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Abstract 

Exposure assessment, which is an investigation of the extent of human exposure to a specific 

contaminant, must include estimates of the duration and frequency of exposure.  For a groundwater 

system, the duration of exposure is controlled largely by the arrival time of the contaminant of 

concern at a drinking water well.  This arrival time, which is normally estimated by using 

groundwater flow and transport models, can have a range of possible values due to the uncertainties 

that are typically present in real problems.  Earlier arrival times generally represent low likelihood 

events, but play a crucial role in the decision-making process that must be conservative and 

precautionary, especially when evaluating the potential for adverse health impacts.  Therefore, an 

emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of 

possible arrival times.   

To demonstrate an approach to quantify the uncertainty of arrival times, a real contaminant 

transport problem which involves TCE contamination due to releases from the Lockformer Company 

Facility in Lisle, Illinois is used.  The approach used in this research consists of two major 

components: inverse modelling or parameter estimation, and uncertainty analysis. 

The parameter estimation process for this case study was selected based on insufficiencies in the 

model and observational data due to errors, biases, and limitations.  A consideration of its purpose, 

which is to aid in characterising uncertainty, was also made in the process by including many possible 

variations in attempts to minimize assumptions.  A preliminary investigation was conducted using a 

well-accepted parameter estimation method, PEST, and the corresponding findings were used to 

define characteristics of the parameter estimation process applied to this case study.  Numerous 

objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and 

M-estimators), penalty functions, and deadzones, were incorporated in the parameter estimation 

process to treat specific insufficiencies.  The concept of equifinality was adopted and multiple 

maximum likelihood parameter sets were accepted if pre-defined physical criteria were met.  For each 

objective function, three procedures were implemented as a part of the parameter estimation approach 

for the given case study: a multistart procedure, a stochastic search using the Dynamically-

Dimensioned Search (DDS), and a test for acceptance based on predefined physical criteria.  The best 

performance in terms of the ability of parameter sets to satisfy the physical criteria was achieved 

using a Cauchy’s M-estimator that was modified for this study and designated as the LRS1 M-

estimator.  Due to uncertainties, multiple parameter sets obtained with the LRS1 M-estimator, the L1-
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estimator, and the L2-estimator are recommended for use in uncertainty analysis.  Penalty functions 

had to be incorporated into the objective function definitions to generate a sufficient number of 

acceptable parameter sets; in contrast, deadzones proved to produce negligible benefits.  The 

characteristics for parameter sets were examined in terms of frequency histograms and plots of 

parameter value versus objective function value to infer the nature of the likelihood distributions of 

parameters.  The correlation structure was estimated using Pearson’s product-moment correlation 

coefficient.  The parameters are generally distributed uniformly or appear to follow a random nature 

with few correlations in the parameter space that results after the implementation of the multistart 

procedure.  The execution of the search procedure results in the introduction of many correlations and 

in parameter distributions that appear to follow lognormal, normal, or uniform distributions.  The 

application of the physical criteria refines the parameter characteristics in the parameter space 

resulting from the search procedure by reducing anomalies.  The combined effect of optimization and 

the application of the physical criteria performs the function of behavioural thresholds by removing 

parameter sets with high objective function values.   

Uncertainty analysis is performed with parameter sets obtained through two different sampling 

methodologies: the Monte Carlo sampling methodology, which randomly and independently samples 

from user-defined distributions, and the physically-based DDS-AU (P-DDS-AU) sampling 

methodology, which is developed based on the multiple parameter sets acquired during the parameter 

estimation process.  Monte Carlo samples are found to be inadequate for uncertainty analysis of this 

case study due to its inability to find parameter sets that meet the predefined physical criteria.  

Successful results are achieved using the P-DDS-AU sampling methodology that inherently accounts 

for parameter correlations and does not require assumptions regarding parameter distributions.  For 

the P-DDS-AU samples, uncertainty representation is performed using four definitions based on 

pseudo-likelihoods: two based on the Nash and Sutcliffe efficiency criterion, and two based on 

inverse error or residual variance.  The definitions consist of shaping factors that strongly affect the 

resulting likelihood distribution.  In addition, some definitions are affected by the objective function 

definition.  Therefore, all variations are considered in the development of likelihood distribution 

envelopes, which are designed to maximize the amount of information available to decision-makers.  

The considerations that are important to the creation of an uncertainty envelope are outlined in this 

thesis.  In general, greater uncertainty appears to be present at the tails of the distribution.  For a 

refinement of the uncertainty envelopes, the application of additional physical criteria is 

recommended.   
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The selection of likelihood and objective function definitions and their properties are made based 

on the needs of the problem; therefore, preliminary investigations should always be conducted to 

provide a basis for selecting appropriate methods and definitions.  It is imperative to remember that 

the communication of assumptions and definitions used in both parameter estimation and uncertainty 

analysis is crucial in decision-making scenarios. 
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Chapter 1 

Introduction 

Chlorinated solvents have been found to be “among the most frequently detected” volatile organic 

compounds (VOCs) from groundwater samples taken throughout the United States (Moran et al., 

2006).  Chlorinated solvents commonly associated with subsurface contamination, such as 

perchloroethylene (PCE) and trichloroethylene (TCE), are linked to life-threatening diseases such as 

cancer and have consequently been assigned low Maximum Contaminant Levels (MCLs) by the U.S. 

Environmental Protection Agency (USEPA) (USEPA, 2007).  The need to quantify the excess health 

risk imposed on the general public by exposure to contaminated groundwater is acknowledged by 

government bodies and frameworks for health risk assessments have been designed (USEPA, 1989, 

1991).  According to the USEPA’s risk assessment guidelines (USEPA, 1989, 1991), the 

quantification of the potential for adverse health impacts requires the identification of health impacts 

linked to the contaminant, an assessment of exposure, and an establishment of the dose-response 

relationship (USEPA, 2000).  Since many chlorinated solvents have already been linked to adverse 

health effects through toxicology and epidemiology studies, exposure assessment becomes a critical 

step.  Exposure assessment, which is an investigation of the extent of human exposure to a specific 

contaminant, must include the duration and frequency of exposure; and it depends on both population 

dynamics and aspects of contaminant hydrogeology including the nature of the contaminant source, 

groundwater flow and transport processes, and the location of the drinking water supply wells.  

Physically-based models that simulate the processes of groundwater flow and contaminant transport 

can be used in conjunction with site-specific observations to provide an estimate of the maximum 

duration of exposure at a given location and the corresponding contaminant concentration profile.   

The maximum duration of exposure represents the time period during which a contaminant 

concentration is above some threshold value and is controlled largely by the estimate of the first 

arrival time of the contaminant in the water supply system.  Uncertainty associated with the 

modelling process leads to a range of possible arrival times, and the first arrival time represents the 

earliest of these times.  The earlier arrival times typically represent low likelihood events, but play a 

crucial role in the decision-making process that must be conservative and precautionary, especially 

when evaluating the potential for adverse health impacts.  In fact, decisions made in environmental 

liability cases in the United States show that evidence suggesting contamination may have happened 

can be sufficient for the court to rule in favour of the claimant (Green, 2006).  Therefore, an emphasis 
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must be placed on the accuracy of the leading tail region, which represents events of low likelihood, 

in the distribution of possible arrival times. 

In general, a defensible conceptual model can be developed for a specific contamination problem 

using information on site history and geology, the contaminant’s physical, chemical, and biological 

characteristics, and physical laws.  Site-specific information is used along with the conceptual model 

to identify parameters that represent the hydrogeology, external system forces, and initial and 

boundary conditions of the system.  The acceptance of a model as a descriptor of reality is dependent 

on its ability to incorporate all these different types of information, which are complicated by errors, 

biases, and limitations.  Error and biases can be introduced during the model development and 

calibration process known as inverse modelling (Carrera et al., 2005).  Efforts to reduce errors, biases, 

and limitations should be made for all problems by gathering more information but this is not always 

feasible in real problems due to time and economic constraints, and available measurement 

technology (Kirchner, 2006).  Alternate approaches to deal with errors and biases include robust 

estimation techniques, which have been shown to be successful in treating some types of errors and 

biases (Finsterle and Najita, 1998).  The impossibility of treating all sources of errors and biases and 

the existence of various objective function definitions in parameter calibration methods leads to 

multiple acceptable models at the conclusion of the inverse modelling process.  

Families of common inverse algorithm approaches for both linear and nonlinear groundwater 

problems originate from different perspectives such as the maximum a posteriori methods, the 

maximum likelihood methods, and the pilot point method, which can all be viewed to be based on the 

maximum a posteriori estimation framework (McLaughlin and Townley, 1996).  Traditionally, 

methods based on the maximum a posteriori estimation framework are designed to accept the single 

“best” model of large-scale trends while rejecting all others.  The rejection of a model based on the 

fact that it does not have the maximum a posteriori performance index value is not sufficient in risk 

analysis scenarios or in legal settings.  Confidence bounds derived for the “best” model using the 

popular variance-based approaches are not recommended for use in risk analysis since they only 

indicate the performance of the inverse procedure (McLaughlin and Townley, 1996) and do not 

represent low probability or likelihood models of large-scale trends.  Large-scale trends are defined as 

“the components of the point variables that we can expect to estimate from available measurements” 

while small-scale fluctuations are defined as “unidentifiable deviations from the large-scale trends” 

by McLaughlin and Townley (1996).  The assumption of normality typically made regarding the 

nature of small-scale fluctuations, which represent the cumulative effect of errors and biases, is not 
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valid for many real problems, and variance-based confidence bounds cannot be used directly as a 

measure of small-scale fluctuations.  The quantification of small-scale fluctuations in addition to 

large-scale trends is necessary due to the importance of low likelihood events.  Thus, many possible 

models must be examined using probabilistic analysis. 

Given a mathematical model, the acceptance of only a single set of parameter values in assessing 

first arrival times which vary in space is essentially flawed.  For example, one parameter set may 

produce an earlier arrival time at one location compared to another parameter set while producing a 

later arrival time at a different location.  The recognition of the potential for multiple acceptable 

parameterizations, which is referred to as equifinality (Beven, 2006), is made by Beven and Binley 

(1992), who proposed the Generalized Likelihood Uncertainty Estimation (GLUE) method.  The 

GLUE methodology produces a likelihood distribution based on a subjective definition of likelihood 

using all behavioural models and is designed to include a range of likelihood models rather than 

simply the “best” or maximum likelihood models.  No formal definition of error structure is made in 

the GLUE method (Beven and Binley, 1992), and thus, it inherently captures both large-scale trends 

and small-scale fluctuations.  The subjectivity of GLUE’s likelihood function definition is not 

problematic in risk analysis scenarios as long as risk communication is performed effectively.   

GLUE’s likelihood distribution is a function of the sampling strategy and the definition of what 

constitutes a behavioural model.  Models are considered to be behavioural if they can create 

simulations that resemble observations within some subjective threshold level (Beven and Freer, 

2001).  The models that are not considered behavioural are not included in the likelihood distribution.  

In essence, the GLUE method uses a multiple maximum a posteriori estimate framework by rejecting 

non-behavioural models.  Multiple maximum likelihood estimates can be achieved with any existing 

maximum likelihood method applied in multiple optimization trials, which are designed to terminate 

in alternative high likelihood solutions.  The sampling approach in the Dynamically-Dimensioned 

Search – Approximation of Uncertainty (DDS-AU) method (Tolson, 2005) exploits this characteristic 

by using the Dynamically-Dimensioned Search (DDS) (Tolson, 2006).  Since the DDS-AU sampling 

approach maximizes each model’s ability to create simulations that resemble observations, the 

application of a behavioural threshold appears to be redundant.  Also, the definition of what 

constitutes a behavioural model should be based on physical, chemical, and/or biological constraints.   

In this thesis, this new concept of behavioural is adopted and used in conjunction with a revised 

DDS-AU sampling method and the GLUE framework to assess the first arrival of contamination at 

various locations for a real problem.  The case study, which serves as a representative problem, is a 
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real groundwater contamination problem involving TCE, which has been detected in drinking water 

wells down-gradient of an industrial facility.  The developed conceptual and mathematical model 

contains a large number of parameters that are considered uncertain due to limited information.  The 

resulting high dimensionality in conjunction the lack of site-specific information causes limitations 

commonly encountered in real world problems.   

In Chapter 2, a conceptual and mathematical model is developed for the case study, and the 

corresponding observation data is presented with a review of potential for contribution to ill-

posedness.   

In Chapter 3, the definition of what constitutes a behavioural model is established and multiple 

acceptable and behavioural models are generated using the parameter estimation algorithm, DDS.  

PEST, a popular gradient-based search algorithm, is also evaluated to test the abilities of the least 

squares method, which is a widely-used maximum likelihood method.  Attempts to treat data 

insufficiencies and increase the number of behavioural solutions by altering the objective function 

definition are investigated. 

In Chapter 4, uncertainty analysis using various subjective likelihood definitions is performed on 

models obtained with two different sampling strategies: Monte Carlo sampling and a physically-based 

DDS-AU sampling methodology (P-DDS-AU).  P-DDS-AU introduces revisions on the DDS-AU 

sampling method to accommodate the new definition of behavioural.  The various likelihood 

distributions are compared and a conclusion is drawn regarding the uncertainty of the arrival time. 

A summary of the thesis and a general discussion of the relevance of the work in terms of current 

and future research are provided in Chapter 5. 
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Chapter 2 

Problem Formulation 

Any parameter estimation process and uncertainty analysis is meaningless if the conceptual model 

is not defendable.  In this chapter, a description of the site history, properties of trichloroethylene 

(TCE), and the physical setting are provided and used to develop a conceptual model.  A solution to 

the mathematical model is presented along with general information regarding the corresponding 

parameters. 

2.1 Site History 

Trichloroethylene (TCE) was released into the subsurface at the Metcoil site (formerly 

Lockformer) in Lisle, Illinois over a period of approximately 32 years since the opening of the plant 

in March 1969 (Clayton Group Services, Volume 1, May 2002).  TCE was used as a degreasing agent 

in the process of manufacturing metal products and was initially stored in a 500-gallon roof-mounted 

tank.  This tank was removed from service in June 1999 and replaced with a double-walled, 

secondarily contained 250-gallon TCE tank inside the Lockformer building.  The use of TCE was 

discontinued at the facility in February 2001.  Known, suspected, or potential sources of 

contamination are delivery spills at the former TCE fill pipe and tank area, releases in the former 

vapour degreaser area, releases from the sanitary sewer system, and releases to the existing and 

former drainage ways.  The 500-gallon roof-mounted TCE tank had no gauge but two sight glasses 

until approximately 1980, and accidental spillage during delivery is assumed to be a major source of 

TCE release.  Procedures to reduce accidental spillage were continually implemented from the early 

1980s to approximately 1984 or 1985 when the possibility of surface spills was practically eliminated 

by the adoption of new operating practices.  Ball (2003) estimates that overflow releases from the 

roof tank via the TCE tank vent pipe caused losses of approximately 6000 gallons of TCE from 1969 

to at least 1985.  There is considerable debate in terms of the frequency and significance of delivery 

spills and the overall mass of TCE released.   

Residential properties located down-gradient of the Metcoil site have used household wells that are 

completed in the potentially contaminated aquifer.  Current and past residents potentially exposed to 

TCE originating from the Metcoil site have taken legal action to be compensated for their losses 

resulting from adverse health and mental effects, and decreases in property values.  The first arrival 
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time of the contaminant at a well plays a crucial role in determining whether or not a claimant is 

eligible for compensation.   

The residential properties are grouped into four areas as a part of the legal proceedings (Clayton 

Group Services Inc., 2002): the Leclerq Class Area, Mejdrech Area B, Mejdrech Area C, and 

Mejdrech Area D.  A map of the Metcoil site and the four areas are presented in Figure 2.1 along with 

groundwater sample locations.  Figure 2.1 shows that there are ground water samples indicating TCE 

contamination has occurred in each of the four areas.  Although anomalies in the sampling processes 

can take place, it is difficult to claim contamination has not occurred in locations where observed 

concentrations have been reported in legal proceedings.  Therefore, an acceptable model must 

simulate TCE contamination in each of the four areas that originated from the Metcoil facility.   
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Figure 2.1. The extent of plume based on the 2001/2002 measured TCE 
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2.2 Contaminant Characteristics 

Trichloroethylene (TCE) is an organic contaminant commonly used as an industrial solvent in the 

automotive and metals industry (Federal-Provincial-Territorial Committee on Drinking Water, 2004).  

TCE is classified as a probable carcinogen that has been linked to various cancers including liver and 

kidney cancer.  Therefore, a low Maximum Contaminant Level (MCL) of 5 ppb with a Maximum 

Contaminant Level Goal (MCLG) of 0 ppb is assigned by the U.S. Environmental Protection Agency 

(USEPA, 2006).   

TCE contamination is primarily of concern in groundwater systems since it is highly volatile in the 

atmosphere.  TCE is a dense non-aqueous phase liquid (DNAPL) with a solubility ranging from 1100 

to 1400 mg/L (Federal-Provincial-Territorial Committee on Drinking Water, 2004).  Biodegradation 

of TCE is limited; and field and laboratory experiments have determined first-order decay coefficients 

with a mean and standard deviation of 0.2 day-1 and 0.5 day-1 respectively under aerobic conditions 

(Suarez and Rifai, 1999).   TCE is persistent in groundwater because a DNAPL source can exist for a 

long period of time due to its low solubility and typically slow degradation rates.  TCE also 

undergoes sorption which acts to retard plume migration.  This is problematic since TCE creates 

health concerns even at low concentrations.   

The arrival of contamination can be defined as the first moment in time that a contaminant 

concentration greater than zero appeared.  In practice, there exists a detection limit (DL) below which 

concentrations cannot be detected using analytical methods.  The DL varies with the selection of the 

analytical method and can range from 0.01–3.0 µg/L (or ppb) for the determination of TCE in water 

(Federal-Provincial-Territorial Committee on Drinking Water, 2004).  The usage of the DL to define 

the arrival of a contaminant is somewhat arbitrary since the value is determined by current 

technology.  Ideally, a threshold concentration above which exposure can cause adverse health 

impacts should be employed but such information is typically unavailable.  Therefore, the DL is 

selected to define the arrival of contamination in this thesis even though this threshold concentration 

can be below the MCL for TCE.  If future research leads to a reduction in the DL or the identification 

of a threshold concentration, the methods and approach developed in this thesis are not affected.   
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2.3 Physical Setting 

2.3.1 Geology 

The Metcoil facility is located in the Wheaton Morainal section of the Great Lakes physiographic 

province.  The uppermost surficial glacial unit is comprised of undifferentiated Valparaiso Moraine 

deposits, which can consist of yellow-grey silty till, sand and gravel, and dune sand (Woller et al., 

1986).  These morainal deposits are generally overlain by a thin Richland Loess or modern soil 

(Clayton Group Services Inc., 2002).  According to the site reports documented by Clayton Group 

Services Inc. (2002), the major stratigraphic units at the Metcoil site are composed of a silty clay/till 

unit, a mass waste & gravel unit, a lower till unit, and the bedrock.  The existence and thicknesses of 

the units in the overlying the bedrock are variable in space.  Site investigative work has shown 

varying amounts of TCE in some of these units (Clayton Group Services Inc., 2002). 

The Paleozoic bedrock underlying the glacial deposits in the Wheaton Morainal section comprises 

of about 1,100 m of lithified, stratified, sedimentary rocks of Silurian, Ordovician, and Cambrian ages 

respectively (Woller et al., 1986).  The Silurian system primarily consists of dolomite with minor 

amounts of shale.  Varying grades of sandstone are found in the lower units of the Ordovician system 

in addition to dolomites and shale.  The Cambrian system underlying the Ordovician system and 

overlying granitic rocks consists of dolomite, sandstone, shale, and siltstone. 

2.3.2 Hydrogeology 

Two major hydrostratigraphic units can be defined to represent the possible areal extents of the 

TCE plume: the till unit and the dolomite aquifer.     

Site investigations of geologic and hydrogeologic conditions at the Metcoil site by Clayton Group 

Services Inc. (2002) indicate the formation of a shallow water table in the mass waste and gravel unit, 

which underlies a relatively thin slity clay/till unit.  Therefore, both hydrostratigraphic units can 

generally be assumed to be saturated.  The hydraulic connectivity in the unsaturated surficial silty 

clay till and the mass waste and gravel unit are controlled by the occurrence of fractures and coarse-

grained lithologies.  The hydraulic conductivity in the mass waste and gravel unit is estimated by 

Clayton Group Services Inc. (2002) to range from 5 x 10-4 to 5 x 10-3 cm/sec using grain size analysis 

of soil samples.  No hydraulic conductivity testing was performed at the site or for the region.  An 

effective porosity value of approximately 0.20 can be assumed to represent this mass waste and 

gravel unit (Freeze and Cherry, 1979).  For an effective porosity of 0.20, seepage velocities of 2.3 to 
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65 feet per year can be expected in this unit at the Metcoil site.  The till units are hydraulically 

connected to the underlying Silurian dolomite bedrock at the Metcoil site and a predominantly 

vertical downward gradient between the till units and the dolomite has been observed.  

The Silurian dolomite bedrock is highly weathered and fractured in the top approximately 10 to 20 

feet zone in the Lisle and Downer’s Grove areas.  Site investigations at the Metcoil site show a 

slightly smaller thickness of 4 to 6 feet for the weathered zone.  The dolomite below this region can 

be viewed as representative of typical fractured rock environments where groundwater exists 

primarily in bedding planes and individual fractures.  These joints and fractures are characterized as 

“open, abundant, and interconnected” and thus “give a resultant regional effect equivalent to a 

radially homogeneous aquifer” (GSI, 2003).  The groundwater velocity in the weathered dolomite has 

been estimated to be up to 1275 feet/year (Ball, 2003).  Dolomite can have porosities that range from 

0 to 0.2 (Freeze and Cherry, 1979), and the effective porosity of the Silurian dolomite has been 

estimated to be 0.017 (Clayton Group Services Inc., 2002).  Sufficient production is typically 

available in the upper portions of the aquifer, and wells are primarily completed in the upper 60 feet 

of the Silurian dolomite (GSI, 2003).  Approximately 30% of the wells in DuPage County penetrate 

only 0 to 20 feet into the dolomite while 34% penetrate 20 to 40 feet into the dolomite (Clayton 

Group Services, 2002).   

The available information indicates the general direction of flow to be in the south to southeast 

direction throughout the possible extents of the TCE plume (GSI, 2003).  The average recharge for 

the eastern two-thirds of DuPage County has been determined to be approximately 2.94 inch/year 

(Clayton Group Services, 2002).  Recharge through the overburden to the Silurian dolomite is highly 

variable. 

2.4 Conceptual Model 

Based on the stratigraphy and the hydrogeology of the site described in Section 2.3, a TCE 

transport model representing two saturated units, the till and the bedrock, as shown in Figure 2.2 was 

developed.  The contamination source is assumed to exist in the till unit above the dolomite aquifer as 

residual saturation or immiscible pools trapped on capillary barriers.  This source zone is assumed to 

be uniformly distributed over a rectangular area; this inherently averages the effect of multiple 

releases at the Metcoil site occurring at different times and locations both of which are unknown.  

Aqueous phase TCE is assumed to dissolve from this source zone and migrate vertically downward 

into the bedrock aquifer.  Primarily horizontal movement is assumed in the saturated aquifer such that 



 

  10

most of the contaminant mass remains near the top of the aquifer, where the highest hydraulic 

conductivities are known to exist.  The contamination of this aquifer, in which residential wells are 

assumed to be completed, is the primary concern in this case study.  

 

Figure 2.2. General schematic of the conceptual model 

For this study, complexity is not increased because of the lack of available information and 

limitations in computational resources.  Insufficient information regarding spatial variation in the 

physical setting is available to develop a distributed model, and the added complexity in distributed 

models increases computational effort, which is undesirable in uncertainty analysis based on large 

numbers of simulations.  As a result, a steady-state flow field and spatially constant properties were 

assumed for each hydrostratigraphic unit. 
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The nature of the contamination source is characterized by the operating practices at the Metcoil 

facility and the degradation processes of TCE.  The TCE releases that took place during facility 

operations is expected to be the dominating factor due to the characteristics of TCE and the nature of 

possible sources.  Quantitative information regarding TCE releases originating from multiple sources, 

some of which are unknown, are limited, and the rate of TCE release into the surface is highly 

uncertain.  The implementation of alternative operating practices to reduce TCE releases is expected 

to have reduced this rate; however, the level of this reduction and the exact time at which these 

measures were put into action are uncertain.   

Since an exponential source model can produce a trend of higher releases at earlier times with 

decreases in the releases at a later time, the exponential model is assumed to be able to adequately 

represent source concentrations over time along with the definition of an initial source concentration, 

c0.  Therefore, the TCE source concentration is assumed to follow a first-order decay model as 

follows 
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where λ accounts for the reduction of the dissolved TCE source concentration, c(0, t) represents TCE 

concentration at the top of the till unit at time, t, and tr represents the time at which the source was 

removed.  Note that the usage of the exponential model leads inherently to the assumption that the 

maximum dissolved TCE concentration immediately below the source zone occurs at the initial time 

(i.e. t = 0).   

The one-dimensional transport from the source through the overburden is captured by the mass 

conservation equation 
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where c is the dissolved concentration at a point z in the overburden [M/L3]; Rt is the retardation 

factor for the dissolved TCE in the overburden; Dv is the longitudinal dispersion coefficient [L2/T]; vv 

is the linear velocity in the overburden [L/T]; and µt represents the decay of both solute and sorbed 

phase of the TCE in the overburden.  The initial condition for dissolved TCE transport through the till 

layer is 

( ) 00, =zc  (3) 

A semi-infinite domain is assumed and the corresponding lower boundary condition is  
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where z = 0 represents the bottom of the TCE source zone.  The analytical solution of (2) subject to 

(1), (3), and (4) was taken from van Genuchten and Alves (1982) (Appendix A).   

The underlying dolomite aquifer is assumed to be of finite thickness that spans infinitely in the 

horizontal directions x and y.  The corresponding three-dimensional mass conservation equation for 

TCE in this aquifer is  
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where Rr is the retardation factor for the TCE in the dolomite aquifer; Dx, Dy and Dz are the dispersion 

coefficients in the x, y, and z directions respectively; vx is the horizontal linear velocity in the x-

direction in the dolomite aquifer; µr accounts for the decay of TCE; S(x,y,z,t) describes the source of 

TCE at the top of the aquifer.  The initial condition for the dissolved TCE in the dolomite aquifer is  

 ( ) 00,,, =zyxc         (6) 

The x and y direction boundary conditions are  

 ( ) ( ) 0,,,,,, =±∞=∞± tzxctzyc      (7) 

while the z direction boundary condition is 
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where z = z0 represents the top of the aquifer, and z = 0 represents the bottom of the aquifer.  The 

concentration at the top of the dolomite aquifer is obtained using the one-dimensional migration 

equation described by (1) to (4).  This point concentration is assumed to represent the source of TCE 

contamination in the aquifer in terms of mass and thus, is converted to a uniform concentration 

throughout the rectangular source zone as described by  
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where wx and wy represent the horizontal dimensions; H is the Heaviside step function; ntill and nrock 

are the porosity of the till and the dolomite respectively; and ctill is the concentration at the bottom of 

the till obtained the solution to (2).  The vertical velocity in the till unit, vv, defined in (2) is assumed 

to be constant throughout the unit and therefore, is also assumed to be constant beneath the areal 



 

  13

extent of the source zone.  The source term represented by (9) assumes that the till in the rectangular 

source zone has a uniform thickness, and that the concentration of dissolved TCE in the till at all 

locations immediately beneath the source zone is determined using (1) to (4).  This definition of the 

source term leads to discontinuities in concentration levels found at the bottom of the till or the top of 

the aquifer since only the mass is conserved. 

The solution to (5) to (9) is obtained by using the Green’s function of (5) and integrating yields 
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where x’, y’, z’, and t’ are integration variables.  The Green’s function in (10) is presented in 

Appendix B.  The integral is solved using an adaptive 160 point Gauss Legendre Quadrature, which is 

a numerical integration method appropriate in approximating definite integrals that are difficult to 

solve in closed-form.  The high number of Gauss Legendre points indicates the complexity of the 

solution surface.   

The solution allows for the estimation of the concentration level in the Silurian dolomite aquifer in 

3-dimensional space over time.  The breakthrough curves at locations of concern determined with the 

model are used to estimate the arrival time of a detectable TCE concentration.  For conservative 

estimates, a location of concern should consider its proximity to the source and the centerline since 

the model is designed to produce higher concentrations at locations closer to these areas.   

