
Estimating Effectiveness of Countermeasures Based on Multiple 
Sources: Application to Highway-Railway Grade Crossings 

 

 

By  

 

Peter Young-Jin Park 

 

 

 

A thesis 

Presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Civil Engineering 

 

 

Waterloo, Ontario, Canada, 2007 

 

© Peter Young-Jin Park, 2007 

 



 ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 iii

Abstract 

To provide an adequate level of safety at grade crossings, Transport Canada has allocated 

several millions annually to prevent collisions at grade crossings through the 

implementation of countermeasures, such as train-actuated warning devices and track 

devices. Railway companies and provincial agencies have also provided additional support 

to improve safety at highway-railway grade crossings.  

One of technical challenges in estimating safety effect of countermeasures at 

highway-railway grade crossing is an extremely rare occurrence of collisions. Given that 

the collision process is random with significant variation over time and space, it is hard to 

judge whether a specific crossing is safe or safer than other crossings solely based on the 

number of collisions in a given year. Decision makers are also required to make difficult 

decisions on safety investment accounting for uncertainty in effectiveness of countermeasures. 

The level of uncertainty is even higher when there is lack of observed collision data before 

and after the implementation of specific countermeasures.  

This study proposes a Bayesian data fusion method which overcomes these 

limitations. In this method, we used previous research findings on the effect of a given 

countermeasure, which could vary by jurisdictions and operating conditions, to obtain a priori 

inference on its expected effects. We then used locally calibrated models, which are valid for 

a specific jurisdiction, to provide better estimates of the countermeasure effects. Within a 

Bayesian framework, these two sources were integrated to obtain the posterior distribution of 

the countermeasure effect. The outputs provided not only the expected collision response to a 
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specific countermeasure, but also its variance and corresponding probability distribution for a 

range of likely values. Some numerical examples using Canadian highway-railway grade 

crossing data illustrate how the proposed method can be used to predict the effects of prior 

knowledge and data likelihood on the estimates of countermeasure effects. 



 v

Acknowledgement 

I would like to express my deepest appreciation to my thesis supervisor, Prof. Frank 

Saccomanno, for his inspiring, unwavering and thoughtful support over the past four years. 

I have to confess that I am indebted. 

I gratefully acknowledge helpful guidance and advice of Prof. Liping Fu, Prof. Bruce 

Hellinga, and Prof. Ian Savage. Their feedback was invaluable. I am also very thankful to 

Prof. David Matthews for his contribution to my model development.  

I would like to dedicate this thesis to my beloved wife Catherine Eun-Sook and my two 

daughters Sun and Joo for their unconditional support and encouragement. Because of them, 

I was able to complete this work.  



 vi

Table of Contents 
 

1 INTRODUCTION.......................................................................................................... 1 

1.1 Background............................................................................................................. 1 

1.2 Methodology........................................................................................................... 5 

1.3 Research Objectives ............................................................................................... 7 

1.4 Organization ........................................................................................................... 8 

2 LITERATURE REVIEW............................................................................................. 10 

2.1 Representing Countermeasure Effect ................................................................... 10 

2.2 Methods for Estimating Effect of Countermeasures ............................................ 11 

2.2.1 Cross-Sectional Statistical Models ............................................................... 11 

2.2.2 Before-After Models .................................................................................... 14 

2.2.3 Propensity Score Method ............................................................................. 29 

2.2.4 Bayesian Safety Assessment Framework ..................................................... 32 

2.2.5 Summary of Methodologies ......................................................................... 34 

2.3 Type of Countermeasures..................................................................................... 36 

2.3.1 Crossing Closure/Grade Separation.............................................................. 36 

2.3.2 Improving Crossing Geometry ..................................................................... 37 

2.3.3 Upgrading Traffic Control Devices.............................................................. 38 

2.3.4 Summary of Published Countermeasure Effects .......................................... 50 

3 MODEL FRAMEWORK............................................................................................. 52 

3.1 Bayesian Data Fusion Method.............................................................................. 53 



 vii

3.2 Priors..................................................................................................................... 56 

3.3 Data Likelihood .................................................................................................... 62 

4 DEVELOPMENT OF THE MODEL COMPONENTS .............................................. 64 

4.1 Description of Dataset .......................................................................................... 64 

4.1.1 Canadian Inventory Data .............................................................................. 64 

4.1.2 Collision Occurrence Data............................................................................ 66 

4.2 Development of Priors.......................................................................................... 67 

4.3 Development of Data Likelihood ......................................................................... 71 

4.3.1 Factor/Cluster Collision Prediction Model................................................... 72 

4.3.2 Stratified Collision Prediction Model........................................................... 80 

4.3.3 Collision Prediction Model with Group Indicators ...................................... 92 

5 Estimating Effectiveness of Selected Countermeasures............................................... 99 

5.1 Effectiveness of Elimination of Whistle Prohibition............................................ 99 

5.2 Effectiveness of Upgrading Warning Devices from Flashing Lights to Gates .. 113 

5.3 Effectiveness of Upgrading Warning Devices from Signboards to Gates ......... 115 

5.4 Effectiveness of Four Quadrant Gates................................................................ 116 

5.5 Effectiveness of Reducing Maximum Train Speed............................................ 117 

5.6 Effectiveness of Multiple Countermeasures....................................................... 118 

6 UNCERTAINTY IN BAYESIAN DATA FUSION................................................... 120 

6.1 Uncertainty Inherent in Type of Distribution..................................................... 120 

6.2 Uncertainty Inherent in Priors ............................................................................ 129 

6.2.1 Uncertainty in Selecting Different Priors ................................................... 129 



 viii

6.2.2 Uncertainty in the Choice of Relative Weights .......................................... 130 

6.3 Uncertainty in the Choice of Different Countermeasures .................................. 135 

7 CONCLUSIONS ........................................................................................................ 139 

7.1 Major Contributions ........................................................................................... 139 

7.2 Contributions in Development of Data Likelihoods........................................... 140 

7.3 Recommendations for Future Analysis .............................................................. 141 

REFERENCES ................................................................................................................... 142 

 



 ix

List of Tables 

Table 1.1 Highway-Railway Crossing Collisions Statistics .................................................. 2 

Table 2.1 Estimated CMF from Different Before-After Models ......................................... 27 

Table 2.2 Summary of Methodologies to Estimate CMF..................................................... 35 

Table 2.3 Published CMF for Various Countermeasures..................................................... 40 

Table 3.1 Certainty Level of Previous Study ...................................................................... 58 

Table 4.1 Estimated Priors for Improvement from Signboards to Flashing Lights ............. 68 

Table 4.2 Estimated Priors for Different Countermeasures ................................................. 70 

Table 4.3 Summary of Variables for Factor/Cluster Collision prediction Model ................ 75 

Table 4.4 Cluster-Specific Collision Prediction Models Based on Factor/Cluster Analyses . 79 

Table 4.5 Selected Control Factors in Canadian Inventory Data ......................................... 81 

Table 4.6 Summary of Variables for Stratification Model................................................... 87 

Table 4.7 Class-specific Collision Prediction Models.......................................................... 91 

Table 4.8 Reorganized Factors for Collision Prediction Model with Group Indicators....... 96 

Table 4.9 Collision Prediction Models with Group Indicators............................................. 98 

Table 5.1 The 1st Sample Crossing Attributes for Example Calculation............................ 100 

Table 5.2 The 2nd Sample Crossing Attributes for Example Calculation........................... 110 

Table 5.3 The 3rd Sample Crossing Attributes for Example Calculation ........................... 113 

Table 5.4 The 3rd Sample Crossing Attributes for Example Calculation ........................... 116 

Table 5.5 The 4th Sample Crossing Attributes for Example Calculation ........................... 118 

Table 6.1 Sample Mean and Variance of Prior and Data Likelihood................................. 122 

Table 6.2 Comparison between Normal and Beta Posterior Distribution .......................... 125 



 x

Table 6.3 Various Relative Weights (Wi) for the Prior Estimates...................................... 131 

Table 6.4 Estimated Mean of Priors on Selected Countermeasures based on the Different 

Weighting Schemes ............................................................................................................ 132 

Table 6.5 Estimated Standard Errors of Priors on Selected Countermeasures based on the 

Different Weighting Schemes ............................................................................................ 132 



 xi

List of Figures 

Figure 2.1 Example Collisions per Year ............................................................................. 17 

Figure 2.2 Regression-to-the-Mean Phenomenon................................................................ 18 

Figure 2.3 Various Degree of Regression-to-the-Mean ....................................................... 21 

Figure 2.4 Effectiveness of Countermeasure by the Before-After Models .......................... 24 

Figure 2.5 Typical Applications of Passive Traffic Control Devices .................................. 42 

Figure 2.6 Typical Pavement Markings at Highway-Railway Crossings ........................... 43 

Figure 2.7 Typical Grade Crossing Illuminations ............................................................... 44 

Figure 2.8 Typical Flashing Lights ..................................................................................... 46 

Figure 2.9 Typical Two-Quadrant Gate System .................................................................. 47 

Figure 2.10 Plan View of Four-Quadrant Gate System ...................................................... 48 

Figure 2.11 Example of 2-Quadrant Gate with Median Separator ...................................... 49 

Figure 3.1 Modeling Framework.......................................................................................... 56 

Figure 4.1 Factor/Cluster Modeling Framework.................................................................. 76 

Figure 4.2 Stratification Modeling Framework.................................................................... 82 

Figure 4.3 Hypothetical Tree Structure ................................................................................ 83 

Figure 4.4 RPART Result on the Basis of Control Factors.................................................. 86 

Figure 4.5 Group Indicator Modeling Framework ............................................................... 93 

Figure 4.6 Hierarchical Tree Structure on the basis of RPART Method ............................. 97 

Figure 6.1 Cumulative Density Functions based on the Two Different Distributions ....... 127 

Figure 6.2 Posterior Normal Cumulative Distributions based on Different Priors ............ 130 



 xii

Figure 6.3 Estimated Mean of Priors on Selected Countermeasures based on the Different 

Weighting Schemes ............................................................................................................ 133 

Figure 6.4 Estimated Standard Errors of Priors on Selected Countermeasures based on the 

Different Weighting Schemes ............................................................................................ 133 

Figure 6.5 Posterior Normal Cumulative Distributions using Different Weighting Schemes. 134 

Figure 6.6 Posterior Beta Cumulative Distributions using Different Weighting Schemes.135 

Figure 6.7 Uncertainties in Different Countermeasures..................................................... 137 

 



 1

1 INTRODUCTION 

1.1 Background 

Historically, railways have been constructed across the existing highways or roads at grade 

to avoid the high construction cost of grade separation (Tustin et al. 1986). With 

development of the road network, this has led to a large number of highway-railway grade 

crossings. In Canada, there are more than 30,000 highway-railway grade crossings 

including both public and private crossings. In the US, there are more than 300,000 

crossings (Saccomanno et al., 2004). As railway and highway traffic volumes increase, 

motor vehicle users, pedestrians and railway passengers/crews are exposed to high risk of 

crashes at highway-railway grade crossings. In the past ten years (1994-2003), there were a 

total of 2,987 crossing collisions at both public and private grade crossings in Canada, 

resulting in 437 fatalities and 500 serious injuries (Table 1.1). These numbers represent 

approximately one out of every three collisions at highway-railway grade crossings resulted 

in casualties and highlight a readily identifiable problem that needs attention. 

Many attempts have been made over the past several decades to reduce the risk of 

collisions at grade crossings. Transport Canada has allocated approximately $7 million 

annually to prevent collisions at grade crossings mainly through the implementation of 

various safety interventions, including train-actuated (i.e. active) warning devices and track 

devices to provide adequate warnings. Railway companies and province agencies also 

provided additional support to improve grade crossings safety. In addition, recently a large 
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number of crossings have been closed or separated. For instance, Transport Canada 

amended the Railway Safety Act in 1999 and developed the Grade Crossing Closure 

Program. This program has been initiated by the recognition that closing passive railway 

crossings (i.e. crossings with signs only) in Canada will improve the safety of the rail 

system. As a result of the amendment, the number of crossing collisions was gradually 

decreased in Canada over the past ten years (Table 1.1). However, as stated, because of the 

constantly increasing train and traffic volumes at grade crossings, more effort is needed to 

achieve consistent reductions in collisions at grade crossings. 

Table 1.1 Highway-Railway Crossing Collisions Statistics (Drouin 2004) 

Category 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Sum

Collision 
Frequencies 364 346 365 307 273 283 263 278 261 247 2,987

Fatalities 57 79 46 32 39 37 33 41 46 27 437

Serious 
Injuries 55 56 69 60 43 45 33 47 42 50 500

The safest protection will be afforded by crossing elimination, including grade 

separation and crossing closure. However, for example grade separation is not sometimes 

feasible if railway and highway volumes are very low. Even where traffic volumes are high, 

there may be situations where grade separation proves to be too costly in terms of more 

circuitous travel and pedestrian inconvenience. Given the fact the grade crossings are an 

inevitable part of the railway and highway network, decision-makers need to find ways of 

making crossings safer. They need to provide cost-effective countermeasures that maintain 
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grade crossing safety within a tolerable level. The pursuit of safety at grade crossings can 

be expressed in terms of providing answers to two fundamental questions:  

1) Where scarce safety funds should be directed? Which crossings have the highest 

risk of collisions, such that some form of safety intervention is justified?  

2) What countermeasures should be considered to enhance safety at “hotspots (i.e. 

crossings with unacceptable risks)” in a cost effective and practicable manner? 

(Saccomanno et al. 2006) 

This research investigates and develops models to estimate the effect of different 

types of countermeasures on collision reduction at specific crossings with certain geometric 

and traffic attributes. To provide insights into cost-effective countermeasures, it is 

important that these models yield accurate estimates of expected collision reduction. 

Technical challenges involving these tasks come from the peculiar characteristics in 

collisions at highway-railway grade crossings, and one of which would be the extremely 

rare nature of collisions (on average less than 0.1 collisions/year/crossing; Saccomanno et 

al., 2004). Furthermore, the collision process is random with significant variation over time 

and space, resulting the regression-to-the-mean (RTM) bias in evaluating countermeasure 

effect. In summary, the estimation of countermeasure effects has been plagued by a number 

of problems, including (but not limited to): 

1) Lack of observational before and after data concerning specific countermeasures 

2) Jurisdictional and reporting biases 
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3) Random fluctuations in collision data, resulting regression-to-the-mean (RTM) 

bias 

4) Rare events (too many zero collisions) 

5) Poor statistical model specification 

On the other hand, the search for cost-effective countermeasures is a two stage 

process: 

1) Which countermeasures should be considered given the nature of collisions at 

hotspot crossings? This stage involves an investigation of the causes and 

consequences of collisions expected at a given hotspot, based on experience and 

sound engineering judgment, supplemented by an in-depth analysis of historical 

collision attributes. 

2) What are the expected collision reduction effects of selected countermeasures, 

applied to a specific hotspot crossing or group of hotspot crossings?  

This research aims at providing insights into how to develop models that yield 

accurate and reliable estimates of countermeasure effects.  

From an economic perspective, public monies should be spent on those safety 

interventions that will bring the highest safety benefit at given crossings per dollar spent. 

Safety benefits can be measured in the reduced number of collisions after safety 

intervention. A practical and analytical challenge involving this issue emerges from the 

multitude of tasks required to ascertain the effect of these countermeasures individually 

and/or in combination on reducing collisions at grade crossings. In many cases, decision 
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makers do not know in advance which countermeasures will be the most necessary and 

effective before they actually implement them. Therefore, it is an essential subject of safety 

studies to determine which safety countermeasures are most effective for reducing 

collisions of the crossings of interest.  

In many cases, because of the limited time and budget issues, decision makers 

cannot afford conducting new and costly studies to find out the best countermeasure among 

many different candidate countermeasures for hotspot crossings. Instead, they may review 

past studies to identify similar countermeasures that have been successful to resolve their 

local and regional problems. Unfortunately, these approaches may not yield reliable 

practical results, since many previous studies normally focused on the implementation of a 

single or a couple of countermeasures at a time for a specific railway and highway 

environment. On the contrary, decision makers must know the effects of various types of 

countermeasure to choose the most suitable countermeasures for resolving their local 

crossing problems.  

1.2 Methodology 

To assess the potential collision reduction effects of selected countermeasures for highway-

railway grade crossings, the following methods were used: 1) engineering judgment 

supplemented by simple statistical analysis of the historical collision data, 2) cross-

sectional model analysis, and 3) before and after model analysis.  
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Transport Canada and the US Federal Railroad Administration (FRA) have used all 

of these three methods. However, there are a number of unresolved issues in existing 

methods that have hampered our ability to accurately predict collision reduction effect for 

countermeasures applied to different types of crossings. For example, a conventional cross-

sectional model developed by FRA predicts the number of collisions at given crossings 

based on various crossing attributes. This model is adopted to evaluate the selected 

countermeasure effect based on the estimated collision reduction (FRA 2002). While this 

type of model may be appropriate for predicting collisions at crossings, it may not be 

suitable for investigating the effect of countermeasures. In general, the conventional cross-

sectional models are hampered by a number of unresolved statistical issues inherent in 

observational collision dataset, including input co-linearity, omitted factor issue, etc. These 

issues will be addressed in this thesis, as a basis for developing a new model to assist 

decision-makers in assessing which countermeasures to implement for a given crossing 

safety problem.  

This study proposes a Bayesian data fusion method to overcome the aforementioned 

challenges in estimating the countermeasures effect. In this modeling framework, we make 

use of previous research findings on the effect of a given countermeasure, which could vary 

by jurisdictions and operating conditions, to obtain some a priori inference on its expected 

effects. We then use locally calibrated collision prediction models by using Canadian 

crossing inventory and collision dataset, which are valid for the particular jurisdiction of 

our interest, to develop current best estimated effect of the countermeasure. These two 

sources are then systematically integrated under the proposed Bayesian framework to 
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obtain the posterior distribution of the countermeasure effectiveness. The outputs provide 

information not only on the expected collision response to a specific countermeasure but 

also a variance that can represent the expected collision within a specific range of likely 

values. 

1.3 Research Objectives 

This study has four basic objectives: 

1) Review existing collision prediction models applied to both highway and 

railway sectors, and examine basic application issues for highway-railway 

grade crossings. 

2) Develop a new method using the Bayesian framework for collision prediction 

and countermeasure assessment, with the analysis of uncertainty inherent in the 

estimated effect. This objective requires the development of countermeasure 

effect “priors” and “data likelihoods” and the estimates of “posterior” 

countermeasure effects along with their means, variance, and probability 

density functions.  

3) Apply the proposed model to the Canadian grade crossing inventory and 

collision occurrence data. Assess the range of countermeasure effects for 

different grade crossing attributes, and establish probability density functions 

for the estimates. 
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4) Describe practical case studies for the evaluation of countermeasures with 

focus on uncertainty analysis.    

1.4  Organization 

This study develops a modeling framework using different sources of data to identify and 

estimates the countermeasure effect that aims to reduce collisions at highway-railway grade 

crossings. The contents of each chapter are; 

1) Chapter 2 describes a review of existing methods for estimating the effect of 

countermeasures as well as predicting collisions at highway-railway grade 

crossings. The chapter also summarizes the results from the existing studies 

about the effect of countermeasures and their applications among different 

jurisdictions and regions, including Canada and the US.  

2) Chapter 3 introduces the framework of the proposed model to estimate the 

effectiveness of different countermeasures to improve grade crossing safety.  

3) Chapter 4 describes the data used in this study to develop the proposed model 

and the development of model components. The model is developed and 

validated using Canadian grade crossing data.  

4) Chapter 5 explains the application of the proposed model to specific crossings 

and evaluates the effects of the selected countermeasures. 

5) Chapter 6 explains the analysis of uncertainty inherent in evaluating 

countermeasures using the proposed Bayesian data fusion method.  
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6) Chapter 7 summarizes the main findings and conclusions of the research, and 

provides the recommendation for further work. The chapter also describes the 

main contributions of the work and a decision-support platform for improving 

safety at grade crossings. 

7) Appendices contain the outputs of collision prediction models developed in this 

study as well as some collision prediction models developed in the past studies. 
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2 LITERATURE REVIEW 

A wide variety of statistical methods have been proposed in the literature to estimate the 

countermeasure effect. In this chapter we review the most popular methods in evaluating 

countermeasures. These methods include the cross-sectional statistical model and the 

before-and-after method, and so on. The advantage and disadvantage of each method are 

also discussed. These are followed by the formal definition of countermeasure effect. 

2.1 Representing Countermeasure Effect 

Laughland et al. (1975) introduced the concept of Collision Modification Factor (CMF) to 

reflect the safety benefits associated with different countermeasures and to represent the 

expected changes in collisions after the implementation of countermeasures. The CMF can 

be expressed as the ratio of the expected (or observed) number of collisions after to before a 

countermeasure is introduced at a given site, such that: 

Bi

Ai

Bi

AiBi
i N

N
N

NNCMF =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=1           (2.1) 

where, BiN  and AiN  represent the number of estimated (or observed)  collisions per year at 

a site before (or without) and after (or with) a safety countermeasure ‘i’, respectively, and 

CMFi ∈ [0, ∞). 

In the above expression, the estimated CMF does not produce any negative values. 

The value greater than 1.0 reflects that the number of collisions increases after a 
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countermeasure is introduced. A value less than 1.0 reflects a reduction in the number of 

collisions. 

The FHWA developed a series of CMF for two-lane rural highways (Harwood et al. 

2000, Zegeer et al. 1992). The forthcoming Highway Safety Manual (Hughes et al. 2004, 

Harkey et al. 2005) will provide a series of CMF to reflect the effect of different design and 

operational strategies applied to highways.  

In the highway-railway grade crossing field, the term CMF has not been used 

extensively. Instead, many researchers have preferred to use the expected reduction in 

collisions resulting from a given safety intervention or countermeasure (Farr 1987, Federal 

Railroad Administration 2002, Saccomanno and Lai 2005). While these two terms are 

similar, the term CMF will be used to be consistent with the road safety research 

convention in this study. 

2.2  Methods for Estimating Effect of Countermeasures 

Over the past several decades, various collision prediction models have been developed to 

estimate the effectiveness of countermeasures in transportation studies, including expert 

judgments, before-after and cross-sectional models. In this section, these models are 

reviewed. 

2.2.1 Cross-Sectional Statistical Models 

Researchers in transportation safety fields have applied conventional statistical models, 

such as regression models, to predict the changes in the number of collisions at a given site 
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after the introduction of countermeasures. These cross-sectional models investigate the 

differences in safety among different sites, which did not experience any major changes 

within the period of analysis.  

In the highway safety field, Council and Stewart (1999) and Zegeer and Council 

(1995) applied cross-sectional models to evaluate different types of road safety 

countermeasures. More recently, a functional type of CMF for horizontal curves in two-

lane rural highways has been included in the US Highway Safety Manual (Hughes et al. 

2004). The CMF was originally developed by Zegeer et al. (1992) based on a conventional 

regression technique.  

In the highway-railway grade crossing field, Schoppert and Hoyt (1968) 

investigated earlier collision prediction models, including the Peabody Dimmick Model 

(1941), the New Hampshire Index (1971) and NCHRP Hazard Index (1968). Coleman and 

Stewart (1976) also developed collision prediction models for grade crossings. All these 

models lack descriptive capabilities due to their limited number of explanatory variables. 

They also plagued by a number of statistical problems, including including co-linearity, 

poor statistical significance, and parametric biases.  

Compared to the above earlier models, the US DOT Model (Farr 1987, Federal 

Railroad Administration 2002, Mengert 1980) comprehensively addresses explanatory 

variables that may influence safety at highway-railway crossings. However, the model also 

failed to resolve the co-linearity issues among the explanatory variables. Moreover, some 

factors in the US DOT model were not readily available in Canadian crossing inventory 
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dataset. For example, the number of through trains per day during daylight and the number 

of highway lanes are examples of two inputs in the US DOT model that were not available 

in Canadian crossing inventory dataset. On the other hand, several interesting factors that 

may be important in explaining the Canadian grade crossing collisions, such as whistle 

prohibition and track angle, were not included in the US DOT model. As pointed out by 

Saccomanno et al. (2004), since there are significant differences in the inventory data 

structure between Canada and the US, it is hard to apply the US DOT model to Canadian 

crossings.  

More recently, Austin and Carson (2002) developed collision prediction models 

using negative binomial expressions based on the US crossing inventory and collision 

dataset. Their model is much simpler than the previous US DOT models and therefore it 

easier to interpret the model results. The model used an “Instrumental Variable” technique 

mainly to overcome the co-linearity issues in conventional cross-section models. However, 

the effect of several factors is still counter-intuitive. For example, the presence of stop signs, 

flashing lights or bells was found to increase the predicted collision frequency; findings that 

contradict conventional wisdom as to the expected effect of these countermeasures. 

Appendix A includes all the aforementioned cross-sectional collision prediction models. 

A number of methodological issues need to be resolved before utilizing cross-

sectional models for estimating the effect of selected countermeasures on collisions at 

specific grade crossings. These include: 

1) Lack of statistical significance of explanatory variables. 
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2) Presence of co-linearity leading to counter-intuitive results. 

3) Failure to interaction effects in countermeasure mix. 

4) Jurisdictional reporting biases introduced when transferring models to areas or 

time periods which were not part of data used in calibration. 

Recently, more sophisticated multi-stage cross-sectional models have been 

developed and applied to safety analysis of Canadian grade crossing (Saccomanno and Lai 

2005, Park and Saccomanno 2005a, Park and Saccomanno, 2005b). These models attempt 

to resolve many of the above issues associated with the conventional single stage cross-

sectional models. Multi-stage models first classify the crossing data into groups with 

similar physical and operational attributes. Separate collision prediction models are then 

developed for each group. The three multi-level models developed for the Canadian grade 

crossing data by Park and Saccomanno (2005a, 2005b) and Saccomanno and Lai (2005) 

will be discussed in details in Chapter 4 within the context of the proposed Bayesian 

prediction model introduced in this thesis. 

2.2.2 Before-After Models  

Before-after models have been widely used to estimate countermeasure effects in the 

transportation safety field. The approach analyzes the sites with only one or more 

improvements, while other characteristics are remained the same. In this model structure, 

the effect of a given countermeasure is determined by comparing predicted or observed 
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number of collisions after the countermeasure is introduced to the number of collisions had 

there been no countermeasure  (Hauer 1997, Persaud 2001). 

Two types of before-after models have been commonly cited in the literature: naïve 

and empirical Bayesian (EB) models. One of the major problems associated with the 

‘naïve’ before-after model is regression-to-the-mean (RTM) bias. This refers to the 

situation where safety countermeasures are normally applied to those sites with a high 

number of observed collisions. The subsequent reduction in collisions following the 

countermeasure is then assigned fully to the countermeasure effect. However, given the 

random nature of collisions, the frequency of collisions is more likely to drop from 

previous high levels notwithstanding the introduction of countermeasures. As noted by 

Council et al. (1980), the average collision frequency approaches to the mean over the long 

term in spite of high frequencies of collisions in certain years. This phenomenon is 

commonly referred to Regression-to-the-Mean (RTM) bias.  

• Regression to the Mean (RTM) 

RTM bias is a form of treatment selection bias, arising when the classical statistical 

assumption of random sampling is violated (Park and Saccomanno 2007, Pendleton 1991). 

The phenomenon is a principle stating that of related observations, and selecting those 

where the first observation is either higher or lower than the average, the expected value of 

the second is closer to the long term and/or population mean than the observed value of the 

first. This does not necessarily mean that if the first observation taken is above the average 

(or below the average), the second will always move towards the population average, but 

that there is a tendency to do so. When safety analysts estimate countermeasure effects via 
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a before-and-after model without properly taking into account RTM bias, they may not 

observe an actual effect of countermeasures. 

To illustrate, we first refer to a hypothetical collision example at a highway 

intersection from Council et al. (1980). As illustrated in Figure 2.1, the average number of 

collisions over the 10-year period (1969-1978) is assumed to be 20 with some fluctuation in 

values 8 to 32 collisions/year. If we introduce a safety countermeasure in 1973 in response 

to the large number of collisions experienced in 1972 (i.e. 32 collisions), the estimated 

percentage of collision reduction for a given 2-year study period (1972-1974) via a simple 

before-and-after model at the end of 1974 would be estimated as 50% [= (32-16)/32×100] 

since the observed number of collisions was 16 in 1974.  

It is reasonable to believe that some portion of the collision reduction has been 

introduced due to the intervention of the safety countermeasure. However, given that the 

long-term average number of collisions is approximately 20 collisions per year, we can 

recognize that much of the collision reduction has been essentially generated not because of 

the intervention of a safety countermeasure but because of the effect of RTM. A significant 

amount of collision reduction would have occurred in the absence of any change in 

intervention at the site. To simplify this hypothetical illustration, the number of collisions in 

1972 (i.e. 32 collisions) has been assumed to be a good estimate of the long-term average 

collisions per year at the site in the before-countermeasure period in the absence of the 

actual introduction of a countermeasure. Similarly, the number of collisions in 1974 (i.e. 16 

collisions) was assumed to be the best estimate of the long term average collisions per year 
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in the after-countermeasure period with the introduction of the actual safety counter-

measure. 
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Figure 2.1 Example Collisions per Year (Council et al. 1980) 

To clarify why the RTM bias occurs, we consider a second hypothetical collision 

frequency distributions as shown in Figure 2.2. The bell-shaped distributions in the figure 

are for demonstration purposes and do not represent the genuine distribution associated 

with collision frequencies at this site. 

