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Abstract 

 The development of bioinformatics as an influential biological field should 

interest philosophers of biology and philosophers of science in general. Bioinformatics 

contributes significantly to the development of biological knowledge using a variety of 

scientific methods. Particular tools used by bioinformaticists, such as BLAST, 

phylogenetic tree creation software, and DNA microarrays, will be shown to utilize the 

scientific methods of extended cognition, analogical reasoning, and representations of 

mechanisms. Extended cognition is found in bioinformatics through the use of computer 

databases and algorithms in the representation and development of scientific theories in 

bioinformatics. Analogical reasoning is found in bioinformatics through particular 

analogical comparisons that are made between biological sequences and operations. 

Lastly, scientific theories that are created using certain bioinformatics tools are often 

representations of mechanisms. These methods are found in other scientific fields, but it 

will be shown that these methods are expanded in bioinformatics research through the use 

of computers to make the methods of analogical reasoning and representation of 

mechanisms more powerful.  
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Chapter 1 

Introduction 

1.1 Biology Today. Bioinformatics research employs computational techniques to solve 

problems in molecular biology. The use of these techniques has been central to such 

major biological discoveries as the complete description of the human genome 

(International Human Genome Consortium, 2001), as well being used in recent medical 

discoveries, such as the annotation of SARS (Wang et. al., 2003), which was instrumental 

in the development of treatments against the virus (Qiu et. al., 2005, Lu et. al., 2005). 

However, the success of bioinformatics has to do not only with the computational power 

that presently exists (although this is a large part of the success), but also with the fact 

that the discoveries and developments made using bioinformatics employ powerful 

scientific methods that philosophers and cognitive scientists have discussed over the past 

few decades. Although there may be other methods employed, the ones that I will look at 

in this thesis are extended cognition, analogical reasoning, and representations of 

biological mechanisms. Last, an epistemic appraisal of bioinformatics research will be 

performed using standards set by Goldman (1992) and Thagard (1997). Before giving 

descriptions of these methods and standards, however, a quick introduction to 

bioinformatics is necessary. 

 

1.2 Bioinformatics. Pevsner (2003) defines bioinformatics as “the use of computer 

databases and computer algorithms to analyze proteins, genes, and the complete 
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collection of deoxyribonucleic acid (DNA) that comprises an organism (the genome).” 

(p. 3) Bioinformatics has become a recognized scientific field only relatively recently, 

since about the early 1990s. Among the various discoveries made using bioinformatics, 

the most recognizable are the following: 1) sequencing of the human genome, along with 

the genomes of many other organisms, from viruses to the mouse, and 2) annotating 

newly discovered viruses, such as SARS. Along with these widely recognizable 

discoveries, others that have been significant to the biological world include: 1) the 

discovery of various gene and protein functions, 2) the creation of accurate phylogenetic 

trees, 3) the discovery of complex genetic and protein pathways. Biologists were able to 

make these kinds of discoveries before the development of bioinformatics, such as the 

discovery of the Krebs cycle, which is a complex protein pathway (Krebs and Johnson, 

1937), but bioinformatics has made similar discoveries possible at an unprecedented rate 

(Stein, 2005). Bioinformatics has thus been called a high-throughput science, meaning 

that it can produce large volumes of data in relatively short periods of time. Similar 

advances are being made in other scientific fields, such as physics, astronomy, geology, 

and climate science. Thus, bioinformatics is no different from these fields with respect to 

the amount of data produced, but will be shown to be different from other biological 

fields with respect to the methods used. 

 Bioinformatics begins with data that are collected using biotechnology 

instruments, such as genome sequencers, protein crystallization techniques and various 

gene expression tests. These data are often converted into various standard formats that 

are recognizable by computer programs. For example, gene sequences are identified with 

labels like gi|62632718, which is the gene identification number (gi) used by molecular 
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biologists and bioinformaticists for human embryonic hemoglobin. Using the 

standardized data, computer algorithms can be run to find relationships among the data 

and to quantify those relationships. 

One example of a typical bioinformatics algorithm that is used for sequence 

analysis is the Smith-Waterman algorithm (Smith and Waterman, 1981), which tests for 

local alignments among pairs of sequences. Local alignments are sequence similarities 

between sequences. One popular program that uses the Smith-Waterman algorithm is the 

Basic Local Alignment Search Tool (BLAST), which finds sequences that are similar to 

an input sequence, as well as calculates the probability of similarity under a model of 

unrelated sequences. The input sequence can be DNA or protein, and the returned 

sequences are alignments of any of those three types as well (and not necessarily of the 

type that was input). By comparing sequences, researchers can determine possible 

functions for newly identified sequences since the stored sequences that are similar may 

share some functions. For example, if a researcher were to input a protein sequence and 

the majority of the top matches were retinal-binding proteins, then the researcher can be 

somewhat confident that the input sequence was also a retinal-binding protein, although 

many other bioinformatics and laboratory tests can be run in order to help confirm this 

hypothesis.  

Another frequently used set of algorithms compares levels of gene expression. 

Testing gene expression is important for a number of different reasons. The first is that 

differences between species may be due to differences in the expression of particular 

genes that they possess rather than what genes they possess, thus helping researchers 

determine the essential differences between species. For example, McConkey (2002) 
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believes that the majority of genetic differences among humans and chimpanzees may be 

due to changes in their genetic expression. This difference between expression and 

composition will be explained in chapter 6. The second is in helping determine which 

genes are important in differentiating one organ from another. For example, one question 

a researcher may have is: which genes differentiate the function of brain cells from other 

cells in the human body? The researcher would then compare the gene expression levels 

in the brain to other organs, like the liver, kidney and eye. Third, a researcher can 

compare gene expression levels during the developments of organisms or even specific 

organs. Lastly, gene expression algorithms can identify differences in gene expression in 

organs that are normal to ones that are mutated or diseased. These latter comparisons are 

certainly useful for medical researchers in helping them find cures for diseases and 

genetic afflictions. One major development in testing gene expression, as well as in 

biology in general, is the use of DNA microarrays (Schena et. al., 1995), which will be 

discussed in chapter 6. 

A third major set of bioinformatics algorithms are those that create phylogenetic 

trees based on genomic or protein sequences collected from various organisms. Some of 

these algorithms use multiple sequence alignment algorithms. Once the sequences are 

aligned, sequences are grouped based in their relative similarities. These trees are 

important for biological research in determining the common ancestry of organisms, as 

well as providing useful insights on evolutionary trends (Thonton and DeSalle, 2000). 

These modern computational techniques of creating phylogenetic trees are drastically 

changing phylogenetic trees that were created using morphological, physiological and 

behavioral comparisons (Hall, 2001). The field of tracing human ancestry has also 
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blossomed due to the use of these computational techniques. Popular algorithms used in 

creating phylogenetic trees are PAUP (Phylogeny Analysis Using Parsimony) (Swofford, 

1991) and MrBayes (Huelsenbeck & Ronquist, 2001). 

Although we will not be studying the Internet in detail, its importance will be 

apparent while discussing each of the tools described above. Websites such as the one for 

the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) act as 

databases as well as allowing users to run a variety of algorithms on the sequences found 

in the database. This website allows researchers from anywhere in the world to deposit 

and download sequences, so they can run any algorithm on them. The Internet has 

allowed researchers to do major biological research with only a few desktop computers 

connected to the World Wide Web. 

There are certainly many other algorithms, tools and websites that are important 

in bioinformatics research. However, this thesis will limit its investigation to the three 

described above. With this short description of bioinformatics, we can now do a quick 

review of several scientific methods that I will later show are relevant to bioinformatics 

research. 

 

1.3 Extended Cognition. In this thesis, ‘extended cognition’ is defined as the 

accomplishment of a cognitive task using a complex cognitive system involving more 

than one cognitive individuals and/or representations external to the individuals. Ed 

Hutchins’ Cognition in the Wild (1995) was probably the most famous account of this 

type of cognition, although he used the term ‘distributed cognition’. He described the 

phenomenon of ‘pilotage’ on naval crafts and how it is an instance of distributed 

http://www.ncbi.nlm.nih.gov/
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cognition. Pilotage is navigation near land, especially when coming into port. Hutchins 

uses examples such as those of large, military vessels, where a number of sailors using 

various instruments accomplish pilotage. In this complex cognitive system, no individual 

person could possibly accomplish this task in the time required to transmit important 

pieces of information. 

Ronald Giere has also devoted many papers to the study of distributed cognition, 

especially with respect to scientific cognition. He asserts that the scientific revolution in 

the 17th century was not due to a particular change in how people thought about particular 

problems, but rather was caused by a widespread practice of creating and manipulating 

external representations, such as written symbols. Giere (2003) uses the following 

example: “Try to multiply two three digit numbers, say 456 x 789, in your head. Few 

people can do even this very simple arithmetical operation in their heads. Here is how 

many of us learned to do it: 

           456 
           789 
         4104 

    3648 
3192 

                   359784” (pp.2-3) 
 

In this example, external representations are created and manipulated in ways that would 

be difficult to do in one’s head. Giere therefore added to Hutchins’ definition in that 

distributed cognition can also involve the manipulation of external representations. 

These last cases, I argue, are both examples of extended cognition. The first 

involves numerous agents or types of agents performing different tasks in order to solve a 

problem, whereas the second involves the use of external numerous different 
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representations in order to solve a problem. A more in depth definition of ‘extended 

cognition’ will be elaborated in Chapter 2. 

 

1.4 Analogical Reasoning. The use of analogical reasoning in science has been widely 

documented by various philosophers as playing a major role in the discovery, 

development and evaluation of scientific theories. Initially, it was believed that analogies 

were only important in the discovery and development of scientific theories. Although 

the logical positivists realized that analogies could be useful is helping a scientist 

discover and develop new scientific theories, they did not believe that analogies could be 

used in the evaluation of scientific theories.  

 Since the work of the logical-positivists, other philosophers have argued that 

analogies could be used not only in the discovery and development of scientific theories, 

but also in the evaluation of some of the greatest scientific theories. Famous examples 

include the analogy between sound and water waves, as well as the analogy between 

genes on a chromosome and beads on a string. Analogies help scientists visualize the 

mechanisms that make up their theoretical constructs, as well as help in developing 

experiments to test particular predictions. Holyoak and Thagard (1995), as well as other 

philosophers working on analogies, also demonstrated that analogies have been essential 

in the evaluation of various scientific theories. For example, Darwin used the 

phenomenon of artificial breeding as evidence that natural selection was an evolutionary 

force. This thesis will further show that analogies are important for the discovery, 

development and evaluation of theories by showing their importance in bioinformatics. 
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Philosophers and psychologists have developed theories of how analogies factor 

into the discovery, development and evaluation of scientific theories. I will be use the 

multiconstraint theory of analogy from Holyoak and Thagard (1995) and Shelley (2002). 

Analogical thinking starts with finding the source and target of the analogy, where the 

target is the phenomenon to be explained and the source the phenomenon that suggests an 

explanation. For example, in the water/sound wave analogy, sound was hypothesized to 

be composed of waves similar to water waves. In this example, the source of the analogy 

is water waves and the target is sound waves. Next, the elements of both the source and 

target are compared, and each element is paired with its corresponding analog. For 

comparison, the elements can be grouped into three categories in the table: the attributes 

of the analogy, the simple relations of each analog, and the causal relations of the 

analogs. Shelley (2002) analyzes the following example comparing the debris from a 

volcanic explosion to the debris from a meteor impact (Alvarez et. al., 1980) using the 

multiconstraint theory schema: 

Table 1.1. The Krakatoa-asteroid analogy (from Shelley, 2002, p.486). 

Krakatoa Asteroid 
Krakatoa-eruption Asteroid-impact 

Debrisk Debrisa 
Winds Winds 

Stratosphere Stratosphere 
Earth Earth 

Sunlight Sunlight 
Shade Darkness 

Two-years Three-years 
Ejectk(Krakatoa-eruption,debrisk) Ejecta(asteroid-impact,debrisa) 

Enterk(debrisk,stratosphere) Entera(debrisa,stratosphere) 
Dipersek(winds,debrisk) Dispersea(winds,debrisa) 
Coverk(debrisk,Earth) Covera(debrisa,Earth) 

Attenuatek(debrisk,sunlight) Attenuatea(debrisa,sunlight) 
Persist(shade,two-years) Persist(darkness,three-years) 
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Causek0(ejectk,enterk) Causea0(ejecta,entera) 
Enablek0(enterk,dispersek) Enablea0(entera,dispersea) 
Causek1(dispersek,coverk) Causea1(dispersea,covera) 

Enablek1(coverk,attenuatek) Enablea1(covera,attenuatea) 
Causek2(attenuatek,persistk) Causea2(attenuatea,persista) 

 

Analogies, along with this schema, will be described in greater detail in the next chapter.  

 

1.5 Representations of Mechanisms. Many philosophers have noticed that scientific 

explanations of phenomena often employ mechanisms. These explanations include a 

description of the various parts of the mechanism, how they interact with other parts, and 

the end results or continuing activity of the mechanism. Machamer et. al. (2000) 

characterize mechanisms as “entities and activities organized such that they are 

productive of regular changes from start or set-up to finish or termination conditions.” (p. 

3) A simple example of this type of explanation is the visual representation of a 

flashlight, seen in the figure below (Figure 1.1). 

 

Figure 1.1. Diagram of a flashlight, demonstrating a simple machine. A = battery, B = 

conducting wire, C = switch and D = resistor, or light bulb. 

 

The entities found in this diagram are the four parts: the battery, switch, resistor 

and light bulb. The activities are the generation of electricity (in the battery), its 
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conduction (in the wires), its interruption (by the switch) and the resistance of its 

conduction (by the resistor). A properly working flashlight allows for regular changes 

from start, (generated electricity flowing through an “on” switch) to its termination (the 

production of light). 

  Mechanistic explanations are often well suited for biology, and Machamer et. al. 

demonstrate this with the working of a synapse (Figure 1.2).  

 

Figure 1.2. Visual representation of mechanism of signal transmission across synapses 

(from Machamer et. al., 2000), with permission. 

 

In this diagram, the various entities, including membranes, protein channels and 

neurotransmitters, are drawn or named, while the activities and causal links are 

represented by the arrows between the various entities. The start of the mechanism is the 

generation of particular signals in one nerve to initiate the release of a neurotransmitter 
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and the termination of the mechanism is the creation of a signal in another nerve after 

accepting a neurotransmitter. 

A more detailed description of mechanisms and their use in scientific 

explanations will be given in the next chapter. 

 

1.6 Epistemic Appraisal. An epistemic practice is any practice or method that claims to 

produce knowledge. We will see that although the scientific methods of extended 

cognition, analogical reasoning and representations of mechanisms are prevalent in 

bioinformatics research, there is a separate question of how the use of these methods 

contributes to knowledge. One should be able to judge whether the use of these methods 

in bioinformatics are reliable and useful epistemic practices when compared to, say, a 

cognitive task that involves one scientist using the resources of his internal cognition, 

data from wet-lab experiments, and previous mathematical tools available to the scientist 

such as statistics. 

 Alvin Goldman (1992) laid out a set of standards for testing scientific practices. 

These standards are related to the practices’ ability to generate true statements: 

1. The reliability of a practice is measured by the ratio of truths to total number of 

beliefs fostered by the practice; 

2. The power of a practice is measured by its ability to help cognizers find true 

answers to the questions that interest them; 

3. The fecundity of a practice is its ability to lead to large numbers of true beliefs for 

many practitioners; 

4. The speed of a practice is how quickly it leads to true answers. 
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5. The efficiency of a practice is how well it limits the cost of getting true answers. 

(Goldman, 1992, p.195) 

Thagard (1997) modified and expanded these standards since he believed that they 

missed important insights about scientific practices. First, scientists are not necessarily in 

the business of accumulating and testing truths. A better description of their practice is in 

the collection and evaluation of results. Second, results are not only accumulated and 

evaluated, but scientists also attempt to unify different results with each other. For 

example, Darwin’s work in biology did not just increase the collection of biological facts 

but unified many facts under one larger theory, namely, the theory of evolution by natural 

selection. Thus, the following standard should be added to Goldman’s list: 

6. The explanatory efficacy of a practice is how well it contributes to the 

development of theoretical and experimental results that increase explanatory 

coherence. (Thagard, 1997, p.255) 

I have chosen these standards because they seem to reasonably capture the goals of 

scientists when they choose one practice over another. These standards will be used when 

evaluating the success of the use of the aforementioned methods in bioinformatics.  

 

1.7 Extended Cognition in Bioinformatics. The first indication that bioinformatics 

research demonstrates extended cognition is that it requires the work of many different 

biologists and computer scientists, all of whom have different areas of expertise in this 

larger field. Bioinformatics research also utilizes different types of external 

representations, such as the computational representations entered, stored, downloaded, 



 13

and manipulated in various computer databases. It is only through the extensive use of 

computers that bioinformatics is so successful. 

Biology already has many sub-fields, from Genetics, to Population Biology, to 

Ecology, to Developmental Biology. Bioinformatics is a sub-field of Molecular Biology, 

the latter being concerned with the molecular composition and mechanisms of cells and 

organisms. However, bioinformatics research is not possible without a great deal of help 

from computer science.  

To give an idea of the extent of computer use in bioinformatics, I will present the 

following case: Data are initially collected in ‘wet labs’, laboratories in which biological 

experiments are performed. These labs collect data such as genome sequences, mRNA 

expression levels, protein crystallization, DNA knockout tests, as well as many more. The 

data are then converted to some standardized format to be sent to various computer 

databases, and thus to be shared by the larger scientific community. For example, 

genomic sequences are often sent to GenBank (Benson et. al., 2005), a database 

containing over 100 billion nucleotides collected from 165,000 different species. 

Information on gene expression levels is often sent to Gene Expression Omnibus (GEO) 

(Edgar et. al., 2002). Inputted data can be standardized into different formats. Some are 

stored so that they are easy to read by a human interpreter. For example, TaxBrowser 

(Wheeler et. al., 2000) contains human readable documentation on species for which 

there is extensive molecular-biological information. However, other formats, such as 

FASTA (Altshul et. al., 1990), are formatted so that they are easy for particular computer 

programs to read. Below is the FASTA format for the human hemoglobin, alpha 1 

mRNA sequence. 
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>gi|14456711|ref|NM_000558.3| Homo sapiens hemoglobin, alpha 1 (HBA1), 
mRNA 
ACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTC 
AAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGATGTTCC 
TGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGG 
CCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGCTG 
TCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGCTCCTAAGCCACT 
GCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAA 
GTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGTGGCCATGCTT 
CTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAA 
AGTCTGAGTGGGCGGC 
 
 
Particular programs such as BLAST can easily read this format so that comparisons 

between sequences can be quickly made. 

 The importance of computers is also apparent in the creation of new algorithms 

to process input data. The Smith-Waterman algorithm has already been discussed for its 

role in making pairwise comparisons between sequences. Other algorithms include the 

following: BLAST (Altshul et. al., 1990), which also returns matching sequences from an 

inputted sequence, and Digital Differential Display, which statistically compares 

expression levels of genes among organisms, tissues, and cells under differing conditions. 

 Researchers run these algorithms in order to test various hypotheses. An 

example of this type of research is when researchers who have sequenced a new protein 

have no idea of its structure or even its function. They do know, from basic knowledge 

about molecular biology and physiology, that proteins with a somewhat similar sequence 

may share the same three-dimensional structure and function. If the researcher uses the 

NCBI Blast server, the researcher would thus enter his sequence into BLAST and have 

some similar sequences returned. Many of these returned sequences will have a summary 

of the function of the protein, and if there is an S next to the returned sequence, then that 

means that there is also a known structure for that sequence. Thus, instead of taking the 
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‘wet lab’ route of crystallizing the protein, or determining its function, which requires 

many expensive and time-consuming experiments where the gene that encodes the 

protein is knocked out in different ways, the researcher may approximately determine the 

structure and function in a matter of minutes. However, the results are not as reliable as 

the wet lab results since the former results are generated using analogical information 

(more on this in chapters 4, 5 and 6). The researcher can be somewhat confident of these 

BLAST results, and the wider biological community also shares this confidence as seen 

by the vast number of publications generated through bioinformatics research. Although 

BLAST is now used in much more complex programs nowadays (see chapter 4), early 

uses of BLAST generated some interesting and surprising results (see, for example, 

Dixon et. al., 1986 and Downward et. al., 1984). 

 Computer use is also evident in the creation and storage of representations of 

biological mechanisms. Many biologists use visual representations that appear somewhat 

similar to the molecules themselves. For example, hemoglobin is often represented in 

articles as the structure found in figure 1.3. 

 

Figure 1.3 Visual representation of the hemoglobin molecule (from 

http://en.wikipedia.org/wiki/Image:Hemoglobin.jpg, April 3rd, 2006. Permission to copy 

figure granted by Gnu Free Documentation License). 

http://en.wikipedia.org/wiki/Image:Hemoglobin.jpg
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This representation is very useful for the biologist since the colour version clearly shows 

the four subunits of hemoglobin, the alpha helices that are characteristic of globin 

molecules, as well as the heme groups (smaller strands in the middle of each subunit). 

These heme groups are what carry oxygen molecules from the lungs to the cells and CO2 

molecules back to the lungs. This representation, however, is almost useless for other 

bioinformatics researchers. Bioinformatics output can be 3-D coordinates, or a 

probability matrix for types of secondary structures predicted (see figures 1.4 and 1.5). 

This list of amino acids and their coordinates is almost useless for a biologist, yet is 

easily readable by many computer programs, such as PDBsum (Laskowski et. al., 1997), 

which are used to determine the structure and function of the protein. Thus, we see that 

different types of representation of the same information can be useful in different 

circumstances. To use Herbert Simon’s language (1978), the different representations are 

‘informationally equivalent’ but not ‘computationally equivalent’. 

MLR secondary structure prediction 
MPSA code : secondary score MLR 
UNK_42590  
142 3 HEC 
C 0.000000 0.000000 1.000000 M 
E 0.020389 0.526834 0.452777 V 
C 0.049638 0.377564 0.572798 L 
C 0.052460 0.279610 0.667931 S 
C 0.112490 0.155684 0.731826 P 
C 0.216726 0.055810 0.727464 A 
C 0.313164 0.052574 0.634261 D 
H 0.584288 0.076941 0.338770 K 
H 0.696216 0.068166 0.235618 T 
H 0.752292 0.083014 0.164693 N 
H 0.735390 0.152764 0.111846 V 
H 0.764985 0.148547 0.086469 K 

 
Figure 1.4 Partial output of secondary structure prediction of human hemoglobin, alpha 

unit using MLRC (Guermeur et. al., 1999).  
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Figure 1.5 Structure prediction of human hemoglobin, alpha unit using MLRC 

(Guermeur et. al., 1999). Output screen from Pole Bioinfromatique Lyonnais (Blanchet 

et. al., 2000), October 3, 2006. 

 

 Thus, one very important element that bioinformatics adds to extended 

cognition is the fact that much of bioinformatics research is done in a ‘dry lab’, or, in 
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other words, on computers. Where Hutchins (1995) and Giere (2003) concentrate on 

numerous agents and types of representations, bioinformatics has another element where 

there are different types of agents. Computers have obviously been used for many 

different tasks, and arguably those tasks are instances of distributed cognition. For 

example, specialized software is used to find software viruses on computers, and this is a 

combined cognitive task that is performed by the scanning software and the user. Also, 

many other academic fields use computers to aid in their research, such as physics, 

mathematics and architecture. What I believe is unique about bioinformatics, however, is 

that it is a scientific field that has computer algorithms for doing analogical reasoning. 

 

1.8 Analogical Reasoning in Bioinformatics. The three major bioinformatics tools 

described in the previous section all have one aspect in common: they perform 

comparative analyses. BLAST compares a query sequence to a database of sequences, be 

they DNA, mRNA or protein sequences. Microarrays compare the expression levels of 

cells under varying conditions. Phylogenetic tree algorithms such as PAUP and MrBayes 

perform multiple sequence alignments, and, through a comparison of those sequences, are 

able to generate phylogenetic trees. These comparisons form the bases of the analogical 

reasoning that occurs in bioinformatics. Most instances of analogical reasoning, in both 

scientific and non-scientific pursuits, involve comparing a target and a source that seem 

phenomenologically different. For example, the target of these analogies is often some 

unobservable or unknown entity or mechanism, such as sound waves or asteroid impacts 

that occurred in the very distant past. This difference presents a potential problem for 

claiming that analogical reasoning is found in bioinformatics, since both the sources and 
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targets are often quite similar. But I will try to show that many cases of reasoning found 

in bioinformatics fit the multiple constraints schema presented by Holyoak and Thagard 

(1995). 

 What is striking about the application of analogical reasoning in bioinformatics 

is that this reasoning is not possible without the aid of sophisticated computer programs, 

unlike other scientific cases when human minds perform analogies. It will be argued that 

bioinformatics research uses a unique and powerful version of analogical reasoning due 

to the use of specific computer algorithms. 

 

1.9 Mechanisms and Bioinformatics. With the computational power of bioinformatics, 

many types of analyses have become possible that were virtually impossible before. For 

example, analyses of the functions of particular genes or proteins were restricted to being 

investigated only one or two at a time. The invention of DNA microarrays, however, has 

enabled researchers to study the actions of as many genes or proteins as they need, 

including concurrently studying the activities of entire genomes. I have described DNA 

microarrays in the ‘bioinformatics’ section and will give a more detailed description in 

chapter 6.  

 The relationship between microarrays and mechanisms can be seen with the 

following explanation: Since proteins are hypothesized to be interconnected to bring 

about the various functions found in a cell, biologists can hypothesize about how they are 

interconnected by measuring the activity of numerous proteins at once. For example, 

Yamashita et. al. (2005) studied the change of gene expression in particular blood cells 

after being infected by viral agents such as those that cause malaria. After infecting 
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various cells lines (a cell line is a group of cells that are often found clustered together 

and perform a particular function) with specific viral agents, the researchers found the 

expression pattern represented in figure 1.6 from the cells after using microarrays. 

 

 

Figure 1.6 Expression patterns of genes after infection by malaria (from Yamashita et. 

al., 2005). Not shown in this diagram are the specific colours of the squares, which are 

essential in reading expression patterns. The columns represent the cell lines used and the 

rows represent genes studied. 

 

Using this data, they were able to create the representation of the biological mechanism 

found in figure 1.7: 
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Figure 1.7 Representation of the mechanism of malarial infection in human red blood 

cells (from Yamashita et. al, 2005) 

 

 The process of using microarray results to create complex representations of 

biological mechanisms will be described in the ‘Microarray Case Study’ chapter (chapter 

6). What I will show is that these mechanisms are easily and frequently created using 

DNA microarrays. What is also unique about bioinformatics studies is that programs 

have been created to automatically create representations of mechanisms, such as figure 

1.7, from representations of expression patterns, such as the ones in figure 1.6. 

 

1.10 Previous Philosophical Investigations into Bioinformatics. A search through the 

Philosopher’s Index only returned one previous paper on a philosophical study of 

bioinformatics. Lindley Darden’s paper “Recent Work on Computational Scientific 

Discovery” (1997) summarizes the more general project of investigating how computers 
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aid in scientific discovery. Her summary reviews how many contemporary philosophers 

of science and scientists recognize science as a problem solving activity, and that 

heuristics can be created in order to aid in solving those problems.  

 One specific instance of computational scientific discovery that Darden presents 

is Karp’s paper on the creation of a database on the metabolic pathways of H. influenza 

genome and metabolic pathways. This database was created through the use of analogical 

reasoning, where the H. influenza database was developed using the knowledge base 

from a similar database for E. coli. My thesis will expand on Darden’s work by 

elaborating how computers are essential to bioinformatics, how they improve the 

methods of analogical reasoning and representations of mechanisms, and how they 

contribute to biological knowledge. 

 

1.11 Upcoming Chapters. This thesis will expand on the ideas presented above. Chapter 

2 has detailed descriptions of the methods described above: analogical reasoning; 

extended cognition; and representations of mechanisms. Chapter 3 gives a detailed 

historical account of the development of bioinformatics in biology and its importance 

within that field. Chapters 4, 5, and 6 describe the methods used in particular 

bioinformatics applications such as sequence alignments using BLAST, the analysis of 

DNA microarrays and phylogenetic reconstruction. They also appraise these applications 

using Goldman (1992) and Thagard’s (1997) epistemic appraisal standards. Chapter 7 

summarizes the scientific methods used in bioinformatics research and suggests other 

venues for philosophical research into bioinformatics.  
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Chapter 2 

Methodological Topics 
 
 
2.1 Introduction. The philosophical investigation of bioinformatics concerns how 

bioinformatics theories are discovered, developed and evaluated, and how bioinformatics 

methodology may be different from other scientific disciplines. There are three scientific 

methods that I have found relevant to bioinformatics. The first is extended cognition. My 

presentation of this method is an extension of similar philosophically analyzed methods, 

including distributed cognition, distributed computationalism, and wide 

computationalism. The second method, analogical reasoning, has been discussed since at 

least John Stuart Mill, but has seen a resurgence of discussion with the development of 

cognitive science. The third scientific method is theorized from the mechanistic view of 

scientific theories, which is a relatively new view in philosophy of science. This chapter 

will describe how each applies to bioinformatics. Case studies will be presented in later 

chapters to further support my preliminary account. 

