
The Sigma-Delta Modulator as a

Chaotic Nonlinear Dynamical System

by

Donald O. Campbell

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Applied Mathematics

Waterloo, Ontario, Canada, 2007

c©Donald O. Campbell 2007



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Donald Campbell

ii



Abstract

The Σ-∆ modulator is a popular signal amplitude quantization error (or noise) shaper

used in oversampling analogue-to-digital and digital-to-analogue converter systems. This

shaping of the noise frequency spectrum is performed by feeding back the quantization

errors through a time delay element filter and feedback loop in the circuit, and by the

addition of a possible stochastic dither signal at the quantizer. The aim in audio systems is

to limit audible noise and distortions in the reconverted analogue signal. The formulation

of the Σ-∆ modulator as a discrete dynamical system provides a useful framework for

the mathematical analysis of such a complex nonlinear system, as well as a unifying basis

from which to consider other systems, from pseudorandom number generators to stochastic

resonance processes, that yield equivalent formulations.

The study of chaos and other complementary aspects of internal dynamical behaviour

in previous research has left important issues unresolved. Advancement of this study is

naturally facilitated by the dynamical systems approach. In this thesis, the general order

feedback/feedforward Σ-∆ modulator with multi-bit quantizer (no overload) and general

input, is modelled and studied mathematically as a dynamical system. This study employs

pertinent topological methods and relationships, which follow centrally from the symmetry

of the circle map interpretation of the error state space dynamics. The main approach

taken is to reduce the nonlinear system into local or special case linear systems. Systems of

sufficient structure are shown to often possess structured random, or random-like behaviour.

An adaptation of Devaney’s definition of chaos is applied to the model, and an extensive

investigation of the conditions under which the associated chaos conditions hold or do not

hold is carried out. This seeks, in part, to address the unresolved research issues. Chaos

is shown to hold if all zeros of the noise transfer function lie outside the circle of radius

two, provided the input is either periodic or persistently random (mod ∆). When the filter
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satisfies a certain continuity condition, the conditions for chaos are extended, and more

clear cut classifications emerge. Other specific chaos classification cases are established. A

study of the statistical properties of the error in dithered quantizers and Σ-∆ modulators

is pursued using the same state space model. A general treatment of the steady state error

probability distribution is introduced, and results for predicting uniform steady state errors

under various conditions are found. The uniformity results are applied to RPDF dithered

systems to give conditions for a steady state error variance of ∆2/6. Numerical simulations

support predictions of the analysis for the first-order case with constant input. An analysis

of conditions on the model to obtain bounded internal stability or instability is conducted.

The overall investigation of this thesis provides a theoretical approach upon which to orient

future work, and initial steps of specific inquiry that can be advanced more extensively in

the future.
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Chapter 1

Introduction

1.1 Overview

The transmission, storage and reproduction of audio and visual information form the central

components of any communications process in which human beings, responding through

hearing and sight, are the end receivers. Technological, as well as physical and biological

stages of this process are fundamental in many aspects of modern life. Simple examples of

this include listening to music or speech from a radio or recording, and looking at printed

photographs or visual images on a screen. In the most basic form, audio information is

defined in one dimension over the time domain, while visual information is defined in up

to four dimensions over a possible combination of the space and time domains for moving

images. This information exists naturally in analogue form. By this we mean that it is

quantified in amplitude over some continuous range of values, and that this value varies

continuously over the respective domain defined as a continuum. The logic, operations

and storage mode of a computer, however, are of a discrete nature. With the development

and application of computer technology over the last half of the twentieth century, it has
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CHAPTER 1. INTRODUCTION 2

thereby become more efficient and at least equally effective to represent this information

in digital or discrete form for transmission and storage. A common audio system example

of storage and reproduction is the compact disc and player. To summarize the process

involved, analogue information is converted to a digital approximation, the information is

transmitted or stored in this form, and it is then converted back to an analogue form in

reproduction.

The conversion to digital form intrinsically involves two separate discretizations. First,

the continuous domain (over time or space) must be discretized by a sampling of the

information “signal” at specific points usually separated by equal intervals on a grid over

the domain (“uniform sampling”). Second, the amplitude of the sampled information signal

must be discretized or approximated by the point nearest to its value from a sequence

of points or “levels” separated by equal intervals or “steps” over some range. This is

called quantization. Quantization of the amplitude and sampling in this fashion are in

fact the central discretization or “modulation” processes in all digital converters. The

resulting digital information may then be stored on a computer disc type of assembly,

where each signal sample with quantized value on one of 2n levels is stored in a binary

word of length n bits, n ≥ 1. The two operations of sampling and quantization are usually

performed together in a single device called an analogue-to-digital converter (ADC). For the

analogue reconstruction of the transmitted or stored information signal that is required for

reproduction, the following properties hold. If the frequency components of the signal are

all smaller than a certain finite value, that is if the signal is band limited, then, in theory, the

signal may be perfectly reconstructed from its samples, provided the sampling frequency

is greater than twice that of the largest frequency component. This result comes from

the Sampling Theorem, and justifies the modulation approach used for digital modulators.

With sampling at a sufficiently high rate, it follows that the errors in the reconstructed
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analogue signal will arise entirely from the amplitude quantization process. This latter

process is in fact a lossy one. Sampling at a higher rate than required by the sampling

theorem is called oversampling. The objective in analogue to digital modulator design is

then to limit the distortion or errors introduced by amplitude quantization. The device

which performs the conversion back to the analogue domain is called a digital-to-analogue

converter (DAC).

The Σ-∆ modulator is a widely used and efficient type of oversampling quantizer that

changes the frequency spectrum of quantization error or “noise”, but leaves the input

signal unchanged in its defined form within the modulator. This process of error or noise

“shaping” is accomplished by feeding the quantization errors into a filter, and then feeding

the “shaped” error from the filter output into a feedback loop within the modulator circuit.

For audio systems, the shaped error is formed from the errors of time samples of the

quantized error that are nearby in time, while for image systems, it is formed from the

errors from neighbouring pixels of the quantized image in space. The use of oversampling

allows the error noise to be shifted to higher frequencies, where it is less perceptible to

human hearing or sight. In this thesis, we focus our attention on the Σ-∆ modulator where

the application and corresponding model are concerned with audio systems. A different

application of such a Σ-∆ modulator model is the pseudorandom number generator, as will

be shown.

The Σ-∆ modulator is physically the signal amplitude quantizer and quantization error

shaper component of the analogue-to-digital converter system. The Σ-∆ modulator input

is the discrete time (for audio signals) samples of the signal amplitude. The output is

the quantized or approximated forms of these sample amplitudes, to be transmitted or

stored, and subsequently converted back to analogue form. The mathematical description

and analysis of the Σ-∆ system may be carried out in either the real time state space
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domain, or the frequency space domain. The frequency domain is best suited for the general

model formulation, and for analysis of the system with the goal of improving design and

performance. The use of frequency domain methods has thus been most prevalent in the

development of Σ-∆ modulator related theory and work, and is the standard approach used

by most electrical engineers who have contributed to this. The state space domain provides

some advantages for the analysis of system dynamics and behaviour, and is best suited for

the application of a dynamical systems approach.

A dynamical system is any physical system which can be described by a set of numbers

or “state variables”, which change with time according to deterministic law that may or

may not be known to man [32]. The associated abstract definition normally involves a set

of differential (continuous systems) or difference (discrete systems) equations described as

mappings over a state space. The theory of dynamical systems is useful in understanding

the behaviour of complicated nonlinear systems from a global or long term point of view

[62]. For Σ-∆ modulators, such a description is particularly useful in giving an overview of

equivalent systems which may have different implementations, and in providing the math-

ematical domain within which to specify a desired form prior to application [53]. Although

the Σ-∆ modulator is mathematically a complicated nonlinear system, the dynamical sys-

tems approach is not widely used in electrical engineering, and has seen only limited use

in the analysis of Σ-∆ modulator systems. As we shall see, analogue-to-digital converters,

pseudorandom number generators, and even discrete modelling of some stochastic resonance

processes, via their common Σ-∆ modulator topology, are all really discrete dynamical sys-

tems in disguise. The motivation and approach of the work of this thesis will be to use a

dynamical systems formulation of the common Σ-∆ modulator model that underlies these

examples, to pursue a study of the dynamical behaviour in a unifying fashion.

In this thesis, we study the Σ-∆ modulator where the amplitude quantizer Q is multi-
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bit, and has an arbitrary number of levels or bits to accommodate its input. Such a general

model retains applicability to practical, finite-bit systems. Bounded internal stability is

always necessary practically, and will be examined briefly. This will form a prelude for the

analysis approach of later topics.

One property of a dynamical system is that it may be formally characterized as chaotic

or nonchaotic. A chaotic system may be thought of as a deterministic or nonrandom

system that exhibits many of the important qualities of a stochastic or random system in

its behaviour. Such characterizations, with suitable and precise mathematical definitions,

thereby provide broad insights into the general dynamical behaviour of the system, and a

delineation as to what type of specific behaviour to expect. In this thesis, we shall study

the dynamical behaviour of the Σ-∆ modulator from the point of view of chaos, and seek

to classify conditions under which chaos or nonchaos exists.

It is often desirable, in seeking to improve the performance of a Σ-∆ modulator, to add

a deliberate, random noise or “dither signal” to some point in the modulator circuit. While

the overall power of the quantizer errors or output noise will generally increase, other

statistical properties of the noise, such as the degree of correlation with or dependence

upon the input, or its own past, may be controlled by dither to improve the quality of

the audio signal when the quantized output is converted back to analogue form. Partial

dithering, as well as filter adjustment to bring about some properties of chaos, are ways of

helping to prevent the occurrence of limit cycles in the system output. This is important

because such limit cycles are synonymous with idle tones in the reconverted audio signal,

which are particularly noticeable distortions to the human ear. This relationship exists

because a limit cycle will contribute a prominent set of spurious frequency components to

the audio signal. In this thesis, the chaos studies, and more broadly the dynamical systems

approach, will then be extended to analyze the dithered Σ-∆ modulator system. Statistical
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properties of the error dynamics will be investigated for the dithered case. In addition, a

more theoretical analysis of stochastically described error dynamics will be carried out.

This will serve as a conceptual bridge between the topics of deterministic chaos, and error

statistics control.

The methods of analysis undertaken are naturally facilitated by the dynamical systems

formulation. The circle map will be adopted as a convenient description of the quantizer

error state space nature. The symmetry this provides will further support the use of

topological relationships and techniques in formulating, proving and explaining results.

The nonlinearity of the Σ-∆ modulator system, which is brought about by the quantization

function, will be dealt with in the analysis by breaking the problem into linear subproblems,

and by considering a certain class of systems to which linearity can easily be applied. In

this approach, it will be seen that establishing continuity of the state space behaviour

over initial conditions is sufficient to establish linearity. Stochastic or stochastic-like (i.e.

chaotic) issues of the dynamical behaviour form a underlining theme that the theoretical

approach in this thesis emphasizes. It will be seen, in general, that when there is some

regularity, or structure, in the input or filter form of the Σ-∆ modulator, that theorems

and results will arise to characterize a structured behaviour.

In the sections of this chapter to follow, the relevant research background and litera-

ture for this thesis will be presented in detail in the areas of signal processing, chaos in

general for the Σ-∆ modulator, modelling and analysis of the Σ-∆ modulator for chaos,

and the dithered quantizer and Σ-∆ modulator. The relevant mathematical background

and methods for these areas will be presented in the respective sections as well. Further

research motivations will be mentioned for chaos with the Σ-∆ modulator, and for the

dithered quantizer and Σ-∆ modulator. The topology and basic mathematical descrip-

tion of the Σ-∆ modulator will be presented. The pseudorandom number generator, and
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stochastic resonance will also be presented as examples of other practical or physical sys-

tems that function as Σ-∆ modulator-like dynamical systems. Finally, a brief overview of

the structure of the body of the thesis will be given.

For the rest of the thesis, it will be assumed that the reader has sufficient mathematical

background to either be aware of what a dynamical system is mathematically, or to be able

to infer the essentials of its abstract definition and implications from the presentation of

its application to the Σ-∆ modulator in this thesis. Therefore a rigorous definition of a

dynamical system, along with its important attributes and properties will not be presented.

1.2 Signal Processing

In this section, we review some of the background and important developments in signal

processing as this relates to the Σ-∆ modulator.

We begin with the Sampling Theorem, as introduced by Whittaker [66] and popularized

by Nyquist and Shannon [60]. The definition of the Fourier transform is also given.

Fourier Transform Let x(t) be a complex valued, Lebesgue integrable function. Then the

Fourier transform X(f) of x(t) is defined to be

X(f) =

∫ +∞

−∞
x(t)e−2πiftdt, f ∈ R.

The Sampling Theorem Let s(t) be an analogue signal in the time domain. Suppose

the Fourier transform S(f) of s(t) exists and is square Lebesgue integrable. If S(f) = 0

for |f | ≥ fs/2, where fs is the sampling frequency, then s(t) is recoverable from its time

samples s(k/fs), k = . . . , −2, −1, 0, 1, 2, . . . , according to

s(t) =
+∞∑

k=−∞

s(
k

fs

) · sin(πfs(t − k/fs))

πfs(t − k/fs)
.
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Note that the signal s(t) is band limited, residing entirely in the base-band −fs/2 < f <

fs/2. fs/2 is called the Nyquist frequency. This theorem justifies the sampling process used

for digital conversion and analogue reconstruction. The process of oversampling exceeds

the conditions of this theorem and mathematically yields the spectrum space that permits

noise shaping.

Oversampling techniques for converting signals between analogue and digital formats

have become popular in recent years since they avoid many difficulties encountered in

conventional methods for analogue/digital and digital/analogue conversion. Oversampling

converters can use simple, relatively high tolerance analogue components to achieve high

resolution, but they require fast and complex signal processing stages. They operate by

converting (through modulation) the analogue signal into a simple code (typically 1-bit

words) at a frequency many times the Nyquist rate (twice the signal bandwidth). Digital

filters are then used to process the modulator output and reduce noise and high frequency

components of the signal which could alias into the signal band when the code is resampled

at the slower (Nyquist) rate. Oversampling is suitable for low-frequency signals and it takes

advantage of VLSI (very large scale integration) technology which is best suited to provide

faster digital but less precise analogue circuits. Oversampling is used in applications such

as digital audio, digital video, digital telephony and instrumentation. Further applications

in video and radar systems are imminent as faster technologies become available.

Work on oversampling originally turned to the Σ-∆ modulator from other types because

its circuits are more robust. The Σ-∆ modulator shapes the noise spectrum by using the

properties of oversampling to move the noise power to high frequencies, well outside the

base-band signal, where it is removed by digital and/or analogue filtering. The important

attraction of the Σ-∆ approach is the large amount of base-band noise reduction which

may be obtained by this process with relatively few bits in the code. Other motivations for
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Σ-∆ converter use are that it can be cheaper to use, and the potential for making it much

better in the 3 to 5-bit case.

In 1960, Cutler [6] introduced the idea of a deterministically “dithered” system, where

the filtered quantizer noise itself is used as a dither signal which is added to the input signal

before quantization1. This intuitively may be thought of as approximating the adding of

an independent identically distributed random process (white signal-independent process)

to the signal before quantization. The system, in first order, may be described by the

following nonlinear difference equation:

wn = xn − εn−1 = wn−1 + xn − Q(wn−1), n = 1, 2, . . . ,

where xn is the original system input, wn is the input to the quantizer Q, εn is the quantizer

error, and n represents the nth element of the particular sequence. Candy and others (see

[4] and references contained therein) developed much of the original analysis, the modern

popularity of these systems and the name Σ-∆ reflecting the system viewed as the cascade

of an integrator (Σ) and a differentiator (∆) (although the name ∆-Σ was originally given

by Inose and Yasuda [25], [24] in 1963 in their description of its properties, and remains

most used). In general, quantization errors are called noise if the errors are uncorrelated

from sample to sample and have statistical properties independent of the input signal. The

case of input-independent additive white noise holds when the εn are independent of the

1Cutler patented the noise shaper topology in 1960. He “explained” its performance as being improved

by the action of the recirculated error and acting as a “quasi-dither”, although it is not an independent

additive noise, but deterministically related to the signal.(see Figure 1.2)

Noise shaping (Cutler) can only produce the theoretical power spectral density (PSD) |1−H |2 indepen-

dent of the signal, if the PSD of the error ε is made white and signal independent; and this can be done

only if an independent additive dither ν is used in the circuit.

Oversampling will generally be necessary to restrict the number of levels needed in the quantizer. This

is essential for 1-bit (i.e. 2-level) and other low-bit systems. [34, 35, 65]
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wk, εn is an independent identically distributed sequence, and εn is uniformly distributed

(note that weaker versions of these conditions exist).

We make these statistical properties of a random process precise below:

Definition 1.1 (i.i.d.) Let the set SX = {Xn, n ≥ 0} define a random process. Then

SX is said to be independent and identically distributed (i.i.d.) if the elements of every

finite subset of SX are jointly independent, and each such element has the same marginal

probability distribution.

Definition 1.2 (Whiteness) Suppose that lim
T→∞

1

T

T∑

n=0

E[Xn] = 0, and E[X2
n] exists for

all Xn in the set SX defined above. Then SX is said to be white if the elements of SX are, on

average, pairwise uncorrelated according to the following condition: lim
T→∞

1

T

T∑

n=0

E[XnXn+τ ] =

0, for all τ ∈ Z − {0}. If SX is i.i.d. with the above moment conditions holding, then SX

is white (converse is not always true).

The whiteness property essentially extends to any set SY = {Yn, n ≥ 0} with

lim
T→∞

1

T

T∑

n=0

E[Yn] = K for some K ∈ R, if Yn = Xn + K, n ≥ 0, and SX is white.

The definition of whiteness has the following relevance to signal processing: Suppose

that the signal s(t) is recoverable from its samples s(k/fs), k = 0, 1, 2, . . . , according to

the Sampling Theorem. Then the Fourier transform E(f) of the quantizer error signal

e(t) associated with s(t) will be constant over −fs/2 ≤ f ≤ +fs/2 (fs the sampling fre-

quency) if and only if the process e(k/fs), k = 0, 1, 2, . . . , is white, when interpreted as

a random process. This result may be shown mathematically. If this process is strictly

deterministic, then the whiteness definition may still be applied with E[e(k/fs)] = e(k/fs)

and E[e(k/fs)e((k + τ)/fs)] = e(k/fs)e((k + τ)/fs), k ≥ 0. Having the unshaped noise



CHAPTER 1. INTRODUCTION 11

signal e(t) (associated with the reconstructed output) with all its frequencies equally rep-

resented in its power spectrum (i.e. in an physical sense “white”) is then equivalent to the

corresponding process e(k/fs), k = 0, 1, 2, . . . , being white.

For simple single-loop systems with a 1-bit quantizer, Gray [17] shows that the Σ-

∆ modulator does not yield a white quantization noise process as the “deterministically

dithered” idea might suggest. In this analysis, the overall effect of the feedback loop appears

as an affine operation (adding the previous inputs plus a bias) on the input followed by

a memoryless nonlinearity (taking the fractional part), when one considers the expression

for εn. Further results for the case of a constant irrational DC input (where this input is

normalized with respect to the quantization step size), show that although the first-order

statistical properties of the errors are consistent with those of uniform white noise, the

second-order properties are not (i.e. the locations and amplitudes of the spikes in the

quantizer error spectrum depend strongly on the input signal). Thus the quantizer noise is

neither continuously distributed nor white and this approximation is incorrect.

No simple mathematical solution for the second-order or higher-order Σ-∆ modulator

exists. Evaluation of the statistical properties of the errors to compare with white noise

remains an open problem although some other results have been found by many researchers.

The first-order case in fact is the only completely analyzable case.

In [11], [16] and [28], the case of a constant rational DC input to a single-loop Σ-∆

modulator is analyzed. Friedman [11] obtains noise spectra results for the second-order case

which Iwersen [28] obtains more explicitly and quickly by applying other published results.

Iwersen [28] says these results have limited applicability. Gray [16] obtains statistical

results for noise for the first-order case with DC (i.e. constant) input analogous to the

irrational DC input case above, and shows analogously that for rational DC input, the

noise is not white. Rational inputs are normally of little interest as they occur statistically
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with zero probability, but simulation of analogue/digital conversion on a digital computer

necessarily creates rational input. In this case one must make the input “nearly” irrational

(use a large denominator) to give limit cycles with long periods, which approximates the

irrational generic case.

For the Σ-∆ modulator applications focused on in this thesis, the analogue input signal

s(t) defines an audio pattern as a function of time that may be physically converted directly

back to sound in a speaker. Quantitatively, the numerical value of s(t) is proportional to the

pressure deviation, above or below atmospheric pressure, characterizing sound waves and

measured in a microphone. Audio systems are generally electrical, and in such systems the

pressure variations (of the deviation from atmospheric) are converted to voltage variations

in a circuit, with the physical quantity s(t) representing a voltage. If the voltage s(t)

is constant, for example, it is DC, and the input signal is referred to as being DC. Σ-∆

modulators in audio and other applications are generally electrical systems in this fashion,

and hence their fundamental study in the discipline of electrical engineering.

1.3 Σ-∆ Modulators and Noise Shapers

In this section, the basic form of the Σ-∆ modulator will be introduced and the character-

istics relevant to the work of this thesis described.

The most general Σ-∆ modulator, in frequency domain form, is defined by the topology

given in Figure 1.1(a) below. Here, X is the transform of the input, Y is the transform of

the quantized output, Q is the quantizer, N is the transform of the dither added to the

quantizer input W , and F and G are filter transfer functions acting on the feedback Y .

This topology may be rearranged to give the completely equivalent form shown in Figure

1.1(b) below. This equivalent system, with its transfer function blocks expressed in terms
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of F and G, is called a noise shaper.

The purpose and advantage of using the noise shaper form of the topology of Σ-∆

modulators is that it explicitly expresses the error E of the dithered quantizer in the

diagram. The error is the quantity of prime importance in the general Σ-∆ modulator

in that it is the quantity to be studied and controlled when analyzing and designing the

system in terms of performance. The term “noise shaper” comes from this concept of the

Σ-∆ modulator as a system with a filter designed to shape or control the spectrum of the

noise or errors arising from the quantization. The error is also generally the central state

space quantity when considering the Σ-∆ modulator as a dynamical system, as shall be

seen. In this section, we neglect the dither N , and equivalently set N = 0. The quantizer

Q is shown as a multi-bit quantizer in Figures 1.1(a) and 1.1(b). The 1-bit Σ-∆ modulator

or noise shaper is a special case. In this thesis we shall generally assume Q to be a multi-bit

quantizer.

The transfer equation for the noise shaper is given in Figure 1.1(b). This can be obtained

by applying simple algebra rules at each juncture in Figure 1.1(b), and then simplifying to

get the resulting transfer equation. For this, we have

Y = U + E = (X − R)
G

1 + FG
+ E

= (
G

1 + FG
X − FG

1 + FG
E) + E =

G

1 + FG
X +

1

1 + FG
E,

where U and R are the internal signals at the indicated points. To simplify the noise shaper

form in Figure 1.1(b) for analysis, the upper transfer function block may be pulled behind

the left hand summation junction to then multiply with the X and the lower transfer

function block F . We then relabel
G

1 + FG
X as X, and

FG

1 + FG
as H . This gives an

equivalent form of noise shaper to that of Figure 1.1(b), with the upper block transfer

function set to 1, and the lower block transfer function relabelled as H . In this form, the
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Figure 1.1: Σ-∆ modulator in (a) general form, and (b) noise shaper form
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Figure 1.2: Simplified noise shaper

effective input X we are considering is equal to the actual input fed through the signal

transfer function
G

1 + FG
. For the types of noise shapers that are to be considered in the

work of this thesis, there is no loss of generality if we set G = 1 + FG, so that the effective

X is the original X, and the signal transfer function is 1. The transfer equation now has

the form

Y = X + (1 − H)E.

The transfer function of the noise shaper, the noise transfer function, is thus (1−H). That

is, the error E appears in the output Y modified by the effective noise-shaping filter (1−H)

— hence the designation “noise shaper”. This simplified circuit is shown in Figure 1.2.

Since we are considering the Σ-∆ or noise shaping stage to follow the sampling operation,

the signals in Figures 1.1(a), 1.1(b) and 1.2 are discrete-time signals, and so the signal

quantities and the function H in this equation correspond to the z-transform domain.

They are obtained by taking the z-transform of the corresponding quantities in the time

domain (sequences of input, output and error). The z-transform is the discrete version of
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the Laplace transform, and is defined as follows:

z-Transform Let {xn} be discrete sequence of real or complex numbers. Then the (bilateral)

z-transform X(z) of {xn} is defined to be

X(z) =
+∞∑

n=−∞
xnz−n, z ∈ C,

whenever the {xn} are summable.

Operationally, products in the frequency domain correspond to convolutions of sequences

in the time domain. In a generalization of this, the product of the transfer function (1−H)

with E in the z-transform domain corresponds in the time domain to a convolution of the

error sequence with a sequence of coefficients, representing the impulse response of the

noise shaping filter (1 − H(z)). The impulse response is the sequence obtained from the

transfer function by inverse z-transformation.

Considering the time domain, the filter H of the simplified Σ-∆ modulator of Figure

1.2 has the basic topology given in Figure 1.3. As shown in the diagram, the filter H can

contain both feedforward and feedback elements which generate delay contributions from

the filter input εn and output rn respectively. With this specific filter architecture, the

operation of multiplying the filter function H with the error E is then equivalent in the

time domain to subtracting a convolution of the sequence of feedback quantities rn with a

sequence of feedback “gain” factors bj , from a convolution of the feedforward error sequence

εn with a sequence of feedforward gain factors ai. These gain factors are associated with

H . This relationship established by H , between a sum of a series of time delays (multiplied

by a gain) of the error input and feedback output, is given as follows, where H is defined

by the z-transform of the summable time domain sequences {h1,i}, {h2,j}:

h1,i ∗ εn+i − h2,j ∗ rn+j =

+∞∑

i=−∞
aiεn−i −

+∞∑

j=−∞
bjrn−j = 0, (1.1)
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Figure 1.3: Topology of filter H and noise shaper in time domain



CHAPTER 1. INTRODUCTION 18

with b0 = 1, ai = 0, bj = 0 for i ≤ 0, j < 0, and i > M , j > N , for some M > 0

and N ≥ 0. We also require that ai 6= 0 for some i for the filter to be well defined.

The latter condition ensures at least a 1-sample delay so that the circuit is recursively

computable. The sequences {h1,i}, {h2.j}, i, j ∈ Z, are defined by h1,i = ai, h2,j = bj . This

description means H is an Mth order feedback and Nth order feedforward filter. The series

of coefficients defined by the transfer function in the convolution is determined uniquely

by the choice of the ai and bj in the filter H above. If all the bj except b0 are zero, then

we have a finite impulse response (FIR) noise shaper. Otherwise, the filter will generally

be infinite impulse response (IIR).

In the time domain the quantizer Q acts as a modulo operation with a fixed number of

levels or steps that span the domain of its input, and with the modulo factor ∆ being the

distance between steps. Quantizers in use are typically of either mid-riser or mid-tread form.

The functional form of the mid-riser and mid-tread quantizers are illustrated in Figure 1.4.

The mid-riser form is generally used for Σ-∆ modulator noise shapers, and hence will be

the form that we take for the model studied in this thesis, and present in this section. The

mid-tread form tends to be used for Σ-∆ topologies with numerical applications, such as

the pseudorandom number generator, as will be presented in Section 1.7.

Quantizers are generally designed to represent a certain number of bits of information.

Specifically, an n bit quantizer will have 2n levels and so quantizers will usually be designed

with the number of levels a power of 2. Most typical Σ-∆ modulators in use have between

1 and 5 bits (i.e. 2 to 32 levels). Using the mid-riser form then ensures symmetry in the

output domain, given this even number of levels. This is particularly important when the

Σ-∆ system has a low number of bits, and is essential for the 1-bit case. The mid-tread

form, with its integer roundoffs, is more natural numerically, and is standardly used in

other applications.
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Figure 1.4: Functional form of mid-tread and mid-riser quantizer

In the system of equations (1.2) below we will assume that Q has an arbitrarily large

number of levels (and hence bits) and can thus accommodate an input of arbitrarily large

magnitude. This means that we will not be concerned with questions related to quantizer

overload in this thesis. Such a multi-bit Q may still be used to model a finite bit case,

however, if it is assumed a priori that quantizer overload does not occur. Specifically,

suppose that the number of quantizer bits is b ≥ 1 (2 ≤ b ≤ 5 is most common). The

no overload condition means that the quantizer input must fall within the range of 2b

quantizer levels, that is within the interval [−2b∆, 2b∆), where the 2b levels reside at

−((2b − 1)/2)∆, . . . , −(1/2)∆, (1/2)∆, . . . , ((2b − 1)/2)∆. With this condition, the b-bit

case is just a special case of the general form as considered.

From the topology of Figure 1.3, the form of H and the quantizer, the following
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max(N, M)th-order system of difference equations may then be constructed:

rn =

M∑

i=1

aiεn−i −
N∑

j=1

bjrn−j (1.2)

εn = Q(xn − rn) − (xn − rn),

for n ≥ 0, where the mid-riser quantizer Q is defined by

Q(wn) = ∆⌊wn/∆⌋ + ∆/2, wn ∈ R, −∆/2 < εn ≤ ∆/2, n ≥ 0,

the system input is xn, and the system output is given by

yn = Q(xn − rn) ∈ (Z · ∆ + ∆/2), n ≥ 0.

The M + N initial conditions are: ε−1, ε−2, . . . , ε−M ; r−1, r−2, . . . , r−N . For this system,

we give εi ∈ (−∆

2
,
∆

2
]; rj , xn ∈ R; for all i ≥ −M , j ≥ −N , n ≥ 0; with the ai, bj ∈ R. We

take the dither νn in Figure 1.3 to be zero in this formulation. The first line of system (1.2)

follows directly from (1.1) as well. Such a system forms a basis for defining the Σ-∆

modulator in this form as a discrete dynamical system. This is called a max(N, M)th order

Σ-∆ modulator.

An n-sample time delay operation in the time domain corresponds to multiplication

by z−n in the z-transform domain. Applying the z-transform to the time domain relation-

ship (1.1) given above for the function H (or equivalently the difference equation in (1.2)),

and then rearranging the result to give a ratio of polynomials on one side, we have the

following in the frequency domain:

R(z) =
a1z

−1 + . . . + aMz−M

1 + b1z−1 + . . . + bNz−N
E(z) ≡ H(z)E(z).

The noise transfer function (NTF) may then be defined as follows:

(1 − H) =
1 + (b1 − a1)z

−1 + . . . + (bmax(N,M) − amax(N,M))z
−max(N,M)

1 + b1z−1 + . . . + bNz−N
. (1.3)
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In order to study Σ-∆ modulators as noise shapers, it is important to classify the transfer

function (1 − H) as minimum or nonminimum phase.

Definition 1.3 (Minimum/Nonminimum Phase) A function X(z) in the frequency

domain, having all poles of magnitude less than one (inside the unit circle on the complex

plane), is defined to be

1. strictly minimum phase if all the zeros of X(z) have magnitude less than one;

2. marginally minimum phase if the zero(s) of largest magnitude of X(z) have magnitude

one (on the unit circle);

3. nonminimum phase if at least one zero of X(z) has magnitude greater than one

(outside the unit circle).

If the noise transfer function (1 − H) in (1.3) is minimum/marginally minimum/non-

minimum phase, then we simply denote the Σ-∆ modulator system as minimum/marginally

minimum/nonminimum phase respectively. By analogy to this definition, we will refer to

a given zero of X(z) as being minimum/marginally minimum/nonminimum phase if it has

magnitude less than/equal to/greater than one respectively, and is counted once if it has

magnitude one, multiplicity greater than one. A zero of magnitude one, multiplicity greater

than one, will be loosely referred to as nonminimum phase when counted the extra (multi-

plicity − 1) times, while zeros with magnitude greater than one will be distinguished with

the term “strictly nonminimum phase”.



CHAPTER 1. INTRODUCTION 22

1.4 Chaos and the Σ-∆ Modulator

In this section, the approach to studying chaos in this thesis, and the relevant background

and motivation will be discussed.

The study of the properties of chaos in the Σ-∆ modulator is important in seeking to

gain a clearer picture of its overall dynamical behaviour, particularly since random-like or

possible “chaotic” behaviour has been observed in simulations. Work in various electrical

engineering papers, to be mentioned later, has investigated chaotic behaviour. A common

suggestion is that the Σ-∆ modulator is chaotic if and only if it is nonminimum phase. It

appears, however, that no adequately thorough explanation of this relationship has been

established in this work. Furthermore, none of the research literature provides satisfyingly

rigorous proof of the conditions for chaos based on thorough and precise definitions of chaos,

for systems of such generality. There is a need for a comprehensive approach to investigate

the conditions for chaos in the Σ-∆ modulator that seeks to remedy these deficiencies,

and establish broad results concerning an array of chaotic properties of the dynamics. An

important motivation and goal of this thesis is then to provide at least a fundamental first

step in this endeavour. As a result of this, the approach of this thesis will be of a more

theoretical and abstract nature, than is typical of previous work.

There are many possible definitions for deterministic chaos in a dynamical system,

and no single generally accepted one. All approaches begin from the general requirements

given by Li and Yorke (1975) [33] who first introduced the term “chaos” into the study of

dynamical systems. The requirements on the practical behaviour of a dynamical system

for it to be chaotic include [32]:

1. Solutions stay in a bounded region.

2. Solutions never settle down to periodic behaviour or an equilibrium point.

3. Any two solutions which start arbitrarily close to each other rapidly separate and
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effectively behave independently.

4. It is impossible to predict any solution very far into the future, given finite initial

information.

These conditions, taken together, imply an observed deterministic behaviour that may be

thought of as mimicking that of a random process over time. In this sense, condition 4 is

meant to imply, for any initial condition, an observed random-like behaviour after some

finite period of time. Condition 2, in turn, implies that this type of behaviour persists

for ever. Condition 1 would imply that the observed “process” is bounded in magnitude

over time. Condition 3 implies that two different solutions would be observed to behave as

independent random-like processes after a finite period of time. This third condition then

implies a sensitivity to initial conditions. Formal mathematical definitions of chaos seek

to incorporate these general, observational characteristics into precise conditions defined

in a deterministic context. The relative importance of a particular definition is normally

governed by the mathematical form of the particular dynamical system to which it is being

applied. In this context, one could take into account theoretical questions, the ability to

prove chaos results analytically or numerically, as well as the practical purpose at hand for

studying chaos.

In seeking a way to define and identify chaos in the Σ-∆ modulator, we first consider

Lyapunov exponents, defined below.

Lyapunov Exponents Let f : Rn → Rn, f ∈ C1, and f invertible, so {Rn, f} is a

dynamical system. Consider the orbit γ(~x0) = {~xk = fk(~x0) | k ∈ Z}. Let the linearization

be Jk ≡ D[fk(~x0)], k ∈ Z, where D is the operator that maps a C1 vector valued function

to its Jacobian matrix of partial derivatives. Let rk
1 ≥ rk

2 ≥ . . . ≥ rk
n ≥ 0 be the square roots

of the eigenvalues of the matrix JkJ
T
k (nonnegative real numbers called the singular values
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of Jk), for each k. Then the mth Lyapunov exponent of the orbit γ(~x0) is defined as

λm(~x0) = lim
k→∞

(
1

k
) ln |rk

m|, 1 ≤ m ≤ n,

where existence of this limit follows from Oseledec’s Theorem.

The existence of the Lyapunov exponent is ensured since the conditions of Oseledec’s The-

orem are met by f . Lyapunov exponents generalize to chaotic orbits the property that

the eigenvalues at an equilibrium point measure rates of expansion (and contraction) in

“eigendirections” at that point. From this and the definition of Lyapunov exponents above,

we have the following result: if at least one Lyapunov exponent is bigger that zero, then

there are solutions which diverge from the solution with the given initial condition. This

is then a prerequisite for chaos, as it is required to uphold sensitivity to initial conditions.

A Lyapunov exponent approach naturally lends itself to the use of numerical methods

for identifying chaos, as demonstrated by the following two papers. In [69], algorithms

and Fortran programming code are presented that allow the estimation of non-negative

Lyapunov exponents from an experimental time series and for systems of D.E.’s. For the

time series, the technique of phase-space reconstruction with delay co-ordinates is used

to obtain an attractor with the same Lyapunov spectrum. Using the methods from this

paper, one could write a program to input a time series generated from a Σ-∆ system

of known form, and output the largest one or two Lyapunov exponents. In [8], the QR

based method (where “Q” and “R” refer to relevant matrices) for computing the first few

Lyapunov exponents of continuous and discrete dynamical systems is considered. This also

provides a possible way of finding Lyapunov exponents for some Σ-∆ systems, by applying

the algorithms given to the analytic form of the Σ-∆ modulator as a dynamical system and

then evaluating these numerically. In both papers, the existence of one Lyapunov exponent

greater than zero is taken as a sufficient condition for the characterization of chaos, and
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the algorithms of [69] are described as detecting and quantifying chaos. The definition

of Lyapunov exponents, in analytical form, does not appear to be easily amenable to the

analytical form of the discrete dynamical systems corresponding to Σ-∆ modulators, due

to the complicated nonlinearity (modulo function) involved. Therefore, a specific definition

of chaos that does not involve Lyapunov exponents was sought for use. The numerical

approaches mentioned above were not pursued for this thesis.

Due to the difficulty of fitting realistic systems into rigorous mathematical definitions

for chaos, working or operational definitions are usually used that relate to the four require-

ments given above and include some global characteristics. A positive Lyapunov exponent

is one such characteristic. The positivity of topological entropy is another type that is used

to define “topological chaos”. Fractal attractor dimension is another type. In studying the

modulo difference equations that define Σ-∆ modulators as discrete dynamical systems, it

can be seen that these maps are essentially maps on the unit circle (after scaling). The

definition of chaos used to define “rotational chaos” as given in Hao [20] was thus next

considered.

Rotational chaos is defined to exist when the system possesses a rotation interval rather

than a rotation number (global characteristic). The rotation number and rotation interval

for a circle map are defined below.

Rotation Number and Rotation Interval Let θn+1 = F (θn) mod 1 = f(θn) define a

circle map, where θ is a normalized angle variable, and the function F (θ) takes into account

the cumulative effect of rotation. The rotation number of the circle map f is then defined

by

ρ(θ0) = lim
n→∞

F n(θ0) − θ0

n
.

The rotation number may acquire different values for a different choice of the initial point
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θ0. The rotation interval of f is defined as the set of all rotation numbers of f generated

by all the initial conditions θ0 ∈ [0, 1). Note that in the definition given by Hao [20], the

requirement f(θ + 1) = f(θ) is made for f .

The rotation number essentially measures the average number of times that the mapping

achieves a complete rotation of the circle per iteration. Ito [27] proves that the rotation

interval is a closed interval. Newhouse et al. [46] study bifurcation and stability issues for

circle mappings. These papers reveal the existence of a rotation interval, and its relevance

to chaotic motion in circle mappings. Gambaudo et al. [12] demonstrate that the rotation

interval can be used as a quantitative measure of chaos, and show that this interval can be

determined by computing the rotation numbers of two monotonic maps related to F , which

form the interval endpoints. MacKay et al. [40] describe all routes to positive topological

entropy (chaos) from zero for circle maps and discuss the relevance to the transition to

chaos. Topological entropy is compared with the rotation interval, which is asserted to be

a more sensible criterion for chaos. Casdagli [5] investigates the chaotic attractors that arise

using the rotation interval and investigates the relationships between the rotation interval

and topological chaos. Numerical algorithms to calculate the rotation interval given an

appropriate map, D.E. or time series are presented. The term “rotational chaos” is also

first given. Although the notion of a circle map pertains to a one dimensional system, a

means for defining rotational chaos for an n-dimensional system arising from an nth order

Σ-∆ modulator (which would have an “n-dimensional” circle map or “torus” map) we

presume would be possible.

In continuing to pursue a suitable definition of chaos to apply to Σ-∆ systems, the

particular definition established by Devaney in [7] was arrived at as the most desirable. This

definition, which possesses a balance between rigour and simplicity, was chosen because of

its importance in applying to a large variety of dynamical system mappings and its relative
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ease for analytical verification for circle maps of the form describing Σ-∆ systems. The

definition is as follows:

Definition 1.4 (Devaney’s Chaos) Let V ∈ R be a set. f : V −→ V is said to be

chaotic on V if

1. f has sensitive dependence on initial conditions;

2. f is topologically transitive;

3. periodic points are dense in V .

The appropriate definitions of sensitive dependence on initial conditions, topological tran-

sitivity, and density of periodic points used here are given below.

Definitions for Devaney’s Chaos:

For the respective definitions below, let J ∈ R be a set.

Definition 1.5 (Sensitivity) f : J → J has sensitive dependence on initial conditions if

there exists δ > 0 such that, for any x ∈ J and any neighbourhood N of x, there exists

y ∈ N and n ≥ 0 such that |fn(x) − fn(y)| > δ.

Definition 1.6 (Transitivity) f : J → J is said to be topologically transitive if for any

pair of open sets U , V ⊂ J there exists k > 0 such that fk(U) ∩ V 6= ∅.

Definition 1.7 (Density of P.P.s) Suppose f : J → J has the set of periodic points

U ⊆ J where U = {x ∈ J | ∃ n ≥ 1 with fn(x) = x}. The set U is dense in J if, for any

x ∈ J and any neighbourhood N of x in J , there exists y ∈ N such that y ∈ U .

In this conception of chaos, the three key ingredients identified by Devaney of unpre-

dictability, indecomposability and an element of regularity are satisfied by conditions 1, 2,

and 3 respectively, above. This definition of chaos is stronger and hence more restrictive
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than the original definition set out by Li and Yorke, essentially by virtue of the third condi-

tion2. These three conditions capture the ideas of the observational requirements presented

at the beginning of this section as follows: sensitivity captures requirement 3, transitivity

requirements 1 and 2, while requirement 4 is captured by all three chaos conditions taken

together. It is then the strength of Devaney’s definition to get at the roots of chaos, without

admitting “marginal” chaos, that is seen as an advantage. Devaney’s definition is also well

suited for characterizing chaos on subsets (of state space) or attractors. A disadvantage

is that for continuous mappings, transitivity and density of periodic points taken together

imply sensitivity, thus making the first condition redundant3 [55]. For the more complex

types of mappings that will arise from the Σ-∆ modulator model however, this redundancy

will generally not be automatic, at least.

The definition of chaos used in this thesis is based on the basic Devaney form above.

Devaney provides extensions of his definition to higher dimensions when considering the

horseshoe map, hyperbolic toral automorphisms, and attractors in [7]. An extension of

Devaney’s chaos definition in our work to apply to Rn, as needed to apply to an nth order

Σ-∆ modulator system, along with other adaptations, are made as given in the formulation,

and discussed, at the beginning of Chapter 5.

In the investigation and classification of Σ-∆ modulator systems for chaotic behaviour

2Strictly speaking, removing the third condition gives Wiggins definition of chaos. Chaos in the sense

of Wiggins in turn implies chaos in the sense of Li and Yorke (which is a slightly weaker definition). The

precise definition of Li and Yorke requires the existence of an uncountable scrambled set (a scrambled set

may be thought of as a set where the orbits of any two elements are for ever becoming both arbitrarily

close, and sufficiently separated from one another). Their original definition also required the existence of

periodic points of all periods. See [55] and references contained therein.
3In fact for continuous interval maps transitivity implies both sensitivity and density of periodic points.

On closed subsets, however, this is not true and Devaney’s chaos is meaningful and gives an equivalency

with positive topological entropy [55].



CHAPTER 1. INTRODUCTION 29

undertaken in this thesis, the scope of systems considered will be extended to include

cases that are not purely deterministic. Specifically, we will consider some systems with a

random or stochastic signal component (i.e. an input and/or dither component). While

the concept of chaos is meant to apply to purely deterministically determined aspects of

a system’s dynamics, we see no inconsistency in applying a characterization of chaos or

nonchaos to a system whose dynamics may be driven by both stochastic and deterministic

processes. If the system is classified as nonchaotic, then clearly the legitimately nonchaotic

deterministic aspects dominate the stochastic ones. If the system is classified as chaotic,

then we do not presume that this necessarily results from its stochastic aspects. The chaos

may arise from legitimately chaotic deterministic aspects, stochastic aspects alone, or by

some combination of its stochastic aspects and some additional near chaotic deterministic

aspects. No particular attempts will be made to determine how the chaos arises. We simply

allow a classification of chaos or nonchaos to be made, so that a comparison of the system

dynamics can be made with those of other systems, and a clearer understanding of the

dynamics can be obtained.

1.5 Modelling and Analysis of the Σ-∆ Modulator for

Chaos

In this section, we review the previous research involving chaos in the Σ-∆ modulator as

relevant to this thesis. We also look at some of the other mathematical approaches to

model a Σ-∆ modulator to analyze its dynamics, so as to put the approach of this thesis

in some perspective.

We start with the paper by Keener [30] which analyzes solutions to the mapping xn+1 =

F (xn), where F is a piecewise continuous, locally increasing mapping of the interval [0, 1]
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to itself with one jump discontinuity. Using the definition of rotational chaos, it was shown

that chaos generally exists when F (0) < F (1) (overlapping mapping, not 1 to 1), and that

chaos does not exist when F (0) > F (1) (nonoverlapping, 1 to 1).

In the Feely and Chua paper [10], the one dimensional Σ-∆ case (single loop) with 1-bit

quantizer and constant input is analyzed as a circle mapping. Properties of the rotation

number/interval derived by Keener [30] are applied and rotational chaos (from Hao) [20]

is shown to exist when the multiplier (from the transfer function) a1 > 1. A study of

the periodicity, stability and bifurcations in the dynamics (as the a1 value changes) is also

made.

In the thesis of Schreier [56], a proof that sensitivity to initial conditions exists if and

only if the transfer function is nonminimum phase is given for the Σ-∆ modulator with 1-bit

quantizer and general order transfer function and general input. This type of sensitivity,

called predictability here, appears to be weaker than the definition used in condition 1 of

Devaney’s definition for chaos. In terms of the definition for condition 1, the proof only

proves that sensitivity to initial conditions implies that the transfer function is minimum

phase. Schreier uses this proof to justify the possible existence of chaos, but does not verify

any other requirements of chaos (such as conditions 2 and 3). Limit cycle stability and Σ-∆

modulator stability (e.g. as a function of input) are also investigated from an engineering

perspective along with other engineering issues. The paper [57] describes the treatment of

the Σ-∆ modulator as a mathematical mapping in Schreier’s thesis.

In the thesis of Wang [62], the 1-bit, first-order Σ-∆ modulator is analyzed in terms

of a circle map that is similar to that of Keener [30], where the mapping of a trapping

region is transformed to a mapping on the unit interval. Results for chaos (rotational

definition), with constant input, are obtained that correspond to the cases in [30]. Wang

replaces Keener’s end point inequality conditions for F (x) with conditions on the derivative
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DF (x). 1 < DF (x) < 2 is associated with an expanding map of the circle and chaos, while

0 < DF (x) < 1 with a contraction circle map and nonchaos. Stronger conditions on

F (x) seem to be used in the analysis. Evidence is provided that a small input signal is

more resolvable from the noise spectrum background of the output, when the “chaotic”

modulation of the expanding circle map case holds. For the rest of the thesis, a continuous

embedding scheme is developed for the second and third-order Σ-∆ modulator to study

other dynamical properties such as stability. In this scheme, solutions to the discrete system

are obtained from their embeddings in solutions to a continuous system. The overall thesis

stresses a dynamical systems approach.

In the thesis of Risbo [53], the 1-bit, general order Σ-∆ modulator with general input

is analyzed. A formal dynamical systems formulation is defined and Devaney’s three con-

ditions for chaos are presented for the analysis. A noninvertible region for the mappings is

defined and is needed to ensure that the quantizer output is bounded. Unlike the case of

a multi-bit quantizer with an arbitrary number of levels, this boundedness does not auto-

matically follow when the quantizer is constrained to 1 bit. Sensitivity to initial conditions

is associated with state space stretching (divergence), and this is shown to hold when the

system is nonminimum phase, by using an eigenvalue method with transition matrices. For

such systems, a proof of the existence of a folding mechanism to map to a noninvertible

region in state space is used to argue boundedness of orbits in state space (contracting

effect). This second result is apparently used as a sufficient way of satisfying topological

transitivity, although an explicit connection is not discussed. Periodic points and limit

cycles are discussed, but chaos condition 3 is not addressed. An assumption of chaos in the

Σ-∆ modulator is made when these two results hold, but this falls short of a rigorous proof

that Devaney’s three conditions hold. An analysis of the stability of “chaotic” Σ-∆ mod-

ulators is given, including a bifurcation between stability and instability. Risbo outlines
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why he views the presence of what he terms chaos as interesting: it implies nonperiodic

output, it can be used to suppress spurious tones in the output spectrum, and the question

of stability is conceptually simpler. The rest of the thesis focuses on nonchaotic stability,

modelling, design and optimization.

As seen in [62] and [53] above, the analysis of the 1-bit Σ-∆ modulator (where the

quantizer Q has a signum function form) as a dynamical system requires consideration of a

complex mapping structure involving a trapping region or noninvertible region, whereby the

quantizer output remains bounded. Such an approach was initially considered for the study

of chaos in this thesis, to apply Devaney’s chaos definition to the 1-bit Σ-∆ modulator.

This was found to be analytically difficult and overcomplicated when seeking to maintain

the level of rigour that we demand for our chaos analysis. Therefore, partly owing to this

circumstance, we focus our work in this thesis exclusively on the multi-bit Σ-∆ modulator,

where the number of levels in the quantizer may be arbitrarily large and a bounded output

is automatic. Such an approach is quite practical and is also commonly taken by others,

e.g. Reiss [50]. One may extend such a system to the case of a finite bit modulator by

simply assuming an appropriate no overload condition on the quantizer.

The paper [51] by Reiss and Sandler considers a multi-bit first-order Σ-∆ modulator

with general input. Two ways of applying the filter gain are given, with the usual manner

of applying this to the quantizer error shown to achieve greater quantizer accuracy. Chaos

is associated with a gain in the range 1 < a1 ≤ 2, and a bifurcation diagram demonstrating

this is given. Use of a multi-bit quantizer is asserted to make the modulator stable over all

inputs, and counter the potential for instability when operating in the “chaotic” regime.

As with other papers, e.g. [58] (Schreier), [54] (Risbo), this chaos is argued to be beneficial

for removing undesired idle tones in the output that may arise from periodic orbits or limit

cycles. The thesis [50] of Reiss that presents this work is focused overall on an analysis of



CHAPTER 1. INTRODUCTION 33

chaotic time series. Time series from several applications were analyzed to construct and

observe the dynamics, extract empirical quantities, and improve analysis techniques.

The work of Wang [62], Reiss [50] and others then is also inadequate in providing the

rigorous analysis of chaos in the Σ-∆ modulator that we seek.

The following studies were conducted using simulations. In [58] by Schreier, it is shown

that making the Σ-∆ modulator system nonminimum phase will destabilize limit cycles and

consequently reduce the tonality of the quantizer noise, but that the signal to noise ratio will

decrease (greater for higher-order systems). The paper [54] by Risbo applies the chaos ideas

of his thesis to show that tone suppression in the output spectrum that could be achieved

with the addition of dither, can also be achieved by making the Σ-∆ modulator “chaotic”,

i.e. nonminimum phase. The tone is weaker for the nonminimum-phase case than the dither

case, although the signal to noise ratio is also less. For both cases, the SNR must decrease

to maintain stability. The paper [36] by Lipshitz and Vanderkooy provides conclusions that

contradict these results of Risbo. Here, the behaviour of a dithered minimum-phase and an

undithered nonminimum-phase (i.e. “chaotic”) Σ-∆ modulator is compared. It was found

that the distortion performance (measured as the effective gain of the fundamental signal

at output) of the dithered case was far better than that of the nonminimum-phase case.

These results support the earlier work of Norsworthy [47] and are more complete.

The results of these studies differ because [36] and [47] kept the noise transfer function

shaped the same and the input noise equal, for the cases being compared, while [54] did not.

Lipshitz and Vanderkooy would argue that their comparisons are thus more meaningful.

Researchers such as Schreier and Risbo are motivated to study chaos in the Σ-∆ modulator

from a belief that tone or distortion reduction should be effected in practice by making the

system nonminimum phase (i.e. “chaotic”) if this can be shown to be successful. Such

controversy serves to highlight the importance of the studies of Σ-∆ modulator chaos in
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this thesis.

The paper [49] by Reefman et al. considers a 1-bit Σ-∆ modulator of general order

feedforward form, with DC, (i.e. constant) input. A state space mathematical model for

the description of limit cycles is presented, with the goal of providing tools other than

simulations for obtaining insights into their behaviour. It is proved that periodicity in the

bit output pattern implies a periodic orbit in state space variables. A recipe is given for

finding limit cycles and relating them to state space initial conditions. The conditions for

limit cycles and the minimum disturbance need to break them up are studied. Dithering

is shown to be a suboptimal approach (i.e. compared with adding a small disturbance

to the integrator state). Higher-order systems are shown to be less susceptible to limit

cycles. Other issues, such as the relationships with DC zeros (i.e. at z = 1) of the transfer

function (integrator), stability analysis and numerical results are covered. An odd aspect

of this work is that the integrators used have zeros outside the unit circle, which tends to

increase the noise gain.

The thesis [19] of Güntürk uses mathematical tools from analytic number theory, har-

monic analysis and dynamical systems to provide a new framework and improved techniques

for Σ-∆ modulator error analysis. The second part of the thesis is a function space approach

to image compression.

The proceeding of Kalman [29] from 1956 provides an interesting perspective on dis-

crete systems and the idea of a continuous imbedding mentioned by Wang [62]. Discrete

deterministic systems that are both nonautonomous (i.e. sampled data systems) and non-

linear (i.e. quantized systems) such as the general Σ-∆ modulator, are considered, and the

following assertions made. Having both properties creates more complexity and greater

difficulty in analysis of the behaviour. Under certain circumstances, a nonlinear sampled

data system can be paired with a continuous system so that the two behave similarly. When
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these circumstances do not hold, the output can be treated as a random Markov process.

In such a process, the probability of a state at a given point in time depends only on the

state at the previous time iterate. The tools of analysis from probability theory may then

be applied. In general, any continuous system can be paired to, and any Markov process

can be synthesized, by means of a nonlinear sampled data system. From these results,

we have that {all nonlinear differential equations} ⊂ {all nonlinear difference equations}
and {all Markov processes} ⊂ {all nonlinear difference equations}. These ideas will not

be pursued in this thesis — the interested reader can check [29].

1.6 Dithered Quantizers and Σ-∆ Modulators

In this section, the approach to studying dithered quantizers and Σ-∆ modulators in this

thesis, and the relevant background and motivation will be discussed.

The research background presented here forms some of the elements upon which the

study of dithered Σ-∆ modulators will be pursued in this thesis. It is important to reinforce

the validity and significance of basic known dither results from an abstract point of view that

is consistent with the framework used to examine other dynamical issues such as chaos, but

that can complement previous approaches for dither. The dynamical systems formulation

that we will develop will provide such an abstract approach. It is also important to develop

new approaches and arrive at new results for both specific and general statistical questions

from such an abstract perspective. The general probability theory that we will develop and

apply, and the analysis of a particular example, will serve to this end.

In a dithered process, the addition of a dither signal to the input signal prior to its entry

into the quantizer is considered, as shown in the simplified system (with no feedback) in

Figure 1.5. The total error E = Y − U is formed by subtracting the predithered quantizer
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Figure 1.5: Dithered quantizer and total error

input from the quantizer output. For feedback systems (see Figure 1.2), it is this positioning

of the added dither N , inside the total error loop, that gives it its unique mathematical

properties for influencing the total error statistics of E, and distinguishes it from the input

X, and the less consequential role one would have with a “dithered” input X + N , where

E = Y − (X +N). The new signal Q = Y −W is identified as the internal quantizer error.

This will be different from the overall (unshaped) system error E in a feedback system,

when a nonzero dither N exists. The addition of dither is shown in the time domain in

Figure 1.6.

The dither is typically defined by a prescribed stochastic probability distribution which

we are free to choose, and is hence statistically independent of the input. In practice the

dither νn is typically either independent and identically distributed (i.i.d.) for different

values of n (white), or possesses some dependence on its previous values (coloured). In this
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Figure 1.6: Dithered quantizer in time domain

thesis, we take the dither to be the former (white). This case is the most common and

provides the simplest and sufficiently general approach. Strictly speaking, i.i.d. dither, or

any other form of random dither, is normally approximated in practice by a pseudorandom

number generator, so as to be sufficiently “near random”, even though mathematically

deterministic (see Section 1.7).

In general, we have νn ∈ R, for all n ≥ 0. For a given dither value νn, the quantizer

output is given by Q(wn) = Q(un +νn), where the predithered quantizer input un = xn−rn

for the closed loop system. Then, from the statistical definition of expectation, we have

that the expected value of the quantizer output yn given the input un is given by

E[yn|un] =

∫ +∞

−∞
Q(un + νn)Pν(νn)dνn =

∫ +∞

−∞
Q(η)Pν(η − un)dη = Q ∗ P−

ν (un),

where Q is the quantizer function, Pν(νn) is the probability density function (PDF) of the

dither νn, yn|un = Q(un+νn), and we define the function P−
ν (νn) ≡ Pν(−νn), for all νn ∈ R.

It is assumed here that Pν(νn) is piecewise continuous. If the dither distribution is discrete,

then the following holds analogously:

E[yn|un] =
∑

νn∈Sν

Q(un + νn)Pν(νn) =
∑

η∈Sη

Q(η)Pν(η − un) = Q ∗ P−
ν (un),

where Sν is the set of all dither values of nonzero probability, Sη = {η | η = un + νn, ∀
νn ∈ Sν}, and Pν(νn) is the probability mass function (PMF) of the dither νn.
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From these expressions, we see that the expected output also takes the form of a convo-

lution of the quantizer transfer characteristic with the distribution of the dither evaluated

at the negative of its argument. The expected value of the error εn given the input un

is given by E[εn|un] = E[yn|un] − un. If the distribution of the dither is a rectangular

probability density function (RPDF)4 of width ∆ , where ∆ is the width of the steps in

the quantizer, then the convolution equation above gives the result that E[yn|un] = un, so

that E[εn|un] = 0 for all un. Thus RPDF dither yields zero mean error for all inputs un

within the domain of the quantizer, and any number of steps. It can be shown, however,

that the mean squared error (error variance or noise power) will remain signal (input) de-

pendent (i.e. there is no noise modulation), and is given by E[ε2
n|un] = ∆2/4− û2

n, where

ûn = (un + ∆/2)(mod ∆) − ∆/2. If a triangular probability density function (TPDF)

is used for the dither (the convolution of two RPDF densities, which corresponds to the

addition of two RPDF random variables) with width 2∆, then there will be zero mean error

and a constant mean squared error given by E[ε2
n|un] = 3∆2/12. This implies, with the

input and quantizer steps the same as for the RPDF case, that noise modulation no longer

exists.

These established results come from a fully developed dither theory for dithered multi-

bit quantizers taken either on their own, or incorporated in feedback loops of multi-bit noise

shapers (Σ-∆ modulators), (see [35], [65] and the references therein). The paper “Dithered

Noise Shapers and Recursive Digital Filters” [38] as well, gives a general analysis of the

extension to dithered noise shapers. This theory includes the property that the 1st up to

the pth moments of the error (i.e. E[εi
n], i = 1, . . . , p) can be made signal independent

by using n convolutions of the RPDF for the density of the dither. This generalizes from

the case of n = 1, 2 described above and corresponds to the use of dither obtained from

4The RPDF has the PDF Pν(νn) =
1

∆
, −∆

2
≤ νn ≤ ∆

2
.
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Figure 1.7: Topology of dithered noise shaper in time domain

the sum of p RPDF random variables. Normally, p = 2 is sufficient for digital audio

practice. For digital images, it appears that p = 2 may be sufficient as well. For the one-bit

dithered quantizer however, no theory will guarantee perfection in terms of making these

error moments totally signal independent. This is because the quantizer will saturate or

overflow, with input beyond its domain width of 2∆.

The time domain topology for a Σ-∆ modulator noise shaper, with a dithered quantizer,

is shown if Figure 1.7. For this, the internal quantizer error qn is shown as well.

The following studies by Lipshitz et al. relate to the ideas introduced above for multi-

bit quantizers and different types of dither. The paper [35] presents a theoretical survey of

the overall case of dither. The paper [65] gives a mathematical investigation focusing on

the nonsubtractive dither case, introducing new results. The paper [34] extends the study

of dither to noise shapers and shows that the dithered quantizer theory is applicable. It is
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shown that the presence of feedback is irrelevant to the theory, since the dithering linearizes

the quantizer. Dithered noise shaper designs to achieve noise reduction are described. The

paper [38] shows that when coloured dither (not i.i.d.) is used, more stringent conditions

must be satisfied for error moment control, if a feedback circuit is used, than otherwise.

To focus more specifically on the background for the work of this thesis, we begin with

the important early paper by Schuchman [59]. Here it is shown that the quantizer noise

qn will be independent of the input un, if the dither νn has a probability density function

that is a convolution of RPDFs. Furthermore, qn will have an RPDF (uniform probability

density function); and it will be white (i.e. constant power spectrum) and i.i.d., if νn is i.i.d.

In the case of subtractive dither, the dither νn is subtracted from the quantizer output yn to

give the final system output, which will then differ from the input un by just the quantizer

error qn. In this case, the whole PDF of the output error, along with all of its moments are

independent of the input. This is a very desirable property to have since it means the lowest

possible noise in the reconverted audio signals. Moreover, the error here is a purely signal-

independent additive white noise process. The use of subtractive dither is not generally

feasible, however, since the subtraction of dither after quantization cannot be accurately

accomplished with the finite number of bits in physical systems. For nonsubtractive dither,

we are left with the signal independent moment results for the output error, from dither

theory given earlier.

The paper [52] of Reiss and Sandler looks at the dependence of the error moments on

the input in dithered multi-bit Σ-∆ modulators. We note the paper for several errors,

later admitted in correspondence to Lipshitz and Vanderkooy by the author. The paper

incorrectly claims that the error εn−1 and corresponding dither νn−1 are independent. The

paper Dither Myths and Facts [37] by Lipshitz and Vanderkooy addresses various common

misunderstandings about the properties of dither that have persisted over the years, in-
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cluding the claim above in [52]. A prominent misconception addressed is the related one

which assumes that qn and νn are independent. This cannot be true unless one assumes

conditions exist for an application of Schuchman’s result [59] above with the roles of un

and νn reversed, that is with un assumed to be generated randomly with a PDF that is

a convolution of RPDFs. There has been little practical role for such an assumption in a

feedback system in previous work, although the theory presented in this thesis will allow

for such an approach.

In [52] it is also incorrectly suggested that for a first-order Σ-∆ modulator with unity

gain (a1 = 1, b1 = 0) and RPDF dither added, the long term time averaged error variance

E[ε2
n] = ∆2/6 with any constant input xn = c. In fact, Lipshitz and Vanderkooy point

out that numerical simulations suggest this result only for the case of irrational input, and

that this definitely does not hold for the rational case. In this thesis, these results will be

proven, and further analysis will be conducted on this Σ-∆ modulator form. The paper

[22] of He et al. considers a higher-order, nondithered system of this form, with multiple

transfer function zeros at DC (i.e. at z = 1), and with irrational constant input. The long

term statistical behaviour of the errors is shown to be signal-independent, white, uniform

noise. This result is consistent with the averaged error variance for the dithered first-order

form above.

Finally, we mention the chapter on nonlinear maps in the Digital Signal Processing

Handbook [26], which relates stochastic signals to chaotic ones. Here, eventually expand-

ing maps are introduced, which are similar to those of Keener [30]. They are defined to be

piecewise continuous, sufficiently bounded, and eventually expanding for every x, meaning

essentially | d

dx
F m(x)| > 1 for some m. The map F is, in addition, a Markov map if it is

affine on each continuous interval (i.e. of the form fi(x) = six + di on each such interval

i) and it maps interval partition points to partition points. Such maps are broadly appli-
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cable to signal processing systems. The concept of an invariant density for random initial

conditions is introduced, which will be considered as a “fixed point” functional in this the-

sis. Let f be an eventually expanding mapping that describes the evolution of a nonlinear

system, such as the Σ-∆ modulator. When f has only one invariant density, then the time

average lim
n→∞

1

n

n−1∑

k=0

h(fk(x0)), (where h is a sufficiently well behaved function) exists, and

is generally independent of the initial condition x0. From this property, transition prob-

abilities can be defined. This result then yields the properties of a Markov map for f .

Techniques then exist to analyze the statistics of Markov maps. Thus the statistics of any

eventually expanding map can be modelled to arbitrary accuracy by those of some Markov

map. This overall modelling approach may give more insight into behavioural aspects of

chaotic signals or time series, and with less difficulties than with empirical averaging.