Presume that we selected the highest 10% of the sites (e.g. at grade crossings) based 

on the collision history of the sites at time period ‘t1’ [i.e. the shaded part of the Figure 2.2-

a)] for which we introduce a given countermeasure. What would be the chance that the 

exactly same sites will once again constitute the same highest 10% in collision frequency 

distribution in a future time period ‘t2’. The answer is very low or unlikely. Perhaps, some 
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of the sites will still in the same highest 10% at future time period ‘t2’, but many the sites 

will no longer be in the same highest 10% at time period ‘t2’.  Even though just a few sites 

that belonged to the highest 10% at time period ‘t1’ are not included in the same percentage 

group in time period ‘t2’, the mean value of the selected sites will tend to the population 

mean at time period ‘t2’. As we can see in Figure 2.2-b), the same argument is possible on 

the other extreme (i.e. selecting sites in the lowest 10% of the collision history for time 

period ‘t1’). The degree of the movement in the average number of collisions between the 

time period ‘t1’ and the time period ‘t2’ represents the degree of RTM.  
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Figure 2.2 Regression-to-the-Mean Phenomenon 

In the upper part of the Figure 2.2 (a), the average numbers of collisions at time 

period “t1” by the selected sites is considerably higher than the overall population mean [or 
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lower for sample in Figure 2.2 (b)]. In the absence of RTM bias, we would expect same 

collision reduction effect for the countermeasure and crossing attributes in the future time 

period ‘t2’. Inasmuch as the collision occurrence is by nature a rare random event and RTM 

is inevitable, the collision frequencies at these selected sites in the future time period would 

be lower than indicated above notwithstanding safety countermeasure intervention. 

Figure 2.3 demonstrates the various degree of RTM phenomenon. Again, the graph 

does not reflect the actual distribution of collision frequency. In the upper part of the figure, 

‘µa’, ‘µb’, ‘µc’, and ‘µd’ represent the average number of collisions in before time period ‘t1’ 

based on the information from the sample sites selected from the range (A), (B), (C), and 

(D), respectively. The ‘µa′’, ‘µb′’, ‘µc′’, and ‘µd′’, on the other hand, represent the average 

number of collisions in the after time period (‘t2’) using the same sites’ information that 

were selected in the before time period (‘t1’). If there were no RTM bias, the selected sites’ 

before-period (t2) average numbers of collisions (i.e. µa, µb, µc, and µd) would be exactly 

same as the same sites’ after-period (t1) average values (see the black circle, black triangle, 

and black diamond in the figure). 

The degree of RTM bias would be the highest for those sites with highest before 

period collision history as in range (A). The degree of RTM would be relatively lower for 

sites in range (B), which represents the sites with the collision frequencies between the 

modest and the highest. If we select sites randomly from the entire collision frequency 

distribution [i.e. range (C)], RTM bias would not be a problem since the mean number of 

collisions at the sample sites would be identical to the mean value of the population either 

in the before period or in the after period. From this hypothetical figure, we notice that if 
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we select sites for treatment more and more randomly, then more and more the degree of 

the RTM bias will be reduced. 

When new safety countermeasures (e.g. ITS technology) become available, there is 

an understandable desire for the engineers to try out these new countermeasures on their 

worst clients or sites with highest collision history. These are sites in range (A) in Figure 

2.3.  However, because of the confounding effect of the RTM bias, the genuine effect of 

this new countermeasure would be difficult to estimate and an unexpectedly strong 

collision reduction effect is obtained (Hauer 1986). In simple terms, the collision reduction 

effects could be wrongly attributed to the countermeasure, where much of the effect could 

be due to RTM. It is worthwhile to note that, Morton and Torgerson (2005) suggested to 

evaluate new countermeasures based on a ‘samples’ from range (D) (e.g. the average 

number of collisions) in order to reduce the RTM bias. Their suggestion is based on the 

experiences in the field of clinical experiments. 
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Figure 2.3 Various Degree of Regression-to-the-Mean 

• Naïve and Empirical Bayesian Before-and-After Models 

The naïve before-after model ascribes the full reduction in collisions to the 

countermeasure being considered. Since it fails to consider nature of the non-random 

assignment of countermeasure and RTM bias, the application of ‘naïve’ before-after 

analysis tends to over-estimate the countermeasure effect.  
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A number of transportation safety researchers have suggested using a more reliable 

statistical technique known as Empirical Bayesian (EB) method. The application of the EB 

method attempts to avoid the over-estimation caused by RTM bias (Abbess et al. 1981, 

Wright et al. 1988, Mountain et al. 1992).  

For instance, in the highway safety field, Al-Masaeid (1997), Bahar et al. (2004), 

Elvik et al. (2001), Lyon et al. (2005), and Persaud et al. (2001) have employed the EB 

before and after analysis to assess the impact of selected treatments and to produce more 

reliable CMF with the reduced RTM bias. For the application to highway-railway grade 

crossings, Hauer and Persaud (1987) conducted a representative EB before-after study 

using US data to demonstrate the effectiveness of selected warning devices, such as 

flashing lights and gates. More recently, Park and Saccomanno (2007) examined the 

applicability of this method to Canadian grade crossing dataset. They noted that the 

Canadian data may not be suitable for this type of approach because of the lack of observed 

collisions in the crossing data, a problem referred to as “too many zero collisions”. 

To predict collisions in the before period, the EB technique is employed to combine 

the actual observed number of collisions at the site with the expected number of collisions 

at the same sites as obtained from statistical prediction models. This procedure is described 

mathematically as follows (Hauer 1997): 

E{κ|Κ} = γ⋅E{κ} + (1-γ)⋅Κ                    (2.2) 

where,  
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E{κ|Κ} = the EB adjusted estimate of the expected number of collisions per year at 

the study site before countermeasure implemented.  

E{κ} = the expected number of collisions per year at the study site from collision 

prediction models (e.g. negative binomial models) before countermeasure implemented. 

Κ = the actual observed number of collisions per year at the same site before 

countermeasure implemented. 

{ }
{ }κ

κ
γ

E
Var

+
=

1

1 , the weight factor estimated as a function of E{κ} and Var{κ}. 

If we assume that the observed collisions for a site (Κ ) is Poisson-distributed and 

the expected number of collisions for the site (κ ) are gamma-distributed, the distribution of 

the entire probability distribution of κ|Κ becomes Negative Binomial (NB) distribution. In 

this case, we obtain an over-dispersion parameter (φ) to represent the degree to which 

variance in collision frequencies deviate from Poisson assumption, as such; 

{ }
φ
κ

γ E
+

=
1

1                 (2.3) 

After obtaining the EB estimate, conversion factors are applied (e.g. traffic volume 

changes) to predict the number of collisions at the same site for the after-period assuming 

no countermeasure introduced. The countermeasure effect is simply represented by the 

difference between this (e.g. volume and time, etc.) adjusted EB estimates and the observed 

number of collisions in the after period.  
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Figure 2.4 illustrates the difference in the estimated effectiveness of a counter-

measure between the naïve and the EB before and after models. As stated, a before-and-

after model requires to 1) estimate what was the expected number of collisions of each 

treated site in the before period, and 2) to predict how the estimates in 1) would have 

changed in the after period due to changes in all other relevant factors (e.g. traffic volume, 

etc.) if there was no treatment. In this example, the duration of before period and the after 

period are assumed to be the same (e.g. 1 year in each stage for a range 2 years). A strong 

assumption of constancy of all other relevant factors with collisions (e.g. AADT, number of 

daily trains, vehicle and train fleet, driver demography, weather, etc.) during the entire 

study period is also introduced to simplify this illustration.  
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(a) Naïve Before-and-after Model (b) EB Before-and-after Model 

Figure 2.4 Effectiveness of Countermeasure by the Before-After Models 

Figure 2.4 (a) shows the estimated effectiveness of safety countermeasure by means 

of the naïve before-and-after model. In the figure, a year ‘ti’ represents the year that a given 
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countermeasure is introduced. The ‘K’ and ‘L’ represents the observed number of collisions 

in one year before and after the countermeasure introduction, respectively. Since we 

assumed the constant status of every other relevant factor during the entire study period, the 

very best estimate of the expected number of collisions in the after period without the 

safety intervention would be the “K”. As noted above, the naïve before-after model 

attributes the full reduction in collisions to the countermeasure being introduced. As a result, 

the estimated collision reduction would be represented by the ratio between ‘K’ and ‘L’ 

based on the Equation 2.1. However, as we depicted in Figure 2.2 and 2.3, if the site has 

been selected for the safety intervention due to its abnormally high number of collisions in 

before period, the estimated effect of the countermeasure will be hard to be isolated from 

the confounding RTM bias. As a result, the estimated effect would be higher than that it 

should be. 

Figure 2.4 (b) shows how the empirical Bayesian technique contributes to reduce 

the over-estimation problems in evaluating countermeasure under the framework of EB 

before and after model. As indicated by Equation 2.2, the safety of a site is estimated using 

two sources of information: 1) information from sites that have the same characteristics (i.e. 

E{κ}), 2) information from the actual site the method is being applied (i.e. Κ). The E{κ} 

reflects the selected group mean based on the characteristics of sites (i.e. covariates, input 

factors) in a collision prediction model. The EB technique pull down the higher value of 

‘K’, which was considered as the best safety estimate for the before period in the naïve 

before and after model, toward the lower group mean value (i.e. E{κ}). This ‘regressing’ 

toward the mean is exactly what is achieved from Equation 2.2 (namely E{κ|Κ}). Again, 
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since we assumed all other factors remain constant during a given study period, E{κ|Κ} 

becomes the best estimate of the expected number of collisions in the after period following 

the introduction of the countermeasure. The estimated effectiveness of countermeasure via 

an EB before and after model is lower than suggested from a naïve approach. As a result, 

some of the RTM bias has been removed.  

In highway-railway grade crossing field, Hauer and Persaud (1987) introduced the 

EB before-after model to estimate the effectiveness of selected warning devices. They 

compared their study results to the previous study findings, which were developed based on 

a naïve before-after model, and found consistent over-estimation of the estimates in the 

previous studies. They asserted that the higher estimates were due to the unadjusted RTM 

bias inherent in the historical data.  

Table 2.1 summarizes their study findings. Table 2.1 summarizes several CMF 

values for three countermeasure applied to grade crossings in the US.  The two approaches 

illustrated are five naïve before and after models and one EB before and after model 

introduced by Hauer and Persuad (1987).  For instance, for the estimated effectiveness of 

upgrading from signs to flashing lights, the collision reduction percentages from the five 

naïve before and after models were estimated between 64 and 71%. On the other hand, the 

result from an EB before and after model was only 51%. The over-estimation by the naïve 

approach for this specific countermeasure was about between 13 and 20%. Similar patterns 

have been found on the estimated effectiveness involving the other two countermeasures 

(i.e. upgrading from signs to 2-quardrant gates, upgrading from flashing lights to gates). 
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Table 2.1 Estimated CMF from Different Before-After Models (Hauer 2005) 

Researchers 
California 

P.U.C. 
(1974)* 

Morrisey 
(1981) 

Coleman 
(1982) 

Eck and 
Halkias 
(1985) 

Farr and 
Hitz 

(1985) 

Hauer and 
Persaud 
(1987) 

Modeling 
Approach Naïve before-after EB  

before-after 
From Signs to 
Flashing Lights 

0.36 
(64)** 

0.35 
(65) 

0.29 
(71) 

0.31 
(69) 

0.30 
(70) 

0.49 
(51) 

From Signs to 2-
Quadrant Gates 

0.12 
(88) 

0.16 
(84) 

0.18 
(82) 

0.16 
(84) 

0.17 
(83) 

0.21 
(79) 

From Flashing 
Lights to 2-
Quadrant Gates 

0.34 
(66) 

0.36 
(64) 

0.31 
(69) 

0.28 
(72) 

0.28 
(72) 

0.40 
(60) 

Note) * represents the published year of the study; ** represents the collision reduction 
percentage. 

In general, there are two major advantages in using an EB before and after approach 

to estimate countermeasure effects. The EB model: 

1) Reduces or eliminates much of the RTM bias inherent in the naïve approach, and 

yields more reliable estimates of CMF. 

2) Takes into account changes in traffic volume in before-after study period. This 

traffic volume change is used as a surrogate variable to represent the observed and 

unobserved factors of study sites, such as the unobserved weather conditions. 

The EB before and after approach has been adopted as a main safety evaluation tool 

by a number of US and Canadian agencies, such as Interactive Highway Safety Design 

Model and the Highway Safety Manual. (Harkey et al. 2005, Harwood et al. 2000, Hughes 

et al. 2004) 

Notwithstanding its relative success in resolving RTM bias, EB before-after models 

still have some shortcomings as follows: 
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1) EB before-after models require large amounts of data, such as yearly-based 

exposures over a given study period. This increases the cost and time of the analyses. 

However, researchers often do not have the resources to collect the necessary inputs for 

their analysis and are therefore forced to produce results with incomplete inputs. For 

example, the highway-railway grade crossing inventory databases in Canada and the US do 

not contain the yearly-based exposures (e.g. yearly-based traffic volumes) for individual 

crossings. This makes difficult to use an EB approach. 

2) EB before-after models require a strong assumption that the effect of all 

unobserved factors can be explained simply by changes in traffic volume between the 

before and after periods. However, there may be more factors (other than traffic volumes) 

related to collision frequency independently or in combination with other factors - for 

example reporting biases. While the EB before-after analysis itself does not require this 

assumption, most researchers consider traffic volume as the only input factor. 

3) It does not estimate the effects of several countermeasures simultaneously. The 

model has been applied to consider one countermeasure at a time. 

4) It produces an average effect rather than tailored effect for crossings of interest. 

Usually, decision makers are required to resolve problems targeted at specific sites (e.g. 

crossings). In that case, the average effectiveness of a countermeasure may not be enough 

to resolve their isolated issues. Evaluating individual countermeasures for local application 

using before-after models will require an extensive amount of time and resources, and is 

therefore unachievable. 
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The Canadian crossing dataset, which is the major source of analysis in this study, 

does not contain the necessary data to develop accurate EB before-after models. Moreover, 

the collision occurrences experienced at Canadian grade crossings for the past ten years are 

extremely rare events (i.e. less than 0.1 collisions/ year/crossing). Without considering this 

problem, the results can produce substantial bias in the estimate of CMF and this will 

hamper the reliability of EB before-after results (Lord 2006, Park and Saccomanno 2006).  

2.2.3 Propensity Score Method 

Often previous researchers have treated countermeasures as the exogenous variables in 

their modeling expression. However, some of the previous researchers including Kim and 

Washington (2006) have attempted to address the countermeasure selection bias by 

introducing the concept of endogeneity and to account for endogenous relationships to 

better understand the true effects on collisions of various kinds of countermeasures. Based 

on the accident analysis results using the highway intersection data from the state of 

Georgia, they argued that the often reason of the inconsistent results in the evaluation of the 

same countermeasure is the lack of the control for the potential endogeneity problem 

between collision rates and countermeasures. In highway-railway grade crossing field, 

Austin and Carson (2002) recognized that the presence of warning devices (e.g.  flashing 

lights, gates) is potentially endogenous to collision rates because collision rate is often used 

to warrant the installation of warning devices such as flashing lights or gates at grade 

crossings.  
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To remove countermeasure selection bias, we need to know how specific sites (e.g., 

grade crossings) are selected for different types of countermeasure. However, the 

aforementioned before-and-after and cross-sectional models do not specifically address the 

question as to why specific crossings have been selected for countermeasure. As a result, 

their estimates are biased by non-randomness in the countermeasure selection process. One 

such problem is refereed to as RTM bias, which results from the fact that countermeasures 

are normally applied to high collision history crossings. The countermeasure selection bias 

still can occur if there is a systematic bias in the selection of crossings for improvements. For 

instance, if all the selected sites experienced more than a certain amount of train speed or a 

minimum number of tracks at a specific crossing, these selection criteria could also produce a 

systematic selection bias.  

In an observational study including a traffic safety study, randomized experiments are 

commonly prohibited. As a result, as noted previously observational data are often 

“contaminated” by sampling bias. To avoid such bias, researchers have proposed to 

randomize observation sites (i.e. crossings) based on site specific values called the 

“propensity scores (PS)”. PS estimates the likelihood of a given site being treated and these 

scores are used to identify the sites with equal likelihood of being treated (Rosenbaum and 

Rubin 1983, 1984). 

The propensity score is defined as the conditional probability of countermeasure for 

a given site (i.e. crossing) attributes as follows: 

e(x) = Pr(Zi = 1|x)               (2.4) 
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where,  

e(x) = scalar vector of propensity score. 

Zi = countermeasure indicator (Zi = 1 if treated, 0 = otherwise) 

x = vector of pre-treatment attributes 

Rosenbaum and Rubin (1983) established analytically that: 

x ⊥ Zi | e(x)                (2.5) 

Equation 2.5 suggests that the vector x is conditionally independent of 

countermeasure (Zi) given propensity scores [e(x)].  As a result, for a given propensity 

score, each individual observation has the same probability of being treated.  

The average countermeasure effect (δ) can be estimated as: 

δ = E{E(Yi | x, Zi = 1) - E(Yi | x, Zi = 0)}            (2.6) 

where,  

Yi = outcome variable (e.g. the number of collisions after treatment period) 

The propensity score [e(x)] is commonly estimated from a cross-sectional logistic 

expression of the form as follows: 

x
)x|1Pr(1
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⎦
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i

Z
Z              (2.7) 

where, β0, β1 = parameters of pre-countermeasure covariates. 



 32

Currently, this method has been routinely used in a number of observational studies 

in various disciplines, including medicine, economics, finance, and education (D’Agostino 

1998, Dehejia and Wahba 2002, Yanovitzky 2005). In transportation studies, Aul and Davis 

(2006) applied this PS method to estimate the effect of traffic signal installation on highway 

intersections.  

In highway-railway grade crossing field, Park and Saccomanno (2007) used this 

method to estimate the effect of different warning devices at Canadian crossings. Two types 

of warning devices with passive signs were considered for crossings: flashing lights and 

gates. They found that the PS model reduced diverse systematic selection bias, including 

RTM bias. PS method takes into account various treatment selection criteria (e.g. exposure, 

train speed, track type, collision history) when the propensity scores are estimated. In 

generally, the PS method is relatively simple to apply and effective in reducing counter-

measure selection bias, including RTM bias.  

The PS method has not been adapted and tested in any major transportation study 

with exception of Aul and Davis (2006) and Park and Saccomanno (2007). Similar to the 

before-after models, this method can produce the effect of only one countermeasure at a 

time. 

2.2.4 Bayesian Safety Assessment Framework 

Bayesian Safety Assessment Framework (B-SAF) has been developed to statistically 

combine experts’ opinions and findings of previous study to assess the effectiveness of the 
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given countermeasure. This method combines experts’ “subjective” knowledge and 

judgment with “objective” information obtained from empirical studies to yield meaningful 

“posterior” collision estimates (Clarke and Sarasua 2003, Melcher et al. 2001, Washington 

et al. 2002). 

Since the B-SAF method does not require any formal experiments or analyses to 

estimate the effectiveness of a specific countermeasure. the method can be a useful tool for 

safety engineers to estimate countermeasure effects that have not yet been applied in real 

world. For these estimates, we rely on expert judgment concerning the possible effect of the 

untested countermeasure. However, this approach has the following limitations: 

1) While expert opinions have been commonly used in transportation safety 

applications to produce CMF of countermeasures (e.g. Harwood et al. 2000, Harkey 2005), 

it is hard to convince that the experts’ judgment is consistent and sound. Especially, the 

results from this method rely heavily on experts’ opinions and the availability of qualified 

professionals. However, the information obtained from experts varies by experts’ expertise, 

and experience. 

2) Combining experts’ opinions with the information obtained from past studies is 

challenging. More specifically, experts’ opinions are assumed to follow discrete (ordinal) 

distributions, and the previous knowledge from literature is assumed to follow continuous 

distributions. Combining these two different types of distributions is valid only if the 

discrete (ordinal) distribution can be converted to the continuous distribution and merged 

with another continuous distribution. 
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Recently, Washington and Oh (2006) used this method to rank various counter-

measures based on the estimated safety benefits at grade crossings. Since they recognized 

the inherent limitation in this method, they did not recommend this method to produce any 

quantified CMF of countermeasures.  

2.2.5 Summary of Methodologies 

There are several methods to estimate the effectiveness of countermeasures (e.g. CMF) in 

terms of the changes in the number of collisions after a countermeasure is implemented. 

These methods differ in theoretical foundation and principles, and have advantages and 

disadvantages, as summarized in Table 2.2.  Unfortunately, it seems that there is no 

flawless model that provides accurate CMF, especially for collision data with zero 

collisions at a majority sites. Therefore, we need a model that can provide more formal 

information regarding the uncertainty inherent in the estimated CMF of a given 

countermeasure. 
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Table 2.2 Summary of Methodologies to Estimate CMF 

Model Type Advantage Disadvantage 
EB Before-
after Model 

• Well established theoretical 
background 

• Have a long history of successful 
applications in transportation field 

• Reduces the RTM bias 

• Requires a great amount of dataset 
for conducting appropriate analysis 

• May not be suitable for analysis of 
the dataset with too many zero 
collisions 

• Produces effectiveness of one 
countermeasure at a time  

• Produces only the average 
effectiveness of countermeasures  

Multi-stage 
Cross-
sectional 
Model 

• Reduces the co-linearity problems 
and relevant statistical issues 
inherent in single-stage cross-
sectional models 

• Estimates several counter-
measures effects simultaneously 

• Can provide sensitivity analysis of 
countermeasures 

• Can estimate varying effect of 
countermeasures based on the 
attributes of given sites 

• Requires relatively high level of 
understanding of statistics, therefore 
it is difficult to develop 

• May produce inconsistent results 
among different multi-stage models 

• May not be a main-stream approach 
in transportation safety field 

 
 

Propensity 
Score 
Method 

• Long history of successful 
applications in many other 
disciplines, including medicine, 
economics, etc. 

• Relatively easy to analyze using 
many statistical software. 
• Reduce systematic selection bias 
• Takes into account various 

treatment selection criteria 

• Lack of application in transportation 
safety field 

• Estimates effect of one 
countermeasure at a time  

• Produces only the average effect of 
countermeasures 

Bayesian 
Safety 
Assessment 
Framework 

• Can assess safety countermeasures 
that have not  been applied in real 
world 

• Can produce results with relatively 
small amount of dataset 

• Consider subjective experts’ 
opinions in assessing 
countermeasures effect 

• Requires high-level understanding 
of statistics 

• Difficult to obtain sound expert 
opinions, and therefore hard to 
estimate reliable CMF 
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2.3 Type of Countermeasures 

This section reviews various countermeasures cited in literature such as Manuals of 

Uniform Traffic Control Devices for Canada (TAC 1998) and the US (FHWA 2003), and 

the Canadian Road/Railway Grade Crossing Detailed Safety Assessment Field Guide 

(Transport Canada 2005).   

There are generally three different types of countermeasures that engineers can use 

to make crossings safer: 1) crossing closure or grade separation, 2) improving crossing 

geometry, and 3) upgrading traffic control devices. 

2.3.1 Crossing Closure/Grade Separation 

Grade crossing closure and grade separation will have the same effectiveness of 

countermeasures because the both countermeasures can prevent entire collisions between 

train and motor-vehicle by eliminating exposures at a crossing. However, these two 

countermeasures have distinct characteristics.  

Obviously, the grade separation will require higher construction cost than any other 

countermeasures due to potential crossing relocation. On the other hand, the crossing 

closure might be the lowest cost countermeasure that requires nothing to install or change 

physically. The crossing closure may divert traffic to other crossings and would increase 

the exposure and associated collision potential at the corresponding crossings. Therefore, 

even though crossing closure can eliminate potential collisions at a specific crossing by 

removing exposure at the crossing, it is unclear whether the overall collisions in the entire 
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railway network can be actually reduced. Moreover, as indicated by Russell (1981), the 

crossing closure may evoke a strong resistance by the local community since it requires 

local drivers to use other route than the existing convenient route.  

In spite of the aforementioned issues that require to be considered before 

implementing crossing closure/grade separation, these two countermeasures would be the 

only countermeasures that can prevent the 100% of collisions between trains and motor-

vehicles (Mironer et al. 2000). 

2.3.2 Improving Crossing Geometry 

A wide variety of geometrical improvements could be introduced as safety counter-

measures at grade crossings. They include smoothing the horizontal and/or vertical 

alignment of the approaching road, changing the crossing intersecting angle, and improving 

road surface conditions.  Improving the sight distance by modifying crossing geometry is 

also a well-known approach for reducing the collision potential at grade crossings. 

However, it is practically impossible to evaluate the effectiveness of each of these 

modification strategies due to lack of observational data.  In this study, we will consider 

two general categories of countermeasures involving geometric improvement: a) sight 

distance improvement, and b) pavement condition improvement.  

For instance, Gan et al. (2005) reported the effect of sight distance improvement at 

intersections that is currently applied in selected United States, including Missouri (CMF = 
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0.60) and Arizona (CMF = 0.93). Similarly, they also reported the CMF of pavement 

improvement at grade crossings [e.g. Arizona (CMF = 0.80)]. 

In fact, any changes in crossing geometry would change the sight distance and 

pavement conditions. For example, if track angle is changed, then the sight distance and 

pavement condition should be also affected. In this case, the improvement of track angle 

would be a surrogate variable that can measure the impact of improvement in crossing 

geometry.  

2.3.3 Upgrading Traffic Control Devices 

The main purpose of traffic control devices is to provide appropriate warning to drivers 

using various visual and/or audible devices and to assist drivers in taking proper actions to 

avoid collisions at crossings. Traffic control devices can be further categorized into passive 

and active devices, as described in the following sections. 

1) Passive Traffic Control Devices 

Passive traffic control devices such as signage and pavement markings provide static 

messages of warning, guidance and, in some instances, mandatory action for vehicle drivers. 

The TAC’s Manual of Uniform Traffic Control Devices (1998) describes various control 

devices to enhance safety at grade crossings.  Figures 2.5~2.7 illustrates several passive 

warning devices. As shown in the figures, each control device can be used individually or 

in combination.  



 39

Agent et al. (1996) provided various CMF of different passive control devices in 

Kentucky. They suggested 0.55 for installing a “Yield Sign” and 0.65 for installing a “Stop 

Sign” at highway intersections.  