 

2.2 Extended Cognition. Recent discussion in philosophy of science and philosophy of 

cognitive science has focused on how many aspects of scientific progress have not 

depended upon particular innovations by single individuals, or on the use of a particular 

scientific method, but rather by using various external aids. These external aids are 

important since they extend the existing cognitive abilities found in humans. Edwin 

Hutchins (1995) and Ronald Giere (2004, 2003, 2002a, 2002b) present the concept of 
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‘distributed cognition’. David Chalmers & Andy Clark (1998) and Paul Humphreys 

(2004) present a similar concept called ‘extended cognition’. Robert Wilson (1994) 

presents a concept called ‘wide computationalism’ and Paul Thagard (1993) presents a 

similar concept called ‘distributed computing’. I will be reviewing each of these 

concepts, as well as presenting criticisms. However, I believe that all of these concepts 

are more similar than different, and closely represent how external aids help human 

cognizers. 

 

2.2.1 Chalmers, Clark and Extended Cognition. In their 1998 paper “The Extended 

Mind”, Clark and Chalmers presented a thought experiment with the following three 

cases: 

(1) A person sits in front of a computer screen which displays images of various two-

dimensional geometric shapes and is asked to answer questions concerning the 

potential fit of such shapes into depicted "sockets". To assess fit, the person must 

mentally rotate the shapes to align them with the sockets.  

(2) A person sits in front of a similar computer screen, but this time can choose either 

to physically rotate the image on the screen, by pressing a rotate button, or to 

mentally rotate the image as before. We can also suppose, not unrealistically, that 

some speed advantage accrues to the physical rotation operation.  

(3) Sometime in the cyberpunk future, a person sits in front of a similar computer 

screen. This agent, however, has the benefit of a neural implant which can 

perform the rotation operation as fast as the computer in the previous example. 

The agent must still choose which internal resource to use (the implant or the 
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good old fashioned mental rotation), as each resource makes different demands on 

attention and other concurrent brain activity. (Clark & Chalmers, 1998, pp.10-11) 

 Clark and Chalmers claimed that cognition had occurred in all three of these 

cases. Cases 1 and 3 are easy to imagine as cases of cognition because all the operations 

are happening ‘in the head’. However, Clark and Chalmers also argued that the results 

from cases 1 and 3 are the same as case 2. The only difference in case 2 is that the subject 

pressed a button in order to achieve the result. Clark and Chalmers argued that the mere 

pushing of a button, which is an operation that occurs ‘outside the skull’, does not 

exclude the operation from being cognitive. Thus, Clark and Chalmers (1998) claimed 

that cognition does not necessarily have to occur within the mind of an individual. 

However, they extended their theories by showing that cognition can partly occur in a 

machine. Thus, as well as allowing cognition to be distributed among individuals and 

using external representations from fingers, written numbers and models, cognition can 

be extended to the operations of a computer. Chalmers and Clark called their theory 

‘extended cognition’. 

 

2.2.2 Hutchins and Distributed Cognition. Edwin Hutchins (1995) was probably the 

first to popularize a notion of extended cognition with the presentation of the concept 

‘distributed cognition’ in his book Cognition in the Wild. Referring to an example of 

pilotage aboard a naval vessel, Hutchins demonstrated how distributed cognition 

operates. Pilotage is the act of bringing a naval vessel into port, and such a process, 

especially on larger vessels, requires many operations to be carried out by numerous 

members of the vessel, as well as the use of various external representations and artifacts. 
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For example, sailors on each side of the ship telescopically record angular locations of 

landmarks relative to the ship’s gyrocompass. These readings are then passed on to the 

pilothouse where they are combined by the navigator on a specially designed chart to plot 

the location of the ship. Once the navigator manipulates the information, the results are 

passed to the captain who makes the final decisions as to what action the helmsmen 

should make next. This example shows that the act of pilotage is not carried out by any 

one individual but requires a number of individuals, and, nowadays, likely the use of 

computers as well. Also, the information that is used to arrive at the final decision is 

processed by a number of individuals; therefore, it is not one person who is presented 

with all the available information from start to finish to make a decision. Hutchins thus 

makes the following conclusion: The brain is not always the unit of cognition. Cognitive 

tasks require larger entities such as a whole body, a body plus a tool, or a group of people 

committed to a particular task. 

  

2.2.3 Giere and Distributed Cognition. Ronald Giere (2002a, 2002b, 2003, 2004) 

applied distributed cognition to scientific progress. Giere (2003) argued that distributed 

cognition overcomes a dichotomy present in philosophy of science today between 

cognitive theories of science and social theories of science. Cognitive theories hold that 

advances in scientific knowledge are dependent upon cognitive attributes that humans 

possess, such as evaluating coherence between scientific statements and scientific 

discovery through analogical reasoning (Holyoak & Thagard, 1995). Social theorists, on 

the other hand, believe that these advances are due to social forces that exist among 

humans, such as working within a paradigm, or starting scientific revolutions. Distributed 
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cognition takes both the cognitive and the social spheres into account, allowing for 

individual human cognitive abilities as well as the interactions between humans to drive 

scientific advances.  

Giere (2002a) argued that one of the most useful tools in scientific research is the 

scientific model, which can consist of complex graphical mechanisms or mathematical 

relationships that are predicted among entities. These models are perfect examples of 

external representations. Lastly, Giere (2002b) argued that one of the causes of the 

scientific enlightenment from the 16th century and onwards was the greater use of 

external representations such as Cartesian graphs, mathematical models, and animal 

models. 

 

2.2.4 Wilson and Wide Computationalism. In his paper “Wide Computationalism” 

(1994), Wilson foreshadowed Clark and Chalmers (1998) by also stating that the use of 

computers challenged any view that saw the human mind as operating in isolation from 

its environment. Wide computationalism opposes the cognitive scientific theory of 

internalism, where the latter theory, according to Wilson, is based on the following 

argument: 

1. Cognitive psychology taxonomically individuates mental states and processes 

only qua computational states and processes. 

2. The computational states and processes that an individual instantiates 

supervene on the intrinsic, physical states of that individual. 

Therefore 
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3. Cognitive psychology individuates only states and processes that supervene 

on the intrinsic, physical states of the individual who instantiates those states 

and processes. (Wilson, 1994, p.352) 

Wilson rejected the internalist thesis because he believed that a computational system is 

not only restricted to states within an individual but extends to objects in the individual’s 

environment. According to Wilson: “If there are computational descriptions of both an 

organism’s environment and its mental states, and causal transitions from the former to 

the latter that can be thought of as computations, there is a process beginning in the 

environment and ending in the organism which can be viewed as a computation, a wide 

computation.” (p.363) Thus, Wilson presented a thesis similar to Chalmers and Clark 

where cognition is not limited to processes that occur “within the skull” but can include 

objects and manipulations that occur in one’s environment. 

 

2.2.5 Thagard and Distributed Computationalism. Thagard (1993) discusses how 

computer networks are able to solve problems that are too complex for any individual 

node within the network. Thagard shows how these computer networks are similar to 

social networks that sociologists such as Latour (1987) have hypothesized to occur in 

scientific communities. Although not wanting to strictly compare scientific reasoning to a 

sociological phenomenon, Thagard’s project is to show that just as there is an analogy 

between computers and minds, there is also an analogy between computer networks and 

scientific communities. Specifically, the nodes of a computer network are analogous to 

individuals of a scientific community, like collaborators, teachers and students, 
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colleagues and acquaintances. Just as computer networking has increased the output of 

computers, scientific networking has increased the output of scientific research. 

 

2.2.6 Humphreys and Extended Cognition. In his book Extending Ourselves (2004), 

Paul Humphreys gave an account of the philosophical implications of extended cognition. 

One of these implications is in supporting a realist view of scientific knowledge. Van 

Fraasen (1980) argued that entities are real if they are observable by the naked eye, 

whereas scientifically postulated entities such as planets, molecules, and bacteria that 

require instruments such as telescopes and microscopes to detect them cannot be 

considered real, unless there was some way to observe them using the naked eye, such as 

traveling to the observed planets, or shrinking to the size of an atom. This anti-realist 

view of scientific entities is supported by the fact that the functions of the tools that are 

used to observe these entities are dependent upon scientific theories. Thus, if those 

theories turned out to be false, which is not unlikely since scientific theories are often 

falsified, then the entities ‘detected’ by those instruments would be called into question. 

 Humphreys challenged the anti-realist view by arguing that the view confuses the 

order of reliability between entities that are detected using our unaided senses and entities 

that are detected using various tools. He argued that we are mistaken more often when 

making judgments using our unaided senses than when using scientific instruments. For 

example, our senses can detect the temperature of the air surrounding us, yet instruments 

that are used in detecting temperature, such as thermometers, are, ceteris paribus, much 

more accurate. Another ability of ours that has been improved upon using computers is 

our ability to recognize particular humans. We are generally somewhat reliable at 
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recognizing other people based on their faces and voices, but we often are mistaken, such 

as when we try to remember the name of a new member of our academic department. 

However, computers that analyze fingerprints, DNA and even programs that are able to 

perform facial recognitions have proven to be far more reliable than their human 

counterparts. This increased reliability is not only apparent within the scientific sphere, 

but within the legal sphere as well, with DNA evidence becoming more trustworthy in 

legal cases than eyewitness reports. 

 As with instruments that augment, convert and extrapolate data that are normally 

collected by our senses, various instruments have also surpassed our mathematical 

abilities, especially when one considers the computational power that exists in our current 

technological world. In Extending Ourselves, Humphrey’s showed how computers are 

indispensable in solving complex mathematical problems in modern physics research.  

 

2.2.7 Criticisms of Extended Cognition. Robert D. Rupert (2004) presented two major 

challenges to what he calls the Hypothesis of Extended Cognition (HEC). The first 

concerns particular consequences we would have to allow if cognition were extended. 

These consequences include accepting that inanimate, external objects are part of the 

cognitive process, a process which most of us intuitively accept only happens in our 

heads. The operations of the brain, according to cognitive scientists, seem to be very 

different from most external objects that supporters of extended cognition claim to 

‘extend’ our cognition. For example, a note-pad may act as an external memory bank if 

we jot to-do lists on it. It is still very different, however, from our internal memory since 

we do not expect our internal memory to look anything like a to-do list on a note-pad. 
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Another troubling consequence is the assumption in cognitive science that the unit of 

cognitive research, which is the human individual, would have to be dropped. Cognitive 

science generally claims to study the functions of individual humans, not groups of 

humans or a human and some external objects. 

Although these are certainly valid objections, Rupert’s arguments are based on 

some misunderstandings of the extended cognition project. The first is that proponents of 

extended cognition never claimed or required that external objects or processes 

completely resemble internal ones. There are certainly some differences, yet there are 

also some similarities, and it is argued by proponents of extended cognition that the 

similarities outweigh the differences. For example, the contents of my note-pad and those 

of my memory are certainly different, yet they both have the function of helping me 

remember important tasks. Extended cognition theorists also take advantage of this 

difference, since they are needed in order to show that these external objects help our 

internal cognitive processes. To expand on the example, although my memory is 

somewhat reliable, I often find that if I do not jot down my daily tasks on some kind of 

paper or in my daily planner, then I end up missing many important meetings or 

forgetting important tasks since my neural pathways continuously degrade. The reliability 

of my daily planner is so great due to the relative permanence of ink on paper, and I often 

feel completely useless if I forget my planner at home. 

Also, I do not think that all proponents of extended cognition are claiming that all 

research in cognitive science includes external objects and processes. Studying internal 

components and processes is still a very important research project. However, what these 

proponents are saying is that much of cognition, such as pilotage or modern scientific 
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research, needs to take into account these external objects and processes in order to fully 

explain the cognitive steps taken to fulfill those particular tasks. 

 

2.2.8 Continuing an Extended Cognition Program. My interest in extended cognition 

is partly to provide a criticism of the Cognitive View of Scientific Theories. This view 

holds that scientific theories are mental representations (Thagard 1988, Giere 1988, 

1999). More specifically, the main aspects of scientific theories, which include their 

discovery, development and evaluation, can be understood as cognitive processes, which 

are computational. I will argue that scientific theories include representations of scientific 

entities that can be found in computer databases. This thesis will attempt to show, 

therefore, that many theories in science, especially in bioinformatics, are not only internal 

mental representations of mechanisms, but can include representations that extend into 

computer databases, and can be developed using computer algorithms.  

In reply to Rupert, I am not claiming that scientific theories must be extended in 

external objects and processes. The individual scientist can still memorize, discover, 

develop and evaluate many scientific theories on his or her own, without the aid of any 

computers or other external objects or processes. What I am attempting to demonstrate, 

however, is that many contemporary scientific theories are heavily dependent these upon 

external objects and processes. More specifically, I will show that biological theories that 

are discovered, developed and evaluated with bioinformatics tools use complex computer 

algorithms and are contained within large computer databases. The analysis of these 

biological theories supports an extended cognitive view of scientific theories more than 

any other view of scientific theories, because no individual scientist can discover, 
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develop or evaluate these particular biological theories on his or her own, and these 

theories are hardly ever found outside a massive computer database. It will also be shown 

that extended cognition helps in making other methods, analogical reasoning and 

representations of mechanisms, much more epistemically reliable. 

I have chosen the concept ‘extended cognition’ not because I think Chalmer’s and 

Clark’s presentation is superior to that of other authors. I believe all the presentations of 

some kind of externally aided cognition, including distributed cognition, wide 

computationalism, and distributed computationalism, are essentially very similar. I 

believe that the term ‘extended’ is simply most appropriate for describing the 

phenomenon. This thesis will be supported using particular case studies in chapters 4, 5 

and 6. 

 

2.3 Analogical Reasoning. Another method that is applicable to bioinformatics research 

is the use of analogical reasoning in the generation, development and evaluation of 

scientific theories. This topic has been prevalent throughout the history of philosophy of 

science. Aristotle wrote about analogies, or shared abstractions (Shelley, 2003), yet he 

never applied it to scientific theorizing. John Stuart Mill was probably the first 

philosopher to further develop this theory (Brown, 1989). In his System of Logic (1873), 

he defined analogies as inferences that are made about the possible properties of one 

thing based on the known properties of another with which it shares other properties. This 

definition of analogical reasoning has generally been accepted in the history of 

philosophy of science, as we will see when looking at the works of more contemporary 

philosophers. Despite his interest in analogies, Mill did not think that they always played 
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a role beyond helping make scientific discoveries. Analogies are “…supposed to be of 

inductive nature but not amounting to complete induction.” (Mill, 1873, p.101). 

However, if the resemblance between the two things being compared is very great, then 

an analogy may amount to a complete induction. It does not seem as if Mill gives any 

measure as to how similar the objects need to be in order to be evaluative, however. 

 Mary Hesse (1952, 1966) described the use of models that give some 

representation of the phenomena that a theory is attempting to describe. These models 

can be based upon analogies between the unknown phenomena and some known 

phenomenon. Hesse’s favorite example was the kinetic theory of gas. In envisioning the 

workings of the gas molecules and how they are affected by temperature, pressure and 

volume, one is often given the analogy of billiard balls. Just as billiard balls move and 

bounce off of one another according to particular forces applied to them, similar actions 

occur on gas molecules. According to Hesse, the analogy does not only play a positive 

role in the discovery of the theory, but can also help in evaluating the theory. The 

analogous relationship between the known and unknown phenomena is three-fold: 

positive, negative, and neutral. The positive portion of the analogy is what initiated the 

researcher to propose the analogy in the first place. In the billiard ball/gas molecules 

analogy, the entities involved are seen as spherical and as obeying the laws of Newtonian 

mechanics. The negative portions of the analogy are the properties of both phenomena 

that are assumed not to have any relationship whatsoever. Gas molecules are not expected 

to be colored, solid or striped, for example, nor are billiard balls free-floating in the air. 

Lastly, the neutral portion consists of the aspects of the analogy that are not yet known. 

Just as billiard balls move faster or slower depending upon mechanical forces that are 
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applied unto them, the kinetic theory was tested as to whether factors such as pressure, 

temperature, and volume of a container affect gas molecules in a mechanical manner. The 

neutral aspect of an analogy, therefore, helps in the development of a theory just as the 

positive aspect helps in its discovery. 

 Other researchers have developed similar theories on how analogies are used in 

science (Bonner 1963, Wilson 1964, Lee 1969).  Ruse (1973) was probably the first 

researcher to see the importance of analogies in biological research, especially with 

respect to Darwin’s use of analogies in supporting his theory of evolution by natural 

selection. The analogies Darwin used, namely comparing natural selection to Malthus’ 

economic theories on the Welfare state, as well as to artificial selection, are among the 

most famous in the history of science. The presentation by Darwin of these analogies 

gives the impression that they were not only used to discover and develop the theory of 

natural selection, but also to serve as evidence for the theory of evolution by natural 

selection. Darwin’s extensive description of artificial selection, how varieties are created 

through the selections that farmers and breeder make, and how those varieties eventually 

create new species, give support for the natural selection thesis. The difference between 

artificial and natural selection is that the former requires selection pressures from a 

human farmer or breeder whereas the latter requires selection pressures within the 

environment. 

 The relationship between science and analogies was brought back into 

consideration among those who held a cognitive view of scientific theories. As a part of 

the cognitive view, the use of analogies was seen as a special kind of cognitive tool. 

Holyoak and Thagard (1995) studied the use of analogies in many spheres of thought, 
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from reasoning in childhood, to courtroom cases, to political decisions, philosophical 

discussions, and, of course, scientific theorizing. What these authors also attempted to 

show, as hinted by the title of their book, Mental Leaps, is that analogical reasoning is a 

very important tool in helping to solve many problems. For example, they presented 

many cases where individuals are told a particular story where problem solving was 

involved, and when those individuals were presented with a story that was somewhat 

similar to the problem, they were much better than a control group at solving the 

problem. Such mental leaps are not uncommon in many aspects of human cognition, 

from children’s stories to historical comparisons.  

Analogies have also figured importantly in many of history’s most influential 

scientific theories. Holyoak and Thagard listed the following analogies that helped in the 

discovery, development, and even evaluation of scientific theories: Sound/water waves, 

Earth/small magnet, movements of the Earth/movements of the Moon, movements of the 

Earth/movement of a ship, light/sound, planetary motion/projectiles, lightning/electricity, 

respiration/combustion, motive power of heat/motive power of water, animal and plant 

competition/human population growth, natural selection/artificial selection, 

electromagnetic forces/continuum mechanics, benzene ring/self-cannabilistic snake, 

chromosome/beaded string, bacterial mutation/slot machine and mind/computer.  

 Building on the structure-mapping theme of Gentner (1983), Holyoak and 

Thagard gave specific details on the relationships between the source of an analogy and 

its target. These elements are often brought together by some kind of similarity between 

the elements of the source and the target. Second, there are structural parallels that should 

exist between the source and the target. These parallels should also be one-to-one, 
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meaning “each element of the target domain should correspond to just one element in the 

source domain (and vice versa)” (Holyoak & Thagard, 1995). Lastly, analogies generally 

have purposes, that is, they are used by an individual to fulfill some task. In the case of 

scientific theories, analogies are used in order to discover, develop or evaluate some 

theory. These three details compose the multiconstraint theory of analogical reasoning. 

With these constraints, searching for analogies and deciding whether they are adequately 

used in supporting scientific theories becomes an easier task. 

 A similar treatment of analogical reasoning has been offered by Cameron Shelley 

in a number of works (2002, 2003, 2004). Shelley used tables that map the relationship 

between a source and target according to various dimensions. The first dimension shows 

the correspondence between certain objects, properties or attributes of a source and a 

target. The second dimension has the correspondence between the relations among the 

attributes. Finally, the third dimension shows the correspondences between the system 

relations of each domain. Below is an example of this table (Table 2.1) using an analogy 

Shelley (2004, p.4) constructed between the use of anti-depressants in a mouse and its use 

in humans: 

 

In the Porsolt Forced-Swim Test (Porsolt et al. 1977), a mouse is placed in a 

cylinder of water and watched to see how long it swims until it gives up trying to 

climb out. (The mouse is not drowned at that point but assumes a static position 

with its hind feet on the cylinder bottom and its nose out of the water.) It turns out 

that mice that are treated with antidepressants tend to swim longer than normal 

mice do. This model of the action of antidepressants enjoys construct validity in 
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the sense that the increased time that mice treated with antidepressants spend 

trying to extricate themselves from the cylinder corresponds to the increased hope 

for success in life that depressed people treated with antidepressants feel in the 

pursuit of their goals. (Shelley, 2004, p.4). 

 

Table 2.1 Table showing mapping between a source and a target in an analogy. 

Mouse Human 
Mouse Patient 
Antidepressantm Antidepressanth 
Safety Goals 
Longer-time Further-extent 
Look-for (mouse, safety) Hope-for (patient, goals) 
Persistm (mouse, longer-time) Persisth (patient, further-extent) 
Receivem (mouse, antidepressantm) Receiveh (patient, antidepressanth) 
Becausem (persistm, look-for & receive) Becauseh (persisth, hope-for & receive) 

 

Based on the information given in the Porsolt Forced-Swim Test, and the correspondence 

between the properties, relations, and system-relations in the description, it is 

hypothesized that there is a clear analogy between the action of the anti-depressant in 

mice and its action on humans. 

 Using the theory of analogical reasoning described so far, especially Shelley’s 

tabular comparison, I will show how much of bioinformatics research is the application 

of analogical reasoning. The extensive use of analogical reasoning in bioinformatics is 

due to the fact that much bioinformatics research involves making inferences on 

unknown sequences and processes based on those that are familiar.  

The extensive use of analogical reasoning in bioinformatics is based on findings 

and assumptions found in evolutionary biology and molecular biology. First, 
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bioinformatics research is necessarily embedded in evolutionary theory. One of the major 

claims of evolutionary theory is that all species ultimately descended from one common 

ancestor. As species evolve, changes accumulate between species. However, many 

similarities also remain. The accumulation of changes increases with time; therefore, 

species that are more closely related have fewer changes than those that are more 

distantly related. This general explanation is often represented using a “Tree of Life”, 

with many branches of life extending from that original ancestor, and the proximity of the 

branches representing the evolutionary descent and relationships among species (see 

figure 2.1). 

 

Figure 2.1 The tree of life. The original ancestor is predicted to be at the ‘root’ of the tree 

(from http://www.genex2.dri.edu/research/Tree.gif). 

http://www.genex2.dri.edu/research/Tree.gif
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The evolution of species is also found to be directly correlated with changes in their 

DNA. The more distantly related two species are, the more changes to the DNA are 

expected, and vice-versa. If you were to compare two closely related species, their DNA 

should be relatively similar. Since molecules such as DNA and proteins are compared 

among species, then analogical reasoning in bioinformatics seems to be a natural 

progression of previous works in molecular biology. In pre-bioinformatics research, 

biomolecules researched in non-human species were often thought to be analogical to 

those found in humans. As such, analogical reasoning is not exclusively used in 

bioinformatics. However, analogical reasoning is used in unique ways in bioinformatics 

research. Chapter 4 will look at a tool called BLAST that compares sequences like DNA, 

RNA and protein among species. These comparisons help in determining relationships 

between species, discovering the functions of those sequences (assuming that sequences 

that are closely related are more likely to share the same function), and so on. Many 

bioinformatics tools are similar to BLAST in making these kinds of comparisons. The 

quick survey of BLAST in chapter 1 already shows that various comparisons are being 

made, and often these comparisons are between sequences of known function or descent 

and sequences of unknown function of descent. This type of comparison fits the 

description of analogies given above, thus supporting the thesis that analogical reasoning 

is used in bioinformatics. What is unique about analogical reasoning in bioinformatics, 

however, is that the method is made even more powerful through the use of computers. 

Chapters 4, 5 and 6 will further demonstrate the analogical nature of these comparisons, 

as well as the unique nature of computer use in analogical reasoning found in 

bioinformatics.  
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2.4 Representations of Mechanisms. In the past decade, representations of mechanisms 

have been found relevant to the nature of scientific models, explanations and 

methodology (Bechtel and Richardson 1993, Machamer, Darden and Craver 2000, 

Thagard 2003). Mechanisms, according to Machamer et. al. (2000), are “entities and 

activities that produce regular changes form start up to termination” (p.3). Bechtel and 

Abrahamsen (2005) give the following similar definition: “A mechanism is a structure 

performing a function in virtue of its components parts, component operations, and their 

organization. The orchestrated functioning of the mechanism is responsible for one or 

more phenomena.” (p.423). The mechanistic view is particularly applicable to biological 

explanations, in particular to neuroscientific explanations (Machamer et. al., 2000) and 

medical explanations (Thagard, 2004). Thagard states that mechanisms do not necessarily 

require start-up and termination conditions as described by Machamer, but can be 

involved in various feedback loops.  

Mechanistic explanations are similar to the descriptions of machines, where there 

is a description of the various parts, how they interact with other parts, and the end results 

that are produced by the machine. For example, Thagard gives the following example of 

a simple machine with very different interacting parts (Figure 2.2). 

 

Figure 2.2. Diagram of a lever, demonstrating a simple machine. (from Thagard, 2004, 

p.55). 
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The lever has two major parts. The first is the plank and the second is the fulcrum. The 

plank rests atop the fulcrum and applying force to one side of the plank allows the other 

side of the plank to rise, thus easily allowing objects that are paced on the other side to be 

raised to a particular height. The movement of the plank to raise the object constitutes the 

activity of this mechanism. This simple mechanism can also be part of a larger 

mechanism, such as a Rube Goldberg machine. Therefore, mechanisms can contain 

“nested hierarchies” where the part of one mechanism can be explained by referring to 

the representation of another mechanism (Machamer et. al., 2000, p.13).  

  Mechanistic explanations are prevalent in biological research, especially in 

‘lower-level’ fields such as molecular biology and neurobiology. However they can be 

found in other scientific disciplines, as well. These disciplines include ecology with the 

presentation of cycles in ecosystems, and chemistry with the presentation of particular 

chemical reactions. Thagard (2004) demonstrates the prevalence of mechanistic 

explanations in medical research involving the study of molecular interactions in a cell. 

Von Eckardt and Poland (2004) demonstrate the use of mechanistic explanations in 

cognitive neuroscience. Machamer et. al. (2000) present an example of a biological 

mechanism through the working of a synapse. The diagram in figure 2.3 from Bechtel 

and Abrahamsen (2005) is a figure of the human coronary mechanism: 
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Figure 2.3. Visual representation of the human coronary mechanism. From Bechtel and 

Abrahamsen (2005, p.4). 

 

In this diagram, the various entities, which are the heart membranes, valves and lungs, are 

either drawn to mimic the actual organ or simply given a structural representation. The 

activities, indicated by the arrows between the various entities, are the causal links 

between all the entities. Diagrams, as seen in the above two figures, are visual 

representations of mechanisms. Two other representations of mechanisms are 

propositional and schematic. For example, Thagard (2004) gives two mechanisms of 

virus infection, the first propositional and the second schematic. 

 

Propositional: “Viral release may directly cause cell damage or death, as when the SARS 

virus infects epithelial cells in the lower respiratory tract. Second, the presence of the 

virus will prompt an autoimmune response in which the body attempts to defend itself 

against the invading virus: this response can induce symptoms such as high fever that 

serves to slow virus replication.” (Thagard 2004, p.56) 
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Schematic: “viral infection → cell damage → symptoms 

viral infection → immune response → symptoms” (Thagard 2004, p.56) 

Both representations have each of the components (entities, activities, regular changes) of 

the mechanistic explanation. Other representations are possible, as it is becoming 

possible in scientific literature to present mechanisms through 3-dimensional diagrams 

and even animated video clips. Each representation is useful depending upon the 

mechanism one is presenting. For example, describing the different neurotransmitters and 

their passage across a synapse is more difficult to present as a propositional statement. 

The process of viral infection, although possible to represent in visual form, is easier in a 

schematic format.  

 Although these mechanisms are meant to give a representation of the scientific 

phenomenon, they are not expected to be complete. Within each mechanism there are 

implicitly embedded mechanisms, and mechanisms are not expected to accurately depict 

the temporal progression of each step in a mechanism or the spatial dimensions that are 

involved. Consider the mechanism of glycolysis, which is the mechanism by which 

glucose is used to create ATP, our bodies’ energy source (figure 2.4): 
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Figure 2.4 A mechanistic representation of glycolysis. (image is in the public domain). 

