spaces in the
original term with hyphens (or vice versa), removing hyphens or spaces
in the original term, etc.

2. Remove the 300 or so most common English words (stop words) from
the dictionary.

3. Separate the dictionary into two parts, one part containing the terms
easily confused with common English words (the ‘confuse dictionary’),
and a much larger dictionary of terms that are not likely to be confused
with English words (the main dictionary). Terms in the confuse dictio-
nary will be searched in the input text without regard to case while the
main dictionary are case-sensitive.

Disambiguation:
Cohen proposed a unique disambiguation algorithm that was based on the
assumption that usually either an author provides sufficient context for the
reader to resolve ambiguous terms, or the ambiguous terms are synonyms for
other non-ambiguous terms within the same text context.

Cohen evaluated the performance of the system on the BioCreative [1] Task1B
mouse and yeast collections, and compared his results to other participants in
BioCreative Task 1B. His system’s precision was among the best, with an F-measure
near the median. Cohen further evaluated the performance of each approach de-
scribed above, and, surprisingly, the case-sensitive search for main dictionary terms
produced the largest improvement in the F-measure, 15.6%, while removing stop
words made the second largest improvement, 6.8%.

Cohen’s results demonstrate that an simple, easily implemented and unsuper-
vised dictionary-based approach to NEN can be as effective as more sophisticated
systems. His experiments also give interesting insights into how various factors can
affect the performance of dictionary-based approaches.
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2.2.2.2 Pustejovsky et al. (2001)

A more complicated approach to recognizing entity names is acronym-meaning
identification. Acronyms are widely used in the biomedical literature and other
scientific texts, therefore the ability to recognize and link acronyms to their full-
length reference terms is very important in improving the performance of biomedical
information extraction. Pustejovsky et al. [40] presented a Vector Space Model
algorithm for disambiguating the acronyms that have multiple meanings, Polyfind.

Polyfind specifically targets one case of ambiguity: A polynym (an acronym or
alias that has several possible associated long forms or meanings) is found in a text,
and the meaning is not available or defined in that text. The algorithm has two
steps:

1. For the target polynym, build the training data by collecting MEDLINE
abstracts that define the polynym for each of its meanings. Abstracts that
define the same meaning are grouped together and will be used as document
templates.

2. For a text that contains the polynym without definition, the similarity is
computed between this text and the sets of document templates, each of which
defines a meaning for the polynym. The polynym is assigned the meaning
defined in the document template that has the highest similarity score.

Pustejovsky et al. evaluated the correctness of their algorithm against manual
results: their algorithm achieved 97.62% accuracy in disambiguating acronym SRF
and 82.22% in disambiguating alias p21. These results showed that a vector space
model for polynym sense disambiguation is both applicable and effective to alias
disambiguation.

2.2.2.3 Yu et al. (2003)

Yu et al. [51] investigated four existing approaches for extracting entity synonyms,
with the prerequisite that the entity names must already have been identified in the
text. The approaches included unsupervised, partially supervised, and supervised
machine-learning methods, as well as manual knowledge-based methods. Yu et al.
also developed a combined system that exploited the strengths of three of these
techniques, and performed a thorough evaluation of five approaches.
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An unsupervised approach: Contextual similarity.
This method determines whether a set of words are synonyms by comparing
their contexts. If the contexts of the two words are similar, then the two words
are considered synonyms. This method is based on the simple observation
that synonyms of a word tend to appear in the same contexts.

A partially-supervised approach: Snowball.
Snowball uses a bootstrapping approach for extracting structured relations
from natural language. In this case, the relation of interest is Synonym(term1,
term2). The system starts with a small set of user-provided positive and neg-
ative examples, then proceeds to recognize and generate patterns iteratively
by searching for occurrences of positive pairs. The patterns are later used
to extract synonyms. An example pattern could be “term1 also known as
term2”.

A Supervised approach: Text classifier SVM.
The classifier SVM starts with the same positive and negative examples used
by Snowball. Then the classifier is trained to distinguish between the ‘positive’
text contexts and the ‘negative’ text context. After the classifier is trained,
the system examines every context surrounding pairs of terms and determines
whether the context is a positive or negative instance. Each pair of terms is
then assigned a confidence score.

A manual knowledge-based approach: GPE.
Here, the patterns in which synonyms appear are generated manually by
domain experts. These patterns are then used to automatically scan the text
for additional new synonyms.

The combined system.
Each of the above approaches has its advantages and disadvantages. As an
unsupervised method, Similarity does not require manual training, but it
does not distinguish false positives from true positives. Snowball and SVM
can extract patterns automatically, so are therefore able to determine more
synonyms than the labour-intensive GPE system. However, GPE generates a
smaller but higher quality set of synonyms as it is the least likely to extract
false positives.

The combined system integrates the output of Snowball, SVM and GPE. The
input text is processed by each system and pairs of synonyms are output,
together with corresponding ‘confidence’ scores that represent the probabil-
ity that the extracted synonym pair is correct. The combined system then
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computes the final probability that the synonym pair was extracted correctly
as (1 - the probability that all systems extracted this pair incorrectly).

Yu et al. evaluated Similarity, Snowball, SVM, GPE, and Combined over a
collection of 52,000 recent biomedical journal articles collected by the GeneWays13

project. Figure 2.3 shows the performance metrics of all systems. In summary, the
combined system has the best performance for both precision and recall. Among
all the systems, Similarity had the worst recall (less than 0.09% for all confidence
score), and precision (less than 0.01%, too low to be shown). Snowball, SVM, and
the combined system had comparable performances: the combined system had the
highest recall for all confidence score, while Snowball and SVM outperformed the
combined system on precision for all confidence scores larger than 0.6. As GPE
always assigns the confidence score of 1 to all extracted candidate pairs, therefore
GPE’s performance was represented by a single data point in each plot. In terms
of the estimated number of real synonym pairs extracted, the combined system had
the largest estimated number. In summary, Combined was the best performing
system for all metrics.

13http://geneways.genomecenter.columbia.edu/
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(a) Recall versus confidence score (b) Precision versus confidence score

(c) Precision versus Recall (d) Estimated number of synonym pairs cor-
rectly extracted by each system versus confi-
dence score

Figure 2.3: Precision and Recall for Similarity, Snowball, SVM, GPE, and Com-
bined [51]
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2.3 Functional Annotation

Functional Annotation in biomedical domains can be described as the attachment
of biological information to named entities identified in texts, e.g., proteins, genes,
etc. An example of a basic annotation activity would include using BLAST [5]
to determine sequence similarity and then annotating the genome on the basis of
these similarities. Currently, an increasing amount of information is being added to
the scope of annotation. This additional information, such as biochemical function,
biological function, and participated interactions, could greatly help researchers in
various genome studies. The need for accurate and robust automatic annotation
tools has risen significantly due to the past decade’s explosive increase in the num-
bers of genes and proteins both discovered and predicted. However, the Functional
Annotation task is more difficult and complex than either Named Entity Recog-
nition or Normalization because of the innate complexity of molecular functions,
relations between molecular functions and molecular products, and the expressions
of said functions and relations.

This section has provided a brief overview of current state of research studies
on general Functional Annotation in biomedical domains. Functional annotation
specific to Protein-Protein Interaction (PPI) will be described in the following sec-
tion.

2.3.1 Relationship Extraction

There are many applications of Functional Annotation in the biomedical domain,
with one of the most popular topics in recent years being the extraction of specific
relationships between genes. The goal of this type of task is to detect occurrences
of a certain relationship between a pair of genes or proteins. In brief, this task has
been approached using three different types of methods: pattern-based, statistical,
and Computational Linguistic. Pattern (template)-based methods use pre-existing
templates to extract concepts linked by a specific relation from a text corpus. The
templates are either manually generated by domain experts or automatically gener-
ated by detecting patterns in the context surrounding concept pairs known to share
the relevant relationship. Statistical methods are used to identify relationships by
searching for co-occurrence of concepts in the same text context, i.e., two proteins
appearing in a sentence might indicate there is a relationship between these two
proteins. These methods are based on the reasoning that concepts which co-occur
more frequently than predicted by chance are likely to have some type of seman-
tic relationship. Lastly, Computational Linguistic methods use knowledge-based
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techniques to perform a substantial amount of text parsing to decompose the text
into a representation from which relationships can be readily extracted. ([44], [47],
[39]).

Sekimizu et al. [44] collected the most frequently used verbs in a collection of
abstracts, then developed shallow-parsing techniques to find corresponding subjects
and objects. They estimated their precision at 73%. Stapley and Benoit [47] ex-
tracted the co-occurrences of gene names from MEDLINE articles, then used this
information to predict the relations between genes using their co-occurrence statis-
tics. Pustejovsky and Castaño [39] targeted the extraction of inhibit relations from
text and finite-state automata to recognize these relations. Their unique approach
was based on the use of coreference relationships to extract inhibit relations that
spanned multiple sentences. We will describe each of these three approaches in
more detail in the following subsections.

2.3.1.1 Stapley and Benoit (2000)

Stapley and Benoit’s [47] approach was based on the premise that if two genes
have a related biological function, then there should be an increased likelihood
of those two gene names occurring in the same document or document abstract.
They investigated this hypothesis by generating graphs in which nodes represented
genes and edges were representing the co-occurrence relation of two genes. Their
experiment successfully showed linking of related genes, but no actual precision or
recall rates were given. It is clear that this approach cannot extract more detailed
information so it is of limited use. A great deal of useful information could be
extracted from MEDLINE articles if the text could be more thoroughly analyzed
to obtain useful linguistic knowledge such as morphological, syntactic, semantic,
and discourse information.