It should be noted that, in this study, the CMF of passive warning devices for 

highway intersections are assumed to be the same as the CMF of the same devices for 

highway-railway grade crossings. For example, the Oregon DOT suggested 0.51 as a CMF 

for installing “Stop Ahead Sign” at highway intersections. Basically, the performance of 

passive sign is expected to be the same for the drivers at both intersections. Similarly, the 

estimated CMF of “Stop Line Sign” at a highway intersection was assumed to be the same 

as the CMF of stop line sign at a grade crossing. As a result, a total of six different passive 

control devices, including illumination and pavement markings, have been considered in 

this study (Table 2.3). Appendix B describes the specific role and criteria of all relevant 

passive warning devices. 
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Table 2.3 Published CMF for Various Countermeasures 

Sources Countermeasure 
US State Regulation Other Studies 

Number of 
Sources 

Crossing Elimination    
Grade Separation/Closure 0.00(Alaska)* 0.00(Mironer et al. 2000) 2 

Traffic Control Devices    
Passive Yield Sign 1.37(Arizona)* 

0.55(Kentucky)** 
0.55(Missouri)* 
0.77(New York)* 

 4 

 Stop Sign 0.81(Arizona)* 
0.50(Idaho)* 
0.65(Kentucky)** 
0.65(Missouri)* 
0.47(Montana)* 
0.80(Texas) 

 6 

 Stop Ahead 
Sign 

0.75(Alaska)* 
0.70(Kentucky)** 
0.51(Oregon)*** 

 3 

 Stop Line Sign 0.75(Kentucky)** 
0.75(Missouri)* 
0.66(New York)* 

 3 

 Illumination  
(Lighting) 

0.75(Alaska)* 
0.40(Idaho)* 
0.70(Kentucky)** 
0.40(Missouri)* 

 4 

 Pavement 
Markings 

0.75(Alaska)* 
0.44(Arizona)* 
0.90(Idaho)* 
0.90(Indiana) † 
0.85(Kentucky)** 
0.85(Missouri)* 
0.85(Oklahoma)* 

 7 

Active From Signs to 
Flashing Lights 

0.25(Alaska)* 
0.62(Arizona)* 
0.23(Idaho)* 
0.50(Iowa)* 
0.35(Kentucky)** 
0.35(Missouri)* 

0.36(California P.U.C. 1974)‡ 
0.35(Morrisey 1981) 
0.31(Eck and Halkias 1985) 
0.30(Farr and Hitz 1985) 
0.49(Hauer and Persaud 1987) 

11 

 From Signs to 
2Q-Gates 

0.10(Alaska)* 
0.04(Arizona)* 
0.13(Idaho)* 
0.25(Kentucky)** 
0.25(Missouri)* 
0.58(Vermont)* 

0.12(California P.U.C. 1974)‡ 
0.16(Morrisey 1981) 
0.16(Eck and Halkias 1985) 
0.17(Farr and Hitz 1985) 
0.31(Hauer and Persaud 1987) 

11 

Active From Flashing 
Lights to 2Q-
Gates 

0.10(Alaska)* 
0.20(Arizona)* 
0.25(Missouri)* 

0.34(California P.U.C. 1974)‡ 
0.36(Morrisey 1981) 
0.28(Eck and Halkias 1985) 
0.28(Farr and Hitz 1985) 

8 
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0.55(Hauer and Persaud 1987) 

 From 2Q-Gates 
to 2Q-Gates 
with Median 
Separation 

 0.20(FRA 2001) 
0.25(with Channelization, Federal 
Register 2003) 
0.20(with Median Barriers, 
Federal Register 2003) 
0.70(Mironer et al. 2000) 

4 

 From 2Q-Gates 
to 4Q-Gates 

 0.18(without vehicle presence 
detection, Federal Register 2003) 
0.23(with vehicle presence 
detection, Federal Register 2003) 
0.08(with median separation, 
Federal Register 2003) 
0.18(FRA 2001) 
0.60(Mironer et al. 2000)    

5 

 Installing 
Traffic Signal$ 

0.40(Alaska)* 
0.58(Arizona)* 
0.35(Kentucky)** 

0.33(McGee et al. 2003) 4 

 Whistle (Train 
and Wayside 
Horn) 

 0.31(Florida State, Rapoza 1999) 
0.62(Other State, Rapoza 1999) 
0.47(Farnham) 

3 

Geometry    
Improving Sight Distance$$ 0.75(Alaska)* 

0.25(Alaska)* 
0.93(Arizona)* 
0.68(Idaho)* 
0.65(Iowa)* 
0.70(Kentucky)** 
0.60(Missouri)* 
0.70(Montana)* 
0.75(Oklahoma)* 
0.62(Oregon)*** 

 10 

Improving Pavement 
Condition 

0.10(Alaska)* 
0.80(Arizona)* 
0.66(Indiana) † 

 3 

Enforcement    
Posted Speed Limit 0.80(Indiana) † 

0.80(Kentucky)** 
0.80(Missouri)* 

 3 

Photo/Video Enforcement  0.28(FRA 2001) 
0.15(McKeever 1998) 
0.36(Caird et al. 2002) 

3 

Source)  
*: Gan et al. (2005) 
**: Agent et al. (1996) 
***: ODOT (2006) 
†: Tarko and Kanodia (2004) 
‡: Cited in Hauer and Persaud (1987) 
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Figure 2.5 Typical Applications of Passive Traffic Control Devices (Transport Canada 
2005) 
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Figure 2.6 Typical Pavement Markings at Highway-Railway Crossings (TAC, 1998) 
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Figure 2.7 Typical Grade Crossing Illuminations (Transport Canada 2005) 
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2) Active Traffic Control Devices 

Active traffic control devices represent all traffic control devices that are activated when 

train is detected, such as flashing lights and gates. Active traffic control devices are also 

supplemented with the signs and pavement markings that are used for passive traffic 

control.  

Flashing lights, either post-mounted or cantilevered, are the basic active warning 

devices used to inform highway users of the approach of a train to a grade crossing. As 

shown in Figure 2.8, flashing lights are commonly supported by passive traffic control 

devices, such as cross-bucks and/or warning bells. Cantilevered flashing lights are usually 

installed at the location where post-mounted flashing lights are ineffective due to a given 

roadway environment. As shown in Table 2.3, many researchers estimated the effects of 

installing flashing lights over the existing passive control devices, and the estimated values 

of CMF vary in different studies. These inconsistent results may come from the differences 

in the dataset or methodologies used in the studies. 

Automatic gates provide an additional level of control and are normally used in 

conjunction with flashing lights. The gate arms are usually reflectorized and fully cover the 

approaching highway to prevent motor vehicles from circumventing the gate and entering the 

crossing. The gates and flashing lights are activated together. 
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(a) Post-Mounted Flashing Light (b) Cantilevered Flashing Light 

Figure 2.8 Typical Flashing Lights (Transport Canada 2005) 

Farr and Hitz (1985), for instance, provided 0.17 as the effectiveness of upgrading 

warning devices from passive signboards to 2-quardrant gates. The value is estimated using a 

naïve before-after study. On the other hand, Hauer and Persaud (1987) applied an EB before-

after model and they estimated a lower value (0.31) of CMF for the same improvement. The 

US DOT also suggests a CMF for the active warning devices applying to their local 

jurisdictions. The results are summarized in Table 2.3. 

In Canada, the current practice is to use 2-quadrant gates with dual gate arms, which 

block motor vehicles in each direction (as shown in Figure 2.9). Recently, 4-quadrant gates 

are being used in the US, which block the crossing from both directions, and prevent drivers 

from crossing between the lowered barriers (FHWA 2003), as shown in Figure 2.10.   



 47

 

Figure 2.9 Typical Two-Quadrant Gate System (Transport Canada 2005) 

As shown in Table 2.3., the US Federal Railroad Administration (FRA) (Federal 

Register 2003) suggested the expected CMF for the improvement from conventional 2-

quadrant to 4-quadrant gates. However, it should be noted here that the estimated CMF for 

the 4-quadrant gates is different from the conventional CMF in Equation 2.1.  FRA 

estimated the values based on the expected changes in the number of gate violation for 

specific crossings before and after the introduction of the 4-quardrant gates. The gate 

violation was used as a surrogate measure of the number of collisions. Given that the 4-

quadrant gates have very short history of implementation, and grade crossing collision 

occurs very rarely, the use of gate violation for representing the effectiveness of this 
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specific countermeasure might be unavoidable. However, further researches are needed to 

investigate the accurate CMF for this countermeasure when more collision data are 

available in the future. 

 

Figure 2.10 Plan View of Four-Quadrant Gate System (FHWA 2003) 

3) Median Separation/Traffic Channelization Devices 

Crossings with 2-quadrant gates are still risky because drivers can cross the centerline and 

easily pass the gate.  This type of violation can be prevented by using aforementioned 4-

quadrant gates.  However, the 4-quadrant gates can also introduce a new danger such that 

vehicles can be trapped between the two lowered gates in the path of an oncoming train.  

An effective alternative to 4-quadrant gates is installing median separation devices at the 

road approaches.  A significant reduction in the number of motor vehicle violations at grade 

crossings have been observed when compared to conventional 2-quadrant gates.  While the 
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safety benefits of using median separation devices are expected to be higher, the observed 

evidence has not been found. In addition, centre median barriers are expected to cost less 

than a 4-quadrant gate system. Figure 2.11 shows an example of flexible traffic separators 

currently installed at a highway-railway grade crossing in Central Florida (Ko et al. 2003). 

 

Figure 2.11 Example of 2-Quadrant Gate with Median Separator (Ko et al. 2003) 

4) Audible Warning Systems 

The use of audible alarms such as train horns or wayside horns can be an effective way of 

warning motorists and pedestrians of the impending arrival of a train and reducing 

collisions at highway-railway grade crossings. Based on the collision experience in Florida, 

Coifman and Bertini (1997) reported that the nighttime collision rate had been tripled 

during the first five years after whistle was prohibited. FRA found similar results that the 
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collision rate increased at the selected crossings during the whistle prohibition period 

(Rapoza et al., 1999). Saccomanno and Lai (2005) recently suggested that the elimination 

of whistle prohibition would reduce the number of collisions by 26% on average. 

5) Photo/Video Enforcement System 

Photo/video enforcement systems can be used to prevent and/or reduce two types of traffic 

violations: vehicle speeding and red-light running.  A recent US study (FRA 2001) reported 

that photo/video enforcement combined with a legal fine/penalty system has shown to be an 

effective alternative to the conventional enforcement system. The CMF of this enforcement 

system was estimated to be 0.28 based on the changes in driver violation before and after 

implementation of the enforcement system. 

Carroll and Warren (2002) investigated the effectiveness of red light camera 

enforcement at highway intersections. They suggested that the photo/video enforcement at 

highway-railway grade crossings would display similar effectiveness since the system 

works in the same way as the red light cameras at highway intersections.  

2.3.4 Summary of Published Countermeasure Effects 

In this section we summarize CMF for different types of countermeasures as reported in the 

literature. The values summarized in Table 2.3 were obtained from a number of studies in 

Canada and the US. In this study, we have assumed that the Canadian and American 

experience is close enough to justify the assertion that countermeasure effects come from 

the same statistical population. The CMF and sources are summarized in columns 3 and 4.   
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Initially, a total of 94 different studies were investigated to provide the effectiveness 

of 18 different countermeasures that could be applied to enhance safety at the highway-

railway grade crossings. Later, the information on the CMF will be used as a priori 

information on the effectiveness of countermeasures before analyzing this study dataset. 
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3 MODEL FRAMEWORK 

Frequently transportation engineers are required to make difficult safety investment 

decisions in the face of uncertainty concerning the cost and effects of countermeasures 

applied to specific locations or group of crossings. For highway-railway grade crossings 

this problem is aggravated by the lack of observed before-and-after collision and exposure 

data to provide empirical inference on the impact of countermeasure(s) for a given mix of 

crossing attributes.  

The model introduced in this Chapter uses Bayesian data fusion to overcome the 

limitation associated with traditional collision prediction models for the estimation of 

countermeasure effects. In this approach, we use the findings from past studies concerning 

expected countermeasure effects, which could vary by jurisdictions and operating 

conditions, to obtain a priori inference concerning these effects. We then use locally 

calibrated models, which are valid for explaining variation in collision occurrence at a 

particular location or jurisdiction, to obtain current best “data likelihood estimates” of 

countermeasure effects. These two sources of estimates (priors and data likelihood) are then 

integrated using Bayesian data fusion to obtain the expected best posterior estimates of 

countermeasure effects along with their corresponding probability distribution.  

Since posterior estimates are linked to unique Bayesian posterior probability 

distribution, the estimates are obtained not only for the expected collision response to a 

given countermeasures but also their corresponding variance and percentiles for a range of 
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likely values. The theoretical rationale of Bayesian data fusion is discussed in the following 

section. 

3.1 Bayesian Data Fusion Method 

Bayesian data fusion permits the combination of countermeasure effects from different 

independent sources (models and observational) with estimates obtained from a formal 

statistical analysis of the grade crossing data. Similar approach has been suggested recently 

by El Faouzi (2006), Melcher et al. (2001) and Washington and Oh (2006). Their approach 

is different in treating prior knowledge and data likelihood functions from this study 

approach.   

In this study, our aim is to obtain “posterior” estimates (θi) of the probability for a 

specific countermeasure effects applied to a specific crossing i with a given mix of crossing 

attributes. The posterior expression is of the form (Migon and Gamerman 1999, Lee 2004): 

Pi(θ|x) ∝ Pi(θ)Pi(x| θ)               (3.1) 

where, 

θ  = Countermeasure effect (CMF) for a specific crossing 

x = Estimates from Canadian collision prediction models 

Pi(θ) = Prior probabilities of θ from past studies  

Pi(x| θ) = Probability of observing the sample data given that a statement about the 

value of a parameter is true (i.e. objective or current best knowledge); 
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Pi(θ| x) = Posterior probability of θ give x. 

Equation 3.1 assumes that the effect of a given countermeasure is best treated as a 

random variable with a unique probability distribution.  Since these estimates are obtained 

from independent sources commonly of an empirical nature, we assume that the estimates 

of countermeasure effects are normally distributed, with a given mean, variance, and 

probability distribution. As noted by Lee (2004), according to the central limit theorem 

observations that have a built-in estimation error are likely to reflect a normal distribution.  

If the distribution of multiple source estimates on the priors and data likelihoods is normal, 

the posterior estimates will also be normal. We note that this assumption of normal 

distribution is purely for computational convenience although the other distributions can be 

equally considered in the proposed data fusion method. However, the other distributions, 

may require more computationally intensive procedures of use, such as Markov Chains 

Monte Carlo (MCMC) techniques. As noted by Washington and Oh (2006), a more flexible 

beta distribution, which provides for non-symmetric countermeasure response can also be 

considered in establishing reliable and practical posterior probability distribution. The 

impact of different distribution will be explored in Chapter 6. 

If we let the estimate from one of the data likelihoods of countermeasure effects as 

an experimental result x1 with probability P1(x1|θ), we can estimate the posterior 

distribution using Equation 3.1. Repeating the experiment to obtain another experimental 

result x2 with probability P2(x2|θ), we estimate the probability Pi(θ|x2x1) ∝ 

P(θ)P2(x2|θ)P1(x1|θ).  Generalizing this procedure for n different experiments, Migon and 

Gamerman (1999) derived the expression for the posterior probability for n experiments as: 
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The technical challenge is to obtain posterior probability distributions by integrating 

multiple distributions using Equation 3.2. From the Bayesian theorem and assuming 

normality in both the prior [θ ∼ N(µ, τ2)] and data likelihood distributions [l ∼ N(x, σ2)], 

Lee (2004) and Migon and Gamerman (1999) demonstrated that we can combine the effect 

means and variances to produce a normal posterior distribution [θ|x ∼N(µ0, τ1
2)] such that: 
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where, ω reflects the relative information contained in the prior with respect to its 

corresponding posterior information. We can re-write Equation 3.4 to incorporate this 

weight factor in the source estimates as: 

x)1(0 ⋅−+⋅= ωµωµ                  (3.6) 

Equation 3.6 reflects the weighted mean of prior and likelihood means, and has 

been discussed at length in the literature by several safety researchers (Hauer 1997, Persaud 

2001). Figure 3.1 depicts the proposed modeling framework adopted in this study. 
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Figure 3.1 Modeling Framework 

3.2 Priors 

As noted by Melcher et al. (2001), estimates of countermeasure effects based on previous 

studies represent a “first order a priori” belief concerning the effect of specific 

countermeasure applied to a given location in the absence of a formal location-specific 

analysis of the experimental data. Since it is assumed that each source yields a separate 

“independent” estimated effect, these estimates can be represented by a unique “a priori” 
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probability distribution.  In this study, we use historical knowledge from the past studies 

(grade crossing and highway safety) regarding similar countermeasures effect based on the 

different jurisdictional experiences.  

Most of these sources are based on research using US data. In this study, we have 

assumed that the effects of countermeasures at grade crossing are almost the same in 

Canada and the US. While prior estimates are assumed to be independent, their accuracy is 

subject to the reliability and strength of the method being used to predict collisions. Some 

methods improve the shortcomings of the other methods. The study result based on an 

advanced method would need to be given higher weights when obtaining the “combined” a 

priori effect. 

In this study, we follow the approach suggested by Harkey (2005) and Washington 

and Oh (2006) to establish the relative weights of countermeasure effects based on the 

perceived merits of different model types. In general, we obtained the relative model 

weights as the inverse ranking of the level of certainty summarized in Table 3.1 for 

different types of analysis methods. 

As pointed out by Harkey (2005) and Washington and Oh (2006),  the potential bias 

due to the differences in region and time of studies should also be considered in assigning 

previous studies into different level of certainties. For instance, Harkey (2005) investigated 

literatures from various regions, including North America, Europe, and Australia. He 

recommended of using at least 20% of North American experiences to represent the effect 

of a specific countermeasure. He also suggested using only “post-1980” studies because the 
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studies older than 25 years may not reflect the recent developments in trains/vehicles and 

changes in driver behaviors. Thus, we decided to exclude the California P.U.C. study 

(1974) with estimates summarized previously in Table 2.3.  

Table 3.1 Certainty Level of Previous Study (Harkey et al. 2005) 

Level of 
certainty (i) 

Brief description of study methodology Relative 
weight (Wi) 

1. High A rigorous before-after model that incorporated the 
current best study design and statistical analysis 
method. At this time, the empirical Bayesian (EB) 
before-after model represents the best available 
approach. 

1.00 

2. Medium-High A before-after model with sound statistical method (but 
not EB before-after model) or cross-sectional models 
with rigorous expert judgment. Combination of study 
results using rigorous Meta-analysis.   

0.50 

3. Medium-Low Cross-sectional models with controlling for other 
factors statistically or less rigorous before-after models 
(e.g. naïve before-after models). 

0.33 

4. Low Before-after or cross-sectional models in which 
modeling technique were questionable. 

0.25 

The mean combined countermeasure effect from the past studies is obtained using a 

weighted expression of the form: 

∑
∑ ⋅

=
ij

ijij
j W

CMFW
µ                (3.7) 

where,  

µj = weighted average effectiveness of countermeasure j from all available sources 

CMFij = effectiveness of countermeasure j in level of certainty i 

Wij = relative weight for countermeasure j in level of certainty i 
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The term µj adopted in Equation 3.7 reflects the weighted average countermeasure 

effect from past studies. It is basically a multiplier applied to a previous collision rate to 

yield a new adjusted collision rate. 

To obtain the prior distributions for countermeasure effects, we need to obtain a 

mean number of collisions as well as the variance associated with this mean value. The 

estimates of the means are routinely provided in the various sources. Unfortunately, the 

estimates of CMF variance are scarce and many sources fail to provide empirical estimates 

of variance for different countermeasure effects.  

Washington and Oh (2006) determined the variance (or standard deviation) of 

countermeasures based on the level of certainty of studies. Their approach was to assign a 

predetermined value of variance for each study based on the study’s level of certainty. 

Basically, they assigned larger variance to the study at lower level of certainty and vice 

versa. Their approach is convenient since no additional analysis is required to approximate 

a variance of CMF for each study. However, there is no theoretical rationale to believe that 

a study at lower certainty level will produce larger variance/standard deviation than a study 

at higher certainty level.  

In the absence of specific information on countermeasure, the variance of CMF for 

a given prior source, we suggest the following five-step procedure to obtain approximate 

estimates of the CMF variance. 

1) Obtain the mean countermeasure effect (µj) as well as the standard deviation (τj) 

for countermeasure j from all sources that provide these two pieces of information. 
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2) Estimate the “coefficient of variation” for countermeasure j using an expression 

of the form (Johnson 1994): 

100⋅=
j

j
jCV

µ
τ

               (3.8) 

where, 

CVj = coefficient of variation for the countermeasure j 

τj = standard deviation of the countermeasure j 

µj = CMF of the countermeasure j 

3) Obtain the average CV for countermeasures at the same level of certainty i (as 

shown in Table 3.1). 

4) Apply the average CV obtained from the method being used regardless of type of 

countermeasure and estimate its associated standard deviation for the countermeasure by 

using Equation 3.8. 

5) Assign relative weights in Table 3.1 to the individual countermeasures and 

combine the estimated standard deviation to obtain weighted average standard deviation for 

a specific countermeasure j using Equation 3.9. 

∑
∑ ⋅

=
ij

ijij
j W

W τ
τ                (3.9) 

where, 
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τj = weighted average standard deviation of countermeasure j from all available 

 sources 

τij = standard deviation of countermeasure j in level of certainty i 

Wi = relative weight for countermeasure j in level of certainty i 

It should be noted that the formal “Meta Analysis” approach provided in literature  

integrates findings from multiple studies and utilizes the same expression as Equations 3.7 

and 3.9 to estimate the weighted average and variance of existing findings (Hunter and 

Schmidt 1990). But a major difference concerns the estimation of relative study weights 

from previous studies. Furthermore, the “Meta Analysis” method requires a number of 

inputs from each study, including sample size, published year, omitted factors, and even the 

number of researchers. In highway safety studies, White (2002) investigated the effects of 

30 different safety countermeasures using Meta analysis. However, the effects of only 5 

different countermeasures were obtained due to the lack of necessary input information. 

Unfortunately, the input information required for a rigorous Meta analysis of grade crossing 

countermeasure effects was not available from the previous studies cited in Table 2.3. Our 

aim in this analysis is to produce estimates of effectiveness for as many countermeasures as 

possible; hence a formal Meta analysis was not employed in this study. The proposed 

approach remains practicable since the priors can be easily updated or altered should better 

results become available from future studies concerning specific countermeasures.  
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3.3 Data Likelihood 

Prior estimates may not be reliable because they are study specific and limited in reflecting 

the full gamut of crossing-specific factors that we would expect to influence collisions at 

different locations in different jurisdictions. In this analysis, we require an in-depth 

investigation of the relationship between crossing attributes and collisions as reflected in 

the Canadian database. The estimated CMF from these collision prediction models can best 

represent the “objective” or current information on grade crossing collisions as well as 

attributes within Canadian jurisdictions. From the Bayesian perspective, we refer to this 

type of inference as “data likelihood”. 

In this study, we employed three different statistical models based on independent 

studies carried out by Saccomanno and Lai (2005) and Park and Saccomanno (2005a, 

2005b) using different types of models. These models were developed using the collision 

data at Canadian grade crossings and used multi-stage cross-sectional approaches to solve 

the problems associated with the conventional cross-sectional models noted in section 2.2.2. 

Brief descriptions of these models are as follows; 

1) Saccomanno and Lai (2005) introduced a three-stage cross-sectional model to 

predict collisions. They grouped crossings into five different clusters with similar crossing 

attributes based on a sequential factor/cluster analysis and then developed cluster-based 

collision prediction models by employing negative binomial collision prediction 

expressions. Since the crossing attributes in individual clusters are assumed to be 
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homogeneous, the expected change in the number of collisions for a given countermeasure 

can be used to assess its effect vis-à-vis safety enhancement.  

2) Park and Saccomanno (2005a) introduced a data partitioning method (i.e. 

RPART) to eliminate the impact of different control factors, which can influence collisions 

but are difficult for engineers to control directly (e.g. jurisdictional factors). The authors 

assigned individual crossings into homogeneous groups of crossings in terms of control 

factors, and then developed a series of statistical models to predict collisions and estimate 

countermeasure effects.  

3) Park and Saccomanno (2005b) included higher-order interaction terms in their 

prediction model. The authors employed a data partitioning method to account for complex 

interactions, which were not captured in the conventional cross-sectional modeling 

procedure. The prediction models yield the expected number of collisions before and after a 

given countermeasure is introduced at each crossing. From these results, we can estimate 

the CMF values for each countermeasure.  

A more in-depth discussion of these data likelihood models is provided in Chapter 4, 

which addresses the overall prediction model components and calibration/validation results.  
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4 DEVELOPMENT OF THE MODEL COMPONENTS 

4.1 Description of Dataset 

This section briefly describes the inventory and collision data used for collision prediction 

models at grade crossings.  

4.1.1 Canadian Inventory Data 

This database that is administered by Transport Canada is called IRIS (Integrated Rail 

Information System) and contains an inventory of 29,507 grade crossings for all regions in 

Canada with information on crossing geometric and traffic attributes as well as types of 

warning devices. IRIS includes six types of data: 

1) Location Data 

Each crossing in the dataset contains site information, which indicates its location in the 

street, city or town, and province or territory. In summary, there are 4,074 crossings in 

Alberta, 2,185 crossings in British Columbia, 3,161 crossings in Manitoba, 1,291 crossings 

in New Brunswick, 9 crossings in Newfoundland, 16 crossings in the Northwest Territories 

and Nunavut, 809 crossings in Nova Scotia, 7,357 crossings in Ontario, 1 crossing in Prince 

Edward Island, 4,127 crossings in Quebec, and 6,469 crossings in Saskatchewan, and 8 

crossings in the Yukon. 
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2) Warning Device Type 

There are nine different types of warning devices in the database: namely flashing light 

signals and bell, flashing light signals and bells with gate, traffic lights, wigwags, signals 

and bell, manual gates, and reflectorized signboard. For the purpose of the analysis, the 

nine different types of warning devices are integrated into three different classes. These are: 

signs only, flashing lights, and gates. 

3) Grade Crossing Type 

Five different types of grade crossings are identified in the dataset, namely public 

automated, public passive, private, farm, and grade separation. In this study, only public 

grade crossings (automated or passive) have been considered for further analysis. 

4) Highway Characteristics 

The database contains information on highway geometric characteristics at grade crossings, 

including highway surface material, road surface width, road type and posted road speed. 

Road type was classified into arterial, collector, bicycle path, farm road, local, low volume 

road, pedestrian path, private access, snowmobile path, and unopened road. These road 

types are grouped into three different classes (i.e. arterial or collector, local road, and other 

roads). Surface materials include asphalt, concrete, gravel and other. In the actual analysis, 

only two different classes are used: paved or unpaved. 
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5) Railway Characteristics 

In the database, the information on the number of tracks, track angle, track type, maximum 

train speed, and train whistle prohibition, etc. is included. All this information can be 

considered as the railway attributes. 

6) Traffic Characteristics 

Traffic characteristics represent information on the average annual daily traffic (AADT) 

and number of daily trains passing a crossing. Later, exposure term that represents the 

product of these two traffic characteristics is estimated and utilized in the subsequent 

analysis. 

4.1.2 Collision Occurrence Data 

The collision occurrence database, referred to as RODS (Rail Occurrence Database System), 

is administered by the Canadian Transportation Safety Board (TSB). There are 2,905 

collisions in the database during the period of 1993-2001 for the 29,507 nation-wide 

crossings.  

Collision occurrence in RODS is classified into five different packages: “Basic 

Collision Information” such as collision report number, road condition, and railway 

characteristics, etc.; “Driver and Occupancy Information” such as driver gender, driver age, 

and the number of occupants in the vehicle involved collisions, etc.; “Vehicle Information” 

such as vehicle types, status of car window closure, etc.; “Collision Types” such as train 

struck vehicle, vehicle struck train, etc.; and “Severity Consequence Information” such as 
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the number of fatalities, the number of injuries, etc. In this study, only the frequency of 

collisions at each crossing has been used to develop collision prediction models and later to 

estimate the effectiveness of a certain countermeasure. 

The above IRIS and RODS dataset will be used later to develop data likelihood 

distributions to describe the local crossing characteristics and will be combined with the 

prior distribution. The following section is devoted to a though explanation of how the prior 

distribution has been estimated and then the method to estimate the data likelihood 

distribution will be investigated. 

4.2 Development of Priors 

This section describes the development of prior distributions for the mean and variance of 

CMF from different sources of information and data. As noted in the previous chapter, 

CMF refers to a collision modification factor for individual countermeasures. 

A literature review was conducted to find the quantitative CMF and associated 

uncertainty measures (i.e. variance, standard errors, and confidence intervals) for each 

countermeasure. Individual study estimates were weighted based on the perceived merits of 

the adopted study approach (refer to Table 3.1).  

Table 4.1 contains the mean (µ) and standard deviation (τ) of CMF of a sample 

countermeasure (i.e. upgrading signboards to flashing lights) from different past studies. 

For instance, based on a naïve before-and-after approach, Morrisey (1980) estimated CMF 

values of 0.35 and 0.04 as the mean and standard deviation of CMF respectively for this 
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countermeasure. A total of ten previous studies reported CMF values for this 

countermeasure. Among these ten studies, nine studies employed a naïve before-and-after 

approach, with a medium-low weighting. Only one study employed an EB before-and-after 

approach and this was assigned a high weight. Equation 3.7 was adapted to estimate the 

weighted average of these differently weighted studies, and yielded a CMF value of 0.46 

for upgrading from signs to flashing lights. 

Table 4.1 Estimated Priors for Improvement from Signboards to Flashing Lights 

Level of Certainty µ τ CV Literature 

High (1.00)* 0.49 0.1709 34.88 Hauer and Persaud 
(1987) 

0.35 0.0400 11.43 Morrisey (1980) 
0.31 0.0160 5.16 Eck and Halkias (1985) 
0.29 0.0231 7.97 Farr and Hitz (1985) 
0.25 0.0205 8.19 Alaska State** 
0.62 0.0507 8.19 Arizona State ** 
0.23 0.0188 8.19 Idaho State** 
0.50 0.0409 8.19 Iowa State** 
0.35 0.0286 8.19 Kentucky State*** 

Medium-Low (0.33)* 

0.35 0.0286 8.19 Missouri State** 
Average for High Level 
Studies 0.49 0.1709 - - 

Average for Medium-Low 
Level Studies 0.36 0.0297 - - 

Weighted Average for Prior 
Distribution 0.46 0.1356 - - 

Note: * Relative Weight; ** Gan et al. (2005); *** Agent et al. (1996) 

As noted in section 3.2, the main challenge becomes estimation of standard 

deviations of CMF for countermeasures with few sources. For this countermeasure, only 

three previous studies (i.e. Morrisey 1980, Eck and Halkias 1985, and Farr and Hitz 1985) 

in Table 4.1 provided standard deviation estimates in their reports. From Morrisey (1980), 
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CV was estimated as 11.43 based on Equation 3.8. The CV’s were estimated to be 5.16 and 

7.97 from Eck and Halkias (1985) and Farr and Hitz (1985), respectively. The average CV 

from these sources was calculated as 8.19.  

By applying this average CV to the other six studies available for the same level of 

certainty, we obtained the standard deviation (τ) for these studies. For instance, the Alaska 

State DOT reported a mean CMF value of 0.25 without reporting the standard deviation. 

Using the Equation 3.8, we estimated this standard deviation to be 0.0205. 