 

This mechanism simply gives the entities and activities that are involved in glycolysis, 

the starting conditions and the termination conditions. There is no indication as to how 

quickly these reactions occur, where in the cell the reactions occur, nor is there any 

indication of the proximity of all the entities to each other. These details are not always 

required in order to effectively explain or model this reaction. 

 Since bioinformatics tools, such as BLAST and microarrays, are used in 

analyzing biological molecules, they often productive in creating representations of 

mechanisms. Many computer programs have been specifically designed to quickly and 

reliably produce these representations. The most salient of these is the creation of 

representations based on expression patterns in microarrays (figure 2.5). Using specific 

programs, the data from this figure can be used to create representations of mechanisms, 
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a process which would be very difficult for a human scientist. This complete process will 

be described in greater detail in chapter 6. 

 

Figure 2.5. A preliminary representation of a mechanism based on a cell’s expression 

patterns. The branches that are closest to one another represent the molecules that are 

most likely to interact with one another, whereas those that are furthest are less likely to 

have a direct interaction. (From Weinstein et. al., 1997).  

 

Chapter 6 will further demonstrate how computers have facilitated the use of 

representations of mechanisms in bioinformatics. 

 

2.5 Summary. This chapter has summarized three important scientific methods that are 

discussed in philosophy of science today: extended cognition, analogical reasoning and 

mechanistic representations. Extended cognition is the use of external representations 

such as computer databases to help solve scientific problems and to store scientific 
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theories. Analogical reasoning is a process that helps in the discovery, development and 

evaluation of scientific theories by comparing the previously unknown components of 

that theory’s domain to phenomena that are already known. The multiconstraint theory of 

analogical reasoning, which looks at the similarity, structure and purpose constraints on 

analogies, will be used in this thesis to demonstrate the use of analogies in 

bioinformatics. Mechanistic representations describe the operation of entities and 

activities of a system from start to termination or in a feedback loop.  

 These methods will be shown in the upcoming chapters to be extensively used in 

bioinformatics research. It will also be shown that the combination of these methods, i.e. 

computer use in combination with analogical reasoning and in combination with 

representations of mechanisms, makes bioinformatics research somewhat unique in its 

methods. This will be done by presenting three case studies of tools used in 

bioinformatics, BLAST, phylogenetic studies, and microarrays. 
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Chapter 3 

Bioinformatics 
 
 
3.1 Introduction. Although the term was first coined in 1991 (Stein, 2005), 

developments that are central to bioinformatics were made since the 1960s. It was not 

until the 1990s, however, that biologists recognized that computational techniques were 

beginning to make significant contributions to both biological and medical discovery. 

 The National Center for Biological Information (NCBI) has a list of milestones in 

bioinformatics, which I have included in table 3.1, along with some additions I have 

made myself (marked with a ‘*’). This chapter provides a detailed summary of most of 

these milestones 

 

Table 3.1 Bioinformatics Milestones from NCBI 

(www.ncbi.nlm.nih.gov/Education/BLASTinfo/milestones.html, my additions marked 

with a ‘*’) 

Year Milestone 
1962 Pauling's theory of molecular evolution developed 
1965 Margaret Dayhoff's Atlas of Protein Sequences compiled 
1970 Needleman-Wunsch algorithm developed 
1977 DNA sequencing and software to analyze it developed 
1981 Smith-Waterman algorithm developed  
1981 Concept of the sequence motif developed 
1982 Phage lambda genome sequenced  
1982 GenBank Release 3 made public  
1983 Sequence database searching algorithm developed 
1985 FASTP/FASTN: fast sequence similarity searching algorithm 

developed 
1988 National Center for Biotechnology Information (NCBI) 

created at NIH/NLM  

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/milestones.html
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1988 EMBnet network for database distribution developed 
1990 BLAST: fast sequence similarity searching algorithm 

developed 
1991 EST: expressed sequence tag sequencing algorithm developed 
1993 Sanger Centre created 
1994 EMBL European Bioinformatics Institute created 
1995 First bacterial genomes completely sequenced  
1995* DNA microarray developed by Affymetrix 
1996 Yeast genome completely sequenced  
1997 PSI-BLAST algorithm developed 
1998 Worm genome completely sequenced  
1999 Fruit Fly genome completely sequenced 
2004* Human genome completely sequenced 

 

3.2 Molecular Biological Foundation of Bioinformatics. One of the greatest scientists 

of this century, Linus Pauling, is credited as one of the founders of bioinformatics. He is 

known for his work in quantum chemistry, which is the application of quantum physics to 

discovering the structure of molecules and their chemical bonds. His work in this field 

allowed him to develop the technique of X-ray crystallography (Pauling, 1939). This 

technique shows the structure of molecules by bouncing X-rays off those molecules and 

studying the pattern the refracted rays make on a plate. Although Pauling designed this 

technique for use on inorganic molecules, he turned his attention to biological molecules. 

By using X-ray crystallography on proteins, he was able to show that the secondary 

structures of proteins, which is the local structure formed by the protein molecules, were 

mainly composed of alpha helices and beta sheets (figure 3.1).  

A brief explanation is necessary at this point to describe the structure of proteins 

as they occur in living cells. There are four structural levels of proteins. The primary 

structure of proteins is the actual protein sequence, a simple list of the individual amino 

acids. The secondary structure is any local structure in the protein sequence caused by the 
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interactions of the amino acids in the protein, of which alpha helices and beta sheets are 

examples. The tertiary structure is the overall shape of the protein, while the quaternary 

structure is the shape a larger protein that is composed of smaller proteins, or sub-units. 

 

 

 

 

 

                             

Figure 3.1. Left: Beta sheet. Most diagrams of proteins with beta sheets represent them 

as arrows. Right: Alpha helix. Most diagrams of proteins with alpha helices represent 

them as a helix (Permission to use diagrams granted under the Gnu Free Documentation 

License). 

 

Pauling used X-ray crystallography to try to determine the structure of DNA. 

Many believe that Pauling would have been the first to discover its structure if he had 

access to better equipment or had attended a conference in England where Rosalind 

Franklin presented high quality diffraction photos of DNA (Lwoff et. al., 1979). 

 The use of X-ray crystallography on biological molecules was the first technique 

to give a glimpse into this microscopic world. Since bioinformatics involves the 

computational investigation of biological molecules, Pauling is seen as the founder of the 

molecular-biological portion of bioinformatics (Pevsner, 2003). 
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3.3 Informational Foundation of Bioinformatics. As Pauling is the founder of the 

molecular portion of bioinformatics, Margaret Dayhoff could be considered as the 

founder of the informational portion. Although work on sequencing proteins was already 

underway when she presented her work in the 1960s, Dayhoff was the first to develop 

computer applications that constructed larger sequences from data that had smaller 

sequences with overlapping peptides. She also created computer programs that were able 

to accept input from X-ray crystallography experiments. Lastly, Dayhoff was the first to 

develop computer methods that compared protein sequences, and was the first to derive 

evolutionary histories of species based on those alignments. This method of finding 

evolutionary relationships has remained central to bioinformatics. We will see a few of 

these programs later in the chapter. Dayhoff also compiled the Atlas of Protein Sequences 

(1965), and was the first compilation, or database, of known protein sequences. It 

contained only 65 proteins, but subsequent volumes made increasing additions to this 

database. 

 Dayhoff also created her ‘Substitution Matrix’, which gave the substitution 

probabilities of amino acids within sequences over evolutionary time. By analyzing the 

proteins that were available, and by hypothesizing their evolutionary relationship, 

Dayhoff was able to estimate the probability that particular amino acids were substituted 

for other amino acids, and the probability that they remained the same. From these 

probabilities, Dayhoff calculated the log-odds ratio, where the score S for an alignment of 

amino acid residues a and b is given by: 

S (a, b) = 10 log10(Mab/pb) (from Pevsner, 2003, p.57) 
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Mab is the probability that the residues are authentically aligned, whereas pb is the 

probability that the residue b was randomly aligned. 

The resulting log-odds matrix is called the Accepted Point Mutation (PAM) 

matrix (Figure 3.2). This matrix is useful for sequence matching algorithms, since the 

scores help in determining the evolutionary similarity between sequences. We will return 

to this matrix and its use in Chapter 4.  

 

 

Figure 3.2. The PAM 250 substitution matrix. Each log-odds value represents the 

probability that particular substitutions occur over evolutionary time (from Pevsner, 

2003, p.58). 

 

3.4 Computational Foundation of Bioinformatics. Although Dayhoff used 

computational techniques in analyzing protein sequences, and there was computational 

work on phylogeny prediction (for example, Goodman et. al., 1974), the computational 

foundation is usually attributed to the developments of the Needleman-Wunsch (1970) 
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and Smith-Waterman algorithms (1981). These algorithms are designed to compare 

protein and DNA sequences, thus paving the way to finding evolutionary and functional 

relationships between sequences. Although sequence-matching algorithms were already 

being used for other applications, the Needleman-Wunsch and Smith-Waterman 

algorithms were specifically designed with biological sequences in mind. Algorithms 

comparing biological sequences are not only designed to find matches, but need to 

provide scores for degrees of match, since those that are more closely matched are more 

likely to be evolutionary related to each other. Molecular evolution also causes sequences 

to have vast areas in a sequence that contain insertions or deletions of DNA or amino 

acids. These algorithms take these insertions and deletions into account, and are able to 

modify the resulting score based on this contingency. We will look at these algorithms in 

greater detail in Chapter 4. 

 

3.5 DNA Sequencing. Another important tool that is not necessarily a part of but has 

developed greatly through collaboration with bioinformatics is DNA sequencing. 

Although protein sequencing was being performed using mass spectrometry and X-ray 

crystallography, DNA sequencing was not possible with these techniques due to the large 

size of DNA molecules. In 1977, Sanger developed a method of sequencing DNA that 

involved the use of radioactive labels (Lewin, 1997). The Sanger method was ingenious 

since it was able to create multiple DNA strands from an original strand that were of 

variable length containing radioactive tags, one for each of the four nucleotides, and the  

sequence was determined by calculating the lengths of these strands (see figure 3.3). 
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Figure 3.3. The Sanger method of DNA sequencing. (From 

http://www.bioteach.ubc.ca/Bioinformatics/GenomeProjects/. Permission for use granted 

by David Ng and bioteach.ubc.ca.) 

 

In the same year that Sanger developed DNA sequencing, Staden (1977) designed a 

program that inputs DNA sequences in order to store, edit and analyze such sequences. 

More modern techniques detect the fluorescence used with a laser and these readings are 

directly inputted into a computer. Other strategies, such as “shotgun” sequencing, have 

been employed to make the sequencing process even quicker and cheaper. When the 

human genome project began in 1998, total sequencing output was 200 Mb for the year. 

In January 2003, one single institute sequenced 1.5 billion bases for the month 

http://www.bioteach.ubc.ca/Bioinformatics/GenomeProjects/
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(doegenomes.org). Also, the cost was drastically reduced, from about $2 per nucleotide at 

the beginning of the project to about 10 cents per nucleotide by the end of the project 

(from NCBI genome database at ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj). 

 

3.6 DNA Domains. By 1981, with an increasing number of genes and proteins sequenced 

and greater analyses into the functions of these molecules, biologists were beginning to 

recognize that genes and proteins have domains (Doolittle, 1981). Domains are areas of a 

gene or protein that perform a particular function. For example, a transmembrane protein 

can have three domains. The first is the extracellular component, which is responsible for 

either importing specific molecules into a cell, exporting specific molecules out of a cell, 

or both. The second domain is the transmembrane area, which is found in the cell wall, 

and keeps the protein attached to the cell. The last domain is the intracellular component, 

which has the same function as the extracellular component, but in reverse. The 

importance of this discovery to bioinformatics is that it adds extra relevance when 

searching for similarities between sequences. Nowadays, when bioinformatics 

researchers perform web-based searches of similar genes or proteins with a query 

sequence, they first get a page describing the domains that are present in that gene or 

protein (figure 3.4). The importance of these domains will also be demonstrated in 

chapter 5 when we look at how phylogenetic trees are constructed using bioinformatics 

tools. 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj
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Figure 3.4. The domains of the transmembrane protein responsible for conductance 

regulation in cystic fibrosis in humans. This figure is returned after performing a 

sequence similarity search using the web-based NCBI BLAST program. One can click on 

these motifs and a page will be displayed describing the properties and functions of the 

motifs. 

 

3.7 The First Public Database. Since Dayhoff’s Atlas of Protein Sequences was 

released, other databases of gene and protein sequences began to be developed. GenBank 

is one of those databases (Benson et. al., 2005), and is still extensively used today (you 

can access the bank and make gene submissions via 

http://www.ncbi.nlm.nih.gov/Genbank/index.html). Its third wide release was in 1982, 

and this release was significant since it was the first that was publicly available to the 

scientific community. This public availability started a trend in gene and protein 

sequencing, and will figure into the argument I will later make about the extended nature 

of bioinformatics.  

 

3.8 Genome Sequencing. With the increasing size of databases and the ability to share 

information, the ability to sequence whole genomes became easier. It was not long before 

the first genome, that of the phage lambda virus, was fully sequenced (Sanger et. al, 

1982). The phage lambda has a genome only 49 kb in length (or 48,502 nucleotides, 

http://www.ncbi.nlm.nih.gov/Genbank/index.html
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which is relatively small compared to the human genome, which is 3.2 Gb in length). The 

phage lamba is a bacteriophage that infects Escherichia coli; it is probably a good 

candidate for genome sequencing because not only is its genome very small, it is also 

easy to replicate, which would provide many samples to sequence. With the complete 

sequence of a genome, biologists were becoming more confident that they would be able 

to get a full understanding of how living organisms work, since they had access to their 

DNA blueprints.  

The complete sequencing of genomes followed a trend of increasing organism 

complexity. The first bacterial genome to be sequenced was the Haemophilus influenzae 

genome, which was 1.83 Mb in size. H. influenzae is a bacterium responsible for causing 

ear and respiratory infections, as well as meningitis in children (Fleischmann et. al., 

1995). The first sequenced eukaryotic genome was Saccharomyces cerevisiae, or baker’s 

yeast (Galibert et. al., 1996), with a size of 12 Mb. The flatworm, or Caenorhabditis 

elegans, was the first multi-cellular genome to be sequenced (C. elegans Sequencing 

Consortium, 1998) with a genome has 97 million base-pairs. The first ‘complex’ 

organism to be sequenced was the fruit-fly, Drosophila melanogaster, which was and 

continues to be a classic test-subject used by geneticists (Ridley, 1996), and with the 

sequenced genome, researchers finally had access to its 120 Mb of genetic information 

(Adams et. al., 2000). Currently, the genomes of about 180 species have been fully 

sequenced, mostly from bacteria and archea, but also including those of the mosquito, 

honeybee, dog, bread mold, rat, mouse, pufferfish, chimpanzee, and, of course, humans. 

A complete list of sequenced genomes can be found at the following NCBI web page: 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj
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3.9 Database Searching Algorithms. As protein databanks grew is size, it became 

apparent that algorithms were necessary in order not only to compare individual 

sequences, as was done with the Needleman-Wunsch and Smith-Waterman algorithms, 

but also to compare a query sequence with entire databases. This algorithm also had to be 

somewhat efficient yet without a significant loss in precision so that, as the database 

grew, the search time using the algorithm would not become too long.  In 1983, Wilbur 

and Lipman presented an algorithm called DEC KL-10 that performed such a task. In 

their original experiment, the authors compared all sequences in the Protein Data Bank, 

which, at that time, had about 200 entries, with a 350-residue query sequence. The 

process took about three minutes to complete. A faster algorithm called FASTP was 

developed in 1985 by Lipman and Pearson, which could do the same operation with 

about 1000 entries in about 2 minutes. Since these first attempts, the process speed and 

accuracy have increased significantly with algorithms such as BLAST (Altschul et. al., 

1990) and PSI-BLAST (Altschul et. al., 1997) being able to perform this type of search 

on about 37,500 protein sequences in about 10 to 20 seconds. We will look at BLAST in 

Chapter 4. 

 

3.10 Bioinformatics Websites. The trend of offering publicly available information has 

been growing steadily in bioinformatics, from books to computer databases of protein 

sequences, to algorithms able to compare individual sequences to each other as well as to 

entire databases. The major resource for all databases and tools available to 

bioinformatics researchers nowadays is the National Center for Biotechnology 

Information, which was created in 1988. NCBI is a division of the National Library of 
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Medicine (NLM) at the National Institutes of Health (NIH). NLM was chosen due to its 

experience in creating and maintaining biomedical databases. Almost any 

biotechnological database can be found using NCBI, and it also contains a variety of 

bioinformatics programs. NCBI is currently accessible by anyone with Internet access at 

http://www.ncbi.nlm.nih.gov. When I look at BLAST in chapter 4, the examples will 

come from using tools within NCBI.  

Similar databases have been created since NCBI, including the European 

Molecular Biology network (EMBnet) in 1988, the European Molecular Biology 

Laboratory in 1994, the DNA Databank of Japan (DDJB) in 1986, and Ensembl in 1999. 

These databases, along with NCBI, offer a wide range of information and tools. More 

specialized databases have also been created in order to suit researchers with particular 

research needs. These include GenBank (Benson et. al., 2005), which acts as a repository 

for DNA sequences, Protein Information Resource (Wu et. al., 2003), which is an 

integrated database on protein research, and the Protein Database (Berman et. al., 2000), 

which stores X-ray crystallographic structures of proteins. There are databases that 

specialize in particular species, such as the Human Protein Reference Database (Peri et. 

al., 2003), FlyBase (Ashburner & Drysdale, 1994) and WormBase (Stein et. al., 2001). 

Lastly, an even newer trend is the creation of databases that specialize in particular 

molecular functions, such as Reactome (Joshi-Tope et. al., 2005), which describes 

fundamental molecular pathways in humans, and HumanCyc (Stein, 2005), which 

describes pathways involved in human metabolism. All of these databases are primarily 

accessed using the Internet, and each offer a variety of publicly accessible tools for 

analyzing these databases. 

http://www.ncbi.nlm.nih.gov/
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Figure 3.5. Screenshot of main page from NCBI from November 22, 2005.  
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3.11 NCBI. The more general websites, like NCBI, have specific pages that have a 

variety of databases and tools. Each of these is accessible from the main page (figure 3.5, 

found on previous page). The main menu bar consists of the following options: Pubmed, 

Entrez, BLAST, OMIM, Books, TaxBrowser and Entrez Structure. Pubmed provides 

access to biomedical literature. This literature is almost fully integrated into all the tools 

available on the website. For example, if a researcher wishes to find a protein sequence in 

the database, journal articles that provide information on the sequence are returned along 

with the sequence itself. Entrez is used to search across all databases that NCBI has 

access to. For example, if one were to input “Hemoglobin” in the Entrez search field, 

information on all hemoglobin sequences, DNA, RNA and protein, from every inputted 

organism, would be returned, along with Pubmed articles on hemoglobin.  

Of course, biologists can limit their search in whatever way they wish, such as 

returning only protein results, or sequences from a specific species, or even results that 

were input after a particular date. BLAST is a sequence-matching tool already described 

in this chapter, and we will look into it in more detail in chapter 4. OMIM stands for 

Online Mendelian Inheritance in Man. It is a catalog of human genes and human genetic 

disorders. TaxBrowser, short for Taxonomy Browser, provides detailed information on 

every catalogued species, as well as links to genes and proteins that have been 

catalogued, and evolutionary relationships to other species (figure 3.6). Finally, Structure 

is a database specifically designed for storing 3D macromolecular structures, with tools 

for structure visualization and comparative analysis between structures. Although I will 

not be going into detail on the prediction of protein structure, it is a highly productive 

area within bioinformatics. X-ray crystallography is still used to predict protein structure, 
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but the process is relatively slow, especially when compared to the potential discovery 

speed that an accurate algorithm can perform. Ab initio programs predict protein shape 

based on the primary structure of proteins and applying rules of folding generated from 

the folding behaviour of previous proteins with similar amino acids.  

 

 

Figure 3.6. E. coli information from TaxBrowser. Also contained on this page, but not 

show here, is a list of references describing the organism in detail and a list of website 

specialized in the molecular biology of E. coli. 

 

3.12 Microarrays. One of the most recent and influential developments in bioinformatics 

is the invention of the microarray, or gene chip, in 1995 (Schena et. al., 1995). The 

concept of the chip is very simple, yet the technology that is required to facilitate such a 

development has only been around very recently. The purpose of a microarray is to 
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monitor the genetic activity of a cell, tissue, or organism under particular conditions 

and/or a particular time. Previous studies could only monitor the activity of one or a few 

genes at a time, the most successful technique being the monitoring of what occurs 

among organisms with mutations of that gene. The problem with this approach, however, 

is that it was not clear whether those particular genes were the only causes of the effects 

they observed.  

Microarrays circumvent this problem by being able to monitor the activity of all 

genes at once. They work by placing the same copies of all the genes of a cell, tissue, or 

organism on each of a number of chips. Then the mRNA products, which are the 

precursors to proteins, from differently expressed cells/tissues/organisms, are added to 

each of the chips, and since mRNA are complements of DNA, they bind to the DNA that 

is found on the chips. For example, one of the chips would have the mRNA from a 

normal cell added to it and another mRNA from a cell with a particular mutation, or with 

a drug added, or at a different developmental stage. By applying all the mRNA to chips 

with all the genes, researchers can monitor all the differences among the types of 

cells/tissues/organisms. This process is conducive to creating a more accurate picture of 

the genetic causes and effects within a cell since all of the genes and proteins are being 

monitored at once. Figure 3.7 shows a set of microarrays. Microarrays will also be 

studied in greater detail in chapter 6. 

 

 



 64

 

Figure 3.7. A set of microarrays show the gene expression differences among cells in 

various different conditions. Each position on one chip corresponds to the same gene on 

another chip, and any difference in colour corresponds to a difference in the expression of 

that gene under different conditions. This image is available in the public domain. 

 

3.13 Summary. Bioinformatics has three main branches. The first is molecular biology, 

where researchers provide data on the molecular biology of species. These data include 

DNA and protein sequencing, testing gene expression with tools like microarrays, and 

creating better methods for generating such data. The second branch is information 

theory, which is concerned with the mathematical relationships that exist among genes, 

substitution frequencies (PAM), and molecular structures. The last branch is computer 

science, which applies mathematical inferences to the collected biomolecular data, and 

thus allows scientists to develop biological theories. The computational branch has also 

taken on another role, and that is making bioinformatics data and tools available to the 
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wider public, as was shown in this chapter with the numerous websites devoted to 

bioinformatics. 
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Chapter 4 

BLAST Case Study 
 
 
4.1 Introduction. BLAST (Basic Local Alignment Search Tool) (Altschul et. al., 1990) 

is one of the most extensively used bioinformatics programs. On an average day, the tool 

is accessed online 200,000 times on the NCBI website (although the tool is found on 

many other bioinformatics websites, as well), and is said to be used by “every biologist 

today” (Harding, 2005, p.21). There are two separate reasons for its popularity. The first 

is that it helps to solve many of the most important current biological problems. These 

include: finding sequence similarities between input sequences and sequences that are 

already stored within a database; determining the species origin of sequences that have 

already been sequenced; and finding genes that share the same domains with an input 

sequence. Each of these processes will be explained later in this section. The second 

reason for its popularity has to do with the added scientific reliability and power BLAST 

has when compared to previous methods. BLAST has both increased the precision of 

particular biological results and increased the speed of generating these results. 

 This chapter begins with a history of BLAST and a detailed description of how 

BLAST works, its underlying algorithms, and the important biological problems it solves. 

Following the historical and technical descriptions of BLAST, I will show how the use of 

this tool is an instance of extended cognition as well as analogical reasoning, and show 

how the tool meets the epistemic standards set by Goldman (1992) and Thagard (1997). 
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4.2 What is BLAST? BLAST is a powerful tool for comparing a protein or DNA 

sequence to other sequences in various databases. It employs a basic sub-element that is 

used to compare individual sequences, yet the advantage of BLAST is that it can perform 

this comparison on potentially millions of sequences, and does it in a relatively short 

amount of time. The typical BLAST search takes seconds to complete, and can be 

performed by any individual with Internet access. One simply visits 

http://www.ncbi.nlm.nih.gov/BLAST, and selects one of the BLAST tools available. 

These tools allow researchers to compare DNA sequences, protein sequences and entire 

genomes. 

  

4.3 Sequence Comparison. The BLAST algorithm compares individual sequences. The 

comparison of sequences is a problem fundamental to computer science. One example of 

this problem is word searches in word processors. But the most popular example of this 

problem is the web search engine, such as Google.  

Any computational method used to compare sequences depends on many different 

factors: the type of sequences being compared, and what is being sought after the 

comparison is performed. The first, most intuitive method to compare sequences would 

be to compare each individual unit of the input sequence with each individual unit of a 

target sequence. Use this method for the following example: find abcd in 

khjdafgkabcdjabckdfg. A program using this basic solution would use the first unit in the 

query sequence and compare it to every unit in the target sequence. So, ‘a’ would be lined 

up with ‘k’, and then ‘h’ and then ‘j’, and so on. Once it finds another ‘a’, the program 

would check whether the next unit in the query sequence, ‘b’, matches up with the next 

http://www.ncbi.nlm.nih.gov/BLAST
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unit in the target sequence. If it does, then it continues to the next unit in the query 

sequence, and so on. If not, it continues on the target sequences until it finds another ‘a’ 

or it reaches the end, at which point it returns a result of ‘no matches’.  

The problem with this method is that, for comparisons that are more complex, say 

a query sequence containing hundreds of units being compared to millions of target 

sequences with similar unit sizes, the process would require a massive number of 

operations. The number of individual comparisons required for a query sequence of size n 

and a target sequence of size m would be on the order of n x m. Using this method for 

comparing biological sequences would be highly impractical, especially since biological 

databases are growing at an exponential rate (see figure 4.1). Currently, the DNA 

database is 100 gigabases in size (100 billion bases), and the average size of a human 

gene is 27,000 bases long. If one used the simple method described above, the search 

would perform on the order of 27,000 x 100,000,000,000 operations 

(2,700,000,000,000,000, or 2.7 x 1015). Even if run on a computer that can perform 1012 

operations per second, which can be done by the world’s fastest parallel computing 

operations, the process would take 1000 seconds, which is about 15 minutes. Although 

this amount of time is not impractical for a scientist, there are methods that drastically 

reduce the amount of time required to perform such searches. Also, this search ignores 

many unique problems that are found in searches through biological sequences, which we 

will discuss soon. 
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Figure 4.1. Exponential growth of genetic databases (from 

http://www.ncbi.nlm.nih.gov/Genbank/, April 5th, 2006, image is in the public domain).  

 

Keep in mind that the number of operations given above does not include the 

specific additional operations needed for comparing biological sequences. In biological 

comparisons, one does not only need to find exact matches. Mathematical analyses are 

made in order to find the degree of relatedness among inexactly matching sequences. 

Some type of score is required after a comparison to give a sense of the relative similarity 

between sequences. Another contingency that is found in biological comparisons is that 

there often exist gaps in comparisons. For example, visually compare the following two 

sequences: 

Sequence 1: ATGATCGTAGACGAGTTCAA 

Sequence 2: ATGATCGGAGTTCAA 

http://www.ncbi.nlm.nih.gov/Genbank/
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These two are very similar except that the second one is missing a large section from the 

first: it is missing “TAGACGAGT”, which is highlighted in the first sequence. This 

missing section can be caused by many different evolutionary events: either sequence 1 

had the missing sequence deleted in a single evolutionary event to produce sequence 2, or 

sequence 2 had the missing sequence added in a single evolutionary event, or the deletion 

and/or addition occurred over a number of evolutionary events in either sequence. Both 

the reason for the gap’s existence as well as the specific gap itself are important for 

generating accurate alignments and similarity scores when comparing biological 

sequences.  

 

4.4 History of BLAST. The following history of BLAST was compiled by Harding 

(2005). In 1982, David Lipman and Tim Havell modified the search tools found in UNIX 

to search for sequence similarities in DNA sequences. Along with John Wilbur, they 

came up with an algorithm that was able to search through the existing Protein Data Bank 

of the National Biomedical Research Foundation (NBRF) in less than three minutes, and 

the Los Alamos Nucleic Acid Data Base in about two minutes. 