2.5 Prior Knowledge of Model Parameter Values 

Prior information such as the site history, the physical setting, and the contaminant characteristics 

are not sufficient to determine the appropriate values for all parameters; and quantitative observations 

are used with parameter estimation methods to estimate uncertain parameters.  Each of the 17 

parameters associated with the mathematical representation of the conceptual model presented in 

Section 2.4 are uncertain to differing degrees.  For some parameters, a sufficient amount of 

information is available to select a suitable value; for other parameters, only a range of possible 

values can be determined.  In this section, prior knowledge is used to provide quantitative information 

regarding each parameter.  For uncertain parameters, a discussion on the possible nature of parameter 

values, which is of critical importance for some uncertainty analysis methods, is also provided. 
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2.5.1 Parameter Values 

2.5.1.1 Source Zone 

There are 4 parameters associated with the source zone: the initial source concentration, c0, the 

source reduction rate, λ, the source length, wx, and the source width, wy.   

The parameters, c0 and λ, control the highly uncertain source concentration over time described by 

(1).  The initial source concentration, c0, should be less than the solubility of TCE and greater than 

zero; the values are selected to range from 100 mg/L to 2000 mg/L to conservatively represent the 

large degree of uncertainty associated with this parameter.  A value significantly higher than the 

solubility is selected as the upper bound for c0 due to the sharp decrease near initial times possible 

with (1).  The source reduction rate, λ, is made to range from 0 to 1 based on the history of the site.  

A λ value of 0 represents TCE released uniformly over time while a value of 1 represents the 

concentration of releases to early times.   

Locations of the multiple possible sources of release are assumed to be spread out through the 

Metcoil site shown in Figure 2.1.  A rectangular area of 150 ft by 150 ft that appears to capture the 

areal extent of the site is used to represent the source zone.  Therefore, the values for the parameters, 

wx and wy, are assumed to be fixable.  

2.5.1.2 Till Unit 

There are 6 parameters associated with the one-dimensional transport through the till unit: the 

vertical velocity, vv, the dispersivity, Dv, the retardation factor, Rt, the decay, µt, the porosity, no, and 

the depth to top of the aquifer unit, bt.  The available site investigations that primarily characterize the 

soil properties and groundwater flow provide sufficient information to select a porosity of 0.2.  The 

retardation factor is correlated to the porosity and approximate values can be estimated (Freeze and 

Cherry, 1979).  A low retardation factor of 1.5 is selected to be conservative since TCE is known to 

be retarded.   

The remaining parameters are assumed to be uncertain and conservative ranges are assigned and 

presented in Table 2.1.  Site investigative work shows that the thickness of the till unit is highly 

variable; thus, the parameter is considered uncertain since the optimal approach to finding an 

equivalent uniform thickness in unknown.  
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Table 2.1. Prior information regarding parameter values 

Zone / Unit 
Parameter 

Abbreviations 
Parameter Description Units 

Prior Estimate or 

Range 

c0 (or c0) Initial source concentration mg/L 100.0 2000.0 

λ (or gam) Source reduction rate 1/years 0.00001 1.0 

wx (or wx) Source length ft 150 
Source 

wy (or wy) Source width ft 150 

vv (or vv) 
Vertical velocity in 

overburden 
ft/yr 1.0 40.0 

Dv (or dispv) Dispersivity in overburden ft 0.001 20.0 

Rt (or rv) Retardation in overburden n/a 1.5 

µt (or rlam) Decay coefficient 1/years 0.00001 1.0 

bt (or xv) 
Depth to top of limestone or 

thickness of overburden 
ft 0.0 80.0 

Till 

no (or porv) Porosity in overburden n/a 0.2 

vx (or v) 
Horizontal velocity in 

limestone 
ft/yr 100.0 1000.0 

Dx (or dispx) 
Longitudinal dispersivity in 

limestone 
ft 10.0 500.0 

Dy (or dispy) 
Transverse dispersivity in 

limestone 
ft 1.0 50.0 

Dz (or dispz) 
Vertical dispersivity in 

limestone 
ft 0.05 50.0 

D* (or dmol) 
Molecular diffusion times 

tortuosity 
ft2/yr 0 

Rl (or rlim) Retardation in limestone n/a 1.5 

Aquifer 

na (or porlim) Porosity in limestone n/a 0.05 
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2.5.1.3 Aquifer Unit 

The dolomite aquifer unit is characterized by 7 parameters: the horizontal velocity, vx, the 

longitudinal, transverse, and vertical dispersivities, Dx, Dy, and Dz, the molecular diffusion times 

tortuosity, D*, the retardation factor, Rl, and the porosity, na.  The porosity and the retardation factor 

are selected to be 0.05 and 1.5 respectively and fixed based on the same reasoning presented for the 

till unit in Section 2.5.1.2.  The remaining parameters are assumed to be uncertain and conservative 

ranges are assigned and presented in Table 2.1. 

It is important to note that many of these model parameters are correlated but their exact 

relationship is unknown.  For example, high values for both vv and Dv, which are not directly 

dependent, results in arrival times that are unrealistically early.  Approaches to consider high 

correlations in parameter estimation and uncertainty methods, which typically assume independence, 

must be taken to ensure sound results.  Some treatment approaches are regularization and post-

processing during the parameter estimation process.   

2.5.2 Parameter Value Distribution 

Typically, parameter values are assumed to be normally-distributed using the central limit theorem 

or lognormally-distributed assuming it is a multiplicative product of numerous independent and 

identically distributed factors.  Some studies have shown that groundwater flow and transport 

parameters are more likely to be distributed lognormally.  Although the evidence is not definitive, 

lognormal standard deviations estimated using expert opinion (Sykes, 2004) are presented for 

uncertain parameters in Table 2.2.   

Table 2.2. Lognormal standard deviations for uncertain parameters 

Parameter Lognormal Standard Deviation 
c0 0.1 
vx 0.025 
Dx 0.2 
Dy 0.2 
Dz 0.2 
µt 0.05 
λ 0.01 
vv 0.1 
Dv 0.1 
bt 0.2 
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 It is important to note that the nature of parameter value distributions is highly uncertain and the 

capability of standard parametric distributions to represent the “true” nature is questionable. 

2.6 Observations 

Automatic calibration methods can be used with quantitative observations to estimate parameter 

values given the model and prior knowledge regarding parameters.  Residential wells at 695 locations 

shown in Figure 2.1 were sampled for TCE in 2001 and 2002 by Clayton Group Services.  The 

detection limit (DL) of the analytical method employed to test ground water samples for TCE is 0.5 

ppb for the majority of the samples.  Observations with concentration levels below the DL are 

referred to as non-detects (NDs).   

These residential wells are assumed to be completed in the dolomite aquifer based on the 

hydrogeology described in Section 2.3.2.  Although the screened intervals of these wells are 

unknown, they are likely to be designed to produce ample yield for household use; thus, the interval is 

likely to be of sufficient length to cause averaging of concentrations in the interval.  The top of the 

aquifer is selected to represent this averaged concentration since TCE transport is assumed to be 

primarily horizontal in the aquifer unit.   

The concentration distribution of all observations is used to identify general trends and 

manipulations are made to facilitate the use of the model presented in Section 2.4.  Further insight 

into the possible effects of the observation on parameter estimation process is gained by examining 

local trends.  The insufficiencies of observations that are likely to cause problems in the calibration 

process are discussed and possible treatments are recommended. 

2.6.1 General Trends 

The plume boundary or the extent of the plume is defined in this thesis to represent the area in 

which observations have detectable concentration levels.  The approximate extent of the Metcoil TCE 

plume delineated in Figure 2.1 is based on the direction of groundwater flow and the concentration 

distribution obtained from the 2001/2002 well survey data.  The region of high concentration to the 

east of the delineated plume boundary is known to be caused by the industrial park located to the 

north to northeast of the region.  This is validated by the row of NDs present between the Metcoil 

TCE plume and the industrial park plume.  Therefore, the concentrations located outside of the 

delineated 2001/2002 plume boundary appear to be unrelated to TCE releases at the Metcoil site; and, 

only the observations shown in Figure 2.1 that lie inside of the boundary along with NDs surrounding 
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the plume are considered to represent the problem.  The resulting number of observations, which are 

to be used in the model calibration process in Chapter 3, is 320.   
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Figure 2.3. Plume centerline and the measured TCE concentrations in ppb 

The centerline of the plume is approximated manually using the concentration distribution and the 

shape of the plume boundary as shown in Figure 2.3.  The coordinates of observation locations are 

transformed such that the plume centerline forms a straight line and the source is located at the origin 

as shown in Figure 2.4.  This transformation inherently includes heterogeneities and anisotropies into 

the model and facilitates the use of the analytical solution.  An approximate extent of the 2001/2002 

plume is re-delineated using the transformed distribution of concentration levels in such a way that 

symmetry about the centerline is achieved.  The 2001/2002 plume boundary based on the transformed 
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coordinates is delineated to correspond to the conceptual model; this boundary, which is simply 

referred to as the plume boundary, is used to analyse local trends in the observation data.  Note that 

the new plume boundary, shown in Figure 2.4, may not necessarily coincide with the extent of plume 

delineated in Figure 2.1 since both boundaries are delineated independently using observation 

locations in their respective coordinates.   
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Figure 2.4. Location of measurement points for TCE in ppb in transformed coordinates 

Locations close to the centerline of the plume and the source are designed to have higher 

concentrations, and are ideal for conservative representation of an area of concern.  Although arrival 

times can be defined for each well location, the variation in arrival times within an area is small 

relative to the uncertainties associated with the problem.  Therefore, the representative location for 

each of the four areas of concern as grouped during legal proceedings are selected as shown in Figure 

2.5, and the corresponding coordinates are presented in Table 2.3. 
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Figure 2.5. Representative locations for each area 

Table 2.3. Representative locations for areas of concern 

Area of Concern 
x-coordinate 
(transformed) 

y-coordinate 
(transformed) 

z-coordinate 
(transformed) 

Leclerq Class Area 1390 0 100 
Mejdrech Area B 8707 659 100 
Mejdrech Area C 11400 0 100 
Mejdrech Area D 8500 1790 100 

2.6.2 Local Trends 

The observations are non-stationary in both time and space; thus descriptive measures such as 

means, medians, or standard deviations do not capture the potential for difficulties in the calibration 

process.  However, valuable insight can be gained by examining local trends in terms of the 

magnitude and the distribution of observations in time and space.  In Figure 2.4, the locations of the 

observations are primarily clustered in the four areas of concern: Leclerq Class Area, Mejdrech Area 

B, Mejdrech Area C, and Mejdrech Area D.  Another cluster of observations, which are all NDs, is 
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located between the Leclerq Area and Mejdrech Area B near the plume boundary.  Local trends are 

studied by examining the observations in each of these areas. 

2.6.2.1 Leclerq Class Area 

There are 118 observations of which 55% are non-detects (ND) in the vicinity of the Leclerq area.  

The corresponding concentrations range from non-detectable levels to 19.5 ppb.  Five or 4% of the 

observations are below the previously-defined DL of 0.5 ppb with a range from 0.24 to 0.44 ppb.  

Only 9% of all observations associated with the Leclerq Class Area have concentrations below 1.0 

ppb, and 45% of these observations are below 0.5 ppb.  Thus, these observations are not likely to be 

anomalies and the DL of 0.5 ppb is likely to be incorrect for the observations in the Leclerq Class 

Area.  The spatial distribution and a histogram of the TCE concentration levels in this area are 

presented in Figure 2.6and Figure 2.7 respectively.  

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 1000 2000 3000 4000

Distance (feet)

D
is

ta
n

ce
 (f

ee
t)

ND

ND < Concentration < 1.0 ppb

1.0 ppb < Concentration < 3.0 ppb

3.0 ppb < Concentration < 6.0 ppb

6.0 ppb < Concentration < 10.0 ppb

Concentration > 10.0 ppb

Representative Location

Plume Boundary

 

Figure 2.6. Measured TCE concentrations in and around the Leclerq Class Area in ppb 
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Figure 2.7. Histogram of TCE concentration levels in and around the Leclerq Class Area (a) in 

ppb (b) in log10(ppb) 

The histograms are created both with and without logarithmic transformations in Figure 2.7 since 

the effect on the estimation process is unknown.  Misleading conclusions can be drawn by only 

examining the trends in the histogram due the non-stationary nature of observations; thus, histograms 

are examined in conjunction with concentration distributions.  Approximately 40% of NDs, which 

represents approximately 25% of the total number observations in the area, are located within the 

plume boundary as shown in Figure 2.6.  Figure 2.7(a) shows that the number of NDs is significantly 

reduced but still high.  Note that the intervals of the histogram are not consistent since the first and 

second intervals have ranges less than 2.0 ppb; the significance of the number of NDs are more 

pronounced in histograms with smaller interval widths, as shown in Figure 2.8.  Of the 60% of NDs 

located within the plume boundary, the NDs of greater concern are those located in regions of high 

concentration.  If we assume that regions of high concentration are areas with concentration greater 

than 3.0 ppb, only 15% of the NDs, which is only 8% of the total number of observations in the area, 

may be problematic.  In fact, the number of problematic NDs is small in Figure 2.8 where only the 

NDs in regions of high concentration are considered.  However, there are two NDs in the vicinity of 

the representative location, where high concentrations are expected; thus, these NDs may be a source 

of bias in arrival estimates based on the representative location.  In addition, when logarithms are 
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applied to concentration values, the number of NDs in the plume is high relative to other intervals in 

Figure 2.7(b) even if only the observations within the plume boundary in regions of high 

concentrations are considered.   
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Figure 2.8. Histogram of TCE concentration levels in and around the Leclerq Class Area in ppb 

with smaller intervals 

In addition to the concern caused by NDs, a possible outlier, caused by an observation with a 

concentration level of 19.5 ppb, is notable in Figure 2.7(a).  The next highest concentration level is 

8.3 ppb, which corresponds to a difference of 11.2 ppb from the possible outlier.  The two closest 

observations to the possible outlier have concentrations of 3.1 and 7.4 ppb, and are separated by 

approximately 200 ft.  The difference in concentrations typically found between observations with 

detectable concentration levels are approximately 1 ppb and 2 ppb for separation distances of 

approximately 100 ft and 200 ft respectively.  Thus, the variance in observations in the proximity of 

the possible outlier appears to be higher, and the possible outlier may not be erroneous but a product 

of heterogeneity.  This possible outlier is also located near the source and the centerline of the plume 

among observations of high concentrations.  In addition, the possibility of this observation being an 
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outlier is significantly reduced if the logarithms of the concentrations are considered as shown in 

Figure 2.7(b).  Therefore, the omission of this observation is not recommended.  However, the 

possibility of this observation being an outlier still exists since the true distribution of the 

concentration levels is unknown.   

Another concern is the proximity of the observation to the source zone since discontinuities in 

concentration exists in the developed model.  However, the observation closest to the source zone is 

located at a distance of 644 ft from the edge of the source zone.  Therefore, the observations are 

assumed to be at sufficient distances from the source zone to be insensitive to the discontinuity at the 

till-aquifer interface.  This is not a concern in other locations which are located at greater distances 

from the source. 

2.6.2.2 Mejdrech Area B 

The spatial distribution and a histogram of the TCE concentration levels in Mejdrech Area B are 

presented in Figure 2.9 and Figure 2.10 respectively.  There are 70 observations of which 46% are 

NDs in the vicinity of Mejdrech Area B.  The corresponding concentrations range from non-

detectable values to 1.5 ppb, which is much less than majority of concentrations observed in the 

Leclerq Class Area.  There are no observations with concentrations less than 0.5 ppb other than those 

specified as NDs, and the DL of 0.5 ppb appears to be valid. 

The local distribution of concentration levels in Mejdrech Area B presented in Figure 2.9 appears 

to disagree with the delineated TCE plume boundary.  The plume boundary, also shown in Figure 2.4, 

is delineated to take into account the concentration distribution of all the observations.  Twelve or 

17% of the NDs in this area are located within the plume boundary; yet, only one ND is completely 

surrounded by observations with concentrations greater than the DL.  This may indicate that the 

plume boundary or centerline needs to be revised.  However, the plume boundary does not necessarily 

represent a DL of 0.5 ppb since the DL in the Leclerq Class Area is lower than 0.5 ppb.  In addition, a 

smaller range in concentration levels exists, and a greater proportion of the NDs are likely to be close 

to the DL.  Furthermore, a revision in the plume boundary can cause problems in other areas, and 

cannot be justified given the relatively small number of observations that are possibly problematic. 

 There are no obvious outliers and the difference between concentrations is relatively small in 

the vicinity of the representative location.   
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Figure 2.9. Measured TCE concentrations in and around Mejdrech Area B in ppb 

 

Figure 2.10. Histogram of TCE concentration levels in and around Mejdrech Area B (a) in ppb 

(b) in log10(ppb) 
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2.6.2.3 Mejdrech Area C 

The spatial distribution and a histogram of the TCE concentration levels in this area are presented 

in Figures 2.11 and 2.12 respectively.  There are 91 observations of which 36% are NDs in the 

vicinity of Mejdrech Area C.  The corresponding concentrations range from non-detectable values to 

1.5 ppb, which is similar to Mejdrech Area B.  There are also no observations with concentrations 

less than 0.5 ppb other than those specified as NDs, and the DL of 0.5 ppb appears to be valid. 

Figure 2.11 shows that no obvious outliers exist and the number of NDs is significantly higher than 

the number of observations in any of the other concentration interval.  Only one ND measurement lies 

outside of the extent of the plume.  Although the DL corresponding to plume delineation is uncertain, 

the observations within the plume boundary should have concentration, at the least, greater than zero.  

No improvements are noticed with the application of logarithms.   

There are many NDs below the representative location while there are many observations with 

detectable concentrations above the representative location.  This pattern can be attributed to 

heterogeneities in the subsurface or an incorrect delineation of the plume’s centerline.  However, the 

range in detectable concentrations is small and these NDs may represent locations within the plume 

with concentrations lower than 0.5 ppb.  In fact, there is a row of detectable concentrations below the 

area of NDs with low concentration values. 
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Figure 2.11. Measured TCE concentrations in and around Mejdrech Area C in ppb 
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Figure 2.12. Histogram of TCE concentration levels in and around Mejdrech Area C (a) in ppb 

(b) in log10(ppb) 

2.6.2.4 Mejdrech Area D 

The spatial distribution and a histogram of the TCE concentration levels in this area are presented 

in Figures 2.13 and 2.14 respectively.  There are 23 observations of which 57% are NDs in the 

vicinity of Mejdrech Area D.  The corresponding concentrations range from non-detectable values to 

1.2 ppb, which is slightly smaller compared to Mejdrech Areas B and C.  There are also no 

observations with concentrations less than 0.5 ppb other than those specified as NDs, and the DL of 

0.5 ppb appears to be valid. 

Most of the NDs are located outside of the extent of the plume.  Only 2 out of 13 NDs, which 

correspond to 15% of ND measurements, are located within the plume.  The NDs do not appear to be 

problematic in both distributions presented in Figure 2.14 if only the NDs in regions of high 

concentrations are considered.  In addition, there are no obvious outliers. 
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Figure 2.13. Measured TCE concentrations in and around Mejdrech Area D in ppb 

 

Figure 2.14. Histogram of TCE concentration levels in and around Mejdrech Area D (a) in ppb 

(b) in log10(ppb) 
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2.6.2.5 Other Observations 

There are 18 observations that are all NDs between the Leclerq Class Area and Mejdrech Area B as 

shown in Figure 2.4.  Seven of these observations, which represent 39% of the observations in this 

cluster, are located within the plume boundary. 

2.6.3 Insufficiencies in Data 

Automatic calibration methods are generally designed to account for errors that are not strongly 

biased.  However, five sources of bias that may affect the calibration process are present in the given 

data: 

1. The presence of NDs 

2. The presence of an extreme value (i.e., outlier) 

3. The clustering of observations in space and time 

4. The limitations in the type of observations 

5. The limitations in the number of observations 

Each of these sources is discussed below and possible treatments are recommended. 

2.6.3.1 Presence and Treatment of ND Observations 

Approximately 50% of the 320 observations are NDs; however, this percentage is below 75%, 

which USEPA (2000) declares high.  Nonetheless, a significant proportion of the observations are 

NDs and their treatment during the calibration process is a concern.  Applicable treatment approaches 

suggested by the USEPA (2002) are: partitioning of the data based on the conceptual model, the 

simple substitution method, and distributional methods.  A simple substitution method is 

implemented by selecting a value from zero to the DL and replacing all NDs with this value.  Typical 

values used are zero, half of the DL, and the DL.  To better represent the range of possible values of 

NDs, a shape of the distribution based on the distribution of observations with detectable 

concentrations is assumed in distributional methods.  If partitioning of the data based on the 

conceptual model is performed, a simple substitution method or distributional methods can be applied 

to each partition.  Although histograms for clusters of observations have been created, they cannot be 

used to define the shape of the distribution since the data are non-stationary in both time and space; 

thus, the simple substitution method with partitioned data appears to be the only feasible approach. 

To be consistent with the conceptual model, observations located outside of the plume boundary 

should have concentration values of zero or close to zero while observations inside the plume 

boundary should primarily consist of detectable concentration values.  Based on this premise and the 
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discussions in Section 2.6.2, three types of ND observations can be established and are categorized as 

follows:  

Type 1: The ND is surrounded by NDs.  

The NDs of this type represent locations outside of the plume and the concentration level 

should be zero or very close to zero.   

Type 2: The ND is surrounded by observations with concentration levels greater than the 

detectable limit but below 3.0 ppb. 

The NDs of this type can be located inside or outside of the plume and can take on values 

between zero and the DL.  The upper limit of 3.0 ppb is subjectively chosen based on the 

range of concentration levels to distinguish between high and low levels. 

Type 3: The ND is surrounded by observations with concentration levels greater than 3.0 ppb.   

 The NDs of this type are most likely located inside of the plume and should be greater than 

zero. 

Since the treatment of NDs should vary with type, a summary of the ND types for each locations are 

presented in Table 2.4.   

Table 2.4. Numbers and percentages of ND observations according to its type 

Number of Observations 
Type of 

ND 
Observa-

tions 

Leclerq 
Area 

Mejdrech 
Area B 

Mejdrech 
Area C 

Mejdrech 
Area D 

Other Total 

Percentage 
of Total 

Number of 
ND 

Observa-
tions 

Percentage 
of Total 

Number of 
Observa-

tions 

1 37 20 1 11 11 80 50% 25% 
2 18 11 32 2 7 70 43% 22% 
3 10 1 0 0 0 11 7% 3% 

Total 65 32 33 13 18 161   
 

Table 2.4 shows that half of the NDs are of Type 1, which indicates that they are located outside of 

the plume and should have a concentration level of zero or very close to zero.  Unnecessary biases 

can result if these observations are set to the DL or even half of the DL using the simple substitution 

method.  A significant portion of NDs is categorized as Type 2 that can take on values between zero 

and the detection limit.  For these observations, half of the DL appears to be a suitable substitution 

value.  The NDs of Type 3, which only represents 7% of all NDs, can be substituted by either the DL 

or half the DL.   

Although partitioning of the data may improve parameter estimations, the subjectivity of the 

partitioning strategy must be considered.  The strategy used in this section, which was used to 
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generate the numbers in Table 2.4, are simply characteristics of this particular data set and may not be 

reproducible using observations with different times and/or locations.  For example, many of the 

Type 2 NDs in Mejdrech Area B and the “other” or non-specified area may be of Type 1 since the 

delineation of the plume boundary is subjective.  Therefore, a substitution of all NDs by a value of 

half the DL or the DL is likely to cause strong misleading biases, which will amplify problems caused 

by spatial clustering discussed in a subsequent section.  A simple substitution of all NDs by zero is 

not guaranteed to create a strong systematic bias in the calibration process when there are only a few 

NDs within the plume boundary and even fewer NDs in regions where high concentrations are 

expected.  If most of the NDs can be categorized as Type 1, the adoption of the simple substitution 

method using a concentration level of zero may be as justifiable as the implementation of a 

partitioning strategy and the simple substitution method. 

2.6.3.2 Presence and Treatment of Extreme Value 

The extremity of the observation with the concentration level of 19.5 ppb is debatable and its 

removal is not recommended.  Nonetheless, the residual associated with this observation will have a 

significant impact on the performance indices of calibration methods, especially the popular least 

squares method.  Therefore, its effect should be minimized using alternate performance indices.  

Since the logarithm of the value appeared to reduce the effects in Figure 2.7, performance indices 

based on logarithms should be considered. 

2.6.3.3 Clustering Observations in Space and Time 

Ill-posedness due to a solution highly sensitive to small changes in data can arise when predictions 

are made at locations or times distant from observations clustered in space or time (McLaughlin and 

Townley, 1996).  The observations provided for the case study are clustered in space and time. 

2.6.3.3.1 Spatial Clustering 

The locations of observations are primarily clustered in and around the four areas of concern.  

Since a larger amount of information in a certain spatial region biases the overall fit to observations in 

that region, this can be viewed positively since the purpose of modeling is to determine arrival times 

at the areas of concern.  However, more than one area of concern exists, and problems arise from the 

fact that the numbers of observations in the areas are not consistent as shown in Table 2.5. 
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Table 2.5. Number and percentage of observations found in each location within the 2001/2002 

plume boundary 

Regardless of Plume Boundary 
Area of Concern 

Number of Observations % of Total Observations 
Leclerq Class Area 118 37% 
Mejdrech Area B 70 22% 
Mejdrech Area C 91 28% 
Mejdrech Area D 23 7% 

 

A significantly greater number of observations are provided for the Leclerq Area while a much 

smaller number of observations are provided for Mejdrech Area D.  The number of observations is an 

indication of the certainty associated with the estimate for the location of concern.  Therefore, it can 

be expected that uncertainty analysis will yield larger ranges of arrival times for Mejdrech Area D.  

Calibration approaches will be biased towards increasing the fit in the Leclerq area at the cost of 

decreasing the fit in the remaining areas, especially Mejdrech Area D.  In addition, the distribution of 

parameters below the centerline (i.e. observations with negative y-coordinates) is more dispersed than 

above the centerline as shown in Figure 2.4; and, 61% of the observations are located below the 

centerline.  Therefore, difficulties are likely to arise when attempting to model TCE transport to 

Mejdrech Area D.  

An approach to eliminate this effect is to average the observations in such a way that each region 

has the same number of observations.  The presumed accuracy of an averaged observation is related 

to the number of observations that the average is based on.  Application of weights based on the 

accuracy of the observation is recommended if such information is available (Watermark Numerical 

Computing, 2004).  However, such application can bring back the original bias that was removed by 

averaging.  In addition the selection of an averaging strategy is subjective.  An alternate treatment 

approach is the addition of soft data, the selection of which is highly subjective.  Another option is to 

use a multi-objective optimization approach that attempts to minimize the deviation from 

observations for each location. 

2.6.3.3.2 Temporal Clustering 

The data available for this case study with three-dimensions is limited to observations made 

between 30.38 and 32.63 years, which correspond to 11,089 and 11,910 days, since the assumed first 

release of TCE.  Only one measurement is made for a given location and the ranges in observation 
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times are small for observations in the same vicinity as shown in Figure 2.15.  
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Figure 2.15. Location in transformed coordinates and time interval of observations 

Temporal spacing of the observations is of paramount importance in this problem of estimating the 

first arrival time.  Models that are similar at a specific point in time may be very different at other 

times.  Therefore, a large range of possible arrival times are valid if the observations are clustered in 

time. 

This type of data insufficiency is commonplace.  The sources of many contaminated sites are often 

created in a time period in which monitoring for potential contamination is not performed and the 

potential for adverse health effects are not considered.  Observations are made only once problems 

are suspected, which are often many years after first contaminant releases. 

2.6.3.4 Limitations in the Type of Observations 

Since the observations available for automatic calibration do not include observed parameter 

values, the parameter estimation process is performed indirectly with concentration values.  The 

usage of various types of observation data are recommended for successful calibration (Hill, 2006).  

However, the option to collect additional data does not exist in this case study and alternative 

approaches to reduce uncertainty should be considered. 
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2.6.3.5 Limitations in the Number of Observations 

The number of observations available is often limited in practice by cost constraints.  The 

minimum number of observations required to reach a unique solution given a system of linear 

equations is equal to the number of parameters to be estimated.  For a non-linear system, the solution 

space is complex and the number of observations must be greater than the number of estimable 

parameters to obtain a unique solution.  The number of observations required can grow exponentially 

with increases in the number of parameters to be estimated.  If the number of parameters to be 

estimated are large (i.e., greater than 10), 320 observations can easily be too small in our opinion.  

