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ABSTRACT 

 The overall objective of this thesis was to examine mechanisms involved in the acute 

regulation of sarcoplasmic reticulum (SR) Ca2+-handling properties by second messenger 

signaling pathways in skeletal and cardiac muscle. The aim of the first study (Chapter Two) 

was to characterize changes in the kinetic properties of sarco(endo)-plasmic reticulum Ca2+-

ATPase (SERCA) proteins in cardiac and skeletal muscles in response to β-adrenergic, Ca2+-

dependent calmodulin kinase II (CaMKII) and protein kinase C (PKC) signaling. The aim of 

the second study (Chapter Three) was to determine if insulin signaling could acutely regulate 

SERCA kinetic properties in cardiac and skeletal muscle. The aim of the final study (Chapter 

Four) was to determine if alterations in plasma glucose, epinephrine and insulin concentrations 

during exercise are able to influence SR Ca2+-handling properties in contracting human skeletal 

muscle. 

 Data collected in Chapter Two and Chapter Three were obtained using tissue prepared 

from a group of 28 male Sprague-Dawley rats (9 weeks of age;  mass = 280 ± 4 g: X ± S.E). 

Crude muscle homogenates (11:1 dilution) were prepared from selected hind limb muscles 

(soleus, SOL;  extensor digitorum longus, EDL;  the red portion of gastrocnemius, RG;  and the 

white portion of gastrocnemius, WG) and the left ventricle (LV). Enriched SR membrane 

fractions, prepared from WG and LV, were also analyzed. A spectrophotometric assay was 

used to measure kinetic properties of SERCA, namely, maximal SERCA activity (Vmax), and 

Ca2+-sensitivity was characterized by both the Ca50, which is defined as the free Ca2+-

concentration needed to elicit 50% Vmax, and the Hill coefficient (nH), which is defined as the 

relationship between SERCA activity and Ca2+
f  for 10 to 90% Vmax.  
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 The observations made in Chapter Two indicated that β-adrenergic signaling, activated by 

epinephrine, increased (P<0.05) Ca2+-sensitivity, as shown by a left-shift in Ca50 (i.e. reduced 

Ca50), without altering Vmax in LV and SOL but had no effect (P<0.05) on EDL, RG, or WG. 

Further analysis using a combination of cAMP, the PKA activator forskolin, and/or the PKA 

inhibitor KT5270 indicated that the reduced Ca50 in LV was activated by cAMP- and PKA-

signaling mechanisms. However, although the reduced Ca50 in SOL was cAMP-dependent, it 

was not influenced by a PKA-dependent mechanism. In contrast to the effects of β-adrenergic 

signaling, CaMKII activation increased SERCA Ca2+-sensitivity, as shown by a left-shift in 

Ca50 and increased nh, without altering SERCA Vmax in LV but was without effect in any of the 

skeletal muscles examined. The PKC activator PMA significantly reduced SERCA Ca2+-

sensitivity, by inducing a right-shift in Ca50 and decreased nH in the LV and all skeletal muscles 

examined. PKC activation also reduced Vmax in the fast-twitch skeletal muscles (i.e. EDL, RG 

and WG), but did not alter Vmax in LV or SOL. 

 The results of Chapter Three indicated that insulin signaling increased SERCA Ca2+-

sensitivity, as shown by a left-shift in Ca50 (i.e. reduced Ca50) and an increased nH, without 

altering SERCA Vmax in crude muscle homogenates prepared from LV, SOL, EDL, RG, and 

WG. An increase in SERCA Ca2+-sensitivity was also observed in enriched SERCA1a and 

SERCA2a vesicles when an activated form of the insulin receptor (A-INS-R) was included 

during biochemical analyses. Co-immunoprecipitation experiments were conducted and 

indicated that IRS-1 and IRS-2 proteins bind SERCA1a and SERCA2a in an insulin-dependent 

manner. However, the binding of IRS proteins with SERCA does not appear to alter the 

structural integrity of the SERCA Ca2+-binding site since no changes in NCD-4 fluorescence 

were observed in response to insulin or A-INS-R. Moreover, the increase in SERCA Ca2+-
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sensitivity due to insulin signaling was not associated with changes in the phosphorylation 

status of phospholamban (PLN) since Ser16 or Thr17 phosphorylation was not altered by 

insulin or A-INS-R in LV tissue. 

 The data described in Chapter Four was collected from 15 untrained human participants 

(peak O2 consumption, VO2peak= 3.45 ± 0.17 L/min) who completed a standardized cycle test 

(~60% VO2peak) on two occasions during which they were provided either an artificially 

sweetened placebo (PLAC) or a 6% glucose (GLUC) beverage (~1.00 g CHO per kg body 

mass). Muscle biopsies were collected from the vastus lateralis at rest, after 30 min and 90 min 

of exercise and at fatigue in both conditions to allow assessment of metabolic and SR data. 

Glucose supplementation increased exercise ride time by ~19% (137 ± 7 min) compared to 

PLAC (115 ± 6 min). This performance increase was associated with elevated plasma glucose 

and insulin concentrations and reduced catecholamine concentrations during GLUC compared 

to PLAC. Prolonged exercise reduced (p<0.05) SR Ca2+-uptake, Vmax, Phase 1 and Phase 2 

Ca2+-release rates during both PLAC and GLUC. However, no differences in SR Ca2+-handling 

properties were observed between conditions when direct comparisons were made at matched 

time points between PLAC and GLUC.  

 In summary, the results of the first study (Chapter Two) indicate that β-adrenergic and 

CaMKII signaling increases SERCA Ca2+-sensitivity in the LV and SOL;  while PKC signaling 

reduces SERCA Ca2+-sensitivity in all tissues. PKC activation also reduces Vmax in the fast-

twitch skeletal muscles (i.e. EDL, RG, and WG) but has no effect on Vmax in the LV and SOL. 

The results of the second study (Chapter Three) indicate that insulin signaling acutely increases 

the Ca2+-sensitivity of SERCA1a and SERCA2a in all tissues examined, without altering the V-

max. Based on our observations, it appears that the increase in SERCA Ca2+-sensitivity may be 
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regulated, in part, through the interaction of IRS proteins with SERCA1a and SERCA2a. The 

results of the final study (Chapter Four) indicate that alterations in plasma glucose, epinephrine 

and insulin concentrations associated with glucose supplementation during exercise, do not 

alter the time course or magnitude of reductions in SERCA or Ca2+-release channel (CRC) 

function in working human skeletal muscle. Although glucose supplementation did increase 

exercise ride time to fatigue in this study, our data does not reveal an association with SR Ca2+-

cycling measured in vitro. It is possible that the strength of exercise signal overrides the 

hormonal influences observed in resting muscles. Additionally, these data do not rule out the 

possibility that glucose supplementation may influence E-C coupling processes or SR Ca2+-

cycling properties in vivo.   
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Literature Review 

The role of the sarcoplasmic reticulum in excitation-contraction coupling and relaxation. 

 Excitation-contraction coupling in skeletal muscle involves a series of processes that are 

initiated by the propagation of an action potential along the sarcolemma and the transverse-

tubule (T-tubule) that culminates with an increase in the free cytosolic Ca2+ concentration 

(Ca2+
f) and activation of the contractile apparatus (Berchtold et al., 2000). 

 The sarcoplasmic reticulum (SR) is a membrane system that extends throughout the 

myofibril and is primarily responsible for the regulation of Ca2+
f within the sarcomere of 

skeletal muscle. Calcium transients in skeletal muscle fibres are controlled by the function of 

several SR-associated proteins and by the SR membrane itself. The Ca2+-release channel (CRC) 

is the protein that regulates Ca2+-release rates within the sarcomere. The CRC is activated when 

an action potential activates the voltage sensitive dihydropyridine receptor (DHPR) in the T-

tubule, which is located adjacent to and physically interacts with the CRC in the SR membrane. 

Activation of the DHPR triggers the release of Ca2+ from the SR, through the CRC. The rapid 

release of Ca2+ from the SR increases the cellular Ca2+
f thereby activating the contractile 

apparatus to produce force. In addition to being influenced by SR Ca2+-release rates, cytosolic 

Ca2+
f is also influenced by cytosolic Ca2+-binding proteins (e.g. calmodulin and parvalbumin) 

and also the rate of Ca2+-uptake back into the SR by the sarco(endo)plasmic reticulum Ca2+-

ATPase (SERCA). 

 Relaxation, which involves the dissociation of actin and myosin, is dependent on the 

restoration of cytosolic Ca2+
f to nM levels. SERCA is the primary protein responsible for the 

sequestration (Ca2+uptake) of cytosolic Ca2+
f following contractile activation. Fast-twitch fibres 

predominately express the SERCA1 isoform, while slow twitch and cardiac fibres 
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predominately express the SERCA2a isoform. Calcium-uptake rates are determined by the net 

movement of Ca2+-ions across the SR membrane as determined by the kinetic properties of 

SERCA and can be influenced by alterations to SR membrane integrity and composition.  

 The rapid contraction and relaxation cycles that make up repetitive activity requires that 

intracellular Ca2+-cycling rates be increased during physical activity. However, it appears that 

repetitive activity of prolonged duration (Duhamel et al., 2004a; Duhamel et al., 2004b; 

Duhamel et al., 2005; Duhamel et al., 2006c; Duhamel et al., 2006b; Duhamel et al., 2006a; 

Booth et al., 1997; Chin, 2005) can lead to a progressive loss of Ca2+-cycling properties 

assessed in vitro. Exercise-induced reductions in Ca2+-cycling would be expected to have 

profound effects on muscle contractile performance since disturbances in Ca2+-release and/or 

Ca2+-uptake kinetics would disrupt the integrity of the cytosolic Ca2+
f-transient and would 

depress contractile activation and relaxation. Therefore, it would be of value to characterize the 

mechanisms governing the acute regulatory behaviour of SR Ca2+-transport properties in 

muscle since this knowledge would advance our understanding of the mechanisms regulating 

performance in both health and disease.  

 

Tertiary structure and function of SERCA proteins. 

 Three genes, located on different chromosomes in the human, code for the three major 

SERCA protein isoforms, namely SERCA1, SERCA2 and SERCA3 (Lytton et al., 1992). The 

three major SERCA isoforms are developmentally regulated or alternatively spliced to create 

various sub isoforms. Although several sub isoforms for each major SERCA protein exists, the 

primary amino acid structure is highly conserved. For this reason, all SERCA proteins act as 

Ca2+-pumps and have similar transmembrane and tertiary structures (Lytton et al., 1992). 
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Although the SERCA isoforms are similar in structure and function, they are expressed in a 

tissue specific manner. Specifically, two sub isoforms of SERCA1 are expressed in mammalian 

adult (SERCA1a) and neonatal (SERCA1b) fast-twitch muscle and are not expressed to any 

significant extent in any other tissue (MacLennan et al., 1985). In contrast to SERCA1, 

SERCA2 is not developmentally regulated but is alternatively spliced depending on the tissue. 

Cardiac and slow-twitch skeletal muscle primarily expresses the SERCA2a isoform;  whereas 

SERCA2b is primarily expressed in non-muscle tissues as well as smooth muscle (Lytton et al., 

1992). The SERCA3 protein isoforms (SERCA3a-c) are ubiquitously expressed at low levels in 

many different tissues (Lytton et al., 1992). 

 In general, SERCA proteins weigh approximately 95-110-kDa and have cytoplasmic, 

transmembrane and lumenal regions. The isolation and cloning of the full-length cDNA 

encoding for the rabbit SERCA2a enzyme (MacLennan et al., 1985) allowed for the assessment 

of the complete primary (Brandl et al., 1986), secondary and tertiary structural features of the 

enzyme (MacLennan & Lytton, 1992), which has since been supported by the determination of 

the crystal structure of SERCA1a by electron microscopy (Toyoshima et al., 2000). Based on 

these studies, a large cytosolic globular headpiece was identified which is made up 3 globular 

domains (Figure 1.1), consisting of an actuator domain, the phosphorylation-domain and the 

nucleotide-binding domain (Arg505) (MacLennan et al., 2002; MacLennan & Lytton, 1992). 

The transmembrane domain is made up from ten, largely helical transmembrane segments, four 

of which are juxtaposed in the E1 conformation to form the sites for binding of Ca2+, seen as 

spheres. The β-strand, which is a narrow stalk region, links the large cytoplasmic head to the 

much smaller transmembrane region.  The β-strand contains an abundance of negatively 

charged glutamate residues, which are thought to attract positively charged Ca2+ ions and are 
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 necessary for normal Ca2+ transport, as demonstrated by site-directed mutagenesis studies 

(MacLennan, 1990). The stalk sector is made up of 5 alpha helices. Because of its strong 

negative charge, the stalk region is thought to be a possible location for aiding in the 

sequestration of Ca2+
f. However, the stalk region does not contain Ca2+-binding sites;  rather it 

appears that the stock region channels Ca2+ to high affinity Ca2+-binding sites located in the 

center region of the base piece (Clarke et al., 1989a; Clarke et al., 1989b). The base piece is 

made of 10 transmembrane helices, located adjacent to the stalk sector. Residues located in the 

center of the base piece, which includes transmembrane sequences M4, M5, M6, and M8, are 

thought to include Ca2+-binding sites. Site-directed mutagenesis studies has been used to 

identify many of the residues that are required for the normal functioning of the nucleotide and 

Ca2+-binding domains of SERCA (MacLennan, 1990). All known SERCA2 proteins from 

different species show 100% homology in the β−strand, transmembrane and stalk domains, and 

high amino acid conservation in the phosphorylation (97.8%), ATP-binding (97.7%) and hinge 

(98.3%) domains (Sakuntabhai et al., 1999). The deduced amino acid sequence of human 

SERCA2 is also highly conserved among the other human SERCA proteins, showing 82% and 

76% identity with SERCA1 and SERCA3, respectively. Differences in the 3’end are primarily 

responsible for the differences in amino acid sequences observed. 

 Proteins of the SERCA family are classified as a P-Type ion motive-ATPases. This family 

of ATPases requires the formation of a phosphorylated intermediate (E1P) to induce 

conformational changes to SERCA structure in order to transport Ca2+ ions into the lumen of 

the SR. The binding of ATP at the nucleotide binding site (Arg505) and its hydrolysis forms a 

phosphorylated intermediate (E1P), which induces a transformational change within SERCA to 

promote the translocation of Ca2+ from the cytosol into the SR lumen.  During Ca2+ ion 
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translocation, the enzyme reverts back to the low energy (E2P) state (Taylor & Green, 1989). 

Cytoplasmic Ca2+ binds to the Ca2+-binding domain of the enzyme with high affinity in a co-

operative manner but as the translocation proceeds, the affinity of these binding sites for Ca2+ 

decreases, allowing release of Ca2+ ions into the lumen of the SR (Berchtold et al., 2000; 

MacLennan, 1990). 

 The binding affinity for ATP is similar between all SERCA isoforms (Lytton et al., 1992);  

however, differences in maximal enzyme activity (Vmax) and Ca2+-sensitivity do exist between 

the different isoforms (Lytton et al., 1992). Specifically, it was found that the non-muscle 

SERCA isoforms (SERCA2b, SERCA3a, SERCA3b, and SERCA 3c) have lower maximal 

activities compared to the muscle specific SERCA isoforms (SERCA1a, SERCA1b and 

SERCA2a) (Lytton et al., 1992). These results suggest that the muscle specific isoforms of 

SERCA have the ability to pump Ca2+
f from the cytosol into the SR at a faster rate compared to 

non-muscle SERCA isoforms. A second functional property that differs between SERCA 

proteins is their affinity for Ca2+
f. Observations made by Lytton et al., (Lytton et al., 1992) 

indicate that SERCA3a has a lower affinity for Ca2+
f compared to SERCA1a;  while SERCA3b 

and SERCA3c have even lower affinities for Ca2+
f compared to SERCA3a (Dode et al., 1998). 

The higher Vmax and Ca2+-sensitivity of SERCA1a and SERCA2a, compared to SERCA2b and 

SERCA3a-c, are most probably associated with the frequent requirements of the muscle 

specific isoforms to sequester cytosolic Ca2+
f  in response to repetitive contraction in muscle. 

Since our laboratory is primarily interested in studying the acute and chronic regulatory factors 

that influence SERCA in cardiac and skeletal muscle, SERCA1a and SERCA2a remains the 

primary interest of this thesis. 
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Tertiary structure and function of CRC proteins. 

 The CRC is composed of 4-identical subunits and weighs ~565-kDa (Takeshima et al., 

1989). The CRC has a high affinity for the plant alkaloid ryanodine and is commonly referred 

to as the ryanodine receptor (RyR). Three isoforms of RyR have been identified in skeletal 

muscle, liver and brain tissues. The primary isoform in mammalian skeletal muscle is RyR1 

[for review see (Franzini-Armstrong & Protasi, 1997)]. The activity of the CRC can be 

regulated by endogenous modulators such as Ca2+, Mg2+, ATP, ADP, IMP, NO, superoxide, 

H2O2 and by the interaction with calmodulin (CaM). Calmodulin is a Ca2+-binding protein that 

has binding sites on the CRC and has been shown to increase Ca2+-release at low 

concentrations (nM) of Ca2+ and inhibit Ca2+-release when Ca2+
f is elevated (µM) (Favero, 

1999). 

 

Experimental models used to characterize sarcoplasmic reticulum function  

 Researchers have employed many different models to investigate the acute and chronic 

regulation of SR proteins. These various models have strengths and weaknesses, and need to be 

selected appropriately to properly address specific research questions. For example, the single 

fibre technique has proven to be a very powerful tool when examining the regulation of Ca2+
f  

ex vivo. The strength of the single fibre technique can be stimulated to contract using various 

chemical or electric stimuli (Barnes et al., 2001; Chin & Allen, 1997; Helander et al., 2002; 

Lunde et al., 2001). Observations made using the single fibre technique have demonstrated that 

repetitive activation of skeletal muscle fibres until they fatigue results in the progressive loss of 

Ca2+-homeostasis (Barnes et al., 2001; Chin & Allen, 1997; Helander et al., 2002; Lunde et al., 

2001). However, since Ca2+
f is influenced by Ca2+-release, Ca2+-uptake, and Ca2+-binding 
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protein capacities, it is difficult to identify the underlying mechanisms for any observed 

reductions in Ca2+
f. Several methods exist to directly assess the effects of an experimental 

perturbation on SERCA or CRC functional characteristics. For example, in vitro biochemical 

assays have been developed to assess the specific activities of SERCA (Simonides & van 

Hardeveld, 1990) and CRC (Ruell et al., 1995). Since these assays are performed using 

supposedly optimal conditions in vitro, alterations in SR Ca2+handling properties between 

experimental conditions are thought to reflect intrinsic structural and/or compositional 

modifications to SR proteins or the SR membrane. However, the limitation of in vitro 

techniques is the issue of physiological relevance. Since our laboratory is interested in studying 

the acute and chronic regulatory factors that influence SERCA and the CRC, many of our 

experiments utilize in vitro techniques.  

 

Exercise and the sarcoplasmic reticulum 

 The effects of exercise on SR Ca2+-handling properties in muscle have been studied both in 

situ (Barnes et al., 2001; Helander et al., 2002; Lunde et al., 2001) and in vitro (Booth et al., 

1997; Duhamel et al., 2006c; Duhamel et al., 2004b; Green et al., 1998; Chin & Green, 1996). 

Generally, the literature supports a reduction in Vmax, Ca2+-uptake and Ca2+-release rates 

following repetitive activity in humans (Booth et al., 1997; Duhamel et al., 2006c; Duhamel et 

al., 2004b; Chin & Green, 1996) and animals (Chin & Allen, 1997; Barnes et al., 2001; 

Stephenson et al., 1999). However, discrepancies do exist as some studies do not support 

exercise-induced reductions in Vmax, particularly in rat skeletal muscle (Chin & Green, 1996; 

Ferrington et al., 1996; Schertzer et al., 2004). The differences appear to be related to factors 

such as exercise protocols, tissue sampling schedule, tissue preparation, species and fibre type 
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composition of the muscle examined. In studies that have demonstrated an exercise-induced 

reduction in SR Ca2+-handling properties, the reductions in these properties have been linked to 

structural changes within the CRC and SERCA proteins (Booth et al., 1997; Luckin et al., 

1991; Dux et al., 1990; Favero et al., 1993; Duhamel et al., 2006c; Duhamel et al., 2004b; 

Green et al., 1998). Contraction-induced intracellular changes in oxidative and/or thermal stress 

(Schertzer et al., 2002), in addition to the accumulation of intracellular metabolites such as 

inorganic phosphate (Chin & Allen, 1997; Fitts, 1994), nitric oxide (NO) or reactive oxygen 

species (Fitts, 1994; Tupling et al., 2001c; Tupling et al., 2001a) are known to induce structural 

alterations to SERCA and the CRC (Luckin et al., 1991; Dux et al., 1990; Favero et al., 1993), 

thereby reducing SR Ca2+-transport properties assessed in vitro. For example, high 

concentrations of NO have been associated with increased nitrosylation of Cys364, Cys360 and 

Cys471 within SERCA, leading to a down-regulation of Vmax in rat skeletal muscle (Viner et 

al., 2000). Recent literature has also provided evidence linking the depletion of muscle 

glycogen with reduced SR Ca2+-transport properties in human (Duhamel et al., 2006c; 

Duhamel et al., 2006b; Duhamel et al., 2006a), rat (Lees et al., 2001), mouse (Chin & Allen, 

1997), and toad (Stephenson et al., 1999). 

 Additional insight into the effects of exercise on SERCA properties can be provided by the 

assessment of Ca2+ dependent SERCA activity (Figure 1.2). In addition to determining Vmax, 

this technique allows for the assessment of the Ca2+-sensitvity of the enzyme, which can be 

measured by the calculation of the Hill coefficient (nH;  defined as the relationship between 

SERCA activity and Ca2+
f) and Ca50 (defined as the Ca2+

f required for half maximal activation 

of the enzyme). Interestingly, at least in humans, prolonged exercise does not alter the Ca2+-

sensitivity of SERCA (i.e. nH or Ca50), assessed in vitro (Duhamel et al., 2004a; Duhamel et al.,  
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2004b; Duhamel et al., 2006c). The lack of change in SERCA Ca2+-sensitivity is notable since 

a variety of environmental factors are known to influence SERCA Ca2+-sensitivity measured in 

vitro in both cardiac and skeletal muscle (Saucerman & McCulloch, 2004). This observation 

serves to emphasize that the mechanisms regulating SERCA Ca2+-sensitivity are not yet fully 

understood. 

 

Muscle glycogen content and SR Ca2+-handling properties in animal models. 

 Evidence, obtained from examination of the ultrastructural composition of muscle, has 

demonstrated that glycogen particles, glycogen phosphorylase, glycogen debranching enzyme, 

all the enzymes involved in the glycolytic pathway and creatine phosphokinase (CPK), are 

located in close proximity to the SR (Entman et al., 1977a; Entman et al., 1977b; Entman et al., 

1980; Xu et al., 1995; Xu & Becker, 1998). The characterization of this SR-glycogenolytic 

complex raises several interesting questions with respect to its functional role within muscle. 

For example, glycogen particles in close proximity with the SR are more heavily depleted 

(~95% depletion of SR-bound glycogen) relative to glycogen particles assessed in the whole 

muscle (~77% depletion) in rat skeletal muscle following a 15 min electrical stimulation 

protocol (Lees et al., 2001). However, since pre-exercise muscle glycogen content was not 

manipulated, it is unclear if the depletion of glycogen in close proximity to the SR or some 

other exercise-induced mechanism was responsible for reductions in SR Ca2+-transport 

properties observed (Lees et al., 2001). It is possible that glycogen particles in close proximity 

to the SR may link ATP utilization processes with ATP production pathways. In fact, evidence 

has been provided to link ATP produced from glycolysis and CPK to Ca2+-transport properties 

in skeletal muscle (Korge & Campbell, 1994; Korge et al., 1993; Xu et al., 1995). However, in 
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addition to being a metabolic substrate, it appears that glycogen may also influence SR Ca2+-

handling properties as a result of structural alterations induced by direct effects of substrate loss 

(Cuenda et al., 1991; Lees et al., 2001) or by interrupting second messenger signaling pathways 

(Liu & Brautigan, 2000).  

 A non-energy related mechanism by which glycogen can be involved has been proposed. It 

has been suggested that the physical interactions between glycogen and SR-associated proteins 

may be interrupted when glycogen particles associated with the SR are reduced below a 

threshold level (Barnes et al., 2001). As an example, glycogen phosphorylase and glycogen 

debranching enzymes dissociate from the SR-glycogen complex during muscle stimulation 

(Lees et al., 2001; Lees et al., 2004). Recent experiments using the isolated single fibre 

technique has offered support to the hypothesis that glycogen has a structural role in muscle E-

C coupling, independent of energy metabolism (Barnes et al., 2001; Chin & Allen, 1997; 

Stephenson et al., 1999). According to this hypothesis, it is possible that an increase in pre-

exercise muscle glycogen content, also known to increase the average glycogen particle size in 

humans (Marchand et al., 2002), may prolong the duration of exercise required before this 

critical limit is passed, thereby delaying the onset of exercise-induced reductions in SR Ca2+-

transport properties during exercise. In fact, a highly significant correlation (P<0.0001) 

between reductions in single fibre Ca2+
f and initial glycogen content has been reported in 

electrically stimulated single fibres collected from cane toads (Stephenson et al., 1999). 

Another study (Barnes et al., 2001) has confirmed that reductions in Ca2+
f occur much later in 

electrically stimulated skinned fibres from muscles with elevated glycogen content compared to 

fibres from muscles with low glycogen content (Barnes et al., 2001). Since the observations 

made by these groups (Barnes et al., 2001; Chin & Allen, 1997; Stephenson et al., 1999) were 
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based on the single fibre technique, the specific process within E-C coupling responsible for the 

reductions in Ca2+
f during low glycogen states can not be identified. It is possible that glycogen 

depletion may cause one or more of the signaling processes within the T-tubule, the DHPR or 

the CRC channel to be interrupted. Additionally, it is also possible that second messenger 

signaling processes involved in E-C coupling may be interrupted during low glycogen states.  

 The provision of glucose during a recovery period can influence the regulation of muscle 

glycogen, cytosolic Ca2+
f and contractile function in mammalian single fibres (Chin & Allen, 

1997; Helander et al., 2002). In fact, the beneficial effects of glucose were attributed to the 

resynthesis of muscle glycogen during the recovery period between tests (Chin & Allen, 1997; 

Helander et al., 2002). In contrast, no resynthesis of glycogen occurred, and only minimal 

improvements in the regulation of cytosolic Ca2+
f and contractile function were observed, when 

glucose was not provided during the recovery period in these studies (Chin & Allen, 1997; 

Helander et al., 2002). Based on the observations, it appears that Ca2+-transport properties and 

muscle contractile properties are influenced by the availability of muscle glycogen during 

exercise and recovery.  

 

Effects of muscle glycogen content on SR Ca2+-handling properties in human skeletal muscle. 

 We have reported that muscle glycogen content may modify the exercise-induced 

reductions in SR Ca2+-handling properties during prolonged exercise in humans (Duhamel et 

al., 2005; Duhamel et al., 2006b). In these studies, untrained males performed submaximal 

cycling trials on two occasions following a standardized glycogen depletion protocol, namely 

after a 4-day low CHO diet (Lo CHO) and after a 4-day high CHO diet (Hi CHO). SR Ca2+-

handling properties were assessed in vitro using homogenates prepared from tissue extracted 
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from the vastus lateralis at rest, after 30 min of exercise and at a time corresponding to fatigue 

during Lo CHO (66 ± 6 min) in both Lo CHO and Hi CHO, and at fatigue in Hi CHO (103 ± 9 

min). Pre-exercise muscle glycogen content (Figure 1.3a) was lower by 37% in the Lo CHO 

group compared to the Hi CHO group. Muscle glycogen content was also lower after 30 min 

and at fatigue in Lo CHO, compared to the matching time points in Hi CHO. Glycogen content 

was not different at fatigue in Lo CHO compared to fatigue in Hi CHO. 

 No differences in Vmax were observed at rest between diets (Figure 1.4a). However, when 

the two conditions were compared, reductions in Vmax were observed after 30 min of exercise 

and at fatigue in Lo CHO, but not for matched time points in Hi CHO. When a comparison was 

made at fatigue in Lo CHO and fatigue in Hi CHO, it was observed that Vmax was not different 

between Lo CHO and Hi CHO. No differences in Ca2+-uptake (Figure 1.4b) or Ca2+-release 

rates (Figure 1.4c) were observed at rest between conditions. However, when the different 

conditions were compared at matched time points during exercise, reductions in SR Ca2+-

uptake and Ca2+-release rates were observed at 30 min of exercise in Lo CHO  but not in Hi 

CHO. No differences in Ca2+-uptake and Ca2+-release rates were observed at fatigue in Lo 

CHO compared to the matched Lo CHO fatigue time point during Hi CHO. 

 Although, these data suggested that muscle glycogen content might directly influence the 

time course of exercise-induced structural alterations to SERCA and the CRC, other 

mechanisms involved in the regulation of whole-body CHO metabolism may be involved. One 

possibility to explain the reduced time-course for exercise-induced reductions in SR Ca2+-

handling properties may be the loss of plasma glucose homeostasis that occurred during the Lo 

CHO condition, but not the Hi CHO condition (Figure 1.3b). Increased blood glucose 

availability could increase SR Ca2+-cycling properties via improved energy homeostasis and/or  
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protection of muscle glycogen reserves (Xu et al., 1995; Lees & Williams, 2004). Interestingly, 

as with experiments designed to manipulate muscle glycogen levels by exercise and diet 

(Bergstrom et al., 1967), oral glucose supplementation during exercise also has an ergogenic 

effect (Coyle, 1992a; Hargreaves, 1999). 

 A second possible mechanism to explain the reductions in SR Ca2+-handling properties 

observed during exercise with Lo CHO, compared to Hi CHO, is based on the effect of altered 

blood glucose concentrations on the glucoregulatory hormone insulin (INS) and the 

catecholamines epinephrine (EPI) and norepinephrine (NE).  In our previous work, alterations 

in the dietary intake of CHO resulted in differences in blood glucose concentrations during 

prolonged exercise that were also accompanied by differences between conditions in plasma 

NE and EPI (Figure 1.4c and 1.4d) (Duhamel et al., 2006c) and most probably INS as well 

(Galbo, 1999). Differences in the hormonal responses could affect intrinsic behaviour of 

SERCA or the CRC through second messenger regulation (MacLennan et al., 2003; Wuytack 

et al., 2002). In general, the role of blood hormone changes in modifying the intrinsic 

regulation of SERCA and the CRC remain largely unexplored. 

 

Effects of second messenger signaling on SR Ca2+-handling properties 

 Signaling pathways translate a variety of environmental cues, such as hormones, 

neurotransmitters and local metabolites, into physiological responses within the cell 

(Saucerman & McCulloch, 2004). In this regard, the balance of many different signaling 

pathways must be coordinated within the cell to ensure an appropriate response is completed. 

Evidence implicates catecholamine (Bers, 2004; Tada & Inui, 1983; Simmerman et al., 1996; 

Kimura et al., 1998; Loukianov et al., 1998) and insulin (Algenstaedt et al., 1997; Ragolia & 



19  

Begum, 1997; Liu & Brautigan, 2000) pathways with the binding of second messenger proteins 

to SR-associated proteins in cardiac and skeletal muscles.  

 The regulation of intracellular Ca2+
f-transients during contractile activity by SERCA is 

accomplished through the intrinsic control of functional parameters by intracellular signaling 

pathways and endogenous modulators. Phospholamban (PLN;  Figure 1.5), as an example, 

directly interacts with SERCA2a in cardiac tissue and reduces the specific activity of SERCA 

at submaximal concentrations of Ca2+
f (MacLennan et al., 1997). Site-specific phosphorylation 

of PLN by cAMP-dependent protein kinase A (PKA) and Ca2+-dependent calmodulin kinase II 

(CaMKII) pathways promotes the dissociation of PLN from SERCA, thereby alleviating the 

inhibitory affects of PLN on SERCA and restoring SERCA Ca2+-sensitivity (Figure 1.6, Panel 

A). Sarcolipin (SLN;  Figure 1.5) is another endogenous protein known to modulate SERCA 

Ca2+-sensitivity by directly binding with SERCA1a or SERCA2a by a mechanism similar to 

that of PLN (Asahi et al., 2003). The phosphorylation of SLN is regulated by serine/threonine 

kinase 16 (STK16), which promotes the dissociation of SLN from SERCA and increases Ca2+-

sensitivity (Figure 1.6, Panel A) (Gramolini et al., 2006). The interaction of SLN with PLN 

promotes the transformation of PLN pentamers to monomers (Figure 1.6, Panel B), which 

increases the inhibition of SERCA by PLN since monomers are more effective SERCA 

inhibitors (Toyofuku et al., 1992; Asahi et al., 2002). In tissues of species where SLN is co-

expressed, SLN directly interacts with PLN to form super-inhibitory complexes (Figure 1.6, 

Panel C) that reduce SERCA Ca2+-sensitivity to a greater extent than SLN or PLN alone (Asahi 

et al., 2002; MacLennan & Kranias, 2003). In the rat, PLN is predominately expressed in 

cardiac but not skeletal muscle (Damiani et al., 2000), whereas SLN is primarily expressed in 

high quantities in atria and in lower quantities in slow-twitch skeletal muscle in the rat  
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(Damiani et al., 2000). In contrast to the rabbit, which expresses high amounts of SLN in fast-

twitch skeletal muscles, it appears as though the SLN is not expressed in the rat EDL, which is 

a fast twitch skeletal muscle (Damiani et al., 2000).  

 In addition to PKA, two other cellular kinases, namely CaMKII (Kranias, 1985; Berchtold 

et al., 2000; Hawkins et al., 1994) and Ca2+-activated-phospholipid-dependent protein kinase 

(PKC) (Rogers et al., 1990; Nicolas et al., 1998) also regulate intracellular Ca2+
f-transients by 

targeting a number of cellular proteins involved in the excitation and contraction (E-C) 

processes, including SR Ca2+-cycling proteins (Berchtold et al., 2000; Tupling, 2004). 

Ca2+/calmodulin-dependent protein kinase II influences SERCA Ca2+-sensitivity by influencing 

the site-specific phosphorylation of PLN Threonine 17 (Thr17) (Hawkins et al., 1994; 

Odermatt et al., 1996). In addition, CaMKII also directly phosphorylates SERCA2a in cardiac 

and slow-twitch skeletal muscle in the rabbit, which increases the maximal enzyme activity 

(Vmax) of the Ca2+-pump (Hawkins et al., 1994). However, the physiological capacity of 

CaMKII to directly phosphorylate SERCA2a is still controversial since this observation could 

not be confirmed using a HEK-293 cell line expressing SERCA2a (Odermatt et al., 1996). In 

contrast to SERCA2a, CaMKII does not directly phosphorylate SERCA1a in the fast-twitch 

skeletal muscle in the rabbit (Hawkins et al., 1994). 

 Protein kinase C signaling is also capable of influencing intracellular Ca2+
f-transients and 

SERCA activity. However, in contrast to the positive inotropic effects of β-adrenergic and 

CaMKII activation, it is generally accepted that PKC signaling reduces muscle contractility 

(Capogrossi et al., 1990; Nicolas et al., 1998; Rogers et al., 1990) by reducing SERCA Vmax, 

without altering the Ca2+-sensitivity of the enzyme in cardiomyocytes (Rogers et al., 1990). In 

vitro studies using enriched SR membranes prepared from cardiac tissue have demonstrated 
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that PLN can be phosphorylated on Serine 10 (Ser10) by PKC (Tada et al., 1983; Iwasa & 

Hosey, 1984; Movsesian et al., 1984). However, the role of PKC-mediated PLN 

phosphorylation of Ser10 is still controversial since this amino acid does not appear to be 

phosphorylated in response to PKC activation in vivo (Wegener et al., 1989). In contrast to a 

PKC-mediated increase in PLN-phosphorylation, there is evidence to indicate that PKC 

signaling may actually reduce PLN-phosphorylation through the activation of protein 

phosphatase 1 (PP1) and 2a (PP2a) (Liu & Brautigan, 2000; Ragolia & Begum, 1997), which 

would increase the interaction of PLN with SERCA and would reduce enzyme activity at 

submaximal levels of Ca2+
f (Braz et al., 2004). It is also possible that the activation of 

phospholipase D (PLD) by PKC signaling may influence SERCA kinetic properties since 

phosphatidic acid (PA) promotes the transformation of PLN pentamers to monomers, thereby 

increasing the interaction of PLN with SERCA to reduce enzyme activity (Toyofuku et al., 

1992; Asahi et al., 2002). However, the specific mechanisms responsible for the PKC-

dependent reduction in SERCA activity in cardiomyocytes have not been identified. 

Additionally, given that PLN is not expressed in rat skeletal muscle, it is not clear if PKC 

signaling would influence Ca2+-handling properties in this tissue. 

Hormone stimulated signaling pathways are also known to interact with the CRC and to 

modulate CRC function in skeletal and cardiac muscle (Bers, 2004). For example, PKA is 

located in close proximity with the CRC in cardiac tissue. It is generally believed that PKA 

activation leads to the phosphorylation of the CRC and is thought to increase the open 

probability of the CRC. The reversal of this phosphorylation step is catalyzed by protein 

phosphatase 1 (PP1) and 2a (PP2A) (Marx et al., 2001; Marx et al., 2000). The increase in 

CRC open probability, coupled with increased SR Ca2+-loading (due to PLN phosphorylation), 
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could greatly enhance the amount of SR Ca-release during E-C coupling in response to 

adrenergic stimulation (Bers, 2004) and may alter contractile performance in response to β-

adrenergic stimulation. The activity of the CRC can be also be influenced by CaM binding and 

CaMKII mediated phosphorylation processes. In cardiac and skeletal muscle, the 

phosphorylation of the CRC by CaMKII acts to increase the open probability of the CRC at low 

Ca2+ concentrations (<100 nM) while inhibiting CRC opening at high Ca2+ concentrations (> 1 

µM) (Berchtold et al., 2000). 