A more challenging exercise is estimating the standard deviation of CMF for the 

studies with high levels of certainty, since these types of studies have not been well 

documented in the literature. Moreover, for the EB before-and-after approach there are no 

studies that can be utilized for approximating CV, especially in the field of highway-

railway grade crossing. Accordingly, in this study, two different studies in the highway 

safety field (Persaud et al. 2001, 2003) were utilized to produce a substitute CV for the EB 

before-and-after approach. The rationale here is that decision comes from an idea that the 

estimated CV in the same level of certainty would be similar than it in the different level of 

certainty. As pointed out by Johnson (1994), the CV represents the standard deviation as a 

percentage of the mean and the value can be used to represent the precision of a given 

dataset.  

It should be noted that the procedure to approximate the standard deviation might 

not be adequate enough to provide a necessary input for a prior distribution due to the lack 

of defensible scientific base. But it should also be recognized that this procedure is still 
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valid since a rough inference would be better than an arbitrary decision without conducting 

any estimation practice. 

Based on previous studies in highway-railway grade crossing studies, we were able 

to obtain the weighted mean and standard deviation of CMF for 18 different 

countermeasures. These results are summarized in Table 4.2 along with the number of 

studies or sources on which each estimate is based. These represent the historical 

information or a priori belief as to the effect on collision reduction from the introduction of 

a specific countermeasure. This is in the absence of any analyses involving the local 

collision data.  

Table 4.2 Estimated Priors for Different Countermeasures 

Number Countermeasures µ τ #.of previous studies 
1 Grade Separation/Closure 0.0000 0.0000 2 
2 Yield Sign 0.8100 0.0723 4 
3 Stop Sign 0.6467 0.0577 6 
4 Stop Ahead Sign 0.6533 0.0583 3 
5 Stop Line Sign 0.7200 0.0642 3 
6 Illumination(Lighting) 0.5625 0.0502 4 
7 Pavement Markings 0.7914 0.0706 7 
8 From Signs to Flashing Lights 0.4578 0.1356 10 
9 From Signs to 2Q-Gates 0.2833 0.0864 10 

10 From Flashing Lights to 2Q-Gates 0.4738 0.1489 7 

11 From 2Q-Gates to 2Q-Gates with 
Median Separation 0.3375 0.0301 4 

12 From 2Q-Gates to 4Q-Gates 0.2540 0.0227 5 
13 Installing Traffic Signal 0.3583 0.1776 4 
14 Elimination of Whistle Prohibition 0.4671 0.0417 3 
15 Improve Sight Distance 0.6630 0.0591 10 
16 Improve Pavement Condition 0.5200 0.0464 3 
17 Posted Speed Limit 0.8000 0.0714 3 
18 Photo/Video Enforcement 0.2471 0.0220 3 

   Total = 91 
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For these results, a total of 91 sources were utilized to obtain a priori 

countermeasure effects. Based on these studies, if grade separation or closure is not 

considered (logically these two countermeasures should yield a 100% collision reduction), 

we can speculate that historically the strongest countermeasure effect would be associated 

with the changes in warning devices from 2- to 4-Quadrant Gates and the installation of 

Photo/Video enforcement. Both countermeasures reduce collisions by about 75% (i.e. CMF 

= 0.25). On the other hand, the weakest effect was found to be the introduction of yield 

signs ahead of grade crossings. The expected collision reduction for this countermeasure 

was estimated to be about 19% (i.e. CMF = 0.81).  

4.3 Development of Data Likelihood 

Prior information may be flawed because it fails to reflect the full gamut of crossing-

specific attributes that explain collisions at a given crossing over different periods of time. 

For this analysis, we require an in-depth investigation of the relationship between crossing 

attributes and collisions as reflected in the Canadian database. From the Bayesian 

perspective, we refer to this type of inference as “data likelihood”. The estimated CMF 

from these collision prediction models represents the objective or current information for 

grade crossing collisions as well as attributes within Canadian jurisdictions.  

In large part because of biases resulting from co-linearity in the model inputs, and 

absence of important factors in the model resulting from lack of statistical significance, 

many existing prediction models have failed to represent the full spectrum of relevant 
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factors that explain variation in collision frequency at grade crossings (Saccomanno and Lai 

2005).  

In this study three different statistical models based on independent studies of the 

Canadian grade crossing data carried out by Saccomanno and Lai (2005) and Park and 

Saccomanno (2005a, 2005b) are used to obtain data likelihood estimates of CMF. These 

three multi-stage collision prediction models are expected to reduce unexplained variation 

in the CMF estimates as suggested by the priors alone. We begin with detailed descriptions 

of these models. 

4.3.1 Factor/Cluster Collision Prediction Model 

1) Background of Factor/Cluster Collision Prediction Model 

Saccomanno and Lai (2005) developed a three-stage collision prediction model using 

standardized variables of crossing attributes. The first stage of their model involves a factor 

analysis of the geometric and traffic attributes for grade crossings in RODS/IRIS data. They 

found four particular factors that represent the main features of the crossing inventory data. 

The estimated four factors are orthogonal (i.e. not collinear) to each other and provide a 

unique explanation of variation in collision frequency expressions. Factor scores were 

obtained from an expression of the following form (Comrey and Lee 1992): 

Fjk = βj1 Z1k + βj2 Z2k + … + βjn Znk              (4.1) 

where,  

Fjk = standardized factor score for crossing k on factor j 



 73

Znk = standardized value for crossing k on variable n 

βjn  = factor coefficient for factor j on variable n 

The estimated factor scores for each grade crossing were used as “seed points” in a 

subsequent cluster analysis to determine groups of crossings with similar crossing attributes. 

Since we used standardized variables, the estimated factor scores are dimensionless in 

nature.  

As mentioned, the second stage of this procedure is cluster analysis to group grade 

crossings into different clusters with similar geometric and traffic attributes. These clusters 

were obtained using Euclidean distance measures for each of the four factor scores. After 

examining the spatial distribution of grade crossings within and between the clusters, 

Saccomanno and Lai (2005) determined five unique clusters. Even though a certain degree 

of subjectivity is associated with factor and cluster interpretation, these analyses provide 

exclusive insights into the physical properties of crossings reflected in the inventory dataset. 

As a result of factor/cluster analysis, a homogeneous group of grade crossings in terms of 

their attributes can be successfully obtained. Equation 4.2 was used to determine the 

Euclidean distance from each crossing to each cluster. Finally, the cluster membership for 

each crossing is determined based on the nearest distance rule. 
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where,  

diA = Euclidean distance between crossing i and the center of cluster A 
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xik = the kth  factor score for crossing 

xAk = mean of the kth  factor score for cluster A 

Appendix F gives all the related matrices involving factor and cluster analysis and 

an example calculation by courtesy of Saccomanno and Lai (2005). 

Even though all crossings in the same cluster are expected to behave in a similar 

manner in regard to their expectation of collisions, some variation is still evident among 

crossings within the same cluster. This variation will be taken into account statistically by 

developing cluster-specific collision prediction models.  

It should be note that the cluster-specific collision prediction models are modified 

and recalibrated to obtain a variance-covariance matrix among parameters for each model. 

The matrices are not reported in Saccomanno and Lai’s original paper. But it is necessary to 

approximate variances of various CMF in this study. More detailed illustration of the use of 

variance-covariance matrices will be discussed in chapter 5.  

Initially, Saccomanno and Lai used a sample of crossing dataset for their models 

since they split crossing dataset into two random samples: One sample to calibrate the 

model, and the other one to validate it.  Since as they reported that the model satisfied the 

validation process, this study utilized the complete crossing dataset to re-develop cluster-

specific collision prediction models (refer to Figure 4.1). As a result, the developed model 

in this study is somewhat different from the original expressions in the literature. All the 

variables adapted in “factor/cluster analysis” are provided in Table 4.3. 
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Table 4.3 Summary of Variables for Factor/Cluster Collision prediction Model 

Factors Variable 
Levels 

Variable 
Type Coding Description or Measuring Unit 

3 Nominal Signboards = Reference level*; Flashing 
Lights = 1 or 0*; Gates = 1 or 0* 1.Warning 

Devices 
3 Nominal Signboards = 1; Flashing Lights = 2; Gates = 3 

2.Surface Width Scale Value Continuous Meter 
3.Surface Type 2 Nominal Paved surface =; Otherwise = 0. 
4.Road Type 2 Nominal Arterial = 1; Otherwise = 0 
5.Track Number Scale Value Count Number 
6.Track Angle Scale Value Continuous Degree 
7.Whistle 
Prohibition 2 Nominal Whistle Prohibition = 1; Whistle Operation = 0 

8. Mainline 2 Nominal Mainline = 1; Otherwise = 0 
9. Daily Vehicles 
(AADT) Scale Value Count Number 

10. Daily Trains Scale Value Count Number 

11.Posted Road 
Speed Scale Value Continuous Kilometer per hour 

12. Maximum 
Train Speed Scale Value Continuous Mile per hour 

13. Exposure Scale Value Continuous AADT × Daily Train* 

14.Collision 
Frequency Scale Value Continuous Collisions per year 

Note: * Coding Description Only for Collision Prediction Model 
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Standardized Data Input
Railway Geometry, Highway Geometry, AADT, Road Speed, 

Daily Trains, Train Speed, Number of Collisions, etc.

1. Factor Analysis
Reduce variables to a small number of 

orthogonal factors and generate factor scores

2. Cluster Analysis
Use factor scores to group crossings into 

homogeneous group of crossings (clusters)

3. Model Development
Develop cluster-specific collision prediction 

models using entire crossing dataset

4. Produce Inputs for Data Likelihood
Generate mean and variance of CMF           

at a given crossing

Standardized Data Input
Railway Geometry, Highway Geometry, AADT, Road Speed, 

Daily Trains, Train Speed, Number of Collisions, etc.

1. Factor Analysis
Reduce variables to a small number of 

orthogonal factors and generate factor scores

2. Cluster Analysis
Use factor scores to group crossings into 

homogeneous group of crossings (clusters)

3. Model Development
Develop cluster-specific collision prediction 

models using entire crossing dataset

4. Produce Inputs for Data Likelihood
Generate mean and variance of CMF           

at a given crossing
 

 

Figure 4.1 Factor/Cluster Modeling Framework 



 77

2) Development of Cluster-Specific Collision Prediction Models 

Currently, the negative binomial (NB) model is the most common expression to represent the 

expected number of collision frequencies at given sites including grade crossings since the 

model takes into account the over-dispersion issues inherent in collision datasets. The NB 

model is obtained by adding a Gamma-distributed error to the conventional Poisson model, 

and therefore it is also known as the Poisson-Gamma model. The NB model form is: 

µi = exp(β·xi + ζi) = exp(β·xi )·exp(ζi)             (4.3) 

where,  

µi = the expected number of collisions at a given crossing i 

xi = a vector of explanatory variables 

β = a vector of estimated coefficients 

exp(ζi) = a gamma-distributed error term with mean 1 and variance α2 

The addition of this term allows the variance to differ from the mean as: 

var(yi) = E(yi)[1+ α·E(yi)] = E(yi) + α·E(yi)2             (4.4) 

where, α = inverse over-dispersion parameter 

As a result, the NB model overcomes the limitation in the conventional Poisson 

regression models of assuming equal mean and variance [i.e. E(yi) = var(yi)]. In fact, the 

Poisson regression model is a limiting model of this NB model when α is equal to 0. As a 

result, the distinction between these two models is determined by the estimated value of α, 

which determines the degree of dispersion in the predictions. If the estimated α is 
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significantly different from 0, a NB expression is more appropriate for the dataset than a 

Poisson expression. Cameron and Trivedi (1998) suggested the functional form of the NB 

model as the following expression: 

( ) ( )
( )

iy

i

i

ii

i
ii y

yyP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
Γ⋅
+Γ

= −−

−

−

−
−

µα
µ

µα
α

α
α

α

11

1

1

1
1

!
| x            (4.5) 

where, 

Γ( · ) = a gamma function 

The SAS GENMOD procedure was utilized to develop the cluster-specific collision 

prediction models. The complete outputs of the models are shown in Appendix C and Table 

4.4 illustrates the selected outputs of each model.  

As discussed, the expected CMF and corresponding variance from this model will 

be employed as an input to data likelihoods. Chapter 5 will demonstrate the application of 

this model using selected crossing samples to produce necessary inputs for data likelihood.   
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Table 4.4 Cluster-Specific Collision Prediction Models Based on Factor/Cluster Analyses 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Variables Coding 
Scheme Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs.

Flashing 
Lights (FL) 

FL = 1; 
Otherwise = 0 -0.383 0.326 -0.994 0.188 NA NA NA NA -0.580 0.212 

Gates (GT) GT = 1; 
Otherwise = 0 -0.840 0.293 -1.448 0.344 NA NA NA NA -1.492 0.324 

Active 
Warning Signs  

FL or GT = 1; 
sign = 0 N/A N/A N/A N/A -1.119 0.137 -1.222 0.208 N/A N/A 

Max. Train 
Speed Miles/hour - - 0.016 0.004 0.011 0.003 - - - - 

Track Angle Degree - -   -0.009 0.006 - - - - 

Whistle 
Prohibition 
(WP) 

WP = 1; 
Otherwise =0 - - 1.152 0.334 - - - - 0.807 0.164 

Ln(Exposure) Ln(AADT× 
Daily Trains) 0.358 0.040 0.387 0.043 0.461 0.032 0.441 0.037 0.497 0.059 

Intercept -4.057 0.373 -4.967 0.290 -4.537 0.481 -4.309 0.306 -6.071 0.525 

Dispersion (α) 0.794 0.190 1.112 0.312 0.361 0.213 0.973 0.216 1.614 0.328 

Note: N/A = not-available; - = statistically insignificant at 90% confidence level
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4.3.2 Stratified Collision Prediction Model 

1) Background of the Stratified Collision Prediction Model 

Although a number of factors are known to contribute to collisions at highway-railway 

grade crossings, the mixed effects of the control factors and other countermeasures on 

collision occurrence are less well explored. In this section, control factors reflect general 

environmental factors which cannot be altered by decision makers. Representative 

examples of control factors are weather and jurisdiction (e.g. region, country, province or 

state) where the crossing is located. Also, from a practitioner’s viewpoint, they cannot alter 

the existing level or function of railways and highways for the sole purpose of reducing 

collisions at a specific crossing. In fact, hazardous crossings are scattered all over railway 

and highway networks, therefore it is inefficient to treat the level or function of railways 

and highways as countermeasures to mitigate the collisions at crossings. Instead, we need 

to implement and/or improve practical countermeasures, such as flashing lights or posted 

speed limits.  

In this section, we describe a stratified collision prediction model developed by 

Park and Saccomanno (2005a) for the Canadian grade crossing data. This model is 

stratified to assess the effects of countermeasures on collision occurrence while the effects 

of selected “control factors” remain constant. After stratifying the crossings by selected 

control factors, we estimate the effect of countermeasures on collision reduction by the 

fitted models for each class of crossings.  

The Canadian grade crossing inventory contains three potential control factors as 

shown in Table 4.5. If a collision prediction expression is obtained for each class in this 

Table, we would have a total of 12 (= 3×2×2) different prediction models. However, there 

may not be a sufficient number of observations (i.e. crossings) for each class to permit such 

class-specific model development, and this may reduce the number of prediction 

expressions we develop using this approach. 
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Table 4.5 Selected Control Factors in Canadian Inventory Data 

Factors Variable 
Level 

Variable 
Type Coding Description 

1.Highway Class 3 Nominal Arterial/Collector = 1; Local Road = 0; 
Other Road Types = -1 

2.Track Type 2 Nominal Mainline = 1; Otherwise (e.g. switching 
line) = 0 

3.Track Number 2 Nominal Multiple Tracks = 1; Single Track = 0 

 A number of previous studies have attempted to control collision prediction by 

stratifying the crossing inventory data according to selected variables and developing 

separate prediction models for each class of crossing (Farr 1987). In general, these types of 

models tend to be rather arbitrary in nature when choosing data partitioning criteria. As 

such, they fail to account for co-linearity problems that arise from the relationship between 

control and engineering or decision factors. Therefore, a systematic tool is necessary to 

decide the number of classes for collision predictions as well as to identify statistically 

valid relationships between engineering factors (i.e. countermeasures) and collisions for 

each class. 

This section has three particular objectives; 

• Suggest a valid way to control the effect of control factors in collision prediction. In 

this study, we make use of the tree-based data stratification method for this purpose. 

• Develop a set of collision prediction models for each class of crossings based on the 

data stratification results. 

• After neutralizing the effect of control factors by the data stratification, generate 

necessary inputs for the data likelihood to evaluate the relationship between a set of 

important countermeasures and a collision frequency. 

Our primary concern is how we can eliminate the control factor effects from the 

collision prediction expressions and acquire unbiased parameters of countermeasure inputs. 

This is the main issue of the stratified collision prediction model.  

Figure 4.2 depicts the stratification modeling framework. 
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1. Data Partitioning using RPART
Stratify crossings into homogeneous        

Sub-groups in terms of control factors

2. Model Development
Develop strata-specific collision        

prediction model

Data Input
Railway Geometry, AADT, Road Speed,  

Daily Trains, Train Speed, etc.

3. Produce Inputs for Data Likelihood
Generate mean and variance of CMF         

of a given crossing
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Figure 4.2 Stratification Modeling Framework 

To address the above issues, Park and Saccomanno (2005a) utilized a Recursive 

Partitioning method (RPART) to stratify the study dataset into homogeneous sub-classes in 

terms of the control factor. RPART is similar to the technique applied in the Classification 

and Regression Trees (CART) method developed by Brieman et al. (1983). Zhang and 

Bracken (1996) and Cocchi et al. (2002) have applied the RPART method for the 

stratification purpose. Stewart (1996) also used the same method to identify complex data 

structures among the explanatory variables in road safety studies. Hakkert et al. (1996) and 

Lau and May (1989) also presented CART applications in the highway safety field.  The 
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models presented in this section are based on a sample of 6,014 public crossings from the 

combined RODS/IRIS database with 1,546 collisions over a 9-year period (1993-2001). 

RPART is a non-parametric technique and if the model response is categorical 

RPART produces classification trees. If the model response is continuous, RPART 

produces regression trees. Finally if the model response is assumed to be a count/ratio in 

nature and the model uses Poisson regression trees (Therneau and Atkinson 1997). In this 

study, the model response (i.e. collision rate) is assumed to be a count/ratio in nature. 

In simple terms, RPART splits a sample into binary sub-samples on the basis of the 

response to a splitting question requiring a binary (yes or no) answer. Figure 4.3 depicts a 

hypothetical hierarchical tree structure used in RPART. Depending on the answer to the 

question (yes or no), the sample at a higher level is split into two (left and right) lower level 

sub-samples. When a split occurs, the split sub-samples end up either in a splitting point or 

in a rectangular box. The rectangular box represents a terminal node, while the splitting 

points represent a non-terminal or internal node. Terminal nodes cannot be split further. 

Internal nodes, on the other hand, are subject to further splitting at lower levels of the tree. 
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Figure 4.3 Hypothetical Tree Structure 
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The goal of the conventional regression tree in the RPART method is partitioning 

data (using binary splits), into relatively homogeneous terminal nodes with the minimized 

quantity of impurities (i.e. uncertainties or randomness) within the nodes. In the 

conventional regression tree, sums-of-squares within the nodes represent the aggregation of 

impurities for the nodes (Brieman et al., 1983). 

As stated, the collision occurrence is assumed to follow the Poisson distribution, 

and the sums-of-squares are not very robust measures for the count/ratio based regression 

tree. Thus, the likelihood ratio is the simplest substitute for event-based regression trees. 

The Poisson regression tree in RPART has a different definition of the impurity measures 

from conventional regression trees. The procedure of building a Poisson regression tree is 

as follows (Therneau and Atkinson 1997): 

• RPART performs all splits on each of the explanatory variables (starting with the 

root node), applies a predefined node impurity measure to each split, and determines 

the reduction in impurity that is achieved. 

• RPART then selects the best split by applying a goodness-of-split criteria and 

partitioning the dataset into left and right sub-nodes. 

• Because RPART is recursive, it repeats step 1) and 2) for each non-terminal node 

resulting in the largest possible tree. The change in the impurity (i.e. deviance) of 

node t of each split s can be estimated using the following expression: 

∆D(s, t) = D(tC) - D(tL) - D(tR)             (4.6) 

where, 

D(tC) = impurity at current node t 

D(tL) = impurity at the left sub-node tL 

D(tR) = impurity at the right sub-node tR  

From the series of splits generated by a variable at a node, choose the split that 

maximizes the change in the impurity of the current node. Therefore, the best split is the 

split with the highest ∆D(s, t). 
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Under the likelihood ratio (LR) criterion, the impurity of the node is measured by 

within-node deviance, which is defined as: 
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where,  

yi = the observed event count for observation i,  

ti  = the baseline measure (e.g. index of the time and space),  

∑∑= ii tyλ̂ = the overall observed event rate. 

The impurity measure has the property that D(tC) ≥ D(tL) + D(tR). This property 

implies that the current estimated impurity is greater than or equal to the estimated impurity 

of the nodes (i.e. left and right sub-node) created by the current split. As the splits grow, 

further improvement becomes negligible at a certain point due to the lack of data for further 

splitting, or response data that are very close in value for the rest of the trees. RPART 

performs its tree-building until it produces a largest size tree. Generally, a k-fold cross 

validation strategy is used for determining the optimal size of the tree structure. In brief, 

RPART seeks the smallest tree with minimum cross-validation estimation error. Detailed 

tree-building algorithms are discussed in Breiman et al. (1983). 

Three factors in Table 4.5 were employed to stratify the study dataset into 

homogeneous sub-classes in the RPART exercise. The collision rate was used for the 

response variable in the Poisson regression trees. In a Poisson regression tree, the terminal 

nodes (i.e. the rectangles in Figure 4.4) represent homogeneous sub-classes according to the 

control factors.  

Figure 4.4 shows that the value of the estimated deviance (i.e. impurity) in each 

terminal node (i.e. 1, 2, 3 and 4) is much smaller than the root node’s (i.e. I). The sum of 

the deviances in the four terminal nodes (150.393 + 74.298 + 733.371 + 598.364 = 

1,556.426) is also smaller than the root node (1,647.527). Therefore, the stratified models 
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using the class-based crossings information can describe the effect of more homogeneous 

groups compared to the un-stratified models using the entire crossings dataset. 

It was found that the highway class and the track number are important for 

explaining deviance in collisions at highway-railway grade crossings. However, the track 

type (i.e. mainline or not) did not contribute to reducing the impurities in this study dataset, 

and thus it is not shown in the tree. Therefore, the track type is not considered further in the 

stratification process. The four classes of crossings in Figure 4.4 are described as follows: 

• Crossings which are included in the first class represent the crossings at arterial or 

collector roads. 

• Crossings which are included in the second class represent the crossings with 

multiple tracks at local or other road types. 

• Crossings which are included in the third class represent the crossings with a single 

track at local roads. 

• Crossings which are included in the last class represent the crossings with a single 

track on other road types. 

N = 6,014 (100%)
D = 1,647.527
Highway Class ≥ 0.5 ?

N = 4,028 (66.98%)
D = 1,420.927
Track Number ≥ 0.5 ?

N = 1,986 (33.02%)
D = 150.393

N = 3,316 (55.14%)
D = 1,317.269
Highway Class ≥ -0.5 ?

Yes No

Yes

Yes

No

No

I

II

IIIN = 712 (11.84%)
D = 74.298

N = 2,354 (39.14%)
D = 733.371

N = 962 (16.00%)
D = 598.364

1

2

3 4N = No. of Crossings
D = Impurity

N = 6,014 (100%)
D = 1,647.527
Highway Class ≥ 0.5 ?

N = 6,014 (100%)
D = 1,647.527
Highway Class ≥ 0.5 ?

N = 4,028 (66.98%)
D = 1,420.927
Track Number ≥ 0.5 ?

N = 4,028 (66.98%)
D = 1,420.927
Track Number ≥ 0.5 ?

N = 1,986 (33.02%)
D = 150.393

N = 3,316 (55.14%)
D = 1,317.269
Highway Class ≥ -0.5 ?

N = 3,316 (55.14%)
D = 1,317.269
Highway Class ≥ -0.5 ?

Yes No

Yes

Yes

No

No

I

II

IIIN = 712 (11.84%)
D = 74.298

N = 2,354 (39.14%)
D = 733.371

N = 962 (16.00%)
D = 598.364

1

2

3 4N = No. of Crossings
D = Impurity

 

Figure 4.4 RPART Result on the Basis of Control Factors 
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2) Development of a Collision Prediction Model for Each Class 

Table 4.6 describes the variables for stratification models. As usual, a categorical 

explanatory variable with j levels is included in the model as a set of j-1 dummy variables. 

For example, since Warning Devices has j = 3 levels, we included 2 dummy variables (i.e. 

Flashing Lights and Gates) as explanatory variables in collision prediction. In this case, the 

level that is excluded becomes the reference level (i.e. Signboards), and the coefficients that 

are included are interpreted relative to the reference level.  

Table 4.6 Summary of Variables for Stratification Model 

Factors Variable 
Levels 

Variable 
Type Coding Description or Measuring Unit 

1.Warning 
Devices 3 Nominal Signboards = Reference level; Flashing 

lights = 1 or 0; Gates = 1 or 0 
2.Extra Warning 
Devices 2 Nominal Extra warning devices such as an extra bell 

or an auxiliary light = 1; Otherwise = 0 
3.Surface Type 2 Nominal Paved Surface = 1; Otherwise = 0 

4.Track Angle 2 Nominal Perpendicular Track-Angle = 1; Otherwise 
= 1 

5.Surface Width Scale 
Value Continuous Meter 

6.Whistle 
Prohibition 2 Nominal Whistle Prohibition = 1; Operation = 0 

7.Posted Road 
Speed 

Scale 
Value Continuous Kilometers per Hour 

8.Time-table 
Train Speed 

Scale 
Value Continuous Kilometers per Hour 

Park and Saccomanno (2005a) developed a number of different collision prediction 

models using a generalized linear regression technique (i.e. Poisson regression). One of 

their major objectives was to compare the un-stratified models developed on the basis of 

both control and engineering factors (i.e. variables in Table 4.5. and Table 4.6) to stratified 

models developed on the basis of  engineering factors only (i.e. variables in Table 4.6). 

They showed that un-stratified models fail to resolve co-linearity issues between control 

and engineering factors, and therefore produced biased parameters. For instance, an un-

stratified model considering all three control factors (i.e. Model 1a in Park and 

Saccomanno’s work) showed counter-intuitive results. The model implies that if the 
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number of tracks is increased from single to multiple tracks, then the collision rate is 

reduced. Increasing the number of tracks, however, will increase the passing time of a 

vehicle over a crossing, therefore the chances of collision should increase. Based on the 

multiple comparisons between un-stratified and stratified models, they concluded that it is 

hard to isolate the countermeasures effect from the mixed effect between control and 

engineering factors in the un-stratified models. 

In this thesis, based on the experience by Park and Saccomanno (2005a), we will 

only use stratified models to produce the second inputs for the data likelihood. However, it 

should be noted that the stratification models employed in this study are somewhat different 

from the original expressions in the literature since we recalibrated the models for the 

following reasons: 

• The need to obtain the variance-covariance matrix among parameters for 

approximating the variances of CMF (this will be described in more detail in 

Chapter 5 of this study) 

• The need to reflect nonlinearity in exposure on collision prediction models  

The recalibrated stratification models are produced using the NB regression 

technique, except the model in “Class 4” that used a Poisson expression. These expressions 

are used to evaluate the effect of countermeasures while taking into account a given mix of 

control factors. 

The Poisson model assumes equal mean and variance, as such: E(yi) = var(yi). As 

discussed in section 4.3.1, the Poisson model is a limiting form of the NB model with a 

dispersion parameter (α) reflecting the ratio of NB to Poisson variance that approaches zero. 

As a result, the Class 4 model in Table 4.7 does not contain any dispersion parameter since 

the parameter failed to pass a significant test at a 90% confidence level. The NB expression 

was used for the other models in Table 4.7.  

Several notable aspects of the stratification model are: 



 89

• The five models in Table 4.7 show the coefficients which are statistically significant 

at least at a 90% confidence level. The completed outputs of these models including 

variance-covariance matrices are included in Appendix D. 

• The probable advantage of the stratified models over the un-stratified models is that 

the effect of countermeasures can be estimated after controlling for control factors 

by the tree-based stratification. In terms of the stratified models based on individual 

class, the control factors are kept constant within each class. Therefore, even though 

stratified models may not greatly improve the accuracy of collision prediction, we 

can still assure that they are more theoretically valid for representing the effects of 

countermeasures. 

• The “Model for Overall Class” in Table 4.7 contains no generic intercept, but the 

model has class-specific (i.e. a crossing membership determined by highway class 

and track number) intercepts. For instance, if a crossing intersects with an arterial or 

collector road, three regression coefficients (i.e. CI02, CI03 and CI04) are 

simultaneously set equal to zero. The resultant contains only the coefficient of CI01, 

and that value represents the intercept in the collision prediction model for the 

crossings on arterial or collector roads. Therefore, the estimated collision frequency 

at a crossing depends on which class the crossing belongs to.  