An important goal for future research would be to develop a counterpart mathematical

theory for the one-bit quantizer and noise shaper to that of the multi-bit quantizer and

noise shaper. It is expected that it would be impossible to derive such a theory that

would give exact conditions for obtaining the exact results of making error moments signal-

independent, as in the multi-bit case. The objectives would thus be to obtain results for

conditions that put limits on the error quantities and give as good a prescription for error

control and noise shaping as possible. The extent to which such partial dithering can

prevent the occurrence of limit cycles will be an important aspect of this study. For

this thesis, the Σ-∆ modulator with a multi-bit quantizer of arbitrary number of levels is

studied, as explained in Section 1.5. These matters are therefore left to future studies,

while statistical issues relevant to multi-bit case are explored here.
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1.7 PRN Generators

In this section, the pseudorandom number (PRN) generator will be introduced as an im-

portant simple example of a Σ-∆ modulator system. The application is very different from

that of signal processing in audio or image applications.

The most popular random number generators used today are the linear congruential

type (generating “linear congruential sequences”) introduced by D.H. Lemer in 1949. They

have the following form:

εn = (aεn−1 + c +
∆

2
) (mod ∆) − ∆

2
, −∆

2
< εn ≤ ∆

2
, n = 1, 2, . . . . (1.4)

They may be written as

εn = (aεn−1 + c) − Q(aεn−1 + c)

using a “mid-tread” quantizer Q(wn) = ∆⌊wn/∆ + 1/2⌋, wn ∈ R, n ≥ 1. This quantizer

takes the functional form shown in Figure 1.4(a). The difference equation (1.4) is produced

by a system with the topology shown in Figure 1.8. This system clearly is equivalent to a

first-order noise shaper (i.e. a Σ-∆ modulator), where we have certain constraints on the

parameters c, a, ∆ and ε0. System (1.4) may be considered in the following normalized

form, which is simpler and more useful for analysis:

εn+1

∆
= (a · εn

∆
+

c

∆
+

1

2
) (mod 1) − 1

2
, −1

2
<

εn

∆
≤ 1

2
.

The sequences of numbers εn are not always “random” for all choices of c, a, ∆ and the

“seed” ε0. Principles exist for choosing these parameters correctly and are given by Knuth

in [31]. According to these we have the following: c may be arbitrary if a, ∆ and ε0 are

suitably chosen, although generally we would want c 6= 0 (number processing is faster when

c = 0 and may give sufficiently random sequences however). We wish to choose parameters

to produce a period of maximum length (the maximum possible length being ∆), since this
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Figure 1.8: PRN generator of linear congruential type

is one necessary criterion for randomness. The following theorem [31] gives necessary and

sufficient conditions for obtaining a period of maximum length.

Theorem A The linear congruential sequence defined by ∆, a, c and ε0 has period length

∆ if and only if

(i) c is relatively prime to ∆;

(ii) b = a − 1 is a multiple of p, for every prime p dividing ∆;

(iii) b is a multiple of 4, if ∆ is a multiple of 4.

Another criterion for randomness is potency which is the dependency between consecutive

numbers in a sequence (high potency would imply low dependence). This is defined as

follows.
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Potency The potency of a linear congruential sequence with maximum period is defined to

be the least integer s such that

bs ≡ 0 mod ∆.

From Theorem A, we would ideally choose ∆ to be prime. We would also like to choose

∆ to be of the form ∆ = w ± 1, where w = 2e, (e ∈ Z+), on a binary computer with

internal word-length e, since “∆ = w” increases efficiency given this computer structure,

and “∆ = w ± 1” creates sequences that are more random, given this structure. We would

choose a to satisfy Theorem A and maximum potency.

A good choice for a set of parameters on a 32-bit computer is the Mersenne prime

∆ = 231 − 1 = 2, 147, 483, 647 (largest prime of the form 2e ± 1, e ≤ 64), a = 62, 089, 911.

A bad choice would be a = 1, which does not give random sequences. The choice ∆ = 235,

a = 2k + 1, k ≥ 18, leads to a potency of 2, which implies εn+1 − εn ≡ c + c(a − 1)n. This

is not satisfactorily random and hence this parameter choice is not very good. Generally,

small parameter numbers are also to be avoided.

A common mistake in designing PRN generators is the idea that by modifying a good

generator slightly, one can get an “even more random sequence”. Often one gets less

random results, since the theory for a good generator breaks down, and the random choice

of a generator likely doesn’t give much randomness in the resulting sequences. Other types

of PRN generators from the one considered above exist such as quadratic and “higher-order”

recursive types.
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1.8 Stochastic Resonance

In this section, stochastic resonance will be introduced as physical process whose models

are continuous analogues to the dithered Σ-∆ modulator system.

Stochastic resonance refers to a phenomenon in which a nonlinear dynamical system

subject to small input signals or “forcing”, typically of a periodic nature, will show a greater

response to this input in the presence of random perturbations or noise. This behaviour

was first examined in [2] where the name “stochastic resonance” was coined. Research

and applications of stochastic resonance (S.R.) subsequently occurred in a wide variety of

areas. In [3], S.R. is considered in climate models and proposed as a possible explanation

for the ice ages. Other areas where S.R. is used to explain system behaviour include

electrical circuits (e.g. [9]), lasers, superconducting quantum interference devices and the

neurological systems of animals such as crayfish. In many applications, S.R. reveals noise

as beneficial. Although S.R. work began with Italian researchers, American researchers

started work as well, such as with the paper [43].

Many S.R. papers consider first-order systems, however second-order systems will be

considered here to more thoroughly convey the results. A typical second-order system is

described by the following equation (stochastic D.E.):

mẍ = −bẋ − k(x)x + f(t) + “noise”, (1.5)

where the input f and “noise” are functions of time. Such systems have potential wells

and associated stable equilibria, with the potential V (x), where F = −dV

dx
= −k(x)x is

the associated force. For example, in a “bistable” system with quartic potential, two stable

equilibria exist, and the presence of noise may allow the small forcing signal to govern the

transitions from one stable state to the other. These systems of (1.5) are generally similar

to nonlinear spring systems (i.e. k = k0 +ax2, with k0 ≥ 0 or k0 < 0, a > 0) but with some
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Figure 1.9: Analogue computer solves D.E.

differences.

The differential equation (1.5) may be solved by an analogue computer in which the

topology is such that it conforms with the form of the D.E. as shown in Figure 1.9. Here,

“noise” has been relabelled as a dither ν(t). The Laplace transform of this circuit gives

the result shown in Figure 1.10, where H(s) = 1/(ms2 + bs) is the “integrator”, and X(s),

Y (s), F (s) and N(s) are the Laplace transforms of x(t), y(t), f(t) and ν(t) respectively.

The Laplace transform is defined as follows:

Laplace Transform Let x(t) be a complex valued function defined on R. Then the Laplace

transform X(s) of x(t) is defined to be

X(s) =

∫ ∞

0

x(t)e−stdt, s ∈ C,

whenever this integral exists.

The circuit in Figure 1.10 now can be seen to have a topology equivalent to that of a

Σ-∆ system. A transformation will thus give the noise shaper form. The nonlinear spring
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Figure 1.10: Laplace transform of analogue computer form of D.E.

constant k(x) plays the role of the quantizer nonlinearity. This continuous system may also

be approximated by the corresponding discrete system if the sampling rate for the “input” is

fast enough. Such an approximation is given by the Σ-∆ system of the topology. Therefore

the D.E. (1.5) may be rearranged to give a Σ-∆ system, implying a common method of

analysis, although the nonlinearity k(x) is different from the quantizer nonlinearity of Σ-∆

modulators. Considering the circuit of Figure 1.10, many aspects of S.R. behaviour may

also be fully explained from dither theory. First-order systems may be analyzed in a similar

manner (leaving out the “mẍ” term), to give a Σ-∆ system.

The paper [41] uses a second-order model, and presents the block diagram of the elec-

tronic circuit of an analogue computer to solve the D.E. of the problem by simulation. This

block diagram is essentially equivalent to the form of the diagrams given above in that it

accomplishes the same thing. In [13], the connection between the Σ-∆ nonlinearity as a

feedback system with dither, and S.R. in threshold systems, is made, with both understood

as noise activated processes. Here, it is mentioned that such S.R. systems are not real

resonance phenomena as suggested by the name, but rather are a special case of the dither-
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ing effect, consisting of a threshold crossing process aided by noise. The paper [64] shows

that many S.R. systems are forms (via rearrangement) of dithered quantizer systems, and

it shows how the results found from S.R. systems can be understood from dither theory.

A hysteretic system is also considered (similar to that of [9]), to reinforce these ideas. A

tutorial and update of S.R. research is given in [44]. A lengthy and in-depth review of S.R.

research is given in the later paper [14]. An introductory overview of S.R. with a biological

application, is given in [68]. The general research progress and importance of S.R. are also

covered in the articles [15, 45] of Scientific American and [67] of Nature magazines.

As a result of the close connection between S.R. and Σ-∆ systems, the study of Σ-

∆ modulators may allow for something to be said about S.R. (e.g. regarding dynamical

behaviour). Studying Σ-∆ systems mathematically to obtain consequences that apply

to and advance the research of S.R. systems is therefore a matter to be explored in future

research. Indeed one might hope that such study would lead to a synthesis of understanding

concerning S.R. in Physics and other areas, with the Σ-∆ systems of Engineering.

1.9 Thesis Overview

The body of this thesis will be organized as follows. In Chapter 2, the dynamical systems

formulation of the Σ-∆ modulator, based on its mathematical description given in Section

1.3, is presented. In Chapter 3, the theorems and discussion regarding bounded internal

stability are presented. In Chapter 4, the linear and continuous case model formulations are

presented. In Chapter 5, the theorems and discussion concerning chaos in the nondithered

case are presented. In Section 5.1, Devaney’s definition of chaos is adapted to apply to

the Σ-∆ modulator model of Chapter 2. Sections 5.2 deals with the treatment of the

continuous case model and results. Section 5.3 does this for the general case model. Section
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5.4 summarizes the chaos results and consequences. In Chapter 6, theorems and discussion

concerning the dithered model and chaos are presented. Section 6.1 extends the formulation

of Chapter 2 to include dither, and Section 6.2 studies chaos with dither . In Chapter 7,

the theorems and discussion of the stochastically interpreted dynamics of Σ-∆ modulators

are presented. Section 7.1 presents the background theory for long term error behaviour,

and Section 7.2 applies this treatment to the Σ-∆ modulator model to formulate uniformity

results. In Chapter 8, the theorems, discussion and analysis of the statistical error behaviour

of dithered Σ-∆ modulators are presented. Section 8.1 deals with the fundamentals of

dithered quantizers alone, while Section 8.2 extends this to the Σ-∆ modulator, applying

work from Chapter 7 to give results. Section 8.3 applies this to an analysis and numerical

simulations for a specific first-order case. The last sections of Chapters 7 and 8 expand the

discussion of some pertinent issues. Finally, Chapter 9 provides main conclusions for the

thesis work, and recommendations for further work that flow from this.



Chapter 2

Dynamical System Formulation

In this chapter, we formulate the Σ-∆ modulator system as a dynamical system. For the

study of chaos in this thesis, the dynamical system formulation provides a mathematical

framework through which a viable adaptation of a standard definition of chaos may be

applied, and a thorough analysis to give general results on conditions for this chaos may be

carried out. For the study of the statistical properties of the errors of dithered systems in

this thesis, this formulation further provides a consistent and unifying approach with which

to both seek new insights and results, and verify existing results from a new perspective.

State space descriptions of discrete-time processes are well established [49], [48], and

their use in modelling the Σ-∆ modulator was seen in the literature reviewed in Section 1.5.

For analytical simplicity, the state space used for such models typically involves different

quantities from those of the observed output of the system. There is generally a close

relationship between the behaviour of the state space and output variables, as shown for

example with the phenomena of limit cycles in [49]. The formulation of the state space for

the dynamical systems model in this thesis is given as follows.

From the frequency domain definition of the Σ-∆ modulator given in the first part of

51
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Section 1.3, we have the transfer equation Y = X + (1 − H)E. In principle, X and H

are always known. Therefore, for practical purposes, we have a direct relationship between

E and Y . Specifically, if the nature and behaviour of E is known, we can automatically

determine the nature and behaviour of Y from the transfer equation. This relationship

carries through analogously to the time domain. Therefore, to describe the state and

dynamics of the system (1.2) where the observable quantized output yn = Q(xn − rn) is

the ultimate quantity of interest, it is sufficient to characterize system (1.2) in terms of the

state and dynamics of the errors εn. This characterization is most useful, since εn is the

quantity of interest for performance, and is also easily defined from the difference equations

as the state space quantity. We now proceed to present the dynamical system formulation.

The formulation presented here follows from the developments in Section 1.3, where we

take the dither signal N to be zero, and hence νn = 0 for all n ≥ 0. Extensions of the

formulation to allow for dither will be treated in Section 6.1.

Dynamical System Model:

To begin, we let the difference equations of system (1.2), along with the given initial

conditions, define a discrete dynamical system given by the form

~xn+1 = F(~xn, xn) ≡ fn(~xn) (2.1)

yn = Q(~xn, xn) ≡ Qn(~xn),

for n ≥ 0, where

~xn = (rn−1, . . . , rn−N ; εn−1, . . . , εn−M) ∈ R
N × CM ,

xn ∈ R, yn ∈ (Z · ∆ + ∆/2),

fn : (RN × CM) → (RN × CM)

Qn : (RN × CM) → (Z · ∆ + ∆/2), n ≥ 0,
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and the initial condition is ~x0. We use the overbar to indicate a vector quantity. The state

space of the system is R
N× CM , where CM ≡ C × C × . . . × C

︸ ︷︷ ︸

M

, and C is the “circle” defined

by the interval (−∆/2, ∆/2], with lim
x→−∆/2

x ≡ +∆/2 for x ∈ C holding. Note that with the

circle C so defined, addition and scalar multiplication on C operate as follows: if α, β ∈ C,

then α +β ≡ α +β −Q(α +β +∆/2)−∆/2 ∈ C, and cα ≡ cα−Q(cα +∆/2)−∆/2 ∈ C,

where c ∈ R. The functions fn above define mappings from the state space to itself and

while continuous, from the quantized nature of the Σ-∆ system, may lead to discontinuities

(i.e. only piecewise continuity) on RN × CM over successive or composite mappings. The

functions Qn are the quantizing functions that define mappings from the state space to the

observable output space Z · ∆ + ∆/2. The functions fn and Qn are respectively formed

by removing the input xn as an independent variable in the associated functions F and

Q of (2.1), and incorporating it into the functional form at each n. Specifically, for the

definitions of fn and Qn we have

fr(1),n(~xn) = rn =
M∑

i=1

aiεn−i −
N∑

j=1

bjrn−j

fr(k),n(~xn) = rn−k+1

fε(1),n(~xn) = εn = Q(xn − rn) − (xn − rn)

fε(p),n(~xn) = εn−p+1

Qn(~xn) = Q(xn − rn),

for 2 ≤ k ≤ N , 2 ≤ p ≤ M , and n ≥ 0. The component functions of fn are denoted above

and as follows:

fn(~xn) ≡ (fr(1),n(~xn), . . . , fr(N),n(~xn); fε(1),n(~xn), . . . , fε(M),n(~xn)), n ≥ 0.

The component fε(p),n(~xn) contains the nonlinear quantizer element Q, which also leads to

the discontinuities mentioned above.



CHAPTER 2. DYNAMICAL SYSTEM FORMULATION 54

We make the following clarification regarding the notational conventions used in this

thesis. The symbols xn and yn, with no upper accents, denote the overall system input

and output, respectively, as scalars, unless otherwise specified. When xn or yn have upper

accents, they denote state space vectors in RN × CM (RN × RM if the system is dithered

(see Chapter 6)), or some subspace thereof, unless otherwise noted. The vector symbol on

top is used for the generic form in RN × CM (or RN × RM).

For subsequent work, we provide the following notation for the set and composition of

successive mappings of fn over n:

Definition 2.1 (f) Let f denote the mappings {fn, n = 0, 1, 2, . . .} from (2.1). Let fn

denote fn−1 ◦ fn−2 ◦ . . . ◦ f1 ◦ f0, n ≥ 1. Also let f 0 denote the identity mapping so that

f 0(~x0) = ~x0 for all ~x0 ∈ RN × CM .

Given the importance of the error state space as already noted, we define the following

projection mappings from the overall state space of ~x to the state space of errors, which

will appear in subsequent work:

Definition 2.2 (g) Let g be the projection of R
N × CM onto CM , with g : (RN × CM) →

CM such that g : (~xn) → (εn−1, . . . , εn−M), n ≥ 0. Let gk be the projection of RN × CM

onto C with gk : (RN × CM) → C such that gk : (~xn) → εn−k, k = 1, 2, . . . , M , n ≥ 0.

Metric:

To properly define the nature of the topology in the dynamical system for the Σ-∆

modulator, and to proceed with the later analysis for chaos in particular, the form of the

metric on the state space RN × CM must be defined. We define the “distance” or metric

between two points z1, z2 ∈ C by

‖z1 − z2‖ = min(|z1 − z2|, ∆ − |z1 − z2|).
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This definition is geometrically sensible in that it simply represents the shortest distance

between the two points z1, z2 on the circle. Now to generalize to the whole state space,

the distance or metric between two points ~xa = (za1, . . . , zaN ; ẑa1, . . . , ẑaM ) and ~xb =

(zb1, . . . , zbN ; ẑb1, . . . , ẑbM), where ~xa, ~xb ∈ RN × CM , zai, zbi ∈ R, and ẑai, ẑbi ∈ C, is

defined by

‖~xa − ~xb‖ =

√
√
√
√

N∑

i=1

‖zai − zbi‖2 +

M∑

i=1

‖ẑai − ẑbi‖2.

The metric ‖zai − zbi‖, i = 1, . . . , N , between two points on R is simply defined to be the

usual Cartesian metric |zai − zbi|. This metric has been extended to RN above in the usual

manner, and the metric on C has been extended to CM above in the analogous manner.

The overall metric in the above definition then just combines those of RN and CM to

RN × CM , in the same manner. Similarly, the distance or metric between two points xa,

xb ∈ R or ya, yb ∈ R in observable input/output space is defined by |xa − xb| or |ya − yb|
respectively, the usual Cartesian metric on R. In all cases, the “magnitude” of a quantity,

say s, is the metric between the quantity and zero on its particular state space, denoted ‖s‖
or |s|. Thus we have a simply adapted metric to apply to the state space for the dynamical

system of (2.1).

Circle Map Properties:

To start, we restate the circle map definition mentioned in Section 1.4:

Definition 2.3 (Circle Map) A general normalized circle map is defined by C(θ) =

F (θ) mod 1, where F : (R) → R, C : (R) → [0, 1), and C(θ + 1) = C(θ) holds for all

θ ∈ R.

We have each error state εn−i, i = 1, . . . , M , defined on the circle C. This is consistent

with the constraints and relative continuity in these errors as defined in system (1.2), and
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demonstrates that in the structure of the dynamical system (2.1), we are using the concept

of the circle map for the mappings of the state space to itself (the final property in the

definition may or may not apply — see Section 4.1). Specifically, for a first order system,

we would have εn = C(εn−1, xn) and F (εn−1, xn) = xn−rn = un, from (1.2), without taking

into account the normalization and translation simplifications in the definition above. The

circle map approach we use is a generalization, to higher “circle” dimensions, of this and

the one dimensional circle map approach of others, e.g. Wang [62], used to analyze first-

order Σ-∆ modulator systems. This is related to results of Keener [30], and the application

of the rotational chaos definition. We generalize here to deal with higher-order systems.

Specifically, CM represents the Cartesian product of M circles, or geometrically, an M

dimensional “torus” in the state space. The part of the mappings that map onto the torus

thus constitute generalized circle maps.

It is the cyclic symmetry of the quantizer element Q in the Σ-∆ modulator that en-

ables the Σ-∆ system behaviour to be described using the circle map. The properties and

symmetries of the circle map, in turn, provide for easier and more simplified analysis of the

structure and dynamics of the system under description, as will be more apparent in the

analysis for chaos in Chapter 5. The important consequence of this, and a strong justifica-

tion for using the CM error state space representation to capture the circle map property,

is the continuity relationship. In particular, when εn is defined on C, it is continuous as

a function of the preceding coordinates (M previous ε iterates and N previous r iterates,

each over R) via rn and xn from (1.2). That the state space variables for this dynamical

system correspond to the error εn, filter output rn, and their delays up to Mth and Nth

order respectively, follows directly from the structure of the difference equations in sys-

tem (1.2) that this dynamical system formulation is based on. Since we are concerned with

error or noise shaping as the function of the Σ-∆ modulator, the error εn is the natural
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variable of the system to choose to study the system’s dynamics. The equations (1.2) and

the dynamical system 2.1 it yields above are hence formulated to incorporate this.

In light of the importance of dealing with the CM and C domains, it shall be useful

in later work of this thesis, to consider the “identity” circle map projection, where F is

essentially the identity function, defined as follows:

Definition 2.4 (P̂ C) Let P̂ C be the projection of RM onto CM , with P̂ C : RM → CM ,

such that P̂ C(~x) = (~x+(∆/2)M)(mod ∆)− (∆/2)M , ~x ∈ R
M , where (∆/2)M is the M-d

vector with ∆/2 in all entries, and the mod ∆ operation is applied independently to each

vector entry in its argument. Let P̂ C1 be the projection of R onto C, with P̂ C1 : R → C,

such that P̂ C1(x) = (x + ∆/2)(mod ∆) − ∆/2, x ∈ R.

If ~x is defined on Rq, for 1 ≤ q ≤ M , we shall refer to the projection of ~x on Cq, as a

generalization of the projection P̂ C above, as “the value of ~x on Cq”, “~x modulo Cq”, or

simply “~x on Cq”. Similarly, if X is a random variable defined on Rq, whose projection on

Cq is described by a uniform distribution over Cq, we shall describe X or its PDF as being

“uniformly distributed over Cq” or “uniform over Cq”. �

The system input xn in (1.2) and (2.1) may have various characterizations in our treat-

ment. We treat periodicity as follows:

Definition 2.5 (Periodic Input) The input xn is periodic if xk1p+i = xk2p+i, for all k1,

k2, i ∈ Z
+ ∪ {0}, for some period p ∈ Z

+.

Hence xn cycles with a period p. Our general characterization of a periodic point ~x0 will be

looser, requiring only recurrence (see Definition 5.4 in Section 5.1 for a specific definition

in the error state space). We say that an input x0 is recurrent, or a point ~x0 is periodic

(i.e. recurrent), if there exists a period p ∈ Z+ satisfying x(k−1)p = x0, or ~x(k−1)p = ~x0,
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respectively, for all k ∈ Z+, where p need not be unique. A periodic point ~x0 lies on a limit

cycle if ~x0 satisfies the stricter conditions of Definition 2.5 above, and hence has a cyclic

orbit. This will hold for any periodic point, when the input is periodic. In addition, we

may note that the composite mapping fn+k+p−1 ◦ . . . ◦ fn+k+1 ◦ fn+k, with k ∈ Z+ ∪ {0},
will be constant over all n ≥ 0, and hence autonomous or input “independent” over n, if

the input is periodic with period p.

Linear Difference Equation:

The dynamical system (2.1) constitutes a complex, nonlinear expansion upon a more

basic linear dynamical system formed by its difference equations from (1.2), with the quan-

tizer component neglected (e.g. set Q(x) = 0). The simplest form of this linear system

may be given by a P th order nonautonomous discrete difference equation with constant

coefficients and P dimensional state space. A simplified difference equation representing a

linear system of this type would be

zn =

P∑

k=1

dkzn−k + cn, n ≥ P, (2.2)

with initial conditions z0, z1, . . . , zP−1 ∈ R, and with dk, cn ∈ R, for k = 1, . . . , P , and

n ≥ P . This simplified linear system is applicable to model local or subsystem behaviour

of the system (2.1), and its form will arise recurrently in the analysis of stability, chaos,

and the general dynamics of system (2.1) throughout this thesis. Therefore we outline here

the nature of the solutions to system (2.2).

The general solution to the homogeneous difference equation corresponding to (2.2) is

given by the following [42]:

zg,n =

s∑

i=1

[

ti∑

j=1

Aijn
j−1]µn

i +

ŝ∑

i=1

[

t̂i∑

j=1

nj−1]|µ±
i |n · [Bij sin(θin) + Cij cos(θin)], (2.3)
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n ≥ P , where

d(z) = zP −
P∑

k=1

dkz
P−k

is the characteristic polynomial of the difference equation, and has s real zeros µi with

multiplicities ti respectively, and ŝ pairs of complex conjugate zeros µ±
i = k1,i ± k2,îi,

(k2,i 6= 0) each with multiplicity t̂i respectively. We let î denote
√
−1. The magnitude of

these zeros is defined by |µ±
i | =

√

k2
1,i + k2

2,i. The complex phase argument is defined by

θi = arctan(
k2,i

k1,i

), θi ∈ (−π, π]. If we express the formula above as zn = Ln(Aij , Bij, Cij),

(where “Lk” denotes the appropriate linear combination of the Aij, Bij , Cij), then the “P”

constants Aij , Bij , Cij are solutions of the linear system

zk = Lk(Aij , Bij, Cij), k = 0, 1, . . . , P − 1,

which is a nonsingular system (i.e. solvable).

A particular solution is given by

zp,n = cn +
n−1∑

k=P

ckLn−k−1(Ãij , B̃ij, C̃ij), n > P, zp,P = cP . (2.4)

The “P” Ãij , B̃ij , C̃ij are given as solutions to the following linear system:

Lk(Ãij , B̃ij, C̃ij) =

k∑

i=1

diLk−i(Ãij, B̃ij , C̃ij) + dk+1,

with k = 0, 1, . . . , P − 1. This system is a nonsingular (solvable) system.

The full solution for zn is the sum of a general solution zg,n and a particular solution

zp,n, given from (2.3) and (2.4) respectively, so that zn = zg,n + zp,n.

Applying the Formulation:

The dynamical system formulation of the model in this chapter seeks to be a pragmatic,

working application of the rigorous dynamical system definition (which we omit from expo-

sition) — an approach we take in the formulations developed for chaos, dithered/random
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error behaviour, stability and other such issues in the rest of this thesis, as well. In par-

ticular, the difference equation systems here are really being “driven” or “controlled” by

an external input, making the systems generally nonautonomous. Thus the state space

mappings are themselves functions of time n (generally different for different n), and hence

orbits with different initial conditions may cross (at differing n), while remaining distinct

afterward (unlike a strictly defined dynamical system).

In addition, we will allow our dynamical system model to be stochastic, by allowing

any combination of a random input xn, dither νn, or random initial condition ~x0 in some

specified way. The formulation and analysis of the system, its dynamics and statistical

properties, will be conducted in the same manner as for the deterministic dynamical system,

or some natural adaptation or generalization thereof. In Chapters 2 to 6, ~x0 is assumed to

be fixed (nonrandom), and the emphasis is on deterministic systems. For Chapters 7 and

8, the formulation in Chapter 2 will be extended in Section 7.1 to incorporate the concept

of a long term steady state of ~xn, a stochastic ~x0, and functional mappings. Some general

knowledge of stochastic processes in this thesis is drawn from [18].

It is important to clarify the mathematical modelling of Σ-∆ modulator systems with

a stochastic signal component (i.e. an input and/or dither component) as treated in this

thesis. We take a head on approach in our analysis, mathematically treating such signal

components in pure stochastic form. Formal results for chaos and stability that follow from

this may not be robust in extending to cases with “near random” (i.e. theoretically deter-

ministic) signal approximations, as formed from PRN generators. Therefore, in Chapters

3 to 6 inclusive, the stochastic nature of such systems must be interpreted to exist in pure,

theoretically random form. Systems that, in practice, approximate these aspects, must be

interpreted as strictly deterministic (not random) when applying the chaos/stability results

to be established. This is true, in general, for a stochastic steady state characterization as
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introduced in Chapter 7 as well. The dither motivated error statistics analysis in Chapter

8 would be expected, however, to possess this robustness. Therefore, the error state space

behaviour results in Chapters 7 and 8 for dithered or generally stochastic systems would be

expected to sufficiently closely (for practical purposes) approximate what we would expect

in practical PRN generator approximations of these systems.

With the development in this chapter, we may now proceed with the analysis of the

subsequent chapters.



Chapter 3

Stability

In this chapter we present and discuss results concerning the stability of the Σ-∆ modulator.

Conditions under which stability and chaos may coexist will be discussed in Section 5.4.

Internal and external stability are the two essential types of stability that exist for

such a dynamical system. These relate to the state space coordinates ~xn, and system

output yn, respectively. The most basic concept of stability of concern (pertaining to both

types) is standard bounded-input/bounded-output (BIBO) stability. We will simply call

this bounded stability, which we define as follows:

Definition 3.1 (Bounded Stability) The general Σ-∆ modulator is defined to be bounded

internally stable if and only if the magnitude of the state space coordinate ~xn, given by ‖~xn‖,
is bounded for all n ≥ 0, whenever the magnitudes of the input xn, and dither νn, given by

|xn| and |νn| respectively, are bounded for all n ≥ 0; that is there exists a constant K > 0

such that ‖~xn‖ < K for all n ≥ 0, whenever there exists constants K̃x, K̃ν > 0, such that

|xn| < K̃x, |νn| < K̃ν, for all n ≥ 0. Bounded external stability has the same definition

applied to the magnitude of the system output yn given by |yn|, instead of ~xn.

From the definition of the metric, when the input xn and dither νn are bounded for all

62
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n ≥ 0, these internal/external stabilities hold if and only if εn and rn, or yn are bounded,

for all n ≥ 0, respectively. Stricter forms of stability exist for each type, such as asymptotic

stability about a fixed point or limit cycle, but these will not be considered here.

Bounded internal stability is an obvious physical and practical requirement of any Σ-∆

system. We cannot have the filter output rn becoming unbounded, since this represents a

physical overload of the feedback filter and loop, which will imply a physical breakdown of

the system. Also, the development over time of unbounded errors εn means the accuracy

of the amplitude quantization process is deteriorating to nil. Bounded external stability is

also a natural requirement. If such stability could not be guaranteed, for example, then

we would risk having the quantizer output yn becoming arbitrarily large in magnitude

over time; a situation which obviously renders the system useless as an analogue-to-digital

converter under the standard operating assumption of a bounded input (at least when

the available number of bits affords a magnitude of yn well in excess of the upper bound

on the input xn). For practical systems with quantizers having a finite number of steps

and hence the potential for overload, bounded external stability must always hold, at

the price of having potentially large errors. With the general multi-step quantizer model

having bounded dither νn, it is easy to see that bounded internal and external stability

are equivalent. Identifying stability or nonstability in the standard fashion, with respect to

a bounded input xn, is reasonable since this is the expected condition of the system. An

unbounded input clearly imposes a physical overload on the system essentially equivalent

to that associated with a lack of bounded internal stability, for example, and thus could be

regarded as a form of “induced” nonstability.

With the quantizer Q taken to have an arbitrarily large number of steps in our model (1.2)

(i.e. general multi-step), there can be no overload of the quantizer. The errors εn will be

bounded if and only the dither νn is bounded, and will always lie on C when no dither is
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present. Hence bounded internal and external stability hold if and only if rn and νn are

bounded, for all n ≥ 0. Thus we focus in this chapter on bounded internal stability via the

boundedness of rn. With such stability guaranteed, we are free to design the modulator to

simply refine its capabilities further. The requirement we have is then that |rn| < K, for

all n ≥ 0, for some K > 0. In the work of this chapter, we assume νn = 0 for all n ≥ 0, so

that no dither is present. The theorems presented would directly extend in applicability to

the case when an arbitrary bounded dither exists, however (see the discussion at the end

of this chapter). In this case, the bound on the magnitude of the error εn would change

from ∆/2 to ∆/2+ KD, where the magnitude of the dither νn is bounded by KD > 0. The

term stability as used will be meant to imply bounded internal stability.

To proceed with the analysis of stability, we focus now on the nature of the filter output

rn. We see that difference equation (1.2) may be reorganized to give the following difference

equation strictly in terms of rn, where the errors εn have been incorporated into a relative

input c̃n:

rn = −
N∑

j=1

bjrn−j + c̃n (3.1)

c̃n =

M∑

i=1

aiεn−i, n ≥ 0,

with initial conditions r−1, r−2, . . . , r−N that we denote r0 ∈ RN . The solution is the sum of

a general solution rgn and a particular solution rpn, so that rn = rgn + rpn. The general and

particular solutions may be obtained from applying (2.2) with (2.3) and (2.4); with P = N ,

dk = −bk, k = 1, . . . , N , and with the subscripts of r increased by a factor of N . In the

proofs of this chapter, we will implicitly assume that this subscript shift has been applied

when using (2.2), (2.3) and (2.4), unless otherwise noted. We also have d(z) = pr(z), where

pr(z) = zN +

N∑

j=1

bjz
N−j
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is the characteristic polynomial of the difference equation for rn in (3.1). If we multiply

the noise transfer function (1.3) by zmax(N,M), we find that the denominator is given by the

polynomial pr(z)zmax(N,M)−N . Thus the poles of the NTF (1.3) are given by the zeros of

pr(z), together with max(N, M) − N poles at zero if M > N .

The equations in (3.1) have the following topological interpretation in the Σ-∆ modu-

lator. Let Hr be a filter corresponding to the feedback elements of H only, that is the left

side of the filter H in Figure 1.3. Then Hr has input c̃n and output rn. The remaining part

of the circuit, in turn, may be thought of as a “filter” that takes rn, xn, (and νn if a dither

exists) as input, and gives c̃n as output.

With this development, we may now state and prove the theorems of this chapter

regarding stability. For the proofs, we shall shift the subscripts of r and c̃ upward by N to

be consistent with the formulas at the end of the last chapter that are used.

Theorem 3.2 Suppose all the zeros of pr(z) have magnitude less than 1 (i.e. the poles of

the NTF (1.3) are strictly inside the unit circle). Then the filter output rn in (1.2) will

remain bounded for all n ≥ 0.

Proof:

We have |µi| < 1 and |µ±
i | < 1 for all zeros µi, µ±

i = k1,i ± k2,iî of pr(z). Clearly

rg,n, rp,n and thus rn are finite for any n ≥ 0. Now lim sup
n→∞

|rn| = lim sup
n→∞

|rg,n + rp,n| ≤
lim sup

n→∞
|rg,n| + lim sup

n→∞
|rp,n|. From the zeros of pr(z) and (2.3), lim sup

n→∞
|rg,n| = 0. Now,

from (2.4),

lim sup
n→∞

|rp,n| ≤ lim sup
n→∞

|c̃n| + lim sup
n→∞

n−1∑

k=N

|c̃k||Ln−k−1(Ãij , B̃ij, C̃ij)|

≤ K1 + lim sup
n→∞

n−1∑

k=N

K1|Ln−k−1(Ãij , B̃ij, C̃ij)|,
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where K1 =
∆

2

M∑

k=1

|ak| ≥
M∑

k=1

|ak||εn−N−k| ≥ |c̃n|, ∀ n ≥ N . We also have

lim sup
n→∞

n−1∑

k=N

|Ln−k−1(Ãij , B̃ij, C̃ij)| ≤ lim sup
n→∞

n−1∑

k=N

s∑

i=1

|[
ti∑

j=1

Ãij(n − k − 1)j−1]µn−k−1
i |

+ lim sup
n→∞

n−1∑

k=N

ŝ∑

i=1

|[
t̂i∑

j=1

(n− k − 1)j−1]|µ±
i |n−k−1 · (|B̃ij |+ |C̃ij|)|.

The R.H.S. of the above expression represents the sum of N convergent series. Let K2 be the

sum of the convergent values of these series, so that lim sup
n→∞

n−1∑

n=N

|Ln−k−1(Ãij , B̃ij, C̃ij)| ≤

K2.

Putting the results together, we have lim sup
n→∞

|rn| = lim sup
n→∞

|rp,n| ≤ K1 + K1K2 = K3.

With rn finite as well, we then have that rn is bounded ∀ n ≥ 0. �

This theorem gives the most basic and general result of this chapter. From this we

have a simple natural condition on the zeros of pr(z), and hence on the bj , for guaranteeing

stability in the Σ-∆ modulator. A simple converse condition guaranteeing instability does

not exist. In general, if pr(z) has a zero with magnitude greater than 1 (or magnitude

1, multiplicity greater than 1), instability will arise, although exceptions to this rule may

exist.

We begin a further exploration by first considering the case where the largest magnitude

zero of pr(z) equals 1 (multiplicity 1).

Theorem 3.3 Suppose the largest magnitude zero(s) of pr(z) have magnitude 1 and mul-

tiplicity 1. Suppose also that the relative input c̃n is periodic with period p ∈ Z+. Suppose

further that no zero µi of pr(z) is identically 1, is identically −1 when p is odd, or has θi

= 2πm/p when k2,i 6= 0, m ∈ Z. Then the filter output rn in (1.2) will remain bounded for

all n ≥ 0.
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Proof:

Let rn = r1,n + r2,n + c̃n, where r1,n and r2,n are the parts of the expression for rn

(involving L) corresponding to the zeros of pr(z) with magnitude less than 1 and equal to

1 respectively. Applying the proof of Theorem 3.2, we have that r1,n + c̃n will be bounded.

Let L2,n(Ai1, Bi1, Ci1) represent the part of rg,n and r2,n corresponding to the zeros of pr(z)

with magnitude 1. From (2.3) this will also be bounded. Let these bounds be K4 and K5

respectively. Now we have

|rn| ≤ K4 + K5 + |
n−1∑

k=N

c̃kL2,(n−k−1)(Ãi1, B̃i1, C̃i1)|, for n > N. (I)

Since c̃n is periodic with period p, we may represent it by c̃qp+l+N = cl, l = 0, . . . , p− 1,

q ≥ 0, for some such cl ∈ R, where n = qp+ l +N . Assuming no zero of pr(z) is identically

1, then inequality (I) leads to

|rn| ≤ K4 + K5 +

p−1
∑

l=0

|cl

q̂
∑

k=N

Ã21(−1)n−(N+kp+l)−1|

+

q̂
∑

l=0

|cl|
ŝ∑

i=1

(|B̃i1||ℑ(S(n − (N + q̂p + l) − 1, n − N − l − 1, p))|

+ |C̃i1||ℜ(S(n − (N + q̂p + l) − 1, n − N − l − 1, p))|), n > N ,

where S(α, β, γ) =

β
∑

k=α

eîθiγk, α, β, γ ∈ Z; ℜ, ℑ denote the real and imaginary parts

respectively; and q̂ = (n − l) − [(n − l) mod p ]. Note that the order of summation is

reversed in the trigonometric terms. The third term above will exist only if p is even. In this

case, it is clearly bounded by K6 =

p−1
∑

l=0

|clÃ21|, ∀ n > N . The fourth and fifth terms above

are bounded by

p−1
∑

l=0

|cl|
ŝ∑

i=1

Di‖(
eî(n−N)pθi − 1

eîpθi − 1
)‖ · ‖e−plθi‖, where Di = max(|B̃i1|, |C̃i1|),

which in turn is bounded by K7 =

ŝ∑

i=1

Di|
2

√

2 − 2 cos(pθi)
|, ∀ n > N , if θi 6= 2πm/p, m
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∈ Z. Putting the results together, we have that |rn| ≤ K4 + K5 + K6 + 2K7, ∀ n > N so

that rn is bounded ∀ n ≥ 0. �

Proposition 3.4 Suppose the largest magnitude zero(s) of pr(z) have magnitude 1 and

multiplicity 1. Suppose also that c ∈ R− {0} is a constant, and one of the following holds.

(a) c̃n = c and no zero of pr(z) is identically 1;

(b) c̃n = c(−1)n and no zero of pr(z) is identically −1;

(c) c̃qp+l = c(−1)q, l = 0, . . . , p− 1, q ≥ 0, for some p ∈ Z+, n = qp + l; and no zero µi

of pr(z) has θi = π(2m − 1)/p when k2,i 6= 0, m ∈ Z, or is identically −1 when p is odd.

Then the filter output rn in (1.2) will remain bounded for all n ≥ 0.

Proof:

(a) This result follows directly from Theorem 3.3.

(b) Assuming c̃n = c(−1)n and no zero of pr(z) is identically −1, then inequality (I)

in the proof of Theorem 3.3 leads to

|rn| ≤ K4 + K5 + |
n−1∑

k=N

c(−1)kÃ11|

+ |c|
ŝ∑

i=1

(|B̃i1||ℑ(S(0, n− N − 1, 1))|+ |C̃i1||ℜ(S(0, n−N − 1, 1)|), n > N.

The bounds of K6 and K7 from part (a) will hold for the third and fourth terms of the

above respectively. Analogously to part (a), we then have that rn is bounded ∀ n ≥ 0 here.

(c) Assuming c̃qp+l+N = c(−1)q, l = 0, . . . , p−1, for some p ∈ Z+, q ≥ 0, then inequality

(I) leads to
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|rn| ≤ K4 + K5 + |
n∑

k=N

c̃kÃ11| + |
n∑

k=N

c̃kÃ21(−1)n−k−1|

+ |c|
ŝ∑

i=1

(|B̃i1||ℑ(S(n − N − p, n − N − 1, 1)I1 + S(N, n − N − 1 − 2q̃p, 1))|

+ |C̃i1||ℜ(S(n − N − p, n − N − 1, 1)I1 + S(N, n − N − 1 − 2q̃p, 1))|),

where n > N , n = qp + l + N from above, and 2q̃ is the largest even number less than or

equal to q (q̃ ∈ Z). We define I1 = S(0, q̃ − 1,−2p)(1 − S(1, 1,−p)) if q̃ > 0, and I1 = 0

if q̃ = 0.

The third term above is bounded by K6 = p|cÃ11|. The fourth term will be bounded by

K7 = |cÃ21| provided that p is even. If p is odd, we assume that no zero of pr(z) is identically

−1 as stated in the theorem, so that the fourth term does not exist (if Ã21 6= 0 and p is

odd, this term would be unbounded). The subsequent terms above will be bounded by

|c|
ŝ∑

i=1

Di(K8,iI2,i+K9,i), where K8,i = ‖S(l−p, l−1, 1)‖, K9,i = ‖S(N, p(q−2q̃)+l−1, 1)‖,

and I2,i = ‖eîqpθi‖ · ‖(e
−2̂iq̃pθi − 1

e−2̂ipθi − 1
)‖ · ‖1 − e−îpθi‖ if θi 6= mπ/p, m ∈ Z and θi 6= 2mπ/p,

m ∈ Z; I2,i = 0 if θi = 2mπ/p, m ∈ Z. I2,i is then bounded by K10,i = | 4
√

2 − 2 cos(2pθi)
|,

if θi 6= mπ/p, m ∈ Z and θi 6= 2mπ/p, m ∈ Z, and by K10,i = 0 if θi = 2mπ/p, m ∈ Z, ∀
q ≥ 0.

Putting all the results together, we have that

|rn| ≤ K4 + K5 + K6 + K7 + 2|c|
ŝ∑

i=1

Di(K8,iK10,i + K9,i), ∀ n > N,

provided no zero of pr(z) has θi 6= (2m− 1)π/p, when k2,i 6= 0, m ∈ Z, and no zero of pr(z)

is identically −1 when p is odd. rn is then bounded ∀ n ≥ 0 under these conditions. �

With Theorem 3.3, we see how stability may be assured when the input c̃n is periodic.

For a given such input, stability will fail to be assured only for special cases when the
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natural “frequency” of the system, as determined by the position of the zeros of pr(z) on

the unit circle in C, is a rational multiple of the input frequency. These are “resonance”

cases suggesting unboundedness. The conditions of Theorem 3.3 will generally be “if and

only if” in nature, with exceptions to this possible only when certain combinations of input

c̃n and/or the coefficients of the magnitude 1 zeros in the particular solution exist. Hence

resonance generally means unboundedness. If all magnitude 1 zeros of pr(z) are not rational

fraction multiples of 2π in phase on the unit circle, then stability would be assured for any

periodic input c̃n.

Proposition 3.4 parts (b) and (c) show, under a special form of constant magnitude

periodic input c̃n, how stability may be assured with less restrictive conditions. These

essentially involve allowing a zero identically at 1, and generally half the added restric-

tions, since p here corresponds to a period of 2p in Theorem 3.3. Parts (a) and (b) are

essentially special cases of part (c), with (a) corresponding to the limit as p → ∞, and (b)

corresponding to p = 1. Cases with more general periodic input c̃n with either constant or

varying magnitude, could be analyzed by considering this input as a sum of inputs of the

form in parts (a), (b) and (c). For such a decomposition, the union of all the conditions in

the proposition to provide boundedness for each input case would provide boundedness for

the case of the sum of the inputs as overall input. This result follows from the linearity of

the difference equation for rn in (3.1). With such added complexity, instability would be

expected to be more prevalent as we see for general periodic input c̃n in Theorem 3.3.

A more direct relevance of Theorem 3.3 and Proposition 3.4 follows from the relationship

between the input c̃n and the errors εn. Specifically, from (3.1), periodicity in the errors

will clearly imply periodicity in the corresponding input. A more particular structure of

periodic errors will be sufficient to yield an input of the form in Proposition 3.4 as well.

From the consideration of dynamical behaviour in the Σ-∆ modulator that brings about
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limit cycles (i.e. some error periodicity), one might then conclude that such behaviour

would tend to be more stable in the marginally minimum-phase case.

We now have the following:

Proposition 3.5 Suppose the largest magnitude zero(s) of pr(z) have magnitude 1 and

multiplicity 1. Suppose also that either

n∑

k=−M

|εk| ≤ KA, for some KA > 0, or

n∑

k=0

|c̃k| ≤

KB, for some KB > 0, hold for all n ≥ 0. Then the filter output rn in (1.2) will remain

bounded for all n ≥ 0.

Proof:

To begin we note that if

n∑

k=−M

|εk| < KA, ∀ n ≥ −M , then it follows, from the definition

of c̃k, that
n∑

k=N

|c̃k| ≤ KB, ∀ n ≥ N , where KB = KA

M∑

k=1

|ak|, KA, KB > 0, and where we

increase the subscripts by a factor of N as in the previous notation, for c̃n. Applying the

initial approach of Theorem 3.3 here, we arrive at inequality (I). With the bound KB

above, this leads to |rn| ≤ K4 + K5 + KB[|Ã11| + |Ã21| +
ŝ∑

i=1

(|B̃i1| + |C̃i1|)], ∀ n > N , so

that rn is bounded ∀ n ≥ 0. �

This result provides an extension of the guaranteed stability for minimum-phase systems

to the marginally minimum-phase (multiplicity 1 for zeros on the unit circle) case, but

under the restriction of having an error sequence εn whose partial sums are bounded in

magnitude. Obviously for this requirement to hold it is necessary at least that the error

εn → 0 as n → ∞.
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Proposition 3.6 The particular solution of the filter output rn in (1.2) will be rp,n = c̃n,

for all n ≥ KN ≥ 0, if and only if

N∑

j=1

bj c̃n−j = 0 holds for all n ≥ KN + N , and rp,n = c̃n

for n = KN , . . . , KN + N − 1. Moreover, if the largest magnitude zero(s) of pr(z) have

magnitude 1 with multiplicity 1, and c̃n is such that the above holds, then the filter output

rn will remain bounded for all n ≥ 0.

Proof:

Suppose the particular solution is rp,n = c̃n, ∀ n ≥ KN ≥ 0. Then the result follows

directly from the difference equation for rn in (3.1). Suppose conversely that
N∑

j=1

bj c̃n−j = 0

holds ∀ n ≥ KN + N , and rp,n = c̃n for n = KN , . . . , KN + N − 1. Then, by induction on

the difference equation for rn, we arrive at rp,n = c̃n, ∀ n ≥ KN ≥ 0. Now suppose that

the zeros of pr(z) are as given. From the formation of inequality (I) at the beginning of

the proof of Theorem 3.3, we have that the last term is zero for n ≥ max(KN , N). Thus

|rn| ≤ K4 + K5 for n ≥ max(KN , N), so that rn is bounded ∀ n ≥ 0. �

This result provides an extension of guaranteed stability to these marginally minimum-

phase cases in the simple and unique case when the input c̃n satisfies a special property with

respect to the filter. Any such sequence c̃n would essentially constitute, for n ≥ KN + N ,

the orbit generated by a (N−p)th order difference equation with an initial condition formed

from some N − p iterates from the set {c̃KN
, . . . , c̃KN+N−1}, where p is the smallest integer

such that bp 6= 0. To have rp,n = c̃n for n = KN , . . . , KN + N − 1, requires appropriate

control values for c̃KN−1, . . . , c̃KN+N−2. The trivial case where c̃n = 0 for all n ≥ 0, holds

if KN = 0. It is under the trivial condition only, that the coefficients Ãij , B̃ij , C̃ij in the

particular solution of rn all vanish.
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Proposition 3.7 Suppose that all the zero(s) of pr(z) have magnitude 1 or greater. Sup-

pose also that the relative inputs c̃n are random, i.i.d., and described by a probability den-

sity/mass function that is either piecewise continuous on some domain, or discrete with

at least 2 different values of nonzero probability. Then the filter output rn in (1.2) will be

unbounded with probability 1.

Proof:

We consider rn as a random variable where, from (2.4), we have rn = rg,n + c̃n +
n−1∑

k=N

c̃kLn−k−1(Ãij, B̃ij , C̃ij). First we have from (2.3), with some nonzero constants present,

that |Ln−k−1(Ãij , B̃ij, C̃ij)| will either be unbounded, or vary between zero and |Ã11| +

|Ã21| +
ŝ∑

i=1

(|B̃i1| + |C̃i1|) in magnitude, periodically or densely, as k goes from N to n − 1

for arbitrarily large n. This implies the property lim
m→∞

m∑

l=1

Ll(Ãij , B̃ij, C̃ij)
2 = ∞.

Now we suppose that |E[rn]| ≤ Km, for all n ≥ 0, and some Km > 0. Taking the

variance of rn, we have that Var[rn] = Var[rg,n] + Var[c̃N ]
n−1∑

k=N

Ln−k−1(Ãij , B̃ij, C̃ij)
2, using

the independence of the i.i.d. c̃k and the fixed rg,n. Applying the property of Ln−k−1 given

above, it follows that lim
n→∞

Var[rn] = ∞. This then implies that for any K > 0, the

probability that ∃ n1 > N such that |rn| > K equals 1. If, conversely, |E[rn]| is unbounded

as n → ∞, then this final conclusion follows as well. Thus rn is unbounded. �

It is expected that the result of this proposition would generally hold under the relaxed

condition that at least 1 zero of pr(z) have magnitude 1 or greater. Under such conditions,

the proof of the proposition carries through as long as the nonzero constants of rp,n are

not exclusive to the terms associated with the minimum-phase zeros of pr(z), as would be

expected generically.
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Proposition 3.7 illustrates how, for these marginally minimum-phase cases, we require

some element either of regularity or dissipation in the magnitude of the input c̃n, and

by association the errors εn, in order to attain stability over at least broad sub-cases.

A purely random i.i.d. input c̃n simply reinforces (i.e. assures) the tendency towards

instability. Unsurprisingly, this property extends directly to the nonminimum-phase cases,

where instability is generally expected.

Considering the overall system, it can be seen that a random i.i.d. system input xn will

bring about a random i.i.d. input c̃n for Σ-∆ modulators of general filter forms. Random

i.i.d. errors εn are similarly related. It should be noted in this context that the definition for

randomness of the c̃n in Proposition 3.7 is quite explicit. Thus while randomly interpreted

long run error behaviour, as discussed in Chapter 7, and hence long run behaviour of the

input c̃n, may hint at some connections; Proposition 3.7 cannot be applied, in general, to

simply any system with a defined random steady state error or c̃n (see Chapter 7).

We now proceed to the case where pr(z) has a zero with either magnitude greater than

1, or else magnitude 1, multiplicity greater than 1.

Theorem 3.8 Suppose pr(z) has N1 zeros of magnitude less than 1, and N2 zeros of mag-

nitude 1 and multiplicity 1, with NMP = N1 + N2, where 0 ≤ NM ≤ N . Suppose also that

c̃n is fixed with respect to the initial conditions ri, i = −1, . . . ,−N , for all n ≥ 0. Suppose

further that the following hold:

(a) the part of the solution rn corresponding to the N2 zeros of magnitude 1, multiplicity

1, is bounded for all n ≥ 0;

(b) if zeros of magnitude 1 or greater, with multiplicity greater than 1, exist, and/or

complex conjugate pairs of zeros of magnitude greater than 1 exist, then the part of the

solution rn corresponding to these zeros is bounded for all n ≥ 0, for some initial condition

r̂0 ∈ R
N .
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Then the filter output rn in (1.2) will remain bounded for all n ≥ 0, over an NM -

dimensional subspace of the initial conditions ri, i = −1, . . . ,−N .

Proof:

Let rn = r1,n + r2,n + r3,n + r4,n + c̃n, where r1,n, r2,n, r3,n and r4,n are the parts of

the expression for rn (involving L) corresponding to the zeros of pr(z) with magnitude

less than 1, equal to 1 with multiplicity 1, equal to 1 or greater with multiplicity greater

than 1 or complex with magnitude greater than 1, and real with magnitude greater than 1

with multiplicity 1, respectively. Applying Theorem 3.2 and conditions (a) and (b) of this

theorem, we have that r1,n + r2,n + r3,n + c̃n will be bounded. Let this bound be K̃1 so that

we have |rn| ≤ K̃1 + |r4,n| for n > N . Denoting the part of L associated with r4,n by L4,n,

we have r4,n = L4,n(Ai1) +
n−1∑

k=N

c̃kL4,(n−k−1)(Ãi1). Factoring out the µn
i from the terms of

r4,n above, we obtain r4,n =
s∑

i=1

µn
i (Ai1 + Ãi1

n−1∑

k=N

c̃k(µ
−1
i )k+1). The c̃n above are bounded

in magnitude by K1 from the proof of Theorem 3.2. The series in the term of the sum over

k above is the partial sum of a geometric series that thus converges as n → ∞. Let SAi

and EAi,n be the convergent value of the series, and the error between this and the partial

sum up to term n, respectively. Then we have r4,n =

s∑

i=1

µn
i (Ai1 + Ãi1(SAi + EAi,n)).

We may now choose Ai1 = −Ãi1SAi to eliminate these terms. The error EAi,n is O(−n)

in magnitude, which will cancel with the µn
i factor to make the remaining term O(1) in

magnitude ∀ n, such that we may conclude that |r4,n| ≤ K̃2 for n > N for some K̃2 > 0.

Thus, with the particular choice of Ai1, we have that |rn| < K̃1 + K̃2, ∀ n > N , so that

rn is bounded ∀ n ≥ 0. From the proof of Theorem 3.2 for the homogeneous part of rn,

we have that the homogenous parts of r1,n and r2,n will be bounded over all choices of

initial conditions, as they determine all Aij , Bij , Cij. Thus the boundedness of r1,n and
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r2,n from Theorem 1 and condition (a) respectively, holds over all initial conditions. An

initial condition r̂0 at which condition (b) is satisfied imposes constraints on the constants

of r3,n only. With the corresponding fixed constants Aij , Bij , Cij to give the boundedness

derived for r4,n, and those we assume fixed corresponding to r3,n to satisfy condition (b),

we are left with the NM constants corresponding to r1,n and r2,n which may take on any

values to keep rn bounded ∀ n ≥ 0. The range of initial conditions r−1, . . . , r−N (subscripts

increased by N for consistency with the formulas above) that allow any NM constants Aij ,

Bij , Cij while holding the other N − NM constants fixed constitutes an NM dimensional

subspace of initial conditions for the system.

If c̃n = 0, ∀ n > N , we may simply choose the N −NM Aij, Bij , Cij all zero in r3,n and

r4,n to satisfy conditions (b) and bound r4,n. The particular solution part of r2,n is also

bounded, and thus condition (a) is satisfied. �

In Theorem 3.8 we have attempted to extend some sort of general guarantee for stability

to the nonminimum-phase case (or marginally minimum-phase, with a zero on the unit circle

with multiplicity greater than 1). We see greater possibility for this when some zeros of

pr(z) are less than 1 in magnitude (or magnitude 1, multiplicity 1), and focus on a subspace

of initial conditions of the ri whose dimension reflects the relative degrees of freedom offered

by these zeros. If no zeros of this type exist, then (with condition (b) satisfied) stability

is guaranteed at only one unique initial condition of the ri. Therefore we see that real

zeros of magnitude greater than 1, multiplicity 1, impose no constraint on the nominal

input c̃n, but impose a constraint on the initial conditions of ri to assure stability. Zeros

of magnitude 1, multiplicity 1, still impose constraints on the input (e.g. the input c̃n of

Proposition 3.5 would suffice), but not on the initial conditions; while zeros of magnitude

1 or greater, multiplicity greater than 1, or of magnitude greater than 1, and in complex



CHAPTER 3. STABILITY 77

conjugate pairs, impose constraints on the initial conditions and even broader constraints

on the input, to assure stability.

More trivially, both conditions of the theorem are satisfied when c̃n = 0, for all n ≥ 0.

Note that conditions (a) and (b) in Theorem 3.8 simply reflect a general boundedness

criterion relating to the part of the output rn associated with the respective zeros in each

case. From Theorem 3.8 it follows directly that if, for some system, rn is bounded for all

n ≥ 0, for a particular initial condition r̂0 ∈ RN , then rn will remain bounded over an

NM -dimensional subspace of initial conditions containing r̂0.

Since the stability result of Theorem 3.8 requires c̃n to be fixed with respect to changes

in the initial conditions of the ri, this generally means that the system input xn, for each

n ≥ 0, must be restricted in some way that is at least as great as the subspace restriction

of these initial conditions (in some cases only for finite iterations of n). This follows from

the dependency of c̃n on the ri initial conditions, as seen in (1.2).

Corollary 3.9 Suppose the conditions of Theorem 3.8 hold for some initial condition

r̂0 ∈ RN . Then the filter output rn in (1.2) will be unbounded over all initial conditions

ri, i = −1, . . . ,−N , not contained in the subspace of initial conditions for boundedness

provided by Theorem 3.8.

Proof:

From the proof of Theorem 3.8, we have that the subspace of initial conditions assuring

boundedness provides for the constants Aij , Bij , Cij corresponding to r1,n and r2,n to

take on any values, and for the constants corresponding to r3,n and r4,n to be fixed. We

denote these fixed constants by Âij , B̂ij, Ĉij. Suppose r∗0 ∈ RN is an initial condition

not contained in the subspace of initial conditions assuring boundedness. We denote the

constants corresponding to r3,n and r4,n arising from the initial condition r∗0 by A∗
ij , B∗

ij , C∗
ij .
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Let r̂n and r∗n be the solutions corresponding to initial conditions r̂0 and r∗0 respectively.

We then have |r̂n − r∗n| ≤ |r̂g,5,n − r∗g,5,n| + |r̂g,6,n − r∗g,6,n|, where the subscripts refer to

the general solution part of the solutions corresponding to parts r5,n = r1,n + r2,n and

r6,n = r3,n + r4,n from the proof of Theorem 3.8. The particular solutions of r̂n and r∗n are

equivalent and cancel in the above result. From the proof of Theorem 3.2, we have that

lim sup
n→∞

(r̂g,5,n − r∗g,5,n) = 0.

Now we have |r̂g,6,n−r∗g,6,n| = |L6,n(Âij −A∗
ij , B̂ij −B∗

ij , Ĉij −C∗
ij)|, where L6,n denotes

the part of L associated with rg,6,n. From the definition of r∗0, it must hold that the

differences Âij − A∗
ij , B̂ij − B∗

ij and Ĉij − C∗
ij are not all zero, because the corresponding

constants of the two cases cannot all be equal. From the form of the zeros associated with

r6,n and (2.3), it then follows that lim sup
n→∞

|L6,n(Âij − A∗
ij, B̂ij − B∗

ij , Ĉij − C∗
ij)| = ∞.

Thus, from above, we have that lim sup
n→∞

|r̂n − r∗n| = ∞. With r̂n bounded, this implies

that r∗n is unbounded over n. Since r∗0 was chosen arbitrarily outside of the subspace of

initial conditions for boundedness, we then conclude that rn is unbounded over all initial

conditions not in this subspace. �

This result provides the strongest guarantee for instability that we have found. Basically,

this corollary implies that any system with a zero of pr(z) with either magnitude greater

than 1, or else magnitude 1, multiplicity greater than 1, cannot be stable over all initial

conditions of the ri, with c̃n fixed, or in general over all these initial conditions and all

system input xn. From our results we note that for any fixed input c̃n, there exists an initial

condition for the ri which yields stability, provided all zeros of pr(z) have either magnitude

less than 1, or are real with magnitude greater than 1, multiplicity 1. Furthermore, from

the basic form of the difference equations in (3.1), we have that for any system (i.e. any

pr(z)) there exist initial conditions together with an input c̃n that yield stability. These
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initial conditions would typically be small if the magnitude of the zeros is large, given the

boundedness of the c̃n. If no zeros of pr(z) have either magnitude greater than 1 or else

magnitude 1, multiplicity greater than 1, then stability, when it exists, holds for all initial

conditions.

We note that the stability results of Proposition 3.6, Theorem 3.8 and its corollary

are generally not robust to small perturbations in the required input c̃n (or xn) or initial

conditions ri, hence limiting direct practical use.

Discussion:

In this chapter, we have taken the natural point of view of assuming that the overall

system has some input xn, which then gives rise to errors εn, which in turn give rise to

the “feedforward” Hr filter input c̃n in the difference equation for rn in (3.1). We then

presented theorems and results which imposed conditions on this input c̃n in order to draw

conclusions about stability. We now start with an assumed feedforward input c̃n and move

in reverse, first considering how the εn arise from a given input c̃n. With given initial

conditions for εn, n = −1, −2, . . . , −M , and hence c̃0 as well, εn satisfies the difference

equation

εn−p = c̃n/ap − (

M∑

i=p+1

(ai/ap)εn−i), n ≥ 0, (3.2)

where p =min(i | ai 6= 0). The εn must be bounded by ∆/2 in magnitude. Thus, for a

given c̃n, n ≥ 0, to be feasible, it at least must also satisfy the theorems for boundedness

when pr(z) is defined from the difference equation (3.2). If we have such an input c̃n which

generates valid errors εn, we may then find a system input xn which such errors would

require. This is given by xn = rn + (m + 1/2)∆ − εn, for m ∈ Z. Clearly the input can

be bounded whenever rn is bounded and the c̃n are feasible. The point of viewing things in

reverse like this is to show, both how natural limitations in attempts to satisfy the stability
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theorems may be seen from the nature of the difference equation (3.2) for εn, and how a

realizable feedforward input c̃n may be obtained with an appropriate corresponding overall

system input xn.

We now comment further on stability for dithered systems. A necessary condition for

stability is that the random dither νn be bounded, i.e. |νn| < KD, for all n ≥ 0, for some

KD > 0. Under these conditions Theorem 3.2 will always apply. If KD > ∆, then c̃n

will essentially be a discrete random variable for all n ≥ M . If KD ≤ ∆, then c̃n may

be a discrete random variable for all n ≥ M , some n ≥ 0, or no n ≥ 0, depending upon

the behaviour of xn − rn, n ≥ 0. In either KD case, if c̃n is random for all n ≥ nK for

some nK ≥ M , then at best, only Proposition 3.7 is potentially applicable (in addition to

Theorem 3.2). If c̃n is purely nonrandom, then all results, excluding Proposition 3.7, are

potentially applicable.

Although simple bounded stability requires only that rn remain bounded (for a bounded

input and dither); in practical systems, it is naturally desirable for this bound not to be

too large, and necessary for it not to be arbitrarily large. We may address this issue in

relation to the results of this chapter. For the stability result of Theorem 3.2, we have from

the proof, that, for general c̃n, the size of the bound on rn will depend on the magnitude

of the largest zero of pr(z), and the number of multiplicities. Specifically, the bound will

increase as the number of multiplicities of at least the largest zero increases, and will

tend to infinity as its magnitude tends to 1. For Theorem 3.3 and Proposition 3.4, it

follows from the proofs, that the bound on rn will be roughly on the order of magnitude of

max(|Ãij |, ‖B̃ij|, |C̃ij|), (a result which extends when zeros are allowed inside the unit circle);

and for Theorem 3.2, it follows that the bound will be (at most) this order of magnitude

divided by (1 − magnitude of the largest zero), (multiplicity of 1 assumed). It is generally

expected, from the formulation of (2.4), that max(|Ãij|, ‖B̃ij|, |C̃ij|) will be roughly on the
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order of magnitude of the bj coefficients in (3.1). Proposition 3.5 provides the bounds KA,

KB, on the order of magnitude of the bound on rn directly; while Proposition 3.6 assures

control on the rn bound via control of the ri initial condition magnitudes, a condition that

is implicit for all stability results. For the stability result of Theorem 3.8, the magnitude

of the bound on rn, n ≥ 0, is assumed directly. The bound on the magnitude of the initial

conditions for ri is at least that given from r̂0, and, from the proof, will possibly be larger,

as driven by the magnitude of the Ai1. Specifically, the magnitude of the largest Ai1, and

hence that of the initial conditions, will tend to infinity as the magnitude of the associated

smallest zero with magnitude greater than 1 tends to 1. Thus our results show that we

can control the stability bound on rn, if the magnitude of the zeros are not too close to 1,

under the most general stability conditions.

From a practical point of view, Theorem 3.2 gives the most fundamental and useful

result in this chapter for assuring stability, and it is consistent with the general stability

assumptions of previous Σ-∆ modulator work, and indeed of feedback or control systems

generally. The subsequent theorems may be less useful in particular applications, but they

help illustrate the nature of the issue of stability and how it is governed by the input c̃n, the

form of the noise transfer function, and the structure of the Σ-∆ modulator as a dynamical

system. From this we have an expansion on the traditional requirement for stability, with

a dynamical analysis applied to the Σ-∆ system.