Insulin binding to the insulin receptor leads to the phosphorylation of several second 

messenger pathways. Insulin signaling in skeletal muscle is complex and will not be reviewed 

here. For a thorough review of the topic, refer to Zierath (Zierath, 2002). The insulin signaling 

cascades includes several intracellular proteins, such as the. insulin receptor substrates (IRS) 1 

and 2 (Algenstaedt et al., 1997). These signaling proteins are known to activate various down 

stream pathways involved in the regulation of cellular protein function through the interaction 

of tyrosine phosphorylation motifs and specific domains within target proteins termed SH2 (src 

homology 2) domains (Algenstaedt et al., 1997). Binding of IRS proteins to phosphatidyl 

inositol 3 kinase (PI3K), as an example, is known to result in the translocation of Glut-4 to the 

sarcolemmal membrane and to acutely regulate glycogen synthase activity within the 

sarcomere. Screening of the human skeletal muscle cDNA expression library, conducted in an 

attempt to identify novel IRS binding proteins in skeletal muscle, indicated that IRS-1 and IRS-

2 can directly bind with SERCA proteins (SERCA1a and SERCA2a) in an insulin-stimulated, 

time and concentration-dependent manner (Algenstaedt et al., 1997). These observations were 

supported by further experiments in which the interaction of IRS proteins with SERCA was 

reduced in diabetic rats (Algenstaedt et al., 1997). The binding of IRS to SERCA appears to be 
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accomplished through IRS-binding to the C terminus of SERCA through an amino acid 

sequence similar to the traditional SH2 domain. However, the effect that IRS binding may exert 

on SERCA activity was not investigated and has not been established (Algenstaedt et al., 

1997). Given that the interaction of IRS and proteins containing the traditional SH2 domain 

leads to alterations in the specific activity of the target protein, it is likely that the interaction of 

IRS with SERCA would result in the acute regulation of SERCA kinetic parameters (i.e. Vmax, 

nH, or Ca50).  

Insulin signaling may also exert effects on SR Ca2+-handling properties through a glycogen 

bound form of protein phosphatase-1 (PP-1G) (Liu & Brautigan, 2000). Protein phosphatase-

1G exists as a heterodimer composed of a phosphatase catalytic subunit and a glycogen 

targeting subunit, Gm. The localization of PP-1G is accomplished through the interaction of Gm 

with an amino acid sequence within C-terminus of SERCA (Liu & Brautigan, 2000). When 

activated through insulin signaling pathways, PP-1G can reduce the specific activities of 

glycogen-metabolizing enzymes and may also influence SERCA by influencing 

dephosphorylation events of regulatory proteins involved in the acute regulation of these 

enzymes. For example, PP-1G has been shown to influence the dephosphorylation state of 

glycogen synthase and PLN (Liu & Brautigan, 2000; Ragolia & Begum, 1997). In contrast, 

cAMP mediated pathways, stimulated by epinephrine, act to decrease the activity of the Gm 

subunit, thereby removing the inhibition of Gm on the various proteins that it exerts an effect 

(Liu & Brautigan, 2000; Ragolia & Begum, 1997). 
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Statement of the Problem 

 The purpose of this thesis was to investigate the acute regulation of the SR Ca2+-handling 

proteins, namely SERCA and CRC, in heart and skeletal muscle of different fiber type 

composition.  Emphasis has been given to both non-physiologic and physiologic models.  In the 

non-physiologic model, crude homogenates and enriched SR vesicles prepared from rat LV and 

various skeletal muscles have been used to characterize the influence that β-adrenergic, 

CaMKII, PKC, and insulin signaling pathways on SERCA kinetic properties.  In the 

physiologic model, SERCA and CRC behaviour in crude muscle homogenates has been 

examined in samples taken from humans during exercise and glucose supplementation. To 

examine acute regulatory behaviour, three studies were completed.  The details of these studies 

are presented in Chapters Two, Three and Four. 

 The purpose of the first study (Chapter Two) was to investigate the role of β-adrenergic, 

CaMKII and PKC signaling in the intrinsic regulation of SERCA kinetic properties in the LV 

and skeletal muscles of different fibre type composition in the rat.  To address the role of these 

signaling proteins, crude muscle homogenates and enriched SR vesicles were incubated with 

various pathway activators and inhibitors. The specific SERCA kinetic properties assessed 

included Vmax, nH, and Ca50.  This study also characterized the tissue-specific expression pattern 

for SERCA isoforms, PLN, and STK16, and CaMKII isoforms.  

 We have hypothesized that 

1) β-adrenergic signaling does not alter Vmax but increases SERCA Ca2+-sensitivity, as 

indicated by an increased nH and reduced Ca50, in both crude muscle homogenates 

and enriched SR vesicles. Based on the tissue-specific protein expression pattern 

for SERCA, PLN and SLN, we hypothesized that the changes in SERCA kinetic 
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properties associated with β-adrenergic signaling are mediated by cAMP-dependent 

PKA activation in LV tissue;  whereas, an alternative cAMP-dependent mechanism 

that is not PKA-dependent influences SERCA kinetic properties in skeletal muscle. 

2) CaMKII signaling increases Vmax in the tissues that predominately express 

SERCA2a;  whereas CaMKII does not alter Vmax in tissues that predominately 

express SERCA1a. Based on the tissue-specific protein expression pattern for PLN, 

it is proposed that CaMKII activation will increase SERCA Ca2+-sensitivity (nH and 

Ca50) in crude muscle homogenates and enriched SR vesicles prepared from rat LV;  

while CaMKII signaling does not alter SERCA Ca2+-sensitivity in the skeletal 

muscles studied.  

3) PKC signaling reduces Vmax and SERCA Ca2+-sensitivity (nH and Ca50) in crude 

muscle homogenates and enriched SR vesicles prepared from rat LV and skeletal 

muscles.  

 The purpose of the second study (Chapter Three) was to investigate the role of insulin 

signaling on the intrinsic regulation of SERCA kinetic properties in the left ventricle and 

skeletal muscles of different fibre type composition.  To determine the role of signaling crude 

muscle homogenates and enriched SR vesicles were incubated with INS, an activated form of 

the insulin receptor (A-INS-R) or inhibitors of the insulin signaling pathway. The specific 

SERCA kinetic properties assessed included Vmax, nH, and Ca50. In addition, tissue-specific 

expression pattern for IRS-1 and IRS-2 and their interaction with SERCA1a and SERCA2a and 

the changes to the PLN pentamer: monomer ratio and PLN Ser16 or Thr17 phosphorylation in 

response to insulin signaling were also studied. 
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We have hypothesized that  

1) insulin signaling acutely alters Vmax and Ca2+-sensitivity (nH and Ca50) in crude 

muscle homogenates and enriched SR vesicles prepared from rat cardiac and 

skeletal muscles. 

2) insulin signaling results in the interaction of IRS proteins (i.e. IRS-1 and IRS-2) 

with SERCA1a and SERCA2a regardless of tissue type. 

3) the insulin-induced changes in SERCA2a Ca2+-sensitivity in LV muscle is 

associated with changes in the PLN pentamer: monomer ratio and changes in the 

PLN Ser16 or Thr17 phosphorylation.  

4) the insulin-induced changes in SERCA kinetic properties would be greater for slow-

twitch cardiac and skeletal muscles, compared to fast-twitch skeletal muscle, given 

the intrinsic differences in SERCA isoform expression and insulin-sensitivity 

between tissues. 

 The purpose of the third study (Chapter Four) was to examine the collective effects of 

exercise and alterations in plasma glucose, catecholamine and insulin concentrations on SR 

Ca2+-handling properties in human skeletal muscle by directly manipulating these properties 

through the administration of oral glucose supplements during exercise.   The specific 

properties assessed included Vmax, nH, Ca50, SR Ca2+-uptake and Ca2+-release kinetics, Ca2+-

transport efficiency (i.e. apparent coupling ratio), membrane permeability for Ca2+ (i.e. 

ionophore ratio) and PLN Ser16 or Thr17 phosphorylation.   In addition, the muscle metabolic 

responses to prolonged exercise and prolonged exercise with glucose supplementation are 

examined. The specific metabolic properties assessed include respiratory exchange ratios, 
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carbohydrate and lipid oxidation rates, as well as muscle glycogen, metabolite and nucleotide 

concentrations.  

 We have hypothesized that: 

1) prolonged exercise progressively reduces Vmax, Ca2+-uptake, and Ca2+-release 

kinetics and that the reductions in SR Ca2+-handling properties occurs in the 

absence of changes in Ca2+-sensitivity (i.e. nH and Ca50), Ca2+-transport efficiency 

(i.e. apparent coupling ratio) and membrane permeability for Ca2+ (i.e. ionophore 

ratio). 

2) when the same absolute exercise is performed with glucose supplementation, the 

disturbances in the Vmax, Ca2+-uptake, and Ca2+-release kinetics will be attenuated. 

The reduced disturbance in these properties will be associated with improved blood 

glucose homeostasis and will occur in the absence of differences in energy 

metabolism and glycogen content.  

3) Based on data from our laboratory (Duhamel et al., 2006c) indicating that Ca50 and 

nH are not different when plasma glucose concentrations are decreased and 

catecholamine concentrations are increased during exercise in Lo CHO states, we 

have hypothesized that glucose supplementation will not alter nH, Ca50 or PLN 

phosphorylation during exercise in the current study. 
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Abstract 

 This study investigated the hypothesis that β-adrenergic, Ca2+-dependent calmodulin 

(CaMKII) and protein kinase C (PKC) signaling would alter the kinetic properties of SERCA 

proteins in left ventricular and skeletal muscles of different fibre type composition. Crude 

muscle homogenates were prepared from soleus (SOL), extensor digitorum longus (EDL), the 

red portion of gastrocnemius (RG), the white portion of gastrocnemius (WG) and the left 

ventricle (LV) from a group of male Sprague-Dawley rats (n=28, 9 weeks of age;  mass = 280 

± 4 g). SR vesicles were prepared using crude muscle homogenates from WG and LV, 

respectively. Samples were incubated for 10 min in the presence or absence of various pathway 

activators or inhibitors and the Ca2+-dependent SERCA activity was assessed in vitro using a 

spectrophotometric assay. Three SERCA kinetic properties were assessed, namely, the 

maximal SERCA activity (Vmax), the Hill Coefficient (nH) and the Ca50. 

 It was found that Vmax was not altered by epinephrine (EPI) in any tissue. However, EPI 

(15 nM) reduced (P<0.05) Ca50 by 24 and 25% in LV and SOL, respectively, but had no effect 

for EDL, WG or RG. Similar changes in LV and SOL were observed following treatment with 

150 nM EPI. The effects of EPI on Ca50 were blocked by propranolol (i.e. 4 µM propranolol + 

150 nM EPI). Treatment of samples with cAMP (10 µM) reduced Ca50 by 12 and 14% in LV 

and SOL, respectively, but was without effect in the fast-twitch skeletal muscles. In addition, 

forskolin (25 µM) reduced Ca50 by 16% in LV but had no effect in SOL. As expected, KT5720 

(100 nM) prevented the forskolin-induced change in Ca50 for LV. The incubation of samples 

with 100 nM KT5720 + 10 µM cAMP prevented the cAMP-induced reductions in Ca50 in LV 

but did not prevent the cAMP-induced reductions in Ca50 in SOL. 
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 To determine the effects of CaMKII signaling on SERCA kinetic properties, crude muscle 

homogenates were incubated in the presence of the CaMKII substrate calmodulin (CaM;  15 

µg), and/or the CaMKII inhibitor KN62 (4 µM). Incubation of samples with CaM did not alter 

Vmax in any tissue. Activation of CaMKII did not alter SERCA kinetic properties in SOL, EDL, 

RG, or WG. However, CaM increased nH by 12% and Ca50 by 13% in the LV. The effects of 

CaM on nH and Ca50 were blocked by KN62 (i.e. KN62 + CaM). 

 To determine the effects of PKC signaling on SERCA kinetic properties, crude muscle 

homogenates were incubated in the presence of the PKC activator PMA (500 nM) or the PKC 

inhibitor GFX (1400 nM). Incubation of muscle samples with PMA did not alter Vmax in LV or 

SOL but reduced Vmax by ~15% in EDL, WG and RG. Treatment of samples with PMA, also 

reduced nH by 13, 28, 22, and 14% in LV, EDL, WG and RG, respectively and increased Ca50 

by ~34, 52, 196, 166 and 65% in LV, SOL, EDL, WG and RG, respectively. Unexpectedly, 

GFX did not prevent the PMA-induced changes in Vmax in EDL, WG and RG or the changes in 

nH and Ca50 in any tissue. 

 These results indicate that β-adrenergic signaling influences Ca50 in LV and SOL are 

regulated by PKA signaling in LV while an alternative mechanism that is not PKA-dependent 

regulates Ca50 in SOL;  whereas β-adrenergic signaling is without effect in the fast-twitch 

skeletal muscle. Our data also indicate that CaMKII signaling influences SERCA Ca2+-

sensitivity in LV samples but does not alter SERCA kinetic properties in skeletal muscle. These 

data indicate that PMA reduces the Vmax in skeletal muscles that predominately express 

SERCA1a, but not SERCA2a, and also reduces SERCA Ca2+-sensitivity (nH and Ca50) in all 

tissues studied. 
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Introduction  

 Signaling pathways translate a variety of environmental cues, such as hormones, 

neurotransmitters and local metabolites, into physiological responses within the cell 

(Saucerman & McCulloch, 2004). As a result, the balance of various signaling pathways must 

be coordinated within the cell to ensure that an appropriate response is completed. Cardiac and 

skeletal muscle contractility, as an example, can be influenced by at least three different 

cellular kinases, namely, cAMP-dependent protein kinase (PKA) (Gramolini et al., 2006; 

Reading et al., 2003), Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Kranias, 1985; 

Berchtold et al., 2000; Hawkins et al., 1994), and Ca2+-activated-phospholipid-dependent 

protein kinase (PKC) (Rogers et al., 1990; Nicolas et al., 1998). These protein kinases 

phosphorylate a number of cellular targets that are involved in the excitation and contraction 

(E-C) processes, such as the regulation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins 

(Berchtold et al., 2000; Tupling, 2004). 

 The SR influences muscle contractility via several integral proteins that contribute to the 

regulation of intracellular free Ca2+-concentration (Ca2+
f). For example, rates of muscle force 

development are influenced by the kinetic properties of the Ca2+-release channel (CRC or the 

ryanodine receptor), which regulates the frequency and magnitude of Ca2+-release during E-C 

coupling (Berchtold et al., 2000);  whereas, rates of relaxation are influenced by 

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) proteins, which actively sequester 

cytosolic Ca2+ and restore Ca2+
f to basal levels (Berchtold et al., 2000) and also influence the 

SR Ca2+ load available for the next E-C cycle and repetitive activity (Berchtold et al., 2000). In 

fact, differences in SERCA isoform expression (Wu & Lytton, 1993) and SR membrane 

density (Damiani et al., 2000) contribute to the different rates of relaxation for cardiac and slow 
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twitch skeletal muscle compared to fast-twitch skeletal muscle fibres. Regulation of SR Ca2+-

handling properties can be directly influenced by SERCA isoform composition or by the 

expression of specific SR-associated proteins that can modulate SERCA function in the 

different fibre-types (MacLennan et al., 2002; Tupling, 2004). Moreover, the regulation of SR 

Ca2+-cyling during exercise appears to be influenced by the oxidative potential of the muscle as 

well as the major fibre-type composition as indicated by myosin heavy chain composition and 

contractile speed (Holloway et al., 2006). 

 There is evidence to indicate that β-adrenergic signaling can increase muscle contractility 

in cardiac (Slack et al., 1997) and skeletal muscle (Kadambi et al., 1996; Tupling et al., 2002) 

by elevating the intracellular content of cAMP (Reading et al., 2003) to increase SERCA 

activity at submaximal Ca2+
f (Figure 2.1) (Gramolini et al., 2006). These inotropic effects 

appear to be mediated, at least in part, through the regulation of the endogenous SR-modulator 

proteins, phospholamban (PLN) and sarcolipin (SLN). During states where cAMP 

concentrations are low, PLN and SLN exist in their unphosphorylated forms and are bound 

directly to SERCA proteins. The binding of PLN or SLN with SERCA is inhibitory and 

reduces the Ca2+-sensitivity of SERCA at submaximal Ca2+
f. β-adrenergic signaling reduces the 

interaction of PLN and SLN with SERCA by increasing cellular cAMP concentrations to 

activate PKA (Gramolini et al., 2006) and serine/threonine kinase 16 (STK16)-mediated 

phosphorylation processes that promote the dissociation of PLN and SLN from SERCA, 

respectively (Gramolini et al., 2006). In the rat, PLN is predominately expressed in cardiac (i.e. 

atria and ventricular tissue) but not in skeletal muscle (Damiani et al., 2000; Vangheluwe et al., 

2005), whereas, SLN is primarily expressed in the atria but not the left ventricle (LV) and in 

lower quantities in the skeletal muscles of the rat (Damiani et al., 2000; Vangheluwe et al.,  
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2005). This tissue-specific expression pattern for PLN and SLN suggests that specific signaling 

pathways may influence SERCA kinetic properties to a greater extent in tissues that express 

specific cellular or molecular characteristics unique to one tissue compared to another and is 

not based solely on the SERCA isoform expressed by a specific fibre-type population.  

 The increase in Ca2+
f associated with β-adrenergic signaling is also known to stimulate 

CaMKII-mediated phosphorylation of PLN (Figure 2.2) (Hawkins et al., 1995; Wegener et al., 

1989). In contrast to PKA, CaMKII regulates the site-specific phosphorylation of PLN 

Threonine 17 (Thr17) (Hawkins et al., 1994; Odermatt et al., 1996). In addition, CaMKII also 

directly phosphorylates SERCA2a in cardiac and slow-twitch skeletal muscle in the rabbit, 

which increases the maximal enzyme activity (Vmax) of the Ca2+-pump (Hawkins et al., 1994). 

However, the physiological capacity of CaMKII to directly phosphorylate SERCA2a is still 

controversial since this observation could not be confirmed in another model system that used a 

HEK-293 cell line (Odermatt et al., 1996). In contrast to SERCA2a, CaMKII does not directly 

phosphorylate SERCA1a in the fast-twitch skeletal muscle in the rabbit (Hawkins et al., 1994). 

 Protein kinase C signaling is also capable of influencing muscle contractility and SERCA 

activity (Figure 2.3). However, in contrast to the positive inotropic effects of β-adrenergic and 

CaMKII activation, it is generally accepted that PKC signaling reduces muscle contractility 

(Capogrossi et al., 1990; Nicolas et al., 1998; Rogers et al., 1990) by reducing SERCA Vmax, 

without altering the Ca2+-sensitivity of the enzyme in cardiomyocytes (Rogers et al., 1990). In 

vitro studies using enriched SR membranes prepared from cardiac tissue have demonstrated 

that PLN can be phosphorylated on Serine 10 (Ser10) by PKC (Tada et al., 1983; Iwasa & 

Hosey, 1984; Movsesian et al., 1984). However, the role of PKC-mediated PLN 

phosphorylation of Ser10 is still controversial since this amino acid does not appear to be 
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phosphorylated in response to PKC activation in vivo (Wegener et al., 1989). In contrast to a 

PKC-mediated increase in PLN-phosphorylation, there is evidence to indicate that PKC 

signaling may actually reduce PLN-phosphorylation through the activation of protein 

phosphatase 1 (PP1) and 2a (PP2a) (Liu & Brautigan, 2000; Ragolia & Begum, 1997), which 

would increase the interaction of PLN with SERCA and would reduce enzyme activity at 

submaximal levels of Ca2+
f (Braz et al., 2004). It is also possible that the activation of 

phospholipase D (PLD) by PKC signaling may influence SERCA kinetic properties since 

phosphatidic acid (PA) promotes the transformation of PLN pentamers to monomers, thereby 

increasing the interaction of PLN with SERCA to reduce enzyme activity (Toyofuku et al., 

1992; Asahi et al., 2002). However, the specific mechanisms responsible for the PKC-

dependent reduction in SERCA activity in cardiomyocytes have not been identified. 

Additionally, given that PLN is not expressed in rat skeletal muscle, it is not clear if PKC 

signaling would influence Ca2+-handling properties in this tissue. 

 The purpose of this study was to investigate the role of β-adrenergic, CaMKII and PKC 

signaling in the intrinsic regulation of SERCA kinetic properties in the LV and skeletal muscles 

of different fibre type composition and oxidative potential in the rat. We have hypothesized that 

β-adrenergic signaling would not alter Vmax but would increase SERCA Ca2+-sensitivity, as 

indicated by an increased Hill Coefficient (nH) and reduced Ca50 in crude muscle homogenates 

and enriched SR vesicles prepared from rat LV and skeletal muscles. Based on the tissue-

specific protein expression pattern for SERCA, PLN and SLN, we have hypothesized that the 

changes in SERCA kinetic properties associated with β-adrenergic signaling would be 

mediated by cAMP-dependent PKA activation in LV tissue;  whereas, an alternative cAMP-

dependent mechanism that is not PKA-dependent would influence SERCA kinetic properties in 
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skeletal muscle. We have also hypothesized that CaMKII signaling would increase Vmax in the 

tissues that predominately express SERCA2a;  whereas CaMKII would not alter Vmax in tissues 

that predominately express SERCA1a. Based on the tissue-specific protein expression pattern 

for PLN, it is possible that CaMKII activation will increase SERCA Ca2+-sensitivity (nH and 

Ca50) in crude muscle homogenates and enriched SR vesicles prepared from rat LV;  while, 

CaMKII signaling would not alter SERCA Ca2+-sensitivity in the skeletal muscles studied. In 

contrast to the effects of β-adrenergic and CaMKII signaling, we have hypothesized that PKC 

signaling would reduce Vmax and SERCA Ca2+-sensitivity (nH and Ca50) in crude muscle 

homogenates and enriched SR vesicles prepared from rat LV and skeletal muscles.  

 

Research Design & Methods 

Materials 

 Epinephrine (EPI), bovine brain calmodulin (CaM), adenosine 3′,5′-cyclic monophosphate 

(cAMP), an activated form of PKA (A-PKA), forskolin and KT5720 [i.e. (9S,10S,12R)-

2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′, 

1′-kl] pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester] were purchased from 

Sigma (Oakville, ON, Canada). GF-109203-XI (GFX;  also called bisindolylmaleimide I), 

phorbol-12-myristate-13-acetate (PMA), propranolol, and KN-62 (i.e. (S)-5-Iso-

quinolinesulfonic acid 4-[2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-

piperazinyl)propyl]phenylester)1-[N,O-bis (5-Isoquinolinesulfonyl) -N-methyl-L-tyrosyl]-4-

phenylpiperazine) were purchased from Calbiochem (San Diego, CA, USA). 

Dimethylsulfoxide and water were used as solvents. Epinephrine is a β-adrenergic activator. 

Propranolol is a β-adrenergic inhibitor. forskolin is a PKA activator. KT5720 is a PKA 
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inhibitor. cAMP is a PKA and STK16 activator. CaM is a substrate required for CaMKII 

activity. KN62 is a CaMKII inhibitor. PMA, is a PKC activator. GFX is a PKC inhibitor.  

 Mouse anti-CaMKII monoclonal (sc-5306) and goat anti-phospholamaban polyclonal (sc-

21923) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

Rabbit anti-STK16 polyclonal (AP7241c) antibody was purchased from Abgent (San Diego, 

CA, USA). Mouse anti-SERCA1a monoclonal (A52) antibody was a gift from D. MacLennan 

(Clarke et al., 1990). Mouse-anti SERCA2a monoclonal (MA3-919) antibody was purchased 

from Affinity Bioreagents (Golden, CO, USA).  

 

Animals 

 Male Sprague-Dawley rats (9 weeks of age;  n=28, mass = 280 ± 4 g;  Harlan Animal 

Supplier, Wisconsin;  USA) were used to collect tissue for analysis in this study. Animals were 

fed water and laboratory chow ad libitum, and housed in an environmentally controlled room 

on a reverse 12:12-h light/dark cycle until sacrificed.  Tissue collection was conducted at 

approximately the same time over a three-day period, between 8 am and 12 pm, in order to 

limit diurnal variations in muscle glycogen (Conlee et al., 1976). On a given day, 8-10 animals 

were anesthetized for tissue sampling. The Animal Care Committee of the University of 

Waterloo approved the experimental protocols prior to starting the study. Rats were 

anesthetized with pentobarbital sodium (6 mg/100 g body wt) prior to muscle sampling.  

 
Sample preparation 

 Rats were anesthetized with pentobarbital sodium (6 mg/100 g body wt) and prepared for 

muscle sampling. Following anesthetization, tissue from the soleus (SOL), extensor digitorum 

longus (EDL), the red portion of gastrocnemius (RG), and the white portion of gastrocnemius 
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(WG) were sampled from both hind limbs from each animal prior to excision of the left 

ventricle (LV). Each sample was immediately placed in ice-cold homogenization buffer. An 

additional small piece of tissue was rapidly sampled from each muscle from 5 animals and 

frozen in liquid nitrogen for later analysis of muscle oxidative potential. Crude muscle 

homogenates were prepared 11:1 (wt/vol) in ice-cold homogenizing buffer containing 250 mM 

sucrose, 5 mM HEPES, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), and 0.2% sodium 

azide (NaN3), pH 7.5. Dithiothreitol (DTT) was not used in the preparation of crude muscle 

homogenates since DTT can influence sulfhydryl oxidation. Tissue samples were kept on ice 

and homogenized mechanically with a Polytron homogenizer (PT 3100) at 16500 rpm for two 

30 s bursts, separated by a 30 s break. Tissue homogenates were aliquoted into 30-115 µL 

volumes, frozen in liquid N2 and stored at -80°C for later analysis of Ca2+-dependent SERCA 

activity and Western blotting. 

 Enrichment of SR vesicles was completed using tissue homogenates pooled from 4 

animals on the same day of tissue extraction and was accomplished using differential 

centrifugation protocols previously explained by our laboratory (Tupling et al., 2001b). The 

final pellet, which contained enriched SERCA1a vesicles (prepared using WG tissue) or 

SERCA2a vesicles (prepared using LV tissue), was suspended in homogenizing buffer to a 

final protein concentration of ~ 2-4 mg/mL, frozen and stored at -80°C for later analysis.  

 Protein determination of homogenates and enriched SR vesicles were made by the method 

of Lowry (Lowry & Passonneau, 1972) as modified by Schacterle and Pollock (Schacterle & 

Pollack, 1973). Samples were analyzed in triplicate and the average was used to determine 

protein concentrations. 
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Experimental design 

 The general strategy used in this study was to incubate samples for 10 min in the presence 

or absence of various β-adrenergic, CaMKII, or PKC pathway activators or inhibitors and then 

to assess Ca2+-dependent SERCA activity in vitro using a spectrophotometric assay adapted for 

a plate reader. For each tissue sample, 3 treatments were assayed simultaneously during the 

same analytical session to limit variability between treatments during assay procedures as 

indicated within Table 2.1. In most cases, control samples, which were incubated in the absence 

of any activators or inhibitors, were measured concurrently with two other treatments. Once 

added, activators and/or inhibitors remained present until the measurements had been 

completed. Treatment concentrations for EPI were selected based on the maximal expected 

concentration of this hormone during exercise (15 nM) and a 10x higher (150 nM) 

concentration (Jansson et al., 1982). Treatment concentrations for propranolol, forskolin, 

KT5720, cAMP, KN62, GFX and PMA were selected to be ~2x higher than the listed effective 

concentrations of these chemicals, as indicated on the material data sheets provided by the 

suppliers. The concentrations of A-PKA and CaM protein utilized in this experiment were 

selected based on the materials information sheet provided by the supplier. 

 

Muscle oxidative potential  

 Citrate synthase (CS) activity, used as a measure of oxidative potential, was determined 

fluorometrically as described by Henriksson et al. (Henriksson et al., 1986) using frozen 

muscle homogenized in a phosphate buffer (pH 7.4) containing 0.02% bovine serum albumin  
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(BSA), 5 mm β-mercaptoethanol, and 0.5 mM EDTA and diluted (1:100) in 20 mM 

immidazole buffer with 0.2% BSA. 

 

SDS-PAGE and Western blotting 

 Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was performed 

to separate and isolate proteins by size. Specific parameters for antibody concentrations, 

transfer voltages and durations used for Western blotting protocols are described in Table 2.2. 

Crude muscle homogenates and enriched SR vesicles (final protein concentration of 2 mg/mL) 

were prepared in homogenizing buffer and sample buffer (1.25 M sucrose, 0.25 M Tris · HCl, 

pH 6.8, 5% SDS, and 0.01% bromphenol). Five to 50 µg of protein was loaded for SDS-PAGE, 

with the quantity dependent on the protein concentration required for each specific antibody. 

All samples were analyzed in duplicate.  A 7% polyacrylamide SDS gel (Mini-PROTEAN II;  

Bio-Rad), with a 3.75% stacking gel, was used to assess SERCA1a, SERCA2a, STK16 and 

CaMKII contents. Phospholamban samples were analyzed using a 15% polyacrylamide SDS 

gel with a 3.75% stacking gel. 

 After SDS-PAGE and a 5 min equilibration with cold transfer buffer (25 mM Tris, 192 

mM glycine and 20% vol/vol methanol), proteins were transferred to a polyvinylidene 

difluoride membrane (PVDF membrane, Bio-Rad) by placing the gel in transfer buffer and 

applying a low voltage (21-22 mV) for 45-50 min (Trans-Blot Cell, Bio-Rad).  Non-specific 

binding sites were blocked with 5% non-fat skim milk powder in Tris-buffered saline (pH 7.5), 

applied for 1 h at room temperature.  Incubation of the PVDF membrane with primary 

antibodies was performed as described in Table 2.2. After incubation with primary antibodies, 

the membrane was washed three times before application of the secondary antibody. Secondary  
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antibodies were specific to the species required for each primary antibody, as indicated on the 

material data sheets provided by the antibody suppliers, and were conjugated to horseradish 

peroxidase. After application of the appropriate secondary antibody for 1 h, protein 

quantification was performed using an enhanced chemiluminescence immunodetection 

procedure (Amersham ECL-RPN2106P1) using a bio-imaging system and GeneSnap software 

(Syngene). For each antibody, the linearity of progressive increases in protein content was 

established before experiments were conducted (data not shown). Relative protein levels were 

determined by scanning densitometry and values were expressed as a % of standard (Std). 

When direct comparisons were made between pharmaceutical conditions, values were 

normalized to control samples and expressed as % of control. All samples were analyzed in 

duplicate and on different gels. 

 Quantification of CaMKII isoforms (i.e. α, β, δ and γ) was completed using a single anti-

CaMKII monoclonal antibody. This approach was utilized since α, β, δ and γ CaMKII isoforms 

are known to migrate at relative mobilities of ~55, 77, 60 and 60 kDa, respectively. CaMKII 

δ and γ appear as a common band since both isoforms have relative mobilities of ~60 kDa. 

Quantification of all CaMKII isoforms has been normalized to CaMKII β from the LV since 

expression of this isoform was highest in all tissues, with LV containing the highest CaMKII β 

content. 

 

Ca2+-dependent SERCA activity assay 

 Measurement of Ca2+-dependent SERCA activity was made using crude muscle 

homogenates (~15-90 µL per 15 mL reaction cocktail), enriched SERCA1a vesicles (~6 µL per 

15 mL reaction cocktail) and enriched SERCA2a vesicles (~45 µL per 15 mL reaction 
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cocktail). SERCA kinetic properties were measured by use of a spectrophotometric assay 

(Simonides & van Hardeveld, 1990) modified by TA Duhamel (unpublished) for use on a plate 

reader (SPECTRAmax Plus;  Molecular Devices). Three SERCA kinetic properties have been 

assessed, namely, Vmax, Hill Coefficient (nH), which is defined as the relationship between 

SERCA activity and Ca2+
f for 10 to 90% of Vmax, and Ca50, which is defined as the Ca2+

f 

required to activate the enzyme to 50% Vmax. A schematic representation of the general assay 

steps used to determine Ca2+-dependent kinetic properties in this chapter is illustrated on Figure 

2.4.  

  The SERCA reaction buffer for homogenates (SR in parentheses) contained (in mM) 200 

(100) KCl, 20 HEPES, 15 (10) MgCl2, 10 NaN3, 10 phosphoenolpyruvate (PEP), 5 ATP, 1 

ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’ –tetraacetic acid (EGTA).  The pH of the 

reaction buffer was adjusted to 7.0 at 37 oC. For each set of conditions (i.e. 3 treatments 

assessed simultaneously), a single aliquot of sample (i.e. homogenates or enriched SR vesicles) 

was added to 15.3 mL of reaction cocktail, which contained 18 U/mL of lactate dehydrogenase 

(LDH), 18 U/mL pyruvate kinase (PK), 0.3 mM NADH, 5 mM ATP, and 1 µM Ca2+ ionophore 

A23187.  

 The 15 mL homogenate cocktail was then aliquoted into 3 test tubes each containing 5 mL. 

Pathway activators or inhibitors were then added to each test tube as outlined in Table 2.1. This 

approach ensured that the only difference between treatments was the addition of selected 

activator/inhibitors to each sample. The contents of each test tube were mixed and aliquoted 

(300 µL) into 16 Eppendorf tubes containing 15 different Ca2+
f ranging between 7.6 and 4.7 

pCa units.  The Eppendorf tubes containing the 15 different Ca2+
f were used to generate a 

substrate-activity curve in which a plateau and subsequent decline in SERCA activity was  
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observed with increasing Ca2+
f. The content of the 16th Eppendorf tube was used to determine 

basal ATPase activity. This was accomplished by adding 40 µM cyclopiazonic acid (CPA), 

which is a specific inhibitor of SERCA (Seidler et al., 1989), to one aliquot of the reaction 

cocktail at a pCa of 4.7.  

 After mixing, the contents from all Eppendorf tubes were loaded in duplicate (100 µL per 

well) onto a 96 well round-bottom clear plate. Activity measurements were then completed at 

37oC and 340 nm using a spectrophotometric plate reader (SPECTRAmax Plus;  Molecular 

Devices). A correction factor was used to adjust absorbance readings to a 1 cm path length 

since activity measurements were made using 100 µL volumes. On a given day, 14 tissue 

samples were analyzed. 

 SERCA activity was calculated as the difference between Ca2+-stimulated and basal 

ATPase rates. Kinetic parameters describing the pCa-activity relationship were determined 

using Computer Software (GraphPad PrismTM
 Version 4.0) and an IBM computer. Hill 

coefficient (nH) and Ca50 values for these data were calculated by use of a non-linear regression 

curve fit using the dose-response relationship that is characterized by Equation 2.1. 

 

Y= Ybot + (Ytop – Ybot)/(1+10(LogCa
50

-x) * nH
 )    Equation 2.1 

 

Kinetic data obtained using this plate reader technique were similar to results previously 

published from our group (Duhamel et al., 2005; Duhamel et al., 2004a; Schertzer et al., 2002; 

Tupling et al., 2001a). The coefficient of variation for Vmax during this assay is 8.6% when the 

same sample was analyzed on different days and was 7.4% when analysis is repeated on the 

same day.  
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 The accurate assessment of Ca2+
f in the homogenate cocktail is important in the assay 

procedure. To measure Ca2+
f a fluorescence measurement technique was adapted for use on a 

plate reader. Fluorescence measurements were made using Indo-1, which is a Ca2+-sensitive 

dye, and a spectrofluorometeric plate reader (SPECTRAmax Gemini XS;  Molecular Devices) 

using the same assay conditions, volumes and mechanics used to determine SERCA activity. 

Indo-1 was added to the homogenate cocktail immediately before the sample was aliquoted 

(300 µL) into 16 Eppendorf tubes containing 15 different Ca2+
f ranging between 7.6 and 4.7 

pCa units. NADH was not included in the assay buffer during the assessment of Ca2+
f since 

NADH also has fluorescent properties. The measurement of Ca2+
f using this procedure is based 

on the difference in maximal emission wavelengths between the Ca2+ bound-Indo-1 complex 

and the Ca2+ free-Indo-1 complex. An excitation wavelength of 355 nm was used to excite 

Indo-1. Emission maxima were recorded at 405 nm for Ca2+-bound (F) and at 485 nm for Ca2+-

free (G) Indo-1. The ratio (R) of F to G is directly affected by small changes in Ca2+ 

concentrations and was used to calculate Ca2+
f according to Equation 2.2  (Grynkiewicz et al., 

1985). 

 

Ca2+
f = Kd * (Gmax / Gmin) * (R – Rmin) / (Rmax – R)  Equation 2.2 

 

Where Kd is the equilibrium constant for the interaction between Ca2+ and Indo-1, Rmin is the 

minimum value of R with the addition of 250 µM EGTA, Gmax is the maximum value of G with 

the addition of 1 mM CaCl2. The Kd value used for the interaction of Ca2+ and Indo-1 for 

muscle homogenates and enriched SERCA vesicles was 250 and 135, respectively 

(Grynkiewicz et al., 1985).  Samples were analyzed in triplicate to determine Ca2+
f. By utilizing 
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this measurement protocol, Ca2+
f was assessed in the sample buffer and the concentration used 

to generate pCa-activity curves for SERCA.  