• The two types of stratified models (i.e. “Models for Individual Classes” and “Model 

for Overall Class”) have advantages and disadvantages. In the case of stratified  

models for individual classes, the effects of the same countermeasures are different 

for separate classes of crossings. For example, the effect of upgrading the warning 

device from signboards to gates is different for the crossings intersecting with 

arterial or collector roads than the crossings intersecting with local or other road 

types. This result is practically appealing.  

• On the other hand, for the crossings intersecting with arterial or collector roads, five 

variables including four countermeasures are statistically significant based on the 

Class 1 collision prediction model. Thus, for instance, the effect of surface type at 

the crossings cannot be estimated using this model. For the Class 4 model, only two 
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countermeasures are statistically significant at a 90% confidence level and therefore 

applicable for the crossings in the class. On the other hand, the stratified model for 

overall class provided practically useful output in that five countermeasures passed 

a significant test at the 90% confidence level. If decision makers want to know the 

effectiveness of warning devices for a crossing in class 4, instead of relying on the 

model for Class 4, the Overall Class model can be used to speculate the effect of the 

countermeasure for the crossings in Class 4. As a result, the model for the overall 

class can be used to represent the overall effectiveness of individual counter-

measures for all types of crossings. This is done by eliminating biases caused by the 

control factors listed in Table 4.5 if the effects are not captured by the four models 

on the basis of individual classes. 
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Table 4.7 Class-specific Collision Prediction Models 

Models for Individual Classes 
Model for Class 1 Model for Class 2 Model for Class 3 Model for Class 4 

Model for overall 
Class Variables Coding 

Skim Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs. Coef. Std.Errs.
Flashing 
Lights (FL) 

FL = 1; 
Otherwise = 0 -0.677 0.147 -0.571 0.235 -0.983 0.131 - - -0.756 0.084 

Gates (GT) GT = 1; 
Otherwise = 0 -0.899 0.185 -0.601 0.205 -1.250 0.236 - - -1.004 0.114 

Surface 
Type 

If Paved = 1; 
Unpaved =0 - - -0.254 0.155 -0.222 0.124 - - -0.112 0.067 

Whistle 
Prohibition 
(WP) 

If WP = 1; 
Otherwise = 0 0.294 0.114 - - 0.827 0.174 1.409 0.780 0.373 0.085 

Max. 
Train Speed km/hour 0.002 0.001 - - 0.007 0.002 0.011 0.005 0.004 0.001 

Ln 
(Exposure) 

Ln 
(AADT× 
Daily Trains) 

0.345 0.030 0.358 0.048 0.366 0.033 0.290 0.077 0.355 0.020 

CI01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. -3.867 0.173 
CI02 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. -4.004 0.172 
CI03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. -3.965 0.150 
CI04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. -4.388 0.169 
Intercept -3.797 0.266 -3.821 0.368 -4.190 0.241 -4.789 0.421 n.a. n.a. 
Dispersion (α) 0.633 0.114 0.236 0.180 0.439 0.154 n.a. n.a. 0.543 0.082 
Note) Model for Class 1 represents the crossings at arterial or collector roads (NB model) 

Model for Class 2 represents the crossings at local or other road types with multiple tracks (NB model) 

Model for Class 3 represents the crossings at local roads with a single track (NB model) 

Model for Class 4 represents the crossings at other road types with a single track (Poisson model) 

Model for Overall Class represents the complete crossings (NB model) 
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4.3.3 Collision Prediction Model with Group Indicators 

1) Background of Collision Prediction Model with Group Indicators 

In Chapter 2, a peer review of previous collision prediction models was conducted to find 

out appropriate model structure for collision predictions, specifically to reduce co-linearity 

among explanatory variables. None of the previous models developed for  highway/railway 

crossings formally considered the interaction effects among the explanatory variables. To 

illustrate this point we cite the research by Farr (1987), Tustin et al. (1986), Federal 

Railroad Administration (2002), and Austin and Carson (2002). 

In the previous section, we have attempted to control collision prediction by 

stratifying the crossing inventory data according to selected control factors and developing 

separate prediction models for each class of crossing. Our primary interest here is to 

explore interaction effects among countermeasures, rather than considering control factors 

as separate and distinctive inputs into the prediction model. In order to achieve these 

purposes, a Recursive Partitioning (i.e. RPART) method has been employed once again to 

systematically consider the interaction effects among various explanatory variables. This 

section is based on a previous study by Park and Saccomanno (2005b), and the modeling 

framework is given in Figure 4.5. 

2) Development of Collision Prediction Model 

Given the large number of variables and their potential interactions, the analyst is left with 

little guidance as to which interactions to specify and which to leave out. The problem can 

be computationally involving. Not only would specifying all of these interactions be time-

consuming and impractical, it fails to account for interaction effects that merely represent 

spurious rather than real-effects (Washington 2000). Therefore, an analyst needs a 

systematic tool to identify higher-order interactions in the larger databases, such as 

collision databases, that would contribute explanatory power to existing regression collision 

prediction models. 
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Figure 4.5 Group Indicator Modeling Framework 

To reflect the complex relationships among the variables in larger datasets, 

researchers have adopted data mining techniques (Conerly et al. 2000). Specifically data 

mining is a process that seeks to discover meaningful correlations, patterns and trends in 

attributes by sifting through large amounts of data stored in repositories using pattern 

recognition and statistical techniques. In this section, RPART (one of the commonly 

applied techniques in data mining) is used to identify important explanatory variables and 

their interactions. RPART is a non-parametric technique that can select those variables and 

their interactions that are most important in determining an outcome or response variable. 
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As discussed in section 4.3.2, The Poisson regression tree technique is used in this 

application since the response variable is a count/ratio variable. 

Because of the mixed variable types in the RODS/IRIS database (e.g. nominal, 

categorical, scalar, etc.), and the relatively large levels in some categorical variables (e.g. 

the initial road type contains ten different levels and so on), a re-organization of variables 

was required before performing supplementary analysis. Also, the selection of cut-off 

points for the categorization of ratio variables required a systematic way of that exercise. In 

this study, a number of Poisson regression trees were developed by using factors noted in 

Table 4.8. Individual factors were applied as single explanatory variables for each tree 

structure, and split criteria in every internal node were utilized to establish cut-off points for 

each factor. As a result, the original multi-levels for the categorical variables were 

systematically combined, and the thresholds for the ratio variables were estimated. Table 

4.8 gives a summary of the crossing inventory measurements which were used for the 

subsequent analysis. 

In this research, a total of eleven factors (except exposure and number of collisions) 

were employed to reflect any possible main and interaction effects among the explanatory 

variables. Once a hierarchical Poisson regression tree was developed, the internal node 

splitting rules were transformed into the group indicator variables to reflect interactions in 

the prediction models. For instance, crossings in sub-node (5) of Figure 4.6 reflect third-

order interactions, as represented by a binary coding value of 1 or 0. That is, if the installed 

warning devices for a crossing are either flashing lights or gates, intersected by an 

arterial/collector or a local road that is unpaved, then the group indicator takes on a value of 

1; otherwise, it takes on a value of 0. Similarly, the group indicator concerning the sub-

node (3) describes a second-order interaction, wherein the variable takes a value of 1 if and 

only if a crossing is equipped with a sign with the lowest train operating speeds; or 0 

otherwise. 

The splits near the root node [i.e. the node (I)] reflect primary effects (i.e. the nodes 

(II) and (III), therefore their effects influence a large proportion of the crossings). Splits 

farther from the root node reflect higher-order interactions and apply to a smaller number of 
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crossings. The percentage values in Figure 4.6 reflect the proportion of crossings in each 

splitting node. A total of nineteen different group indicators were obtained from the 

hierarchical Poisson regression trees in this analysis. These group indicators represent six 

second-order interactions, four third-order interactions, six forth-order interactions, and 

three fifth-order interactions. 

In this section, we developed a collision prediction model with group indicators 

using a NB expression to produce the final input for data likelihood. We note that this 

study’s results are rather different from the original expressions in a previous study by Park 

and Saccomanno (2005b). This is because we recalibrated the models to obtain the 

variance-covariance matrix among parameters for approximating the variances of CMF and 

to reflect nonlinearity in exposure on collision prediction models. The summary of the NB 

collision prediction model is given in Table 4.9 and Appendix E.  

The collision prediction model considers only three factors as its main effects for 

predicting collision frequency (i.e. warning devices, train speed, and exposure). In the 

process of growing the hierarchical Poisson tree, the splitting criteria over 19 internal nodes 

were transformed to group indicators. Of these indicator variables, three indicators passed a 

statistical test with a 90% confidence level. The reason why all indicator variables were not 

found to be statistically significant is that, while the Poisson regression tree-growing 

procedure in RPART ensures that splitting maximizes the reduction in impurity at a given 

node, it fails to ensure that the difference in deviance between sub-nodes is statistically 

significant. However, it should be recognized that four more factors, such as Surface Type 

(GI08), Track Number (GI08), Track Angle (GI11, GI13), and Posted Road Speed (GI13), 

can be taken into accounted by introducing these three group indictors in the collision 

prediction expression. 
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Table 4.8 Reorganized Factors for Collision Prediction Model with Group Indicators 

Factors 
(Variable Type) 

Original 
Levels 

Combined
Levels 

Coding Description 

1.Warning Devices 
(Nominal) * 

10 3 -1 for crossings with signs, 0 for crossings with flashing lights, 
and 1 for crossings with gates 

2.Extra Warning  
Devices(Nominal) † 

10 2 1 for crossings with extra warning devices such as an extra bell or 
an auxiliary light; 0 for otherwise. 

3.Highway Class 
(Nominal) † 

10 3 -1 for crossings with other roads types, 0 for crossings with local 
road, and 1 for crossings with arterial/collector. 

4.Surface Type 
(Nominal) 

13 2 1 for crossings with paved surface; 0 for otherwise. 

5.Surface Width 
(Continuous) † 

Scale 
Value 

3 -1 for crossings whose surface width is under 8.5m, 0 for 
crossings whose surface width is between 8.5m and 13.5m, 1 for 
crossings whose surface width is above 13.5m 

6.Track Angle 
(Continuous) 

Scale 
Value 

2 1 for crossings with perpendicular track-angle; 0 for otherwise. 

7.Track Type 
(Nominal) † 

15 2 1 for crossings in mainline; 0 for otherwise (e.g. crossings in 
switching line). 

8.Whistle Prohibition 
(Nominal) 

2 2 
 

1 for crossings with whistle operation, 0 for prohibition. 

9.Track Number 
(Continuous) † 

Scale 
Value 

2 1 for crossings with multiple tracks; 0 for otherwise (i.e. single 
track). 

10.Posted Road  
Speed(Continuous) † 

Scale 
Value 

4 -2 for crossings with the lowest level posted speed under 47 km/h, 
-1 for crossings with medium level posted speed between 48 km/h 
and 75 km/h, 1 for crossings with moderate level posted speed 
between 76 km/h and 85 km/h, and 2 for crossings with the 
highest level posted speed over 85 km/h. 

11.Time-table Train  
Speed(Continuous) † 

Scale 
Value 

3 -1 for crossings with the lowest level train speed under 36 km/h, 0 
for crossings with time-table train speed between the lowest and 
the highest level, and 1 for crossings with the highest level train 
speed above 92 km/h. 

12.Exposure 
(Continuous) ‡ 

Scale 
Value 

Scale 
Value 

Product of train daily volume and vehicle daily volume passing a 
crossing. 

13.Number of  
Collisions (Ratio) § 

Scale 
Value 

Scale 
Value 

The number of collisions at grade crossings over a nine-year 
period between 1993 and 2001. 

Note1) *: The warning device type was re-organized by the criterion of Saccomanno et al. (2004). 

Note2) †  : RPART was applied for these factors to systematically reduce the measurements level.  

Note3) ‡: Exposure was introduced by Schultz (1965), and the variable was used as the baseline 

measure for RPART procedure. 

Note4) §: The response variable for RPART procedure. 

Note5) Factor 1~2: Warning Devices; Factor 3~9; Geometric Attributes; Factor 10~11: Traffic 

Characteristics; Factor 12: Exposure. 
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Figure 4.6 Hierarchical Tree Structure on the basis of RPART Method
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 Table 4.9 Collision Prediction Models with Group Indicators 

Variables Coding Scheme Coef. Std. Errs.

Flashing Lights 
(FL) FL = 1; Otherwise = 0 -0.728 0.096 

Gates (GT) GT = 1; Otherwise = 0 -0.912 0.118 

Medium Level MTS: 36 ≤ MTS ≤ 92 km/h = 1; 
Otherwise = 0 0.274 0.086 

Max. Train 
Speed (MTS) High Level MTS: MTS > 92 km/h = 1;  

Otherwise = 0 0.316 0.092 

Ln(Exposure) Ln(AADT×DailyTrain) 0.422 0.019 

GI08 

C11 takes value 1 if a crossing is installed with 
active warning devices (flashing lights or gates), 
on arterial or collector or local roads, with paved 
surface, with multiple tracks; Otherwise = 0 

0.144 0.087 

GI11 
C11 takes value 1 if a crossing is installed with 
signs, with medium level train speed, with non-
perpendicular track angle; Otherwise = 0 

0.409 0.127 

GI13 

C13 takes value 1 if a crossing is installed with 
signs, with medium level train speed, with non-
perpendicular track angle, with posted speed 
under 85km/h; Otherwise = 0 

-0.234 0.140 

Intercept -4.609 0.170 

Dispersion (α) 0.554 0.083 
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5 Estimating Effectiveness of Selected Countermeasures 

In this section, several numerical examples are provided to evaluate different types of 

countermeasures at selected crossings. This application demonstrates how the proposed 

model can be used to estimate countermeasure effect for specific crossings. For the purpose 

of illustration four different countermeasures are considered: 

• Introducing “whistle operation” at two crossings with different attributes where 

whistles are currently prohibited by jurisdictional noise bylaws 

• Upgrading “warning devices” from flashing lights to 2-quadrant gates 

• Introducing “4-quadrant gates” where 2-quadrant gates are presently installed 

• Reducing “maximum train speed” 

• Introducing “multiple countermeasures” simultaneously at a given grade crossing 

5.1 Effectiveness of Elimination of Whistle Prohibition 

A summary of crossing attributes for this example is provided in Table 5.1. It should be 

noted that the coding description in Table 5.1 follows the coding scheme for the factor/cluster 

collision prediction model in Table 4.3. The coding scheme of the other two models will 

require a few different strategies for the same crossing attributes. For instance, the collision 

prediction models with group indicators have only categorical variables in its explanatory 

variables, and therefore the coding scheme should be changed on the basis of Table 4.8. 

Table 4.6 contains the coding description of the stratified collision prediction model.  

We first obtain estimates of CMF (priors) from previous published sources 

assuming they are normally distributed. In Table 4.2, we already provided the necessary 

parameters [i.e. mean (µ) and standard deviation (τ)] for generating prior normal density 

functions. For instance, the mean and standard deviation of the CMF of eliminating whistle 

prohibition based on three past studies are about 0.467±0.0417 (i.e. representing a 53.3% 

mean reduction in collisions) at a given crossing.  
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The CMF represents the historical a priori belief for this countermeasure before 

conducting any data analysis. This serves as an input into Equation 3.2 to yield the 

posterior distribution of the “whistle operation effect”. 

Secondly, we obtain three data likelihood estimates on the elimination of whistle 

prohibition countermeasure based on the three collision prediction models developed for 

the Canadian crossing data as introduced in Chapter 4. 

Table 5.1 The 1st Sample Crossing Attributes for Example Calculation 

Crossing Attributes Data Description and Coding 
Warning Devices Flashing Light 1 (2*) 
Road Surface Width ft (m) 15 (4.572) 
Surface Material Asphalt (Paved) 1 
Road Type Arterial 1 
Track Number Single 1 
Track Angle 70 Degrees 70 

Prohibition 1 (Before) 
Whistle 

Operation 0 (After) 
Mainline or Non-mainline Mainline 1 
AADT 15,000* 
Daily Trains 12* 
Exposure 180,000 
Posted Highway Speed Limit km/hr 50 
Max. Train Speed miles/hr (km/hr) 10 (16) 

Note)*: Only for Factor/Cluster Analysis (Refer to Table 4.3) 

1) Data Likelihood based on the Factor/Cluster Collision Prediction Model 

We first report the results of the factor/cluster analysis model provided in section 4.3.1 and 

illustrated in Figure 4.1. The subsequent steps are followed: 

• Step 1: Transfer explanatory variables into standardized variables using the 

following expression:  
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=                 (5.1) 

where, 

Zij = standardized value for crossing i on variable j 

xij = value for crossing i on variable j 

jx = mean of variable j (refer to Table F.1 in Appendix F) 

σj = standard deviation of variable j (refer to Table F.1 in Appendix F) 

For instance, the original value of “Daily Trains” for this example crossing is 12, and 

therefore the standardized value is calculated as such; 

2358.0
1340.11

3741.912
=

−
=ijZ  

Calculated values of Zij for individual variables are also presented in Table F.1. 

• Step 2: Calculate Factor Scores 

In this exercise, we employ Equation 4.1. Table F.2 provides the necessary inputs 

and outputs for this calculation, including factor score coefficients (βik). For example, the 

first factor score for this crossing can be estimated as follows; 

Factor Score 1 = 0.5034 × 0.2560 + (-1.1144) × 0.2443 + 1.2793 × 0.2664 + 1.6585 

× 0.3066 + (-0.4111) × 0.0235 + 0.0033 × 0.0130 + 3.1807 × 0.1137 + 0.2727 × (-0.0743) 

+ 3.4127 × 0.2587 + 0.2358 × (-0.0059) + (-0.4407) × 0.1321 + (-1.4899) × (-0.0753) = 

1.9731 

Similarly, we obtain a second, third, and forth factor score for this crossing. The 

estimated values are estimated as -0.4980, 1.0671, and -0.1470 respectively. 

 

• Step 3: Determine Cluster Membership 
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In this exercise, we employ the procedure given by Equation 4.2. Table F.3 contains 

the cluster center information regarding four factor scores. For example, the distance from 

this sample crossing to cluster 1 is calculated as follows: 

Distance to Cluster 1 = [(1.9731-0.5949)2 + (-0.4980-1.8202) 2 + (1.0671 – 1.0418)2 

+ (-0.1470 – 0.2106) 2]1/2 = 2.7207 

Following the same procedure, the distances to Clusters 2, 3, 4, and 5 were 

estimated as 3.0198, 2.8972, 2.5894, and 1.0888 respectively. Our basic aim here is to 

determine cluster membership based on the minimal Euclidean distance. Cluster 5 is 

suggested as the cluster membership for this specific crossing. 

• Step 4: Calculate the expected number of collisions before the elimination of the 

whistle prohibition by using cluster-specific collision prediction model from Table 

4.4. 

After conducting a factor/cluster analysis, we found out that this sample crossing 

belongs to Cluster 5 before countermeasure was applied. By applying the Cluster 5 model 

in Table 4.4 and Appendix C, we obtain the expected number of collisions before the 

elimination of whistle prohibition, as: 

Nbi  = exp[-6.071 - 0.580·1 - 1.492·0 + 0.807·1 + 0.497·ln(15000·12)] ≈ 1.186 

where,  

Nbi = the number of estimated collisions at a crossing before (or without) a safety 

countermeasure ‘i’. Here, the countermeasure is whistle operation. 

• Step 5: Calculate the expected number of collisions after the elimination of whistle 

prohibition by using the cluster-specific collision prediction model 

For this exercise, we repeat factor/cluster analysis (i.e. step 1 ~ step 3) once again to 

determine cluster membership of the modified crossing after the elimination of whistle 

prohibition. After conducting factor/cluster analysis once again, the given crossing after 

countermeasure was found to belong to “Cluster 4”.  Detailed numeric information is given 
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in Table F.4 ~ F.6 of Appendix F. The expected number of collisions after eliminating 

whistle prohibition at this specific crossing was estimated to be: 

Nai  = exp[-4.309 – 1.222·1 + 0.441·ln(15000·12)] ≈ 0.823 

where,  

Nai = the number of estimated collisions at a crossing after (or with) a safety 

countermeasure ‘i’. Once again, here the countermeasure is whistle operation. 

• Step 6: Estimate the CMF based on the expected number of collisions before and 

after introducing the countermeasure 

If we slightly modify Equation 2.1 in order to reflect the concept of expectation, 

and to match the notation of Equation 3.6, it becomes: 

}{
}{

}{
Bijk

Aijk
ijkijk NE

NE
CMFE ==x               (5.2) 

where,  

xijk =  an input (i.e. a mean) for data likelihood from collision prediction model k 

(i.e. in this case, the factor/cluster model) for countermeasure j at grade crossing i  

E{CMFijk} = the expected mean value of CMF from collision prediction model k 

for countermeasure j at grade crossing i  

E{NBijk}, E{NAijk}, = the expected number of collisions from the collision prediction 

model k at grade crossing i before and after introducing countermeasure j, respectively (i.e. 

the output of Steps 4 and 5) 

By applying Equation 5.2, we obtain the expected mean value of CMF from the 

factor/cluster model for “the elimination of whistle prohibition” at this example crossing, as 

such:  

693.0
186.1
823.0

}{
}{

}{ ≈===
Bijk

Aijk
ijkijk NE

NE
CMFEx  
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As a result, according to the factor/cluster model, we can expect a 30.7% [=(1-

0.693)×100] reduction in collisions after a whistle is introduced in the crossing from Table 

5.1. 

Next we obtain the variance of CMFijk. Since E{NAijk} and E{NBijk} were estimated 

from two cluster-specific different collision prediction models on the basis of different 

samples of crossings, we can assert that these two expected values are independent of each 

other. Based on a delta method, which uses a truncated Taylor series expansion of random 

variables, Hauer (1997) established that the approximate variance of CMF: 
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where, 

2
ijkσ = an input (i.e. a variance) for data likelihood from collision prediction model k 

(i.e. in this case factor/cluster model) for countermeasure j at grade crossing i  

Var{CMFijk} = the variance of CMF from collision prediction model k for 

countermeasure j at grade crossing i  

Var{NBijk}, Var{NAijk} = the variance of expected number of collisions from 

collision prediction model k at grade crossing i before and after introducing countermeasure 

j, respectively 

Since in this example the NB expression was assumed, the Var{NAijk} and 

Var{NAijk} can be estimated on the basis of Equation 4.4 and cluster-specific inverse over-

dispersion parameters (i.e. αk) in Table 4.4, as such: 

Var{NAijk} = E{NAijk} + αk·E{NAijk}2 = 0.823 + 0.973·0.8232  ≈ 1.480 

Var{NBijk} = E{NBijk} + αk·E{NBijk}2 = 1.186 + 1.614·1.1862  ≈ 3.457 

Applying these numbers to Equation 5.3, the end result of variance of CMF is 

estimated: 
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As a result, the expected mean value of CMF for the data likelihood obtained from 

the factor/cluster model is assumed to follow N(0.693, 0.4322). This represents an expected 

effectiveness of elimination of whistle prohibition inherent in the factor/cluster model for 

the given crossing with attributes in Table 5.1. 

2) Data Likelihood based on the Stratified Collision Prediction Model 

In this exercise, the stratified collision prediction model in section 4.3.2 is employed to 

produce an independent data likelihood value. For the same example crossing in Table 5.1, 

we apply the model framework illustrated in Figure 4.2. 

• Step 1: Determine Class Membership based on Control Factors 

Compared to the previous factor/cluster collision prediction model, the crossing 

membership is easily determined by considering control factors in this sample crossing. 

Although the sample crossing is assumed to intersect with an arterial highway regardless of 

the countermeasure status, in this analysis, the given crossing belongs to Class 1 in both 

before and after countermeasure states.   

• Step 2: Calculate the expected number of collisions before eliminating whistle 

prohibition by using the stratified collision prediction model 

By applying the Class 1 prediction model in Table 4.6 and Appendix D, we obtain 

the expected number of collisions before eliminating whistle prohibition, as such: 

Nbi  = exp[-3.797-0.677·1-0.899·0+0.294·1+0.002·16+0.345·ln(15000·12)] ≈ 1.027 

where,  

Nbi = the number of estimated collisions at a crossing before (or without) a safety 

countermeasure ‘i’. The countermeasure is whistle operation in this case. 

• Step 3: Calculate the expected number of collisions after elimination of whistle 

prohibition by using the stratified collision prediction model 
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Contrary to the previous factor/cluster model, the class membership in the stratified 

model will not be affected by the countermeasure status since the stratification is based on 

the control factors that are irrelevant to countermeasures. As a result, the expected number 

of collisions after eliminating whistle prohibition at this specific crossing is estimated as: 

Nai  = exp[-3.797-0.677·1-0.899·0+0.294·0+0.002·16+0.345·ln(15000·12)] ≈ 0.765 

where,  

Nai = the number of estimated collisions at a crossing after (or with) a safety 

countermeasure ‘i’. Once again, the countermeasure is whistle operation. 

• Step 4: Estimate CMF based on the expected number of collisions before and after 

introducing the countermeasure 

In this exercise, Equation 5.2 is adapted, such that: 

745.0
027.1
765.0

}{
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}{ ≈===
Bijk

Aijk
ijkijk NE

NE
CMFEx  

As a result, based on the stratified collision prediction model, we can expect a 

25.5% reduction in collisions after whistle prohibition is eliminated at the given crossing 

(as per Table 5.1). 

A major challenge is how to estimate the variance of CMFijk. As the same model 

was used for estimating the expected number of collisions both before and after the 

countermeasure, the assumption of independence between the two estimates is no longer 

valid. This is a different situation compared to the previous calculation using the 

factor/cluster collision prediction model. In this case, we must consider covariance among 

the parameters involved. 

To obtain the Var{CMFijk}, once again a delta method that approximates variance 

of random variables has been employed (Benjamin and Cornell 1970, Sampson 2006, Xu 

and Long 2005). Since NB and Poisson collision prediction models can be expressed as 

exponential functions, we can convert the expressions to a linear combination of parameters, 

such that: 
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where, 

Bkβ̂ , Akβ̂  = the estimated vector of parameters in model k before and after 

countermeasure states, respectively. We can let Bkβ̂ = Akβ̂ = kβ̂  

XBk, XAk = the vector of explanatory variables of model k before and after 

countermeasure states, respectively. 

Taking the logarithm on both sides of Equation 5.3, we can obtain a linear 

combination of parameters as follows: 

( ) ( )( ) ( )BkAkkBkBkAkAkBkBkAkAkk XXXXXX −=−=−= βββββ ˆˆˆˆˆexploglog x         (5.4) 

We can obtain xk as: 

xk = exp(log(xk)) 

By definition of the delta method we approximate Var{xk} using a first-order 

Taylor series expansion, such that; 

Var{exp(log(xk))} = Var{log(xk)}·{exp(log(xk))}2 = Var{log(xk)}·{xk}2        (5.5) 

where, 

( ){ } ( ) ( ) ( )T
BkAkkBkAkk XXVarXXVar −⋅⋅−= β̂log x  

As a result, the estimated Var{log(xk)} is as follows: 
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0  Prm6
1  Prm5

0  Prm4
0  Prm3
0  Prm2
0  Prm1

6-1.4377E  0.00002680.000072-0.000014- 6-2.9896E0.000101-  Prm6
0.00002680.012960.001132-0.0013760.001280-0.007228  Prm5
0.000072-0.001132-0.034150.02126 0.003057- 0.01198  Prm4
0.000014-0.0013760.021260.02163 0.001697-0.001511-  Prm3

6-2.9896E0.001280- 0.003057- 0.001697- 0.00090240.006822-  Prm2
0.000101-  0.0072280.011980.001511-0.006822-0.07074  Prm1

  Prm6 Prm5  Prm4  Prm3  Prm2  Prm1

010000

  Prm6 Prm5  Prm4 Prm3  Prm2  Prm1

 ≈ 0.013 

The notation of parameters [e.g. Prm1 = Intercept, Prm2 = Ln(exposure)] is 

presented at Appendix D.  
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It is interesting to note that the estimated Var{log(xk)} is equal to the square of the 

estimated standard errors corresponding to the whistle prohibition variable (i.e. 0.1142 = 

0.013) in Table 4.7. Finally, the Var{xk} (= 0.013×0.7452 ≈ 0.0852 ) as well as the mean of 

xk (i.e. 0.745) has been approximated based on the stratified collision prediction model, and 

used as the second input to data likelihood. 

3) Data Likelihood based on the Collision Prediction Model with Group Indicators 

The collision prediction model with group indicators in section 4.3.3 will be used to 

produce the third data likelihood input used in this analysis applied to the same crossing (as 

per Table 5.1). The model framework is given in Figure 4.5. Contrary to the previous two 

collision prediction models, this model does not require a previous determination of 

crossing membership, since it uses a single prediction expression for all crossings.  

We note that in this specific example we did not use the third model to produce a 

data likelihood input, since the model failed to explain variation in collision for this specific 

countermeasure. It might be theoretically rational to include 1.0 as the mean value of the 

data likelihood estimate (i.e. collision modification factor) of the model. Practically, 

however it would not be reasonable to assume that the 0% collision reduction effect will be 

achieved after the implementation of the proposed countermeasure (i.e. the elimination of 

the whistle prohibition) at a grade crossing. The value is so unlikely. Moreover, there is no 

straight-forward way of estimating the corresponding variance of this countermeasure 

unless we keep the countermeasure as an exploratory variable in a statistical modeling 

expression. As a result, based on the two point estimates from the two collision prediction 

models, we estimate the data likelihood distribution for this countermeasure effect. In fact, 

this situation illustrates one of the merits in the proposed approach. If we can estimate at 

least one CMF and its corresponding variance, we can produce the data likelihood 

associated with a specific crossing to generate the posterior distribution. 