Given no alternate data types, a greater number of observations is required. 
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Chapter 3 

Parameter Estimation 

Models that simulate physical processes contain unknown parameters that require adjustments so 

that specific systems can be represented.  Many of these parameters cannot be directly measured in 

the field and thus, need to be inferred from other types of observations.  Parameter estimation 

methods attempt to determine a set of model parameter values so that selected model outputs match 

field observations.  This is usually achieved by minimizing a performance index or an objective 

function that represents the ability of model results to match field observations; thus objective 

functions can be viewed as an indication of how “good” parameter estimates are given an 

observational data set.  In general, parameter estimation processes consist of two components: the 

definition of the objective function and related constraints and the selection of a parameter estimation 

method.  The parameter estimation process selected for the case study investigated here should 

address issues surrounding the observation data discussed in Chapter 2 and consider the ultimate goal 

of understanding the uncertainty of first arrival times to be analysed in Chapter 4.   

For the given case study, the observations available for use in parameter estimation methods are 

trichloroethylene (TCE) concentration levels at 320 specific locations and times, as discussed in detail 

in Chapter 2.  Five insufficiencies in the data were noted in Chapter 2: (1) the presence of 

concentration levels below the detectable limit or non-detects (ND), (2) the presence of an extreme 

value, (3) the clustering of observations in space and time, (4) the limitations in the type of 

observations, and (5) the limitations in the number of observations.   

A simple substitution method with the concentration level of zero was selected to treat NDs.  

Substitution methods typically use a value of zero, the detection limit, or half of the detection limit 

(Singh et al., 2002).  Examination of the proportion of NDs in this case study indicate that more of the 

NDs are likely to represent a value close to zero as opposed to the detection limit (DL) or half the DL; 

therefore, a simple substitution by the DL or even half the DL can lead to serious bias given the range 

and distribution of the concentration levels in the data set for this study.  Partitioning of the NDs is 

not performed due to the subjectivity in the partitioning strategy, which is strongly dependent on the 

delineation of the plume boundary.  Also, the uncertainty or the variability in the detectable 

concentration levels makes the existence of concentration levels of zero for the majority of non-

detects a possibility.   
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The extreme value or outlier is handled by using robust estimators in the objective function 

definition.  The option of simply removing this data point was not exercised since it is located in a 

region of high concentrations and may not be an outlier.  Robust estimators are designed to be less 

sensitive to deviations in a small subset of the data (Finsterle and Najita, 1998; Wittmeyer and 

Neuman, 1991).     

In our opinion, the problem of data clustering, primarily in the spatial sense, can also be alleviated 

indirectly by the usage of robust estimators.  Robust estimators should reduce the contribution of the 

residuals in the Leclerq Class area that have relatively larger concentration levels to the parameter 

estimation process.  Another solution to the bias caused by spatial clustering is to use multi-objective 

optimization that weighs the ability of a parameter set to produce outputs that match observations in 

each area equally.  However, the implementation of both strategies may be redundant and a single 

objective optimization with robust estimators was used.   

The clustering of the data in the temporal sense only conditions the portion of the concentration 

breakthrough curves that corresponds to the data.  Therefore, flexibility exists in the remaining 

portion of breakthrough curves, and many different parameter sets can produce outputs that match the 

observations.  As a result, the acceptance of multiple parameter sets is unavoidable given the data.  

The best way to treat the remaining two data insufficiencies, which are the lack of different types 

and number of data points, is to collect additional hard data or to use prior knowledge.  Resources to 

acquire additional hard data are not available, and therefore the incorporation of prior knowledge into 

the parameter estimation process must be considered.  Since the creation of soft data based on prior 

knowledge is highly subjective, prior knowledge is integrated into the parameter estimation process 

by developing constraints.  The availability of prior knowledge is limited in this case study, and only 

one criterion can be defined based on the information provided in Chapter 2.  The criterion constrains 

the product of the horizontal velocity in the aquifer, v, and the longitudinal dispersivity in the aquifer 

unit, Dx, to be less than 250,000 ft2/yr, which is half of the product of the upper limits of the two 

parameters specified in Chapter 2.  This criterion, which is referred to as the Product Criteria, is 

based on expert opinion that limits mechanical dispersion.  Many other criteria that should be applied 

exist but are unknown, and, the treatment of these two insufficiencies using only one criterion is 

insufficient.  Fortunately, the acceptance of multiple parameter sets, which is performed to treat 

temporal data clusters, can also account for these insufficiencies.  In fact, the acceptance of multiple 

parameter sets can address all five data insufficiencies to some extent.  If a large number of parameter 

sets are accepted, the chance of a parameter set that corrects for these potential problems is greater.   
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Parameter estimation methods used for groundwater and contaminant transport problems are 

primarily based on the principles of maximum likelihood and are not designed to find multiple 

possible solutions.  Nonetheless, a review of these methods provides a good basis for selecting an 

appropriate method to estimate parameters for the given case study.  Parameter estimation methods 

can be categorized as deterministic local optimization methods or global optimization methods.  

Gradient-based deterministic local optimization methods, such as PEST (Watermark Numerical 

Computing, 2004) and UCODE (USGS, 2005), are applied most commonly to groundwater flow and 

contaminant transport problems due to generally lower computation times compared to heuristics 

methods (Carrera et al., 2005).  Mathematically, gradient-based methods are only guaranteed to find 

local optimums or to find global optimums in smooth convex problems (i.e. well-posed problems) 

(Gill et al., 1981).  The global optimum represents the lowest possible objective function value while 

a local optimum represents the lowest objective function value in a certain portion of the parameter 

space.  Typically, the goal of optimization is to find the global optimum but gradient-based methods 

can fail by only finding local optimums.  The difficulty in finding the global optimum arises due to 

ill-posedness caused by non-uniqueness and instability, which are often encountered due to non-

linearity and insufficient data (Kirchner, 2006).  To overcome these issues, regularization techniques 

(Tonkin and Doherty, 2005) and pilot points (Moore and Doherty, 2006) are used to smooth out the 

local optimums by adding prior knowledge.  Nonetheless, these techniques still do not guarantee the 

removal of all the local optimums, and the global optimum may still be difficult to find.  The inability 

of gradient-based methods to guarantee a unique and globally optimal solution has led to the use of 

heuristic global optimization techniques such as genetic algorithms and simulated annealing (Carrera 

al., 2005).  The need for a relatively large number of model realizations which grows with the number 

of uncertain parameters for genetic algorithms and simulated annealing have led to hybrid techniques 

such as the “Shuffled Complex Evolution” (SCE) (Duan et al., 1992).  SCE combines probabilistic 

and deterministic approaches using the concept of evolution and direct search algorithms, and has 

shown sufficient success to be accepted as the standard in surface water hydrology.  Application of 

the SCE method to hydrogeology problems has recently been demonstrated by Agyei et al. (2006) 

using the same concept of evolution but with the efficient gradient-based Levenberg-Marquardt 

method (Gill et al., 1983).  Thus, the SCE method appears to be the most promising approach for 

identifying a unique and globally optimal solution for difficult problems with complex response 

surfaces.   
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The parameter sets generated using methods based on the principles of maximum likelihood do not 

provide sufficient information on low likelihood outcomes.  However, the importance of low 

likelihood outcomes is equal or possibly greater than maximum likelihood outcomes when assessing 

uncertainty.  Therefore, an examination of multiple possible outcomes, which vary in the degree of 

likelihood, is necessary.  Proponents of common parameter estimation methods based on maximum a 

posteriori framework have indirectly acknowledged the possibility of finding multiple “good” 

parameter sets.  For example, Moore and Doherty (2005) state that uniqueness is not guaranteed using 

a gradient-based method with regularization as there are many ways in which the “preferred state” 

can be defined in the regularization operator and recommend catering calibration based on “the needs 

of the prediction”.  Since the purpose of uncertainty analysis is to capture all “preferred states”, 

multiple parameter sets can be considered to be “good”, where “good” parameter sets are those that 

best describe a “preferred state”.   

A direct acknowledgement and the consideration of multiple “preferred states” is made by Beven 

and Binley (1992) in their development of the Generalized Likelihood Uncertainty Estimation 

(GLUE) method.  The GLUE method involves randomly generating a large number of parameter sets 

from uniform parameter distributions and using only the behavioural parameter sets in uncertainty 

analysis (Feyen et al., 2001; Beven and Binley, 1992).  Behavioural parameter sets, which can be 

considered to represent “preferred states”, are defined in the GLUE framework as parameter sets with 

a performance index value below a subjective user-specified behavioural threshold.  This threshold is 

generally determined using prior knowledge and preliminary investigations into possible performance 

index values.  Lower values of the performance index indicate smaller differences between 

simulations and observations, and therefore are considered behavioural.  For some problems, a 

sufficient number of behavioural parameter sets are difficult to find without arbitrarily increasing the 

behavioural threshold (Beven, 2006).  This difficulty in finding behavioural parameter sets may 

indicate that the search methodology does not fully capture the parameter space, which grows with 

increases in the dimensionality of the problem.  An increase in the behavioural threshold to identify 

more parameter sets is undesirable since the selection of behavioural threshold becomes arbitrary.  To 

increase the number of multiple solutions of “good” quality, the Dynamically-Dimensioned Search – 

Approximation of Uncertainty (DDS-AU) method (Tolson and Shoemaker, 2006) optimizes 

numerous random initial solutions or parameter sets using a non-gradient-based local search 

algorithm.  If the performance index is a measure of solution quality, each local optimum can be 

viewed as the “good” solution in its respective region of the parameter space.   
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The application of any gradient-based search algorithm on multiple initial solutions obtained using 

the multistart procedure (Duan et al., 1992) may generate results that are similar to DDS-AU results.  

In fact, there is debate regarding the robustness of the DDS-AU method in finding the global 

optimum and reductions in computational requirements compared to gradient-based multi-start 

methods (Yin, 2006).  However, the purpose of this thesis is not to compare the DDS-AU method to 

other methods.  The DDS-AU method is selected to estimate parameters because it provides a 

platform for finding multiple “good” solutions.  In addition, the modifications required to 

accommodate different objective function definitions are more labour-extensive for gradient-based 

methods.  Moreover, the application of the DDS-AU method to groundwater flow or contaminant 

transport problem has yet to be performed.  Nonetheless, the functionalities of DDS-AU are selected 

based on preliminary comparisons to multiple implementations of PEST to justify its use.  In 

addition, implementations of PEST provide valuable insight since a large amount of information is 

provided for each implementation.   

In addition to the ability of the simulated values to resemble the observed values, the model results 

may need to satisfy additional requirements.  In the given case study, concentration levels greater than 

the detection limit at specified locations must be simulated within 32 years; this requirement is 

referred to as the Location Criteria.  Another requirement that an acceptable solution must meet is the 

Product Criteria, which was described above.  Although there may be additional criteria that should 

be considered, they are not obvious and/or difficult to define; and thus, the effect of applying the two 

criteria are explored in conjunction with the need for additional criteria in this chapter.   

Both criteria are handled by adding penalty functions to the objective function definition and/or 

using simple rejection during post-processing of the generated parameter sets.  The penalty function 

approach is not guaranteed to find solutions that satisfy the corresponding criteria; therefore, post-

processing is required regardless of whether a penalty function is used.  Moreover, application of 

criteria via post-processing can also be useful in examining the effect of applying the criteria.  Post-

processing of the results using constraints can be viewed as determining its membership to the 

behavioural or non-behavioural category.  Although the concept of behaviour has been primarily used 

in a binary sense in GLUE with membership dictated by the subjective behavioural threshold as 

mentioned above, the originators of the concept of behaviour, Hornberger and Spear (1981), did not 

limit the definition of behaviour by stating that it is “problem-dependent”.  Therefore, the “occurrence 

or non-occurrence of the behaviour” can be defined as whether or not the two criteria are satisfied.  

To differentiate between these two definitions of “behaviour”, we refer to this new definition as 
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“acceptance” and the parameter sets that satisfy the two criteria are hereon called acceptable 

parameter sets.  Even though a parameter set can be tested for both its “behaviour” and “acceptance”, 

the application of a behavioural threshold is abandoned due to its subjectivity and the use of the DDS-

AU method.  The DDS-AU method is designed to find solutions of “good” quality, and a filtering of 

unnecessarily high objective function values using a behavioural threshold is somewhat redundant.   

In this chapter, multiple parameter sets are generated with the DDS-AU method using various 

objective function definitions and are tested for acceptance.  Various definitions of the objective 

function or the performance index are used to generate a sufficient number of acceptable parameter 

sets to be used in the uncertainty analysis conducted in Chapter 4.  Finally, the characteristics of 

parameter spaces are explored to infer the true nature of parameters in terms of their distribution of 

values and correlation structure.  Different parameter spaces are investigated to assess the abilities of 

the approach to finding multiple acceptable parameter sets adopted in this chapter.   

A consideration of the physical processes and the validity of the conceptual model are explored for 

selected parameter sets using breakthrough concentration profiles at locations of concern established 

in Chapter 2 and a plan view of the plume.  A reference to contaminant arrival times defined by the 

arrival of a TCE concentration of 0.5 ppb is also made. 

3.1 Objective Function Definition 

The purpose of parameter estimation is to find the “true” value or the “true” solution given a data 

set and model containing errors and biases.  Parameter estimation methods are generally optimization 

methods whose sole objective is to minimize or maximize the objective function or performance 

index value.  Therefore, the nature of errors and biases must be captured by the objective function 

definition.  Although the actual error and/or bias of a quantity associated with the model is unknown, 

it can be inferred by examining the difference between observed and modelled quantities, which is 

called a residual, ri.  In our case, these quantities are TCE concentration levels and the residual, ri, is 

ri = zi
* – zi(α)        (11) 

where zi
* is the measured concentration at point i, and zi(α) is the simulated concentration given a 

vector of parameters, α.  The measured concentration, zi
*, is composed of three parts (Finsterle and 

Najita, 1998) as given by 

 zi
* = zi,true + (ed + bd)       (12) 
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where zi,true is the true concentration at point i, ed is the error associated with the data, and bd is any 

bias present in the data.  Similarly, the simulated concentration, zi(α), given a vector of parameters, α, 

is 

 zi(α) = zi,true + (em + bm)      (13) 

where em is the error associated with the model, and bm is any bias present in the model.  Therefore, 

the residual represents all of the errors and biases associated with the problem as follows 

 ri = (ed + bd) – (em + bm)      (14) 

Note that the signs associated with the errors and biases are unknown, and the residual can be viewed 

as a sum of all the errors and biases (Finsterle and Najita, 1998).  The contribution of each component 

of the residual identified in (14) to ri is unknown.  Parameter estimates can end up compensating for 

model error, and extrapolations made using these estimates must be performed with care.  

Nonetheless, the existence of different components assists in inferring the possible nature of the 

combined effect represented by the residual.  For example, if one of the sources generate errors that 

are not normally distributed or biases that are systematic and their effect is known to be large, the 

combined effect of errors and biases of both the model and the data is not likely to be normally-

distributed.   

The objective function used in parameter estimation processes considers the sum of all residuals, 

and the definition of the objective function controls the relative influence of observations on the 

parameter estimates.  Therefore, the components of objective functions (i.e. estimators and its add-

ons) are introduced in this section. 

3.1.1 Estimators 

The most commonly-used definition of the objective function in groundwater flow and 

contaminant transport modelling is the Least Squares estimator, L2-estimator, based on the L2 norm 

(Carrera et al., 2005).  (The word, “estimator”, is used to represent the fact that these expressions are 

used to “estimate” parameters.)  The L2-estimator represents the sum of the squared difference 

between measured and simulated TCE concentrations at specific locations and times as given by  

L2-estimator = ∑
obsn

i
ir
2         (15) 

where nobs represents the number of observations.  (Thus, the value of the L2-estimator is also referred 

to as the sum of squares.)  The objective function or the performance index of non-Bayesian methods 

such as the commonly-used nonlinear least squares maximum likelihood methods are “not derived 
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from probabilistic arguments… but is simply presented as a reasonable basis for estimation” 

(McLaughlin and Townley, 1996).  The popularity of the least squares estimator stems from the fact 

that it is “equivalent to a Gaussian maximum likelihood estimator with known statistical properties” 

(McLaughlin and Townley, 1996).  Thus, its popularity is based on the assumption that the nature of 

the combined effect of all errors and biases is normally distributed under the central limit theorem.  

However, the availability of observations is limited and many sources of error exist, and the 

cumulative effect of errors and biases can easily disobey normality even with a “perfect” conceptual 

model.  In such situations, the validity of the L2-estimator is lost and a L2-estimator is as subjective as 

any other estimator; thus, a reasonable basis for estimation can be provided by many alternate 

definitions.  In addition, the performance of the L2-estimator degrades with contamination in the data, 

and is not robust (Rousseeuw and Leroy, 1987).  The L2-estimator is highly sensitive to outliers with 

a breakdown point of 1/n, which indicates that a single outlier out of n observations can produce large 

deviations from the general trend of the remaining data.  The contribution of this outlier to the total 

value of the L2-estimator is magnified by taking the square of the residual.   

The least absolute values estimator based on the L1 norm (L1-estimator) removes this magnification 

and represents the sum of the absolute residual values as  

L1-estimator = ∑
obsn

i
ir        (3.6) 

Although the effect of all outliers appears to be reduced, this approach is only robust for outliers in 

certain directions and the corresponding breakdown point is still 1/n.  Nonetheless, the effect of 

outliers in some directions is treated and the L1-estimator is still considered a robust estimator.  In 

fact, improved results have been observed using the L1-estimator over the L2-estimator for some 

groundwater flow and solute transport problems (Xiang et al., 1994).   

A drawback of the L1-estimator is the fact that the weight assigned to low residual values relative 

to higher residual values may be too high.  In this case, the parameter estimation process attempts to 

further decrease low residual values at the expense of sacrificing the fit for observations with higher 

residual values (Boyd and Vandenberghe, 2003).  Huber’s M-estimator (Rousseeuw and Leroy, 1987) 

attempts to resolve this issue by approximating the L2-estimator at low residual values while 

resembling the L1-estimator at high residual values.  Figure 3.1 shows that Huber’s M-estimator 

provides a middle ground between the L1-estimator and the L2-estimator, jointly referred to as L-

estimators, by achieving a reduction in the effect caused by large residuals while keeping the effect of 



 

  43

small residuals low.  Huber’s M-estimator can be represented by more than one shape, which is 

controlled by the k value in 

 Huber’s M-estimator 
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As k approaches infinity, Huber’s M-estimator behaves identically to the L2-estimator; in contrast, as 

k approaches zero, Huber’s M-estimator behaves like the L1-estimator. The k values in Figure 3.1are 

selected to uniformly represent the region between the two L-estimators.   
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Figure 3.1. Comparison of Huber’s M-estimator with L-estimators 

In cases where bias caused by outliers is severe, the problem of relatively high weights to low 

residual values may be overshadowed by the large residual value associated with the outlier(s).  

Estimators based on a logarithmic distribution such as the Cauchy’s M-estimator can achieve a 

further reduction of the relative weight of high residual values using   
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Cauchy’s Estimator = ∑ ⎟⎟
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where c is a subjective factor.  Figure 3.2 shows that the contribution of each residual to the objective 

function using Cauchy’s M-estimator is similar to the L1-estimator for small residuals, while the 

differences in weights for residuals with changes in its value are minimal for larger residuals.  The 

differences in weights between large residuals are reduced with decreases in the c value.  (The 

selection of c values used in Figure 3.2 is only based on their ability to span the space in the plot 

between the x-axis and the curve associated with the L1-estimator.)  The optimal value of c is 

unknown and thus, a value of 1, which is assumed by Finsterle and Najita, 1998, is adopted.  The 

removal of the power of two applied to the ri appears to have negligible effect on the estimator for a c 

value of 1 as shown in Figure 3.3.  There is a small difference for low ri values, which can be 

significant if there are many low ri values.  This revised Cauchy’s M-Estimator is referred to as the 

LRS1 M-estimator.     
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Figure 3.2. Comparison of Cauchy’s M-estimator with L-estimators 
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Figure 3.3. Comparison of Cauchy’s M-estimator with c value of 1 with revised Cauchy’s M-

estimator with c value of 1 

Huber’s M-estimator, Cauchy’s M-estimator, and LRS1 M-estimator all belong to a family of 

robust estimators referred to as M-estimators.  M-esimators, which include the L-estimators, express 

the contribution of a residual with a symmetric, positive-definite function with a unique minimum at 

zero, ρ(ri),  as given by 

 General M-estimator = ( )∑
i

irρ       (18) 

The breakdown point for M-estimators is 1/n; but improvements over L-estimators in terms of their 

ability to reduce the effect of specific types of outliers exist using Huber’s, Cauchy’s, or LRS1 M-

estimators (Rousseeuw and Leroy, 1987).   

Since the robustness of an estimator is problem-dependent, the two L-estimators and three M-

estimators, which are summarized in Table 3.1, are used in parameter estimation for this case study.  

Each of these estimators provides a different way to weight the residuals based on the value of the 

residual. 
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Table 3.1. Estimators used in parameter estimation process 

Description Type Abbreviation ρ(ri) 
Least squares or L2 norm L-estimator L2 ri

2 
Least absolute value or L1 norm L-estimator L1 ri 

Huber’s M-estimator M-estimator Huber 
ri

2                    |ri| ≤ k 
k(2|ri|-k)          |ri| ≥ k 

Logarithm of the sum of the 
residual and 1 

M-estimator LRS1 log(ri+1) 

Cauchy’s estimator M-estimator Cauchy c2
·log(1+(ri/c)2) 

 

Typically, robust estimators are also described using influence functions which represents the slope 

of the ρ function listed in Table 3.1.  Influence functions are not examined here since gradient-based 

optimization methods are not used.  In fact, gradient-based methods are not appropriate for objective 

function definitions using Cauchy’s M-estimator or the LRS1 M-estimator due to descending first 

derivatives. 

3.1.2 Add-ons to Estimators 

The problem of relatively large weights applied to low residuals exists for all M-estimators and the 

L1-estimator.  A simple approach to circumvent this problem is to create a deadzone, which may be 

achieved by assigning a weight of zero to low residuals (Boyd and Vandenberghe, 2003) as shown by 
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The application of a deadzone as described by (19) can be applied to any objective function 

definition.  It is important to note that the application of a deadzone leads to the presence of non-

unique minimums, which is not problematic if equifinality (Beven, 2006) is assumed. 

The two criteria, the Location Criteria and the Product Criteria, imposed on all parameter sets 

generated can be included in the objective function via the addition of a penalty function.  The 

limiting criteria is the Location Criteria and the corresponding penalty function is defined as follows 
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where S represents a user-specified, problem-dependent scaling factor, nloc is the number of locations 

of concern, j is the index representing a location of concern, cj is the modelled concentration level at j, 
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cd is the desired concentration level at j, and f(cj,cd) = |cj – cd|.  (Note the flexibility of using other 

functions to compare cj and cd.)  The Product Criteria can be incorporated in the same manner as 

follows 

 Penalty Function ( )⎩
⎨
⎧

≥⋅
≤

=
maxmax

max

,

0

PPPPfS

PP
   (21) 

where P is the product of v and Dv for the parameter set, Pmax is 250,000 ft2/yr, and f(P, Pmax ) = P – 

Pmax.  

The use of either penalty function requires the identification of an appropriate S.  The addition of a 

penalty function to the objective function changes the response surface to facilitate the search of 

parameter sets that satisfy the criteria of concern.  However, the objective function value can no 

longer be viewed as only the combined effect of errors and biases. 

3.2 Parameter Estimation Methods 

Parameter estimation methods based on very different viewpoints for calibrating parameters are 

adopted in this thesis: the gradient-based local search algorithm, PEST, designed to find one “good” 

solution and a stochastic search algorithm, DDS-AU, designed to find multiple “good” solutions.  A 

description of each method is followed by the reasoning behind its selection and implementation 

strategy. 

3.2.1 PEST 

3.2.1.1 Description 

PEST is a gradient-based optimization approach that uses the efficient Levenberg-Marquardt 

scheme and is thus a local search method.  PEST is designed for L2-estimators and manipulations 

must be performed to incorporate other estimators.  There are 32 algorithm parameters associated 

with PEST to provide added flexibility and overcome shortfalls of the optimization strategy.  PEST 

also offers numerous regularization options such as Tikhonov regularization, truncated singular value 

decomposition, and a combination of the two methods.  Other options include logarithmic parameter 

transformations and observation weighting.  Details on all of the functionalities associated with PEST 

are given by Watermark Numerical Computing (2004). 
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3.2.1.2 Purpose 

The Parameter Estimation (PEST) package appears to be one of the most commonly used 

calibration tools in groundwater flow and contaminant transport modelling problems due to its 

presence in modelling packages such as Visual MODFLOW (Waterloo Hydrogeologic, 2006).  Since 

it is a well-accepted method, the use of new alternative methods is only justifiable if its performance 

is superior or at the least equal to PEST.  Therefore, PEST is primarily used to perform a preliminary 

investigation of the optimization problem so that a basis for evaluating the alternative method (i.e. the 

DDS method) can be established.  The two bases for comparison are: the objective function values 

since they indicate the quality of the estimate; and the number of function evaluations required for 

convergence since it indicates the amount of computational resources required. 

3.2.2 DDS-AU 

3.2.2.1 Description 

The Dynamically Dimensioned Search – Approximation of Uncertainty (DDS-AU) algorithm 

developed by Tolson and Shoemaker (2006) is designed to find multiple good global solutions within 

the specified parameter ranges by using the objective function value and random initial parameter 

sets.  This algorithm is independent of gradients and sensitivities, and is a heuristic global search 

algorithm targeting problems with a high number of local optima.   

Parameter sets are initialized by selecting the best of 10 parameter sets whose values are randomly 

sampled from uniform distributions.  A user-specified number of trials starting with the initial 

parameter sets are implemented for each DDS-AU run.  For each trial, a probabilistic search strategy 

that is global in initial iterations but becomes more local in the final iterations is applied.  Objective 

function values are used during optimization but there is no preferred estimator.  Optimization for 

each trial is stopped once the user-specified number of function evaluations has been reached.  

Although this does not guarantee convergence to precise estimates, applying restrictions on the 

number of function evaluations is desirable given the computational effort required to run the model 

and the need to generate many simulations.   

There is only one algorithm parameter, the scalar neighbourhood size perturbation parameter, and 

the default value of 0.2 recommended by Tolson and Shoemaker (2006) sufficiently serves most 

purposes.  The DDS-AU algorithm is also dependent on a random seed value that is assigned for each 

run. 
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3.2.2.2 Purpose and Implementation Strategy 

The DDS-AU method is used to generate multiple parameter sets of “good” quality and to compare 

various objective functions.  Although the DDS-AU method is designed to fulfill its purpose, it is a 

novel method and its use must be justifiable.  Therefore, a basic comparison with PEST results is 

carried out.  PEST results are also used to set the number of function evaluations per optimization 

trial in the DDS-AU method.   

At least 1000 acceptable parameter sets are assumed to be required to adequately represent the 

acceptable parameter space.  Therefore, more than 1000 DDS trials must be implemented and many 

function evaluations are required.  The increase in required computational effort is met by using the 

high performance computing (HPC) network, SHARCNET.  Multiple serial DDS runs with 100 trials 

each were submitted instead of a single parallelized run with a high number of trials.  This is assumed 

to create a more thorough search of the solution space since the random seed can be changed for each 

DDS run.  The submission of multiple runs to different SHARCNET processors and compilation of 

output files are automated using script files.  Note that if serial jobs are submitted simultaneously to 

different processors the number of trials that can be generated is dependent on the number of 

available nodes for a given amount of time and hence the size and dynamics of the queue.   

The effects of various estimators with and without different add-ons on the resulting sets of 

parameter sets is compared based on their ability to satisfy the two criteria, the Location Criteria and 

the Product Criteria, since the case study represents a real problem and “true” solutions are unknown.  

This ability is measured by the acceptance rate, which is the percentage of trials that satisfy the two 

criteria out of the total number of trials. 