This early algorithm was already making significant discoveries. Mike 

Waterfield's lab used it to show the similarity between a viral oncogene and the gene for 

human platelet-derived growth factor (Waterfield et. al. 1983). Gene Myers was the first 

to conceive of the BLAST algorithm back in 1988, when he thought that matching 

sequences using short strings of letters rather than individual letters would create a faster 

program. David Lipman had a similar idea, but his method used an even broader heuristic 

tool, so although the algorithms would sometimes miss particular matches, the program 
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was much faster. Along with Stephen Altschul, Warren Gish, and Webb Miller, Lipman 

and Myers created BLAST in 1990 (Altschul et. al., 1990). Another key part of the 

history of BLAST is the statistical tools that were developed for use with BLAST. These 

will be discussed later in the chapter. 

Further refinements of the program have allowed it to run even faster. One of the 

greatest obstacles to speed was computing power. Once the resources of the Internet were 

realized as a potential solution to this obstacle, BLAST was soon made available through 

NCBI as a web tool. Each step, from sequence matching to using strings to the 

development of a web tool, is described in detail in the following section. 

 

4.5 Pairwise Sequence Alignment. I will begin with how pairwise comparisons were 

made more efficient while not greatly sacrificing accuracy. The comparison may be 

between two protein sequences, two DNA sequences or two RNA sequences. These 

sequences can have any degree of relationship, since it is up to the alignment algorithm to 

determine whether the sequences match exactly or approximates. 

The basic bioinformatics pairwise alignments, such as the Needleman-Wunsch or 

the Smith-Waterman algorithms, begin by putting the sequences in the first row and the 

first column of an array, and assigning scores in the cells of the rest of the array based on 

the scores of cells that are nearby. Take the sequences presented earlier in the chapter and 

place them in the following array (figure 4.2, in this example, the Smith-Waterman local 

alignment algorithm is described): 
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  A T G A T C G T A G A C G A G T T C A A 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A 0                     
T 0                     
G 0                     
A 0                     
T 0                     
C 0                     
G 0                     
G 0                     
A 0                     
G 0                     
T 0                     
T 0                     
C 0                     
A 0                     
A 0                     

 

Figure 4.2. The two sequences to be compared are placed in the first row and column of 

an array. 

 

Next, we assign values to each cell. The values of each cell are determined by picking 

whatever value is the highest among the following: if a match, then the value of the cell is 

the value of the cell to its upper left +1; if a mismatch, then, whichever is highest, the 

value of the cell to its upper left, or left, or above –1; or 0. The process starts with the cell 

in the upper-left and continues horizontally to the right until the end of the row is 

reached, and then moves on to the row below until all the cells are filled. The first row 

would look like (figure 4.3): 

  A T G A T C G T A G A C G A G T T C A A 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 

 

Figure 4.3. Values of the first unit of sequence 2 when matched to sequence 1. 
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Notice in each of these cells there is only a match (+1) or a 0. The next row would be the 

following (figure 4.4): 

  A T G A T C G T A G A C G A G T T C A A 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 
T 0 0 2 1 0 2 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 

 

Figure 4.4. Values of the second row comparing the second unit of sequence 2 with each 

unit of sequence 1. Some of the values are dependant upon the values arrives at in the 

previous row. 

 

Notice that some of the cells have ‘2’ since the match in those cells is added to the match 

in the cell upper-left of it. The cells to the right of the cells with ‘2’ have a ‘1’ since they 

get a –1 penalty from the cell to its left. Continuing this strategy, we get (figure 4.5): 

  A T G A T C G T A G A C G A G T T C A A 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 
T 0 0 2 1 0 2 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 
G 0 0 1 3 2 1 0 2 1 0 1 0 0 1 0 1 0 0 0 0 0 
A 0 1 0 2 4 3 2 1 1 2 1 2 1 0 2 1 0 0 0 1 1 
T 0 0 1 1 3 5 4 3 2 1 1 1 0 0 1 1 2 1 0 0 0 
C 0 0 0 0 2 4 6 5 4 3 2 1 2 1 0 0 1 0 2 1 0 
G 0 0 0 1 1 3 5 7 6 5 4 3 2 3 2 1 0 0 1 0 0 
G 0 0 0 1 0 2 4 6 6 5 6 5 4 3 2 3 2 1 0 0 0 
A 0 1 0 0 2 1 3 5 5 7 6 7 6 5 4 3 2 1 0 1 1 
G 0 0 0 1 1 1 2 4 4 6 8 7 6 7 6 5 4 3 2 1 0 
T 0 0 1 0 0 2 1 3 5 5 7 6 6 5 6 5 6 5 4 3 2 
T 0 0 1 0 0 1 1 2 4 4 6 5 5 4 5 4 6 7 6 5 4 
C 0 0 0 0 0 0 2 1 3 3 5 4 6 5 4 4 5 6 8 7 6 
A 0 1 0 0 1 0 1 1 2 4 3 6 5 5 6 5 4 5 7 9 8 
A 0 1 0 0 1 0 0 0 1 3 5 5 5 4 6 5 4 4 6 8 10 

 

Figure 4.5. The completed array. The bolded numbers represent the optimal alignment of 

the two sequences based on this algorithm. 
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The numbers that are bolded indicate the optimal alignment of the two sequences as 

determined by the algorithm. This is done by starting at the cell with the highest score (in 

this case, it is at the bottom right with a score of 10) and selecting the cell above, to the 

left or to the upper-left, whichever has the higher score. This continues until a ‘0’ is 

reached. When the order of bolded cells is diagonal, then it means that the units in each 

sequence are aligned without any gaps. When the order is vertical or horizontal, then that 

means that there is a gap in one of the sequences: a horizontal order means a gap in the 

vertically positioned sequence on the array, and a vertical order means a gap in the 

horizontally positioned sequence on the array: 

Alignment #1:  Sequence 1: ATGATCGTAGACGAGTTCAA 
                                             |  |  |  |  |  |  |     |  |                | |  |  |  | 
                        Sequence 2: ATGATCGGAG - - - - - -TTCAA 
 

Alignment #2:  Sequence 1: ATGATCGTAGACGAGTTCAA 
             |  |  |  |  |  |  |     |  |                  |  |  |  |  

                        Sequence 2: ATGATCGGAG - - - T - - TCAA 
 

The vertical bars indicate unit identity between the two sequences. Notice there is at least 

one position where the units are not identical, and there is at least one gap in each of the 

two optimally calculated alignments. 

 

4.6 Biological Sequence Alignments. With the method of placing the sequences in 

arrays, scoring them and finally finding alignments based on those scores, we have 

achieved a necessary step in accounting for the contingencies found in biological 

sequence alignments, such as the inexact matchings that are found due to single 
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nucleotide polymorphisms and gaps. Looking at the alignments above, we see a problem: 

there are two optimally calculated alignments predicted by the algorithm instead of only 

one. Which one would be the optimal alignment?  

Optimal alignments can be defined in at least two ways. Mathematically, the 

optimal alignment is found “by making a series of decisions at each step of the alignment 

as to which pair of residues corresponds to the best score.” (Pevsner, 2003, p.67). 

Biologically, however, the optimal alignment is that which matches the actual biological 

similarities between the sequences and that accounts for the actual evolutionary changes 

that have occurred among the sequences. In order to find an optimal alignment in 

biological sequences, one needs to take these two definitions into account. In this case, 

the problem can be partially solved when we consider prior knowledge from genetics 

research: this research tells us that insertions and deletions in DNA sequences, or indel 

mutations, are rather rare events. Indel mutations cause large changes in the protein that 

is created, therefore potentially causing large phenotypic changes. Thus, when choosing 

between two calculated alignments, it is more likely that an optimal alignment will have 

fewer gaps.  

Two optimal alignments were calculated above due to the problems in the simple 

scoring method employed; therefore, a more complex scoring method is needed in order 

to account for gap rarity and produce only one optimal alignment. For example, gaps 

should be given a larger penalty than the –1 score we have above, since gaps are more 

biologically rare than single nucleotide substitutions. Alignment programs even account 

for a difference between a gap origin and gap extension. Even though gaps are given 

large penalties, evolutionarily speaking, that penalty should not be as severe as the gap 
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extends. In other words, if a phenotypic change would occur from any indel mutation, 

then the size of that indel should not make a difference in the fact that a phenotypic 

change would occur anyway. Thus, programs such as BLAST give large penalties for a 

gap’s origin (say –13) but reduce that penalty for each nucleotide that the gap extends 

(say –6). If this new method had been implemented in the alignment above, only the first 

alignment would have been optimal.  

Another refinement to the algorithm comes from realizing that nucleotides come 

in two different forms: purines and pyrimidines. Purines are the nucleotides adenine (A) 

and guanine (G), and pyrimidines are the nucleotides cytosine (C) and thymine (T). 

When one purine is substituted for another purine, or a pyrimidine is substituted for 

another pyrimidine, it is called a transition, which is more likely than tranversions, which 

is when a purine is substituted for a pyrimidine, or vice-versa. Therefore, a scoring 

method may take this into account, giving greater mismatch scores to transversions (say –

2) than to transitions (say –1). 

 The alignment of nucleotides is informationally important, but protein alignments 

are much more interesting. This is largely due to the fact that proteins are the molecules 

that are involved in the actual biological mechanisms of organisms. Another reason is 

that the genetic code is redundant, meaning that various nucleotide sequences encode for 

the same amino acid (which are the building blocks of proteins). Below (figure 4.6) is the 

table of the Universal Genetic Code, which applies to almost all species. It demonstrates 

which triplet of the nucleotides A, G, C and U code for which proteins. The three letter 

names of each protein are in bold, and the one letter version is in brackets. Although this 
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list is called ‘universal’, it is not, as there have been other amino acids discovered that are 

species specific, such as hydroxyproline and taurine. 

Ala (A) GCU, GCC, GCA, GCG Leu (L) UUA, UUG, CUU, CUC, CUA, CUG 
Arg (R) CGU, CGC, CGA, CGG, AGA, AGG Lys (K) AAA, AAG 
Asn (N) AAU, AAC Met (M) AUG 
Asp (D) GAU, GAC Phe (F) UUU, UUC  
Cys (C) UGU, UGC Pro (P) CCU, CCC, CCA, CCG 
Gln (Q) CAA, CAG Ser (S) UCU, UCC, UCA, UCG, AGU,AGC 
Glu (E) GAA, GAG Thr (T) ACU, ACC, ACA, ACG 
Gly (G) GGU, GGC, GGA, GGG Trp (W) UGG 
His (H) CAU, CAC Tyr (Y) UAU, UAC 
Ile (I) AUU, AUC, AUA Val (V) GUU, GUC, GUA, GUG 
Start AUG, GUG Stop UAG, UGA, UAA 

 

Figure 4.6. The Universal Genetic Code. The amino acid is listed on the left side of each 

cell. Its corresponding one-letter identification is in brackets. 

 

What this table shows is that some amino acids can be coded by a few different 

triplets of nucleotides. Thus, even if some nucleotide sequences do not exactly align, the 

sequence may still be phenotypically equivalent, since the same amino acids are 

translated from those nucleotide sequences. Therefore, looking at protein sequences can 

give much more information about the relatedness between two sequences, especially if 

they are more distantly related. 

 Amino acids also have the interesting characteristic that many of them have 

similar properties to each other. The twenty amino acids are grouped into four major 

groups: non-polar (hydrophobic), uncharged polar, negatively charged and positively 

charged. If one non-polar amino acid is substituted for another non-polar amino acid, 

then the properties and functions of the protein may not significantly change. If, on the 

other hand, a polar protein is substituted for a non-polar one, then the protein’s properties 
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and functions may change drastically. The match/mismatch scores of any alignment 

program should reflect this fact. A mismatch of one polar amino acid for another will cost 

less than a mismatch of a polar amino acid for a non-polar amino acid. 

 Dayhoff et. al (1978) prepared an array of match/mismatch scores for each amino 

acid substitution based upon the observed frequencies of amino acid substitutions from 

sequenced proteins. Below (figure 4.7) is the PAM250 (Point Accepted Mutations) array: 

 

 

Figure 4.7. The PAM250 array. Each value corresponds to the score given to an 

alignment of those amino acids (from Pevsner, 2003).  

 

This table shows that some substitutions are penalized more severely than others, and that 

various matches have higher scores than others. For example, a serine (S) match on both 

sequences only gets a score of ‘2’ whereas a tryptophan (W) match gets a score of 17. 

This means serine substitutions were observed to be more common, which may point to 

the fact that there may be less of a phenotypic effect if serine is substituted with another 
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amino acid. This effect is also observed in the significantly high mismatch scores for 

tryptophan when compared to the significantly low mismatch scores for serine. 

 These changes, which include complex gap penalties and specific scoring 

matrices, are the most important technical developments for algorithms that perform 

biological sequence alignments in attempting to find optimal alignments. However, these 

developments do not completely remove one of the problems we encountered at the 

beginning of this chapter: that of speed. In the classic Smith-Waterman and Needleman-

Wunsch algorithms, every nucleotide is still being compared to every other nucleotide, 

which means that the process requires that there be at least n x m operations. This is a lot 

when a sequence is being compared to the entire genetic database. BLAST makes this 

process quicker, but understanding how BLAST works is not possible without knowing 

the basic processes described so far. 

 

4.7 The BLAST Algorithm. This section will describe the blastp algorithm, which is the 

BLAST algorithm for protein alignments. Blastp takes advantage of the different 

matching scores that are specific to biological sequencing, such as the scores found on 

the PAM array. The first step in the blastp algorithm is to split the query sequence into 

‘words’. The typical word size used in blastp is 3. For example, take the following 

protein sequence, taken from Pevsner (2003, p.101): 

Human Retinol Binding Protein: …FSGTWYAMAKKDP… 

The portion of the sequence shown here is then divided into overlapping words of size 3: 

FSG  SGT  GTW  TWY  WYA  YAM  AMA  MAK  AKK  KKD  KDP 
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For each of these words, similar words are found for which the match score is above 

some threshold value. Typically, BLAST programs use a threshold of +11 for protein 

sequences. Words that have a value below the threshold are discarded, and those equal 

and above are kept. For example, if the word is GTW, the set of words above the 

threshold is:  

GTW (6 + 5 + 11 = 22) 

GSW (6 + 1 + 11 = 18) 

GNW (6 + 0 + 11 = 17) 

GAW (6 + 0 + 11 = 17) 

ATW (0 + 5 + 11 = 16) 

DTW (-1 + 5 + 11 = 14) 

GTF (6 + 5 + 1 = 12) 

Threshold (11) ---------------------------------------------------- 

GTM (6 + 5 – 1 = 10) 

DAW (-1 + 0 + 11 = 10) 

… 

Note: the score for each word is pre-computed, as these are 8,000 protein words of size 3. 

Once the words that are above the threshold value are found, one searches the protein or 

DNA databases to find sequences with the same words, which serve as “seeds”. The 

matched sequences are then scanned from the seed word in both directions of the 

matching sequence using the pairwise alignment method described in a previous section, 

the Smith-Waterman algorithm. The scan stops when the score drops past a certain cut-

off value or when the end of either sequence is reached: 
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MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 
           •       |  | |        |                •          | •     •       •      |       :     |  |  |   |  |  • :                : 
……..MKCLLLALA L TCGAQAL IVT…QTMKGLDIQKVAGTWYS LAMAASD.. 
 
                                 extension                                         word pair      extension 
  

 

The bolded letters comprise the original word match, and then the pairwise 

alignment proceeds along in both directions. The lines between the sequences indicate an 

identical match between the two residues. The dots indicate similar matches, i.e., amino 

acids that have similar properties and correspond to a positive score in the scoring matrix. 

 Once all alignments are found, the significance is estimated using the scores from 

the pairwise alignments. I will not go into how the probabilities are calculated, but the 

statistics for BLAST do not employ the normal distribution curve, but an extreme value 

curve instead. This is due to the fact that if a query sequence is compared to a set of 

random sequences of equal length, the scores that are generated have an extreme value 

distribution. Thus, instead of the normally used p-values found in statistical analyses, 

BLAST uses Expect values or E-values for short. An E-value corresponds to the number 

of different alignments with scores the same or better than the score, S, that is expected to 

occur by chance in a search in a protein or DNA database. 

 The BLAST method reduces the time of sequence searches dramatically. 

Although two sequences are still being matched letter by letter, one of the sequences has 

only 3 letters in the case of proteins and 11 letters in the case of DNA. For DNA, this 

reduces the number of operations from 2.7 x 1015 to 1.1 x 1011, multiplied by the number 

of words that are above the threshold value. Once matching sequences are found, the 
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sequences are compared only until the score drops below some value or when the end of 

a sequence is reached. Current popular BLAST programs have incorporated many other 

strategies to further reduce search time, but I will not cover them here, since the main 

strategy of BLAST is all that is needed to understand the following sections. Thus, the 

main trade-off that is made using the BLAST algorithm is that of speed for accuracy. 

However, the loss of accuracy can be seen as acceptable when one considers the gain in 

speed that is made. 

 

4.8 The BLAST Search. I will now describe how BLAST searches are performed using 

various specifically designed websites. The purpose of presenting these websites is to 

show the ease and power of using these computational tools, which will figure 

importantly once we get to the methodological evaluation. 

 The most popular bioinformatics website in North America is the “National 

Center for Biotechnology Information” at http://www.ncbi.nlm.nih.gov. Once one visits 

the website, one can select ‘BLAST’ from the top menu bar. On the BLAST page, there 

are many different options one can select. There are six main options: searches can be 

conducted 1) using nucleotide sequences, 2) using protein sequences, 3) using translated 

sequences (DNA translated to protein), 4) by looking through particular genomes (say 

human or mouse), 5) using special tools that are not categorizable in the previous 4 

categories, and 6) using a meta search. The nucleotide and protein searches can also be 

combined. The following are frequent types of BLAST searches: 

blastp: protein sequence inputted and matching protein sequences returned. 

blastn: DNA sequence inputted and matching DNA sequences returned. 

http://www.ncbi.nlm.nih.gov/
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blastx: DNA sequence inputted and matching protein sequences returned. 

tblastn: protein sequence inputted and DNA sequences returned. 

tblastx: DNA sequence is inputted and translated into its 6 possible proteins (since DNA 

has 6 possible reading frames), and then those proteins are matched to DNA sequences, 

which are returned. 

A blastp query will now be described. On the next page is the blastp input page 

(figure 4.8). From here, one inputs the protein sequence and modifies the parameters in 

order to get one’s desired output. The following page can be found at 

http://www.ncbi.nlm.nih.gov/BLAST/ and by selecting ‘Protein-protein BLAST 

(blastp)’. I have chosen to show the blastp page since it is among the most popular of the 

BLAST algorithms because: 

• Protein sequences give better indications of evolutionary relationships due to the 

redundancy of the genetic code, 

• The sequences allow for the comparison of sequences that are more distantly related, 

and 

• The sequences allow for quicker search times since they are shorter than DNA and 

RNA counterparts. 

http://www.ncbi.nlm.nih.gov/BLAST/
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Figure 4.8. The Blastp input screen from Feb. 12th, 2006. 
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This form allows the user to specify how the search should proceed.. The ‘Search’ 

field is where the protein sequence is input. The sequence that is input normally follows 

the ‘FASTA’ format, which has the one-letter designation for each amino acid. For 

example, Methionine is designated M and Lysine is designated K. The full list of 

designations can be found in the Universal Genetic Code figure presented earlier in this 

chapter (figure 4.6). A researcher can perform a BLAST search as soon as this field has 

an input sequence, but a researcher may wish to change some of the default parameters. 

The ‘Choose database’ parameter allows researchers to select which database to search. 

The default database is the ‘non-redundant’ database, but a researcher may choose ‘PDB’ 

in order to only have proteins with known 3-D structures returned. The search can also be 

limited to a particular kingdom of life, or even to a particular species. For example, a 

researcher who wishes to discover whether a newly sequenced mouse gene has an 

analogue in humans can restrict the search to ‘Homo sapiens’. The cut-off Expect value 

can be changed in order to return more or less results from a query. The default cut-off E-

value is 10, but if it were changed to say, 20, then the query will return more results. This 

is a useful strategy in case one gets too many results from a query and wishes to refine 

the search, or too few results from a query and wishes to find more matches. The word 

size, match-score array (like PAM or BLOSUM), gap penalty and gap extension penalties 

can also be changed in order to modify the results one receives. These are only a few of 

the changes one can make, and combined with the others, the blastp web page has proven 

to be very flexible and can meet the research demands of most bioinformaticists. 

 If the mutated human coagulation factor VIII protein sequence, a sequence which 

causes for hemophilia, is input into the blastp search space along with the default search 
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parameters, the results below (figure 4.9) are returned. These results are edited since the 

actual results would take about 20 thesis pages. 

 
Related Structures                                                                    
        Score     E 
Sequences producing significant alignments:        (Bits)  Value 
 

gi|4503647|ref|NP_000123.1|  coagulation factor…    4657    0.0      

gi|31499|emb|CAA25619.1|  unnamed protein product…  4654    0.0      

gi|182383|gb|AAA52420.1|  coagulation factor VIII   4653    0.0      

gi|182803|gb|AAA52484.1|  factor VIII               4652    0.0      
gi|224258|prf||1012298A  factor VIIIC               4651    0.0    
gi|66773789|sp|O18806|FA8_CANFA  Coagulation fact…  3560    0.0    

…. 
gi|27806943|ref|NP_776304.1|  coagulation factor V   525    9e-147   

gi|163040|gb|AAA30513.1|  factor V                   525    9e-147   

gi|6679731|ref|NP_032002.1|  coagulation factor V    524    2e-146   

gi|50513523|pdb|1SDD|B  Chain B, Crystal Structure   524    2e-146   

gi|16200178|emb|CAC94896.1|  novel protein similar   523    4e-146   

gi|55588728|ref|XP_513984.1|  PREDICTED: coagulati   498    9e-139   
…. 
Score =  211 bits (538),  Expect = 2e-52 
Identities=119/350 (34%), Positives=178/350 (50%), Gaps=18/350 (5%) 
 
1749  FKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSL   
1808  +KK V++++TD ++T  + +      LG LGP IRAEV D I V  +N ASRPY+ +    
40    YKKSVYKQYTDSTYTTEIPKPAW---LGFLGPIIRAEVGDTIKVHLKNFASRPYTIHPHG  96 
 
1809  ISYEEDQRQGAEP--------RKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDV   
1860  + YE+       P        + + V P  + TY W V    +PT D+ +C  W Y S + 
97    VFYEKGSEGSLYPDMSPQDQKKDDAVFPGGSYTYTWTVPEDHSPTADDPNCLTWIYHSHI  156 
 
1861  DLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQ-EFALFFTIFDETKSWYFTENMERNCR   
1919  D  KD+ SGLIGPL+ C    L     R+  V  +F L F++ DE  SWY  EN+   C  
157   DAPKDIASGLIGPLVTCKEGILTGTSQRRQDVDVDFFLMFSVVDENLSWYLDENIASFCT  216 
 
1920  APCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSG   
1979   P ++  ED  F+E+ + HAING++   LP L M     + W+L  MG+  +IH+ +F G 
217   DPGSVDKEDEEFQESNKMHAINGFVFGNLPALTMCAGDHVAWHLFGMGNEIDIHTAYFHG  276 
 
1980  HVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNK   
2039     ++R    ++  + +L+P  F T +M+P   G W + C + +H+ AGM+ ++ V     
277   ETLSIR---GHRTDVASLFPATFVTADMIPGNPGRWLLSCQLNDHIQAGMAAIYEVRPCS  333 
 

Figure 4.9. Results from BLASTP search comparing human coagulation factor VIII with  

the rest of the proteins stored in the database. 

 

http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=1130895291-13150-138986632527.BLASTQ2&blast_rep_gi=0&hit=0&blast_CD_RID=1130895291-13150-159299535126.BLASTQ2&blast_view=overview&hsp=0&taxname=&client=blast
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=4503647&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#4503647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=4503647%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=31499&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#31499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=31499%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=182383&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#182383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=182383%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=182803&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#182803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=182803%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=224258&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#224258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=66773789&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#66773789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=27806943&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#27806943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=27806943%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=163040&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#163040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=163040%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=6679731&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#6679731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=6679731%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=50513523&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#50513523
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=1130895291-13150-138986632527.BLASTQ2&blast_rep_gi=50513523&hit=50513523&blast_CD_RID=1130895291-13150-159299535126.BLASTQ2&blast_view=onegroup&hsp=0&taxname=none&client=blast
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=16200178&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#16200178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=16200178%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=55588728&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#55588728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=55588728%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=4503647%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=31499%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=182383%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=182803%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=27806943%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=163040%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=6679731%5BPUID%5D
http://www.ncbi.nlm.nih.gov/Structure/cblast/cblast.cgi?blast_RID=1130895291-13150-138986632527.BLASTQ2&blast_rep_gi=50513523&hit=50513523&blast_CD_RID=1130895291-13150-159299535126.BLASTQ2&blast_view=onegroup&hsp=0&taxname=none&client=blast
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=16200178%5BPUID%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=55588728%5BPUID%5D
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The first section lists the proteins that are similar to the input sequence and made the E-

value cutoff of 10. I presented a few that had an E-value of 0.0, meaning that these 

sequences are almost identical to the query sequence, as well as others that had a slightly 

larger E-value, meaning that there are some dissimilarities between the two sequences. In 

all, 1478 alignments were returned for this query. Included in this list, from left to right, 

is the gene identification number, the protein identification number, the function of the 

protein, the score, the E-value, whether a corresponding gene has been sequenced 

(represented by the boxed ‘G’) and whether there is a predicted structure for the protein 

(represented by the boxed ‘S’).  

 After listing the similar sequences, the returned results show the pairwise 

sequence alignments of the query sequence with all the returned results. The alignments 

are similar to the one presented earlier in this chapter. The percent identity, similarity and 

gaps are also calculated. The numbers beside each row of amino acids indicate the amino 

acid position in the protein. These returned results allow the researcher to look at each 

alignment and make some judgments as to whether the alignment is acceptable or not, 

i.e., whether some of the parameters on the input page need to be changed. Due to the 

massive number of returned results, the researchers may also wish to make the query 

conditions stricter. This summary provides a basic understanding of how BLAST works. 

Next, we will look at particular cases of the use of BLAST in scientific research. 

 

4.9 The BLAST Case. One area in which BLAST has been significantly helpful is in 

initiating new avenues for human medical research. Specifically, BLAST has been used 

to find genes in other species that are homologous to human genes, particularly those that 
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are implicated in various diseases. Animal models have been used by medical researchers 

in testing new treatments, and BLAST can help refine those models by finding animals 

that have similar biological entities and mechanisms that are under investigation. Rubin 

et. al. (2000) performed a major genetic comparative study among the fully sequenced 

eukaryotic genomes, and found proteins homologous to human disease proteins in the 

fruit fly (Drosophila melanogaster), the flatworm (Caenorhabditic elegans) and in yeast 

(Saccharomyces cerevisiae). With BLAST, researchers can perform experiments on the 

homologous disease proteins on the model animals in order to discover novel treatments.  

 Rubin et. al. performed their disease protein comparisons using blastp, which is 

the BLAST tool used to compare protein sequences. Protein comparisons are the most 

informative in this case for several reasons: 1) Due to the historical divergence between 

the compared species, it is likely that many nucleotide substitutions occurred, but that 

these changes did not result in relevant protein changes because of the genetic code being 

redundant (as we saw in a previous section). 2) Other genetic changes, such as the 

insertion of introns1, can cause genotypic differences that are not translated in the 

organism’s proteins. 3) Gene annotation is still very inaccurate, meaning that researchers 

are much more confident about the function of particular proteins than they are about 

particular genes. 

 The researchers compiled a list of 289 human proteins that have particular 

mutations, alterations, amplifications, or deletions that have been implicated in various 

human diseases. Of these 289 genes, they found that 177 (61%) have homologs in the 

                                                 
1 Introns are portions of a gene that are not normally translated into proteins. The portions 
that are translated are termed ‘exons’. 
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fruit fly, where homology meant that there was E-value equal to or less than 10-10 for 

80% of the alignment. Some proteins that were not found to have homologs in the fruit 

fly were absent because these proteins play roles in biological systems that are absent in 

the fruit fly. For example, hemoglobin, when mutated, can cause hemophilia and sickle 

cell anemia. However, this protein is absent in the fruit fly since insects do not require 

oxygen-transport erythrocytes. In these species, oxygen is delivered directly to their cells 

via the tracheal system, which is simply a system of open-air tubes. 

 Of the genes that were found to be homologous, studying the pathways of these 

genes in the fruit fly may be useful in the study of their human counterparts. For example, 

of the cancer genes surveyed, 68% had homologs in the fruit fly. Included is p53, which 

is the gene that, when mutated, is part of the cause of many cancer cases. Since most 

forms of cancer affect cells regardless of tissue type, studying the roles of p53 in the fruit 

fly may be helpful for studying cancer in humans, even though many of our organ 

systems are very different. Other cancer genes that were found to be homologous include 

menin (MEN), Peutz-Jeghers disease (serine-threonine kinase 11, or STK11), ataxia 

telangiectasia (ATM) and multiple exostosis type 2 (EXT2).  