  

Statistical Analyses 

 Data are presented as means ± S.E. A one-way analysis of variance (ANOVA;  one 

repeated measure) was utilized to compare differences between the different treatments. Where 

significant differences were found, Neuman-Kuels post hoc procedures were used to compare 

specific means. Significance was accepted at P<0.05. 

 

Results 

Muscle oxidative potential  

 Maximal CS activity, used as a measure of oxidative potential, was graded (LV > RG > 

SOL > EDL > WG) according to muscle type. The highest CS values (mols.kg-1 protein.hr-1) 

was observed in LV (10.4 ± 0.3), followed by RG (5.7 ± 0.4), SOL (4.5 ± 0.2), EDL (3.5 ± 0.4) 

and was lowest in WG (1.7 ± 0.2). 

 

SDS-PAGE and Western blotting 

 Since this study was designed to investigate the regulation of SERCA kinetic properties in 

LV and skeletal muscle of different fibre type and oxidative capacity, it was important to 

characterize the tissue specific expression of SERCA1a and SERCA2a. Western blot data 

(Table 2.3) indicated that LV expressed exclusively the SERCA2a isoform and the SOL was 

the only skeletal muscle that expressed SERCA2a. In contrast, SERCA1a was detected in all 

skeletal muscles sampled. SERCA1a protein content was highest in EDL, followed by RG and  
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WG, and lowest in SOL (EDL > RG and WG > SOL). After correcting for total protein 

loading, SERCA1a and SERCA2a protein contents were enriched by ~10 fold in SR vesicles, 

compared to WG and LV homogenates. This enrichment resulted in 20 and 5 fold increases in 

Vmax for SERCA1a and SERC2a vesicles, respectively, compared to WG and LV homogenates 

(data not shown). 

 Our Western blot data supports previous literature in the rat (Damiani et al., 2000) 

demonstrating that PLN protein is expressed in rat LV tissue but not in any of the skeletal 

muscles examined (Table 2.3). Phospholamban content was increased by ~3-fold in SR vesicles 

enriched in SERCA2a. We also planned to assess SLN protein content. Unfortunately, an 

antibody specific for SLN was not commercial available. As a substitute, we searched for an 

antibody capable of detecting a protein known to influence SLN protein function. The protein 

that we selected was STK16 since this kinase mediates the phosphorylation of SLN and thereby 

increases SERCA Ca2+-sensitivity (Gramolini et al., 2006). Serine/threonine kinase 16 protein 

was found in high quantities in the liver (data not shown) and in lower quantities in the LV and 

skeletal muscle tissues of the rat (Table 2.3). Compared to the liver, the content of STK16 

protein in the LV and the skeletal muscles of the rat was ~27-40%. Enrichment of SR vesicles 

did not alter STK16 protein content from that observed in WG or LV crude muscle 

homogenates.  

 Quantification of CaMKII isoforms (i.e. α, β, δ+γ) was performed using a single anti-

CaMKII monoclonal antibody. Values have been normalized to CaMKII β  content in LV since 

this tissue expressed the highest quantity of CaMKII β  (Table 2.3). The expression pattern of 

CaMKII α was different between the various tissues sampled. For CaMKII α, LV and SOL < 

RG < EDL < WG;  whereas CaMKII β protein content was highest in LV, compared to all 
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other tissues, with no additional differences between tissues noted. Compared to CaMKII 

β, only low amounts of CaMKII δ and γ were detected in all tissues analyzed, with no 

differences being observed between muscles. 

 

β-adrenergic regulation of SERCA kinetics 

 To determine the effects of EPI signaling on SERCA function, homogenates were 

incubated for 10 min in the presence of 15 nM EPI or 150 nM EPI (Table 2.4). Epinephrine has 

no effect on Vmax in any tissue. In contrast, the nH and Ca50 were altered by EPI in a tissue 

specific manner. Specifically, EPI increased nH by ~17% in the EDL and reduced Ca50 by 

~25% in the LV and SOL, with no effects for any other tissue. 

 Based on these observations, another series of conditions were designed to determine if the 

effects of EPI could be reversed by the β-blocker propranolol (Table 2.5). As expected, the 

EPI-induced reduction in Ca50 in both the LV and the SOL was prevented by propranolol. Our 

results for Vmax support our initial observations, namely that 150 nM EPI did not influence Vmax 

in LV and SOL, or any other tissue studied. The nH was increased by 22% in LV in response to 

EPI treatment, compared to control. Propranolol + EPI (i.e. 4 µM propranolol + 150 nM EPI) 

prevented the EPI-induced increases to nH in LV tissue. Interestingly, for the SOL, nH was not 

changed with EPI, compared to control, but was 12% lower during the combined propranolol + 

EPI treatment, compared to the EPI treatment. Hill coefficients were not altered by the EPI 

treatment or the combined propranolol + EPI treatment in any other tissue studied. 

 To determine if the reduction in Ca50 observed in LV and SOL during EPI treatment was 

mediated by a PKA-dependent process, samples were incubated in the presence of 25 µM 

forskolin or 100 nM KT5720 + 25 µM forskolin (Table 2.6).  The only effect of forskolin was a  
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16% reduction in Ca50 in the LV. This reduction was prevented by the combined KT5720 + 

forskolin treatment. 

 To determine if PKA-mediated signaling was influencing the Ca2+-sensitivity of a 

particular SERCA isoform, another series of conditions were designed to compare the effects of 

forskolin or an activated form of PKA (A-PKA) on SERCA kinetic properties using enriched 

SR vesicles. Enriched SERCA1a and SERCA2a vesicles, prepared from the WG and LV, 

respectively, were incubated with either 25 µM forskolin or 1 mg A-PKA. Incubation of 

enriched SERCA2a vesicles with forskolin and A-PKA increased nH by 7 and 9%, respectively;  

while Ca50 was reduced by 12 and 9%, respectively (Table 2.7). Incubation of enriched 

SERCA1a vesicles with forskolin and A-PKA did not alter any SERCA kinetic property. 

 Since our data indicated that EPI decreases Ca50 in both the LV and SOL, while forskolin 

reduced Ca50 in LV but not the SOL, we designed another set of conditions to gain further 

insight into the mechanisms responsible for influencing the tissue-specific regulation of Ca50. 

Specifically, we were interested in determining if tissue-specific regulation of Ca50 in LV and 

SOL was influenced by cAMP-dependent PKA signaling or an alternative cAMP-dependent 

mechanism that is not regulated by PKA signaling (Table 2.8). In these experiments, samples 

were incubated in the presence of 10 µM cAMP or 10 µM cAMP + 100 nM KT5720. Neither 

the cAMP treatment nor the combined cAMP + KT5720 treatment altered Vmax or nH in any 

tissue studied. Interestingly, Ca50 was reduced by ~12 and 14% in LV and SOL, respectively, 

during the cAMP treatment, compared to control. Incubation of LV samples with the combined 

cAMP + KT5720 treatment restored Ca50 to control levels, suggesting that Ca50 is regulated by 

PKA-mediated events in this tissue. In contrast, incubation of SOL samples with the combined 

treatment failed to restore Ca50 to control levels, suggesting that a non-PKA-dependent, cAMP- 
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activated process may regulate Ca50 in this tissue. Neither the cAMP treatment nor the 

combined cAMP + KT5720 treatment altered the Ca50 for any of the other skeletal muscles 

studied.  

 To determine if cAMP-mediated signaling was influencing the Ca2+-sensitivity of a 

particular SERCA isoform, SR vesicles enriched in SERCA2a and SERCA1a were incubated 

with cAMP or cAMP + KT5720 (Table 2.9). As expected, the Vmax of enriched SERCA2a 

vesicles, prepared from the LV, was not altered by these treatments. However, nH was 

increased by 20% and Ca50 was reduced by 15% following incubation of SERCA2a vesicles 

with cAMP. Incubation of enriched SERCA2a vesicles with the combined agents restored nH 

and Ca50 to control levels, suggesting that nH and Ca50 is regulated by PKA mediated signaling 

in enriched SERCA2a vesicles. Maximal SERCA activity, nH, and Ca50 were not altered by the 

cAMP treatment or the combined cAMP + KT5720 treatment in enriched SERCA1a vesicles 

prepared from the WG. 

 

Ca2+-dependent calmodulin kinase II regulation of SERCA kinetics 

 To determine the effects that CaMKII signaling has on SERCA kinetic properties, 

homogenates were incubated in the presence of 15 µg CaM or 4 µM KN62 (Table 2.10). 

Maximal activity and nH were not altered by CaM treatment in any tissue. Compared to control, 

incubation of samples with CaM reduced Ca50 in the LV by 13%, but did not alter Ca50 in any 

skeletal muscle. Incubation of SOL, EDL or WG with CaM did not alter Vmax, nH, or Ca50. 

Incubation of samples with KN62 compared to control and CaM treated samples, reduced nH by 

14 and 19% in LV and by 10 and 11% in RG, respectively, without altering kinetic properties 

in any other tissue. 
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 In order to determine if KN62 was able to inhibit the CaM-dependent changes in Ca50 

observed in LV tissue, homogenates were incubated in the presence of 4 µM KN62, 15 µg 

CaM or 4 µM KN62 + 15 µg CaM (Table 2.11). As expected, these treatments did not alter 

Vmax.  However, CaM treatment, compared to KN62 treatment, increased nH by 12% and 

reduced Ca50 by 17% in LV. The effects of the CaM treatment on nH and Ca50 were prevented 

when LV samples were incubated with the combined KN62 + CaM treatment. Interestingly, 

CaM also increased nH by 13% in the SOL.  This effect of CaM on SOL nH was not observed in 

the previous set of conditions (Table 2.10).  Additionally, the CaM-dependent increase in nH 

was not inhibited when SOL was incubated in the presence of the combined KN62 + CaM 

treatment. As in our previous experiment, nH and Ca50 were not altered by CaM or the 

combined KN62 + CaM treatment in EDL, WG or RG. 

 To determine if CaMKII-mediated signaling was influencing the Ca2+-sensitivity of a 

particular SERCA isoform, SR vesicles enriched in SERCA1a and SERCA2a were treated with 

15 µg CaM or 4 µM KN62 + 15 µg CaM (Table 2.12). These treatments did not alter Vmax in 

SR vesicles enriched in SERCA2a prepared from LV. Compared to control, incubation of 

enriched SERCA2a vesicles with the CaM treatment increased nH by 20% and reduced Ca50 by 

13%. These changes in nH and Ca50 were prevented when enriched SERCA2a vesicles were 

incubated with KN62 + CaM in combination. Incubation of SR vesicles enriched in SERCA1a 

with these same treatments did not alter Vmax, nH, or Ca50. 

   

PKC regulation of SERCA kinetics  

 To determine the effects of PKC signaling on SERCA kinetic properties, homogenates 

were incubated in the presence of 500 nM PMA or 1400 nM GFX (Table 2.13). Incubation of  



66  



67  



68  



69  

muscle homogenates with GFX had no effect on Vmax, nH, or Ca50 in any tissue. In contrast, 

incubation of muscle homogenates with PMA altered kinetic properties in all tissues. Although 

the PMA treatment, compared to control, did not alter Vmax in LV or SOL, it did reduce Vmax by 

~15% in EDL, WG and RG. Additionally, PMA treatment also reduced nH by 13, 28, 22, and 

14% in LV, EDL, WG and RG, respectively, but not in SOL. The PMA treatment also 

increased Ca50 in all tissues. Compared to control, PMA increased Ca50 by ~34, 52, 196, 166 

and 65% in LV, SOL, EDL, WG and RG, respectively. 

 In order to determine if GFX was able to inhibit the PMA-dependent changes in SERCA 

kinetic properties, another set of treatment conditions was designed to incubate samples with 

1400 nM GFX + 500 nM PMA (Table 2.14). Although we expected that GFX would prevent 

the PMA-induced changes in SERCA kinetic properties, our data indicates that Vmax was 

reduced by 11-13% in EDL, WG and RG during the combined GFX + PMA treatment 

compared to GFX. Additionally, nH was decreased and Ca50 was increased during the combined 

GFX + PMA treatment, compared to GFX alone, regardless of the tissue studied. GFX did not 

prevent the PMA-induced changes in Vmax in EDL, WG and RG and did not prevent the PMA-

induced changes in nH or Ca50 in any tissue. 

 To determine if PKC-mediated signaling was influencing the Ca2+-sensitivity of a 

particular SERCA isoform, SR vesicles enriched in SERCA1a and SERCA2a were treated with 

1400 nM GFX or 500 nM PMA (Table 2.15). As expected, GFX treatment had no effect on 

Vmax, nH, or Ca50 for SR vesicles enriched in SERCA2a and SR vesicles enriched in SERCA1a. 

In contrast to GFX, PMA altered kinetic properties in SR vesicles enriched in SERCA2a and 

SERCA1a. For enriched SERCA2a vesicles, Vmax was not altered by the PMA treatment. 

However, nH was reduced by 14% and Ca50 was increased by 21% in enriched SERCA2a  
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vesicles when samples were treated with PMA. In contrast to enriched SERCA2a vesicles, 

PMA reduced Vmax by 19%, nH by 30% and increased Ca50 by 106% in enriched SERCA1a 

vesicles.  

 

Discussion  

 The present study characterized the effects of β-adrenergic, CaMKII and PKC signaling on 

SERCA kinetic properties in the LV and skeletal muscles of different fibre type composition in 

the rat. The results indicate that β-adrenergic, CaMKII and PKC signaling influence SERCA 

kinetic properties in a tissue-specific manner that is generally unique to each pathway. Our 

observations indicate that β-adrenergic signaling increases SERCA Ca2+-sensitivity in the LV 

by a cAMP-dependent PKA-mediated mechanism and in the SOL by a cAMP-dependent 

mechanism that is not mediated by PKA. In contrast, β-adrenergic signaling did not alter 

kinetic properties in fast-twitch skeletal muscle. The activation of CaMKII signaling by a CaM-

dependent mechanism reduced Ca50, without altering Vmax, in the LV and did not alter SERCA 

kinetic properties in any other tissue. In contrast to β-adrenergic and CaMKII signaling, the 

activation of PKC by PMA reduced the Vmax of SERCA1a in EDL, WG and RG by ~15%, 

without altering Vmax in the LV or the SOL, and reduced SERCA Ca2+-sensitivity in all tissues 

examined.  

 

β-adrenergic regulation of SERCA kinetics 

 The observations made in this paper contribute to the growing body of evidence 

demonstrating that β-adrenergic signaling increases SERCA Ca2+-sensitivity, without altering 

Vmax, in the LV and the SOL (Figure 2.5, Panel A and B). In contrast, β-adrenergic signaling  



73  



74  



75  



76  

did not alter any of the SERCA kinetic properties assessed in EDL, RG or WG, which are all 

classified as fast-twitch skeletal muscles based on contractile speed and myosin heavy chain 

composition (Delp & Duan, 1996). It is possible that this tissue-specific effect may be 

attributed to the SERCA2a isoform expression in the LV and SOL, compared to the fast-twitch 

skeletal muscles that predominately express the SERCA1a isoform. On the other hand, the 

tissue-specific effect may not be fully explained by SERCA isoform expression in different 

tissues since the SOL expresses both SERCA2a and SERCA1a protein isoforms;  whereas, the 

LV expresses only SERCA2a. Therefore, based on the mixed SERCA isoform composition of 

the SOL, it is difficult to determine if the EPI-induced changes in this tissue occur as a result of 

changes in the Ca2+-sensitivity of the SERCA2a or SERCA1a isoform specifically, or if they 

occur as a result of changes in the Ca2+-sensitivity of both isoforms in the SOL.  

 Epinephrine activates a series of intracellular signaling pathways known to influence 

protein function through phosphorylation-mediated processes. Phospholamban is one target 

protein that is regulated by β-adrenergic signaling via cAMP-dependent PKA phosphorylation 

(MacLennan et al., 2003). Phosphorylation of PLN reduces the interaction of SERCA with 

PLN, thereby reducing Ca50 (Asahi et al., 2002). This regulatory mechanism is actively 

involved in the regulation of SERCA Ca2+-sensitivity in the LV (Asahi et al., 2002) and is the 

most likely mechanism underlying the EPI-induced Ca2+-sensitivity changes observed in the 

current study. In contrast, this mechanism cannot explain the EPI-induced changes in SERCA 

Ca2+-sensitivity in the SOL since PLN protein was not detected by Western blot techniques in 

this tissue or any of the other skeletal muscles examined, which is consistent with previous 

results (Damiani et al., 2000; Vangheluwe et al., 2005). Therefore, it is apparent that another 

pathway that is activated by EPI is involved in the regulation of Ca50 in SOL.  
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 Sarcolipin, which is similar to PLN in structure and function (Asahi et al., 2002; Odermatt 

et al., 1998), is expressed in the atria and skeletal muscle (Vangheluwe et al., 2005). The 

regulation of SERCA Ca2+-sensitivity by SLN in response to β-adrenergic signaling is 

analogous to that of PLN. However, in contrast to the PKA-mediated phosphorylation of PLN, 

an STK16-mediated phosphorylation-process regulates the inhibitory effects of SLN on 

SERCA activity at submaximal Ca2+
f (Gramolini et al., 2006). Based on the known regulatory 

role that SLN has on SERCA kinetic properties in isolated NF-SLN/PLN KO cardiomyocytes 

(Gramolini et al., 2006) and in cardiac (Asahi et al., 2002) and skeletal muscle (Odermatt et al., 

1998; Tupling et al., 2002), it is likely that this protein may be contributing to the EPI-induced 

changes in Ca50 observed in the SOL. Although we would have liked to assess SLN protein 

content in the tissues examined in this study, it was not possible since an antibody for SLN was 

not commercially available. Therefore, a limitation of this study was our inability to directly 

determine if SLN was responsible for the observed EPI-induced changes in SERCA Ca2+-

sensitivity observed. However, the literature (Vangheluwe et al., 2005) does indicate that SLN 

mRNA and protein is expressed at low levels in the SOL but is absent in the LV or the EDL of 

the rat (Vangheluwe et al., 2005). If correct, such a SLN protein expression pattern would be 

consistent with the observations made in the current study. 

 Since we could not secure an antibody to detect SLN, we attempted to characterize the 

tissue-specific expression of STK16, which is a signaling protein that lies upstream of SLN and 

is known to increase SLN phosphorylation in response to β-adrenergic stimulation (Gramolini 

et al., 2006). Our Western blot data indicated that STK16 protein was expressed in the LV and 

also in all of the skeletal muscles analyzed. These data support previous research indicating that 

STK16 mRNA is expressed in cardiac and skeletal muscle (Ligos et al., 1998; Ohta et al., 
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2000). Although STK16 influences SLN-phosphorylation in vitro (Gramolini et al., 2006), the 

physiological function of STK16 and its effectiveness to influence SLN-phosphorylation has 

not yet been evaluated in cardiac or skeletal muscle. 

 Since β-adrenergic stimulation increases phosphorylation of PLN and SLN by activating 

the cAMP-dependent PKA and the cAMP-dependent STK16 pathways, respectively, several 

different treatment conditions were necessary to isolate the PKA-dependent from the PKA-

independent signaling processes involved in the acute regulation of SERCA. To identify the 

PKA-dependent changes in Ca50 for the LV and SOL, samples were incubated in the presence 

of the PKA activator forskolin and also with a combination of the PKA inhibitor KT5720 plus 

forskolin. Our data indicated that forskolin reduced Ca50, without altering Vmax or nH, in the LV 

(Figure 2.5, Panel C). In contrast, forskolin was without an effect in the SOL (Figure 2.5, Panel 

D). These data support the hypothesis that PKA signaling contributes to the regulation of 

SERCA kinetic properties in the LV but not the SOL. This tissue-specific effect may be 

explained, at least in part, by the expression of PLN protein, which is present in the LV but not 

in the SOL or fast-twitch skeletal muscles of the rat (Damiani et al., 2000; Vangheluwe et al., 

2005). The results using isolated SR vesicles, enriched in SERCA2a, reinforces the hypothesis 

that PKA-mediated signaling is acting to influence SERCA Ca2+-sensitivity since Ca50 was 

increased in the presence of forskolin and also in the presence of an activated form of the PKA 

catalytic subunit (i.e. A-PKA). Since our Western blot data indicated that enriched SERCA2a 

vesicles prepared from LV tissue contained PLN, it is likely that PKA-mediated PLN 

phosphorylation was responsible for the observed reduction in Ca50 in response to forskolin and 

A-PKA. In contrast to enriched SERCA2a vesicles, enriched SERCA1a vesicles prepared from 

WG, which did not contain PLN, did not respond to PKA activation by forskolin or A-PKA.  
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 Since PKA-dependent signaling did not alter Ca50 in the SOL, a series of treatments were 

designed to determine if the tissue-specific regulation of Ca50 in the SOL was influenced by a 

cAMP-dependent mechanism. To achieve this objective, samples were incubated in the 

presence of cAMP. Samples were also incubated with a combination of cAMP + PKA inhibitor 

KT5720 to determine if the response to cAMP would be modified by the inhibition of PKA, 

which would indicate that a non-PKA dependent-mechanism was involved. The rationale for 

these treatments was based on the knowledge of the tissue-specific protein expression patterns 

for PLN and SLN in the LV and SOL, respectively. Additionally, cAMP acutely influences 

SERCA kinetic properties by activating PKA and STK16-mediated phosphorylation processes 

for PLN and SLN, respectively (Gramolini et al., 2006). Therefore, by isolating the PKA-

dependent and the PKA-independent effects of cAMP, it may be possible to isolate the 

contribution of PKA and STK16 to the regulation of SERCA Ca2+-sensitivity in the LV and 

SOL, respectively.  

 As expected, cAMP reduced Ca50 in both the LV and the SOL (Figure 2.5, Panel E and F). 

Although the combined cAMP + KT5720 treatment did not alter SERCA kinetic properties in 

the LV or any of the fast-twitch skeletal muscles, it did reduce Ca50 in the SOL. Collectively, 

these data suggest that SERCA Ca2+-sensitivity in the LV is regulated by a cAMP-dependent 

PKA-mediated mechanism;  whereas in the SOL a cAMP-dependent mechanism that is not 

mediated by PKA signaling is influencing SERCA Ca2+-sensitivity. These data support the 

notion that SLN may regulate SERCA kinetic properties in skeletal muscle (Odermatt et al., 

1998), which would be consistent with the known SLN mRNA and protein expression for the 

LV and SOL in the rat (Vangheluwe et al., 2005). Nonetheless, the interpretation of these data 

should be put into perspective given our inability to assess the tissue-specific expression of 
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SLN protein. Additionally, our data does not rule out the possibility that protein kinases that do 

not include PKA or STK16, or proteins other than SLN, influenced the observed changes in 

SERCA Ca2+-sensitivity that occurred in response to cAMP-activation in the SOL. Even so, 

based on our observations demonstrating the effectiveness of EPI and cAMP, but not forskolin, 

to increase SERCA Ca2+-sensitivity in the SOL, in combination with the reported expression of 

SLN (Vangheluwe et al., 2005) and STK16 protein in this tissue, it is likely that STK16-

mediated SLN-phosphorylation processes are contributing, at least in part, to the regulation of 

SERCA Ca2+-sensitivity observed in the SOL.  

 Sarcolipin was originally proposed to be a regulator of SERCA1a function in fast-twitch 

skeletal muscle of the human and the rabbit (Odermatt et al., 1998). Therefore, it was 

unexpected that the EPI- and cAMP-treatments did not alter SERCA kinetic properties in the 

fast-twitch skeletal muscles. However, in contrast to other species, the expression of SLN 

protein in the rat appears to be limited to the atria and the slow-twitch skeletal muscles and is 

not expressed in the LV or the fast-twitch skeletal muscles (Vangheluwe et al., 2005). 

Phospholamban is also not expressed in the skeletal muscles of the rat. Therefore, of the two 

proteins known to regulate SERCA Ca2+-senstivity in response to β-adrenergic signaling, it 

appears that neither PLN nor SLN are expressed in the EDL, WG or RG muscles of the rat, 

which could account for absence of an effect of EPI and cAMP on SERCA kinetic properties in 

the fast-twitch skeletal muscles.  

 

Ca2+-dependent calmodulin kinase II regulation of SERCA kinetics 

 The main findings of the CaMKII signaling experiments conducted in this study indicate 

that a CaM-dependent mechanism reduced Ca50, without altering Vmax or nH in the LV (Figure 
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2.6). In contrast, CaM-treatment did not alter SERCA kinetic properties in the SOL or the fast-

twitch skeletal muscles. In general, our data are consistent with previous research 

demonstrating that CaMKII increases the Ca2+-sensitivity of SERCA2a, which most likely 

occurs as a result of CaMKII-mediated PLN phosphorylation in the LV (Hawkins et al., 1994; 

Hawkins et al., 1995; Odermatt et al., 1996; Xu & Narayanan, 2000) and that CaMKII does not 

alter SERCA kinetic properties in fast-twitch skeletal muscle (Hawkins et al., 1994; Xu & 

Narayanan, 2000). Our data do not support previous reports that have indicated that: 1) 

CaMKII-activation increases the Ca2+-sensitivity of SERCA in the SOL (Hawkins et al., 1995);  

and 2) CaMKII-activation increases the Vmax of SERCA2a in cardiac and slow-twitch skeletal 

muscles (Hawkins et al., 1994; Hawkins et al., 1995; Xu & Narayanan, 2000).  

 Species differences between the current study, in which used rats, and the studies 

completed by the Narayanan laboratory (Hawkins et al., 1994; Hawkins et al., 1995; Xu & 

Narayanan, 2000), which used rabbits, most likely account for the different results obtained 

with respect to Ca50 since PLN protein is not expressed in rat SOL, but is expressed in this 

tissue in the rabbit (Damiani et al., 2000; Vangheluwe et al., 2005). The tissue specific changes 

in SERCA Ca2+-sensitivity observed in the current study are also most likely explained by the 

tissue expression of PLN in the rat since this protein is expressed in the LV, but not the SOL or 

the fast-twitch skeletal muscles of the rat.  

 It is still controversial (Odermatt et al., 1996; Xu & Narayanan, 2000) whether CaMKII 

can increase the Vmax of SERCA2a by directly phosphorylating Ser38 within the enzyme 

(Hawkins et al., 1994). However, this possibility appears to be strongly supported by evidence 

that indicates that a CaM binding peptide can reduce the Vmax and relative level of SERCA2a 

Ser38 phosphorylation in rabbit cardiac tissue (Xu & Narayanan, 2000). Nonetheless, our data 
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does not support this possibility since CaMKII did not alter Vmax in crude muscle homogenates 

or enriched SERCA2a vesicles prepared from the LV. Our data does support the findings of 

Odermatt et al. (Odermatt et al., 1996) showing no effect of CaM on the Vmax of SERCA2a. It 

is possible that methodological differences between studies can account for the contradictory 

observations made regarding the effects of CaM on Vmax. Odermatt et al. (Odermatt et al., 

1996) used a HEK-293 cell line that expressed the rabbit SERCA2a clone;  whereas, the 

Narayanan laboratory (Hawkins et al., 1994; Hawkins et al., 1995; Xu & Narayanan, 2000) 

used isolated SR vesicles enriched in SERCA2a, prepared from the rabbit heart. Based on the 

known differences in SR protein expression and regulation between the rat and the rabbit 

(Damiani et al., 2000; Vangheluwe et al., 2005), it is likely that species differences contributed 

to the observed lack of CaM-dependent changes in SERCA2a Vmax.  

 In order to determine if the tissue-specific changes in SERCA Ca2+-sensitivity were 

influenced by the expression of different CaMKII isoforms (i.e. α, β, δ and γ) between the LV 

and the skeletal muscles, we characterized the subunit composition pattern of CaMKII by 

Western blot techniques. As expected, the expression pattern of the various CaMKII isoforms 

was different between the LV and the skeletal muscles sampled. Specifically, our data indicated 

that CaMKII β was the major isoform expressed in both the LV and the skeletal muscles, with 

the expression of this subunit being higher in the LV compared to the skeletal muscles. This 

expression pattern is consistent with the proposed coordinated expression of CaMKIIβ with 

SERCA2a in cardiac and slow-twitch muscle (Sacchetto et al., 2000). Our data also indicated 

that CaMKIIα protein expression is low in the LV and the SOL but is significantly higher in 

the fast-twitch skeletal muscles. Given these differences in CaMKII isoform expression 

between tissues, it is possible that our results can be explained by differences in CaMKIIα and  
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 β subunits. Further research is needed to identify if the various CaMKII isoforms differentially 

influence SERCA kinetic properties in the LV and skeletal muscles. 

 

PKC regulation of SERCA kinetics  

 The main findings of the PKC signaling experiments indicate that the synthetic phorbol 

ester PMA negatively influenced SERCA kinetic properties in all tissues examined. Although 

PMA did not alter Vmax in the LV or SOL, it did reduce Vmax in the EDL, WG, and RG (Figure 

2.7). In addition, PMA depressed SERCA Ca2+-sensitivity, as indicated by a lower nH and 

higher Ca50, in all tissues examined.  

 Protein kinase C is expressed in many tissues (Nishizuka, 1986) and it is generally 

accepted that PKC signaling activates several intracellular processes that activate negative 

inotropic pathways in the heart and reduce contractility in skeletal muscle (Capogrossi et al., 

1990; Nicolas et al., 1998; Rogers et al., 1990). Our data supports the data of Rogers et al. 

(Rogers et al., 1990) and indicate that phorbol esters reduce SR Ca2+-transport kinetics in 

cardiac tissue. In contrast to Rogers et al. (Rogers et al., 1990), who found that phorbol esters 

were without effect on Ca50, our data demonstrate that PMA increased Ca50 in all tissues 

examined. Methodological differences between studies most likely account for the 

contradictory observations made in the previous study (Rogers et al., 1990) and the current 

study. For example, our data were collected using crude muscle homogenates and enriched SR 

vesicles prepared from the adult rat LV and skeletal muscles;  whereas Rogers et al (Rogers et 

al., 1990) utilized rat neonatal cardiomyocytes. This distinction is significant because neonatal 

cardiomyocytes contain significantly lower quantities of SR protein compared to adult 

cardiomyocytes. In addition, SERCA proteins are developmentally regulated, which may 



85  

 



86  

 account for the different responses observed between studies since the Ca50 of SERCA 

isoforms are different (Lytton et al., 1992). Differences in the analytical techniques used to 

characterize Ca2+-transport kinetics also may have contributed to the differences between 

studies. We have used a spectrophotometric assay to determine the hydrolytic activity of 

SERCA at 15 different Ca2+
f;  whereas, Rogers et al. (Rogers et al., 1990) used a 45Ca2+-

transport assay to assess Ca2+-transport kinetics into cardiomyocytes at 7 different Ca2+
f. In 

addition, we have calculated Ca50 based on the relationship between Ca2+
f and SERCA activity 

over a range of 0 to 100% Vmax;  whereas it was unclear how Rogers et al. (Rogers et al., 1990) 

calculated this parameter. Based on these methodical differences, it is likely that our 

assessment techniques may be better suited to detect changes in Ca2+-senstivity.  

 Rogers et al. (Rogers et al., 1990) have reported that two different phorbol esters (i.e. 

PDBu and TPA) effectively reduce SR Ca2+-uptake rates into cardiomyocytes, as assessed by 

45Ca2+-transport assay;  whereas, the biologically inactivated forms of these phorbol esters (i.e. 

α-PDBu, and α-TPA) did not alter SR Ca2+-uptake rates. Moreover, the inhibition of PKC 

signaling prior to addition of the phorbol esters to the cardiomyocytes prevented the phorbol-

induced reductions in SR Ca2+-transport. Collectively, these data indicate that SR Ca2+-

transport rates are reduced by phorbol esters and that the effects are mediated through PKC-

dependent signaling pathways.  

 A limitation of the current study was the inability to determine if the PMA-dependent 

changes in nH and Ca50 were mediated through a PKC dependent mechanism. We attempted to 

establish that the PMA-induced changes in SERCA kinetic properties occurred as a result of 

PKC-dependent signaling by incubating samples in the presence of the PKC inhibitor GFX. 

However, GFX did not prevent the PMA-dependent effects. In addition, we did not characterize 
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SERCA kinetic properties in the presence of a different PKC inhibitor or in the presence of the 

biologically inactivated form of PMA, which would have been beneficial since it would have 

established that the PMA was not directly responsible for the observed effects. Therefore, since 

GFX did not block the PMA-induced changes in SERCA kinetic properties in the current study, 

we cannot discount the possibility that the PMA-induced effects occurred independent of PKC 

signaling.  

 Although our data clearly indicated that PMA negatively influenced SERCA kinetic 

properties in all tissues examined, it is not yet clear what mechanism(s) are mediating this 

effect. Moreover, it is not clear why Vmax was not reduced by PMA in the LV and SOL, but 

was reduced in the fast twitch skeletal muscles examined. It is possible that differences in 

SERCA isoform expression may have contributed to the tissue-specific responses. This 

possibility is supported by our observations indicating that PMA did not alter the Vmax of 

enriched SR vesicles containing SERCA2a prepared from LV, but that it did reduce the Vmax of 

enriched SR vesicles containing SERCA1a prepared from WG. However, our data does not 

rule out the possibility that proteins other than SERCA may have contributed to the tissue-

specific responses observed. As an example, it has been demonstrated phorbol esters also 

influence the regulation of skeletal muscle glucose transport in a fibre-type specific manner 

(Wright et al., 2004).  

 The regulation of SERCA Ca2+-sensitivity in the LV is usually attributed to the regulation 

of PLN phosphorylation mechanisms or to changes in phospholamban pentamer: monomer 

ratio. Given that SERCA Ca2+-sensitivity was adversely affected in the LV, it is likely that PLN 

phosphorylation was attenuated in response to PMA-treatment. Indeed, this possibility does 

exist since PKC signaling is known to activate PP1 and PP2a (Liu & Brautigan, 2000; Ragolia 
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& Begum, 1997). Activation of PP1 and PP2 would reduce PLN-phosphorylation and would 

decrease SERCA Ca2+-sensitivity in the LV. Since PKC increases the phosphorylation of PLN 

on Ser10 (Tada et al., 1983; Iwasa & Hosey, 1984; Movsesian et al., 1984) in vitro, it is also 

possible that this site-specific phosphorylation process may have contributed to the observed 

reduction in SERCA Ca2+-senstivity. However, the physiological significance of PLN-Ser10 

phosphorylation is still controversial since it is known that this process may not occur in 

response to acute stimuli in vivo (Wegener et al., 1989). The changes in Ca50 in the LV might 

also be associated with changes in PLN pentamer: monomer ratio since an increase in PKC 

signaling may contribute to the formation of PLN monomers by altering phospholipid 

metabolism in membrane structures (Zhang et al., 2005). Although it would have been of value 

to characterize the proposed PLN mechanisms described here in LV tissue, it is important to 

note that PMA also adversely affected SERCA kinetic properties in tissues that do not express 

PLN (i.e. SOL, EDL, WG and RG). Based on this observation, we did not assess PLN 

phosphorylation or PLN pentamer:monomer ratio in this study. Nonetheless, it is apparent that 

further research is needed to identify the PKC-dependent mechanisms that regulate SERCA 

kinetic properties in the LV and skeletal muscles.  

 

Limitations 

 The results of this paper need to be put into perspective given the limitations of the 

experimental design. To assess the role of β-adrenergic, CaMKII and PKC signaling on the 

regulation of SERCA kinetic properties, samples were incubated in vitro in the presence and 

absence of various signaling pathway activators and/or inhibitors. This experimental approach 

assumed that the treatment conditions and concentrations selected would effectively activate 
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the targeted pathway through the in vivo signaling cascade. For example, by incubating tissue 

samples in the presence of EPI, it was assumed that the β-receptor signaling cascade was intact. 

As it turned out, this approach appears to have been successful since propranolol prevented the 

EPI-induced changes in Ca50 in the LV and SOL. In addition, the observation that Ca50 was 

altered in a similar manner by the cAMP-, forskolin-, A-PKA- and EPI-treatments supports the 

notion that the β-receptor signaling cascade was viable since these treatments influenced 

different aspects within the β-receptor signaling cascade. The utilization of a combination of 

pathway inhibitors and activators also supports the notion that our treatments were specific to 

the targeted pathways since propranolol, KT5720 and KN52 prevented the EPI-, forskolin-, and 

CaM-induced changes in Ca50 observed in the LV. In contrast, the inability of GFX to block the 

PMA-dependent changes in Vmax, nH and Ca50 limits the interpretation of our data since we 

cannot conclude that the effects of PMA were mediated through a PKC-dependent mechanism. 

 Another important issue that needs to be addressed is the amount of variability between 

similar treatments that were repeated and reported in different tables within this study. The 

major factor contributing to the variability between similar treatments was caused by the 

assessment of different samples (i.e. between sample variability) for each table plus analytical 

variability. The values presented on each table represent samples that were assayed using 

repeated measurements to determine treatment effects from a total of 7 different samples. In 

fact, a different group of 7 samples was used to generate the data for each data table (e.g. Table 

2.4 used samples #1 to #7;  whereas, Table 2.5 used samples #8 to #14). Although it would 

have been beneficial to analyze the same samples with each treatment, tissue limitations 

restricted the number of repeated measures that could be assessed. As a result of these tissue 
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limitations, a decision was made to characterize treatment effects by repeated measures to limit 

the amount of variability for this comparison in our experimental design. 