4) Estimating Data Likelihood based on the estimated means and variances 

We obtained P1(x1|θ) = N(0.693, 0.4322), and P2(x2|θ) = N(0.745, 0.0852) from two 

collision prediction models. The reason of considerable difference in the estimated 
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variances of the two data likelihood models is resulted from the unique characteristic in the 

Factor/Cluster collision prediction model. The estimated variance is amplified since the 

cluster membership of this example crossing has been changed from the Cluster 5 to the 

Cluster 4 after the introduction of this particular countermeasure. In this example case, the 

estimated variance by the Factor/Cluster collision prediction model represents a kind of the 

between-group variance rather than the within-group variance. Therefore, we expect that if 

a crossing remains in the same cluster after the introduction of a countermeasure, the 

estimated variance will be similar to those based on the other two data likelihood prediction 

models. We will see this case at the next example calculation in Chapter 5.2. 

Next the data likelihood can be estimated by using Equations 3.2, 3.3, and 3.4, such that:  

( ) 21222
1 083.0085.0432.0 ≈+=

−−−τ  

( ) 745.0083.0745.0085.0693.0432.0 222
0 ≈⋅⋅+⋅= −−µ  

As a result, the estimated data likelihood distribution for this crossing follows 

N(0.745, 0.0832), and this value reflects our current best knowledge regarding the expected 

effect of whistle operation at this specific crossing. We can compare this to a historical a 

priori value for the same countermeasure that was given in Table 4.2 as N(0.467, 0.0422).  

Consequently, given the prior [i.e. N(0.467, 0.0422)] and the data likelihood [i.e. 

N(0.745, 0.0832)] distributions, we can produce the posterior distribution by applying 

Equations 3.3, and 3.4.  The results are:  

( ) 21222
1 037.0083.0042.0 ≈+=

−−−τ  

( ) 520.0037.0745.0083.0467.0042.0 222
0 ≈⋅⋅+⋅= −−µ  

If we wish to represent the contribution of prior distribution to the posterior 

distribution, we can use the Equation 3.5 to yield a Bayesian weight factor ω, such that: 

800.0
083.0042.0

042.0
22

2

≈
+

= −−

−

ω  



 110

As a result, the expected reduction in collisions at this grade crossing was estimated 

to be about 48% after the elimination of whistle prohibition. The contribution of prior 

information (ω) to the posterior distribution [N(0.520, 0.0372)] has been estimated to be 

about 80%. 

The effectiveness of the same countermeasure (i.e. the elimination of whistle 

prohibition) can be estimated using different crossing attributes. Table 5.2 shows the crossing 

attributes for a second sample crossing. We note that the difference in attributes between the 

crossings from Tables 5.1 and 5.2 is the road type. The second grade crossing is located on a 

local road rather than an arterial road as in the first case. 

Again, the same prior distribution [i.e. N(0.467, 0.0422)] in Table 4.2 will be 

employed for this illustration. Just like the previous example calculation, the data likelihood 

effects were obtained for each of the three prediction models introduced in Chapter 4. As 

discussed in the previous section, the factor/cluster model initially requires the estimation 

of factor scores to determine cluster membership of each crossing. To shorten the 

illustration, in this section we will not describe how cluster membership is determined, but 

simply indicate which cluster is involved. In this example calculation, the given crossing in 

Table 5.2 belongs to Cluster 5 in both the before-and-after countermeasure states. Again, 

the coding description in Table 5.2 follows the coding scheme of factor/cluster analysis in 

Table 4.3, and therefore the coding scheme should be changed to reflect the coding method 

of each collision prediction model. 

Table 5.2 The 2nd Sample Crossing Attributes for Example Calculation 

Crossing Attributes Data Description and Coding 
Warning Devices Flashing Light 1 (2*) 
Road Surface Width ft (m) 15 (4.572) 
Surface Material Asphalt (Paved) 1 
Road type Local 0 
Track Number Single 1 
Track Angle 70 Degree 70 

Prohibition 1 (Before) 
Whistle 

Operation 0 (After) 
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Mainline or Non-mainline Mainline 1 
AADT 15,000* 
Daily Trains 12* 
Exposure 180,000 
Posted Highway Speed Limit km/hr 50 
Max. Train Speed mile/hr (km/hr) 10 (16) 
Note)*: Only for Factor/Cluster Analysis (Refer to Table 4.3) 

By applying the Cluster 5 expression in Table 4.4, we obtain CMF values for “the 

Elimination of Whistle Prohibition”.  For this exercise we use an expression of the form:  
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Based on the factor/cluster model, for similar crossings in Cluster 5 we can expect a 

55.4% reduction in collisions with the elimination of whistle prohibition (Table 5.2). 

Inasmuch as the same collision prediction model has been used to predict the number of 

collisions before and after the countermeasure, the independency assumption is not 

applicable to this case. As noted previously, the delta method has been applied to 

approximate Var{xk} by Var{log(xk)}·{xk}2. The necessary variance-covariance matrix 

among individual parameters of the “Cluster 5” model is obtained throughout the model 

calibration process and provided in Appendix C. The estimated variance is simply equal to 

the square of the estimated standard errors corresponding to the whistle prohibition variable 

in Table 4.4, which can be stated as (0.164)2 ≈ 0.0268. The approximated variance of CMF 

becomes (0.446)2⋅0.027 ≈ 0.005 (i.e. standard errors ≈ 0.073).  As a result, the range of 

estimates for input into the data likelihood effect on collisions following the elimination of 

whistle prohibition at this specific crossing is N(0.446, 0.0732).  

By applying the same procedure to Class 3 crossings in Table 4.7, we obtained the 

range of estimates [i.e. N(0.437, 0.0762)] for the input into the data likelihood. The 

necessary information including a variance-covariance matrix for this calculation is 

provided in Appendix C. As noted earlier, we did not use the third Canadian collision 
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prediction model, since it could not explain variation in collisions for this countermeasure. 

Therefore, based on the above two point estimates, we estimated the data likelihood 

distribution. 

 Since we obtained P1(x1|θ) = N(0.446, 0.0732), and P2(x2|θ) = N(0.437, 0.0762), 

then the data likelihood can be estimated by using Equations 3.3 and 3.4, such that:  

( ) 0028.0076.0073.0 1222
1 ≈+=

−−−τ  

( ) 442.00028.0446.0073.0437.0076.0 22
0 ≈⋅⋅+⋅= −−µ  

As a result, the estimated data likelihood distribution for this crossing becomes 

N(0.442, 0.0532). This represents the current best knowledge concerning the expected effect 

of elimination of whistle prohibition for this specific crossing. Consequently, given the 

prior [i.e. N(0.467, 0.0422)] in Table 4.2 and the estimated data likelihood [i.e. N(0.442, 

0.0532)] distributions, the posterior distribution from Equations 3.3 and 3.4 becomes:  

( ) 0011.0053.0042.0 1222
1 ≈+=

−−−τ  

( ) 457.00011.0442.0053.0467.0042.0 22
0 ≈⋅⋅+⋅= −−µ  

The Equation 3.5 used to yield a Bayesian weight factorω as follows: 
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As a result, the expected reduction in collisions at this grade crossing was estimated 

to be about 54.3% after the elimination of whistle prohibition. We note that the contribution 

of prior information (ω) to the posterior distribution [N(0.457, 0.0332)] is about 62% of the 

total estimated reduction in expected collisions at this crossing.  

These results from the above two examples do not necessarily mean that the 

elimination of whistle prohibition gives rise to higher benefits for crossings at local roads 

compared to crossings on arterial roads. It should be emphasized that these results are 

legitimate only for the crossings with the same attributes summarized in Table 5.1 and 5.2. 

Nevertheless, the example outlined here appears to be useful in that it provides a  
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reasonably accurate estimate of CMF for specific crossing attributes and a specific counter-

measure.  

5.2 Effectiveness of Upgrading Warning Devices from Flashing Lights to Gates 

We consider a second countermeasure example dealing with the introduction of 2-Quadrant 

Gates to a given crossing currently equipped with Flashing Lights. For this exercise, the 

crossing attributes in Table 5.3 are adopted. These are exactly the same attributes as the 

crossing in Table 5.1, except for the status of warning devices. The whistle prohibition is 

assumed to be in effect for both before and after countermeasure conditions. 

From Table 4.2, first we obtained the necessary parameters [i.e. the mean (µ) and 

the variance (τ2)] for the prior normal density function. The mean and standard deviation of 

the CMF of upgrading flashing lights to gates based on ten past studies was found to be 

0.474 ± 0.149 (i.e. representing 52.6% of expected collision reduction). Again, the prior 

distribution represents the historical a priori value for this countermeasure before 

conducting any data analysis involving this specific crossing. 

Table 5.3 The 3rd Sample Crossing Attributes for Example Calculation 

Crossing Attributes Data Description and Coding 
Flashing Light 1 (2*) (Before) 

Warning Devices Gates 1 (3*) (After) 
Road Surface Width ft (m) 15 (4.572) 
Surface Material Asphalt (Paved) 1 
Road type Arterial 1 
Track Number Single 1 
Track Angle 70 Degree 70 
Whistle Prohibition 1 
Mainline or Non-mainline Mainline 1 
AADT 15,000* 
Daily Trains 12* 
Exposure 180,000 
Posted Highway Speed Limit km/hr 50 
Max. Train Speed mile/hr (km/hr) 10 (16) 

Note)*: Only for Factor/Cluster Analysis (Refer to Table 4.3) 
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The given crossing in Table 5.3 belongs to Cluster 5 after conducting factor/cluster 

analysis in both before and after countermeasure states. By applying the Cluster 5 expression 

in Table 4.4, we obtain one point estimate of data likelihood for “Upgrading Warning 

Devices”.  For this exercise we use an expression of the form:  
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As a result, a 55.4% reduction in collisions is expected by upgrading warning devices 

from flashing lights to gates for this sample crossing. Since the independency assumption is 

not appropriate to this case, as we illustrated in the previous section the delta method has 

been employed to approximate Var{xk} = Var{log(xk)}·{xk}2. The corresponding variance-

covariance matrix of the “Cluster 5” model is provided in Appendix C. 

The estimated ( ){ } ( ) ( ) ( )T
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 ≈ 0.056 

The notation of parameters [e.g. Prm1 = Intercept, Prm2 = Ln(exposure)] is 

presented at Appendix C. It should be noted that the estimated Var{log(xk)} is now 

different from the variance (i.e. the square of the estimated standard errors) corresponding 

to either flashing lights or gates in Table 4.4, since the covariance of these two variables 

has been taken into account for this mixed countermeasure. Finally, the Var{xk} = 0.056 × 

0.4022 ≈ 0.0952  as well as the mean of xk (i.e. 0.402) can be approximated based on the 

Cluster 5 collision prediction model. 

In terms of the stratified model, the sample crossing belongs to the Class 1 collision 

prediction model, since this crossing is located on an arterial highway. By applying the same 

method, we obtain the second point estimates for data likelihood: N(0.801, 0.0922). Also, the 
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third point estimate, N(0.833, 0.0692) is estimated on the basis of the third collision 

prediction model in section 4.3.3. Inasmuch as these three point estimates were obtained 

from the three different collision prediction models, the first two of these three point 

estimates should be combined using Equations 3.3 and 3.4. After obtaining the combined 

estimate, the resultant estimate is combined once again with the third point estimate based 

on the same approach to yield a data likelihood distribution. In this exercise, the order of 

computing will not affect the result. As such, a posterior distribution [i.e. N(0.693, 0.0452), 

ω = 0.09] is estimated. The mean reflects a 30.7% reduction in expected collisions at grade 

crossing subject to upgrading warning devices from flashing lights to 2-quadrant gates. We 

note that 9% of this reduction can be explained by the prior distribution. 

For this specific crossing, the elimination of whistle prohibition which is normally 

considered to be a supplementary countermeasure, produces higher safety benefits than the 

upgrade in warning device (i.e. Flashing Lights to 2Q-Gates). Had we tried to infer the 

safety benefits solely based on a priori belief, then the effectiveness of these two 

countermeasures is quite similar to each other….or about 53% of collision reduction for 

both (refer to Table 4.2). This result does not necessarily mean that elimination of whistle 

prohibition gives rise to higher benefits than warning device upgrades for all crossing types. 

It simply states that for a crossing with the given attributes in this example, the elimination 

of whistle prohibition may lead to higher collision reduction benefits than a more costly 

installation of gates. As pointed out earlier, the proposed approach produces a tailored CMF 

based on the crossing attributes.  

5.3 Effectiveness of Upgrading Warning Devices from Signboards to Gates 

A third application example deals with the introduction of 2-Quadrant Gates to the given 

crossing currently equipped with passive signs (cross-bucks). For this exercise we use the 

sample crossing in Table 5.4, which considers the same crossing attributes in Table 5.3 

except for the status of warning devices. 
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In Table 4.2, the prior distribution for this countermeasure was determined to be 

N(0.283, 0.0862) based on ten previous reported studies. This suggests a 72% reduction in 

expected collisions. Data likelihood estimates for this specific countermeasure were 

obtained based on three models: the values are N(0.225, 0.0732), N(0.407, 0.0752), and  

N(0.402, 0.0482). From Equations 3.2 through 3.6, we obtained the posterior distribution 

for this countermeasure. The resultant distribution is N(0.350, 0.0332) for a value of α equal 

to 0.144. This countermeasure resulted in a 65% reduction in expected number of collisions 

with about 11.1% of this reduction being explained by the priors. 

Table 5.4 The 3rd Sample Crossing Attributes for Example Calculation 

Crossing Attributes Data Description and Coding 
Signboards 0 (1*) (Before) 

Warning Devices 
Gates 1 (3*) (After) 

Road Surface Width ft (m) 15 (4.572) 
Surface Material Asphalt (Paved) 1 
Road Type Arterial 1 
Track Number Single 1 
Track Angle 70 Degree 70 
Whistle Prohibition 1 
Mainline or Non-mainline Mainline 1 
AADT 15,000* 
Daily Trains 12* 
Exposure 180,000 
Posted Highway Speed Limit km/hr 50 
Max. Train Speed mile/hr (km/hr) 10 (16) 

Note)*: Only for Factor/Cluster Analysis (Refer to Table 4.3) 

5.4 Effectiveness of Four Quadrant Gates 

Some safety countermeasures, such as 4-quadrant gates or photo/video enforcement have 

not yet been introduced in Canadian inventory data. As a result, we cannot make any 

meaningful inference from the data likelihood model. In this case, instead of employing 

Bayesian data fusion we recommend relying solely on the prior estimates to represent 
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countermeasure effects. This appears to be a logical step until additional data likelihood 

inferences are available for the Canadian data.  

For illustration purpose, let us suppose that Canadian decision makers want to know 

the safety gains by installing 4-quadrant gates at a crossing where presently 2-quadrant gates 

are installed. As mentioned, none of the collision prediction models in section 4.3 explain the 

variance of collisions by introducing the 4-quadrant gates because of the absence of 

information in Canadian inventory data. Therefore, the best inference for the countermeasure 

effect is simply the output of the prior distribution in Table 4.2 corresponding to a range of 

values N(0.254, 0.0232). As a result, the expected collision reduction following this counter-

measure is about 74.6%. 

In a similar vein, the effect of several countermeasures in Table 4.2 will be directly 

used to represent the final safety benefits corresponding to the countermeasures, including 

the installation of additional passive signboards (e.g. stop ahead sign), lighting, traffic 

signals, and photo/video enforcement. 

5.5 Effectiveness of Reducing Maximum Train Speed 

If we do not have a priori knowledge about a given countermeasure but we have current 

knowledge from the data, we can produce estimates of countermeasure effects based on the 

result from three different collision prediction models. In this section, the crossing 

attributes in Table 5.5 that are slightly different from the crossing in Table 5.2 will be used 

to illustrate the collision reduction effect of reducing maximum train speeds by 20 

miles/hour. 

After conducting factor/cluster analysis for the crossing in Table 5.4, we determined 

that this crossing belongs to Cluster 5 in both before and after states. As noted from Table 4.4, 

the Cluster 5 collision prediction model could not estimate the safety benefit by reducing 

train speed since this model does not include this variable in its prediction expression. On the 

other hand, the 2nd and 3rd collision prediction models in section 4.3.2 and 4.3.3 can estimate 

the necessary inputs for data likelihood. From these models we obtained P2(x2|θ) = N(0.796, 
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0.0422) and P3(x3|θ) = N(0.761, 0.0662). The combined data likelihood estimate was found 

to be N(0.786, 0.0362) from Equations 3.3 and 3.4. A 20.4% reduction in the expected 

number of collisions was obtained for this sample crossing subject to a reduction of 20 

miles/hour in the maximum train speed. 

Table 5.5 The 4th Sample Crossing Attributes for Example Calculation 

Crossing Attributes Data Description and Coding 
Warning Devices Flashing Light 1 (2*) 
Road Surface Width ft (m) 15 (4.572) 
Surface Material Asphalt (Paved) 1 
Road Type Local 0 
Track Number Single 1 
Track Angle 70 Degree 70 
Whistle Prohibition 1 
Mainline or Non-mainline Mainline 1 
AADT 15,000* 
Daily Trains 12* 
Exposure 180,000 
Posted Highway Speed Limit km/hr 50 

mile/hr (km/hr) 30 (48) (Before) 
Max. Train Speed 

mile/hr (km/hr) 10 (16) (After) 
Note)*: Only for Factor/Cluster Analysis (Refer to Table 4.3) 

5.6 Effectiveness of Multiple Countermeasures 

Equation 5.2 defines the CMF for a single countermeasure. In practice, several counter-

measures can be introduced simultaneously at a given crossing. To estimate the combined 

effect of multiple countermeasures, we need to know the degree of interaction among these 

countermeasures. Such information is rarely available in practice and we assume 

independence among countermeasures (Shen et al. 2004). Under this assumption, the 

combined CMF of n countermeasures can be approximated using the following Equation:  

E{CMFM} = E{CMF1}× E{CMF2} × ··· × E{CMFM}               (5.6) 



 119

where, 

E{CMFM}= the expected CMF of all n multiple countermeasures. 

Note that if data are available, the assumption of independence could be validated 

empirically (Lord and Bonneson, 2006).  

Benjamin and Cornell (1970) suggested the approximation method to estimate the 

expectation and variance of products among mutually independent random variables. In our 

case, CMF regarding different countermeasures are random variables. The approximate 

combined effect becomes: 
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For instance, if n = 2 

Var{CMF1·CMF2} = E{CMF1}2·Var{CMF2}+ E{CMF2}2·Var{CMF1}        (5.8) 

In section 5.1, whistle operation (i.e. CMF1) was introduced to a crossing with 

attributes listed in Table 5.1. The estimated effect was found to be N(0.520, 0.0372). On the 

other hand, the effect of upgrading warning devices (i.e. flashing lights to gates, CMF2) for 

the same crossing was found to be N(0.693, 0.0452) in section 5.2. If a decision maker wishes 

to implement these two countermeasures simultaneously, the combined effect can be 

estimated using Equation 5.6 and 5.8, such that: 

E{CMF1,2} =0.520 × 0.693 ≈ 0.360 

Var{CMF1·CMF2} = 0.5202 × 0.0452 + 0.6152 × 0.0372 = 0.0332 

The estimated CMF from the two countermeasures applied to this same crossing 

becomes N(0.360, 0.0332), representing 64 % reduction in the expected number of collisions.  
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6 UNCERTAINTY IN BAYESIAN DATA FUSION 

This chapter addresses the uncertainty associated with the countermeasure effect. As noted 

by Button and Reilly (2000) and Leeming and Saccomanno (1994), it is not possible to 

obtain perfectly accurate point estimates using a statistical collision prediction model. The 

point estimate is represented by the expected value of CMF. Previous researchers often 

used a variance to assist the point estimate and to produce a range of values. The range of 

values indicates the uncertainty with the estimated CMF values. However, in this study, we 

prefer to the probability distributions (i.e. probability density functions) rather than a range 

of values of point estimates to represent countermeasure effects. Since the probability 

distributions will produce not only a range of values of a certain CMF estimate but also the 

likelihood of the estimate. The probability of countermeasure effects may lead us to 

different conclusions compared to a range of point estimates. 

We also address the uncertainty with the estimates through the investigation of the 

input variables or relevant assumptions in Bayesian data fusion. For instance, the assumption 

of normality in CMF distributions may not be appropriate to describe the unknown CMF 

distributions. The uncertainties inherent in several different sources for priors may also 

hamper the development of the rigorous posterior CMF distributions. Probably, the weighting 

scheme itself in the prior estimates would be another source of uncertainty that may affect the 

reliability of the posterior estimates. Moreover, the posterior CMF distribution is a form of 

probability distribution and therefore it may contain a range of collision reduction effect that 

is unlikely to be materialized in real world. The following section investigates uncertainties 

inherent in the various input variables and/or assumptions. 

6.1 Uncertainty Inherent in Type of Distribution 

In this study, we have employed a normal density function to represent both the prior and 

posterior distributions. The Bayesian formulation applied to the normal distributions 

combines CMF from the multiple sources without using computationally intensive Markov 

Chains Monte Carlo (MCMC) method suggested by a number of researchers, including 
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Gelman et al. (2004). As noted by Lee (2004), the central limit theorem suggests that the 

observations (in our case the CMF) with errors can be assumed to be normally distributed. 

However, in reality the observation may not follow the normal distribution that has a 

symmetrical shape. Other distributions could be considered that relax our assumption of 

symmetry in the values of CMF. For instance, previous researchers (e.g. Clarke and 

Sarasua 2003, Washington and Oh 2006) suggested using a beta distribution to represent 

the prior and posterior distribution. They assert that the beta distribution is flexible enough 

to represent CMF since it does not require a strong symmetry assumption for both prior and 

posterior distributions.  

In this section, beta distribution was used in the Bayesian fusion method. Since our 

objective is to produce a varying CMF based on grade crossing attributes rather than estimate 

the average effects for each countermeasure, an analytical method is adapted to combine 

different beta prior and data likelihood estimates. For illustration purpose, we assume that the 

estimated prior and data likelihood distribution follows beta distribution.  

Similar to the normal distribution, the beta distribution is defined by only two shape 

parameters r and s, both of which are greater than zero (Harlow et al. 1997, Iversen 1984): 
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As pointed out by Harlow et al. (1997), the simplicity of the beta distribution is that 

the posterior beta parameters are additive functions of the beta prior and beta likelihood 

parameters, such that: 

rposterior  = rprior + rdata likelihood                     (6.6) 

sposterior  = sprior + sdata likelihood                     (6.7) 

After obtaining the posterior beta parameters (i.e. rposterior, sposterior), the mean and the 

variance of the posterior distribution can be estimated using the Equations 6.2 and 6.3. A 

numerical example is as follows. 

From the second example in section 5.1, the means and variances of prior and data 

likelihood distribution were obtained after introducing whistle countermeasure at the crossing 

in Table 5.2. They were: 

Table 6.1 Sample Mean and Variance of Prior and Data Likelihood 

 Prior Factor/Cluster Model (D1) Stratified Model (D2) 

Mean (µ) 0.4671 0.4460 0.4373 

Variance (σ2) 0.04172 0.07302 0.07632 

In this example, we assume that the prior and data likelihood distributions follows the 

beta distribution. First, the beta data likelihood distribution is estimated based on Equations 

3.2 and 6.2 ~ 6.7 as shown in the following steps: 

• Step 1: Estimate r and s  for the Factor/Cluster Model output using Equations 6.4 and 

6.5: 
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• Step 2: Estimate r and s  for the Stratified Model output using Equations 6.4 and 6.5: 
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• Step 3: Obtain rdatalikelihood and sdatalikelihood using Equations 6.6 and 6.7:  

rdatalikelihood  = 20.2403 + 18.0406 = 38.2809 

sdatalikelihood  = 25.1395 + 23.2097 = 48.3492  

• Step 4: Estimate the expected mean (x) and variance (σ2) of the data likelihood 

distribution: 
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Since the beta distribution is assumed for the estimated prior [i.e. B(0.4671, 0.04172)] 

and data likelihood distribution [i.e. B(0.4419, 0.05312)], the beta posterior distribution is 

obtained as follows: 

• Step 1: Estimate rprior and sprior , as such: 
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• Step 2: rdata likelihood and sdata likelihood is already estimated 38.2809 and 48.3492, 

respectively. 
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• Step 3: Obtain rposterior and sposterior, as such:  

rposterior  = 66.4985 + 38.2809 = 104.7795 

sposterior  = 75.8531 + 48.3492 = 124.2022  

• Step 4: Estimate the expected mean and variance of CMF, as such: 

4576.0
2022.1247795.104

7795.104
≈

+
=posteriorµ  

22 0329.0
12022.1247795.104

)4576.01(4576.0
=

++
−

=posteriorσ  

As a result, the estimated CMF follows B(0.4576, 0.03292). 

In the previous sections 5.1 and 5.1, three numerical examples were provided to show 

how we can obtain the normal posterior distributions after introducing a specific 

countermeasure to a given crossing. In this section, instead of assuming normality in 

distributions, a more flexible beta distribution is assumed for CMF. We assess the differences 

in the CMF estimates for the normal and beta assumptions.  

Table 6.2 shows the comparison results of the estimation based on the normal and 

beta posterior distributions. It was found that there was no significant difference in the CMF 

outputs from these two different distributions. Therefore, it may be asserted that developing 

accurate prior and/or data likelihood distributions are more important than the method of 

combining the two distributions for producing reliable posterior distributions. Obviously, 

another type of distributions (e.g. lognormal distributions) can also describe posterior 

distributions. But in that case, applying simulation techniques (e.g. MCMC method) would 

be more appropriate to produce the posterior distributions than using cumbersome analytical 

data fusion technique. 
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Table 6.2 Comparison between Normal and Beta Posterior Distribution 

Upgrading Warning Devices  
Countermeasure Elimination of Whistle 

Prohibition Flashing Lights 
to Gates 

Signboards to 
Gates Distribution 

Crossing 
Attributes at 1) Table 5.1 2) Table 5.2 3) Table 5.1 4) Table 5.4 

Normal 0.522 0.4574 0.693 0.350 

Beta 
Mean (µ) 

0.509 0.4576 0.647 0.360 

Normal 0.037 0.0327 0.045 0.033 

Beta 

Standard Errors 
(σ) 

0.038 0.0329 0.052 0.034 

Figure 6.1 provide the results of a comparison between the normal and beta cumulative 

posterior distributions and their corresponding parameters, respectively. The followings 

were observed: 

• For the elimination of whistle prohibition, the two cumulative distributions are 

almost identical and produce the same percentile for a range of CMF values. For 

instance, the 5, 25, 50, 75, and 95 percentile values of the two distributions in Figure 

6.1(b) are estimated for CMF values of 0.404, 0.435, 0.457, 0.480, and 0.512, 

respectively. As a result, there is a 5% chance that the estimated CMF from the 

elimination of whistle prohibition is under 0.404, suggesting more than a 60% 

reduction in the number of collisions. Similarly, there is a 5% chance that we can 

obtain less than a 49% reduction for the same countermeasure.  

• Contrary to the elimination of whistle prohibition, a notable discrepancy is observed 

in the cumulative distribution for the upgrading of warning devices from flashing 

lights to gates [Figure 6.1(c)]. For instance, the 5th percentile value of CMF based on 

the cumulative normal distribution is 0.619, representing about a 38.1% reduction in 

collisions. The same percentile value for the cumulative beta is 0.559, representing 

about a 44.1% reduction in collisions. The 95th percentile values for the normal and 

beta distributions are estimated to be 0.768 (i.e. a 23.2% collision reduction) and 
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0.731 (i.e. a 26.9% collision reduction) respectively for the normal and beta 

cumulative distributions. As we depicted in Figure 6.1(c), from the normal 

distribution we can estimate the probability of getting CMF values smaller than 0.6 

as 0.02 (2%). On the other hand, we obtain 0.185 (18.5%) from the beta distribution. 

As a result, if we determine the CMF estimates based on the normal distribution 

rather than the beta distribution to represent the effectiveness of the upgrade from 

flashing lights to gates, a more conservative (lower safety dividend) result are 

obtained. 

• Although the two distributions result in similar CMF values, it is interesting to note 

that the point estimates from the normal distribution tend to over-estimate the 

countermeasure effect of upgrading warning device from signs to gates as compared 

to the results based on the beta distribution [Figure 6.1-(d)]. This contradicts the 

results from the previous application examples listed above. Again, the 5th percentile 

value of CMF based on the cumulative normal distribution is 0.296, representing 

about a 70.4% reduction in collisions. For the beta distribution, the 5th percentile 

value is 0.305, representing about a 69.5% reduction in the number of collisions. 