2.3.1.2 Sekimizu et al. (1998)

In a more-sophisticated approach, Sekimizu et al. [44]’s aim was to recognize and ex-
tract from free text more-detailed information about interactions between proteins
and other molecules by using templates that matched specific linguistic patterns
of usage. Sekimizu et al. adopted a rather straightforward strategy to identify in-
teractions between genes and gene products. Their method was centred on the
frequently occurring verbs in MEDLINE abstracts. They identified interactions
between genes by finding the subject and object terms for the most frequently oc-
curring verbs in the raw text of the MEDLINE abstracts. In parsing each sentence
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in this corpus, instead of traditional full parsing techniques they used partial and
shallow-parsing methods to obtain morphological and syntactic information. Their
method was able to find a large quantity of subject and object pairs for various
verbs with a reasonable precision rate. The precision of those pairs was examined
manually for various verbs, and depending upon the specific verb, the precision
ranged from 67.8% to 83.3%.

Sekimizu et al. then attempted to automatically generate database entries con-
taining relations extracted from MEDLINE abstracts. The relations in which they
were interested were based on the following verbs: activate, bind, interact, regu-
late, encode, signal and function. This task formed part of a larger project which
included automatic SGML tagging of abstracts before information extraction is per-
formed. Their overall methodology was to parse, determine noun phrases, identify
the commonly occurring verbs, then select the most likely subject and object from
the candidate noun phrases in the surrounding text. They used a corpus of 898,000
words extracted from MEDLINE and reported precision results which ranged from
67.8% to 83.3% across the different verbs.

2.3.1.3 Pustejovsky and Castaño (2002)

Pustejovsky and Castaño [39] developed a robust parser for identifying and extract-
ing inhibit relations from biomedical text. Their approach used a combination of
lexical-semantic theory and large-corpus analysis techniques. They first constructed
simple semantic-analysis automata for the relevant relations, then developed rules
specific to a particular relation or a class of relations by doing a corpus analysis for
the subset of MEDLINE abstracts corresponding to the target relations, e.g., in-
hibit. A distinguishing feature of their system was its anaphora resolution module.
This module focused on the resolution of anaphoric dependencies within biomedical
literature, (i.e., MEDLINE), and could be used to integrate entity identification and
coreference resolution modules for information extraction in biomedical domains.
The results reported in this paper focused on the extraction of inhibit relations and
demonstrated that it was possible to extract limited, but biologically important,
information from free text with high reliability using a classical natural language
processing approach.

2.3.1.4 Summary

Although the template/pattern approach produces better results than the statistical
approaches, it is still inherently limited: this type of system often targets only
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abstracts, deals with only a single sentence at a time, and uses simplified methods
of linguistic analysis. As a consequence, these approaches to biomedical information
extraction miss a great deal of the detailed information on gene relations that are
contained in the text. Potentially a great deal of additional information could be
extracted from scientific articles if we were able to analyze the entire text of the
article to derive detailed linguistic information such as lexical meanings, syntactic
structure, semantic content, and discourse structure.

Computational Linguistics research is still not sufficiently advanced to han-
dle these difficult problems even for restricted sub-languages and certainly not for
the very large corpora needed for useful biomedical information extraction. Vari-
ous systems have attempted to finesse these difficulties by using a method of text
analysis that approximates full syntactic processing, and that takes a heuristic
approach to semantic analysis based on the recognition of interactions between
proteins and other molecules in the form of templates matching specific linguistic
patterns. However, current research results in relation extraction indicates that
significant improvement is still needed to make the existing systems effective in
practical applications.

2.3.2 Protein-Protein Interaction Extraction

Many applications have now emerged that target a broad range of extraction prob-
lems in protein-protein interaction (PPI). Representative approaches to extracting
protein-protein information from biomedical texts include: simple template-based
parsing of sentences to build networks of protein interactions [12]; a general-purpose
information-extraction engine using both symbolic and statistical Computational
Linguistic techniques to build a database of protein interactions [48]; using the
frequency of ‘discriminating words’ to score paper abstracts to determine whether
the paper is about protein interactions [34]; and assessment of the reliability of
protein-protein interaction using an ‘interaction generality’ measure [43].

2.3.2.1 Blaschke et al. (1999)

Blaschke et al. [12] attempted to do without linguistic analysis such as parsing,
and relied instead on a simple pattern-matching approach for extracting protein
interactions from MEDLINE texts. The text was first broken into clauses, then
clauses containing two proteins and an action verb were extracted with simple
syntactic ordering information used to predict the relation. For example:
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‘protein1 action protein2 ’: makes protein1 the subject, protein2 the object and
action the relation.

The ‘interaction’ verbs used included acetylate, activate, destabilise, inhibit,
phosphorylate, suppress and target. The task was simplified by assuming that all
protein names were already known and by not attempting to produce any quanti-
tative assessment. The basic idea was that sentences derived from abstracts will
contain a significant number of protein names ‘connected’ by verbs that indicate
the type of relation between them. The method was based on counting the number
of sentences containing protein names separated by interaction verbs. By pre-
specifying a limited number of possible verbs, Blaschke et al. avoided the need for
complex semantic analysis.

The system design relied heavily on the peculiarities of the subject domain.
The test corpus of abstracts contained a very specialized type of texts, including
a very restricted use of English, short sentences, and a great abundance of highly
specialized terms in Molecular Biology. This inflexibility inevitably led to missed
relations and false negatives. For example, this system would be unable to deal with
cases in which a subject or object was at a distance from a verb, e.g., parentheticals,
relative clauses, and so on. However, with an adequate number of abstracts in the
test corpus, the system could be subjected to a quantitative analysis, in which
the number of occurrences of different events were more significant than the single
occurrence of a valid event.

2.3.2.2 Thomas et al. (2000)

Thomas et al. [48] modified an existing information extraction system, Highlight,
for the task of gathering data on protein interactions from MEDLINE abstracts.
Highlight is a template-based system for general information extraction used by
commercial applications. Thomas et al. modified Highlight in the following steps
to make it feasible for biomedical information extraction.

1. Add new vocabulary, technical terms, and syntactic constructs in protein
domains to the system so that the customized system can correctly recognize
the relevant entities and events.

2. Construct the templates that outline the biomedical information of interest.

3. Construct patterns that represent the events of interest in text. A set of
pattern-matching rules and statistical components are also developed. These
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rules will be used for inserting the identified entities and events into corre-
sponding templates.

Thomas et al. initially manually analyzed about 200 abstracts to discover the most
frequently used verbs to describe protein interactions. In the end they decided
to use only three key verbs interact with, associate with, bind to, as these verbs all
appear in direct relations between proteins rather than between a protein and some
process. They collected 2565 abstracts from MEDLINE as test data by searching for
keywords molecular, interaction and protein for the year 1998. They then evaluated
the customized Highlight System by extracting protein-protein interactions from the
test data. The recall and precision values were estimated by taking three samples
of 30 abstracts each and analyzing them by hand. The precision was 69% and the
recall was 29%.

2.3.2.3 Marcotte et al. (2001)

A frequently encountered problem in protein-protein interaction extraction is the
lack of a high-quality training corpus consisting of ‘pure’ protein-protein interac-
tion articles. Marcotte et al. [34] proposed a method to mine literature describing
protein-protein interactions by computing word occurrence frequencies. The words
that appeared at unexpectedly high or low frequencies were identified as discrimi-
nating words. Marcotte et al. collected the MEDLINE abstracts of 260 papers that
were cited by the Database of Protein Interactions [50]. These abstracts were used
as the true positive training data. Then, for each word in the training data, its word
frequencies were computed in both general biomedical texts and protein-protein–
interaction texts. In the end, a total of 84 discriminating words were determined,
among which the most discriminating words included terms such as ‘Complex’,
‘Interaction’, ‘Two-Hybrid’, ‘Interact’, ‘Proteins’, ‘Domain’, etc. Marcotte et al.
then used a Bayesian approach to scan the target MEDLINE abstracts, and each
abstract was given a ‘likelihood’ score for its probability of discussing the topic of
Protein-Protein Interaction according to the discriminating words observed in the
abstract.

The authors tested their method on 325 Yeast MEDLINE abstracts and com-
pared their results with manual classification. They found that more than 88%
interaction abstracts had a positive likelihood score and any articles that had a
likelihood score higher than 10 had a 100% chance of belonging to the protein-
protein interaction domain.
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2.3.2.4 Saito et al. (2003)

Although there has been a great deal of research on protein-protein interaction
extraction and identification, few attempts have been made to validate the inter-
actions either recorded in interaction databases or newly extracted from literature.
Experimental data on protein interactions often contains many false positives. Saito
et al. [43] proposed a method that measured the reliability of interactions by observ-
ing the other proteins that interact with the target pair. This measure,interaction
generality, was based on the hypothesis that an interaction occurring in the liter-
ature was likely to be false positive if the interacting proteins appeared to have
many other interacting partners, but those partners had no further interactions. In
contrast, highly interconnected sets of interactions or interactions forming a closed
loop were likely to be true positives.

This ‘interaction generality’ measure incorporated the topological properties
of interactions around the target interacting pairs. As an illustration, Figure 2.4
shows the classification of a protein that interacts with the target interacting pair
according to the topological properties of the interaction network. A and B are the
target pair; C is the third protein that interacts with either A or B or both; the
black-filled circle represents another protein that interacts with C . Interactions
in class a1, a2, and l all form a closed loop, thus correspond to true positive.
In contrast, the proteins in class d and f are ‘weakly’ connected, thus the target
interaction is likely to be false positive.

Saito et al. tested their method on the relatively reliable protein interaction
data sets, and the experiment results showed that there indeed existed relations
between the ‘interaction generality’ measure and the reliability of an interaction.

2.3.3 Summary

In this chapter, we have given an overview of the current state of information extrac-
tion in biomedical domains. In the following chapters, we will propose a discourse-
analysis–based approach to extracting information from protein-protein interaction
literature and will investigate the hypothesis that this information can be used to
evaluate the biological validity of protein-protein interaction. The method uses both
sophisticated Computational Linguistic methods and computationally tractable al-
gorithms capable of processing large corpora.