Chapter 4

Continuity in the Model

In this chapter, we examine the state space of the error coordinate g(~xn) from the non-

dithered Σ-∆ modulator dynamical system (2.1), and derive some linearity and continuity

results for the mapping f that will form the foundation of the analysis methods and ap-

proach in later chapters. These arise from the symmetries inherent in the associated circle

map topology, and the algebraic form of (1.2). Pertinent extensions to the dithered form

of (2.1) are dealt with in Chapter 6.

We begin by presenting a proposition which provides the most basic linear structure of

the error state space topology, and the broadest result upon which this foundation is based

— in particular, the means by which the analysis of all the chaos conditions will be made

for the proofs of the theorems.

Proposition 4.1 Suppose ~x1,0, ~x2,0 ∈ RN × CM , and there exists n1 ≥ N such that

Q(xk − r1,k) = Q(xk − r2,k) for all 0 ≤ k ≤ n1, where r1,k, r2,k correspond to the system

with initial conditions ~x1,0 and ~x2,0 respectively. Then ∆εn satisfies

∆εn =

max(N,M)
∑

k=1

(ak − bk)∆εn−k, N ≤ n ≤ n1, (4.1)

82
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where ∆εn = gM(~x2,(n+M)) − gM(~x1,(n+M)), n ≥ −M .

Proof:

The systems with initial conditions ~x1,0, ~x2,0 are governed by the difference equa-

tions (1.2). Subtracting the respective equations of (1.2) corresponding to ~x1,0 from those

corresponding to ~x2,0 gives

r2,n − r1,n =
M∑

k=1

ak(ε2,(n−k) − ε1,(n−k)) −
N∑

k=1

bk(r2,(n−k) − r1,(n−k))

ε2,n − ε1,n = Q(xn − r2,n) − Q(xn − r1,n) + (r2,n − r1,n),

where the variables with subscripts 1 and 2 correspond to the system with initial conditions

~x1,0 and ~x2,0 respectively. Using the fact that Q(xm − r2,m) − Q(xm − r1,m) = 0, ∀
0 ≤ m ≤ n1, we may substitute the second equation into the first for these values of m to

eliminate the rm terms and obtain

∆εn =

max(N,M)∗
∑

k=1

(ak − bk)∆εn−k, for N ≤ n ≤ n1,

where ∆εn = ε2,n − ε1,n = gM(~x2,(n+M)) − gM(~x1,(n+M)), n ≥ −M . From iterating

through (1.2), the initial conditions applying to this difference equation will then be given

by ∆εN−k, for k = 1, . . . , max(N, M)∗. �

This result shows that when we consider two initializations of the Σ-∆ modulator that

are “nearby” in RN × CM (Q(x1 − r1,0) = Q(x1 − r2,0) holds if this is true) then the small

difference in the error variables associated with each initialization, as n increases, will

behave according to the simple difference equation above, for all n such that the quantized

values of xk − rk in the two cases remain equal for k = 0, 1, . . . , n and n ≥ N . The

max(N, M)∗ “initial conditions” governing this are ∆εN−1, ∆εN−2, . . . , ∆εN−max(N,M)∗ .
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For this, we define

max(N, M)∗ = max{k ≥ 1 | ak − bk 6= 0} if this exists, and

= 0 otherwise.

Clearly max(N, M)∗ = max(N, M), unless N = M and there is reduction of order due to

cancellation. We also note in reference to the sum in (4.1), and all subsequent summations

used involving the filter coefficients, that ai = 0 and bj = 0, for i > M , j > N , by definition

from Section 1.3.

With this difference equation for ∆εn we have eliminated the dependence on the input

xn, which affects the position of ε1,n and ε2,n on C but not the distance between them. Thus

we may apply the general solution to such difference equations to examine the behaviour

of ∆εn. This “autonomous” linear formulation of the error state space topology dynamics

differs from the nonautonomous linear form of the internal variable rn dynamics examined

in Chapter 3 to study stability. Note that, under the conditions of the proposition, we

always have |∆εn| < ∆ for any n where the proposition holds. The behaviour of this error

difference is central to the analysis of all the chaos conditions and constructing the theorem

proofs. Later work in the thesis draws on this as well. The use of this approach breaks

down of course when n ≥ n2 with Q(xn2 − r1,n2) 6= Q(xn2 − r2,n2) for some n2 ≥ 0, greatly

complicating the analysis.

For subsequent analysis in this and later chapters, we need to focus on the behaviour

of ∆εn given by (4.1), with n1 taken to be arbitrarily large. The solution for ∆εn is given

by the general solution obtained from applying (2.2) with (2.3); with P = max(N, M)∗,

dk = (ak − bk), k = 1, . . . , max(N, M)∗, and with the subscripts of ∆ε increased by a factor

of max(N, M)∗ − N . We also have d(z) = p(z), where

p(z) = zmax(N,M)∗ +

max(N,M)∗
∑

k=1

(bk − ak)z
max(N,M)∗−k
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is the characteristic polynomial of the difference equation for ∆εn in (4.1). If we multiply

the noise transfer function (1.3) by zmax(N,M)∗ , we find that the numerator is given by the

polynomial p(z). Thus the zeros of the NTF are given by the zeros of p(z). This fact, and

the analogous result for the poles of the NTF and pr(z) considered in the stability analysis,

shows the direct relationship between the noise transfer function and the dynamical analysis

at hand.

To permit the greatest generality in the subsequent analysis in this thesis, we will essen-

tially omit the pole condition from the definitions in our use the terms minimum/marginally

minimum/nonminimum phase. Of course, it is generically required that all the poles of the

noise transfer function (1.3) be inside the unit circle in order to satisfy these definitions,

since this is the only broad condition that guarantees bounded internal stability, and this

stability is required. Therefore, with the implicit assumption that this pole condition holds,

our use of the terms minimum/marginally minimum/nonminimum phase will convey the

desired meaning following the proper definitions as well.

4.1 Continuous Model Formulation

In this section, we construct a special simplified Σ-∆ modulator form, for which the circle

map interpretation of the error state space dynamics, in one dimension, can essentially be

applied for any error interval length, and for any mapping iteration n ≥ 0. This topological

nature will enable broad conclusions to be drawn about chaos as we define it in Chapter 5,

as well as important results regarding long term or stochastic error behaviour, as studied

later in the thesis.

The standard requirement that C(θ + k) = F (θ + k) mod 1 = F (θ) mod 1 = C(θ)

for k ∈ Z in the definition of a circle map f is essentially the property, in some more general
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form, that we need to preserve in our dynamical system formulation if we are to extend a

full fledged circle map interpretation to some general modulator form. For a simple first

order system in (2.1) with M = 1, N = 0, the requirement implies immediately that a1 ∈ Z.

For (2.1) in general, clearly the extension ai ∈ Z and bj ∈ Z, for i = 1, 2, . . . , M ; j = 1,

2, . . . , N ; would then preserve this property in the generalized circle map on CM , where

we specify this property as g ◦ fn(r−1 + kb,1, . . . , r−N + kb,N , ε−1 + ka,1, . . . , ε−M + ka,M) =

g ◦ fn(r−1, . . . , r−N , ε−1, . . . , ε−M), for all n ≥ 0, and for the ka,i, kb,j ∈ Z. For the

topological analysis and applications to follow in this thesis, it will be sufficient to relax

this generalized circle map property somewhat so as to be essentially equivalent to the

property of continuity in the mapping f of (2.1). As will be subsequently established, a

sufficient general requirement for this form of extended circle map property, is that the ai

and bj be such that they satisfy the following:

Definition 4.2 (r̃k)

r̃1 = a1, r̃k = ak −
min(N,k−1)

∑

j=1

bj r̃k−j, k ≥ 2.

Definition 4.3 (Condition (R)) r̃k ∈ Z, for all k ≥ 1. (R)

This then defines the simplified Σ-∆ modulator form. Intuitively, condition (R) provides

a relaxation of the integer condition on the ai and bj , as afforded by the interrelationship

between the respective εn and rn recursive parts of the difference equation in (1.2). The

complex recursive form of (R) arises from the manner in which the εn are associated with

corresponding rn that are delayed by one (or more) iterations, in the recursive structure

of (1.2). It is this complexity that contributes to the relative restrictiveness in (R) as will

be subsequently discussed. First, we present the connection between condition (R) and the

notion of continuity.
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In spite of the potential for using Σ-∆ modulators to approximate continuous processes

such as stochastic resonance, and the abstract parallels to continuous systems therein,

the dynamical system description (2.1) that we have is fundamentally (mathematically) a

discrete time system in “time” n. Therefore, when we discuss having “continuity” in the

model, we mean continuity (on C) over the state space RN × CM , or some subset thereof,

for the discrete-time mappings g1 ◦ fn, for some set of n in Z+ ∪ {0}. It is such continuity

that we see as the important consequence of the following theorem, which is fundamental

to the proofs of the subsequent theorems pertaining to Σ-∆ modulators of condition (R)

form.

Theorem 4.4 Suppose the ai and bj satisfy condition (R), where i = 1, 2, . . . , M ; j = 1,

2, . . . , N ; holds. Then the function εn = g1 ◦ fn+1(~x0), n ≥ 0, is continuous on C at any

x̂0 ∈ RN × CM satisfying ε̂−k = gk(x̂0) 6= ∆/2, k = 2, . . . , M . If ε̂−ki
= gki

(x̂0) = ∆/2

for some ki ∈ {2, . . . , M}, then the function is continuous on C along paths in RN × CM

that approach x̂0 from the left on the circles C associated with the coordinates εki
of ~x0,

and approach x̂0 from any direction on the remaining circles C and RN .

Proof:

To begin, choose any x̂0 ∈ R
N × CM .

1. First, we show by induction how under special circumstances the continuity require-

ments of the theorem will hold.

(a) Suppose ε̂−1 = g1(x̂0) 6= ∆/2. Then lim
~x0→x̂0

gk(~x0) = gk(x̂0) for k = 1, . . . , M ,

R1, . . . , RN , where gRk
is the projection of RN × CM onto R such that gRk

(~xn) = rn−k,

k = 1, . . . , N . The limit is defined to be the limit from the left on the circles C associated

with the coordinates ε−ki
of ~x0, and the general limit on the remaining circles C and RN .
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These definitions of the limit are consistent with the requirements for the form of continuity

stated in the theorem, and thus we have that the projections gk(~x0) for k = 1, . . . , M ,

R1, . . . , RN meet the continuity requirements at x̂0.

(b) Suppose that ε̂m−1 = g1 ◦ fm(x̂0) 6= ∆/2 and that gk ◦ fm(~x0) for k = 1, . . . , M ,

R1, . . . , RN meet the continuity requirements at x̂0, for some m ≥ 0. From the form of

equations (1.2) it then it follows that εm = g1 ◦fm+1(~x0) and rm = gR1 ◦fm+1(~x0) meet the

continuity requirements at x̂0. (Note from part 2 that this is true even if g1 ◦ fm+1(~x0) =

∆/2.)

By induction, we then have that the function εn = g1 ◦ fn+1(~x0), n ≥ 0, meets the

continuity requirements at x̂0, under the special circumstance that ε̂n−1 = g1 ◦ fn(x̂0) 6=
∆/2 for n ≥ 0.

2. Now we consider the situation where ε̂ni−1 = g1 ◦ fni(x̂0) = ∆/2 for any arbitrary

set of ni ≥ 0, and show how the required continuity is preserved for any specific such case.

Suppose that ε̂ni−1 = g1◦fni(x̂0) = ∆/2 for some ni ≥ 0. Let n1 = min{ni}. If n1 = 0

then this will come from the initial condition ε̂−1 = g1(x̂0) = ∆/2, and if n1 > 0 this will

arise from the second equation in (1.2) when the quantizer input (xn1−1 − r̂n1−1) = q∆,

where q ∈ Z. This then implies that lim
~x0→x̂0

g1 ◦ fn1(~x0) = ±∆/2. If n1 = 0, the +∆/2

corresponds to the limit from the left on the circle C corresponding to the coordinate ε̂−1

(left sided continuity on this C), and the −∆/2 corresponds to the limit from the right on

this C (right sided discontinuity on this C). If n1 > 0, the +∆/2 corresponds to the limit

along paths in RN × CM that cause (xn1−1 − rn1−1) to approach (xn1−1 − r̂n1−1) from the

left, and the −∆/2 corresponds to the limit along such paths that cause this approach from

the right. The definition lim
x→−∆/2

x ≡ +∆/2, for x ∈ C, from the beginning of Chapter 2,

means that the points ±∆/2 are equivalent on C. From this, and an application of part
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1 above for 0 ≤ n ≤ n1, we have that εn = g1 ◦ fn+1(~x0) at least meets the continuity

requirements at x̂0 for n = n1 − 1. When continuing with the algebra in applying (1.2), we

must not regard the points ±∆/2 as equivalent, however. We now show by induction how

the continuity requirements of the theorem hold if {ni} = n1.

(a) Taking the limit of the first line of (1.2) for n = n1, and applying the results of

part 1 and (R), leads to

lim
~x0→x̂0

rn1 = lim
~x0→x̂0

gR1 ◦ fn1+1(~x0) = ±∆

2
a1 + r̂0,n1 = ±∆

2
r̃1 + r̂0,n1,

where r̂0,n1 is the value of this limit when εn1−1 only is taken as 0. From the second line

of (1.2), we then have lim
~x0→x̂0

εn1 = lim
~x0→x̂0

g1 ◦ fn1+1(~x0) = ε̂n1. This limit yields the fixed

value ε̂n1 since r̃1 ∈ Z. Thus εn = g1 ◦ fn+1(~x0) meets the continuity requirements at x̂0

for n = n1.

(b) Suppose that εn = g1 ◦ fn+1(~x0) meets the continuity requirements at x̂0 ∀ n

satisfying n1 ≤ n ≤ n1 + m, for some m ≥ 0. Suppose further that the limit of the first

line of (1.2), for n = n1 + k, k = 0, . . . , m, gives

lim
~x0→x̂0

rn1+k = lim
~x0→x̂0

gR1 ◦ fn1+k+1(~x0) = ±∆

2
r̃k+1 + r̂0,(n1+k),

where r̂0,(n1+k) ≡ −
min(N,k)

∑

j=1

bj r̂0,(n1+k−j) + r̂1,(n1+k) for k = 1, . . . , m, and r̂1,(n1+k) is the

value of the limit, excluding the terms with the coefficients ak+1, bj , for j = 1, . . . , min(N, k).

Now using these results, the results of part 1, and (R), and taking the limit of the first line

of (1.2), for n = n1 + m + 1, gives
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lim
~x0→x̂0

rn1+m+1 = lim
~x0→x̂0

gR1 ◦ fn1+m+2(~x0)

= ±∆

2
am+2 ∓

∆

2

min(N,m+1)
∑

j=1

bj r̃m+2−j −
min(N,m+1)

∑

j=1

bj r̂0,(n1+m+1−j)

+ r̂1,(n1+m+1)

= ±∆

2
r̃m+2 + r̂0,(n1+m+1).

From the second line of (1.2), we then have lim
~x0→x̂0

εn1+m+1 = lim
~x0→x̂0

g1 ◦ fn1+m+2(~x0) =

ε̂n1+m+1. This limit yields the fixed value ε̂n1+m+1 since r̃m+2 ∈ Z. Thus εn = g1◦fn+1(~x0)

meets the continuity requirements at x̂0 for n = n1 + m + 1.

By induction, we then have that the function εn = g1 ◦ fn+1(~x0), n ≥ 0, meets the

continuity requirements at x̂0, if n1 is the only such ni.

3. Now suppose that we assume that the continuity requirements of the theorem hold

when the set {ni} has m elements. Consider the case when the set {ni} has m+1 elements.

Let n2 = max{ni}. Then, from the conclusions of part 2, the continuity requirements are

met for 0 ≤ n ≤ n2 − 1. We may then proceed with the induction proof of part 2, with

n1 replaced by n2; and identifying the new r̂0,(n2+k), for k ≥ 0, as that part (the term)

of lim
~x0→x̂0

rn2+k that does not propagate the effects of ε̂n2−1 = ∆/2 and hence, from the

assumption that the continuity requirements hold when {ni} has m elements, does not

contribute by itself to any discontinuity in εn, for n ≥ 0. This induction will then show

analogously that the continuity requirements hold when the set has m + 1 elements.

Thus, by the overall induction of parts 2 and 3, we have that the continuity requirements

of the theorem hold when ε̂ni−1 = g1 ◦ fni(x̂0) = ∆/2, for any arbitrary set of ni ≥ 0.

Therefore we conclude that the function εn = g1 ◦ fn+1(~x0), n ≥ 0, meets the continuity

requirements of the theorem at x̂0. �
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This theorem guarantees continuity when mapping n times for all n ≥ 1 from the domain

R
N × CM onto the first error variable in the mapping in C, provided the “boundary points”

∆/2 on the M − 1 circles of CM−1 from the domain are excluded. In a system with

a generally discontinuous quantizer element Q(x) as in the Σ-∆ one here, being able to

assert such continuity obviously provides major simplification in the system’s structure

and for its analysis. That we are able to obtain this follows directly from the existence of

the integer r̃k in (R), which uses the quantizer’s “many-to-one” nature to “cancel out” the

effects of the discontinuities it creates.

A simple way to satisfy the requirement (R) is simply to require that ai, bj ∈ Z, for

i = 1, 2, . . . , M ; j = 1, 2, . . . , N ; that is, that the feedback and feedforward gains in the

filter must all be integers. In this situation the continuity in Theorem 4.4 in fact holds over

all RN × CM . The problem with this is that if all the bj are integers (not all zero) then,

from the properties of polynomials with integer coefficients, we have that the polynomial

pr(z) = zN +
N∑

j=1

bjz
N−j cannot have any zeros of magnitude less than 1 if it has no zeros

of magnitude greater than 1. From the results of Chapter 3, this implies a situation where

the system is generally unstable except under special circumstances (i.e. depending on the

input xn or initial conditions). To have meaningful results and hence be worthy of special

consideration when N ≥ 1, we need our simplified systems to at least be stable over general

initial conditions and inputs. Therefore it is sensible to consider the general condition (R)

as presented and the broader range of systems it allows, including in particular those that

are stable.

One simple way to satisfy the requirement (R) would be to require r̃1 ∈ Z, r̃k = 0,

for k = 2, . . . , max(N + 1, M). This implies the rather constrained requirement a1 ∈ Z,

bk−1 = ak/a1, for k = 2, . . . , M , with N = M − 1 holding. Under this requirement, stable

systems are clearly possible by choosing a1 large in magnitude relative to ak, k = 2, . . . , M ,
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so as to make the bj small in magnitude to yield zeros of the p(z) above that are all inside

the unit circle. A generalization of this is given by the following scheme:

Assume M > N . Choose the bk so that p(z) has zeros all inside the unit circle, so that

the system is stable. Choose any ak to make r̃k ∈ Z for k = 1, . . . , M − N . Then choose

ak =
N∑

j=1

bj r̃k−j so that r̃k = 0, for k = M −N + 1, . . . , M . Since the remaining r̃k, k > M ,

arise from the Nth order difference equation in bj , they will all be zero as well.

With this scheme, one has some flexibility to choose the ai and bj , (i = 1, . . . , M −N),

so as to position the zeros of the noise transfer function (1.3) in particular regions on

the complex plane, as will be of interest later in this thesis. More theoretically, a further

generalization of this scheme exists when some of the zeros of pr(z) are integer, and hence

we are not concerned with stability.

In summary, using condition (R) rather than an integer requirement on all the ai and bj

coefficients provides potentially for a reduction in the number of conditions for continuity

from N + M to max(N, M). The fact that the number of r̃k iterates required in (R) to

be integer may be arbitrarily large seriously erodes this advantage in general, however.

Significant additional constraints arise when requiring stability as well, although the flex-

ibility for choosing the poles and zeros of the noise transfer function (1 − H) is improved

considerably over the all integer-coefficient filter case.

When the Σ-∆ modulator exhibits continuity over RN × CM or any subset thereof, we

arrive at extensions of Proposition 4.1 as follows:

Theorem 4.5 Suppose the function εn = g1 ◦ fn+1(~x0) is continuous on C at any ~x0 ∈
U , where U is a set and U ⊂ RN × CM , for any n ≥ 0. Then for any ~x1,0 ∈ U and

~x2,0 ∈ Ñ∗, where Ñ∗ = Ñ ∩ U and Ñ is a small neighbourhood about ~x10, system (4.1)

∆ε̃n =

max(N,M)
∑

k=1

(ak − bk)∆ε̃n−k with initial conditions
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∆ε̃n = gM(~x2,(n+M))−gM (~x1,(n+M)) = ∆εn, n = N−1, . . . , N−max(N, M)∗, has solutions

that satisfy ∆ε̃n = ∆εn + mn∆ ∼= g1(~x2,(n+1)) − g1(~x1,(n+1)) = ∆εn, for some mn ∈ Z,

and n ≥ N .

Proof:

To start, we define the line segment joining ~x1,0 and ~x2,0 by L = {~x0 ∈ R
N × CM

| ~x0 = ~x1,0 + α(~x2,0 − ~x1,0) for 0 ≤ α ≤ 1} ∈ Ñ∗ ⊂ U . Define a point ~zi ∈ L by

~zi = ~x1,0 + αi(~x2,0 − ~x1,0), for 0 < αi < 1. Define an open interval in L between ~zi and ~zj

by (~zi, ~zj) = {~zk | αi < αk < αj}. Let r∗,n, ε∗,n and εx,∗,n correspond to the system with

initial condition of the form ~z∗ and ~x∗,0 respectively.

Choose any n1 ≥ N . Now consider an open interval (~za, ~zb) ∈ L. Suppose ∃ n2, with

0 ≤ n2 ≤ n1, such that Q(xn − ra,n) − Q(xn − rb,n) 6= 0 for n = n2, and Q(xn − rc,n) −
Q(xn − rd,n) = 0 for 0 ≤ n < n2 if n2 > 0, ∀ αc, αd such that αa < αc < αd < αb. From

the continuity of εn = g1 ◦ fn+1(~x0) on U and hence L for n ≥ 0, we must have that rn is

continuous (mod ∆) and thus piecewise linear on L for n ≥ 0. Thus there exists a finite

number of points ~zi in (~za, ~zb) at which xn2 − ri,n2 = q∆, where q ∈ Z. This implies that

for these points ~zi, we have

Q(xn − rc,n) − Q(xn − r1,a,n) = Q(xn − rk,b,n) − Q(xn − r(k+1),a,n)

= Q(xn − rK,b,n) − Q(xn − rd,n)

= 0, for 0 ≤ n ≤ n2,

∀ αc, αd, αi,a, αi,b such that αa < αc < α1a < α1, αk < αk,b < α(k+1),a < αk+1,

αK < αK,b < αd < αb, where k = 1, . . . , K − 1, and K is the number of such points.

Now we apply this result iteratively (successively) with successive n2 values from 0

through to n1 for the open interval (~x1,0, ~x2,0) and possible successive respective subintervals,

to obtain the result that there exists a finite number of open intervals (~x1,0, ~z1), (~zk, ~zk+1),

(~zK1, ~x2,0) with points ~zi (satisfying xn2 − ri,n2 = q∆, where q ∈ Z), such that
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Q(xn − rc,n) − Q(xn − r1,a,n) = Q(xn − rk,b,n) − Q(xn − r(k+1),a,n)

= Q(xn − rK1,b,n) − Q(xn − rd,n)

= 0, for 0 ≤ n ≤ n1,

∀ αc, αd, αi,a, αi,b such that 0 < αc < α1,a < α1, αk < αk,b < α(k+1),a < αk+1, αK1 <

αK1,b < αd < 1, where k = 1, . . . , K1 − 1, and K1 is the number of such points.

From the continuity of εx,n = g1 ◦ fn+1(~x0) on U it follows that

∆ε(x,2),(x,1),n1
= εx,2,n1 − εx,1,n1 = g1 ◦ fn1+1(~x2,0) − g1 ◦ fn1+1(~x1,0)

= g1 ◦ fn1+1(~x2,0) − g1 ◦ fn1+1(~x0) |α=αK1

+

K1−1∑

k=1

[g1 ◦ fn1+1(~x0)|α=αk+1
− g1 ◦ fn1+1(~x0)|α=αk

]

+ g1 ◦ fn1+1(~x0)|α=α1 − g1 ◦ fn1+1(~x1,0)

=
l

lim
α→1

g1 ◦ fn1+1(~x0) −
u

lim
α→αK1

g1 ◦ fn1+1(~x0) − mK1,u,n1∆

+

K1−1∑

k=1

[
l

lim
α→αk+1

g1 ◦ fn1+1(~x0) + mk+1,l,n1∆ −
u

lim
α→αk

g1 ◦ fn1+1(~x0) − mk,u,n1∆]

+
l

lim
α→α1

g1 ◦ fn1+1(~x0) + m1,l,n1∆ −
u

lim
α→0

g1 ◦ fn1+1(~x0),

where the limits on the right of the final equality are taken along the line L, and they are

from the right (u-upper) or the left (l-lower) for α as indicated. With the continuity on

C, the function limits as defined here will differ from their values at the point only if the

value approaches −∆/2 in the limit, so that the difference (from the corresponding value

∆/2 at the point) is ∆. Thus the values of m∗,u,n1, m∗,l,n1 above are 1 if the corresponding

respective limits are −∆/2, and zero otherwise. Here we denote ε∗A,n−ε∗B ,n by ∆ε(∗A),(∗B),n.

Proposition 4.1 holds on each interval (~x1,0, ~z1), (~zk, ~zk+1), (~zK1, ~x2,0), for k = 1, . . . , K1−
1, of L. We then apply Proposition 4.1 to each limit difference term above to get the

following:
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∆ε(x,2),(x,1),n1 =
l

lim
α→α1

∆ε̃1,(x,1),n1 +

K1−1∑

k=1

[
l

lim
α→(αk+1−αk)

∆ε̃(k+1),k,n1]

+
l

lim
α→1−αK

∆ε̃(x,2),K1,n1
−

K1∑

k=1

(mk,u,n1 − mk,l,n1)∆

= ∆ε̃1,(x,1),n1
+

K1−1∑

k=1

∆ε̃(k+1),k,n1
+ ∆ε̃(x,2),K1,n1

− mn1∆

= ∆ε̃(x,2),(x,1),n1 − mn1∆.

We define mn1 =

K1∑

k=1

(mk,u,n1 − mk,l,n1) ∈ Z here. The ∆ε̃∗,n1 terms on the right in the

final equality above are solutions to (4.1) with initial conditions in R
N × CM given by

α1(~x2,0 − ~x1,0), (αk+1 − αk)(~x2,0 − ~x1,0) and (1 − αK1)(~x2,0 − ~x1,0), for k = 1, . . . , K1 − 1

respectively. Since (4.1) is a linear difference equation, it holds that the sum of any two

solutions is itself a solution with initial conditions equal to the sum of the initial conditions

of the two solutions. Applying this to the above, we have that ∆ε̃(x,2),(x,1),n1 is a solution

for n = n1 to (4.1), with initial conditions equal to

∆ε̃(x,2),(x,1),n = α1[gM(~x2,(n+M)) − gM(~x1,(n+M))]

+

K1−1∑

k=1

[(αk+1 − αk)(gM(~x2,(n+M)) − gM(~x1,(n+M))]

+ (1 − αK1)[gM(~x2,(n+M)) − gM(~x1,(n+M))]

= [gM(~x2,(n+M)) − gM(~x1,(n+M))],

for n = N − 1, . . . , N − max(N, M). These are the form of the initial conditions specified

for (4.1) in the theorem. Since the solution to (4.1) with these initial conditions must

be unique, it follows that ∆ε̃(x,2),(x,1),n satisfies (4.1) for N ≤ n ≤ n1. Since n1 ≥ N was

chosen arbitrarily, it thus follows that system (4.1) has solutions that satisfy ∆ε̃(x,2),(x,1),n =

∆ε(x,2),(x,1),n + mn∆ ∼= g1(~x1,(n+1)) − g1(~x2,(n+1)), n ≥ 0, as required in the theorem. �
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Corollary 4.6 Suppose the function εn = g1 ◦ fn+1(~x0) meets the continuity results of

Theorem 4.4 over a set U , where U ⊂ R
N × CM , for any n ≥ 0. Then for any ~x1,0 ∈ U

with ε−ki
= gki

(~x1,0) = ∆/2 for some ki ∈ {2, . . . , M}, there exists an ~x2,0 ∈ Ñ∗,

where Ñ∗ = Ñ ∩ U and Ñ is a small neighbourhood about ~x1,0, such that system (4.1)

of Theorem 4.5 with its initial conditions as specified has solutions that satisfy

∆ε̃n = ∆εn + mn∆ ∼= g1(~x2,(n+1)) − g1(~x1,(n+1)), for some mn ∈ Z, and n ≥ N .

Proof:

Clearly ∃ an ~x2,0 ∈ Ñ∗ (in a particular sector of Ñ∗) such that, with the line segment

joining ~x1,0 and ~x2,0 defined by L = {~x0 ∈ RN × CM | ~x0 = ~x1,0 + α(~x2,0 − ~x1,0) for

0 ≤ α ≤ 1} ⊂ Ñ∗ ⊂ U , we have that gki
(~x1,0 +α(~x2,0−~x1,0)) approaches gki

(~x1,0) from the

left as α goes to zero (from the right), for all the ki. We now proceed with the steps of the

proof of Theorem 4.5, where the existence of the continuity requirements of Theorem 4.4

allow all the terms involving limits to remain valid statements in the expressions. Thus the

results of this corollary are satisfied. �

Proposition 4.7 The ∆ε̃n, n ≥ N − max(N, M)∗, from Theorem 4.5 and Corollary 4.6

satisfy

1. sgn(∆ε̃n)(|∆ε̃n| mod ∆) = g1(~x2,(n+1)) − g1(~x1,(n+1))

+ sgn(∆ε̃n)In(g1(~x1,(n+1)), g1(~x2,(n+1)))∆,

where In, n ≥ 0, is defined such that, for any a, b ∈ C, In(a, b) = 0 if (b−a)[∆ε̃n−(b−a)] ≥
0, and In(a, b) = 1 otherwise;

2. (∆ε̃n) mod ∆ = ‖g1(~x2,(n+1)) − g1(~x1,(n+1))‖, when (∆ε̃n) mod ∆ ≤ ∆/2;

3. (∆ε̃n) mod ∆ = ∆ − ‖g1(~x2,(n+1)) − g1(~x1,(n+1))‖, when ∆/2 < (∆ε̃n) mod ∆.
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Proof:

1. From Theorem 4.5, we have that ∆ε̃n = ∆εn + mn∆, and ∆εn = g1(~x2,(n+1)) −
g1(~x1,(n+1)), n ≥ N − max(N, M)∗, for some mn ∈ Z, with mn = 0 for n = N −
1, . . . , N − max(N, M)∗. Thus In(g1(~x1,(n+1)), g1(~x2,(n+1))) = 0 if (∆εn)[mn∆] ≥ 0, and

In(g1(~x1,(n+1)), g1(~x2,(n+1))) = 1 otherwise, for n ≥ N − max(N, M)∗.

First suppose, for a given n, that In = 0. This implies that

LHS = sgn(∆ε̃n)(|∆ε̃n| mod ∆) = sgn(∆εn)[(|∆εn| + |mn|∆) mod ∆]

= sgn(∆εn)|∆εn| = ∆εn = RHS.

Now suppose that In = 1, with sgn(∆εn) = −sgn(∆ε̃n) = ±. Then we have

LHS = sgn(∆ε̃n)(|∆ε̃n| mod ∆) = −sgn(∆εn)[(∓∆εn ∓ mn∆) mod ∆]

= (∓)[∆ ∓ ∆εn] = ∆εn ∓ ∆ = ∆εn + sgn(∆ε̃n)∆ = RHS.

2. Using the results from the beginning of the proof of part 1 above, we have the

following: Suppose that g1(~x2,(n+1))− g1(~x1,(n+1)) = ∆εn ≥ 0. Then LHS = (∆εn + mn)

mod ∆ = ∆εn. If ∆εn ≤ ∆/2, then this magnitude represents the shortest distance on

the circle C between ~x1(n+1) and ~x2(n+1). Thus LHS = RHS. Now suppose that ∆εn < 0.

Then LHS = ∆ + ∆εn. If ∆ + ∆εn ≤ ∆/2, then this magnitude again represents the

shortest distance on C between the two points, since |∆εn| would be the longer distance.

Thus LHS = RHS.

3. Suppose that ∆εn > 0 so that LHS = ∆εn. If ∆εn > ∆/2, then the magnitude

∆−∆εn represents the shortest distance on the circle C between ~x1(n+1) and ~x2(n+1). Thus

LHS = ∆ − (∆ − ∆εn) = RHS. Now suppose that ∆εn < 0 so that LHS = ∆ + ∆εn.

If ∆ + ∆εn > ∆/2, then the magnitude representing the shortest distance on C between
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the two points is given by −∆εn > 0, since ∆ + ∆εn represents the longer distance. Thus

LHS = ∆ − (−∆εn) = RHS. �

These results show that with the continuity provided by condition (R) on the coefficients

in the filter, the error differences arising from the two initializations may remain directly

related (i.e. congruent) to the ∆εn described by the difference equation in Proposition 4.1,

for all n ≥ 0. For these results and related applications, we describe two quantities as

being congruent with the symbol “∼=”, if and only if they differ in value by an additive

integer multiple of ∆. Essentially, the magnitude and sign of ∆ε̃n represents the length

and sign of the error difference interval on C. If, for some n the magnitude of ∆ε̃n exceeds

∆, lying say between p∆ and (p + 1)∆ with p ∈ Z in a given (+/−) direction, then the

error difference interval is interpreted to have been wrapped p times around the circle

C in the same direction, with (∆ε̃n mod ∆) giving a net interval distance between error

variables. Proposition 4.7 summarizes this relationship, and allows for a straightforward

extension of the analysis of the chaos conditions, and constructing theorem proofs initiated

by Proposition 4.1, without having to worry about the approach breaking down for any

value of n. Some aspects of this may be more apparent when considering the mapping of

intervals as will occur subsequently in the analysis.

It is easy to see that there always exists an initial condition difference ∆~x0 (where

∆~x0 = ~x2,0 − ~x1,0 for some applicable ~x1,0 and ~x2,0) that will give rise to any particular

set of initial conditions ∆εn, n = N − 1, . . . , N − max(N, M)∗, for (4.1). For example, we

may simply set ∆ri = ∆εi for i = −1, . . . ,−N , set ∆ε̃n equal to the required ∆εN+n for

n = −1, . . . ,−max(N, M)∗. When ∆ε̃n = ∆εn over some range of n, then we equivalently

shift the subscripts of ∆ε̃n down by a factor of N in (4.1) and its initial conditions. Such

a system (4.1) takes the form of the difference equation (2.2) (with no input) and thus has
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a solution given by (2.3). Without loss of generality, the initial ∆εi, ∆ri that form the

max(N, M)∗ dimensional space of initial conditions ∆~ε0 = (∆ε−1, . . . , ε−max(N,M)∗) may be

specified in this manner. In future treatment, we will generally drop the tildes from ∆ε̃n,

and let ∆εn denote the solutions of (4.1), n ≥ 0, as distinct from the value of ε2,n − ε1,n,

unless otherwise specified.

To emphasize how condition (R) brings the simplifying circle map, and the properties

mentioned after Proposition 4.7 into play, we describe the solution for εn with the following:

Proposition 4.8 Suppose the ai and bj satisfy condition (R). Then we have that

εn = Q(w̃n) − w̃n, n ≥ 0, (4.2)

where w̃n is the solution to the difference equation

w̃n =

max(N,M)∗
∑

k=1

(ak − bk)w̃n−k +

N∑

j=0

bjxn−j , n ≥ max(N, M)∗,

with initial conditions given by w̃n = xn − rn +
n−1∑

k=0

r̃n−kQ̃k, where Q̃n = Q(xn − rn) +

n−1∑

k=0

r̃n−kQ̃k, for 1 ≤ n ≤ max(N, M)∗ − 1, and w̃0 = x0 − r0, Q̃0 = Q(w̃0), b0 ≡ 1.

Proof:

We extend the definitions of w̃n and Q̃n in the proposition to all n ≥ 0. Now we

use these transformed variables, along with εn = Q(xn − rn) − (xn − rn), to eliminate

rn and εn in the difference equation of (1.2), when n ≥ 0. We find that LHS equals

RHS and, in particular, the difference equation of (1.2) reduces to that of (4.2) in the

proposition when n ≥ max(N, M)∗. The quantizer equation of (1.2) then becomes εn =

Q(w̃n −
n−1∑

k=0

r̃n−kQ̃k) − (w̃n −
n−1∑

k=0

r̃n−kQ̃k), n ≥ 0. Condition (R) holds, and hence the r̃k
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are all integers. The Q̃k are thus all integer multiples of ∆/2. The summation terms thus

drop out of the quantizer equation, which hence reduces to that of (4.2). �

When (R) holds, the behaviour of the error εn = g ◦ fn+1(~x0) is explicitly governed by

the solution of the max(N, M)∗th order difference equation of (4.2) with an input driven

by the system input xn. εn is simply the value of the solution wrapped around the circle

C. When (R) does not hold, the extra convolution term
n−1∑

i=0

r̃n−iQ̃i appears in the input of

the quantizer equation (4.2), and the solution lacks a simple interpretation. An alternative

formulation of the most general form, with dither added, is given by (6.2) in Chapter 6.

We close out this chapter with some items that will be utilized primarily in the approach

and analysis of Chapter 5. The following more technical results will be of use in proving

subsequent theorems:

Definition 4.9 For a point ~x0 ∈ RN × CM , define the set Ñx by Ñx = Ñ ∩ M̃ , where Ñ

is some small neighbourhood about ~x0 and M̃ = {~y0 ∈ RN × CM | gki
(~x0 + α(~y0 − ~x0))

approaches gki
(~x0) from the left as α goes to zero (from the right), for all the ki}, where

ε−ki
= gki

(~x0) = ∆/2 for some ki ∈ {2, . . . , M}.

Lemma 4.10 Suppose the ai and bj satisfy condition (R). Then we have the following:

1. For any ~x0 ∈ RN × CM and any ~y0 ∈ Ñx, the error differences ∆εn, n ≥ N , arising

from the initial conditions ∆~x0 = ~y0 − ~x0 will be solutions to (4.1) given by (2.3).

2. Furthermore, if p(z) has zeros with magnitude greater than 1, or magnitude 1 with

multiplicity greater than 1, then there exists ~y0 ∈ Ñx such that the constants Aij, Bij, Cij,

associated with the terms on the right side of (2.3) corresponding to these zeros, are not all

zero.
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Proof:

1. We apply Theorem 4.4 followed by Theorem 4.5 and Corollary 4.6. In the case

of 4.6, from the proof of this corollary, it holds that the ~x20 is satisfied by any ~y0 ∈ Ñx.

2. The range of initial conditions ∆~ε0 = {∆εn for n = N − 1, . . . , N − max(N, M)∗}
of (4.1) that lead to the constants Aij , Bij, Cij (corresponding to the designated zeros

in the lemma) all equalling zero constitutes a q̃ dimensional subspace of initial conditions

C q̃, where q̃ is the number of zeros of p(z) with magnitude less than 1 or equal to 1 with

multiplicity 1, and 0 ≤ q̃ < max(N, M)∗. Thus there exists a max(N, M)∗ dimensional

space of initial conditions, excluding the set contained in the q̃ dimensional subspace,

Cmax(N,M)∗ −C q̃, over which not all of these constants are zero. Clearly, from its definition,

Ñx is a RN× CM dimensional sector of Ñ . There exists a max(N, M)∗ dimensional subsector

yielding initial conditions ∆~ε0 of (4.1) in a max(N, M)∗ sector of Cmax(N,M)∗ . Thus there

must exist ~y0 ∈ Ñx such that the initial condition difference ∆~x0 = ~x0 − ~y0 will give rise to

such an initial condition ∆~ε0 of (4.1) in a max(N, M) dimensional sector of Cmax(N,M)∗−C q̃,

(i.e. not in the q̃ dimensional subspace C q̃). �

Matrix Notation in Linear Analysis:

When analyzing system (2.1) from a multidimensional state space point of view, and

applying (4.1) or Theorem 4.5 or its corollary in a linear analysis approach, the following

matrix notation is useful for the analytic description and work.

We consider (2.3) as the solution to (4.1). Now we define [Rk], k ≥ 0, to be the

max(N, M)∗ × max(N, M)∗ matrix, such that [Rk] has entry (i, j) corresponding to the

term of the RHS of (2.3) associated with zero µj of the max(N, M)∗ ordered zeros of p(z),

with n = k − i, and with the arbitrary constant set to 1. We define ~α = (Aij, Bij , Cij)
T to
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be the max(N, M)∗×1 vector of arbitrary constants, with the same ordering as that of the

corresponding terms in each row of [Rk] (i.e. the ordering of the columns corresponding

to each zero µj). We define (∆εi)
T to be the max(N, M)∗ × 1 vector of initial conditions

∆~ε0 = (∆ε−1, . . . , ∆ε−max(N,M)) of (4.1). Note that the subscripts on the ∆εi decrease

from top to bottom of the vector (i.e. with increasing i). Thus we have the relations

(∆εi)
T = (∆~ε0)

T = [R0]~α and (∆~εk)
T = (∆εk−1, . . . , ∆εk−max(N,M)) = [Rk]~α for k ≥ 0.

Now suppose we partition the max(N, M)∗ zeros of p(z) into a group of q zeros (e.g.

by magnitude), and a remaining group of q̃ = max(N, M)∗ − q zeros, with 0 ≤ q ≤
max(N, M)∗. We define a decomposition of [Rk] into blocks, where [Rkq] and [Rkq̃] denote

the first q and last q̃ rows respectively, of the q columns of [Rk] corresponding to the group

of q zeros identified above (upper and lower left blocks). Similarly, we define ~αq, (∆εi)
T
q

and ~αq̃, (∆εi)
T
q̃ to be the corresponding vectors of the first q and last q̃ entries of ~α and

(∆εi)
T respectively. Thus we have (∆εi)

T
q = [R0q]~αq and (∆εi)

T
q̃ = [R0q̃]~αq when ~αq̃ = 0.

Now we briefly introduce the idea of a lower state space dimensional form of (4.1) as

may be obtained by modifying the filter coefficients ai, bj .

Proposition 4.11 A given system of the form (4.1) with coefficients ai, bj, and p(z)

having max(N, M)∗ > 0 zeros may be modified to form a new “reduced” system of the

form (4.1) with respective coefficients ãi, b̃i, and characteristic polynomial p̃(z) having q

zeros that form a subset of the zeros of p(z) as defined above. This will hold if [ãi]q− [̃bj ]q =

[ai]q − [bj ]q + ([ai]q̃ − [bj ]q̃)[R0q̃][R0q]
−1 and ãl − b̃l = 0, l > q, where [ai]q, [ai]q̃ denote the

vectors (a1, . . . , aq), (aq+1, . . . , max(N, M)∗), respectively, and similarly for the bj vectors.

Proof:

Such ãi, b̃j and p̃(z) clearly exist. Such a system must have solutions that satisfy

(∆~εk)
T = [Rkq]α̃, k ≥ 0, for some α̃ of dimension q. This is satisfied uniquely by (∆~εk)

T =
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[Rk]~α in the original system when ~αq̃ = 0. Using the results above, this implies that

(∆εi)
T
q̃ = [R0q̃][R0q]

−1(∆εi)
T
q for the initial conditions, where clearly [R0q] is invertible.

Substituting these initial conditions into the original system in (4.1), and requiring it to

also satisfy the reduced system gives

∆ε0 = ([ai]q − [bj ]q + [([ai]q̃ − [bj ]q̃)[R0q̃][R0q]
−1)(∆εi)

T
q = ([ãi]q − [̃bj ]q)(∆εi)

T
q .

Equating terms gives the relationship in the proposition. Since this is the unique char-

acterization of [ãi]q − [̃bj ]q for this equation that satisfies the necessary condition that

(∆εi)
T
q̃ = [R0q̃][R0q]

−1(∆εi)
T
q , and since a unique definition for [ãi]q − [̃bj ]q must exist, we

conclude that the definition is given by this relationship. �



Chapter 5

Chaos

5.1 Chaos Definition and Preliminaries

In this chapter we present and discuss results concerning chaos in the undithered Σ-∆

modulator. Thus we take νn = 0, for all n ≥ 0. In this form, the main treatment and body

of chaos conclusions will be arrived at. Extensions to examine chaos with dither present

are made in Section 6.2.

The basic Devaney definition for chaos, as presented in Section 1.4, is given for a simple

1-dimensional mapping dynamical system. We wish to somehow extend and apply this def-

inition to a multidimensional dynamical system with more complex dimensional structure

as represented by the Σ-∆ modulator system of (2.1). To do this we need to modify both

the form of the sensitivity, topological transitivity and density of periodic points defini-

tions in Devaney’s chaos, and how the corresponding chaos conditions are defined. Such a

modified version of Devaney’s chaos definition, to apply to the Σ-∆ modulator dynamical

system is now given.

104
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Definition 5.1 (Adapted Devaney Chaos) g ◦ f : (RN × CM) → CM is said to be

chaotic on CM if

1. g ◦ f has sensitivity to initial conditions;

2. g ◦ f is topologically transitive;

3. periodic points are dense1 in CM .

These three conditions are correspondingly defined as follows:

Definitions for Adapted Devaney Chaos:

Definition 5.2 (Sensitivity) g ◦f : (RN × CM) → CM has sensitive dependence on ini-

tial conditions if there exists δ > 0 such that for any ~x0 ∈ RN × CM and any neighbourhood

Ñ of ~x0, there exists ~y0 ∈ Ñ and n ≥ 0 such that ‖g ◦ fn(~x0) − g ◦ fn(~y0)‖ > δ.

Definition 5.3 (Transitivity) g ◦f : (RN × CM) → CM is topologically transitive if for

any pair of open sets U ⊂ RN×CM , V ⊂ CM , there exists k > 0 such that g◦fk(U)∩V 6= ∅.

Definition 5.4 (Periodic Points) The points considered “periodic” are the set U ⊆ CM

where U = {~x∗
0 ∈ CM | ∃ n ≥ 1 with g ◦ fkn(~x0) = ~x∗

0, where k ∈ Z
+,

~x0 ≡ (r−1, r−2, . . . , r−N , ~x∗
0) ∈ RN × CM for some (r−1, r−2, . . . , r−N) ∈ RN}.

Definition 5.5 (Adapted Density) The set U is dense in CM if, for any ~x∗
0 ∈ U and

any neighbourhood Ñ of ~x∗
0 in CM , there exists ~y∗

0 ∈ N such that ~y∗
0 ∈ U .

To start with, we have defined the chaos conditions above in terms of the “projection” of

the N +M dimensional mappings f onto the M dimensional subspace CM . The dynamical

behaviour and qualities of the system of interest are expressed by the external state variables

1The “adapted” definition of density that we use is weaker than the standard definition which follows

as a generalization of that given in Definition 1.7 of Section 1.4.
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of the system, that is the errors (εn−1, . . . , εn−M) = g(~xn) ∈ CM . It is thus both sufficient

and sensible for our analysis to interpret chaos as existing and being defined on these

state variables, i.e. on CM . The remaining internal variables (rn−1, . . . , rn−N) are of little

dynamical interest and figure in importance only for stability considerations in Chapter 3.

Hence, we screen out the internal variables from consideration here with the projection

used for the chaos conditions above. We choose to keep RN × CM as the underlying state

space in order to maintain a direct connection with the practical initial conditions of the

system, despite the fact that the projected mappings g ◦ fn, n ≥ 1, N ≥ 1, will generally

be many-to-one. The corresponding definitions for sensitivity, topological transitivity and

density of periodic points above are then constructed in the natural way using g ◦ f as the

mappings under consideration. Thus we have an adapted version of Devaney’s definition

for chaos to conform to the Σ-∆ system under analysis.

For our version of chaos, we have gone from a constant map from R to R, to a map

g ◦ fn depending on n from RN × CM to CM . Note that from the definition of periodic

point above, these are not strictly periodic points of the entire dynamical system of the

Σ-∆ modulator in (2.1), but simply points with the corresponding periodic property on

CM that we choose to regard sufficiently as “periodic points” for the purpose of what is

meaningful in our definitions for chaos. With this adapted version, we have a definition

for chaos that captures essentially all of the fundamental aspects of Devaney’s definition

expressed for a simple 1 dimensional mapping in spite of the added complexity introduced.

The underlying extension we make in Devaney’s definition from one to higher dimensions

is straightforward and consistent with that made by Devaney to apply to hyperbolic toral

automorphisms of higher dimension in [7]. Our definition of the “torus” state space CM , and

its metric (including its Cartesian product structure) in Chapter 2, is also equivalent to that

made by Devaney for the n-dimensional torus state space of hyperbolic toral automorphisms
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in [7]. More uniquely, the notion and definition of “projected” chaos, as incorporated in

our chaos definition and discussed above, was specially devised for the studies of this thesis.

We know of no other instances where this has been introduced or applied, although such

a formulation would clearly be applicable to a broad variety of practical systems that are

described as dynamical systems.

Density of Periodic Points:

The one area in which a more significant departure from the strict Devaney definitions

has been made concerns defining density of periodic points. The concept of what we mean

by density of periodic points thus requires further clarification. In Devaney’s definition,

it is implicit that periodic points must exist as a prerequisite for the density condition 3

of chaos to hold. The assumption of this is clear from applications of Devaney’s chaos by

others, and is consistent with the original Li and Yorke definition requiring periodic points

as well. Devaney’s definitions were primarily intended for autonomous systems, where the

mapping fn in the dynamical system is the same at every iteration. In such systems, the

desired “regularity” property of chaos is more easily associated with a necessarily nonempty

dense set of periodic points over the state space. The systems we have in (2.1) are generally

nonautonomous however, with the mappings fn depending upon the input xn at a given

n. For systems with a relatively arbitrary, or random external input (i.e. not periodic

or possessing some structure), periodic points will generally not exist. In this context,

Devaney’s definition seems overly restrictive — we don’t want to completely exclude chaos

from systems with simply a more arbitrary general input.

A simple and sensible property of “regularity” to allow for chaos would then be simply

the nonexistence of periodic points as well. Therefore we interpret the definition inclusively,

so that a system with no periodic points satisfies, in effect, this density and thus chaos

condition 3 by default. An effect of this interpretation is that some autonomous systems
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will be classified as satisfying density of periodic points that would not otherwise have been

— e.g. the quasiperiodic first-order system (nonchaotic) analyzed in Section 8.3. It is less

clear though not discountable that such a change in classification would apply to full chaos,

for some cases as well. In any event, we will have a consistent basis upon which to compare

chaos properties across a broad variety of Σ-∆ modulator systems.

Of potentially more controversy, is the manner in which we have defined density of peri-

odic points when they exist. Using the standard, strict definition of a dense set, given in the

Introduction, would require that periodic points be densely distributed everywhere on CM

to satisfy chaos condition 3. In developing analytical methods and conceptual approaches

for establishing theorems concerning chaos condition 3, we were driven to exercise extra

flexibility in how we ultimately defined condition 3, so as to obtain more clear cut and

conceptually consistent results. In particular, it is difficult to extend general conditions

for strict density, and hence chaos, to systems with more than one feedforward element

(N > 1), especially if they are nonautonomous with an arbitrary external input. We can

presume that Devaney’s definition was less intended for systems with these sorts of com-

plexities, and it seems overly restrictive in this context. We might expect, again, that

broad conditions would arise under which chaos condition 2 would be satisfied, but not

condition 3, which would make the Devaney conditions for chaos much stronger than that

of Li and Yorke here. The work of others, e.g. Wang [62], seems to suggest an allowance

of non-density of periodic points, by at least the strict definition, in classifying chaos.

In the course of developing more conceptually unified chaos inclusive results, a natural

relaxation of Devaney’s definition emerged through a further loosening of the notion of

a dense set. Following this, for our definition of a dense set in chaos condition 3 above,

we then require only that any existing periodic point have another periodic point that is

arbitrarily close. This gives strict density only on a subset of CM , such as a submanifold
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or a Cantor-like set, for example. In other words, for chaos condition 3 to be violated, we

will require the necessary lack of “regularity” in the system to be that given when there

exists a periodic point with no other periodic point arbitrarily close to it. The relaxation

of the density condition to one requiring only an internally dense set clearly allows chaos

condition 3, and perhaps full chaos, to apply to an array of relatively simple higher order

systems (e.g. autonomous or with N = 0) to which they would not otherwise apply. This

bears particularly on some of the theorems and results to follow. We are nevertheless in a

position to build more consistent and comprehensive theoretical results as a contribution of

this thesis. In the formal results to follow that assert conditions under which chaos condition

3 holds, footnotes will be given to note the effects of using the standard definition of density,

and potentially requiring the existence of periodic points as well, on the results. Condition

3 will always fail under these stricter definitions, whenever it fails under our definition.

�

We now turn our attention towards finding cases under which various conditions in

our established definition of chaos will or will not hold, with the ultimate aim of trying

to classify conditions for chaotic or nonchaotic behaviour for the Σ-∆ modulator. The

theorems presented in this chapter will prove results towards this end. To begin with, the

following lemmas are given which will be useful in constructing the proofs of the subsequent

theorems:

Lemma 5.6 Chaos condition 1 (sensitivity) as defined with the projection g will hold if

and only if this condition 1 also holds when g is replaced with g1 in the definition.
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Proof:

1. Suppose that chaos condition 1 holds when g is replaced with g1 in the definition.

Then choose any ~x0 ∈ RN × CM and any neighbourhood Ñ of ~x0. Now ∃ ~y0 ∈ Ñ and

n1 > 0 such that ‖g1 ◦ fn1(~x0) − g1 ◦ fn1(~y0)‖ > δ1, where n = n1 and δ = δ1 for the

version of the definition. Now we have

‖g ◦ fn1(~x0) − g ◦ fn1(~y0)‖ = (
M∑

k=1

‖gk ◦ fn1(~x0) − gk ◦ fn1(~y0)‖2)
1
2

≥ ‖g1 ◦ fn1(~x0) − g1 ◦ fn1(~y0)‖ > δ1.

Thus chaos condition 1 defined with g holds with δ = δ1.

2. Suppose that the normal chaos condition 1 holds as defined with g. Choose any

~x0 ∈ RN × CM and any neighbourhood Ñ of ~x0. Now ∃ ~y0 ∈ Ñ and n1 > 0 such that

‖g ◦ fn1(~x0) − g ◦ fn1(~y0)‖ > δ1, where δ = δ1 and n = n1. Thus

(
M∑

k=1

‖gk ◦ fn1(~x0) − gk ◦ fn1(~y0)‖2)
1
2 > δ1.

Now we must have ‖gk̂ ◦ fn1(~x0)− gk̂ ◦ fn1(~y0)‖ >
δ1√
M

for some k̂ ∈ {1, 2, . . . , M}. This

gives that ‖g1 ◦ fn1−k̂+1(~x0) − g1 ◦ fn1−k̂+1(~y0)‖ >
δ1√
M

. Without loss of generality, we

assume that Ñ is small enough so that ‖gk(~x0) − gk(~y0)‖ <
δ1√
M

, ∀ k = 1, 2, . . . , M ,

which then implies that n1− k̂ +1 > 0. Thus chaos condition 1 holds when g replaced with

g1 in the definition, and with δ =
δ1√
M

. �

Lemma 5.7 If chaos condition 2 (transitivity) holds as defined with the projection g, then

this condition 2 also holds when g and V ⊂ CM are replaced with g1 and V ⊂ C respectively

in the definition.
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Proof:

Suppose chaos condition 2 holds as defined with g. Then choose any pair of open

sets U1 ⊂ RN × CM , V1 ⊂ C. Now choose any sets V2 ⊂ CM , V3 ⊂ RN × CM , such

that g(V3) = V2 and g1(V3) = V1 . From the definition, we have equivalently that ∃
~x0 ∈ U1 and k = k1 > 0 such that g ◦ fk1(~x0) ∈ V2 = g(V3). This then implies that

g1 ◦fk1(~x0) ∈ g1(V3) = V1 . Thus chaos condition 2 holds when g and V ∈ CM are replaced

by g1 and V ∈ C respectively in the definition. �

The importance of these lemmas is that, in terms of the first two chaos conditions,

they show that the dynamics on the M error variables (εn−1, . . . , εn−M) are to some extent

interchangeable with the dynamics on the first error variable εn−1. This is not surprising,

since the M error variables of ~xn simply appear as the first error variable g1(~xi) of a previous

~xi (i.e. εn−k is the first error variable of ~xn−k+1 for k = 1, . . . , M , n ≥ k− 1). These results

mean that, for some cases, when proving results regarding the first two chaos conditions,

we need only focus on one variable and a mapping to the one dimensional C rather than the

M dimensional CM . This, rather analogously to the stability theorem proofs of Chapter 3,

allows us to look at the associated difference equation (to the dynamical system) solution

as a simple expression of what the dynamics are on one variable.

Examples:

In this chapter, various examples of Σ-∆ modulators will be presented that illustrate

some of the conditions for chaos. For simplicity, examples 3, 4 and 5, along with those

presented in the proofs of Propositions 5.16, 5.25, 5.28, 5.31 and 5.32 will have feedforward

elements only, so that bj = 0, j = 1, . . . , N . From (1.2), such systems may be expressed as

follows:

εn =
∆

2
− [xn − (a1εn−1 + . . . + aMεn−M)] mod ∆, n ≥ 0.
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To simplify the form of this expression, we make the following change of variables:

εn =
∆

2
− vn∆, xn = dn∆ +

∆

2
(a1 + . . . + aM). This leads to the following form of such

systems:

vn = [a1vn−1 + . . . + aMvn−M + dn] mod 1, n ≥ 0, (5.1)

with 0 ≤ vn < 1, for all n ≥ −M . The initial conditions are v−1, . . . , v−M . This change of

variables constitutes a translation and scaling of the quantities involved. As such, there will

be a one-to-one relationship between the topological properties (i.e. properties pertaining to

sensitivity, transitivity, density of periodic points) of the nontransformed and transformed

form of a given system. We denote the zeros of p(z) by µi.

5.2 Continuous Model

The basic theorems concerning the three conditions for chaos will now be presented. For

all the theorems, corollaries, propositions and work to follow in this section, we assume

the Σ-∆ modulator has the simplified form presented in Chapter 4, where the ai and bj

satisfy condition (R) (or the continuity of Theorem 5.15). The results and discussion of

Subsection 5.2.1 will focus on systems that are nonminimum phase in general. Subsec-

tion 5.2.2 will focus on systems with at least one minimum-phase zero (i.e. nonexpansive),

particularly those that are fully minimum or marginally minimum phase.

5.2.1 Nonminimum-Phase Results

Theorem 5.8 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has a

zero with either magnitude greater than 1, or else magnitude equal to 1 with multiplicity

greater than 1. Then chaos condition 1 (sensitivity to initial conditions) will hold.
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Proof:

Let δ be a constant satisfying 0 < δ <
∆

2
. Choose any x̂0 ∈ R

N × CM and some

neighbourhood Ñ of x̂. Now we choose a ŷ0 ∈ Ñx as given in Lemma 4.10. Then, for ∆~x0

we have, from the nature of the zeros of p(z) and (2.3), that lim sup
n→∞

|∆εn| = ∞. Thus

∃ n1 > 0 such that |∆εn1 | >
∆

2
. Now if we replace the ŷ0 with ŷα0 = x̂0 − α(x̂0 − ŷ0) in

∆~x0, with 0 < α < 1, then, by the properties of linear difference equations, the constants

in (2.3) will be scaled down in magnitude by a factor of α, and hence so will |∆εn1 |. We

may then choose an α = α̂, with 0 < α̂ ≤ 1, such that δ < |∆εn1| <
∆

2
. This then implies

that δ < ‖g1 ◦ fn1+1(x̂0) − g1 ◦ fn1+1(ŷα̂0)‖, with n1 > 0 and ŷα̂0 ∈ Ñ . Now applying

Lemma 5.6, we have the result that sensitivity to initial conditions holds. �

Theorem 5.9 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has at

least M zeros, where each zero has either magnitude greater than 1, or else magnitude

equal to 1 with multiplicity greater than 1 [counted (multiplicity − 1) times]. Then chaos

condition 2 (topological transitivity) will hold.

Proof:

Let U1 be any open set with U1 ⊂ RN× CM . Choose an x̂0 ∈ U1 such that gki
(x̂0) 6= ∆/2,

∀ ki ∈ {2, . . . , M}. Now define ~y0 = x̂0 + ∆~x0, where we assume that ∆~x0 ∈ RN × CM is

small enough in magnitude so that ~y0 ∈ U1 and gki
(x̂0+α∆~x0) 6= ∆/2, for 0 ≤ α ≤ 1. Let

∆~x0 = (∆ε−1, . . . , ∆ε−N ; ∆ε−1, . . . , ∆ε−M), where the max(N, M) ∆εi serve as the ε and r

coordinates of ∆~x0 in this manner. From Theorem 4.4, Theorem 4.5 and its proof, it then

follows that the solution to (4.1), with initial conditions ∆~ε0 = (∆ε−1, . . . , ∆ε−max(N,M)),

satisfies g1(∆~εn) ∼= g1 ◦ fn(~y0) − g1 ◦ fn(x̂0), for n ≥ 0, where the subscripts from ∆~x0

above are decreased by N .
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Now choose any point ẑ0 ∈ CM . We want to find an n1 ≥ 0 such that g ◦ fn1(ŷ0) =

ẑ0, for a ŷ0 satisfying our conditions on ~y0 above. Thus we will require g(∆ε̂n1) =

ẑ0−g◦fn1(x̂0) to be satisfied for some ∆ε̂0, and hence ∆x̂0 of sufficiently small magnitude.

With the above equation, we then may construct the following using the matrix notation

given at the end of Chapter 4.

(v(k)i)
T = [Rk](Aij , Bij, Cij)

T = [Rk] · [R0]
−1(∆εi)

T ,

which leads to (∆εi)
T = [R0] · [Rk]

−1(v(k)i)
T . For this we define v(k)i = gi(ẑ0) − gi ◦

fk(x̂0), for i = 1, . . . , M , and v(k)i are arbitrary, for i = M + 1, . . . , max(N, M). We

set the constraint |v(k)i| ≤ ∆, for i = 1, . . . , M . The matrix [Rk] is invertible, and hence

solutions for (∆εi)
T exist.

Suppose there are q zeros of p(z) with magnitude greater than 1, or magnitude 1 with

extra multiplicity. Let q̃ = max(N, M)∗−q. Thus without loss of generality we take q = M

here. We define (v(k)i)
T
q and (v(k)i)

T
q̃ to be the corresponding vectors of the first q and

last q̃ entries of (v(k)i)
T respectively.

Now we set ~αq̃ = 0. This leads to the equation ~αq = [Rkq]
−1(v(k)i)

T
q , for ~αq in terms

of the fixed (v(k)q)
T . We also then get (v(k)i)

T
q̃ = [Rkq̃] · [Rkq]

−1(v(k)i)
T
q for the arbitrary

(v(k)i)
T
q̃ .

Now we have that the lim inf of the magnitudes of the entries of the matrix [Rkq]
−1 will

go to zero (uniformly) as k → ∞. Thus lim inf ~αq → 0 as k → ∞. Since (∆εi)
T = [R0]~α, it

follows that lim inf(∆εi)
T → 0 as k → ∞. Thus we may find an n1 such that g◦fn1(ŷ0) = ẑ0

for some ŷ0 ∈ U1, and gki
(x̂0 + α∆x̂0) 6= ∆/2, for 0 ≤ α ≤ 1. The latter condition is

needed for the validity of the method used. Since ẑ0 is arbitrary, it may be an element of

any set V1 ∈ CM , so that g ◦ fn1(U1) ∩ V1 6= ∅. With U1 and V1 arbitrary, we have the

result that topological transitivity holds under the conditions of the theorem. �
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Theorem 5.10 2 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has

max(N, M) zeros, where each zero has magnitude greater than 1. Then chaos condition 3

(density of periodic points) will hold.

Proof:

Suppose that the system has a periodic point x̂∗
0 ∈ CM . Then x̂∗

0 = g ◦fkp(x̂0) = g(x̂0)

for some period p ≥ 1 and k ∈ Z+, and for some x̂0 ∈ RN × CM . Now we choose a ~y0 so

that the perturbation ∆~x0 = ~y0 − x̂0 = (∆ε−1, . . . , ∆ε−N ; ∆ε−1, . . . , ∆ε−M).

To account for the M > 1 case when gki
(x̂0) = ∆/2 for some ki ∈ {2, . . . , M}; we

may extend the definition of system (1.2) backward by M − 1 iterations. For this, we

choose inputs xi, and initial εi−M 6= ∆/2, ri−N , for x̂i, i = −1, . . . ,−(M − 1), such that

fn+M−1(x̂−(M−1)) = fn(x̂0), ∀ n ≥ 0. We would now choose ~y−(M−1) (instead of ~y0) and the

corresponding perturbation ∆~x−(M−1) = ~y−(M−1)−x̂−(M−1) = (∆ε−1−(M−1), . . . , ∆ε−N−(M−1);

∆ε−1−(M−1), . . . , ∆ε−M−(M−1)). From Theorem 4.4, Theorem 4.5 and its proof, it follows

that the solution to (4.1) with initial conditions ∆~ε−a = (∆ε−1−a, . . . , ∆ε−max(N,M)−a), sat-

isfies g1(∆~εn) ∼= g1 ◦ fn+a(~y−a) − g1 ◦ fn+a(x̂−a) for n ≥ −a, where the subscripts from

∆~x−a above are decreased by N + a, and a = 0 or M − 1, (M > 1).