The 95th percentile values for the normal and beta cumulative distributions are 

estimated to be 0.404 (i.e. a 59.6% collision reduction) and 0.416 (i.e. a 58.4% 

collision reduction), respectively. Contrary to the previous example, if we determine 

the CMF estimates based on the beta distribution rather than the normal distribution 

to represent the effect of upgrading from signs to gates, a more conservative (lower 

safety benefit) estimate is obtained in spite of small difference. 
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(a) CMF for the Elimination of Whistle Prohibition at Crossing in Table 5.1 
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(b) CMF for the Elimination of Whistle Prohibition at Crossing in Table 5.2 

Figure 6.1 Cumulative Density Functions based on the Two Different Distributions 
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(c) CMF for the Upgrading Warning Device from Flashing Lights to Gates at Crossing in Table 5.3 
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(d) CMF for the Upgrading Warning Device from Signboards to Gates at Crossing in Table 5.4 

Figure 6.1 Continued 
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6.2 Uncertainty Inherent in Priors 

6.2.1 Uncertainty in Selecting Different Priors  

As stated in section 3.2, the estimated prior distribution reflects the uncertainty in previous 

studies based on the methodology and/or data adopted in each study. In general, heavier 

weight in the priors was given to the studies that used more reliable methods, such as an EB 

before-after model. As a result, the posterior distribution based on the weighted average (i.e. 

priors in Table 4.2) is likely to produce similar result with the posterior distribution based 

solely on the finding of the most reliable study. 

Figure 6.2 shows the different posterior distributions based on the findings from these 

studies. For example, suppose that the crossing attributes are as shown in Table 5.3 and the 

countermeasure is an upgrade from flashing lights to gates. If we use the result (i.e. mean = 

0.100, std. dev. = 0.008) from the Alaska study (see Table 2.3) as the only information for 

priors, the resulting posterior distribution becomes very similar to the States’ findings (i.e. 

mean = 0.117, std. dev. = 0.008) even after combining with the data likelihood information. 

We note that the finding of the Alaska study was significantly different from the findings of 

other studies, and it was produced via less reliable study method (i.e. a naïve before-after 

model). As a result, the estimated posterior distribution is quite different from the posterior 

distribution based on the weighted average values. On the other hand, the posterior 

distribution based on the EB before-and-after study by Hauer and Persaud (1989) (i.e. mean = 

0.550, std. dev. = 0.192) shows almost identical result with the posterior distribution based on 

the weighted average. Clearly a heavier weight was assigned to this study based on the 

weighting scheme in Table 3.1. From this example, we can speculate that the weighting 

scheme suggested in this study yields reliable posterior distribution by giving more weights 

to the more reliable individual study findings. However, it should be noted that the estimated 

posterior distribution (mean = 0.693, std. dev. = 0.045) in this study varies by the crossing 

attributes. Therefore, the posterior distribution is different from the overall effect of the 

countermeasure suggested by Hauer and Persaud (1989).   
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Figure 6.2 Posterior Normal Cumulative Distributions based on Different Priors 

6.2.2 Uncertainty in the Choice of Relative Weights  

This study used the weighted average effectiveness of countermeasures to represent the 

prior estimates of countermeasures effect. The weights were selected to reflect the 

“perceived” relative reliability of the various methods adopted in individual studies. 

Basically, the better the method the more faith we have in its estimate and the higher the 

weight. As stated in section 3.2, the reliability ranking of individual study methods was 

originated from a road safety study by Harkey et al. (2005) and this study followed their 

suggestion to estimate the relative weights (Wi) for different prediction models. However, 

since the Harkey et al’s reliability ranking is heavily relying on the expert judgment, their 

result might be plagued by a certain amount of bias because of the subjectivism inherent in 

the experts’ decision process. 

This section is devoted to look into the effect of relative weights on the estimated 

effectiveness of countermeasures by introducing different weights in order to investigate the 

potential uncertainty in prior estimates. Table 6.3 contains the four different weighting 

schemes that are used in this comparison analysis. They are: 1) Proposed Weight (i.e. the 
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same as the one in Table 3.1), 2) 0.25 Interval Weight, 3) 0.20 Interval Weight, and 4) Equal 

Weight. In general, compared to the other weighting scheme, the proposed weighting scheme 

gives rise to the heaviest weight to the highest level study in reliability ranking than any other 

weighting scheme. On the other hand, the equal weight virtually does not admit that there is 

difference in the reliability among the different prediction models. 

Table 6.3 Various Relative Weights (Wi) for the Prior Estimates 

Level of Certainty 1) Proposed 
Weight 

2) 0.25 Interval 
Weight 

3) 0.20 Interval 
Weight 

4) Equal 
Weight 

1. High 1.000 1.000 1.000 1.000 
2. Medium High 0.500 0.750 0.800 1.000 
3. Medium Low 0.333 0.500 0.600 1.000 
4. Low 0.250 0.250 0.400 1.000 

It should be noted here that the varying weighting schemes will only affect to the 

prior estimates that are developed according to the previous study findings with different 

levels of reliability. As a result, only 6 out of the 18 total countermeasures in Table 4.2 have 

been influenced by the different weighting schemes and produced different values of 

estimates. Table 6.4 and 6.5 and Figure 6.3 and 6.4 shows the estimated mean (µ) and 

standard errors (τ) of the prior estimates based on the suggested 4 different weighting 

schemes.  

In general, the effect of the weights on the estimated mean of priors is not significant. 

In particular, the prior mean estimates regarding the Whistle Prohibition shows practically no 

differences according to the different weighting schemes. However, if we ignore the possible 

differences in reliability of individual study methods (i.e. equal weight), the result is 

somewhat different from the results by the other weighting schemes. For example, the 

upgrade from Flashing Lights to 2Q-Gates produces about 7.6% higher collision reduction 

effect than it based on the proposed weighting scheme. Consequently, the proposed method 

produces more conservative results on the estimated countermeasure effects than other 

weighting schemes that were considered in Table 6.3. 
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Perhaps, more important results would be the comparison results of standard errors 

among the different weighting schemes. Table 6.5 and Figure 6.4 show that the proposed 

weighting scheme produces larger uncertainties in the mean estimates of priors by allowing 

larger variances (e.g. standard errors). The proposed weighting scheme produces more 

conservative results not only on the mean estimates but also on the variance estimates. As a 

result, although the proposed weighting scheme contains a certain degree uncertainty mainly 

due to the subjectivism inherent in the decision process, the engineers can still obtain more 

conservative results about the estimated countermeasure effects since the proposed weighting 

scheme contributes to reducing the excessive conviction on the prior estimates. 

Table 6.4 Estimated Mean of Priors on Selected Countermeasures based on the 
Different Weighting Schemes 

Number Countermeasures Proposed 
Weight 

0.25 
Interval 
Weight 

0.20 
Interval 
Weight 

Equal 
Weight 

8 From Signs to Flashing Lights 0.4578 0.4470 0.4417 0.4256 
9 From Signs to 2Q-Gates 0.2833 0.2744 0.2700 0.2567 

10 From Flashing Lights to 2Q –
Gates 0.4738 0.4483 0.4356 0.3975 

13 Traffic Signal 0.3583 0.3678 0.3725 0.3867 
14 Whistle Prohibition 0.4671 0.4667 0.4670 0.4675 
18 Photo/Video Enforcement 0.2471 0.2633 0.2520 0.2350 

Table 6.5 Estimated Standard Errors of Priors on Selected Countermeasures based on 
the Different Weighting Schemes 

Number Countermeasures Proposed 
Weight 

0.25 
Interval 
Weight 

0.20 
Interval 
Weight 

Equal 
Weight 

8 From Signs to Flashing Lights 0.1356 0.1239 0.1180 0.1003 
9 From Signs to 2Q-Gates 0.0864 0.0792 0.0756 0.0647 

10 From Flashing Lights to 2Q –
Gates 

0.1489 0.1346 0.1275 0.1060 

13 Traffic Signal 0.1776 0.1623 0.1546 0.1316 
14 Whistle Prohibition 0.0417 0.0416 0.0417 0.0417 
18 Photo/Video Enforcement 0.0220 0.0235 0.0225 0.0210 
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Figure 6.3 Estimated Mean of Priors on Selected Countermeasures based on the 
Different Weighting Schemes 
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Figure 6.4 Estimated Standard Errors of Priors on Selected Countermeasures based 
on the Different Weighting Schemes 
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Figure 6.5 and 6.6 illustrates the estimated posterior distributions on the effectiveness 

of upgrading from flashing lights to gates using the crossing attributes in Table 5.1. As  

expected, the proposed weighting scheme produces the most conservative results by 

estimating the smallest value of effectiveness. For example, the 5th percentile value from the 

proposed weighting scheme is estimated as 0.619, representing about 38.1% reduction in 

collisions. The same percentile value for the equal weighting scheme is 0.591, representing 

about 40.9% collision reduction effect.  

Although the proposed weight scheme produced 7.6% higher priors estimates than it 

from the equal weighting scheme, the difference in posterior estimates is only 2.8%. 

Moreover, the other two weighting schemes (i.e. 0.25 and 0.20 interval weighting schemes) 

produce very small amount of discrepancies in the estimated posterior distributions. It is also 

found that there is no difference in patterns due to the form of prior and posterior 

distributions (i.e. normal or beta distributions). 
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Figure 6.5 Posterior Normal Cumulative Distributions using Different Weighting 
Schemes. 
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Figure 6.6 Posterior Beta Cumulative Distributions using Different Weighting 
Schemes. 

6.3 Uncertainty in the Choice of Different Countermeasures 

In many instances, decision makers are required to choose one of many countermeasures to 

reduce collision risk at a specific crossing. For instance, they can consider the installation 

of photo/video enforcement or 4-quadrant gate. Their decision will be based on the 

posterior distribution of the two different countermeasures. Hypothetical graphs in Figure 

6.7 illustrate a dominant condition by Countermeasure A over Countermeasure B in terms 

of the mean value of CMF.  

For instance, over the entire range of posterior distribution in Figure 6.7 (a), there is 

no overlapping between the two posterior distributions. Therefore, determining a suitable 

countermeasure based on the mean value of each countermeasure is valid if we have 
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unlimited budget to utilize.  As a result, Countermeasure A will be always more effective in 

reducing collision than Countermeasure B. 

In Figure 6.7 (b), we note that Countermeasure A shows a stronger safety effect than 

Countermeasure B for the mean. However, there is a small chance [i.e. P(a < X < b) in 

posterior distribution B] that Countermeasure B is more effective than Countermeasure A. As 

a result, decision makers could not be certain that Countermeasure A give rise to higher 

collision reduction effects than Countermeasure B applied the same crossing. This is despite 

the fact that the mean effect for countermeasure A is higher than for countermeasure B. These 

results underscore the need to consider uncertainty in the estimated countermeasure effects. 

The crux of the decision making process is to understand the probability that a conclusion 

reached on the effect of a given countermeasure applied to a specific crossing can be 

erroneous.  

A numerical example is described in Figure 6.7 (c). The example calculation in Table 

6.2 was reused in this illustration. The third and the fifth column of Table 6.2 contain the 

effects of two countermeasures: 1) elimination of whistle prohibition and 2) upgrading 

flashing lights to gates. Those estimates were calculated based on a crossing attributes in 

Table 5.1. In section 5.2, based on the mean value of the CMF, we already mentioned that the 

elimination of whistle prohibition is more effective countermeasure than the upgrading the 

flashing lights to gates for the given grade crossing in Table 5.1. A more precise analysis was 

conducted using the same example to detect any potential erroneous decision. Assuming the 

normality in CMF distribution, the 97.5th percentile value in the distribution of elimination of 

whistle prohibition is estimated as 0.596 (i.e. 40.4% of collision reduction effect). On the 

other hand, the 2.5th percentile value in the distribution of upgrading warning device is 

estimated as 0.604 (i.e. 39.6% of collision reduction effect) [Figure 6.7 (c)] and this value 

still shows slightly less safety benefit than that from the alternative countermeasure. There is 

no overlapping between the two posterior distributions as shown in Figure 6.7 (a). Although 

this result is only valid for the crossings with given attributes in this example, we can 

conclude that the elimination of whistle prohibition is more effective than upgrading warning 

device at a 95% confidence level.  
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(b) Partial Overlapping between the Two Posterior Distributions 

Figure 6.7 Uncertainties in Different Countermeasures 
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(C) Numerical Example Using Sample Calculations in Table 6.2 

Figure 6.7 Continued 
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7 CONCLUSIONS 

Bayesian data fusion requires two important sources of information to obtain statistical 

estimates of countermeasure effects, a priori and data likelihood inputs. The approach 

suggested in this study has a number of practical advantages in evaluating the safety effect 

of countermeasures applied to different types of highway-railway grade crossings. 

7.1 Major Contributions 

This study has made several important contributions in estimating the effect of 

countermeasures. 

First, the proposed Bayesian data fusion method incorporates the results from 

previous studies of countermeasure effects into the analysis of Canadian grade crossings 

collision experience. Many of the existing collision prediction methods failed to take into 

account the previous study findings.  

Second, the proposed method estimates CMF by objectively weighting the CMF 

estimates obtained from past studies on the basis of published model or the reliability of the 

approach. The use of weights contributes to produce more reliable prior estimates of 

countermeasure effects. 

Third, inasmuch as we used three different collision prediction models to obtain data 

likelihood estimates, the proposed method yields countermeasure effects that are more 

reflective of a larger array of confounding factors than is possible from a single model. This 

reduces problems of misspecification commonly associated with these types of models.  

Fourth, the proposed method provides tailored information concerning the effect of 

countermeasures applied to a specific crossing of interest. This method uses data likelihood 

as an input, based on crossing-specific collision prediction models for Canadian collision 

occurrence and inventory data. 

Fifth, the method takes into account the uncertainty in the model estimates of 

countermeasure effects. Output is reported in terms of means, variance, and corresponding 
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probability distributions. The uncertainty analysis predicts the effect of countermeasures in 

the form of probabilities that specific unexpected threshold values are exceeded. 

Clearly, the Bayesian data fusion method proposed in this study has an advantage in 

evaluating countermeasures at a regional or local level of problem definition. Based on the 

estimates by the proposed model, decision makers can make more effective decisions 

concerning countermeasures in the face of uncertainty. The model produces tailored 

estimates of effect for countermeasures and represents a noteworthy benefit of this research. 

7.2 Contributions in Development of Data Likelihoods 

As explained in Chapter 4, we developed multi-stage cross-sectional statistical models that 

yield reliable estimates of collision frequency at grade crossings. A few key contributions 

in development of data likelihoods are summarized as follows: 

First, cluster-specific collision prediction models developed by Saccomanno and 

Lai (2005) were modified and re-calibrated. The four factors (i.e. latent variables) were 

used to reduce dimensionality problems in large dataset, such as IRIS/RODS by the factor 

analysis. Cluster analysis has been conducted to classify the crossings with similar 

attributes into a group. As a result, the cluster-specific collision prediction models can 

produce more reliable estimates of changes in the expected number of collisions after the 

implementation of countermeasures. 

Second, a tree-based data partitioning method (RPART) was effectively used for 

stratifying dataset based on control factors. Four classes were systematically determined 

such that the control factor characteristics are homogeneous in each class. Changes in the 

expected collision rate following specific countermeasures depend on which of four classes 

a crossing belongs to. The RPART method was used to estimate the effect of interesting 

countermeasures after eliminating the potential biases from the control factors. Therefore, 

the coefficients in stratified collision prediction models are more reliable than those in 

conventional single-stage statistical models. 
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Third, RPART method was used to identify potentially important interactions and 

non-additive effects among the explanatory variables. It is expected that the reliability of 

collision prediction models are improved by adding group indicators, representing 

interactions among the explanatory input factors, compared to the model without group 

indicators. 

7.3 Recommendations for Future Analysis 

A number of research tasks are recommended for future work: 

First, in this study, we only considered the expected reduction in the number of 

collisions by the implementation of specific countermeasures at specific crossings. However, 

it is suggested that the expected collision severity should be considered in additional to the 

expected frequency of collisions. Collision severity is needed in order to estimate the overall 

cost incurred by the collisions at highway-railway grade crossings. The overall cost can be 

used in a benefit-cost analysis to evaluate the economic feasibility of any specific 

countermeasures at a given crossing.  

Second, more sophisticated methods for estimating more reliable prior distributions 

of countermeasure effects should be considered. Therefore, the identification and collection 

of additional data for producing more reliable priors are needed to enhance the quality and 

confidence of the estimated prior distributions. 

Third, the integration of the proposed method into a decision support system is 

needed to support practitioners for resolving the specific safety problems in their local areas. 

The decision support system can provide a range of CMF (considering uncertainty) as well 

as the expected CMF after the implementation of specific countermeasures at given 

crossings. 
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Appendix A:  Cross-Sectional Collision Prediction Models 

• Peabody Dimmick Formula (1941) 

The Peabody Dimmick formula (a.k.a. Bureau of Public Roads formula) was developed to 

estimate the number of collisions at grade crossings in rural areas (Tustin et al. 1986), and 

the form of the formula is; 

K
P

TVA +
××

= 171.0

151.0170.0

5
28.1           (A.1) 

Where, 

A5 = the expected number of collisions in 5 years. 

V = annual average daily traffic (AADT);  

T = average daily train traffic 

P = protection coefficient; K = additional parameter 

Each value of different parameters is determined by a given monograph, and uses 

for estimating the expected number of collisions. 

• Schoppert and Hoyt Model (a.k.a. NCHRP 50 Model; 1968) 

They stratified crossings into several different sub-groups according to the crossings’ 

selected attributes, such as highway volume or type of warning devices. Then, they 

developed a series of collision prediction models for crossings in each sub-group, as such; 

Table A.1 Summary of Schoppert and Hoyt Model 

Highway Volume below 500/day Highway Volume greater than 500/day Warning 
Devices Urban Rural Urban Rural 
Crossbucks X1 = 38.90 X10 X1 = 30.57 X10 X1 = 30.35 X10 
Stop signs X1 = X10 (45.13 + 2.51 X7 + 13.5 X6) X1 = 11.44 X10 
Wigwags X1 = X10 (6.06 + 0.02 X5 + 0.40 X7) 
Flashing 
Lights 

X1 = 3.23 X10 X1 = 9.30 X10 X1 = 3.23 X10 X1 = 9.30 X10 

2-Quadrant 
Gates 

X1 = 3.23 X10 X1 = 1.93 X10 X1 = 3.23 X10 X1 = 1.93 X10 

where, 
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X1 = collisions per year, scaled by 100;  

X2 = average daily traffic, ADT; 

X3 = trains per day;  

X5 = angle of crossing, acute angle measured in degrees; 

X6 = total number of highway lanes 

X7 = maximum absolute approach gradient within 100ft of crossings; 

X10 = probability of coincidental vehicle and train arrival, or  

 ( )400,863 21
400,86

XeX −−   

• New Hampshire Index (1971) 

Tustin et al. (1986) also cited this model in their work. The form of the index is; 

HI = V × T × Pf            (A.2) 

where,  

HI = hazard index; V = annual average daily traffic (AADT) 

T = average daily train traffic; Pf = protection factor (e.g. 0.1 for automatic gates; 

0.6 for flashing lights; 1.0 for signboards) 

Various versions of the New Hampshire Index were developed, including; 

HI = V × 2Tf × Ts × [(SD × AN × NTR)/4]         (A.3) 

HI = V × T × [(TT × TTR × SD × AN × AL × L × G × VSD × W × LT)/100] (A.4) 

HI = (Vf × Pf × T)/(TR × TN × Tf × HS × G × SD × AN)       (A.5) 

where, 

HI = hazard index;  

AL = factor for highway alignment;  

AN = factor of approach angle; G = factor for approach grade;  
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HS = factor for highway speed; L = factor for number of lanes;  

LT = factor for local interference; NTR = Factor of number of tracks;  

Pf = protection factor; SD = factor of sight distance;  

T = average daily train traffic; Tf = number of fast trains;  

TN = factor for number of night trains;  

TR = factor for number and type of tracks;  

TT = factor for type of train movement;  

TTR = factor for type of tracks; 

V = annual average daily traffic, AADT;  

Vf  = factor for annual average daily traffic;  

VSD = factor for vertical sight distance;  

W = factor for crossing width 

• Coleman and Stewart Model (1976) 

Before developing collision prediction models, they also stratified crossings into different 

sub-groups according to the number of tracks (single or multiple), the location (urban or 

rural), and the type of warning devices (automatic gates, flashing lights, etc.). The 

developed models are; 

Log10A = C0 + C1 Log10V + C2 Log10T + C3 (Log10T)2      (A.6) 

where, 

A = average number of collisions per crossing-year; 

V = weighted average daily traffic volume for the N crossings (the weights are the 

number of years of available collision data for each of the N crossings); 

T = the weighted average train volume for the N crossings (the weights are the 

number of years of available collision data for each of the N crossings). 
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Table A.2 Coefficients of Coleman and Stewart Model 

Item Warning Devices C0 C1 C2 C3 
Automatic Gates -2.17 0.16 0.96 -0.35 
Flashing Lights -2.85 0.37 1.16 -0.42 
Crossbucks -2.38 0.26 0.78 -0.18 
Other Active -2.13 0.30 0.72 -0.30 
Stop Signs -2.98 0.42 1.96 -1.13 

Single-
track 
Urban 

None -2.46 0.16 1.24 -0.56 
Automatic Gates -1.42 0.08 -0.15 0.25 
Flashing Lights -3.56 0.62 0.92 -0.38 
Crossbucks -2.77 0.40 0.89 -0.29 
Other Active -2.25 0.34 0.34 -0.01 
Stop Signs -2.97 0.61 -0.02 0.29 

Single-
track 
Rural 

None -3.62 0.67 0.22 0.26 
Automatic Gates -2.58 0.23 1.30 -0.42 
Flashing Lights -2.50 0.36 0.68 -0.09 
Crossbucks -2.49 0.32 0.63 -0.02 
Other Active -2.16 0.36 0.19 0.08 
Stop Signs -1.43 0.09 0.18 0.16 

Multiple-
track 
Urban 

None -3.00 0.41 0.63 -0.02 
Automatic Gates -1.63 0.22 -0.17 0.05 
Flashing Lights -2.75 0.38 1.02 -0.36 
Crossbucks -2.39 0.46 -0.50 0.53 
Other Active -2.32 0.33 0.80 -0.35 
Stop Signs -1.87 0.18 0.67 -0.34 

Multiple-
track 
Rural 

None NA* NA* NA* NA* 
Note) * Insufficient data 

• US Department of Transportation Collision Prediction Models 

US Department of Transportation (US DOT) developed collision prediction models by 

using nonlinear multiple regression techniques. The models have been revised several times. 

In this study, we will look into three representative versions of US DOT models.  

1) US DOT Collision Prediction Model by Mengert (1980) 

Originally Mengert (1980) developed three different collision prediction models of 

grade crossings based on the type of warning devices and Farr (1981) summarized the 

models. They are; 

Collision Prediction Model for Crossings with Passive Signboards 

H = 0.389 EXP (2X1) 
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where, 

X1 = 0.74982 HVOL1 + 0.19474 Log10 (DT+1) + 0.17491 MAIN TRACKS + 

0.1780 HWY PAVED + 0.045405 POP – 0.13139 FC          (A.7) 

HVOL1 = -0.13711 + 0.38069 h – 0.66800 h2 – 0.19171 h3         (A.8) 

h = -3.0264 + 1.1580 Log10 (T+1) + 0.48654 Log10 (C+1) - 0.22122 [Log10 (T+1)] 2 

      (A.9) 

Collision Prediction Model for Crossings with Flashing Lights 

H = 1.084 EXP (2X2) 

where, 

X2 = 1.0422 HVOL2 + 0.13737 MAIN TRACKS -0.097584 [Log10 (T+1)] 2 + 

0.018064 LANES - 0.036259 Log10 (DT+1) + 0.018944 POP       (A.10) 

HVOL2 = 2.8395 + 0.75477 Log10 (T+1) + 0.083292 [Log10 (C+1)] 2     (A.11) 

Collision Prediction Model for Crossings with 2-Quadrant Gates 

H = 0.820 EXP (2X3) 

where, 

X3 = -0.83656 + 0.74849 HVOL3 + 0.19139 MAIN TRACKS + 0.093829 LANES

                (A.12) 

HVOL3 = -1.9674 + 0.18621 Log10 (T+1) Log10 (C+1)       (A.13) 

where, 

H = expected number of collisions per year;  

T = number of trains per day; 

C = number of highway vehicles per day; 

DT = number of day thru-trains per day; 

MAIN TRACKS = number of main tracks; 



 159

HWY PAVED = 1 if highway paved, 0 if not paved; 

POP = population – tens digit of the functional classification of road crossing; 

FC = units digit of functional classification of road over crossing; 

LANES = number of traffic lanes; 

EXP (X) = natural base e (2.71828), raised to the power (X) 

2) US DOT Collision Prediction Model by Coulombre et al. (1982) 

Coulombre et al.’s US DOT collision prediction model consists of two primary 

equations: a basic prediction equation containing crossing characteristics and a second 

equation incorporating collision history as an explicit factor, as such; 

The basic equation; 

a = K × EI × MT × DT × HP × MS × HT × HL        (A.14) 

where, 

a = non-normalized collision prediction, collision per year; 

K = formula constant; 

EI = factor for exposure index; 

MT = factor for number of main tracks;  

DT = factor for number of through trains per day during daylight; 

HP = factor for highway paved factor; 

MS = factor for maximum timetable speed; 

HL = factor for number of highway lanes; 

HT = factor for highway type; 

The input factors to calculate the basic collision prediction equations (Coulombre et 

al. 1982) are summarized in Table A.3. 
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Table A.3 Factors for the US DOT Collision Prediction Model 

Warning Device Factor Description 
Passive Flashing Lights Gates 

K Formula Constant 0.002268 0.003646 0.001088 

EI Exposure Index Factor [(c⋅t+0.2)/0.2]0.3334 [(c⋅t+0.2)/0.2]0.2953 [(c⋅t+0.2)/0.2]0.3116 

DT Day Thru Trains  
Factor 

[(d+0.2)/0.2]0.1336 [(d+0.2)/0.2]0.0470 1.0 

MS Maximum Speed  
Factor 

e0.0077ms 1.0 1.0 

MT Main Tracks Factor e0.2094mt e0.1088mt e0.2912mt 

HP Highway Paved Factor e-0.6160(hp-1) 1.0 1.0 

HL Highway Lanes Factor 1.0 e0.1380(hl-1) e0.1036(hl-1) 

HT Highway Type Factor e-0.1000(ht-1) 1.0 1.0 

where, 

c = number of highway vehicles per day;  

t = number of trains per day;  

mt = number of main tracks;  

d = number of through trains per day during daylight; 

hp = highway paved (yes = 1, no = 2);  

ms = maximum timetable speed at crossing, miles per hour; 

hl = number of highway lanes; 

ht = highway type factor (e.g. interstate = 1, urban freeway and expressway =2). 

The equation (A.15) combines the output of equation (A.14) to the collision history 

at the corresponding crossings, as such; 
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0            (A.15) 

where, 
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B = weighted average collisions between a and N/T (accident/year); 

T = number of years of collision history (suggested by 5 years); 

N = number of observed collision in T years (T = 5 years); 

T0 is the formula weighting factor defined as T0 = 1/(0.05 + a) 

It is interesting to note that if there was no collision history in a given 5 years, then 

the final prediction B will be equal to the output from the basic equation (A.14).  

Berg (1986) compared the first and the second US DOT collision prediction models 

and showed substantial differences in the estimates between the two models. He asserted 

that the second model yields counter-intuitive results and therefore the first model is 

superior to the second one. 

3) US DOT Collision Prediction Model in GradeDec 2000 Ver.2 (FRA 2002) 

Recently, the Federal Railroad Administration (FRA) developed GradeDec 2000 

program as a decision support tool for use by state and local authorities (FRA 2002). The 

program utilizes the latest version of US DOT collision prediction model. The model is 

similar to the second US DOT model except for some additional changes.  

First, the basic equation (A.14) does not contain the HT term. The expression and 

the relevant factors have been changed, as such; 

a = K × EI × MT × DT × HP × MS × HL         (A.16) 

As for the second US DOT model, equation (A.15) is used to combine the model 

estimate to the collision history. After obtaining the weighted average collisions (B), the 

adjustment factor in Table A.3 is considered, as such; 

A = 0.7159 × B  for crossings with passive warning devices 

A = 0.5292 × B  for crossings with flashing lights 

A = 0.4921 × B  for crossings with gates 

A = 0.4921 × Tech Factor × B  for crossings with new technology 
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An unique contribution of the third model is in that it considers the impact of 

varying exposure using the expression (A.17); 

Exp = 1.35 × EF × AADT × TV          (A.17) 

where,  

Exp = base year daily exposure with time-of-day correlation, effective daily 

exposures; 

EF= time-of-day exposure correlation factor; 

AADT = average annual daily traffic on the highway at the crossing; 

TV = average daily trains at the crossing. 