 Although our data indicate that treatments effects are generally consistent for Vmax and 

Ca50 between days, several discrepancies do exist for nH. For example, it is not clear why Table 

2.4 indicates that EPI increased nH by ~17% in the EDL when this effect was not observed in 

Table 2.5. Moreover, it is not clear why EPI did not influence nH in the LV on Table 2.4 but 

increased nH by 22% on Table 2.5. In general, nH in the LV were higher in the presence of CaM 

compared to KN62. However, it is not clear why nH was not altered by the CaM treatment, 

compared to Control, in the LV (Table 2.10). Moreover, it was unexpected that nH were ~10% 

lower in the presence of KN62 compared to both the Control and CaM treatment for the RG on 

Table 2.10. This effect of KN62 for the RG was not observed on Table 2.11.  The ~10% higher 

nH in the SOL on Table 2.11 was also unexpected since CaM was without effect on this 

property on Table 2.10. The lack of an effect of PMA on nH in the SOL on Table 2.13 was 

unexpected since PMA reduced this property in all other muscles and reduced nH by ~17% in 

this tissue on Table 2.14. Our data also indicate that the forskolin, cAMP and CaM treatments 

also created some discrepancies with respect to nH since this treatment was without effect in the 

LV homogenates but increased nH by 9, 20 and 20%, respectively, in SR vesicles enriched in 

SERCA2a. It is possible that the discrepancies could be explained by the different muscle 

homogenate samples used to generate the data for each table and by the protocol used to isolate 

SR vesicles from tissue homogenates. For example, differences in the level of stress (i.e. 

increased β-adrenergic signaling) between animals existed at the time of tissue sampling, which 

theoretically could alter the background activation of the various pathways examined and 

would alter the response of the tissue to treatment in vitro. 
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 The majority of discrepancies in our data involve the nH. It is possible that the analytical 

methods used to measure nH and Ca50 contributed to tendencies for this property to respond 

variably. For example, although nH and Ca50 values have been calculated using a non-linear 

regression curve fit and the dose-response relationship that is characterized by Equation 2.1, 

these properties are calculated using different segments of the substrate-activity curve. 

Specifically, nH is calculated using the data representing 10 to 90% Vmax;  whereas Ca50 is 

calculated for 0 to 100% Vmax. This measurement difference is utilized to minimize the amount 

of error when calculating nH since the extreme ends of the activity curve tend to contain a large 

amount of variability that may influence the slope describing the pCa-activity relationship 

representing the co-operative binding properties of the SERCA (Simonides & van Hardeveld, 

1990). As a result, it is possible that calculation differences contributed to the sensitivity of 

each property to change in response to small differences in the pCa-activity relationship. 

However, it is unlikely that this analytical difference could account for the discrepancies in nH 

observed in our data between repeated treatments. 

 

Summary 

 In summary, this is the first comprehensive study that has attempted to characterize the 

influence that β-adrenergic, CaMKII, and PKC signaling pathways have on the regulation of 

SERCA kinetic properties in the LV and in skeletal muscle of different oxidative potential and 

fibre type composition in the rat. Our results demonstrate that β-adrenergic, CaMKII and PKC 

signaling alter the kinetic properties of SERCA proteins in cardiac and skeletal muscles. In 

addition, the effects that each pathway exerts on regulation of SERCA kinetic properties appear 

to be tissue specific and unique to each pathway. As such, this study should serve as a catalyst 



92  

for future research designed to systematically isolate the potential mechanisms and proteins that 

might be involved in the regulation of SERCA kinetic properties in the various tissues.  
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Abstract 

 This study investigated the hypothesis that insulin (INS) signaling acutely regulates 

SERCA kinetic properties in cardiac and skeletal muscle. Crude muscle homogenates were 

prepared from soleus (SOL), extensor digitorum longus (EDL), the red portion of 

gastrocnemius (RG), the white portion of gastrocnemius (WG) and the left ventricle (LV) from 

a group of 28 male Sprague-Dawley rats (9 weeks of age;  mass = 280 ± 4 g). Purified SR 

vesicles enriched in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1a and SERCA2a 

were prepared using crude muscle homogenates from WG and LV, respectively. Samples were 

incubated in vitro for 10 min with 100 nM insulin (INS), 80 µM AGL 2263, 100 nM INS + 80 

µM AGL 2263, or 30 ng of a commercially available activated form of the insulin receptor (A-

INS-R). After incubation, samples were assayed spectrophotometrically to characterize three 

kinetic properties, namely, maximal activity (Vmax), Hill coefficient (nH), which is defined as 

the relationship between SERCA activity and Ca2+
f for 10 to 90% Vmax and is an indication of 

the co-operative binding behaviour of SERCA for Ca2+, and Ca50, which is defined as the Ca2+
f 

required to activate the enzyme to 50% Vmax. Compared to controls, 100 nM INS and A-INS-R 

did not alter Vmax but increased (P<0.05) SERCA Ca2+-sensitivity, as indicated by an increased 

nH and reduced Ca50 in both crude muscle homogenates and enriched SR vesicles. Co-

immunoprecipitation experiments indicated that both 100 nM INS and 30 ng A-INS-R 

signaling promoted the physical interaction of insulin receptor substrates (IRS)-1 and 2 with 

SERCA in crude muscle homogenates from WG and LV tissues. Changes in Ca50 and nH 

cannot be explained by alterations to the SERCA nucleotide or Ca2+-binding domain since 

fluorescein isothiocyanate (FITC) and N-cyclohexyl-N'- (dimethylamino-alpha-naphthyl) 

carbodiimide (NCD-4) binding capacity were not altered when samples were incubated with 
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100 nM INS or 30 ng A-INS-R. Changes in SERCA Ca2+-sensitivity also cannot be explained 

by changes in phospholamban pentamer: monomer ratio, or by changes to Ser16 or Thr17 

phosphorylation within phospholamban since these properties were not altered by INS or by A-

INS-R. Collectively, these results indicate that insulin signaling promotes the binding of IRS 

with SERCA proteins in cardiac and skeletal muscle, which may contribute, at least in part, to 

the observed increases in SERCA Ca2+-sensitivity in this study. 
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Introduction 

 Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) proteins are involved in the 

regulation of intracellular free Ca2+-concentrations (Ca2+
f) by sequestering cytosolic Ca2+ into 

lumen of the sarcoplasmic reticulum (SR) (MacLennan et al., 1997). Although SERCA 

proteins are ubiquitously expressed in all tissues, the abundance and isoform type depend on 

the type of tissue. In skeletal muscle, SERCA1a is primarily expressed in fast-twitch skeletal 

muscle;  whereas cardiac and slow-twitch skeletal muscles are known to express large amounts 

of SERCA2a (Wu & Lytton, 1993). This muscle specific expression pattern suggests that these 

isoforms are specialized for demands related to the contractile properties of the cell. The 

regulation of intracellular Ca2+
f-transients during contractile activity by SERCA is 

accomplished by intracellular signaling pathways and endogenous modulators that regulate the 

functional parameters of the enzyme, such as maximal enzyme activity (Vmax) or the sensitivity 

of the enzyme for Ca2+, which can be characterized by the Hill coefficient (nH), defined as the 

relationship between SERCA activity and Ca2+
f for 10 to 90% Vmax, and the Ca50, defined as 

the Ca2+
f required to activate the enzyme to 50% Vmax.  

 Phospholamban (PLN) and sarcolipin (SLN) are recognized as key regulators of SERCA 

function and muscle contractility (Gramolini et al., 2006). In the rat, PLN is predominately 

expressed in cardiac but not skeletal muscle (Damiani et al., 2000), whereas SLN is primarily 

expressed in the atria and in skeletal muscle (Damiani et al., 2000). These proteins inhibit 

SERCA Ca2+-sensitivity by directly interacting with SERCA in their unphosphorylated forms. 

Phosphorylation of PLN and SLN by protein kinases promotes the dissociation of PLN and 

SLN from SERCA and enhances muscle relaxation and contractility by restoring SERCA Ca2+-
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sensitivity and increasing the rate of Ca2+-sequestration into the SR at submaximal Ca2+
f 

(Kranias, 1985; Wegener et al., 1989).  

 Increasing evidence (James et al., 1989; Hartell et al., 2005) indicates that insulin signaling 

regulates a variety of cellular process associated with energy metabolism, substrate utilization 

and storage, muscle contractility, protein expression and nitric oxide production. Binding of 

insulin (INS) to the insulin receptor results in an up-regulation of insulin tyrosine kinase (INS-

TK) activity, which initiates the insulin signaling cascade by phosphorylating various insulin 

receptor substrate (IRS) proteins (Cheatham & Kahn, 1995; Sun et al., 1991; Sun et al., 1995). 

Proteins in the IRS family (e.g. IRS-1 and IRS-2) play critical roles in insulin signaling since 

they are known to regulate the functional properties of target proteins by directly binding to 

regions that contain SH2 (src homology 2) domains (White & Kahn, 1994; Korn et al., 1987; 

Yamauchi et al., 1995). For example, binding of IRS proteins to phosphatidyl inositol 3 kinase 

(PI3K) is known to result in the translocation of glucose transporters (i.e. Glut-4) to the 

sarcolemmal membrane and to acutely regulate glycogen synthase activity within muscle 

(Cheatham & Kahn, 1995; White & Kahn, 1994).  

Insulin receptor substrate proteins can also bind with SERCA proteins in cardiac and 

skeletal muscle (Algenstaedt et al., 1997) and also in pancreatic β-cells (Borge & Wolf, 2003; 

Xu et al., 2000). Although SERCA proteins do not contain the traditional SH2 domain, the 

binding of IRS proteins to SERCA appears to be accomplished through IRS-binding to an 

amino acid sequence that is similar to the traditional SH2 domain (Algenstaedt et al., 1997).  

Since the interaction of IRS proteins with proteins that contain the traditional SH2 domain are 

known to acutely modify the functional properties of the target protein, it is likely that the 

interaction of IRS with SERCA would result in the altered regulation of SERCA functional 
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properties as well. However, to our knowledge, the influence that IRS binding exerts on the 

functional properties of SERCA1a and SERCA2a in skeletal and cardiac muscle remains 

unknown. 

It is possible that insulin signaling may acutely regulate SERCA function through several 

different intracellular processes (Figure 3.1). One likely process is via the direct interaction of 

IRS proteins with SERCA, which could alter the Vmax or the sensitivity of the enzyme for Ca2+ 

(nH or Ca50). Insulin signaling may also alter SERCA Ca2+-sensitivity by influencing PLN-

Thr17 phosphorylation since insulin is known to increase CaMKII activity in slow-twitch 

cardiac and skeletal muscle (Brozinick, Jr. et al., 1999). Insulin signaling may also influence 

SERCA function through the regulation of SLN phosphorylation processes. However, this 

possibility has not yet been examined. Insulin signaling may also reduce SERCA function by 

reducing PLN or SLN phosphorylation by activating protein phosphatase-1 (PP-1) and protein 

phosphatase-2 (PP-2) in skeletal muscle (Liu & Brautigan, 2000; Ragolia & Begum, 1997), 

thereby promoting the interaction of PLN, SLN and SERCA proteins, which would increase 

Ca50. Based on a recent report (Yu et al., 2006), it also appears possible that acute AKT 

signaling may influence SERCA kinetics through a mechanism that is not yet identified. 

 Skeletal muscle fibres from rats are generally classified into four major categories based on 

myosin heavy chain composition: Type I (i.e. slow twitch oxidative), Type IIA (i.e. fast twitch, 

oxidative), Type IIB and Type IIX (i.e. fast twitch, glycolytic) (Bottinelli et al., 1994). 

Although the general organization of the various fibre types is similar, the tissue specific 

expression of protein isoforms contributes to the unique metabolic and biochemical 

characteristics of the different skeletal muscle fibre types. As an example, differences in 

SERCA1a and SERCA2a isoform expression between fast-twitch and slow-twitch skeletal and  
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cardiac muscle fibres (Wu & Lytton, 1993) as well as differences in the regulatory control of 

SERCA kinetic properties are known to exist (Tupling, 2004). Additionally, fibre type-specific 

differences exist for insulin signaling (Song et al., 1999; Bonen et al., 1981; James et al., 

1985). Specifically, Type 1 fibres exhibit a higher sensitivity to insulin (Song et al., 1999) as a 

result of greater insulin receptor binding capacity (Bonen et al., 1981) and increased INS-TK 

activity, compared to Type II fibres (James et al., 1986). However, the fibre type-specific 

differences in insulin-sensitivity are not related to differences in insulin-receptor, IRS-1 or IRS-

2 protein content since the expression of these proteins appears to be similar in Type I and 

Type II muscle fibres (Song et al., 1999).  

The purpose of this study was to investigate the role of insulin signaling on the intrinsic 

regulation of SERCA kinetic properties in the left ventricle and skeletal muscles of different 

fibre type composition and oxidative potential. We have hypothesized that insulin signaling 

will acutely alter Vmax and Ca2+-sensitivity (nH and Ca50) in crude muscle homogenates and 

enriched SR vesicles prepared from rat cardiac and skeletal muscles. Moreover, we have also 

hypothesized that insulin signaling will promote the interaction of IRS proteins (i.e. IRS-1 and 

IRS-2) with SERCA1a and SERCA2a in an insulin-dependent manner regardless of tissue type 

(i.e. left ventricle and skeletal muscle). Furthermore, we have hypothesized that the insulin-

induced changes in SERCA2a Ca2+-sensitivity in LV muscle would be associated with changes 

in the PLN pentamer: monomer ratio and changes in the PLN Ser16 or Thr17 phosphorylation. 

Given the intrinsic differences in SERCA isoform expression and insulin-sensitivity between 

tissues, it is possible that the insulin-induced changes in SERCA kinetic properties would be 

greater for slow-twitch cardiac and skeletal muscles, compared to fast-twitch skeletal muscle. 
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Research Design & Methods 

Materials 

 Insulin (INS), an activated form of protein kinase A (A-PKA), and bovine brain 

calmodulin (CaM) were purchased from Sigma (Oakville, ON, Canada). The INS-TK inhibitors 

AGL 2263 and genistein were purchased from Calbiochem (San Diego, CA, USA). An 

activated form of the insulin receptor (A-INS-R) was purchased from Upstate Biotechnology 

(Charlottesville, VA, USA). The fluorescent indicators N-cyclohexyl-N'- (dimethylamino-

alpha-naphthyl) carbodiimide (NCD-4) and fluorescein isothiocyanate (FITC), along with anti-

fluorescein/Oregon Green monoclonal antibody (A-6421) were purchased from Molecular 

Probes (Burlington, ON, Canada). Dimethyl-sulfoxide, 0.001 M HCl and ethanol were used as 

solvents for these chemicals as required. Mouse-anti SERCA2a monoclonal (MA3-919) 

antibody was purchased from Affinity Bioreagents (Golden, CO, USA). Mouse anti-SERCA1a 

monoclonal (A52) antibody was a gift from D. MacLennan (Clarke et al., 1990). Rabbit anti-

IRS-1 (I7153) and anti-IRS-2 (I7278) polyclonal antibodies were purchased from Sigma 

(Oakville, ON, Canada). Co-immunoprecipitation assays were completed using a Seize-X 

Protein G immunoprecipitation kit purchased from Pierce (Rockford, IL, USA). Goat anti-PLN 

polyclonal (sc-21923), goat anti-Ser16 phosphorylated PLN polyclonal (sc-12963), and goat 

anti-Thr17 phosphorylated PLN polyclonal (sc-21923) antibodies were purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA, USA). 

  

Animals and sample preparation 

 Untrained male Sprague-Dawley rats (9 weeks of age;  n=28;  mass = 280 ± 4 g) were used 

to collect tissue for analysis. Specific details of the tissue collection procedures have been 
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described earlier (Chapter 2, Methods). In general, prior to muscle sampling, rats were 

anesthetized with pentobarbital sodium (6 mg/100 g body wt). Crude muscle homogenates 

were prepared from soleus (SOL), extensor digitorum longus (EDL), the red portion of 

gastrocnemius (RG), the white portion of gastrocnemius (WG) and the left ventricle (LV) from 

each animal. Purified SR vesicles enriched in SERCA1a and SERCA2a were prepared using 

crude muscle homogenates from WG and LV, respectively, according to procedures previously 

described (Chapter 2, Methods). The Animal Care Committee of the University of Waterloo 

approved all protocols prior to the start the experiment. 

 
Experimental design 

 To assess the role of insulin signaling in the regulation of Ca2+-dependent SERCA kinetics, 

crude muscle homogenates and purified SR vesicles were incubated in vitro in the presence and 

absence of various insulin signaling pathway activators and/or inhibitors. Three SERCA kinetic 

properties have been assessed, namely, the maximal SERCA activity (Vmax), the Hill coefficient 

(nH), which is defined as the relationship between SERCA activity and Ca2+
f for 10 to 90% 

Vmax and is an indication of the co-operative binding behaviour of SERCA for Ca2+, and the 

Ca50, which is defined as the Ca2+
f at 50% Vmax. For crude muscle homogenates and enriched 

SR vesicles, three conditions were assayed simultaneously for each sample as indicated in 

Table 3.1. Control samples were incubated in the absence of any activators or inhibitors and 

were measured concurrently with two other conditions. Once added, activators and/or inhibitors 

remained present for the duration of the experiment. Specific conditions tested using crude 

muscle homogenates included 100 nM INS, 1000 nM INS, 80 µM AGL 2263, and 100 nM 

INS+80 µM AGL 2263. Homogenates and enriched SR vesicles from LV and WG tissue were 

also analyzed following incubation of samples with 30 ng (~1.2 IU) of A-INS-R or 100 nM  
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INS. Insulin concentrations were selected based on previous publications that have 

demonstrated that a 10 min incubation period with 100 nM INS does activate the insulin 

signaling pathway in skeletal muscle (Wegener & Jones, 1984). The 1000 nM INS treatment 

was used to establish that the lower dose was sufficient. The concentration of AGL 2263 was 

selected based on the median inhibition concentration (IC50) of 40 µM for the insulin-receptor 

as indicated by the information data provided by Calbiochem. The total amount of A-INS-R 

protein loaded was selected based on the information provided by Upstate Biotechnology. 

 

SDS-PAGE and Western blotting 

 Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was performed 

to separate and isolate proteins by molecular weight. Details describing the specific properties 

for Western blotting protocols in this study have been described in Table 3.2. In brief, 5 to 50 

µg of protein was loaded for SDS-PAGE, with the quantity being dependent on the protein 

concentration required for each specific antibody. All samples were analyzed in duplicate.  A 

7% polyacrylamide SDS gel (Mini-PROTEAN II;  Bio-Rad), with a 3.75% stacking gel was 

used to assess SERCA1a, SERCA2a and FITC-binding content. Insulin receptor substrate-1 

and IRS-2 samples were analyzed in duplicate on 5% polyacrylamide SDS gels with a 3.75% 

stacking gel.  

 To assess PLN pentamer: monomer ratios, purified SERCA2a vesicles were prepared and 

assessed using a PLN antibody (L15) by comparing the 25 kDa band in non-boiled samples 

(which represent PLN pentamers) to the 5 kDa band in samples that were boiled for 10 min 

(which represents total PLN monomers). Samples were boiled to disrupt PLN pentamer 

interactions, thereby causing PLN to exist in the monomeric form (Wegener & Jones, 1984).  
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Site specific PLN phosphorylation was assessed using the PLN phosphorylation specific 

antibodies sc-12963 and sc-17024 for the Ser16 and Thr17 phosphorylated forms of PLN, 

respectively. Phospholamban (sc-21923) and the phosphorylated forms of PLN (i.e. PLN-Ser16 

and PLN-Thr17) were analyzed using non-boiled samples loaded onto a 15% polyacrylamide 

SDS gel with a 3.75% stacking gel.  

 To confirm that the site-specific PLN antibodies were able to detect changes in Ser16 and 

Thr17 phosphorylation, two additional conditions were assessed. The first condition incubated 

enriched SERCA2a vesicles prepared from LV homogenates for 10 min in 1 mg A-PKA and 

confirmed that PKA-dependent phosphorylation processes mediated Ser16 phosphorylation. 

The second condition incubated SERCA2a vesicles for 10 min with 15 µg CaM and 3.5 µM 

Ca2+ and confirmed that Thr17 phosphorylation is mediated through CaMKII pathways. 

Phosphorylation levels were determined by quantifying the optical density of bands at 25 kDa, 

since PKA and CaMKII can phosphorylate PLN pentamers (Damiani et al., 2000). 

Quantification of the ~ 10 kDa band was also completed, but has not been reported since no 

changes in the phosphorylation level of the ~ 10 kDa band was observed during any 

experimental condition in this study. 

 For each antibody, the linearity of progressive increases in protein content was established 

before any experiments were conducted (data not shown). Secondary antibodies were specific 

to the species required for each primary antibody, as indicated on the information sheet 

provided by the suppliers and was conjugated to horseradish peroxidase. Relative protein levels 

were determined by using a bio imaging system and the GeneSnap software (Syngene). Values 

were normalized to an internal standard and expressed as % of standard. When direct 

comparisons were made between treatment conditions, values were normalized to control 
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samples and expressed as % of control. All samples were analyzed in duplicate and on different 

gels.  

 

SERCA activity assay 

 Measurement of SERCA activity was made using crude muscle homogenates (~5-30 µL 

per 5 mL cocktail buffer) and enriched SERCA1a (~2 µL per 5 mL cocktail buffer) and 

SERCA2a (~15 µL per 5 mL cocktail buffer) vesicles. Calcium-dependent SERCA activity was 

measured using a spectrophotometric assay originally developed by Simonides and van 

Hardeveld (Simonides & van Hardeveld, 1990), which has been modified for use on a 

spectrophotometeric plate reader (SPECTRAmax Plus;  Molecular Devices) by TA Duhamel 

(unpublished).  Specific assay protocols for determination of Ca2+-dependent SERCA activity 

have been described earlier (Chapter 2, Methods). No alterations to the assay protocol were 

made. Three SERCA kinetic properties have been characterized, namely the Vmax, nH, and Ca50.  

 

Co-immunoprecipitation of SERCA with IRS proteins 

 To determine if IRS proteins bind to SERCA proteins in an insulin-stimulated manner, co-

immunoprecipitation assays were conducted using WG and LV crude muscle homogenates 

(~5 mg protein/mL) according to the procedures detailed in the Pierce Seize-X Protein G co-

immunoprecipitation kit. Prior to co-immunoprecipitation, samples were incubated in ATPase 

cocktail buffer for 10 min in the presence of 100 nM INS or 30 ng of A-INS-R. An additional 

aliquot of each sample, which contained no INS or A-INS-R served as a control. The 

incubation medium contained 200 mM KCl, 20 mM HEPES, 15 mM MgCl2 10 mM NaN3, 10 

mM PEP, 5 mM ATP, 1 mM EGTA and 3.5 µM Ca2+. Following incubation, samples were 
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diluted (1:1) in Tween 20 buffer, which contained 40 mM HEPES-NaOH, 300 mM NaCl, 

2 mM EDTA, 4 mM phenylmethylsulfonyl fluoride (PMSF), 1% Tween 20, pH 7.5. Samples 

were then vortexed for 60 s and centrifuged in a Beckman GS-15R centrifuge with a F2402 

rotor for 30 min at 16000 g (~14900 rpm). The supernatants were extracted, diluted (1:1) with 

Pierce binding/wash buffer and loaded (400 µL) into Pierce spin-cups that contained Protein G 

cross-linked with SERCA specific antibodies. Samples were then mixed by rotation and 

incubated in ATPase cocktail buffer for 6 h at 25 oC. For WG samples, the co-

immunoprecipitation antibody cross-linked to Protein G was anti-SERCA1a (100 µg A52), the 

predominant SERCA isoform expressed in rat WG. For LV samples, anti-SERCA2a (85 µg 

MA3-919) was utilized as the co-immunoprecipitation antibody since SERCA2a is the 

principal isoform expressed in rat cardiac tissue. Following the elution of antigens from the 

cross-linked co-immunoprecipitation antibody, samples were loaded onto 5% polyacrylamide 

gels, and proteins were separated using SDS-PAGE. Detection of IRS-1 and IRS-2 proteins was 

completed using 50 µL of sample eluted from the cross-linked antibody by Western blot 

procedures using anti-IRS-1 (I7153) and anti-IRS-2 (I7278) antibodies according to the 

protocols described earlier.   

 

FITC binding capacity  

 The fluorescent probe FITC was used to determine if IRS-binding with SERCA occurs in 

the region of the SERCA nucleotide-binding domain (Champeil et al., 1988). Samples (250 µg 

of enriched SERCA1a and SERCA2a vesicles) were incubated in ATPase cocktail buffer for 10 

min with 100 nM INS or 30 ng A-INS-R, and prepared for FITC labeling by adding 7.5 mL of 

wash buffer to each sample. Wash buffer contained (pH 7.5) 5 mM HEPES, 0.2 mM PMSF, 
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and 0.2% NaN3. Each sample was then centrifuged at 23400 rpm for 15 min at 4oC. Following 

centrifugation, the pellets for each sample were resuspended in wash buffer plus 2.5 µM FITC 

(pH 8.8) and mixed by inversion in darkness for 20 min at 25°C. To quantify the amount of 

FITC binding, Western blot techniques were completed according to the methods described by 

Tupling et al. (Tupling et al., 2004). All samples were analyzed in duplicate and on different 

gels.  

 

NCD-4 binding capacity  

 The fluorescent probe NCD-4 was used to determine if IRS-binding with SERCA occurs in 

the region of the SERCA Ca2+-binding domain (Lalonde et al., 1991). NCD-4 labeling was 

measured using a similar protocol as that described for FITC, with several minor alterations. 

Specifically, NCD-4 labeling was achieved by mixing enriched SERCA1a and SERCA2a 

vesicles with wash buffer plus 150 µM NCD-4 (pH 6.2) in darkness for 3 h at 25°C (Lalonde et 

al., 1991). To quantify the amount of NCD-4 binding, 200 µL aliquots from each sample were 

loaded in triplicate onto a black plate and read using a spectrofluorometric plate reader  

(SPECTRAmax Gemini XS;  Molecular Devices). To assess NCD-4 fluorescence, an excitation 

wavelength of 340 nm was utilized and NCD-4 emission spectra were recorded using 1 nm 

increments with a wavelength range between 400 to 430 nm.  

 

Statistical Analyses 

 Data are presented as means ± S.E. A one-way analysis of variance (ANOVA;  one 

repeated measure) was utilized to compare differences between the different treatments. Where 
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significant differences were found, Neuman-Kuels post hoc procedures were used to compare 

specific means. Significance was accepted at P<0.05. 

 

Results 

SDS-PAGE and Western blotting 

 The characterization of the tissue specific expression patterns of SERCA1a, SERCA2a and 

PLN were described in earlier (Chapter 2, Results). Our findings, support previous literature 

showing SERCA1a is expressed in skeletal muscle (i.e. SOL, EDL, RG, and WG) tissues, but 

is not expressed in cardiac (i.e. LV) tissue;  while SERCA2a is expressed in LV and SOL 

tissues, but not EDL, RG, or WG (Table 3.3). Our observations also support previous literature 

(Damiani et al., 2000) demonstrating that PLN protein is expressed in rat cardiac tissue (i.e. 

LV) but not skeletal muscle (i.e. SOL, EDL, RG and WG). The tissue-specific expression of 

SERCA isoforms and PLN were not reassessed since the tissue was obtained from the same 

group of animals (n=28) for both studies. As indicated previously (Chapter 2), the 

quantification of SLN protein content was not attempted since an anti-SLN antibody was not 

available. 

 It was important to characterize the tissue specific expression of IRS proteins in this study 

since it has been reported that IRS proteins can interact with SERCA in response to insulin-

stimulation (Algenstaedt et al., 1997). Western blot data collected using cardiac and skeletal 

muscle homogenates indicated that IRS-1 protein contents were similar in LV, SOL, EDL, RG 

and WG tissues (Table 3.3). Additionally, it appears that all tissues also expressed IRS-2;  

however, the expression of IRS-2 was ~5-6 fold higher in LV compared to SOL, EDL, RG and 

WG. Enrichment of SERCA1a vesicles from the WG caused a ~3 fold increase in IRS-1  
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content compared to WG homogenates. In contrast, enrichment of SERCA2a vesicles from the 

LV was associated with only low amounts (~17%) of IRS-1 protein, compared to the IRS-1 

content in homogenates. Western blot analysis could not detect IRS-2 proteins in purified 

SERCA1a or SERCA2a vesicles.  

 

Insulin regulation of SERCA activity 

 To determine the effects of insulin signaling on SERCA function, Ca2+-dependent SERCA 

activity was measured using crude muscle homogenates that were incubated in the presence of 

100 or 1000 nM INS for 10 min (Table 3.4). Insulin treatment did not alter Vmax in any tissue. 

However, 100 nM INS increased nH and reduced Ca50 in LV, SOL, EDL, WG and RG. 

Compared to control samples, 100 nM INS increased nH by 13, 15, 25, 16, and 15% and 

reduced Ca50 by 12, 11, 15, 10 and 8% in LV, SOL, EDL, WG, and RG, respectively. Even 

greater increases in nH and reductions in Ca50 were observed when samples were incubated 

with 1000 nM INS in LV, SOL, EDL, and WG, but not RG. 

 To determine if the changes in SERCA function were mediated by activation of INS-TK 

dependent mechanisms, experiments were performed using several combinations of insulin or 

the INS-TK inhibitor AGL 2263 (Table 3.5 and Table 3.6). Kinetic data from this series of 

experiments confirmed that 100 nM INS, compared to control values, increased nH and reduced 

Ca50 without altering Vmax in all muscles studied. The magnitude of change observed following 

the incubation of samples with 100 nM INS, compared to control samples, ranged between 7-

19% for nH and between 29-45% for Ca50. Maximal SERCA activity was not altered by 80 µM 

AGL 2263. However, incubation of crude muscle homogenates with AGL 2263, compared to 

Control, reduced nH by 11, 13, and 9% in LV, SOL, and EDL, respectively. Additionally, the 
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AGL 2263 also reduced Ca50 by 33, 38, 20, 33 and 34% in LV, SOL, EDL, WG and RG, 

respectively. Insulin treatment increased nH in all muscles, compared to AGL 2263. The 

elevations amounted to 31, 24, 26, 11 and 29% in LV, SOL, EDL, WG and RG, respectively. 

In contrast to nH, Ca50 was altered by INS, compared to AGL 2263, only in EDL tissue. In this 

tissue, Ca50 was 11% lower during INS treatment compared with AGL 2263. 

 The next series of conditions were designed to determine if 80 µM AGL 2263 was able to 

offset the insulin-stimulated changes in SERCA function. In this series of conditions, samples 

were incubated with 100 nM INS, 80 µM AGL 2263 or 80 µM AGL 2263 + 100 nM INS 

(Table 3.6). A control sample was not included in this series of experiments. Maximal SERCA 

activity was not different between any of these conditions, which supports our earlier 

observation that 100 nM INS and 80 µM AGL do not alter this property. As expected, the AGL 

2263 treatment reduced nH by 22, 41, 40, 51, and 40% in LV, SOL, EDL, WG, and RG, 

respectively, compared to the INS treatment. Our data also indicates that AGL 2263 treatment, 

compared to INS treatment, did not result in differences in Ca50 in LV or SOL, but decreased 

Ca50 by 15, 14, and 10% in EDL, WG and RG tissues, respectively.  This effect was not 

observed in our previous experiment when comparisons were made between 100 nM INS and 

80 µM AGL 2263.  

 Hill coefficients were higher (~30%) in all tissues during the combined AGL 2263 + INS 

treatment, compared to the AGL 2263 treatment (Table 3.6). In contrast, Ca50 was reduced by 

15% in LV during the combined AGL 2263 + INS treatment, compared to the AGL 2263 

treatment, but was not different between these conditions in any other tissue. These data 

suggest that AGL 2263 did not completely block the insulin-induced alterations in Ca2+-

sensitivity. However it does appear that AGL 2263 is partially inhibiting the insulin-induced 
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changes in Ca2+-sensitivity since nH were ~11% lower during the combined AGL 2263 + INS 

treatment, compared to the INS treatment, in SOL and EDL. Unexpectedly, Ca50 values in all 

muscles except the SOL were lower during the combined AGL 2263 + INS treatment, 

compared to the INS treatment. 

 Since our insulin treatment data indicated that SERCA Ca2+-sensitivity is modified in the 

presence of insulin, another series of conditions were completed to determine if insulin or if 

activation of the insulin signaling pathway was responsible for the increased SERCA Ca2+-

sensitivity observed. In this series of conditions, crude muscle homogenates and SR vesicles 

enriched in SERCA1a and SERCA2a from the WG and LV, respectively, were incubated with 

30 ng of an activated form of the insulin-receptor (A-INS-R) or 100 nM INS for 10 min (Table 

3.7, Figure 3.2). Incubation of samples with 30 ng A-INS-R increased nH by 12 and 17% in LV 

and WG homogenates, but had no effect on nH in enriched SERCA2a or SERCA1a vesicles 

prepared from the LV and WG, respectively. In contrast, 100 nM INS increased nH in all 

tissues. The percent increase amounted to 17, 19, 35 and 25% in LV homogenates, enriched 

SERCA2a vesicles prepared from LV, WG homogenates, and enriched SERCA1a vesicles 

prepared from WG, respectively. In contrast to the tissue-specific effect of the A-INS-R and 

INS treatments on nH, both treatments reduced Ca50 in all tissues studied. When comparisons 

were made between Control samples and A-INS-R for Ca50, reductions of 23, 24, 8 and 21% 

were observed in LV homogenate, enriched SERCA2a vesicles prepared from the LV, WG 

homogenates, and enriched SERCA1a vesicles prepared from the WG, respectively. 

Reductions in Ca50 were greater with the INS treatment compared to A-INS-R.  
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Co-immunoprecipitation of SERCA with IRS proteins 

 To determine if insulin signaling promoted the co-localization of IRS proteins with 

SERCA proteins, co-immunoprecipitation assays were conducted using crude muscle 

homogenates prepared from WG and LV. Western blot data indicated that both IRS-1 and IRS-

2 physically interacted with SERCA1a in WG homogenates during both the 30 ng A-INS-R 

treatment and the 100 nM INS treatment (Figure 3.3). Compared to control, A-INS-R increased 

the binding of SERCA1a with IRS-1 and IRS-2 by ~ 25 and 400%, respectively in WG 

homogenates;  whereas, INS treatment increased the binding of SERCA1a with IRS-1 and IRS-

2 by ~75 and 1000%, respectively, in WG homogenates. Co-immunoprecipitation assays also 

confirmed that both the A-INS-R and INS treatments did increase the interaction of IRS-1 and 

IRS-2 with SERCA2a in LV homogenates (Figure 3.4). Compared to control, A-INS-R 

increased the binding of SERCA2a with IRS-1 and IRS-2 by ~300%;  whereas, the INS 

treatment increased the binding of SERCA2a with IRS-1 and IRS-2 by ~400 and 450%, 

respectively, in LV homogenates.  

 

FITC binding capacity  

 To determine if the binding of IRS proteins occurs in the region of the SERCA nucleotide-

binding domain, FITC binding capacity was assessed in SR vesicles enriched with SERCA1a 

prepared from the WG and SERCA2a prepared from the LV following incubation of vesicles 

with 30 ng A-INS-R or 100 nM INS. Western blot data indicate that FITC binding was not 

altered by incubation of SERCA1a or SERCA2a vesicles with 30 ng A-INS-R or 100 nM INS  
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(Figure 3.5). These data suggest that the interaction between IRS and SERCA proteins does not 

occur in the region of the SERCA nucleotide-binding site.  

 

NCD-4 binding capacity  

 To determine if the binding of IRS proteins occurs in the region of the SERCA Ca2+-

binding domain, NCD-4 binding capacity was assessed in SR vesicles enriched with SERCA1a 

and SERCA2a following incubation of vesicles with 30 ng A-INS-R or 100 nM INS. The data 

indicate that NCD-4 binding is not altered by 30 ng A-INS-R or 100 nM INS (Figure 3.6).  

 

Phospholamban status 

 Phospholamban is an endogenous SERCA2a modulator that is known to influence Ca2+-

sensitivity. In rats, PLN is expressed in the LV but not in skeletal muscle (Damiani et al., 

2000). To determine if PLN is contributing to the insulin-dependent increases in SR Ca2+-

sensitivity  (i.e. nH and Ca50), we assessed the ratio of PLN pentamer: PLN monomer in 

enriched SERCA2a vesicles that were incubated in the presence of 30 ng A-INS-R or 100 nM 

INS. Our data indicate that activation of insulin signaling by 30 ng A-INS-R or 100 nM INS 

did not alter the PLN pentamer: monomer ratio in SERCA2a vesicles (Figure 3.7, Panel A).  

 The phosphorylation status of PLN is known to alter SERCA Ca2+-sensitivity and can be 

assessed using site-specific antibodies for the Ser16 and Thr17 phosphorylated forms of PLN. 

Our data indicates that treatment of enriched SERCA2a vesicles with 30 ng A-INS-R or 100 

nM INS did not alter phosphorylation at either site, compared to control (Figure 3.7, Panels B 

and C). Collectively, these data indicate that PLN does not contribute to the insulin-dependent 

mechanisms influencing SERCA Ca2+-sensitivity in this study. 
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 To confirm that the site-specific PLN- antibodies were able to detect changes in Ser16 and 

Thr17 phosphorylation, SERCA2a vesicles were incubated for 10 min in 1 mg A-PKA or 15 µg 

CaM + 3.5 µM Ca2+ to characterize PKA and CaMKII mediated phosphorylation of PLN Ser16 

and Thr17, respectively. Incubation of enriched SERCA2a vesicles with 1 mg A-PKA 

increased PLN Ser16 phosphorylation by ~27%, while incubation with 15 µg CaM + 3.5 µM 

Ca2+ increased PLN Thr17 phosphorylation by ~18%, compared to control (Figure 3.7). 