3.3 Parameter Estimation 

There are 18 adjustable model parameters; however, only 10 parameters are selected for 

optimization based on prior knowledge and the degree of uncertainty of the parameters, which were 

both discussed in Chapter 2.  Tables 3.2 and 3.3 list values of the fixed parameters and ranges of the 

parameters to be estimated respectively. 
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Table 3.2. Adjustable model parameters not estimated using a parameter estimation method 

Description Abbrev. Values Units 
Source Length wx 150 ft 
Source Width wy 150 ft 

Retardation in overburden Rt 1.5 n/a 
Molecular diffusion times tortuosity µr 0.0 ft2/yr 

Porosity in overburden no 0.2 n/a 
Retardation in limestone Rl 1.5 n/a 

Porosity in limestone na 0.05 n/a 
Limestone thickness wz 100.0 ft 

 

Table 3.3. Adjustable model parameters estimated using a parameter estimation method 

Description Abbrev. Ranges Units 
Initial concentration c0 100.0 – 2000.0 mg/L 

Horizontal velocity in limestone v 100.0 – 1000.0 ft/yr 
Longitudinal dispersivity in limestone Dx 10.0 – 500.0 ft 
Transverse dispersivity in limestone Dy 1.0 – 50.0 ft 

Vertical dispersivity in limestone Dz 0.05 – 5.0 ft 
Decay of dissolved TCE in overburden µt 0.00001 – 1.0 1/years 

Source reduction rate λ 0.00001 – 1.0 1/years 
Vertical velocity in overburden vv 1.0 – 40.0 ft/yr 

Dispersivity in overburden Dv 0.001 – 20.0 ft 
Depth to top of limestone bt 0.0 – 80.0 ft 

 

3.3.1 PEST Results 

3.3.1.1 Preliminary Investigations 

A preliminary investigation of the parameter estimation problem was performed using an ad hoc 

approach with approximately 100 implementations of PEST using 5 different initial parameter sets.  

Five preliminary observations are made:   

1. Any effects caused by fine-tuning of PEST’s algorithm parameters are overshadowed by its 

dependence on the initial parameter set.  Also, the need for fine-tuning of a large number of 

algorithm parameters is undesirable from the perspective of automatic identification of 

multiple possible parameter sets.  Therefore, the algorithm parameters of PEST used in the 

optimization are the values or midpoint of the range of values recommended in the PEST 

manual (Watermark Numerical Computing, 2004).  These values are listed in Appendix C.   
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2. Regularization using the Location Criteria has minor effects on the objective function value 

and the parameter values; and such regularization attempts do not convert an initially 

unacceptable parameter set to an acceptable parameter set.  Regularization given a priori 

knowledge of the relationship between the horizontal velocity in the overburden, vv, and the 

longitudinal dispersivity in the aquifer, Dx, is not implemented since the estimated parameter 

sets obtained during preliminary investigations satisfy the Product Criteria.  It is important to 

note that the optimized parameter sets are generally able to satisfy the Product Criteria if the 

initial parameter values satisfy the Product Criteria.  The opposite also appears to be true.  

Therefore, regularization using either of these criteria appears to be unable to effectively 

smooth out local minimums in the response surface and arrive at major optimums.   

3. Tests of various weighting strategies, which are developed based on the proximity and 

number of observations in its neighbourhood, indicate that the effect on the response surface 

can be significant.  Therefore, highly subjective weights should not be applied and equal a 

priori weighting of observations is more appropriate for the given problem with no 

supplemental information on the quality of the observations.   

4. Logarithmic transformations of selected parameters can aid in finding acceptable parameter 

set.  This can be explained by the fact that the nature of parameter distributions is not likely to 

obey normality assumptions.  However, the strategy to select parameters to be transformed is 

not obvious. 

5. Parameter sets that satisfy both criteria are difficult to find.  This is primarily due to the 

difficulty in reaching a concentration equal or greater than the detection limit at the 

representative location for Mejdrech Area D, which is one of the four requirements in the 

Location Criteria.  This difficulty is expected given the limited number and low magnitude of 

observed concentrations associated with this area.   

These preliminary findings provide insight into the response surface and indicate the importance of 

initial parameter sets and parameter transformations.   

Of the approximately 100 implementations of PEST performed during the preliminary 

investigations, only three estimated parameter sets satisfy both criteria and can be classified as 

acceptable.  The acceptable parameter set with the lowest objective function value is listed in Table 

3.4. 
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Table 3.4. Estimated parameter set that satisfies both constraints 

Parameter Units Parameter estimate Parameter distribution 
c0 mg/L 1000.0 Normal 
v ft/yr 606.1 Normal 

Dx ft 35.3 Lognormal 
Dy ft 38.5 Lognormal 
Dz ft 2.5 Lognormal 
µt 1/years 3.9E-04 Lognormal 
λ 1/years 6.4E-02 Lognormal 
vv ft/yr 3.6 Lognormal 
Dv ft 1.1 Lognormal 
bt ft 14.4 Normal 

Note: The corresponding sum of square value is 688.4 ppb2. 

The corresponding deterministic breakthrough concentration profile at the four locations of concern 

is presented in Figure 3.4.  The corresponding first arrival times are 3.8 years, 19.5 years, 24.9 years, 

and 20.6 years for Leclerq Class Area, Mejdrech Area B, Mejdrech Area C, and Mejdrech Area D 

respectively.  The corresponding plume in plan view at different depths after 33 years is depicted in 

Figure 3.5.  Figure 3.5 indicates that the plume begins to separate into two possibly due to the 

reduction in the release of TCE at the source with time. 
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Figure 3.4. Breakthrough concentration profiles at the four locations using the acceptable 

parameter set presented in Table 3.4 
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Figure 3.5. Plan view of the TCE plume in ppb after 33 years since the opening of the Metcoil 

facility at a depth of (a) 50 ft (b) 100 ft from the defined bottom of the limestone using the 

acceptable parameter set presented in Table 3.4 

3.3.1.2 Estimation 

Since preliminary investigations show a large dependence on the initial parameter set, 22 different 

initial parameter sets listed in Table 3.5 are optimized using PEST.  Initial parameter sets 1 to 20 are 

found by scaling random numbers that have been randomly selected from uniform distributions that 

range from 0 to 1 with parameter ranges specified in Table 3.3.  Initial parameter sets 21 and 22 are 

two of the initial parameter sets used in preliminary investigations.  Note that two of the initial 

random parameter sets, 4 and 9, do not satisfy the Product Criteria. 
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Table 3.5. Random initial parameter values 

Parameter 
Set 

c0 v Dx Dy Dz µt λ vv Dv bt 

1 1420 599 250 35 1.1 0.02 0.0007 12 7.9 29 
2 199 809 50 12 3 0.002 0.0017 22 17 49 
3 513 810 67 47 3.6 0.992 0.121 19 18 58 

4*§ 480 694 442 29 1.3 0.713 0.867 22 2 11 
5 1294 155 77 35 3.0 0.046 0.538 21 19 10 
6 1061 840 185 16 4.3 0.100 0.948 27 5 32 
7 994 475 477 9 0.2 0.164 0.857 3 10 10 
8* 1039 186 427 21 1.2 0.710 0.554 32 6 19 
9*§ 1384 644 479 44 0.1 0.557 0.995 6 4 26 
10 700 307 55 1.5 2.1 0.621 0.124 5 9 27 
11* 453 137 20 14 2.7 0.376 0.909 1 7 18 
12 857 158 165 29 2.1 0.191 0.504 32 19 16 
13 1623 293 172 6 4.5 0.081 0.002 12 2 59 
14 319 545 115 46 2.6 0.458 0.284 28 11 69 
15 1105 286 152 3 0.8 0.481 0.376 23 16 36 
16 138 661 214 36 3.8 0.262 0.328 22 13 33 
17 229 179 359 43 1.6 0.007 0.609 14 18 70 
18* 1725 370 296 5 3.6 0.491 0.554 30 1 76 
19* 681 774 124 25 1.9 0.553 0.726 28 1 77 

20** 190 292 436 41 0.4 0.562 0.064 38 9 40 
21 1000 606 50 20 0.05 0.001 0.001 1.001 5 15 
22 1500 1000 50 50 0.05 0.001 0.01 1.6 10 2 

* Failed to converge for the cases with normally and log-normally distributed parameters. 
**  Failed to converge for the cases with log-normally distributed parameters only. 
§ Does not satisfy the Product Criteria. 

 

Each of the 22 initial parameter sets was used as a starting point for PEST implementations without 

and with logarithmic transformation of parameters.  The results from these optimization efforts are 

shown in Tables 3.6 and 3.7.  Although the acceptable parameter set shown in Table 3.4 found during 

preliminary investigations applied logarithmic transformations only to selected parameters, the 

selection was subjectively and somewhat arbitrarily made.  As a result, many different combinations 

of parameters that are and are not transformed must be performed to fully explore the benefits of 

parameter transformation.  However, the ability of parameter sets to satisfy both criteria is 

consistently and significantly dependent on the values of the initial parameter set, and the effort 

required to investigate parameter transformation strategies cannot be justified. 
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Table 3.6. Optimized parameter estimates without logarithmic transformations 

Parameter 
Set 

c0 v Dx Dy Dz µt λ vv Dv bt 
Sum of 
Squares 

No. 
of 
FE 

1 500 565 55 18 3.8 1.3E-04 8.9E-03 2.1 4.6 2 768 445 
2 208 813 11 14 3.5 1.0E-05 6.7E-03 7.3 20.0 73 660 310 
3 514 712 30 16 4.1 7.0E-02 4.0E-02 11.9 20.0 51 875 136 

4*§ 480 694 442 29 1.3 7.1E-01 8.7E-01 22.4 1.6 11 1354 31 
5 1293 190 72 22 1.0 8.0E-03 6.7E-01 4.6 8.8 48 722 146 
6 1074 589 154 14 5.0 5.6E-04 1.2E-01 4.4 5.8 36 581 393 
7 994 104 477 10 0.1 7.1E-02 4.3E-01 5.1 5.3 7 770 88 
8* 1039 186 427 21 1.2 7.1E-01 5.5E-01 31.9 5.6 19 1354 31 
9*§ 1384 644 479 44 0.1 5.6E-01 1.0E+00 6.3 3.7 26 1354 31 
10 700 367 73 14 1.3 6.3E-02 5.4E-02 4.5 15.9 20 652 177 

11* 453 137 20 14 2.7 3.8E-01 9.1E-01 1.3 7.5 18 1354 31 
12 856 112 167 7 1.9 5.1E-02 9.3E-01 27.2 19.0 2 706 105 
13 1603 797 102 11 1.7 4.4E-04 3.2E-03 1.1 2.5 16 625 151 
14 271 535 117 15 4.3 1.0E-05 9.6E-02 12.9 20.0 80 588 381 
15 1108 264 232 5 0.1 7.6E-02 5.4E-01 19.0 18.3 27 1013 108 
16 149 856 13 15 2.8 1.8E-04 8.1E-05 7.7 3.9 66 566 558 
17 230 180 359 14 0.3 2.4E-03 5.7E-01 16.1 14.8 69 783 102 

18* 1725 370 296 5 3.6 4.9E-01 5.5E-01 30.1 1.2 76 1354 31 
19* 681 774 124 25 1.9 5.5E-01 7.3E-01 27.7 0.6 77 1354 31 
20** 212 352 453 8 0.8 5.3E-02 1.3E-01 40.0 13.0 17 594 104 

21 1000 606 50 20 0.1 4.4E-04 1.2E-04 1.1 4.1 13 6195 125 
22 1500 1000 56 39 0.1 1.0E-05 3.9E-02 1.0 9.6 18 1255 150 

* Failed to converge for the cases with normally and log-normally distributed parameters. 
**  Failed to converge for the cases with log-normally distributed parameters only. 
§ Does not satisfy the Product Criteria. 
Note: FE=Function Evaluations 

 

All of the estimated parameters sets are unique; thus, convergence to a unique solution from 

different initial parameter sets may not be possible.  Nonetheless, PEST outputs show that some level 

of optimization is achieved for the majority of the parameter sets since sum of squares values at final 

iterations are lower in comparison to initial iterations.  This supports findings from the preliminary 

investigations that indicate a response surface with many local minimums.  Approximately 30% of 

the PEST trials reproduced the initial parameter set, regardless of parameter transformations; these 

parameter sets are marked with one or two asterisk(s) in Tables 3.5, 3.6, and 3.7.  The output 

generated by PEST states that the cause is a gradient of zero.  This indicates that the Marquardt 

Lambda or the parameters governing derivative calculation should be altered.  However, further 

investigations of these parameter sets were not implemented since the effort required cannot be 

justified given the greater influence of initial parameter values.  A change of some of the PEST’s 
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algorithm parameters to all cases is not desirable since it can slow the optimization process by 

requiring excess computational effort.   

Table 3.7. Optimized parameter estimates using logarithmic transformations 

Parameter 
Set 

c0 v Dx Dy Dz µt λ vv Dv bt 
Sum of 
Squares 

No. 
of 
FE 

1 415 1000 15 17 3.6 4.4E-04 3.3E-05 3.6 0.7 35 566 274 
2 124 751 28 15 3.1 1.1E-03 1.2E-03 9.2 8.3 57 562 109 
3 1964 599 110 15 3.9 3.4E-02 1.9E-01 8.9 16.0 80 546 169 

4*§ 480 694 442 29 1.3 7.1E-01 8.7E-01 22.4 1.6 11 1354 31 
5 890 223 34 15 4.2 3.1E-02 2.1E-01 4.8 12.7 36 575 163 
6 1193 241 62 14 4.4 5.4E-03 7.2E-01 6.8 12.9 71 575 258 
7 1090 201 52 14 0.3 1.4E-02 3.5E-01 2.0 9.7 16 577 163 

8* 1039 186 427 21 1.2 7.1E-01 5.5E-01 31.9 5.6 19 1354 31 
9*§ 1384 644 479 44 0.1 5.6E-01 1.0E+00 6.3 3.7 26 1354 31 
10 1589 1000 46 15 3.6 1.2E-01 9.0E-02 18.7 20.0 30 577 159 
11* 453 137 20 14 2.7 3.8E-01 9.1E-01 1.3 7.5 18 1354 31 
12 1752 100 161 8 1.9 7.1E-02 1.0E+00 26.7 19.0 10 738 83 
13 2000 1000 72 8 5.0 1.9E-02 4.4E-03 2.4 11.8 80 933 99 
14 332 562 127 15 3.8 2.1E-03 1.1E-01 12.6 15.8 80 545 245 
15 1166 583 128 15 4.3 2.2E-02 1.7E-01 9.8 16.5 80 546 307 
16 257 525 141 15 4.4 9.0E-03 9.3E-02 17.2 20.0 80 547 264 
17 289 239 34 14 2.1 4.5E-03 2.7E-01 8.7 18.2 80 595 208 
18* 1725 370 296 5 3.6 4.9E-01 5.5E-01 30.1 1.2 76 1354 31 
19* 681 774 124 25 1.9 5.5E-01 7.3E-01 27.7 0.6 77 1354 31 

20** 190 292 436 41 0.4 5.6E-01 6.4E-02 38.4 8.7 40 1325 59 
21 500 732 500 16 0.2 3.5E-04 3.1E-03 1.0 2.4 2 604 156 
22 816 468 269 18 0.1 5.0E-04 8.9E-02 1.5 2.6 5 590 200 

* Failed to converge for the cases with normally and log-normally distributed parameters. 
**  Failed to converge for the cases with log-normally distributed parameters only. 
§ Does not satisfy the Product Criteria. 

 

The relationship between sum of squares values and the number of function evaluations listed in 

Tables 3.6 and 3.7 are presented in Figure 3.6.  No strong relationship is visible with a wide range in 

the number of function evaluations required for convergence for a given interval of sum of squares 

values.  Similar ranges in sum of squares values for both types of parameter representations are noted 

when the one extreme sum of squares value, which is obtained without parameter transformations, is 

disregarded.  This high sum of squares value corresponds to the case where the fit of all other 

observations are sacrificed to fit the extreme measured concentration of 19.5 as shown in Figure 3.7.  

Typically, the effect of the extreme measurement is reduced as shown in the scatter plot of observed 

and modelled TCE concentrations for Parameter Set 1 in Figure 3.8.  The scatter plots of all the 
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remaining parameter sets are similar to Figure 3.8 regardless of parameter transformations.  However, 

a removal of the extreme measurement results in scatter plots that varies for each of the 22 parameter 

sets.  Therefore, a reduction in the effect caused by the extreme value is necessary given the 

uncertainty associated with observation quality.  This is addressed using robust estimators in Section 

3.2.2, where the DDS method is applied. 
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Figure 3.6. The relationship between the sum of squares value and the number of function 

evaluations for 22 estimated parameter sets with and without logarithmic transformations 

The only major effect of logarithmic parameter transformation is in the number of function 

evaluations required for convergence, which is slightly lower when using logarithmic transformations 

(Figure 3.6).  The average number of function evaluations required to reach convergence is 217 and 

196 for the case without and with logarithmic transformations respectively.  The trials for which 

optimization is not performed are disregarded when calculating the average number of function 

evaluations since they are not indicative of optimization performance.  Although a slightly lower 

number of function evaluations is required when logarithmic transformations are performed, the 

difference is still small given the uncertainties associated with the problem.  Therefore, a conclusion 

stating that parameter distributions are lognormal in nature cannot be made.   

All 22 optimized parameter sets fail to satisfy the Location Criteria, even though the Product 

Criteria is satisfied by all the optimized parameters.  The optimized parameter sets that satisfy the 

Product Criteria used initial parameter sets that also satisfy the Product Criteria.  The two trials with 

initial parameter sets that did not satisfy the Product Criteria were not able to be optimized.  
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However, this observation is statistically insignificant since there are only two such cases, and initial 

parameter sets that did satisfy the Product Criteria are also unable to be optimized.  Indeed, the major 

difficulty lies in satisfying the Location Criteria; and additional efforts such as changes in objective 

function definition and a more thorough search of the parameter space is required. 
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Figure 3.7. Scatter plot of simulated versus measured TCE (ppb) for Parameter Set 21 with no 

logarithmic transformation 
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Figure 3.8. Scatter plot of simulated versus measured TCE (ppb) for Parameter Set 1 with no 

logarithmic transformation 

3.3.2 DDS Results 

3.3.2.1 Preliminary Investigations: A Comparison to PEST Results 

A DDS run with 16 trials is implemented to facilitate comparisons with the PEST results.  For each 

trial, 200 function evaluations are used in DDS to obtain an “optimized” parameter set.  The number 

of function evaluations per trial is based on the average number of function evaluations required by 

PEST for convergence, which are 217 and 196 for the case without and with logarithmic 

transformations respectively.   

Table 3.8 shows that lower sum of squares values are found with fewer function evaluations using 

the DDS method over multiple implementations of PEST.  Extremely high sum of squares values are 
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removed; and the number of DDS trials with sum of squares values less than 600 are double the 

number of PEST trials with sum of squares values less than 600.  Even though different initial 

parameter sets are used and there is a dependence on the seed value, the fact that the first 

implementation of DDS using the same number of trials as PEST is able to produce slightly lower 

sum of squares values with fewer function evaluations justifies its use in this thesis.  Note that the 

total number of function evaluations for the PEST results would be higher if the function evaluations 

for failed PEST implementations are considered. 

Table 3.8. Comparison of PEST and DDS implementation 

Optimization 
Method 

Number 
of Trials 

Total 
Number of 
Function 

Evaluations 

Lowest 
Sum of 
Squares 
Value 

Highest 
Sum of 
Squares 
Value 

Number of Trials 
with Sum of 

Squares Value < 
600 

PEST 16 3479** 566 6195 4 (25%) 
DDS 16 3360* 554 794 9 (56%) 

*Includes function evaluations performed during the multistart procedure 
**Does not include function evaluations that correspond to PEST implementations where no 
optimization could be performed 

 

It is important to note that these results do not imply that the local greedy search approach is 

superior to PEST for the given parameter estimation problem since a multistart procedure is not used 

to initialize PEST results.  Better results using PEST may be achieved with the incorporation of a 

multistart procedure. 

3.3.2.2 Estimation 

The five objective function definitions described in Section 3.1.1 are used to estimate “optimized” 

parameter sets with the DDS method, and the range of objective function values prior to the 

application of criteria are presented in Table 3.9.  More than 5000 trials are generated for each 

definition because similar acceptance rates are achievable using different seed values with 5000 trials.  

Details on all the trials are presented in Appendix D. 

A comparison of the objective function values for the case with no optimization to the cases with 

optimization presented in Table 3.9 shows that lower objective function values are achieved with 

optimization.  For example, the lower bound for the case with optimization using the L2-estimator is 

544.2 while the lower bound for the case without optimization produces a sum of squares of 559.8.  

Similar observations are found for the upper and lower limits of the range of objective function values 

obtained using LRS1 M-estimator, L1-estimator, and L2-estimator.   



 

  62

Table 3.9. A comparison of the objective function values prior to the application of criteria 

Estimator Range of Objective Function Values 
559.8 (L2) - 6613.1 (L2) 
204.9 (L1) - 473.1 (L1) Initial DDS Sampling* 

51.6 (LRS1) - 109.8 (LRS1) 
LRS1 M-estimator 49.7 - 60.6 

Cauchy’s M-estimator (c = 1.0) 24.6 - 37.1 
L1-estimator 192.8 - 272.3 

Huber’s M-estimator (k = 1,2,3,4) 36.3 - 732.1 
L2-estimator 544.2 - 938.7 

* The initial DDS sample is a result of selecting the “best” parameter set out of 10 random parameter sets. 

The improvements are significant when the upper end of the objective function value is considered.  

This confirms the presumption of redundancy caused by the application of a behavioural threshold 

when DDS is used to generate parameter sets.  

It is interesting to note the large difference between values obtained using the LRS1 M-estimator 

and Cauchy’s M-estimator despite their similarities noted in Section 3.1.  The major difference 

between the two estimators exists for low residual values where the difference can be up to 0.2.  The 

difference noticed can be achieved if there are 126 low residual values. 

The disadvantage of using the parameter sets obtained with the DDS method is their lower 

acceptance rate, which represents the proportion of estimated parameter sets that are able to satisfy 

the two criteria, as shown in Table 3.10.  The limiting constraint is the difficulty in satisfying the 

Locations Criteria at the location of concern for Mejdrech Area D.  This confirms the problem of 

spatial clustering noted in Chapter 2. 

The range of objective function values associated with acceptable parameter sets are closer to the 

lower end of the overall range of objective function values prior to test for acceptance.  This indicates 

the ability of the two physical criteria to act as filter for non-behavioural parameter sets indicating the 

possible redundancy of the application of a behavioural threshold to acceptable parameter sets.  A 

more detailed investigation of this phenomenon is performed using parameter characteristics. 

Table 3.10 shows that the highest acceptance rate of 1.48% is obtained using no optimization.  This 

indicates that the ability of the parameter set to satisfy the limiting constraint, Location Criteria, is 

affected by other causes in addition to the parameter set’s ability to represent observations.  Although 

the parameter sets that satisfy criteria have relatively low objective function values, the parameter sets 

with the lowest objective function values have difficulty satisfying the criteria.  This indicates that 

errors are not fully captured by the objective functions. 
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Table 3.10. A comparison of the acceptance rates 

Estimator 
Acceptance 

rate 
Range of Objective 

Function Values 

Range of Objective 
Function Values of Trials 

Satisfying Criteria 
559.8 
(L2) 

-
6613.1 
(L2) 

738.9 
(L2) 

- 
1350.5 
(L2) 

204.9 
(L1) 

-
473.1 
(L1) 

250.8 
(L1) 

- 473.1 (L1) Initial DDS Sampling* 1.48% 

51.6 
(LRS1) 

-
109.8 

(LRS1) 
56.3 

(LRS1) 
- 

109.8 
(LRS1) 

LRS1 M-estimator 1.24% 49.7 - 60.6 55.0 - 58.5 
Cauchy’s M-estimator 

(c = 1.0) 
0.16% 24.6 - 37.1 29.8 - 34.2 

L1-estimator 0.06% 192.8 - 272.3 235.0 - 264.8 
Huber’s M-estimator (k 

= 1,2,3,4) 
0.00 - 0.06% 36.3 - 732.1 

L2-estimator 0.00% 544.2 - 938.7 

Generated insignificant 
number of acceptable 

parameter sets 
* The initial DDS sample is a result of selecting the “best” parameter set out of 10 random parameter sets. 

Of the optimized results, the LRS1 M-estimator generates the greatest number of acceptable 

parameter sets with an acceptance rate of 1.24%.  There is a significant drop in the acceptance rate 

between the LRS1 M-estimator and Cauchy’s M-estimator to 0.16%.  Even fewer acceptable 

parameter sets are found with the remaining estimators.  The acceptance rate based on parameter sets 

obtained with the L2-estimator is virtually zero with no acceptable trials being found out of 

approximately 13,000 trials generated, which is significantly more than the 5000 generated for the 

other estimators.  Since L2-estimators are designed to amplify the effects of outliers, the outlier’s 

effect on the ability of the model to satisfy constraints must be significant and robust estimators 

should be used.   

The best performance in terms of the acceptance rate was achieved using the LRS1 M-estimator.  

The low weight assigned to residuals of high values by the LRS1 M-estimator indicates that its 

success is based on treating outliers.  Although the true nature of errors can be inferred from an 

estimator’s acceptance rate, the level of uncertainty regarding the true nature is still significant; and 

therefore, multiple parameter sets obtained with the LRS1 M-estimator, the L1-estimator, and the L2-

estimator are recommended for use in uncertainty analysis.  Figures 3.1, 3.2, and 3.3 show that other 

M-estimators provide a middle ground between the L-estimators and the LRS1 M-estimator, and 

therefore their consideration was assumed to be redundant for our purposes.   

The acceptance rates observed in Table 3.10 results in very few acceptable parameter sets with a 

reasonable amount of computational effort.  At the highest observed acceptance rate in Table 3.10 of 
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1.5%, approximately 67,000 trials, which correspond to 13,000,000 function evaluations, need to be 

generated.  Therefore, options to increase the acceptance rate such as penalty functions and dead 

zones in the objective function described in Section 3.1.2 must be adopted.  Since the limiting 

constraint is the Location Criteria, a penalty function using (20) with a large scaling factor appears to 

be the best option.  The repeated application of the forward solution used to find the arrival time 

creates a huge computational burden.  As a result, the penalty function chosen is based only on the 

concentration at 33 years.  In general, parameter sets that are able to create model outputs with a 

concentration of 0.5 ppb at the Leclerq Class Area are easily found.  The difficulty lies in modelling a 

sufficient concentration level in Mejdrech Area D.   The corresponding solution may be biased as the 

concentration at 33 years usually does not represent the peak concentration value as shown in Figures 

3.4 and 3.9.  For the Leclerq Class Area, 33 years corresponds to the decreasing tail of the 

breakthrough concentration profile, and the peak occurs at earlier times.  However, for the remaining 

three areas, 33 years corresponds to the increasing leading tail of the breakthrough concentration 

profile, and the peak is not seen.  Since the breakthrough concentration profile is typically at the 

leading tail for Mejdrech Area D, the simplification in the calculation of the penalty function is 

justifiable.  In fact, great improvements in the acceptance rate are made with penalty functions based 

on the Location Criteria. 
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Figure 3.9. Breakthrough concentration after 33 years since the opening of the Metcoil site at 

the four locations using the acceptable parameter set with the lowest objective function value 

using the LRS1 M-estimator 

A trial-and-error approach is used to determine the optimal scaling factor for the penalty function 

using the L2 norm, L1 norm, and LRS1 M-estimator; the corresponding results are presented in Table 

3.11. 

The acceptance rates listed in Table 3.11 implies that an optimal scaling factor for all objective 

function definitions tested is 10,000.  A penalty function with scaling factor of 10,000 increases the 

acceptance rate by approximately 30% to 50% from the rates presented in Table 3.10.  Approximately 

60% of the trials that satisfy the Location Criteria pass the Product Criteria, and the need for a 

penalty applied to increase number of trials that satisfy the Product Criteria does not exist.   
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Table 3.11.  Acceptance rate for L2-estimator, L1-estimator, and the LRS1 M-estimator with 

respect to changes in the scaling factor for the penalty function 

Scaling factors for the 
penalty function 

L2-estimator L2-estimator LRS1 M-estimator 

No penalty 0.00% 0.06% 1.24% 
100 n/a n/a 26% 
500 0% 20% 43% 

1000 4% 29% 42% 
5000 25% 39% 49% 
10000 34% 42% 54% 
50000 21% 24% 29% 

 

Deadzones can also used as a method to increase the acceptance rate.  Deadzone limits of 0.1 ppb 

and 0.5 ppb are selected based on the detection limit and are tested for several estimators (Table 

3.12). 