Rubin et. al. do not present the actual homology searches that were performed 

since such a presentation would have taken many volumes. In order to get a sense of the 

searches, I have performed one using comparing the STK11 protein (the protein 

responsible for Peutz-Jegher’s disease) in humans with the fruit fly genome. This is done 

in order to show how each comparison can be done. Below is the FASTA representation 

of the STK11 protein, the FASTA format being how genes are represented in 

bioinformatics databases (also see chapter 3 for a reminder on FASTA formats): 
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gi|4507271|ref|NP_000446.1| serine/threonine protein kinase 11 [Homo 
sapiens] 
MEVVDPQQLGMFTEGELMSVGMDTFIHRIDSTEVIYQPRRKRAKLIGKYLMGDLLGEGSYGKVKEVLDSET
LCRRAVKILKKKKLRRIPNGEANVKKEIQLLRRLRHKNVIQLVDVLYNEEKQKMYMVMEYCVCGMQEMLDS
VPEKRFPVCQAHGYFCQLIDGLEYLHSQGIVHKDIKPGNLLLTTGGTLKISDLGVAEALHPFAADDTCRTS
QGSPAFQPPEIANGLDTFSGFKVDIWSAGVTLYNITTGLYPFEGDNIYKLFENIGKGSYAIPGDCGPPLSD
LLKGMLEYEPAKRFSIRQIRQHSWFRKKHPPAEAPVPIPPSPDTKDRWRSMTVVPYLEDLHGADEDEDLFD
IEDDIIYTQDFTVPGQVPEEEASHNGQRRGLPKAVCMNGTEAAQLSTKSRAEGRAPNPARKACSASSKIRR
LSACKQQ 
 

This sequence was inputted into the blastp window, and the search was restricted to D. 

melanogaster. The following sequence was the top hit, and the pairwise alignment is 

shown below the sequence: 

gi|24646654|ref|NP_731846.1|lkb1 CG9374-PI, isoform I Score= 384   E=9e-107 

 
Identities = 204/326 (62%), Positives = 258/326 (79%), Gaps = 5/326 (1%) 
 
Query  23   DTFIHRIDSTEVIYQPRRKRAKLIGKYLMGDLLGEGSYGKVKEVLDSETLCRRAVkilkk  82 
            + F +R+DS ++IYQ ++K  K++GKY+MGD+LGEGSYGKVKE ++SE LCR AVKIL K 
Sbjct  146  NMFFNRVDSQDIIYQQKKKSIKMVGKYIMGDVLGEGSYGKVKEAMNSENLCRLAVKILTK  205 
 
Query  83   kklrriPNGEANVKKEIQLLRRLRHKNVIQLVDVLYNEEKQKMYMVMEYCVCGMQEMLDS  142 
            +KLRRIPNGE NV +EI LL++L+H++V++LVDVLYNEEKQKMY+VMEYCV G+QEM+D  
Sbjct  206  RKLRRIPNGEQNVTREIALLKQLKHRHVVELVDVLYNEEKQKMYLVMEYCVGGLQEMIDY  265 
 
Query  143  VPEKRFPVCQAHGYFCQLIDGLEYLHSQGIVHKDIKPgnlllttggtlKISDLGVAEALH  202 
             P+KR P+ QAHGYF QL+DGLEYLHS  ++HKDIKPGNLLL+   TLKISD GVAE L  
Sbjct  266  QPDKRMPLFQAHGYFKQLVDGLEYLHSCRVIHKDIKPGNLLLSLDQTLKISDFGVAEQLD  325 
 
Query  203  PFAADDTCRTSQGSPAFQPPEIANGLDTFSGFKVDIWSAGVTLYNITTGLYPFEGDNIYK  262 
             FA DDTC T QGSPAFQPPEIANG +TF+GFKVDIWS+GVTLYN+ TG YPFEGDNIY+ 
Sbjct  326  LFAPDDTCTTGQGSPAFQPPEIANGHETFAGFKVDIWSSGVTLYNLATGQYPFEGDNIYR  385 
 
Query  263  LFENIGKGSYAIPG---DCGPPLSDLLKGMLEYEPAKRFSIRQIRQHSWFRKKHppaeap  319 
            L ENIG+G +  P    +     ++L+ GML+ +P+KR S+++IR  +WFR        P 
Sbjct  386  LLENIGRGQWEAPAWLYEMDADFANLILGMLQADPSKRLSLQEIRHDTWFRSAPVKTGPP  445 
 
Query  320  vpippspDTKDRWRSMTVVPYLEDLH  345 
            +PIPP     D++R+ TV+PYLE  H 
Sbjct  446  IPIPPLKG--DKYRNSTVIPYLEAYH  469 

 

This alignment is especially good, since there is a 62% identity and 79% similarity 

between the two sequences. These percentages are high, considering the evolutionary 

divergence between humans and fruit flies. The fruit fly gene would therefore be seen as 

a good candidate for medical research. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=24646654&dopt=GenPept
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#24646654
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 Along with finding information that could be useful for medical purposes, Rubin 

et. al. also used their resulting homology database to make generalized comparisons of 

the four eukaryotic genomes. For example, they found that, although the proteome sizes 

of the flies and worms are only twice that of yeast, the proteins of the former two species 

are much more complex. Also, the fly and worm proteins are used for a variety of 

different purposes, both within the cells and in the extra-cellular region. 

 Since Rubin et. al.’s study, bioinformatics studies have become much more 

complex. One of the problems with their study is that it does not distinguish between 

orthologs and paralogs. Orthologs are what are classically considered homologs, that is, 

genes that are related through some ancestral species. Paralogs, on the other hand are 

genes that are related though a gene duplication event within a species, meaning that at 

some point, a species had duplicate copies of a gene in their genome. These duplicate 

genes evolve separately, however, and produce genes within the species that may have 

different functions. For example, hemoglobin is made from a number of genes, each a 

gene in the ‘globin’ family. It has been determined that these globin genes arose from a 

duplication of a single globin gene and each evolved separately to make up the parts of 

hemoglobin. There are dozens of globin genes in humans; these are paralogs genes, or 

more specifically inparalogs. The globin genes have orthologs counterparts in other 

mammalian species, for example, globin A in humans has a globin A ortholog in mice. 

However, only the globin A gene in one species is orthologous to the globin A gene in 

another species. Globin A in species 1 is said to be outparalogous to globin B in another 

species. This presents a problem in bioinformatics study, since, until these gene families 
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are discovered, it is not clearly known which genes are orthologs and which are merely 

outparalogs. The following figure presents the various possibilities: 

 

Figure 4.10. A hypothetical gene tree to illustrate the relationships leading to inparalog 

(co-ortholog) and outparalog assignments (from O’Brien et. al., 2004).  

 

Due to this complexity, many authors have attempted to take the orthologs/paralogs 

distinction into account. O’Brien et. al. (2004) created ‘OrthoDisease’, which is designed 

to only find the orthologous genes that are found between species, since outparalogs may 

have completely different functions and pathways. This is no easy task, however. 

Although BLAST is still used to create this database, a variety of other programs are used 

as well, as we see in the following diagram from the authors (figure 4.11): 
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Figure 4.11. A schema of the algorithms and databases used in order to generate the 

OrthoDisease database. These extra steps were used in order to distinguish between 

inparalogs, outparalogs and orthologs, and make sure that the final database only 

contained orthologs. 

 

One of the databases used in OrthoDisease is OMIM, which stands for Online 

Mendelian Inheritance in Man. Anyone can access this database online and search its 

records at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM. This database is 

especially important for a couple of reasons. The first is that it is a catalogue of all 

medically interesting human genes. Second, it gives detailed descriptions of each gene, 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM


 94

including its allelic variants, its functions, its inheritance patterns, and so on. Lastly, it 

lists every major reference that is associated with the particular genes. A diagram of a 

returned screen in OMIM for the gene responsible for Huntington’s disease is found 

below (figure 4.12). The figure shows only a very small section of the returned screen. 

 

 

Figure 4.12. A screen from OMIM for the gene for Huntington’s disease (from Feb. 14th, 

2006). 

  

4.10 Extended Cognition in BLAST. What will now be demonstrated is that uses of 

BLAST, such as the creation of the databases presented in the previous section, are 

examples of extended cognition. The homology and orthology databases such as 

OrthoDisease rely extensively on various computer algorithms. This reliance is 

necessary, since it would be impossible for any human or group of humans to perform in 

any timely manner what these computers algorithms perform. The first homology 
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database by Rubin et. al. (2000), even though simpler than the more reliable orthology 

database by O’Brien et. al. (2004), is still a sufficient example of the reliance on 

computer databases and algorithms. 

I will now go into the steps that are required for a research program that uses 

BLAST. The first step is deciding what sequence comparison needs to be made. This 

decision is made by the scientist, and can involve many different factors, such as which 

species are to be compared. The scientist may want to compare a newly sequenced 

molecule to all the species that are found in a database, or to see whether a particular 

molecule with a known function is found in another species. The search can also involve 

comparing particular types of molecules, DNA to DNA, DNA to protein, protein to 

protein, and so on. From this point onwards, I will use the word ‘sequence’ refer to DNA, 

RNA or proteins. Lastly, researchers can decide on specifics such as how accurate they 

wish the search to be, whether they want only results with structural descriptions in the 

case of proteins, and so on. Thus, the general step performed at this point is: 

1) Decision on the type of comparison to be made. 

Once the decision is made, the database with the required information needs to be 

found. In many cases, such as those where a researcher is finding homologues to a newly 

sequenced gene, the researcher would have the sequence information, but this 

information still needs to be input into a computer in order to be usable by any BLAST 

algorithm. It is usually the case, however, that all the information a researcher would 

need would already be in a particular database, such as the GenBank database. The 

researcher can freely extract that information and then proceed to the next step. 
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Nonetheless, at this stage, one can generally state that the researcher requires information 

from particular computer databases: 

2) Sequence information from computer databases. 

Once the sequences are extracted from the database, then the BLAST algorithm is 

used by the researchers in order to get the similarity results they need. As shown earlier 

in the chapter, the algorithm performs numerous steps, which includes finding triplet 

‘words’ in the query sequence, finding matches with those triplets, extending the 

comparison between the two sequences until the ends of the sequences are reached or 

when the match score goes below a threshold value. This process can be described as 

generally doing the following: 

3) Using the BLAST algorithm. 

The sequences that are returned from the BLAST algorithm are all above a particular 

score. Using that score along with other information about the sequences under 

comparison, statistical tools are used in order to find the E-values, which is a statistical 

measure of the likelihood that the returned similarities are possible in a random scenario.  

So the next step is: 

4) Statistical tools used to determine likelihood of sequence similarity. 

Lastly, the scientist would analyze the results to determine which conclusions can be 

drawn, or whether further operations needs to be performed. 

     5) Analysis of the results. 

There is much more information and many more operations that are possible in order to 

find the particular results that one needs in experiments such as those of Rubin et. al. 

(2000) and O’Brien et. al. (2004). The general information and operations presented 
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above, however, are what are found in almost every experiment that uses BLAST. 

Grouped together, we can make a comparison of the operations performed by computers 

and those performed by humans, as well as the source of the information used by these 

operations. This comparison is presented in Table 4.1. 

 

Table 4.1 Comparison of human and computer information and operations in BLAST. 

Computer Databases 
Used 

Programs Used Human Operations 

Sequence information from 
particular computer 
databases. 

Using the BLAST 
algorithm. 

Decision on the type of 
comparison to be made. 

 Statistical tools used to 
determine likelihood of 
sequence similarity. 

Analysis of the results 

 

 The necessity of computer databases and algorithms in research using BLAST 

shows that extended cognition is required in order to do this particular kind of research. A 

human researcher, on his or her own, would not have all the required information and 

would lack the ability to perform all the operations required. 

 

4.11 Analogical Reasoning in BLAST. The purpose of BLAST is not only to find 

similar sequences, but also to use that similarity to propose further experiments and 

theories. For example, a researcher does not only use BLAST to find similar sequences, 

but to determine what type of function a sequence may have based on its similarity to 

another sequence, or to find model sequences in order to perform various experiments. 

Rubin et. al.(2000) and O’Brien et. al. (2004) created their databases using BLAST in 

order for biomedical researchers to find orthologous sequences to use as models for 
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human sequences, which would, in turn, help in finding treatments for particular 

ailments. Take, for example, the reaction of a particular drug on a particular sequence in a 

model species. The analogies that are used in experiments like those are presented in 

Table 4.2: 

 

Table 4.2: Analogical comparisons using BLAST  

Sequence from another species Human Sequence 
Sequences Sequenceh 
Drugs Drugh 
Drug-results Drug-resulth 
Interacts (sequences, drugs) Interacth (sequenceh, drugh) 
Cause-results (drugs, drug-results) Cause-resulth (drugh, drug-resulth) 
Causes (interacts, cause-results) Causeh (interacth, cause-resulth) 

 

Although ‘BLAST’ is not seen in the table above, it is the tool used to gauge the 

similarity between the human sequence and the sequence from another species, just as 

other tools are used to gauge the similarities between the drugs used on both sequences 

and the result from those drugs. The analogy presented above is almost identical to the 

ones presented by Shelley (2003), where he argued that animal models were an example 

of analogical reasoning. The only difference in this case is that table 4.2 uses model 

sequences instead of model organisms.  

 Shelley (2003) argued that, although animal models are examples of analogical 

reasoning, there are always the possibilities of disanalogies. He acknowledges a paper by 

LaFolette and Shanks (1996) that challenges the use of analogical reasoning with animal 

models because it is often the case that those models are not scientifically justified. For 

example, many treatments for particular diseases that work on rats often fail to work on 



 99

humans, making them inaccurate in many cases as models of human physiology. Shelley 

(2003) proposes that the existence of disanalogies arise due to uncovering further 

information about the species that one is working with rather than any inherent 

disanalogy in the comparisons being made.  

I believe that neither Shelley (2003) nor LaFolette and Shanks (1996) are wrong 

in their assessments. The physiologies of other species are analogous to that of humans in 

many cases, and in others they are not. The degree of analogy often depends on specific 

biomolecular reactions that occur within the various species. For example, the Krebs 

cycle is required for cellular respiration and is found in all animal species. Any 

manipulations to that cycle, including manipulations to particular sequences found within 

that cycle in one species, have the same effect in all species, including humans. However, 

a drug that manipulates the biomolecular reactions that govern, say, the length of a rat’s 

tail would likely not have the same effect in humans. 

 The advantage of using BLAST is that it allows biomedical comparisons to be 

made at the level of biomolecules, since BLAST finds sequences that are similar among 

various species. If drug x is hypothesized to have an effect of sequence y on humans, then 

it is likely to have the same effect on any sequence that is identical or even similar in 

another species. Since BLAST gives highly accurate results on the similarity of 

sequences between species, researchers can be confident that whatever effect a drug has 

on a sequence from another species will have the same effect on the similar human 

sequence. This new level of accuracy makes animal models more likely to be analogous, 

thus more reliable. 
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 This level of accuracy is possible through a combination of scientific methods that 

I believe is somewhat unique to bioinformatics. I have described how bioinformatics uses 

extended cognition through computer use and analogical reasoning. However, these 

methods are also found in many other biological fields, as well as other scientific fields 

such as physics (see, for example, Humphreys 2004). The combination of these methods 

is what may be unique to bioinformatics. 

 The case studies presented above were attempting to find sequences in species 

that were homologous to those in the human species. As presented above, the purpose of 

finding these homologies was to make analogical inferences about the human sequences 

based on findings made on the homologous sequences. Therefore, analogical reasoning is 

clearly occurring in these cases. Moreover, the method used to find the homologous 

sequences was extended cognition through computer use. BLAST was the algorithm run 

on computers to find homologous species, which were used to make analogical 

inferences. Therefore, there is a new method in bioinformatics where computers are used 

to make analogical inferences. This new method that combines the two previously used 

methods is very powerful in generating reliable results. This will be supported further in 

the ‘Epistemic Appraisal’ section. 

 A possible objection to these studies is that, although the sequences under study 

are similar between the two species, these sequences are not in physiological isolation 

within the species’ bodies. Rats may share sequence x with humans, for example, but 

may play a role in different biomolecular mechanisms in both species necessitating 

further study of the biomolecular mechanisms that occur within the two species. Chapter 
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6 will present work on finding these mechanisms, and how one can be more confident in 

the validity of analogical reasoning with animal models. 

 

4.12 Epistemic Appraisal of BLAST. The epistemic advantage of using the extended 

cognition of BLAST research is also apparent when one uses Goldman (1992) and 

Thagard’s (1997) appraisal standards for epistemic practices, which are reliability, power, 

fecundity, speed, efficiency and explanatory efficacy: 

Reliability: BLAST should be expected to be an extremely reliable tool due to the 

precise statistical tools that are employed. A researcher using BLAST is given a measure 

of statistical warrant with the E-values that are returned with each comparison. Of course, 

a scientist may require some knowledge about what these statistics mean and their limits, 

but bioinformatics researchers are always attempting to make these statistical analyses 

more reliable. What is also interesting about BLAST is that a researcher can manipulate 

the reliability of the results that are returned from a BLAST search. For example, they 

can use different scoring matrices, larger ‘word sizes’, smaller cut-off values, and so on. 

By making these changes, a researcher would have less results returned, but can be more 

confident in their accuracy, thus increasing the reliability of the results. 

 Also, as was seen when comparing the homologous sequence studies by O’Brien 

(2004) to the animal studies investigated by Shelley (2003), the analogical inferences that 

are made using BLAST are reliable. This reliability is because there is statistical support 

for the molecular comparisons being made (the statistics being generated using powerful 

computational tools) rather than more rudimentary physiological comparisons being 

made between animals. 
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Power: Due to the fact that BLAST employs algorithms that are designed to 

compare biological sequences, as well as to produce statistical values that are very 

precise, BLAST is a powerful tool for generating a large number of scientific results. As 

was shown in figure 4.9, BLAST gives both similarity scores and E-values in comparing 

sequences, and presents each pairwise comparison between the input and matched 

sequences. These results are usually the most reliable for researchers who are interested 

in finding sequence, structural and functional relationships among sequences. This 

reliability explains why BLAST is an extremely popular scientific tool, which is used by 

almost all biologists (Harding, 2005).  

Fecundity: Because BLAST is readily available over the Internet, many 

practitioners can generate these large numbers of results. As mentioned already, BLAST 

is used by most biologists, thus making it likely that BLAST generates truths for many 

practitioners. 

Speed: BLAST is a relatively fast algorithm. BLAST results are returned seconds 

after a researcher inputs a query sequence and defines the parameters of the search. The 

inputting and definition process is relatively quick as well, due to the fact that researchers 

can easily extract sequences from databases such as GenBank, and the parameters are 

easily defined using the drop-down menus available on the BLAST input page (see figure 

4.8). A researcher can easily perform many BLAST searches in a day, thus being able to 

quickly generate a large amount of results. 

Efficiency: The cost of using BLAST is extremely minimal, and it is probably one 

of the cheapest procedures available in the scientific world. All a researcher requires in 

order to perform a BLAST search is a desktop PC or laptop with any kind of Internet 
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connection. In fact, it would be much more cost-efficient for a researcher to invest in 

computers that perform bioinformatics tests than in other expensive equipment for wet-

lab procedures. 

Explanatory Efficacy: Because BLAST statistically finds sequences that are 

similar to one another, it could help to increase the efficacy of explaining the functional 

relationships between various sequences. For example, a researcher may hypothesize that 

a particular human gene is implicated in playing a role in a particular disease. BLAST 

can be used in finding similar genes in other closely related species, and allow 

researchers to perform experiments relevant to understanding the mechanism associated 

with that gene. These experiments would thus lend to an understanding of how the human 

gene functions, and help in explaining the mechanisms involved in the human disease. 

Databases such as OrthoDisease are designed to find such similar genes, and provide 

clues for conducting further biological and medical research. Since these databases use 

extended cognition and analogical reasoning through computer use, the increased 

explanatory efficacy that is possible with these databases are due to the combination of 

extended cognition and analogical reasoning through computer use. 

 

4.13 Summary. In this chapter, we saw the scientific methods that are present in research 

that utilizes BLAST. BLAST is a powerful bioinformatics tool that is able to compare 

biological sequences to entire databases of sequences. BLAST expands on algorithms 

that perform pairwise sequence alignments by efficiently by repeating these comparisons 

many times over. Due to the large sizes of the sequence databases, the complexity of the 

BLAST algorithms, and the statistical analyses that are required on the comparisons, 
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scientific research that utilizes BLAST can be seen as an example of extended cognition. 

Also, the inferences using databases that are created using the BLAST algorithm are 

examples of analogical reasoning, since comparisons are made between sequences whose 

functions are unknown and sequences that are known. These inferences are examples of a 

combination of extended cognition through computer use and analogical reasoning, 

which is a method that may be unique to bioinformatics research. Lastly, the use of 

BLAST in biological research meets all the standards stated by Goldman and Thagard for 

the appraisal of an epistemic practice. 
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Chapter 5 

Phylogenetic Analyses Case Study 

5.1 Introduction. Comparing sequence using tools like BLAST has been very useful for 

many purposes, as was demonstrated in the last chapter. We also saw how BLAST can be 

extended to compare not only sequences, but also to create entire databases of 

homologous sequences. One of the most important extensions of sequence aligning 

algorithms, however, is in the creation of phylogenetic trees. Pairwise alignment 

algorithms were extended to create algorithms that perform multiple sequence alignments 

(MSA), and these alignments were created in order to construct phylogenetic trees. Each 

of these steps will be explained in this chapter. 

 Phylogenetic trees represent the evolutionary relationships between species, just 

as family trees represent the relationships between family members. Although 

phylogenetic trees have been created since at least the time of Carl Linnaeus, 

bioinformaticists have revolutionized the creation of these trees using genomic and 

proteomic information instead of the classical methods which relied on physiological, 

morphological, behavioural and geographical information. The newer tree reconstructions 

are thus very different from the older ones, and some types of trees, such as those that 

track human communities, have only become possible with the use of bioinformatics.  

 This chapter will begin with a short look at the history of the science behind the 

creation of phylogenetic trees, especially the progress of the science using bioinformatics. 

Within that history there will be a more detailed description of how phylogenetic trees are 
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created using bioinformatics tools. Lastly, I will show how these tools utilize the 

scientific methods of extended cognition through computer use and analogical reasoning, 

as well as the combination of the two. 

 

5.2 Classification as Definitions. The history of phylogeny can be traced to Aristotle’s 

work on definitions and biology. According to Aristotle in his Topics (Falcon, 1996), 

words are defined using a genus and differentium. The genus is the class of objects the 

word belongs to and the differentium how the word is distinguished from other objects 

within the class. For example, ‘bread’ is defined as ‘a staple food made from flour or 

meal mixed with other dry and liquid ingredients, usually combined with a leavening 

agent, and kneaded, shaped into loaves, and baked’. The genus, in this case, is ‘a staple 

food’ and the differentium is what follows in that definition. This definition of 

‘definition’ was extended to Aristotle’s classification of biological organisms. In his 

History of Animals, Aristotle created a classification system for organisms that attempted 

to group animals into broader classes. The most specific instances within a class would 

be definitions of particular animals. For example, Aristotle defined humans as 

‘featherless bipeds’. Bipeds, however, belonged to a larger class of animals that were 

‘live-bearing’. Below is a small portion of Aristotle’s classification of animals: 

I. Blooded Animals 

A. Live bearing animals 

1. Homo Sapiens 

2. Other mammals without a distinction for primates  

B. Egg-laying animals 
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1. Birds 

2. Fish 

II. Non-Blooded Animals 

A. Shell skinned sea animals: Testacea 

B. Soft shelled sea animals: Crustacea 

C. Non-shelled soft skinned sea animals: Cephalopods 

D. Insects 

E. Bees 

III. Dualizers (animals that share properties of more than one group)  

A. Whales, seals and porpoises—they give live birth yet they live in the sea 

B. Bats—they have four appendages yet they fly 

C. Sponges—they act like both plants and animals 

(From Aristotle’s The History of Animals, translated by Balme, 1991) 

  

Biological classifications, since Aristotle’s work, continued on a trend of 

classification based on visually salient features, which included whether animals were 

found in water or were domesticated. However, due to the vague nature of distinguishing 

between animals and delineating the classes, these classifications were usually somewhat 

arbitrary. For example, some defined fish as animals that lived in water, and as such 

hippopotami were classified as fish. 

 The next major advancement in biological classifications came with Carl 

Linnaeus in the 18th century. According to his Systema Naturae, his classification of 

organisms consisted of 5 levels: species, genera, orders, classes and kingdoms. His 
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classification system proved to be much more precise than Aristotle’s since he was the 

first to distinguish species based on their sexual behaviour and characteristics (Ridley, 

1996). 

 

5.3 Darwin’s Theory of Evolution by Natural Selection. The next step in making 

species classifications more precise came with Darwin’s work on evolution by natural 

selection. This work was important for classification since it gave an underlying theory of 

why organisms shared similarities to each other in varying degrees. That theory is that all 

species evolved from common ancestors. The degree of relationship between species 

depends upon when those species diverged from a common ancestor. This degree of 

divergence is an important consideration when classifying species. 

 Since Darwin’s addition of evolution to biological classification, phylogenetic 

trees have been used in order to represent the evolutionary relationships between species. 

Figure 5.1 is one of the first of such trees, which was drawn by Darwin in his Origin of 

Species (1859). The root of the tree represents the first species. The branching out of the 

tree represents the evolution of new species from the original species. The growth of the 

tree represents time, with the root being the oldest species and the top of the tree 

representing extant species. The branches that terminate before reaching the top of the 

tree represent species that have gone extinct. In this figure, there are two main branches 

that represent two separate kingdoms. Darwin only distinguished two kingdoms in his 

day: plants and animals. The branch on the left splits into two more major branches, 

which would represent two separate classes. If these latter branches are within the plant 

kingdom, then it may represent a division between trees and non-woody plants. 
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 With Darwin’s work, the classification of species was no longer as arbitrary as in 

earlier biological work. Biologists no longer classified species based on the greatest 

number of similarities, but classified according to similarities that one assumed were 

more or less affected by the forces of evolution. For example, modern biologists believe 

that evolving from a quadruped to a biped does not require many evolutionary changes, 

as all that is required are some changes in bone-structure and neurological modifications 

for balance. Therefore, species that are relatively similar except for the way they move on 

land are likely to be closely related. On the other hand, the outer covering of an animal 

(scales, feathers or furs) require many evolutionary changes in order for one to evolve 

into another. Therefore, any species that are relatively similar except for their outer 

covering are still likely to be distantly related. 

 

Figure 5.1 Darwin’s tree of life from his Origin of Species (1859, image is in the public 

domain). 
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 Thus Darwin’s theory of evolution by natural selection gave biologists a better 

basis for how to classify organisms. Despite this basis, however, many questions still 

remain. One major problem is in determining the actual rates that particular traits evolve. 

This information is important in the creation of trees since it gives a better representation 

of where the nodes on the trees should be.  

Recalling the examples presented above, we assumed that bipedalism was easier 

to evolve for a quadruped than it was for a species to evolve fur when it was feathered. 

This ‘relative comparison’ assumption is generally easy to accept based on basic 

knowledge of animal physiology. However, another problem arises when, for many traits, 

it seems extremely difficult to assess their rate of evolution. For example, it is still 

relatively difficult to determine the rate of the evolution of certain morphological traits, 

say from legs in a reptile to wings on a bird. Another example of this difficulty is in 

figuring out the ease by which particular behavioural traits arise. A specific example is 

our general lack of knowledge of the evolution of cognitive abilities, where we still are 

not sure how much ‘evolution’ would be required for, say, a monogamous breeding 

behaviour to evolve from one that is polygamous. The ease of evolution of cognitive 

abilities is a debated topic in philosophy of mind and cognitive science (see, for example, 

Quartz & Sejnowski, 1997 and Pinker, 2003) 

 Another problem that phylogeneticists encounter is in determining the exact time-

span needed for particular evolutionary events to occur. Looking only at extant species 

does not adequately help with this, so biologists have turned instead to the fossil record. 

The difference in age between the fossils of different species gives a very rough estimate 

of the time needed for particular traits to evolve. However, the fossil evidence will 
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always be incomplete, and is only available for certain species, specifically those that 

either have shells or an internal skeleton. 