 Sarcolipin is another endogenous protein that is known to influence SERCA Ca2+-

sensitivity through a direct interaction between SLN and SERCA. Phosphorylation of SLN by 

STK16 is known to reduce the binding of SLN with SERCA, thereby increasing the Ca2+-

sensitivity of SERCA. Although it would have been beneficial to examine the effect that insulin 

signaling has on SLN-phosphorylation, the quantification of SLN phosphorylation was not 

performed since a site-specific SLN-phosphorylation antibody was not available.  

 

Discussion 

 There is a growing body of evidence linking insulin signaling pathways with intracellular 

Ca2+-regulatory pathways in cardiac and skeletal muscle (Algenstaedt et al., 1997) and also in 

pancreatic β-cells (Borge & Wolf, 2003; Xu et al., 2000). The binding of IRS-1 and IRS-2 with 

SERCA proteins creates a link between insulin signaling and intracellular Ca2+-regulation and 

would suggest that insulin signaling can acutely modify SERCA functional properties 

(Algenstaedt et al., 1997). To our knowledge, no published study has examined the role of 

insulin signaling on the regulation SERCA kinetic properties in cardiac and skeletal muscle. 

Therefore, this study was designed to investigate the hypothesis that insulin signaling acutely 

regulates the kinetic properties of SERCA isoforms in cardiac and skeletal muscles. Since fibre 
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type differences in SERCA expression and insulin action exist, we studied the left ventricle and 

a variety of skeletal muscles of different fibre type composition and oxidative potential. The 

muscles selected included LV, SOL, EDL, WG and RG tissues. 

 The novel findings of this study indicate that insulin signaling increases the Ca2+-

sensitivity (i.e. nH and Ca50) of SERCA proteins expressed in both cardiac and skeletal muscle. 

Contrary to our hypothesis, Vmax was not altered by insulin signaling. However, the insulin-

induced changes in Ca50 and nH indicate that insulin treatment did increase SERCA activity at 

submaximal Ca2+
f in both homogenates and enriched SR vesicles. Since these effects were 

observed for all muscles sampled, which included tissue that predominately expressed 

SERCA1a and SERCA2a, it can be concluded that insulin signaling influences SERCA Ca2+-

sensitivity in all fibre type populations of the rat sampled in this study. The changes in SERCA 

Ca2+-sensitivity that were observed are consistent with the reported inotropic effect of insulin 

on myocardial contractility (Netticadan et al., 2001; Yu et al., 2006) and the vasodilatory effect 

of insulin in smooth muscle (Baron, 1994). The observed reductions in Ca50 occur as a result of 

changes in SERCA activity at submaximal Ca2+
f and are consistent with the recent observations 

of Yu et al. (Yu et al., 2006), who found that insulin acutely increases SERCA2a activity in 

cardiomyocytes using different assay conditions. 

 Our co-immunoprecipitation data supports previous literature (Algenstaedt et al., 1997; 

Borge & Wolf, 2003; Xu et al., 2000) showing that insulin signaling promotes the physical 

interaction of IRS proteins with SERCA in vitro. The binding of IRS-1 and IRS-2 with SERCA 

proteins occurs through the binding of IRS proteins with a 10 amino acid sequence located 

within transmembrane region 10 (M10) of SERCA (Algenstaedt et al., 1997). This amino acid 

sequence is not a part of the SERCA nucleotide binding domain, which is located in close 
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proximity to Lysine 515, or the Ca2+-binding domain, which is predicted to be composed of the 

transmembrane sequences M4, M5, M6 and M8 (Clarke et al., 1989a). 

 To determine if IRS-SERCA interactions occur in close proximity to the SERCA 

nucleotide-binding domain (Champeil et al., 1988) or Ca2+-binding domain (Lalonde et al., 

1991) the fluorescent probes, FITC and NCD-4 were used. These parameters were of interest 

since structural alterations in the region of the SERCA nucleotide-binding or Ca2+-binding 

domains could influence Vmax by reducing the catalytic turnover of the enzyme (Dux et al., 

1990; Matsushita & Pette, 1992; Schertzer et al., 2003);  whereas, structural changes to the 

SERCA Ca2+-binding domain could alter Ca2+-sensitivity by influencing the co-operative 

binding properties (i.e. nH) or the affinity  of the enzyme for Ca2+ (i.e. Ca50) (Dux et al., 1990; 

Matsushita & Pette, 1992; Schertzer et al., 2003). However, our data indicates that insulin 

signaling did not influence FITC and NCD-4 binding. These observations suggest that the 

interaction between IRS and SERCA proteins does not alter the structural integrity of the 

SERCA nucleotide-binding domain or Ca2+-binding domain. As a result, it would appear that 

the alterations in SERCA Ca2+-sensitivity that were observed are influenced by a different 

mechanism. For example, it is possible that insulin could alter SERCA Ca2+-sensitivity by 

influencing PLN or SLN.  

 To our knowledge, no published study has examined the role of insulin signaling on the 

regulation of PLN pentamer:monomer ratio or PLN phosphorylation status. Phospholamban 

pentamers are known to be less effective inhibitors of SERCA Ca2+-sensitivity compared to 

PLN monomers (Toyofuku et al., 1992; Asahi et al., 2002). Our data indicated that the insulin-

induced increases in SERCA2a Ca2+-sensitivity observed were not associated with changes in 

the PLN pentamer: monomer ratio or PLN phosphorylation status. In addition, insulin signaling 



130  

increased SERCA Ca2+-sensitivity in rat skeletal muscle fibres that do not contain PLN. Based 

on this observation, it appears as though another endogenous protein, different from PLN, may 

be influencing the insulin-induced increase in SERCA Ca2+-sensitivity in the current study. 

 Sarcolipin is another endogenous protein known to influence SERCA Ca2+-sensitivity by 

inhibiting SERCA activity at sub-maximal Ca2+
f by directly binding to SERCA in cardiac and 

skeletal muscle (Damiani et al., 2000). The interaction of SLN with SERCA is reduced by 

STK16-mediated phosphorylation of SLN Thr5 (Gramolini et al., 2006). To our knowledge, no 

published study has examined the role of insulin signaling on the regulation of SLN 

phosphorylation status. The quantification of SLN phosphorylation was not performed in this 

study since a site-specific SLN-phosphorylation antibody was not available. Therefore, the 

possibility that insulin signaling altered SLN phosphorylation remains.  

 Our data, in conjunction with the observations made by others (Algenstaedt et al., 1997; 

Borge & Wolf, 2003; Xu et al., 2000), demonstrate that IRS-1 and IRS-2 proteins should be 

added to the list of endogenous modulator proteins capable of acutely regulating SERCA 

kinetic properties in cardiac and skeletal muscle at submaximal Ca2+
f. In this study, the amount 

of IRS-SERCA interaction was smallest during control conditions and was increased in 

response to insulin signaling. This finding is consistent with the observations of others 

(Algenstaedt et al., 1997) who demonstrated that IRS proteins bind to SERCA proteins in the 

presence, but not in the absence, of insulin. Moreover, these investigators (Algenstaedt et al., 

1997) were able to establish that INS-TK activity was required to promote the interaction of 

IRS proteins with SERCA since IRS proteins bind with SERCA in their phosphorylated, but 

not unphosphorylated, form. For that reason, it appears that the binding of IRS proteins with 

SERCA is regulated by a phosphorylation-mediated mechanism (Figure 3.8). This mechanism  
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may be analogous to the phosphorylation-mediated regulation of SERCA Ca2+-sensitivity by 

PLN (James et al., 1989) and SLN (Gramolini et al., 2006).  

 Yet to be determined is the effect of AKT signaling on SERCA functional properties. 

Although our data generally supports the importance of IRS-SERCA interactions on the 

insulin-dependent increase in SERCA Ca2+-sensitivity, there is a possibility that insulin 

signaling may also be activating alternative pathways. For example, Yu et al. (Yu et al., 2006) 

provided evidence that the insulin-PI3K-AKT pathway can increase SERCA activity in 

cardiomyocytes. In fact, the insulin-stimulated increase in SERCA activity was prevented by 

the inhibition of AKT signaling in that study. However, caution needs to be used when 

interpreting the data of Yu et al. (Yu et al., 2006) since they characterized the effects of AKT-

inhibition in cells that were exposed to ischemia/reperfusion but not in control cells. This 

limitation is notable because ischemia/reperfusion is associated with an increase in oxidative 

stress (Rubin et al., 1996), which is known to reduce SERCA activity (Morris & Sulakhe, 

1997) due to oxidative damage. Moreover, insulin is known to increase nitric oxide synthase 

activity, which can also alter the redox status of the cardiomyocytes (Hartell et al., 2005). As a 

result, it is likely that the inhibition of AKT during ischemia/reperfusion influences SERCA 

activity by altering the redox potential of cardiomyocytes in response to insulin treatment.  

 This study did not examine the role of AKT signaling on SERCA kinetic properties since 

there was little information linking acute AKT signaling and SERCA functional properties at 

the time of our study. It is noteworthy that the literature reports a 6 fold higher expression of 

AKT protein in soleus (i.e. which is predominately Type I fibres), compared to EDL (i.e. which 

is predominately Type II fibres) (Song et al., 1999). This large difference in AKT protein 

content contributes to the fibre type-specific differences in insulin-sensitivity in skeletal muscle 
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(Song et al., 1999). Since our data indicate that SERCA Ca2+-sensitivity is altered in cardiac 

and skeletal muscles of different fibre type composition and oxidative potential, it is unclear if 

the differences in AKT protein content contribute to observed changes in Ca50 and nH observed 

in this study. Since our data has shown that IRS-I and IRS-2 directly interact with SERCA 

proteins in vitro and given that AKT is situated down-stream of IRS-1 and PI3K, it appears that 

insulin signaling acts through mechanisms other than AKT signaling alone.   

 A limitation of this study was the inability to determine if the insulin-dependent changes in 

nH and Ca50 were mediated through an INS-TK dependent mechanism. A common observation 

made in this study was that nH were consistently higher when samples were incubated in the 

presence of 100 nM INS (i.e. 100 nM INS and also 80 µM AGL 2263 + 100 nM INS), 

compared to samples that were not incubated with 100 nM INS (i.e. control and 80 µM AGL 

2263). Collectively, these observations could be interpreted to indicate that insulin signaling 

regulates SERCA Ca2+-sensitivity through an INS-TK dependent mechanism. However, 

caution must be used when interpreting the results obtained with AGL 2263 since this treatment 

presented several confounding observations with regard to Ca50. Based on the changes in nH 

and Ca50 with AGL 2263, compared to control and also the combined INS + AGL 2263 

treatment, we attempted another series of experiments using a different INS-TK inhibitor, 

namely genistein (data not shown), to determine if the changes in the properties were mediated 

through an INS-TK dependent mechanism. However, these experiments were terminated after 

several trials since the hydrophobic nature of genistein caused a precipitate to form, which 

prevented accurate assessment of Ca2+-dependent SERCA activity by spectrophotometric 

analysis.  
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 An important issue is the contradictory effects of A-INS-R for crude muscle homogenates 

compared to enriched SR vesicles for nH. Specifically, our data indicated that A-INS-R 

increased nH by ~12% in LV homogenates but had no effect on nH in enriched SERCA2a 

vesicles prepared from LV. Similarly, A-INS-R increased nH by ~17% in WG homogenates but 

did not influence nH in enriched SERCA1a vesicles prepared from WG. This observation was 

unexpected since A-INS-R did reduce Ca50 in both the homogenate and also enriched SR 

vesicle samples prepared from the LV and WG, respectively. Additionally, INS treatment did 

alter nH and Ca50 in both the homogenate and also enriched SR vesicle samples prepared from 

the LV and WG, respectively. Nonetheless, it is apparent that A-INS-R influenced nH 

differently in homogenates versus enriched SR vesicles. The possibility exists that the 

enrichment protocol used to prepare SR vesicles may have altered the content of one or more 

proteins that was responsible for increasing nH in response to A-INS-R treatment. In addition, it 

is also possible that the analytical methods used to measure nH and Ca50 contributed to the 

differences between homogenates and vesicles for A-INS-R. Specifically, nH is determined 

based on the slope of the relationship between SERCA activity and Ca2+
f for 10 to 90% Vmax;  

whereas, Ca50 is defined as the Ca2+
f required to activate the enzyme to 50% Vmax and is 

determined based on the relationship between SERCA activity and Ca2+
f for 0 to 100% Vmax.  

 The results of this paper also need to be put into perspective given the limitations of the 

experimental design. To assess the role of insulin signaling in the regulation of Ca2+-dependent 

SERCA kinetics, samples were incubated in vitro in the presence and absence of various 

insulin signaling pathway activators and/or inhibitors. This experimental approach assumes that 

the insulin signaling pathway is intact and is able to be influenced by the various insulin 

signaling pathway activators and/or inhibitors in muscle homogenates and enriched SR 
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vesicles. In vivo, insulin signaling occurs when insulin binds to insulin-receptors located on the 

cell surface, which is followed by signal transduction into the cell via INS-TK-mediated 

signaling. It is not known if the protocol used to prepare muscle homogenates disrupted the 

insulin signaling pathway. However, based on co-immunoprecipitation data, which indicated 

that both INS and A-INS-R were able to increase the physical binding of IRS with SERCA, it 

appears that the insulin signaling cascade was, at least in part, functioning as expected. It is 

noteworthy that INS treatment, compared to A-INS-R treatment, was most effective at 

promoting the physical interaction of IRS proteins with SERCA. This observation provides 

indirect support to indicate that the insulin signaling cascade was functioning in vitro in this 

model system. 

 

Summary 

 The current study indicates that insulin signaling acutely regulates the kinetic properties of 

SERCA1a and SERCA2a in the LV and skeletal muscles of different fibre type composition 

and oxidative potential by increasing SERCA Ca2+-sensitivity (i.e. nH and Ca50), without 

altering Vmax. Furthermore, we have shown that insulin signaling promotes the physical 

interaction of IRS proteins with SERCA1a and SERCA2a in vitro. Finally, it appears that the 

insulin-dependent increase in SERCA Ca2+-sensitivity observed in this study cannot be 

explained by IRS binding in close proximity to the SERCA nucleotide binding domain or Ca2+-

binding domain and cannot be explained by changes in PLN pentamer: monomer ratio or PLN 

Ser16 or Thr17 phosphorylation. Collectively, these data suggest that IRS-SERCA interaction 

may contribute, at least in part, to the insulin-induced changes in SERCA Ca2+-sensitivty 

observed in this study by mechanisms that are as yet unclear. 
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Abstract 

 This study investigated the effects of prolonged exercise with and without glucose 

supplementation on muscle sarcoplasmic reticulum (SR) Ca2+-handling properties. Fifteen 

untrained volunteers (peak O2 consumption, VO2peak= 3.45 ± 0.17 L/min;  Mean ± SE) 

performed a standardized cycle test (~60% VO2peak) on two randomized occasions during which 

they were provided with either an artificially sweetened placebo (PLAC) or a 6% glucose 

(GLUC) beverage (~1.00 g CHO per kg body mass). Beverages were provided starting after 30 

min of exercise and every 15 min thereafter. Muscle SR Ca2+-handling and metabolic 

properties were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 

min of exercise and at fatigue in both conditions. Blood samples were collected at rest, during 

exercise (15, 30, 45, 60, and 90 min) and at fatigue in both conditions from a catheter inserted 

in the pre-warmed dorsal region of the hand and were analyzed for blood metabolites and 

hormones. Cycle ride time to fatigue was increased (P<0.05) by ~19% during GLUC (137 ± 7 

min) compared to PLAC (115 ± 6 min). Plasma glucose and insulin concentrations during 

GLUC were 15-23% higher (P<0.05) than those observed during PLAC following 60 min of 

exercise until fatigue. Additionally, greater increases (P<0.05) in epinephrine (EPI) and 

norepinephrine (NE) concentrations were observed during PLAC following 90 min and 115 ± 6 

min of exercise compared to GLUC. Prolonged exercise reduced (P<0.05) maximal SERCA 

activity (Vmax;  174 ± 7 vs. 142 ± 5 µmol.g protein-1.min-1), SR Ca2+-uptake (rest vs. fatigue;  

6.41 ± 0.31 vs. 4.68 ± 0.33 µmol.g protein-1.min-1), and both Phase 1 (23.4 ± 1.3 vs. 18.2 ± 0.8 

µmol.g protein-1.min-1) and Phase 2 (7.3 ± 0.4 vs. 4.8 ± 0.4 µmol.g protein-1.min-1) Ca2+-release 

rates during PLAC. The reductions in SR Ca2+-handling properties occurred in the absence of 

changes in Ca2+-sensitivity (i.e. nH and Ca50), Ca2+-transport efficiency (i.e. apparent coupling 
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ratio), and membrane permeability for Ca2+ (i.e. ionophore ratio). No differences for any SR 

property assessed were observed between conditions at any sampling point. The metabolic 

response to exercise also appeared to be unaltered by GLUC since no differences in respiratory 

exchange ratios, carbohydrate and lipid oxidation rates, muscle metabolite and glycogen 

concentrations, or nucleotide concentrations were observed between conditions. Collectively, 

these results indicate that the increase in exercise cycle time during GLUC cannot be explained 

by differences in the muscle metabolic, endogenous glycogen or SR Ca2+-handling responses to 

exercise. Moreover, the reductions in SR Ca2+-handling properties that occur in response to 

exercise are not modified by the differences in plasma glucose concentrations and 

glucoregulatory hormone concentrations that occur with glucose supplementation. 

 

Key words:  Ca2+-regulation, glucose supplementation, exercise, human skeletal muscle, and 

metabolism. 
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Introduction 

 Excitation-contraction (E-C) coupling in skeletal muscle involves a series of events that are 

initiated by sarcolemmal depolarization which culminate in an increase in the cytosolic free 

Ca2+ concentration (Ca2+
f). The rise in Ca2+

f following excitation occurs when the voltage 

sensitive dihydropyridine receptor (DHPR) interacts with the sarcoplasmic reticulum (SR) 

Ca2+-release channel (CRC, or ryanodine receptor), triggering the release of Ca2+ from the SR, 

through the CRC. The rapid release of Ca2+ from the SR increases the Ca2+
f, where it acts as a 

second messenger to activate not only the contractile apparatus (Winegrad, 1965) but a variety 

of other functions including carbohydrate (CHO) metabolism (Hargreaves & Richter, 1988) 

and protein expression (Chin, 2005). The restoration of Ca2+
f to resting levels (i.e. ~ 100 nM) 

(Berchtold et al., 2000) occurs through the activation of the sarco(endo)plasmic reticulum Ca2+-

ATPase (SERCA) protein, which actively pumps Ca2+ from the cytosol back into the SR 

through an ATP-dependent process. The reduction in Ca2+
f promotes the dissociation of actin 

and myosin, leading to relaxation of muscle fibres. Achievement of a desired force during 

repetitive muscle contractions requires regulation of intracellular Ca2+
f-transients, which are 

directly dependent on the SR Ca2+-release and Ca2+-uptake properties. Accordingly, alterations 

to the functional characteristics of the CRC and/or SERCA could adversely affect the Ca2+
f, 

resulting in inadequate myofibrillar activation, reduced force production and impaired 

relaxation. Depending on the characteristics of the task, disturbances in one or more of the 

processes involved in E-C coupling could result in impaired performance and the failure to 

produce a desired level of force (i.e. fatigue). 

 Sarcoplasmic reticulum Ca2+-cycling properties are influenced by a complex of factors, 

including protein and isoform abundance (Wu & Lytton, 1993), intrinsic regulatory factors (e.g. 
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phospholamban, PLN;  sarcolipin, SLN) (Gramolini et al., 2006) and the intracellular milieu 

(Meyer & Terjung, 1980). Repetitive contractile activity presents a unique opportunity to study 

the intrinsic regulation of SR Ca2+-handling properties since Ca2+-cycling must be greatly 

accelerated to meet contractile demands. As might be expected, both the CRC and SERCA are 

under complex intrinsic regulatory control (MacLennan et al., 2003). As an example, exercise-

induced increases in plasma epinephrine (EPI) and increases in intracellular Ca2+
f are known to 

activate cAMP-dependent protein kinase A (PKA) and Ca2+-dependent calmodulin kinase II 

(CaMKII) phosphorylation-mediated processes, respectively, which can influence CRC 

(Reiken et al., 2003; Berchtold et al., 2000) and SERCA (Gramolini et al., 2006; Kranias, 

1985; Berchtold et al., 2000) kinetic properties.  

 Prolonged, moderate intensity exercise (i.e. 50-65%) is known to cause progressive 

reductions in SR Ca2+-handling properties (i.e. Ca2+-release, Ca2+-uptake, maximal SERCA 

activity, Vmax) in human skeletal muscle (Booth et al., 1997; Duhamel et al., 2004a; Duhamel 

et al., 2004b). These reductions in SR Ca2+-handling properties are thought to occur due to 

structural modifications to the CRC and/or SERCA proteins (Booth et al., 1997; Duhamel et 

al., 2006c; Duhamel et al., 2004a; Duhamel et al., 2004b) as a result of oxidative stress (Fitts, 

1994; Tupling et al., 2003), thermal stress (Schertzer et al., 2002), or the accumulation of 

intracellular metabolites (e.g. inorganic phosphate) (Chin & Allen, 1997; Fitts, 1994) during 

exercise. Interestingly, at least in humans, prolonged exercise does not alter the Ca2+-sensitivity 

of SERCA activity (Duhamel et al., 2004a; Duhamel et al., 2004b; Duhamel et al., 2006c), as 

assessed by Ca50 (defined as the Ca2+
f needed to elicit 50% of Vmax) and the Hill coefficient 

(nH;  defined as the relationship between SERCA activity and Ca2+
f for 10 to 90% Vmax). The 

lack of change in SERCA Ca2+-sensitivity during exercise is notable since it has been reported 



141  

that PKA and CaMKII increase PLN phosphorylation by ~5 fold soon after the onset of 

moderate intensity exercise (Rose et al., 2006). Since PLN phosphorylation is known to 

increase SERCA Ca2+-sensitivity (MacLennan et al., 1997), it remains unclear why nH and Ca50 

are not altered by prolonged exercise. This observation, in combination with others (Duhamel 

et al., 2004a; Duhamel et al., 2004b; Duhamel et al., 2006c), serves to emphasize that the 

mechanisms regulating SERCA Ca2+-sensitivity during exercise are not yet fully understood. 

 Several laboratories have also linked the depletion of muscle glycogen with reduced Ca2+-

transients in contracting rat (Lees et al., 2001), mouse (Chin & Allen, 1997), and toad 

(Stephenson et al., 1999) skeletal muscle;  while our laboratory (Duhamel et al., 2006c) has 

demonstrated that exercise-induced reductions in SR Ca2+-handling properties, measured in 

vitro, occur earlier during low glycogen (Lo CHO) compared to high glycogen (Hi CHO) states 

in human skeletal muscle. The proposed link between muscle glycogen content and SR Ca2+-

handling properties is based on the existence of a SR-glycogenolytic complex containing 

glycogen phosphorylase, glycogen debranching enzyme, many of the enzymes involved in the 

glycolytic pathway, and creatine phosphokinase (CPK), which is located in close proximity to 

the SR (Xu & Becker, 1998; Korge & Campbell, 1994). It is currently believed that the 

depletion of glycogen from this complex reduces SR Ca2+-cycling rates as a result of 

disturbances in energy homeostasis in close proximity to SERCA (Cuenda et al., 1995) and the 

CRC (Han et al., 1992) or as a result of structural alterations within the SR-glycogenolytic 

complex (Lees et al., 2001).  

 A limitation of our previous study that investigated the relationship between muscle 

glycogen concentration and SR Ca2+-handling properties during exercise (Duhamel et al., 

2006c) was the fact that plasma glucose concentrations were not controlled. With our protocol, 
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a progressive reduction in plasma glucose was observed during the late stages of exercise (i.e. > 

30 min) during Lo CHO, but not the Hi CHO condition. The greater reductions in plasma 

glucose during Lo CHO were also associated with greater increases in plasma EPI and NE 

when compared to Hi CHO. We did not assess serum insulin levels in our previous study;  

however, given that serum insulin concentrations mirror plasma glucose concentrations 

(Coggan & Coyle, 1991; Coyle, 1992b), it is likely that differences in serum insulin existed as 

well. Differences in blood glucose availability could alter SR Ca2+-cycling function via 

improved energy homeostasis and/or protection of muscle glycogen reserves (Xu et al., 1995; 

Lees & Williams, 2004) while differences in the hormonal responses could affect intrinsic 

behaviour through second messenger regulation (MacLennan et al., 2003; Wuytack et al., 

2002). Interestingly, as with experiments designed to manipulate muscle glycogen levels by 

exercise and diet (Bergstrom et al., 1967), oral glucose supplementation during exercise also 

has an ergogenic effect (Coyle, 1992b; Hargreaves, 1999). 

 The use of oral glucose supplementation to delay the onset of fatigue during prolonged 

exercise has been well documented in humans (Coggan & Coyle, 1991; Coyle, 1992b) and 

animals (Bagby et al., 1978; Karelis et al., 2002; Marcil et al., 2005). However, the 

mechanisms explaining how glucose supplements extend time to fatigue remain unclear. There 

is evidence suggesting that central (i.e. neural) processes (Nybo, 2003) may contribute to 

fatigue mechanisms;  however, the literature generally supports a failure at the level of the 

working muscle as the primary site of fatigue during voluntary activity (Fitts, 1994). It is 

possible that reductions in plasma glucose concentrations and/or changes in the regulatory 

hormones during the late stages of exercise may adversely affect skeletal muscle function by 
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reducing SR Ca2+-handling properties, thereby altering the Ca2+
f, and reducing contractile 

activation.  

 To hypothesize that maintenance of blood glucose homeostasis during prolonged exercise 

can affect SR Ca2+-cycling responses, it must be demonstrated that glucose supplementation 

results in changes in one or more of the factors involved in its regulation.  In this regard, the 

literature is contradictory with regards to the effects of glucose supplementation on muscle 

metabolism (Christ-Roberts & Mandarino, 2004; Spencer et al., 1991; Tsintzas et al., 1996) 

and glycogen depletion patterns (Coyle, 1992a; McConell et al., 1999; Tsintzas et al., 1996) 

and blood hormonal responses (Coyle, 1992a; Galbo, 1999; Hargreaves, 1999).  

 The purpose of this study was to investigate the effects of oral glucose supplementation on 

SR Ca2+-handling properties during prolonged, moderate intensity exercise in human skeletal 

muscle. We have hypothesized that prolonged exercise would progressively reduce Vmax, Ca2+-

uptake, and Ca2+-release kinetics. We have also hypothesized that the reductions in SR Ca2+-

handling properties would occur in the absence of changes in Ca2+-sensitivity (i.e. nH and Ca50), 

Ca2+-transport efficiency (i.e. apparent coupling ratio) and membrane permeability for Ca2+ (i.e. 

ionophore ratio). Moreover, we have also hypothesized that, when the same absolute exercise 

protocol is performed with glucose supplementation, the disturbances in the Vmax, Ca2+-uptake, 

and Ca2+-release kinetics will be attenuated. The improvement in these properties will be 

associated with improved glucose homeostasis and will occur in the absence of differences in 

energy metabolism and glycogen content. Based on data from our laboratory (Duhamel et al., 

2006c) indicating that Ca50 and nH are not different when plasma glucose concentrations are 

decreased and catecholamine concentrations are increased during exercise in Lo CHO states, 
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we have hypothesized that glucose supplementation will not alter nH, Ca50 or PLN 

phosphorylation during exercise. 

 

Research Design & Methods 

Participants 

 Fifteen volunteers (14 male and 1 female) were recruited from the general student 

population at the University of Waterloo to participate in the study. Volunteers were healthy 

but not involved in exercise utilizing large muscle groups on a regular basis (i.e. not more than 

once per week;  assessed by a questionnaire). The physical characteristics of the participants 

included age, 19.3 ± 0.4 yrs;  height, 179 ± 4 cm;  body mass, 78.5 ± 3.7 kg;  body mass index 

(BMI, mass/height2), 24.5 ± 0.8 kg/m2. Peak aerobic power (VO2peak) was 3.45 ± 0.17 L/min. 

Volunteers were excluded from the study if their VO2peak was out of the normal range for this 

participant population (35-55 mL O2 . kg-1 body wt . min-1) or if they had a BMI greater than 

30. Participants were also excluded from this study if they had a history of exercise training, 

smoking, previous knee injuries, heart problems, diabetes, or exercise-induced respiratory 

problems. Laboratory visits were scheduled during the midfollicular phase of the menstrual 

cycle for the female participant in this study. This participant was not taking triphasic-type oral 

contraceptives. This study received approval from the Office of Research Ethics at the 

University of Waterloo. Volunteers were required to read detailed descriptions of the protocols 

employed in the study including the risks associated with each protocol prior to agreeing to 

participate in the study. 
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Experimental design 

 To investigate the effects of oral glucose supplementation on muscle SR Ca2+-transport 

properties, two sessions of prolonged, moderate-intensity exercise (~60% VO2peak) were 

employed (Figure 4.1). One session served as the control condition (i.e. placebo, PLAC) and 

was used to investigate the effects of exercise in isolation without oral glucose 

supplementation. The other session served as the glucose supplementation condition (GLUC) 

and was identical to PLAC with the only difference being the administration of glucose 

supplements, designed to maintain blood glucose levels during the late stages (i.e. > 30 min) of 

exercise. The order of the two experimental conditions was randomized for 9 of 15 participants. 

The remaining 6 participants completed the PLAC condition prior to the GLUC condition. The 

latter sequence allowed for muscle tissue to be sampled at a matched time point in both 

conditions within this subgroup. The matched time point was selected to correspond to fatigue 

in the placebo condition and was unique to each individual. 

 Prior to the initial prolonged exercise test session, participants were asked to complete a 7-

day diet journal to allow for the assessment of average daily nutritional and macronutrient 

intake. Based on the analysis of these 7-day diet journals (ESHA – Diet Analysis Plus, Version 

7.0, Salem, OR), the average daily caloric intake for participants was 2824 ± 142 kcal, with 

approximately 49 ± 2%, 30 ± 2%, and 18 ± 2% of total energy coming from CHO, lipid and 

protein sources, respectively. These 7-day diet journals were returned to the participants prior 

to the second prolonged exercise test session. Participants were asked to strictly follow the diet 

journals and were instructed to contact the investigator if any alteration to the dietary plan was 

required. Participants were required to refrain from exercise and from ingesting alcohol and  
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caffeine for the 4 day period preceding the exercise protocol. The prolonged cycle task was 

performed following an over night fast (~12 h) in a neutral environment (~20oC;  ~50% relative 

humidity) at an intensity that was approximately 60% VO2peak. Exercise was continued until 

volitional fatigue or when the participant could not maintain a cadence of at least 50 

revolutions per min, even with verbal encouragement.  

 

Glucose Supplements 

 The glucose supplement was a 6% solution of glucose, without the addition of any 

electrolytes. Participants were provided with a drink (volume dependent on body mass;  ~1.00 

g CHO per kg body mass in a 6% solution) starting after 30 min of exercise and continuing 

every 15 min thereafter. The average total volume ingested at each time point ranged between 

100-300 mL. A placebo (Sugar Twin;  Alberto-Culver Canada Inc;  Toronto, ON, Canada) 

consisting of a 7.5 % Sugar Twin (water, sodium cyclamate (10%) benzoic acid, methyl 

paraben) solution was provided according to the same schedule using a similar volume as 

received during GLUC. Beverages were served at room temperature (~20oC). For participants 

who completed the PLAC condition prior to GLUC, beverage volumes were matched to the 

volume that was to be consumed during the GLUC condition at each time point. Test sessions 

were separated by at least 4-weeks and were conducted in the morning, following an overnight 

fast (~12 h). 

 

Peak aerobic power determination and respiratory gas collection  

 A progressive exercise test was performed on an electrically braked cycle (Quinton 870) as 

previously described (Hughson et al., 1995) to measure VO2peak. Participants were required to 
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pedal at approximately 60 revolutions per min. After cycling at 25 W for a period of 4 min to 

establish baseline measurements, the work rate on the cycle ergometer was progressively 

ramped at 15 W per min until volitional fatigue. Inability to maintain at least 50 revolutions per 

min was used as the fatigue criterion. The exercise time during the progressive test ranged 

between 10-20 min for all participants. Verbal encouragement was given to the participants 

throughout the test. 

 An open-circuit gas collection system using continuous measurements was used to 

determine VO2peak, as described previously (Hughson et al., 1995). The VO2peak, defined as the 

peak VO2 observed during the progressive test, was obtained by averaging the data collected 

over a 25 s collection period. Heart rate was also monitored during the progressive test using 

standard electrocardiographic techniques (data not shown). 

 The gas collection system was calibrated daily, 30 min prior to all test sessions using 

standardized gas samples of known concentrations. All exercise sessions were performed on 

the same cycle ergometer and using the same respiratory gas collection system. Respiratory gas 

properties measured during the exercise tests include VO2, carbon dioxide ventilation (VCO2) 

and expiratory ventilation (VE). From these data, respiratory exchange ratios (RER = 

VCO2/VO2) were calculated. Stoichiometric equations and appropriate caloric equivalents 

(Woelfe, 1992; Frayn, 1983) were used to calculate carbohydrate (CHO) and lipid oxidation 

rates during the exercise according to Equation 4.1 and Equation 4.2, respectively. 

 

 CHO oxidation rate (mmol • min-1) =      Equation 4.1  

25.196 x VCO2 – 17.499 x VO2 – 0.21349 x 0.7155    
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 Lipid oxidation rate (mmol •  min-1) =     Equation 4.2  

1.9357 x VO2 – 1.9357 x VCO2 – 0.031978 x 0.7155  

    

Nitrogen excretion was assumed to be 135 µg.kg-1.min-1 (Woelfe, 1992; Frayn, 1983). 

Although indirect calorimetry technically provides for an estimation of total glucose oxidation, 

we have followed the general practice of labeling it as CHO oxidation. 

 
 
Blood sampling 

  Blood samples during the PLAC condition were collected at rest, during exercise (15, 30, 

45, 60, and 90 min) and at fatigue (~115±6 min) from a catheter inserted in the pre-warmed 

dorsal region of the hand. During GLUC, blood samples were collected at rest, during exercise 

(15, 30, 45, 60, and 90 min), at a time corresponding to fatigue during the PLAC condition 

(~115±6 min) and at fatigue (~137±7 min).  

 Resting hemoglobin (Hb) and hematocrit (Hct) values were determined in triplicate from 

whole blood using standardized differential centrifugation and spectrophotometric techniques. 

Changes in plasma volume content during exercise were calculated using corrections for whole 

body Hct (0.91) and trapped red cell volume (0.96) according to Equation 4.3 and Equation 4.4 

(Chaplin et al., 1953; Chaplin & Mollison, 1952).  

 

 Hctcorrected = measured Hct * 0.91 * 0.96     Equation 4.3 

 

 Plasma volume change =       Equation 4.4  

   [100 / (100-HctTime1)] * [100 * (Hct Time1-Hct Time2) / Hct Time2 )]   
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Where HctTime1 and HctTime2 represent the Hct content for a blood sample collected at two 

different times (e.g. rest compared to 15 min). 

 The remaining aliquots of whole blood, serum, and plasma samples were processed and 

frozen at –20oC until analyses. Blood glucose and lactate were determined fluorometrically, in 

triplicate, from the plasma aliquots that were deproteinized using perchloric acid (PCA) and 

centrifuged (Green et al., 1991a). Plasma catecholamines (i.e. EPI and NE) were measured 

using high performance liquid chromatography (HPLC) techniques, previously published from 

our laboratory (Green et al., 1991b). To obtain serum, whole blood was centrifuged and the 

supernatant removed. Serum FFA concentrations were analyzed as previously described using 

fluorometric techniques (Green et al., 1991a). Serum was also used to analyze serum insulin 

concentrations using radioimmunoassay techniques (Coat-A-Count, Diagnostic Products, 

Intermedico, Toronto, ON). On a given day, all samples from three individuals for a given 

property were analyzed in triplicate.  

  

Tissue sampling 

 Tissue samples were collected from 4 separate biopsy sites within the vastus lateralis under 

local anesthesia (2% xylocaine) in each condition (Figure 4.1). For PLAC, tissue samples were 

collected at rest, after 30 min and 90 min of exercise and at fatigue. During the GLUC 

condition, tissue samples were collected at rest, after 30 min and 90 min of exercise, and at 

fatigue during the GLUC condition in 9 of 15 participants. In the remaining 6 participants, the 

resting tissue sample was omitted and replaced with a tissue sample taken at a time 

corresponding to fatigue during the PLAC condition (i.e. matched placebo fatigue). This 
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approach was required based on restrictions for the number of biopsies (n=8) approved for this 

study by the Office of Research Ethics at the University of Waterloo. The decision to replace 

the resting tissue sample with a matched placebo fatigue tissue sample during GLUC was based 

on observations made in this study (data not shown), in addition to numerous experiments from 

our laboratory (Duhamel et al., 2005; Duhamel et al., 2004a; Duhamel et al., 2004b) that have 

shown no differences in resting SR Ca2+-handling or metabolic properties between conditions 

when the experimental treatment was preceded by a normal CHO (~50% total kcal) diet. This 

approach allowed for direct comparison of tissue samples collected at a time corresponding to 

the placebo fatigue time point in PLAC and GLUC;  thereby increasing the number of 

comparisons made between PLAC and GLUC at matched time points during exercise. 

Statistical analyses of all data were adjusted to account for this subgroup of participants, as 

described in the statistical analyses section of this paper. 