We will now require that ∆~x0 be an M dimensional periodic point in CM of (4.1),

defined by g(∆~xk̂p1
) = g(∆~x0), ∀ k̂ ∈ Z+, with some period p1 ≥ 1. We set p1 = lp

for some l ∈ Z+. This then requires that ∆εlp+i = ∆εi + mi∆, for some mi ∈ Z, not

all zero, and i = −1, . . . ,−M . This holds when system (4.1) cycles back to produce the

same periodic point from the initial condition modulo ∆, every lp iterations. Extending

the range of i to −max(N, M) in this equation, and to −lp in the definition of the mi, we

2Using the standard definition of density, we conjecture that this result will hold when N = 0, 1, with

no conclusion otherwise. If existence of periodic points is added to the density definition, this result must

revert to Corollary 5.22, with no conclusion otherwise.
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have the following. From the iterative relationship developed in the proof of Theorem 4.4,

we have that

∆εlp+i = ∆rlp+i +

lp+i
∑

j=1

r̃jmi−j∆, where i = −1, . . . ,−N ,

and the ∆rlp+i are the corresponding internal variable components from ∆~xlp. We can now

set up the following scheme to define the mi, i = −1, . . . ,−max(N, M), not all zero, for i

up to −M , in terms of max(1, M − N + 1) arbitrary integers. We set

mi =
M+i∑

j=1

r̃jmi−j + r̃M+i+1m̂, for i = −1, . . . ,−N ,

with m̂ ∈ Z, and mi arbitrary for i = −N − 1, . . . ,−M , if N < M . Substituting into the

∆εi equation above, this leads to

∆rlp+i = ∆εi − [

lp+i
∑

j=M+i+1

r̃jmi−j − r̃M+i+1m̂]∆, for i = −1, . . . ,−N .

With these ∆rlp+i, the effect of the bracketed terms will cancel out modulo ∆, via condition

(R), and thus g(∆~xlp+j) = g(∆~xj), ∀ j ≥ 0, as is sufficient for a periodic point.

We now apply the matrix notation given at the end of Chapter 4, with (∆εi−a)
T corre-

sponding to the initial conditions ∆~ε−a. Also, we define [Ia] = [Ra][R0]
−1 if a = M −1, and

[Ia] = I, the identity matrix, if a = 0. With the above equation, we then may construct

the following.

[Ia] · (∆εi−a)
T + (~βi)

T = [Rk]~α = [Rk] · [R0]
−1 · [Ia] · (∆εi−a)

T .

For this we define (~βi)
T to be the max(N, M) × 1 vector with entries m−i∆, for i =

1, . . . , max(N, M), as designated above. Without loss of generality, we can replace [Ia] ·
(∆εi−a)

T with (∆εi)
T in this expression.
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The equation above leads to (~βi)
T = ([Rk] − [R0])~α. This leads to the equation

~α = ([Rk] − [R0])
−1(~βi)

T for ~α in terms of the ∆ multiples in (~βi)
T , which we take to be

fixed. Clearly ([Rk] − [R0]) is invertible. Now we have that the lim inf of the magnitudes

of the entries of the matrix ([Rk] − [R0])
−1 will go to zero (uniformly) as k → ∞. Thus

lim inf ~α → 0 as k → ∞. Since (∆εi)
T = [R0]~α, it follows that lim inf(∆εi)

T → 0 as

k → ∞.

Now we choose k so that k = lp, where l ∈ Z+. With this, it may be concluded that

for any specific values of mi, (∆εi)
T will become arbitrarily close to zero in its entries

and magnitude as l becomes arbitrarily large. Thus, for specific mi, there must exist an

l such that the solution for ∆~ε0 yields an associated ∆x̂0, with ŷ0 = x̂0 + ∆x̂0 satisfying

g(ŷ0) ∈ Ñ , for some neighbourhood Ñ ⊂ CM about g(x̂0). Let ∆ε̂0, with corresponding

l̂, be such a solution. From our construction in the equations, ∆ε̂0 repeats as an effective

initial condition of (4.1), such that ∆ε̂0 and hence g(∆ε̂0) is cyclic and periodic with period

l̂p. Thus we must have that

g(∆x̂k̂l̂p) = g ◦ f k̂l̂p(ŷ0) − g ◦ f k̂l̂p(x̂0) + (γ(1), . . . , γ(M))∆ = g(∆x̂0)

= g(ŷ0) − g(x̂0) + (γ(1), . . . , γ(M))∆, for k̂ ∈ Z+.

For this, with ∆x̂0 small, we define γ(i) = 1 if gi(x̂0) = ∆/2 and sgn(gi(∆x̂0)) > 0, and

γ(i) = 0 otherwise, i = 1, . . . , M . Thus

g ◦ f k̂(l̂p)(ŷ0) = g ◦ f k̂l̂p(ŷ0) − g ◦ f k̂l̂p(x̂0) + g ◦ f k̂l̂p(x̂0)

= g(ŷ0) − g(x̂0) + g ◦ f (k̂l̂)p(x̂0) = g(ŷ0),

from the above and the fact that g(x̂0) is a periodic point with period p. Thus g(ŷ0) is

a periodic point with period l̂p. With ŷ0 as chosen, and g(x̂0) any periodic point, it then

follows that the result of density of periodic points holds. �



CHAPTER 5. CHAOS 118

Corollary 5.11 3 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has

q zeros, where each zero has either magnitude greater than 1, or else magnitude equal to 1

with multiplicity greater than 1 [counted at most (multiplicity − 1) times], and M ≤ q <

max(N, M). Suppose further that the ai, b̃j of the reduced form of (1.2) associated with

the lower order factor of p(z) containing strictly the q zeros, satisfy condition (R). Then

chaos condition 3 (density of periodic points) will hold. Moreover, if p(z) = 1, then chaos

condition 3 will hold if and only if the unique orbit does not allow a periodic point.

Proof:

The method of the proof of Theorem 5.10 is followed, with the matrix notation from the

end of Chapter 4. We have (∆εi)
T
q̃ = [R0q̃] · [R0q]

−1(∆εi)
T
q , where ∆~x0 = ((∆εi)q, (∆εi)q̃,

~0; ∆ε−1, . . . , ∆ε−M). We consider the reduced form of (1.2) associated with the lower

order factor of p(z), denoted p̃(z), containing strictly the q nonminimum-phase zeros. We

denote the bj of the reduced form by b̃j . Let [bj ]q, [bj ]q̃ denote the vectors (b1, . . . , bq),

(bq+1, . . . , N) respectively. Then we have, from Proposition 4.11, the definition [̃bj ]q ≡
[bj ]q + [bj ]q̃[R0q̃][R0q]

−1. The characteristic polynomial of the reduced system is then

p̃(z) = zq +

q
∑

k=1

(b̃k − ak)z
q−k. From the iterative relationship developed in the proof of

Theorem 4.4 applied to the reduced system, we have that ∆εlp+i = ∆rlp+i +

lp+i
∑

j=1

r̃jmi−j∆,

where i = −1, . . . ,−q, and the r̃j are defined from condition (R) applied to the reduced

system, with the ai, b̃j . We then define mi and m̂ as in the proof of Theorem 5.10, for

i = −1, . . . ,−q. The remainder of the proof of Theorem 5.10 may then be applied, with

[Rk], [R0], [Ra], ~α replaced by [Rkq], [R0q], [Raq], ~αq respectively, and the corresponding

vectors reduced to length q.

3Using the standard definition of density, this result does not apply, and we make no such conclusion.
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Now suppose that p(z) = 1. From the degenerate form of (1.2), we have that ∆εn = 0,

∀ n ≥ 0. This implies that, for any initial condition ~x0 ∈ R
N × CM , there exists a unique

orbit {êM+n ∈ CM | n ≥ 0} such that g(~xM+n) = êM+n, ∀ n ≥ 0. Clearly chaos condition

3 holds if the unique orbit cannot allow a periodic point; that is if there does not exist an

~x0 ∈ RN × CM and p ∈ Z+ such that êkp = g(~x0), ∀ k ∈ Z+ such that kp ≥ M . Now

suppose that there exists such an ~x0 and p. Suppose that ~y0 is another periodic point with

period t. It then follows that g(~x0) = g(~xlpt) = êlpt = g(~ylpt) = g(~y0), ∀ l ∈ Z+ such that

lpt ≥ M . This implies that the periodic point is unique, and hence chaos condition 3 does

not hold. �

The results of these theorems show that all three chaos conditions are satisfied when

the system has a noise transfer function with all zeros strictly nonminimum phase. Thus

our version of Devaney chaos holds for these cases (with condition (R) assumed). In Sub-

section 5.2.2, we find that chaos condition 1 fails for the minimum or marginally minimum-

phase (with magnitude 1 zeros of multiplicity 1) cases examined (i.e. with condition (R) or

the continuity of Theorem 5.15 assumed), and so this Devaney chaos fails for these cases as

well. These results, while generally consistent with the vaguer “chaos” claims of previous

research (i.e. [56], [62], [53], [50]), provide a much clearer picture of the manner in which

the chaos conditions come into play in the nonminimum-phase cases. In these papers, the

existence of chaos is suggested for the nonminimum-phase case only, but no rigorous chaos

definition or proof of when this chaos does or does not exist is given.

Here we see that sensitivity to initial conditions holds automatically whenever any

zero has either magnitude greater than 1 or else magnitude 1, multiplicity greater than

1. Density of periodic points generally requires that all zeros (of which there must be at

least M) have magnitude greater than 1, although some broad conditions are presented in
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Corollary 5.11, and further conditions in Theorem 5.12 and the subsequent Corollary 5.13,

whereby this condition will hold for at least M such zeros, or fewer such zeros, respec-

tively. Topological transitivity holds under the less stringent requirement of at least M

nonminimum-phase zeros, but, as shall be seen, would seem to depart from this rule only

for more restrictive classes of cases.

The manner in which these nonminimum-phase cases break into the different possi-

bilities of chaos conditions being satisfied is not too difficult to understand. For strictly

nonminimum-phase zeros, the expansivity contribution to the error differences ∆εn is un-

bounded. When there is a magnitude 1 zero with multiplicity greater than 1, this gives

a resonance like result where the expansivity contribution from the (multiplicity − 1) re-

peated zeros is also unbounded. Sensitivity to initial conditions will hold with expansivity

only in a given error coordinate projection gi(~xn), and therefore requires only one zero to

be expansive. Topological transitivity requires expansivity in all M directions of CM to be

guaranteed, since we are trying to map the neighbourhood of a given point to any other

neighbourhood. This requires M expansive zeros. Density of periodic points, in the most

general case, has even more constraining properties, and we require that all zeros (≥ M)

be expansive for it to be shown. This follows from the fact that periodic points must not

only map back to themselves, but must do so repeatedly. The requirement may be reduced

to as few as M expansive zeros, however, if condition (R) is satisfied, in parallel, on the

“reduced” lower order system associated with these fewer zeros (assuming this is mathe-

matically possible), (see Proposition 4.11 for a general definition of this, and Corollary 5.11

for a precise definition of the b̃j). Under appropriate conditions, even fewer than M such

zeros may be sufficient, since the dense periodic points in CM may be dense over manifolds

of dimension less than M in CM .
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It is interesting to find that, while the system has order max(N, M), our requirements

for chaos condition 2 are only for M nonminimum-phase zeros, even if N > M . We only

require M degrees of freedom offered by some M zeros to attain these chaos conditions,

and hence the remaining N −M zeros and their values play no role, by virtue of the linear

structure of the system, in these determinations. When the multiplicities of the magnitude

1 zeros are 1, or greater than 1 and counted once, we have boundedness in the expansivity

contribution to the error differences ∆εn, as for strictly minimum-phase zeros. Thus it is

easy to see why we have no contributions to general results for any chaos conditions being

satisfied in these cases, and indeed have the converse. Thus in summary, for the case of

filter gains satisfying condition (R) or of the continuity conditions of Theorem 5.15 holding,

we have broad and conclusive statements concerning the existence of chaos.

From the developments used in the proofs of the above theorems, we note that the

nominally max(N, M) dimensional system (4.1) reduces to an analogous lower q̂ dimensional

system when either the dimensionality of the state space of initial conditions is reduced

to q̂, or q̂ = max(N, M)∗ < max(N, M). In the latter case, the max(N, M) dimensional

space of initial conditions ∆~ε0 is projected onto a max(N, M)∗ dimensional general solution

subspace for ∆~εn, n ≥ max(N, M)−max(N, M)∗. In particular, if p(z) = 1 (max(N, M)∗ =

0), this projection corresponds to a single unique orbit for εn = fn+1(~x0) over all initial

conditions ~x0 ∈ RN × CM .

A theorem and subsequent corollary which extend chaos condition 3 to more general

nonminimum-phase cases are now presented.
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Theorem 5.12 4 Suppose the ai and bj satisfy condition (R) and one of the following

applies.

1. Suppose p(z) has at least q zeros with 1 ≤ q ≤ max(N, M)∗, where each zero µi has

magnitude greater than 1 and is counted once if the multiplicity is greater than 1; and that

the argument θi = 2πµ̃i for some rational number µ̃i if the zero µi is complex. Suppose also

that there exist q numbers γj ∈ R, j = 1, . . . , q, not all zero, such that

q∑

j=1

γjzij = γ̄i ∈ Z, for i = 1, . . . , q1, with γ̄i, i = 1, . . . , M , not all zero,

and max(M, q) ≤ q1 ≤ max(N, M);

where zij is the (i, j)th element of the matrix [R0] specified with respect to the q zeros, as

analogously defined in Chapter 4, and extended at the bottom to include q1 rows. Suppose

further that either:

(a) The ai, b̃j of the reduced form of (1.2) associated with a reduction in the number of

recursions from max(N, M) to q1, satisfy condition (R). Also, γ̄i = m−i, i = 1, . . . , q1, for

some m̂, m−k, k = N + 1, . . . , M , from the definition in the proof of Theorem 5.10 applied

to the reduced system;

(b) M = 1, with (R) holding on the reduced system; or

(c) ai, b̃j ∈ Z for i = 1, . . . , M , j = 1, . . . , min(N, q1).

2. In particular, suppose q = 1 or q = 2 above, and that the zero(s) have rational

magnitude |µ| and is real (with value µ), or are complex with θ = ±π/4, respectively.

Suppose further that either:

(a) There exist nonzero numbers γ̂1, γ̂−1 ∈ R, such that γ̂1(µ)−i = m−i, in the q = 1

case; and γ̂(−1)i |µ|−i(−1)A(i) = m−i, where A(i) = −i/2 mod 1, in the q = 2 case; with

i = 1, . . . , q1 = max(N, M), and m−i as in 1(a); or

4Using the standard definition of density, this result will generally not hold.
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one of 1(b), (c), with q1 = max(N, M), holds.

Then chaos condition 3 (density of periodic points) will hold.

Proof:

1. For the proof of this theorem, we follow the same definitions and development as for

the proof of Theorem 5.10 and its corollary, leading to the equation (~βi)
T = ([Rk]−[R0])~α.

Now we apply the matrix notation given at the end of Chapter 4 with respect to the q zeros

in question, and introduce the following additional notation. Let [Rkq1](q) and [R0q1 ](q) be

matrices that comprise the first q columns (corresponding to the q zeros) of [Rk] and [R0]

respectively, where the number of rows has been extended from max(N, M)∗ to q1 at the

bottom.

Now set ~αq̃ = 0. Let k = k̂mθ, for k̂ ∈ Z+, where

mθ = LCM(2, 2π/θi, ∀ complex arguments θi 6= 0 corresponding to the q nonminimum

-phase zeros satisfying the theorem).

Then the (i, j) element of ([Rkq1](q) − [R0q1 ](q)) will be zij(|µj|k − 1), where 1 ≤ i ≤ q1,

1 ≤ j ≤ q, and zij is the (i, j) element of [R0q](q). The RHS of the equation above then

gives the vector (

q
∑

j=1

zij(|µj|k − 1)αj)
T with entries over 1 ≤ i ≤ q1, where αj is the jth

entry of ~αq. Now we set αj =
γj∆

|µj|k − 1
, where the γj satisfy the theorem requirements.

Then the RHS vector becomes (

q
∑

j=1

γjzij∆)T = (γ̄i∆)T .

(a) This is the required form of the LHS of the equation if case (a) holds, and

thus our ~α have been correctly chosen. Let [bj ]q1, [bj ]q̃1 denote the vectors (b1, . . . , bq1),

(bq1+1, . . . , N) respectively. Then, using Proposition 4.11, we have the definition [̃bj ]q1 ≡
[bj ]q1 + [bj ]q̃1[R0q̃1 ](q)[R0q]

−1, where [R0q̃1 ](q) is defined analogously (consistent with earlier
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definitions) with respect to [R0q1](q). Similarly, we have (∆εi)
T
q̃1

= [R0q̃1 ](q) · [R0q]
−1(∆εi)

T
q .

For case (a), we now have the iterative relationship form of Corollary 5.11 applied to the

reduced system satisfying condition (R) here.

(b) Suppose case (b) holds. Then we scale the αj as defined above by an integer

factor m̂γ, replacing αj by α̃j = m̂γαj . The vector of the RHS of the equation above then

becomes (m̂γ γ̄i∆)T . We now set m̂γ γ̄i =

q1∑

s=1

r̃M−i+sm̂s, for i = 1, . . . , q1, for some m̂s that

we wish to choose in Z, with s = 1, . . . , q1, and where the r̃M−i+s are defined with respect

to the reduced system. From the structure of the vectors (r̃M−i+s)
T ≡ (~0, r̃1, . . . , r̃M−i+q1)

T ,

i = 1, . . . , q1, and the conditions on M and q1, it follows from (R) that these vectors are

linearly independent on Zq1. Thus ∃ m̂γ , m̂s ∈ Z, s = 1, . . . , q1, such that these m̂γ γ̄i

equations are satisfied for i = 1, . . . , q1. From the arguments in the proof of Theorem 5.10,

this choice of m−i = m̂γ γ̄i, i = 1, . . . , q1, will then cancel out modulo ∆ in the internal ∆r

coordinate mappings, in the reduced system, and the requirements for a periodic point will

be met.

(c) Suppose case (c) holds. Then any integer choice of the m−i = γ̄i will cancel out

modulo ∆ in the internal ∆r coordinate mappings, in the reduced system, as occurs with

cases (a) and (b).

It is now clear that ~αq → 0 as k̂ → ∞, where k = k̂mθ. With k̂ = lp, it may be

concluded that with these specific values of m−i, there exists large l in Z+ to make (∆εi)
T

arbitrarily close to zero in its entries and magnitude. The rest of the proof then follows the

proof of Corollary 5.11 to the end, with [Rkq1], [R0q1 ], [Raq1 ], and ~αq1 ≡ (~αq, ~0).

2. If q = 1 and the zero is real, or q = 2 and the zero is complex with θ = ±π/4,

then the entries zij have magnitude |µ|−1, i = 1, . . . , max(N, M), j = 1, . . . , q, and will

be rational if and only if the corresponding zeros have rational magnitude. Under these
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conditions, we may choose nonzero integers γj such that γ1zi1 = γ1(µ)−i ∈ Z if q = 1, and

γ1zi1 + γ2zi2 = γj|µ|−i(−1)A(i) ∈ Z, where A(i) = −i/2 mod 1, j = 1, 2 for i odd/even

respectively, if q = 2. Thus if 2(a) holds, 1(a) is satisfied; and if 1(a), (b) or (c) hold, the

condition in the theorem will then be satisfied. �

Corollary 5.13 5 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has

at least q zeros, with 1 ≤ q ≤ max(N, M)∗, where each zero has either magnitude greater

than 1, or else magnitude equal to 1 with multiplicity greater than 1 [counted (multiplicity

− 1) times]. Suppose further that there exists an infinite sequence of numbers γj(km) ∈ R,

with j = 1, . . . , q, and km ∈ Z+, m ≥ 1, such that km+1 > km for all such m, and that the

γj(km) are not all zero at any m ≥ 1. Now suppose that the following hold:

q
∑

j=1

γj(km)zij(km) = γ̄i(km) ∈ Z, for i = 1, . . . , q1, with ¯γi(km), i = 1, . . . , M ,

not all zero at any m ≥ 1, and M ≤ q1 ≤ max(N, M);

there exists K > 0 such that |zij(km)| > K, for all m ≥ 1, where zij(km)|µj|km is the

(i, j)th element of the matrix [Rkm ] specified with respect to the q zeros, as analogously

defined in Chapter 4, and extended at the bottom to include q1 rows; and the γi(km) satisfy

|γi(km)| < K̂ for some K̂ > 0, for all m ≥ 1. In addition, suppose that either: 1(a) with

γ̄i(km), for all m ≥ 1; or one of 1(b), (c) from Theorem 5.12 hold. Then chaos condition

3 (density of periodic points) will hold.

Proof:

The proof of this corollary follows the proof of Theorem 5.12, with k = km, m ∈ Z+,

and the following changes. The (i, j) element of ([Rkq1](q) − [R0q1](q)) will be

5Using the standard definition of density, this result will generally not hold.
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(zij(k)|µj|k − zij(0)) = zij(k)(|µj|k −
zij(0)

zij(k)
), for m ∈ Z+, where 1 ≤ i ≤ q1, 1 ≤ j ≤ q,

with zij(k)|µj|k and zij the corresponding elements of [Rkq1](q) and [R0q1 ](q) respectively. For

this, we use |zij| > K. The RHS of the equation then gives the vector (

q
∑

j=1

zij(k)(|µj|k −

zij(0)

zij(k)
)αj)

T with entries over 1 ≤ i ≤ q1. Now we set αj =
γj(k)∆

|µj|k − zij(0)

zij(k)

, where the γj(k)

satisfy the corollary. The rest of the proof follows that of Theorem 5.12. It is clear that

~αq → 0 as m → ∞, since the resulting k are unbounded, and the corresponding γj(k) and

zij(k) are bounded above and below in magnitude respectively. Thus, from the proof of

Theorem 5.12, we have the required result. �

Theorem 5.12 provides general conditions on the zeros under which density of periodic

points may be obtained when fewer than max(N, M) of these zeros satisfy the requirements

of Theorem 5.10. These conditions are most easily described when all of the coefficients ai,

bj are integers, or when M = 1. If only one such real zero, or one complex conjugate pair of

zeros with argument ±π/4 is considered, the condition of a rational magnitude for the zero

is sufficient to obtain chaos condition 3 in these special cases, and to a lesser extent more

generally. If more zeros of a restrictive nature are considered, then less restrictive sets of

such zeros that meet a generalization of this condition are sufficient for the analogous cases.

For a given number of such zeros, there is also trade off between the level of restrictiveness

of the sets, and the order of the reduced system that must satisfy (R), as part of the

conditions (if q1 = max(N, M), then the parallel (R) condition drops altogether).

Corollary 5.13 extends the result of Theorem 5.12 to allow for all nonminimum-phase

zeros of the form considered in Theorem 5.10, that is, to include complex zeros with irra-

tional arguments and all corresponding zeros with multiplicity greater than 1. The con-

dition that such zeros must meet, however, is far stricter, since the existence of a certain
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infinite sequence of bounded numbers is necessary. Theorem 5.12 and Corollary 5.13 work

as relaxations of Theorem 5.10 because we have used certain rational number related sym-

metries that exist in the zeros (and relate to the structure of the mapping fn) to show

density of periodic points on manifolds of dimension less than M in CM .

Certain types of more general nonminimum-phase cases may satisfy both chaos con-

ditions 2 and 3, and be fully chaotic. This will occur when the system (1.2) describes a

mapping that is a hyperbolic toral automorphism. In [7], Devaney defines this type dy-

namical system and shows that it is chaotic. Such a dynamical system, in two dimensions,

is given by the mapping L : [0, 1)2 → [0, 1)2, with L(vn−1, vn−2) = A · (vn−1, vn−2)
T on

[0, 1)2, for all n ≥ 0, where A is a 2 × 2 matrix with all entries integer, det(A) = ±1, and

A is hyperbolic. The following proposition considers a more specific form of this, arising

from a Σ-∆ modulator system, and asserts that it is chaotic.

Proposition 5.14 6 Suppose that the system is second order with M = 2, N = 0, and has

a constant input given by xn =
∆

2
(a1 +a2), for all n ≥ 0. If a1 ∈ Z, a2 = ±1, and the zeros

of p(z) are real with one of magnitude less than one, and the other of magnitude greater

than one, then both chaos conditions 2 and 3 will hold, and the system will be chaotic.

Proof:

The second sentence in the proposition is the definition of a hyperbolic toral automor-

phism in [7] corresponding to the dynamical system given from (1.2) and (2.1) for a system

satisfying the conditions in the first sentence, and transformed to the form (5.1), (with

dn = 0, ∀ n ≥ 0). [7] proves such systems are chaotic. The adapted requirements for chaos

used by Devaney for this are sufficient to imply chaos under the adapted requirements de-

6Using the standard definition of density, with existence of periodic points added as well, this result will

still hold.
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fined at the beginning of Chapter 5 in this thesis. Chaos condition 1 follows automatically

from Theorem 5.8 as well. Thus the system will be chaotic. �

An example satisfying this proposition would be a1 = 2, a2 = 1, so that r1,2 = 1±
√

2

2
.

More general classes of hyperbolic toral automorphisms (or chaotic mappings) would exist

for higher order systems, and systems, we expect, with N ≥ 1 and/or more general input

xn.

For topological transitivity then, we have some lesser flexibility (compared to density of

periodic points) beyond our relative requirements. The following is a nonminimum-phase

example with rational zeros which fails the conditions of Theorem 5.10 and is indeed shown

not to be topologically transitive:

Example 1:

Consider the second-order system with a1 = 2, a2 = −1, b1 = −1

2
, xn = ∆/2, for all

n ≥ 0; so that M = 2 and N = 1. Then p(z) = z2 − 5

2
z + 1, with zeros µ1 = 2 and µ2 =

1

2
.

This system satisfies condition (R), since r̃1 = 2, r̃i = 0, for i ≥ 2. The system is also

internally stable with |b1| < 1. Now choose x̂0 = 0 ∈ R× C2 and an open set V1 ∈ C2, such

that z1 − 2z2 ∋ Z, for any ~z = (z1, z2) ∈ V1. Now choose any ~v = (v1, v2) ∈ V1. Using the

approach of the proof of Theorem 5.9, we have x̂k = 0, and (v(k)1, v(k)2) = (v1 +m(k)1∆,

v2 + m(k)2∆), ∀ k ≥ 0, with m(k)1, m(k)2 ∈ Z. Here we have extended the definition of

(v1, v2) to allow for all valid forms of this quantity for the solutions of (4.1).

Now we have

[R0] · [Rk]
−1 = (

2

3
)




21−k − 2k−1 −2−k + 2k

2−k − 2k −2−k−1 + 2k+1



 .

Multiplying this matrix by (v(k)i)
T and equating the second line to ∆ε−2 (the second initial

condition), we arrive at the following.
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∆ε−2 = (2k(−v1 + 2v2 − m(k)1 + 2m(k)2) + 2−k(v1 −
1

2
v2 + m(k)1 −

1

2
m(k)2))(

2

3
).

We cannot choose integer m(k)1, m(k)2 to make the first bracket on the right zero. Letting

m(k)1 = 2m(k)2 and equating the first line to the first initial condition as well, we have

∆ε−2 = (2k(−v1 + 2v2) + 2−k(3
2
m(k)2) + 2−k(v1 − 1

2
v2))(

2
3
),

∆ε−1 = (2k−1(−v1 + 2v2) + 21−k(3
2
m(k)2) + 2−k(v1 − 1

2
v2))(

2
3
).

The third terms on the right above go to zero as k goes to infinity. If we choose m(k)1 to

make ∆ε−2 go to zero as k goes to infinity, then ∆ε−1 will be O(k). Similarly, ∆ε−2 will

be O(k) if m(k)1 is chosen to make ∆ε−1 go to zero as k goes to infinity. Thus we cannot

find arbitrarily small ∆ε−1, ∆ε−2 that will map to ~v. This implies, from the formation of

the initial conditions of (4.1) (with subscripts increased by 1) from (1.2), that no initial

condition ∆ε̂0 of the system with arbitrarily small coordinates ∆ε−2, ∆ε−1, ∆r−1, exists

that will map to ~v. Hence there is no such ∆ε̂0 in an arbitrarily small neighbourhood about

x̂0 = 0 that will map into V1. Thus this example is not topologically transitive. �

Example 1 will, nevertheless, satisfy density of periodic points by Theorem 5.127. Exam-

ple 2 below with an irrational nonminimum-phase zero fails the conditions of Theorem 5.12

and is shown not to satisfy density of periodic points. Note that it is also unstable and

thus of theoretical interest only.

Example 2:

Consider the second-order system with a1 = 1, a2 = −η, b1 = −η, xn = ∆/2, for all

n ≥ 0; so that M = 2 and N = 1. We set η to be an irrational number greater than 1.

Then p(z) = z2−(1+η)z+η, with zeros µ1 = η and µ2 = 1. This system satisfies condition

7Using the standard definition of density (with periodic points existing here), we make no such conclu-

sion.
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(R), since r̃1 = 1, r̃i = 0, for i ≥ 2. The system is not internally stable since |b1| > 1.

Clearly x̂∗
0 = 0 is a periodic point with period p = 1.

Using the approach of the proof of Theorem 5.10, we have (~βi)
T = ([Rk]− [R0])~α. From

the example here, this gives

(~βi)
T =




η(ηk − 1) 0

ηk − 1 0



 ~α.

This gives (m1, m2)
T ∆ = (η, 1)T (~αq(η

k − 1)), for m1, m2 ∈ Z. The LHS vector has

entries that are integers, while the RHS vector has entries that are of an irrational ratio.

Thus a solution for ~αq and ~α is not possible. Therefore, by the construction in the proof of

Theorem 5.10, no periodic point lies in a small neighbourhood of the periodic point 0 and,

in fact, no other periodic point exists at all. Thus this example does not have density of

periodic points. �

General cases that do not satisfy Theorems 5.10, 5.12 or their corollaries, or Theo-

rem 5.9, and are not hyperbolic toral automorphisms in either situation, may be shown not

to satisfy chaos condition 3 or 2 respectively by similar methods. An exception is for the

case when some zeros are on the unit circle, when Theorem 5.12 and Corollary 5.13 extend

to give Theorem 5.17 in the next subsection.

Thus we conjecture, without rigorous proof, that Theorem 5.9, or the existence of a

hyperbolic toral automorphism, constitute necessary and sufficient conditions for chaos

condition 2 to be satisfied when the system has an input xn which satisfies certain “basic”

(in some sense) conditions. We extend this conjecture of necessity to the combination

of Theorems 5.10, 5.12 and 5.17, with Corollaries 5.11, 5.13 (which satisfy sufficiency),

when the number of expansive zeros condition is adjusted to M from max(N, M) as in

Theorem 5.9, for chaos condition 3. We will refrain from a further postulation of a precise
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definition of these “basic” conditions, except to say that we take them to hold when the

system has at least one periodic point, such as the point 0 in Examples 1 and 2. If the

input is arbitrary, then these theorems represent sufficient conditions only. It is of particular

interest to see Theorem 5.9 accomplish a role as a prospective necessary condition, since

this theorem proves a somewhat stronger result than topological transitivity, namely that

every neighbourhood in CM contains a point that maps to any other point in CM . The

existence of chaos via hyperbolic toral automorphisms suggests an added complexity in the

nature by which chaos may arise, thereby posing a challenge in establishing the validity of

the conjectures above.

Construction of higher-order examples of arbitrary form that satisfy condition (R) and

are stable is difficult. There are natural restrictions that arise for simple examples. Thus

we will not emphasize this in the rest of the thesis.

5.2.2 Minimum-Phase Results

It would seem reasonable to assume that condition (R) cannot be satisfied by a system which

is strictly minimum phase (and perhaps not if marginally minimum phase with at least 1

zero inside the unit circle and no zeros of multiplicity greater than 1 on the unit circle).

Such systems have mappings which are contractive on C and would thus cause some points

in C to move apart as the length of the entire interval on the circle C shrinks. No proof of

this will be presented here although the nature of such a proof can be surmised from the

other work in this section. To allow for something to be said about these minimum-phase

cases here, we suppose that the ai and bj do not satisfy condition (R) but that the mappings

are otherwise continuous on some subset of RN × CM . Allowing for this possibility when

all zeros have magnitude 1, multiplicity 1 as well, we then have the following additional

theorem:
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Theorem 5.15 Suppose the ai and bj satisfy condition (R), or that the function εn =

g1 ◦ fn+1(~x0) is continuous on C at any ~x0 ∈ U , where U ⊂ R
N × CM , for any n ≥ 0.

Suppose also that none of the zeros of p(z) have either magnitude greater than 1, or else

magnitude equal to 1 with multiplicity greater than 1. Then chaos condition 1 (sensitivity

to initial conditions) will not hold.

Proof:

Let δ be a constant satisfying 0 < δ ≤ ∆

2
. Choose any x̂0 ∈ RN × CM such that

gk(x̂0) 6= ∆/2, k = 1, . . . , M , if (R) holds, and any x̂0 ∈ U otherwise. Choose some

neighbourhood Ñ of x̂0 with Ñ ⊂ U if (R) does not hold. Now we choose ~y0 ∈ Ñ and

apply Theorem 4.4 (if (R) holds) and Theorem 4.5. Then, for ∆~x0 = ~y0− x̂0, we have, from

the nature of the zeros of p(z) and (2.3), that |∆εn| < K~y0 , ∀ n ≥ −M for some bound

K~y0 > 0 (∆εn = 0, ∀ n ≥ 0 if p(z) = 1 as well). Now choose K such that K > K~y0 , ∀
~y0 ∈ Ñ . Such a bound K clearly exists. We may define a new neighbourhood about x̂0

in Ñ by Ñα = {~yα0 ∈ RN × CM | ~yα0 = x̂0 − α(x̂0 − ~y0), ∀ ~y0 ∈ Ñ}, with 0 < α < 1.

Now, with ∆~x0 = ~yα0 − x̂0, by the properties of linear difference equations, the constants

in (2.3) will be scaled down in magnitude by a factor of α, and hence so will |∆εn|. Thus

αK > K~y0 , ∀ ~y0 ∈ Ñα. Now we pick an α = α̂ such that α̂ <
δ

K
and 0 < α̂ < 1, which

leads to the result that |∆εn| < δ, ∀ ~y0 ∈ Ñα̂ and ∀ n ≥ −M . This then implies that

‖g1 ◦fn(x̂0)−g1 ◦fn(~y0)‖ < δ for any ~y0 ∈ Ñα̂ and all n ≥ 0. The δ was chosen arbitrarily.

Now applying Lemma 5.6 we have the result that sensitivity to initial conditions does not

hold. �

Such a condition for the Σ-∆ modulator is reasonable. For example, if p(z) has pos-

itive real zeros all of magnitude less than 1 and the input xn = ∆/2, then the mapping
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for εn is continuous on C at any ~x0 ∈ RN × CM satisfying ε−1, ε−2, . . . , ε−M 6= ∆/2,

for any n ≥ 0. In such cases, the contractive nature of the mappings dominates the dy-

namics so as to ensure the relative continuity (and in this case nontransitivity as well).

In general, for a given minimum or marginally minimum-phase system, there will exist

simple general constraints on the input xn to guarantee continuity of the mapping over

RN × ( CM |ε−1, ε−2, . . . , ε−M 6= ∆/2) or some subset thereof, for all n ≥ 0. Theorem 5.15

essentially implies that Theorem 5.8 provides necessary and sufficient conditions for chaos

condition 1 to be satisfied, when (R) holds.

A proposition and some additional theorems pertaining to cases with marginally minimum-

phase zeros, with coefficients satisfying condition (R), will now be given in this subsection.

Proposition 5.16 Suppose the ai and bj satisfy condition (R). If all the zeros of p(z) have

magnitude 1 and multiplicity 1, and if the input xn is constant, then chaos condition 2

(topological transitivity) is neither excluded nor assured.

Proof:

(i) Consider the systems with the following maps: vn = vn−1 mod 1, with µ1 = 1;

vn = −vn−1 mod 1, with µ1 = −1; vn = vn−2 mod 1, with µ1 = 1, µ2 = −1. The first

two systems map points on [0, 1) only to themselves or themselves and their negatives. The

third system maps points in [0, 1)2 only to themselves and their reflections about the line

vn = vn−1. Thus none of these systems possess topological transitivity. A system with any

number of magnitude 1, multiplicity 1 zeros that is nontransitive, may be constructed in

this manner, e.g. with the map vn = vn−M mod 1. These results show an application of

Theorem 5.29 as well.
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(ii) Now consider the system with the map vn = vn−1 + d mod 1, with µ1 = 1,

where d is an irrational real number. The orbit of any initial condition in [0, 1) will be

quasiperiodic on [0, 1). This implies that the orbit is densely distributed in [0, 1), and that

the mapping of v−1 can hence be made arbitrarily close to any other point in [0, 1), for

some sufficiently large n, and for any v−1 ∈ [0, 1). Thus this system satisfies topological

transitivity.

For a given irrational “input” d, examples of nontransitivity may generally be found

for a system with magnitude 1, multiplicity 1 zeros only, of any order M , with N = 0,

when µ1 = 1 is not a root of p(z). For these cases considered, the initial condition

vi =
d mod 1

1 − ∑M
j=1 aj

, i = −1, . . . ,−M , (if
∑

aj < 1), and vi =
d mod 1 − 1

1 − ∑M
j=1 aj

, (if
∑

aj > 1),

is a fixed point, so that, by Theorem 5.18, transitivity does not hold. In all systems

considered the ai are integers thus satisfying (R). The proof is thus complete. �

Theorem 5.17 8 Suppose the ai and bj satisfy condition (R). Suppose also that some of

the zeros of p(z) have magnitude 1 and multiplicity 1. Then

1. If p(z) has at least q of these zeros µi with q ≥ 1, such that the zeros are real or

complex with argument θi = 2πµ̃i for some rational number µ̃i, then chaos condition 3

(density of periodic points) will hold. Moreover, if q ≥ M , then either all points in CM are

periodic or none are.

2. If p(z) has max(N, M)∗ ≥ 1 such zeros that are all complex and do not satisfy

condition 1 above, i.e. q = 0, then chaos condition 3 will hold if and only if there are no

periodic points.

8Using the standard definition of density, this result will hold if q ≥ M , and will generally not hold

otherwise. There is no conclusion regarding the existence of periodic points.
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Proof:

1. The proof of this theorem follows the proof of Theorem 5.12, where the matrices,

vectors, and mθ involving q pertain to the q zeros as defined in Theorem 5.17, analogously

to definitions in Theorem 5.12. We have the equation (~βi)
T = ([Rk]− [R0])~α. Set ~αq̃ = 0.

From the form of the zeros and k = k̂mθ, we have [Rkq1](q) − [R0q1 ](q) = 0, ∀ k̂ ≥ 0, and

M ≤ q1 ≤ max(N, M). This is the required form of the LHS of the equation with m−i = 0,

i = 1, . . . , q1. Condition 1(a) from Theorem 5.12 is also satisfied (by taking m̂, m−i = 0, in

the proof of Theorem 5.10). Thus ~αq is a solution for any ~αq in the span of [R0q]
−1(∆εi)

T ,

(∆εi)
T ∈ Cq (i.e. the first q of the ∆εi), ∀ k̂ ∈ Z+. Thus ~α and (∆εi)

T may be arbitrarily

small in magnitude. The rest of the proof follows the proof of Theorem 5.10 to the end.

If q ≥ M , then, without loss of generality, we may consider the first M of the q zeros and

set q = M , so that ~αM is a solution for any ~αM in the span of [R0M ](∆εi)
T , (∆εi)

T ∈ CM ,

∀ k̂ ∈ Z+. Thus every point in CM is a periodic point, given that the existence of a periodic

point is first assumed. Thus the second result follows.

2. We follow the development in part 1. Let M∗ = min(M, max(N, M)∗). We denote

[M ](i) to be the first i rows of a matrix [M ]. Now suppose there exists a nonzero ~α ∈
Rmax(N,M)∗ , and p ∈ Z+, such that (~βi)

T
M∗ = ([Rp]

(M∗) − [R0]
(M∗))~α = (mi∆)T

M∗ , for

m−i ∈ Z, i = 1, . . . , M∗ (not possible if N ≤ M , since matrix in brackets is then square and

nonsingular). From the form of the zeros, the entries of [Rk] will behave quasiperiodically

as k increases, such that ([Rk̂p]
(M∗) − [R0]

(M∗))~α 6= (mk̂,i∆)T
M∗ for some mk̂,−i ∈ Z,

i = 1, . . . , M∗, ∀ k̂ ≥ 1. Thus we cannot have permissible forms of (~βi)
T as needed for a

nearby periodic point. Thus we conclude that density of periodic points cannot hold if a

periodic point exists. This chaos condition then holds only if no periodic points exist. �
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This proposition and theorem expand the chaos condition analysis for cases (marginally

minimum phase) which violate the sensitivity condition and are therefore not chaotic. From

Proposition 5.16 we see that topological transitivity may or may not hold, with the nature

of the system input xn being a simple factor in determining which is true. Specifically,

we have examples of transitivity/nontransitivity for periodic irrational/periodic rational

inputs respectively (the inputs are in fact constant). Note that small perturbations in the

irrational/rational input may maintain transitivity/nontransitivity. These general results

make sense since these cases are transitional between nonminimum phase where transitivity

holds, and strictly minimum phase where transitivity will be seen to be problematic.

The higher-order solution form for εn in (4.2) suggests that the quasiperiodic behaviour

of the first order transitive case with irrational input in the proof of Proposition 5.16 may

extend to higher-order cases with periodic input forms. A higher-order extension will in

fact be shown when considering long run error behaviour (on one error coordinate) in

Theorems 7.13 and 7.14 of Chapter 7. From (4.2), it is also apparent that this behaviour

is unlikely to occur independently over M > 1 dimensions to bring about topological

transitivity without a more irregular input.

We see with Theorem 5.17 that density of periodic points is guaranteed when there

are some zeros on the unit circle with multiplicity one, unless these are all complex with

phase angles that are not rational fractions of 2π. In this case, condition 3 may hold

only by default, if there are no periodic points. The existence of just one periodic point

here (for a given filter) is always possible with an appropriate input xn. If at least M

phase angles (of the zeros) are rational fractions of 2π, then periodic points are not only

dense, but if they exist, they make up all points in CM . Theorem 5.17 is essentially

a more powerful extension of Theorem 5.12 to cases with at least one zero on the unit

circle (with multiplicity one). The unitary magnitude nature of the zeros allows the cyclic
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component of the error solutions to automatically form additional periodic points when

one is known to exist, without any further restrictions on the zeros. Interestingly, a path

to chaos exists — a system with N > M , M nonminimum-phase zeros, and another zero

satisfying Theorem 5.17 part 1, will be chaotic from the results in this section. The results of

both parts of Theorem 5.17 show, rather counterintuitively, that density of periodic points

tends to become more prevalent when we go from the weakly nonminimum to marginally

minimum-phase case under certain circumstances.

We now present a theorem that will permit a further identification of conditions for

chaos in marginally minimum-phase cases.

Theorem 5.18 Suppose the ai and bj satisfy condition (R). Suppose also that all the zeros

of p(z) have magnitude 1 and multiplicity 1. Suppose further that there exists an x̂0 ∈
RN × CM such that the set {gM(x̂n), ∀ n ≥ 0} is finite. Then chaos condition 2 (topological

transitivity) will not hold.

Proof:

Let x̂0 ∈ RN × CM be as given in the theorem, with the number of elements in the set

{gM(x̂n), ∀ n ≥ 0} given by p. Let Ñ be some neighbourhood of x̂0. Now we choose a

ŷ0 ∈ Ñx as given in Lemma 4.10. Then for ∆~x0 we have, from the nature of the zeros of p(z)

and (2.3), that |∆εn| < Kŷ0, ∀ n ≥ −M for some bound Kŷ0 > 0. Now choose K such that

K > Kŷ0 , ∀ ~y0 ∈ Ñx. Such a bound K clearly exists. We may define a new neighbourhood

about x̂0 in Ñx by Ñα = {~yα0 ∈ RN × CM | ~yα0 = x̂0 − α(x̂0 − ~y0), ∀ ~y0 ∈ Ñx}, with

0 < α < 1. Now, with ∆~x0 = ~yα0 − x̂0, by the properties of linear difference equations,

the constants in (2.3) will be scaled down in magnitude by a factor of α, and hence so will

|∆εn|. Thus αK > K~y0 , ∀ ~y0 ∈ Ñα. Now we pick α = α̂ such that α̂ <
∆

4Kp
and 0 < α̂ < 1,

which leads to the result that |∆εn| <
∆

4p
, ∀ ~y0 ∈ Ñα̂ and ∀ n ≥ −M . Thus the mapping
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g1 ◦ fn(Ñα̂) ⊂ [g1 ◦ fn(x̂0) −
∆

4p
, g1 ◦ fn(x̂0) +

∆

4p
] holds on C ∀ n ≥ 0. From the finite

size of the orbit set for x̂0 above, we have that g1 ◦ fn(Ñα̂) ⊂ V1 ⊆ C, where V1 is the

union of p closed intervals on C, each of length ∆/2p, ∀ n ≥ 0. Then V1 covers at most one

half of C. Thus there must exist a ẑ ∈ C with some neighbourhood Ñz ⊂ C about ẑ such

that g1 ◦ fn(Ñα̂) ∩ Ñz = ∅. Now applying Lemma 5.7, we have the result that topological

transitivity does not hold.

If N = 0, the input xn is periodic with period q, and the system has an arbitrary

periodic point with period p1, then, from the properties of the difference equations (1.2),

the requirements of the theorem are satisfied with the cardinality p satisfying p ≤ p1q.

�

With this theorem we have, for the marginally minimum-phase cases of Proposition 5.16

and Theorem 5.17, that if the input xn may be chosen such that the orbit of a point x̂0

covers finitely many points in its projection on CM , then with this input topological tran-

sitivity fails. Notably, this yields the consequence, for these phase cases, that topological

transitivity and existence of a periodic point cannot coexist in some cases. Specifically,

this will be true when a limit cycle orbit exists in CM so that every point in the orbit is a

periodic point. If there are no feedforward elements in the filter (N = 0), and the input xn

is periodic with period q, then from the form of the difference equations (1.2), we see that

any periodic point that exists with period p1 must lie on a limit cycle orbit with period

p = p1q.

It would seem reasonable to conjecture that this result may be extended to the case

where M ≥ N . In such cases, if a periodic point exists with periodic input, and we assume

that the point is not on a limit cycle orbit, we then require a different solution for each

p to a non-underdetermined linear system in N variables ri, i = −1 + p, . . . ,−N + p,
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p ≥ 0, (satisfying M constraints) up to mod ∆. Since we must also have the infinite sets

of N solutions ri bounded for stability, this suggests the general nonexistence of any other

solution, implying that the point is on a limit cycle. Conversely, if M < N , it seems

possible to have infinite sets of N ri lying on a bounded N − M dimensional manifold in

RN that give rise in (1.2) to a periodic point that is not on a limit cycle orbit when the

input is periodic. For the M < N case, the input for example would require some stricter

constraint for Theorem 5.18 to be applicable via a finite set.

Thus the examples (with N = 0) used in the proof of Proposition 5.16 where topological

transitivity holds, have no periodic points and thereby trivially satisfy chaos condition 3

as well. The marginally minimum-phase cases from Theorem 5.17 with periodic points on

limit cycle orbits via some periodic or other form of input fail topological transitivity.

A summary of the classification of the various cases and sub-cases presented in this

section, in terms of whether or not the three conditions for chaos and overall chaos hold,

is given in Tables 5.1 and 5.2 (the first two tables) at the beginning of Section 5.4 at the

end of this chapter.

5.3 General Model

To continue with the analysis for chaos conditions, we now turn to the general Σ-∆ mod-

ulator form with no constraints on the feedback and feedforward gains in the filter, that is

ai ∈ R and bj ∈ R for i = 1, 2, . . . , M ; j = 1, 2, . . . , N . With this context, we no longer

have recourse to Theorem 4.4 or Theorem 4.5 and Corollary 4.6. When condition (R) does

not hold, continuity in the mappings for all n ≥ 0 does not hold over any simply connected

subset of RN × CM , except possibly over a strict such subset for minimum or marginally

minimum-phase cases. Thus we face more complications in the analysis. Ultimately, broad
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results may be arrived at, although our picture is of a more qualified and less comprehensive

nature compared to the previous context arising with condition (R). With this complexity,

come new cases of interest and investigation.

To begin, we first discuss the framework by which we approach the limitations of ap-

plying Proposition 4.1 and what happens when it breaks down. Considering two nearby

initial conditions ~x0, ~y0 ∈ RN × CM , we have that, for any n1 ≥ N , there must exist a

finite sequence of points ~yαn1,i
∈ RN × CM , of the form ~yαn1,i

= ~x0 + αn1,i(~y0 − ~x0) with

0 ≤ αn1,i ≤ 1, αn1,i < αn1,(i+1), i = 1, 2, . . . , such that Proposition 4.1 holds (i.e. ∆εn

satisfies (4.1) for N ≤ n ≤ n1) for ~x1,0 = ~yα̂1,0 , ~x2,0 = ~yα̂2,0 , where αn1,i < α̂1,0 < α̂2,0 <

αn1,(i+1) for all such i. This follows from having equality of the quantizers holding in

the second line of the proposition for the respective cases. Taking the limit as the points

~x1,0 and ~x2,0 approach ~yαn1,i
and ~yαn1,(i+1)

respectively, for each i, we have the result that

Proposition 4.1 essentially holds for each “subinterval” of a subdivision of the “interval”

[~x0, ~y0] in RN × CM . The error difference interval ∆εn on C for each initial subinterval is

interpreted not to contain the point ∆/2 for N ≤ n ≤ n1 except possibly at endpoints,

as would normally be true when the proposition holds. As n1 is allowed to increase, the

initial subintervals of [~x0, ~y0] will become smaller and more numerous. The error difference

interval ∆εn on C for ~x0 and ~y0 is thus interpreted as “split” into at least two error differ-

ence subintervals when Proposition 4.1 breaks down for the smallest such n. These error

difference subintervals then split into further subintervals as n increases and the proposition

breaks down for the respective difference intervals, and so on. We have no general means

of relating the position or orientation on C of the split error difference intervals relative

to each other as n increases (unlike the case when (R) holds in which the “split” error

difference interval remains joined).
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5.3.1 General Results

The basic theorems concerning the three conditions of chaos in the most general Σ-∆

modulator context will now be presented.

Theorem 5.19 Suppose p(z) has a zero with either magnitude greater than 1, or else

magnitude equal to 1 with multiplicity greater than 1. Then chaos condition 1 (sensitivity

to initial conditions) will hold.

Proof:

Suppose condition (R) does not hold. Let d = min(r̃t∆ mod ∆, ∆ − r̃t∆ mod ∆),

where t = min{k | r̃k is not an element of Z, where the r̃k are from (R)}. Let δ be a

constant satisfying 0 < δ <
d

2
. Choose any x̂0 ∈ RN × CM and some neighbourhood Ñ of

x̂0. The results of Lemma 4.10 clearly hold when Ñx is replaced by Ñ . We thus choose a

ŷ0 ∈ Ñ to satisfy part 2 of Lemma 4.10.

Suppose that the result of Proposition 4.1 holds for N ≤ n ≤ n1, for some n1. Then,

for ∆~x0 we have, from the nature of the zeros of p(z) and (2.3), that lim sup
n→∞

|∆εn| = ∞
as n1 → ∞. Thus ∃ n2 = min{n ≥ 0 | |∆εn| > δ} with n2 ≤ n1, if n1 is sufficiently

large. If we replace the ŷ0 with ŷα0 = x̂0 − α(x̂0 − ŷ0) in ∆~x0, with 0 ≤ α ≤ 1, then, by

the properties of linear difference equations, the constants in (2.3) will be scaled down in

magnitude by a factor of α, and hence so will the applicable |∆εn|. Suppose there exists

n3 = min{k | Q(xk − ry,k)−Q(xk − rx,k) 6= 0, k ≥ 0}, where the variables with subscripts

x and y correspond to the system with initial conditions x̂0 and ŷ0 respectively. Then,

from propagating this result through (1.2) (as with the proof of Theorem 4.4), the function

εn = g1 ◦ fn+1(~x0) will have one or more jump discontinuities of magnitude |r̃t|∆, when

n = n3 + t at the finite points {zi} (where (xn3 − rzi,n3) = mi∆, mi ∈ Z) over the interval

defined by I~x0 = {ŷα0, 0 ≤ α ≤ 1}. The function g1 ◦ fn+1(~x0) will be continuous on I~x0
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for 0 ≤ n ≤ n3 + t − 1, and on I~x0 − {zi} for n = n3 + t. Thus, from Theorem 4.5 and

the above, with α = 1, ∆εn from (2.3) is valid for N ≤ n ≤ n3 + t − 1, and this ∆εn

summed with the jump discontinuities for n = n3 + t. Clearly there exists either n2 or n3.

Let n4 = min(n2, n3 + t), (n4 = n3 + t if n2 does not exist). We may choose an α = α̂

with 0 < α̂ ≤ 1, such that δ < |∆εn4| <
∆

2
if n4 = n2 < n3 + t. If n4 = n3 + t < n2,

then 0 < |∆εn4| < δ, and there can be only one jump discontinuity and zi on the interval.

Thus, in this case, we leave α̂ = 1. If n4 = n2 = n3 + t, then we choose α̂ such that

δ < |∆εn4| <
d

2
. If a jump discontinuity remains on {ŷα0, 0 ≤ α ≤ α̂}, then there can be

only one and one zi. In all cases this then implies that δ < ‖g1◦fn4+1(x̂0)−g1◦fn4+1(ŷα̂0)‖,
with n4 +1 > 0 and ŷα̂0 ∈ Ñ . Now applying Lemma 5.6, we have the result that sensitivity

to initial conditions holds. If condition (R) holds we have this result from Theorem 5.8.

�

Theorem 5.20 Suppose p(z) has at least M zeros, where each zero has either magni-

tude greater than 2, or else magnitude equal to 2 with multiplicity greater than 1 [counted

(multiplicity − 1) times]. Then chaos condition 2 (topological transitivity) will hold.

Proof:

For this proof, we apply the matrix notation given at the end of Chapter 4. We shall

take q = M here. Let U1 be any open set with U1 ⊂ RN × CM . Choose an x̂0 ∈ U1, such

that gki
(x̂0) 6= ∆/2, ∀ ki ∈ {1, . . . , M}. Let D̃ be a small q dimensional subset of U1 defined

by

D̃ = {~y0 ∈ U1 | ~y0 − x̂0 = ∆~x0 has the form ∆~x0 = (∆ε−1, . . . , ∆ε−N ; ∆ε−1, . . . , ∆ε−M);

gki
(~y0) 6= ∆/2, ∀ ki ∈ {1, . . . , M}; and ~αq̃ = 0}.

Let D̃Z = {~z0 | ~z0 = ~y0 − x̂0, ∀ ~y0 ∈ D̃}.
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Now we define the sets Dk and Ek, where k = k̂M , k̂ ∈ Z+ + {0}, with the following.

First, we define an aligned M-d square to be a closed rectangular region of M dimensional

volume in RM , with all edges parallel to the εi coordinate axes, and of equal length. Now let

CDk
be the set of all so defined aligned M-d squares Ci ⊆ Dk satisfying g1 ◦ f j(x̂0 + ~z0) 6=

∆/2, ∀ ~z0 ∈ D̃Z , such that [Rkq]~αq ∈ Ci ⊆ Dk, for j = k − 1, . . . , k − M , k̂ ≥ 1. Then we

define Ek = {Cl ∈ CDk
| V (Cl) ≥ V (Ci), ∀ Ci ∈ CDk

}, for k̂ ≥ 1, where V (∗) denotes the

M dimensional volume of the set in its argument. The choice of Cl need not be unique.

Now we apply the mapping of system (4.1) to D̃Z , that is, over initial conditions in D̃Z .

From this we define the set Dk ⊂ R
M by

Dk = {∆~εq,k = (∆εk−1, . . . , ∆εk−q) | ∆~εq,k = [Rkq]~αq, where ~α = [R0]
−1g∗(~z0),

∀ ~z0 ∈ D̃Z , such that [R(k−M)q]~αq ∈ Ek−M},
for k̂ ≥ 1; where g∗ is defined to be the projection from RN × CM onto RN if N > M ,

and g otherwise. We also define D0 = g(D̃Z). These Dk, for k̂ ≥ 1, will be M dimensional

convex regions in RM .

The magnitude of each of the M zeros of p(z) is greater than 2. Therefore, by the prop-

erties of the linear mapping defined above with eigenvalues represented by the M zeros, the

M-d volume of the mapping of any region in D̃Z will increase by a factor of greater than

2 (product of the eigenvalue magnitudes) in the successive mapping. From the recursive

form of the mapping, state space stretching will occur in the successive ε−M , . . . , ε−1 coor-

dinate directions with successive mappings, and this process will cycle through to repeat

every M mappings. With every eigenvalue magnitude greater than 2, there will then be an

expansivity of greater than 2 in every state space direction over the cumulative effect of M

successive mappings. It then follows that the largest aligned M-d square contained in the

Mth mapping of a previous aligned M-d square will have an M-d volume of greater than

2M times that of the original aligned M-d square.
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For some ǫ > 0, satisfying ǫ < |µi| − 2, i = 1, . . . , M , where |µi| are the magnitudes of

the M zeros; we then have the following:

V (D̂k+M) > (2(1 + ǫ))MV (Ek), and V (Ek) ≥ min(2−MV (D̂k), V ( CM)), k̂ ≥ 1,

where 2−M is the maximum reduction of volume due to the region splitting continuity

condition used in defining the Ci earlier (if original volume is less than V ( CM)), and

D̂k is the largest aligned M-d square contained in Dk. Combining the results, we have

V (Ek+M) > min((1 + ǫ)MV (Ek), V ( CM)) for k̂ ≥ 1. Clearly ∃ a k̂ and corresponding K

such that V (DK) > V ( CM) and V (EK) = V ( CM), so that EK ≡ CM , when considering

CM as the projection of RN .

Now we define Ẽk = {~y0 ∈ D̃ | [Rkq]~αq ∈ Ek} for k ∈ Z+. Here ~αq is as given in

the definition of D̃. Next, choose ŷ1,0, ŷ2,0 ∈ ẼK . Then, from the construction of the

Ei, we have that the conditions of Proposition 4.1 hold for 0 ≤ n ≤ K − 1, and hence

the continuity of Theorem 4.5 holds for 0 ≤ n ≤ K. Thus Theorem 4.5, with its initial

condition formulation, may be applied. It then follows that the solution to (4.1), with initial

conditions ∆~ε0 = (∆ε−1, . . . , ∆ε−max(N,M)), satisfies g1(∆~xn) ∼= g1 ◦fn(ŷ2,0)−g1 ◦fn(ŷ1,0)

for 0 ≤ n ≤ K, where the subscripts from ∆~x0 above are decreased by N . Now we have

∆ε̂0 = Ix,2 − Ix,1, where Ix,i is the initial condition for (4.1) associated with ŷi,0 − x̂0,

i = 1, 2. From the respective definitions of ~αi,q with q = M , and the solution of (4.1)

in (2.3), this leads to (g ◦ fn(ŷ2,0) − g ◦ fn(ŷ1,0))
T ∼= [Rnq](~α2,q − ~α1,q), and

(g ◦ fn(ŷ2,0) − g ◦ fn(ŷ1,0))
T = [Rnq](~α2,q − ~α1,q) + (mi)

T ∆, 0 ≤ n ≤ K,

where (mi)
T is a vector in ZM depending on ŷ1,0 and ŷ2,0. Rearranging and fixing ŷ1,0 gives

(g ◦ fK(ŷ2,0))
T = [RKq]~α2,q + c̃(ŷ2,0),

where c̃(ŷ2,0) = ~c + (mi)
T ∆, ~c is a constant vector in R

M , (mi)
T ∆ depends on ŷ2,0, and we

set n = K.
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Considering all ŷ2,0 ∈ ẼK , it is clear from this, the definition of ẼK , and the nature of

the congruency property relating g ◦ fn(ŷ2,0) above, that g ◦ fK(ẼK) = P̂ C1(EK +~c), (i.e.

projection of RHS onto CM). Thus g ◦ fK(ẼK) = CM from the previous volume result for

DK . This gives g ◦ fK(U1) = g ◦ fK(D̃) = CM . Thus we have the result that topological

transitivity holds. �

Theorem 5.21 9 Suppose p(z) has max(N, M) zeros, and that each zero has magnitude

greater than 2. Suppose also that the input xn is periodic. Then chaos condition 3 (density

of periodic points) will hold and periodic points will exist.

Proof:

We shall first provide a proof for the case when N = 0, so as to make the nature of the

methods used more clear. The proof will then be extended to the case when N is arbitrary

in value. In both cases, the proof follows as a continuation of the proof of Theorem 5.20,

where we now take q = max(N, M).

1. With N = 0, we have q = M . Suppose that the input xn is periodic with period p.

It is clear from the previous development, that Ek ≡ CM , and V (Ek) = V ( CM) as deduced,

will hold ∀ k̂ such that k ≥ K. Thus we choose k̂ so that k = Kp and label this Kp.

Extending the results at the end of the proof for this, we have (g ◦ fKp(ŷ2,0))
T ∼=

[R(Kp)q]~α2,q + ~c, (LHS equals projection of RHS on CM) for some ~c ∈ R
M . From this we

focus on a subset of the domain where there is a one-to-one mapping to CM , so as to define

the inverse mapping h : ĈM

1 → g(ẼKp) ⊂ ĈM

1 given by

h(~y) = [R0q] · [R(Kp)q]
−1(~y − ĉ) + g(x̂0).

9Using the standard definition of density, with existence of periodic points added as well, this result will

still hold.
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For this, EKp is taken to be a region of volume ∆M that is equivalent to CM (mod ∆).

CM
1 is defined to be an aligned M-d square of side length ∆ containing the origin of R

M ,

representing CM , so that g(ẼKp) ⊂ CM (in RM) = CM
1 is satisfied. We interpret CM

1

as a translation of EKp. This translation may be carried out in such a manner that, for

a finite collection of disjoint subsets {Hi} ⊂ RM satisfying
⋃

i

Hi = EKp, every point

in Hi is translated a distance that is a multiple of ∆ in each vector coordinate. We

denote this translation by ~e(Hi), where the components of ~e(Hi) will vary by multiples

of ∆ over Hi ⊆ EKp. From the geometric properties of EKp, and the fact that ẼKp is

small, we can hence choose H1 ∈ {Hi} such that g(ẼKp) ⊂ H1 + ~e(H1) ≡ ĈM

1 . We

let ĉ = ~c + ~e(H1) ∈ RM . Note that, if we let ∆εi, i = −1, . . . ,−M , be the independent

variables for points in ẼKp − x̂0, this effectively allows g(ẼKp − x̂0), as an M dimensional

subspace, to define the M dimensional subspace ẼKp − x̂0.

Clearly h is a contraction mapping on ĈM

1 , since the eigenvalues of the matrix

[R(Kp)q] · [R0q]
−1 are all of magnitude greater than 1 (by the zeros of p(z)), and the in-

verse [R0q] · [R(Kp)q]
−1 thus has entries that are all of magnitude less than 1. Thus, from

the contraction mapping theorem, h has a unique fixed point in g(ẼKp). This implies that

the solution

~y = ~y3,0 = [R0q] · ([R(Kp)q] − [R0q])
−1(g(x̂0) − ĉ) + g(x̂0) ∈ g(ẼKp),

since it is a fixed point of the inverse mapping h.

We may thus apply the (g ◦ fKp(ŷ2,0))
T equation above to ŷ3,0, where g(ŷ3,0) = ~y3,0,

and this extension of ~y3,0 to ŷ3,0 ∈ RN × CM is the unique one satisfying ŷ3,0 ∈ ẼKp,

as is implicit from the broader interpretation of how we defined the inverse mapping h

above. Letting ~α3,q = [R0q]
−1(~y3,0 − g(x̂0)), substituting this into the RHS, and using the

formula for ~y3,0 to substitute and eliminate ~c; the equation reduces, after simplification,

to (g ◦ fKp(ŷ3,0))
T = P̂ C1(~y3,0 − ~e(H1)). Since the ~e term is a multiple of ∆, we have
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the required result that g ◦ fKp(ŷ3,0) = g(ŷ3,0) on CM . Since N = 0, this implies that

fKp(ŷ3,0) = ŷ3,0. Since the system input xn is periodic with period p, this mapping rule of

f will be repeated, with initial conditions ŷ3,Kp = x̂0 + ∆~x3,Kp , every p iterations. Thus

we have g ◦ fKpm(ŷ3,0) = g(ŷ3,0), ∀ m ≥ 0. Thus ŷ3,0 is a periodic point. We also have

ŷ3,0 ∈ U1. It thus follows that periodic points exist and are dense in CM . The chaos result

of density of periodic points thus holds.