We base our hypothesis on the inherent biological characteristic of protein-
protein relationships, namely, that interacting proteins will tend to have similar
biological functions. We may reasonably expect then to find biological terms in
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Figure 2.4: Classification of a protein C that interacts with a target interacting
protein pair A-B [43]
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the context surrounding a protein interaction that indicate the common functions
of these proteins. If we can determine such terms by an automated method of
linguistic analysis, we would have an additional means of discovering evidence in
the literature that the interaction is indeed biologically valid.

The idea of using semantically related strings of words to determine the dis-
course structure of text is known as lexical chaining [36], a method that fulfills
our dual criteria of being both discourse-based and computationally efficient. We
propose to use lexical chains to retrieve additional information on protein interac-
tions by finding the biological terms in the passage surrounding an interaction that
form the theme structure of the text. By constructing the lexical chains related
to protein interactions, we will not only extract additional important information
about interactions from the literature, but we hypothesize that we will also be able
to use the strength of the chains as a basis to rank the apparent quality of the
interactions.
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Chapter 3

Lexical Chaining

In this chapter, we will describe the basic concepts of Lexical Chaining techniques,
and then present the lexical chaining algorithm we adopted for our experiments.

3.1 Lexical Cohesion

The notion of Lexical Chaining derives from the concept of textual cohesion. Hall-
iday and Hasan [26] referred to cohesion as “relations of meaning that exist within
the text, and that define it as a text”. The linguistic study of textual cohesion
shows that a text or discourse is not just a set of sentences, each about some ran-
dom topic. Rather, the sentences and phrases of any sensible text tend to ‘stick
together’ by various means to form a unified whole. There are a number of forms
of textual cohesion, such as grammatical cohesion (reference, substitution, ellipsis,
conjunction) and lexical cohesion (i.e., semantically related words).

Lexical Cohesion arises from semantic relationships between words, and is the
most frequent and most easily identifiable type of cohesion. In linguistics, lexical
cohesion is used to explain one aspect of how a text’s meaning is created, through
“continuity of lexical meaning” [26]. Halliday and Hasan [26] classified lexical
cohesion into two categories, reiteration and collocation. Reiteration includes not
only repetition and reference, but also superordinates, subordinates, synonyms1,
hypernyms2, and hyponyms3. Collocation was defined as a semantic relationship

1synonym: a word that means the same as another word, or more or less the same
2hypernym, superordinate: a general term that includes various different words represent-

ing narrower categories, called hyponyms
3hyponym, subordinate: a word that is more specific than a given word
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between words that often co-occur in the same lexical contexts. Halliday further
defined three basic classes for reiteration, and two basic classes for collocation, as
shown in Figure 3.1.

Examples 1 and 2 represent the simplest form of reiteration: repetition; ex-
ample 3 represents the superordinate relation: peach is a kind of fruit ; example 4
demonstrates the antonymy relation: green and red are members of an unordered
set {white, black, red, etc.}, which falls into the category of systematic semantic
collocation; garden and digging in the example 5 have a non-systematic semantic
relationship.

3.2 Defining a Lexical Chain

Lexical cohesion occurs only between two terms, but may lead to sequences of
related words. A lexical chain may then be defined as a sequence of semantically
related words in the text, spanning a topical unit of the text, be it short (adjacent
words or sentences) or long (entire text). As an illustration, the following passage
has a sequence of related words.

1. John has a Jaguar.

2. He loves the car.

3. John works in the garage taking care of his Jaguar.

In this passage, the word Jaguar in sentence 1 and sentence 3 is a repetition;
Jaguar and car has a IS-A relationship; car and garage form a collocation that
is not systematically classifiable. A lexical chain would therefore be: {Jaguar, car,
garage, Jaguar}.

In general, each document will contain many lexical chains, each of which forms
a portion of the cohesive structure of the document. Lexical chains are important
for computational text understanding, because they not only provide a context
for resolving word ambiguity, but also indicate the discourse structure of the text.
Morris and Hirst [36] were the first researchers to use lexical chains to determine
the structure of texts. Their results showed that the lexical chains retrieved from
a text will tend to mirror the discourse structure of that text.
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• Reiteration with identity of reference:
Example 1

1. Mary bit into a peach.

2. Unfortunately the peach wasn’t ripe.

• Reiteration without identity of reference:
Example 2

1. Mary ate some peaches.

2. She likes peaches very much.

• Reiteration by means of a superordinate:
Example 3

1. Mary ate a peach.

2. She likes fruit.

• Systematic semantic relation (systematically classifiable):
Example 4

1. Mary likes green apples.

2. She does not like red ones.

• Non-systematic semantic relation (not systematically classifiable):
Example 5

1. Mary spent three hours in the garden yesterday.

2. She was digging potatoes.

Figure 3.1: Definitions and examples of Lexical Cohesion [36]
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Since then, lexical chaining has been successfully used in a number of Informa-
tion Retrieval and Natural Language Processing applications, such as term weight-
ing [46], malapropism detection [28], hypertext generation [25], and text summa-
rization [9]. Hirst and St.-Onge [28] used manually constructed lexical chains for
the detection and correction of malapropisms. Stairmand [46] used lexical chain-
ing in the construction of both a typical Information Retrieval system and a text
segmentation system [46]. Green [25] developed a technique to automatically gen-
erate hypertext links using lexical chaining. Barzilay and Elhadad [9] used lexical
chains to weight the contribution of a sentence to the main topic of a document,
and sentences with larger weight are extracted and presented as a summary of that
document.

As a lexical chain “encapsulates” a context, most lexical-chaining-based text
summarizer follows the observation that the “strength” of the lexical chain corre-
sponds to the semantic significance of the textual context it represents. We hy-
pothesize that the strength and other characteristics of lexical chains can be used
as a basis for the assessment of the biological validity of protein-protein interac-
tions. In our experiments, we used the lexical chains to extract information from
Protein-Protein-Interaction (PPI)–related literature, then we investigated a set of
measurements for lexical chains, such as strength, lemma, density4, etc.

3.3 A Lexical Chaining Algorithm

Lexical Chaining is the process of extracting and connecting semantically related
words from a text, then creating a set of word chains that represent the various topic
“threads” through the text. Generally speaking, lexical chains can be computed
by grouping sets of words that are semantically related (words that have relation-
ships such as identity, synonymy, and hypernymy/hyponynmy). In terms of actual
computing procedures, most lexical-chaining algorithms can be summarized by the
following three steps:

1. Select a set of candidate words (i.e., all noun instances).

2. For each candidate word, find an appropriate chain relying on a relatedness
criterion among members of the chains.

3. If such a chain is found, insert the word in the chain; otherwise a new chain
is created.

4The metrics will be discussed in Chapter 5
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The difficult, and computationally costly, part of this process is that each can-
didate word must be assigned to exactly one lexical chain, and the words must be
grouped in such an optimal way that these groupings create the longest/strongest
lexical chains. There are several feasible algorithms for constructing lexical chains
from a text, from which we chose Silber and McCoy’s [45] algorithm for its simplic-
ity and linear runtime. Silber and McCoy’s algorithm was based on the complete
method implemented by Barzilay and Elhadad [9], which runs in exponential time,
but Silber and McCoy managed to obtain a linear running time with similar output.
In constructing lexical chains, Silber and McCoy used WordNet, an online lexical
database (to be discussed below) as the knowledge source for the lexical semantic
relationships. The algorithm is shown in Figure 3.2.

In our experiment, we used the adaptation of Silber and McCoy’s lexical-
chaining algorithm implementated by Matthew Enss [20]. Enss’ implementation
differs from Silber and McCoy’s algorithm in three aspects:

1. Silber and McCoy’s algorithm disambiguates words during the computing of
the lexical chains, specifically in Steps 2.1 and 2.2. In Enss’ implementa-
tion, word disambiguation is separated from computing lexical chains and is
performed by using the most accurate method available. Enss argued that
improved word sense disambiguation necessarily leads to improved lexical
chains. His experiments showed a significant decrease in the number of incor-
rect lexical chains generated when using the second approach.

2. When choosing a metachain for a candidate word, Silber and McCoy’s al-
gorithm considers only the most closely related word. It uses the strongest
relation between the candidate and the other words in the metachain as the
contribution of the candidate word to that metachain. Enss computes the
contribution of a term to a metachain by summing the scores between the
term and every other tems in the metachain. Enss’ experiments showed that
this modification increases the accuracy of word sense disambiguation from
42.9% to 52.1% when tested on the same corpus. However, there is a draw-
back, namely, the runtime of the algorithm is increased to O(n2), where n is
the number of candidate terms in the document.

3. When there is a tie among metachains, Silber and McCoy’s algorithm chooses
the chain with the more specific overriding senses. Enss’ algorithm favours
the chain with more general overriding senses to allow for larger chains, which
he believed are more representative of the overall subject of the text.
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3.4 WordNet: A Linguistic Knowledge Resource

Lexical chains are built by using linguistic resources that relate words by their
meanings. The original work by Morris and Hirst [36] used Roget’s Thesaurus [14],
but almost all current lexical chainers use the WordNet database ([21], [3]). Word-
Net is an online linguistic database that was created by a team of linguists and
psycholinguists at Princeton University. Distinguished from a traditional lexical
dictionary, WordNet aims to be a combination of dictionary and thesaurus that
is useful for real-world Computational Linguistics and natural language processing
applications. To achieve this goal, WordNet models the lexicon based on psy-
cholinguistic principles so that words are grouped into sets of synonyms, synsets,
according to word senses. Synsets are the core meaning units of WordNet, and a
synset is a set of all the words or collocations that are synonyms for a particular
sense of a word.