 Two tissue samples were taken from each site at each sampling time. The first sample was 

immediately placed into liquid N2 and stored at –80oC until metabolite analyses were 

performed. The second tissue sample was used for determination of SR Ca2+-handling 

properties. 

 

Assessment of muscle metabolites 

 Muscle metabolite analyses were performed as previously reported (Green et al., 1992a), 

using fluorometric procedures (Lowry & Passonneau, 1972) and HPLC techniques (Ingebretsen 

et al., 1982). The specific metabolites analyzed include ATP, PCr, inorganic phosphate (Pi), 

creatine (Cr), lactate (Lac) and selected glycolytic intermediates such as glucose, glucose-1-
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phosphate (G-1-P), glucose-6-phosphate (G-6-P), fructose-6-phosphate (F-6-P), fructose-1,6-

diphosphate (F-1,6-P), and pyruvate (Pyr). 

 Free ADP (ADPf) and free AMP (AMPf) concentrations were calculated according to 

Equation 4.5, as has been done previously in our laboratory (Green et al., 1992b) and others 

(Dudley & Terjung, 1985) on the basis of the near-equilibrium properties of creatine 

phosphokinase (CPK) and adenylate kinase (AK) reactions. For ADPf, the calculation involved 

use of the measured concentrations of ATP, PCr, and Cr in conjunction with calculated H+ 

(Lawson & Veech, 1979).  

 

   ADPf = (ATP x Cr) / [(KCPK) x CP x (-log pH)]  Equation 4.5  

 

Calculation of AMPf, involved using the measured calculation of ATP and the calculated level 

of ADP according to Equation 4.6. 

 

   AMPf = (ADPf)2 / (KAK x ATP)    Equation 4.6  

 

Muscle pH was determined by the regression formula established by Sahlin et al. (Sahlin et al., 

1976). Measured values for lactate and pyruvate were utilized to calculate muscle pH according 

to Equation 4.7, using the dynamic work constant of 0.00413. 

 

   pH = 7.06 – [(0.00413) x (Lac + Pyr)]  Equation 4.7  
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The equilibrium constants used for the CPK and AK reactions (KCPK and KAdK) at 38oC were 

1.66 X 109 M-l and 1.05, respectively (Lawson & Veech, 1979). 

 Muscle tissue samples were analyzed for total adenine nucleotide (ATP, ADP, and AMP) 

and inosine monophosphate (IMP) using HPLC techniques (Green et al., 1989). These 

properties were measured in the same extract from which the other metabolite data were 

obtained. Quantification of proglycogen and macroglycogen was accomplished using the 

fluorometric technique described by Marchand et al. (Marchand et al., 2002). Total glycogen 

content was calculated as the sum of the proglycogen and macroglycogen subfractions. All 

measurements, with the exception of muscle glycogen content, were performed using an extract 

from the same piece of freeze-dried tissue and were corrected to the average total creatine 

content (TCr) is calculated as the sum of PCr and Cr) of all tissue samples collected for each 

individual. During a given analytical session, all tissue samples from three individuals were 

analyzed in duplicate for a selected metabolite. 

  

Assessment of sarcoplasmic reticulum Ca2+-handling properties 

 To assess changes in Ca2+-transport across the SR membrane, a variety of functional 

properties of SERCA, the CRC and the SR membrane were performed using crude muscle 

homogenates. Muscle samples (40-60 µg) were diluted 1:11 (w/v) in ice cold homogenizing 

buffer (pH 7.5) containing (in mM) 250 sucrose, 5 N-2-hydroxyethylpiperazine-N’-2-

ethanesulfonic acid (HEPES), 0.2 phenylmethylsulfonyl fluoride (PMSF), 0.2% sodium azide 

(NaN3).  Dithiothreitol (DTT) was not used in the preparation of crude muscle homogenates 

since DTT could potentially reverse exercise-induced sulfhydryl oxidation during sample 

preparation.  The muscles were homogenized with a Duall glass on glass hand homogenizer 
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(Kontes Glass Co.). Tissue samples were stored on ice from the time of extraction until 

homogenized. The total time between tissue extraction and homogenization was typically less 

than 10 min. Muscle homogenate aliquots (approximately 115 µL per aliquot;  ~4 aliquots) 

were rapidly frozen in liquid N2 and stored at -80 oC for future analysis of SR function.  

Assessments of the kinetics parameters of SERCA were made to characterize changes in Vmax, 

nH, and Ca50. Additionally, we determined the relative amounts of passive Ca2+ leak across the 

SR membrane by comparing the ratio between Vmax in the presence and absence (Vmax(-)) of 1 

µM Ca2+-ionophore A23187 (ionophore ratio). We have also assessed the apparent coupling 

ratio, which provides an indication of the efficiency of SERCA to transport Ca2+ from the 

cytosol into the lumen of the SR per ATP hydrolyzed, by calculating the ratio between Ca2+-

uptake at 2000 nM and Vmax. It should be emphasized that the properties used to determine the 

ratio were measured under different assay conditions that were optimized for each assay. In 

particular, Vmax was assessed in the presence of the Ca2+-ionophore A23187 and at Ca2+
f ~ 12.5  

µM;  whereas, Ca2+-uptake rates were determined in the absence of Ca2+-ionophore A23187. 

Additionally, our measurements of Ca2+-uptake are were completed at 2000 nM since the Ca2+-

sensitivity of Indo-1 is limited at high Ca2+
f. We have used the term “apparent coupling ratio” 

to indicate that the parameters used to calculate this ratio were measured under different assay 

conditions. 

 

SERCA activity 

 Measurement of SERCA kinetic properties were measured using a spectrophotometric 

assay (Simonides & van Hardeveld, 1990) modified by TA Duhamel (unpublished) for use on a 

plate reader (SPECTRAmax Plus;  Molecular Devices) as previously described (Chapter 2, 
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Methods), with only minor alteration to the assay protocol. In this study, 3 different muscle 

samples were analyzed simultaneously on a single plate. Each sample was treated as an 

independent sample and was prepared by adding 40 µL of crude muscle homogenate to 5 mL 

cocktail buffer. Each sample was then aliquoted (300 µL) into 16 Eppendorf tubes and mixed 

with Ca2+ to generate 14 different Ca2+ concentrations ranging between 7.6 and 4.7 pCa units. 

Assay conditions were identical for each sample as described earlier (Chapter 2, Methods) with 

one exception. The difference in assay conditions was limited to one Eppendorf tube, in which 

Ca2+ ionophore A23187 was not included in the reaction cocktail. In all other Eppendorf tubes 

and for all 14 Ca2+-concentrations used to generate the substrate-SERCA activity curve, Ca2+ 

ionophore A23187 (1 µM Sigma C-7522) was included. The Ca2+ ionophore A23187 was used 

to prevent the formation of a large Ca2+ gradient across the SR membrane. By measuring 

maximal SERCA activity in the presence (Vmax) and in the absence (Vmax(-)) of Ca2+ ionophore 

A23187, passive Ca2+ leak through the SR membrane was assessed. The inclusion of Ca2+-

ionophore A23187 allowed for the assessment of Vmax;  whereas the exclusion of Ca2+-

ionophore A23187 from one aliquot of the homogenate cocktail allowed for the assessment of 

Vmax(-). For all samples, the assessment of Vmax, Vmax(-) and calculation of ionophore ratios 

(Vmax / Vmax(-)), were completed at a pCa of 4.9. On a given analytical day, complete sets of 

samples from 6 individuals were analyzed for SERCA kinetics in duplicate. Kinetic data 

obtained using this plate reader technique are similar to results previously published from our 

group (Duhamel et al., 2005; Duhamel et al., 2004a; Schertzer et al., 2002; Tupling et al., 

2001a). The coefficient of variation for Vmax during this assay is 8.6% when the same sample 

was analyzed on different days and was 7.4% when analysis was repeated on the same day.  
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SR Ca2+ -uptake 

 Oxalate-supported Ca2+-uptake rates were measured using the Ca2+ fluorescent dye Indo-1 

according to the methods of O’Brien et al. (O'Brien, 1990; O'Brien et al., 1991), as modified by 

Ruell et al. (Ruell et al., 1995) and our laboratory (Tupling & Green, 2002). Fluorescence 

measurements were made on a spectrofluorometer (RatiomasterTM system, Photon Technology 

International) equipped with dual emission monochromators. The measurement of Ca2+
f  using 

this procedure is based on the difference in maximal emission wavelengths between the Ca2+-

bound Indo-1 complex and the Ca2+-free Indo-1 complex as described previously in this thesis 

(Chapter Three) and by O’Brien et al. (O'Brien, 1990; O'Brien et al., 1991). 

 The reaction buffer (pH 7.0) for muscle homogenates contained 200 mM KCl, 20 mM 

HEPES, 15 mM MgCl2, 10 mM NaN3, 10 mM PEP, 5 mM oxalate, and 5 µM TPEN. Prior to 

each assay, 1.5 µM Indo-1, 18 U/mL LDH and 18 U/mL PK were added to the 2 mL of 

reaction buffer. Immediately before collection of emission spectra, a volume of muscle 

homogenate was added to the cuvette containing the reaction buffer. Following initiation of 

data collection, 2.5 µL of 10 mM CaCl2 was added to the cuvette, which produced a consistent 

starting Ca2+
f of approximately 3.5 µM. Shortly after the achievement of a constant Ca2+

f, 5 

mM ATP was added to the cuvette to initiate Ca2+-uptake. The generated curve from Equation 

2.2, Ca2+
f versus time, was then smoothed over 21 points using the Savitsky-Golay algorithm. 

Linear regression was performed on values ranging ± 100 nM, at Ca2+
f of  500, 1000, 1500 and 

2000 nM. Differentiating the linear fit curve will allow determination of Ca2+-uptake rates. On 

a given analytical day, complete sets of samples from 3 individuals were analyzed for Ca2+-

uptake kinetics in duplicate. The coefficient of variation for duplicate measurements for Ca2+-
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uptake was 7.6 ± 0.9% when the same sample was analyzed on different days and 7.9 ± 0.9% 

when analysis was repeated on the same day. 

 

SR Ca2+ -release 

 Sarcoplasmic reticulum Ca2+-release rates were measured according to the methods of 

Ruell et al. (Ruell et al., 1995) as modified by our group (Tupling & Green, 2002). 

Sarcoplasmic reticulum Ca2+-release assays were conducted similar to the Ca2+-uptake assay 

procedures, where a dual emission spectrofluorometer (RatiomasterTM system, Photon 

Technology International) records simultaneous photon counts per s for Indo-1 emission 

wavelengths previously defined. To assess Ca2+-release kinetics, homogenate samples were 

actively loaded with Ca2+ until a characteristic plateau in Ca2+
f was achieved. At this point, 20 

mM 4-chloro-m-cresol (4-CMC) was added to the assay mixture to chemically stimulate Ca2+-

release in vitro. The assay protocol results in 2 different Ca2+-release rates (Tupling & Green, 

2002). Phase 1 Ca2+-release has been characterized as the peak rate of the initial fast phase of 

Ca2+-release that lasts ~1-3 s in duration;  while Phase 2 Ca2+-release has been characterized as 

the more prolonged, slower rate of Ca2+-release lasting from ~4-10 s. Both phases of Ca2+-

release have been calculated using the same methods as described for Ca2+-uptake, where the 

ionized Ca2+ concentration is calculated using Equation 2.2 (Grynkiewicz et al., 1985). 

Subsequently, differentiating the linear fit curves allows determination of Ca2+-release rates. On 

a given analytical day, Ca2+-release kinetics were assessed from complete sets of samples from 

3 individuals using the same assay sample as that used to assess Ca2+-uptake. The coefficients 

of variation for duplicate measurements for Ca2+-release was not calculated since only single 

measurements were used for Ca2+-release determinations due to tissue limitations. 



158  

 Protein determination of homogenates was made by the method of Lowry (Lowry & 

Passonneau, 1972) as modified by Schacterle and Pollock (Schacterle & Pollack, 1973). 

Samples were analyzed in triplicate to determine protein concentration. 

 

Western blot analysis  

 To assess PLN phosphorylation, site-specific polyclonal antibodies for anti-serine 16 

(Ser16) PLN (sc-12963) and anti-threonine 17 (Thr17) PLN (sc-17024) phosphorylated forms 

of PLN were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Crude muscle 

homogenates were loaded on 12.5% polyacrylamide gels. Proteins were separated using 

standard SDS-PAGE protocols and transferred to nitrocellulose membranes. After blocking 

with a 5% skim milk suspension, the membranes were treated with site-specific polyclonal 

antibodies raised against the Ser16 and Thr17 phosphorylated forms of PLN, washed in Tris-

HCl, pH 7.5, 150 mM NaCl, 0.1% Tween 20 (Tris-buffered saline/0.1% Tween), and treated 

with horseradish peroxidase-conjugated secondary antibody (Santa Cruz Biotechnology). 

Membranes were washed in Tris-buffered saline, 0.1% Tween, and the signals were detected 

with an enhanced chemiluminescence kit (Amersham Biosciences) using a bio-imaging system 

and the GeneSnap software (Syngene) obtained from Fisher. Relative phosphorylation levels 

were determined by quantifying the optical density of bands at ~ 5-10 kDa and ~25 kDa, as 

indicated on the material data sheet for the PLN antibodies. For each antibody, the linearity of 

progressive increases in protein content was established before experiments were conducted 

(data not shown). Relative protein levels were determined by scanning densitometry and values 

were expressed as a % of Std. When direct comparisons were made between sampling times, 
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values were normalized to tissue samples collected at rest (0 min) and expressed as % of rest. 

All samples were analyzed in duplicate and on different gels. 

 

Statistical analyses 

 Data are presented as means ± S.E. A one-way analysis of variance (ANOVA) was utilized 

to compare differences between the sampling times within each condition. A two-way ANOVA 

(2 repeated measures) was utilized to discriminate between differences resulting from 

experimental condition and sampling time for matched samples. The data collected in the 

subgroup of participants (i.e. 6 of 15 volunteers) who had a tissue sample collected at a 

matched time corresponding to fatigue in PLAC (i.e. 115 ± 6 min) during both conditions were 

analyzed using a two-way ANOVA for the subgroup data. Where significant differences were 

found, Neuman-Kuels post hoc procedures were used to compare specific means. Significance 

was accepted at P<0.05. 

 

Results 

Ride time to fatigue  

 Average cycle time to fatigue was longer during GLUC (137 ± 7 min), compared to PLAC 

(115 ± 6 min).  

 

Glucose Supplementation 

 The total amount of CHO ingested during GLUC was 1.23 ± 0.11 g CHO per kg body 

mass, compared to 0.00 g CHO per kg body mass ingested during PLAC. The average volume 

ingested at each time point was 243 ± 17 mL per beverage;  while individual volume per 



160  

beverage ranged between 100 to 313 mL per drink. Since cycle time to fatigue was 

significantly longer during GLUC compared to PLAC, participants ingested a greater number 

of beverages during GLUC (6.7 ± 0.5 beverages) compared to PLAC (5.3 ± 0.5 beverages). 

Consequently, the total volume of beverage ingested by participants was greater during the 

GLUC (1564 ± 142 mL) condition compared to PLAC (1262 ± 137 mL). 

 
Respiratory gas measures 

 The relative exercise intensities were 57.2 ± 1.9 and 57.8 ± 1.2 % VO2peak at 15 min of 

exercise and 59.3 ± 0.7 and 60.3 ± 1.4 % VO2peak at 30 min of exercise during the PLAC and 

GLUC conditions, respectively. No differences in VO2, VCO2, or RER were observed between 

conditions at rest or during exercise (Table 4.1). However, main effects of exercise were found 

for VO2, VCO2 and RER. For VO2, Rest < 15 min, 30 min < 60 min, 90 min, 115 ± 6 min and 

137 ± 7 min. For VCO2, Rest < 15 min, 30 min, 60 min, 90 min, 115 ± 6 min and 137 ± 7 min. 

For RER, Rest < 15 min, 30 min > 60 min, 90 min, 115 ± 6 min and 137 ± 7 min.  

 

Substrate oxidation 

 Respiratory exchange ratios were used to calculate substrate oxidation rates through the 

use of indirect calorimetery (Table 4.2). A main effect of exercise was found for CHO 

oxidation rates. For CHO oxidation , Rest < 15 min, 30 min, 60 min, 90 min, 120 min, fatigue. 

Lipid oxidation rates also increased above resting levels during exercise (main effect of 

exercise;  Rest, 15 min, 30 min < 60 min, 90 min, 120 min, fatigue) regardless of condition. No 

differences between PLAC and GLUC conditions were observed for CHO or lipid oxidation 

rates. 
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Blood Hb, Hct and plasma volume changes 

 Resting Hb and Hct concentrations did not differ between PLAC (15.6 ± 0.7 g%;  45.7 ± 

0.8%) and GLUC (15.5 ± 0.6 g%;  45.7 ± 0.9%), respectively. Exercise did increase Hct 

concentrations by ~5% during exercise in both PLAC and GLUC. However, no differences in 

Hct concentrations were observed between conditions at any sampling point. 

 As expected, 30 min of exercise reduced plasma volumes by 7.8 and 8.2% during PLAC 

and GLUC, respectively. No further changes in plasma volume occurred with exercise. Glucose 

supplementation did not alter this response. 

 

Blood metabolites 

 During PLAC, blood glucose concentrations (Figure 4.2, Panel A) displayed the expected 

response, namely no change from rest for the initial 30 min of exercise, followed by a reduction 

at 90 min and 115 ± 6 min of exercise. During GLUC, the normal exercise-induced reductions 

in blood glucose were prevented.  Comparisons across conditions indicated that plasma glucose 

concentrations during GLUC were 15, 19, 23 and 24% higher than those observed during 

PLAC at 60 min, 90 min, and 115 ± 6 min of exercise, and at fatigue in GLUC (137 ± 7 min) 

compared to fatigue during PLAC (115 ± 6 min), respectively.  

 Blood lactate concentrations (Figure 4.2, Panel B) measured during PLAC increased above 

resting levels with the onset of exercise and peaked at 30 min of exercise. Similar changes in 

plasma lactate concentrations were observed during GLUC at 15 and 30 min of exercise. No 

differences in plasma lactate concentrations were observed during the initial 60 min of exercise 

between PLAC and GLUC. However, differences between conditions were observed during the 

late stages of exercise. Plasma lactate concentrations were lower during GLUC, compared to  
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PLAC, at 90 min and 115 ± 6 min of exercise and at fatigue in GLUC (137 ± 7 min) compared 

to fatigue during PLAC (115 ± 6 min). 

 Serum FFA concentrations (Figure 4.2, Panel C) did not change in response to exercise 

during PLAC. During GLUC, a rise in serum FFA was observed following 60 min of exercise. 

As a result, serum FFA concentrations were higher during GLUC compared to PLAC following 

60 min and 90 min of exercise, and at fatigue in GLUC (137 ± 7 min) compared to fatigue 

during PLAC (115 ± 6 min).  

 

Blood hormone concentrations  

 Resting serum insulin concentrations were 10.4 ± 0.90 and 10.7 ± 0.79 µIU.mL-1 during 

PLAC and GLUC, respectively. Serum insulin concentrations (Figure 4.2, Panel D) were 

unchanged by the onset of exercise (i.e. 15 min) but were reduced below resting levels 

following 30 min of exercise during both PLAC and GLUC. During PLAC, plasma insulin 

concentrations continued to decrease reaching a minimum value of 4.65 ± 0.63 µIU.mL-1 

following 115 ± 6 min of exercise. During GLUC, the normal exercise-induced reductions in 

plasma insulin concentrations were prevented. In fact, plasma insulin concentrations during 

GLUC were higher than those observed during PLAC at 60 min, 90 min, 115 ± 6 min and at 

fatigue in GLUC (137 ± 7 min) compared to fatigue during PLAC (115 ± 6 min).  

 Resting plasma EPI concentrations were 52 ± 8 and 50 ± 9 pg.mL-1 during PLAC and 

GLUC, respectively. Exercise increased EPI (Figure 4.2, Panel E) above resting levels at 90 

min of exercise during the PLAC condition, with an even greater increase in EPI being 

observed following 115 ± 6 min of exercise. Exercise also increased plasma EPI concentrations 

during GLUC. However, increases in EPI were observed only after 115 ± 6 min of exercise. No 
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further changes in EPI concentrations beyond this time were observed during GLUC. When 

comparisons were made between conditions, larger increases in EPI concentrations were 

observed during PLAC following 90 min and 115 ± 6 min of exercise, and at fatigue in GLUC 

(137 ± 7 min) compared to fatigue during PLAC (115 ± 6 min). 

 Exercise also progressively increased NE (Figure 4.2, Panel F) above resting levels during 

both experimental conditions. However, the increase in NE was much more pronounced during 

PLAC compared to GLUC following 90 min and 115 ± 6 min of exercise, and at fatigue in 

GLUC (137 ± 7 min) compared to fatigue during PLAC (115 ± 6 min).   

 

Muscle Metabolites 

 Muscle ATP concentrations were not altered by exercise or by glucose supplementation 

(Table 4.3). Additionally, PCr, Pi, Cr, pH, ADPf, and AMPf concentrations measured at rest 

were not different between PLAC and GLUC. However, main effects of exercise were found 

for PCr, Pi, Cr, pH, ADPf, and AMPf concentrations. For PCr, Rest > 30 min, 90 min, 115 ± 6 

min and 137 ± 7 min. For Pi and Cr, Rest < 30 min, 90 min, 115 ± 6 min and 137 ± 7 min. For 

pH, Rest > 30 min and 90 min;  30 min < 90 min. For ADPf and AMP f, Rest < 30 min, 90 min, 

115 ± 6 min and 137 ± 7 min. Glucose supplementation did not alter this exercise effect since 

no differences were found between condition regardless of metabolite. 

 No effect of exercise or glucose supplementation was found for total ATP, ADP or AMP 

concentrations (Table 4.4). However, a main effect of exercise (Rest < 30 min, 90 min, 115 ± 6 

min and 137 ± 7 min) was found for IMP. Glucose supplementation did not alter this exercise 

effect.  
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 The effects of exercise on glycolytic intermediates (Table 4.5) depended on the specific 

intermediate examined. Pyruvate concentrations were not altered by exercise during either 

condition. In contrast, muscle glucose, G-1-P, G-6-P, F-6-P, and lactate concentrations were all 

elevated by exercise (main effect), typically peaking at 30 min. For glucose and G-1-P, Rest <  

30 min, 90 min;  30 min > 90 min, 115 ± 6 min and 137 ± 7 min. For G-6-P and F-6-P, Rest <  

30 min;  30 min > 115 ± 6 min and 137 ± 7 min. For Lac, Rest < 30 min, 90 min, 115 ± 6 min 

and 137 ± 7 min ;  30 min > 90 min, 115 ± 6 min and 137 ± 7 min. Glucose supplementation 

during exercise did not alter the response for any of the intermediates at any time point. 

 Pre-exercise total glycogen, proglycogen and macroglycogen concentrations were not 

different between experimental conditions (Figure 4.3). During exercise in PLAC, total muscle 

glycogen content was reduced by 42, 66, and 76% after 30 min, 90 min and at fatigue, 

respectively. During GLUC, total muscle glycogen content was reduced by 40, 62, 68 and 72% 

after 30 min, 90 min, 115 ± 6 min and 137 ± 7 min of exercise. Similar percent changes were 

also observed during exercise for proglycogen and macroglycogen data. Glucose 

supplementation did not alter total glycogen, proglycogen or macroglycogen content at any 

time point during exercise.  

 

Sarcoplasmic reticulum properties 

 Resting Vmax were not different between PLAC and GLUC conditions. Exercise reduced 

SERCA Vmax (main effect of exercise) during both PLAC and GLUC conditions (Table 4.6;  

Figure 4.4, Panel A). During PLAC, Vmax were depressed by 10.9 and 18.2% after 90 min and 

115 ± 6 min of exercise, respectively. During GLUC, Vmax were depressed by 7.4, 12.4 and  
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17.5% after 90 min, 115 ± 6 min and 137 ± 7 min of exercise, respectively. Glucose 

supplementation did not alter the exercise-induced reductions in Vmax. 

 Analysis of Ca2+-dependent SERCA activities allowed for the assessment of additional 

kinetic parameters, including nH and Ca50 (Table 4.6). During PLAC, nH and Ca50 values 

measured in tissue collected at rest were 1.60 ± 0.05 and 711 ± 58 nM, respectively. During 

GLUC, nH and Ca50 values were 1.53 ± 0.04 and 713 ± 46 nM, respectively. Neither exercise 

nor condition altered nH or Ca50. 

 To assess passive leak of Ca2+ through the SR membrane, we assessed SERCA activity in 

the absence (i.e. Vmax(-)) of Ca2+ ionophore A23187 (Table 4.6). No differences Vmax(-) were 

observed at rest or at matched time points during exercise between conditions. Ionophore 

ratios, defined as Vmax / Vmax(-), were not affected by exercise or by the glucose 

supplementation protocol (Table 4.6). Similarly, no differences were observed for Basal 

ATPase activities during exercise or between conditions at matched time points in PLAC and 

GLUC (Table 4.6). 

 To examine differences in SR Ca2+-uptake rates (nmol·mg protein-1·min-1) between PLAC 

and GLUC conditions, we assessed Ca2+-transport activity at 2000 nM in crude muscle 

homogenates using the fluorescent dye Indo-1 (Figure 4.4, Panel B). No differences in resting 

Ca2+-uptake rates were observed between PLAC (6.4 ± 0.3) and GLUC (6.3 ± 0.4). Exercise 

reduced (main effect;  Rest > 30 min and 90 min > Fatigue) Ca2+-uptake rates during both 

PLAC and GLUC conditions. During PLAC, Ca2+-uptake rates were reduced by 10.8, 15.8 and 

26.9% after 30 min, 90 min, and 115 ± 6 min of exercise, respectively.  During the GLUC 

condition, Ca2+-uptake rates were depressed by 9, 9, 17 and 25% after 30 min, 90 min, 115 ± 6 

min and 137 ± 7 min of exercise, respectively. No differences were observed between 
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conditions at any time point. In addition to Ca2+-uptake measurements made at 2000 nM, we 

also assessed Ca2+-uptake rates at 1500, 1000, and 500 nM (data not shown). The changes with 

exercise at these Ca2+-concentrations were not different from those observed at 2000 nM. 

Glucose supplementation did not alter the response observed during exercise at any of these 

Ca2+-concentrations. 

 To assess the effects of exercise and glucose supplementation on the efficiency of 

Ca2+-transport across the SR membrane, we have calculated apparent coupling ratios (Ca2+ 

uptake rate at 2000 nM / Vmax) (Figure 4.4, Panel C). No effect of exercise or glucose 

supplementation was found for apparent coupling ratios during either PLAC or GLUC.  

 No differences in resting Ca2+-release rates (nmol·mg protein-1·min-1;  Figure 4.5) were 

observed between PLAC (Phase 1, 23.4 ± 1.3;  Phase 2, 7.3 ± 0.4) and GLUC (Phase 1, 23.0 ± 

1.1;  Phase 2, 7.3 ± 0.5), respectively. Exercise reduced (main effect of exercise) both Phase 1 

and Phase 2 Ca2+-release rates in both PLAC and GLUC conditions. For Phase 1 Ca2+-release, 

Rest > 30 min, 90 min, 115 ± 6 min and 137 ± 7 min;  30 min > 115 ± 6 min and 137 ± 7 min). 

For Phase 2 Ca2+-release, Rest > 30 min, 90 min, 115 ± 6 min and 137 ± 7 min;  90 min > 115 

± 6 min and 137 ± 7 min. Glucose supplementation did not alter the exercise-induced 

reductions in Ca2+-release kinetics. 

 

Phospholamban phosphorylation status 

 No effect of exercise or glucose supplementation was found for the 25 kDa and 10 kDa 

bands representing Ser16 PLN phosphorylation (Table 4.7). Similarly, the 25 kDa Thr17 

phosphorylation band was unaltered by exercise or by glucose supplementation. In contrast, a  
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main effect of exercise was found for the 10 kDa Thr17 phosphorylation band. For the 10 kDa 

Thr17 phosphorylation band, Rest < 30 min > 90 min, 115 ± 6 min and 137 ± 7 min. 

 

Discussion 

 This study investigated the hypothesis that oral glucose supplementation attenuates the 

onset of exercise-induced reductions in SR Ca2+-handling properties in human skeletal muscle. 

As a consequence, glucose supplementation would associate with the increased cycle time to 

fatigue. Based on previous data (Duhamel et al., 2006c), we also hypothesized that nH, Ca50 and 

PLN phosphorylation would not differ between conditions as a result of the exercise-induced 

changes in regulatory hormones even though glucose supplementation is expected to create 

increased insulin and decreased EPI and NE concentrations. Our data confirms that prolonged 

exercise without glucose supplementation reduced Vmax, Ca2+-uptake and Ca2+-release 

properties in a time-dependent fashion (Duhamel et al., 2005; Duhamel et al., 2006c; Duhamel 

et al., 2004a; Duhamel et al., 2004b). Moreover, exercise does not alter the Ca2+-sensitivity (i.e. 

nH or Ca50) of SERCA, the efficiency of Ca2+-transport (i.e. apparent coupling ratio) or 

permeability of the SR membrane for Ca2+ (i.e. ionophore ratio) (Duhamel et al., 2005; 

Duhamel et al., 2006c; Duhamel et al., 2004a; Duhamel et al., 2004b). As expected, exercise 

performance was improved with glucose supplementation, as indicated by the ~22 min longer 

time to fatigue. However, this ergogenic effect cannot be explained by differences in skeletal 

muscle SR Ca2+-handling properties since, contrary to our hypothesis, glucose supplementation 

was without additional effect in modifying the exercise response. Nonetheless, our data does 

support our hypothesis that glucose supplementation during exercise did not alter SERCA Ca2+-

sensitivity (i.e. nH or Ca50) or PLN phosphorylation. 
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 This study is the first to examine the effects of alterations in plasma glucose and the 

associated changes in the glucoregulatory hormone (i.e. catecholamines and insulin) 

concentrations on SR function in human skeletal muscle by directly manipulating these 

properties during exercise through the administration of oral glucose supplements. The oral 

glucose supplementation protocol used in this study caused plasma glucose, EPI, and NE 

concentrations to be elevated by 16-19, 73-138 and 15-30%, respectively, while insulin 

concentrations were reduced by 49-61% at matched exercise time points in GLUC, compared 

to PLAC. Additionally, our data also support previous literature (McConell et al., 1999; Coyle 

et al., 1986; Lee-Young et al., 2006) indicating that glucose supplementation does not alter 

endogenous glycogen utilization during exercise in humans. Collectively, these observations 

are important to our hypothesis since we have successfully altered plasma glucose, 

catecholamine and insulin concentrations without altering muscle glycogen utilization during 

exercise. 

 The observations made in this paper contribute to the growing body of evidence 

demonstrating that prolonged, moderate intensity exercise causes a progressive reduction in SR 

Ca2+-handling properties in human skeletal muscle when assessed in vitro (Booth et al., 1997; 

Duhamel et al., 2004a; Duhamel et al., 2006c; Duhamel et al., 2005; Favero et al., 1993; 

Tupling et al., 2003). Our results also confirm that the exercise-induced reductions in Vmax 

occurred in the absence of changes in Ca2+-senstivity of the enzyme, as indicated by a lack of 

change in nH and Ca50, the apparent coupling ratio and the ionophore ratio (Duhamel et al., 

2005; Duhamel et al., 2006c; Duhamel et al., 2004a; Duhamel et al., 2004b). Based on 

previous studies employing prolonged exercise in rats (Luckin et al., 1991) and chronic low-

frequency stimulation in rats and rabbits (Dux et al., 1990), the reductions in Ca2+-uptake can 
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most probably be explained by reductions in Vmax observed during exercise in this study. The 

reduction in Vmax can most likely be attributed to a reduction in the number of functional 

SERCA proteins (Favero, 1999). Such a reduction in SERCA function has been associated with 

structural alterations in the region of the nucleotide-binding site of the enzyme and occurs as a 

result of protein oxidation (Klebl et al., 1998; Matsushita & Pette, 1992) and nitration  induced 

by the accumulation of ROS (Klebl et al., 1998) during repetitive activity.  

 Accompanying the exercise-induced reductions in Vmax and Ca2+-uptake rates were 

reductions in SR Ca2+-release kinetics. We have utilized a two-phase kinetic model to 

characterize distinct phases of Ca2+ release that occur following the addition of the Ca2+-release 

agent 4-CMC. Phase 1 Ca2+-release has been characterized as the initial fast phase of Ca2+-

release that lasts for ~1-3 s in duration;  while Phase 2 Ca2+-release has been characterized as 

the more prolonged, slower rate of Ca2+-release occurring from ~4-10 s after the addition of 4-

CMC (Tupling & Green, 2002). In this study, exercise-induced reductions occurred for both 

Phase 1 and Phase 2 Ca2+-release rates with the reductions similar in both time and magnitude. 

Although the physiological significance of each Ca2+-release phase remains unclear, it is likely 

that a similar mechanism was acting to reduce both phases of Ca2+-release. Based on previous 

studies employing prolonged exercise in rats (Favero et al., 1993), it would appear the 

disturbances in Ca2+-release can be attributed to a reduction in the number of functional CRC, 

possibly as a result of protein oxidation associated with the accumulation of ROS (Favero, 

1999).  

 Contrary to our hypothesis, we found no effect of oral glucose supplementation in 

modifying the SR Ca2+-cycling responses to prolonged exercise.  This was unexpected, given 

the beneficial effects of glucose on the regulation of cytosolic Ca2+
f and the restoration of 
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contractile function (Chin & Allen, 1997). In our experimental design, oral glucose 

supplementation began at 30 min of exercise, providing a lead in period to allow for the 

exercise response to become established.  Differences between PLAC and GLUC in the SR 

properties examined were expected at 90 min of exercise, the first tissue sampling point after 

the beginning of glucose supplementation and at the matched time point beyond 90 min of 

exercise, representing the point of fatigue in NG.  Since our hypothesis was based on several 

previous studies using repetitive contractions which demonstrated a protective effect on a SR 

Ca2+-function during increased CHO availability, at least with regard to muscle glycogen (Chin 

& Allen, 1997; Cuenda et al., 1995; Duhamel et al., 2006c; Lees et al., 2001), the failure to 

find a glycemic effect invites further examination. However, it should be noted that our SR 

Ca2+-cycling measurements were made in vitro, and therefore do not rule out the possibility that 

glucose supplementation may influence SR Ca2+-cycling properties in vivo. 

 Oral glucose supplementation could promote a variety of responses, many of which could 

potentially affect SR function during the exercise state.  To examine these possibilities, it was 

first necessary to determine that our glucose supplement schedule could abolish the reduction 

in blood glucose observed at 90 min of exercise and beyond.  As expected, based on previous 

studies (Coggan & Coyle, 1991; Coyle, 1992a; McConell et al., 1999), blood glucose remained 

stable throughout exercise in GLUC.  Accordingly, maintenance of blood glucose 

concentration could affect SR responses during exercise by altering muscle substrate utilization 

and metabolism and/or by altering the blood concentrations of selected hormones, known to 

alter cellular signaling mechanisms involved with short-term regulation of the SR.  The role of 

glucose feedings on the response of these properties represented the second objective of this 

study. 



182  

 To examine the possibility that glucose supplementation could have affected 

phosphorylation potential and/or metabolite accumulation and consequently SR Ca2+-cycling in 

working muscle, we have measured the concentration of the high-energy phosphates (i.e. ATP, 

PCr, ADPf, AMPf ), selected metabolites (i.e. Pi and Cr), and selected glycolytic intermediates 

(i.e. G-1-P, G-6-P, F-6-P, Pyr and Lac). We also measured IMP concentrations since this 

property is regarded as a more sensitive indicator of changes in ATP concentration during 

exercise (Hochachka & Matheson, 1992). Although we found the expected changes in these 

compounds with exercise, we did not observe any additional changes in these compounds 

during exercise with glucose supplementation. Generally, these data support previous studies 

that have examined the influence that glucose supplementation has on metabolic parameters 

(Coyle et al., 1986; Lee-Young et al., 2006; McConell et al., 1999). However, our IMP data 

does not support the observations made by Spencer et al. (Spencer et al., 1991) indicating that 

glucose supplementation attenuates the exercise-induced accumulation of IMP. The most likely 

explanation for this difference is the higher work rate (~70% VO2peak) employed in their study 

compared to ours. This observation was important to the interpretation of our data since several 

papers in the literature have indicated that high-energy phosphate transfer (Rossi et al., 1990) 

and glycolytic-derived ATP (Xu et al., 1995) may preferentially fuel membrane functions such 

as ion transport (Rossi et al., 1990; Xu et al., 1995; Han et al., 1992). The fact that we have not 

found an effect of glucose supplementation on energy metabolism during exercise may explain, 

at least in part, our failure to find an effect of glucose supplementation on SR Ca2+-cycling 

since accumulation of one or more of these compounds have been shown to alter both Ca2+-

uptake (Tupling, 2004) and Ca2+-release (Favero, 1999) in vitro. 
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 Our hypothesis regarding the role of glucose supplementation on SR Ca2+-cycling was also 

based on a potential difference in glycogen content during exercise with or without glucose 

supplementation. To investigate this possibility, we have assessed the metabolically distinct 

glycogen subfractions, namely proglycogen and macroglycogen, to determine if glucose 

supplementation during exercise could influence the utilization of particular subfraction 

(Derave et al., 2000; Marchand et al., 2002). As expected, proglycogen represented the 

predominant glycogen subfraction prior to exercise (Marchand et al., 2002). During PLAC, 

exercise progressively reduced both proglycogen and macro glycogen contents in a manner 

similar to the changes in total glycogen content. Glucose supplementation did not alter this 

response. Since it appears that glucose supplementation did not alter the utilization pattern of 

glycogen subfractions in human skeletal muscle, it would follow that SR Ca2+-cycling 

behaviour would not be affected. Since muscle glycogen levels appear to be directly involved 

in modifying the contractile-induced effect on SR Ca2+-cycling (Chin & Allen, 1997; Duhamel 

et al., 2006c; Lees et al., 2001), the failure of our intervention to modify glycogen contents 

may be important in our inability to realize an experimental effect on SR responses. 