2. Now we assume no restriction on the value of N . We follow the method of the proof of

part 1, as a continuation of the proof of Theorem 5.20. For this, we now set D̃ = {~y0 ∈ U1

| gki
(~y0) 6= ∆/2, ∀ ki ∈ {1, . . . , M}} here. Since the conditions of Proposition 4.1 hold

(i.e. for 0 ≤ n ≤ Kp −1) over ẼKp, we have ∆rKp−i = ∆εKp−i, for i = 1, . . . , max(N, M),

for the coordinates of ∆xKp = ~yKp − x̂Kp, when ~y0 ∈ ẼKp. The equation in the proof of

Theorem 5.20 may then be extended to give

(fn(ŷ2,0) − fn(ŷ1,0))
T ∼= [

Rn(M)

Rn(N)
](~α2,q − ~α1,q), 0 ≤ n ≤ K, ŷ1,0, ŷ2,0 ∈ ẼKp,

where [Rk(M)], [Rk(N)] are matrices with the first M and N rows of [Rk] respectively, and

q = max(N, M). This leads to the analogous equation

(fKp(ŷ2,0))
T ∼= [

RKp−max(N,M)(M)

RKp−max(N,M)(N)
]~α2 + ~c,

for some ~c ∈ RM+N , and dropping the q from α. We choose k = Kp large enough so that

Kp − max(N, M) > 0.

Now we provide the relationship between ~α2 and the associated initial conditions ∆εi,

∆ri. First we have ~α2 = [R0]
−1(∆~ε0)

T , where (∆~ε0) = (∆εmax(N,M)−1, . . . , ∆ε0) here. Now,

from iteration of the difference equations of (1.2), with the results from Theorem 4.5, we

have the following:

∆εk =
k∑

i=1

(ai − bi)∆εk−i +

max(N,M)
∑

i=k+1

(ai∆εk−i − bi∆rk−i), k = 0, . . . , max(N, M) − 1.
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With the appropriately defined max(N, M) × max(N, M) matrix [A], and max(N, M) ×
(N + M) matrix [B], this leads to the matrix equation [A](∆~ε0)

T = [B]∆ẑ, where ∆ẑ ∈
RN × CM is the associated initial condition. It can be seen that [A] is invertible, so that

~α2 = [R0]
−1 · [A]−1 · [B]∆ẑ.

We may define the analogous noninverse mapping h : ĔKp → ĈN+M

1 , where ĔKp ⊂
ĈN+M

1 , given by

h(~y) = [C](~y − x̂0) + ĉ,

where [C] = [
RKp−max(N,M)(M)

RKp−max(N,M)(N)
] · [R0]

−1 · [A]−1 · [B]. ĔKp has the definition corresponding

to that of ẼKp, with respect to the extension of D̃ used here. Note that [C] is not invertible.

The specifications of the proof then follow analogously to that of part one, including the

following: fKp(ĔKp) = CN+M
1 ; CN+M

1 is the N + M dimensional extension of EKp (i.e.

(ε−i coordinate subspace of EKp) × (ε−j coordinate subspace of EKp); i, j = 1, . . . , M/N

respectively) translated to contain the origin of R
N+M , so that ĔKp ⊆ CN+M

1 is satisfied.

Now we have the solution

ŷ = ŷ3,0 = ([C] − [I])−1(x̂0 − ĉ) + x̂0.

This ŷ3,0 will be of the same order of magnitude as the ~y3,0 in part 1, since the components

of [C] and ĉ will, by the construction, be of the same order of magnitude. Thus we conclude

here that ŷ3,0 ∈ ĈN+M

1 , and thus ŷ3,0 ∈ ĔKp . We may then apply the (fKp(ŷ2,0))
T equation

above to ŷ3,0 ∈ ĔKp. Following the steps as in part one, we arrive at the required result

that fKp(ŷ3,0) = ŷ3,0 on RN × CM . The rest of the proof follows as in part one. �

These theorems constitute an attempt to extend the results of Theorems 5.8, 5.9, 5.10

and 5.15 under the limitations introduced by the added complexity of having no constraints

on the filter coefficients. They show that all three chaos conditions can be affirmed for the
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more limited scenario of when the system has noise transfer function with all zeros of

magnitude greater than 2, and when the input xn is periodic.

The proof of the sensitivity condition under condition (R) extends directly to the gen-

eral nonminimum and marginally minimum-phase (with magnitude 1 zero of multiplicity

greater than 1) cases here, since the introduction of interval splitting only tends to enhance

sensitivity (i.e. hasten divergence of nearby orbits). The proof for topological transitivity,

however, requires M zeros of magnitude greater than 2 (or 2 and repeated) and the proof of

density of periodic points requires not only this corresponding extension (with max(N, M)

such zeros) but a periodic input as well. The natural reasons for these requirements can

be seen. Sufficient expansivity (given by a zero of magnitude greater than 2) is needed

to overcome the possible contractive effects of interval splitting in the mappings (i.e. a

maximum contraction factor of 1/2 on each iteration when an interval, or more generally

a region in CM , is split in half and the one half is mapped onto the other) and maintain

transitivity. This is thus needed for our method of drawing on transitivity to show density

of periodic points as well. In addition, the ad hoc nature of interval splitting means we

cannot assume that any input xn that allows a periodic point will cause a nearby point

that repeats (in CM) once (in tandem with the periodic point) to continue to repeat so as

to be periodic. Having a periodic input, however, allows this property to be preserved.

The central approach used in the proofs of Theorems 5.20 and 5.21, while similar to

that of Theorems 5.9 and 5.10, is rather more subtle and abstract. For the latter, we

directly applied a linear model equation (following from circle map properties) to solve for

the required point in a neighbourhood. For the former here, we must first establish the

existence of a mapping (analogous to that arising from the circle map) that maps a required

neighbourhood to CM , construct it, and then, for Theorem 5.21, form the required solution

point (from its linear equation) and show that it satisfies a recurrent point (e.g. when
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N = 0 since the inverse mapping is a contraction). Theorem 5.19 supercedes Theorem 5.8,

although we see the proof is technically simpler when (R) holds (Theorem 5.8).

Thus from these results we have only that for general systems, Devaney chaos is guar-

anteed when the noise transfer function has all zeros of magnitude greater than 2 and

the input is periodic. As we shall see from a counterexample, however, the increase in

our zero magnitude threshold boundary from 1 to 2 is, in general terms, not particularly

conservative. In fact, there are important dynamical reasons that confirm our intuition of

why chaos conditions 2 and 3 will not hold for systems with at least M zeros of magni-

tude greater than 1 but without M zeros of magnitude at least 2. Thus our stronger zero

conditions of Theorems 5.20 and 5.21 are a feature of the more complex structure of the

system, and not simply a reflection of the added difficulty in proving a clear cut result. The

extended (number of) expansive zero requirements for Theorems 5.21 and 5.10 (condition

3) over those of Theorems 5.20 and 5.9 (condition 2) respectively also seem not overly

conservative, from previous comments. This provides for a potential delineation between

the presence of Li and Yorke versus Devaney chaos, which could be attributed to complex

nonlinearities and/or discontinuities in the systems for which this differentiation arises.

Since condition (R) need not hold, we no longer require that M > N to be assured of

bounded internal stability. Thus, for Theorems 5.19 and 5.20, as opposed to their condition

(R) counterparts, the distinction between M and max(N, M) in the zeros condition is one

of practical as well as theoretical relevance.

From the consequences of Theorem 5.21, we have the following natural extension to the

situation when condition (R) holds:
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Corollary 5.22 10 Suppose the conditions of Theorem 5.10 hold, and N = 0. Suppose also

that the input xn is periodic. Then chaos condition 3 (density of periodic points) will hold,

and periodic points will exist.

Proof:

The proof of this corollary follows the proofs of Theorems 5.20 and 5.21, with q =

max(N, M), and the following changes. Here, we define Ek to be simply the aligned q-

d square of greatest q dimensional volume to be contained in Dk, for k̂ ≥ 1 (may be

nonunique). The magnitude of each of the q zeros of p(z) is greater than 1. From analogous

arguments to those in the proof of Theorem 5.20, we arrive at the following: V (Ek+q) >

(1 + ǫ)qV (Ek), for k̂ ≥ 1. We proceed and choose ŷ1,0, ŷ2,0 ∈ ẼK . Then, from condition

(R), we have that Theorem 4.4 holds, so that Theorem 4.5 may be applied for 0 ≤ n ≤ K.

The remainder of the proof of Theorem 5.20, and that of Theorem 5.21, part 1, then follow,

and lead to the required result. �

This result and the analogous one of Theorem 5.21 essentially show that a periodic input

will tend to bring about periodic points in a system with zeros that are all expansive. It also

shows, under the pertinent circumstances, that if the condition of topological transitivity

is achieved by the nonexistence of a periodic point, then either the input was not periodic,

or these expansive zero conditions were not met. These results are consistent with what

we expect from the relationships between periodic aspects of the system, and also point

the way towards an analysis of more complicated sub-cases. Note that Corollary 5.22 does

not extend more generally to cases when N > 0, because the proof relies on the continuity

10Using the standard definition of density, with existence of periodic points added as well, this result will

still hold.
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from condition (R), and not Proposition 4.1, as in the proof of part 2 of Theorem 5.21.

This does not necessarily imply that a full extension would not hold, however.

We may now build upon these basic broad results in a rather piecemeal way to arrive

at an expanded analysis of cases where chaos and the three chaos conditions do or do not

hold, and hence a broader understanding of the nature and conditions of possible chaotic

or nonchaotic behaviour in the Σ-∆ modulator.

First, we consider the case of a random input xn, which allows us to take a more

general dynamical perspective, and formulate some fairly broad results with the following

two theorems:

Theorem 5.23 11 Suppose that either

(a) for any n1 ≥ 0, there exists an n2 ≥ n1 such that the input xn2 is random and

its projection P̂ C1 is described by a discrete probability mass function defined over C, with

Prob(P̂ C1(xn2) = c | xi, i = 0, . . . , n2 − 1) ≤ K for all c ∈ C, for some K independent of

n1, with 0 < K < 1; or

(b) there exists an n2 ≥ 0 such that the input xn2 is random and its projection P̂ C1 is

described by a piecewise continuous probability density function defined over C.

Then the system has no periodic points and thus satisfies chaos condition 3 (density of

periodic points) with probability 1.

Proof:

From the conditions of the theorem, there exists an infinite sequence of the form ñk,

with ñk+1 > ñk, k ≥ 1, ñ1 ≥ 0, such that the input xñk
is random as described in the

theorem. Let hk(x) be the probability mass/density function for the xñk
defined over C,

11Using the standard definition of density, this result will still hold. If existence of periodic points is

added to the density definition, then chaos condition 3 is satisfied with probability zero.
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which is conditional upon the values of xi, i = 0, . . . , ñk − 1. Suppose ∃ ~x0 ∈ RN × CM

such that g ◦ fmp(~x0) = g(~x0), ∀ m ≥ 1, for some p ∈ Z. Then, for any input xmp+i,

i = 0, . . . , p − M − 1, p > M , m ≥ 0, we have from (1.2) that the remaining input for

i = p − M, . . . , p − 1 is determined. Thus the input xmp+i, i = 0, . . . , p − 1, must exist on

the same max(p − M, 0) dimensional manifold in Cp, ∀ m ∈ Z+. This manifold must not

be parallel to one of the coordinate axes in Rp, since, for a given m, the perturbation of

one xmp+i value requires the perturbation of others in order for the set to remain on the

manifold. Now there exists an infinite sequence of mj ∈ Z+, where mj+1 > mj , such that

ñkj
= mjp + ij for some ij ∈ {0, . . . , p − 1} with ñkj

∈ {ñk}, k ≥ 1, and kj+1 > kj , j ≥ 1.

We drop k from the subscript of hkj
above, and now let hj,l(x) be the PMFs and PDFs for

the random inputs xmjp+l, l ∈ {0, . . . , p − 1}.

(a) Suppose condition (a) holds and that hj,dj
(x) are the PMFs for the discrete random

inputs xmjp+dj
, dj ∈ {0, . . . , p − 1}, and are defined for P̂ C1(x) = ci,j,dj

, i = 1, . . . , nj,dj
, ∀

dj and ∀ j ≥ 1. Then we have the following:

Let Aj be the event that {xmjp+i, i = 0, . . . , p − 1} and {xi, i = 0, . . . , p − 1} exist on the

same max(p−M, 0) dimensional manifold in Cp, for j ≥ 1. Suppose that Prob(
k−1⋃

j=1

Aj) > 0

for some k ≥ 2. Then we have

Prob(Ak |
k−1⋃

j=1

Aj) ≤ Prob(Ak|xi, i = 0, . . . , mkp − 1)

≤ max{hk,dk
(ci,k,dk

), i = 1, . . . , nk,dk
, ∀ dk} = qk,

where 0 < qk ≤ K. For this we take xi, i = 0, . . . , mkp−1, to be a particular realization that

gives the event

k−1⋃

j=1

Aj , with the maximum probability for event Ak. The final inequality

follows since, at best, a strict subset of the possible random outcomes of xmkp+i, i =

0, . . . , p−1, is required for this set to lie on a given manifold, and the PMF of each random
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xmkp+dk
is bounded by K, independent of the outcomes of all previous inputs. (If any

hk,l(x) is a PDF, then the LHS probability is zero, from (b) below.) Similarly we have,

Prob(A1) ≤ q1. From these results it follows that for Pn = Prob(

n⋃

j=1

Aj), n ≥ 1, either

Pn = 0, or else Pn =

n∏

k=2

Prob(Ak |
k−1⋃

j=1

Aj)Prob(A1) ≤
n∏

k=1

qk. In either case, we have

lim
n→∞

Pn ≤ lim
n→∞

Kn = 0.

(b) Now suppose condition (b) holds. This implies at least one piecewise continuous

PDF over C, from the set {hj,l(x)}, for some j ≥ 1. It then follows that {xmjp+i, i =

0, . . . , p− 1} will be described by a joint PDF that is piecewise continuous over a manifold

that is parallel to the coordinate axes in Rp corresponding to the continuous random inputs

xmjp+l. This manifold will then either be of dimension greater than max(p−M, 0) (possible

if there are greater than max(p −M, 0) continuously random xmjp+l), or else will intersect

the required max(p − M, 0) manifold on which {xi, i = 0, . . . , p − 1} exists to form a set

of measure zero. The latter property follows from the fact that the two manifolds, in this

case, must not be parallel. In either case it then follows that

Prob({xmjp+i, i = 0, . . . , p − 1} and {xi, i = 0, . . . , p − 1} exist on the same

max(p − M, 0) dimensional manifold in Cp) = 0.

Thus if either conditions (a) or (b) hold, the probability that ~x0 is a periodic point

with period p as defined, is zero. If no such ~x0 exist for any p, then there are no periodic

points. Since the choice of p was arbitrary, we conclude, with probability 1, that there are

no periodic points and density of periodic points thus holds, when (a) or (b) are satisfied.

�
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Theorem 5.24 Suppose that, for any n1 ≥ 0, there exists an n2 ≥ n1 such that the input

xn2+k, k = 0, . . . , M − 1, is random and its projection P̂ C is described by a piecewise

continuous probability density function hn2(~x) defined over CM , and satisfying hn2(~x|xi,

i = 0, . . . , n2 − 1) ≥ K, for all ~x ∈ CM , for some K independent of n1, with K > 0. Then

chaos condition 2 (topological transitivity) will hold with probability 1.

Proof:

Let U1, V1, be any open sets with U1 ⊂ R
N × CM , V1 ∈ CM . Choose an x̂0 ∈ U1

and a ẑ ∈ V1. Now let V2 be some neighbourhood of ẑ in V1 defined by V2 = {~z ∈ CM

| ‖gi(~z) − gi(ẑ)‖ < δ, i = 1, . . . , M} ⊂ V1 for some δ > 0. From the conditions of the

theorem, there exists an infinite sequence of the form ñk, with ñk+1 > ñk + M − 1, k ≥ 1,

ñ1 ≥ 0, such that the random input xñk+i, i = 0, 1, . . . , M −1, is described by the piecewise

continuous PDF hk(ξ1, . . . , ξM) defined over CM , which is conditional upon the values of

xi, i = 0, . . . , ñk − 1. From the given conditions we have

q ≡ KδM ≤ min{
∫ z1+δ

z1

. . .

∫ zM+δ

zM

hk(ξ1, . . . , ξM)dξ1 . . . dξM | (z1, . . . , zM) ∈ CM},

∀ k ≥ 1. This gives that, for some previous given input xi, i = 0, . . . , ñk − 1 (if ñk > 0);

Prob(g ◦ f ñk+M(x̂0) ∈ V2 | xi, i = 0, . . . , ñk − 1, ñk > 0) ≥ q,

where 0 < q < 1, ∀ k ≥ 1. Thus Prob(g ◦ fn(x̂0) ∋ V2, 0 ≤ n ≤ ñk + M) ≤ (1− q)k, and

lim
k→∞

Prob(g ◦ fn(x̂0) ∋ V2, 0 ≤ n ≤ ñk + M) = 0. Thus we conclude that with probability

1, ∃ n̂ > 0 such that g ◦ f n̂(x̂0) ∈ V2, and hence such that g ◦ f n̂(U1) ∩ V1 6= ∅. Thus we

have the result that topological transitivity holds. �

Theorem 5.23 shows that when the input possesses any sort of persistent randomness

at all in its projection P̂ C1 onto C, chaos condition 3 (density of periodic points) is auto-

matically satisfied regardless of the coefficients of the noise transfer function. The reason
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is that the randomness ensures that no point in CM can cycle back to itself with the same

period, for ever, and thus no periodic points exist. Thus condition 3 is trivially satisfied. In

fact, from part (b), a repeat cycle cannot happen even once following any iteration of input

that is piecewise continuously random in its projection. Thus the persistence property is

not required for the existence of any continuously random inputs to yield chaos condition

3.

Theorem 5.24 shows that, if in addition, the persistently random sequences xn2+k, k =

0, . . . , M − 1, may take on values that cover CM in their projections P̂ C onto CM , then

chaos condition 2 (topological transitivity) will hold. The reason is that the randomness

throughout (at least) CM in the resulting quantizer input guarantees that the orbit of

(εn−1, . . . , εn−M) in CM will be dense for any initializations and filter coefficients, thus giving

transitivity. If the conditionality constraint on the probability density/mass functions in

these theorems is relaxed, then independence over all n1 must be imposed to maintain the

full theorem results. Otherwise, it is possible to have cases that yield the respective chaos

conditions with probabilities that are less than one.

Therefore in conclusion, when the randomness condition of Theorem 5.24 is satisfied

by the input, Theorems 5.23, 5.24 and 5.19 allow us to extend the assertion of Devaney

chaos beyond the cases covered under condition (R) for the gains in the filter, to those

simply satisfying sensitivity — that is when the system is nonminimum phase or marginally

minimum phase with a magnitude 1 zero of the noise transfer function having multiplicity

greater than 1. Theorem 5.26 in turn will extend the applicability of this chaos condition

1 to minimum-phase limits.

The extension of chaos to non-strictly minimum-phase cases with an appropriate random

input may suggest that all these cases (defined by the conditions for the zeros of p(z)) are

indeed chaotic, when condition (R) does not hold, without any additional conditions. The
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following proposition and counterexample proves this not to be true:

Example 3:

Consider the system with the map vn = [(1.5)vn−1 − 0.2] mod 1, with µ1 = 1.5,

and where (R) does not hold. This system maps the interval I = [(0.8), 1) ∪ [0, (0.3)] to

itself. This interval is also a trapping region for the mappings of all initial conditions in

C. This system has an isolated periodic point at v−1 = 0.4. All initial conditions in a

small neighbourhood of 0.4 will, after a sufficient number of mappings, lie in the trapping

region. �

Proposition 5.25 Suppose the ai and bj do not satisfy condition (R). If the largest mag-

nitude zero of p(z) has magnitude greater than 1 and less than 2, then chaos condition

2 (topological transitivity) and chaos condition 3 (density of periodic points) are neither

excluded12 nor assured.

Proof:

(i) Consider Example 3. If v−1 ∈ I, then vn ∈ I, ∀ n ≥ 0, so that vn is not in

an arbitrarily small neighbourhood of the point 0.4, for any n ≥ −1. Thus topological

transitivity does not hold. If v−1 is in a small neighbourhood of the periodic point 0.4, such

that v−1 ∋ I, then vn ∈ I, ∀ n ≥ n1 for some n1 ≥ 0, and v−1 is not a periodic point. Thus

density of periodic points does not hold.

(ii) Now consider Example 4 given below. We define f̃ : [0, 1) → [0, 1) as the mapping

function here, where f̃(x) =
1

2
− f(∆/2 − x∆)

∆
. Let J = [c−1, e−1] be any interval on

12Using the standard definition of density, with existence of periodic points added as well, this result will

still hold.
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[0, 1) such that J ⊂ [0, 1). If we let ∆v−1 = e−1 − c−1, then in (2.3), we have |∆vn| → ∞
as n → ∞. Thus ∃ n1 > 0 such that 0 ∋ f̃n(J), for 0 ≤ n < n1, and 0 ∈ f̃n1(J). We

may express the last mapped interval as f̃n1(J) = [za, 1) ∪ [0, zb], where za = f̃n1(c−1),

zb = f̃n1(e−1). Then clearly, f̃ q([0, (β)−q)) = [0, 1), where q is chosen so that (β)−q ∈ [0, zb].

Thus f̃n1+q(J) = [0, 1), and in particular, f̃n1+q(z−1, z−1 + (e−1 − z−1)
(β)−q

zb

) = [0, 1)

identically, where z−1 ∈ J , with f̃n1(z−1) = 0. Since the interval J was arbitrary, this

implies that topological transitivity holds.

From the corresponding scaling of f̃n(x) as x is scaled, we also have that f̃n1+q(zc) = zc,

where zc =
z−1

1 − (e−1 − z−1)
(β)−q

zb

, and zc ∈ J . Since the input is constant, we then have

f̃ (n1+q)m(zc) = zc, ∀ m ∈ Z. Thus ∃ the periodic point zc ∈ J . Since the interval J is

arbitrary, it follows that periodic points are densely distributed throughout [0, 1). Thus

density of periodic points holds. �

Thus with a periodic (constant) input xn and a zero of the noise transfer function

of magnitude greater than 1 but less than 2, Example 3 is nonchaotic. The reason that

transitivity fails is that, with interval splitting in the mappings, the input acts so as to

induce a trapping region for the orbits in C. The mapping has a repulsive fixed point

(periodic point). Points on one side of the fixed point, where the backward displacement

due to the input dominates, are drawn to the trapping region from one side, while points

on the other side of the fixed point, where the forward displacement due to the expansivity

arising from the nonminimum-phase property dominates, are drawn to the trapping region

from the other side. Condition 3 (density of periodic points) also fails since the fixed point

is isolated.



CHAPTER 5. CHAOS 159

Figure 5.1: Visitation frequency for simulation of Example 3

Figure 5.1 gives a computer generated plot provided by [61] of the relative visitation

frequency of the mapping on C in Example 3 for a simulation (with a particular initial

condition) of many mapping iterations. The numerical values on the axes have been scaled.

The horizontal axis represents the range [0, 1) scaled by a factor of 1000, and the vertical

axis the relative frequency of occurrence of each point in the range. The required trapping

region is clearly evident on this plot. The plot shows the long run probability of the orbit

visiting outside of the trapping region to be zero, as expected. The plot also shows the orbit

visitation to be comparatively recurrent throughout the trapping region, although with a

somewhat uneven probability distribution, at least over the finite number of iterations

carried out. It may well be that conditions 2 and 3 hold strictly on the trapping region.

The dynamics here certainly appear complex and suggestive of a chaotic nature. This,

however, is not sufficient to meet the definition of chaos of our overall analysis and so we
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classify Example 3 as nonchaotic. Taking the constant input xn = c and gain factor a1,

1 < a1 < 2, as bifurcation parameters for the first-order system, one may clearly form

conditions on these parameters under which the system remains topologically equivalent to

Example 3, with a trapping region and isolated periodic point. We shall see in Example 4

such conditions violated by xn.

Although the input used above was constant, clearly this periodicity is not crucial

to the nonchaos, since we may perturb each xn slightly while retaining a system with a

sufficiently similar basic dynamical structure (at least in terms of transitivity). As well, it

seems reasonable to assume that such nonchaotic counterexamples exist in systems of higher

dimensionality, since the added complexity with this would tend to increase the possible

range of dynamic possibilities. It may be conjectured that similar counterexamples that

are nonchaotic exist for the marginally minimum-phase case with a zero of magnitude 1,

multiplicity greater than 1, since such systems possess expansivity in the mappings that is

even less dominant than that of any nonminimum-phase case.

To reinforce the notion of topological transitivity and density of periodic points for

general nonminimum-phase systems that do not satisfy condition (R) and have periodic

input, we have the following simple example:

Example 4:

Consider the system with the map vn = βvn−1 mod 1, with µ1 = β, and where

1 < β < 2, so that (R) does not hold. �

From the proof of Proposition 5.25, chaos conditions 2 and 3 clearly hold here when the

system has 1 zero of magnitude greater than 1 and less than 2, with the constant input of

xn = β
∆

2
(condition (R) does not hold). Note that from Theorem 5.8, chaos condition 1

holds as well so that Example 4 is chaotic.
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If we consider extending the complexity of Example 4 to allow any form of periodic input

and any order of system with its M zero(s) of greatest magnitude having either magnitude

greater than 1 and less than 2, or else magnitude 1, multiplicity greater than 1, then

we would expect that the more complicated dynamical structure in many such examples

would only further ensure the prevalence of topological transitivity in these general cases.

Similarly, it seems reasonable to believe that this very complexity would also lead to a

prevalence of density of periodic points in such general cases with periodic inputs (including

the case of example 4 above). In fact, we should not discount such prevalence when the

M zeros condition is relaxed as well, whether (R) holds or not. It is this very complexity,

however, that surpasses our intuition about it in terms of being able to construct more

general examples or propositions to show this.

To further this discussion, we may conjecture, with consideration of Theorems 5.23

and 5.24, that specific deterministic (not necessarily periodic) inputs exist that give rise

to topological transitivity and/or density of periodic points in all general nonminimum or

marginally minimum-phase (with zeros of multiplicity greater than 1 on the unit circle)

cases that do not satisfy condition (R). We may conjecture further that this result holds

without the requirement of the M zeros, or those of Theorem 5.12 and Corollary 5.13, with

(R) either holding or not. Such inputs, for example, would function dynamically in essen-

tially the same manner as the random input of Theorems 5.23 and 5.24. This conjecture

is also supported by the role of periodic and deterministic inputs that we will study for

marginally minimum and minimum-phase systems where evidence for an analogous result

will be shown for topological transitivity.

In summary, these conjectures taken together suggest that chaos is ubiquitous to all

nonminimum and marginally minimum-phase (with zeros on the unit circle of multiplicity

greater than 1) cases with different forms of input, analogously in particular to the proven
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chaos, when condition (R) is satisfied, in spite of the counterexample which shows that chaos

does not automatically hold if (R) does not hold. The “pseudo” chaos of the counterexample

also hints at this ubiquitous nature of chaos here.

5.3.2 Minimum-Phase Results

We now investigate the marginally minimum and minimum-phase cases. To begin, we

return to the case of random input xn as a broad starting point, and have the following

two theorems:

Theorem 5.26 Suppose the ai and bj do not satisfy condition (R). Suppose also that p(z)

has a zero of magnitude 1 or greater. Suppose further that, for any n1 ≥ 0, there exists an

n2 ≥ n1 such that the input xn2 is random and its projection P̂ C1 is described by a piecewise

continuous probability density function hn2(x) defined over C, and satisfying hn2(x|xi, i =

0, . . . , n2 − 1) ≥ K, for all x ∈ C, for some K independent of n1, with K > 0. Then chaos

condition 1 (sensitivity to initial conditions) will hold with probability 1.

Proof:

From the conditions of the theorem, there exists an infinite sequence of the form ñk,

with ñk+1 > ñk, k ≥ 1, ñ1 ≥ 0, such that the input xñk
is random and described by the

PDF hk(x) defined over C which is conditional upon the values of xi, i = 0, . . . , n − 1.

Suppose that the largest magnitude zeros of p(z) have magnitude 1, with multiplicity

1. Let d = min(r̃t∆ mod ∆, ∆− r̃t∆ mod ∆), where t = min{k | r̃k is not an element

of Z, where the r̃k are from (R)}. Let δ be a constant satisfying 0 < δ <
d

2
. Choose

any x̂0 ∈ RN × CM and some neighbourhood Ñ of x̂0. The range of initial conditions

∆~ε0 = {∆εn for n = N − 1, . . . , N −max(N, M)∗} of (4.1) that lead to the constants Aij ,

Bij , Cij (corresponding to zeros of magnitude 1, multiplicity 1) all equalling zero constitutes
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a q̃ dimensional subspace of initial conditions C q̃, where q̃ is the number of zeros of p(z)

with magnitude less than 1, and 0 ≤ q̃ < max(N, M)∗. Thus there exists a max(N, M)∗

dimensional subspace of initial conditions, excluding the set contained in the q̃ dimensional

subspace, Cmax(N,M)∗ −C q̃, over which not all of these constants are zero. Thus there must

exist ~y0 ∈ Ñ , such that the initial condition difference ∆~x0 = x̂0 − ~y0 will give rise to such

an initial condition ∆~ε0 of (4.1), in the max(N, M)∗ dimensional space, that is not in the

q̃ dimensional subspace.

Further to this, ∃ a sequence {ŷ0,k}, k ≥ 1, of such ~y0 with the following additional

property. Suppose that, when taking ~y0 = ŷ0,k, that the conditions of Proposition 4.1

hold, for 0 ≤ n ≤ n1,k, for some n1,k ≥ 0. Then, for the ∆~x0 associated with ŷ0,k, we

have, from the nature of the zeros of p(z) and (2.3), that K1 < |∆εñk
| and |∆εn| < K2,

∀ 0 ≤ n ≤ n1,k, where K1 > 0, K2 > 0, are some constants independent of k. The

existence of such a sequence of ~y0 in Ñ satisfying the lower bound requirement for any

complex zeros scenarios, in particular, follows from the fact that, when considering (2.3),

|min(cos(θ), sin(θ))| =
1√
2

> 0 over all θ ∈ R; and from the fact that the subspace C q̃ will

allow choices of the Bij, Cij , associated with a given complex conjugate zero pair that span

a two dimensional space.

Without loss of generality, we assume Ñ is small enough so that K2 < δ. From the

condition of the theorem, we have q ≡ KK1 ≤ min{
∫ z+K1

z

hk(x)dx | z ∈ C}. Then

Prob[Q(xñk
− ry,k,ñk

) − Q(xñk
− rx,ñk

) 6= 0 | Q(xi − ry,k,i) − Q(xi − rx,i) = 0,

i = 0, . . . , ñk −1] ≥ q, where 0 < q < 1, ∀ k ≥ 1,

and where the variables with subscripts x and y, k correspond to the system with initial

conditions x̂0 and ŷ0,k respectively. That this is true follows from the fact that we have

inequality with the quantized values above, when the interval between the quantizer inputs

on C contains the point 0. This interval has magnitude lying between K1 and K2. Thus
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Pk ≡ Prob[Q(xi − ry,k,i) − Q(xi − rx,i) = 0, i = 0, . . . , ñk] ≤ (1 − q)k,

and lim
k→∞

Pk = 0. Thus, with probability 1, there must exist n2 and k̂, where n2 =

min{i | Q(xi − ry,k̂,i) − Q(xi − rx,i) 6= 0}.
Following the method of the proof of Theorem 5.19, the function εn = g1 ◦ fn+1(~x0)

will have one jump discontinuity of magnitude |r̃t|∆, when n = n2 + t at the finite point

ẑ0 where (xn2 − rz,n2) = ∆, over the interval defined by I~x0 = {ŷα0,k̂, 0 ≤ α ≤ 1}. We

then have that |∆εn| < K2 for 0 ≤ n ≤ n2 + t − 1, from (2.3). At n = n2 + t, the valid

value of ∆εn is that given from (2.3) (magnitude bounded by K2) summed with the jump

discontinuity. This then implies that δ < ‖g1 ◦ fn2+t+1(x̂0) − g1 ◦ fn2+t+1(ŷ0)‖, with

n2 + t + 1 > 0 and ŷ0 ∈ Ñ . Now applying Lemma 5.6, we have the result that sensitivity

to initial conditions holds with probability 1. If there are zeros of p(z) with magnitude

greater than 1, or magnitude 1, multiplicity greater than 1, then this result holds from

Theorem 5.19. �

This result shows that when condition (R) on the ai and bj is not satisfied, then chaos

condition 1 (sensitivity to initial conditions) may be extended to the marginally minimum-

phase cases with zeros of multiplicity 1 only on the unit circle, if there is a persistently

random input xn that may take on values that cover C in their projections P̂ C1 onto C. Thus

if the input is in the form of persistently random sequences as specified in Theorem 5.24,

then we may apply Theorems 5.23, 5.24 and 5.26 to establish that chaos holds for these

marginally minimum-phase cases when coefficient condition (R) does not hold. The role

of random input for the Σ-∆ modulator is then clearly one that facilitates the conditions

for chaos in a broader array of circumstances. This role does not extend, however, to the

analogous strictly minimum-phase case. The following theorem shows, in fact, that random

inputs will still give rise to strict nonchaos in this case.
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Theorem 5.27 Suppose all the zeros of p(z) have magnitude less than 1. Suppose also

that, for all n ≥ 0, the input xn is random and its projection P̂ C1 is described by a piecewise

continuous probability density function hn(x) defined over C, and satisfying hn(x|xi, i =

0, . . . , n − 1) ≤ KU , for all x ∈ C, for some KU independent of n, with KU > 0. Then

chaos condition 1 (sensitivity to initial conditions) will hold with zero probability.

Proof:

Let δ be a constant satisfying 0 < δ ≤ min(
∆

2
,

∆

KU
). Choose any x̂0 ∈ RN × CM and

some neighbourhood Ñ of x̂0. Suppose that Proposition 4.1 holds for N ≤ n ≤ n1, for

some n1, and ∀ ~y0 ∈ Ñ . Then, for ∆~x0 = ~y0 − x̂0, ~y0 ∈ Ñ , we have, from the nature of the

zeros of p(z) and (2.3), that |∆εn| < K~y0 , ∀ −M ≤ n ≤ n1, for some bound K~y0 > 0. Now

choose K such that K~y0 < K, ∀ ~y0 ∈ Ñ . Such a bound K clearly exists. We may define a

new neighbourhood about x̂0 in Ñ by Ñα = {~yα0 ∈ RN × CM | ~yα0 = x̂0 − α(x̂0 − ~y0), ∀
~y0 ∈ Ñ}, with 0 < α < 1. Now, with ∆~x0 = ~yα0− x̂0, by the properties of linear difference

equations, the constants in (2.3) will be scaled down in magnitude by a factor of α, and

hence so will |∆εn|. Thus K~y0 < αK, ∀ ~y0 ∈ Ñα. Now we pick an α = α̂, such that α̂ <
δ

K
,

and 0 < α̂ < 1, which leads to the result that |∆εn| < δ, ∀ ~y0 ∈ Ñα̂, and for −M ≤ n ≤ n1.

Now we also have, from the nature of the zeros of p(z) and (2.3), that ∃ constants K̃, µ̃,

independent of n1, with K̃ > 0, and 0 < µ̃ < 1, such that |∆εn| < K̃µ̃n, ∀ ~y0 ∈ Ñα̂, and

for 0 ≤ n ≤ n1.

We choose a ŷ0 ∈ Ñα̂ for the following. There ∃ k1 ≥ 0 such that KUK̃µ̃k1 < 1. We

define qk ≡ KU |∆εk|, k = 0, . . . , k1 − 1; qk ≡ KUK̃µ̃k, ∀ k ≥ k1. Let hn(x) be the PDF for

the input xn defined over C which is conditional upon the values of xi, i = 0, . . . , n − 1.

Using the condition involving KU in the theorem, we have

qk ≥ max{
∫ z+

qk
KU

z

hk(x)dx | z ∈ C}, ∀ k ≥ 0.
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Then, using Proposition 4.1, we have

Prob[Q(xk − ry,k) − Q(xk − rx,k) 6= 0 | Q(xi − ry,i) − Q(xi − rx,i) = 0,

i = 0, . . . , k − 1, k ≥ 1] ≤ qk, where 0 < qk < 1, ∀ k ≥ 0,

and where the variables with subscripts x and y correspond to the system with initial

conditions x̂0 and ŷ0 respectively. That this is true follows from the fact that we have

inequality with the quantized values above when the interval between the quantizer inputs

contains the point 0 (mod ∆). This interval has magnitude less than or equal to K̃µ̃k.

Thus

Pn ≡ Prob[Q(xi − ry,i) − Q(xi − rx,i) = 0, i = 0, . . . , n] ≥ qp

n∏

k=k1

(1 − qk),

where qp ≡
k1−1∏

k=0

(1 − qk). It then follows that Pn ≥ qp

n∏

k=0

(1 − K̂µ̃k), where K̂ = K̃µ̃k1. If

we define P̄ = lim
n→∞

Pn, then

ln(P̄ ) ≥
∞∑

k=0

ln(1 − K̂µ̃k) + ln qp = −
∞∑

k=1

K̂k

k
(

1

1 − µ̃n
) + ln qp.

This sum, by the ratio test, converges to a negative value, and thus 0 < P̄ < 1. Thus, with

probability P̄ , we have that Q(xn − ry,n) − Q(xn − rx,n) = 0, and hence Proposition 4.1

holds ∀ n ≥ N .

Since ŷ0 was chosen arbitrarily, this gives |∆εn| < δ, ∀ ~y0 ∈ Ñα̂, and ∀ n ≥ −M .

This then implies that, with probability P̄ , ‖g1 ◦ fn(x̂0) − g1 ◦ fn(~y0)‖ < δ for any

~y0 ∈ Ñα̂, and all n ≥ 0. If we scale down the value of α̂ in Ñα̂, then the values of K̃ and

|∆εk|, k = 0, . . . , k1, will scale down correspondingly, so that lim
α̂→0

n∏

k=0

(1− K̃µ̃k) = 1, and

lim
α̂→0

P̄ = 1. Thus it must be concluded that the statement ‖g1 ◦ fn(x̂0)− g1 ◦ fn(~y0)‖ < δ

for any ~y0 ∈ Ñα and all n ≥ 0, with 0 < α < α̂, holds with probability that is arbitrarily

close to 1; hence taken to be 1. The δ was chosen arbitrarily. Now applying Lemma 5.6,

we have the result that sensitivity to initial conditions holds with probability 0. �
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It is not clear that the results of Theorem 5.27 will hold if the input xn is allowed to

be random with discrete distributions and one may, in fact, conceive that counterexamples

exist in light of Proposition 5.28 below. The same consequence holds if we allow only

persistently random rather than always random input over each n ≥ 0. As with Theo-

rems 5.23 and 5.24, if the conditionality constraints in Theorems 5.26 and 5.27 are relaxed

and independence over all n1 or n respectively is not imposed, then the probability margin

of the chaos result goes from one to less than or equal to one as supported by cases.

Clearly, Theorems 5.23 and 5.24 will hold with the random xn of Theorem 5.27, and

so the lack of sensitivity to initial conditions remains a barrier to chaos. Moreover, it is

reasonable to conjecture that in this situation of stochastic input then, a clear bifurcation

point exists for the system delineating chaos from nonchaos. Specifically, the system be-

comes chaotic if and only if either (a) both condition (R) fails and a zero of p(z) attains 1 in

magnitude, or (b) a zero of p(z) attains either magnitude greater than 1, or else magnitude

1 with multiplicity greater than 1. This bifurcation result serves to affirm the view of chaos

as some intrinsic deterministic dynamical property of the system whose onset characterizes

a change in structural stability. The reason sensitivity is more difficult to obtain than tran-

sitivity with random input is because we require more than simply dense orbits. Arbitrary

intervals in C must include a specific point in C in their mappings, and the contractive

nature of these mappings in the strictly minimum-phase case counteracts the dense nature

of the mappings arising from random input in accomplishing this.

As an alternative approach, we may consider the following proposition, which assures

sensitivity to initial conditions and topological transitivity for the first-order minimum-

phase system with a particular input xn:
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Proposition 5.28 Suppose the system is strictly first order, and that M = 1, N = 0.

Then we may construct an input xn such that chaos condition 2 (topological transitivity)

holds. If the zero of p(z) has magnitude less than 1, then we may construct an input xn

such that chaos condition 1 (sensitivity to initial conditions) holds or (with a more complex

input) such that both chaos conditions 1 and 2 hold.

Proof:

Consider the system with the map vn = βvn−1 +dn mod 1, with |β| > 0, and µ1 = β.

For a given set of input di ∈ R, i = 0, . . . , k, (k ≥ 0), one can choose a dk+1 ∈ R such that

vk+1 = e, for any e ∈ [0, 1), and any initial condition v−1 ∈ [0, 1), (k ≥ −1). From this,

it follows inductively that for a given set of initial conditions v−1(i) ∈ [0, 1), and constants

ei ∈ R, there exists a set of input di such that vi(i) = ei, for i = 0, . . . , k, and any k ≥ 0.

Now consider the infinite sequence pi given by {0, 0, 1

2
, 0,

1

4
,
2

4
,
3

4
, 0,

1

8
,
2

8
, . . .}. Then the

points in the sequence are defined by p2k+i =
i

2k
, for i = 0, . . . , 2k − 1, k ≥ 0. We wish

to map all the points p2k+i, i = 0, . . . , 2k −1, to each other in an ordered manner, and then

in succession as k increases. To start, we define α(0) = 1, α(k + 1) = α(k) + 22k, for

k ≥ 0. Now, from the result above, we may choose the input di to satisfy the following.

If the initial condition of the above system is v−1 = p2k+i, then vα(k)+(i)2k+j = p2k+j, for

j = 0, . . . , 2k − 1, i = 0, . . . , 2k − 1, k ≥ 0.

Now choose any two open intervals I1, I2 ⊂ [0, 1). There exist points p2k1+i1 ∈ I1,

p2k1+i2 ∈ I2, for some k1 ≥ 0, and i1, i2, between 0 and 2k1 − 1. If v−1 = p2k1+i1 , then

vα(k1)+(i1)2k1+i2 = p2k1+i2 . Thus under the mapping f̃ (following the notation of the proof

of Proposition 5.25), f̃n1+1(I1) ∩ I2 6= ∅, where n1 = α(k1) + (i1)2
k1 + i2. Since the

intervals I1, I2 were chosen arbitrarily, we conclude that topological transitivity holds.
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Suppose |β| < 1. Let d̂ = min(|β|, 1 − |β|). Let δ be a constant satisfying 0 < δ <
d̂

2
.

Now choose a small interval I = [c−1, e−1] ⊂ [0, 1) such that |e−1−c−1| <
d̂

2
. There exists

a point p2k1+i1 ∈ I, for some k1 ≥ 0, and i1 between 0 and 2k1 − 1. If v−1 = p2k1+i1 , then

vα(k1)+(i1)2k1 = p2k1 = 0. Thus ∃ an n2 ≥ 0 such that f̃n(z) 6= 0, ∀ z ∈ I, with 0 ≤ n ≤ n2,

and f̃n2+1(z−1) = zn2 = 0, for some z−1 ∈ I. We have that f̃n2 is continuous over I so

that, from (2.3), |en2−1 − cn2−1| = |e−1 − c−1||β|n2, and ‖en2 − cn2‖ = |e−1 − c−1||β|n2+1

as well. Now we have that f̃n2+2(I) = I3 ∪ I4, where I3, I4 ⊂ [0, 1) are intervals with

closed endpoints at cn2+1 and en2+1 respectively. One interval has another closed endpoint

at zn2+1 and the other has an open end. The sum of the lengths of the two intervals is

|e−1 − c−1||β|n2+2, and the displacement between the second set of ends is 1 − |β|. Thus

‖en2+1−cn2+1‖ ≥ d̂−|e−1−c−1||β|n2+2 >
d̂

2
> δ. Since the interval I was chosen arbitrarily,

we conclude that sensitivity to initial conditions holds.

When |β| < 1, we may choose the input di so that the system will satisfy sensitivity

to initial conditions, but not necessarily topological transitivity, as follows. If the initial

condition of the above system is v−1 = p2k+i, then v2k+i = 0, for i = 0, . . . , 2k − 1, k ≥ 0.

The proof of sensitivity to initial conditions then follows the same method as given above.

�

It would seem reasonable to expect that this proposition could be extended to systems

of any order, that is with any values of M and N , since the structure of the proof would

appear amenable to such an extension. Similarly, we might expect it to be possible to

construct an input of simpler structure than that in the proof which yields transitivity

only, but not sensitivity when the system is minimum or marginally minimum phase (or

sensitivity but not transitivity when marginally minimum phase). (If the system has all
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its zeros of magnitude 1, multiplicity 1, then this input (e.g. constant) follows from that

in Proposition 5.16 when condition (R) holds.) The point of this proposition is that it

provides examples of how sensitivity may be satisfied for the strictly minimum-phase case,

and of how transitivity may be satisfied for an arbitrary filter form (with some fixed M

and N).

To construct the appropriate input, we have relied on the interval splitting property in

the mappings that occurs when εn = g1 ◦ fn+1(~x0) is discontinuous, to force sensitivity to

initial conditions as was essentially the case in Theorem 5.26 for the marginally minimum-

phase case, and used a particular deterministic input to remove any chance of missing

sensitivity for some interval as may occur with random input. Deterministic inputs may

then extend further the prevalence of chaos condition 1 compared to random ones.

We have no means of showing that a constructed input that achieves this may also make

the system chaotic by satisfying condition 3. Considering the random-like complexity of

the constructed inputs however, it would seem plausible to believe that nonexistence and

hence density of periodic points would hold for any filter form (with the given M , N),

as with appropriate random input. Thus we may well have a means of extending chaos

to hold for all filter forms with deterministic inputs, notably the strictly minimum-phase

case where random input failed to give this. In any event, we have shown how chaos can

occur for all filter forms that are not strictly minimum phase. Note that in applying the

proposition to the minimum-phase case, we require that the mappings of the system not

satisfy the continuity of Theorem 5.15. Otherwise chaos condition 1 would not hold.

Some additional theorems and propositions pertaining to the marginally minimum-

phase Σ-∆ system will now be considered. Generalizing Theorem 5.18 to encompass the

case where condition (R) does not hold and where the system has zeros inside the unit

circle, we bring in the issue of sensitivity to initial conditions as well to give the following:
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Theorem 5.29 Suppose the largest magnitude zero(s) of p(z) have either magnitude less

than 1, or else magnitude 1 and multiplicity 1. Suppose also that there exists an x̂0 ∈
RN × CM such that the set {gM(x̂n), ∀ n ≥ 0} is finite. Suppose further that gM(x̂n) 6= ∆

2
holds for all n ≥ 0. Then chaos condition 1 (sensitivity to initial conditions) and chaos

condition 2 (topological transitivity) will not hold.

Proof:

Let x̂0 ∈ RN × CM be as given in the theorem, with the number of elements in the

set {gM(x̂n), ∀ n ≥ 0} given by p. Now we choose a δ such that 0 < δ ≤ ∆

2
. Let Ñ be

some neighbourhood of x̂0, where Ñ is sufficiently small that, ∀ ~y0 ∈ Ñ , ∆/2 does not

lie in the smallest closed interval between gi(~y0) and gi(x̂0) on C, for i = 1, . . . , M ; and

Q(xk − ry,k) − Q(xk − rx,k) = 0, k = 0, . . . , N . The variables here with subscripts x and

y correspond to the system with initial conditions x̂0 and ~y0 respectively. Thus, from the

conditions in the proof of Theorem 4.4, continuity on the line connecting x̂0 and ~y0 in

RN × CM holds, and thus (4.1) and (2.3) from Theorem 4.5 hold for n = N . Now choose a

ŷ0 ∈ Ñ . Then, for ∆~x0 = ŷ0 − x̂0, we have, from the nature of the zeros of p(z) and (2.3);

that |∆εn| < Kŷ0, with −M ≤ n ≤ n̂, for some bound Kŷ0 > 0, if Theorem 4.5 holds, for

N ≤ n ≤ n̂, for some n̂ ≥ N . For now, we have n̂ = N . Now choose K such that K > K~y0 ,

∀ ~y0 ∈ Ñ . Such a bound K clearly exists. We may define a new neighbourhood about x̂0

in Ñ by Ñα = {~yα0 ∈ RN × CM | ~yα0 = x̂0 − α(x̂0 − ~y0), ∀ ~y0 ∈ Ñ}, with 0 < α < 1.

Now, with ∆~x0 = ~yα0 − x̂0, by the properties of linear difference equations, the constants

in (2.3) will be scaled down in magnitude by a factor of α, and hence so will |∆εn|. Thus

αK > K~y0 , ∀ ~y0 ∈ Ñα.

Now we pick α = α̂ such that α̂ < min(
K1

K
,

∆

4Kp
,

δ

K
), and 0 < α̂ < 1, where K1 > 0 is

such that Q(xk − rx,k ± K1) − Q(xk − rx,k) = 0, k = 0, . . . , n1. We label this condition



CHAPTER 5. CHAOS 172

(#). For this we choose n1 sufficiently large to satisfy {g1(x̂n), 0 < n ≤ n1} = {g1(x̂n), ∀
n > 0}. With α̂ < K1/K, we have |∆εn| < K1, for −M ≤ n ≤ N . From the form of (1.2),

it holds that the applicability of (2.3), for −M ≤ n ≤ N , extends to n = N + 1, if ∆εN+1

is relabelled ∆rN+1 on the LHS of (2.3). Thus we have |∆rN+1| < K1, which implies that

Q(xN+1 − ry,(N+1)) − Q(xN+1 − rx,(N+1)) = 0, if n1 > N , from (#). If n1 ≤ N , we have

Q(xN+1 − ry,(N+1)) − Q(xN+1 − rx,(N+1))

= Q(xN+1 − rx,(N+1) − ∆rN+1) − Q(xN+1 − rx,(N+1))

= Q(xn2 − rx,(n2) + m∆ − ∆rn1+1) − Q(xn2 − rx,(n2) + m∆)

= 0, for some n2 satisfying 0 ≤ n2 ≤ n1.

We have used g1(x̂N+2) = g1(x̂n2+1), which also implies from (1.2) that xN+1 − rx,(N+1) =

xn2 − rx,(n2) + m∆, for some m ∈ Z. Then (#) was applied, with the m∆ cancelling out.

Thus, extending the conclusions of above, (4.1) and (2.3) hold for −M ≤ n ≤ N + 1. We

may thus continue this process inductively, breaking into n1 > N + k, n1 ≤ N + k, cases

analogously, to show that (4.1) and (2.3) hold for n up to N + k + 1, when (4.1) and (2.3)

hold for n up to N + k, k ≥ 0. We then conclude that (4.1) and (2.3) hold ∀ n ≥ N , and

∀ ~y0 ∈ Ñα̂.

Now, with this applicability of (4.1) and (2.3), we have n̂ → ∞, and the result that

|∆εn| <
∆

4p
, ∀ ~y0 ∈ Ñα̂, and ∀ n ≥ −M . Thus the mapping g1◦fn(Ñα̂) ⊂ [g1◦fn(x̂0)−

∆

4p
,

g1 ◦ fn(x̂0)+
∆

4p
] holds on C ∀ n ≥ 0. From the finite size of the orbit set for x̂0 above, we

have that g1 ◦ fn(Ñα̂) ⊂ V1 ⊆ C, where V1 is the union of p closed intervals on C, each of

length ∆/2p, ∀ n ≥ 0. Thus there must exist a ẑ ∈ C with some neighbourhood Ñz ⊂ C
about ẑ, such that g1 ◦ fn(Ñα̂) ∩ Ñz = ∅, ∀ n ≥ 0. Now applying Lemma 5.7, we have the

result that topological transitivity does not hold. From above, we also have the result that

|∆εn| < δ, ∀ ~y0 ∈ Ñα̂ and ∀ n ≥ −M . This then implies that ‖g1◦fn(x̂0)−g1◦fn(~y0)‖ < δ

for any ~y0 ∈ Ñα̂, and all n ≥ 0. The δ was chosen arbitrarily. Now applying Lemma 5.6 we
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have the result that sensitivity to initial conditions does not hold. As with Theorem 5.18, if

N = 0, the input xn is periodic with period q, and the system has an arbitrary periodic point

with period p1, then, from the properties of the difference equations (1.2), the requirements

of the theorem are satisfied with the cardinality p satisfying p ≤ p1q. �

This theorem extends Theorem 5.18 to include all minimum and marginally minimum-

phase cases when (R) does not hold, under the constraint that no coordinate εn in the

orbit of the point x̂0 ever takes on the boundary value ∆/2. Chaos condition 1 also emerges

directly in this version, compared to its separate treatment in Theorem 5.15 previously when

(R) holds. The implications of this theorem for establishing chaos are more suggestive

compared to that of disproving chaos. Applying the results of the discussion following

Theorem 5.18, we can argue as follows. With the theorem above, to show chaos we need

only show that conditions 1 and 2 hold in the nonminimum or marginally minimum-phase

(zeros on the unit circle with multiplicity 1) cases that have the property that all periodic

points must lie on a limit cycle orbit in CM . This will imply the nonexistence of a periodic

point and hence satisfy chaos condition 3 trivially. The limit cycle orbit property will

hold, for example, if N = 0 with periodic input, but we must also have ∆/2 not on the

prospective limit cycle to apply Theorem 5.29.

It was seen how chaos condition 3 (density of periodic points) may arise trivially when no

periodic point exists. From the following theorem, we see that for certain minimum-phase

systems this is the only way condition 3 may be satisfied:

Theorem 5.30 Suppose all the zeros of p(z) have magnitude less than 1. Suppose also

that there exists an x̂0 ∈ RN × CM such that the set {gM(x̂n), ∀ n ≥ 0} is finite. Suppose

further that gM(x̂n) 6= ∆

2
holds for all n ≥ 0. Then there are no periodic points in a

sufficiently small neighbourhood of g(x̂0).
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Proof:

The first part of the proof of this theorem follows the first paragraph of the proof

to Theorem 5.29. With the applicability of (4.1) and (2.3), we have the result that

lim
n→∞

∆εn = 0. This then implies that lim
n→∞

g1 ◦ fn(Ñα̂) ⊆ {gM(x̂n), ∀ n ≥ 0}. We may

assume, without loss of generality, that Ñ and Ñα̂ are small enough so that g(~y0) ∋ {g(x̂n),

∀ n ≥ 0}, ∀ ~y0 ∈ Ñα̂ − {x̂0}. It then follows, from the limit above, that the condition

g ◦ f p2k(~y0) = g(~y0), ∀ k ∈ Z+ and some p2 > 0, cannot hold for any ~y0 ∈ Ñα̂. Hence there

can be no periodic point in the neighbourhood Ñα̂ of x̂0. As with Theorem 5.29, if N = 0,

the input xn is periodic with period q, and the system has an arbitrary periodic point with

period p1, then, from the properties of the difference equations (1.2), the requirements of

the theorem are satisfied with the cardinality p satisfying p ≤ p1q. In this case, this implies

that density of periodic points does not hold. �

This result suggests a relative limit on the nature of the dynamics for the minimum-

phase case. Not only chaos, but density of periodic points occurs only in the rather un-

interesting scenario of having no periodic points, at least for cases where any prospective

periodic point must exist on the appropriate limit cycle orbit in CM . This result takes the

same form as that of part 2 of Theorem 5.17 with M = max(N, M), where a periodic point

implies non-density of periodic points.

In passing, we may note that it is possible to relax the set condition in Theorems 5.18, 5.29

and 5.30 to that of {gM(x̂n), ∀ n ≥ 0}∩ Ñ0 = ∅, where Ñ0 is some neighbourhood in CM

about any point in CM for Theorem 5.18, and the point ∆/2 for Theorems 5.29 and 5.30.

This shows that these theorems apply to any system that stops short of generally pure

quasiperiodic or dense orbit behaviour, although no added simple applications are obvious

with this relaxation.
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Drawing on the results of Theorems 5.29 and 5.30, we have a corresponding extension

of Proposition 5.16 to the converse case when (R) does not hold, as follows:

Proposition 5.31 Suppose the ai and bj do not satisfy condition (R). If the largest magni-

tude zero(s) have magnitude 1 and multiplicity 1, and if the input xn is constant, then chaos

condition 1 (sensitivity to initial conditions) and chaos condition 2 (topological transitivity)

are not assured.

Proof:

(i) Consider the system with the map vn = (
1

2
vn−1 − vn−2 + d) mod 1, 0 < d <

3

2
,

with µ1,2 =
1

4
± î

√
15

4
, |µ1,2| = 1, and where (R) does not hold. This map has a periodic

point at (v−1, v−2) = (
2d

3
,
2d

3
), and thus the untransformed system has a periodic point at

(ε−1, ε−2) = (
∆

2
− 2d∆

3
,

∆

2
− 2d∆

3
). Thus, by Theorem 5.29, chaos conditions 1 and 2 do

not hold.

(ii) Now consider the system with the map vn = (
3

2
vn−1 − 1

2
vn−2) mod 1, with

µ1 = 1, µ2 =
1

2
, and where (R) does not hold. This map has a periodic point at all points

of the form (v−1, v−2) = (α, α), and thus the untransformed system has a periodic point at

(ε−1, ε−2) = (
∆

2
− α∆,

∆

2
− α∆), for 0 ≤ α < 1. Thus, by Theorem 5.29, chaos conditions

1 and 2 do not hold.

(iii) Consider the system with the map vn = (
1

2
vn−1 − vn−2 +

1

2
vn−3 + d) mod 1,

0 < d < 1, with µ1,2 = ±î, µ3 =
1

2
, and where (R) does not hold. This map has a periodic

point at (v−1, v−2, v−3) = (d, d, d), and thus the untransformed system has a periodic point

at (ε−1, ε−2, ε−3) = (
∆

2
−d∆,

∆

2
−d∆,

∆

2
−d∆). Thus, by Theorem 5.29, chaos conditions

1 and 2 do not hold. �
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Thus the nonchaos consequences of Proposition 5.16 naturally extend to the question

of initial conditions when the lack of condition (R) raises this as an undetermined factor.

Unlike this previous proposition, having a periodic input that is irrational did not pro-

vide a means for showing that either chaos condition in question may be satisfied. We

may nonetheless conjecture that such examples exist (and indeed may be chaotic by the

discussion following Theorem 5.29). In this event, we would have, as was the case of Propo-

sition 5.16 vs. Theorem 5.24 for topological transitivity, that a form of irrational periodic

input may lead to sensitivity to initial conditions or topological transitivity (or indeed

chaos) with much the same mechanism as that of the random input in Theorem 5.26 or

Theorem 5.24 (or these plus Theorem 5.23) respectively. Small perturbations of the input

for each of the examples in the proof of the proposition (or related examples satisfying

some chaos conditions) may maintain the respective sensitivity/transitivity or nonsensitiv-

ity/nontransitivity.

It is easy to see examples with periodic rational input xn where sensitivity to initial

conditions and topological transitivity do not hold for the strictly minimum-phase case.

The following example shows this property and motivates the following proposition:

Example 5:

Consider the system with the map vn = βvn−1 + d mod 1, with µ1 = β, where

0 < β < 1, and 0 ≤ d < (1 − β). �

Proposition 5.32 Suppose all the zeros of p(z) have magnitude less than 1, and that

the input xn is constant. Then chaos condition 1 (sensitivity to initial conditions), chaos

condition 2 (topological transitivity), and chaos condition 3 (density of periodic points) are

not assured.
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Proof:

Consider Example 5. First suppose that 0 < d < (1−β). This map has a periodic point

at v−1 =
d

1 − β
, and thus the untransformed system has a periodic point at ε−1 =

∆

2
−

d∆

1 − β
. Thus, by Theorem 5.29, chaos conditions 1 and 2 do not hold, and by Theorem 5.30,

chaos condition 3 does not hold.

Now consider the case when d = 0. The mapping f̃ (following the notation of the proof

of Proposition 5.25) is clearly continuous on [0, 1) so that, by Theorem 5.15, sensitivity does

not hold. Let I = [0, β] ⊂ [0, 1). Clearly f̃n(I) ⊂ I, ∀ n ≥ 0, so that f̃n(I)∩ (β, 1) = ∅, ∀
n ≥ 0. Thus transitivity does not hold. We have lim

n→∞
f̃n(v−1) = 0, ∀ v−1 ∈ [0, 1), which

implies that 0 can be the only periodic point. Thus density of periodic points does not

hold. �

From Example 5 and Proposition 5.32, we see how all three chaos conditions may fail

for a general minimum-phase case when the input xn is appropriately constrained relative

to the contractility of the mappings (determined by the magnitude of the zeros of the

NTF), so that the mappings do not exhibit interval splitting. We have no proposition or

examples to show the possible existence of sensitivity or transitivity in the minimum-phase

case when the input xn is periodic. This is because of the difficulty in analyzing the be-

haviour of mappings with ever shrinking intervals. We may conjecture, as was analogously

done regarding Proposition 5.31 however, that with irrational periodic input, topological

transitivity would hold in some cases. Extending this conjecture to sensitivity to initial

conditions, as well, would seem dubious considering that, from Theorem 5.27, a purely

random input is insufficient to bring this about. Applying Theorem 5.29, however, will ex-

tend this to the conclusion that such conjectured cases (with the property that all periodic

points must exist on a limit cycle in CM) satisfy chaos condition 3 and, in the event that
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sensitivity holds, are chaotic. It would seem reasonable to expect that such irrational peri-

odic input chaotic examples (minimum and marginally minimum phase) could be extended

to higher-order examples.

No extension of the density of periodic points result of Theorem 5.17 could be con-

structed to apply when condition (R) does not hold. This is a consequence of the fact

that, while the method of proof of Theorem 5.10 was easily adaptable to the nonexpansive

case, the method of proof of Theorem 5.21 relies on sufficient expansivity and hence is not

even adaptable to less expansive cases. The more complex, interval splitting nature of the

mappings indeed makes it difficult to conjecture that relatively simple extensions would

exist.

We have seen how density of periodic points (i.e. no periodic points) may arise for some

minimum and marginally minimum-phase (zeros on the unit circle having multiplicity 1,

some zeros inside the unit circle) cases when chaos conditions 1 and 2 are made to hold with

a periodic input, or when the input is random. No propositions or examples yielding this

chaos condition were constructed for these cases when the continuity of Theorem 5.15 holds

together with a periodic input, although it seems reasonable to expect that such examples

exist for at least the marginally minimum-phase case with irrational periodic input, given

the complexity and asymmetry of the structure involved. Note that there exists an infinite

number of certain general perturbations of the periodic input, modulo C, in the examples

considered in the proofs of Propositions 5.31 and 5.32 that maintain the periodic point.

Theorems 5.29 and 5.30, however, will not apply if the input, modulo C, does not exist in

a certain finite set, for each x̂0.
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5.4 Summary

A summary of the classification of the various cases and sub-cases in terms of whether or

not the three conditions for chaos and overall chaos hold is now presented in Tables 5.1 to

5.5 that follow.

The basic content of these tables follows directly from the theorems, propositions and

examples/counterexamples of this thesis. In a few cases, as indicated, specific classifications

follow in part from conjectures resulting from the discussion or extrapolation of results in

this chapter. By “persistent random input”, we mean input xn satisfying the conditions of

Theorem 5.23.

Summary of Results:

To summarize the results, chaos was shown to hold when the system is nonminimum

phase with max(N, M) zeros outside the unit circle, for any input xn, provided the filter

coefficients ai and bj satisfy condition (R) as presented. Chaos was also shown to hold when

the system is nonminimum phase with max(N, M) zeros outside the circle of radius 2, with

any such filter coefficients, provided the input xn is periodic; or with each of at least M zeros

of magnitude greater than 2, or equal to 2 and repeated [counted (multiplicity − 1) times],

provided the input (projected on C) is persistently random. Chaos was shown to hold

as well, when the system is not strictly minimum phase, with any such filter coefficients,

provided the system input has a more restrictive random structure.