WordNet synsets may be linked to one another by a number of lexical semantic
relations. The complete WordNet database contains four components, each for
a different type of English word: nouns, verbs, adjectives, and adverbs. WordNet
distinguishes between the four types of words because they follow different grammar
rules, consequently the lexical semantic relations vary between the types of word.
Nouns are the core part of WordNet with their possible relations defined as follows:

hypernymy : Y is a hypernym of X if every X is a (kind of) Y

hyponymy : Y is a hyponym of X if every Y is a (kind of) X

coordinate terms : Y is a coordinate term of X if X and Y share a hypernym

holonymy : Y is a holonym of X if X is a part of Y

meronymy : Y is a meronym of X if Y is a part of X

Each WordNet sense has three attributes: (1) a synset that lists all the synonyms
for the sense; (2) a unique integer identifier for the sense; and (3) a gloss that
describes the sense. If a word has multiple meanings, then it appears in multiple
synsets. Table 3.1 shows all the noun senses of car in WordNet 2.1.

40



Synset Index Glossary Direct Hypernym
{car, auto,
automobile, ma-
chine, motorcar}

02929975 a motor vehicle with four
wheels; usually propelled by
an internal combustion en-
gine

{motor vehicle, auto-
motive vehicle}

{car, railcar,
railway car,
railroad car}

02931574 a wheeled vehicle adapted
to the rails of railroad

{wheeled vehicle}

{cable car, car} 02906118 a conveyance for passengers
or freight on a cable railway

{compartment}

{car, gondola} 02932115 the compartment that is
suspended from an airship
and that carries personnel
and the cargo and the power
plant

{compartment}

{car, elevator
car}

02931966 where passengers ride up
and down

{compartment}

Table 3.1: All noun senses of car in WordNet 2.1

WordNet is the current standard lexical database for English and is widely
used in most lexical-chaining algorithms. However, our research on extracting bi-
ological information from protein-protein-interaction–related literature requires a
domain-specific ontology that has the same structure as WordNet, but different
domain-specific vocabulary. We therefore propose to build an ontology that incor-
porates into the existing Gene Ontology (GO)5 a selection of concepts representing
protein-protein interaction domain-specific knowledge, together with the semantic
relationships among these concepts. The new ontology will then be constructed in
the form of a WordNet-like lexical database.

In the next chapter, we will describe in detail the protocol we developed to con-
struct our “PPIWordNet” lexical database that includes Gene Ontology’s current
vocabulary and a set of other biological terms relevant to protein-protein interaction
research.

5The Gene Ontology will be discussed in the next chapter
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3.5 A Definition of Semantic Relatedness

In Silber and McCoy’s algorithm, a critical component involves determining the
relatedness of words making up a lexical chain. Initially, a noun is put into a
metachain if it is in some way related to the sense with which the metachain is
indexed. Subsequently, the degree to which the word contributes to the metachain
must be measured in order to decide which metachains will be kept. In order to do
this, we need a means of measuring the semantic relatedness of words.

There are various WordNet-based semantic relatedness measurements (e.g., [29],
[28], [8]). Intuitively, the senses connected by a path in WordNet should also be
related to some degree, due to semantic relations such as hypernymy and hyponymy
being transitive. Moreover, the shorter the path, the more closely the senses would
appear to be related. However, one problem with using hypernymy/hyponymy
paths to determine relatedness is deciding the maximum length of a path to allow.

Hirst and St.-Onge’s method proposed a simple but efficient way to measure
the semantic relatedness using only the hypernymy and hyponymy relations in
WordNet. Their idea was that two lexicalized concepts are semantically close if
their WordNet synsets are connected by a path that is not too long and that “does
not change direction too often”. They adapted Morris and Hirst’s semantic distance
algorithm, which used Roget’s thesaurus, for use with WordNet. Their method
views semantic relationships between words in terms of a graph, and correlates
semantic relatedness between words with the nature of the corresponding path
between concepts in the graph. Semantic relatedness is then determined based on
the path shape and distance between concepts using the relations connecting them
in the WordNet taxonomy.

Hirst and St.-Onge [28]’s measure classified WordNet relations as having di-
rection (upward, downward, or horizontal), and then established the relatedness
between two concepts A and B by finding a path that was neither too long nor
that changes direction too often. Three kinds of relations were defined: extra-
strong (between a word and its repetition), strong (between two words connected
by a WordNet relation), and medium-strong (when the link between the synsets of
the words is longer than one and satisfies certain restrictions). As an example, two
words are strongly related if one of the following holds:

1. They are members of the same synset (e.g., human and person).

2. They are associated with two different synsets connected by the antonymy
relation (e.g., human and object).

42



Same sentence Within 3 sentences Same paragraph Default
same synset 1 1 1 1
parent or child 1 0.5 0.5 0.5
sibling 1 0.3 0.2 0

Table 3.2: Silber and McCoy’s term-based score function [20]

3. One of the words is a compound (or a phrase) that includes the other, and
there is any kind of link at all between the synsets associated with each word
(e.g., school and private school).

Two words are said to be in a medium-strong relation if there exists an ‘allow-
able’ path connecting the synsets associated with each word. An allowable path
involves certain patterns of links between synsets that may vary among upward
(hypernymy and meronymy), downward (hyponymy and holonymy), and horizon-
tal (antonymy).

In Hirst and St.-Onge’s scheme, the strength of a lexical chain is based both on
its length and the types of relationships among its members. Extra-strong relations
have the highest weight, next in weight are strong relations, and lowest are medium-
strong relations. Unlike extra-strong and strong relations, medium-strong relations
have varied weights according to the following formula ([28], p. 308):

weight = C – path length – k ∗ number of changes of direction (where C and k
are constants6.)

We originally adopted Hirst and St.-Onge’s measure in our manual study of
lexical chains. However, this measure is hard to implement and computationally
costly. Enss’ implementation used the same measure used by Silber and McCoy.
This measure considers both the factor of semantic distance between word senses
and the locations of the terms in the text. The function is shown in Table 3.2.
More discussion on the semantic relatedness measure functions will be given in
later chapters.

6C has value 8 and k has value 1 (Graeme Hirst, personal communication).
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• Preprocessing:

1. Tokenize input text

2. Tag each token with appropriate part-of-speech tagger.

• Step 1: Creating the metachains

1.1 Implicitly build all possible ‘metachains’ for each sense of a word in WordNet;
a single metachain represents all possible lexical chains for that core meaning.

1.2 for each noun in the document
for every sense of the noun in WordNet

Place the noun sense into every metachain for which it is related to that
sense. For two senses to be considered related, they must be either the same
sense (in the same synset), a parent-child pair, or siblings (children of the
same parent).

• Step 2: Computing the best chain
for each word in the document

for each chain that the word belongs to

2.1 Find the single metachain for each noun that the noun contributes to most.
The contribution of a candidate word to a metachain is measured by the
strongest relation between the candidate word and the other words in that
metachain. The semantic relation between two words are calculated based on
the type of relation and distance factors. For example, identity and synonymy
are considered equally strong contributors to a lexical chain over a passage
of three sentences, but hypernymy is considered less strong over the same
distance.

2.2 When there is a tie among metachains, choose the chain with the more specific
overriding senses.

2.3 Remove the candidate word from all other metachains to which the word be-
longs. When this step completes, each noun will belong to only one metachain.
When all the nouns have been processed, the optimal lexical chains will re-
main.

Figure 3.2: Silber and McCoy’s lexical chaining algorithm
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Chapter 4

A Protocol for Constructing
a Domain-Specific Ontology:
PPIWordNet

4.1 Motivation

The main goal of our research is to extract information that can be used to eval-
uate the biological validity of protein-protein interactions using lexical-chaining
techniques. We can reasonably assume that the targetted information stored in
chains should consist of PPI domain-specific terms/concepts. In the Artificial In-
telligence field, as Neches et al. [38] put it, an ontology “defines the basic terms and
relations comprising the vocabulary of a topic area as well as the rules for combining
terms and relations to define extensions to the vocabulary”. Our research requires
a domain-specific ontology that covers important concepts and their relationships
for the Protein-Protein Interaction domain, and that can also be easily ‘plugged
into’ our lexical-chaining analysis module.

4.1.1 The Gene Ontology

Initially, we chose the Gene Ontology as our domain-specific ontology. Among
various biological ontologies, the Gene Ontology (GO) is presently the most widely
used ontology. The Gene Ontology project is a collaborative effort to address the
need for consistent and precise descriptions of genes and gene products in any
organism. The project began as a collaboration between three model organism
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databases: FlyBase (Drosophila)1, the Saccharomyces Genome Database (SGD)2,
and the Mouse Genome Database (MGD)3.

The Gene Ontology consists of three structured sub-ontologies: biological pro-
cesses, cellular components, and molecular functions. A biological process refers to
a biological objective to which the gene or gene product contributes. A process is
accomplished via one or more ordered assemblies of molecular functions. A molec-
ular function is defined as the biochemical activity (including specific binding to
ligands or structures) of a gene product. A cellular component refers to the place
in the cell where a gene product is active.

Each term in the Gene Ontology has a unique identifier, name, definition, and
any synonyms, and is assigned to one of the three sub-ontologies. The Gene On-
tology also defines two relations between terms, IS-A, and PART-OF. IS-A is a
simple class-subclass relationship, where “A IS-A B” means that A is a subclass of
B; for example, nuclear chromosome IS-A chromosome. PART-OF is slightly more
complex: “C PART-OF D” means that whenever C is present, it is always a part
of D, but C does not always have to be present. For example, nuclei are always
part of a cell, but not all cells have nuclei, thus the relations between these terms
can be described as “nucleus PART-OF cell nuclei”.