Unfortunately, tissue limitations associated with the human muscle biopsy technique did not 

allow us to assess the amount of glycogen bound to the SR. As a result, the possibility that 

glucose supplementation may alter the utilization pattern of glycogen in close proximity to the 

SR during exercise still exists. 

 A particularly inviting possibility for glucose supplementation to effect changes in SR 

function during exercise is via differences in selected blood hormonal responses.  Blood 

glucose levels have a potent effect in regulating the secretion of both insulin from the pancreas 

and the catecholamines from the adrenal medulla (Cryer, 1993; Wasserman & Cherrington, 
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1996). Our results demonstrate marked differences between conditions in the response of these 

hormones to exercise.  With GLUC, the normal reduction in serum insulin to prolonged 

exercise was blunted while both the EPI and NE time-dependent increases with exercise were 

substantially reduced.  Our findings indicate that by preventing declines in blood glucose 

during prolonged exercise, the concentration of these hormones can be substantially altered.  

Our observations are similar to other studies that have reported similar effects on these 

hormones with glucose supplementation administered during sustained submaximal exercise 

(Galbo, 1999) 

 The blunting of the catecholamine response with GLUC would be expected to modify the 

intrinsic regulation of both SERCA and the CRC.  It is generally accepted that EPI can affect 

increases in PLN phosphorylation through cAMP-dependent mechanisms, resulting in an 

increase in Ca2+-sensitivity in the absence of changes in Vmax of the enzyme (Gramolini et al., 

2006; MacLennan et al., 2003).  Since we failed to observe changes in SERCA kinetic 

properties, an increase in plasma EPI concentration by itself is not effective in modifying the 

Ca2+-sensitivity of the enzyme. The lack of change in Ca2+-sensitivity is also supported by our 

measurements of site-specific phosphorylation of PLN at Ser16 and Thr17, where expected 

increases (Rose et al., 2006) were not observed. Specifically, our data indicate that exercise did 

not alter the PLN Ser16 phosphorylation during either PLAC or GLUC. Moreover, exercise did 

not alter PLN Thr17 phosphorylation assessed at 25 kDa, but did increase PLN Thr17 

phosphorylation assessed at 10 kDa during both PLAC and GLUC at 30 min of exercise, before 

returning to pre-exercise levels as exercise progressed. Glucose supplementation did not 

modify PLN Ser16 or Thr17 phosphorylation during exercise. It is not clear why our results do 

not support the observations made by Rose et al. (Rose et al., 2006);  however it is possible that 
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differences in analytical techniques may have contributed to the observed differences. For 

example, protein kinase or phosphatase inhibitors were not added to the homogenizing medium 

used to characterize PLN phosphorylation in our study;  whereas it was unclear if Rose et al. 

(Rose et al., 2006) used protein kinase or phosphatase inhibitors. Another possibility to explain 

the apparent insignificant effect of glucose supplementation on SERCA Ca2+-sensitivity and 

PLN phosphorylation may be related to the exercise effect per se. For example, it is possible 

that the exercise-induced activation of protein kinase and phosphatase pathways creates 

contrasting effects that do not result in changes in net phosphorylation of PLN, which may, in 

part, contribute to the lack of change in Ca50 and nH during exercise with or without glucose 

supplementation.  

 Our experimental design also enables us to gain further insight into the regulation of CRC 

function during conditions where plasma catecholamine and insulin concentrations have been 

manipulated by oral glucose supplementation. Epinephrine and insulin signaling can activate 

various protein kinase and phosphatase pathways to alter CRC phosphorylation (MacLennan et 

al., 2002; Reiken et al., 2003; Liu & Brautigan, 2000), thereby regulating the open probability 

of the CRC. However, since we did not observe any changes in SR Ca2+-release kinetics 

between conditions, it is unlikely that CRC phosphorylation was differentially altered by 

glucose supplementation. Since plasma EPI decreased and serum insulin increased with GLUC 

during prolonged exercise, it is possible that contrasting effects of the two hormones did not 

result in a net change in phosphorylation of the CRC. Nonetheless, it should be emphasized that 

these measurements were made in vitro;  therefore, the possibility that glucose supplementation 

may influence SR Ca2+-release kinetics in vivo cannot be ruled out. 
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 Another possibility to explain the apparent insignificant effect of glucose supplementation 

on SR behaviour during exercise relates to the analytical approach to measuring the SR Ca2+-

cycling properties.  Our measurements are based on in vitro techniques performed on crude 

homogenates under supposedly optimal conditions. As such, the increases in Ca2+-release and 

SR Ca2+-uptake that undoubtedly occurs “in vivo” in the transition from rest to exercise remain 

undetected.  It is possible that changes “in vivo” mediated by our experimental conditions 

remain obscure because of analytical limitations.  However, in recent work (Duhamel and 

Green, unpublished), we have been able to demonstrate that under supposedly optimal assay 

conditions, the effect of changes in selected hormones and selected protein kinase and 

phosphatase signaling pathways on the kinetic behaviour of SERCA can be detected.  These 

results suggest that at least some of the potential mechanisms whereby glucose can alter SR 

Ca2+-handling can be assessed in vitro under our assay conditions. 

 The results of this paper need to be put into perspective given limitations of our analytical 

techniques. It should be emphasized that the conditions under which the SR measurements 

were performed were optimized depending on which property was being assessed. For SERCA 

activity, the assay medium contained the Ca2+ ionophore A23187, which makes the membrane 

permeable to Ca2+ and allows the catalytic activity of the enzyme to be measured at 

submaximal and maximal Ca2+
f (Berchtold et al., 2000). Ca2+ ionophore A23187 is used to 

prevent the formation of a large Ca2+ gradient across the SR membrane that would cause back-

inhibition of the enzyme (Berchtold et al., 2000) and prevent determination of Vmax. For Ca2+-

uptake, the assay conditions required the SR membrane to be left intact since our analytical 

techniques uses the Ca2+-sensitive dye Indo-1 to calculate the ratio between the Ca2+ bound and 

the Ca2+ free Indo-1 complex. Therefore, oxalate was used in the Ca2+-uptake assay buffer to 
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prevent back inhibition of the enzyme since this compound is used to bind Ca2+ (Berchtold et 

al., 2000). Although it would have been preferable to determine Ca2+-uptake rates at maximal 

Ca2+
f, assessment of Ca2+-uptake rates were completed at submaximal Ca2+

f due to the limited 

sensitivity of the fluorescent dye Indo-1. Based on these analytical differences, the conditions 

under which the measurements were performed should be considered when interpreting the 

apparent coupling ratios. Measurements of Ca2+-release rates were assessed using an assay 

coupled with Ca2+-uptake and therefore were completed in the presence of oxalate. Therefore, 

oxalate may have biased our Ca2+-release measurements since Ca2+ must dissociate from 

oxalate prior to being exposed to Indo-1 in our assay medium. It would have been preferable to 

determine Ca2+-release rates in the absence of oxalate. However, we have found that the active 

loading of muscle homogenates without oxalate takes ~60 min (unpublished). This duration is 

problematic when determining Ca2+-uptake and Ca2+-release kinetics since we have found that 

the homogenate is not stable during this time (Tupling et al., 2004). Limitations 

associated with the experimental model and sample size used in this study should also be 

considered when interpreting the results in this study. Although it would have been preferable 

to collect tissue samples at rest and also at the time corresponding to fatigue in PLAC (115 ± 6 

min) during both PLAC and GLUC for all participants, ethical and tissue sampling limitations 

did not permit for 9 tissue biopsy samples to be collected. For this reason, resting tissue 

samples during the GLUC trial were replaced by a tissue sample that was collected at the time 

corresponding to fatigue in PLAC (115 ± 6 min) during GLUC for a subgroup of participants. 

This tissue-sampling schedule allowed us to make an additional comparison during exercise 

when plasma glucose, catecholamine and insulin concentrations were different between 
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conditions. The data collected in this subgroup were not different from the changes observed at 

30 and 90 min of exercise and at fatigue observed in the main group of participants this study.  

 Since there appeared to be a small, but insignificant divergence between PLAC and GLUC 

during the late stages of exercise for Ca2+-uptake (P=0.24) and Phase 1 Ca2+-release (P=0.35), 

power calculations were performed to estimate the number of participants needed for an 80% 

power level. Power calculations were completed by comparing means for independent samples 

for matched time points using statistical software offered through the University of British 

Columbia website (Brant, 2006) based on the calculations detailed by Rosner (Rosner, 2006). 

For Ca2+-uptake, 166, 53 and 652 volunteers would have to participate in this study to get an 

80% power level at 90 min of exercise during both PLAC and GLUC, at a time corresponding 

to fatigue during the PLAC condition during both PLAC and GLUC (115 ± 6 min), and at the 

time corresponding to fatigue in PLAC (115 ± 6 min) compared to the time corresponding to 

fatigue in GLUC (137 ± 7 min), respectively. For Phase 1 Ca2+-release, 120, 652, and 128 

volunteers would have to participate in this study to get an 80% power level when the same 

comparisons were made. Based on these power calculations, we feel confident that we are able 

to conclude that glucose supplementation does not alter SR Ca2+-handling properties in this 

study. Moreover, our conclusions are based on data collected from fifteen participants, which is 

larger than the typical sample size used in many exercise physiology studies (Booth et al., 

1997; Coyle et al., 1986; Duhamel et al., 2005; Duhamel et al., 2004a; Duhamel et al., 2004b; 

Green et al., 1989; Green et al., 1991a; Green et al., 1991b; Lee-Young et al., 2006; Marchand 

et al., 2002; McConell et al., 1999; Sahlin et al., 1976; Tupling et al., 2003; Tupling et al., 

2004).  
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 The results of this paper also need to be interpreted in the context of the mixed fibre type 

composition of the human vastus lateralis. Since Type I and Type IIa fibres (Green et al., 1990; 

Vollestad & Blom, 1985) represent ~90% of the fibre population in the human vastus lateralis 

(Saltin & Gollnick, 1983), the exercise-induced reductions in SR Ca2+-handling properties 

observed in this study represent the net change in SR function for all fibre types present in each 

muscle sample and do not represent a fibre type-specific response. However, we can not 

discount the possibility that our data were influenced by greater reductions in one fibre type 

compared to another since differences in fibre type activation during prolonged exercise are 

known to exists (Green et al., 1990; Vollestad & Blom, 1985). Moreover, differences in 

SERCA protein isoform expression (Wu & Lytton, 1993) or the expression of other SR-

associated proteins known to influence the intrinsic regulation of SR properties (Tupling, 2004) 

may have also caused SR properties to be affected to a greater extent in one fibre type 

compared to another. It would have been beneficial to determine the fibre type-specific changes 

in SR properties during exercise for Type I versus Type II fibres;  however, this was not 

possible for the vastus lateralis given tissue limitations and technical limitations associated with 

the analytical techniques used in this study. 

 

Summary 

 Our findings demonstrate that prolonged exercise leads to a progressive loss of SR Ca2+-

handling properties in human skeletal muscle, assessed in vitro. Furthermore, it appears that the 

provision of glucose supplements during the late stages of exercise does not delay the onset of 

exercise-induced reductions to SR Ca2+-handling properties, assessed in vitro, in human 

skeletal muscle. Although glucose supplementation did increase exercise cycle time to fatigue 
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in this study, our data does not reveal an association with SR Ca2+-cycling. However, these data 

do not rule out the possibility that glucose supplementation may influence E-C coupling 

processes or SR Ca2+-cycling properties in vivo. Additionally, by combining these observations 

with the results from our previous study (Duhamel et al., 2006c), the justification for 

classifying the depletion of muscle glycogen as a factor that contributes, in part, to the 

reduction of SR Ca2+-handling properties during prolonged exercise is strengthened since 

changes in plasma glucose, catecholamines and insulin do not alter SR properties during 

exercise in human skeletal muscle. 
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Summary and Conclusions 

 The purpose of this thesis was to investigate the role that intracellular signaling pathways 

have on the regulation of SR Ca2+-handling proteins, namely SERCA and CRC, in cardiac and 

skeletal muscle of different fiber type composition.  To accomplish this aim, two basic 

strategies were employed. The studies described in Chapter Two and Chapter Three utilized a 

non-physiologic model to characterize second messenger effects using pharmacological 

interventions. The first study (i.e. Chapter Two) was designed to characterize the influence that 

β-adrenergic, CaMKII, and PKC signaling pathways have on SERCA kinetic properties in the 

LV and skeletal muscles of different fibre type in rats. The second study (i.e. Chapter Three) 

sought to characterize the influence that insulin signaling has on SERCA kinetic properties 

using the same tissues employed in the previous study. The final study (Chapter Four) was 

designed to use a physiologic model to investigate the collective effects that alterations in 

plasma glucose concentrations and the associated changes in plasma glucoregulatory hormone 

(i.e. catecholamines and insulin) concentrations have on SR Ca2+-handling (e.g. Vmax, Ca2+-

uptake and Ca2+-release kinetics) in human skeletal muscle by directly manipulating these 

properties through the administration of oral glucose supplements during exercise.  

 In general, the results described in Chapter Two and Three indicate that β-adrenergic, 

CaMKII and insulin signaling pathways increased SERCA Ca2+-sensitivity in a tissue specific 

manner (Figure 5.1);  whereas, PKC signaling reduced SERCA Ca2+-sensitivity in all tissues. 

Moreover, PKC signaling also reduced SERCA Vmax in fast-twitch skeletal muscles, but not in 

the LV or SOL. The results described in Chapter Four indicate that changes in plasma glucose, 

epinephrine and insulin concentrations do not influence SR Ca2+-handling properties in human 

skeletal muscle during exercise. However, since exercise did reduce SR Ca2+-handling  
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properties during exercise with and without exercise, it is possible that the strength of the 

exercise signal overrode the hormonal influences observed to occur in resting muscles.  

 The results presented in Chapter Two supported our hypothesis, namely that β-adrenergic 

signaling increased the Ca2+-sensitivity of SERCA, as reflected by reductions in Ca50, without 

increasing Vmax in the LV and SOL.  Our data also support our hypothesis that β-adrenergic 

signaling reduces Ca50 in the LV via a cAMP-dependent PKA-dependent mechanism, whereas, 

an alternative cAMP-dependent mechanism that is not PKA-dependent influences Ca50 in the 

SOL. Based on the known expression of SLN protein and the lack of PLN in the SOL of rat 

(Vangheluwe et al., 2005), we propose that SLN may be contributing to the observed β-

adrenergic signaling effect in this tissue. However, our results do not rule out the possibility 

that another cAMP-dependent mechanism that is not PKA-dependent may be responsible for 

the changes in Ca50 in the SOL.  

 The CaMKII signaling experiments support the hypothesis that CaMKII activation would 

increase the Ca2+-sensitivity of SERCA2a, which most likely occurs as a result of CaMKII-

mediated PLN phosphorylation in the LV (Hawkins et al., 1994; Hawkins et al., 1995; 

Odermatt et al., 1996; Xu & Narayanan, 2000). Our data also support the hypothesis that 

CaMKII would not alter SERCA kinetic properties in any of the skeletal muscles studied. This 

observation was not unexpected since PLN protein is not expressed in rat slow-twitch or fast-

twitch skeletal muscle, but is expressed in the LV (Vangheluwe et al., 2005). Our results do not 

support the hypothesis that CaMKII-activation would increase the Vmax of SERCA2a in the LV 

and SOL (Hawkins et al., 1994; Hawkins et al., 1995; Xu & Narayanan, 2000). This finding 

contradicts previous literature (Hawkins et al., 1994; Hawkins et al., 1995; Xu & Narayanan, 

2000) that has demonstrated that CaMKII increases the Vmax of SERCA2a by directly 
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phosphorylating Ser38 within the enzyme (Hawkins et al., 1994; Odermatt et al., 1996; Xu & 

Narayanan, 2000) but supports the findings of Odermatt et al. (Odermatt et al., 1996) showing 

no effect of CaM on the Vmax of SERCA2a.  

 Our PKC signaling data also support our hypothesis that PMA depresses SERCA Ca2+-

sensitivity (i.e. nH and Ca50) in the LV, SOL and fast-twitch skeletal muscles of the rat. 

However, in contrast to our hypothesis, PMA does not alter Vmax in the LV or SOL but does 

reduce Vmax in the EDL, WG, and RG. It is possible that differences in SERCA isoform 

expression may have contributed to the tissue specific responses. This possibility is supported 

by our observations indicating that PMA does not alter the Vmax of enriched SR vesicles 

containing SERCA2a prepared from LV, but that it does reduce the Vmax of enriched SR 

vesicles containing SERCA1a prepared from WG. However, our data does not rule out the 

possibility that proteins other than SERCA may have contributed to the tissue-specific response 

observed. Although our data clearly indicated that PMA negatively influenced Vmax in fast- 

twitch skeletal muscle and nH and Ca50 in all tissues examined, it is not yet clear what 

mechanism(s) are mediating these effects. Accordingly, further research is needed to identify 

the PKC-dependent mechanisms that regulate SERCA kinetic properties in the LV and skeletal 

muscles.  

 The results presented in Chapter Three support our hypothesis that insulin signaling can 

acutely regulate SERCA kinetic properties. These experiments indicate that insulin increases 

SERCA Ca2+-sensitivity in crude muscle homogenates and enriched SR vesicles prepared from 

rat LV and skeletal muscles. Moreover, our data demonstrate that insulin signaling promotes 

the interaction of IRS proteins (i.e. IRS-1 and IRS-2) with SERCA1a and SERCA2a in an 

insulin-dependent manner in all tissues examined. However, in conflict to our hypothesis, we 
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found that the insulin-induced changes in SERCA2a Ca2+-sensitivity in the LV were not 

associated with changes in the PLN pentamer: monomer ratio or to changes in the PLN Ser16 

or Thr17 phosphorylation. Our findings indicate that the IRS proteins bind directly with 

SERCA proteins regardless of muscle type. This mechanism may be analogous to the 

phosphorylation-mediated regulation of SERCA Ca2+-sensitivity by PLN (James et al., 1989) 

and SLN (Gramolini et al., 2006) and represents a novel insulin-sensitive pathway capable of 

influencing SERCA kinetic properties. These data, in combination with the observations made 

by others (Algenstaedt et al., 1997; Borge & Wolf, 2003; Xu et al., 2000), demonstrate that 

IRS-1 and IRS-2 proteins should be added to the list of endogenous modulator proteins capable 

of acutely regulating SERCA kinetic properties in cardiac and skeletal muscle at submaximal 

Ca2+
f.  

 The results presented in Chapter Four support our hypothesis that prolonged exercise 

progressively reduces Vmax, Ca2+-uptake, and Ca2+-release kinetics and that the reductions in 

SR Ca2+-handling properties occur in the absence of changes in Ca2+-sensitivity (i.e. nH and 

Ca50), Ca2+-transport efficiency (i.e. apparent coupling ratio) and membrane permeability for 

Ca2+ (i.e. ionophore ratio). Consistent with our hypothesis, we have found that glucose 

supplementation did not influence energy metabolism and muscle glycogen content. Moreover, 

these data also support our hypothesis that glucose supplementation during exercise did not 

alter SERCA Ca2+-sensitivity (i.e. nH or Ca50) or PLN phosphorylation. In contrast, our data did 

not support our hypothesis that the exercise-induced reductions to SR Ca2+-handling properties 

would be attenuated by the provision of glucose supplements during the late stages of exercise. 

This was unexpected, given the beneficial effects of glucose on the regulation of cytosolic Ca2+
f 

and the restoration of contractile function in mammalian single fibres (Chin & Allen, 1997). 
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Although glucose supplementation did increase exercise cycle time to fatigue in this study, our 

data did not reveal an association with SR Ca2+-cycling, at least as assessed in vitro. It is 

possible that the strength of exercise signal overrides the hormonal influences observed in 

resting muscles. Additionally, these data do not rule out the possibility that glucose 

supplementation may influence E-C coupling processes or SR Ca2+-cycling properties in vivo.   

 

Future Directions 

 This research raises several issues for future investigation. From a clinical perspective, it 

appears that impaired SR Ca2+-cycling is associated with many forms of cardiomyopathy. 

Interestingly, β-adrenergic, CaMKII, PKC, and insulin signaling pathways have all been 

implicated in the development of cardiomyopathy. Given the role of the SR in regulating Ca2+
f 

and contractility, it is not yet clear if reductions in SR function contribute to the development of 

cardiomyopathy or is an adaptive response to another element of the pathophysiology of 

cardiomyopathy. Therefore, it would be beneficial to explore the possiblity of using these 

signaling pathways to improve cardiac SERCA Ca2+-cycling properties and to improve 

contractactility in patients diagnosed with various cardiomyopathies. 

 Our insulin signaling observations introduce a novel finding to link insulin signaling with 

the regulation of SERCA kinetic properties. In fact, the proposed mechanism for IRS binding to 

SERCA appears to be regulated by a phosphorylation-mediated mechanism, which is analogous 

to the phosphorylation-mediated regulation of SERCA Ca2+-sensitivity by PLN (James et al., 

1989) and SLN (Gramolini et al., 2006). Therefore, it would be helpful to determine if this 

pathway regulates SERCA Ca2+-sensitivity in cardiac and skeletal muscle of different species. 

Moreover, given that Ca2+
f-regulation is adversely affected by diabetes, it would be valuable to 
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determine how this disease state affects the regulation of SERCA kinetic properties in heart and 

skeletal muscle. Clinical research has demonstrated that the most common complication of 

diabetes is an increased incidence of cardiovascular disease with heart failure being the leading 

cause of death in diabetic populations (Grundy et al., 1999). In addition to an increased 

incidence of diabetes-induced hypertension and coronary artery disease, empirical evidence has 

also demonstrated that a diabetic cardiomyopathy contributes to the pathophysiology of the 

diabetic heart. Generally, the literature has demonstrated that remodeling of metabolic 

pathways (Belke et al., 2000), contractile proteins (Malhotra et al., 1995), sarcoplasmic 

reticulum Ca2+-handling proteins (Netticadan et al., 2001) and membrane phospholipid 

composition (Kuwahara et al., 1997) contribute to the pathophysiology of diabetic 

cardiomyopathy. Therefore, it would be of value to determine if diabetes adversely affects SR 

Ca2+-handling properties in cardiac and skeletal muscles. In addition, it would be of value to 

develop a stronger understanding of the affects that diabetes exerts on intracellular regulatory 

pathways that influence cardiac Ca2+-handling protein function and expression. 

 

Limitations 

 From a biochemical perspective, several limitations in these studies should be addressed. 

For example, our inability to directly demonstrate that the effect of insulin was mediated 

through an INS-TK dependent mechanism (i.e. experiments that used 80 µM AGL 2263 in 

Chapter Three) should be revisited. Another limitation to the current study was the inability to 

determine if the PMA-dependent changes in nH and Ca50 were mediated through a PKC 

dependent mechanism. We attempted to establish that the PMA-induced changes in SERCA 

kinetic properties occurred as a result of PKC-dependent signaling by incubating samples in the 
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presence of the PKC inhibitor GFX. However, GFX did not prevent the PMA-dependent 

effects. In hindsight, we should have assessed SERCA kinetic properties in the presence of the 

biologically inactivated form of PMA. Therefore, it is recommended that strategies be 

developed to utilize INS-TK and PKC activators and inhibitors to demonstrate that these 

pathways were indeed directly responsible for the observed effects.  

 It is notable that the combined alterations in plasma glucose, catecholamine and insulin 

concentrations did not influence SR Ca2+-handling during exercise. This observation may 

appear to directly contradict the notion that β-adrenergic and insulin signaling influence 

SERCA Ca2+-sensitivity. However, this human study was designed to manipulate plasma 

glucose and consequently the glucoregulatory hormone (i.e. catecholamine and insulin) 

concentrations during the late stages of exercise. In fact, when the glucose supplementation 

protocol was started (i.e. 30 min of exercise) plasma catecholamine concentrations were 

already elevated above resting levels during both the PLAC and GLUC conditions. Therefore, 

it is possible that the effects of the catecholamines were already manifested. Additionally, since 

this study used an exercise stimulus, it is possible that the changes in plasma catecholamine and 

insulin during the late stages of exercise had no additional effect since several intracellular 

signaling pathways associated with exercise were already acting to ensure an appropriate 

response was completed. Therefore, it would be of value to characterize the influence that 

alterations in plasma glucose, catecholamine and insulin concentrations have on non-exercising 

human skeletal muscle. This information would establish if epinephrine and insulin could alter 

SERCA kinetic properties in human skeletal muscle.  

 The interpretation of our results is also limited since we did not characterize SERCA 

kinetic properties in the presence of combined treatments. For example, a combined β-
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adrenergic and insulin treatment would have been beneficial since it would establish if these 

pathways interact to influence SERCA Ca2+-sensitivity in the LV and skeletal muscles. Based 

on our observations, which indicate that β-adrenergic signaling influences Ca50 via a PLN- or 

SLN-mediated pathway in the LV and SOL, respectively, and on the observation that insulin 

signaling appears to influence Ca50 by promoting the interaction of IRS proteins with SERCA, 

it is possible that the effects of each pathway are additive. In the physiologic study, it is 

noteworthy that plasma EPI and NE were higher, while INS was lower, during PLAC 

compared to GLUC. Since our data indicated that both β-adrenergic and insulin signaling is 

capable of increasing SERCA Ca2+-sensitivity, it is possible that the divergent changes in EPI 

and INS may have exerted different effects on Ca50 in this model. Accordingly, further research 

is warranted to examine the possibility that β-adrenergic and insulin signaling influence 

SERCA Ca2+-sensitivity when both pathways are activated in combination. 
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Appendix Table 2.1: Effects of Propranolol, Epinephrine or Propranolol + Epinephrine on 
SERCA kinetic properties in homogenates from left ventricle and skeletal muscle of different 
fibre type composition.

Values are Means ± S.E. n=7. LV, left ventricle. SOL, soleus. EDL, extensor digitorum longus. 
WG, the white portion of the gastrocnemius. RG, the red portion of the gastrocnemius. 
Epinephrine is a β-adrenergic activator. Propranolol is a β-adrenergic inhibitor. Vmax, maximal 
SERCA activity. nH, hill slope defined as the relationship between SERCA activity and [Ca2+]f
for 10 to 90% Vmax. Ca50, the Ca2+-concentration at ½ Vmax. Units for Vmax are nmol.mg-1.min-1. 
Units for nH are arbitrary units. Units for Ca50 are nM. † - Significantly different from 4 µM 
propranolol (P<0.05). ‡ - Significantly different from 150 nM epinephrine (P<0.05). 

4 µM Propranolol 150 nM Epinephrine 4 µM Propranolol +
150 nM Epinephrine

LV
Vmax 135 ± 5 132 ± 6 135 ± 7
Hill Slope 1.99 ± 0.07 2.36 ± 0.07 † 2.03 ± 0.07 ‡
Ca50 1504 ± 79 1240 ± 26 † 1425 ± 75 ‡

SOL
Vmax 131 ± 9 132 ± 9 134 ± 9
Hill Slope 1.27 ± 0.04 1.71 ± 0.12 † 1.31 ± 0.08 ‡
Ca50 941 ± 82 755 ± 63 † 981 ± 133 ‡

EDL
Vmax 712 ± 31 704 ± 29 700 ± 31
Hill Slope 1.91 ± 0.08 1.92 ± 0.06 1.91 ± 0.09
Ca50 794 ± 16 771 ± 15 787 ± 27

WG
Vmax 712 ± 37 716 ± 39 707 ± 41
Hill Slope 1.73 ± 0.07 1.70 ± 0.08 1.72 ± 0.07
Ca50 883 ± 51 881 ± 56 872 ± 58

RG
Vmax 476 ± 8 474 ± 7 478 ± 7
Hill Slope 1.76 ± 0.10 1.78 ± 0.08 1.81 ± 0.06
Ca50 795 ± 30 762 ± 25 764 ± 17
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Appendix Table 2.2: Effects of KT5720, Forskolin or KT5720 + Forskolin on SERCA kinetic 
properties in homogenates from left ventricle and skeletal muscle of different fibre type 
composition.

Values are Means ± S.E. n=7. LV, left ventricle. SOL, soleus. EDL, extensor digitorum longus. 
WG, the white portion of the gastrocnemius. RG, the red portion of the gastrocnemius. 
Forskolin is a protein kinase A (PKA) activator. KT5720 is a PKA inhibitor. Vmax, maximal 
SERCA activity. nH, hill slope defined as the relationship between SERCA activity and [Ca2+]f
for 10 to 90% Vmax. Ca50, the Ca2+-concentration at ½ Vmax. Units for Vmax are nmol.mg-1.min-1. 
Units for nH are arbitrary units. Units for Ca50 are nM. † - Significantly different from 100 nM 
KT5720 (P<0.05). ‡ - Significantly different from 25 µM forskolin (P<0.05). 

100 nM KT5720 25 µM Forskolin 100 nM KT5720 +
25 µM Forskolin

LV
Vmax 141 ± 7 143 ± 6 146 ± 6
Hill Slope 2.22 ± 0.10 2.29 ± 0.07 2.20 ± 0.07
Ca50 1627 ± 57 1295 ± 30 † 1441 ± 61 †‡

SOL
Vmax 117 ± 6 121 ± 5 120 ± 7
Hill Slope 1.63 ± 0.06 1.67 ± 0.09  1.61 ± 0.07
Ca50 793 ± 86 754 ± 23 767 ± 53

EDL
Vmax 778 ± 42 790 ± 44 791 ± 45
Hill Slope 1.69 ± 0.05 1.66 ± 0.04 1.64 ± 0.07
Ca50 875 ± 13 928 ± 34 916 ± 32

WG
Vmax 625 ± 38 639 ± 33 632 ± 37
Hill Slope 2.04 ± 0.07 2.03 ± 0.12 2.00 ± 0.09
Ca50 685 ± 28 697 ± 17 677 ± 11

RG
Vmax 433 ± 10 437 ± 8 424 ± 10
Hill Slope 1.98 ± 0.08 2.00 ± 0.09 1.94 ± 0.06
Ca50 692 ± 39 706 ± 42 689 ± 38

Vmax

Ca50

nH
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APPENDIX THREE 
 

Data that were presented in Figures in Chapter Three 
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Appendix Table 3.1: Co-immunoprecipitation of insulin receptor substrate (IRS)-1 and IRS-2 
with SERCA1a using white gastrocnemius homogenates or SERCA2a using  left ventricular 
homogenates. 

Control 30 ng A-INS-R 100 nM Insulin

WG
IRS-1 100 ± 6 134 ± 5 † 168 ± 2 †‡

IRS-2 34 ± 11 129 ± # † 245 ± 15 †‡

LV
IRS-1 22 ± 3 77 ± 9 † 90 ± 5 †‡

IRS-2 14 ± 4 50 ± 5 † 72 ± 7 †‡

Values are Means ± S.E; n=4. Optical density of IRS-1 and IRS-2 proteins assessed by 
Western blot techniques using the 1st elution of sample from the co- immunoprecipitation 
antibody MA3-919. † Significantly different from Control (P<0.05). ‡ Significantly 
different from A-INS-R (P<0.05).

Appendix Table 3.2: Fluorescein isothiocyanate (FITC) and N-cyclohexyl-N'- (dimethylamino-
alpha-naphthyl) carbodiimide (NCD-4) binding capacity of SR vesicles enriched in SERCA1a 
prepared from the white gastrocnemius or SR vesicles enriched in SERCA2a prepared from the 
left ventricle in response to 30 ng active insulin receptor or 100 nM insulin

Control 30 ng A-INS-R 100 nM Insulin

FITC
SERCA1a 100 97 ± 3 102 ± 4
SERCA2a 100 103 ± 7 102 ± 9

NCD4
SERCA1a 100 101 ± 5 101 ± 4
SERCA2a 100 96 ± 7 94 ± 7

Values are Means ± S.E; n=8. Control, a control sample. A-INS-R, 30 ng of an activated 
form of the insulin receptor. INS, 100 nM insulin. 
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Appendix Table 3.3: Assessments of phospholamban status in response to activation of insulin 
signaling in SR vesicles enriched in SERCA2a and prepared from the left ventricle. Panel A, 
phospholamban pentamer:monomer ratio.

Control A-INS-R Insulin A-PKA CaM

PLN Ratio (Pentamer:Monomer)
100 104 ± 10 100 ± 7 104 ± 4 100 ± 3

Ser16-PLN
100 98 ± 6 103 ± 14 127 ± 6 $ 95 ± 10

Thr17-PLN
100 103 ± 8 101 ± 9 98 ± 4 118 ± 4 $

Values are Means ± S.E; n=8. PLN ratio, phospholamban pentamer:monomer ratio. Ser16-
PLN, the Ser16 phosphorylated form of phospholamban. Thr17-PLN, the Thr17 
phosphorylated form of phospholamban. Control, a control sample. A-INS-R, 30 ng of an 
activated form of the insulin receptor. INS, 100 nM insulin. A-PKA, an activated form of 
PKA. CaM, bovine brain calmodulin. A 1 way-ANOVA indicated no differences between 
control, A-INS-R or INS. Therefore, A-PKA and CaM samples were tested to confirm the 
validity of the Ser16 and Thr17 antibodies. Student T-tests were utilized to make 
comparisons between control samples with A-PKA and control samples with CaM since 
these conditions were assessed on independent gels and not concurrently with A-INS-R or 
100 nM INS. $ Significantly different from control. 
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APPENDIX FOUR 
 
 
 

 
Example Western Blot Figures 
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APPENDIX FIVE 
 
 

Data that were presented in Figures in Chapter Four 
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Participant Code PLAC GLUC

TP 110 150
KC 115 112
AM 95 110
DC 150 180
AD 118 150
LK 145 180
AP 150 150
DS 110 151
IC 75 90

MR 90 120
DF 150 150
RS 110 150
MC 120 142
EH 97 115
MK 85 105

Mean ± SE 115 ± 6 137 ± 7 #

Appendix Table 4.1: Individual participant ride time to fatigue data 
during the prolonged exercise tests in the Placebo and Glucose 
conditions. 

Values are individual data (n=15). PLAC, placebo condition. 
GLUC, glucose condition. Units are minutes. # significantly 
different from PLAC (P<0.05).
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APPENDIX SIX 
 

Calculation of Substrate Oxidation 
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Calculation of Substrate Oxidation 
 
 The measurement of oxygen consumption (O2) and carbon dioxide production (CO2) can be used to 
quantify the rate of carbohydrate (CHO) and fat oxidation using indirect calorimetry.  The stoichiometry of 
oxidation of glucose is: 
 
 C6H12O6 +  6O2    —,  6H2O  +  6CO2    (1) 
 (glucose) 
 
Therefore, each mole of glucose oxidized consumes six moles of oxygen and produces six  moles of carbon 
dioxide.   The respiratory quotient (RQ) is equal to 1.0.  The stoichiometry of an average fat (triglyceride) is: 
 
 C55H104O6 + 78O2  —, 55CO2 + 52H2O  (2) 

 (triglyceride) 
 
The above triglyceride is assumed to be palmitoyl-stearoyl-oleoyl-glyceride as a representative of the average 
composition of triglyceride (TG).  Each mole (861 g) of TG utilizes 78 moles of oxygen and produces 55 moles of 
carbon dioxide to produce a respiratory quotient equal to 0.7.    The precise stoichiometry for protein oxidation 
cannot be written due to the large variation in the structure of the various amino acids.  On average 1g of protein 
consumes 0.966 litres of oxygen and produces 0.782 litres of carbon dioxide, to produce a respiratory quotient 
(RQ) of 0.81.  These values are expressed as a function of total urinary nitrogen excreted.  One gram of urinary 
nitrogen is assumed to represent the consumption of 6.04 litres of oxygen and the production of 4.89 litres of 
carbon dioxide.  
 
 Since one mole of gas (either O2 or CO2) occupies 22.4 litres, we can summarize the above information in 
the following table: 
 
Substrate O2  

L·mmole-1 fuel 
CO2

  

L·mmole-1 fuel 
O2

  

L·g-1 fuel 
CO2

  

L·g-1 fuel 
Glucose 

Fat (TG) 

N 

0.13428 

1.74783 

0.08456 

0.13428 

1.23123 

0.06804 

0.746 

2.03 

6.04 

0.746 

1.43 

4.89 
 

 From these figures and from the relation between urinary nitrogen excretion and protein oxidation, total oxygen consumption and carbon dioxide production are 

expressed by the following equations: 

 

 O2
 (L·min-1)  =  0.746c +  2.03f + 6.04n    (3) 

CO2 (L·min-1)  =  0.746c + 1.43f + 4.89n    (4) 
 
Where c, f and n refer to the grams oxidized per minute of carbohydrate and fat respectively and n is the rate of 
excretion of urinary nitrogen in g·min-1.  Solving for the rate of carbohydrate and fat oxidation: 
 
 c(g·min-1)  = 4.55 CO2  - 3.21 O2   - 2.87n    (5) 
 

f(g·min-1)  = 1.67 O2  - 1.67 CO2   - 1.92n    (6) 
 
Where both CO2 and O2 are expressed in L·min-1. 
 