Chaos was shown not to hold when the system is marginally minimum phase and the

filter coefficients satisfy condition (R); and when the system is minimum/marginally mini-

mum phase (with a zero inside the unit circle) and the continuity of Theorem 5.15 holds. Ex-

amples of chaos was shown for nonminimum-phase cases (with or without M nonminimum-

phase zeros) with constant input, and examples of nonchaos were shown in all general phase



CHAPTER 5. CHAOS 180

Condition (R) Holds

NTF Zeros Chaos Conditions

1 2 3 Chaos C∗+ S

(a) max(N, M) nonminimum-phase zeros
√ √ √ √

E

(b) M < N nonminimum-phase zeros
√ √

E
√

1 E
√

1 E

(c) 1 to M − 1 nonminimum-phase zeros
√

E E E E

(d) max(N, M)∗ ≥ 1 marginally minimum-phase zeros × E E ×

Table 5.1: Chaos condition classifications when (R) holds

Condition (R) Holds

Periodic Input Persistent Random Input on C
NTF Zeros Chaos Conditions Chaos Conditions

(as above) 1 2 3 Chaos C∗+ S 1 2 3 Chaos C∗+ S

(a)
√ √ √ √ ×1

√ √ √ √
E

(b)
√ √

E
√

1 E
√

1 ×1

√ √ √ √
E

(c)
√

E E E (×)
√

(
√

)
√

(
√

) E

(d) × E (
√

) × × (
√

)
√ ×

Table 5.2: Chaos condition classifications according to input when (R) holds
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Condition (R) Fails to Hold

NTF Zeros Chaos Conditions

1 2 3 Chaos C∗+ S

(a) max(N, M) zeros of magnitude > 2
√ √

E
√

1 E
√

1 E

(b) M < N zeros of magnitude > 2
√ √

E1 E1 E

(c) < M zeros of magnitude > 2, ≥ 1 NMP zeros
√

E E E E

(d) max(N, M)∗ ≥ 1 MMP zeros E E (
√

) E E

(e) 1 to max(N, M)∗−1 MMP zeros, no NMP zeros E E (
√

) E E

(f) max(N, M)∗ ≥ 1 minimum-phase zeros E E E (×)

Table 5.3: Chaos condition classifications when (R) fails to hold

Condition (R) Fails to Hold

Periodic Input Persistent Random Input on C
NTF Zeros Chaos Conditions Chaos Conditions

(as above) 1 2 3 Chaos C∗+ S 1 2 3 Chaos C∗+ S

(a)
√ √ √ √

E
√ √ √ √

E

(b)
√ √

E1 E1 E1

√ √ √ √
E

(c)
√

E E E E1

√
(
√

)
√

(
√

) E

(d) (×) (×) (×) (
√

) (
√

)
√

(
√

) E

(e) (×) (×) (×) (
√

) (
√

)
√

(
√

) E

(f) (×) (×) (×) (×) (×) (
√

)
√

(×)

Table 5.4: Chaos condition classifications according to input when (R) tails to hold
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Glossary

Symbol Meaning

C∗+ S Stability holds when Chaos holds, and N ≥ 1
√

condition always satisfied

(
√

) condition satisfied in some cases

× condition never satisfied

(×) condition not satisfied in some cases

E condition satisfied or not satisfied depending on the case

E
√

1 (
√

) holds, (×) conjectured to hold

E1 (
√

) and (×) both conjectured to hold

×1 × conjectured to hold

Table 5.5: Glossary for chaos condition classifications

cases. Many cases were found in which some of the chaos conditions held or did not hold,

but where no overall chaos results were obtained. No clear conclusions were drawn in many

cases, particularly when condition (R) and the continuity of Theorem 5.15 do not hold,

or the input is neither definably random or periodic. Some of the nonminimum-phase re-

sults obtained were conjectured to be necessary and sufficient for chaos when condition (R)

holds. A prevalence of chaos and “pseudo-chaotic” nonchaos was further conjectured over

the general nonminimum-phase and, to some extent, minimum/marginally minimum-phase

cases, when condition (R) or the continuity of Theorem 5.15 do not hold in the relevant

cases.
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Density of Periodic Points:

If the standard (stricter) definition of density of periodic points is used in chaos condition

3, then our conclusions in the last two columns of line (a) in Table 5.1, and the periodic

input segment of table 5.2, are weaker — condition 3 and chaos are satisfied in some cases

(i.e. when N = 0, 1, by conjecture) rather than all cases. Conclusions are weaker in the

other lines as well (see footnotes in this chapter), although the classification symbols remain

the same. If existence of periodic points is added to the condition 3 definition as well, then

conclusions are generally weaker yet (see footnotes), although the only fundamental change

in the tables shows up in the persistent random input segment of Tables 5.2 and 5.4, where,

as expected, condition 3 and chaos fail in all cases — hence the symbols not involving “×”

in the last two columns of Tables 5.1 and 5.3 would convert to “E” throughout.

We also observe that if the strictest interpretation of condition 3 in Devaney’s chaos (i.e.

including existence of periodic points) is adopted, we have the following for the condition

(R) results: Sensitivity always holds for the cases where we show transitivity and density

of periodic points both holding, and does not hold for the cases when we show at least one

of conditions 2 or 3 failing. This is particularly notable in the minimum-phase situation

(no sensitivity), where creating quasiperiodicity to give transitivity eliminates periodic

points, and creating enough regularity to give dense periodic points makes transitivity

unattainable. These consequences are consistent with the property of Devaney chaos that

transitivity and density of periodic points taken together imply sensitivity for continuous

maps, since the mappings here are nearly continuous (continuous, except on boundaries)

under condition (R). We see some carryover of these consequences when (R) does not hold,

as well. Using our definition of condition 3, however, we have under (R) that conditions

2 and 3 may both hold, but not 1, when the system is minimum-phase with random

input. Thus removing the existence condition for density of periodic points, as was deemed
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meaningful for nonautonomous systems, has some effect in making the sensitivity condition

less redundant for characterizing chaos in general classes of mappings.

Chaos with Stability:

It is of more practical importance to understand what conditions will bring about chaos

together with particular types of stability for the Σ-∆ modulator. For the discussion here,

we shall assume that this is bounded internal stability as studied in Chapter 3, and that it

is taken to hold over all initial conditions in the state space RN × CM . This is, of course,

the most fundamental type of stability of concern. A summary of the classifications of the

cases, according to whether or not stability holds when chaos holds, under the nontrivial

condition of N ≥ 1, is provided as well in Tables 5.1 to 5.5. We discuss the arguments

behind these classifications with the following.

For a simplified system with no feedback elements (N = 0), bounded stability is au-

tomatic. Such systems are contained within the treatment of the general results of this

chapter, and thus provide trivial examples of chaos with stability, when the pertinent

chaos conditions are met (e.g. conditions on the feedback gains ai).

For more general systems, it is straightforward to obtain stability when satisfying con-

ditions for chaos via Theorem 5.21, or for that matter, the pertinent chaos conditions of the

general results of Section 5.3 overall. One simply chooses the N feedforward gains bj to give

stability, and then, independently, the ai gains so that the ak −bk coefficients of p(z) satisfy

any required conditions (e.g. the zeros of greater than magnitude two conditions on p(z)

in Theorems 5.20 or 5.21). Similarly, the input requirements are satisfied independently in

the theorems pertaining to a persistent random input. In general, from the work of Section

5.3, we would conjecture, as well, the existence of systems having all zeros of p(z) with

magnitude less than two (but typically all greater than 1), N ≥ 1, and a deterministic

input, that are both chaotic and stable.
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When N ≥ 1, and condition (R) is required to hold, the situation is more complicated.

As mentioned in Chapter 4, and alluded to in this chapter, it is difficult to ensure that

all the zeros of pr(z) lie inside the unit circle (i.e. bounded stability) while requiring that

some zeros of p(z) lie outside the unit circle (to make the system nonminimum phase) at

the same time. In fact, our analytical evidence would seem to suggest that a necessary

condition13 for the existence of q nonminimum-phase zeros of p(z) and stability, where

1 ≤ q ≤ max(N, M)∗, is that M ≥ N + q. Adopting this conjecture leads to the conclusion

of stability with the chaos condition of sensitivity in Theorem 5.8 only when M > N ,

and stability with transitivity and density of periodic points in Theorems 5.9 and 5.10

respectively, only when N = 0. In short, we have no examples under which full chaos

holds with stability when both N ≥ 1 and (R) hold, and when the input is arbitrary and

deterministic — indeed we appear to have general results in Section 5.1 for the existence

of chaos with nonstability for such systems. Other results in this section allow for cases,

or conjectures, under which some of the chaos conditions will hold with stability for such

systems (although not conditions 1 and 2 together). At best, we might speculate that

more general, fully chaotic forms of the hyperbolic toral automorphism mappings (which

satisfy (R)) of Proposition 5.14, arising with N ≥ 1, might exist, where fewer than M

nonminimum-phase zeros are present.

Defining Chaos:

The counterexample of Example 3 provides an interesting case of dynamical behaviour

where our Devaney chaos may hold on the trapping region but not on the whole set C, as

sufficient for our chaos requirement. This raises the issue of whether a more appropriate, or

at least a more viable adaptation of Devaney’s definition of chaos to apply to a system such

13Such a bound on M may, in general, be sufficient, since we have shown stability in the particular case

of Example 1, where M = 2, N = 1, and one zero of p(z) is nonminimum phase.
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as the Σ-∆ modulator here, would involve a relaxation of the adapted definition we have

used, to assert that chaotic behaviour on a subset of CM (i.e. such as a trapping region)

would be sufficient to warrant an overall classification of chaos for the system. Devaney’s

basic definition of chaos is one that is particularly well suited for the characterization of

chaos on such subsets of state space.

Such a relaxed definition would allow a convenient classification as chaotic for many such

expansive mapping systems that demonstrate complex, intuitively chaotic like behaviour,

but elude our stricter chaos designation based on perhaps less relevant details inherent in

the complexity of the dynamics. Such a way of characterizing chaos may also be more

meaningful as a practical way of distinguishing or bifurcating between two qualitatively

different types of behaviour in the functioning Σ-∆ modulator. In addition, such notions of

chaos come closer to the ideal of viewing all cases where each zero is nonminimum phase,

as being chaotic, and other cases as generally nonchaotic. This is an extrapolation of the

circumstance when condition (R) is satisfied, and is consistent with the unsubstantiated

claims of other research work. This view has some intuitive support from the minimum-

phase results as well, where it seems reasonable to argue that nonchaos (resulting from

nonsensitivity to initial conditions) is the prevalent generic condition, and chaos arises only

under very specific circumstances (i.e. on the input).

However we define chaos, it may well be that, in further investigations of Σ-∆ mod-

ulator systems with zeros of magnitude between 1 and 2, the establishment of Devaney

chaos on a trapping region is the best that we can do in terms of asserting the possible

existence of overall Devaney chaos. One possible tool in such a study involves Devaney’s

concept of a nonwandering set [7], which is essentially a set that is internally topologically

transitive. Some work on nonwandering sets for monotonic modular functions has been

done by Hofbauer [23]. The mapping f of the first-order Σ-∆ modulator is of this general
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form. Studies involving an application of this work to expansive maps would be a relevant

starting point for further investigation.

Such investigations, or a study involving a change of the chaos definitions used, are

thus of further interest but will not be pursued in this thesis due to the added complexity

and work involved for such an analysis to be as thorough as that given for the definitions

of chaos already chosen. The counterexample of Example 3 also provides motivation for a

framework for further study of the complex dynamics arising from such maps, but this will

not be pursued within the scope of this thesis.

Modulator Implications:

In this chapter, an adapted version of Devaney’s definition of chaos has been applied

to the general multi-bit Σ-∆ modulator with the goal of determining conditions under

which chaos does or does not hold. The approach of the analysis was to consider general

mathematical variations in the nature of the parameters involved (i.e. filter coefficients ai,

bj and input xn) either directly (i.e. with condition (R)) or indirectly (i.e. with the position

of the zeros of the noise transfer function), so as to arrive at cases that are as simple as

possible and for which as broad conclusions as possible could be derived.

The practical implications of varying the zeros of the noise transfer function, maintain-

ing stability and meeting any filter coefficient conditions obviously follow directly when

choosing the filter coefficients of the Σ-∆ modulator. Other factors in design may of course

make some coefficient class scenarios more prevalent than others. The implications of the

different input cases (involved for questions of both stability and chaos) are less obvious

or controllable in practice. The relevance of considering a particular deterministic input,

or a type of periodic or random input, may be little if the particular input signal desired

for processing by the Σ-∆ modulator conforms to none of these simplified classifications,

as may generally be the case. Nevertheless, the analysis undertaken for chaotic behaviour
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at the more abstract level in this chapter serves to provide a broad yet thorough overview

of the general mathematical nature of the dynamics of the Σ-∆ modulator, using the most

standard concept of chaos available. The same assertion holds for the analysis of stability

in Chapter 3. Such an underpinning is both theoretically necessary and practically useful

in providing a structure with which to understand the behaviour and approach the design

of Σ-∆ modulators.

Quantizer Implications:

The analysis and results for chaos in this chapter were derived for a Σ-∆ modulator

with multi-bit quantizer of an arbitrary number of bits. Thus the results we have obtained

readily apply to the b-bit quantizer case under the condition of no overload (see Section 1.3

for explanation). A broader study of the low-bit case might make no assumption of the no

overload condition. Under these circumstances, the mappings inherent in the Σ-∆ mod-

ulator dynamical system become much more complicated to analyze, since we would be

effectively “turning off” the quantizer in the system for inputs beyond a certain magnitude

but not otherwise. As noted in the Introduction, such a study at the level of analysis

conducted in this chapter concerning chaos would be much more complicated with the pos-

sibility of full tractability and conclusions unclear. The work of others, e.g. [56], [62], [53],

hints at how to mathematically tackle mappings under the 2-bit case with no assumption

of the no overload condition, but these ideas do not extend in an obvious way to dealing

with the complexity inherent in analyzing our Devaney chaos conditions, particularly when

extending the Σ-∆ modulator to general higher-order form (i.e. M > 2 or N > 0) from a

first or second-order form (i.e. M = 1, 2, N = 0).

The no overload condition is a reasonable requirement to make, since Σ-∆ modulators

will generally operate with a design and input that yield this, or may be readily controlled

to yield this, and since the stability requirement of a bounded filter output tends to make a
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no overload quantizer requirement a practical natural extension. Therefore the analysis of

chaos for the arbitrarily large multi-bit case in this chapter provides a meaningful framework

with which to assert relevant general results on chaos for the low-bit cases of practical

interest, along with the extensions to analogous multi-bit cases for b > 2. Similarly, the

work of Chapters 6, 7 and 8 applied to this model will accomplish this for the respective

issues to be investigated ahead.



Chapter 6

Dithered Model and Chaos

In this chapter we extend the dynamical system model of the Σ-∆ modulator in Chapter

2 to include an i.i.d. dither signal, and discuss model formulation issues from this more

general perspective. The study of chaos is then extended to the case when such a dither is

applied to the system.

6.1 Dithered Model

When the dynamical system model of (1.2) is considered with dither incorporated, the

dynamical system (2.1) takes the general form

~xn+1 = F(~xn, xn, νn) ≡ fn(~xn) (6.1)

yn = Q(~xn, xn, νn) ≡ Qn(~xn),

for n ≥ 0, where

~xn = (rn−1, . . . , rn−N ; εn−1, . . . , εn−M) ∈ R
N × R

M ,

190
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xn ∈ R, νn ∈ R, yn ∈ (Z · ∆ + ∆/2),

fn : (RN × R
M) → (RN × R

M)

Qn : (RN × R
M) → (Z · ∆ + ∆/2), n ≥ 0,

with, in particular,

fε(1),n(~xn) = εn = Q(xn − rn + νn) − (xn − rn)

Qn(~xn) = Q(xn − rn + νn),

for n ≥ 0, and where the remaining notation and definitions from Chapter 2 are unchanged.

The dither νn, in addition to the input xn, is now removed as an independent variable and

incorporated into the functional form when forming fn and Qn from F and Q.

Error State Space:

From this, we find that the range of the error coordinate g1(~xn), n > 0, is now extended

from the interval (−∆/2, ∆/2] to the interval ID = (aL−∆/2, aR+∆/2], where the dither

νn lies in the interval [aL, aR] ∈ R. While the initial coordinates g(~x0) may be chosen to

remain bounded on (−∆/2, ∆/2] in practice, we extend their range in the formulation as

well, to maintain consistency in the generality of the dynamical system model, (e.g. to

allow flexibility in shifting the time step n). This situation raises the issue of what the

appropriate definition of the state space should be for g1(~xn) = εn−1 for the purpose of

studying the dynamics, at least for extending our chaos analysis. Clearly, we wish to define

a state space that will preserve the symmetry properties of the circle map as much as

possible, which represented (−∆/2, ∆/2] as a circle C for the range in the nondithered

case. The central aspect of this symmetry, relating to system (1.2), is the fact that g1(~xn)

on C is continuous as a function of the remaining coordinates of ~xn, and xn. Clearly this is

not the case with either ID as a subset of RN , or with the enlarged circle of circumference



CHAPTER 6. DITHERED MODEL AND CHAOS 192

aR − aL + ∆ formed by joining the ends of ID, for the dithered case (aR > aL generally

assumed).

Continuity can be obtained with the following two projections of ID onto C. First we

have the internal quantizer error qn = εn −νn on C, and second, the value of εn itself on C.

The latter is given from the circle map projection of a point x from R to its point modulo C
on C by P̂ C1 . Our dithered case state space should also have the property that the value of

g1(~xn) on the state space should be equivalent, if possible, to its usual value on C when the

dither νn is insufficient to shift it outside the interval (−∆/2, ∆/2]. Only the second of the

two continuity cases has this property. Therefore, from the point of view of our definitions

of chaos, we will choose the modulo value of g(~xn) on the Cartesian product of circles CM

as the sensible state space of definition. It is believed this approach will thus continue to

capture the essential dynamical properties of the error behaviour, while taking advantage

of symmetry to allow simplicity.

Analysis and Transformed Variables:

The immediate effect of adding a dither νp is to bring about a possible perturbation in

the value of the error εn, for n = p, by strictly integer multiples of ∆. From the circle map

projection used, it is obvious that such perturbations do not show up when considering the

projection of the error εp on C. Thus an immediate property of the state space that we are

considering for εn is the initial suppression of any randomizing effect of the dither on the

error. Under the coefficient condition (R), we will see that this result extends to all n ≥ p.

Our approach to analyzing the dithered form of system (1.2) for the Σ-∆ modulator is to

first transform (1.2), by a simple change of variables, into an equivalent system expressed

in terms of the value of εn on C (i.e. modulo C as defined above). To begin, we let

ε̆n = εn − mn∆, n ≥ −M , with mi = 0 for i = −1, . . . ,−M . For this, we define mn ∈ Z

such that mn∆ = Q(xn + νn − rn) − Q(xn − rn) so that ε̆n = Q(xn − rn) − (xn − rn),
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where εn = Q(xn + νn − rn) − (xn − rn), and n ≥ 0, from (1.2). Thus ε̆n is the value of

εn on C for our state space definition, and the mi are the displacement effects, in multiples

of ∆ caused by the dither νn. Substituting the ε̆i into the difference equation in (1.2), we

then find that we need to transform the ri to preserve the general form of this equation.

Specifically, we let r̆n = rn −
n∑

i=1

r̃imn−i∆ for n ≥ 1, with r̆n = rn for n = 0, . . . ,−N ,

where the r̃i are from coefficient condition (R). Substituting r̆n into the second quantizer

equation of (1.2), we then transform xn to preserve this equation form. Thus, we let

c̆n = xn −
n∑

i=1

r̃imn−i∆, n ≥ 1, c̆0 = x0.

The quantizer equation is now ε̆n = Q(c̆n−r̆n)−(c̆n−r̆n). Now the required state space ε̆n

is described by this transformed system which has the same form as the undithered (1.2).

Thus we may apply the analysis and results developed in Chapter 5 to this system to

arrive at chaos condition results for the equivalent dithered system under our state space

definition.

The first immediate result we have for the new state space dynamics concerns the case

when condition (R) holds. For this we have the following:

Theorem 6.1 Suppose the ai and bj satisfy condition (R). Then the value of the error

εn = g1 ◦ fn+1(~x0), n ≥ 0, on C is independent of the dither νn, n ≥ 0. Hence the presence

of a dither signal has no net effect on the internal dynamics on CM of the Σ-∆ modulator.

Proof:

With condition (R) holding, we have that c̆n = xn +Kn∆, where Kn ∈ Z, ∀ n ≥ 0. This

implies that Q(c̆n − r̆n)− (c̆n − r̆n) = Q(xn − r̆n)− (xn − r̆n), ∀ n ≥ 0. Thus system (1.2)

in the transformed variables is equivalent to (1.2) in the untransformed variables with the

dither νn set to zero. �
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This theorem demonstrates that, while a dither signal introduces a random element

to the dynamics of the Σ-∆ modulator, the structure of the effects of this randomness is

such that the randomness will be assimilated out of the error dynamics when condition

(R) holds. This is because, unlike the case of a random input from Chapter 5, the effects

here are only discrete value perturbations in the value of the quantizer level, and hence

perturbations in the gross error value εn by a integer multiple of ∆. Condition (R) thus

cancels out the net perturbation effects in the same manner as continuity (no interval

splitting) is assured as shown in Chapter 5. This type of property does not extend in

general to the projections of the initial error conditions g(~x0), on CM , unless the ai and

bj are all integers, however. For example, the error dynamics of g(~xn) on CM , for n ≥ 0,

when ~x0 = (ŷ, ẑ1) for some ŷ ∈ RN , ẑ1 ∈ RM , will generally be different from that when

~x0 = (ŷ, ẑ2), where ẑ2 = ẑ1 + (∆, . . . , ∆) ∈ RM , even though P̂ C(ẑ1) = P̂ C(ẑ2).

Switching System Formulation:

The fact that c̆n in the formulation above is dependent on the initial condition ~x0 limits

the applicability of this approach. To examine the more general case, when (R) may not

hold, we introduce the following formulation of the dithered system (1.2) as a switching

system:

εn =

max(N,M)∗
∑

k=1

(ak − bk)εn−k +
N∑

j=0

bj(yn−j − xn−j), (6.2)

for n ≥ max(N, M), where

yn = Q(xn + νn −
max(N,M)

∑

k=1

((ak − bk)εn−k + bk(yn−k − xn−k))), b0 ≡ 1,

for n ≥ max(N, M). These equations are obtained simply by eliminating the rn variables

from the equations of (1.2). This system then applies to the state space quantity g(~xn) ∈
CM , for n ≥ max(N, M). The initial state coordinates g1(~xmax(N,M)−k), for 0 ≤ k ≤
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max(N, M)∗ − 1, (max(N, M)∗ ≥ 1), along with the initial quantizations yk = Q(xk +

νk − rk), for max(N, M) − N ≤ k ≤ max(N, M) − 1, (N ≥ 1), are obtained by iterating

through system (1.2) in the usual fashion, from the initial condition ~x0. The nonlinear

part of the difference equation for εn is given by the vector (yn, . . . , yn−N). We identify the

subsystem “modes” to be the set of vectors of length N + 1, with entries integer multiples

of ∆/2, that this vector may equate to. The system switches to (or remains at) a particular

effective “input” mode given by this vector at iteration n according to the values of νn,

xn, εn−k, xn−j, yn−j, for k = 1, . . . , max(N, M)∗, j = 1, . . . , N , n ≥ max(N, M). If no

dither is present and the input is not random, the switching rule is deterministic, and

based on the current state of these quantities. If dither νn or random input xn is present,

there is then a stochastic as well as deterministic component to the switching rule. In a

more practical context, we would typically model the input as fixed, and only the dither as

random. Therefore the formulation (6.2) serves to distill the dynamical role of dither, as

the most meaningful stochastic element in the system, via a randomization of the switching

rule.

Whenever the switching rule, for any iteration n, is initial condition dependent (i.e.

dependent on ~x0) via the dependency of yn on the current state of the deterministic quan-

tities mentioned, the switching system formulation provides a meaningful and structurally

non-redundant conversion from one nonlinear system to a set of linear subsystems. This

is generally expected to hold for any system that is nonminimum phase, has expansive

NTF zeros, or has sufficiently random input or dither; where condition (R) does not hold.

When this dependence does not hold, the switching rule will depend only on the iteration

n, regardless of the orbit or initial condition, and the overall system reduces to a single

linear difference equation system for εn. More generally, and when condition (R) holds, this

dependence will disappear modulo ∆ (i.e. the only dependence will involve additive mul-
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tiples of ∆ on the RHS of the difference equation), since the system is continuous (linear)

except on one “boundary” in CM .

The switching system we have in (6.2) represents a formulation of the dynamical system

of (6.1) where the state space is given entirely in terms of the error coordinates εn. Strictly

speaking, the error coordinates constitute the part of the state space defined on continuously

on subregions of the circles C, while the output coordinates yn are the part defined on

discrete multiples of ∆/2, and are incorporated into the input structure. This serves to

emphasize how the external quantities of interest, the errors, may function as the essential

and sufficient states describing the dynamics of the Σ-∆ modulator system.

The extension to max(N, M)∗ dimensions is analogous to what we have with the interval

difference equation system (4.1), and gives perhaps a less consistent state space structure

then the M dimensions associated with g(~x0) used for our chaos definitions and analysis

(i.e. more/less restrictive if max(N, M)∗ > / < M); and one diluted by the form of

the bj coefficients of the rn. This formulation, however, may open up new methods for

confirming or advancing the Σ-∆ modulator dynamics studies in this thesis, beyond the

specific treatment of this and the previous chapter. Notice also that a linear combination

of the total or “shaped” errors yn − xn of the Σ-∆ modulator constitutes the “effective

input” in the difference equation for the unshaped error εn.
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6.2 Chaos with Dither

An obvious result when condition (R) holds, and a result for the more general case when

(R) may not hold, follow from the following proposition:

Proposition 6.2 1 Suppose there exists a dither νn for the system.

1. Then Theorems 5.19, 5.20, and 5.23 - 5.27 hold. Theorems 5.29 and 5.30 also hold,

with C and g replaced by R and P̂ C1 ◦ g respectively in the theorem statements.

2. Suppose also that the ai and bj satisfy condition (R). Then Theorems 5.8 - 5.18,

Corollary 5.13 and Proposition 5.16 also hold, with C and g replaced by R and P̂ C1 ◦ g

respectively in the statements of Theorems 5.15 and 5.18.

Proof:

1. The addition of dither νn in the switching system formulation (6.2) has the effect of

leading to an affine shift in the boundaries on the domain RN × CM of initial conditions at

which the system switches between given modes at a given iteration n. The proofs given

for Theorems 5.19 and 5.20, did not make any assumptions as to how such a switching rule

that preserves these (boundary) properties, and gives rise to discontinuities, is determined.

Therefore the approach of these proofs may be extended to the case when dither is present.

These theorems, and Theorems 5.29, 5.30, also place no explicit conditions on the form of

the external input c̆n in the dithered system (1.2) under the transformed variables. Thus

all of these theorems hold as required.

Considering Theorems 5.23 - 5.27 applied to the dithered (1.2) under the transformed

variables, we have c̆n = xn−
n∑

i=1

r̃imn−i∆, for n ≥ 1, c̆0 = x0. The term xn is statistically

1The footnotes to these results in Chapter 5, regarding chaos condition 3, will still hold as well.
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independent of
n∑

i=1

r̃imn−i∆ in c̆n. This implies that the upper/lower bound on the PDF

or PMF, as defined in the theorems, applied to c̆n, will be less/greater than that applied

to xn, and that the corresponding PDF or PMF forms will be the same. It follows that the

input c̆n satisfies the requirements of each of Theorems 5.23 - 5.27 whenever the input xn

satisfies these requirements.

The proofs of all these theorems may each be extended for the more general case when

~x0 ∈ R
N × R

M . These theorems thus hold as required.

2. Applying Theorem 6.1, we then have that these results hold for systems with ~x0 ∈
RN × CM . The proofs of these results may each be extended for the more general case

when ~x0 ∈ RN × RM . Thus we have the required result. �

Thus all the chaos results derived in Section 4.1 when condition (R) holds extend simply

to the more general case of the presence of some arbitrary dither. From Proposition 6.2,

this is true as well of many of the results derived more generally, with (R) not required,

where no external input restriction was imposed on the examples used in the proofs. The

density of periodic points result of Theorem 5.21 (requiring periodic input) is a notable

exception. When condition (R) does not hold, the addition of dither may well alter the

error dynamics of the Σ-∆ modulator, and this will generally be true when the probability

density of the dither signal is defined over the full interval (−∆/2, ∆/2]. The extension of

the initial condition domain of g(~x0) from CM to RM has no effect on the applicability of

the analogous chaos results, since this change has no net topological effect on the quantities

dealt with in the proofs of the results.

We now explore what the nature of the input c̆n may allow us to conclude about the

chaotic properties of the system when condition (R) does not hold. For this, we have the
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following results:

Theorem 6.3 2 Suppose the ai and bj do not satisfy condition (R). Suppose also that there

exists a dither νn for the system that is described by a piecewise continuous and nonzero

probability density function over the interval [ãL, ãR], where ãR − ãL > ∆. Then the system

has no periodic points and satisfies chaos condition 3 (density of periodic points) with

probability 1.

Proof:

Let t = min{k | r̃k ∋ Z, where the r̃k are from (R)}. Let hn(x|∗) denote a discrete

conditional PMF of P̂ C1(c̆n) over C, where c̆n = xn −
n∑

i=1

r̃imn−i∆, as defined earlier, and

n ≥ 0. For any values of xi, mj , i = 0, . . . , n, j = 0, . . . , n − t − 1, we have, with the

dither PDF of νn as given in the theorem, that mn−t takes on at least two values in Z with

nonzero probability, ∀ n ≥ t. Thus, with r̃t ∋ Z and r̃i ∈ Z, i = 1, . . . , t − 1, we have

that hn(x|xi, mj, i = 0, . . . , n, j = 0, . . . , n − t − 1) describes a discrete distribution over

C. Furthermore, ∃ K < 1 such that hn(x|xi, mj , i = 0, . . . , n, j = 0, . . . , n − t − 1) < K,

∀ x ∈ C, ∀ n ≥ t, since the area under the PDF of νn over an interval of length ∆ must

always be less than some value K < 1. It then follows that hn(x|xi, mj, i = 0, . . . , k,

j = 0, . . . , k − t − 1) < K, ∀ x ∈ C, k = 0, . . . , n − 1, n ≥ t. This implies that hn(x|c̆k,

k = 1, . . . , n − 1) < K, ∀ x ∈ C, n ≥ t. Thus the transformed input c̆n satisfies the

requirements of Theorem 5.23(a). We may then apply this theorem to obtain the result.

�

2Using the standard definition of density, this result will still hold. If existence of periodic points is

added to the density definition, then chaos condition 3 is satisfied with probability zero.
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Corollary 6.4 3 Suppose the conditions of Theorem 6.3 hold with ãR−ãL = ∆. Then, with

probability 1, the system both has no periodic points and satisfies chaos condition 3, if and

only if there is no periodic point x̂0 satisfying gi(x̂0) = P̂ C1(
ãR + ãL

2
) for i = 1, . . . , M .

Proof:

Suppose there exists a periodic point x̂0 satisfying ε−k = gk(x̂0) 6= P̂ C1(
ãR + ãL

2
), for

some k ∈ {1, . . . , M}. Then this implies that εm̂p−k = gk ◦ f m̂p(x̂0) 6= P̂ C1(
ãR + ãL

2
),

∀ m̂ ≥ 0, for some p ∈ Z+. It follows here that, with the dither PDF of νn as given in

the corollary, that mn−t (from the definition of c̆n) takes on at least two values in Z with

nonzero probability, when n = nm̂ = m̂p − k + t, ∀ m̂ ≥ Km, for some integer Km ≥ 0.

Following the proof of Theorem 6.3, with this infinite sequence {nm̂}, we may apply

Theorem 5.23(a) to obtain the conclusion that x̂0 is a periodic point with probability

zero. This contradicts the initial assumption. Therefore it is necessary to have gi(x̂0) =

P̂ C1(
ãR + ãL

2
), for i = 1, . . . , M , n = 0, for x̂0 to be a periodic point. If x̂0 is such a

periodic point, then x̂0 is an isolated periodic point and chaos condition 3 fails. Note that

if εk = P̂ C1(
ãR + ãL

2
), ∀ k ≥ −M , then mi = 0, ∀ i ≥ 0, so that x̂0 is a periodic point with

probability 1. �

Thus we see that for a piecewise continuous nonzero dither over an interval of length

greater than ∆, the random dither achieves the same effect as a persistent random input xn

of the form in Theorem 5.23 in terms of preventing periodic points from existing, when (R)

does not hold. Our transformation of the dithered system (1.2) by change of coordinates

makes the relationship between the randomizing effect of dither and that of a random input

3Using the standard definition of density, this result will still hold. If existence of periodic points is

added to the density definition, then chaos condition 3 is satisfied with probability zero, regardless of

whether the periodic point x̂0 exists or not.
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more explicit, by shifting the dither dependent terms from the quantizer Q to the input

c̆n. If the interval of the dither above is only of length ∆, such as an RPDF, then chaos

condition 3 holds as well, unless the input xn is chosen to force a periodic point at the one

value in CM for which the dither can have no effect on the subsequent dynamics, for n ≥ 0.

In this case, the periodic point is unique, and condition 3 fails.

To comment on this situation further, suppose x̂0 is a periodic point satisfying the

condition gi(x̂n) = P̂ C1(
ãR + ãL

2
), for i = 1, . . . , M , n = 0, and n ≥ n1, for some n1 > 0,

when no dither is present. If the dither of Corollary 6.4 is introduced, then we can say

that in general, x̂0 will remain a periodic point with probability 1 if n1 = 1, with some

probability p̂ with 0 ≤ p̂ ≤ 1 if n1 > 1, and with probability 0 if no such n1 exists. These

results follow from the methods of the proof of the Corollary 6.4. If the length of the

dither interval decreases further, then clearly condition 3 becomes harder to ensure, and

may remain only over certain sub-cases. This is to say, over a certain subset of CM , or for

certain forms of p(z), or certain forms of input xn, for example. Condition 3 may not hold

at all, or may always hold for some systems with some form of dither. Specific answers are

speculative, although the general consequences are clearer.

Theorems 5.24, 5.26 and 5.27 all require stricter conditions on the input c̆n to apply,

than those easily afforded by the dither dependent effects in c̆n. Thus we have no further

clear results on the contributions to chaos from the dither when (R) does not hold. It

seems reasonable to conjecture, however, that the addition of dither will drive some cases

of systems to satisfy sensitivity to initial conditions and/or topological transitivity that

did not satisfy some these conditions without dither, and that the prevalence of this would

increase with a longer interval of definition for the dither. This conjecture is of particular

value in the case of topological transitivity, where there is more room for this condition to

be met, and where, for nonminimum-phase systems, such a condition, with Theorems 5.19
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and 6.3, would bring about chaos.

Discontinuous Case:

We now briefly examine the dithered case when condition (R) does not hold, from the

perspective of considering the situation, as with the nondithered case, of what happens

when the application of Proposition 4.1 breaks down. In this case, the discussion follows

exactly that of the second paragraph in the beginning of Section 5.3, with one difference.

The error difference interval ∆εn on C for each subinterval is now interpreted not to contain

the point
∆

2
+ νn if k∆ ≤ νn ≤ (2k + 1)

∆

2
, and (2k + 1)

∆

2
+ νn if (2k + 1)

∆

2
≤ νn ≤

(2k + 2)
∆

2
, for k = 0, 1, . . . , except possibly at the endpoints. The reason is as follows.

With no dither, the normal point ∆/2 of error discontinuity occurs when the input to the

quantizer xn − rn crosses some multiple of ∆. With dither νn added, the input to the

quantizer xn−rn +νn crosses a multiple of ∆ when the predithered quantizer input xn−rn

crosses −νn. This effectively shifts the point of error discontinuity away from ∆/2 as given

in the expressions above. Proposition 4.1 then holds over these intervals. These dither

induced shifts are replicated in shifts in the switching rule thresholds for the switching

system formulation. The stochastic effects of dither, in general, appear to play a greater

role in randomizing the switching rules, than in randomizing the effective external input

c̆n.

From this discussion, we see that the effect of adding dither to systems where condition

(R) does not hold has the effect of creating a form of randomized perturbation of the dis-

continuities in the interval mappings, and of the locations of the error difference intervals

upon which the proposition holds for some n from above. Such behaviour provides addi-

tional support for the contention that dither may bring some non-topologically transitive

systems to transitivity (and chaos), particularly those with M zeros of magnitude between

1 and 2, for example.
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The natural state space on which the points of error discontinuity are shifted back to ∆/2

for all n in the dithered system is given by the internal quantizer error qn = εn − νn. If we

make a change of coordinates analogous to that done for ε̆n, we get c̆n = xn+νn−
n∑

i=1

r̃iνn−i,

for n ≥ 1, c̆0 = x0. For such an analogous form of the dithered system (1.2), c̆n will meet

the conditions of Theorem 5.23, and hence chaos condition 3 will hold, when any nonzero

dither exists. Theorems 5.24 and 5.26 may be applied as well when the dither interval is

greater than ∆ if (R) holds, and for a sufficiently wide interval otherwise, to give that qn

on CM is chaotic, if the zeros of p(z) are not all strictly minimum phase. Although the

symmetry given above, and the more clear cut chaos result make qn look like an appealing

state space for the dynamics, this is clearly not appropriate, since we have the onset of an

arbitrarily small interval for dither invoking chaos condition 3 in cases where such dither

has little or no effect on the actual dynamics of εn.

Error Dependencies on Dither:

To comment and compare further, we note that adding a dither νn always perturbs the

value of qn at the given value of n, while it never perturbs the value of ε̆n at the given n.

To consider the effects of previous dithers, we have the following result:

Proposition 6.5 The value of the error εn on C, and the internal quantizer error qn, at

a given n ≥ 0, are each independent of the previous dithers νk, 0 ≤ k ≤ n, if the ai and bj

satisfy condition (R). Moreover, if there exists a dither νn for the system that is described by

a piecewise continuous and nonzero probability density function over the interval [ãL, ãR],

where ãR − ãL > ∆, then these independence results will hold for some n ≥ K, with K > 0

sufficiently large, only if condition (R) is satisfied.
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Proof:

Suppose that condition (R) holds. From relationships stated earlier, we obtain qn =

ε̆n + mn∆ − νn = P̂ C1(ε̆n − νn), since qn ∈ C and mn ∈ Z. From Theorem 6.1 and the

i.i.d. dither form, we have that there is no dependence of ε̆n or νn upon the previous dither

values. Thus this result follows for qn as well.

Now suppose that condition (R) does not hold. Considering the transformed form

of (1.2), we have that the value of c̆n is dependent upon mn−l ∈ Z, while r̆n is independent

of mn−l, where l = min(k | r̃k ∋ Z), and n ≥ l. Thus the value of ε̆n is dependent upon

mn−l. From the form of the dither PDF, it follows that mn−l and ε̆n are dependent upon

νn−l. Applying the above relation for qn, it follows that qn is dependent upon νn−l. �

Thus the form of c̆n has enough structure to bring about the independence result for

either quantity when (R) holds. If the dither interval is ∆, as with the RPDF case for

example, then the necessity condition of (R) will clearly apply when fixed point orbits

having ε̆n = ∆/2, n ≥ l, are excluded. For shorter dither intervals or weaker dither

conditions, we expect the independence result to fail with at least as much generally for qn

as it will for ε̆n.

Summary:

In summary, we have with our defined state space, that most of the chaos results for

nondithered systems hold when an arbitrary dither is added, and that the dynamics are

unchanged if condition (R) holds. In addition, with the addition of sufficient dither, chaos

condition 3 holds, and conditions 2 and 1 are conjectured to hold in more cases than with

no dither, when (R) is not satisfied. This suggest that dither provides a moderate form of

randomization effect on the dynamics of the Σ-∆ modulator, similar to that of a certain

level of random input. Overall, we expect the addition of dither to induce more chaotic or
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near chaotic behaviour.

Under the conditions of Theorem 6.3, a classification of cases in terms of whether

conditions for chaos hold would take an equivalent form to that of the persistent random

input segment in Table 5.4 (the fourth table) presented at the beginning of Section 5.4.



Chapter 7

Stochastically Modelled Dynamics

In this chapter, we study the long run error state space dynamics of the Σ-∆ modulator from

the point of view of characterizing this behaviour as a stochastic or random process. This

approach is partly inspired by consideration of the randomizing effects that are explicitly

introduced when dither is added. In particular, with the theorems to follow, we present here

the beginnings of a general theory to address the question of how desirable control of the

error variance level may be achieved for the Σ-∆ modulator with RPDF dither — a question

which will be dealt with in Chapter 8. In this theory, uniformity in the distribution of long

run error behaviour is the underlying principle. Statistical and dynamical implications

associated with this will be considered as we proceed. First, we present and discuss the

theoretical background for how to characterize the error dynamics as a random process.

7.1 Background and Approach

For the subsequent work in this chapter, we focus on the error value εn that arises in the

Σ-∆ modulator as a random variable. If the value of n is specified, and the values of the

206
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external input xi and initial condition ~x0 are fixed and known for 0 ≤ i ≤ n, and no dither

is present, then the corresponding value of εn will be known and deterministic with no

random uncertainty. If a dither is present under these conditions, and condition (R) holds,

then the value of εn on C would still be known, as noted earlier. If the external input

(xi for some 0 ≤ i ≤ n) or initial condition is statistically random with some probability

distribution, or if appropriately sufficient dither relative to the system is present, then εn

will be (in general) statistically random with some probability distribution (i.e. with some

PDF/PMF) for the specified value of n. For the rest of Chapter 7 and 8, we will use the

term “probability density function/PDF” to refer to either a PDF or PMF, and distinguish

the two cases, when necessary, with the adjective “continuous/discrete”.

For a system with any characterization of input, dither or initial condition, the phe-

nomenon that is often of practical interest is the long run or steady state behaviour of εn.

This means the behaviour of εn following an arbitrarily or at least sufficiently large number

of iterations of n following the initial n = 0. This is useful because it represents the steady

state behaviour of εn that would normally be the prevalent condition during a period of

observation and use of the Σ-∆ modulator. This would typically be long enough after

initialization for any transient aspects of the error dynamics to be negligible, for example.

Mathematically, for a system with any form of xn, ~x0 and dither νn, we may regard the

steady state of εn as a random variable. For this definition, we take this random variable

to be the quantity εn where n is some arbitrary unknown integer greater than 0.

To proceed with an analysis of the steady state as a random variable, and for sub-

sequent work, we need to introduce the concept of convergence of a sequence of random

variables. The random variable X̄ with PDF h̄(~x) may be defined to be the limit of a

sequence of random variables Xi with PDFs hi(~x), if h̄(~x) is the limiting PDF in pointwise

convergence of the sequence of PDFs hi(~x) when such a limit h̄(~x) exists. This is called
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convergence in distribution. Stronger forms of convergence exist but will not be considered

here. Convergence in distribution is normally applied to a sequence of discrete/continuous

random variables converging to a discrete/continuous random variable with the appropriate

respective PDF definition. For our purposes, we will consider a more general definition of

convergence in distribution given as follows:

Definition 7.1 (Convergence in Distribution) Let Xi, i ≥ 1, be a sequence of random

variables defined over a set U ⊆ RN × CM . Let X̄ be a unique and well defined random

variable over U . Then the sequence Xi is defined to converge (in distribution) to the random

variable X̄ if, for any Borel set V ⊆ U , we have lim
i→∞

Prob(Xi ∈ V ) = Prob(X̄ ∈ V ) ∈
[0, 1].

This definition is stronger than the usual one for convergence in distribution. The require-

ment that V be a Borel set is necessary for this definition to yield the PDF interpretation

mentioned above. (normal sets of consideration have this property.) In subsequent work,

we shall describe the PDFs hi(~x) as converging to the PDF h̄(~x) when the sequence Xi

converges to X̄ by the definition above, and vice versa.

There is no obvious unique way to precisely define the steady state random variable, as

we have conceived it, in the broad context of a general random process. One approach is

to look at limiting distributions of random variables, each involving a finite set of random

variables {Xi} for i = 0, . . . , k, for some k ≥ 0, and then to consider average distributions.

This approach, and the associated Definitions 7.2 and 7.4, are specially constructed to

integrate and apply to the work and goals of this thesis. We define the first average to

be the limiting distribution or stable distribution X̄(1) = lim
n→∞

Xn, if it exists, where Xn

is the random variable with n specified, and the set {Xn, n ≥ 0} constitutes the random

process. The second average is defined be the random variable X̄(2) = lim
n→∞

Xpn(2), if it
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exists, where Xpn(2) is a random variable and pn(2) is chosen, with equal probability, from

among the integers in the set {0, . . . , n}, with n specified. The PDF of X̄(2) corresponds

essentially to the function that a convergent histogram tends to as the sample sequence

taken from the respective random variables X0, X1, . . ., goes to infinity (see discussion of

time series analysis in Section 7.3). If Xn represents the error εn, such samples would

represent observations from simulation or realizations. In general, the mth average with

m > 1 is defined as the random variable X̄(m) = lim
n→∞

Xpn(m), if it exists, where Xpn(m)

is the random variable for the value found by choosing, with equal probability, from one

of the distributions in the set {Xpi(m−1)}, with i = 0, . . . , n, with n specified. Note that

pi(1) = i, and pi(m) is itself a discrete random variable for m > 1 here. These descriptions

lead to the following formal definition:

Definition 7.2 (Average Distributions) Let X(1),k, k ≥ 1, be a sequence of random

variables defined over a set U ⊆ RN × CM , with PDFs h(1),k(~x). The first average dis-

tribution is given by X̄(1) = lim
k→∞

X(1),k, if this limit exists. Let X(m+1),k be the random

variable with PDF given by h(m+1),k(~x) ≡ 1

k

k∑

i=1

h(m),i(~x), for k ≥ 1, m ≥ 1. Then the

“m + 1”th average distribution is given by X̄(m+1) = lim
k→∞

X(m+1),k, if this limit exists.

Lemma 7.3 If the mth average distribution of a sequence of random variables Xi, i ≥ 1,

exists for some m ≥ 1, then the kth-average of the sequence of Xi will exist and will equal

the mth average, for any k > m.

Proof:

We extend the notation to Xi. The random variable X̄(m+1) given by the limit is

unchanged if Xpn(m+1), n ≥ n1, arises from choosing with respect to the set {Xpi(m)}, with

i = n1, . . . , n, for some n1 ≥ 0. This is because the effect of the contribution of the elements
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with i < n1 will go to zero as n → ∞. Now if we let n1 → ∞, the elements in the set

{Xpi(m)} will tend to X̄(m) uniformly. Thus X̄(m+1) = X̄(m). By induction, we then get the

result. �

From these definitions, it is clear, with the lemma above, that if a given average distribu-

tion exists, then all higher averages will exist and have the same distribution. Furthermore,

any such average that exists will satisfy our definition of what a steady state distribution

for Xn should be. This is fairly obvious for the first and second averages. Consider the

following example that illustrates this for the third average. Let the values of Xi be defined

by 0 if 22k − 1 ≤ i ≤ 22k+1 − 2, and by 1 if 22k+1 − 1 ≤ i ≤ 22k+2 − 2, for k ≥ 0. The first-

average limit for this Xn jumps between sequences of 0s and 1s and does not converge. The

second-average limit will oscillate between Prob(0) =
1

3
, Prob(1) =

2

3
, and Prob(0) =

2

3
,

Prob(1) =
1

3
, every 2k iterations as k → ∞, but does not converge. Thus a sample his-

togram will not converge to a steady state PDF profile. The third-average limit converges

to Prob(0) = Prob(1) =
1

2
. Thus we see that an inherent steady state distribution in the

sense of how we defined it exists for this Xn, but requires the third average distribution to

uncover it from the pattern of the Xi.

In light of these average distribution properties, we will formally define the steady state

of Xn to be the random variable of the mth average distribution defined above, if such an

average exists for some m ≥ 1:

Definition 7.4 (Steady State) Suppose the mth average distribution X̄(m) of a sequence

of random variables Xi, i ≥ 1, exists for some m ≥ 1. Then the steady state random

variable of the sequence of Xi is uniquely defined to be X̄(m).

We use the word “average” in average distribution because the mth average PDF is es-

sentially the average of the PDFs of the set of {Xpi(m−1)}, with i = 0, . . . , n, as n → ∞,
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as follows from the definitions. A valid steady state Xn in our conception should always

exist. We will not be concerned about a specific mathematical description if no average

distribution exists for any m ≥ 1, because we have no clear way to mathematically define

this or its existence, although the subsequent use of the concept of a steady state Xn (or

error εn) in this thesis would apply to any such form.

Clearly the first average will not yield a steady state εn if the quantizer system is

deterministic unless εn happens to converge to a fixed value. Thus we expect the second

average to be significantly more likely to converge to a steady state εn. Higher averages

require more effort to determine and are less likely to reveal a steady state that is not

already present in the second average, since these cases are less generic. Thus, for practical

purposes, the second average distribution should generally be considered the most useful

means for uncovering a steady state εn, and could serve as a more generic, though more

restrictive definition of what we mean by steady state εn. In this thesis, we utilize some of

these second-average advantages.

Under some cases of a particular arbitrary or chosen input and initial conditions, it may

not be possible to physically establish the notion of a steady state error εn. This would

correspond mathematically to the case where no steady state distribution of εn exists, or at

least the case where no average distribution exists. Observations and simulations of Σ-∆

behaviour show that an effective steady state statistical behaviour of the error εn, for all

practical purposes, commonly exists. This concept therefore forms a useful framework with

which to analyze Σ-∆ behaviour and performance. We will conjecture that a steady state

probability distribution for εn will generally exist for any initial condition ~x0, if the input

xn is either periodic, or random with some given PDF that is independent and periodic in

n. Here it is assumed that the fixed structure of such an input will tend to bring about a

fixed structure in the long term behaviour of εn in the form of a steady state distribution.
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Such inputs are also more characteristic of those used in simulation to study steady state

behaviour.

Statistical studies of Σ-∆ modulators in previous research has generally not dealt with

the definition or specific concept of the steady state distribution of Σ-∆ modulator quan-

tities. In such work, e.g. [63] by Wannamaker and Lipshitz, the analysis of particular

statistical quantities of interest, such as error moments, has been done directly, without

considering general random variable convergence issues. For this, the assumption of station-

ary processes provides sufficient steady state criteria to define and analyze the moments

of the stochastic processes of interest. If assumptions of ergodicity are also made, then

time series averages over a single simulation may be used to form estimators of moments

associated with an ensemble of simulations at a given iteration point. More generally, the

existence of a power spectrum implicitly assumes the existence of steady state properties

for the data correlations. In this thesis, the study of Σ-∆ modulator random variables will

be approached from the steady state perspective outlined above.

To continue, we outline several properties of the steady state distribution concept. From

the definition of the random variable, it follows that the PDF of the steady state Xn as the

mth average distribution may be expressed by hS(~x) = lim
n→∞

1

n

n∑

i=0

hi(~x), if this converges

to a function hS(~x) defined over the same domain as the hi(~x). Here, the hi(x) are the

PDFs of the random variables Xpi(m−1), i ≥ 0, defined earlier, and m > 1. This result

generalizes for our general convergence definition.

PDF Mapping Properties:

Now suppose the random variable Xn ≡ ~xn, for all n ≥ 0, from (2.1), with PDF hn(~x)

over RN × CM . We denote the mapping of h0(~x) to hn(~x) by hn(~x) = fn(h0(~x)). If

the input xn is not random (i.e. fixed), and no dither νn is present, then this mapping
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is defined by hn(x̂) = αn

nq∑

i=1

h0(qi), x̂ ∈ R
N × CM , where the qi are the nq points in

RN × CM satisfying fn(qi) = x̂ if nq > 0, and hn(x̂) = 0 if nq = 0, for n ≥ 0. We also

set αn = 1 if h0(~x) is discrete, and αn = lim
r→∞

V (Br × CM)

V (fn
E(Br × CM))

if h0(~x) is continuous.

Here Br is denotes a ball of radius r about 0 in RN . The mapping fn
E in the denominator

denotes the mapped region from fn, without reduction due to overlapping on CM (i.e. as

an extended mapping on RN × RM that is one-to-one from CM to RM). V (∗) denotes the

volume of the region in its argument. Thus αn is a scaling normalization parameter in the

continuous PDF case, to account for the scaling in the relative PDF values as the volume

of its domain changes. Note also that from the properties of (2.1), well defined piecewise

continuous PDFs will be mapped by fn to well defined piecewise continuous PDFs. The

mapping definition above will hold, more generally, if the input xn is independent of the

initial condition ~x0, and the dither is i.i.d., since this allows a fixed realization interpretation

of these quantities relative to X0.

Suppose the system input is constant so that xn = c for all n ≥ 0. Then each mapping

fi from the system (2.1) is equivalent so that fi ≡ f̃ , i ≥ 0. If hi(~x) are the PDFs

for the respective random variables ~xi, it follows that f̃(hi(~x)) = hi+1(~x), for i ≥ 0.

Suppose also that the steady state hS(~x) exists at the second average. Using these facts, the

summation formula above, and the associative property for adding the PDF contributions

from mappings of PDF domains, one can arrive at the result f̃(hS(~x)) = hS(~x). This is

deduced as follows:

f̃(hS(~x)) = f̃( lim
n→∞

1

n

n∑

i=0

hi(~x)) = lim
n→∞

1

n

n∑

i=0

f̃(hi(~x)) = lim
n→∞

1

n

n∑

i=0

hi+1(~x) = hS(~x).

We believe this holds regardless of the domain of hS(~x). This says that, if we regard the

dynamical system (2.1), with the given constraints, as a functional that maps the function

space of classes of PDFs with domain RN × CM to itself, then the PDF of the steady state
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~xn, if it exists in the second average, is a fixed point of the mapping. A PDF h(~x) over

R
N × CM is defined to be a fixed point in general if f̃n(h(~x)) = h(~x) holds for all n ≥ 0.

This consequence is consistent with standard functional analysis results.

The easiest and most standard piecewise continuous fixed point PDF to imagine is the

uniform PDF over the bounded coordinate space of definition. If a piecewise continuous

fixed point of some other form exists, and it is well behaved in the sense of having a finite

number of maxima and minima over CM , then this would imply that the orbit of g(~x0),

for any initial condition, would lie in a finite element subset of CM if f̃ is one-to-one. This

is rather special dynamical behaviour. Clearly a fixed point ĥ(~x) is a necessary but not

sufficient condition for a steady state ~xn PDF to exist (having PDF ĥ) in the second average,

when the input xn is constant. If the input xn of (2.1) is not constant, then the fi are not

all constant, and it is more difficult to interpret (2.1) as a simple mapping functional with

simple properties. In general, we would not expect the steady state ~xn PDF, if it exists, to

be a fixed point of such a system with arbitrary initial condition ~x0. Of course if a fixed

point PDF is used to characterize the initial conditions randomly, then it is also the steady

state PDF in this case.

The steady state distribution for εn over C, in general, is given by the marginal distri-

bution gM(XS) of the steady state distribution XS of ~xn over RN × CM . This follows, for

M > 1, because gM(~xn), the earliest mapping iterate, is the independent random variable,

and gi(~xn), i = 1, . . . , M − 1, are dependent random variables upon this as later iterates.

It follows directly that if the fixed point PDF is also the steady state ~xn PDF, then the

steady state PDF over C for εn is the marginal distribution of any of the M εi coordinates

associated with the steady state ~xn PDF over R
N × CM . Hence this ~xn PDF must be

symmetric in its εi coordinates.

Extensions of the definitions, formulations and discussion about PDF mapping prop-
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erties above may be analogously developed for the consideration of the random variable

Xn ≡ ~xn, for all n ≥ 0, from (6.1), with PDF hn(~x) over R
N ×R

M ; as arises from the more

general dithered model formally introduced in Section 6.1. Even for a system with some

general dither added, it is relevant and useful however to consider the random variable

Xn ≡ ~xn for the value of ~xn on RN × CM , that is with the “value” of the g(~xn) part of ~xn

corresponding to the projection of its actual value (on RM) onto CM . This projection is

given by P̂ C(x), and the PDF for this ~xn value is then defined over RN × CM . This random

variable definition is consistent with the state space definition on CM for the analysis of

chaos in Section 6.2. It also provides a formulation that allows for broad results in the next

section to be derived — results that in turn may be used to answer statistical questions for

dithered systems in Chapter 8.

Now the subsequent theorems and results of this chapter may be presented and dis-

cussed.

7.2 Uniform Steady State Results

All of the theoretical results in this section will be concerned with establishing conditions

under which the steady state error state space dynamics of (εn−1, . . . , εn−q) projected on

Cq, with 1 ≤ q ≤ M , are described by a uniform probability distribution over Cq (generally

q = M or q = 1). The results will basically apply to systems satisfying condition (R)

which, from Chapter 6, have dithered and nondithered dynamics that are equivalent on Cq.

Only Propositions 7.9, 7.12 and 7.15, apply more generally. Thus, for the most part, the

nondithered dynamical systems model (2.1) in Chapter 2 will be the formulation applied.

Application of continuity relationships from Chapter 4, and their derived implications, will

also follow in this context.
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Theorem 7.5 Suppose the ai and bj satisfy condition (R). Suppose also that p(z) has at

least M zeros, where each zero has either magnitude greater than 1, or else magnitude equal

to 1 with multiplicity greater than 1 [counted (multiplicity − 1) times]. Suppose further that

either

(a) the initial condition ~x0 is such that g(~x0) is random and described by a piecewise

continuous marginal PDF over RM ; or

(b) there exists an input xn1+k, k = 0, . . . , M−1, that is random and (xn1 , . . . , xn1+M−1)

is described by a piecewise continuous PDF over RM , for some n1 ≥ 0;

where xn is independent of ~x0, for n ≥ 0, in (a), and (xn1 , . . . , xn1+M−1), for n ≥ n1+M ,

in (b). Then the PDF of the long run steady state behaviour of g(~xn) will be uniformly

distributed over CM in the first average distribution.

Proof:

To begin, if a dither νn is present, we simply drop the dither from the system. The

error and state space dynamics of the undithered system will correspond to the respective

dynamics of the dithered system on C and CM , by Theorem 6.1. We follow the notation

of the proof of Theorem 5.9.

Suppose condition (b) holds. Then, without loss of generality, we relable the state

~xn1+M+k as ~xk, and the input xn1+M+k as xk, ∀ k ≥ 0. From the properties of the mapping

f , the new g(~x0) will be random and satisfy condition (a). Moreover, the long run steady

state behaviour of the new shifted system will be equivalent to that of the original system,

since the first n1 + M states in the orbit (of the original system) are finite in number and

can be neglected.

Now for the rest of the proof, we suppose condition (a) holds. Choose an x̂0 ∈ RN × CM ,

and some neighbourhood Ñx of x̂0 as given in Lemma 4.10. We define
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D̃ = {~y0 ∈ Ñx | ~y0 − x̂0 = ∆~x0 has the form ∆~x0 = (∆ε−1, . . . , ∆ε−N ; ∆ε−1, . . . , ∆ε−M),

and ~αq̃ = 0},
and choose a ~y0 ∈ D̃. We apply the matrix notation given at the end of Chapter 4. Let

q = M . We choose (∆εi)
T
q̃ = [R0q̃] · [R0q]

−1(∆εi)
T
q , for the first q given initial conditions

(∆εi)
T
q . We denote the projection onto Cq by g(q)(∗) = (g1(∗), . . . , gq(∗)). With the proof

of Lemma 4.10, we now have that g(q)(D̃) covers a full Cq dimensional set in RN × CM .

Let ∆Vx̂0 ∈ D̃ be some small rectangular volume element in RN × CM (of dimension

q), with vertices given by x̂0 and ~y0,i, for such choices of ~y0,i ∈ D̃, which may then be

constructed. We have that g(q)(∆Vx̂0) is a small convex volume element in Cq. Now define

the mapping F n : D̃ → RN × CM by F n(~αq) = [Rnq]~αq, for the ~αq of D̃. We have,

from the nature of the q zeros and (2.3), the following. The magnitude of the projection

on each coordinate axis for each side of the rectangle mapping g(q) ◦ F n(∆Vx̂0) will go to

infinity, and thus each side length of g(q) ◦ F n(∆Vx̂0) will go to infinity, as n → ∞. Since

each of the q zeros of p(z) and its eigendirection is expansive, this expansion will scale

in a manner so that the volume g(q) ◦ F n(∆Vx̂0) will go to infinity as n → ∞, with the

components of this expansion on Cq wrapping around Cq continuously. With the continuity

implications arising from condition (R) via Theorem 4.4 and Theorem 4.5, Corollary 4.6

and Proposition 4.7, we have that g(q) ◦fn(∆Vx̂0) will be this “wrapping” of g(q) ◦F n(∆Vx̂0)

about Cq (i.e. its projection). With this, and the continuity of the mapping fn, we have the

following. For any point p̂ ∈ Cq, there exists, for a sufficiently large n1, a point ẑ0 ∈ ∆Vx̂0 ,

such that g(q) ◦ fn1(ẑ0) = p̂. This follows from the proof of Theorem 5.9 as well.

For the subsequent treatment, we shall extend the boundaries of the neighbourhood

D̃ ∈ R
N+M so that it constitutes this full domain, where g(q)(D̃) = Cq. Now we want to

characterize the set of points ~y0 ∈ D̃ such that g(q) ◦fk(~y0) = p̂, for any point p̂ ∈ Cq, and

any k > 0. From the method of the proof of Theorem 5.9, we define v(k)i = p̂−gi◦fk(x̂0),
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for i = 1, . . . , q. We then solve the equation

(v(k)i)
T
q + (mi∆)T

q = [Rkq][R0q]
−1(∆εi)

T
q , for (∆εi)

T
q ∈ Cq,

where (mi∆)T
q is a vector with entries that are some integer multiples mi of ∆. This

equation has the solution

(∆εi)
T
q = [R0q][Rkq]

−1(v(k)i)
T
q + [R0q][Rkq]

−1(mi∆)T
q .

The second term is a linear combination of integer multiples of vectors that span Rq. From

the nature of the q nonminimum-phase zeros of p(z), and the resulting form of [Rkq], each

of these vectors will go to zero in magnitude as k → ∞. We may choose the q integers

mi in any manner such that the elements of the solution vector (∆εi)
T
q are in the interval

(−∆/2, ∆/2]. From these results, it is clear that the solutions for (∆εi)
T
q , and hence

g(q)(~y0) = g(q)(x̂0) + (∆εi)q, will be uniformly distributed in a grid structure throughout

Cq; with the number of such solutions being roughly of order |µ̃|k, for k ≥ 0, where |µ̃| is

the product of the magnitudes of the q nonminimum-phase zeros.

Let X0 be a random variable defined over RN × CM , such that the marginal distribution

of g(q)(X0) is piecewise continuous as defined over Cq. Now suppose that h(~x) is a piecewise

continuous probability density function defined over Cq of the (marginal) random variable

g(q)(X0). We set

(εi)
T
q̃ = [R0q̃] · [R0q]

−1(εi)
T
q + (di)

T
q̃ , (ri)

T
q = (εi)

T
q̃ + (ei)

T
q ,

(ri)
T
q̃ = [R0q̃] · [R0q]

−1(εi)
T
q + (ei)

T
q̃ ,

for the components of X0, where (di)
T
q̃ ∈ Ĉ q̃

(a set) ∼= C q̃ and (ei)
T ∈ RN are arbitrary and

fixed. Thus

(∆εi)
T
q̃ = [R0q̃] · [R0q]

−1(∆εi)
T
q , (∆ri)

T = (∆εi)
T ;
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and we can use F n(~αq), with some arbitrary x̂0 = ((ei), ~0, (di)q̃), to describe the mappings

of the domain of the conditional PDF of g(q)(X0), given this x̂0, denoted h(~x|x̂0). From

the piecewise continuity of h(~x), it follows that h(~x|x̂0) must be piecewise continuous over

Cq, for any (di)
T
q̃ , (ei)

T in a set S, and hence any x̂0 in a corresponding set Ŝ satisfying

Prob(x̂0 ∈ Ŝ) = 1.

We define the mapping fn(h(~x|x̂0)) to be the PDF of the random variable g(q) ◦
fn(X0|x̂0), for n ≥ 0, with a fixed realization of the input xn assumed as follows from

(c). Thus, for some q̂ ∈ Cq, fn(h(q̂|x̂0)) = αn

nq∑

j=1

h(qj |x̂0), where the qj are the nq points

in Cq satisfying g(q) ◦ fn(X0|x̂0) = q̂, and g(q)(X0|x̂0) = qj , for n ≥ 0, j = 1, . . . , nq; and

fn(h(q̂)) = 0, if nq = 0. We define the scaling renormalization αn by αn =
V (D̃)

V (F n(D̃))
,

using the notation defined earlier.

From the linear structure of the mapping f , the discussion about volume elements above,

and the characterization of points ~y0 with mappings on Cq to a point p̂ given above; it can

be concluded that ∀ n ≥ 0, the region Cq can be partitioned into a uniform grid of nq(n)

q dimensional convex volume elements ∆Vj, with ~αq̃ = 0, such that g(q) ◦ fn(∆Vj) = Cq,

and each ∆Vj contains a point qj . As n → ∞, we have nq(n) → ∞, and the volume of

these elements ∆Vj will go to zero. Thus the uniformly distributed points qj on Cq become

dense as n → ∞. Let np be the largest integer such that nq
p ≤ nq. Then, from the uniform

grid structure, we may assume that
1

(np + 1)q
≤ αn ≤ 1

nq
p
. This gives lim

n→∞
αnnq(n) = 1.

From the summation formula above, these results imply that, for any q̂ ∈ Cq, the value of

fn(h(q̂|x̂0)) approaches the average value of the function fn(h(~x|x̂0)) over Cq, as n → ∞.

Thus lim
n→∞

fn(h(q̂|x̂0)) =
1

∆q
. Thus we conclude that the mapping by the system (2.1) of

h(~x|x̂0) converges to the uniform distribution over Cq as the number of successive mappings

goes to infinity, for any choice of such x̂0 (i.e. any choice of (di)
T
q̃ ∈ Ĉ q̃

, (ei)
T ∈ RN).

Since this conditional PDF convergence result holds ∀ x̂0 ∈ Ŝ, we thus have that it holds
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equivalently for the marginal PDF h(~x). Since this result holds for any realization of the

input xn, it will thus hold for any random input satisfying the theorem conditions. Thus

we have the required result when the PDF of g(~x0) is strictly defined over CM .