Terms in the Gene Ontology are linked by these two relations, and linked terms
form a directed acyclic graph where a parent may have multiple children and a child
may have multiple parents, but no parent-child relation loop is allowed. The struc-
tures and examples of the high-level terms in each sub-ontology are shown in Figure
4.1. Obviously, the Gene Ontology’s structure is very similar to that of WordNet,
which makes the Gene Ontology a suitable lexical knowledge resource that can be
easily restructured into a lexical database in the same format of WordNet and used
by our application.

As of 2006, the Gene Ontology has grown into the most widely used biological
ontology, containing over 17,000 terms from many databases, including several of
the world’s major repositories for plant, animal, and microbial genomes. However,
not all biological domains are covered by the Gene Ontology. The protein-protein–
interaction domain is one of the domains that the Gene Ontology has so far chosen
not to include. Without a vocabulary describing various aspects of protein-protein

1FlyBase is a database of genetic and molecular data for Drosophila.
http://flybase.bio.indiana.edu/

2SGD is a database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae.
http://www.yeastgenome.org/

3MGD is one component of the Mouse Genome Informatics (MGI) system
(http://www.informatics.jax.org), a community database resource for the laboratory mouse.
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Biological process Cellular component Molecular function

(a) The sub-ontologies of the Gene Ontology

Molecular function

Binding Signal transducer 
activity

Catalytic activity

Acyl binding Alcohol binding

Integrase activity

Cyclase activity

Morphogen activity

Receptor activity

(b) Molecular Function

Figure 4.1: Structure and examples of the Gene Ontology
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(a) Biological Process
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Protein complex

Cell part
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Extracellular matrix
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Extracellular matrix
(sensu Metazoa)

(b) Cellular Component

Figure 4.2: Structure and examples of the Gene Ontology (Continued)
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interactions, the lexical chains constructed by using GO alone will not be sufficient
for our goal. Our initial experiments using the Gene Ontology alone has shown
this. It was evident that it would be necessary to construct a PPI domain-specific
ontology to suit our needs. Our expectation in developing this ontology is to create
a lexical knowledge resource to use in the extraction of information about protein-
protein interactions. This newly constructed PPI domain-specific ontology will then
be integrated into the Gene Ontology as arguments. Our proposed “PPIWordNet”
lexical database will include GO’s current vocabulary and a set of other biological
terms relevant to protein-protein interaction research.

This chapter is organized as follows. Section 4.2 gives a short overview of
related work in ontology construction and our hybrid approach. Details of our
methodology and the information retrieval techniques we used are presented in
Section 4.3, followed by a summary in Section 4.4.

4.2 Overview: A Hybrid Approach

4.2.1 Related work on ontology construction

Ontology construction is the construction of a conceptually concise basis for com-
municating, sharing, and reusing knowledge in specific domains over different ap-
plications. In general, ontology construction is a difficult and complex process. The
two main challenges in ontology construction are: ontology concept capture (how
the concepts in a domain can be discovered) and relationship determination (how
the relationships between concepts are determined). Different approaches have been
used for building ontologies, but most can be classified into one of the two main
categories: manual methods and automated methods.

An example of a manual method is the one proposed by Uschold and King [49].
Their method involved three stages: identifying the purpose of the ontology (i.e.,
why to build it, how it would be used, range of the users), building the ontology,
evaluation and documentation. The building of the ontology was further divided
into three steps:

1. Ontology Capture. Key concepts and relationships are identified, pre-
cise textual definitions of these are written, terms to be used to refer to the
concepts and relations are identified, and the actors involved agree on the
definitions and terms.
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2. Ontology Coding. The ontology is coded in a formal language to represent
the defined conceptualization.

3. Ontology Integration. The ontology is integrated with other existing on-
tologies if possible.

A manual method of ontology construction typically involves the initial manual
extraction of commonsense knowledge from various sources, and the subsequent
manual construction of relationships among these knowledge concepts. Although
the manual process guarantees the quality of the concept structures to some extent,
there are two common drawbacks: low coverage and high expense. For example,
domain experts must be involved in defining the boundaries of the ontology and
they must determine the terms for the defined boundaries of the ontology, based on
their own expertise and a variety of relevant sources, such as indexes, encyclopedias,
handbooks, textbooks, journal articles, as well as any existing and relevant thesauri
or vocabulary systems. It is extremely difficult and time-consuming for human
experts to construct an ontology from given data or texts. Usually only a very
limited number of the most important top-level concepts can be covered. Moreover,
as the correctness and quality of an ontology is directly linked to the experts’
knowledge about the targetted domain, it is hard for manual methods to avoid
inconsistencies in the ontology. One solution to the problems is to build an ontology
automatically or at least, using semi-automatic methods. In addition, after an
ontology is built, it must be constantly updated to reflect the change of information
within the area, which often cannot be done thoroughly, given the slow response
times of the manual process.

Automated methods often rely on corpus-based statistical approaches that au-
tomatically build domain-specific concept structures. Recently, a number of work-
shops at Artificial Intelligence and Machine Learning conferences (ECAI4, IJCAI5,
ECML/PKDD6) have been organized on learning ontologies. Several papers on
automated ontology development by concept extraction and learning have been
presented at these conferences, including extending the existing WordNet ontol-
ogy using Web documents [4], using clustering for semi-automatic construction of
ontologies from parsed text corpora [11], learning taxonomic, e.g., IS-A [15] and
non-taxonomic, e.g., HAS-PART [33] relations.

4ECAI is the biennial European Conference on Artificial Intelligence. http://ecai2006.itc.it/
5IJCAI is the International Joint Conference on Artificial Intelligence. http://www.ijcai.org/
6ECML is the European Conference on Machine Learning and the European Conference on

Principles and Practice of Knowledge Discovery in Databases, http://www.ecmlpkdd2006.org/
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Typically, an automatic approach first selects suitable text corpora to repre-
sent the domains of interest, then finds statistical evidence about terms in the text
corpora, then finally determines relationships between concepts by considering sta-
tistical evidence in text corpora. The key issues in automated approaches are how
to determine and qualify different kinds of statistical evidence for an optimal rela-
tionship determination. The most commonly used form of statistical evidence is the
co-occurrence frequencies of terms in the texts. Recent approaches have begun to
take into account the actual semantic content in the context of a co-occurrence. In
summary, the research so far in automated ontology construction indicates that sig-
nificant improvement is still needed to make the existing approaches more effective
in practical applications.

4.2.2 Our hybrid approach

The goal of this chapter is to present a hybrid approach for the construction of
a domain-specific ontology, PPIWordNet, for the protein-protein interaction do-
main. This approach combines the semi-automatic extraction of domain concepts
and the manual construction of relationships between concepts. In the process of
concept extraction, concepts are extracted from source texts and added into the
ontology according to two factors: ‘discriminality’ and ‘importance’. ‘Discriminal-
ity’ indicates how discriminating a term is for a certain domain compared to other
knowledge domains, and ‘importance’ represents how important/relevant a term is
to the biological evaluation of protein-protein interactions.

The specificity of a term is calculated by comparing the word frequencies of the
term in a corpus of full-text protein-protein interaction articles to a general-English
text corpus using a statistical information retrieval method. The importance of a
term is manually determined by domain experts based on their knowledge about
the PPI domain. By combining importance and specificity, we are able to weight
and sort terms in a text corpus, and choose a limited number of top-ranked terms as
concepts for the PPI domain ontology. In the process of relationship construction,
we use two types of relations: IS-A and ASSOCIATED-WITH. Relationship deter-
mination between concepts is performed manually and collaboratively by knowledge
engineers and domain experts using these two relationships. For the validation of
our approach, two domain experts manually validate the results every step of the
way.
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PPI Ontology Concept Capture

PPI Ontology Construction

GO Ontology Integration

Validation

Processes Resources

PPI text corpus

UMLS

The Gene Ontology

Figure 4.3: A module for the construction of PPIWordNet

4.3 Development Methodology

The proposed module for developing the PPIWordNet ontology is shown in Figure
4.3. It consists of four processes (PPI Ontology Concept Capture, PPI Ontology
Construction, GO Ontology Integration and Validation) and three data resources
(PPI text corpus7, the Gene Ontology, and the Unified Medical Library System
(UMLS) [2]. Each stage of the process will be discussed in detail in the following
subsections.

4.3.1 Process 1: PPI Ontology Capture

The goals of this process can be summarized as follows:

1. To capture and identify key concepts and relationships in the PPI domain;

2. To give precise and unambiguous natural language definitions for such con-
cepts and relationships;

7The text corpus used will be discussed in detail later on.
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3. To identify the terms that represent/refer to such concepts and the synonyms
of those terms.

This process is broken down further into four steps:

4.3.1.1 Step 1: Source selection

Choosing an appropriate source of text data as the basis from which concepts will
be extracted is the first step in corpus-based concept extraction. A good domain-
specific source should have sufficient domain coverage, contain as little noise as
possible, and be readily available. For all these reasons, we choose the training
data provided for the BioCreative PPI evaluation tasks8. The training data was
derived from the content of the IntAct9 and MINT10 databases. The training data
contains a total of 1,000 articles, with all articles manually reviewed to verify the
content described protein interactions. These articles were used to manually ex-
tract the protein interactions mentioned, linking each interacting protein to its
corresponding unique UniProt ID (or accession number) and providing the iden-
tifier of the described interaction detection method. These articles are capable
of providing considerably more domain information than traditional text corpora,
therefore highly suitable for our goals.

For a text corpus representing a large and diverse collection of general-English
text, we choose the latest copy of the Wikipedia11. The Wikipedia is the largest
multilingual free-content encyclopedia on the Internet. Containing over two million
articles and still growing, the Wikipedia is considered by some researchers to be
more more representative of general English than any of the standard NLP and
TREC newspaper collections, etc.