 

5.4 Molecular Turn. From the development of heredity studies starting with Mendel in 

1866, and also from work on molecular biology starting with Pauling (1939), new and 

more precise methods arose for creating phylogenetic trees. These molecular 

investigations allowed researchers to compare the molecular sequences among species, 

and be able to measure differences between species much more precisely. 

 The first researcher to make such a comparison was Frederick Sanger, who 

sequenced the insulin protein in 1953 (Alberts, 2002). Sanger sequenced this protein from 

5 species: cow, sheep pig, horse and whale. The insulin protein has three sections: A, B 

and C chains. When Sanger and others compared the A and B chains of the 5 species, 

they found that the molecular structure was generally highly conserved. The only 

significant differences were found in the A chain’s disulphide ‘loop’ and in the C chain. 

It was later discovered that the C chain could undergo many changes without 

significantly changing the function of the protein. Due to the unhindered evolution of the 

C chain, researchers could give a more precise estimate on the evolutionary relatedness 

among species. For example, if there is a 50% similarity between, say, the cow and sheep 

C chain whereas there is a 75% similarity between the cow and horse C chain, then it is 

more likely, all else being equal, that the horse and cow are more closely related than the 

sheep and cow. 

 Another interesting phenomenon that was discovered with the analysis of 

biological molecules is the seemingly non-linear relationship between molecular changes 
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and phenotypic changes. For example, changes in the disulfide loop in chain A does not 

result in any phenotypic changes. However, Perutz and Kendrew (1965) found that 

changes in only a couple of amino acids in hemoglobin resulted in very significant 

phenotypic changes. Due to this discrepancy between genotypic and phenotypic changes, 

some researchers hypothesized that there may exist some kind of ‘molecular clock’, and 

that these clocks were different for each gene, depending upon its phenotypic stringency. 

These clocks can contribute to creating relatively accurate estimates of the times of 

divergence between species, since the number of genotypic changes in particular genes 

would correspond to times of divergence between species.  

Richard Dickerson (1971) found evidence for such a clock. He used three 

proteins, cytochrome c, hemoglobin, and fibrinopeptides, for which there was abundant 

sequence information for a number of species. He plotted the number of changes in the 

peptides versus the previously hypothesized (using paleontological data) number of years 

that the species had diverged. Dickerson found that all the plots lay on a straight line, 

which supported the molecular clock hypothesis. What was also interesting was that each 

of the protein families had different rates of change. Further analysis into the functions of 

these proteins showed that the rate of change may be dependant upon the functional 

constraints on each protein as dictated by natural selection. In this case, fibrinopeptides 

are not as strictly constrained as cytochrome c, allowing the former to evolve much more 

quickly. The results are shown in figure 5.2. 

Further studies have provided some exceptions to the molecular clock hypothesis, 

but it has since been found to generally hold (Pevsner, 2003). What this relative 
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constancy means is that researchers not only have a better method for measuring 

differences between species, but also have a better measure for when species diverge. 

 

 

Figure 5.2  Plot of evolving peptides supporting the ‘molecular clock’ hypothesis. (from 

Griffiths et. al., 2002) 

  

5.5 Import from Sequence Comparison Algorithms. The methods and discoveries 

described above were the developments in phylogenetics that preceded bioinformatics. 

The first bioinformatics tools that could be useful for phylogenetic studies were, of 

course, the same tools that were useful in the BLAST case, namely, pairwise comparison 

algorithms. Since these algorithms are used to compare sequences, and phylogenetic 

studies now involve the comparison of molecular sequences, phylogenetic studies will 
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certainly benefit from these pairwise comparison algorithms. The difference between 

phylogenetic studies and other pairwise comparisons, however, is that phylogenetic 

studies do not only compare one sequence to another but may involve the comparison of 

many sequences at once. What is also required, in this case, is the creation of new tools 

that can create the actual trees based on the output of these comparisons. The ‘distance-

method’ of tree creation, which I will describe later in the chapter, does not require this 

comparison. 

 Dayhoff et al. (1978) were the first to provide new tools for phylogenetic studies. 

As presented in the last chapter, Dayhoff created the PAM (Point Accepted Mutation) 

matrix that gave scores for changes in particular amino acids. This was important in order 

to provide an accurate measurement of how similar proteins are. For example, threonine 

changing to valine has a score of –6 whereas threonine changing to tryptophan has a 

score of –19. This means that sequences that differ in the former case are not as different 

as those that differ in the latter case. 

 Another important tool is the Needleman-Wunsch pairwise comparison algorithm 

(1972). This tool was described in the last chapter as an efficient means for comparing 

two sequences. Instead of simply checking each unit with every other unit, this algorithm 

gives scores to particular matchings, thus giving an overall similarity score between 

matched sequences. Another benefit of this algorithm was its ability to take ‘gaps’ into 

account, which is an important issue when dealing with biological sequences. 

If a researcher wished to create a phylogenetic tree, they could simply use this 

latter algorithm by comparing the scores of each comparison. However, they would be 

presented with a major problem, which is that of not truly finding an evolutionary pattern 
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when comparing the similarities and differences.  Consider the following example, where 

sequences from the following species are known: human, chimpanzee, cow, chicken and 

dog. One can compare each of these sequences individually to discover their relative 

similarities. Let us use the beta-globin sequence from each species. Below is the FASTA 

format for the beta globin protein from each species.  

Human: >gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens] 
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMG
NPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVL
AHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 
 
Chimpanzee: >gi|38227|emb|CAA26204.1| beta-globin [Pan troglodytes] 
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDA
VMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLV
CVLAHHFGK 
 
Cow: >gi|395|emb|CAA25111.1| beta-globin [Bos taurus] 
MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNP
KVKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLA
RNFGKEFTPVLQADFQKVVAGVANALAHRYH 
 
Chicken: >gi|408500|gb|AAD03346.1| beta-H globin [Gallus gallus] 
MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSATAIIGNP
MVRAHGKKVLSSFGEAVKNLDNIKKSFAQLSKLHCDKLHVDPENFRLLGDILIIVLASHF
SKDFTPASQAAWQKMVRVVAHALAHEYH 
 
Dog: >gi|57113367|ref|XP_537902.1| PREDICTED: similar to beta globin [Canis 
familiaris] 
MVHLTAEEKSLVSGLWGKVNVDEVGGEALGRLLIVYPWTQRFFDSFGDLSTPDAVMSN
AKVKAHGKKVLNSFSDGLKNLDNLKGTFAKLSELHCDKLHVDPENFKLLGNVLVCVLA
HHFGKEFTPQVQAAYQKVVAGVANALAHKYH 
 

The next step would be to compare each of these sequences with each other. This 

comparison would generate a similarity score between each species. Based on that score, 

a researcher can get an estimate about the evolutionary relationships between these 

species. The following table (Table 5.1) contains the similarity scores and E-values for 

each of the matched sequences using the Smith-Waterman algorithm. This simple tool is 
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available for public use as a web application on the NCBI site at the following web page: 

www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi. The reader must keep in mind, however, 

that this stage is not what is performed in current research where phylogenetic trees are 

created using bioinformatics tools, since there are some necessary steps missing, and 

what is actually used in bioinformatics research is a completely different algorithm.  This 

faulty method is presented here in order to help the reader better follow the upcoming 

sections. 

Table 5.1. Scores and E-values of beta-globin sequences from various species. 

Comparison Score E-value 
Human:Chimpanzee 246 2e-64 
Human:Cow 252 4e-66 
Human:Chicken 212 3e-54 
Human:Dog 275 43-73 
Chimpanzee:Cow 203 1e-51 
Chimpanzee:Chicken 173 2e-42 
Chimpanzee:Dog 220 1e-56 
Cow:Chicken 199 2e-50 
Cow:Dog 247 1e-64 
Chicken:Dog 301 5e-81 

 

Once the comparisons are made, the similarity scores are weighed against each other in 

order to determine the degree of relationship between the sequences. Constructing a tree 

at this point becomes a problem, however, since it is not altogether clear where to begin. 

One can start at the sequences that had the highest score, and make them the closest 

relatives on the tree. In this case, the highest score is between the dog and the chicken 

(score = 301, E-value = 5e-81). This result is surprising, since we would expect the dog 

sequence to be more closely related to the other mammals. Alternatively, one can start 

with the sequences with the lowest matching score and begin the major branching from 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi
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there. In this case, the lowest score was between the chicken and the chimpanzee (score = 

173, 2e-42). In this case, the latter strategy seems the most accurate, but we will suspend 

judgment on either strategy for now, since these two strategies will be discussed after we 

look at multiple sequence alignments, which is the major tool used by bioinformaticists in 

constructing phylogenetic trees.  

  

5.6 Multiple Sequence Alignments. Chapter 4 described how the Smith-Waterman 

algorithm was extended into the BLAST tool. This powerful tool was able to perform 

pairwise comparisons at an even faster rate than previous algorithms, which allowed for 

sequences to be run against massive databases in relatively short times. Feng and 

Doolittle (1987), however, used the algorithm for a different purpose. They extended it to 

be able to perform what they termed “multiple sequence alignments”, or MSA for short. 

MSAs are able to compare multiple sequences at once, rather than running multiple 

pairwise alignments. In comparing multiple sequences with one another, one can 

certainly perform individual comparisons and compile the similarity scores afterwards to 

determine the relationship between all the sequences, as attempted in the beta-globin 

example above. However, the individual comparisons do not take into account the ways 

that these sequences are all similar or different. For example, consider the following four 

fictional sequences: 

1: ABCDEFG 

2: ABCDEGH 

3: ABCDEHI 

4: AJCDEFG 
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In this comparison, the first three sequences have a difference of two residues at the end 

of the sequence: FG, GH or HI. The rest of the sequence, however, is identical. Sequence 

4, on the other had, has only one residue difference with sequence 1: it has a J instead of 

a B. As a result, it seems likely that sequences 1 and 4 are more closely related than they 

are to the other two sequences. However, due to the fact that residues A though E are 

conserved in sequences 1 to 3, then it is likely that that sequence of residues has an 

important function, and is generally evolutionarily conserved. Due to this possible 

importance, it becomes more likely that sequence 1, 2 and 3 are more closely related than 

any of them are to sequence 4. The MSA algorithm of many phylogenetic tree-creation 

applications is able to find these highly conserved areas, which are called domains, and 

take them into account when determining the similarities among a number of sequences. 

 Specific programs are used to create multiple sequence alignments. The most 

popular program is ClustalW (Thompson et. al., 1994), which can be accessed online at 

http://www.ebi.ac.uk/clustalw/. Sequences are inputted in their FASTA formats, and after 

specifying a few other parameters, such as gap penalties and word sizes, a researcher can 

obtain a multiple sequence alignment which includes the following: the alignment, the 

regions which are most likely to be conserved, the similarity scores between the 

sequences, as well as a phylogenetic tree generated from the MSA. I will not go into how 

the tree is generated until in the next section. Figures 5.4 shows the input screen of 

ClustalW and figure 5.5 is the output screen using the beta-globin sequences from our 

original example, however the tree generated from this output is not displayed in this 

case, since the figure would take up more than a page.  

http://www.ebi.ac.uk/clustalw/
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Figure 5.3 ClustalW input screen from http://www.ebi.ac.uk/clustalw/, from March 19th, 

2006. A researcher can set the parameters using the drop-down menus and input the 

FASTA formatted sequences in the input window. 

http://www.ebi.ac.uk/clustalw/
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Figure 5.4 Output screen from ClustalW using inputted beta-globin sequences (March 

19th, 2006). 
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 Returning to our original example of comparing globin sequences from various 

species, figure 5.5 has the new alignment scores using the MSA. Table 5.2 compares 

these scores with the ones found using simple pairwise alignments. 

 

Table 5.2 Comparison of MSA scores with pairwise alignment scores 

Comparison Pairwise Score MSA Score (% ID) 
Human:Chimpanzee 246 96 
Human:Cow 252 84 
Human:Chicken 212 67 
Human:Dog 275 89 
Chimpanzee:Cow 203 80 
Chimpanzee:Chicken 173 65 
Chimapnzee:Dog 220 85 
Cow:Chicken 199 64 
Cow:Dog 247 82 
Chicken:Dog 301 69 

 

The pairwise alignments generated some results that were somewhat unexpected 

The highest score was between the dog and chicken sequences, and this is strange given 

that we assume that dogs are more closely related to other mammals than to birds (maybe 

domesticated animals have their own evolutionary branch after all). The MSA 

alignments, on the other hand, appear more accurate. The highest score is between the 

human and the chimpanzee, species that are also known, based on current research, to be 

the closest related species in this list. The lowest score is between the cow and chicken, 

but the human and chimpanzee alignments with the chicken sequence are almost as low. 

Looking at the MSA that was generated (lower half of figure 5.4), we see that 

these new scores were due to the algorithm’s ability to find the conserved domains. The 

regions with domains are the ones with the ‘*’ at the bottom of the MSA, indicating that 
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the residues in these positions are identical in all the sequences. The positions with the 

double-dots at the bottom mean that the residues are somewhat similar, whereas those 

with the single dots are only slightly similar. Any deviations from those domains would 

create a large penalty in the similarity score, and would thus mean that the species from 

which those sequences originated would be more distantly related to the other species in 

the comparison. 

 

5.7 Tree-Building. As mentioned earlier, there are two main methods for building 

phylogenetic trees once similarity scores have been generated (Hall, 2001): distance-

based methods, and character-based methods. Both use information from the multiple 

sequence alignments in different ways.  

Distance-based methods calculate the degrees of divergence. A simple measure 

that calculates the degree of divergence is called the Hamming distance (Hamming, 

1950): 

D = n/N x 100, 

where D is the degree of divergence, N is the number of residues in the sequence and n is 

the number of sites at which there are differences (Pevsner, 2003, p.378). The sequences 

that are most alike, meaning those with the lowest Hamming distances, are grouped 

together first. After these first two sequences are grouped, new similarity scores are 

calculated between the created group and the remaining sequences. This is done until all 

the sequences are grouped together. These calculations give indications on the branch 

lengths, which are supposed to represent the evolutionary diversions between the species. 

The steps for creating a tree using one type of algorithm grouped that is classified into 
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this method are represented in figure 5.6. This algorithm is called the unweighted pair 

group method with arithmetic mean, or UPGMA for short (Sokal & Michener, 1958). 

The dots in the boxes on the left represent the sequences and the distances between the 

dots represent the degree of divergence. The trees on the right represent the tree building 

process. Each of these dots is put into a group depending on its distance from others, until 

all the dots are part of at least one group. The final tree in the diagram below is the final 

phylogenetic tree created after using this distance-based method. 

Character-based methods, on the other hand, analyze alignments in order to find 

the most parsimonious tree, which is the one that would involve the least number of 

amino acid changes for each branch. Figure 5.7 shows a number of sequences and the 

possible trees that can be created using those sequences (in the example, 3 trees need to 

be built, but only 2 are shown). In this case, the first tree is selected since it requires the 

least number of amino acid changes. This is an example of the Maximum Parsimony, or 

MP algorithm, which is classified as a character-based method (Eck & Dayhoff, 1966, 

Fitch, 1977). 
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Figure 5.5 Representation of Distance-based method, using the UPGMA algorithm, of 

tree building (from Pevsner, 2003, p. 382). 
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(a)       AAG 

      AAA 

     GGA 

      AGA 

 

(b) 

 

 

 3 changes required  4 changes required  4 changes required 

            (best tree) 

Figure 5.6 Principle of character-based tree building. The tree with the least number of 

amino acid changes (the one on the left) is selected as the best tree (from Pevsner, 2003, 

p.385). 

 

Any scientist, through the use of various websites, can input sequences from any number 

of species and run any type of tree-creating algorithm they wish. Popular examples of 

web sites that offer programs that anyone can download are PAUP (paup.csit.fsu.edu) 

and Mr. Bayes (mrbayes.csit.fsu.edu), and WebPhylip allows anyone to run these 

different algorithms while online (biocore.unl.edu/WEBPHYLIP). Returning to the 

example above (table 5.2), below (figure 5.8) is the constructed tree using the beta-globin 

alignment, where the MSA was done using the ClustalW website, and an MP tree was 

constructed using the WebPhylip website. 
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           +--Dog        
        +--4   
     +--3  +--Chicken    
     |  |   
  +--2  +-----Cow        
  |  |   
--1  +--------Chimpanzee 
  |   
  +-----------Human      

 
Figure 5.7 Phylogenetic tree created from a MSA of beta-globins from various species, 

using a maximum-parsimony algorithm to create the tree. 

 

5.8 Phylogenetic Tree Case: Human Evolution. One of the most interesting questions 

for evolutionary researchers concerns the evolution of the human species. Some questions 

raised are: what is the age of the Homo sapiens species, how did it originate, and what 

were its subsequent genetic changes. Until this century, most scientific analyses of human 

evolution were accomplished using human fossils. This type of study is still quite 

popular, although it is slowly being replaced by genetic research. The first researchers to 

use genetic markers in determining human evolution were Rebecca Cann et. al. (1987). 

Since information on the human genome was still very limited during the time of their 

research, Cann et. al. used mitochondrial DNA (DNA found in human mitochondria). 

This DNA is inherited maternally, and evolves several times faster than regular, cellular 

DNA, and is a smaller genome (16kB versus 3GB). Due to this difference, mitochondrial 

DNA has some advantages over cellular DNA, since recombination of cellular DNA 

makes it more difficult to trace genetic history, and the higher rates of mutation in 

mitochondrial DNA allow for one to investigate shorter periods of evolutionary history. 
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 Cann et. al., however, did not use any alignment software or tree-building 

algorithms, thus their use of bioinformatics tools was somewhat minimal. Subsequent 

studies have used more modern bioinformatics tools. Two theories on the origin of 

modern humans have been proposed since the use of genetic data became common. The 

more popular “Out-of-Africa” theory (Nei 1995, Stoneking 1994, Bowcock et. al. 1994) 

posits that modern humans originated in Africa and replaced older hominid species across 

the globe. This origin would explain the great genetic diversity that is observed among 

African populations compared to the lesser diversity among non-African populations. 

The less popular “Multi-regional” theory holds that modern humans evolved 

independently from various groups across the globe, and that the genetic homogeneity 

that exists outside the African populations is due to natural selection and genetic 

exchange among those populations. Although humans are spread across the globe and 

look very different, we, including African populations, are actually relatively genetically 

homogeneous. Chimpanzees have more genetic variation amongst themselves than do 

humans (Crouau-Roy et. al., 1996). This evidence could only be found by investigating 

the genetic data. 

 Multiple-sequence alignments of different DNA markers as well as tree 

constructions using character-based methods have generated trees such as the one in 

figure 5.9 (from Jorde et. al., 1998). This figure shows the relative diversity of African 

populations (the populations found at the top of the tree) compared to other human 

populations. The tree in figure 5.9 is unrooted, which means that there is no conjecture 

about the origin of all these populations, although most researchers agree that the human 

species originated in Africa.  
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Figure 5.8 Unrooted phylogenetic tree of human genetic relations (from Jorde et. al, 

1998) 

 

5.9 Extended Cognition in Phylogenetic Tree Creation. Using the same strategy from 

the BLAST case study, I will show how the creation of phylogenetic trees using 

bioinformatics tools is a case of extended cognition. As explained in Chapter 2, extended 

cognition in bioinformatics includes representations in computer databases and 

representations developed using computer algorithms. Similar to BLAST, phylogenetic 

tree creation requires a researcher to gather information on the sequences as well as to 

use the algorithms necessary to construct such trees. Specific to this case are the 
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particular multiple sequence alignments that are performed as well as the creation of the 

trees themselves. The multiple sequence alignment algorithms involve many 

computational steps, from determining the probability that particular residues are found 

in particular positions, to determining the probabilities that particular sequences arise, to 

the creation of similarity scores. The tree creation, which can be done using either a 

distance-based or character-based algorithm, involves using those similarity scores in 

order to find the most closely related species as well as determining the length of each 

branch, which represents the genetic similarities between the species. 

 The steps for creating phylogenetic trees will now be investigated. The first step 

in creating a phylogenetic tree is deciding which species to compare. Depending on the 

study being performed, the species to be compared can hypothetically be closely related 

or distantly related. One example of the former case includes the comparison of human 

populations. An example of the latter case may be the comparison of bird species with 

reptile species, in trying to determine when those two lineages may have diverged. The 

general step made at this point is: 

1) Decision on species that are to be part of phylogenetic tree. 

The researcher also needs to make other decisions based on previous theories and 

results. One of those decisions is what genes from the chosen species to use. In the 

example above, we chose the beta-globin gene. Another set of decisions is what 

algorithms to use. These decisions are often based on what mathematical assumptions the 

researcher decides are acceptable. 

2) Decision of what genes and algorithms to use. 
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Once this decision is made, the genetic or protein sequences of the species need to be 

compiled either through sequencing experiments performed by the researchers, or 

extracted from particular databases. This latter option is similar to the one presented in 

the BLAST chapter, where one can find the sequence data by visiting the NCBI web site 

and requesting particular sequences, such as, human beta-globin.  So the third step is: 

3) Sequence information from particular computer databases. 

Once all the sequence data is compiled, according to the method I presented above, the 

next step is to perform a multiple sequence alignment on these sequences. One can use 

the ClustalW algorithm, which is publicly available at http://www.ebi.ac.uk/clustalw/, 

and input the FASTA format of the sequences in the input window shown in figure 5.4. 

These programs return the alignment of these multiple sequences, as well as distance 

scores, which are measures of how closely related each sequence is to the others.  

Therefore, step four is: 

4) Use of multiple-sequence alignment algorithms. 

After the distance scores are calculated using the multiple-sequence alignment, the 

phylogenetic trees can be generated using distance-based or character based methods. 

There are web sites that perform this step separately, as well as offering many different 

types of tree-building software. For example, the T-Coffee web site runs the ClustalW 

analysis (Thompson et. al., 2004), and these results can be inputted into a tree-building 

program such as MrBayes (Huelsenbeck & Ronquist, 2001).  As presented in figure 5.8, 

the ClustalW web site performs the multiple sequence alignment and creates the trees as 

well. Therefore, step five is: 

5) Use of tree-construction algorithms 

http://www.ebi.ac.uk/clustalw/
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Lastly, as in the BLAST case, the scientist would analyze the results to determine which 

conclusions can be drawn, or whether further operations needs to be performed. 

     6) Analysis of the results 

This is a brief overview of the steps that are likely taken by a researcher in order to 

produce a phylogenetic tree using bioinformatics tools. Generally, as in the case of 

BLAST, the main role for the scientist simply involves choosing the type of comparison 

to be made, possibly the type of algorithm to use in order to generate the tree, and an 

analysis of the results. Otherwise, all other steps require the use of a computer database 

or algorithm, many of which are publicly available on the Internet. Table 5.3 shows a 

comparison between the human and computer information and operations. 

 

Table 5.3 Comparison of human and computer information and operations in the creation 

of phylogenetic trees. 

Computer Databases Used Programs Used Human Operations 
Sequence information from 
particular computer 
databases 

Use of multiple-sequence 
alignment algorithms 

Decision on species that are 
to be part of phylogenetic 
tree 

 Use of tree-construction 
algorithms 

Decisions on what genes 
and algorithms to use 

  Analysis of the results 
 

 The comparison above shows that using bioinformatics for creating phylogenetic 

trees is certainly a process that involves extended cognition. The human researcher is 

involved in making the initial decisions and final analyses, but all information and actual 

sequence alignment and tree creation are performed entirely using computer algorithms. 

What is even more interesting, as was also shown in my example using beta-globin, is 
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that the creation of these trees has become a relatively quick and easy process, much 

easier than the process used by earlier researchers. Although there are many 

mathematical and evolutionary assumptions made when using these algorithms, it does 

seem that researchers are finding the use of these algorithms more trustworthy than using 

previous methods due to the ability to accurately compare molecular sequences. 

 

5.10 Analogical Reasoning in Phylogenetic Tree Creation. The investigation into 

analogical reasoning used in the creation of phylogenetic trees is similar to how it is used 

in BLAST in that it is found in only some cases. Although sequences are compared to 

one another in the creation of a phylogenetic tree, this creation is not necessarily an 

example of analogical reasoning. Consider the example that I used above with beta-

globin. Sequence comparisons are required in order to create the phylogenetic tree, but 

there are no ‘known’ sequences in this case, which are required in order to have 

analogical comparisons. Since all the sequences and phylogenetic relationships are all 

relatively unknown in most examples of phylogenetic tree creation, then we cannot claim 

that these represent true cases of analogical reasoning. 

 However, there is at least one case of the creation of phylogenetic trees that does 

utilize analogical reasoning. This is the case where a tree has already been created, and a 

new species is compared to the members on that existing tree to determine which species 

it is most closely related to. This is a very common type of research study, and there are 

large projects that have extensive phylogenetic trees and are in the process of adding 

more species to that tree. One such project is the “Tree of Life Web Project”, which is 

found at http://tolweb.org/tree/ (figures 5.10, 5.11). The main page of the site states: 

http://tolweb.org/tree/
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The Tree of Life Web Project (ToL) is a collaborative effort of biologists from 

around the world. On more than 4000 World Wide Web pages, the project 

provides information about the diversity of organisms on Earth, their evolutionary 

history (phylogeny), and characteristics. 

The site contains a comprehensive phylogenetic tree, and allows researchers to add new 

species to the tree or to revise the phylogenetic mappings. The simple additions to this 

tree would involve analogical reasoning since the new addition is being compared to the 

species that are already found on the tree. Table 5.4 presents the analogical reasoning 

behind a particular addition that is made to a phylogenetic tree using beta-globin 

sequences from both the unknown and known species.  
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Figure 5.9. A section of the main page from the “Tree of Life Web Project” web site 

(http://tolweb.org/tree/, March 28th, 2006). The diagram in the middle of the page allows 

a browser to search for species within particular branches of the tree of life. 

http://tolweb.org/tree/
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Figure 5.10. A section of the ‘Eutheria’ (placental mammals) page 

(http://tolweb.org/Eutheria/15997, March 28th, 2006). Underneath the tree is a list of 

references of articles that were used in the creation of the tree. Clicking on one of the 

nodes brings up a new branch of more specific classifications, whereas clicking the arrow 

on the left brings up a new branch of broader classifications. 

http://tolweb.org/Eutheria/15997
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Table 5.4 Analogical comparison while making an addition to a phylogenetic tree. 

Species to be added Species in Phylogenetic Tree 
Speciesa Speciesp 
Sequencea Sequencesp 
Similarity score (sequencea, sequencesp) Similarity score (sequencesp, sequencea) 
Genusp (speciesa) Genusp (speciesp) 
 

As we see in table 5.4, since the added sequence has a particular similarity score with the 

sequences from the species in the phylogenetic tree, the species that is to be added likely 

belongs to the same genus as the species in the phylogenetic tree. 

 A possible problem with this analogy is that when a new sequence is compared to 

the sequences from species already in a phylogenetic tree a new multiple sequence 

alignment needs to be performed. As a result, the distance scores that were previously 

calculated may change, thus possibly changing the tree itself. Consider the following 

sequences. 

ABCDEF 

ABCDEG 

IBCDEH 

A multiple sequence alignment performed on these three sequences would have the 

‘ADCDE’ residues as conserved residues, meaning that any deviation would carry a high 

penalty. Therefore, an MSA would find the first two sequences more closely related to 

each other than to the third sequence. However, consider what happens when this fourth 

sequence is added: 

JBCDEH 
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With this addition, the ‘A’ residue in the sequence becomes less likely to be conserved, 

and may thus change the configuration of the tree. As a result, the ‘known’ species 

classifications are actually somewhat undetermined, and can be classified differently with 

the addition of new species. 

 Many algorithms have been designed to account for this possibility. Also, because 

the branches of a phylogenetic tree are relatively well established, such a possibility 

would be relatively rare. For example, if a particular branch has about 10 species, the 

addition of a new species is unlikely to have a significant effect. The classification of the 

species in this branch is likely to be well supported by existing phylogenetic evidence, 

and thus a researcher would be more confident in saying that the configuration of this 

branch is correct. 

 It is apparent in the creation of phylogenetic trees using bioinformatics tools that 

analogical reasoning is accomplished in large part by the use of extended cognition. The 

use of computer algorithms such as ClustalW and MrBayes as well as web sites such as 

the Tree of Life web project have helped create modern phylogenetic trees, which allow 

researchers to make analogical inferences about species based on their related species. 

Just as with BLAST, this combination of computer use and analogical reasoning may be 

unique to bioinformatics research. 