Now suppose that the PDF of g(~x0) is defined over RM . We partition a minimal domain

in RM over which the PDF of g(~x0) is defined, into a uniform grid defined by the union of

simply connected sets Ci ∈ RM satisfying the following: P̂ C(Ci) = CM , ∀ i; Ci ∩ Cj = ∅,
∀ i 6= j; Prob(g(~x0) ∈ Ci) = p̃i > 0, ∀ i; and Prob(g(~x0) ∈

⋃

i

Ci) = 1. From (1.2),

the dynamics of g(~xn) for g(~x0) ∈ Cl will be equivalent to the dynamics of g(~yn) for

g(~y0) = P̂ C(g(~x0)) ∈ CM , (where ~x0 and ~y0 have the same ri values), with the first M input

values of xn in the system shifted to account for the translation of CM to Cl. With g(~x0)

satisfying (a) over Cl, and the input shift having no effect on maintaining the requirements,

it then follows from applying the proof above, that we have the required result conditionally

when g(~x0) ∈ Cl. Since Cl was chosen arbitrarily, it follows that the required result holds

when g(~x0) is defined over RM . �

Corollary 7.6 Suppose the conditions of Theorem 7.5 are satisfied for at least one zero of

p(z), and that (c) with either (a) or (b) hold, where g(~x0) in (a) and (xn1 , . . . , xn1+M−1)

in (b) may be described by a piecewise continuous marginal PDF over some L dimensional

manifold of CM , with 1 ≤ L ≤ M , L ∈ Z+. Then the PDF of the long run steady state

behaviour of the system error εn will be uniformly distributed over C in the first average

distribution.

Proof:

Without loss of generality, we relable the state ~xM as ~x0, and the input xk+M as xk, ∀
k ≥ 0. From the properties of the mapping f , the new g1(~x0) will be random and satisfy
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condition (a). The rest of the proof then follows that of the proof of Theorem 7.5, with

q = 1. �

Theorem 7.7 Suppose the ai and bj satisfy condition (R), and that the conditions on the

zeros of p(z) given in Theorem 7.5 hold. Suppose also that the input xn is either periodic,

or is random and described by the random variables Xxn for each xn respectively, where

the Xxn are independent (jointly over all sets) and periodic in n. Suppose further that the

initial condition ~x0 ∈ RN × RM satisfies Prob( lim
t→∞

P̃t

t
= 0) = 1, for all P̃ , where

(i) P̃t is defined to be the number of elements of a set defined by {k | g ◦ fk(~x0) ∈ P̃

for some k ∈ {0, 1, . . . , t}}, for the nondithered system; and

(ii) P̃ is any set contained in CM for which there is no closed set P̃M ⊂ CM of dimension

M such that P̃M ⊂ P̃ .

Then the PDF of the long run steady state behaviour of g(~xn) will be uniformly dis-

tributed over CM .

Proof:

To begin, if a dither νn is present, we simply drop the dither from the system. The

error and state space dynamics of the undithered system will correspond to the respective

dynamics of the dithered system on C and CM , by Theorem 6.1.

The system with g(~x0) ∈ RM may be adjusted to an equivalent system with g(~x0)

shifted to P̂ C(g(~x0)) in ~x0, and the values of xi, i = 0, . . . , M − 1 shifted by an associated

amount. This has no effect on the long run behaviour of ~xn, and thus, without loss of

generality, we simply take x0 ∈ RN × CM for the proof that follows.

Suppose that the input xn, or the input random variable Xxn is periodic with period

p. We let q = M , and use g(q) as defined in the proof of Theorem 7.5. We also denote
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the marginal random variable over Cq, of a random variable X over RN × CM , by g(q)(X).

For the orbit of system (2.1) with the given initial condition ~x0, we define Xn,i to be the

random variable corresponding to a sample in RN × CM from the set {~xmp+i, 0 ≤ m ≤ n},
with i = 0, . . . , p − 1, and where each element is selected with equal probability.

Then we now have the following conditions on the behaviour of Xn,i, as n → ∞.

From the condition on ~x0 with (i) and (ii), it follows that no submanifold set in Cq,

with a q dimensional volume of zero, may support a nonzero probability that g(q)(Xn,i)

on Cq will take on a value in the set. This also means that g(q)(Xn,i) must not take

on a value in Cq with nonzero probability. These results imply that the steady state error

coordinate of g(q)(~xmp+i), m arbitrary, if it exists via the second average with lim
n→∞

g(q)(Xn,i),

has a probability density function that we may define as piecewise continuous over Cq.

These results also imply, analogously, that the PDF of the random variable g(q)(Xn,i) will

increasingly tend towards a piecewise continuous PDF as n → ∞; that is lim
n→∞

(g(q)(Xn,i)−
Yn,i) = 0, for some sequence of random variables {Yk,i, k ≥ 0} ∈ SYi

, where SYi
is defined

to be a set of random variables with piecewise continuous PDFs defined over Cq. We

form SYi
as a set of elements with PDFs having a given bound Ki > 0, as allowed by the

following: the converse (of such an allowance) necessarily implies the existence of some

sequence {nj}, with nj+1 > nj , j > 0, such that the PDF of g(q)(Xnj ,i) becomes unbounded

as j → ∞. This is not possible with the condition on ~x0 holding.

Now we show that the first average distribution Z̄(1), (i.e. the limiting distribution),

of the sequence Z(1),m,i = g(q) ◦ f̂mp+i( lim
k→∞

Xk,i), m ≥ 0, converges to a random variable

Ȳ(1) which is uniform, and that lim
n→∞

g(q)(Xn,i) = Ȳ(1). For this, we define the mapping

f̂mp+i ≡ f(m+1)p+i−1 ◦ . . . ◦ fi, for i = 0, . . . , p − 1. We may extend the set SYi
to a set of

random variables S̃Yi
defined over RN × CM , such that SYi

= g(q)(S̃Yi
). This is sufficient to

represent the convergent nature of Xn,i: we have again that lim
n→∞

g(q)(Xn,i) converges to SYi
.
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Now consider the value of g(~xm1p+i) in this system for some arbitrary, unknown m1 ≥ 0.

From our conception of a steady state distribution, we say that the random behaviour

of g(~xm1p+i) is characterized by SYi
, meaning that the notion of a steady state PDF for

g(~xm1p+i) is constituted randomly from a PDF defined over the function space of PDFs

corresponding to elements of SYi
. Therefore we are justified to form average distributions

from SYi
to try to converge the domain (given by this space of PDFs) to a unique PDF

defined over Cq, existing with probability 1.

We find that the first average distribution Ȳ(1) of the sequence Y(1),m,i = g(q) ◦ f̂mp+i(Y ),

m ≥ 0, is a random variable with the uniform distribution over Cq, ∀ Y ∈ S̃Yi
. This

follows from applying Theorem 7.5 on the set S̃Yi
. Part (c) of this theorem is satisfied via

the independent form of the input xn and Xxn here. This convergence is uniform over all

elements of SYi
, since the rate of convergence will be an increasing function of the supremum

values of the elements of SYi
, and these elements are bounded by Ki.

From the properties and arguments given above, we thus have that Z̄(1) = Ȳ(1). By the

associative property that arises from our definition of PDF mappings; Z(1),m,i = lim
k→∞

g(q) ◦
f̂mp+i(Xk,i). We now apply the cyclic property of the mappings f : i.e. fl = fl+mp, ∀ l,

m ≥ 0. The result then reduces to

Z(1),m,i = lim
k→∞

g(q)(X(m + 1)k,i) = lim
k→∞

g(q)(Xk,i),

where X(m + 1)k,i is the random variable corresponding to a sample in RN × CM from the

set {~xjp+i, m + 1 ≤ j ≤ k}, with i = 0, . . . , p − 1, and where each element is selected with

equal probability. Thus Ȳ(1) = Z̄(1) = lim
n→∞

g(q)(Xn,i) has the uniform PDF hȲ over Cq.

The marginal PDF for the steady state of g(q)(~xn) is now given (in the second average) by

1

p

p−1
∑

i=0

hȲ = hȲ , over Cq. Thus we have the required result. �
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Corollary 7.8 Suppose the conditions of Theorem 7.7 are satisfied for at least one zero of

p(z), and that the conditions on the input xn and initial condition ~x0 hold with g and M

replaced by g1 and 1 respectively. Then the PDF of the long run steady state behaviour of

the system error εn will be uniformly distributed over C.

Proof:

The proof follows the proof of Theorem 7.7, with q = 1, and with the application of

Theorem 7.5 replaced by Corollary 7.6. �

Theorems 7.5 and 7.7 link the existence of a uniform steady state error coordinate dis-

tribution over CM with nonminimum-phase systems that satisfy the equivalent conditions

of Theorem 5.9 for topological transitivity. Their corollaries analogously link a uniform

steady state error εn to the equivalent conditions of Theorem 5.8 for sensitivity to initial

conditions, which only require one nonminimum-phase zero.

Theorem 7.5 essentially shows that piecewise continuous probability distributions of

g(~xn) converge through successive mappings towards the uniform distribution over CM ,

and its corollary analogously for εn and C. The expansive nature of the mappings tend to

average and hence smooth out the mapped PDFs, leading to a uniform steady state.

Theorem 7.7 and Corollary 7.8 present conditions under which the results of Theorem 7.5

and Corollary 7.6 may be extended to more general probabilistic cases: most generically

when the initial condition ~x0 is fixed or random with a discrete distribution, and/or there

is some discrete randomness in the input xn. As such, Theorem 7.7 and its corollary are of

more practical use, since they focus on behaviour with a specific realized initial condition.

The condition on ~x0 in Theorem 7.7 is constructed so that the probability density

function of the steady state error coordinate g(~xn) on CM can be properly defined as a
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piecewise continuous function over CM . This condition, with (i) and (ii), essentially say

that no submanifold set in CM with an M dimensional volume of zero may support a

nonzero probability that the steady state g(~xn) over CM will take on a value in the set.

This is a generalization of saying that the steady state random variable g(~xn) over CM

must not take on any value in CM with a nonzero probability and, more specifically, that

g(~x0) cannot be a periodic point.

It is expected that in typical topologically transitive systems with sensitivity to initial

conditions (particularly those that are chaotic), the initial conditions failing to satisfy

this condition form a set of measure zero. Thus one would expect that a random initial

condition chosen in RN × CM according to a piecewise continuous PDF over CM would

satisfy the theorem condition with probability one. This is consistent with the prevalence

of nonperiodic points in generic topologically transitive systems we see from the study of

the dynamics involved with the work of Chapter 5 of this thesis. Thus the implication of

a steady state uniform error PDF over C when the system is fully nonminimum phase (or

expansive) from Theorem 7.7 would be of practical relevance. Indeed it is the assumption

of this result, under generic initial conditions and the periodic input form, that gives this

theorem its real importance. Establishing a proof of the second sentence of this paragraph

(if possible) would then fully complete the immediate accomplishments of this theorem. It

would, of course, be useful to have results that would enable one to designate classes of

systems as having the condition on ~x0 met by all initial conditions, as is the case with the

quasiperiodic system in Theorem 7.13 and some extended results in [22].

The periodic conditions on the input xn in Theorem 7.7 are an important requirement to

afford the result. With a fixed initial condition, it is always possible to choose an input that

will bring about a densely distributed steady state behaviour (i.e. with piecewise continuous

PDF and the theorem condition on ~x0 satisfied), that is not uniformly distributed. (Indeed
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any steady state PDF may be so created.) Unlike in Theorem 7.5, additional averaging

structure in the input, together with the expansive properties of the mappings, is thus

required to bring about a uniform PDF result here. We may speculate that a more general

input structure, such as quasiperiodic, or one with an asymptotic steady state behaviour

that is periodic or quasiperiodic may be sufficient. It is also possible and intuitively plausible

from previous work that, for general input, the set of initial conditions for which the steady

state would not be uniform (nonuniform piecewise continuous now included) would still

form a set of measure zero.

The proof of Theorem 7.7 essentially involves applying Theorem 7.5, and arguing that

the error coordinate, as a random variable over CM , should converge to a random variable

with unique piecewise continuous PDF in the steady state; and that this PDF should then

be the actual function that general piecewise continuous PDFs converge to themselves

under successive mappings, rather then some other arbitrary function and rather than a

condition of nonconvergence.1

When the conditions of Theorem 7.10, Proposition 7.9 or the final part of Proposi-

tion 7.12 hold, the uniform PDF over CM is basically a fixed point of the dynamical

system (6.1) viewed as a functional that maps a space of probability density functions for

P̂ C(g(~x0)) to itself, as follows from our discussion in the previous section. With the exis-

tence of such a PDF fixed point, the proof of Theorem 7.5 therefore reflects characteristics

of the system that we would expect when the contraction mapping theorem applies. In the

proofs of Theorems 5.20 and 5.21, we showed that under the conditions of Theorem 5.20

1Specifically, the error coordinate εn, (or state ~xn in the full theorem) is shown to converge to a set

of random variables described by piecewise continuous functions. The mapping fn is then applied, with

n → ∞, to this process. The convergent sequence of random variables is mapped to itself, via the input

structure; while the set of random variables in the they converge to is mapped uniformly to a uniform

distribution (1-element set), by Theorem 7.5.
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for topological transitivity in the general case, we have “inverse” contraction mappings

over neighbourhoods of CM as a means to this transitivity. Thus, by analogy to the con-

dition (R) environment, we may speculate that an extension of Theorem 7.5 to meet the

transitivity conditions of Theorem 5.20 would also pertain to systems which reflect these

contraction mapping characteristics. Hence we would speculate that such extensions of

Theorems 7.5, 7.7 and their corollaries (i.e. to require zeros of magnitude greater that 2,

but not (R)) would hold for nondithered systems. It is less clear that such an approach

could be used to prove analogous results in the case where condition (R) does not hold

with a possible dither present.

More generally, we could speculate that, under certain conditions, a uniform steady

state PDF for g(~x0) or εn may exist. As discussed in the previous section, we might

expect that the PDF would generally not be a fixed point of the functional. It can be

proven, however, that the only piecewise continuous PDF fixed point that any one-to-one

topologically transitive system may have is in fact one that is uniform over CM . If one

could apply on the space of piecewise continuous PDFs over CM , for some class of one-

to-one topologically transitive systems, or some class of systems satisfying Theorem 7.10

or the final part of Proposition 7.12; either the convergence proof for Theorem 7.5 or

the contraction mapping theorem; one would then arrive at the result of Theorem 7.5,

Proposition 7.12 or their corollaries, for this class of nondithered systems (by the same

logic).

The following result asserts the fixed point claim:

Proposition 7.9 Suppose the system satisfies chaos condition 2 (topological transitivity).

Suppose also that the mapping P̂ C ◦ g ◦ fn in (6.1), from P̂ C(g(~x0)) to P̂ C(g ◦ fn(~x0)),

~x0 ∈ RN × RM , is one-to-one over CM for all n ≥ 0. Suppose further that the input

xn is independent of ~x0, for n ≥ 0. Then, if a P̂ C(g(~xn)) marginal PDF fixed point of
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the system (6.1) viewed as a functional exists for some ~x0 PDF, with the P̂ C(g(~xn)) PDF

piecewise continuous over CM , this marginal PDF must be uniformly distributed over CM .

Proof:

Suppose the given system has a P̂ C(g(~xn)) PDF fixed point for some given ~x0 PDF, and

that the fixed point is also piecewise continuous over its domain CM . Let ĥ(~x) be the PDF

of this ~x0, and let ĥg(~x) denote its P̂ C(g(~x0)) marginal PDF over CM . Let x̂ ∈ RN × RM ,

ŷ ∈ CM be any two points (in particular with P̂ C(g(x̂)) 6= ŷ). Now, from topological

transitivity, it follows that there exist two sequences of points x̂i ∈ RN ×RM , ŷi ∈ CM ; with

ĥg(~x) continuous over some simply connected closed sets X̃i, Ỹi ⊂ CM , containing P̂ C(g(x̂i)),

P̂ C(g(x̂)), and ŷi, ŷ, respectively, for i ≥ 0; and satisfying the following: lim
n→∞

x̂n = x̂,

lim
n→∞

ŷn = ŷ, and P̂ C(g ◦ fni(x̂i)) = ŷi, for some ni > 0, ∀ i ≥ 0. From the mapping

properties of ĥ, the fixed point property (i.e. fn(ĥ)g = ĥg, ∀ n ≥ 0), and the one-to-one

property of P̂ C ◦ g ◦ f ; it must hold that ĥg(P̂ C(g ◦ fn(~x0))) = ĥg(P̂ C(g(~x0))), ∀ n ≥ 0,

and ~x0 ∈ RN × RM . The mapping properties include the assumption of a fixed realization

of the input xn and dither νn that follows from xn, νn and ~x0 being independent, for

n ≥ 0. Applying this to the sequences above, we then have that ĥg(P̂ C(g(x̂i))) = ĥg(ŷi),

∀ i ≥ 0. From the continuity of ĥg(~x) over the sets X̃i and Ỹi, it then follows that

ĥg(P̂ C(g(x̂))) = ĥg(ŷ). Since x̂ and ŷ were chosen arbitrarily, it then follows that ĥg(~x) is

uniform over CM . Thus we have the result. �

The requirement of this proposition that the mappings be one-to-one essentially excludes

systems that are nonminimum phase or have expansive NTF zeros. It is not obvious whether

this condition can be relaxed, and the result extended to include expansive systems which

would tend to have PDF mappings that are more contractive.
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The following theorem captures the idea of a uniform distribution over CM as a fixed

point of the system (6.1) as a functional, and shows how this holds whenever a somewhat

more restrictive version of condition (R) holds, or when the coefficients of a max(N, M)

order p(z) are integers. No explicit requirements on the zeros of p(z) are made.

Theorem 7.10 Suppose that one of the following conditions is satisfied:

(a) the ai and bj satisfy condition (R), with r̃q1 6= 0, and r̃i = 0 for all i > q1, for some

q1 satisfying M ≤ q1 ≤ max(N, M);

(b) ai − bi ∈ Z, for i = 1, . . . , max(N, M), aq1 − bq1 6= 0 if N = M , where q1 =

max(N, M), and the dither νn = 0, for all n ≥ 0.

Suppose also that the “extended” initial error conditions εk, k = −1, . . . ,−q1, are ran-

dom, i.i.d. over C, and jointly uniform, so that g(~x0) has a uniform PDF over CM . Suppose

further that the initial internal state conditions rk, k = −1, . . . ,−N , are random variables

defined by rk =

q1+k
∑

i=1

r̃iεk−i, where the r̃i come from condition (R), if (a) holds; and rk = εk

if (b) holds. Suppose as well that the input xn is independent of xj and ~x0, for all 0 ≤ j < n

and n ≥ 0. Then g(~xn) will have a PDF that is uniformly distributed over CM for all n ≥ 0.

In particular, the system error εn will have a PDF that is uniformly distributed over C for

all n ≥ 0, when (a) or (b) hold for some q1 satisfying 1 ≤ q1 ≤ max(N, M).

Proof:

To begin, if a dither νn is present in (a), we simply drop the dither from the system. The

error and state space dynamics of the undithered system will correspond to the respective

dynamics of the dithered system on C and CM , by Theorem 6.1.

Suppose that the errors εi, for i = k − 1, . . . , k − q1, are an i.i.d. independent family

(i.e. a jointly independent set) with uniform probability densities over C.
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(a) First, suppose condition (a) holds. Suppose that the ri are random variables defined

by ri =

q1+i
∑

j=1

r̃jεi−j, for i = k − 1, . . . , k − N , for some k > 0. By the conditions of the

theorem, this holds when k = 0. Then, substituting the expressions for the ri into the

difference equation in (1.2), and using the definition of the r̃i in (R), we see that this

expression holds for i = k. By induction, we see the statement is thus valid ∀ k ≥ 0.

Now applying the condition r̃i = 0, for i > q1, we have rk =

q1∑

j=1

r̃jεk−j, for k ≥ 0.

By condition (R), the coefficient of each term in this sum will be an integer. An integer

times a uniform distribution over C simply stretches the distribution and wraps it around

C an integer number of times, thus giving back a uniform distribution over C. Thus each

nonzero term in the sum is uniformly distributed over C, and these are not all zero since

r̃q1 6= 0. Since the distribution of each nonzero term in the sum is independent, and these

terms form an independent family, the distribution of rk will be the convolution of up

to q1 uniform or RPDF distributions over C. By Corollary 8.4, we then have that rk is

uniformly distributed over C. From the independence conditions on xn in the theorem,

and (1.2), it follows that xk and rk will be independent. The quantizer input uk = xk − rk

will then be uniformly distributed over C, since this equation simply inverts (additively)

the distribution of rk, and then shifts it independently by xk. Since there is a one-to-one

mapping between the value of uk on C (inverted again) and the value of εk on C, we have

from the form of this mapping given in the proof of Theorem 8.5, that εk is uniformly

distributed over C.

(b) Now suppose condition (b) holds. From the arguments above, it is clear that we

may write rk =

q1∑

j=1

(aj − bj)Tj,k(εk−j), for k ≥ 0, where the Tj,k : C → C are affine

mappings with a stretch factor of 1. Each Tj,k(εk−j) will then be uniformly distributed over

C, and independent over all such j. With integer coefficients of the terms (not all zero)
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given from condition (b), we may then apply the arguments used for the analogous sum

from case (a) above to this sum, to give that rk, and hence εk, are uniformly distributed

over C here.

Now let rk,i be the sum of any m terms from the set {r̂j, j = 1, . . . , q1 − 1}, with m any

integer between 1 and q1 − 1, and with r̂j = r̃jεk−j if (a) holds, or r̂j = (aj − bj)Tj,k(εk−j) if

(b) holds. Let rk,a = rk − rk,i. From the above arguments, we have that rk,a has a uniform

PDF over C. Since the εi, i = k − 1, . . . , k −M , are an independent family, it follows that

rk,i and rk,a are independent. The PDF for rk given rk,i then will simply be the PDF of rk,a

shifted by some given rk,i value, which is a uniform PDF over C as well. Since this is the

PDF of rk on its own, rk is independent of rk,i. With this holding over all such rk,i, we then

have sufficient conditions to say that the εi, i = k, . . . , k − q1 + 1, are an i.i.d. independent

family. With the previous result for the PDFs, this then implies that gq(~xk+1), as well as

gq(~xk), has a uniform PDF over Cq, with 1 ≤ q ≤ q1. With this holding for the k = 0 case,

we then have, by induction, that this holds ∀ k ≥ 0. Thus we have the required result of

the theorem, when q = M . With q = 1, it follows that εk will have a uniform PDF over C
∀ k ≥ 0. �

The initial densities of the internal states ri given in Theorem 7.10 are needed to at

least keep the errors εi in g(~xn) mutually independent, and also help in the recursion and

the application of condition (R). It is possible that, with no conditions imposed on these ri

in the theorem, the error εn could still be shown to be uniformly distributed over C. It is

unclear that the independence of the εi in g(~xn) can also be shown to then conclude that

g(~xn) is uniformly distributed over CM . The more restricted form of condition (R) was

required for basically the same purpose with higher iterations. The same speculations may

be made about the results when the added restrictions on (R) are relaxed. The restriction
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is sufficiently satisfied if r̃i = 0 for i = M + 1, . . . , M + N .

In Theorem 7.10, the definition of a fixed point of system (6.1) as a functional presents

this fixed point as the initial condition. It follows immediately that this fixed point is also

the steady state distribution of the system when it serves as the initial condition. Note that

if Theorem 7.5 is satisfied but Theorem 7.10 is not, then the uniform steady state PDF may

not be a fixed point, at least if the input xn is not constant, even though this PDF must

converge back to itself. The continuity results of Chapter 4 generally cannot be applied

at the endpoint ∆/2 of C with condition (R) unless M = 1, or all the coefficients ai, bj

are integers. This provides the difficulty in setting up a uniform PDF fixed point in CM .

Conversely, under these conditions, we might expect that an extension of Theorem 7.10 is

readily possible, as partly supported in condition (b) of the theorem.

From a practical point of view, Corollaries 7.6, 7.8 and Theorem 7.10 say that if we

choose the initial conditions randomly according to the PDF specifications given in the

theorems over an ensemble of p simulations of a given Σ-∆ modulator satisfying (R), then,

as p → ∞, the average error εn at a given iteration n averaged over the observed errors in

the ensemble, will have a PDF that approaches a uniform distribution over C, for any n.

Theorems 7.5, 7.7 and 7.10 have been constructed and proved so that their results are

generalizable to any dimension q, and Cq, with 1 ≤ q ≤ M . Note that unlike Theo-

rem 7.5; Theorems 7.10, 7.13, and Proposition 7.12 to follow are not exclusive to requiring

nonminimum-phase zeros.

With the following, we examine the relationship between steady state error behaviour

and the existence of a white error process, as afforded by Theorems 7.5, 7.7, their corollaries,

and Theorem 7.10:
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Theorem 7.11 Suppose that one of the following hold:

1. The conditions of Corollaries 7.6 or 7.8 are satisfied for at least 2 zeros of p(z),

and with the corresponding adjustments in the other corollary conditions relating to this

dimensionality.

2. Conditions (a) or (b) of Theorem 7.10 are satisfied, for some q1 satisfying 2 ≤ q1 ≤

max(N, M). We define the polynomial pR(z) = zq1 +

q1∑

k=1

r̃kz
q1−k for (a).

Then the PDF of the long run steady state behaviour of (εn+τ , εn) will be uniformly

distributed over C2, for all τ ≥ 1 when 1 holds; and if and only if the zeros of pR(z) or p(z)

are not all magnitude one, multiplicity one, with rational complex arguments, when 2(a) or

2(b) hold, respectively. Moreover, the spectrum of the error εn on C (i.e. P̂ C1(εn)) will be

white in 1; and in 2 if and only if this zero condition holds as well.

Proof:

The joint uniform distribution of the steady state behaviour of (εn+1, εn) over C2 follows

from the proofs of Corollaries 7.6 and 7.8, and Theorem 7.10, with q = 2.

1. We give a generalized extension of the proofs Corollaries 7.6 and 7.8, with the

following. The matrix [Rk] is replaced with [Rk]τ , for k ≥ τ − 1, where [Rk]τ is the

max(N, M)∗ × max(N, M)∗ matrix, with row 1 equal to row 1 of [Rk], and rows 2 to

max(N, M)∗ equal to rows 2 to max(N, M)∗ of [Rk−τ+1], respectively. [Rkq]τ and [Rkq̃]τ

are defined analogously, and replace their counterparts. We set [R0q]τ = [R0q], [R0q̃]τ =

[R0q̃]. The projections gi are taken to project onto Cq, as spanned by the coordinates

(εk−1, εk−1−τ , . . . , εk−q+1−τ), when k ≥ τ − 1, and (ε−1, . . . , ε−q+1), when k = 0; where k is

the iteration step of the argument being projected. The proofs of Corollaries 7.6 and 7.8,

under these modifications, with q = 2, then imply a joint uniform distribution of the steady

state behaviour of (εn+τ , εn) over C2, for any τ ≥ 1.
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2. We apply the arguments and results in the proof of Theorem 7.10. We have that the

second-average steady state rn must satisfy the relationship rn =

q1∑

j=1

r̃jεn−j in (a), and

rn =

q1∑

j=1

(aj − bj)Tj,n(εn−j) in (b). These represent difference equations with characteristic

polynomials pR(z) and p(z) respectively. Let [Rk] be as defined at the end of Chapter 4,

and corresponding to either difference equation system here. Let [Rk]
(1) denote the first

row of [Rk]. Then, for (a) or (b), we have the relationship that

rn+τ = [Rτ+1]
(1)[R0]

−1 · (T1,n,τ (εn−1), . . . , Tq1,n,τ(εn−q1))
T ,

where the Tj,n,τ : C → C are some affine mappings with stretch factor 1. If the zeros of

pR(z) or p(z) are not all magnitude one, multiplicity one, with rational complex arguments,

then [Rτ+1]
(1) and [R1]

(1) will be linearly independent ∀ τ ≥ 1. With εn−1, . . . , εn−q1 an

independent family of uniform PDFs ∀ n ≥ 0, this implies that the pair (rn+τ , rn), and

hence (εn+τ , εn), are independent and thus uniformly distributed over C2, for any τ ≥ 1,

in the second-average steady state.

If an i.i.d. dither is allowed, then the distributions of (εn+τ , εn) over R2 will, by exten-

sion, clearly exist and remain independent in the second average, ∀ τ ≥ 1, in 1 and 2 above.

Since the steady state distribution for εn exists in the second average, clearly the steady

state distribution for εnεn+τ exists in the second average as well, ∀ τ ≥ 1, as a convolution

of second-average convergent distributions. Now << εnεn+τ >> gives the average over all

n of the means of the distributions εnεn+τ , which is equivalent to the mean of the average

over all n of these distributions. From this, we have by definition that << εnεn+τ >> is

the mean of the steady state distribution of εnεn+τ , when this steady state exists in the

second average. Since the steady states εn and εn+τ were shown to be independent in 1

and 2, it follows that << εnεn+τ >>≡ E[εnεn+τ ] = 0, for τ ≥ 1. From the methods in
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the proof of Proposition 8.1, it then follows that the spectrum of the error εn will be white.

Now suppose that the zeros of pR(z) or p(z) do not satisfy the conditions in part 2 of

the theorem. Then there exists a p ∈ Z+ such that [Rτ+1]
(1) = [R1]

(1), ∀ k ≥ 0, when

τ = kp. This implies that rn+τ = Ta(rn), and hence εn+τ = Tb(εn), for some such affine

mappings Ta, Tb, when τ = kp, k ≥ 0. Thus (εn+τ , εn) are not independent, or thus jointly

uniformly distributed over C2, for these τ . If an i.i.d. dither is allowed, then the values

of (εn+τ , εn) over R2 will, by extension, clearly remain dependent for these τ . Since these

pairs are also correlated in second-average steady state, it follows that << εnεn+τ >> 6= 0,

when τ = kp, k ≥ 0. The spectrum of the error εn, by definition, is not white under these

conditions. �

These results suggest that a white error spectrum is generally synonymous with hav-

ing at least two nonminimum-phase zeros. Having a uniform steady state distribution

for (εn+1, εn) over C2 does not guarantee whiteness however, as we see for a subclass of

marginally minimum-phase systems in part 2, that exhibit a recurrent or cyclic dynamical

behaviour. The proof of these results also demonstrates, in particular, that a second-

average convergence of steady state error behaviour is associated with any possible white

error relationship.

We continue the investigation of this section, beginning with the following proposition

which deals with the case of random external input:

Proposition 7.12 Suppose that a given system with possible dither present has an input xn

with a uniform probability distribution over C for a given n ≥ 0, and that xn is independent

of xk and νk, for all 0 ≤ k < n . Then, for any initial condition ~x0 ∈ RN ×RM , the PDF of

the system error εn will be uniformly distributed over C at the given n. Moreover, if these

conditions hold for all n ≥ 0, then the PDFs of g(~xn) and εn will be uniformly distributed
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over CM and C respectively, for all n ≥ 0.

Proof:

Suppose that the input xn has a uniform PDF over C, for a given n ≥ 0. Supposing

that the independence conditions hold as well, it follows that xn and rn are independent.

Then the PDF of un = xn − rn will be the PDF of xn shifted by rn, and thus, with xn and

rn independent, will also be uniform over C. Since there is a one-to-one mapping between

the value of un on C and the value of εn on C (independent of the dither), we have from the

form of this mapping given in the proof of Theorem 8.5, that εn is uniformly distributed

over C, for the given n ≥ 0. If the xn are i.i.d., independent of the corresponding dither,

and uniform over C, for n ≥ 0, it follows that the εn are i.i.d. and uniform over C, ∀ n ≥ 0.

The final result then follows. �

Here we see, by extension, that a random i.i.d. input xn with a uniform PDF over C
is sufficient to directly induce a random g(~xn) with uniform PDF over CM (a PDF fixed

point), and hence a random i.i.d. error εn with uniform PDF over C, for all n > 0. This

result is independent of any other conditions, or the need to attain a steady state. Notice

that simply having an input xn that is uniformly distributed over C in steady state is not,

in itself, sufficient to guarantee that un and hence εn will be uniform over C in steady

state, since xn−j , j = 1, . . . , N , and the feedback rn will generally not be independent (if

the independence requirements on xn in the proposition hold as well, then this result for

εn would hold). The question may now arise as to whether, through its quasi-randomizing

effects, a constant irrational input can bring about a uniform PDF for εn over C in steady

state for any system. The following theorem gives a specific case where this is true:



CHAPTER 7. STOCHASTICALLY MODELLED DYNAMICS 237

Theorem 7.13 Suppose that the first-order system with unity gain, that is M = 1, N = 0,

and a1 = 1, has a constant input xn = c, for all n ≥ 0, where c is an irrational multiple of

∆. Then, for any initial condition ε−1 ∈ R, the PDF of the long run steady state behaviour

of the system error εn will be uniformly distributed over C.

Proof:

To begin, if a dither νn is present, we simply drop the dither from the system. The

error dynamics of εn in the undithered system will correspond to the error dynamics of the

dithered system on C, by Theorem 6.1.

From (1.2), this system may be expressed as εn =
∆

2
− [(c−εn−1) mod ∆], for n ≥ 0.

The orbit of a given initial condition ε−1 ∈ R will be quasiperiodic on C. This condition

implies a concept of periodicity applied over arbitrarily small intervals. Specifically, this

means, for any positive integer p, that if C is partitioned into p intervals of equal length,

then the ratio of the recurrences of εn between any two intervals will tend towards 1 as

n → ∞. The rate of this convergence will also occur on the same order of magnitude as

for the case of a p point limit cycle, such as arises when c = ∆/p. These properties will

hold for any such p interval equipartition (with these related via rotation on C), and p

may be arbitrarily large, and hence the intervals arbitrarily small. We then have, from

this structure, that the long run steady state probability of εn lying in an interval of given

length is independent of the position of this interval in C. Thus this probability must be

the interval length divided by ∆. Allowing the given interval length to tend to zero, these

results imply that the steady state PDF of εn over C will be uniform. If the initial condition

ε−1 is changed, the steady state PDF will simply be shifted on C by an amount equal to

this change. By symmetry, the resulting PDF will still be uniform over C. Thus the result

holds for any initial condition ~x0 = ε−1 on C or R. �
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For this theorem, the same quasiperiodicity that was used in Theorem 5.16 to show

topological transitivity in this case for the study of chaos is used in the proof here.

By considering the first order system of Theorem 7.13 with a particular initial condition

ε−1 ∈ C, and general constant input xn ∈ R, we may seek to understand more about

the structure of the real numbers on C, and possible relationships between the uniform

distribution and the nature of irrational numbers. Let Sc = {εn | xn = c, ∀ n ∈ Z} be

the set of all points in the orbit of ε−1, iterating in both directions, for a given constant

input c ∈ R. Such sets are invariant sets of the mapping (i.e. fn(Sc) = Sc, ∀ n ≥ 0).

Let CZ denote the set of all numbers in C that are rational multiples of ∆, and CQ denote

the set of all numbers in C that are irrational multiples of ∆. Clearly we have that
⋃

c

Sc

over all c that are rational multiples of ∆, will give CZ, and similarly the union over all c

that are irrational multiples of ∆ will give CQ. Each set Sc with rational-type c is finite,

and each with irrational-type c is infinite and, by quasiperiodicity, uniform on C and with

cardinality on the same order of magnitude as that of CZ (since common elements α, β,

satisfy mα = β + n∆, for some m, n ∈ Z, such that α, β ∈ C). Any two nonidentical sets

Sc are necessarily disjoint. Thus we conclude that CZ consists of the union of an infinite

number of disjoint sets of finite size (limit cycles), and CQ consists of the union of an infinite

number of disjoint quasiperiodic sets of infinite size, and cardinality of each related to that

of CZ. It follows that CQ is uniform on C. CZ is as well, by quasiperiodic arguments.

These lines of argument may perhaps be developed further to give more insight into these

properties.

The following theorem gives a more general extension of Theorem 7.13, to higher-order

marginally minimum-phase systems that satisfy condition (R).
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Theorem 7.14 Suppose the ai and bj satisfy condition (R). Suppose also that the largest

magnitude zero(s) have magnitude 1 and multiplicity 1, and that all such zeros µi are all

real or complex with argument θi = 2πµ̃i for some rational number µ̃i. Suppose further that

the input xn is periodic with period p. Suppose, in addition, that the part of the particular

solutions of εp̃+k−εk associated with the magnitude 1 zeros are irrational multiples of ∆, for

k = 0, . . . , p̃ − 1, where p̃ = LCM(p, µ̃d,1, . . . , µ̃d,q, 2), and the µ̃d,i are the denominators of

µ̃i for the respective q complex µi. Then, for any initial condition ~x0 ∈ RN ×RM , the PDF

of the long run steady state behaviour of the system error εn will be uniformly distributed

over C.

Proof:

To begin, if a dither νn is present, we simply drop the dither from the system. The

error and state space dynamics of the undithered system will correspond to the respective

dynamics of the dithered system on C and CM , by Theorem 6.1.

The system with g(~x0) ∈ RM may be adjusted to an equivalent system with g(~x0)

shifted to P̂ C(g(~x0)) in ~x0, and the values of xi, i = 0, . . . , M − 1 shifted by an associated

amount. This has no effect on the long run behaviour of ~xn, and thus, without loss of

generality, we simply take x0 ∈ R
N × CM for the proof that follows.

With condition (R) holding, the behaviour of εn is described by (4.2) in Proposition 4.8.

We proceed by considering the overall solution of the difference equation of (4.2) given

from (2.3) and (2.4).

From the form of (2.4), the periodicity of the input xn (and hence
N∑

j=0

bjxn−j), and the

nature of the zeros µi, it follows that the terms in the summation portion of (2.4) associated

with the magnitude 1 zeros, will repeat in a cycle of period p̃ across the sequence of all

such terms going from k = N + l to k = N + mp̃ + l, ∀ m ∈ Z+, and any given l with
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0 ≤ l ≤ p̃ − 1 (cycle changes with l). For the condition on the corresponding part of the

particular solution of εp̃+k − εk given in the theorem to hold, it follows, from (4.2), that

the sum of the terms in a cycle will be some irrational multiple of ∆, that we denote el. It

then follows that the sum of terms from k = N + l to k = N + mp̃ + l will be mel added

to the sum from k = N + l to k = N + p̃ + l. Applying the arguments of the proof of

Theorem 7.13 with the quantizer relationship of (4.2), it follows that the long run behaviour

of the associated part of the particular solution of εmp̃+l will be quasiperiodic and uniform

over C.

From the form of (2.4) and periodicity of xn, it follows that the portion of (2.4) associ-

ated with the remaining zeros will converge to a constant value as n → ∞. From the form

of (2.3) and the nature of all zeros, it follows that (2.3) will converge to a limit cycle over

the period p̃ as n → ∞, and thus a constant value as m → ∞, for n = mp̃ + l, with a

given l. Combining these results with the quasiperiodic ones above implies that the long

run behaviour of the overall solution for εmp̃+l will be uniform over C. Since this holds over

all l, the result thus extends to εn. �

For this result, we are using the circle map relationship as applied in Proposition 4.8. To

create quasiperiodicity and thus a uniform steady state, we require both unboundedness

in the particular solution for w̃n in (4.2), and an irrationality property in this solution.

Achieving unboundedness of w̃n in a marginally minimum-phase system is basically the

opposite problem to what was considered for stability in Chapter 3, with the analogous

difference equation for rn. Considering this, it can be shown (with pr(z) replaced by p(z),

and c̃n =

N∑

i=0

bjxn−j) that under the general conditions of Theorem 3.3, with any of the

zero conditions violated; or Proposition 3.4 with (a), (b) or (c) violated; the solution w̃n

will be unbounded. (These general conditions also require the generic assumption that the
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nonzero constants in the representation of the particular solution for εn are not exclusive to

the terms associated with the minimum-phase zeros or non-condition violating marginally

minimum-phase zeros). Similarly, Proposition 3.6 provides a way for unboundedness to fail.

Unboundedness allows the irrationality component to yield quasiperiodicity. To express the

irrationality conditions explicitly in terms of the input, as in Theorem 7.13, would require

stronger and more complicated conditions on the magnitude 1 zeros of p(z) in general.

Extensions of Theorems 7.13 or 7.14 to arbitrary marginally minimum-phase systems

that satisfy condition (R) (but not Theorem 7.5), for generic initial conditions would seem

plausible. In particular, it might be possible to have a more general input structure, such as

quasiperiodic, or one that has an asymptotic steady state that is periodic or quasiperiodic,

or extend to stochastic input. Extensions to allow any type of nonrepeated magnitude 1

zeros might also be possible. When the irrationality conditions of Theorem 7.14 fail, we

typically get cyclic periodic points. This serves as an extension to this phenomenon in the

proof of Proposition 5.16.

A particular extension of Theorem 7.13 to the case of M repeated zeros at µ = 1, with

N = 0, no dither present, and irrational constant input or sinusoidal input (if M > 2),

was given by He et al. [22]. The general result is that the steady state g(~xn) is uniform

over CM . Theorems by Weyl (see [22]), beginning with the assertion that the fractional

part of a polynomial P (n), n ∈ Z+, with real coefficients, will have essentially a steady

state distribution (as a process in n) that is uniform on [0, 1), if at least one coefficient is

irrational, are used to prove their results. Their work also asserts that the steady state

errors εn will be white and input independent, for M > 1. The claim that a uniform steady

state for g(~xn) over CM is roughly equivalent to whiteness of the errors when M ≥ 2 [22]

is applied for this. Conditions under which this claim holds are not given, considering

that Theorem 7.11 shows limitations to a general interpretation. Their proofs make the
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assumption that the initial condition ~x0 = 0, although it would appear that arbitrary

initial conditions would suffice, as was shown explicitly in a preceding consideration of

the M = 2 case with constant irrational input in [21]. Although the systems considered

are nominally nonminimum phase, the results of [22] extend somewhat further from what

would be obtained from applying Theorem 7.7 or its corollary.

The implied consequence of [21], and we assume [22] (under arbitrary initial conditions),

that no periodic points (which would yield discrete histogram orbits) exist, means that their

results serve as a counterexample to negate a possible extension of Corollary 5.22 to cases

with fewer than M expansive zeros. The pure results also cannot be extended to allow any

magnitude one zeros that are not identically one, since our proof of Proposition 5.17 shows

that some of these cases yield periodic points.

The relationship between topological transitivity and a steady state error distribution

can be clarified and summarized with the following:

Proposition 7.15 Suppose that for any initial condition ~x0 ∈ RN × RM , the long run

steady state P̂ C(g(~xn)) of the system (6.1) has a piecewise continuous PDF that is nonzero

over CM . Then the system satisfies chaos condition 2 (topological transitivity).

Proof:

Suppose that topological transitivity is not satisfied. This implies that there exists

~y0 ∈ RN × RM , ẑ ∈ CM , and a δ > 0, such that ‖P̂ C(g ◦ fn(~y0)) − ẑ‖ > δ, ∀ n > 0.

Thus Prob(‖P̂ C(g ◦ fn1(~y0)) − ẑ)‖ < δ) = 0, for arbitrary n1 > 0. This implies that the

steady state PDF for P̂ C(g(~xn)), when ~x0 = ~y0, must be zero over a ball of radius δ about

ẑ on CM . This contradicts the conditions of the proposition. Thus chaos condition 2 is

satisfied. �
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This result is not too surprising and is supported by the topological transitivity for the

systems in Theorems 7.5, 7.7, and 7.10 - 7.13. Applying this proposition to the results

of [22] given, we may conclude that a system with M repeated zeros at µ = 1, N =

0, and an irrational constant input will be topologically transitive. The conditions for

Proposition 7.15 are stronger than simply that of nonzero piecewise continuity of the steady

state εn PDF, which alone would be insufficient to guarantee topological transitivity if

M > 1.

The converse of this proposition, at least theoretically, does not hold. Orbits may be

dense on CM , but exist on certain subregions with probability zero. In particular, one

may conceive of constructing random inputs xn that bring about topological transitivity

via Theorem 5.24, but a steady state that is zero over subregions of CM (as well as being

nonuniform). Thus it appears that the nonminimum-phase requirements of Theorem 5.9

(and perhaps 5.20) provide a “stronger” form of transitivity — one that is more central

to giving a uniform steady state, than the most general random input conditions of Theo-

rem 5.24. The former are sufficient for Theorem 7.5 and necessary for Theorem 7.7.

The following proposition allows us to interpret the error behaviour of systems satisfying

condition (R) and any of Theorems 7.5, 7.7, 7.10, 7.13, their corollaries, or Proposition 7.9,

when an arbitrary dither is added:

Proposition 7.16 Suppose the ai and bj satisfy condition (R) and that no dither is present

in the system. Suppose also that the system error εn (or g(~xn)) has a uniform PDF over

C (or CM) (i) for all n ≥ 0, or (ii) in its long run steady state behaviour. Then, if

an arbitrary dither νn is added to the system, the PDF of the error εn (or g(~xn)) will be

uniformly distributed over C (or CM) for cases (i) or (ii) respectively.
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Proof:

For the proof, we shall consider εn to be such that either n satisfies (i), or n is sufficiently

large that (ii) can be taken to apply. Applying Theorem 6.1, the value of εn on C is

unchanged when an arbitrary dither νn is added. Thus the result follows. �

The interpretation is thus straightforward. As we saw with Theorem 6.1, the error

dynamics on C are not changed with the addition of dither, and thus, for any system

satisfying (R), Theorems 7.5, 7.7, 7.10, 7.13, their corollaries, or Proposition 7.9 simply

extend to the case when an arbitrary dither νn is added. This holds automatically for

Proposition 7.12.

In summary, the theoretical results of this section, apart from their more practical

application to follow in Chapter 8, serve to demonstrate the fundamental role of the uniform

steady state distribution as a natural description of averaged state space error behaviour for

a broad range of Σ-∆ modulator systems characterized by some structure. Furthermore, in

establishing these results, we find that persisting questions about stochastically interpreted

long run behaviour (in the context of these results), in significant measure, begin to boil

down to issues of the properties of dynamical behaviour, chaotic properties, and generally

what can be said about the system as a class of dynamical system. This appeals to the

dynamical perspective of Chapter 5, in addition to drawing on some of the analysis for

conditions of chaos therein.
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7.3 Discussion

Time Series Analysis:

When a series of random variables Xn, n ≥ 1, is used to characterize quantities that

arise in a random process, such as a time series of Σ-∆ modulator errors εn, the question

arises as to whether the general steady state behaviour can be inferred from the behaviour

of one particular time series realization (a generalized ergodic property), or whether an

ensemble of such realizations is necessary. For consideration of the steady state PDF, it

was asserted (without proof) that second-average convergence implies convergence of a

sample histogram to the same PDF. This assumes sampling over an ensemble of realized

time series, independently at each iteration. The average of a finite number of converged

histograms corresponding to a finite number of realizations will approximate this. For ~xn

or εn, clearly an ensemble is generally necessary when the initial conditions are random.

If the entire Σ-∆ system is deterministic however, there is trivially only one realization to

consider.

For cases with fixed initial conditions, and a random input or dither, either situation

emerges. Specifically, we assert, without proof, that when condition (R) holds, the input

xn is nonrandom, and an i.i.d. dither νn is added, the histogram, for any single realization

of ~xn or εn, will converge as n → ∞ to the respective steady state PDF, if it exists in the

second average. This assertion follows from recognizing that with (R) the dither has no

effect on the state space dynamics, and it acts independently and identically each iteration.

Similarly, this assertion could be made about any such dithered system, or any nondithered

system at all, when the input xn is i.i.d. and uniform over C. It is unclear under what

greater level of generality single histogram convergence to the steady state PDF will hold

with probability 1, for ~xn or εn — one can conceive of the existence of examples where it

would not. In theory, only the ensemble interpretation and approach is universally valid.
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In light of the practical role of time series for estimating error moments, or representing

a specific realization of a process, one could develop the steady state theory of Section 7.1

in an analogous manner for this type of stochastic process. In this case, the sequence of

random variables Xi, i ≥ 1, would not be treated as independent (i.e. from independent

ensemble samples). The distribution of Xn would be dependent, in general, on the values

of Xi, i = 1, . . . n−1, for all n ≥ 0. The randomness of a given error εn, for example, would

arise solely from the randomness of the dither νn and input xn at the same value of n, but

its distribution would depend, in general, on all previous outcomes νi, xi, i = 0, . . . , n − 1.

The definitions for convergence, average distributions and steady state could similarly be

applied to the sequence of Xi. A second-average steady state PDF then represents, by

definition, the PDF that the associated histogram converges to.

Stationarity/Ergodicity:

We now discuss some of the connections of the results of our theorems to the issues

of stationarity and ergodicity, drawing from [1]. A random process xn will be weakly

stationary if E[xn] and E[xnxn+τ ] are independent of n, for all τ ≥ 1. Stricter forms of

stationarity exist as well. The process xn will also be ergodic if it is stationary, and

lim
n→∞

1

n

n∑

i=1

xn = K, lim
n→∞

1

n

n∑

i=1

xnxn+τ = Kτ ,

for some real constants K, Kτ , τ ≥ 1, with probability 1. The extra ergodic property

then requires a form of equivalent long run behaviour over any time series realization. The

definitions of stationarity and ergodicity are important tools for analyzing the moments of

stochastic processes and forming estimators of these with simulations. They also provide

a basic theoretical characterization.

Clearly any process modelled by a sequence of random variables that converge to a

steady state distribution in the second average generally satisfies the second condition
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for ergodicity, if any realization of the process converges to the same steady state with

probability 1. The latter may be thought of as a generalized ergodic property. With this

holding, it is generally ergodic if it is stationary. From the preceding discussion on time

series analysis, the process g(~xn) (and εn) in a Σ-∆ system will satisfy the second ergodic

condition if condition (R) holds, the initial condition and input are nonrandom, and an

i.i.d. dither is added. It will generally not be fully ergodic if undithered (i.e. it will satisfy

the second ergodic condition, but generally not be stationary). Conversely, the process

g(~xn) (and εn) on CM (or C) will be stationary if the distribution of g(~x0) is a fixed point

PDF of the system, and the input xn is constant over all n or i.i.d. Ergodicity may be

achieved (on CM/ C) when both cases hold. This is possible, notably, for the first-order

system of Theorem 7.13, where the input c is rational or irrational, that will be analyzed

in more detail in Section 8.3. We have that g(~xn) and εn on CM/ C will be ergodic for any

fixed initial condition ~x0, if the input xn is uniformly distributed over C and i.i.d. for all

n ≥ 0, from Proposition 7.12.

From the error moment results of dither theory, E[εn|εn−i, i = 1, . . . n + M ] = 0 for all

n ≥ 0 if the dither is a convolution of RPDFs. Thus such dither brings about stationarity,

with the mean and autocorrelation moments equating to zero for all n ≥ 0 and τ ≥ 1. The

process εn will then generally be ergodic if any realization converges with probability 1 to a

steady state distribution that exists in the second average as well. Applying Proposition 8.6

and the arguments from the time series analysis discussion with this, we then have the

following: with such dither, the process εn will generally be ergodic under the conditions of

Theorems 8.5, 7.5, 7.7, 7.10 plus (R), 7.13, their corollaries, Propositions 7.9 plus (R), 7.12

for all n ≥ 0, or 7.16. This result extends to the case of rational input xn for the first-order

system of Theorem 7.13 as will be analyzed in Section 8.3.
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PRN Generator Implications:

Our steady state distribution investigation provides a connection with the function of

PRN generators. If a Σ-∆ modulator system with fixed initial conditions and nonrandom

input has a steady state distribution for ~x0 that is uniform over CM , such as is provided

for when Theorem 7.7, Theorem 7.13 or its Mth order extension from [22] apply, then it

follows that for an arbitrary n, elements of the set {εn−1, . . . , εn−M} will be i.i.d. and jointly

uniformly distributed over C. Thus a relatively general class of Σ-∆ modulators with an

Mth order feedback filter will function as PRN generators for random sequences of length

M or less. If we wish the sequence length to be more arbitrary, or require a lower order

feedback filter (such as first order), then we must provide more specification in the design

the Σ-∆ system, as discussed in Section 1.7 of the Introduction.

Chaos with PDF State Space:

Returning briefly to the topic of chaos, the generalized probabilistic treatment of the

state space coordinate ~xn that emerges in this chapter raises the question of whether it

is possible or sensible to define and investigate chaos for Σ-∆ modulator systems with

stochastic or random initial conditions ~x0. For such stochastic systems, it is obvious that

we can no longer separate the stochastic elements (i.e. input xn and/or dither νn) from

the otherwise “fixed” initial condition ~x0, so as to maintain an easy carry over of the

chaos condition definitions. Perhaps no such meaningful carry over exists. Drawing on

the developments in this chapter, we have a natural generalization of the chaos conditions

however.

Specifically, we apply a “functional” generalization of Devaney’s chaos conditions and

related definitions (Definitions 2.1, and 5.1 to 5.5). In this context, the state space changes

from RN × CM to the set of all piecewise continuous/discrete probability density/mass

functions defined over the domain RN × CM describing the random variable ~x0. The fn are
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taken to be functionals that map the PDF state space to itself according to the definition

given in Section 7.1. The projections g/gi map a PDF of ~xk to the marginal PDF of the

random variable g(~x0)/gi(~x0) defined over the domain CM/ C.

We propose the following metric over the space of PDFs that are defined over the domain

D = RN × CM . For two piecewise continuous PDFs h1(~x) and h2(~x), the metric is defined

as

m̃1 = max
∆

2
{‖ 1

K2
h2(~z) − 1

K1
h1(~z)‖ | ~z ∈ D},

where Ki = max{hi(~z) | ~z ∈ D}, i = 1, 2. ‖ ‖ is the metric on D defined in Chapter 2.

For two discrete PDFs h1(~x) and h2(~x), the metric is defined as

m̃2 = (1 − λ)m̃1 + λ min{‖~z2 − ~z1‖, ∀ ~z1, ~z2 | h1(~z1), h2(~z2) 6= 0},

where λ = (K1 + K2)/2, 0 < λ ≤ 1, (Ki defined similarly). This particular metric is

chosen because it has the properties that the discrete form reduces to the metric defined

in Chapter 2 for fixed (single point mass) state space (λ = 1), and it reduces to the metric

for piecewise continuous PDF state space above in the continuous limit of discrete PDFs

(λ → 0). This metric definition might be refined further, so as to exhibit the continuous

limit property on any sequence of PDF pairs, for example, or so as to consider mixed pairs

of discrete and continuous PDFs.

Under this formulation, a PDF fixed point, such as those of Theorem 7.10 and Propo-

sition 7.9, is simply a fixed periodic point of the mapping. Under the M “nonminimum-

phase” zeros and condition (R) stipulations of Theorem 7.5, we have, from the proof of

the theorem, that any initial condition in the piecewise continuous PDF state space will

converge to the uniform distribution over RN × CM . Thus the uniform distribution is the

only possible periodic point. If the conditions of Theorem 7.10 also hold, or the contrac-

tion mapping theorem, or some other means could be applied to show that this uniform
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distribution is a fixed point (or at least a periodic point), then we would have that chaos

condition 3 (over the given space of random inputs) would fail. It appears probable that

chaos conditions 1 and 2 would generally fail with the conditions above of Theorem 7.10

alone. From these results, we conclude that overall chaos appears to be less prevalent for

nonminimum-phase systems with stochastic piecewise continuous initial conditions than for

those with fixed initial conditions.

We expect this also for such systems with stochastic discrete PDFs. For such a state

space, the possibly chaotic fixed (i.e. single point mass) state space would be a subset of

the overall discrete PDF state space. More chaos might be expected on other subsets of the

state space as well, i.e. where the positions of the point masses of the PDFs are rationally

related to the expansivity factors of the NTF zeros.

If a random input xn or dither νn is added to the system, this would be treated in terms

of the randomizing effects on orbits relative to the given initial condition PDF state space

in the study of chaos, as was done in this thesis for a fixed state space. Of course the

effect of adding these random signals is to convolve their distributions with those of the

internal state variables, and this relationship is applied when studying general statistical

error behaviour as was explored in this chapter.

A deeper investigation of chaos in Σ-∆ modulators with random initial conditions fol-

lowing this setup and paralleling the chaos analysis of this thesis could be looked at in

future work.



Chapter 8

Dithered Error Statistics

In this chapter, we study the statistical properties of the error behaviour of the Σ-∆ modu-

lator when a dither signal is added to the input signal prior to its entry into the quantizer,

as shown in Figures 1.5, 1.6 and 1.7. The study of this behaviour, and the underlying error

dynamics, from a statistical point of view is consistent with the approach of standard work

in dither theory, and will allow an easy application of the results of Chapter 7 to the issues

addressed here. In analyzing the statistics of the error εn, we will be concerned with the

actual value of this error as represented in the Σ-∆ modulator topology and dealt with in

practice. The interpretation of εn lying on C in state space will be adopted only when we

need to appeal to the approaches and symmetries used in studying the dynamics earlier to

help develop our study here. As an important result, we will show how an average error

variance level of ∆2/6 may be achieved for the Σ-∆ modulator with RPDF dither when

certain internal dynamical behaviour exists.

The dither theory mentioned in the Introduction, as with much of the previous work

on Σ-∆ modulators forming the relevant background to this thesis, was derived using stan-

dard frequency domain methods. These methods are standard to the electrical engineering

251
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approach that naturally arises through the study of Σ-∆ modulators from the perspective

of digital audio or other traditional applications. The purely dynamical systems approach

developed initially for the study of chaos in this thesis provides an alternative point of

view for approaching many of the analytical questions and issues concerning Σ-∆ modu-

lator behaviour of both practical and theoretical interest. This general approach will be

carried through to the analysis undertaken in this chapter, with the aim of reinforcing and

expanding upon the current understanding of dithered Σ-∆ modulator behaviour.

8.1 Dithered Quantizers

To begin, we show, using a simple method grounded in our dynamical systems approach,

how the first and second error moment results E[εn] and E[ε2
n] may be derived for the case

of RPDF and TPDF dither density functions. For these results, we confine the predithered

quantizer input un to lie on the circle C. This gives no loss of generality, since the quantizer

output and hence the moments for a given un will be unchanged if any integer multiple of

∆ is added to un.

Error Moment Results:

RPDF Dither:

Suppose 0 ≤ un ≤ ∆

2
. Then

E[εn] = Prob(−un < νn < ∆
2
)(∆

2
− un) + Prob(−∆

2
< νn < −un)(−∆

2
− un)

= (1
2

+ un

∆
)(∆

2
− un) + (1

2
− un

∆
)(−∆

2
− un)

= 0,

where we make use the fact that νn has an RPDF distribution, and the effect νn may have

on displacing the error value by a factor of ∆.
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Now suppose −∆

2
< un < 0. Then we get the same expression for E[εn] as above, with

the ∆ displaced εn, and the non-displaced εn terms switched. Thus E[εn] = 0 as well.

Extending these results to the second moment, we have

E[ε2
n] = Prob(−un < νn < ∆

2
)(∆

2
− un)

2 + Prob(−∆
2

< νn < −un)(−∆
2
− un)

2

= (1
2

+ un

∆
)(∆

2
− un)2 + (1

2
− un

∆
)(−∆

2
− un)

2

= 1
∆

(∆
2
− un)(∆

2
+ un)(∆

2
+ ∆

2
+ un − un)

= ∆2

4
− u2

n.

TPDF Dither:

Suppose 0 ≤ un ≤ ∆

2
. Then

E[εn] = Prob(−un < νn < −un + ∆)(∆
2
− un) + Prob(−∆ < νn < −un)(−∆

2
− un)

+ Prob(−un + ∆ < νn < ∆)(3∆
2
− un)

= (2∆2−u2
n−(∆−un)2

2∆2 )(∆
2
− un) + ( (∆−un)2

2∆2 )(−∆
2
− un) + u2

n

2∆2 (
3∆
2
− un).

This follows the same approach as for the RPDF case, where the probabilities are calculated

as areas under the triangular TPDF over the given intervals. Collecting terms, we have

E[εn] = u3
n

∆2 (1 − 1
2
− 1

2
) + u2

n

∆
(−1

2
− 1 + 1 − 1

4
+ 3

4
) + un(−1

2
+ 1

2
− 1

2
+ 1

2
) + (1

4
− 1

4
) = 0.

Suppose −∆

2
< un < 0. Then

E[εn] = Prob(−un − ∆ < νn < −un)(−∆
2
− un) + Prob(−un < νn < ∆)(∆

2
− un)

+ Prob(−∆ < νn < −un − ∆)(−3∆
2
− un)

= (2∆2−u2
n−(∆+un)2

2∆2 )(∆
2
− un) + ( (∆+un)2

2∆2 )(∆
2
− un) + u2

n

2∆2 (−3∆
2
− un).

It can be seen that the case of negative un simply changes the signs of the values of the

three terms in this expression from the situation that exists with positive un. Thus we have

E[εn] = 0 again.
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Extending these results to the second moment for 0 ≤ un ≤ ∆

2
, we have

E[ε2
n] = Prob(−un < νn < −un + ∆)(∆

2
− un)

2 + Prob(−∆ < νn < −un)(−∆
2
− un)

2

+ Prob(−un + ∆ < νn < ∆)(3∆
2
− un)

2

= (2∆2−u2
n−(∆−un)2

2∆2 )(∆
2
− un)

2 + ( (∆−un)2

2∆2 )(−∆
2
− un)

2 + u2
n

2∆2 (
3∆
2
− un)

2

= u4
n

∆2 (−1 + 1
2

+ 1
2
) + u3

n

∆
(1 + 1 − 1 + 1

2
− 3

2
) + u2

n(
1
2
− 1 − 1

4
+ 1

2
+ 1

2
− 1 + 1

8
+ 9

8
)

+ un∆(1
4
− 1

2
− 1

4
+ 1

2
) + ∆2(1

8
+ 1

8
)

= ∆2

4
.

If −∆

2
< un < 0, then the second moment is

E[ε2
n] = (2∆2−u2

n−(∆+un)2

2∆2 )(∆
2
− un)

2 + ( (∆+un)2

2∆2 )(∆
2
− un)2 + u2

n

2∆2 (−3∆
2
− un)

2.

It can be seen that with negative un, the values of the three terms in this expression are the

same as in the situation that exists with positive un. Thus we have E[ε2
n] =

∆2

4
again.

�

These results are thus consistent with the known results from dither theory. The gen-

eral formulas involved may be applied in this brute force manner to higher-order RPDF

convolution densities and to find higher-order error moments. The determination of the

analytic functional form of such higher-order convolutions for application in the formula,

and the final analytic determination of moments from the formula (particularly higher-

order moments) clearly involve lengthy, tedious algebra. These algebraic steps could be

performed symbolically by a computer language such as Maple. Further verification of the

dither theory results for moments is then possible. From a comparison with previous work,

it is clear that frequency domain methods provide a more analytically effective means for

the establishment of the error moment results.
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Figure 8.1: E[ε2
n] as a function of un with RPDF dither

The value of the noise power E[ε2
n] under RPDF dither, as a function of un over C,

is shown in Figure 8.1, with ∆ scaled to 1. This corresponds to the more specific case,

indicated in the figure, one has with a quantizer having no feedback (rn = 0, ∀ n ≥ 0), and

a constant or DC input un = xn = c ∈ R, ∀ n ≥ 0. The noise power then applies as an

average over any number of iterations, and hence as a long run steady state. The graph

in Figure 8.1 is just the parabola given from the second error moment result under RPDF

dither above.

Now we examine the power spectral density results. Standard dither theory gives that

if the dither density function is RPDF or TPDF, then, for a given input sequence un, the

power spectrum for εn is constant and hence white. This condition is equivalent to that

of the errors εn being statistically uncorrelated in time (i.e. for different n), as will be

shown. For RPDF dither, this constant is input dependent (“noise modulation”), whereas

for TPDF dither, it is input independent (controlled) [35], [65]. A more general consequence
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of the general theory may be stated with the following proposition:

Proposition 8.1 Suppose that the dither νn is chosen with a PDF such that the first error

moment (i.e. the error mean) is zero, independent of the predithered quantizer input un.

Then the power spectrum of the error εn will be white.

Proof:

The power spectral density P (f) is defined as the discrete-time Fourier transform F of

the time averaged autocorrelation function << εnεn+τ >>. This gives

P (f) = F [{<< εnεn+τ >>}](f) =

+∞∑

τ=−∞
<< εnεn+τ >> e−2πif τ

fs ,

where fs is the sampling frequency, fs/2 is the Nyquist frequency, and F acts on the

sequence {<< εnεn+τ >>, τ ∈ Z}. If the errors are statistically uncorrelated in time, then

the time averaged autocorrelation function << εnεn+τ >>= lim
T→∞

1

T

T∑

n=0

< εnεn+τ > will

be equal to a constant when τ = 0, and equal to zero otherwise. This is equivalent to a

Fourier transform and hence power spectrum which is constant or white.

We assume that the error behaviour εn may be described either by a discrete or a

piecewise continuous probability mass/density function h(εn) over R. The former case

implies that the error takes on only a countable number of values. The autocorrelation

function may be expressed as follows:

1. If the error has a discrete distribution, then

< εnεn+τ >≡ E[εnεn+τ ] =

eL∑

εn=e1

E[εnεn+τ |εn]h(εn) =

eL∑

εn=e1

εnE[εn+τ |εn]h(εn),

where e1, . . . , eL are the L discrete values that the error εn may take on in R.
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2. If the error has a piecewise continuous distribution, then

< εnεn+τ >≡ E[εnεn+τ ] =

∫ +∞

−∞
E[εnεn+τ |εn]h(εn)dεn =

∫ +∞

−∞
εnE[εn+τ |εn]h(εn)dεn.