4.3.1.2 Step 2: Extraction of Discriminating Terms for the PPI domain

Discriminating terms are terms that appear at statistically significantly higher fre-
quencies in texts about a certain domain than in general text corpora. Our assump-
tion is that the over-represented terms are likely to represent the key content of a
text, thus in turn being most relevant to the specific domain. Every term in the

8http://biocreative.sourceforge.net/biocreative 2 ppi.html
9http://www.ebi.ac.uk/intact/

10http://cbm.bio.uniroma2.it/mint/
11http://en.wikipedia.org/wiki/Main Page
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domain-specific text corpus is examined and weighted, and then a set of discrim-
inating terms will be selected based on their weights. The goal of term weighting
is to give a quantitative measure for computing the discriminatity of a term. We
adopted an elaborated weighting method based on the frequency of occurrence,
tf-idf, where the weight of a term i in a document j is determined by the frequency
of the term i in the document j and the number of documents containing term i in
the text collection.

In the extraction of the PPI discriminating terms, we have been assisted by a
doctoral researcher with a background in Information Retrieval methods12. The
detailed process of discriminating-terms extraction is shown below:

Prepare the PPI articles for text analysis:
The format of the PPI articles was not in plain-text format. Thus, the text
articles needed to be extracted from the PPI HTML articles. First, JTidy
was used to convert HTML to XHTML. Then, an XML parser was used to
parse the XHTML files to extract the plain text.

Remove the stop words from the PPI articles:
A list of stop words, words that have no significance in the PPI articles, such
as a, an, the ), were removed from the PPI text articles.

Term weighting:
For each PPI article, the term frequency/inverse document frequency (tf-idf)
for each term in the articles was calculated using the following formula:

tfidf(t k, d j) = #(t k, d j) ∗ log(Tr/#Tr(t k)) (4.1)

where
#(t k, d j) denotes the number of times term t k occurs in document d j
#Tr(t k) denotes the number of documents in Tr in which t k occurs
Tr denotes the number of documents

PPI term matrix:
For the corpus of PPI articles, a term matrix and a unique list of terms of the
entire PPI articles were generated. Each row in the term matrix represents an
article. Each column represents a term appearing in an article and the weight
of the term. The frequency of each term in the unique list is calculated by

12We are indebted to Shady Hassan from the University of Waterloo’s Computer Engineering
department for advice and assistance concerning Information Retrieval.
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averaging the frequencies of the same term in the PPI articles in which this
term appears.

Prepare Wikipedia for text analysis:
An XML parser was used to extract only the Wikipedia full-text articles from
the entire Wikipedia database.

Remove the stop words from the Wikipedia articles:
The same list of stop words that were removed from PPI articles were also
removed from the Wikipedia text articles.

Wikipedia term matrix:
For the Wikipedia articles database, a term matrix and a unique list of terms
of the entire Wikipedia articles were generated. Each row in the term matrix
represents a Wikipedia article. Each column represents a term appearing
in an article and the weight of the term. The frequency of each term in the
unique list was calculated by averaging the frequencies of the same term in the
Wikipedia articles in which this term appears. The generated list of unique
terms in Wikipedia represents the most common English terms.

Prepare a list of the names of the protein families:
An XML parser was used to extract the names of the protein families along
with their alternative names from the Human Protein Reference Database
(HPRD)13

Prepare a list of compound names:
A list of compound names that contains inorganic compounds (compounds
without a C-H bond), organic compounds (compounds with a C-H bond),
and biomolecules was prepared.

Generating the discriminating terms:
The list of discriminating terms was generated by removing from the PPI
unique list all the terms which appeared in the Wikipedia, protein, and com-
pounds lists.

As an illustration, the 50 discriminating terms with the highest tf-idf value are
shown in Table 4.1.

13The Human Protein Reference Database represents a centralized platform to visually de-
pict and integrate information pertaining to domain architecture, post-translational modifica-
tions, interaction networks and disease association for each protein in the human proteome.
http://www.hprd.org
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Term tf-idf Value Term tf-idf Value
pellino 0.9960094 topbp 0.66685784
pkc 0.98770636 bret 0.6657517
mirk 0.9760501 hmtase 0.66337526
atrap 0.94974506 dronc 0.6539748
chord 0.93665785 dronc 0.6539748
dysbindin 0.9159207 endosperm 0.6492104
alboaggregin 0.8851284 endosperm 0.6492104
daxxc 0.8815422 gabp 0.64609134
cambd 0.8790759 alix 0.6415269
rheb 0.87230194 wrnh 0.63805676
dicer 0.87055403 ergic 0.6243057
ikkq 0.81820816 toxcat 0.6190614
iiaglc 0.7984184 exosome 0.618216
srpk 0.7778112 pist 0.613866
smurf 0.77406406 iasys 0.60933936
scfmet 0.7707197 ckis 0.60915375
flipl 0.76781094 chimaerin 0.60130525
pygo 0.76378804 rabphilin 0.5917763
dokr 0.7610833 clpp 0.5902393
pmca 0.7575839 taci 0.58829147
allm 0.684885 mgrb 0.5833869
brap 0.680523 pbaf 0.57815033
midas 0.6734595 pstpip 0.5590316
asap 0.6701755 hsnf 0.5554925
dmyc 0.6679697 ribosyl 0.55532527

Table 4.1: The top-ranked 50 discriminating terms
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The list of discriminating terms contain a total of 13,931 terms with a tf-idf
value larger than 0. Upon a closer look at the list, we have two observations:
first, even though our method has already filtered out protein names and chemical
compounds using prepared lists, a large number of terms are of no interest to PPI
research, including person names, gene names, chemical compounds, and proper
nouns; secondly, the top-ranked terms are not necessarily all valuable for PPI re-
search. As our experiment is a pilot project to examine whether our lexical-chaining
approach to biomedical information extraction is effective, accuracy in construct-
ing the ontology is more important than coverage for our application. The list of
13,931 terms were passed onto the domain experts for manual filtering. Two do-
main experts independently selected all terms that they considered relevant to PPI
research. The two sets of terms were then merged together. A term was considered
relevant and selected for the final list only when it appeared in both of the two
sets. The resulting list of this step consisted of less than 200 terms relevant to PPI
research.

4.3.1.3 Step 3: Build the glossary of discriminating terms

Information in WordNet is organized around logical groupings called synsets. Each
synset consists of a list of synonymous words or collocations (a string of two or more
words, connected by spaces or hyphens, which co-occur more often than would be
expected by chance). Words or collocations are organized into hierarchies based on
the hypernymy/hyponymy relation between synsets. In this step, the PPI domain
experts built a glossary which included all the discriminating terms, their natural
language descriptions, and their synonyms and near-synonyms. The natural lan-
guage descriptions were not created following the style of traditional dictionaries,
but rather by referring to other terms/concepts and including notions such as more
abstract concepts (superclass), more specific concepts (subclass), etc. For example,
concept automobile can be defined as the following:

automobile: It is a kind of vehicle; It includes cars and smaller suvs, but not
motorcycles, buses, trucks or vans ;
Synonyms: car, auto, machine, motorcar.

If a term has multiple senses, each sense is defined as a unique sense in the same
way described above. On the other hand, different terms that have the same sense
will be merged into the same sense, and listed as synonyms of the sense. As an
example, automobile has two senses:
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1. As a noun, a motor vehicle with four wheels;

2. As a verb, travel in an automobile.

Thus automobile should be defined as two independent concepts, each with a
different sense. While motorcar has only one sense and that sense is the same as
the noun sense of automobile, motorcar will be added into automobile’s synonym
set, instead of being defined as a unique concept.

The domain experts used the Unified Medical Language System (UMLS) [2] as
the referencing resource in this task. UMLS has two knowledge resources that are
of interest to us: the Metathesaurus, and the Semantic Network. The Metathe-
saurus is a very large, multi-purpose, and multilingual vocabulary database that
contains information about biomedical and health-related concepts, their various
names, and the relationships among them. The Semantic Network provides a con-
sistent categorization of all concepts represented in the UMLS Metathesaurus and
a set of useful relationships between these concepts. The domain experts used
these two resources to find the natural language definitions and synonyms for
the discriminating terms. Both resources were obtained from the UMLS website:
http://www.nlm.nih.gov/research/umls/about umls.html.

As this task was carried out by two domain experts, to maintain consistency,
the glossary was built by one expert, and reviewed by the other expert14.

4.3.1.4 Step 4: Identify the Seed Terms

The goal in this step was to identify the starting-point terms, from which small
networks of interconnected terms could be constructed in Process 2 (PPI Ontology
Construction). Each individual network constructed was then integrated into the
PPIWordNet ontology in Process 3 (GO Ontology Integration).

There are three possible strategies in constructing a network of connected con-
cepts: bottom-up, top-down, and middle-out. The bottom-up strategy identifies the
most specific concepts first, and then generalizes them into more abstract concepts.
The top-down strategy finds the most abstract concepts first, and then specializes
them into more specific concepts. These two strategies both have their own advan-
tages and disadvantages. The bottom-up strategy may result in a very high level of
detail compared to the top-down strategy, but it can also lead to increased overall

14In the construction of the PPI ontology, we are indebted to Gabriel Musso and Zhou Yu,
doctoral researchers in Biochemistry from the University of Toronto, for advice and assistance
concerning PPI knowledge extraction.
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effort and a risk of inconsistency. The top-down strategy has a better control of
detail, but may result in arbitrary or unnecessary high-level categories, which could
lead to instability in the model.

We decided to use the middle-out strategy, which first identifies a core of basic
domain concepts, and then specifies and generalizes these as necessary. Compared
to the other two strategies, the middle-out strategy strikes a balance in terms of
level of detail. Detail is only included when necessary by specializing the basic
concepts, while the high-level concepts created are more likely to be natural and
stable as they arise from the most important and basic concepts.