 

5.11 Epistemic Appraisal of Phylogenetic Tree Creation. The advantage of using 

extended cognition in the creation of phylogenetic trees is also apparent when one uses 

Goldman’s (1992) and Thagard’s (1997) appraisal standards for epistemic practices: 
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Reliability: Programs that are used to make phylogenetic analyses, such as 

ClustalW and MrBayes have proven to be quite reliable in generating scientifically 

acceptable results. These programs have become the favoured tools for creating 

phylogenetic trees over simply using fossil records or even comparing 

morphological/behavioural/sexual traits among species. The reason for this increased 

reliability has to do with the precise and theoretically acceptable algorithms used by these 

tools, especially the algorithms that generate multiple sequence alignments. These 

alignments are precisely designed to find conserved genetic sections in a number of 

sequences, and to calculate species divergence based on the sequence divergence from 

these conserved sections. These tools are not restrictive in their use, however, thus 

allowing researchers to create trees based on their preferred parameters (see figure 5.4).  

Power: Due to the fact that these tools employ algorithms that are specifically 

designed to compare biological sequences, as well as create phylogenetic trees based on 

those comparisons, these algorithms generate many scientific results. All a researcher 

requires in order to construct phylogenetic trees are reliable genetic sequences from a set 

of species as well as algorithms in order to compare those sequences and construct trees 

from those comparisons. These methods are much more powerful than previous methods 

that required detailed information on the phenotypes of various species and/or fossil 

evidence from ancestral species. 

Fecundity: As presented in figures 5.5 and 5.8, there is a plethora of results 

returned in the creation of phylogenetic trees using programs like ClustalW. Not only are 

the trees created, but results are given for how those particular trees were created by 

presenting the sequence comparisons using the multiple sequence alignments, as well as 
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the calculated distance metrics. An advantage of using these bioinformatics tools, as well, 

is that a researcher does not require access to limiting information, such as fossils records 

or direct observation of a species’ phenotypic traits. Many researchers have access to 

many organisms’ sequence information via specific databases like GenBank, and can thus 

create trees using any species they wish. Thus, the potential to create many more 

phylogenetic trees is much greater than before these bioinformatics tools were available. 

Speed: Bioinformatics tools like ClustalW are relatively quick compared to 

previous methods, although these algorithms are not nearly as fast as BLAST. The only 

lengthy procedure is collecting the sequence information, and even this step requires only 

minutes of a researchers time. Once the sequence information is found, creating a tree 

like the one in figure 5.8 takes less than a minute. Searches with a larger set of sequence 

data would certainly take longer, yet not nearly as long as a non-bioinformatic 

approaches such as using fossil records or comparing phenotypic traits. 

Efficiency: Just as with BLAST, the cost of creating phylogenetic trees using 

bioinformatics tools is minimal. All a researcher requires in order to create a phylogenetic 

tree is a desktop PC or laptop with any kind of Internet connection. In fact, it would be 

much more cost-efficient for a researcher to invest in computers that perform the analyses 

rather than attempt to find fossils, or even collect and analyze the phenotypic traits of the 

species in question. 

Explanatory Efficacy: Programs that create phylogenetic trees, like the ‘Tree of 

Life’, help create coherent pictures of how all species are related to one another. These 

programs, I believe, also provide better explanations than previous methods of how these 

species are related to one another. Previous trees were created based on fossil and 
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phenotypic similarities, yet many people did not see how these similarities necessarily 

amounted to evolutionary relationships, and rightfully saw large gaps in species 

similarities. For example, birds are thought to have evolved from reptiles, yet many 

question this relationship due to the fact that there is minimal fossil or contemporary 

evidence of reptiles with ‘half-wings’. Also, any evolutionary explanation for the 

existence of these half-wings would be conjectural due to the fact that these species are 

extinct. If one instead compares genetic sequences, the relationships between species are 

much more straightforward, since it is easier to see how genetic sequences change than it 

is to visualize how phenotypic traits change. As explained earlier, a small change in a 

species’ genotype can cause very large changes in its phenotype, thus explaining how 

species that have many phenotypic differences can nonetheless have few genotypic 

changes. Thus, creating phylogenetic trees based on these genotypic changes helps better 

explain the evolutionary relationships among species. 

 

5.12 Summary. In this chapter, I have summarized how bioinformatics research is used 

to create phylogenetic trees. This process uses extended cognition through computer use 

and analogical reasoning. The summary included a historical overview from Aristotle’s 

work on definitions, to Darwin’s work on evolution, to Hall’s review of the generation of 

trees using data from multiple sequence alignments. Current research into phylogenetic 

trees uses bioinformatics tools that create multiple sequence alignments of sequences 

from related species, and those alignments are then used to create either distance-based or 

character-based trees. 
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 Although phylogenetic trees were previously generated without the use of 

computers, bioinformatics research has made the trees much more precise, and also much 

easier to generate. I showed how analogical reasoning is used in some aspects in the 

creation of phylogenetic trees, namely with the addition of new species to phylogenetic 

branches that already contained a number of species. It was also shown how analogical 

reasoning is performed through the use of computers. Lastly, I demonstrated how the 

creation of these trees using bioinformatics tools meet Goldman (1992) and Thagard’s 

(1997) standards for the appraisal of an epistemic practice. 
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Chapter 6 

DNA Microarrays Case Study 

6.1 Introduction. As we have seen in the BLAST and phylogeny chapters, one of the 

major sources of information in bioinformatics is the large store of genomic data that is 

available. Along with the completed human genome sequence, there are completed 

sequences of many other organisms. Among organisms whose genomes are not 

completely sequenced, there is still a large set of sequenced DNA. The NCBI database 

contains over 100 billion bases from over 165,000 organisms, and the input of 

information is still growing exponentially (figure 4.1). 

 Despite this large set of genomic data, BLAST and phylogenetic comparisons are 

vastly limited in the type of analyses they are able to perform. Because BLAST and 

phylogenetic programs are only capable of comparing genomic and protein sequences, 

they can only show whether sequences are related, or whether a particular sequence is a 

candidate gene once other similar sequences have been identified as genes in a wet lab. If 

these were the only tools available to bioinformaticists, their discipline would still be 

very important. However, there is one more tool that has made bioinformatics 

indispensable, not only to biologists, but to medical researchers as well. That tool is the 

DNA microarray. 

 The microarray is a relatively new tool that helps answer one of the most 

fundamental questions in biology: What are the underlying mechanisms at work in a 

biological cell? Not only are microarrays a new tool for answering this question, they 
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have produced unprecedented amounts of information on the workings of biological cells. 

The use of microarrays is also called high-throughput screening, due to the large amounts 

of data that can be produced in a relatively short amount of time. However, the reliability 

of this tool is still very questionable. 

 The power of microarrays comes from the three previously described scientific 

methods: extended cognition through computer use, analogical reasoning, and 

representations of mechanisms. With respect to extended cognition, the requirement of 

computer processes and databases in both the generation and analysis of microarray data 

is so extensive that these computer components are indispensable. Analogical reasoning 

is not as apparent with this tool, but like BLAST and phylogenetic programs, microarray 

results come from comparing data that are unknown to data that are known. The types of 

operations that are possible with these tools include bio-molecular comparisons between 

species, organisms, tissues, and specific cells, along with many others. 

 The power of microarrays has allowed for biologists to generate theories that are 

much more complex than have ever been seen before. Generally, bioinformatics research 

has been used to generate interactomes, which are complex representations of 

mechanisms that show the interactions between numerous biological molecules, such as 

genes, proteins and other bio-molecules. These interactomes resemble massive networks 

with numerous nodes and their interconnecting causal relationships.  

 This chapter will look at the history and the underlying science behind 

microarrays, including some major discoveries made by using this technique. I will then 

look at how microarrays use extended cognition and a technique similar to analogical 

reasoning, and at how microarrays facilitate the creation of representations of complex 
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mechanisms. Lastly, an epistemic appraisal of microarray use will be done using 

Goldman (1992) and Thagard’s (1997) standards. 

 

6.2 History of Microarrays. A list of historical milestone is in Table 6.1. 

 
Table 6.1 Microarray Milestones (compiled from Southern, 2001, and Brewster et. al., 

2004): 

Year Milestone 
1988 Edwin Southern files UK patent applications for in situ synthesized, oligo-

nucleotide microarrays. 
1991 Stephen Fodor and colleagues publish photolithographic array fabrication 

method. 
1992 Undeterred by NIH naysayers, Patrick Brown develops spotted arrays 
1993 Affymax begets Affymetrix 
1995 Mark Schena publishes first use of microarrays for gene expression analysis, 

Edwin Southern founds Oxford Gene Technologies 
1996 First human gene expression microarray study published, Affymetrix releases its 

first catalog GeneChip microarray, for HIV, in April. 
1997 Stanford researchers publish the first whole-genome microarray study, of yeast 
1998 Brown's lab develops CLUSTER, a statistical tool for microarray data analysis; 

red and green "thermal plots" start popping up everywhere 
1999 Todd Golub and colleagues use microarrays to classify cancers, sparking 

widespread interest in clinical applications 
2000 Affymetrix spins off Perlegen, to sequence multiple human genomes and identify 

genetic variation using arrays 
2001 The Microarray Gene Expression Data Society develops MIAME standard for 

the collection and reporting of microarray data 
2003 Joseph DeRisi uses a microarray to identify the SARS virus, Affymetrix, 

Applied Biosystems, and Agilent Technologies individually array human 
genome on a single chip 

2004 Roche releases Amplichip CYP450, the first FDA-approved microarray for 
diagnostic purposes 

 

The initial concept for microarrays was developed in the late eighties separately 

by Edwin Southern and Stephen Fodor. Southern is generally known for developing the 

Southern blot test in 1975 (Southern, 1975), which is a DNA analysis tool that is 
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commonly used to identify genetic markers, and are used in paternity tests and criminal 

investigations. In his initial work on microarrays, Southern developed a method whereby 

inkjet printing was used to print the four amino acid nucleotide bases into oligonucleotide 

sequences on glass slides, similar to how inkjet printers use coloured inks. Fodor was 

working on a similar project where he used photolithography, which was a technique that 

etches the tiny features on semiconductor chips. Fodor and Southern also started 

companies in order to fund their projects: Fodor started Affymax, which later evolved 

into the currently popular microarray company, Affymetrix, while Southern founded 

Oxford Gene Technology. 

Both Southern and Fodor recognized the potential use of their ideas, but the 

technology required was still not available. One of the basic requirements for a 

microarray to work is to have a plate with an oligonucleotide that can bind with a 

complementing oligonucleotide. By 1991, Fodor was able to build arrays of peptides and 

dinucleotides, but they contained sequences just eight nucleotides in length, less than a 

third of the standard oligonucleotides Affymetrix uses today. The eight-nucleotide long 

peptides are too short to bind with complementing molecules. However, the process was 

a step in eventually developing a functioning microarray. 

In 1992, Patrick Brown, then at Stanford University, had a different strategy. 

Instead of synthesizing the molecules onto surfaces, which was the strategy being 

developed by Southern and Fodor, he envisioned lining up already synthesized 

oligonucleotides on the surfaces of slides. Although his idea was not supported by the 

grant agencies (his 1992 NIH grant proposal was summarily rejected), Brown continued 

to work on his idea. He built robots that would deposit small amounts of DNA on a glass 
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surface. The first attempts were horrible failures due to his lack of resources, but small 

improvements were always being made. 

Mark Schena, a graduate student at Stanford in 1992, saw potential in Brown’s 

spotted array for gene expression studies. At that time, gene expression studies were very 

limited, where scientists were only able to study the expression of one to a few genes at a 

time, and these studies involved very sensitive work in wet labs (gene expression will be 

described in greater detail in the next section). Brown and Schena began to work together 

to match the technology with a particular biological problem. They headed some 

groundbreaking experiments which led to the landmark 1995 Science paper that used the 

word “microarray” for the first time (Schena et. al., 1995).  In 1997, the Brown lab 

published their first paper on the expression of a whole genome (Lashkari et. al., 1997).  

Since then, microarrays have been further refined to give more reliable results, 

and, more interestingly, have been used to solve many different biological problems. 

Along with biological applications, there has been much more interest into how 

microarrays can be used for medical discoveries. The first indication of this applicability 

was presented in Golub et. al.’s paper (1999) when they used microarrays to classify 

cancers. Advances in cancer treatment are currently very much dependent upon proper 

cancer classification. One of the most recent methods of classifying cancers is to 

determine the different effects it has on the human body. Since microarrays are able to 

measure changes in gene expression, then they are also a good measure for measuring the 

changes that occur within a cell. Golub et. al. (1999) therefore used microarrays to 

analyze molecules from cancer infected cells from numerous patients and thus were able 

to accurately classify the various types of cancer. The technique has become very 
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popular. Potti et. al. (2006) have developed a technique where microarrays help in 

determining the most effective choice of chemotherapy.  

Another medical application is the recognition of unknown viruses. One of the 

most famous recent cases is that of SARS, which was identified by Joseph DeRisi’s lab. 

(Wang et. al., 2003) using microarrays. Their method was to create DNA microarrays 

that contained oligonucleotides about 70 nucleotides long, and these oligonucleotides 

were derived from every fully sequenced reference viral genome in GenBank at the time. 

By separating the SARS RNA and allowing it to bind to the microarray, the researchers 

were able to show that the SARS virus was a previously unknown virus as well as 

identifying its closest known coronoviral relative. By knowing its genetic relative, 

medical researchers can proceed with clinical trials of the drug used to treat its closest 

relative on patients infected with SARS. These last two applications will be described in 

greater detail after we look at exactly how microarrays work. 

 

6.3 How Microarrays Work. As was discussed earlier, the theory behind microarrays is 

relatively simple. The difficult part is coming up with the proper technology to realize the 

theory. The most general way to describe microarrays is that they are molecules on a 

glass plate. To give a mental picture of the apparatus, the molecules ‘stand up’ on the 

plate. The purpose of this ‘standing’ is to allow any molecules that come into contact 

with the plate to bind with plated molecules. As such, microarrays are a lot like Velcro. 

See figure 6.1. 
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Figure 6.1. A close-up of a side view of a microarray surface. Oligonucleotides ‘stand’ 

from the surface, thus making it possible for them to bind to any incoming molecules. In 

this diagram, the plate has three kinds of oligonucleotides. A typical microarray contains 

thousands of clones of each oligonucleotide (Sattin et. al., 2004). 

 

 The molecular structure of the oligonucleotides is known for most types of 

experiments that use microarrays. The types of oligonucleotides that are plated depend 

upon what the purpose of the experiment will be; however, most experiments attempt to 

find differences in gene expression among cell lines. A little aside is required at this point 

to explain gene expression and its importance. 

 Along with an organism’s genome, there are genetic ‘switches’ that control which 

genes are transcribing proteins at a particular moment. One of the first studies to show the 

workings of gene expressions was that of Monod and Jacob in 1959 (Baldi & Hatfield, 

2002). They worked on what they termed the lac operon, which was a group of genes that 

was responsible for the conversion of lactose into energy in E. coli. They found that when 

lactose was presented to the bacteria, it attached to an area called the promoter on the E. 
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coli DNA. Once the lactose was bound, this signaled the operator on the operon to allow 

for the production of the gene that transcribes lactase, which is the protein needed to 

break down lactose into its constituent galactose and glucose molecules, which can then 

be converted into energy. If no lactose was present, then the production of that gene was 

inhibited. This inhibition occurs since natural selection normally favours species that are 

efficient, and in this case, favours species that do not produce molecules that they do not 

need. If, on the other hand, glucose were presented to the bacteria, then the glucose 

would bind to the repressor on the operon, which would not allow any lactase to be 

produced. Even if there were any lactose, the lactase would only be minimally produced, 

since the bacteria would not need to break down the lactose if there already is glucose 

present (see figure 6.2). 

 

Figure 6. 2. The lac operon, and the production of lactase under different cellular 

conditions (diagram permission granted under the Creative Commons Attribution 

License). 
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 Generally speaking, gene regulation is the method by which a cell turns on or off 

particular genes. Without gene regulation, genes would constantly remain in either an 

‘on’ or ‘off’ state. Gene regulation is important for many different cellular tasks: cell 

development, responses to environmental conditions, responses to diseases, and in multi-

cellular organisms, gene regulation is also the means cells use to differentiate from each 

other and develop into different organs. For example, human liver cells and human brain 

cells have the same genome within each cell, but they are differentiated due to which 

genes are turned ‘on’ in those cells, and at which times. 

 Understanding gene regulation now helps us understand why microarrays are 

important. Microarray researchers begin with plates composed of known nucleotides, 

usually the entire genome of an organism, or whatever genes they have sequenced from 

that organism so far. They then ‘wash’ the plates with radioactively labelled mRNA that 

are produced within particular cells, and/or cells that are found in particular conditions. 

The mRNA found within the cells binds with the oligonucleotides on the plate, and these 

bound nucleotides would emit the radioactivity of the mRNA. Using robotic and 

computerized detection techniques, researchers can identify which nucleotides have 

bound-mRNA, and the intensity of the radioactive signal indicates how much mRNA is 

produced in the cell. Thus, any bound nucleotide is a gene that is expressed in the cell. 

Microarrays allow researchers to measure the simultaneous mRNA expression levels of 

the thousands of genes represented on an array as well as the intensity of that expression 

(see figure 6.3). 

 This simple experiment, however, does not yet yield the information researchers 

typically look for when using microarrays. Let’s say a researcher washes a microarray 
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with the mRNA products from one cell. The researcher would discover which genes are 

being expressed in that cell, but they would not necessarily know which of those 

expressed genes make that cell unique from other cells. In order to discover the cell’s 

uniqueness, the researcher would require another cell line to compare with the original 

cell line (much like a control). There are many types of comparisons that are possible: 

 

1. Normal cell lines with diseased cell lines. 

2. Normal cell lines with mutated cell lines. 

3. Cell lines from tissue A with cell lines from tissue B 

4. Cell lines at developmental stage C with cell lines at developmental stage D. 

5. Cell lines from similar organs from different species. 

 

Figure 6.3. A microarray with radioactive mRNA washed over the surface. Each spot 

represents a different gene, and the particular colour of each spot represents (not shown 

here) the relative expression levels of the gene in 2 different cell types (diagram is in the 

public domain). 
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These comparisons are not necessarily limited to examining two cell lines, but can 

involve many cell lines. For example, in comparing normal cells with diseased cells, a 

researcher may want to test the diseased cells at different times.  

There are many different methods using microarrays to perform these 

comparisons, but I will only describe the method that I believe is the simplest in order to 

keep the description of microarrays short. Using different radioactive dyes on the mRNA 

from each cell line, the researchers can go about comparing levels of expression on one 

DNA microarray (Pevsner, 2003). The technique uses principles from elementary art 

class, which tells us how a resulting color may be dependant upon a combination of 

simpler colours. Typically, a red dye (Cy5 radioactive dye) is used on one cell line and a 

green dye (Cy3 radioactive dye) is used on the other cell line. When a gene from one line 

is expressed more than in another line, the resulting color on the microarray will be closer 

to the initial dye color used on that cell line. If the expression levels are the same, then 

the spot is either black, meaning there was no expression in either line, or yellow, which 

is the combination colour of the two dyes that are used in this case. 

 The best way to describe how the process works is by presenting a specific case. 

Cell line A is the test group, where a virus is introduced to the cell line. The mRNA 

produced by the cell line is labeled with green dye. Cell line B is the control group, 

meaning that it is the same as line A except that it does not have the viral infection. The 

mRNA from line B is labeled with red dye. A microarray is prepared where each gene of 

the cell’s genome is a spot on the chip. The chip is ‘washed’ with the labeled mRNA 

from each cell line, allowing the mRNA to bind with the DNA already on the chip. The 

resulting chip can be something very similar to what is presented in figure 6.3 except 
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with colour, where some spots are black, some green, some red, and some yellow. Of 

course, the colours of each spot are not as easily divisible into this four colour distinction. 

Genes are expressed at different intensities, and are not simply either ‘on’ or ‘off’. If one 

were to look closely at these washed chips, one notices that some spots are intensely 

green or intensely red, some mildly green, some mildly red, some greenish-yellow, some 

reddish-yellow, and so on. Thus, there is more of a spectrum of colours. What needs to be 

done next, then, is to have an accurate analysis of the colours that are presented on the 

chip. 

 

6.4 Image and Data Analysis. Image analysis measures the amounts by which the 

expression of particular genes change between the cell lines that are under comparison. 

To reiterate, the purpose of microarrays is not necessarily to measure the amount of gene 

expression in a cell line, but the difference in expression among cell lines. A spot that is 

intensely green means that the gene is heavily expressed in cell line A but not expressed 

in cell line B. A spot that is intensely red means that the gene is heavily expressed in cell 

line B but not in cell line A. A black or yellow spot means that the gene is expressed by 

equal amounts in both lines. The intensity of each spot is analyzed using sophisticated 

lasers that are able to detect the intensity of each dye (Cy5 and Cy3) rather than the 

combined colour. For each spot, a value is given for the intensity of the green dye and a 

separate value for the intensity of the red dye. These intensities are plotted on a graph, 

and this allows researchers to determine which of these intensities fall outside the 

‘normal’ range. Figure 6.4 shows such a graph. The red channel values are plotted on the 

y axis, which is the expression level of cell line B (non-infected) and the green channel 
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values are plotted on the x axis, which is the expression level of cell line A (infected). 

Genes that are expressed equally in both lines have the same or relatively close x and y 

values, whereas those that are expressed differently have different values. Expression 

levels that are closer to the 0,0 value mean that the gene is hardly expressed in both cell 

lines, whereas expression levels that have both relatively high x and y values mean that 

the gene is highly expressed in both cell lines. Normally, there are many more genes 

plotted near the 0,0 mark, meaning that most genes are not expressed at any given times 

(not shown in figure 6.4 since some transformations to the graphs were already made). 

Genes that have a lower y value than x value mean that there is a higher expression of 

that gene in the infected line. Genes that have a higher y value than x value mean that 

there is a lower expression of that gene in the infected line. 

 

Figure 6.4. Graph comparing the expression levels of genes in different cell lines (figure 

from Efron et. al, 2001). 
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 The next step is to use inferential statistical analyses tools to determine which 

genes are expressed significantly differently. There are many different types of statistical 

tools that are available to a bioinformaticist. Many begin by having axes converted from 

linear scales to logarithmic scales, so that the data set is a little more symmetrical along 

the x,y axis, and not clustered around the 0,0 value. Next, the data can be transformed in 

order to plot the geometric mean intensity versus the log of the gene expression value 

ratios, thus making it easier to point out which genes are expressed differently (figure 

6.5). Many other transformations are possible in order to better account for errors that 

may occur in creating microarray analyses. For example, one notices from figure 6.4 that 

expression levels vary more in the areas of high expression than low expression. This 

may be due to problems in the mRNA collection as well as problems with the problem of 

dye absorption. Thus, specific statistical tools are used to reduce the possible errors 

caused by among genes that have high expression levels. 

 



 156

 

Figure 6.5. Normalized data of changes in levels of expression. The changes in 

expression levels are not measured by their deviation from the x, y axis, but from the log 

of the gene expression value ratios (figure from Efron et. al., 2001). Notice that it is 

easier to determine significant expression differences in this graph compared to the graph 

in figure 6.4. 

 

 Diagrams such as these give bioinformaticists information on the effect of 

particular conditions on particular cell lines, as in our case, the reaction of a cell to a viral 

infection. The whole process, from creating a microarray research project to the analysis 

of the data, is presented in figure 6.6. 
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Figure 6.6. A schematic representation of the microarray research study (figure from 

Leung & Cavalieri, 2003) 
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6.5 Creation of Interactomes. Microarrays are invaluable for the results I have 

described so far, yet there are even more valuable results that can be produced. As was 

described earlier in the chapter, microarrays are also credited with generating very 

complex interactomes. Interactomes are complex mechanisms that show the interactions 

among biological products. Although the interactomes generated by microarrays are not 

very precise, these interactomes are still a step in the direction of eventually discovering 

the complete inner workings of cells. 

 Previous methods at creating interactomes were complicated wet lab procedures 

that were very costly as well as time-consuming. The wet lab procedure to discover the 

components and their interactions is to devise methods to detect each possible component 

and discover what occurs when each is removed from the reaction. Although the process 

is very precise, it is both very costly and time consuming. 

 The advantage of the microarray is that researchers are finally able to see all at 

once the components that are important in particular situations. Using the example above, 

the mRNA products that are likely to be involved in responding to the viral infection are 

the ones that are up-regulated or down-regulated. Other genes may be involved, included 

those whose expression does not change, yet this is unlikely: An underlying assumption 

that seems to be at play in most biological research is that cells react to particular 

situations through changes in their gene expression. The RNA and protein products that 

are produced by cells take milliseconds to produce, but only last for a few minutes. 

Therefore, instead of producing RNA or proteins that continually break down without 

being used, the cell can easily react to situations as they present themselves, thus 

maximizing its energy and resources. 
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 With the components of the mechanism at hand, all that is missing is how these 

components interact. Another assumption comes into play at this point: If two products 

are involved in the same mechanism, then their modes of regulation are likely to be 

somewhat similar. The graphs above give indications of the extent of these modes of 

regulation. For example, figure 6.5 shows that some products are up regulated by a 

certain amount, some down-regulated, and some staying the same.  

Computer programs have been designed in order to detect products that share 

modes of regulation. After detecting these products, they then group the ones that share 

regulation patterns. For example, if genes 1, 2 and 3 are up-regulated and gene 4 is down-

regulated, then 1, 2 and 3 are put into one group and 4 is put into another. Lastly, there 

are programs that construct the possible interactomes that might exist based on these 

genes that are grouped together, creating interactions between those that share the closest 

regulation patterns and then creating possible interactions with those that have less 

similar regulation patterns. We will look at each of these steps in detail. 

 First, the detection software detects the expression pattern of each gene. Arrays 

are created that can represent the regulation pattern of each gene under each presented 

condition. These arrays can almost be as confusing as the microarrays themselves, as 

shows in the example below (figure 6.7): 
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Figure 6.7. Representation of the expression levels of a set of genes (rows) in different 

cell lines (columns). (From http://dir.niehs.nih.gov/microarray/datamining/, permission 

for use granted by Dr. Leping Li) 

 

Although the figure above looks like a microarray, it is not. The figure above is a 

computer representation of the expression levels of particular genes, which are listed in 

the rows, under different conditions, or cell lines, which are listed in the columns. The 

genes that are up-regulated under particular conditions are represented by green dots that 

vary in intensity and the genes that are down-regulated under particular conditions are 

represented by red dots that vary in intensity. The representation, as it is presented here, 

does not clearly show which genes can be clustered together for having similar 

expression patterns. Computer algorithms have been created that can easily find the 

patterns based on the levels of expression. The clustering of the genes can be represented 

using the same type of graph seen below (figure 6.8). 

http://dir.niehs.nih.gov/microarray/datamining/
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Figure 6.8. Cluster analysis of genes that share regulation patterns. Those whose patterns 

are most similar are clustered first, and clustering continues to include all genes. (from 

http://www.weizmann.ac.il/home/ligivol/apoptosis_project/apoptotic_pathways.html, 

permission for use granted by Dr. David Givol). 

 

Notice in the above diagram that the genes that are closely clustered are the ones that 

have very similar expression patterns. Once the genes are clustered, then researchers can 

begin to construct interactomes based upon the patterns of clustering. The figure above 

shows three major clusters, thus pointing to three possibly separate mechanisms that are 

affected in this experiment. Within the major clusters, the genes that are most closely 

clustered are likely to be in a direct causal relationship than those that are more loosely 

clustered. Based on this distinction between close and loose clustering, researchers can 

construct elaborate interactomes that are likely to closely estimate the actual mechanisms 

that exist within cells. 

http://www.weizmann.ac.il/home/ligivol/apoptosis_project/apoptotic_pathways.html


 162

A search through the on-line article search engine “Biological Sciences” with the 

terms “microarray” and “mechanism” alone return 361 hits, and with “microarray” and 

“pathway” return 441 hits, and it is likely that there are more papers where microarrays 

were used to find cellular mechanisms or pathways without those latter two terms being 

explicitly used in the paper. This shows that using microarrays to find these interactomes 

is a very popular technique. One example of a mechanism that was derived using 

microarrays is from Yamashita et. al (2005), which I briefly presented in the introduction. 

These researchers were testing the effect of specific non-peptide antigens on γδ T cells. 

They tested the reaction of these cells to the antigens at different times and were able to 

generate representations of gene expression such as the following (figure 6.9): 

 

 

Figure 6.9. Representation of the expression of particular genes in T cells after being 

exposed to nonpeptide antigens (figure from Yamashita et. al., 2005). 
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Using expression data such as these, and clustering the genes according to the expression 

patterns, Yamashita et. al. hypothesized mechanisms such as the following (figure 6.10): 

 

 

Figure 6.10. Mechanism generated from analyzing expression patterns (figure from 

Yamashita et. al., 2005).  

 

Thus, from a biological perspective, microarrays are very useful in generating complex 

biological mechanisms, which are important theoretical tools for biologists. 