Table 3.12. Acceptance rates for objective function definitions with deadzones 

Acceptance rate 
Estimator 

Deadzone Limit = 0.1 ppb Deadzone Limit = 0.5 ppb 
LRS1 M-estimator 1.4% 1.3% 

L1-estimator 0.2% 0.5% 
L2-estimator 0.0% not tested 

 

A comparison of the acceptance rates in Tables 3.10, 3.11, and 3.12 shows that the benefit from 

applying the deadzones is small relative to benefits achieved with the addition of the penalty.   

The earliest arrival times obtained using the various objective functions are all approximately 0.4 

years, 8.3 years, 11.7 years, and 10.5 years for Leclerq Area, Mejdrech Area B, Mejdrech Area C, and 

Mejdrech Area D respectively.  The parameter set with slightly earlier arrival times compared to all 

first arrival times is found using the LRS1 M-estimator.  This is most likely due to the fact that this 

estimator generated the largest number of acceptable trials.  The breakthrough concentration curves at 

the four locations and the corresponding plume in plan view are presented respectively in Figures 3.9 

and 3.10 for the case with the lowest objective function value based on the LRS1 M-estimator.  

In general, the objective function definition appears to have negligible effects on the first arrival 

times with similar earliest arrival times found for all four areas.  Nonetheless, the effects of the 

objective function definition on the uncertainty of arrival times are further explored in Chapter 4.  The 

parameter sets recommended for use in uncertainty analysis are presented in Table 3.13. 
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Table 3.13. Trials to be used in uncertainty analysis 

Estimator Penalty Factor Number of Acceptable Parameter Sets  
LRS1 M-estimator 10,000 1614 

L1-estimator 10,000 1245 
L2-estimator 10,000 1019 
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Figure 3.10. Plan view of the plume at a depth of 50 ft after 33 years since the opening of the 

Metcoil site using the acceptable parameter set with the lowest objective function value using 

the LRS1 M-estimator 

3.4 Parameter Characteristics 

Parameter values are constrained to be within a predefined range selected based on subjective 

interpretations of site-specific information using knowledge of physical processes.  These parameter 

ranges used as inputs in the DDS method have been chosen to be slightly wider than likely to 

conservatively account for uncertainties.  The distributions of parameters in these ranges are assumed 

to be uniform to avoid making misleading assumptions.  The resulting parameter space, which is 

referred to as the prior parameter space, is expected to evolve towards the “true” parameter space with 

the implementation of the DDS method and the application of the two criteria.     

Valuable insight into the true nature of the parameter distributions and correlations can be gained 

by examining the characteristics of the parameter spaces.  Three parameter spaces are considered: the 

prior parameter space, the parameter space of DDS results, and the acceptable parameter space.  

Parameter estimates using PEST results are not considered since convergence of parameter 

characteristics is not likely to be achieved with 22 parameter sets in this thesis. 
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3.4.1 Parameter Values 

The trends in the distributions must be examined with corresponding objective function values to 

avoid incorrect conclusions.  In general, trends associated with high objective function values must be 

viewed sceptically.  For example, in a bimodal distribution, the mode that corresponds to high 

objective function values is less likely to represent the true distribution.  Therefore, two plots are 

examined for each parameter: a plot of parameter value versus objective function value (Val-Obj), 

and a plot of parameter value versus frequency (i.e. a histogram). 

Frequency histograms are created by subdividing the range assigned for DDS runs into 10 equal 

intervals for consistency.  Therefore, the bin widths, w, and bins, bi, are defined as follows 

 
10

lu
w

−=          (22) 

 w
i

lbi 2

12 −+=        (23)  

where i represents the bin number, and u and l represent the upper and lower limit of the range, which 

are presented in Table 3.3. 

A fit to a standard parametric distribution such as the normal or lognormal distribution can smooth 

and distort real information especially around the tails (USEPA, 1997).   Therefore, reference to 

standard analytic distributions is limited to subjective descriptions of the resulting empirical 

distributions.  Note that trends observed in histograms can vary with bin widths but optimization of 

the bin width is not necessary for our purposes. 

3.4.1.1 Prior Parameter Space 

The prior parameter space is characterized by 6000 parameter sets that have been used as the 

starting point for DDS optimization trials.  The number of parameter sets obtained from multiple 

DDS runs with various seed values is assumed to be sufficient for convergence (i.e. additional 

parameter sets are assumed to have negligible effects on parameter space characterization).  No 

attempts to minimize the objective function or to consider the two criteria are made for these 

parameter sets; thus, the values are the result of the multi-starts with parameter sets taken from 

bounded uniform distributions.   

For parameters, c0, v, Dx, and vv, the histograms appear to suggest uniformly distributed parameter 

values as shown in Figure 3.11.  However, indications of non-uniformity exist for these four 

parameters, which consistently have fewer values in the first interval.  Distributions for parameters, 
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Dy, Dz, and Dv, in Figure 3.11 are multi-modal with two to four modes.  This can signify 

insufficiencies in the number of parameter sets; however, this is unlikely since differences are not 

noticed with a reduction in the number of parameter sets.  The remaining parameters, µt, λ, and bt, 

exhibit lognormal behaviour in Figure 3.11, which is less pronounced for bt.  The non-uniform nature 

of the distributions for parameters, µt and λ, appears to result due to a bias in the sampling process to 

values near the lower limit.  The non-uniform nature of the prior parameter space must be considered 

when evaluating subsets of this space.   

For most of the parameters, there appears to be no relationship between parameter values and the 

objective function value, which is defined using the L2-estimator in Figure 3.11.  However, the Val-

Obj plots for parameters, Dy and µt, appear to indicate a minimum at approximately 10 ft and 0 yr-1 

respectively.   

It is also important to note that the majority of parameter sets produce high performance index 

values as shown in Figure 3.12.  The objective function value appears to be bounded by an upper 

limit around 1354 ppb2; however, there are two parameter sets that significantly exceed this value as 

shown in Figure 3.13 for the parameter, c0.  This phenomenon consistently appears for all parameters 

since one objective function value exists for each parameter set. 

3.4.1.2 Optimized Parameter Space 

Optimized parameter spaces obtained through the DDS method are found using the estimators 

selected in Section 3.3, which are the LRS1 M-estimator, the L1-estimator, and the L2-estimator with 

a scaling factor of 10,000 for the penalty function.  All three optimized parameter spaces are 

characterized by lower performance indices with no clustering of points at high performance index 

values, which is noticed in Figure 3.11 for the prior parameter space.   

The trends in the Val-Obj (Figure 3.14) and frequency histograms (Figure 3.15) of the optimized 

parameter space have converged to distributions that no longer resemble those found in Figure 3.11.  

Two notable exceptions are the parameters, µt and λ, for which the trends previously found have been 

accentuated.  In general, the nature of frequency distributions can be qualitatively described as 

normally-, lognormally-, or uniformly-distributed depending on the parameter.  Some distributions 

are difficult to classify as they can be described using more than one standard distribution.  This is 

further complicated by the fact that the optimized parameter space is clouded with differences in 

estimator definition.  Therefore, only the number of modes present in the empirical distribution of 

each parameter is presented in Table 3.14 since they are easily distinguishable.   
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The deviations between estimators shown in Figure 3.15 are more pronounced near the limits.  

Since these parameter sets may be of greater interest in uncertainty analysis where low likelihood 

solutions play a significant role in the decision-making process, their presence should be further 

investigated.  Further evaluation is possible using the corresponding Var-Obj plots.  The Var-Obj 

plots for the three sets of parameter sets (Figure 3.14) indicate that the major trends are not affected 

by the definition of the estimator.  (Note the importance of scale in examining the Var-Obj plots.)  

Two important pieces of information attainable from these plots are: the existence of a global 

optimum or major optimums, and the existence of regions of high performance index values.  Firstly, 

the response surface appears to be highly irregular with many local minimums regardless of estimator 

definition.  There may be a global optimum or major optimums that are not found by local search 

methods, which can become trapped in one of the small minimums.  In fact, the existence of a global 

optimum is apparent in the parameters, v, Dx, µt, and λ, where the points in the Val-Obj plot form a 

concave lower bound.  The numbers of major optimums identified in the Val-Obj plots are listed in 

Table 3.14.  The presence of multiple major optimums is assumed if there appear to be more than one 

concave lower bound.  For example, two horizontal curves, which are more visible in the plot based 

on the LRS1 M-estimator, are formed by clusters of points in the lower half of the Val-Obj plots for 

bt; both curves indicate a slight decrease in performance index values with an increase in bt and thus, 

points to a major optimum.  Secondly, performance index values are designed to indicate a parameter 

sets ability to model observations.  Therefore, the regions of high performance index values are 

important in assessing the confidence in the distribution present in histograms.  The modes in Figure 

3.15 that correspond to these regions of high performance index values are designated as likely to be 

incorrect in Table 3.14.  Note that there are still many parameter sets with low performance index 

values in the intervals representing possibly incorrect modes; thus, there is a possibility that the 

problematic modes and the corresponding distribution are correct.  Therefore, the presence of high 

performance index values decreases not eliminates the probability of the corresponding mode. 
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Figure 3.11. Parameter values in terms of frequency histograms and objective function values 

defined by the L2-estimator using parameter sets obtained using the multistart procedure 
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Figure 3.11. Parameter values in terms of frequency histograms and objective function values 

defined by the L2-estimator using parameter sets obtained using the multistart procedure 

(continued) 
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Figure 3.11. Parameter values in terms of frequency histograms and objective function values 

defined by the L2-estimator using parameter sets obtained using the multistart procedure 

(continued) 
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Figure 3.11. Parameter values in terms of frequency histograms and objective function values 

defined by the L2-estimator using parameter sets obtained using the multistart procedure 

(continued) 
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Figure 3.12. Histogram of objective function values defined by the L2-estimator for parameter 

sets obtained using the multistart procedure 
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Figure 3.13. Relationship between parameter values and objective function values defined by 

the L2-estimator for parameter sets obtained using the multistart procedure 
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Figure 3.14. Val-Obj plots for parameter values obtained using the LRS1 M-estimator, the L1-

estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 
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Figure 3.14.  Val-Obj plots for parameter values obtained using the LRS1 M-estimator, the 

L1-estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 

(continued) 
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Figure 3.14.  Val-Obj plots for parameter values obtained using the LRS1 M-estimator, the 

L1-estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 

(continued) 
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Figure 3.14.  Val-Obj plots for parameter values obtained using the LRS1 M-estimator, the 

L1-estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 

(continued) 
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Figure 3.15. Histograms of parameter values obtained using the LRS1 M-estimator, the L1-

estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 
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Figure 3.15. Histograms of parameter values obtained using the LRS1 M-estimator, the L1-

estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 

(continued) 
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Figure 3.15. Histograms of parameter values obtained using the LRS1 M-estimator, the L1-

estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty function 

(continued) 

Table 3.14. Qualitative descriptions of optimized parameter space 

Modes Major Optimums 
Parameter 

Number Value(s)* Number Value(s)§ 
Mode With High 

Performance Index Values 
c0 1 1300 None n/a None 
v 2 450, 950 1 450 – 500 2nd Mode 

Dx 2 180, 480 1 100 – 200 2nd Mode 
Dy 1 to 2 38**, 50 1 or 2 38, 50** None 
Dz 1 to 3 0, 2, 5 None  n/a 2nd Mode 
µt 1 0.0 1 0.0 – 0.1 None 
λ 1 0.15 1 0.15 – 0.2  None 
vv 1 to 2 12, 25 1 or 2 10, 30** None 
Dv 1 to 2 1, 20 None n/a 1st Mode 
bt 1 to 2 4**, 80 1 80 None 

*Approximately estimated from histograms 
§Approximately estimated from Val-Obj plots 
**Not present in all three curves 
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Parameter values at modes typically equal the values at major optimums.  The mode that does not 

coincide with a major optimum represent parameter sets with high performance index values.  

Therefore, trends in frequency distributions can be refined to create distributions that are more 

representative of its probability.  However, the information available is subjective and trends are 

difficult to identify for most parameters.  Trends found with one estimator are typically amplified or 

subdued by using other estimators.  For example, there appears to be two curves in the Var-Obj plot 

for Dy, which is most easily seen in the plot based on the LRS1 M-estimator as shown in Figure 3.14.  

The opposite trend is noticed between the plots for Dz, where the concentration of high performance 

indices around the center of the plot is no longer present in the plot based on the LRS1 M-estimator.   

In general, the trends shown for the parameter sets generated using the L1-estimator appears to be a 

middle ground between the remaining two estimators.   

It is important to note that a behavioural threshold is not applied and there are a number of 

parameter sets with extremely high parameter values as shown in Figure 3.16 for all three estimators.  

Although Figure 3.16 only shows the parameter, c0, the same trend exists for other parameter since 

there is only one performance index value for each parameter set.  The upper limit for performance 

index value is reached by all three estimators due to the penalty function. 

3.4.1.3 Acceptable Parameter Space 

Acceptable parameter spaces are subspaces of optimized parameter spaces and have parameter sets 

that are able to satisfy the two criteria.  Given that the effect of various estimators produce similar 

results, the parameter sets obtained using the L1-estimator with a scaling factor of 10,000 for the 

penalty function are used to illustrate the effect of applying the two criteria.   

The major trends in the acceptable parameter space, which is shown in Figure 3.17, are identical to 

those in the optimized parameter space.  The significant difference is the elimination of extremely 

high performance indices.  This confirms that the two criteria can also function as a behavioural 

threshold.   

The nature of the frequency distributions is still difficult to classify, and only the numbers of modes 

are presented in Table 3.15.  Val-Obj plots are examined to identify major optimums and regions with 

high objective function values; these trends are also presented in Table 3.15. 
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Figure 3.16. Val-Obj plot for entire range of objective function values for the parameter, c0 

Table 3.15. Qualitative descriptions of the acceptable parameter space based on the L1-

estimator with a scaling factor of 10,000 for the penalty function 

Modes Major Optimums 
Parameter 

Number Value(s)* Number Value(s)§ 
Mode With High 

Performance Index Values 
c0 1 1200 None n/a None 
v 2 500, 950 1 500 2nd Mode 

Dx 1 180 1 100 None 
Dy 1 50 1 38 1st (and only) Mode 
Dz 3 0, 2, 5 None n/a 2nd Mode 
µt 1 0 1 0.0 – 0.1 None 
λ 1 0.15 1 0.15 None 
vv 1 25 None n/a None 
Dv 2 0, 20 None n/a None 
bt 1 80 None n/a None 

Note: The cells highlighted are different from Table 3.14 
*Approximately estimated from histograms 
§Approximately estimated from Val-Obj plots 
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A comparison of Table 3.14 and Table 3.15 shows that modes or major optimums are eliminated 

with the application of the two criteria.  This is useful for parameters such as Dy, for which the trends 

led to conflicting indications. 

Despite the significant amount of information gained through empirical distributions and Val-Obj 

plots for the acceptable parameter space, distributions that can reliably indicate probability are 

difficult to define.  However, the improvements noted in the acceptable parameter space indicate that 

a reliable probability distribution may be achieved with the application of additional physical criteria.   

The multiple modes in the histogram may indicate a need to revise the parameter range, especially 

for parameters such as v, Dv, and bt.  Some modes located near the limits are associated with high 

performance index values.  Since the ranges have been selected to be greater than necessary, a 

reduction should be considered. 

Typically, the relationship between parameter values and performance index values is the 

combined effect of all parameter values.  A notable exception is the decay coefficient in the till unit 

illustrated in Figure 3.17 where the decay value independently increases the objective function value 

for decay values greater than approximately 0.12 yr-1.  This does not affect the histogram since the 

peak of the uni-modal distribution is so high. 

The parameter characteristics of the L2-estimator and the LRS1 M-estimator with a scaling factor 

for the penalty function of 10,000 included in Appendix E are also examined and compared to Figure 

3.17.  The parameter sets generated with the L2-estimator appear to have very similar characteristics 

compared to the parameter sets generated using the L1-estimator.  The LRS1 M-estimator generates a 

slightly different result.  Fewer modes are present with the disappearance of modes identified as 

possibly incorrect.  For example, the higher valued mode in the histogram of horizontal velocities in 

limestone is eliminated with the LRS1 M-estimator.  It also eliminated the second mode and the 

corresponding distribution for the vertical dispersivity in limestone.  In addition, there are very few 

outlying performance index values associated with the parameter sets generated using the LRS1 M-

estimator.  In general, the LRS1 M-estimator appears to be the best estimator in terms of achieving 

believable parameter characteristics as it is able to subdue possibly incorrect modes and distributions 

in the histogram.  Nonetheless, the parameter characteristics of all the parameters are generally 

similar in terms of major trends.  Note that the use of the subjective descriptions should always be 

accompanied by graphical representations. 
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Figure 3.17. Parameter values that were generated using the L1-estimator with a penalty of 

10,000 in terms of performance index values and frequency for parameter sets that satisfy the 

physical criteria 
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Figure 3.17. Parameter values that were generated using the L1-estimator with a penalty of 

10,000 in terms of performance index values and frequency for parameter sets that satisfy the 

physical criteria (continued) 
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Figure 3.17. Parameter values that were generated using the L1-estimator with a penalty of 

10,000 in terms of performance index values and frequency for parameter sets that satisfy the 

physical criteria (continued) 
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Figure 3.17. Parameter values that were generated using the L1-estimator with a penalty of 

10,000 in terms of performance index values and frequency for parameter sets that satisfy the 

physical criteria (continued) 

3.4.2 Parameter Correlations 

The parameter correlation structure can explain the failure of many parameter estimation 

processes, which assume independence between parameter sets.  It is important to note that problems 

with high dimensionality such as this case study have a more complex correlation structure and 

difficulties are likely to be encountered in the parameter estimation processes.  Therefore, an 

understanding of the parameter correlation structure can be used in future estimation and uncertainty 

analysis efforts.  For example, no correlation is likely to be visible for a pair of parameters with 

uniform distributions, while a strong correlation is likely to be visible for a pair of parameters with 

non-uniform distributions that have large kurtosis.  In general, parameter distributions have been 

shown to evolve with optimization and refined with the application of the two criteria; as a result, 

evolution and refinement are expected to also be seen in the correlation structure.  Therefore, all three 

parameter spaces are examined and compared using correlation coefficients. 

A common measure of correlation is the Pearson product-moment correlation coefficient, r, which 

is defined as (Johnson, 2000), 
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where xi and yi for i = 1,2,…,n are paired data points, x  and y  are the expected values (i.e. means) of 

the data points (xi, yi), and sx and sy are the standard deviations of the data points (xi, yi).  An 
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assumption inherent in this correlation coefficient is normality since means and standard deviations 

are used to represent the parameter distribution.  Since the nature of parameter distributions is 

uncertain, a measure of correlation that is independent of known parameterized distributions such as 

Spearman's rank correlation coefficient may be more appropriate.  Spearman's rank correlation 

coefficient, rs, is determined using (Johnson, 2000), 
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where di represents the difference between the ranks of the data points (xi, yi).  

A basis for interpreting the coefficients that range from -1 to +1 is established using visual 

inspection of Pearson’s coefficient for a linear case.  The interpretations, presented in Table 3.16, are 

also assumed to be applicable for Spearman’s coefficient. 

Table 3.16. Interpretation of correlation coefficient values 

Correlation Negative Positive 
None −0.10 to 0 0 to 0.10 
Small −0.29 to −0.10 0.10 to 0.29 

Medium −0.49 to −0.30 0.30 to 0.49 
Large −1.00 to −0.50 0.50 to 1.00 

 

3.4.2.1 Prior Parameter Space 

Using the same 6000 parameter sets used in Section 3.4.1.1, correlation tables were produced 

using (24) and (25) and presented in Tables 3.17 and 3.18.  Since non-uniform behaviour is noticed in 

Section 3.4.1.1 for selected parameters, minor correlations are expected. 

The majority of the parameter combinations, which represents 91% of the 45 pairs, are not 

correlated.  One parameter pair is considered to be highly correlated; while three pairs are considered 

to be slightly correlated.  Although the coefficient values are slightly different, the same degree of 

correlation between parameter pairs is achieved with both coefficients.  For example, both Pearson’s 

and Spearman’s coefficient for the parameter pair, λ and µt, is less than -0.5.  (Note that this was 

expected since the distributions for these parameters did not exhibit a uniform nature.) 
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Table 3.17. Pearson product-moment correlation coefficient for random parameter sets 

  c0 v Dx Dy Dz µt λ vv Dv bt 
c0 1                   
v 0.03 1                 

Dx 0.01 -0.03 1               
Dy 0.02 -0.01 0.00 1             
Dz 0.00 -0.02 0.00 -0.01 1           
µt 0.07 0.12* 0.01 -0.01 -0.03 1         

λ 0.05 -0.18* 0.02 -0.03 -0.03 -0.50** 1       
vv -0.01 -0.02 0.02 0.01 0.01 0.18* -0.02 1     
Dv 0.00 0.02 0.00 0.01 0.01 0.01 -0.01 0.00 1   
bt 0.02 -0.01 -0.01 -0.03 0.03 -0.08 0.06 0.01 0.01 1 

*Small correlation between parameters 
**Large correlation between parameters 

 

Table 3.18. Spearman’s rank correlation coefficient for random parameter sets 

  c0 v Dx Dy Dz µt λ vv Dv bt 
c0 1          
v 0.03 1         

Dx 0.01 -0.03 1        
Dy 0.01 -0.01 0.00 1       
Dz 0.00 -0.02 0.00 -0.01 1      
µt 0.08 0.10* 0.00 -0.02 -0.03 1     

λ 0.07 -0.19* 0.02 -0.03 -0.03 -0.56** 1    
vv -0.01 -0.02 0.03 0.01 0.01 0.19* 0.00 1   
Dv 0.00 0.02 0.00 0.01 0.01 0.00 -0.01 0.00 1  
bt 0.02 -0.01 -0.01 -0.03 0.02 -0.08 0.05 0.01 0.01 1 

*Small correlation between parameters 
**Large correlation between parameters 

 

3.4.2.2 Optimized Parameter Space 

Since the difference between the two coefficients are small, only the Pearson product-moment 

correlation coefficient is used to assess correlations of parameter sets generated using the LRS1 M-

estimator, the L1-estimator, and the L2-estimator with a scaling factor of 10,000 for the penalty 

function.  Given that the parameters are not likely to be normally-distributed, the correlations for each 
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parameter pair are qualitatively described in Table 3.19 using the interpretation presented in Table 

3.16.   

Table 3.19. Summary of qualitative interpretation of Pearson product-moment correlation 

coefficients of the parameter sets generated using the LRS1 M-estimator, the L1-estimator, and 

the L2-estimator with a scaling factor of 10,000 for the penalty function 

 c0 v Dx Dy Dz µt λ vv Dv bt 

c0 1          

v N-S 1         

Dx N S 1        

Dy N M-L M 1       

Dz N N N N 1      

µt N-S M-S N-S N-S N-S 1     

λ N-M L N-S N-M S M-S 1    

vv N-S N N-S N-S N S S 1   

Dv N-S N-M S N-S N S N-M N-S 1  

bt N N-S N-S N-S N N-S N-S N N 1 
Note: “N” = None; “N-S” = None to Small; “S” = Small; “N-M” = None to Medium; “M-S” = 
Medium to Small; “M” = Medium; “M-L” = Medium to Large; “L” = Large 

 

Only 1 out of the 45 parameter pairs can be considered to be strongly correlated, and 36 out of the 

45pairs are considered to have small to no correlation.   

It is important to note that differences arise based on the selection of estimator.  Therefore, the 

results based on all three estimators are combined in Table 3.19 to facilitate comparisons.  (The 

parameter pairs with a difference in correlations are described using hyphenated abbreviations).  

Twenty of the parameter pairs, which correspond to 44% of the 45 pairs, in Table 3.19 can be 

considered to have the same degree of correlation.  Parameter pairs are assumed to exhibit a similar 

degree of correlation if the parameter pair can be considered to be in either of two adjacent 

categorizations.  For example, the correlation of a parameter pair with N-S correlation can be 

considered to be similar since the coefficient values for the small and none category are similar.  

Table 3.19 indicates that 44% of parameter pairs have similar correlations while 11% of the 

parameter pairs can be considered to have different degrees of correlation.  Therefore, the correlation 

of the majority of parameter pairs (i.e. 89%) is similar regardless of estimator selection. 
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3.4.2.3 Acceptable Parameter Space 

Despite the consistency between estimators noted in Section 3.4.2.2, the Pearson product-moment 

correlation coefficients for all three acceptable parameter spaces are combined and qualitatively 

described in Table 3.20. 

Table 3.20. Summary of qualitative interpretation of Pearson product-moment correlation 

coefficients of the parameter sets generated using the LRS1 M-estimator, the L1-estimator, and 

the L2-estimator with a scaling factor of 10,000 for the penalty function 

 c0 v Dx Dy Dz µt λ vv Dv bt 

c0 1          

v N 1         

Dx N S-L 1        

Dy N S-L M-S 1       

Dz N-S N-S N N-S 1      

µt M-S L M-S S-L S 1     

λ S L M N-M S M-L 1    

vv S N N-S N-S N M-L N-S 1   

Dv N M-S M-S M-S N-S M-S M-S N 1  

bt N N-S N-S N-S N N-M N-M N N 1 
Note: “N” = None; “N-S” = None to Small; “S” = Small; “N-M” = None to Medium; “M-S” = 
Medium to Small; “S-L” = Small to Large; “M” = Medium; “M-L” = Medium to Large; “L” = Large 

 

Table 3.20 shows that parameter correlations are strengthened by the application of the two criteria.  

The proportion of parameter pairs that can be considered to be strongly correlated are increased to 

4%, and 58% of the pairs are considered to have small to no correlation.   

3.5 Summary 

The parameter estimation process was catered to the specific insufficiencies noted in Chapter 2 

where the model was developed and the observation data was examined.  Preliminary investigation of 

the problem was conducted using a well-accepted parameter estimation method, PEST, and the 

corresponding findings are used to define characteristics of the parameter estimation process.  The 

selected estimation process includes numerous definitions for the objective function and the 

consideration of multiple “good” parameter sets.  For each objective function definition, three 

procedures were implemented as a part of the parameter estimation method for the given case study: 
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an initializing procedure, a search for “good” parameter sets using the DDS-UA method, and a test 

for acceptance based on physical criteria.   

With respect to objective function definitions, the best performance in terms of the acceptance rate 

was achieved using the LRS1 M-estimator.  However, a penalty function based on the limiting 

criteria, the Location Criteria, must be included in the objective function to produce a sufficient 

number of acceptable parameter sets for use in uncertainty analysis.  Since it is difficult to justify the 

selection of a single objective function definition, the parameter sets obtained using the two L-

estimators are also selected based on their characteristics and are recommended for use in conjunction 

with the parameter sets obtained using the LRS1 M-estimator. 

The solution space generated by all of the estimators tested consists of many local minimums, 

which is addressed by the adoption of equifinality.  Optimization of the numerous initial parameter 

sets appears to have greater effect on converging parameter characteristics compared to the remaining 

two procedures in the parameter estimation method chosen in this thesis.  Optimization is designed to 

remove parameter sets with high objective function values, which represent a majority in the prior 

parameter space.  Any remaining parameter sets with high objective function in the optimized 

parameter space are removed with the application of the two criteria.  The acceptable parameter space 

defined by applying the two criteria to the optimized parameter space is also an important step as it 

further refines parameter characteristics.  Note that even further refinements by the addition of other 

criteria can improve parameter estimates.  The combined effect of optimization and the application of 

the two criteria performs the function of behavioural thresholds without the addition of subjectivity. 
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Chapter 4 

Uncertainty Analysis: First Arrival Estimates 

Sources of uncertainty in inverse modelling can be categorized into parameter uncertainty, model 

uncertainty, and scenario uncertainty (USEPA, 1997).  Biases in data can arise from imprecise 

calibration of devices, inaccurate assumptions, non-representative samples, and misclassification, 

which all contribute to parameter uncertainty.  Model uncertainties can originate from error 

associated with parameterization, boundary conditions, structure, and resolution.  Lastly, scenario 

uncertainty can be caused by errors in conceptualization and professional judgement.  The 

identification and treatment of all sources of uncertainty is desirable but not always feasible in 

practice.  In addition to uncertainty, there is variability caused by natural random processes such as 

subsurface heterogeneity.  Although there should be methodological differences between the analysis 

of uncertainty and variability, they are difficult to separate in problems where further data collection 

is not possible.  In this thesis, variability is inherently incorporated into the model development by 

using the equivalent porous media concept and uncertain averaged model parameters.  The different 

sources of uncertainty associated with the first arrival estimate, which now include variability, are 

difficult to distinguish and are simultaneously included in the final representation of uncertainty.   