To accommodate the middle-out strategy, in this step the domain experts iden-
tified the key domain terms and made them the seed terms. To do so, for each term
in the list, the expert assigned a score by evaluating the degree to which the infor-
mation might be considered important or useful when analyzing a protein-protein
interaction. The score was based on a five-point scale: Very important/Useful,
Important/Useful, Fair, Not Important/Useful, Don’t Know, with Very Impor-
tant/Useful being 5 , Important/Useful being 4, and so on. Note that a term could
have multiple senses, and each of the senses could have different scores regard-
ing protein-protein interaction relativeness. To simplify, we limited the number of
senses for each term to two so that the domain experts would only take the two
most relevant senses. On the other hand, different terms that had the same sense
were treated as one term and its synonyms.

The Gene Ontology divides its terms into three categories: biological process,
cellular component, and molecular function. We added two more categories: inter-
action property and method. Interaction property contains the terms that describe
the attributes or properties of protein-protein interactions, while method contains
the names of experiments or methods that are used to determine or confirm protein-
protein interactions. In addition to the importance score, the domain experts also
assigned each term to one or more categories.

In the end, a total of 54 terms labeled as Very Important/Useful were selected
as the seed terms; the domain experts started building local ontologies around the
seed terms in the next process. Figures 4.4 shows part of the list of seed terms
selected.

4.3.2 Process 2: PPI Ontology Construction

This process is executed progressively. We started with the category molecular
function, constructed a sub-ontology from all the terms belonging to this category,
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Term Definition Synonyms Categories

activatable accelerable

activator

activators plurality of activator

affinity

affinitypurified purified using affinity approaches Method

associate

associated

binding

coactivate activate together with something else

cocrystallized Method

the property that can increase the rate of 
a biological process

Molecular Function, 
Interaction Property

a molecular (protein, coupound, etc.) 
that regulates one biological process by 
increasing the rate of reaction

accelerator, activating 
agent,catalyst, 
sensitizer,enhancer

Molecular Function, 
Interaction Property

accelerator, activating 
agent,catalyst, 
sensitizer,enhancer

Molecular Function, 
Interaction Property

attraction force between one substance 
(protein, resin, etc.) to others (protein, 
ligand, small moleculars)

attraction, attractive 
force, relationship, 
attractiveness

Method, Interaction 
Property

pulldown, affinity 
column

a molecule (e.g., Protein) or biological 
event that always accompanies or 
closely relates to another

bind, accompany, 
connect, closely 
relate, inlvove,

Molecular Function, 
Interaction Property

a molecule (e.g., Protein) or biological 
event that always accompanies or 
closely relates to another

accompanied, 
connected, 
closerelated, involved

Molecular Function, 
Interaction Property

the capacity of connecting other 
molecules through physical interactions

connecting, holding, 
attracting, interacting, 
adhering, sticking, 
attaching, tie, 
associating

Molecular Function, 
Interaction Property

coaccelerate, 
coincrease

Molecular Function, 
Interaction Property

a protein or small ligand (e.g., peptide 
and compound) that are crystallized with 
another protein in the process of 
crystallization, usually strongly 
indicating direct interaction

X-ray, crystallization, 
3D-structure

Figure 4.4: Examples of the seed terms
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and then added one more category in each cycle. Each cycle can be divided into
four steps:

4.3.2.1 Step 1a: Construct local hierarchy for each seed term

A local hierarchy that consisted of the directly related terms was created for each
seed term. Here the relations of interest were IS-A, PART-OF, and ASSOCIATED-
WITH. Even though only the IS-A relation is used in our present lexical-chaining
analysis module, the other two relations could be valuable for future researches.
The domain experts added parents, children, siblings for each seed term belonging
to the currently ‘working’ category.

4.3.2.2 Step 1b: Expand the local hierarchy

This step was executed recursively. If the relevant terms added in the previous step
appeared in the discriminating list and had a importance score of 4, the relative
terms were expanded, and so forth, until no new terms with a score of 4 could be
added.

4.3.2.3 Step 2: Link local hierarchies together

Local hierarchies were linked together if common terms were found between the
hierarchies. The constructed network of connected local hierarchies can be displayed
as a graph, with terms being nodes, and the relation being edges. It is natural that
very high-level nodes in the ontology will have many paths through/to them, but it
is not appropriate to include the entire subgraphs under those nodes. The ontology
builder must determine which subgraphs should be included in the final ontology.
The criterion taken into account in this task is that if many of the nodes in a
subgraph have been found to be relevant to the PPI domain, then the other nodes
in the subgraph are likely to be relevant too. IS-A is a transitive relation, which
means if A IS-A B, and B IS-A C, then A IS-A C. However, our hierarchy does not
allow loops. The Ontology Builder must restructure the network to avoid relation
loops and optimize the structure of the network for our application.

An example of linked local hierarchies in the category molecular function is
shown in Figure 4.5.
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Figure 4.5: The sub-ontology for PPI molecular function terms
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4.3.2.4 Step 3: Refine the ontology constructed.

The ontologies generated from the last step are further refined by structuring the
terms more formally. Terms that are of different types of word, but can be repre-
sented by the same concept are formalized into one concept. An example of the
refined ontology for molecular function terms is shown in Figure 4.6.

4.3.3 Process 3: Integrating with Gene Ontology

In the last step, our ontology of PPI domain terms was merged into the Gene
Ontology. There are three cases of merging:

1. The same concept is identified in both the PPI ontology and the Gene Ontol-
ogy, e.g., binding in Molecular Function. The concepts were merged together
as one concept. Parents and children of the concepts from two ontologies
were also merged. When there were contradictions between the two ontolo-
gies, the more-detailed one was favored. For example, in the PPI ontology,
Binding IS-A Interaction, and Interaction IS-A Molecular Function, while in
the Gene Ontology, Binding IS-A Molecular Function. In this example, the
more-detailed relations in the PPI ontology would be adopted, as shown in
Figure 4.7.

2. The same category is identified in both the PPI ontology and GO, e.g., Molec-
ular function. As the GO developers created concepts for each of its cate-
gories, this case is dealt with the same way as the case above: the categories
are merged together.

3. Unique categories in our PPI ontology, e.g., Interaction property. This type
of category was added as an independent subset into the Gene Ontology.

4.4 Summary

In this chapter, we proposed a hybrid approach to construct a WordNet-like domain-
specific ontology from a corpus of protein-protein interaction texts, and then in-
tegrate the resulting ‘PPIWordNet’ ontology into the Gene Ontology. Progressing
through the complex processes of our method, we found the major difficulties were
the conceptualization of domain terms and the formalization of relationships. Both
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Figure 4.6: The final ontology for PPI molecular function terms
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Figure 4.7: Integration with the Gene Ontology
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activities relied heavily on the knowledge of domain experts about the protein-
protein interaction domain. Eventually we would hope to develop an effective
Ontology Construction Module that automates the process to some degree by us-
ing available online biomedical knowledge resources. Clearly further research and
development is needed to automate our method.

The integrated ontology, PPIWordNet, was subsequently used by our lexical-
chaining analysis module to extract information from PPI literature. The experi-
ments and results will be described in detail in the next chapter.
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Chapter 5

Experiment

5.1 Purpose of the Experiment

There are several distinct goals for this evaluation. First, we wish to investigate the
discourse structure of protein-protein–interaction (PPI) texts using lexical-chaining
analysis. Secondly, we wish to test our “PPIWordNet” ontology in a biomedical
information extraction task, namely, lexical-chaining analysis of protein-protein
interaction full-text articles to extract strings of semantically related words. Finally,
our eventual goal is to use lexical chains as evidence of the biological validity of
the protein-protein interactions in the contexts in which they appear. The first two
goals have been achieved through our experiment, while progress has been made
toward the final goal in future work.

5.1.1 Hypotheses of this experiment

The hypotheses to be tested in our evaluation are as follows:

1. Lexical chains appear throughout PPI articles and can be evaluated by various
metrics relating to their quantity and quality.

2. Our PPIWordNet ontology is effective as a means of enabling discourse-based
analysis of PPI texts using lexical chaining
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5.2 Steps of the Experiment

In this section we experimentally evaluate our PPIWordNet ontology. To achieve
our goals and test our hypotheses, we applied our lexical-chaining method and
PPIWordNet ontology to a set of PPI-specific literature. We randomly selected
100 articles from the BioCreative PPI task’s training data as the test set. These
articles contain detailed information that has been used to identify protein-protein
interactions. In choosing these articles, we hoped to find a good sampling of the
kinds of biological terms likely to occur in protein-protein–interaction contexts, and
which could ultimately be used to judge the quality of protein-protein interactions.
The lexical-chaining algorithm we used was originally designed for extracting chains
spanning over the whole text. We customized it so that it computes lexical chains
on a paragraph-by-paragraph basis, as descriptions of protein interactions seldom
spread across more than one paragraph as observed in our manual study. When
a document is read in, it is first broken into paragraphs, then sentences, at last
words. Then the lexical-chaining algorithm is performed on each paragraph. The
total number of paragraphs in the test set was 2461.

To test the effect of our PPIWordNet ontology on lexical-chaining performance,
we compared the chains created by progressively adding more terms from the PPI-
WordNet and then running the lexical-chaining algorithm. The PPIWordNet ontol-
ogy was divided into three subsets based on its innate structure: Method, Interac-
tion Property (IP), and Molecular Function (MF). In the first step, only the original
Gene Ontology was used; in each step following, a subset of our PPIWordNet was
added. In doing so, we hoped to find evidence that indicates our PPIWordNet has
a positive impact on the extracted strings of semantically related words, in terms
of both quality and quantity.