 Like the other bioinformatics tools that were presented in preceding chapters, 

online tools are available to generate new results from inputted microarray data. One of 

the most popular web tools is Gene Expression Omnibus (GEO) (Edgar et. al., 2002), 

which is, again, found on the NCBI web site at www.ncbi.nlm.nih.gov/geo. The main 

search page of the program is found below. Researchers can deposit their microarray data 

http://www.ncbi.nlm.nih.gov/geo
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into the GEO database. For example, a researcher can deposit data from a microarray 

representing a human adult blood cell in ‘normal’ conditions, and another researcher can 

deposit data from a microarray representing a human adult hemophiliac blood cell. With 

this deposited DNA, a researcher can use the web tool to find the gene expression 

differences between the two microarrays. Other comparisons can be made as was 

described above, such as clustering genes with similar gene expression patterns and 

developing mechanisms from those clusters. Thus, once again, a researcher can generate 

biological results in silico. 

 Figures are presented below showing the microarray data publicly available. The 

two figures below show the main query page and returned pages after a query is 

submitted. The following examples have returned pages for comparing ‘normal’ adult 

human blood cells with those afflicted with a particular type of hemophilia (figures 6.11, 

12).  
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Figure 6.11. The main page of GEO, found at www.ncbi.nlm.nih.gov/geo from Feb 17th, 

2006. The researcher starts by inputting the data set that they are looking for through 

inputting its ‘DataSets’, ‘Gene Profile’ or ‘GEO accession’ identification. In the 

following figures, I have inputted the GEO Accession of GDS761, which represents a 

particular hemophilia comparison. 

http://www.ncbi.nlm.nih.gov/geo
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Figure 6.12. Page showing data from GEO accession # GDS761. It has information on 

how the data was collected, what test subjects were used, and allows one to perform a 

variety of tests on the data sets, including t-tests, which give results on which genes are 

expressed significantly differently. 
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Therefore, microarrays are used to significantly advance biological knowledge by 

examining gene expression and developing representations of mechanisms using the 

measured expression levels. However, their use is not only restricted to biological 

research, as will be demonstrated in the next section. 

 

6.6 Medical Uses of Microarrays. As mentioned in the introduction of this chapter, 

there have been some very important medical developments using microarrays, and the 

use of microarrays may soon become an indispensable tool for medical researchers. One 

recent major discovery using this tool is the creation of precise classifications of cancers. 

This precise classification can further help develop drugs that are specific to particular 

cancers. Another indication that microarrays may become essential tools is their ability to 

quickly identify new viruses. They help researchers find effective treatments to those new 

viruses quicker than previous methods. 

 Golub et. al. (2001) created a gene expression database with the expression 

profiles of 14 common human cancer classes. This was done by placing the mRNA from 

the different cancers on microarrays containing genes that are normally implicated in 

playing a role in cancer. The expression levels of these mRNA products differ among the 

different cancers. By finding the molecular bases of cancers, medical researchers will be 

able to better diagnose and treat the various classes of cancer. Figure 6.13 shows the 

results from their microarray analysis: 
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Figure 6.13. Expression of different cancer classes. The clustering diagram at the top 

helps in showing which genes are expressed most differently in each cancer case (figure 

from Golub et. al, 2001). 

 

 The second major medical discovery was the annotation of SARS by DeRisi et al. 

in 2003. DeRisi et. al. expanded the microarray technique to not only look at the 

expression of genes within a genome under different conditions, but to quickly compare 

multiple genomes. They put a number of oligonucleotides from all previously sequenced 

viral genomes on a plate, totaling about 10,000 different oligogonucleotides. They then 

split the RNA from the unknown SARS genome and washed it over the surface of the 

microarray. It was thought likely that the SARS genome is similar to already sequenced 

genomes, and thus would bind to the oligionucleotides to which it shares its sequence. 

Using this technique, the researchers were able to show that SARS was very similar to 

the class of IBV coronaviruses. Subsequent studies that sequenced the virus were able to 

confirm these findings. The advantage of this technique was that the researchers were 
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able to discover, within 24 hours, that the virus was a novel organism and to what viruses 

it was related. Other techniques to generate the same results would have taken at least a 

week of gene amplification, sequencing, and comparisons, the last being accomplished 

through another bioinformatics tool, BLAST. Although this may not seem significant to a 

biological researcher, it is an important development in the medical field, one which 

could potentially save many lives during viral outbreaks. 

 This type of research is fundamentally different from the traditional use of 

microarrays which compared arrays of sequences to find differences in gene expression. 

Instead of finding differences among molecules, this research is looking for similarities 

among viral genomes. It is interesting to note that although microarrays were only 

developed recently, they are being used for fundamentally different types of research. 

 

6.7 Extended Cognition in Microarray Studies. Almost every stage in microarray 

research requires information from computer databases or has information manipulated 

by computers. Just like the other bioinformatics tools studied, computers are 

indispensable for carrying out the operations required in research using microarrays. 

 All microarray research begins with the creation of the microarray itself. 

Normally, microarrays contain cDNA spots that represent most genes within the genome 

of a particular organism. The microarrays may also contain a number of genomes: The 

SARS example presented in the last section required a microarray with a number of 

oligonucleotides from a number of known viruses, totaling 10,000 different spots. This 

first step requires the following computer databases: Databases containing the gene 
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sequences of known genomes and databases created during the experiments that specify 

the location of each cDNA representing the gene on the microarray. 

Once these databases are created, the following computer/robotic manipulations 

are carried out: 

1) Placing a spot of each cDNA on a microarray chip. 

No single scientist could memorize the gene sequence information found in the computer 

databases, and neither can they memorize the location of each cDNA placed on the 

microarray. The robotic placement of the cDNA on the microarray chips is an extremely 

complex and fragile process, one that, despite many technological developments, is still a 

source of problems in the creation of microarrays. However, these problems are often 

taken into account in further statistical analyses performed on microarray results in order 

to minimize them. 

 The next step in microarray research involves washing mRNA products from cells 

under particular conditions onto the microarray. The ‘washing’ process involves the 

operations of technologically advanced robots in order to ensure that the mRNA is spread 

evenly over the microarray. If some spots receive more mRNA than others, then 

misleading data can be generated as to which genes were expressed more than others. 

Thus, the computer/robotic manipulation required for this step is: 

2) Washing mRNA over the microarray. 

The third step is the image analysis of the microarray. By washing the microarray, the 

radioactive mRNA has bound to the cDNA spots at different intensities. A robotic ‘eye’ 

is required in order to measure the intensity of the radioactive glow, which should 

represent the level of expression of the mRNA in particular cell lines. Once the ‘eye’ 
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measures the intensity, it records that intensity into a computer program, which allows 

graphs like the one in figure 6.4 to be drawn. Thus, the computer manipulations are the 

following: 

3) Robotic ‘eye’ measures the intensity of the radioactive signal from each cDNA 

spot. 

4) The intensity that is recorded is plotted on a graph. 

Many statistical tools are used at this point in order to draw out useful information 

from the data that is presented. Given the large amount of data, which is at least one 

intensity reading per cDNA spot, specific computer programs are required in order to 

perform the statistical operations: 

5) Statistical manipulation of the data. 

After the statistical analyses are performed, a researcher may wish to construct 

interactomes. This is done by clustering the genes that appear to have similar gene 

expression profiles, and then creating interactomes based on those clusters. Once again, 

given the complexity of results as seen in figures 6.7, 6.8 and 6.9, programs are required 

in order to cluster the genes that share these complex gene expression profiles, and then 

construct interactomes like the one seen in figure 6.10. Therefore, these last two 

computer manipulations are required: 

6) Clustering of genes that share expression profiles 

7) Creating of interactomes based on the clustering. 

Lastly, as in the BLAST case, the scientist would analyze the results to determine which 

conclusions can be drawn, or whether further operations needs to be performed. 

     8) Analysis of the results 
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The knowledge and operations performed by the human scientist appear very minimal. It 

seems that the scientists’ only task is to decide, once they have a particular problem, 

which specimens they need to compare, and the final analysis of the results. To give a 

better sense of which jobs are performed by whom, the steps that are performed using 

computer databases and programs are listed below, as well as the jobs performed by the 

human scientist  (Table 6.2). 

Table 6.2. Steps in microarray tests by a human scientist (column 3) and those that are 

performed using computer databases and programs (columns 1 and 2). 

Computer Databases Used Programs Used Human operations 
Genetic databases of 
particular organisms. 

cDNA spotting on 
microarray.  

Choice of specimens to 
compare. 

cDNA locations on the 
microarray. 

MRNA washing over 
cDNA spots. 

Monitoring of each 
computational step. 

 Robotic ‘eye’ measures the 
intensity of radioactive 
signal from each spot. 

Analysis of the results. 

 Radioactive intensity 
plotted onto a graph. 

 

 Statistical manipulation of 
data. 

 

 Clustering of genes that 
share expression profiles. 

 

 Creation of interactomes 
based on the clustering. 

 

 

 This analysis shows that results from microarrays are not possible without the 

help of computer databases, programs and robotic mechanisms. What is even more 

significant is that the results are not always easily understandable by human researchers. 

For example, the mechanism generated in the antigen example is relatively complex. 

Other mechanisms have been generated that are even more complex, and they are stored 
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in computer databases themselves in order to be manipulated in further experiments. 

Examples of this will be shown later in the section on bioinformatics and interactomes. 

 

 

6.8 Analogical Reasoning in Microarray Studies. Like the examples seen with BLAST 

and phylogenetic trees, analogical reasoning occurs in some instances of microarray 

studies but not all. In all microarray studies, including those that study gene expression, 

classify cancers or discover new diseases, comparisons are made, but not the kind found 

in analogical reasoning. Analogical reasoning is found in one kind of study that I have 

presented above, namely the annotation of a new virus by comparing it to known viruses. 

We will look at both types of studies. 

 In the case of finding differences in gene expression in cells, often two cell lines 

are compared. For example, the expression of cells in the human brain can be compared 

to the cells in the human liver in order to discover what genes are characteristic to brain 

cells when compared to liver cells. The experiment, in this case, would begin with a 

microarray with genes from the human genome plated, and then the mRNA products 

from liver and brain cells, which are radioactively labeled with differently coloured dyes, 

are washed over the microarray surface. The amount of bound mRNA to the cDNA gives 

measures as to the expression of particular genes in each cell line, thus giving an 

indication of how human brain cells are different from human liver cells. 

 This case, as well as others like it, is unlike the other cases of analogical 

reasoning we have discussed for the following reason: the needed information about gene 

expression from the two lines that are being compared is information on how the two 
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lines are unlike each other rather than how they are similar. In the analogical exemplars 

that we have seen so far, the comparisons are being made in order to find the similarities 

between the compared phenomena. For example, sound waves are hypothesized to be 

similar to water waves and the analogy being made between the two of them is for the 

purposes of finding the similarities that they share. In the case of human brain and liver 

cells the comparison is being made to see how they are different. 

 In this case there is still a comparison being made. However, in order to show 

exactly why it is not an analogy, I will attempt to make this case fit into the multi-

constraint schema. Therefore, despite the differences presented above, it may be fruitful 

to compare the two cases of this example (human brain and liver cells) in Shelley’s 

(2003) multi-constraint theory schema to see what aspects of analogies are still present in 

this case, and which are missing (Table 6.3).  

 

Table 6.3. Multi-constraint table comparing gene expression on a microarray 

Human brain cells Human liver cells 
Human genome Human genome 
Labeled mRNAb Labeled mRNAl 
Microarray spots Microarray spots 
Spot reader Spot reader 
Expressb (genome, mRNAb) Expressl (genome, liver mRNAl) 
Washb (mRNAb, microarray 
spots) 

Washl (mRNAl, microarray spots) 

Readingsb (reader, spots) Readingsl (reader, spots) 
Enableb0 (expressb, washb) Enablel0 (expressl, washl) 
Enableb1 (washb, readingsb) Enablel1 (washl, readingsl) 

 

The table above shows the only similarities between the two cells under comparison. The 

important part of the comparison, however, is not included, which is comparing the 
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expression readings from the brain cells to the expression readings from the liver cells. 

With this important step lacking, it is safe to conclude that the comparison is not 

analogical.   

 One class of microarray comparisons is analogical, however. The SARS case does 

not measure difference in gene expression among cell lines, but instead tries to find 

genomes that are the most similar. As a reminder, a number of viral genomes were plated 

on a microarray, and bits of the SARS genome were washed over the microarray in order 

to find which previously known virus it most closely resembled. Thus, since similarity 

among genomes is sought, it is likely that the SARS case is an instance of analogical 

reasoning. The case is put into Table 6.4 below to see if it fits Shelley’s multi-constraint 

schema. 

 

Table 6.4. Multi-constraint table comparing an unknown viral genome to known viral 

genomes. 

Unknown Viral Genome Known Viral Genomes 
Viral genomeu Viral genomek 
Labeled oligonucleotidesu Labeled oligonucleotidesk 
Microarray spots Microarray spots 
Spot reader Spot reader 
Portionu (genomeu, oligonucleotidesu) Portionk (genomek, oligonucleotidesk) 
Washu (oligonucleotidesu, spots) Washk (oligonucleotidesk, spots) 
Readingsu (reader, spots) Readingsk (reader, spots) 
Enableu0 (portionu, washu) Enablek0 (portionk, washk) 
Enableu1 (washu, readingsu) Enablek1 (washk, readingsk) 
 

 All of the important steps of the viral comparison are presented in the table above. 

The recorded readings from the unknown viral genome are the same as the readings from 
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the known viral genome, thus making the two genomes analogous. Thus, microarrays do 

employ analogical reasoning in some cases. 

 It is interesting that, in addition to the analogical reasoning that is performed 

using microarrays, there are analogical studies performed on interactomes, which are the 

end results of microarray studies. Huang et. al (2004) created a database called POINT 

(Prediction of Interactome Database, accessible at http://point.nchc.org.tw:3333/) that 

allows scientists to enter protein sequences and the program returns interactomes that 

similar proteins take part in. This is therefore another example into how analogical 

reasoning penetrates almost every aspect of bioinformatics study.  

 It is also apparent in the analogical reasoning performed using microarrays that 

this reasoning required extended cognition through computer use. The inferences that are 

made, such as the possible effect of a drug on a virus based on the effect of that drug on a 

similar virus, are possible only through the use of computers. The computer applications 

and programs detect and statistically determine the similarities between the entities under 

study, and if there is a statistical similarity, then a researcher can decide to make the 

analogical inferences. As seen with BLAST and the creation of phylogenetic trees, 

bioinformatics research has a unique methodology whereby extended cognition and 

analogical reasoning are combined. 

 

6.9 Microarrays and Mechanisms. One of the most interesting observations about 

microarray studies is the final result produced. As we saw earlier, the final result of many 

microarray studies is not only measuring differences in gene expression, but also to create 

hypothetical interactomes based on the cluster profiles generated from the measurements 

http://point.nchc.org.tw:3333/
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of gene expression. Microarrays are becoming very popular due to their ability to quickly 

and reliably generate these interactomes. This fact is important since interactomes are 

classic examples of representations of mechanisms. To review, mechanisms have entities 

and activities that produce regular changes form start up to termination or from within a 

feedback loop. We saw one example of an interactome with the study on T-cells, and the 

mechanism is shown in figure 6.10. Many other examples abound, such as the one seen 

below in figure 6.14, from Li et. al. (2004). This latter figure also shows that the 

complexity of these interactomes requires extended cognition with computers in order to 

store and process them. 

 

Figure 6.14. The C. elegans interactomes. This interactomes has about 4000 interactions 

between genes, proteins, and other biological molecules (from Li et. al., 2004). 
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This interactome shows the processes that are working within C. elegans cells. 

Knowledge of these mechanisms can serve many different functions. First, according to 

the definition presented in Chapter 2, these representations of mechanisms show the 

entities and activities that occur within the cell. If a scientist were to ask, on a cellular 

level, what differentiated a stem cell from a fully formed pancreas cell, then the 

mechanisms at work within the cells would be compared. Second, these mechanisms can 

help medically in determining what is occurring at a molecular level in medical situations 

such as the infection.  

 It may strike one after seeing an interactome such as the one in figure 6.14 that 

any analysis of these would be next to impossible. This is a criticism of high-throuput 

sciences in general, which is that these sciences produce volumes of data that are not 

analyzable. Although I am sure that this is true in many cases, I doubt that it will be a 

crippling problem. Just as our ability to generate and gather data increases, our ability to 

analyze such data will also increase. Many in the 16th century had been intimidated by the 

amount and accuracy of Tycho Brahe’s astronomical readings, similar to how many are 

now intimidated by the volume and accuracy of data being produced in bioinformatics 

research. However, Brahe’s readings were used to accurately describe the motions of the 

heavens, and bioinformatics research will soon accurately describe the workings of life. 

 A unique aspect of the use of these representations in bioinformatics is that they 

are readily created by various computer programs. Programs have been developed that 

can easily create these representations of mechanisms after inputting the analyzed data. 

This combination of computer use and representations of mechanisms may be a unique 
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aspect of bioinformatics research. There are clear advantages to this combination, as we 

will see in the next section. 

 

6.10 Epistemic Appraisal of Microarrays. The biological and medical advantages of 

using microarrays are apparent when one uses Goldman (1992) and Thagard’s (1997) 

appraisal standards for epistemic practices: 

Reliability: Experiments using microarrays are often beset with numerous 

problems due to the fact that a large portion of these experiments includes spotting on 

microarrays, which, by definition, is a ‘wet-lab’ procedure. These problems range from 

using impure cDNA, unequal spotting of the cDNA, incomplete absorption of the dyes by 

the cDNA, and irregularities in fluorescent detection. However, most research using 

microarrays does take into account these possible problems, and researchers are often 

confident that they can be overcome using particular statistical techniques. However, the 

‘dry-lab’ steps in microarray research are as reliable as the other bioinformatics tools we 

have seen so far. Microarrays employ algorithms that perform statistical operations and 

create complex interactomes, and these programs are reliable scientific tools for 

generating scientific results.  

Power: I have demonstrated the popularity of microarrays in a number of different 

studies. Not only are they used to increase biological knowledge into the inner molecular-

biological workings of a cell, but they also has been found to have important medical 

uses, such as classifying cancers and quickly classifying and potentially finding cures for 

newly discovered diseases. Due to the popularity of microarrays in the biological and 
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medical discipline, it is safe to conclude that biologists and medical researchers trust 

these programs to generate reliable results to many of the questions that interest them. 

Fecundity: As presented in figures 6.4, 6.5, 6.7, 6.8, 6.13, and 6.14, there is a 

plethora of results returned in the use of microarrays in bioinformatics for many 

researchers. Figures 6.4 and 6.5 are the graphs that compare the expression levels of the 

cell lines compared in the microarray. Figure 6.7 is an array of comparative expressions 

levels, while figure 6.8 is the cluster analysis of these levels. Figure 6.13 is a compilation 

of all these figures. Lastly, figure 6.14 is an interactome that is created using the results 

from numerous interactome studies. As one can see, there is an abundance of results 

generated, which can only be analyzed using specifically designed algorithms. Just as 

with BLAST, there is often too much information produced, and the results from just one 

microarray can generate a large amount of results. 

Speed: Setting up and analyzing the results from a microarray study can be a very 

daunting task, at least when compared to studies using BLAST or software that create 

phylogenetic trees. A researcher needs to order the microarrays, have the proper cDNA 

spotted, ‘wash’ the microarray with the dyes, and finally analyze the fluorescent spots. 

These steps can take many days to weeks to perform. However, microarrays are still 

much faster than preceding methods in comparing expression levels among cells lines, in 

creating complex interactomes, and in identifying cancers and viruses. If we take virus 

identification as an example, previous methods would need to sequence the genome, 

input that sequence into a genome, and then compare that sequence to other known 

genomes. This process, as mentioned before, takes weeks as opposed to the microarray 

process, which only takes a few days.  
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Efficiency: One of the largest hindrances in microarray studies is that the cost of 

each microarray can be anywhere between $350 and $700. Thus, an experiment involving 

the number of microarrays seen in figure 6.3 can cost up to $35,000. This figure does not 

include the instruments that are needed to spot the microarrays with the specific 

sequences, analyze the radioactive intensities, and so on. Thus, analyses using 

microarrays are expensive. I have not made a comparison of the cost of microarrays to 

the cost of other methods, so I cannot comment on whether this method is more cost-

effective. However, the increased reliability, power and fecundity of the results that are 

produced using microarrays may easily outweigh the costs.  

Explanatory Efficacy: Using microarrays, especially in the creation of complex 

interactomes, greatly helps in increasing the explanatory efficacy and explanatory 

coherence of molecular biological studies. By creating interactomes that describe 

molecular interactions, microarrays help researchers in explaining the molecular 

workings of organisms. Microarrays are used to create interactomes, interactomes are 

representations of mechanisms, and most explanations in biology involve describing the 

entities and activities within mechanisms. Also, since microarrays are able to study entire 

genomes, researchers are potentially able to explain all the molecular interactions that 

exist within particular organisms, which lead to explanatory coherence. 

  

6.11 Summary. Microarrays, and the programs that analyze their results, are powerful 

bioinformatics tools that are able to efficiently compare the expression of genes among 

different cell lines, as well as perform specific operations, such as accurately classifying 

different types of cancers and identifying novel viruses. In this chapter, I described the 
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scientific methods that are relevant in research that utilizes microarrays. First, microarray 

analysis can be seen as an example of extended cognition through computer use because 

the size of the microarrays that are made, the different expression levels that are 

generated by the spots on the microarray, the analysis of those spots, the creation of 

interactomes, and many other specific operations. Second, the use of microarrays can be 

seen as an example of analogical reasoning, as in the discovery of new viruses by 

comparing their sequences to the sequences of viral species that are already known. 

Third, the interactomes that are created from microarray analyses are examples of 

representations of mechanisms. Fourth, research with microarrays combines the methods 

of computer use and analogical reasoning with the creation of representations of 

mechanisms. Lastly, the use of microarrays meets all the standards stated by Goldman 

(1992) and Thagard (1997) for the appraisal of epistemic practices. 
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Chapter 7 

Conclusion 

7.1 Introduction. This thesis has discussed various scientific methods that are relevant to 

bioinformatics research. These methods include extended cognition, analogical 

reasoning, and the creation of representations of mechanisms for scientific explanation, 

as well as various combinations of these methods. By analyzing specific tools in 

bioinformatics research, such as the use of BLAST, phylogenetic tree creation, and the 

use of microarrays, I have tried to show this relevance. Lastly, I have performed an 

epistemic appraisal of these bioinformatics tools using Goldman (1992) and Thagard’s 

(1997) standards. I will summarize each of these points below.  

 

7.2 Extended Cognition and Bioinformatics. Chapters 4, 5 and 6 demonstrated how 

extended cognition occurs when scientists use bioinformatics tools like BLAST, 

microarrays and phylogenetic analysis software. In each of these cases, the main role of 

scientists themselves is to decide what kind of analysis is to be performed and a final 

analysis of the results. For example, while using BLAST, the scientist decides which 

sequences to compare, and while using microarrays, which cell lines to compare. Once 

these decisions are made, then the requisite information is extracted from various 

computer databases and specific computer algorithms perform the requisite operations. 

Thus, any hypotheses generated using these procedures are examples of extended 

cognition.  
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One should not conclude that this means that the role of the scientist has been 

marginalized, however. Analysis of results, which is the final step in all the 

bioinformatics research presented in this thesis, is a major step in all scientific research. 

Although software has been developed to analyze data, some human analysis is still 

necessary. Also, there is certainly a major component required in all of scientific 

research, which is creativity. The development of tools such as BLAST and microarrays, 

and using these tools in novel ways, such as using microarrays for viral discovery, is a 

creative human process. There are still many operations performed by humans that are 

not even close to being mimicked or replaced by computer software. 

One fear that arises from any overuse of extended cognition is that researchers 

will no longer understand the operations being accomplished by their research partners or 

by the computer software. There are two responses to this fear. The first is that this gap in 

understanding is not necessarily new in science. For example, many biologists use 

electron microscopes without having an understanding of how the wavelengths of 

electrons contribute to observing smaller particles. Social scientists use statistical 

software or employ statisticians to analyze their data without understanding the details of 

normal bell curves, ANOVA, regressions, or any of the other statistical concepts and 

tools being employed. The second response is that if one wanted to gain the 

understanding they are lacking, they can simply ask. If the biologists wished to know the 

workings of an electron microscope, they can ask an engineer or physicist familiar with 

the technology. If a biologist wished to learn how BLAST worked, they can ask a 

computer scientist who specializes in bioinformatics.  
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7.3 Analogical Reasoning and Bioinformatics. Bioinformatics research is very 

dependent upon analogical reasoning, since bioinformatics specializes in comparing 

biological data to one another, and the properties or actions of one set of data are shown 

to be similar to the properties or actions of the other set. In BLAST, query sequences are 

compared to a database of sequences. BLAST returns target sequences that are most 

similar to the query sequence and the former sequences are hypothesized to have similar 

properties to the latter sequences. With microarrays, viral sequences are compared to one 

another and the ones that are most closely matched on the microarrays are hypothesized 

to share the most properties. In the creation of phylogenetic trees, larger sequences, 

possibly even genomes are compared. The more closely related these sequences are to 

each other, the more likely the species are closely related to one another. Using Gentner 

(1983) and Shelley’s (2002) structure-mapping method for mapping analogies, I have 

shown how each of these comparisons is an example of an analogy.  

What is interesting about bioinformatics research, however, is that this analogical 

reasoning is performed with the help of computer use. This use is somewhat unique in 

bioinformatics, but there are other modern scientific fields that are also employing this 

combination. For example, climate scientists can create simulations of weather systems 

with the intention that these simulations are analogical to actual weather systems. The 

increased use of computers in scientific fields may allow for these types of analogical 

reasoning to become more prevalent, and thus further supporting the scientific merit of 

this type of reasoning. 
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7.4 Representations of Mechanisms and Bioinformatics. Although the use of BLAST 

and the creation of phylogenetic trees do not directly produce examples of representations 

of mechanisms, the use of microarrays does produce such examples. By comparing the 

expression levels of cell lines, researchers can get an idea of which molecules interact 

with one another. This interaction allows researchers, or more precisely, specifically 

designed software, to create complex representations of mechanisms. These 

representations, which are often called ‘interactomes’, help biological researchers 

understand the molecular underpinnings of organisms, and help medical researchers 

create better treatments for particular diseases.  

Since these representations are created using specifically designed programs, 

bioinformatics research may be unique in combining the methodologies of computer use 

and the creation of representations of mechanisms. However, just as with the combination 

of computer use and analogical reasoning, this new combination may also be used in 

other scientific fields. Fields such as ecology, climatology, and even physics may be able 

to use computers to generate complex representations of mechanisms after collecting and 

compiling various data. 

  

7.5 Epistemic Appraisal of Bioinformatics. Using Goldman (1992) and Thagard’s 

(1997) standards of epistemic appraisal, I have shown how each of the cases presented in 

the previous three chapters fit these standards. With each of these cases fitting the 

standards, one can potentially give an epistemic appraisal of the whole field of 

bioinformatics. However, because the tools presented in chapters 4, 5 and 6 are seen as 
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the major tools employed in bioinformatics research, thus one can safely conclude that 

bioinformatics as a field meets these epistemic standards. 

 

7.6 Future Prospects. As a field, bioinformatics is quickly growing, with many new 

developments that continue to astound the scientific community. If this thesis had been 

written ten years ago, then the topic of representations of mechanisms would probably 

not have been presented to be relevant to bioinformatics, since microarray research was 

still in its infancy. 

Bioinformatics continues to grow with more databases, more precise algorithms, 

and algorithms that are designed to find different types of information. For example, 

Magdaleno et. al. (2006) created the Development of the Brain Gene Expression Map 

which gives precise information on the gene expression of the human brain. Mayer et. al. 

(2005) developed an algorithm that is able to find differences between sequences in their 

conserved domains (recall DNA domains from section 3.6). Oldham et. al. (2006) have 

used microarrays to find the differences in gene expression between humans and 

chimpanzees, helping to further characterizes the differences between our two species. 

More radical developments include Mastrobattista et. al’s (2005) Water-oil-water 

(WOW) test, which is able to identify proteins within a matter of days rather than 

months. Haque et. al.’s (in review) ‘biochips’ are able to generate 60 times more data 

than current technological methods by reading ions across a cell’s membranes, where the 

cells are placed in tiny pockets inside specially designed microchips. Meanwhile, the 

number of sequenced genes, proteins, and genomes continues to grow at an exponential 
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rate. I hope that this thesis provides a basic philosophical understanding of the field of 

bioinformatics. 
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