All three sources of uncertainty are addressed to differing degrees in Chapters 2 and 3.  In Chapter 

2, the problem is formulated in such a way that the conceptual model and the corresponding 

assumptions minimize model and scenario uncertainties, and are reasonable given available data.  

Nonetheless, there still remain model and scenario uncertainties.  These uncertainties are not easily 

quantifiable using available methods such as the Maximum Likelihood Bayesian Model Averaging 

method (Neuman, 2003) because of the difficulty associated with justifiably defining other possible 

models and scenarios.  Therefore, the representation of error in the parameter estimation process 

includes errors and biases caused by both the model and the data as discussed in Chapter 3.  Objective 

functions have been designed to consider model errors such as the total least squares (TLS) method 

(Sun et al., 2006); however, these methods increase the degree of freedom, which can cause the 

problem to be more ill-posed and the parameter estimation process to be more difficult.  Without a 

direct consideration of model uncertainties, parameter estimates may compensate for model errors 

and biases.  Fortunately, the consideration of multiple parameter sets as performed in Chapter 3 can 

indirectly address this problem since the degree to which each of the multiple parameter set represents 
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uncertainties varies.  To treat specific insufficiencies in the observed data, robust statistics in the 

parameter estimation process are used in Chapter 3.  A further refinement in terms of parameter 

characteristics and the removal of parameter sets with high objective function values are achieved 

with the application of two physical criteria: Location Criteria and Product Criteria.  The usage of 

the resulting multiple acceptable parameter sets that include treatments for insufficiencies and satisfy 

physical criteria is assumed to be sufficient for a comprehensive uncertainty analysis given the 

available resources.   

The uncertainty analysis performed in this thesis focuses on representing input uncertainty and 

propagating the input uncertainty into output uncertainty.  Approaches to perform uncertainty analysis 

include interval mathematics (Dou et al., 1995), fuzzy set theory (Dou et al., 1995), and probabilistic 

analysis (USEPA, 1997).  Interval mathematics provides a framework for dealing with parameter 

uncertainties of unknown structure; however, the result may not be indicative of output range since 

the model output is not a simple monotonic function of the parameters.  For example, the use of the 

upper limit for all parameter values does not guarantee that the upper limit of the solution will be 

generated given the non-linear nature of the problem and correlations between uncertain parameters.  

There are alternate approaches that have modified the search method to find the best and worst case 

scenarios without using interval mathematics (Brooks et al., 1994).  Although the best-and-worst case 

scenarios provide valuable information, the distribution of possible outputs near the parameter limits 

can have a strong influence on the tails of output distributions, which play an important role in 

decision-making scenarios.  The impreciseness of many inputs to groundwater flow and contaminant 

transport models have led to formulations of fuzzy groundwater flow models (Dou et al., 1995), 

which can be useful in decision making scenarios.  The most commonly used approach to uncertainty 

analysis in groundwater flow and contaminant transport modelling is probabilistic analysis, which is 

designed to generate the nature of output uncertainty.  Probabilistic uncertainty analysis can take the 

form of analytic methods based on stochastic partial differential equations (Dou et al., 1995) or 

sampling based methods such as Monte Carlo analysis (USEPA, 1997).  Analytical methods using 

linear and non-linear first-order approximations of 95% confidence intervals that can be obtained with 

gradient-based parameter calibration methods are commonly used and evaluated optimistically 

(Vecchia and Cooley, 1987; Christensen and Cooley, 1999).  However, the reliability of this method 

is limited to well-posed problems with known error distributions.  In contrast, probabilistic analysis 

using sampling-based methods such as Monte Carlo analysis can provide practical output probability 

distributions with reasonable intervals even for ill-posed problems.  In fact, the use of Monte Carlo 
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simulations in uncertainty analysis is “most frequently encountered in human health risk assessments” 

(USEPA, 1997) and used as a bench mark for validating other types of uncertainty estimation 

methods (Christensen and Cooley, 1999; James and Oldenberg, 1997).   

Despite the general acceptance of the results produced by Monte Carlo uncertainty analysis, the 

results are only probabilistic approximations strongly dependent on input posterior parameter 

distributions even if numerical stability and convergence of both the central tendency and the tails of 

probability distributions are achieved using a sufficient number of simulations.  Input parameter 

distributions are typically selected based on the characteristics of the globally optimum parameter set.  

However, the use of only one “optimum” parameter set is difficult to justify given the nature of real 

problems (Kuczera and Parent, 1998).  Given limited prior knowledge, subjectivity and uncertainty 

are introduced in the process of describing the nature of parameter distributions, and parameter 

estimates are sensitive to definitions of the objective function and to the parameter estimation method 

as discussed in Chapter 3.  Recall that the purpose of parameter estimation was not to find the global 

optimum but to find many local optimums or multiple maximum likelihood parameter estimates.  The 

characteristics of these parameter sets provide valuable information in the form of empirical 

parameter distributions and correlation structure.  Although the empirical parameter distributions can 

be approximated and used as posterior parameter distributions in the Monte Carlo uncertainty analysis 

framework, problems can still arise due to the inability of Monte Carlo analysis to account for 

dependence between parameters, which has been shown to be significant in environmental problems 

(Hornberger and Spear, 1981).  To minimize potential problems caused by the interaction between 

parameters in Monte Carlo analysis, USEPA (1997) recommends limitations on the number of 

uncertain parameters through prior knowledge and sensitivity analysis.  Additional prior knowledge 

via data collection is not always possible, while a comprehensive sensitivity analysis can be labour-

intensive for non-linear, non-monotonic models and when the parameter values span many orders of 

magnitude.  Converting an uncertain parameter into a constant using either of these approaches can 

lead to premature and unjustifiable decisions; thus, a continual “review of the basis of fixing certain 

parameters” is recommended (USEPA, 1997).  Furthermore, the accuracy of the tails of the output 

distribution is questionable given the subjectivity of the input parameter distributions even if 

numerical stability and convergence of both the central tendency and the tails of probability 

distributions are achieved.  In fact, as discussed in Chapter 3, the quality of the optimal parameter 

sets, in terms of their conditionality to observations, is low at the tails.  This is especially problematic 

given that we would like to accurately estimate the tails of the output distribution.   
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Therefore, the concept of examining multiple equally probable parameter sets, also known as 

equifinality (Beven, 2005), is adopted for use in this uncertainty analysis.  Parameter uncertainty 

analysis approaches based on the concept of equifinality are considered to be Monte Carlo type or 

sampling-based assessments.  The difference between popular Monte Carlo type assessments, such as 

the traditional Monte Carlo analysis discussed above, the generalized likelihood uncertainty 

estimation (GLUE) (Beven and Binley, 1992) and the Markov Chain Monte Carlo (MCMC) method 

(e.g., Kuczera and Parent, 1998), is basically in the sampling approach used.  Despite the improved 

efficiency in exploring the parameter space found with the MCMC method over the GLUE method 

(Kuczera and Parent, 1998), we observed that the need for improvements at the accuracy of the tails is 

not directly addressed by any of these methods.  The Dynamically Dimensioned Search – 

Approximation of Uncertainty (DDS-AU) approach introduced by Tolson (2005) uses a parameter 

optimization scheme that is designed to produce multiple “optimal” solutions as the sampling 

approach embraces the equifinality concept and samples for multiple "optimal" solutions using 

multiple independent optimization trials of the DDS algorithm.  Relative to GLUE, Tolson (2005) 

showed an example where GLUE sampling was orders of magnitude less efficient than DDS-AU for 

identifying high likelihood solutions.  Therefore, the DDS-AU approach was selected with the interest 

of increasing the accuracy at the tails.   

  The uncertainty of the arrival of a contaminant concentration of 0.5 ppb at the four locations of 

concern, Leclerq Class Area, Mejdrech Area B, Mejdrech Area C, and Mejdrech Area D, is evaluated 

in the following analysis, using the steps outlined in Section 4.1.  The traditional approach to 

uncertainty analysis using Monte Carlo sampling is reviewed and its shortcomings are summarised 

for the contaminant transport problem under consideration in this thesis.  The DDS-AU sampling 

approach is modified as described in Section 4.1.1.2 to accommodate the two physical criteria defined 

for the given case study.  These samples are used to generate output likelihood distributions using 

various definitions for likelihood functions.  Considerations are also made for different objective 

function definitions, the number of parameter sets, and the factors in likelihood functions.  Based on 

the comparisons of the controlling factors of likelihood distributions, an approach to conservatively 

represent uncertainty is devised. 
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4.1 Steps to Uncertainty Analysis 

Sampling-based uncertainty analysis can be divided into two major steps: generation of samples, 

and evaluation and compilation of samples to generate probability or likelihood distributions.  In this 

thesis, a sample is defined as a set of parameter values. 

4.1.1 Sampling Approaches 

Two viewpoints can be followed in the development of a sampling strategy as discussed in the 

previous section: the existence of one unique globally optimum parameter set, or the existence of 

multiple probable parameter sets.  Sampling strategies based on both approaches are investigated in 

this thesis.  From the perspective of one unique global optimum, the Monte Carlo sampling approach 

is used.  Multiple probable parameter sets, on the other hand, are generated using a revised DDS-AU 

method. 

4.1.1.1 Monte Carlo or Latin Hypercube Sampling 

Despite the need to examine multiple acceptable parameter sets, the Monte Carlo sampling 

approach based on the existence of a global optimum is implemented due to its popularity in practice.     

The commonly-used Monte Carlo sampling strategy assumes independence between parameter sets 

and randomly samples parameter values from their posterior parameter distributions (USEPA, 1997).  

A combination of prior knowledge and information gained through the parameter estimation process 

is used to define the posterior parameter distributions.  Examples of its application are widely 

available in the literature (e.g., Sohrabi et al., 2002).   

Efficiency in terms of computational time required for convergence of distributions can be 

improved using Latin Hypercube sampling, where parameter values are independently divided into 

equally probable intervals, or Orthogonal sampling, where the parameter space is equally divided.  

Nonetheless, the resulting sample at convergence is theoretically equal to the converged sample 

generated using Monte Carlo sampling (McKay et al., 1979). 

4.1.1.2 Physically-Based DDS-AU (P-DDS-AU) Sampling 

In Chapter 3, the two physical criteria, Locations Criteria and Product Criteria, are used to 

determine the acceptability of a parameter set locally optimized using the DDS algorithm.  The DDS-

AU sampling methodology (Tolson, 2005) outlined in Appendix F is designed only for the 

application of a behavioural threshold based on performance index values; thus, it is not fully 
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compatible with the new concept of acceptability introduced in this thesis, and therefore 

modifications are required.   

In the DDS-AU sampling methodology, the number of model evaluations per DDS optimization 

trial (m) is calculated using the maximum total number of model evaluations (N) and the desired 

number of behavioural samples to identify (n) as follows 

 m = N/n         (26) 

(26) is only valid if all of the N model evaluations are used to generate behavioural solutions.  In 

essence, this is feasible within the definition of behavioural based on a threshold value and the 

optimization ability of the DDS algorithm.  The DDS algorithm is designed to lower the objective 

function value with each iteration.  A trial that produces a non-behavioural solution can be further 

optimized using the DDS algorithm with additional model evaluations.  If sufficient model 

evaluations are performed, all DDS trials are assumed to be able to generate behavioural solutions.   

Within the new definition referred to as acceptability, the equality in (26) no longer holds and m < 

N/n.  The acceptance rate, a, which is calculated in Chapter 3 for various objective function 

definitions, must be used to find m as follows 

 
n

aN
m

⋅=         (27) 

where n now represents the desired number of acceptable samples.  (27) approaches (26) as a, which 

can range from 0 to 1, approaches 1. The value of a is dependent on many factors including data, 

objective function definition, and the three variables, m, n, and N.  The value of a for this case study 

was determined to have a broad range from 0.0 to approximately 0.5 due to uncertainties, errors, and 

biases originating from various sources.  As a result, the a value should be increased during the 

sampling procedure to a sufficient value by adjusting the objective function definition, m, and/or N.   

The DDS-AU sampling methodology is revised to accommodate these differences and is referred 

to as the physically-based DDS-AU sampling methodology (P-DDS-AU), which is given as: 

1. Define the maximum total number of model evaluations for analysis, N.  This value is 

governed by computational resources and time constraints.  

2. Define the desired minimum number of acceptable samples, n, that the sampling approach 

must identify.  Review of literature on GLUE applications typically use 1000 to 1500 

behavioural samples (Feyen et al., 2001; Christensen, 2003; McMichael et al., 2006) at which 

convergence is assumed.  If no prior knowledge is available, an n value equal to or greater 

than 1000 should be used.   
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3. Define the number of model evaluations per DDS optimization trial, m, using DDS 

performance compared to other parameter estimation methods (e.g., PEST).  If convergence 

is desirable, m values should not be decreased below the assumed number of model 

evaluations required for convergence.  It is important to note that the benefit of DDS can be 

lost if a sufficient number of model evaluations are not used per DDS optimization trial. 

4. Select an objective function definition. 

5. Define the total number of DDS trials (t): 

a) If prior knowledge of acceptance rate is known, t = n/a, else 

b) t = N/m. 

6. Perform t DDS optimization trials from t random or user-defined initial solutions and save 

only the final DDS solutions from each optimization trial. 

7. If a is unknown, classify each of the n DDS solutions as acceptable or not acceptable using 

the two criteria: Locations Criteria and Product Criteria. 

8. If a is unknown, calculate a = n/t. 

9. If the number of acceptable solutions is too low (i.e. n < 1000) then choose one of the 

following options: 

a) Select a different objective function definition, then go to Step 5, 

b) Increase N to a value of 
a

nm ⋅
, then go to Step 5a, 

c) Decrease m to a value of 
n

aN ⋅
, then go to Step 5b, or 

d) Increase N to a value less than 
a

nm ⋅
 and decrease m to a value greater than 

n

aN ⋅
, 

then go to Step 5b. 

4.1.2 Quantitative Representation of Uncertainty 

Quantitative representations of uncertainty are assumed to be more useful in decision-making 

scenarios in comparison to qualitative representations.  Quantitative representation of output 

uncertainty is facilitated by probability or likelihood distributions in both the cumulative and non-

cumulative sense. 
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4.1.2.1 Probability, Likelihood, and Pseudo-Likelihood 

In this thesis, the probability or likelihood of the time of arrival of a specific contaminant 

concentration at the four locations of concern given the observed concentration data is desired.  A set 

of arrival times with respect to location is unique to each parameter set, which represents a 

contaminant plume history.  The parameter sets that do not satisfy the two criteria are deemed not 

physically possible and are assigned a probability of zero.  Therefore, the probability or likelihood of 

a parameter set, θ, correctly representing the plume is assumed to equal the probability or likelihood 

of the corresponding vector of contaminant arrival times, τ, and thus, we assume P(τ | θ) = P(θ).  

Consequently, the model and scenario uncertainty are assumed to be incorporated into parameter 

uncertainty. 

The definition of probability and likelihood, which are generally used interchangeably, depends on 

the perspective.  From the frequentist perspective, probability or likelihood can simply be thought in 

terms of an occurrence and/or frequency of an event given a population of events.  From a Bayesian 

perspective, probability or likelihood includes conditional and on occasion subjective knowledge, 

which is incorporated through Bayes’ theorem.  Probability or likelihood from either perspective are 

designed to satisfy all three axioms of probability (Johnson, 2000), and are therefore referred to here 

only as probability.  Both interpretations are controversial in different ways and it is difficult to select 

one perspective.  As a result, more than one approach to expressing probability is adopted, which is in 

line with the inclusive manner of the approaches selected in this thesis. 

The frequentist interpretation of probability assumes that each sample is equally probable and the 

probability assigned to each sample is 

 Pf (θ) = 1/n        (28) 

where f is used to denote the frequentist interpretation, and n is the number of acceptable parameter 

sets as defined in the previous section.  However, the probability of a parameter set can be considered 

to be conditional to the observations, c1,c2,…,cn, if a maximum likelihood perspective is taken to 

generate the parameter sets.  The Bayes’ representation of probability can be implemented by using 

Bayes’ theorem to incorporate this condition as  

 ( ) ( ) ( )
( )n

n
n cccP

cccPP
cccP

,...,,

|,...,,
,...,,|

21

21
21

θθθ ⋅=     (29) 

The quantification of the conditional probability presented as (29) can be made by inferring the 

relationship between observations and parameter values from objective functions.  Although we can 
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assume that P(θ) = Pf (θ), P(θ) ≠ Pf (θ) can also be true from a Bayesian perspective.  In addition, the 

correct approach to map the objective function to a probability and the probability of the 

observations, P(c1,c2,…,cn), are unknown. 

Therefore, only objective function values are used to provide a measure of the probability of a 

parameter set.  Since these values are not equal to probability, they are referred to as pseudo-

likelihoods, L, in this thesis.  According to Beven and Binley (1992) only two conditions must be 

satisfied by the “likelihood” function: 

1. “It should be zero for all simulations that are considered to exhibit behaviour dissimilar to the 

system under study.”   

2. “It should increase monotonically as the similarity in behaviour increases.”   

For the first condition, the concept of behaviour as interpreted by Beven and Binley (1992) is not 

used; however, the similar concept, acceptability, is applied in this thesis to the pseudo-likelihood 

definitions by assigning a value of zero to simulations that do not satisfy the two criteria.  In fact, the 

P-DDS-AU sampling approach simply removes parameter sets that do not satisfy the two criteria 

from further consideration.  For the second condition, the interpretation of behaviour used by Beven 

and Binley (1992), which is based on the model’s ability to resemble observed condition, is adopted 

in the pseudo-likelihood definitions used in this thesis.   

Feyen et al. (2001) use pseudo-likelihoods based on the L2-norm in their implementation of the 

GLUE method as given by 

 Lc/d(θk | c1,c2,…,cn) = (Pk)
-N      (30) 

with 

 Pk = 

( )
obs

n

i
iobsisim

n

cc
obs

∑
=

−
1

2

,,

       (31) 

where c/d denotes the type of likelihood function, N is the shaping factor subjectively chosen by the 

user, k represents the kth parameter set, nobs is the number observations, csim,i is the ith simulated 

concentration at location (x,y,z) at time, t, and cobs,i is the ith observed concentration at location (x,y,z) 

at time, t.  Weights that change the impact of an observation based on its quality can be included in 

the Pk value but equal weighting is assigned to each observation due to the lack of information 

regarding the quality of observations.  In addition, Pk is redefined in this thesis to be any objective 

function value divided by nobs since objective function definitions are not limited to the L2-norm.  

Since the parameter sets that did not satisfy the two criteria are not included in the uncertainty 
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analysis, the effect of the penalty function described in Chapter 3 in the objective function should be 

small.  In fact, our investigations show that the increase in objective function values for acceptable 

parameter sets due to larger penalty factors is small especially in terms of the lower limit of objective 

function values generated.  Moreover, the objective functions that include a penalty function create 

likelihoods that are conditional to both the observations and the parameter set’s ability to satisfy 

physical criteria.  If the physical criteria are used to determine the acceptance of a parameter set, it 

makes intuitive sense to also use the criteria to assess the degree of likelihood.  Therefore, the 

existence of the small difference is justifiable and the use of the objective function value even with a 

penalty in Pk is reasonable. 

The likelihood definition parameter, N, is subjectively chosen by the user.  If N equals 0, Lc/d is 1 

and each parameter set is given equal weighting; the pseudo-likelihood is no longer conditional to 

observations and follows a frequentist perspective of probability.  As N is increased, the difference in 

pseudo-likelihoods between parameter sets is magnified and the pseudo-likelihoods with large Pk 

values approach zero as shown in Figure 4.1.  As N approaches infinity, the parameter sets with the 

lowest Pk value will have a Lc/d value of infinity while the remaining parameter sets will have a value 

of zero.  As a result, the effect of N can be significant in the representation of uncertainty and care 

must be taken in selecting an appropriate value. 
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Figure 4.1. Effect of N value on Lc/d = Pk
-N 

An alternate form of pseudo-likelihood definition based on Nash and Sutcliffe efficiency criterion 

(Feyen et al., 2001; Beven and Freer, 2001) is still based on the Pk value but the pseudo-likelihood 

values are forced to range from 0 to 1 by incorporating the variance of observations, σo
2 as given by 

La/b(θk | c1,c2,…,cn) = (1 – Pk/σo
2)N   Pk ≤ σo

2  (32) 

with 

 σo
2  = 

( )
obs
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obsiobs

n
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∑
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2

,

      (33) 

where a/b denotes the type of likelihood function.  The parameter set is considered to be unlikely 

when Pk equals or is greater than the variance of the observations, σo
2.  In contrast, the parameter set 

is considered likely if Pk approaches zero, which implies that the residuals approach zero.  As shown 

in Figure 4.2, the value of N in this definition magnifies the relationship by lowering the pseudo-

likelihood values for low (1 – Pk/σo
2) values or high Pk/σo

2 values to a greater degree than for higher 

(1 – Pk/σo
2) or lower Pk/σo

2 values.  However, the shape of this relationship is different for N values 
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greater than 1 and N values less than 1.  Therefore, the N values investigated should be 1, a value less 

than 1, and a value greater than 1. 
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Figure 4.2. Effect of N value on La/b = (1 – Pk/σo
2)N 

Also, La/b assigns a value of zero to the parameter set in cases where the inequality, Pk ≤ σo
2, is not 

satisfied.  In this thesis, the variance of observations, σo
2, is interpreted as the variance of all 

observations regardless of time and location.  Therefore, the overall structure of the observation data 

as opposed to uncertainty of the data is being replicated.  An alternative is to determine the variance 

of observations and simulations at specific locations and times.  However, this is not feasible given 

the data provided as repeated observations at a particular location or time are not available.  

Therefore, the usage of σo
2 is questionable; nonetheless, it produces a finite range of pseudo-

likelihood values. 

The definition, La/b, compares the variance of observation, σo
2, to Pk.  It also makes intuitive sense 

to compare the variance of observations, σo
2, to the variance of residuals, σr

2, which can be calculated 

from 
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       (34) 

where ri = ri(x,y,z,t) = csim,i – cobs,i, and r is the average of all ri values.  Although Pk is closely related 

to σr
2, the resulting values are different.  The model efficiency or the coefficient of determination, Le, 

(Beven and Binley, 1992) incorporates the variance of residuals, σr
2, into the definition of pseudo-

likelihood as  

 Le(θk | c1,c2,…,cn) = (1 – σr
2 / σo

2)  σr
2 ≤ σo

2  (35) 

where e denotes the type of likelihood function.  The model efficiency or coefficient of determination, 

Le, is similar to the form of La/b in (32) except that Pk is used instead of σr
2.  The incorporation of an N 

value in a similar manner as La/b and Lc/d into (35) is not done due to the lack of such incorporation in 

literature. 

Similarly, the variance of residuals, σr
2, can replace Pk in Lc/d to produce the likelihood function 

(Beven and Binley, 1992) given by 

Lb(θk | c1,c2,…,cn) = (σr
2)-N      (36) 

where b denotes the type of likelihood function. 

In general, the four definitions for the pseudo-likelihood function, Lc/d, La/b, Le, and Lb, summarized 

in Table 4.1 can be considered to be equally valid.   

Some may view the four definitions of pseudo-likelihoods as probabilities or likelihoods in the 

Bayesian sense if they satisfy all three axioms of probability.  The third axiom of probability is easily 

satisfied since the samples are assumed to be mutually exclusive.  Pseudo-likelihood values using the 

definition, Le, are designed to be between 0 and 1 and therefore satisfy the first axiom of probability; 

however, the remaining definitions fail to do so when the value of Pk or σr
2 is less than 1.  The second 

axiom of probability can be satisfied if the pseudo-likelihood values are normalized to total 1.  

However, the set of samples are not likely to fully represent the sample space since the parameters are 

continuous variables.  Even if the three axioms can be satisfied, decision-makers must be aware that 

an arrival time with a cumulative normalized likelihood value of 10%, for example, does not 

necessarily imply that there are 1 in 10 chances that the contaminant of concern will arrive at this 

time.  A clear understanding of the definitions and assumptions is crucial when decisions are made 

based on pseudo-likelihoods or Bayesian probabilities. 
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Table 4.1. Likelihood definitions to be used to describe the likelihood of a parameter set 

Description Equation Source 
Model efficiency or coefficient 

of determination based on 
Nash and Sutcliffe efficiency 

criterion 

Le = (1 – σr
2 / σo

2); σr
2 ≤ σo

2 Beven and Binley (1992) 

Based on inverse residual 
variance with shaping factor, N Lb = (σr

2)-N Beven and Binley (1992) 

Based on Nash and Sutcliffe 
efficiency criterion with 

shaping factor, N 
La/b = (1 – Pk/σo

2)N; Pk ≤ σo
2 Feyen et al. (2001) 

Based on inverse error 
variance with shaping factor, N 

Lc/d = (Pk)
-N Feyen et al. (2001) 

N is a likelihood definition parameter chosen by the user, 
k represents the kth parameter set, 
nobs is the number observations, 
ri = ri(x,y,z,t) = csim,i – cobs,i, 
csim,i is the ith simulated concentration at location (x,y,z) at time, t, 
cobs,i is the ith observed concentration at location (x,y,z) at time, t, 
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4.1.2.2 Non-Cumulative and Cumulative Distributions 

Given discrete samples of continuous variables, a probability distribution can be approximated in a 

non-cumulative sense as 

 P(τ) = ( )∑
τ

θτ
n

j
jjP |        (37) 

where j represents the parameter set that produces the vector of arrival times, τ, and nτ is the total 

number of parameter sets that produce the vector of arrival times, τ.  (37) takes into consideration that 
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the same arrival time can be found using different parameter sets.  The corresponding cumulative 

distribution, P(τ ≤ Τ), can be approximated as 

 P(τ ≤ Τ) = ( )∑
Τ≤

Τ≤
τ

τ
n

t
tP       (38) 

where Τ represents the latest vector of arrival times represented by the cumulative probability.  Non-

cumulative and cumulative distributions described by (37) and (38) respectively for probability can 

also be applied to pseudo-likelihoods defined in Section 4.1.2.1 in the same manner.  The pseudo-

likelihoods should be normalized prior to the creation of distributions to produce a more meaningful 

representation.  Computational details relating to the calculation of cumulative and non-cumulative 

distributions are presented in Appendix G. 

These normalized likelihood distribution of arrival times can provide inferences on confidence 

limits and the nature of the uncertainty associated with arrival times.  It is important to note that the 

intervals generated by GLUE using the likelihood definitions defined above have been questioned.  

Studies using synthetic data have been performed to investigate the accuracy of GLUE’s 95% 

intervals to facilitate a comparison with the 95% confidence intervals generated with probabilistic 

analysis using covariance information.  Montanari (2005) used a synthetic hydrological model with 

known sources of uncertainty and concluded that the interval generated using GLUE is an 

underestimate.  Christensen (2003) introduced a correction to account for observation error, which 

improves the performance of GLUE intervals for a synthetic problem; nonetheless, he noted that 

small-scale fluctuations can still cause the GLUE interval to be inaccurate.  Therefore, the GLUE 

method produces a distribution that can be considered to represent the large-scale trends as defined by 

McLaughlin and Townley (1996).  Small-scale fluctuations are important in our quest for low 

likelihood arrival times.  However, there is no method for quantifying the degree of small-scale 

fluctuations, which are assumed to predominantly originate from measurement errors.  Although 

gradient-based methods are designed to provide an indication of normally-distributed small-scale 

fluctuations, the high dimensionality and nonlinearity causes these methods to fail.  Therefore, the 

small-scale fluctuations should be estimated using prior knowledge on measurement errors and 

considered in the final decision. 

4.2 Uncertainty Analysis Using Monte Carlo Sampling 

Monte Carlo sampling requires information regarding the nature of parameter uncertainty.  This 

nature can be approximated by standard analytic distributions such as the normal distribution or the 
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lognormal distribution, or estimated empirically as done in Chapter 3.  The use of standard analytic 

distributions is popular in practice and easily implemented using available algorithms.  The fact that 

slightly earlier convergence is achieved using logarithmic transformations of uncertain parameters in 

the optimization algorithm, PEST, may be an indication of log-normality in parameter distribution.  