The steps of the experiment are shown in Figure 5.1. A statistical analysis on
each set of results for the whole test set was performed and several measurements
were computed. We then investigated the discourse structure of protein-protein–
interaction texts by closely studying the lexical chains generated for a randomly
selected article in the test set using the whole PPIWordNet.
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• Step 1: Use only Gene Ontology (GO) on test set

• Step 2: Use GO + Method terms on test set

• Step 3: Use GO + Method terms + Interaction Property terms on test set

• Step 4: Use GO + Method terms + Interaction Property terms + Molecular
Function terms on test set

Figure 5.1: Steps of the experiment

5.3 Results

5.3.1 Statistical analysis and performance metrics

We performed a statistical analysis on the lexical chains generated using different
lexical sources. The test set has a total of 100 documents, 2461 paragraphs, and
each chain spans over a paragraph. Before we present the details of the results,
we introduce the metrics used in the statistical analysis. Note the metrics were
computed for the whole test set.

# of terms: The total number of terms in the ontology used, synonyms not
counted.

# of chains: The total number of chains generated.

# of chains per doc: The average number of chains generated per document.

# of chains per para: The average number of chains generated per paragraph.

Span: The maximum distance between terms in a chain, counted in sentences.

Lemmas: A lemma is the string indicating the base form of the term. For example,
the lemma for running and ran is run. The lemma is used to find the possible
senses of the word in the ontology. Lemmas indicate the number of unique
lemmas in a chain.

Length: The number of terms in a chain.

Density: The number of terms divided by (span+1)
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The experiment results are shown in Table 5.1. The results show significant
improvements in the quantity of lexical chains, with mild improvements in the
quality of the chains. By quantity, we mean the number of lexical chains generated.
The size of the ontology between each step increased by an average of 0.05%, while
the increase in the number of chains was 10.9%, 12.3%, and 4.3% respectively, very
significant compared to the trivial change of the ontology’s size. In terms of quality
of lexical chains, we looked at two factors: ‘strength’ and ‘richness’ of a lexical
chain. The strength of a lexical chain is indicated by the length of the chain, and
the richness of a lexical chain is indicated by the lemmas of the chain.

The length of a lexical chain represents the degree of importance of a topic
(i.e., theme) in the text, in that the author feels the need to stress the topic by
repeatedly using closely related terms within a single paragraph to describe the
topic. We can reasonably assume that the longer a chain, the more important the
theme represented by the overriding sense of the chain. We determined that the
average length of a chain decreased by an average of 0.76% between each step.

In terms of richness, the lemmas increased by an average of 5.9% between each
step, rather significant compared to changes in the ontology’s size. We argue that a
larger number of unique terms in a chain will provide more valuable information and
thus stronger ‘evidence’ for protein-protein–interaction validity. Figure 5.2 shows
the performance metrics versus the number of terms in the ontology.

Measurement GO GO + Method GO + Method GO + Method
+ IP + IP + MF

# of terms 60020 60038 60070 60089
# of chains 4536 5030 5652 5898
# of chains 45.36 50.30 56.52 58.98
per doc
# of chains 1.84 2.04 2.30 2.40
per para
average length 5.23 5.16 5.03 5.10
average span 7.44 7.46 7.26 7.46
average lemmas 1.19 1.20 1.29 1.40
average density 0.62 0.61 0.61 0.60

Table 5.1: The experiment results (GO = the Gene Ontology, IP = Interaction
Property, MF = Molecular Function)
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Figure 5.3: Performance metrics of PPIWordNet (continued)

5.3.2 Case study of lexical chains

To investigate the discourse structure of protein-protein–interaction texts, we man-
ually analyzed the lexical chains generated from a randomly selected article [13].
The lexical chains generated are shown in Table 5.2. The chains are grouped by
their topic (overriding sense), and the unique terms of the longest chains of the
topic are shown in the ‘Unique Terms’ column. ‘Paragraph’ column lists all the
paragraphs where the chains of the topic are found, while ‘Category’ shows the
category of the topic in PPIWordNet. There were a total of 27 chains found in the
article, and 11 unique topics.

The first result that may be observed is the overwhelming number of chains with
topics “protein” and “binding”. This could be because the focus of the sample text
is on protein binding. Secondly, the lexical chains cover a wide range of topics from
biological processes to molecular functions. To illustrate the distribution of lexical
chains in the text, paragraph 4, which has the largest number of chains extracted,
is shown below (different-themed chains are shown in different fonts.) As may be
observed in this sample, the topics in the this passage of text were well covered by
the lexical chains extracted . However, most of the paragraphs in this article have
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Topic Paragraphs Unique Terms Category
protein 2,3,6,7,10,12,

13,14,15,17
{protein}

binding 2,7,8,9,10,13,14 {binding, binding as-
say}

molecular function

transport 3 {transport, secretion} biological process
protein transport 4 {protein transport,

protein}
biological process

membrane 4 {plasma membrane,
membrane}

cellular component

cytoskeletion 4 {actin cytoskeleton,
cytoskeleton}

cellular component

formation 4 {formation} biological process
transcription 4 {transcription} biological process
catalytic activity 15 {binding, catalytic ac-

tivity}
molecular function

growth 18 {growth cone,
growth}

biological process

Table 5.2: Lexical-chaining analysis of article “A Conserved Binding Motif Defines
Numerous Candidate Target Proteins for Both Cdc42 and Rac GTPases [13]”
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only one or two lexical chains generated, in line with the average number of chains
per paragraph. It is obvious that more chains or information need to be extracted
to enable the system to capture accurately the topics of text.

Members of the Ras superfamily of small GTPases play a wide variety
of cellular signaling roles that mediate proliferation and differentia-
tion, cytoskeletal organization, protein transport, and secretion.
The Ras GTPases have been studied most thoroughly, and now
several components of the Ras signaling pathway have been iden-
tified using a combination of biochemical and genetic approaches
(1, 2). A related family of GTPases, the Rho subfamily, consists
of three Rho genes, two Rac genes, Cdc42 and its close homologue
G25K, rhoG, and TC10 (3). Early work in Saccharomyces cere-
visiae, identified CDC42Sc as a protein required for bud emergence
(4, 5). In mammalian cells, the Rho subfamily members control the
polymerization of actin and the assembly of focal complexes at the
plasma membrane in response to extracellular signals (3, 6). For
example, microinjection of Rho into serum-starved Swiss 3T3 cells
rapidly stimulates stress fiber and focal adhesion formation (7),
while Rac induces membrane ruffles (8) and Cdc42 induces the for-
mation of filopodia (9). In addition to their effects on the actin
cytoskeleton, Rho GTPases also have a role in regulating kinase
signaling pathways. For example, Rho, Rac, and Cdc42 stimulate
a novel nuclear signaling pathway leading to transcriptional ac-
tivation of the serum response element (10). Rac and Cdc42, but
not Rho, have also been shown to activate the c-Jun amino-terminal
kinase (JNK) signaling pathway leading to c-Jun transcriptional
activation (11, 12). The mechanisms by which the Rho subfamily
of GTPases regulate these apparently diverse biological processes is
still not clear.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have made several contributions to the study of protein-protein–
interaction information extraction. We have presented a method for biomedical
information extraction that makes use of the lexical-chaining structure in scien-
tific articles to extract strings of biologically related words in protein-interaction
contexts. We have developed a hybrid approach for constructing a domain-specific
ontology of significant terms extracted from a domain-specific text corpus using
statistical information retrieval methods. We have shown through an experiment
that the domain-specific ontology has a positive impact on the lexical chains cre-
ated, and that the extracted strings of semantically related words provide valuable
additional information regarding protein-protein interactions.

6.2 Future Work

There are several interesting problems arising from our study that we plan to in-
vestigate in future. The immediate direction points to the fine-tuning of the lexical
chaining algorithm. Other interesting directions include improving PPIWordNet
and judging the qualities of protein-protein interactions using the information ex-
tracted.
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6.2.1 Lexical chaining algorithm

There are obvious problems with our lexical-chaining algorithm. The first is the
way that semantic relatedness is currently calculated, as shown in Table 3.2. The
semantic relatedness function defines terms to be related only when they are either
in the same synset, siblings, or a parent-child pair. This significantly limits the
‘richness’ of the chains created. We believe Hirst and St.-Onge’s idea of semantic
relatedness has more applicable value in real-world applications, as they consider
terms as semantically related if their synsets in an ontology are connected by a
path that “is not too long” and that “does not change direction too often”. We
intend to explore this idea and develop a semantic relatedness measure function
more applicable to our particular problem. The second problem is the need for text
pre-processing. The articles in our corpus were originally available only in HTML
format. It was difficult and often error-prone to detect paragraph boundaries in
the corpora given their current formatting, which could result in incorrect chains
being created.

6.2.2 PPIWordNet

A significant amount of work can be done in this direction. As observed in our
experiments, the additions of domain-specific vocabulary increased the number of
chains created and the average number of unique terms in a chain, but decreased
the average length of chains, even though only slightly. Additional experiments
on larger-sized corpora would be worthwhile to increase the amount of available
data, and to thus increase the significance of the experiments. As the current
PPIWordNet is only a pilot project for our research, we will proceed to refine our
methodology and expand PPIWordNet iteratively.

6.2.3 Judging the quality of protein-protein interactions

In order to evaluate protein-protein interactions, more study on metrics for evalu-
ating lexical chains is needed. To begin with, the current methods for computing
metrics ‘strength’ and ‘richness’ are too simplified. Without a good definition for
deep understanding of these metrics, it is difficult to use them to evaluate the qual-
ity of protein-protein interactions. Also more metrics need to be invented, i.e., the
‘discriminating topics (themes)’ of chains that differentiate true positive samples
from false positive samples; the ‘information content’ of lexical chains that reflect
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what information contained in a chain (‘topic’ is the simplest form of information
content).
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Appendix A

Appendix

The following figures are the two subsets of PPIWordNet: Method and Interaction
Property.
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Figure A.1: The final ontology for PPI method terms
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Figure A.2: The final ontology for PPI interaction property terms
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