   To determine the rate of oxidation in mmole·min-1 : 
 
 O2 (L·min-1)  =  0.13428c + 1.7478f  +  0.078456n   (7) 
 

CO2 (L·min-1)  =  0.13428c + 1.2312f  + 0.0680n   (8) 
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Where c, f and n are in mmoles.  Therefore: 
 
 c(mmole·min-1)  = 25.196CO2  - 17.749O2  - 0.21349n  (9) 
 

f(mmole·min-1)  = 1.9357O2  -  1.9357 CO2   - 0.031978n  (10) 
 
Where both CO2 and O2 are expressed in L·min-1. 
 
 Once CO2 and O2 are known, it is possible to calculate the total energy expenditure (TEE): 
 
 TEE (kcal·day-1) = 3.9CO2(L·day-1)   + 1.11CO2(L·day-1) (11) 

RQ 
 
 In many studies it is not practical to obtain urinary nitrogen, so a value for N excretion is assumed.  For 
participants that are on a normal mixed American diet consuming a diet of 1.0g  protein per kg, then the N 
excretion is 150 mg N/kg day.  
 
 The above calculations of substrate utilization ignore gluconeogenesis and therefore in an exercise state 
may underestimate the glucose and fat oxidation rates.  The rates of substrate utilization may also be confounded if 
glucose is infused and some of the glucose is converted to fat.  The RQ can also be affected by the bicarbonate 
buffering system (in non-steady state exercise) and therefore led to errors in the estimation of the rate of substrate 
oxidation. 
 
 The above calculation of carbohydrate oxidation also assumes that all the glucose is derived from plasma.  
However, during exercise, muscle glycogen can become the major source of carbohydrate oxidation.  Since one 
water molecule is lost in the linkage of the glucose molecules in the formation of glycogen therefore the 
stochiometry of muscle glycogen oxidation differs slightly from that described above for glucose.  Therefore, 
equations 5 and 6 apply to plasma glucose utilization, whereas, the  following when muscle glycogen is the source 
of carbohydrates: 
 
 
 c2(g·min-1)  = 4.081CO2  - 2.875O2   - 2.593N(g·min-1)    (12) 
 

f2(g·min-1)  = 1.503O2  - 1.503CO2   - 1.728N(g·min-1)    (13) 
 
 To calculate the true CHO oxidation rate (CT), the relative contribution of glucose (k) and glycogen (m) 
would have to be known and then the following correction could be applied: 
 
 (CT) =  kc1 + mc2         (14) 
 
 The above calculations will be performed using the Substrate Calculator. 
 
 
Let’s Simplify - Working Simply With Previously Learned Calorimetry Concepts  
  
 Although the above calculations do at first look complicated, they are no more difficult than any other 
calculations you have performed in other courses.  You could estimate the substrate utilization using the 
relationships you learned in either kin 300 or kin 105.  You will need to use the following two tables:   
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Metabolic Values for Carbohydrates, Fats and Proteins 
 Carbohydrates Fats Proteins 

Kilocalories per gram 
Litres of CO2 per gram 
Litres of O2 per gram 
Respiratory Quotient 
Kilocalories per Litre of O2 
Moles ATP per Litre O2 

4.1 
0.75 
0.75 
1.00 
5.0 
6.5 

9.3 
1.43 
2.03 
0.70 
4.7 
5.6 

4.3 
0.78 
0.97 
0.80 
4.5 
-- 

Adapted from: Consolazio and Johnson (1971). 
 
Caloric Value per Litre of Oxygen for Respiratory Quotient (RQ) Values 
Non protein R Q Kcal per Litre O2 Kilocalories Derived 

CHO (%) 
from 

Fats (%) 
0.70 

0.71 

0.72 

0.73 

0.74 

0.75 

0.76 

0.77 

0.78 

0.79 

0.80 

0.81 

0.82 

0.83 

0.84 

0.85 

0.86 

0.87 

0.88 

0.89 

0.90 

0.91 

0.92 

0.93 

0.94 

0.95 

0.96 

0.97 

0.98 

0.99 

1.00 

4.686 

4.690 

4.702 

4.714 

4.727 

4.739 

4.751 

4.764 

4.776 

4.788 

4.801 

4.813 

4.825 

4.838 

4.850 

4.862 

4.875 

4.887 

4.899 

4.911 

4.924 

4.936 

4.948 

4.961 

4.973 

4.985 

4.998 

5.010 

5.022 

5.035 

5.047 

0.00 

 1.10 

 4.76 

 8.40 

12.0 

15.6 

19.2 

22.8 

26.3 

29.9 

33.4 

36.9 

40.3 

43.8 

47.2 

50.7 

54.1 

57.5 

60.8 

64.2 

67.5 

70.8 

74.1 

77.4 

80.7 

84.0 

87.2 

90.4 

93.6 

96.8 

100.0 

100.0 

98.9 

95.2 

91.6 

88.0 

84.4 

80.8 

77.2 

73.7 

70.1 

66.6 

63.1 

59.7 

56.2 

52.8 

49.3 

45.9 

42.5 

39.2 

35.8 

32.5 

29.2 

25.9 

22.6 

19.3 

16.0 

12.8 

 9.58 

 6.37 

 3.18 

 0.00 
Adapted from Consolazio and Johnson (1971). 

 

Assume: A normal resting O2 = 0.3 L·min-1 
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Normal RQ = 0.85 (approximately 50% CHO and 50% fat utilization) 
Caloric equivalent of oxygen (when RQ = 0.85) = 4.862 kcal·L-1  
CHO provide 4.1 kcal·g-1  
Fats provide 9.3 kcal·g-1 
Molar mass CHO = 180g·mole-1 

  Molar mass fat = 861g·mole-1 
 
Therefore: To determine mmoles of CHO utilized: 
50% of  O2 = 0.3 L·min-1 or 0.15 L·min-1 is provided by CHO utilization. 
 
mmoles·min-1 =  0.15 L   *4.862 kcal   *      g        *  1mole  *  1000mmoles 

   min-1            L O2 4.1kcal   180g      1mole 
 
= 0.99 mmoles·min-1 

 
 
And for the determination of the mmoles of Fat utilized: 
50% of  O2 = 0.3 L·min-1 or 0.15 L·min-1 is provided by fat utilization. 
 
mmoles·min-1 =  0.15 L *  4.862 kcal   *    g      *  1mole *  1000mmoles 

min-1  LO2     9.3kcal 861g  1mole 
 
= 0.09 mmoles·min-1 

 
 We will calculate the amount of substrate utilized in mmole·min-1 for both carbohydrate (9)  and fats (10) 
using the “Substrate Calculator”.  This simplifies the calculation and also corrects for protein breakdown. 
 

Reference 
 
Consolazio and Johnson.  Measurement of energy cost in humans.  Fed. Proc. 30(4): 1444 - 1453, 1971. 
 
 
Woelfe, Robert R. Radioactive and stable isotope tracers in biomedicine: Principles and Practice of kinetic 
analysis. New York.  John Wiley &Sons, Inc., Pub.  1992. p. 235 - 241. 
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APPENDIX SEVEN 
 

Detailed procedures for muscle homogenization and isolation of SR vesicles 
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DETAILED PROCEDURES FOR MUSCLE HOMOGENIZATION 
AND ISOLATION OF SR VESICLES 

 
Muscle Homogenization 
 
1) Clean the homogenizer head, and place on ice in ultra pure water (UPW).  Place homogenization (PMSF) 

buffer and two cleaned centrifuge (10 ml) tubes for each condition (6 conditions-3 muscles for control 
and stimulation limbs) on ice.  Only attach the head of the homogenizer immediately prior to the 
initiation of the homogenization procedure (ensuring head remains cold). 

Note:  It is important to remember which centrifuge tubes correspond to their respective condition and muscle. 
 
2) Once the electrical stimulation and surgical procedures have been completed, place muscle in large weigh 

boats containing homogenizing buffer and keep on ice, clean all tissue of connective tissue, and cut into 
small pieces: 

   -Make sure the plantaris muscle is removed and discarded 
-Make sure the soleus muscle and red gastrocnemius muscle are placed in  
  separate weigh boats to ensure contamination is limited 

 
3) Take approximately 1/6th of the muscle and blot/dry with a Kimwipe, and proceed to weigh.   
4) Place in 16 x 100 mm tube with PMSF buffer to create a 10:1 volume to weight ratio. 
5) Homogenize muscle at a speed of 16500 rpm (setting of 16.5) for two 30 s burst, separated by a 30 s 

break (30 s on – 30 s off – 30 s on). 
 
Note:  It is important to keep the tubes containing the muscle on ice at all times, especially during the 
homogenization, to minimize any temperature fluctuations. 
 
6) Pipette the homogenized sample equally into the two centrifuge tubes corresponding to the appropriate 

condition (keep on ice). 
7) Repeat steps 3-6 for the remaining muscle. 
8) Vortex both centrifugation tubes containing muscle, and using a positive displacement pipette place 200 

µl (100 µl from each tube) of the sample into 5 Ependorf tubes labeled appropriately and place in liquid 
nitrogen immediately. 

 
Note:  Important to label as homogenate.  As well, clean the homogenization blade with UPW between each 
sample (making sure this is done with tube in ice).  It is also very important to get homogenate samples frozen in 
liquid nitrogen as quickly as possible.  
 
9) Repeat for all muscles and for all conditions. 
10) Remove all samples from the liquid nitrogen, and place in a sample box (labeled and previously cooled in 

a -400C freezer), and immediately place in -800C freezer for storage. 
11) Clean homogenizer with UPW, and wipe down with Kimwipes.  Make sure all  
 connective tissue is removed, and run with ethanol to dry. 
 
Isolation of SR – Centrifugation  
 
Turn the centrifuge on (with vacuum on and temperature set to 40C) prior to homogenizing.  Place the rotor (stored 
at 40C) within the centrifuge.  The rotor only holds 12 tubes, which means only 6 conditions can be isolated at a 
time (2 tubes per condition). 
 
1) Hit the vacuum button to break the seal, making it possible to open the lid (to  
 initiate a spin the vacuum must be on, and to open the lid the vacuum must be  
 terminated) 
2) Vortex and dry each tube prior to placing into the rotor.  It is important to remain 

organized and to counterbalance the samples. 
3) Lock the rotor lid on, making sure to check that the rubber washers are in place 
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4) 1st spin: speed = 6500 rpm;  time   = 10 min 
 
5) Hit vacuum button – temperature shoµld drop to 40C.  Once vacuum reads 800 or 

less hit start to initiate spin 
  - in order to start spin you must enter time and speed, then hit enter, 
                followed by start. 
6) During 1st spin place clean centrifuge tubes (2 per condition) on ice. 
7) Following spin remove centrifuged tubes and immediately place on ice (stay  

organized). 
 
Note: Rotor must remain cold, so when working with samples replace rotor lid in centrifuge and hit vacuum 
(dropping temperature to 40C). 
 
8) Using a Pasteur pipette remove supernatant and place in clean tubes, make sure  
 equal volume in each tube to ensure balance during spin.  Discard pellet. 
 
9) 2nd spin: speed = 10500 rpm;  time   = 18 min 
 
10) During 2nd spin place clean tubes on ice, and clean used tubes.  This entails using 

UPW and scrubbing with a pipe cleaner. 
11) Following spin transfer supernatant to clean tubes using a Pasteur pipette (do this  
 as quickly as possible, since the pellet will re-suspend). 
 
12) 3rd spin: speed = 10500 rpm;  time   = 18 min 
 
13) Following spin transfer supernatant to clean tubes using a Pasteur pipette (do this 

as quickly as possible, since the pellet will re-suspend). 
 
14) 4th spin: speed = 23400 rpm;  time   = 60 min 
 
15) During 4th spin make 600 mM KCl PMSF buffer 
  -need approximately 10 ml per condition 
  -place on ice 
  -take out large hand homogenizer, and place on ice 
16) Following 4th spin discard supernatant and KEEP PELLET. 
17) Immediately place 2.5 ml 600 mM KCl PMSF buffer into each tube. 
18) Scrape (re-suspend) the pellet in each tube with the end of a small hand 

homogenizer. 
19) Once the last pellet is re-suspended a 30 min incubation is started. 
20) Add 5.0 ml of 600 mM KCl PMSF buffer to the large hand homogenizer. 
21) Using a positive displacement pipette, transfer the re-suspended pellets (2 tubes 

per condition) to the large hand homogenizer (final volume 10 ml). 
22) Gently hand homogenize a couple of times to completely ensure re-suspension, 

and place into a clean centrifugation tube. 
23) Repeat for each condition, making sure to clean the hand homogenizer with UPW  

between conditions. 
 
Note:  There should now be only 1 tube per condition, again ensure that these tubes are 
always kept on ice. 
 
24) Place the tubes in the centrifuge for the remainder of the 30 min incubation (hit 

the vacuum button to ensure incubation at 40C). 
 
25) 5th spin: speed = 9000 rpm;  time   = 10 min 
 
26) Following the 5th spin transfer supernatant to clean tubes (previously placed on 
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ice), discard pellet. 
 
27) 6th spin: speed = 23400 rpm;  time   = 60 min 
 
28) Discard supernatant using a Pasteur pipette, and re-suspend the pellet in 500 µl 

PMSF buffer by using the reverse end of a small hand homogenizer. 
29) Using a positive displacement pipette transfer sample into a small hand 

homogenizer – gently homogenize to completely re-suspension. 
30) Using a positive displacement pipette transfer into Ependorf tubes, and quickly 

freeze in liquid nitrogen. 
  -8 tubes with 50 µl 
  -4 tubes with 25 µl 
31) Clean hand homogenizer with UPW. 
32) Repeat for all conditions. 
33) Place samples in appropriate sample boxes, and place in -800C freezer. 
34) Return rotor to storage rack located in fridge, and clean all remaining used 

centrifuge tubes with soap, UPW and a pipe cleaner.  Invert to dry overnight. 
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APPENDIX EIGHT 
 

Methods to assess sarcoplasmic reticulum properties. 
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Methods to assess sarcoplasmic reticulum properties. 
SR Ca2+ -ATPase reagent buffer 

Reagent   Mass for 200 ml  Final Concentration 

KCl    2.982 g   200 mM 

HEPES    953.2 mg   20 mM 

NaN3 (sodium azide)  130.02 mg   10 mM 

EGTA    76.08 mg   1 mM 

MgCl2    285.63 mg   15 mM 

PEP (phosphoenol pyruvate) 930.6 mg   10 mM 

Add reagents to 150 ml of ultra pure water (UPW) 

pH to 7.0 at 37 oC with KOH 

Bring volume to 200 ml 

Store at -4 oC 

Note: Calibrate the pH metre at 37 oC 

 

Other reagents     Mass  Volume  Final Concentration 

PK     -   -   18 U·ml-1 

LDH      -  -   18 U·ml-1 

Calcium ionophore (Sigma-C7522)  10 mg  10 ml ethanol  1 mg·ml-1 

NADH (Make up fresh daily)  7.1 mg  400 µl UPW  0.3 mM 

CPA (Sigma C1530)   50 mg  3.71 ml chloroform 40 mM 

Indo-1      1.0 mg  1.257 glycine buffer 1 mM  

“Low Ca2+ ” – dilute “Stock” CaCl2 by 10x to get a solution = 10 mM CaCl2   

“Stock” CaCl2 is 100 mM (ORION, 922006) 

 
Calculation of SERCA activity 

Rate of NADH disappearance (Abs·min-1) = slope (m) from Kinetics program 

Mcorrected (OD2 units·min-1) = -1·m 

NADH rate of disappearance = mcorrected (OD units·min-1) / 6.271 units·µM-1 

Make sure to correct slopes from plate reader from the volume that you loaded back to the assumed 1 cm path length that is 
required for the calculation. Note, to do this correction you must use the path length function on the plate reader and then apply 
it to your slope. Eg – if you load ~100 uL of volume, the path length correction is approximate 0.300 to 0.350. Take your slope, 
divide it by this correction factor to get the slope for a path length equal to 1 cm. 

 

Total ATPase activity (µM·mg-1·min-1) = NADH rate of disappearance (µM·min-1) / Protein content (mg) 

The Ca2+ -ATPase activity = total ATPase activity – basal ATPase activity 

Basal ATPase activity is determined in a similar way to total ATPase activity except that the NADH rate of disappearance is collected 
after the addition of CPA, a specific inhibitor of the Ca2+ - ATPase 
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SERCA activity assay adapted for Plate 
Reader
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APPENDIX NINE 
 

Measurement techniques to assess SR Ca2+-uptake and release 
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CA2+-UPTAKE AND RELEASE DETERMINATIONS 

 
Table 3 - SR homogenate Ca2+-uptake and release buffer 
 

Reagent     Mass for 200 ml Final Concentration 

KCl   2.982 g  200 mM   
HEPES   953.2 mg  20 mM  

NaN3   130.02 mg 10 mM   
TPEN   0.425 mg  5 µM  

MgCl2   285.63 mg 15 mM  

Oxalate   184.2 mg  5 mM  

(oxalic acid, MW = 184.2 g.mol-1)       
 
Add reagents to 150 ml of UPW (with active stir bar) 
Heat to 370C and then pH to 7.0 with 2N KOH 
Bring final volume to 200 ml with UPW, Recheck pH, store at -40C 
 
Table 4 - Ca2+-uptake and release assay 
 

Reagent     Mass Volume   Final Concentration 

CaCl2   - -  100 mM  

“Low” CaCl2  - 900 µl UPW with 10 mM  

    100 µl CaCl2   

Mg.ATP   4.538 g 30 ml UPW 250 mM  

Glycine   0.37535 g 100 ml UPW 50 mM  

Indo-1   0.1 mg 1.257 ml glycine 50 mM  

“Stock” EGTA  475.5 mg 25 ml UPW 200 mM  

EGTA   - 200 µl stock EGTA 50 mM  

        800 µl UPW     
 
Note:  dissolve MgATP in 15 ml UPW, pH to 7.0 using 2N KOH then bring to a final  
           volume of 30 ml.  Store at –20 0C. 
Note:  dissolve glycine in 70 ml UPW, pH to 11.0 using 2N KOH and bring to a final 
           volume of 100 ml using UPW.  Store at 4 0C. 
Note:  dissolve “stock” EGTA in 20 ml UPW, pH to 7.0 using 2N KOH and bring to a 
           final volume of 25 ml using UPW.  Store at room temperature in the dark.  
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Procedure 
 
1) Heat frozen buffer to 37 0C in water bath 
2) Turn on flourometer water bath, set temperature to 37 0C 
3) Turn on flourometer power Arc lamp (LPS-220;  PTI) ignite lamp  
4) Turn on flourometer power source – motor driver (MD–5020;  PTI) 
5) Turn on stir bar motor 
6) Add 1 ml of buffer, 1 ml Indo-1 and 10 ml “low” CaCl2 to a four sided cuvette 
            with stir bar  
7) Open Felix software 
8) Open ‘uptake’ acquisition folder 
9) Under display function ensure that the correct background is entered 
10) Click acquire 
  -ensure monochromater is set to 355 nm, dial on back of motor driver 
  -if not correctly set to 355 nm open hardware set up folder, click 
                         lightening bold and enter the new value on back of monochromater in pop  
                         up window.  Close folder to save, and re-acquire (check again to make  
                         sure set to 355 nm) 
11) Add 1806 ml buffer to a four sided cuvette with a stir bar 
12) Add 1.0 µl Indo-1 
13) Amount of tissue;   -add 150 µl  Sol Hom  
    -add 100 µl  RG Hom 
    -add   50 µl WG Hom 
14) Add ~3.0 µl ‘”low” CaCl2 
15) Click start 
16) Add 40 µl Mg.ATP 

17) Once free and bound lines plateau add 145 µl EGTA (this is Rmin) 
18) Add 20 µl CaCl2 (this is Rmax) 
 
Note:  Final volume should be, 2.0 ml, this means that RG homogenate trials should 

have 1856 µl of buffer, and WG homogenate trials should have 1906 µl of buffer. 
 
For Ca2+-Release, 

Follow uptake procedures with the exception of the last two points, once a plateau 
is reached add 10 µl of 4-CMC.  Collect data for ~3 min following this addition to  
ensure phase 1 and phase 2 can be distinguished. 
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Analysis 
 
For every uptake file calibrate the following way 
 
1) Open concentration equation from drop down menu 
2) Click equation box, and then click edit equation 
3) Highlight Rmin (highest point on curve) 
  -select the ratio curve and click ‘capture value’ corresponding to Rmin 
  -select the B curve (yellow) and click ‘capture value’ corresponding to Sf2 
4) Highlight Rmax (lowest part of yellow curve) 
  -select the B curve (yellow) and click ‘capture value’ corresponding to 

 Sb2 
- select the ratio curve and click ‘capture value’ corresponding to Rmax 

5) In Kd window enter a value of 250 
6) Save equation, and click okay 
  -apply equation to ratio curve 
7) Select newly generated curve, and under math menu select smooth function 
  -smooth curve 21 times 
  -delete raw curve 
8) To view curve select fixed min. and max. from the axis menu 
  -enter a value of 0 for minimum value, and 4000 for the maximum value 
9) To analyze uptake at 2000 nM: 
  -select the linear fit function from the math list 
  -highlight the curve from 2100-900 on y-axis 
  -ensure you have the correct curve selected, and execute 
  -the open window should display the range you have selected, as well as  
                         the slope of the line (this is the rate of [Ca2+]f disappearance) 
 
Repeat this procedure for all desired [Ca2+]f levels (1500, 1000 and 500 nM) 
 
10) Open the previously collected release file for the same muscle sample, and apply 

the uptake calibration by selecting the ratio curve, and from the drop down menu 
located on the top tool bar highlight the displayed Grynkiewicz equation, and 
click apply. 

 
11) Select newly generated curve, and under the math menu select smooth function 
  -smooth curve 21 times 
  -delete original curve 
12) To analyze phase 1  
  -from axis menu select fixed min. and max. 
  -select 0 for min. value and 1000 for max. value 

-highlight the appropriate area of the curve and select linear fit function 
  from math drop menu, click execute  

  -the open window should display the range you have selected, as well as 
  the slope of the line (this is the rate of release) 

13) To analyze phase 2 repeat above steps only highlight appropriate area of curve 
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APPENDIX TEN 
 

Co-immuno precipitation assay protocol
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Co-IP Protocol Todd Duhamel July 6, 2006
Pierce Seize X Protein G Immunoprecipitation Kit

Get Chris, or another lacky, to go and buy a coffee for you while the Co-IP chemicals equilibrate to room temperature.

Binding of Antibody to Gel.
Step 1 Take kit out of Fridge and let warm up to room temperature.

Step 2 a Add 500 mL Ultra Pure water to dry blend buffer (PBS package).
2 b Add 0.02% Sodium Azide and store at 4 degrees Celcius for long term if needed.

(in 500 mL this would be a mass of 0.100 grams Sodium Azide).

Step 3 If you want to run 3 conditions you will need to set up 3 micro centrifuge tubes with 3 Spin Cup Columns
inside. 

Step 4 a Gently mix (by swirling) the bottle of 50% Slurry Immobilized Protein G until you get an even suspension
b Add 100 uL of 50% Slurry to each Spin Column in the micro centrifuge tubes.

Step 5 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 6 a Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
b Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 7 a Wash the gell by adding 400 uL of Binding/wash buffer to each tube.
b Cap the tube and gently mix the gel by inversion and gentle shaking.
c Tape the lids shut on the spin/rotating rack to make sure the lids don't open spilling the fluid/sample.
d Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.

Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 8 a Throw away the flow through liquid in the bottom of the micro centrifuge  tubes. (Repetition of Steps 6 and 7)
b Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 9 a Wash the gell by adding 400 uL of Binding/wash buffer to each tube.
b Cap the tube and gently mix the gel by inversion and gentle shaking.
c Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.

Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 10 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 11 Place spin cups into 3 new micro centrifuge tubes.
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Step 12 Mix antibody with  binding/wash buffer in a test tube and then aliquot into the spin cups in Step 11.
Recommended total antibody protein is 50-500 ug of antibody. This is a lot of antibody. $$$
Make enoguh for all spin cups (antibodies + 400 uL Binding/wash buffer for each spin cup).

Step 13 Cap the tube and gently mix the gel by inversion using a rocker.
Time = 15 - 30 min

Step 14 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 15 Discard the flow through. - you can keep it assess antibody binding 
if you wish to use the 280 method described in the protocol.

Step 16 a Place spin cups into 3 new micro centrifuge tubes.
b Add 500 uL Binding/wash buffer.
c Cap the tubes.
d Mix by inverting tube 5-10 times.

Step 17 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 18 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 19 a Replace spin cups into micro centrifuge tubes.
b Add 500 uL Binding/wash buffer.
c Mix by inverting tube 5-10 times.

Step 20 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 21 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 22 a (Another Repeat of Steps 16-18) Replace spin cups into micro centrifuge tubes.
b Add 500 uL Binding/wash buffer.
c Mix by inverting tube 5-10 times.

Step 23 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 24 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 25 Place spin cups into 3 new micro centrifuge tubes. 
These tubes now contain the non-crosslinked antibody-gel complex.
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Step 26 a Puncture the foil covering one tube of DSS with a pippette tip.
b Add 80 uL of DMSO.
c Mix by drawing the volume up and down the pippette tip until the DSS is disolved.

Step 27 Add 6 uL of DSS to each micro centrifuge tube containing the Antibody-gel complex.
Discard the extra DSS since it is only good for a short period.

Step 28 Cap the tube and gently mix the gel by inversion using a rocker.
Time = 30 - 60 min

Step 29 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 30 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 31 a Add 500 uL of the Immuno Pure Elution Buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 32 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419 RPM
RCF (g) = 3000 G
Time = 1 min

Step 33 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 34 - Repeat Steps 31 to 33 four additional times. The repeats are required to remove all excess
Time 1 DSS and uncoupled Antibody.
a Add 500 uL of the Immuno Pure Elution Buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 35 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 36 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 37 - Repeat Steps 31 to 33 four additional times. The repeats are required to remove all excess
Time 2 DSS and uncoupled Antibody.
a Add 500 uL of the Immuno Pure Elution Buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.



269  

 
Step 38 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.

Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 39 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 40 - Repeat Steps 31 to 33 four additional times. The repeats are required to remove all excess
Time 3 DSS and uncoupled Antibody.
a Add 500 uL of the Immuno Pure Elution Buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 41 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 42 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 43 - Repeat Steps 31 to 33 four additional times. The repeats are required to remove all excess
Time 4 - Thank god. DSS and uncoupled Antibody.
a Add 500 uL of the Immuno Pure Elution Buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 44 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 45 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 46 a Place spin cups into 3 new micro centrifuge tubes.
b Wash by adding 500 uL Biding/Wah Buffer

Step 47 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 48 a Replace spin cups by putting them back into the micro centrifuge  tubes.
b Wash by adding 500 uL Biding/Wah Buffer

Step 49 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 50 Discard flow through.
Keep the antibody-gel complex.

The antibody-gel complex is now ready. This is the CROSS-LINKED antibody-gel complex.
You can either go and use the gel with your samples…as described in Antigen Immunoprecipitation.
or proceed to Storage conditions if you want to save the crosslinked antibody-gel complex for later use.
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Step 51 Prepare sample as described on separate sample preparation sheet.
Make sure to solubalize the proteins using Tween-20 buffer. Do you know how to do this?

Step 52 Now take the solubalized protein sample and dilute sample down with Co-IP binding/wash buffer in a 1:1 ratio
This will cut the concentration in half. You need a maximum total volume of 500 uL.

Step 53 Load between 200 - 500 uL of diluted sample into 1 Co-IP spin cup with gel 
Mix for 4 hours at room temperature (85% binding) or overnight (~12-16 hours) at 4 degrees celcius (100% binding).
Tape the lids shut on the spin/rotating rack to make sure the lids don't open spilling the fluid/sample.

Step 54 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 55 a Place spin cups into 3 new micro centrifuge tubes.
b Add 500 uL of the Binding/Wash buffer to the spin cups.
c Cap the tubes.
d Mix by inverting tube 5-10 times.

Step 56 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 57 a Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
b Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 58 a Add 500 uL of the Binding/Wash buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 59 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 60 a Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
b Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 61 a Add 500 uL of the Binding/Wash buffer to the spin cups.
b Cap the tubes.
c Mix by inverting tube 5-10 times.

Step 62 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 63 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.

Step 64 Place spin cups into 3 new micro centrifuge tubes.

Step 65 The protein-antibody-gel complex is now ready. 
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Note - we are going to use these samples for a Western blot - therefore there is no reason to neutralize the samples.
Note - the low pH may make the sample buffer change colour - don't worry about it.

Step 66 Add 190 uL of Elution Buffer to spin cup.

Step 67 Mix by inversion 10 times.

Step 68 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 69 Keep the Liquid flow through since this is you sample- Label Fraction 1.
Also keep the spin cup contents since you will repeat steps 66 to 69 since some sample is still left.

Step 70 Add 190 uL of Elution Buffer to spin cup.

Step 71 Mix by inversion 10 times.

Step 72 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 73 Keep the Liquid flow through since this is you sample- Label Fraction 2.
Also keep the spin cup contents since you will repeat steps 66 to 69 since some sample is still left.

Step 74 Add 190 uL of Elution Buffer to spin cup.

Step 75 Mix by inversion 10 times.

Step 76 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 77 Keep the Liquid flow through since this is you sample- Label Fraction 3.
Also keep the spin cup contents since you will repeat steps 66 to 69 since some sample is still left.

Step 78 Add 190 uL of Elution Buffer to spin cup.

Step 79 Mix by inversion 10 times.

Step 80 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 81 Keep the Liquid flow through since this is you sample- Label Fraction 4.
Also keep the spin cup contents since you will will reuse the spin cups for other trials.
Process immediately to the Gel regeneration step.
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Step 82 Add 500 uL Binding/Wash Buffer to the spin cup.
Cap the tubes.
Mix by inversion ~ 10 times.

Step 83 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 84 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Step 85 Add 500 uL of the Binding/Wash buffer to the spin cups.
Cap the tubes.

Step 84 Mix by inverting tube 5-10 times.

Pause here if you intend to reuse the gel for another sample in the next 1 hour period.

Step 85 Centrifuge tubes in the Beckman centrifuge with the F2402H Rotor.
Speed = 6419
RCF (g) = 3000
Time = 1 min

Step 86 Throw away the flow through liquid in the bottom of the micro centrifuge  tubes.
Replace spin cups by putting them back into the micro centrifuge  tubes.

Note the gel is ready to reuse again at this stage if you are going to use it right away. 
Go to Step 51 - Antigen Immunoprecipitation if you want to use the gel now.

If you want to go home and want to reuse the gel another day, continue with steps 87 and 88.

Step 87 Add 500 uL Binding/wash buffer to spin cup.
Ensure the buffer has 0.02% Sodium Azide in it as a preservative for long term storage.
Cap the tubes.
Wrap in laboratory film to prevent gel from drying out.

Step 88 Store the wrapped microcentriguged tubes in the fridge.
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APPENDIX ELEVEN 
 

NCD-4 assay protocol 
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NCD-4 assay protocol 

 

NCD4 - Stock dilution Store at -80 degrees.
INPUT--> Mass = 25 mg Volume wanted = 0.017 Liters

We have = 0.025 g

MW = 292.4 grams per mol

n=cv
n = mass / MW c=n/v
therefore we have = 0.000085 mols

c=?
We want 5 mM final concentration n= 0.000085 mols
which is 0.005 M final concentration v= 0.019 L

c= 0.00449996 M
c= 4.499964 mM

concentration = mols / Volume ratio of 4.5 mM to 5 mM 0.89473684
Therefore, in 1.00 L the final concentration would be = 0.000085 M which = 0.085 mM
Therefore, in 0.017 L the final concentration would be = 0.005029 M which = 5.03 mM

Therefore add 17 mL Ethanol to 25 mg NCD4 powder to get 5.03 mM final Concentration.

Wash Buffer Store at 4 degrees Celcius in Fridge.

500 mL Distilled H20
0.595 g HEPES
1.000 g NaN3

0.0174 g PMSF

pH to 7.5

Diluted NCD4 Buffer (NCD4+Wash Buffer) - make fresh daily.
Input --> We need to add this much final volume to each sample 1.5 mL into each sample

# of samples needed to run = 28 samples

c1v1 = c2v2
Input --> This is the [Stock] = c1= 4.50 mM = 0.004 M

Input --> we want a [final] = c2= 150 uM = 0.00015 M
calc --> in this final volume = v2= 42.0 mL 0.04200 L

calc --> Solve for V1 in Liters v1= 0.001400 L

Therefore we need to add this volume of [Stock] = 1400.0 uL of stock NCD4 to
40.600 mL of Wash Buffer. to make enough volume of NCD4 Buffer for 28 samples

pH to 6.2
Make fresh on the day of your assay.
Keep in the dark
Final NCD4 concentration will be 150 uM.
Refer to protocol to see when you add NCD4.

Incubate samples with NCD4 bufferfor 3 hours in the dark.
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NCD4- Assay
Sample preparation protein concentration =Load this much protein volume to load

sample name ug/uL ug total protein uL

Input --> Heart vesicles 4.164 200 ug 48.0 uL
White Gastroc 4.120 200 ug 48.5 uL
schertzer sample 1.63 200 ug 122.7 uL

1. Load 200 ug of total protein for each sample into an ultra centrifuge tube.

2. Add 7.5 mL Wash Buffer to samples in each ultra centrifuge tube.

3. Centrifuge at 23,400 RPM for 15 min.

4. Discard supernatant. Note the pellet will be nearly invisible. Scrape everything as best you can.

5. Work in the dark from now on.

6. Resuspend pellet in 1.2 mL diluted-NCD4-Wash buffer using a hand homogenizer.
Note the pellet will be nearly invisible. Scrape everything as best you can.
Transfer the sample into an epindorf tube or keep in ultra centrfigue tubes.

7. Mix by inversion if epindorfs and incubate for 3 hours in the dark.
or slowly vortex for 3 hours in the ultra centrifuge tube using th emulti vortexer.

8. Transfer samples to clean ultra centrifuge tubes or keep in the ultracentrifgue tubes if this is where the sample is.

9. Add 5 mL Wash buffer.

10. Centrifuge at 23,400 RPM for 15 min.

11. Discard supernatant. Note the pellet will be nearly invisible. Scrape everything as best you can.

12. Resuspend pellet in 1.5 mL diluted-NCD4-Wash buffer using a hand homogenizer.
Note the pellet will be nearly invisible. Scrape everything as best you can.
Transfer the sample into an epindorf tube or keep in ultra centrfigue tubes.

13. Add 6 mL Wash buffer.

14. Centrifuge at 23,400 RPM for 15 min.

15. Discard supernatant. Note the pellet will be nearly invisible. Scrape everything as best you can.

16. Resuspend pellet in 1.000 mL Wash buffer using a hand homogenizer..
Transfer the sample into an epindorf tube.

17. Load 250 uL into wells on a black plate.

18. Read plate on the fluorscent plate reader.
Use scan mode on the plate reader.

Excite at 340 nm.
Scan emission wavelengths between 400 to 430 nm.
Report the peak  RFU value and if you are interested, the peak wavelength.
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APPENDIX TWELVE 
 

FITC binding assay protocol 
 



277  

FITC binding assay protocol 
 

1) Add 5µg of total protein (SR vesicles) to Ca2+-ATPase buffer such that the final volume is 
50µl. eg. 6µl of SR vesicles in 44µl Ca2+-ATPase buffer 
 
2) IN THE DARK  
add 250ul of FITC labeling buffer (50mM Tris-HCl pH 8.8, 250mM sucrose, 0.1mM CaCl2, 
5mM MgCl2, 20uM FITC (FITC is made up separately in ethanol and added so that the final 
concentration is 20uM) and protease inhibitor cocktail tablets) to the 50ul of SR. Lightly vortex 
and let mix on the automatic mixer at room temperature of 1hour. 
 
3) IN THE DARK 
Add 300ul of either reducing or non-reducing 2X Sample Buffer (125mM Tris-HCl pH 6.8, 5% 
SDS, 10% (v/v) glycerol, 0.01% bromophenol blue, 5% (v/v) mercaptoethanol) to each tube. 
The reaction is now ceased and you may continue working in the light. 
 
*note: the initial concentration of protein was 0.1ug/ul (5ug/50ul). Taking into account the final 
volume of 600ul the protein concentration is now (0.0083333ug/ul) 
 
4) On a 7.5% Acrylamide gel load 30ul of FITC labeled sample (30ul * 0.008333 = 0.250ug 
total protein). Run and transfer gel to PVDF membrane as per usual. 
 
5) *block for 1hour in 10% milk  
*primary antibody 1hour 1:5000 dilution in 5% milk anti-fluorescein/Oregon Green 
monoclonal antibody 4-4-20 
*secondary antibody anti-mouse 1:5000 dilution in mixture of 6ml TBS-T and 2mL 10% milk 
for 1hour 
 
6) detect using ECL reagents (Amersham) at 30second exposures 
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FITC BUFFER RECIPE 
 

Measurements are for 100mL of H2O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Combine first 4 ingredients in ~80mL of H2O and pH to 8.8 using KOH bring up to final 
volume 
*Freeze 1mL aliquots at -80oC  
*To achieve 20uM FITC in the buffer add 3.115uL of Stock FITC just before incubating the 
sample in FITC Buffer 

 
 

 

Chemical Molecular 
Weight (g/mol)

Mass Used 
(g)

Concentra
tion

Tris-HCl 157.6 0.788 50mM

CaCl2 110.98 0.00111 0.1mM

MgCl2 95.21 0.047605 5mM
Sucrose 342.3 8.5575 250mM

FITC 389.38 3.115uL 
Stock 
FITC

20µM

FITC stock 389.38 100mg vial 6.42mM

*note make up Stock FITC separate in 40mL EtOH