Although the parameter characteristics found using DDS results do not appear to unanimously follow 

a lognormal distribution, the evidence supporting the use of Gaussian distributions to represent 

parameters is weaker.  Therefore, the lognormal distribution was selected to represent all posterior 

parameter distributions.  The parameters (the mean and the lognormal standard deviation) that are 

used to approximate posterior parameter distributions are estimated using two different parameter 

estimation methods: PEST and DDS.  The corresponding output distributions were created using the 

approach described in Section 4.1.2 for the four locations of concern: Leclerq Class Area, Mejdrech 

Area B, Mejdrech Area C, and Mejdrech Area D.  Recall that the output represents the arrival time of 

a contaminant concentration of 0.5 ppb. 

Since the Monte Carlo sampling approach only considers the posterior parameter distributions and 

does not incorporate the two criteria, the parameter sets are not guaranteed to be acceptable.  Even if 

acceptable parameter sets are found, there is no evidence suggesting that the parameter set with the 

lowest objective function value represents the global minimum unless the full extent of the parameter 

space is thoroughly searched.   A thorough search of a 10-dimensional problem is not practically 

feasible, as 1010 function evaluations are required to examine 10 different values for each parameter.  

In fact, a reduction of dimensionality may be necessary for a meaningful uncertainty analysis given a 

practical amount of computational resources.  In addition, many common random number algorithms 

such as Monte Carlo sampling are dependent on the user-specified seed value if convergence via a 

sufficient number of samples has not occurred.  Therefore, a more efficient approach using the Latin 

Hypercube method is also implemented to check for convergence. 

4.2.1 Monte Carlo Sampling with PEST Results 

The parameter set determined using PEST that satisfies both criteria and produce relatively low 

sum of squares values is presented in Table 4.2.  It is important to note that there is no evidence 

suggesting that this parameter set represents the global optimum as defined by the L2-norm since 

lower sum of squares values were obtained using the L2-norm with the DDS method. 
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Table 4.2. Result of Parameter Estimation using PEST 

Parameter Units 
Estimated 

Value 
95% Lower 

Confidence Limit 
95% Upper Confidence 

Limit 
c0 mg/L 1000 -6602 8602 
v ft/yr 606 -620 1832 

Dx ft 35 0.049 25590 
Dy ft 39 30* 49* 
Dz ft 2.5 0.0043 1467 
µt 1/years 0.0004 2.1E-09 72 
λ 1/years 0.06 0.0054* 1* 
vv ft/yr 3.6 0.0024* 5487 
Dv ft 1.1 0.0006 1919 
bt ft 14.4 -152 181 

* Parameter value lies within desired range specified for DDS runs. 

The 95% confidence limits shown in Table 4.2 correspond to unrealistic parameter values and fail 

to lie within the desired parameter ranges.  All of the approximately 160 PEST implementations in 

Chapter 3 produce similar results indicating the need for additional information and alternate 

methods.  In fact, the values are orders of magnitude different from the desired ranges.  These results 

point towards possible violations of underlying assumptions in PEST regarding the data, which is 

assumed to have normally distributed errors and no biases, and the model, which is assumed to be 

approximately linear.  As discussed in Chapter 3, the error associated with the data is likely to contain 

biases and to follow a non-Gaussian distribution.  In addition, the model developed in Chapter 2 is 

represented using a highly non-linear analytical solution.  Furthermore, the high dimensionality of the 

problem can also lead to unrealistic results.  As a result, the confidence limits cannot be used to 

indicate lognormal standard deviations of parameters.   

Instead, prior knowledge regarding parameter values obtained using expert opinion presented in 

Chapter 2 is used to estimate lognormal standard deviations.  The parameters describing posterior 

distributions used in Monte Carlo sampling are presented in Table 4.3. 

One thousand Monte Carlo samples were generated using the posterior distributions in Table 4.3.  

A seed of 200 was arbitrarily chosen to be used for all four locations for consistency.  If convergence 

was achieved, the seed value is not important.  However, stability was not thoroughly investigated; 

and 1000 Monte Carlo simulations were assumed to be sufficient for convergence based on previous 

studies and typically-available computational resources.  Nonetheless, the Monte Carlo simulations 

produce lognormal standard deviations that follow the input lognormal standard deviations very 

closely, as shown by the outputs included in Appendix #.  Also, the majority of the sum of squares 
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values, which range from 554 to 6725 with a mode of 760, fall in the lower reasonable intervals as 

shown in Figure 4.3.  Nevertheless, further study into convergence and the effect of the seed value is 

recommended if decisions are to be based on these Monte Carlo samples, and these results are used to 

provide general insight. 

Table 4.3. Posterior parameter distribution to be used in Monte Carlo sampling 

Parameter Units Mean§ Lognormal Standard Deviation* 
c0 mg/L 1000 0.1 
v ft/yr 606 0.025 

Dx ft 35 0.2 
Dy ft 39 0.2 
Dz ft 2.5 0.2 
µt 1/years 0.0004 0.05 
λ 1/years 0.06 0.01 
vv ft/yr 3.6 0.1 
Dv ft 1.1 0.1 
bt ft 14.4 0.2 

*Based on Prior Knowledge 
§Based on PEST implementations 

The breakthrough concentrations from the Monte Carlo samples are represented by their mean and 

standard deviation in Figure 4.4.  The deterministic breakthrough curve is also shown in Figure 4.4.  

In general, the mean breakthrough curve corresponds to higher concentration values at early times 

and confirms the importance of a stochastic uncertainty analysis for the problem of estimating first 

arrival times.  The large standard deviation values relative to the mean and deterministic values 

indicate that there is a large degree of uncertainty associated with the results.  However, it is 

important to note that the mean and standard deviation profiles are dependent on uncertain posterior 

parameter distributions and conclusions based on these curves are questionable.   
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Figure 4.3. Histogram of sum of squares value for Monte Carlo samples generated using 

posterior distributions defined by PEST results and prior knowledge 
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Figure 4.4. Deterministic, mean, and standard deviation of TCE concentrations over time at the 

four locations of concern using Monte Carlo samples based on PEST results 
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Figure 4.5. Cumulative probability distribution using equally weighted Monte Carlo samples 

based on PEST results 



 

  115

Cumulative output distributions assuming equally probable parameter sets (i.e. N = 0 for Lc/d, La/b, 

or Lb) are shown in Figure 4.5.  These cumulative distributions represent the probability of the arrival 

time based on the frequency of parameter sets that generate the arrival time given no conditions, and 

thus, can be expressed as Pf(θ).  Figure 4.5 shows that the slope of the curve becomes flat for 

probabilities < 0.05, and therefore a greater range of possible arrival times exist for low probabilities 

indicating a larger degree of uncertainty at the tails.  Since the portion of the tail region of the 

probability distribution with a relatively flat slope is shorter for the Leclerq Class area in Figure 4.5, 

the uncertainty in first arrival times is smallest for Leclerq Class Area in comparison to the 

uncertainties associated with the remaining three locations.   

A cumulative probability of 1.0 is not reached within the 33 years for Mejdrech Areas B, C, and D.  

The difference between the maximum cumulative probability value at 33 years and 1.0 represents the 

probability that a concentration of 0.5 ppb will not have reached the given location in 33 years.  

Therefore, the probability that a concentration of 0.5 ppb is reached within the 33 years is 100%, 

97%, 74%, and 63% for the Leclerq Class Area, Mejdrech Area B, Mejdrech Area C, and Mejdrech 

Area D respectively.  The Location Criteria represents the intersection of all four events, where an 

event is a concentration of 0.5 ppb or greater being reached at the given location.  If the events are 

assumed to be independent, the probability of the intersection of the four events is given by 

 P(L∩B∩C∩D) = P(L) · P(B) · P(C) · P(D)    (39) 

    = 1.00 · 0.97 · 0.74 · 0.63 = 0.45 

where L is the event that a concentration of 0.5 ppb is reached within 33 years in the Leclerq Class 

Area, B is the event that a concentration of 0.5 ppb is reached within 33 years in Mejdrech Area B, C 

is the event that a concentration of 0.5 ppb is reached within 33 years in Mejdrech Area C, and D is 

the event that a concentration of 0.5 ppb is reached within 33 years in Mejdrech Area D.  However 

the assumption of independence is invalid since the same physical processes govern all the events.  

One expression for the probability of the intersection of the four events assuming dependence is given 

by 

 P(L∩B∩C∩D) = P(L) · P(B|L) · P(C| L∩B) · P(D| L∩B∩C)  (40) 

Based on knowledge of physical processes, it makes intuitive sense that P(B|L) > P(B), P(C| L∩B) > 

P(C), and P(D| L∩B∩C) > P(D).  If these inequalities are true, the probability of the intersection of 

the four events is greater assuming dependence and the independent case represents the lower limit of 

the probability of the intersection of the four events.   
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Although a minimum of 45% of the Monte Carlo parameter sets are expected to satisfy the 

Location Criteria, all of the 1000 parameter sets sampled using the Monte Carlo method given a 

lognormal distribution failed to satisfy the two physical criteria even though the deterministic 

breakthrough curve passes both criteria.  Additional 700 random parameter sets were generated with 

the Latin Hypercube sampling method to test if the samples (i.e., parameter sets) were not 

representative.  These parameter sets also failed to satisfy the two criteria.  A reduction of the 

standard deviations appears to be an attractive approach since the deterministic results are able to 

satisfy the two criteria.  However, a 25% reduction in lognormal standard deviations still did not 

produce acceptable sets.  A further reduction in lognormal standard deviations is not justifiable given 

the purpose of characterising uncertainty.  The solution may be to use additional parameter sets or 

alternate sampling approaches.  One of the underlying assumptions is that all of the parameter 

distributions follow a lognormal distribution, which is not supported by the findings in Chapter 3.  

Therefore, it may be prudent to either change the parameter distributions to alternate distributions.  

However, the interaction between parameters is likely to be the most significant factor given the 

number of uncertain parameters in this case study.  As a result, the Monte Carlo sampling approach 

may not be appropriate.  This is further investigated in the next section.   

It is important to mention that pseudo-likelihoods with N ≠ 0 are not considered since the results of 

this sampling approach may not be applicable for decision-making purposes and the extra effort is not 

justifiable. 

4.2.2 Monte Carlo Sampling with DDS Results 

The characteristics of the empirical parameter distributions determined in Chapter 3 appear to be 

consistent regardless of the objective function definition.  If independence between parameters is 

assumed, the empirical distributions can be used as the posterior parameter distribution in Monte 

Carlo sampling.  Empirical distributions are assumed to resemble the histogram of parameter values 

presented in Chapter 3.  Visual inspection was used to approximately match a lognormal distribution 

to the empirical distributions based on the parameter sets generated using the L1-estimator with a 

penalty factor of 10,000.  An example is shown for the horizontal velocity in the limestone in Figure 

4.6, where a good match is made to the modal distribution associate with lower objective function 

values.  Poor matches result for parameters that appear to be uniformly distributed since lognormal 

distributions are used.  The mean and lognormal standard deviations that correspond to the 

approximated lognormal distribution are presented in Table 4.4 for each parameter. 
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Figure 4.6. Comparison of empirical and approximated lognormal distribution for the 

horizontal velocity in limestone 

Table 4.4. Mean and standard deviation of parameter values generated using the DDS method 

Parameter Units Mean Lognormal Standard Deviation 
c0 mg/L 1000 0.20 
v ft/yr 550 0.15 

Dx ft 255 0.23 
Dy ft 30 0.10 
Dz ft 2.5 0.45 
µt 1/years 0.08 0.45 
λ 1/years 0.2 0.25 
vv ft/yr 18 0.25 
Dv ft 5 0.60 
bt ft 25 0.50 

 

A comparison of the lognormal standard deviations and means of the parameters corresponding to 

Monte Carlo simulations to the input lognormal standard deviations and means indicate that the 

Monte Carlo simulations adequately represents the input parameter uncertainty.  The sum of squares 

value corresponding to the Monte Carlo samples range from 565 to 145,870 with a mode of 1500, 

which is significantly greater than noted in Figure 4.3.  The unrealistically high sum of squares value 

indicates problems in the posterior parameter distributions or the Monte Carlo sampling strategy.   

The resulting breakthrough curves are presented in Figure 4.7 while the corresponding cumulative 

probability curves are presented in Figure 4.8.  The trends shown in Figure 4.7 are similar to those in 
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Figure 4.4 except that the profiles are shifted to the left indicating earlier arrival times.  The shape of 

the cumulative probability curves is different with steeper slopes than in Figure 4.5 due to the 

generally larger standard deviations. 
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Figure 4.7. Deterministic, mean, and standard deviation of TCE concentrations over time at the 

four locations of concern using Monte Carlo samples based on DDS results 
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Figure 4.8. Cumulative probability distribution using equally weighted Monte Carlo samples 

based on DDS results 

The probability curves in Figure 4.8 appear to reach a stable value as the curve flattens out at 

probabilities < 1.0.  This indicates that the probability of arrival of a concentration of 0.5 ppb may 

never reach 1.0 for some locations or a concentration of 0.5 ppb will never reach the specified 

location.  The probability that a concentration of 0.5 ppb is reached within the 33 years is lower in 

Figure 4.8 than in Figure 4.5; and the values are 96%, 52%, 41%, and 17% for the Leclerq Area, 

Mejdrech Area B, Mejdrech Area C, and Mejdrech Area D.  The lower limit of probability is 3.5%, 

which corresponds to the probability of the intersection of the four events is 3.5% if the events are 

assumed to be independent.   

Again, none of these parameter sets satisfies the two criteria, and no parameter sets are accepted.  

Since the probability of satisfying the Locations Criteria is smaller than for Monte Carlo samples 

obtained using PEST results discussed in Section 4.2.1, an acceptable parameter set is not likely to be 

found even with a large number (>1000) of Latin Hypercube simulations. 
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4.2.3 Shortcoming of the Traditional Monte Carlo Analysis 

Despite the insight regarding the uncertainty associated with this problem using the traditional 

Monte Carlo analysis approach, there are a number of shortcomings that invalidates its use in 

decision-making scenarios.  The major shortcoming is the inability of the traditional Monte Carlo 

sampling strategy to find acceptable parameter sets.  The most likely explanations are incorrect 

assumptions: independence of parameters, and log-normality.  The means of the parameter 

distributions are selected to correspond to parameter sets that satisfy both criteria and thus, are 

acceptable.  It is logical to expect that the reduction in standard deviations can lead to more 

acceptable parameter sets; however, reduced standard deviations showed no improvements and 

therefore parameter dependence appears to be the most significant factor. 

4.3 Uncertainty Analysis Using Physically-Based Dynamically-Dimensioned 

Search Approximation of Uncertainty (P-DDS-AU) Sampling 

The sampling procedure, P-DDS-AU, described Section 4.1.1.2 was used to generate a sufficient 

number of acceptable parameter sets to be used in this uncertainty analysis.  In addition, parameter 

dependence is inherently accounted for by the sampling approach which looks at the combined set 

and not only the individual parameter values.  All four definitions of pseudo-likelihood functions 

(Table 4.1), which are simply referred to as likelihood, are employed; and both cumulative and non-

cumulative distributions are examined.  For likelihood definitions, Le and La/b, the variance in 

observations, σo
2, is found to be 3.4 ppb2 by applying (33) to the 320 observations described in 

Chapter 2.   

The number of acceptable parameter sets, n, used to generate each likelihood distribution was made 

to be equal or greater than 1000 based on performances of the GLUE method in literature (Feyen et 

al., 2001).  Option (a) in Step 9 of P-DDS-AU sampling methodology as outlined in Section 4.1.1.2 is 

exercised to find the sample sets to ensure convergence while limiting computational effort.  To test 

the effect of objective function definition, more than 1000 acceptable parameter sets were found using 

the three objective function definitions selected for uncertainty analysis in Chapter 3; the 

corresponding n values are summarized in Table 4.5. 
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Table 4.5. Number of acceptable parameter sets used in developing the likelihood function 

Objective Function Definition Number of behavioural parameter sets, n 
L1-estimator with a penalty of 10,000 1245 
L2-estimator with a penalty of 10,000 1019 

LRS1-estimator with a penalty of 10,000 1614 
 

The m value, which is the number of function evaluations per DDS optimization trial, was set at 200 

based on preliminary investigations using the optimization algorithm, PEST, as discussed in Chapter 

3.  The total number of DDS trials, t, and the total number of function evaluations, N, vary according 

to the value of m.   

4.3.1 Factors Affecting Likelihood Distributions 

4.3.1.1 Effect of Likelihood Function Definitions on Likelihood Distributions of Arrival Times 

The effect of likelihood definition on the likelihood of arrival times is dependent on the objective 

function definition and the data.  Differences in the likelihood distribution with parameter sets 

generated using the LRS1 M-estimator, L1-estimator, and the L2-estimator is noted by comparing 

Figures 4.9, 4.10, and 4.11.  Although a further investigation into the effects of objective function 

definitions is considered in Section 4.3.1.4, the effect of likelihood function varies with objective 

function definition and must be considered concurrently.  Similar trends are noted for the LRS1 M-

estimator and the L1-estimator with the lowest likelihoods generated using Le and the highest 

likelihoods generated using the La/b.  Opposite trends are noted for the L2-estimator but with Lb 

representing the highest likelihoods.  This makes intuitive sense as there is a squared term in the L2-

estimator that is not present in the other two estimators.   

Equal weighting of parameter sets by setting N-values to zero creates a profile with the earliest 

arrival times for any given level of likelihood.  This profile represents the upper limit of the 

likelihood distribution as the other likelihood definitions will approach this profile as the N-value 

approaches zero.  Similar findings are noted for other locations.  
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Figure 4.9. The tail-end of the cumulative normalized likelihood distribution plot for Mejdrech 

Area B using the L1-estimator with a penalty factor of 10,000 
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Figure 4.10. The tail-end of the cumulative normalized likelihood distribution plot for Mejdrech 

Area B using the L2-estimator with a penalty factor of 10,000 
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Figure 4.11. The tail-end of the cumulative normalized likelihood distribution plot for Mejdrech 

Area B using the LRS1-estimator with a penalty factor of 10,000 

Figure 4.12 shows the cumulative likelihood distribution envelopes for all the locations for the 

parameter sets generated using the L1-estimator with a penalty of 10,000 and an N-value of 1.  It is 

important to note that these envelopes are only presented to show the effects of likelihood 

distributions on the final uncertainty envelope to be developed.  In Figure 4.12, the difference in 

cumulative normalized likelihood values becomes negligible as the arrival time and the cumulative 

likelihood value increases.  This indicates that the likelihood function definitions diverge in the tail 

region, and the likelihood of early arrival times has a greater range of possible values.  The greatest 

range is noted for Mejdrech Area D as evidenced by the larger envelope leading to almost a two year 

difference in arrival time at the 10% level.  In contrast, insensitivity to the likelihood definition is 

noted for the Leclerq area with a maximum difference of only 0.05 years.  A possible cause is the 

smaller time step leading to fewer errors generated by rounding down but it is difficult to accept that 

the difference is greater than the time step.  Therefore, the main cause of the difference is attributed to 

the amount of data available at each location.  This is supported by the fact that the largest number of 

data is available for the Leclerq Area while the fewest number of data is available for Mejdrech Area 

D. 
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Figure 4.12. Cumulative normalized likelihood for the parameter sets generated using the L1-

estimator with a penalty factor of 10,000 calculated with Le and La/b with N=1 

It is important to note that the number of parameter sets used in uncertainty analysis is reduced in 

the definition of Le and La/b if the Pk or σe
2 values are less than σo

2.  Fortunately, Figures 4.9, 4.10, and 

4.11 show that effects are small and insignificant for all objective function definitions.  

In summary, a single likelihood function definition may lead to non-conservative output 

distributions and more than one definition should be considered.  Analysis on the effect of the 

likelihood definition should be evaluated on a case-by-case basis.  If decision-making only requires 

the first arrival time independent of the likelihood value, any likelihood function definition can be 

used since the likelihood functions only change the relationship between arrival times. 

4.3.1.2 Effect of N-value in Likelihood Function on Likelihood Distributions of Arrival Times 

The likelihood function definitions, Lb, La/b, and Lc/d, have a subjective likelihood definition 

parameter, N, for which values of 1, 2, and nobs/2 have been suggested (Beven and Binley, 1992; 

Feyen et al., 2001).  Therefore, N values of 0, 1, 5, 20, and 160 were examined.  The condition where 
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N equals zero represents the case where each parameter set is given equal weighting.  In contrast, only 

a single solution is considered likely when N approaches infinity.   

The effect of likelihood function definitions discovered in Section 4.3.1.1 are amplified by 

increases in the N-value.  Figure 4.13 shows the reduction in the slope of the cumulative likelihood 

curve and the corresponding likelihood value as N is increased.  This trend is characteristic of all 

locations and likelihood definitions using the observation data with non-detect values set to zero.   
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Figure 4.13. Cumulative normalized likelihood plot for Mejdrech Area B using La/b for various 

values of N using parameter sets generated using the L1-estimator with a penalty factor of 

10,000 

Examination of Figure 4.13 and the desire to be conservative may lead to the selection of equal 

weights for parameter sets (i.e. N-value of zero).  However, the normalized likelihood distributions 

created using an N-value of zero leads to an early peak when using the observation data with NDs set 

to zero as shown in Figure 4.14.  The disappearance of this early peak indicates that the 

corresponding arrival times are less conditional to observation data.  The nature of the distribution 

appears to follow a lognormal distribution in most cases.  However, the lack of a right tail in most of 

the distributions makes it difficult to confirm this.  The disappearance of the early peak when N=10 is 

noted starting from an N-value of 5 for Lb and Lc/d and an N-value of 10 for La/b.  Similar trends in the 

non-cumulative distribution are also present at other locations.  However, preliminary studies with N-

values using different data sets indicate that these N-values are case-specific.  Nonetheless, similar 
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trends, where an N-value of zero produces the most conservative results, are observed for the L2-

estimator, the L1-estimator, and the LRS1 M-estimator.   

 

Figure 4.14. Normalized likelihood distribution for Mejdrech Area B using La/b using (a) N = 0 

and (b) N = 10 

Due to its subjectivity, the usage of N-values greater than zero is difficult to justify unless a 

distribution created using an N-value greater than zero matches the distribution based on prior 

knowledge.  The safest approach is to use an N-value of zero and address the problem of multiple 

modes in the normalized likelihood distribution using additional physical criteria.  However, it is 

important to note that an N-value of zero may not always produce the most conservative results for a 

different problem and data set. 

4.3.1.3 Effect of the Number of Acceptable Parameter Sets on Likelihood Distribution of 

Arrival Times 

To test the effect of n on the likelihood distribution, the number of parameter sets for each of the 

three acceptable parameter sets generated using different objective function definitions were 

randomly reduced to 1000.  It is important to note that the inequalities in the likelihood definitions, Le 

and La/b, can cause the effect of some additional parameter sets to be omitted.   

The profiles in the region of low likelihoods appear to be slightly more dependent on the number of 

behavioural parameter sets used in the analysis as shown in Figure 4.15.  However, an increase in the 

number of parameter sets from 1000 to 1614 has negligible effect relative to differences observed 

using various definitions for objective functions.  Therefore, convergence can be assumed for n 

values, which represent the desired number of behavioural samples, greater than 1000.  The number 
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of acceptable parameter sets to be used in the uncertainty analysis should be determined by the 

convergence of parameter characteristics.  It is important to note that this implies the effect of the 

random seed value does not need to be considered further for this case study. 
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Figure 4.15. Cumulative normalized likelihood plot at Mejdrech Area B using various 

likelihood definitions with an N-value of 0, where applicable, and 1000 and 1614 parameter sets 

generated using the LRS1 M-estimator with a penalty factor of 10,000 

4.3.1.4 Effect of the Objective Function Definition on Likelihood Distributions of Arrival Times 

The general effect of objective function definition was noted in Section 4.3.1.1, and a more 

rigorous examination of its effect discussed here.  1000 parameter sets obtained using each of the 

three objective functions are used for consistency even though convergence is assumed to have 

occurred.  The comparison is not biased to any particular objective function definition since all of the 

objective function definitions used have the same scaling factor in the penalty function.   

Three objective functions defined by the L1-estimator, L2-estimator, and the LRS1 M-estimator are 

compared in Figure 4.16.  The likelihood curves generated using “optimized” parameter sets all 

follows an S-shape, with a large range of arrival times associated to lower cumulative likelihood 
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functions.  The relationship between the curves in Figure 4.16 is different for high and low 

likelihoods.   

The relationship between the curves generated with different objective function definition becomes 

magnified with increases in the N-value as noted in a previous section.   However, it is clear that this 

effect is overshadowed by the selection of N-value. 
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Figure 4.16. Cumulative normalized likelihood plot at Mejdrech Area B using Lc/d with an N-

value of 0 and 1000 parameter sets generated using various objective function definitions with a 

penalty factor of 10,000 

4.3.2 Steps to a Conservative Uncertainty Envelope 

It is practically infeasible to examine each of the likelihood distributions and it is difficult to justify 

a selection of one distribution over another.  Therefore, uncertainty envelopes that represent the 

bounds of cumulative likelihood distributions are created in order to maximize information available 

to decision-makers while minimizing assumptions.  The effects noted in Sections 4.3.1.1 to 4.3.1.4 

are compiled to develop a generalized approach to arriving at a conservative cumulative normalized 

likelihood distribution.  It is important to note that the order of the steps must be followed to ensure 

that the final cumulative normalized likelihood distribution is indeed conservative.  The four steps in 

their respective order are: 
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1. Ensure that a sufficient number of acceptable parameter sets are used. 

2. Select the likelihood function definition corresponding to the most conservative cumulative 

likelihood curve. 

3. Select the N-value corresponding to the most conservative cumulative likelihood curve. 

4. Select the objective function definition corresponding to the most conservative cumulative 

likelihood curve. 

More than one definition or value may be found for Steps 2 to 4 since the relationship can change 

with cumulative likelihood values.  If only one definition or value is selected, the definition or value 

that produces the most conservative results for low cumulative likelihood values should be chosen.  In 

such case, the plot should only show the portion corresponding to low cumulative likelihood values. 

The purpose of this study is to provide the best indication of uncertainty with the available 

resources.  The selection of a single representative curve for each location is not representative of the 

uncertainty investigation performed.  The sufficiency in the number of parameters is questionable and 

the likelihood function definition is somewhat subjective.  Therefore, an uncertainty envelope taking 

into consideration all of the cumulative likelihood curves selected is created for each location of 

concern as shown in Figure 4.17.  In general, the uncertainty at the tails is greater as indicated by the 

larger widths.  For a refinement of the envelopes, the application of additional physical criteria is 

recommended. 
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Figure 4.17. Uncertainty envelopes for the four locations of concern 

4.4 Summary 

Monte Carlo samples are inadequate for uncertainty analysis due to the difficulties associated with 

defining the input uncertainty and finding acceptable parameter sets.  P-DDS-AU sampling strategy 

produces a sufficient number of acceptable parameter sets to conduct a meaningful uncertainty 

analysis. 

The most conservative results are achieved by assigning equal likelihoods to parameter sets in this 

case study.  However, the approach to arriving at conservative results varies with problems since the 

choice of likelihood function and objective function definitions and their properties are problem-

dependent. 

All four effects must be considered with respect to its order in the creation of uncertainty 

envelopes.  In general, there appears to be greater uncertainty at the tails of the distribution.  For a 

refinement of the envelopes, the application of additional physical criteria is recommended. 
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Chapter 5 

Conclusions and Recommendations 

The principle purpose of uncertainty analysis is to facilitate decision-making.  Therefore, the 

confidence on the conclusions drawn from uncertainty analysis must be acceptable.  To achieve this, 

“good scientific practices of clarity, consistency, transparency, reproducibility, and the use of sound 

methods” (USEPA, 1997) along with justifiable assumptions must be considered in the development 

of the approach to characterizing uncertainty.  These considerations can be incorporated into many 

aspects of uncertainty analysis to maximize information available to decision-makers.  To 

demonstrate this, the uncertainty of arrival times for a real contaminant transport problem which 

involves TCE contamination due to releases from the Lockformer Company Facility in Lisle, Illinois 

is used.   

In this chapter, the conclusions and recommendations are presented with respect to the two major 

components of the approach to characterizing uncertainty: parameter estimation and uncertainty 

analysis.  A comprehensive uncertainty analysis is not possible without an understanding of the 

parameter estimation process and the corresponding parameter spaces.   In fact, the significant insight 

gained during the parameter estimation process can lead to the selection of appropriate uncertainty 

analysis methods and provide explanation for the failure of other methods. 