The first moment or error mean is zero, which gives that E[εn|un] = 0. Shifting sub-

scripts gives E[εn+τ |un+τ ] = 0. If τ > 0, then εn+τ can only depend on εn through the

predithered quantizer input un+τ via a possible feedback contribution. This implies that

E[εn+τ |εn] = 0, for τ > 0. Substituting this into the sum or the integral above, we get

that the autocorrelation function < εnεn+τ >= 0 if τ > 0, and < εnεn+τ >= Dn if τ = 0,

where Dn is the error variance. From the formulas above, the time averaged autocorrelation

function << εnεn+τ >>= 0 if τ > 0, and << εnεn+τ >>= lim
T→∞

1

T

T∑

n=0

Dn = D if τ = 0,

where D is the time averaged or asymptotic steady state error variance, which is assumed

to exist. From the discussion at the beginning of the proof, we now conclude that the error

εn will be white. �

In [65] by Lipshitz et al., corollaries 1 and 2, one sees that, if the dither is i.i.d., then

the existing theory gives the same conclusion as this proposition. From the proof of this

proposition, we have that the power spectrum constant is simply the time averaged second

error moment. Applying the second error moment results of standard dither theory given in

Section 1.6 to this result when Proposition 8.1 is applied to the cases of RPDF and TPDF

dither, leads immediately to the relationships between the input and the power spectrum

constant stated just before the proposition.

Proposition 8.1 thus provides a simple statement of the relationship between the first

error moment and the error power spectrum induced by dither, and thus a specification

on a property of the dither that is sufficient to bring about a white error power spectrum.

The condition of white errors or white quantization noise implies that all frequency modes
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are equally present in the error quantity dynamics over time, so that limit cycles or the

dominance of the error pattern by certain periodic modes is not possible. Such conditions

improve the quality of the digital representation of sampled analogue signals. Having un-

shaped errors that are white is therefore one desirable goal for Σ-∆ modulators in practice.

It should be noted that having a white error spectrum does not imply that the errors εn

are statistically independent of each other for different values of n. Such independence

constitutes a stronger condition which, conversely, would imply a white spectrum. It is

impossible to achieve this independence with nonsubtractive dither.

Strictly speaking, the second average distribution convergence criterion mentioned in

the discussion of Theorem 7.11 in Chapter 7 is an implied requirement for the result of

Proposition 8.1. Extending the examination of white error behaviour to systems with a

more general dither than that of Proposition 8.1 is difficult, and is not pursued here.

For the rest of this chapter, much of our concern will essentially be with the goal of

analyzing the second moment or error variance E[ε2
n]. This quantity is important because

it corresponds to the noise power, when the overall errors are regarded as noise. We start

by looking at how the quantities associated with the quantizer part of the Σ-∆ modulator

relate, and what formulations we can state. We observe from the topology of Figure 1.7

the following: εn = yn − un and qn = yn − (un + νn). Combining these equations, we arrive

at εn = νn + qn. An expression for the error variance is then given as follows:

E[ε2
n] = E[(νn + qn)2] = E[ν2

n] + E[q2
n] + 2E[νnqn]. (8.1)

The third term in this equation will be zero if and only if νn and qn are uncorrelated. From

the form of the topology, we see that this will generally not hold. The following proposition

provides conditions under which this does hold, along with subsequent results:
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Proposition 8.2 Suppose the predithered quantizer input un is random with a uniform

PDF over C. Then the internal quantizer error qn will be independent of the dither νn,

and qn will be random with a uniform PDF over C (RPDF). Also, the modulator error

variance will equal the sum of the dither variance and the internal quantizer error variance:

E[ε2
n] = E[ν2

n] + ∆2/12, where E[q2
n] = ∆2/12. Moreover, the PDF of the modulator error

value εn will be given by h(ε) =
1

∆

∫ ε+∆/2

ε−∆/2

g(ν)dν, where g(ν) is the PDF of the dither

νn.

Proof:

For a given value of dither νn, the density function for qn is given by

hq(q|νn) = hu(∆/2 − q − νn), 0 ≤ q ≤ ∆/2,

hq(q|νn) = hu(−∆/2 − q − νn), −∆/2 < q < 0,

where hu(u) is the density function for P̂ C1(un), or un on C. These results simply follow

from the topology, and the definition of the quantizer and C. Since hu(u) has a uniform

density over C, it then follows in the expressions above that hq(q|νn) has a uniform density

over C. This density has no dependence on the νn value, and thus qn is independent of νn,

with a uniform density (or RPDF) over C.

With νn and qn independent, we have E[νnqn] = E[νn]E[qn]. Since qn has a uniform

density over C, this implies E[qn] = 0, so that E[νnqn] = 0, from above. From the proba-

bility density, we also have E[q2
n] = 2

∫ ∆/2

0

q2dq = ∆2/12. Substituting these results into

the error variance formula (8.1), we obtain the desired final result.

From the independence of νn and qn, it follows that the density function for the magni-

tude of εn is given by the convolution of the density functions of νn and qn which make up

its sum. Thus

h(ε) =

∫ +∞

−∞
g(ν)hq(ε − ν)dν =

1

∆

∫ ε+∆/2

ε−∆/2

g(ν)dν,
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since hq(q), the density function for qn, is defined as 1/∆ over (−∆/2, ∆/2], (i.e. over C)

and zero elsewhere. �

Proposition 8.2 therefore provides simple error variance and error probability density

results in terms of the statistical properties of the dither, when the predithered quantizer

input is uniformly distributed modulo the circle C. Such a form of predithered quantizer

input may arise in a closed loop Σ-∆ system (where un = xn − rn) in several ways. One

way is to simply have a random external input xn that is uniformly distributed modulo

C. Another way, conversely, is to have an internal feedback rn that may be interpreted

to be random at steady state, with a uniform distribution modulo C. The latter may

arise from a topologically transitive dynamic property of the system, as was discussed in

Chapter 7. More abstractly, “random” initial conditions (uniform over C) in state space

may also bring this about for rn. Clearly having xn and rn independent, and either quantity

uniformly distributed over C, will, by arguments analogous to those used in the proof of

Proposition 8.2, make un = xn − rn uniformly distributed over C.

Generalizing from the idea of the last result of Proposition 8.2, we may express the

probability density of the error εn in terms of the probability densities of the predithered

quantizer input un and the dither νn as follows.

Let h(ε), hu(u) and g(ν) be the probability density functions (probability mass functions

if the distribution is discrete) for the error εn, predithered quantizer input un, and dither

νn respectively, with each defined over R. Then we have the following:

1. If the dither distribution is discrete, then

h(ε) =

+∞∑

k=−∞

hu(
∆

2
− ε + k∆) ·

∑

ν∈S(ε−∆
2

,ε+∆
2

)

g(ν), ε ∈ R, (8.2)

where S(a, b) designates the set of all dither values ν of nonzero probability lying in the
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interval set [a, b) in R.

2. If the dither distribution is piecewise continuous, then

h(ε) =

+∞∑

k=−∞

hu(
∆

2
− ε + k∆) ·

∫ ε+∆/2

ε−∆/2

g(ν)dν, ε ∈ R. (8.3)

The derivations of formulas (8.2) and (8.3) follow directly from the mathematical re-

lationships between un, νn and εn in the system topology, and basic probability results.

Clearly these formulas can be used to give general expressions and derive formulas for the

error moments E[εm
n ], m ≥ 1, in terms of the probability densities of un and νn, using basic

moment definitions involving h(ε). Our previous moment calculations for the RPDF and

TPDF dither cases followed a simple form of this approach.

In the study of this chapter, it becomes both conceptually meaningful and practically

relevant to interpret and express the predithered quantizer input in terms of its state posi-

tion on the unit circle C, that is modulo C, as was done in Proposition 8.2. Conceptually,

this is desirable because this is consistent with the circle map approach used for the state

space description of the error εn in our dynamical system formulation of the Σ-∆ modu-

lator for studying chaos. Practically, it is desirable because we find from the derivation of

the formulas above that values of un that are equal modulo C are “mapped” to the same

error value εn in R for a given dither νn. Hence we see the importance of the circle map

symmetry entering into our analysis, even when we are not applying this interpretation to

our current treatment of the errors εn for which it was first introduced.

If we take ũn to represent the value of un on C, that is ũn = P̂ C1(un), and let hũ(ũ)

denote its PDF/PMF, then we may rewrite the first summation portions of (8.2) and (8.3)

as follows:
+∞∑

k=−∞

hu(
∆

2
− ε + k∆) = hũ(

∆

2
− (ε mod ∆)). (8.4)
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The probability density functions hu and hũ are defined over R and C respectively. Thus (8.4)

expresses the fact that the value of the probability density at a point ũn on C is simply

the sum of the probability densities of all the points un that are equivalently at the point

ũn on C. With this simplification incorporated, we find that if we choose the density to

be uniform over C, that is hũ(u) = 1/∆, then (8.3) reduces to the final density result in

Proposition 8.2.

8.1.1 RPDF Dither

For the next part of this section, we examine the variance properties of the value of the

error εn under conditions of RPDF dither, and its higher-order convolutions. By definition,

RPDF dither (PDF width ∆) has a uniform probability distribution over C. The following

lemma shows that this result also holds for its higher-order convolutions, and indeed for the

convolution of any distribution that is uniform over C with any other independent PDF:

Lemma 8.3 The probability distribution formed from the convolution of a distribution with

a uniform PDF over C, with any other independent probability distribution defined over R,

will have a PDF that is uniformly distributed over C.

Proof:

Let G be a random variable with the PDF of a given distribution over R. Let K be a

random variable with a uniform distribution over C. Then the random variable H = K +G

will have the PDF corresponding to the convolution of the distributions corresponding to

K and G above. A mapping P̂ C1 from R to the equivalent position on C may be given by

P̂ C1(x) = ∆/2 − (Q(x) − x), m∆ ≤ x ≤ m∆ +
∆

2
,

P̂ C1(x) = −∆/2 − (Q(x) − x), m∆ − ∆

2
< x < m∆,
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for x ∈ R, where m ∈ Z, and Q(x) is the usual Σ-∆ quantizer function. From this

mapping form, it is clear that H will be uniformly distributed over C (i.e. modulo C),

if its quantization error qH = Q(H) − H has a uniform PDF over C. Now applying

Proposition 8.2, with un = K, νn = G, and qn = qH , we have that qH has a uniform PDF

over C. Thus, from the above, the required result follows. �

Corollary 8.4 The probability distribution of an nth order convolution of RPDF dither

will have a PDF that is uniformly distributed over C, for all n ≥ 1.

Proof:

The probability density function of an nth order convolution of RPDF dither can be

expressed, by definition, as the convolution of a RPDF with the PDF of an (n− 1)th order

convolution of RPDF dither, if n > 1. The RPDF dither has by definition a uniform PDF

over C. Applying Lemma 8.3, we then have the required result for the PDF of the nth

order convolution of RPDF dither. By definition, this result also holds for n = 1. By

induction, we have the required result. �

Now let us consider the case of a system with RPDF dither νn and some arbitrary (i.e.

unknown or unspecified) predithered quantizer input un. We may apply Proposition 8.2

with the roles of νn and un reversed. By the symmetry of the relationship between un,

νn and qn, we can conclude, from Proposition 8.2, that the internal quantizer error qn has

a uniform PDF over C and is independent of un. This is a restatement of the result of

Schuchman [59]. Both νn and qn are now RPDF with mean zero and variance ∆2/12. From

the modulator error variance formula (8.1), we thus have

E[ε2
n] =

∆2

6
+ 2E[νnqn]. (8.5)
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In the event that νn and qn are uncorrelated, (8.5) reduces to an error variance value of

∆2/6 (since E[νnqn] = 0 then). This corresponds to the variance of a TPDF distribution

of width 2∆, which is the distribution one obtains for the modulator error when νn and

qn are not only uncorrelated but also independent. In this case, the relation εn = νn + qn

corresponds to the distribution of the error as a convolution of the distributions of the

RPDF dither and RPDF internal quantizer error, which is hence the TPDF mentioned

above. Since (from dither theory) an RPDF dither cannot be guaranteed to control or fix

the error variance, then, of course, in general νn and qn will be correlated, and the second

term in the variance formula (8.5) will be nonzero. As we shall see, this term may be either

positive or negative, with an expected value of zero when un is chosen randomly from a

uniform distribution over C. Hence the value ∆2/6 may be considered a generic average

value of the error variance when RPDF dither is used1. Note that the random processes

νn and qn, n ≥ 0, associated with a closed loop feedback system can never be independent;

they are related by the quantization operation Q and the feedback.

We now extend our analysis to the case of a system with dither νn that is p > 1 con-

volutions of RPDF. First, we suppose that the predithered quantizer input un is uniformly

distributed over C (see Section 8.2 for context). Then, from Proposition 8.2, it follows that

the error variance will be the dither variance (p times the RPDF variance) plus the variance

of qn (same as for RPDF) and hence (p + 1)
∆2

12
. Since, from dither theory, the variance

1This result — a consequence of Proposition 8.2 that will be developed further in Section 8.2 — would

seem to improve upon the results of Lipshitz et al. which provided for an average variance of ∆2/4 under

general conditions. Lipshitz et al. assume the dither is TPDF and make no other assumptions (see our

second moment derivation for TPDF dither, which is this constant hence applies as the average result). We

are using RPDF dither, but are making the very strong assumption of a uniformly distributed predithered

quantizer input in time over C. It is this special circumstance, which on the surface seems rather general,

that allows for our improved average variance result.
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with p > 1 convolutions of RPDF dither must be constant for any system, it follows that

the value of this constant variance is (p + 1)
∆2

12
. If the predithered quantizer input is now

arbitrary, we may apply Proposition 8.2 with the roles of νn and un reversed, which is a

more general form of Schuchman’s result. For this we use the fact that the convolution of p

RPDF dithers is uniform over C by Corollary 8.4. Thus qn is uniform over C. Applying the

error variance formula (8.1), we then have that E[ε2
n] = (p+1)

∆2

12
= p

∆2

12
+

∆2

12
+E[νnqn].

Thus E[νnqn] = 0, showing that νn and qn are always uncorrelated when p > 1. This

consequence is consistent with what we might expect, after examining this correlation term

in the RPDF dither case earlier.

An important advantage of using RPDF dither over dither of higher RPDF convolutions

is the reduction of the error variance level to the general neighbourhood of ∆2/6 from

the higher fixed levels associated with the higher-order PDFs. A disadvantage is that

this variance is not fixed, but input dependent. We wish to lessen this disadvantage by

understanding more about the dependency of this variance on other aspects of the system.

In the work to follow, we will see, for RPDF Σ-∆ modulator systems, how the error variance

may vary about the reference level of ∆2/6 and under what circumstances this variance

level may be attained.

8.2 Dithered Σ-∆ Modulators

When extending the statistical analysis of the overall error εn from quantizers to a full Σ-∆

modulator system, it is important, at least mathematically, to make the distinction between

the statistics of the error εn at some fixed value of n, versus a long run steady state error εn

as characterized in Chapter 7. In a dithered system that is otherwise deterministic (without

dither), these quantities generally differ, and it is only the steady state interpretation that
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gives a consistent and meaningful result. From a practical point of view, it is the steady

state error and its statistics that are of interest, in any event, since this corresponds to

what we have with a typical observed error εn at arbitrary and large n, or a sample of a

long sequence of such errors.

The following results, taken together with the results presented in Section 7.2, provide

general conditions under which a variance level of ∆2/6 may be achieved for the Σ-∆

modulator error, with RPDF dither.

Theorem 8.5 Suppose the error εn has a uniform PDF over C (i) for a given n ≥ 0, or

(ii) in its long run steady state behaviour. Then the PDF of the predithered quantizer input

un will be uniformly distributed over C (iii) for the given n ≥ 0 if (i) holds, or (iv) in its

long run steady state behaviour if (ii) holds.

Moreover, the conditions and results of Proposition 8.2 will hold for cases (i) or (ii)

respectively. More specifically, if the dither is a convolution of p RPDFs, then the PDF of

the value of the error εn, for the given n in case (i), or in its long run steady state in case

(ii), will be a convolution of (p + 1) RPDFs for n ≥ 1, p ∈ Z+.

Proof:

For the proof, we shall consider εn to be such that either n satisfies (i), or n is chosen

arbitrarily so that (ii) can be taken to apply. Clearly, there is a one-to-one mapping

between the value of un on C, and the value of εn on C, in the nondithered case, given

by fε(u) = ∆/2 − u, if 0 ≤ u ≤ ∆/2; and fε(u) = −∆/2 − u, if −∆/2 < u < 0. The

addition of dither νn may change the value of the quantizer Q(un + νn) by some integer

multiple of ∆, which does not change the value of εn on C. Thus this one-to-one mapping

remains the same with any arbitrary dither present. From the form of fε(u), it is clear

(considering the inverse of fε(u)) that a uniform density function over C for εn can only be
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mapped to by a uniform density function for un over C. Thus we have the first result.

The conditions for and results of Proposition 8.2 then apply. Now applying Proposi-

tion 8.2, we have that the internal quantizer error qn is independent of the dither νn, and

has a uniform PDF over C that is hence RPDF. Applying this to the relation εn = νn + qn,

we then have that the PDF of the error value εn is the convolution of the PDF of qn with

the PDF of νn. Thus if the dither is the convolution of p RPDFs, we get the required result

for the PDF of εn. �

We may note that this theorem demonstrates a situation where an error PDF of (p+1)

RPDF convolutions arises from a system with dither that is a convolution of p RPDFs.

This is not true in general, particularly when considering a given n ≥ 0 (case (i)). It is

true here only because of the uniform distribution assumption over C of εn or un — an

assumption that has a more pertinent role in the context of the steady state. The variance

of this error would then be, by independence, (p + 1) times the RPDF variance, and hence

(p + 1)
∆2

12
, (as given from Proposition 8.2).

More generally, Theorem 8.5 asserts essentially that if we know that the error value εn

is uniformly distributed over C, then, for a given dither νn with known PDF added, we

can determine the PDF of the error value εn as a convolution of an RPDF with the dither

PDF. In short, we can apply Proposition 8.2. The error value variance E[ε2
n] then follows

as well. Seeking to utilize Theorem 8.5 for this purpose, Theorems 7.5, 7.7, 7.10, 7.13,

their corollaries, and Propositions 7.9 and 7.12 from the work of the last chapter, will

provide conditions under which the error value εn will be uniformly distributed over C.

The following result then follows automatically from Proposition 7.16:
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Proposition 8.6 Suppose that the system satisfies one of Theorems 8.5, 7.5, 7.7, 7.10

plus (R), 7.13, their corollaries, Propositions 7.9 plus (R), 7.12 for all n ≥ 0, or 7.16.

Suppose also that the system has a dither νn that is the convolution of p RPDFs. Then,

under the conditions of the theorem, corollary or proposition that the system satisfies, the

PDF of the value of the system error εn will be a convolution of (p + 1) RPDFs in its long

run steady state behaviour (or for all n ≥ 0, if Proposition 7.12 is satisfied for all n ≥ 0,

or Proposition 7.16 with (i) is satisfied).

Proof:

This follows from applying Theorems 7.5, 7.7, 7.10, 7.13, their corollaries, and Proposi-

tions 7.9 and 7.12; with Proposition 7.16 and Theorem 8.5. �

Proposition 8.6 now provides conditions under which an error value variance of ∆2/6

may be achieved in steady state. Specifically, for a system with RPDF dither, if any

of Theorems 8.5, 7.5, 7.7, 7.10, 7.13, their corollaries, Propositions 7.9, 7.12 or 7.16 are

satisfied, along with condition (R) for 7.10 or 7.9, then the error value εn will have a TPDF

distribution in the long run (steady state) and hence a variance of ∆2/6. In short, the

attainment of a uniform PDF of εn over C is sufficient for the RPDF dither to yield the

nominally ideal value of ∆2/6 for the error value variance.

This uniform PDF must exist when the dither is present if condition (R) does not hold,

(if (R) holds, its existence in the nondithered case is sufficient). Even if we had produced

more general results in Section 7.2 concerning the existence of steady state uniform er-

rors over C, we could not, in general, reach the TPDF error distribution conclusions from

RPDF dither here if (R) does not hold. Incorporating the effect of dither into the analysis

of the error dynamics is difficult under such generality, as was seen in Chapter 6. Therefore
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we do not attempt to extend our approach to arriving at error distribution and variance

conclusions in thesis to beyond our condition (R) treatment, as such (see the second last

paragraph of Section 8.2 for further discussion). Clearly some perturbation of the condi-

tions from those in the theorems might be expected to yield systems whose resulting error

variance E[ε2
n] is perturbed off the ∆2/6 result.

To clarify the significance of Proposition 8.6 for Σ-∆ modulator systems, and put it in

some overall context, we make the following comments. The results are important in that

they provide for a constant (input independent) steady state error variance (i.e. ∆2/6) over

certain classes of input xn, for various system forms (pertaining to the different theorems

and results in Proposition 8.6). For example, when there is a nonminimum-phase zero, the

initial condition ~x0 is of generic type, and condition (R) holds (conditions of Theorem 7.5),

then the steady state error variance will be constant for any periodic input xn. Establishing

a constant variance result over systems with a range of possible input sequences xn, in this

manner, is an important accomplishment, considering that under RPDF dither, the error

variance will generally vary, not only at a given n as the predithered quantizer input un

varies, but in steady state as the overall structure of un varies (e.g. from one periodic

form to another). The results also provide for the constant (I.C. independent) steady state

variance over general classes of initial conditions ~x0, for various system forms. The absence

of these error properties for some general forms of the first-order model of Section 8.3

illustrates the relative nontriviality and uniqueness of our result, and the need for rigorous,

theoretical approaches to establish results of this nature.

Also of importance is the fact that the constant steady state variance is at the nominally

ideal value of ∆2/6 for RPDF dither, indicating that the error variance biases, at particular

values of n, on average, balance out. This result may not seem overly remarkable, in

the sense that this is the mean variance E[E[ε2
n]] one would expect at a particular n,
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for un chosen from a uniform distribution over C (which is our steady state interpreted

result). It is important, however, to assert that this nominal value, and the implied average

noncorrelation between qn and νn, hold over the general conditions (e.g. regarding input

xn, initial conditions mentioned above) for the various results in Proposition 8.6, and that

the steady state variance is hence below the fixed value of ∆2/4 given by TPDF dither as

well. Note that this steady state variance really pertains to the steady state of E[ε2
n] given

by E[E[ε2
n]], over general n (i.e. “n” is a random variable as discussed and characterized

in Section 7.1).

Discussion:

As we noted in the footnote of Subsection 8.1.1, the steady state variance result of

∆2/6 that follows from Proposition 8.2 requires the strong condition that the predithered

quantizer input un have a uniform steady state over C. Under the conditions of Theorem 8.5

and satisfied by the conditions of Proposition 8.6, the requirement is still rather strong —

namely that the error εn have a uniform steady state over C. One might argue that the

conditions of the theorems and results of Chapter 7 that satisfy this for Proposition 8.6 are

overly restrictive, or of limited practical relevance — they require special filter forms (e.g.

condition (R)), an input that is at least periodic, quasiperiodicity in the error, or stochastic

initial conditions or input.

We believe that our are assumptions are nevertheless reasonable. As with the case of

chaos or stability, the filter conditions at hand may be satisfied via the flexibility one nat-

urally has to choose the filter coefficients. Systems with input that is periodic, constant,

or that induces quasiperiodic behaviour are often investigated analytically or via simula-

tion by researchers to learn more about pertinent issues of performance such as stability,

limit cycle behaviour, chaos or noise control. General practical input signals may possess

periodic components as well, and thus are amenable to some analysis via a periodic input
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model. Systems with stochastic initial conditions or input may be studied to help address

theoretical questions, and provide insights that are potentially applicable to certain prac-

tical systems or issues in the future. Moreover, our conditions for a uniform steady state

error over C are strongly integrated with our conditions for chaos, thus allowing one to of-

ten satisfy both properties with little more than the conditions of either one. In important

respects, the steady state conditions are weaker, requiring only one nonminimum-phase

zero of p(z). In fact, they are weaker than our condition in Chapter 7 for whiteness (which

requires two such zeros). And finally, the uniformity property obviously possesses an as-

pect of symmetry and regularity, which we believe is likely to arise, in steady state, in more

general systems with RPDF dither than those provided in Proposition 8.6. Therefore the

results we have may constitute an important starting point for extensions, through further

analysis, and thus represent the outline of a larger theory with broader direct applications.

Error Dependencies on Dither:

We shall clarify further what we may state about the statistical dependence of the error

εn on C, and the internal quantizer error qn, upon a dither νn in the Σ-∆ modulator. From

the dynamical analysis in Chapter 6, it follows that the value of εn on C, i.e. ε̆n, will

always be statistically independent of νn at the given value of n, and will be independent

of all previous dithers νk, 0 ≤ k < n, as well, when condition (R) holds. From the results

at the end of Chapter 6, it follows that qn will be statistically independent of νn at the

given n when un, at this n, is uniformly distributed over C (generally not true otherwise —

essentially never when the PDF of νn is continuous anywhere), and will be independent of

all previous dithers when (R) holds. Regardless of these properties however, it is easy to see

the truth, asserted earlier, of how the random processes qn and νn can never be independent

in a Σ-∆ modulator system with fixed initial conditions and deterministic input:

From the relations discussed in Chapter 6, we have qn = P̂ C1(ε̆n − νn). Since any
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randomness in ε̆n depends, at most, only upon the dithers νk, 0 ≤ k < n, and the dither

is i.i.d., it follows that the value of qn depends statistically upon all, or some subset of νk,

k = 0, . . . , n.

The results of Theorem 6.5, as well, extend directly from functional, to statistical de-

pendence of ε̆n upon the previous dithers. Note that if (R) holds, then ε̆n and un are always

nonrandom.

The value of un, at any n, can be uniformly distributed over C (and indeed have a

PDF that is anywhere continuous) only as a consequence of a random input xk for some

k values between 0 and n, and/or a random initial condition ~x0. This provides a means

for qn to be statistically independent of νn at the given value of n, and potentially of all

previous dithers (and/or ε̆n as well). The steady state concept of ε̆n, qn and un that we

have used also allows for this situation at an arbitrarily interpreted given “n”. The notion

of the dependence of ε̆n or qn upon previous dithers does not apply in the steady state

context, however, because these random variables represent average behaviour, rather than

behaviour at a particular value of n.

For a Σ-∆ modulator system with fixed initial conditions and deterministic input, un

(and ε̆n), at a given n, will essentially be described by a discrete probability mass function,

when (R) does not hold. This is because the dither induces random, discrete perturbations

in the value of the error εn, as denoted by mn∆ in Chapter 6. We may conjecture the

possibility that, with certain filters, the discrete distribution for un will converge to a

uniform distribution over C in the limit as n → ∞. This might come about, for example,

when the ai and bj are such that some of the r̃k from (R) are irrational, and a quasiperiodic

distribution of the perturbation outcomes of un is induced over C as n → ∞. Thus it

may be possible to extend the results of Proposition 8.6 to Σ-∆ systems with broad and/or

easily constructible classes of filter forms, when (R) does not hold. We might expect these
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extensions, in particular, to be synonymous with the existence of chaos. In such results,

we would be dealing with a steady state interpretation in the first average distribution.

Although generalizations to a full state space analysis on CM , akin to the more theoretical

work of Chapter 7, may be possible, the context put forth here (consistent with that of

Chapter 8) is that of the single error coordinate εn in one dimension. Exploring these ideas

and possibilities would then be a good topic for future research. �

With these overall results, some basic conditions have been presented under which the

introduction of a convolution of p RPDFs of dither to the system will bring about an

error value with a PDF that is a convolution of (p + 1) RPDFs. This simple consequence

represents the practical aims that contributed to motivate the more theoretical process

that was undertaken in Chapter 7 to arrive at some understanding of the statistical and

dynamical system behaviour here. These theorems and results provide both a diverse range

of scenarios under which the resulting error variance of ∆2/6 arises, and several possible

points of reference for further analysis. We shall now show a more specific relevance of these

results, with the investigation of the Σ-∆ modulator with RPDF dither, and the variance

properties of its error.

8.3 First-Order Model

We continue the analysis by focusing on the simple first-order Σ-∆ modulator system with

unity gain and constant input and RPDF dither, so that M = 1, N = 0, a1 = 1, and

xn = c ∈ R, for all n ≥ 0. The difference equation describing this system (nondithered),

from (1.2), is as follows:

εn =
∆

2
− [(c − εn−1) mod ∆], n ≥ 0. (8.6)
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From Theorem 7.13 and Proposition 8.6, this system will have TPDF error, and hence error

variance ∆2/6 in steady state if c/∆ is irrational. This will hold for any initial condition

ε−1. If we allow the gain a1 in (8.6) to take on integer values different from ±1 or 0, then,

from Theorem 7.7, the system will maintain error variance ∆2/6 and TPDF error in steady

state, for any real value of c/∆. This is provided the initial condition ε−1 is not a periodic

point, and does not enter into a limit cycle or fractal attractor after successive mappings.

Such initial conditions would be expected to form a set of measure zero on C. Note that

for this case and the result, xn may also vary with n. If, on the other hand, we keep the

original conditions as in Theorem 7.13, but specify c/∆ to be strictly rational, we then find

that every initial condition ε−1 will be a periodic point of the system. The PDF of the

steady state error will then be discrete for any initial condition, and the error variance will

generally not be ∆2/6. We will proceed to analyze this case further.

8.3.1 Analysis

We begin this analysis by first characterizing the orbits that arise for a given constant input

c that is a rational multiple of ∆, and initial condition ε−1. Let the input be represented

by c =
p

q
∆, where p and q are coprime integers. If c = 0, then q ≡ 1. Using the difference

equation (8.6) , we have the following:

Orbit Sets of u:

Case (a): If q is odd, or q is a multiple of four (and hence even), then the un orbit

modulo C will lie on points in the set {ε̃∗−1 ±
i

2k
∆, ε̃∗−1 +

∆

2
, i = 0, . . . , k − 1}, where

k = q if q is odd, and k =
q

2
if q is a multiple of four. Here also

ε̃∗−1 = −(ε−1 mod
∆

2k
), and − ∆

2k
< ε̃∗−1 ≤ 0.
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Case (b): If q is even, but not a multiple of four, then the un orbit modulo C lies in

the set {ε̃∗−1 ±
i

2k − 1
∆, i = 0, . . . , k − 1}, where k =

1

2
(
q

2
+ 1). In this case

ε̃∗−1 =
∆

2(2k − 1)
− (ε−1 mod

∆

2k − 1
), and − ∆

2(2k − 1)
< ε̃∗−1 ≤ +

∆

2(2k − 1)
. �

For all cases, the orbit points of εn on C may be obtained from these orbit points for un

on C by the relation εn =
∆

2
−un if 0 ≤ un ≤ ∆

2
, and εn = −∆

2
−un if −∆

2
< un < 0.

From these relations, we see that the orbit sets for εn will take on a configuration that is

topologically equivalent to that for un on C. For the orbit of un or εn on C, we get either

2k or 2k−1 equally spaced points on the circle, for cases (a) or (b) respectively. The period

of each point in the orbit will be 2k or 2k − 1 for (a) or (b) respectively as well.

With this information, we want to construct formulas for the error variance as a function

of q and the initial condition ε−1, under the regime of RPDF dither. The probability

distribution for the error εn will be taken essentially to correspond to steady state. For the

value of a single input un on C, we have seen earlier (beginning of Section 8.1) that the

error variance is
∆2

4
− u2

n. Applying this to the case of an orbit set with a finite number

of points, the variance would then be given by the expression
∆2

4
−

nu∑

i=1

piu
2
(i), where

the orbit set {u(i)} has nu elements, and the ith element has (steady state) probability of

occurrence (i.e. relative frequency) pi, with

nu∑

i=1

pi = 1. Thus if an element u(i) is periodic

with period T̂i, then pi =
1

T̂i

. If un on C has a continuous steady state PDF hu(u), then

the error variance is the analogous integral expression
∆2

4
−

∫ ∆
2

−∆
2

hu(u)u2du. Applying

the finite orbit set formulas to cases (a) and (b) above, we get the following expressions for

the error variance:
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1. (a) E[ε2
n] =

∆2

4
− 1

2k
[2∆2

k−1∑

i=1

(
i

2k
)2 + 2kε̃∗−1

2 + ε̃∗−1∆ +
1

4
∆2];

(b) E[ε2
n] =

∆2

4
− 1

2k − 1
[2∆2

k−1∑

i=1

(
i

2k − 1
)2 + (2k − 1)ε̃∗−1

2].

Using the summation formula

n∑

i=1

i2 =
1

6
n(n + 1)(2n + 1), the above expressions can be

simplified to give the following formulas:

2. (a) E[ε2
n] =

∆2

6
− [ε̃∗−1

2 +
ε̃∗−1

2k
∆ +

∆2

24k2
];

(b) E[ε2
n] =

∆2

6
− [ε̃∗−1

2 − ∆2

12(2k − 1)2
].

We can combine these two formulas into one single formula, by letting ε̃−1 = ε̃∗−1, and

s = 2k in case (a); and ε̃−1 = ε̃∗−1 −
1

2(2k − 1)
, with s = 2k − 1 in case (b). With these

adjustments, we arrive at the following, incorporating both cases2:

2. E[ε2
n] =

∆2

6
− [ε̃2

−1 +
ε̃−1

s
∆ +

∆2

6s2
];

where s = 2q if q is odd, s = q if q is a multiple of 4, and s =
q

2
if q is even, but

not a multiple of 4;

ε̃−1 = −(ε−1 mod
∆

s
), −∆

s
< ε̃−1 ≤ 0.

In these formulas, we see that the bracketed terms represent the deviation or perturba-

tion of the error variance from the reference point ideal of
∆2

6
discussed earlier. The value

of E[ε2
n] as a function of ε̃−1, with s constant, is described by a concave down parabola

over the interval of definition of ε̃−1 as given in formula 2 above, with vertex maximum at

the interval midpoint, and minimum at the endpoints. Specifically, the variance maxima

2The corresponding error variance formula for the same first-order model with a mid-tread quantizer is

given by:

E[ε2

n
] =

∆2

6
− [ε̃2

−1
+

ε̃
−1

q
∆ +

∆2

6q2
],

where q is as defined at the beginning of this subsection, and ε̃
−1 = −(ε

−1 mod
∆

q
), −∆

q
< ε̃

−1 ≤ 0.
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Figure 8.2: E[ε2
n] as a function of ε−1 when q = 1

and minima are given as follows:

3. E[ε2
n]max =

∆2

6
+

∆2

12s2
, at ε̃−1 = −∆

2s
;

E[ε2
n]min =

∆2

6
− ∆2

6s2
, at ε̃−1 = 0, −∆+

s
.

By extension, it follows that the error variance as a function of ε−1 over C is described by

a piecewise continuous union of s equivalent parabolas of this form. The value of E[ε2
n],

i.e. the noise power, as a function of ε−1 for the fairly simple case when q = 1, is shown

in Figure 8.2, with ∆ scaled to 1. This corresponds to an input c that is zero, or more

generally an integer multiple of ∆, and yields two parabolas over the domain C.

If we are interested in controlling the error variance to a level below
∆2

6
, then we may

obtain, from a further analysis of formula 2, the following intervals for ε̃−1 on which this

holds:

4. E[ε2
n] <

∆2

6
, if |ε̃−1 −

i

s
∆| <

∆

2s
(1 − 1√

3
), i = 0, −1.
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Equality holds when the inequality is replaced by equality in the expression. In terms of

the value of the initial condition ε−1 on C, this result says that the error variance will be a

minimum if ε−1 is chosen to be a point of the form ± i

s
∆, for i = 0, . . . ,

s

2
, in case (a), and

i = 0, . . . ,
1

2
(s + 1)− 1, in case (b). The error variance will be less than

∆2

6
if ε−1 is chosen

to be within a distance of
∆

2s
(1− 1√

3
) of the respective points. The error variance will be a

maximum if ε−1 is chosen at the midpoints between these points. From these results it can

be seen that intervals on C over which the initial condition ε−1 will give an error variance

of less than
∆2

6
have a combined length of (1− 1√

3
)∆, or about 42% of the total length of

C. Thus if ε−1 is chosen at random according to a uniform PDF over C, we would expect

the resulting system error variance to be over
∆2

6
with about 58% probability.

For ε−1 chosen randomly on C according to a PDF h(x), the mean or expected er-

ror variance would be given by

∫ +∆
2

−∆
2

h(x)E[ε2
n|ε−1 = x]dx. If h(x) is uniform so that

h(x) =
1

∆
for x ∈ C, we may calculate the expected error variance as follows:

5. E[ε2
n] =

s

∆

∫ 0

−∆
s

(
∆2

6
− [x2 +

x

s
∆ +

∆2

6s2
])dx

=
∆2

6
+ [

1

3s3
− 1

2s3
+

1

6s3
]s∆2 =

∆2

6
.

Thus the expected error variance is always
∆2

6
, for any rational

c

∆
. From the functional

form of E[ε2
n] over C as a union of parabolas, we have that the deviation of the variance

below this level, for ε−1 over the corresponding portions of C (42% of total), is then greater

(i.e. carries more weight) than the deviation above on the remaining portions of C. The

peak deviations above and below are similarly unequal. Their averages on the corresponding

portions of C are equal and opposite sign and so cancel. Notice now that the system (8.6)

under consideration (for any xn) satisfies the conditions of Theorem 7.10. Our random

choice of ε−1 with uniform PDF over C then corresponds to the error PDF fixed point
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implied by this theorem. By Theorem 8.5, and Propositions 7.16 and 8.6, the error value

εn will then have a TPDF and the variance will hence be
∆2

6
. Therefore the results obtained

by integration for the expected error variance above is consistent with the prediction from

our preceding theory.

The discrete PDF for the steady state error value εn may be obtained straightforwardly

from the orbit sets for un. If the orbit set {u(i)} has nu elements, then the steady state PDF

for un will be a sequence of nu equally spaced point masses about C, each with probability

value
1

nu
. The positions of these point masses {u(i)} are given specifically by the orbit set

descriptions for cases (a) and (b) presented at the beginning of this subsection. The steady

state PDF for εn will then be a sequence of generally 2nu point masses that are equally

spaced along the interval of length 2∆ centred on 0. From consideration of the RPDF

dither, and the quantizer Q in the system topology, these point masses will be located

at the points +
∆

2
− u(i) and −∆

2
− u(i), for i = 1, . . . , nu, from the orbit set {u(i)}. The

corresponding probability values will be
1

2
+

u(i)

∆
and

1

2
− u(i)

∆
respectively, for i = 1, . . . , nu.

From a graphical examination, it can be seen that the point masses of this steady state εn

PDF trace out an envelope that corresponds to the triangular TPDF with base length 2∆.

We now consider the situation where we allow s to vary. From the formulas in 3 for the

variance maximum and minimum, it is clear that as the number of points nu in the orbit

set of un and εn on C increases, and hence s increases, the deviation of these extremum

values for E[ε2
n] from the value of

∆2

6
will decrease. Thus the parabolas in the graph of

E[ε2
n] as a function of ε−1 over C will increase in number, but shrink in vertical length

about
∆2

6
as s increases. The value of s will increase if and only if the denominator q

in the representation c =
p

q
∆, of the “rational multiple of ∆” input c, increases. This

condition corresponds to a rational input c that is becoming more similar in character to

an irrational number. Taking this further, let Aq be the set of all rational numbers in
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R with denominator q in its coprime integer fractional representation. Then we expect

lim
q→∞

Aq to be the set of all irrational numbers in R. Thus we expect the limiting case in

our variance results, as q → ∞, to correspond to the realization of an irrational value for
c

∆
.

In this limiting case, we see from our results above that k → ∞, ε̃−1 → 0 and

E[ε2
n] → ∆2

6
, for all ε−1. The point masses in the steady state PDF for εn will also

fill up the TPDF envelope, yielding a convergence of this discrete PDF to the continuous

TPDF. From Theorem 7.13 and Proposition 8.6, these error variance and PDF results cor-

respond to what is predicted when the input c is an irrational multiple of ∆. Conversely,

we may use these limiting properties to give essentially a proof of Theorem 7.13, under the

specific conditions of RPDF dither, as follows:

Alternative Proof of Theorem 7.13:

Suppose the system (8.6) is as specified in Theorem 7.13, with input c an irrational

multiple of ∆, and, without loss of generality, ε−1 ∈ C. Let c(n) be a sequence of rational

numbers satisfying c(n) =
en

2n
, where en = {x ∈ Z | | x

2n
− c

∆
| ≤ | y

2n
− c

∆
|, ∀ y ∈ Z}. Then

we have |c(m) −
c

∆
| <

1

2n
, ∀ m ≥ n, and for any n ≥ 1. Thus the sequence c(n) converges

to
c

∆
as n → ∞. From our results above, we have that, for the system (8.6) with input c(n)

and RPDF dither, the steady state error value PDF converges to the TPDF as n → ∞.

Thus the steady state error value PDF for the system with the given input c and dither

will be TPDF and hence uniformly distributed over C. �

Clearly such a proof can be extended to more general dither cases when a corresponding

analysis, showing the expected analogous asymptotic error behaviour for the rational
c

∆
,

has been established. Thus we have shown how the analysis from our rational input model
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yields results corresponding to the irrational input case, in the limit as the rational input

approaches an irrational form. In the opposite extreme, we see that an input that is an

integer multiple of
∆

2
will yield the maximum deviations of the error variance from

∆2

6
.

For this case, if the initial condition ε−1 is 0, the variance will be the minimum of 0, and if

ε−1 is
∆

2
, it will be the maximum of

∆2

4
. Note that the shrinking of the variance deviation

to zero does not occur uniformly as the value of the denominator q in the rational factor

of the input increases — the deviation oscillates within uniformly increasing envelope lines

(e.g. showing why q = 2 and not q = 1 gives the maximum).

The analysis of this subsection proves that the first-order Σ-∆ modulator with unity

gain, RPDF dither, and a constant input that is a rational multiple of ∆ has a steady state

error variance E[ε2
n] that is generally not

∆2

6
(holds only for a countable number of initial

conditions). Thus the claim of Reiss in [52] mentioned in Section 1.6 that this variance

must always be
∆2

6
with any constant input is proved incorrect. We have proven that his

claim applies only when the input is a constant irrational multiple of ∆. Our results then,

more broadly, serve to demonstrate the limits of assuming some input or initial condition

independence of the steady state error variance under RPDF dither, as suggested from

Proposition 8.6 and discussed in Section 8.2. For the first-order model here, this variance

is not constant over the set inputs xn that are constant, rational multiples of ∆, and varies

continuously with the initial condition ε−1 as well.

Nevertheless, it is worth summarizing the results for error control that we have estab-

lished for the first-order model of this section. From Proposition 8.6, we have the constant

steady state error variance of
∆2

6
holding over the set of all inputs xn that are a constant

irrational multiple of ∆, and all initial conditions ε−1 ∈ C. In addition, equation 2 provides

explicit conditions under which the steady state error variance can be made low, via the

choice of initial condition and input that is a constant rational multiple of ∆. The lowest
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variance values are possible for the lowest values of s.

The methods and approach of this subsection could be similarly applied to higher or-

der systems satisfying (R) with no nonminimum-phase zeros, to give a steady state error

variance description. Clearly many classes of such systems will fail to satisfy Theorem 7.14

and Proposition 8.6, and will have steady state error variances that are not generally
∆2

6
under RPDF dither. Extending the analysis to systems where (R) does not hold would

appear to be not much more tractable, however, than for the theoretical studies undertaken

previously to establish a uniform steady state error, for example.

8.3.2 Simulations

A number of simulations were carried out in double-precision floating-point arithmetic on

a computer to test the viability of the above theory for predicting error variance and PDF

results, for the first-order Σ-∆ modulator with unity gain and constant input of (8.6)

subjected to an RPDF dither. From the discussion of time series analysis in Section 7.3, it

is expected that the asymptotic long run behaviour of any given realization via simulation,

for this specific system, will converge to the theoretical steady state form. The simulations

were hence conducted and considered with this predictive property in mind.

The noise shaper simulation computer program that was employed, with a given initial

condition ε−1, runs a large number of iterations of the difference equations of the dithered

system (1.2), and then calculates statistical properties such as error standard deviation

and error PDF plots (as appropriately scaled histograms), based on a sample estimation of

these properties conducted over the large number of iterations run. Specifically, the program

conducts an integer number of “runs”, where each run corresponds to 214 = 16384 iterations

or “samples”. We present here results from four simulations using a reasonable rational

input, and a series of simulation results where a near irrational form of rational input was
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(a) (b)

Figure 8.3: Simulation histograms for εn with c =
1

4
and (a) ε−1 = 0, (b) ε−1 = 0.1

used. Note that ∆ = 1 here, and that
1√
6
≈ 0.40824829. The numerical specifications,

predictions, results, and differences between the two are summarized in Tables 8.1 and 8.2

near the end of this subsection.

For the first two simulations, a constant input of c =
1

4
was used. The first case used an

initial condition of ε−1 = 0, and the second case an initial condition of ε−1 = 0.1. For both

cases, the simulation went through 211 = 2048 runs. This gives 33,554,432 (≈ 3.4 × 107)

samples in the average. For the first case, the error variance formula in 2.(a) predicts a

standard deviation (square root of the variance) that is 1.296358 × 10−2 below the base

value of
1√
6
. The simulation result reports a value that is 1.292263 × 10−2 below

1√
6
.

The net difference between these two results is 4.096 × 10−5. In the second case, the error

variance formula 2.(a) predicts a standard deviation that is 5.57534×10−3 above
1√
6
. The

simulation result gives a value that is 5.55299×10−3 above
1√
6
. The net difference between

these results is 2.236 × 10−5. The simulation plots of the PDFs for εn in these cases are

given, with the ε−1 = 0 case in Figure 8.3(a), and the ε−1 = 0.1 case in Figure 8.3(b).
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Figure 8.4: Simulator text output corresponding to Figure 8.3(b) case

These plots display the predicted point mass PDFs tracing out the TPDF envelope. The

position and length of the bars are as given from our expressions, with the bars from Figure

8.3(a) shifted to the right by the initial condition shift of 0.1 in Figure 8.3(b).

Figure 8.4 shows the text output of the simulator corresponding to the second case, and

Figure 8.3(b) mentioned above. The information contained includes the simulator set up

and the numerical output. We note the following specific lines. The first part of line (q)

specifies the quantizer as the mid-riser type. Line (o) sets the value of the constant or DC

input c. Line (i) sets the value of the initial condition ε−1. The first part of line (n) specifies

that 1 number is to be sampled from a random number generator and then added to the

quantizer input at the entry point to the quantizer Q. The second part of (n) defines the

PDF for the random number generator as 1 convolution of a uniform PDF of width ∆ = 1

(“Level peak to peak”), that is the RPDF itself. Thus line (n) specifies the dither νn of the
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circuit. Line (m) reports calculated statistics from measurements at the entry point to the

filter H , which hence pertain to the error εn. The average value of εn is reported, followed

by its root mean square or standard deviation value, and then other statistics. Line (A)

sets the filter coefficients. “Pas1Z” refers to the algebraic form corresponding to the first

order noise shaper (a1 = 1, M = 1, N = 0). Line (x,c) reports the number of runs of

the simulator at the time of the given text output, and the associated statistics contained

therein.

For the next two simulations, a constant input of c =
17

64
was used. The first case used

an initial condition of ε−1 = 0, and the second case an initial condition of ε−1 =
1

128
. For

both cases, the simulation went through 214 = 16384 runs. This gives 268,435,456 (≈ 2.7

×108) samples in the average. For the first case, the error variance formula in 2.(a) predicts

a standard deviation of 4.984× 10−5 below
1√
6
. The simulation result reports a value that

is 6.351 × 10−5 below
1√
6
. The net difference between these two results is 1.367 × 10−5.

In the second case, the error variance formula 2.(a) predicts a standard deviation that is

2.492×10−5 above
1√
6
. The simulation result gives a value that is 3.516×10−5 above

1√
6
.

The net difference between these results is 1.024× 10−5. The simulation plots of the PDFs

for εn in these cases are given, with the ε−1 = 0 case in Figure 8.5(a), and the ε−1 =
1

128
case in Figure 8.5(b). These plots again display the predicted point masses tracing the

TPDF envelope from the theory, with about 4k such bars. The bars in Figure 8.5(b) are

those in Figure 8.5(a) shifted to the right by the change in initial condition value.

The net difference in the predicted and observed error standard deviation is of the order

of 10−5 in the four cases. This provides rather good proportional agreement in the first two

cases where the variance deviations are larger. It would seem clear, given the very large

number of iteration samples performed by the simulation program, that this net difference

represents the maximum precision that can be achieved in attaining theoretical results, due
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(a) (b)

Figure 8.5: Simulation histograms for εn with c =
17

64
and (a) ε−1 = 0, (b) ε−1 =

1

128

to round off error and any other numerical method limitations of the computer.

For the fifth simulation, a constant input of c =
1

4
+2−18 =

65537

262144
and initial condition

ε−1 = 0 was used. This input has a q value of 218, and was chosen so as to provide as

close an approximation to an irrational input as is possible to represent numerically on

the computer. The simulation here went through 211 runs. The simulation result gave a

standard deviation value that was 2.309 × 10−5 below the prediction of
1√
6
. Thus the net

difference from the irrational input result of
1√
6

is of the same order of magnitude as the

respective net differences in the first four cases. The simulation plot of the PDF for ε−1 in

Figure 8.6 shows basically as dense a configuration of bars as is possible to plot, that trace

out the TPDF, as expected. Figure 8.7 gives the text output of the simulator for the fifth

simulation.

The final sequence of nine simulations used the same input and initial condition, but

only one to eight and then 33 runs. The simulation plots of the histogram PDFs for εn

in Figure 8.8 show an interesting pattern. For one run, the probability bars form periodic
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Figure 8.6: Simulation histogram for εn with c =
1

4
+ 2−18 and ε−1 = 0

Figure 8.7: Simulator text output corresponding to Figure 8.6 case
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(a) 1 run (b) 2 runs

(c) 3 runs (d) 4 runs

(e) 5 runs (f) 6 runs
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(g) 7 runs (h) 8 runs

(i) 33 runs

Figure 8.8: Simulation histograms for εn with c =
1

4
+ 2−18, ε−1 = 0 and 1 to 8, 33 runs
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Figure 8.9: Simulator text output corresponding to Figure 8.8(d) case

clusters touching the TPDF envelope. As the number of runs increase to four, the clusters

grow and fill up the envelope. Proceeding from five to eight runs, this cycle repeats, but

with the gaps between clusters partly filled in by a shallower triangular density, the remnant

of the first four runs. Even at 33 runs, this phenomenon shows some persistence. These

patterns reflect the dynamics of the near quasiperiodic nature of the system with near

irrational input. The histograms show short run behaviour that is similar to the finite

orbit set behaviour of the rational input case, while displaying longer run behaviour that

is increasingly suggestive of the dense orbits in the irrational input case. We must wait

for the very long run for the simulations to show unarguable convergence of the PDF to a

TPDF. Figure 8.9 provides the text output of the simulator after 4 runs.

Simulations were also carried out of first-order systems where the gain value a1 was

changed from 1 to various larger positive integers. The input, initial condition and number
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Simulation Cases and Predicted Standard Deviation

Case Plot Figure c I.C. runs predicted
√

E[ε2]

1 8.3(a) 1
4

0 211 1√
6
− 1.296358 × 10−2

2 8.3(b) 1
4

0.1 211 1√
6

+ 5.57534× 10−3

3 8.5(a) 17
64

0 214 1√
6
− 4.984 × 10−5

4 8.5(b) 17
64

1
128

214 1√
6

+ 2.492 × 10−5

5 8.6 1
4

+ 2−18 0 211 ≈ 1√
6

6 - 14 8.8 1
4

+ 2−18 0 1 - 8, 33

Table 8.1: Simulation standard deviation predictions

Numerically Estimated Standard Deviation

Case estimated
√

E[ε2] |difference|
1 1√

6
− 1.292263 × 10−2 4.096 × 10−5

2 1√
6

+ 5.55299 × 10−3 2.236 × 10−5

3 1√
6
− 6.351 × 10−5 1.367 × 10−5

4 1√
6

+ 3.516 × 10−5 1.024 × 10−5

5 1√
6
− 2.309 × 10−5 ≈ 2.309 × 10−5

Table 8.2: Simulation standard deviation results
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of runs were as in the fifth simulation above. The standard deviation results generally had

net differences from the predicted
1√
6

value that were of the same order of magnitude as

for the previous simulations described. The PDF plots were also dense and traced out the

TPDF as predicted from theory. In some cases these triangles showed slight perturbations

from a smooth form. This effect was not expected, and perhaps can be attributed to

numerical limitations of the computer.

In closing this subsection, we mention the recent paper by Løkken et al. [39], which

investigates some noise power issues for Σ-∆ modulators. This work included considering

the same first order model form studied in this section, but with a mid-tread quantizer (i.e.

quantizer levels at integer multiples of ∆) instead of the mid-riser type used in this thesis.

Numerical simulations and analysis of the average error variance were conducted and are

presented in the paper. These results showed full agreement with the predictions given from

our mid-tread error variance formula presented in the footnote of Subsection 8.3.1. This

formula was derived as a simple extension of the corresponding mid-riser formulations, and

shows virtually an equivalent (and indeed simpler) description. Note that the subsequent

analysis that follows for the mid-riser case in Subsection 8.3.1, will apply analogously to

the mid-tread case.

8.4 Discussion

Rational/Irrational Input Implications:

The practical distinction between the rational and irrational input in cases such as those

given with the preceding examples is now briefly addressed.

Gray [17] emphasizes the idea that rational inputs are of little interest because they

occur with zero probability. The rational/irrational properties of the input are normally
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of practical interest and concern when assessing the limit cycle or quasiperiodic behaviour

of the Σ-∆ modulator errors they give rise to. To distinguish irrational input from generic

cases of rational input in this manner, however, one has to follow an arbitrarily large

number of iterations to verify that the errors behave quasiperiodically (implying irrational

input) and not periodically with a large period (implying rational input with a typically

large denominator).

The practical effects of the errors on the reconstructed audio output are normally gov-

erned by the error behaviour over shorter iteration lengths. This is because periodic be-

haviour with a shorter period corresponds to audio frequencies that are high enough for de-

tection. Furthermore, over these shorter iteration lengths, the irrational input/quasiperiodic,

(or rational input/large period) error behaviour will tend to closely approximate the peri-

odic behaviour associated with a nearby rational input with a shorter period. For example,

an irrational or rational input very close to zero would yield error behaviour that approx-

imates the period two oscillations with zero input. Therefore, from the point of view of

audible detection, the existence of an irrational input generally cannot be distinguished

from that of a rational one, and neither can generally be distinguished from that of a

rational one associated with a short period.

In a digital Σ-∆ modulator corresponding to a computer simulation, all inputs are

rational by default, and so the rational case occurs with probability one. From the practical

consideration above, rational inputs with a large denominator may be taken to function

equivalently to the irrational inputs they are chosen to approximate, as well.

The situations above counter some of the importance of Gray’s emphasis, and suggest

that it may be most appropriate to interpret or analyze the modulator behaviour in terms

of a rational input xn. Future work could then involve an extension of the analysis of

statistical error properties in this chapter and related issues, from this practically motivated
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perspective.

Summary:

In summary, in Chapter 7 we developed a new statistical theoretical approach to handle

the concept of the steady state error. Relevant theorems and results were then derived, with

direct applicability to the error variance characterization via the uniform PDF property on

C. We began Chapter 8 by applying the overall dynamical systems approach of this thesis

to dither theory for the Σ-∆ modulator, and the establishment of standard and relevant

results. We then explored the issues of the statistics of E[ε2
n] by applying the results of

Chapter 7. A simple class of examples was then considered, for which simple error variance

formulas were developed, analyzed and then successfully tested by simulation.



Chapter 9

Conclusions

This thesis represents an attempt at gaining a broader, deeper and more thorough under-

standing of important dynamical behaviour in the Σ-∆ modulator system. A dynamical

systems approach was taken to initiate a theoretical investigation of chaotic properties of

the dynamics, and of statistical dynamical properties in the context of dithered systems.

The research was aimed at seeking to resolve previous examinations of chaos, and at ex-

tending this philosophy to treat relevant dither issues. The dynamical systems approach

was viewed as conceptually important as well as analytically useful, since many diverse

physical systems are topologically and hence dynamically equivalent or comparable to Σ-∆

modulator systems under a formal dynamical systems interpretation. The following have

been accomplished in the work of this thesis:

The Mth/Nth order feedback/feedforward multi-bit Σ-∆ modulator was modelled as

a dynamical system, using the circle map interpretation for the state space of the shaped

and dithered quantizer errors εn. A general continuity condition on the filter coefficients

was established, and continuity properties described. An analysis of conditions on the

feedforward filter coefficients and system errors, to establish bounded internal stability

295
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or nonstability, was conducted and some results were obtained, which give an expanded

conceptual picture. These results, in particular, concerned extending stability conditions

to systems with noise transfer function poles on, as well as inside the unit circle. A viable

adaptation of the Devaney definition of chaos was applied to this model. An analysis of

conditions on the filter coefficients and system input to satisfy the Devaney conditions for

chaos or nonchaos was conducted and extended to the dithered case.

In this analysis, methods and approaches were developed for the verification or rejection

of strong chaos conditions for a general mathematical model arising from a specific practical

application. As such, the concepts and tools available to study or interpret chaos have been

strengthened, both for abstract or theoretical pursuits, and for potential application to other

practical systems that can be modelled. Such methods using topological symmetries and

model linearities were applied throughout the thesis. Some flexibility arose in the precise

manner in which Devaney’s conditions for chaos were applied to the model. The approach

and choices taken for the adaptation and analysis here are not meant to be the final word,

but rather a reasonable first step or prototype for future theoretical studies of chaos in Σ-∆

modulator-like dynamical systems.

The results of the analysis showed that chaos will hold if all the zeros of the noise transfer

function lie outside the circle of radius two, provided the input is either periodic or is

persistently random modulo ∆. Bounded stability was shown to be readily attainable with

such chaos. If the filter coefficients satisfy the continuity condition, then the zeros condition

may be relaxed to that of a circle of radius one, and conditions on the input dropped to give

chaos. Bounded stability was shown to hold with this chaos, generally if and only if the filter

is strictly of feedback form, when the input is periodic. Under the continuity condition,

chaos was shown not to hold when all zeros are on the unit circle. In general, chaos is not

prevalent for minimum/marginally minimum-phase systems. These results generally extend
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to the analogous dithered systems, extending exactly when the continuity condition holds.

Other more specific results or examples for particular chaos conditions were determined.

These results serve to differentiate important aspects of the dynamical behaviour given

by the chaos condition characterizations, (as determined by filter coefficients and input),

and may have practical implications in terms of limit cycle behaviour, types of stability or

other issues of importance in Σ-∆ modulator performance. The effects of adopting stricter

definitions for density of periodic points on the characterizations made of chaos was also

examined.

Important error moment and dithered quantizer formulas, relationships and statistical

distributions were derived using state space methods. A theoretical approach for describing

steady state error distributions and PDF mappings was developed and applied to the

Σ-∆ modulator, under certain modulator or dynamic conditions, to obtain insight and

conclusions about the steady state error distributions.

The results showed that a generic dense steady state error distribution on the circle

will be uniform if one zero of the noise transfer function is nonminimum phase, the input

is periodic, and the continuity condition holds. With two such zeros, the errors are also

white. Extensions to M dimensions, and general random initial conditions/input were

explored. A uniform steady state was also shown if the system is first order with unity gain

and irrational constant input (quasiperiodic), or for any system with input that is random,

i.i.d. and uniform. Extensions to RPDF dithered systems were made. These showed that

a constant average variance of ∆2/6 followed when most of the uniformity results held,

hence extending a measure of input independence from TPDF to RPDF dithered systems.

The variance behaviour of the first-order system under general constant input with RPDF

dither was analyzed in more detail, and simulations were conducted to support the results.

The bridge between the theory of stochastic processes and the practical analysis of
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dithered Σ-∆ modulator behaviour has been broadened by the methods and approaches

developed here. The results serve to enhance a general understanding of performance

properties of such dithered systems.

In general, this thesis represents the dynamical study of a practical system whose be-

haviour is strongly characterized by stochastic or stochastic-like attributes. As such, the

approach taken has been to often integrate (e.g. in these terms) the work of the sepa-

rate aspects of the studies (in respective chapters) involved — generally by virtue of the

consistent dynamical systems treatment. Subsequent chapters tend to build results suc-

cessively upon the work of previous ones, and endeavours are made to synthesize earlier

treatments, ideas or discussions into later ones. Common threads emerge, as we have from

the observation that systems of sufficient structure (e.g. input or filter form) are amenable

to satisfying theorems that assert structure in the dynamics. Therefore the strategy and

structure of this thesis serve as a role model or philosophy for advancing the dynamical

studies further, or for studying other systems whose dynamical aspects possess subtle sim-

ilarities, and where the accumulation of analytical approaches may be required. Broader

implications may be derived in related areas of dynamical systems or signal processing as

well. This then serves as an exemplification of the process of applied mathematics at work

as theoretical engineering.

9.1 Recommendations

We make the following recommendations for future research, which emerge from the work

of this thesis.

Rigorous analyses of conditions for chaos in the higher-order Σ-∆ modulator analogous

to those done here could be conducted using other definitions for chaos, such as Lyapunov
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exponents or rotational chaos, and then compared with the Devaney results to solidify the

conclusions reached here. Further investigation into mathematical methods and approaches

could be made in an effort to arrive at more definitive or clear cut theorems and conditions

on the existence of Devaney chaos or nonchaos, or particular chaos conditions. This could

particularly be so in the case where the continuity condition (R) does not hold, especially

regarding density of periodic points. These efforts could be extended to seek more definitive

results on how the addition of dither may bring about more chaos, or chaos conditions (e.g.

small dither for density of periodic points).

Flexibility in the adaptation of Devaney’s chaos conditions to the dynamical model

could be exercised to adjust the definitions used here for the analysis. Results from the

same analysis with adjustments could then be compared with the results here to provide

greater insight into what aspects of the chaos conclusions may be truly adaptation de-

pendent. This could thus aid in future chaos condition formulations to give both the most

theoretically and practically meaningful conclusions. In particular, an investigation to clas-

sify chaos using stricter definitions for density of periodic points (in the standard manner)

could be conducted to give a more comprehensive comparison, or notions of “projected”

chaos, considered only on CM , could be altered with justifications. Overall chaos could be

characterized as holding when the required conditions are shown to hold over a subspace or

submanifold of the error coordinate state space, or over a pertinent subset of state space,

rather than the entire space. This would open up greater classes of cases to satisfy chaos, or

foster a deeper analysis of cases that were not otherwise fully chaotic. As a study more sep-

arate from that of the Σ-∆ modulator, an investigation into the complex dynamics of such

discrete affine modulo mappings that possess chaotic attractors or subsets/submanifolds

could be undertaken. Adjustments to the Devaney adaptations could be extended to the

dithered system, focusing particularly on the state space definition, where more flexibility
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arose in the characterization. The chaos analysis conducted in the thesis could be extended

or generalized to a study of systems with stochastic initial conditions.

The switching system formulation of the dynamical system Σ-∆ modulator model could

be explored as an alternative approach to study the dynamics. Existing theory on the

chaotic properties and stability of deterministic or stochastic discrete subsystem switching

systems with infinite input modes could be used, and new theory developed, to apply to

studies of chaos or stability in the dithered or nondithered Σ-∆ modulator. More definitive

results on bounded stability, or an extension for results on asymptotic forms of stability,

could be sought through an investigation of this or other modelling approaches.

The development of the steady state random variable approach could be broadened or

made more rigorous, and could hence be linked or incorporated within standard stochastic

processes theory. More specifically, the axiomatic theory of probability could be utilized as

a theoretical tool for moving the analysis beyond the limits of the more intuitive methods

used in this thesis. Further mathematical methods and approaches to apply this theory

to dithered Σ-∆ modulators could thus be studied, with the aim of acquiring more clear

cut or expanded results about steady state error behaviour, the role of uniformity, and

more theoretical relationships involving the dynamics. This could focus, in particular, on

nondithered systems when (R) does not hold. Further investigation, with dither added,

could then proceed as a separate problem. Conversely, adding dither could be viewed

as simplifying the analysis in one dimension when (R) does not hold. This could be an

approach for arriving at results, as conjectured in Section 8.2, from which generalizations

to CM , with or without dither, could then be sought. The average variance results under

RPDF dither could be developed to reflect and apply any newly derived steady state error

results. The error variance formulation and analysis methods of the RPDF dithered first-

order case with unity gain could be extended to similarly study more general or complex
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cases. A more precise and complete explanation of the behaviour of the simulation results in

comparison with the theoretical predictions could be sought. The analysis of statistical error

properties could be advanced from the practical perspective that irrational Σ-∆ modulator

inputs are essentially perceived by the output observer as having the same effect as rational

ones.

In future research, the chaos, stability and statistical error property investigations of

the dithered or nondithered Σ-∆ modulator of this thesis could be carried out for the finite

bit, and in particular, the 1-bit quantizer case, where the assumption of a no overload

condition is dropped. A counterpart theory for the 1-bit quantizer and noise shaper to the

existing multi-bit case theory could be pursued in future work. The first approach would

be analogous to that of this thesis, in terms of establishing error property statistical results.

Efforts could be made at uncovering further pseudorandom number generator properties

from Σ-∆ modulators satisfying steady state error distribution theorems arising from future

research. Seeking appropriate ways of analyzing dithered Σ-∆ modulators with the aim of

obtaining results that can be applied to the study of stochastic resonance system in physics,

to obtain insight into their dynamical behaviour, could be the topic of future research.
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