5.1 On Parameter Estimation 

The parameter estimation process for the case study investigated here was selected based on 

insufficiencies in the model and observational data due to errors, biases, and limitations.  A 

consideration of its purpose, which is to aid in characterising uncertainty, was also made in the 

process by including many possible variations in attempts to minimize assumptions.  Preliminary 

investigation of the problem was conducted using a well-accepted parameter estimation method, 

PEST, and the corresponding findings were used to define characteristics of the parameter estimation 

process.  Numerous objective function definitions, which include the well-known L2-estimator, robust 

estimators (L1-estimators and M-estimators), penalty functions, and deadzones, were incorporated in 

the parameter estimation process to treat specific insufficiencies.  The concept of equifinality was 

adopted and multiple maximum likelihood estimates were accepted if pre-defined physical criteria are 

met.  For each objective function definition, three procedures were implemented as a part of the 
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parameter estimation method for the given case study: a multistart procedure, a heuristic local greedy 

search using the Dynamically-Dimensioned Search (DDS), and a test for acceptance based on 

predefined physical criteria.  The two physical criteria applied in this thesis are: the Location Criteria 

and the Product Criteria. 

The best performance in terms of the ability of parameter sets to satisfy the physical criteria, which 

is quantified by the acceptance rate, was achieved using a Cauchy’s M-estimator that was modified 

for this study and designated as the LRS1 M-estimator.  The low weight assigned to residuals of high 

values by the LRS1 M-estimator indicates that its success is based on treating outliers.  Although the 

true nature of errors can be inferred from an estimator’s acceptance rate, the level of uncertainty 

regarding the true nature is still significant; and therefore, multiple parameter sets obtained with the 

LRS1 M-estimator, the L1-estimator, and the L2-estimator are recommended for use in uncertainty 

analysis.  Other M-estimators provide a middle ground between the L-estimators and the LRS1 M-

estimator.  Therefore, the inclusion of the two L-estimators is made to minimize assumptions 

regarding the error distribution.   

For all estimators, penalty function based on the Location Criteria had to be incorporated into the 

objective function definitions to generate a sufficient number of acceptable parameter sets.  The 

limiting functionality of the Location Criteria is a result of the difficulty of data insufficiencies that 

are not fully addressed by treatments such as robust estimators.  A penalty function based on the 

Product Criteria was clearly not a limiting factor in generating acceptable parameter sets; therefore, it 

was not applied in the search procedure when finding multiple acceptable parameter sets to be used in 

uncertainty analysis.  Similarly, deadzones proved to produce negligible benefits and are not used to 

generate multiple acceptable parameter sets to be used in uncertainty analysis.   

The characteristics for the multiple parameter sets to be used in uncertainty analysis were examined 

in terms of frequency histograms and plots of parameter value versus objective function value to infer 

the nature of the likelihood distributions of parameters.  The correlation structure was estimated using 

Pearson’s product-moment correlation coefficient.  The parameters are generally distributed 

uniformly or appear to follow a random nature with few correlations in the parameter space that 

results after the implementation of the multistart procedure.  The execution of the search procedure 

results in parameter distributions that appear to follow lognormal, normal, or uniform distributions 

and in the introduction of many correlations.  The application of the physical criteria refines the 

parameter characteristics in the parameter space resulting from the search procedure by reducing 

anomalies.  The combined effect of optimization and the application of the physical criteria performs 
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the function of behavioural thresholds by removing parameter sets with high objective function 

values.   

In general, parameter estimation was performed in an inclusive manner that minimizes 

assumptions.  This is not to say that the parameter estimation process used in this thesis can be 

approached as a black-box.  In fact, preliminary investigations should always precede parameter 

estimation and should be considered a part of the parameter estimation process.  However, given the 

uncertainties surrounding the analysis of real problems, preliminary investigations are not likely to 

justify the abandonment of possible solutions and solution methods.  In fact, ambiguities in inferring 

probability distributions based on parameter characteristics remain.  With the advent of computing 

power, it is increasingly difficult to justify a decision not to explore additional options and perform a 

more thorough search through the solution space if resources are available.   

One possible option to further refine parameter characteristics is the application of additional 

physical criteria, which can be defined using prior knowledge and characteristics observed in the 

multiple parameter sets.  To minimize effort and maximize benefits, additional physical criteria 

should be designed to target specific anomalies in the parameter characteristics.  

Although a need to use other objective function definitions are not clearly evident through error 

analysis, indirect benefits may be achieved in terms of refinements of parameter characteristics.  

Alternative families of robust estimators include the R-estimators (Rousseeuw and Leroy, 2003), 

which are based on the ranks, and the S-estimators (Rousseeuw and Leroy, 2003), which are 

generalizations of the least median of squares estimators.  These estimators may be a good approach 

to reduce the effect of some problems in the data set and should be investigated in future studies, 

especially if M- and L-estimators are known to be ineffective as treatments to contaminated data.   

It is important to note that the objective function definitions investigated in this chapter are 

designed to find the large-scale trend of the data or one of the “preferred states”.  Small-scale 

fluctuations as defined by McLaughlin and Townley (1996), which cannot be ignored in our quest of 

defining uncertainty, are generally assumed to be independent-and-identically distributed random 

variables, and methods to define its nature are not typically implemented.  In fact, for this case study, 

a definition of the nature of small-scale fluctuations is difficult given limitations in the data.  

Therefore, a strategy to estimate the significance and magnitude of small-scale fluctuations should be 

researched. 
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5.2 On Uncertainty Analysis 

The steps to uncertainty analysis of arrival times are separated into two separate tasks in this thesis: 

sampling of parameter sets and quantitative representation of likelihood.  Two different sampling 

methodologies are applied: the Monte Carlo sampling methodology, which randomly and 

independently samples from user-defined distributions, and the physically-based DDS-UA (P-DDS-

UA) sampling methodology, which is developed based on the multiple parameter sets acquired during 

the parameter estimation process.  The P-DDS-UA sampling methodology was designed to account 

for parameter correlations and does not require assumptions regarding parameter distributions.  These 

features are advantageous for the given case study where a significant number of parameter 

correlations have been observed and where parameter distributions cannot be suitably represented by 

parametric distributions.  For both sampling methodologies, the quantitative representation of 

likelihood is facilitated by likelihood distributions in both the cumulative and non-cumulative sense 

by assigning likelihood values to each sample or parameter sets.  Four pseudo-likelihood function 

definitions are used to represent likelihoods: two based on the Nash and Sutcliffe efficiency criterion, 

Le and La/b, one based on inverse residual variance, Lb, and one based on inverse error variance, Lc/d.  

All of these definitions are controlled by a shaping factor, while two (La/b and Lc/d) are influenced by 

objective function definitions.  All variations are considered in the development of cumulative 

likelihood distribution envelopes, which are designed to maximize the amount of information 

available to decision-makers.  These envelopes are referred to as uncertainty envelopes.   

For uncertainty analysis of this case study, Monte Carlo samples are found to be inadequate due to 

its inability to find parameter sets that meet the predefined physical criteria.  Successful results are 

achieved using the P-DDS-UA sampling methodology, and its results are used to generate uncertainty 

envelopes.  Shaping factors have a strong effect on the likelihood distribution that overshadows the 

effects of both likelihood and objective function definitions.  The effect of likelihood function and 

objective function definitions on the uncertainty envelopes is problem-dependent.  Therefore, no 

general assumptions can be made regarding the abilities of likelihood function definitions and 

objective function definitions to produce conservative results.  In fact, preliminary investigations that 

consider the characteristics of the acceptable parameter space, the objective function definition, and 

the likelihood function definition are important to the creation of uncertainty envelopes.  Nonetheless, 

the relative importance of each factor appears to be consistent and conservative uncertainty envelopes 

can be obtained if the recommended order in which each factor is considered is followed.  In general, 

greater uncertainty appears to be present at the tails of the distribution for all locations.  This is 
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evident by the greater slope in the cumulative likelihood distributions and the greater width of the 

uncertainty envelope at low likelihood values.   

Since decision-making is often governed by the information at the tails of likelihood distributions, 

a refinement of uncertainty envelopes is desirable.  Although refinements are feasible by changing the 

shaping factor based on its non-cumulative distribution, this approach is subjective, and the 

application of additional physical criteria is recommended.   

Decision-makers must be aware of the assumptions upon which the entire analysis is based on.  

Although the entire process is designed to be conservative and inclusive, certain decisions must be 

made and their effects should be considered.  For example, the objective function and likelihood 

function definitions used to generate the uncertainty envelopes are not exhaustive.  In addition, the 

layers of assumptions to ensure conservative results may have led to an overly conservative estimate.  

However, it is difficult to justify the removal of any measure taken to be conservative, and any 

refinement of the envelopes should be performed with the application of additional physical criteria.  

Also, the accuracy of the likelihood function obtained by any method is still dependent on how 

thoroughly the solution space is searched and the convergence issue remains.  Even though “good 

looking bell shaped histograms” are observed, the results are spurious if the “existence of the limiting 

distribution” is questionable (Kuczera and Parent, 1998).  Nonetheless, it is practically infeasible to 

consider every single variation and apply all possible methods given the plethora of possible 

likelihood and objective function definitions.  The selection of likelihood and objective function 

definitions and their properties are made based on the needs of the problem; therefore, preliminary 

investigations should always be conducted to provide a basis for selecting appropriate methods and 

definitions.   

It is important to note the importance of parameter estimation in uncertainty analysis.  In fact, 

uncertainty analysis is not justifiable without a valid understanding of the parameter solution space.   

Finally, it is imperative to remember that the communication of assumptions and definitions used 

in both parameter estimation and uncertainty analysis is crucial in decision-making scenarios. 
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Appendix A 

Analytical Solution to the One-Dimensional Advection-Dispersion 

Equation 

The analytic solution of dissolved TCE transport through the overburden is obtained using the C13 

Solution by van Genuchten and Alves (1982).  The resulting solution for migration of a dissolved 

species through the till is 
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in which c0 is the initial dissolved TCE concentration in the source zone [M/L3]; λ accounts for the 

reduction of the dissolved TCE source concentration [T-1]; t represents time since the first release of 

contaminant [T]; tr represent the time at which the source was removed [T]; vv is the linear velocity in 

the overburden [L/T]; Dv is the longitudinal dispersion coefficient [L2/T]; and Rt is the retardation 

factor for the dissolved TCE in the overburden [-]. 
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Appendix B 

Green’s Function Used in the Solution for the Three-Dimensional 

Advection-Dispersion Equation 

The Green’s function, ( )',,',,',,', ttzzyyxxh , used in the solution for the three-dimensional 

advection-dispersion equation is 
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Appendix C 

Algorithm Parameters for Pest 

The following is the PEST control file.  For a description of the algorithm parameters, refer to the 

PEST manual (Watermark Numerical Computing, 2004). 

pcf 
* control data 
restart estimation 
10 320 1 0 1 
1 1 single point 1 0 0 
5.0 2.0 0.3 0.01 10 
5.0 5.0 1.0e-3 
.1 
30 0.005 4 3 .01 3 
1 1 1 
* parameter groups 
pargrp1 relative 0.01 0.00001 switch 2.0 parabolic 
* parameter data 
c0 none factor 1420. 100. 2000. pargrp1 1.0 0.0 1 
v none factor 599. 100. 1000. pargrp1 1.0 0.0 1 
dispx none factor 250. 10. 500. pargrp1 1.0 0.0 1 
dispy none factor 35. 1. 50. pargrp1 1.0 0.0 1 
dispz none factor 1.1 0.05 5. pargrp1 1.0 0.0 1 
rlam none factor .02 0.00001 1. pargrp1 1.0 0.0 1 
gam none factor .0007 0.00001 1. pargrp1 1.0 0.0 1 
vv none factor 12. 1.0001 40. pargrp1 1.0 0.0 1 
dispv none factor 7.9 0.001 20. pargrp1 1.0 0.0 1 
xv none factor 29. 0. 80. pargrp1 1.0 0.0 1 
* observation groups 
obsgrp1 
* observation data 
conc1 0.0000 1.0 obsgrp1 
conc2 0.0000 1.0 obsgrp1 
conc3 0.0000 1.0 obsgrp1 
conc4 7.9900 1.0 obsgrp1 
conc5 0.0000 1.0 obsgrp1 
conc6 4.2800 1.0 obsgrp1 
conc7 0.0000 1.0 obsgrp1 
conc8 0.0000 1.0 obsgrp1 
conc9 0.0000 1.0 obsgrp1 
conc10 0.2400 1.0 obsgrp1 
conc11 0.4400 1.0 obsgrp1 
conc12 0.0000 1.0 obsgrp1 
conc13 0.0000 1.0 obsgrp1 
conc14 0.0000 1.0 obsgrp1 
conc15 0.0000 1.0 obsgrp1 
conc16 0.0000 1.0 obsgrp1 
conc17 0.5700 1.0 obsgrp1 
conc18 0.0000 1.0 obsgrp1 
conc19 0.0000 1.0 obsgrp1 
conc20 7.3600 1.0 obsgrp1 
conc21 3.1300 1.0 obsgrp1 
conc22 0.2400 1.0 obsgrp1 
conc23 0.0000 1.0 obsgrp1 
conc24 0.0000 1.0 obsgrp1 
conc25 0.0000 1.0 obsgrp1 
conc26 0.0000 1.0 obsgrp1 
conc27 0.0000 1.0 obsgrp1 
conc28 0.0000 1.0 obsgrp1 
conc29 0.0000 1.0 obsgrp1 
conc30 0.0000 1.0 obsgrp1 
conc31 19.5000 1.0 obsgrp1 
conc32 0.0000 1.0 obsgrp1 
conc33 0.0000 1.0 obsgrp1 
conc34 0.0000 1.0 obsgrp1 
conc35 0.0000 1.0 obsgrp1 
conc36 2.3000 1.0 obsgrp1 
conc37 0.0000 1.0 obsgrp1 
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conc38 0.5700 1.0 obsgrp1 
conc39 0.0000 1.0 obsgrp1 
conc40 2.9900 1.0 obsgrp1 
conc41 0.0000 1.0 obsgrp1 
conc42 5.5900 1.0 obsgrp1 
conc43 0.2800 1.0 obsgrp1 
conc44 5.2200 1.0 obsgrp1 
conc45 0.0000 1.0 obsgrp1 
conc46 0.0000 1.0 obsgrp1 
conc47 0.4000 1.0 obsgrp1 
conc48 0.0000 1.0 obsgrp1 
conc49 0.0000 1.0 obsgrp1 
conc50 0.0000 1.0 obsgrp1 
conc51 0.0000 1.0 obsgrp1 
conc52 0.0000 1.0 obsgrp1 
conc53 0.0000 1.0 obsgrp1 
conc54 1.9300 1.0 obsgrp1 
conc55 0.0000 1.0 obsgrp1 
conc56 0.0000 1.0 obsgrp1 
conc57 0.0000 1.0 obsgrp1 
conc58 0.0000 1.0 obsgrp1 
conc59 0.0000 1.0 obsgrp1 
conc60 1.6200 1.0 obsgrp1 
conc61 1.6900 1.0 obsgrp1 
conc62 1.9500 1.0 obsgrp1 
conc63 0.0000 1.0 obsgrp1 
conc64 6.1400 1.0 obsgrp1 
conc65 8.0200 1.0 obsgrp1 
conc66 8.3000 1.0 obsgrp1 
conc67 0.0000 1.0 obsgrp1 
conc68 0.0000 1.0 obsgrp1 
conc69 0.0000 1.0 obsgrp1 
conc70 0.0000 1.0 obsgrp1 
conc71 4.1000 1.0 obsgrp1 
conc72 2.9100 1.0 obsgrp1 
conc73 3.0500 1.0 obsgrp1 
conc74 0.0000 1.0 obsgrp1 
conc75 0.0000 1.0 obsgrp1 
conc76 0.0000 1.0 obsgrp1 
conc77 0.0000 1.0 obsgrp1 
conc78 0.5010 1.0 obsgrp1 
conc79 1.4300 1.0 obsgrp1 
conc80 3.2300 1.0 obsgrp1 
conc81 3.0900 1.0 obsgrp1 
conc82 6.3300 1.0 obsgrp1 
conc83 6.8900 1.0 obsgrp1 
conc84 5.5200 1.0 obsgrp1 
conc85 0.0000 1.0 obsgrp1 
conc86 1.2300 1.0 obsgrp1 
conc87 0.0000 1.0 obsgrp1 
conc88 3.5400 1.0 obsgrp1 
conc89 3.9700 1.0 obsgrp1 
conc90 0.0000 1.0 obsgrp1 
conc91 0.0000 1.0 obsgrp1 
conc92 6.1900 1.0 obsgrp1 
conc93 0.7770 1.0 obsgrp1 
conc94 1.1300 1.0 obsgrp1 
conc95 5.0800 1.0 obsgrp1 
conc96 0.0000 1.0 obsgrp1 
conc97 0.0000 1.0 obsgrp1 
conc98 7.2200 1.0 obsgrp1 
conc99 3.9700 1.0 obsgrp1 
conc100 0.0000 1.0 obsgrp1 
conc101 0.0000 1.0 obsgrp1 
conc102 4.5000 1.0 obsgrp1 
conc103 4.1300 1.0 obsgrp1 
conc104 4.5600 1.0 obsgrp1 
conc105 2.4500 1.0 obsgrp1 
conc106 0.0000 1.0 obsgrp1 
conc107 0.5630 1.0 obsgrp1 
conc108 0.0000 1.0 obsgrp1 
conc109 0.0000 1.0 obsgrp1 
conc110 0.0000 1.0 obsgrp1 
conc111 3.8500 1.0 obsgrp1 
conc112 5.8100 1.0 obsgrp1 
conc113 3.7400 1.0 obsgrp1 
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conc114 1.6000 1.0 obsgrp1 
conc115 2.0600 1.0 obsgrp1 
conc116 0.8300 1.0 obsgrp1 
conc117 0.0000 1.0 obsgrp1 
conc118 0.0000 1.0 obsgrp1 
conc119 0.0000 1.0 obsgrp1 
conc120 0.0000 1.0 obsgrp1 
conc121 0.0000 1.0 obsgrp1 
conc122 0.0000 1.0 obsgrp1 
conc123 0.0000 1.0 obsgrp1 
conc124 0.0000 1.0 obsgrp1 
conc125 0.0000 1.0 obsgrp1 
conc126 0.0000 1.0 obsgrp1 
conc127 0.0000 1.0 obsgrp1 
conc128 0.0000 1.0 obsgrp1 
conc129 0.0000 1.0 obsgrp1 
conc130 0.0000 1.0 obsgrp1 
conc131 0.0000 1.0 obsgrp1 
conc132 0.0000 1.0 obsgrp1 
conc133 0.0000 1.0 obsgrp1 
conc134 0.0000 1.0 obsgrp1 
conc135 0.0000 1.0 obsgrp1 
conc136 0.0000 1.0 obsgrp1 
conc137 0.0000 1.0 obsgrp1 
conc138 0.0000 1.0 obsgrp1 
conc139 0.0000 1.0 obsgrp1 
conc140 0.0000 1.0 obsgrp1 
conc141 0.5850 1.0 obsgrp1 
conc142 0.0000 1.0 obsgrp1 
conc143 0.0000 1.0 obsgrp1 
conc144 0.6180 1.0 obsgrp1 
conc145 0.0000 1.0 obsgrp1 
conc146 0.0000 1.0 obsgrp1 
conc147 0.0000 1.0 obsgrp1 
conc148 0.0000 1.0 obsgrp1 
conc149 0.8680 1.0 obsgrp1 
conc150 0.0000 1.0 obsgrp1 
conc151 0.6000 1.0 obsgrp1 
conc152 0.8050 1.0 obsgrp1 
conc153 0.0000 1.0 obsgrp1 
conc154 0.0000 1.0 obsgrp1 
conc155 1.1900 1.0 obsgrp1 
conc156 1.2200 1.0 obsgrp1 
conc157 1.2000 1.0 obsgrp1 
conc158 1.2100 1.0 obsgrp1 
conc159 1.0000 1.0 obsgrp1 
conc160 0.0000 1.0 obsgrp1 
conc161 1.0100 1.0 obsgrp1 
conc162 1.2000 1.0 obsgrp1 
conc163 1.1000 1.0 obsgrp1 
conc164 1.4800 1.0 obsgrp1 
conc165 1.2300 1.0 obsgrp1 
conc166 1.0200 1.0 obsgrp1 
conc167 1.0100 1.0 obsgrp1 
conc168 0.5210 1.0 obsgrp1 
conc169 0.0000 1.0 obsgrp1 
conc170 0.0000 1.0 obsgrp1 
conc171 0.0000 1.0 obsgrp1 
conc172 0.0000 1.0 obsgrp1 
conc173 0.0000 1.0 obsgrp1 
conc174 1.1200 1.0 obsgrp1 
conc175 0.0000 1.0 obsgrp1 
conc176 0.0000 1.0 obsgrp1 
conc177 1.4100 1.0 obsgrp1 
conc178 1.3300 1.0 obsgrp1 
conc179 0.5480 1.0 obsgrp1 
conc180 0.0000 1.0 obsgrp1 
conc181 0.0000 1.0 obsgrp1 
conc182 0.0000 1.0 obsgrp1 
conc183 0.0000 1.0 obsgrp1 
conc184 1.3200 1.0 obsgrp1 
conc185 1.0100 1.0 obsgrp1 
conc186 1.2300 1.0 obsgrp1 
conc187 0.0000 1.0 obsgrp1 
conc188 0.9450 1.0 obsgrp1 
conc189 1.0000 1.0 obsgrp1 
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conc190 0.0000 1.0 obsgrp1 
conc191 0.7610 1.0 obsgrp1 
conc192 0.0000 1.0 obsgrp1 
conc193 0.0000 1.0 obsgrp1 
conc194 0.0000 1.0 obsgrp1 
conc195 1.2000 1.0 obsgrp1 
conc196 0.0000 1.0 obsgrp1 
conc197 1.3300 1.0 obsgrp1 
conc198 0.0000 1.0 obsgrp1 
conc199 0.5400 1.0 obsgrp1 
conc200 0.0000 1.0 obsgrp1 
conc201 0.0000 1.0 obsgrp1 
conc202 1.0300 1.0 obsgrp1 
conc203 1.3500 1.0 obsgrp1 
conc204 1.3000 1.0 obsgrp1 
conc205 0.9850 1.0 obsgrp1 
conc206 0.0000 1.0 obsgrp1 
conc207 0.9190 1.0 obsgrp1 
conc208 0.0000 1.0 obsgrp1 
conc209 1.2700 1.0 obsgrp1 
conc210 1.3200 1.0 obsgrp1 
conc211 0.5600 1.0 obsgrp1 
conc212 0.8680 1.0 obsgrp1 
conc213 0.0000 1.0 obsgrp1 
conc214 0.7520 1.0 obsgrp1 
conc215 0.7050 1.0 obsgrp1 
conc216 0.6530 1.0 obsgrp1 
conc217 0.0000 1.0 obsgrp1 
conc218 0.0000 1.0 obsgrp1 
conc219 0.9900 1.0 obsgrp1 
conc220 0.0000 1.0 obsgrp1 
conc221 0.9370 1.0 obsgrp1 
conc222 0.0000 1.0 obsgrp1 
conc223 0.0000 1.0 obsgrp1 
conc224 0.8940 1.0 obsgrp1 
conc225 0.0000 1.0 obsgrp1 
conc226 0.7200 1.0 obsgrp1 
conc227 0.0000 1.0 obsgrp1 
conc228 0.7000 1.0 obsgrp1 
conc229 0.0000 1.0 obsgrp1 
conc230 0.0000 1.0 obsgrp1 
conc231 0.6570 1.0 obsgrp1 
conc232 0.8970 1.0 obsgrp1 
conc233 0.9470 1.0 obsgrp1 
conc234 1.1600 1.0 obsgrp1 
conc235 0.0000 1.0 obsgrp1 
conc236 0.9320 1.0 obsgrp1 
conc237 0.0000 1.0 obsgrp1 
conc238 0.0000 1.0 obsgrp1 
conc239 1.0400 1.0 obsgrp1 
conc240 0.0000 1.0 obsgrp1 
conc241 0.0000 1.0 obsgrp1 
conc242 0.6310 1.0 obsgrp1 
conc243 0.0000 1.0 obsgrp1 
conc244 0.0000 1.0 obsgrp1 
conc245 1.5200 1.0 obsgrp1 
conc246 0.9680 1.0 obsgrp1 
conc247 0.7200 1.0 obsgrp1 
conc248 1.1200 1.0 obsgrp1 
conc249 1.1500 1.0 obsgrp1 
conc250 0.7020 1.0 obsgrp1 
conc251 0.5420 1.0 obsgrp1 
conc252 0.0000 1.0 obsgrp1 
conc253 0.0000 1.0 obsgrp1 
conc254 0.0000 1.0 obsgrp1 
conc255 0.0000 1.0 obsgrp1 
conc256 1.0900 1.0 obsgrp1 
conc257 0.9980 1.0 obsgrp1 
conc258 0.6340 1.0 obsgrp1 
conc259 0.0000 1.0 obsgrp1 
conc260 0.9870 1.0 obsgrp1 
conc261 0.0000 1.0 obsgrp1 
conc262 1.1400 1.0 obsgrp1 
conc263 1.0300 1.0 obsgrp1 
conc264 0.5710 1.0 obsgrp1 
conc265 0.6870 1.0 obsgrp1 
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conc266 0.0000 1.0 obsgrp1 
conc267 0.0000 1.0 obsgrp1 
conc268 0.9270 1.0 obsgrp1 
conc269 0.8620 1.0 obsgrp1 
conc270 0.0000 1.0 obsgrp1 
conc271 1.0800 1.0 obsgrp1 
conc272 0.0000 1.0 obsgrp1 
conc273 0.0000 1.0 obsgrp1 
conc274 0.7900 1.0 obsgrp1 
conc275 0.5880 1.0 obsgrp1 
conc276 0.5740 1.0 obsgrp1 
conc277 0.0000 1.0 obsgrp1 
conc278 0.0000 1.0 obsgrp1 
conc279 0.0000 1.0 obsgrp1 
conc280 1.0700 1.0 obsgrp1 
conc281 0.0000 1.0 obsgrp1 
conc282 0.0000 1.0 obsgrp1 
conc283 0.8960 1.0 obsgrp1 
conc284 0.5310 1.0 obsgrp1 
conc285 0.9020 1.0 obsgrp1 
conc286 0.7220 1.0 obsgrp1 
conc287 0.0000 1.0 obsgrp1 
conc288 0.0000 1.0 obsgrp1 
conc289 0.6250 1.0 obsgrp1 
conc290 0.7070 1.0 obsgrp1 
conc291 1.1600 1.0 obsgrp1 
conc292 0.8310 1.0 obsgrp1 
conc293 0.8500 1.0 obsgrp1 
conc294 0.5860 1.0 obsgrp1 
conc295 0.5300 1.0 obsgrp1 
conc296 0.7560 1.0 obsgrp1 
conc297 0.0000 1.0 obsgrp1 
conc298 1.2300 1.0 obsgrp1 
conc299 0.7570 1.0 obsgrp1 
conc300 0.9800 1.0 obsgrp1 
conc301 0.0000 1.0 obsgrp1 
conc302 0.5910 1.0 obsgrp1 
conc303 0.0000 1.0 obsgrp1 
conc304 0.9280 1.0 obsgrp1 
conc305 0.8200 1.0 obsgrp1 
conc306 0.0000 1.0 obsgrp1 
conc307 0.0000 1.0 obsgrp1 
conc308 1.0000 1.0 obsgrp1 
conc309 1.1400 1.0 obsgrp1 
conc310 0.7780 1.0 obsgrp1 
conc311 0.7110 1.0 obsgrp1 
conc312 0.6420 1.0 obsgrp1 
conc313 0.8080 1.0 obsgrp1 
conc314 0.0000 1.0 obsgrp1 
conc315 1.0600 1.0 obsgrp1 
conc316 0.9810 1.0 obsgrp1 
conc317 0.6760 1.0 obsgrp1 
conc318 0.8230 1.0 obsgrp1 
conc319 0.0000 1.0 obsgrp1 
conc320 1.1700 1.0 obsgrp1 
* model command line 
ModForPEST 
* model input/output 
plume_param.tpl plume_param.dat 
metcoil_b.ins CFIT2.OUT 
* prior information 
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Appendix D 

DDS Results 

Table D.1. Investigation of Effect of Various Estimators and Deadzones 
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Table D.1. Investigation of Effect of Various Estimators and Deadzones (continued) 
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Table D.2. Investigation of Effect of Scaling Factor in Penalty Function 
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Table D.2. Investigation of Effect of Scaling Factor in Penalty Function (continued) 
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