Table A.4 Factors for the US DOT Collision Prediction Model 

Factor Type of Grade Crossings 

 Passive Flashing Lights Gates New Technology 

K 0.0006938 0.0003351 0.0005745 0.0001915 

EI [(Exp+0.2)/0.2]0.37 [(Exp+0.2)/0.2]0.4106 [(Exp+0.2)/0.2]0.2942 [(Exp+0.2)/0.2]0.2942 

DT [(d+0.2)/0.2]0.1781 [(d+0.2)/0.2]0.1131 [(d+0.2)/0.2]0.1781 [(d+0.2)/0.2]0.1781 

MS e0.0077ms 1.0 1.0 1.0 

MT 1.0 e0.1917mt e0.1512mt e0.1512mt 

HP e-0.5966(hp-1) 1.0 1.0 1.0 

HL 1.0 e0.1826(hl-1) e0.142(hl-1) e0.142(hl-1) 

Adj. 0.7159 0.5292 0.4921 0.4921×Tech Factor 

• Austin and Carson Model (2002) 

Austin and Carson developed collision prediction models by using negative binomial 

expression. Compare to the previous US DOT models, this model is simpler and easier to 

interpret. They used an “Instrumental Variable” technique to overcome the limitation in 

conventional cross-section models. The table A.5 shows the variables and associated 

statistics in their model.  
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Table A.5 Austin and Carson Collision Prediction Model 

Independent Variable Coefficient Std. Error t-statistic 

Constant -6.719 0.136 -49.498 
Traffic Characteristics    

    Number of Nightly Trough Trains 0.039 0.005 8.236 
    Maximum Time Table Speed 0.021 0.002 12.828 

    Number of Main Tracks 0.484 0.064 7.556 

    Number of Traffic Lanes 0.170 0.031 5.418 
    AADT in Both Directions 3.59E-05 3.77E-06 9.524 

Roadway Characteristics    
    Highway Paved or Gravel 0.295 0.090 3.259 

Crossing Characteristics    
    Surface, Sectional 0.260 0.071 3.684 
    Surface, Full Wood Plank 0.312 0.074 4.233 

    Pavement Markings: Stop Lines 0.747 0.073 10.196 
    Probability of a Stop Sign 19.615 2.174 9.024 

    Probability of a Gate -2.974 0.202 -14.687 

    Probability of Flashing Lights 1.075 0.182 5.922 
    Probability of a Highway Traffic Signal -114.447 23.651 -4.839 

    Probability of Bells 0.649 0.170 3.820 
Log Likelihood Function -7,127.55 

Restricted Log Likelihood -7,166.86 
Number of Observations 80,962 
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Appendix B:  Passive Traffic Control Devices for Highway-railway Grade 

Crossings (Transportation Association of Canada 1998)  

Traffic 
Control 
Devices 

Indication of Need Symbol 

A2.2.1  
Stop Sign  
(RA-1) 

The Stop sign indicates to drivers that they must stop their 
vehicles completely before entering the intersection area.  
TAC (1998) indicated that the Stop signs are warranted as an 
interim measure at a railway crossing which is scheduled for 
automatic protection or as required by the railway authority. 
The physical characteristics of the intersection, the collision 
experience, or travel speeds may require that a Stop sign be 
supplemented by a Stop Ahead sign (WB-1). 

A3.6.1  
Stop Ahead  
Sign (WB-
1) 

The Stop Ahead sign indicates the presence of a Stop sign 
(RA-1) ahead. Limited visibility due to conditions such as 
horizontal and vertical curves, parked vehicles, foliage, 
and/or high vehicle speeds should be considered in 
determining the need for these signs. In some cases, the 
advance sign may be used due to poor performance of the 
Stop sign. 

A2.10.1  
Stop Line 
Sign  
(RC-4) 

The Stop Line sign indicates the point at which drivers 
approaching a traffic control device must stop their vehicles. 
The sign should be used where the location of the stop line is 
non-standard, or where the required stopping position may 
not be obvious to drivers. 

 
A2.2.2  
Yield Sign  
(RA-2) 

The Yield sign indicates to drivers that they must yield the 
right-of-way, stopping if necessary, before entering the 
intersection, and must not proceed until it is safe to do so. A 
Yield sign may be supplemented by a Yield Ahead sign 
(WB-2). 
Note: In the US (FHWA 2003), as the discretion of the 
responsible State of local highway agency, STOP or Yield 
signs may be used at highway- railway grade crossings that 
have two or more trains per day and are without automatic 
traffic control devices 

 



 165

A3.6.2  
Yield 
Ahead  
Sign (WB-
2) 

The Yield Ahead sign indicates the presence of a Yield sign 
(RA-1) ahead. Limited visibility due to conditions such as 
horizontal and vertical curves, parked vehicles, foliage, 
and/or high vehicle speeds should be considered in 
determining the need for these signs. In some cases, the 
advance sign may be used due to poor performance of the 
Yield sign. 

 
A2.2.3  
Railway  
Crossing 
Sign 
(RA-6) 

The railway crossing sign indicates to drivers that they must 
yield the right-of-way, stopping if necessary, before entering 
the railway crossing area and must not proceed until it is safe 
to do so. 
The Railway Crossing sign is in the form of an “X”. Both 
crosspieces of the “X” are 1200 mm by 200 mm and they 
intersect at a right angle  

 
 The supplementary tab sign (RA-6S) must be used with the 

Railway Crossing Sign where there are two or more tracks at 
the crossing. This tab sign is in the form of an inverted “T”, 
where the minor leg displays a numeral corresponding to the 
number of tracks, and where the major leg graphically 
depicts a railway track. 

 

A3.4.2  
Railway  
Crossing 
Ahead 
Signs (WA-
18, WA-19, 
WA-20) 

The Railway Crossing Ahead sign is used to warn drivers in 
advance of all at grade railway crossings. Situations exist 
where a major road and a rail line, which are parallel and in 
close proximity, intersect a minor road, such that insufficient 
distance is available on the minor road between the railway 
crossing and the major road for proper sitting of the WA-18 
sign. In such a situation the WA-18 on the minor road 
between the major road and the railway crossing is replaced 
by theWA-19 or WA-20, installed on the major road in 
advance of the intersection, facing both directions of traffic 
on the major road. 
Note: In the US, these signs are designated as Advance 
Warning Signs and shall be used on each highway in 
advance of every highway-rail grade crossing except under 
specified restrictions as provided in the US MUTCD 
(FHWA 2003). 
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A3.6.6  
Prepare To  
Stop At 
Railway 
Crossing 
Sign (WB-
6) 

The Prepare to Stop at Railway Crossing sign indicates to 
drivers in advance of a railway crossing that there is a high 
probability of having to stop for the railway crossing signals 
ahead 
The sign should only be used where traffic engineering 
studies have indicated that this sign is warranted. Factors 
which should be considered include: (a) train and vehicle 
speeds; (b) train volumes; (c) traffic volumes, particularly 
heavy trucks; (d) visibility; (e) highway grades; and (f) 
collision experience. 

 A yellow backboard (WB-6 Optional) may be used in 
conjunction with the basic sign. The backboard is the 
preferred design for an overhead sign. 

A.3.2.5 
Advisory 
Speed 
Tab Sign 
(WA-7S) 

The Advisory Speed tab sign may be used in conjunction 
with standard warning signs. It is not used alone. It is 
installed immediately below the warning sign, and on the 
same post. The speed should be in multiples o 10 km/h. 

C3.3  
Approaches 
to Railway 
Crossings 

Pavement markings may be placed on a paved approach to a 
railway crossing where extra emphasis may be needed. 
These markings are not sufficient warning by themselves and 
must always be used in conjunction with signs and other 
devices. The markings must be white. 

Refer to Figure 2.2 

C4.1.3  
Railway 
Crossing 
Symbols 

Typical pavement markings at a railway crossing is “X” 
symbol. 

 

Illumination 
(FHWA,  
US 
MUTCD 
2003 Ed.) 

If an engineering study is conducted and if the engineering 
study determines that better nighttime visibility of the train 
and the highway-rail grade crossing is needed (for example, 
where a substantial amount of railroad operation is 
conducted at night, where train speeds are low and highway-
rail grade crossings are blocked for long periods, or crash 

Refer to Figure 2.3 
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history indicates that drivers experience difficulty in seeing 
trains or traffic control devices during hours of darkness), 
then illumination should be installed at and adjacent to the 
highway-rail grade crossing. 

Note: Class R signage, such as RA-1 and RC-4, indicate a Regulatory Sign; Class W 

signage, such as WB-1 and WB-2, indicate a Warning Sign. 
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Appendix C:  Cluster Specific Collision Prediction Models 

1) Collision Prediction Model for Crossings in Cluster 01 

                        Cluster01 NB Model with Flashing Lights and Gates                       1 
                                                                     22:50 Monday, April 17, 2006 
 
                                      The GENMOD Procedure 
 
                                        Model Information 
 
                            Data Set              LAI.CLUSTER01_V7_01 
                            Distribution            Negative Binomial 
                            Link Function                         Log 
                            Dependent Variable                acc_occ 
 
 
                             Number of Observations Read        1045 
                             Number of Observations Used        1045 
 
 
                                      Parameter Information 
 
                                    Parameter       Effect 
 
                                    Prm1            Intercept 
                                    Prm2            lnexp 
                                    Prm3            awd_sign 
                                    Prm4            awd_gate 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                1041        731.4191          0.7026 
                  Scaled Deviance         1041        731.4191          0.7026 
                  Pearson Chi-Square      1041       1051.5226          1.0101 
                  Scaled Pearson X2       1041       1051.5226          1.0101 
                  Log Likelihood                     -659.8633 
 
 
           Algorithm converged. 
 
 
                                  Estimated Covariance Matrix 
 
                          Prm1           Prm2           Prm3           Prm4      Dispersion 
 
     Prm1              0.13933       -0.01138       -0.03034       -0.01334       -0.000017 
     Prm2             -0.01138       0.001583      -0.003785      -0.006146       0.0001173 
     Prm3             -0.03034      -0.003785        0.10647        0.07225       -0.002300 
     Prm4             -0.01334      -0.006146        0.07225        0.08590       -0.001195 
     Dispersion      -0.000017      0.0001173      -0.002300      -0.001195         0.03602 
 
 
                        Cluster01 NB Model with Flashing Lights and Gates                       2 
                                                                     22:50 Monday, April 17, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.0566      0.3733     -4.7882     -3.3250     118.11        <.0001 
    lnexp          1      0.3577      0.0398      0.2797      0.4357      80.85        <.0001 
    awd_sign       1     -0.3830      0.3263     -1.0225      0.2566       1.38        0.2405 
    awd_gate       1     -0.8396      0.2931     -1.4141     -0.2652       8.21        0.0042 
    Dispersion     1      0.7937      0.1898      0.4217      1.1656 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.  
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2) Collision Prediction Model for Crossings in Cluster 02 

                        Cluster02 NB Model with Flashing Lights and Gates                      11 
                                                                    11:07 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                        Model Information 
 
                            Data Set              LAI.CLUSTER02_V7_01 
                            Distribution            Negative Binomial 
                            Link Function                         Log 
                            Dependent Variable                acc_occ 
 
 
                             Number of Observations Read        2274 
                             Number of Observations Used        2274 
 
 
                                      Parameter Information 
 
                                    Parameter       Effect 
 
                                    Prm1            Intercept 
                                    Prm2            lnexp 
                                    Prm3            awd_sign 
                                    Prm4            awd_gate 
                                    Prm5            tnmxspdm 
                                    Prm6            whistle 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                2268        947.6605          0.4178 
                  Scaled Deviance         2268        947.6605          0.4178 
                  Pearson Chi-Square      2268       2485.3550          1.0958 
                  Scaled Pearson X2       2268       2485.3550          1.0958 
                  Log Likelihood                     -808.9254 
 
 
           Algorithm converged. 
 
 
                                   Estimated Covariance Matrix 
 
                   Prm1        Prm2        Prm3        Prm4        Prm5        Prm6   Dispersion 
 
 Prm1           0.08436   -0.009471     0.02139     0.04210   -0.000459   -0.003039    -0.003318 
 Prm2         -0.009471    0.001888   -0.005565   -0.007543   -0.000029   -0.001554    0.0000411 
 Prm3           0.02139   -0.005565     0.03532     0.03056   0.0000696   -0.005875    -0.001202 
 Prm4           0.04210   -0.007543     0.03056     0.11852   -0.000120   -0.006540     0.003318 
 Prm5         -0.000459   -0.000029   0.0000696   -0.000120   0.0000127   0.0002413    0.0000674 
 Prm6         -0.003039   -0.001554   -0.005875   -0.006540   0.0002413     0.11134     0.003852 
 Dispersion   -0.003318   0.0000411   -0.001202    0.003318   0.0000674    0.003852      0.09711 
                        Cluster02 NB Model with Flashing Lights and Gates                      12 
                                                                    11:07 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.9670      0.2904     -5.5362     -4.3977     292.45        <.0001 
    lnexp          1      0.3869      0.0434      0.3018      0.4721      79.32        <.0001 
    awd_sign       1     -0.9943      0.1879     -1.3627     -0.6259      27.99        <.0001 
    awd_gate       1     -1.4483      0.3443     -2.1230     -0.7735      17.70        <.0001 
    tnmxspdm       1      0.0161      0.0036      0.0091      0.0231      20.49        <.0001 
    whistle        1      1.1519      0.3337      0.4979      1.8059      11.92        0.0006 
    Dispersion     1      1.1124      0.3116      0.5016      1.7232 
 

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.



 170

3) Collision Prediction Model for Crossings in Cluster 03 

. nbreg   acc_occ   lnexp   awd tnmxspdm  trkangle, nolog 
 
Negative binomial regression                      Number of obs   =       4040 
                                                  LR chi2(4)      =     243.09 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1267.6421                       Pseudo R2       =     0.0875 
 
------------------------------------------------------------------------------ 
     acc_occ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       lnexp |   .4606274    .032122    14.34   0.000     .3976695    .5235854 
         awd |  -1.119466   .1371104    -8.16   0.000    -1.388198   -.8507348 
    tnmxspdm |   .0105388   .0028503     3.70   0.000     .0049523    .0161253 
    trkangle |   -.009173     .00558    -1.64   0.100    -.0201096    .0017636 
       _cons |  -4.536707   .4810155    -9.43   0.000     -5.47948   -3.593934 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -1.019457   .5916986                     -2.179165    .1402513 
-------------+---------------------------------------------------------------- 
       alpha |   .3607909   .2134795                       .113136    1.150563 
------------------------------------------------------------------------------ 
Likelihood-ratio test of alpha=0:  chibar2(01) =    3.72 Prob>=chibar2 = 0.027 
 
. matrix list e(V) 
 
symmetric e(V)[6,6] 
                     acc_occ:    acc_occ:    acc_occ:    acc_occ:    acc_occ:    lnalpha: 
                       lnexp         awd    tnmxspdm    trkangle       _cons       _cons 
   acc_occ:lnexp   .00103182 
     acc_occ:awd   -.0023881   .01879925 
acc_occ:tnmxspdm  -2.677e-06  -4.878e-06   8.124e-06 
acc_occ:trkangle  -.00001495   .00005446  -1.978e-06   .00003114 
   acc_occ:_cons  -.00503333   .00708499  -.00018094   -.0023377   .23137589 
   lnalpha:_cons   .00173449  -.00672211   9.221e-06  -.00007495  -.00359859   .35010725 
 
.  matrix list e(b) 
 
e(b)[1,6] 
       acc_occ:    acc_occ:    acc_occ:    acc_occ:    acc_occ:    lnalpha: 
         lnexp         awd    tnmxspdm    trkangle       _cons       _cons 
y1   .46062745  -1.1194662   .01053877  -.00917297  -4.5367075  -1.0194567 
 
. matrix v_test=e(b)*e(V)*e(b)' 
 
. matrix list v_test 
 
symmetric v_test[1,1] 
           y1 
y1  5.1947823 
 
. log close 
  log type:  text 
 closed on:  14 Apr 2006, 13:50:21 
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4) Collision Prediction Model for Crossings in Cluster 04 

                         Cluster04 NB Model with Active Warning Devices                        17 
                                                                    16:41 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                        Model Information 
 
                            Data Set              LAI.CLUSTER04_V7_01 
                            Distribution            Negative Binomial 
                            Link Function                         Log 
                            Dependent Variable                acc_occ 
 
 
                             Number of Observations Read        1988 
                             Number of Observations Used        1988 
 
 
                                      Parameter Information 
 
                                    Parameter       Effect 
 
                                    Prm1            Intercept 
                                    Prm2            lnexp 
                                    Prm3            awd 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                1985       1110.1724          0.5593 
                  Scaled Deviance         1985       1110.1724          0.5593 
                  Pearson Chi-Square      1985       2110.1224          1.0630 
                  Scaled Pearson X2       1985       2110.1224          1.0630 
                  Log Likelihood                     -982.2619 
 
 
           Algorithm converged. 
 
 
                                   Estimated Covariance Matrix 
 
                                  Prm1           Prm2           Prm3      Dispersion 
 
             Prm1              0.09373      -0.009136      -0.007702        0.001155 
             Prm2            -0.009136       0.001334      -0.003429       0.0002801 
             Prm3            -0.007702      -0.003429        0.04330       -0.004044 
             Dispersion       0.001155      0.0002801      -0.004044         0.04673 
 
 
                         Cluster04 NB Model with Active Warning Devices                        18 
                                                                    16:41 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.3092      0.3061     -4.9092     -3.7092     198.12        <.0001 
    lnexp          1      0.4408      0.0365      0.3692      0.5124     145.60        <.0001 
    awd            1     -1.2216      0.2081     -1.6295     -0.8138      34.47        <.0001 
    Dispersion     1      0.9735      0.2162      0.5498      1.3972 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood. 
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5) Collision Prediction Model for Crossings in Cluster 05 

                        Cluster05 NB Model with Flashing Lights and Gates                      23 
                                                                    16:41 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                        Model Information 
 
                            Data Set              LAI.CLUSTER05_V7_01 
                            Distribution            Negative Binomial 
                            Link Function                         Log 
                            Dependent Variable                acc_occ 
 
 
                             Number of Observations Read        1098 
                             Number of Observations Used        1098 
 
 
                                      Parameter Information 
 
                                    Parameter       Effect 
 
                                    Prm1            Intercept 
                                    Prm2            lnexp 
                                    Prm3            awd_sign 
                                    Prm4            awd_gate 
                                    Prm5            whistle 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                1093        580.0278          0.5307 
                  Scaled Deviance         1093        580.0278          0.5307 
                  Pearson Chi-Square      1093       1284.7855          1.1755 
                  Scaled Pearson X2       1093       1284.7855          1.1755 
                  Log Likelihood                     -538.2695 
 
 
           Algorithm converged. 
 
 
                                   Estimated Covariance Matrix 
 
                     Prm1          Prm2          Prm3          Prm4          Prm5     Dispersion 
 
 Prm1             0.27575      -0.02986       0.03751       0.08755      -0.01181      -0.000129 
 Prm2            -0.02986      0.003534     -0.006500      -0.01223     0.0003082      0.0002781 
 Prm3             0.03751     -0.006500       0.04494       0.04680     -0.008857      -0.002986 
 Prm4             0.08755      -0.01223       0.04680       0.10475      -0.01409      -0.002953 
 Prm5            -0.01181     0.0003082     -0.008857      -0.01409       0.02678      -0.000893 
 Dispersion     -0.000129     0.0002781     -0.002986     -0.002953     -0.000893        0.10764 
                        Cluster05 NB Model with Flashing Lights and Gates                      24 
                                                                    16:41 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -6.0712      0.5251     -7.1005     -5.0420     133.67        <.0001 
    lnexp          1      0.4971      0.0594      0.3806      0.6136      69.91        <.0001 
    awd_sign       1     -0.5804      0.2120     -0.9960     -0.1649       7.50        0.0062 
    awd_gate       1     -1.4916      0.3237     -2.1260     -0.8573      21.24        <.0001 
    whistle        1      0.8074      0.1636      0.4867      1.1281      24.34        <.0001 
    Dispersion     1      1.6142      0.3281      0.9711      2.2572 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood. 
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Appendix D:  Class Specific Collision Prediction Models  

1) Collision Prediction Model for Crossings in Class 01 

                             Collision Prediction Model for Class01                             1 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
              Data Set                  TDC02.GI01_01 
              Distribution          Negative Binomial 
              Link Function                       Log 
              Dependent Variable              acc_occ    acc_occ 
 
 
                             Number of Observations Read        1986 
                             Number of Observations Used        1986 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            lnexposure 
                                   Prm3            awd_sign 
                                   Prm4            awd_gate 
                                   Prm5            whistle 
                                   Prm6            tnmxspdk 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                1980       1463.1375          0.7390 
                  Scaled Deviance         1980       1463.1375          0.7390 
                  Pearson Chi-Square      1980       2012.9466          1.0166 
                  Scaled Pearson X2       1980       2012.9466          1.0166 
                  Log Likelihood                    -1305.5640 
 
 
           Algorithm converged. 
 
 
                                   Estimated Covariance Matrix 
 
                   Prm1        Prm2        Prm3        Prm4        Prm5        Prm6   Dispersion 
 
 Prm1           0.07074   -0.006822   -0.001511     0.01198    0.007228   -0.000101    -0.000597 
 Prm2         -0.006822   0.0009024   -0.001697   -0.003057   -0.001280   2.9896E-6    0.0001298 
 Prm3         -0.001511   -0.001697     0.02163     0.02126    0.001376   -0.000014    -0.001332 
 Prm4           0.01198   -0.003057     0.02126     0.03415   -0.001132   -0.000072    -0.000577 
 Prm5          0.007228   -0.001280    0.001376   -0.001132     0.01296   0.0000268    -0.000128 
 Prm6         -0.000101   2.9896E-6   -0.000014   -0.000072   0.0000268   1.4377E-6    4.1556E-6 
 Dispersion   -0.000597   0.0001298   -0.001332   -0.000577   -0.000128   4.1556E-6      0.01309 
                             Collision Prediction Model for Class01                             2 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -3.7969      0.2660     -4.3182     -3.2756     203.79        <.0001 
    lnexposure     1      0.3448      0.0300      0.2859      0.4037     131.76        <.0001 
    awd_sign       1     -0.6773      0.1471     -0.9656     -0.3891      21.21        <.0001 
    awd_gate       1     -0.8994      0.1848     -1.2616     -0.5372      23.69        <.0001 
    whistle        1      0.2936      0.1138      0.0705      0.5167       6.65        0.0099 
    tnmxspdk       1      0.0021      0.0012     -0.0002      0.0045       3.14        0.0762 
    Dispersion     1      0.6328      0.1144      0.4086      0.8571 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood. 
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2) Collision Prediction Model for Crossings in Class 02 

                             Collision Prediction Model for Class02                             3 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
              Data Set                  TDC02.GI02_01 
              Distribution          Negative Binomial 
              Link Function                       Log 
              Dependent Variable              acc_occ    acc_occ 
 
 
                             Number of Observations Read         712 
                             Number of Observations Used         712 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            lnexposure 
                                   Prm3            awd_sign 
                                   Prm4            awd_gate 
                                   Prm5            pave 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                 707        527.5398          0.7462 
                  Scaled Deviance          707        527.5398          0.7462 
                  Pearson Chi-Square       707        700.3836          0.9906 
                  Scaled Pearson X2        707        700.3836          0.9906 
                  Log Likelihood                     -438.6314 
 
 
           Algorithm converged. 
 
 
                                   Estimated Covariance Matrix 
 
                     Prm1          Prm2          Prm3          Prm4          Prm5     Dispersion 
 
 Prm1             0.13524      -0.01648      0.008535       0.02967      0.009927      -0.006381 
 Prm2            -0.01648      0.002295     -0.003007     -0.006086     -0.002239      0.0008864 
 Prm3            0.008535     -0.003007       0.05545       0.02473     -0.004834      -0.002455 
 Prm4             0.02967     -0.006086       0.02473       0.04191      0.001636      -0.002810 
 Prm5            0.009927     -0.002239     -0.004834      0.001636       0.02403      0.0006762 
 Dispersion     -0.006381     0.0008864     -0.002455     -0.002810     0.0006762        0.03250 
                             Collision Prediction Model for Class02                             4 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -3.8206      0.3677     -4.5414     -3.0998     107.94        <.0001 
    lnexposure     1      0.3579      0.0479      0.2640      0.4518      55.80        <.0001 
    awd_sign       1     -0.5711      0.2355     -1.0326     -0.1096       5.88        0.0153 
    awd_gate       1     -0.6012      0.2047     -1.0025     -0.2000       8.62        0.0033 
    pave           1     -0.2540      0.1550     -0.5579      0.0498       2.68        0.1013 
    Dispersion     1      0.2360      0.1803     -0.1173      0.5893 
 

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.
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3) Collision Prediction Model for Crossings in Class 03 

                             Collision Prediction Model for Class03                             5 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
              Data Set                  TDC02.GI03_01 
              Distribution          Negative Binomial 
              Link Function                       Log 
              Dependent Variable              acc_occ    acc_occ 
 
 
                             Number of Observations Read        2354 
                             Number of Observations Used        2354 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            lnexposure 
                                   Prm3            awd_sign 
                                   Prm4            awd_gate 
                                   Prm5            pave 
                                   Prm6            whistle 
                                   Prm7            tnmxspdk 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                2347       1385.6501          0.5904 
                  Scaled Deviance         2347       1385.6501          0.5904 
                  Pearson Chi-Square      2347       2291.4804          0.9763 
                  Scaled Pearson X2       2347       2291.4804          0.9763 
                  Log Likelihood                    -1138.0755 
 
 
           Algorithm converged. 
 
 
                             Collision Prediction Model for Class03                             6 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                  Estimated Covariance Matrix 
 
                                  Prm1           Prm2           Prm3           Prm4 
 
             Prm1              0.05803      -0.006647        0.01224        0.02354 
             Prm2            -0.006647       0.001121      -0.001821      -0.002779 
             Prm3              0.01224      -0.001821        0.01711        0.01430 
             Prm4              0.02354      -0.002779        0.01430        0.05557 
             Prm5            -0.000982      -0.001223      -0.003452      -0.004153 
             Prm6             0.002380      -0.001478      -0.002941      -0.009760 
             Prm7            -0.000178      -3.107E-6      -0.000058      -0.000133 
             Dispersion      -0.002123      0.0001893      -0.001832       0.002146 
 
                                   Estimated Covariance Matrix 
 
                                  Prm5           Prm6           Prm7      Dispersion 
 
             Prm1            -0.000982       0.002380      -0.000178       -0.002123 
             Prm2            -0.001223      -0.001478      -3.107E-6       0.0001893 
             Prm3            -0.003452      -0.002941      -0.000058       -0.001832 
             Prm4            -0.004153      -0.009760      -0.000133        0.002146 
             Prm5              0.01537      0.0006086      0.0000814       0.0007410 
             Prm6            0.0006086        0.03045      0.0000934       -0.000441 
             Prm7            0.0000814      0.0000934      2.7793E-6       0.0000157 
             Dispersion      0.0007410      -0.000441      0.0000157         0.02367 
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                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.1902      0.2409     -4.6623     -3.7180     302.54        <.0001 
    lnexposure     1      0.3658      0.0335      0.3002      0.4314     119.37        <.0001 
    awd_sign       1     -0.9828      0.1308     -1.2391     -0.7264      56.46        <.0001 
    awd_gate       1     -1.2501      0.2357     -1.7122     -0.7881      28.12        <.0001 
    pave           1     -0.2224      0.1240     -0.4654      0.0206       3.22        0.0729 
    whistle        1      0.8270      0.1745      0.4850      1.1690      22.46        <.0001 
    tnmxspdk       1      0.0071      0.0017      0.0039      0.0104      18.26        <.0001 
    Dispersion     1      0.4388      0.1538      0.1373      0.7403 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood. 

 

4) Collision Prediction Model for Crossings in Class 04 

                             Collision Prediction Model for Class04                            11 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
                Data Set              TDC02.GI04_01 
                Distribution                Poisson 
                Link Function                   Log 
                Dependent Variable          acc_occ    acc_occ 
 
 
                             Number of Observations Read         962 
                             Number of Observations Used         962 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            lnexposure 
                                   Prm3            whistle 
                                   Prm4            tnmxspdk 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                 958        344.6305          0.3597 
                  Scaled Deviance          958        344.6305          0.3597 
                  Pearson Chi-Square       958        877.0370          0.9155 
                  Scaled Pearson X2        958        877.0370          0.9155 
                  Log Likelihood                     -240.7701 
 
 
           Algorithm converged. 
 
 
                                  Estimated Covariance Matrix 
 
                               Prm1           Prm2           Prm3           Prm4 
 
                Prm1        0.17723       -0.01571        0.01971      -0.000956 
                Prm2       -0.01571       0.005905       -0.02278      -0.000176 
                Prm3        0.01971       -0.02278        0.60778      0.0009949 
                Prm4      -0.000956      -0.000176      0.0009949      0.0000219 
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                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.7893      0.4210     -5.6144     -3.9642     129.42        <.0001 
    lnexposure     1      0.2896      0.0768      0.1390      0.4402      14.20        0.0002 
    whistle        1      1.4093      0.7796     -0.1187      2.9373       3.27        0.0706 
    tnmxspdk       1      0.0114      0.0047      0.0022      0.0205       5.90        0.0152 
    Scale          0      1.0000      0.0000      1.0000      1.0000 
 
NOTE: The scale parameter was held fixed. 

 

5) Collision Prediction Model for Crossings with Class-Specific Intercept 

                      Collision Prediction Model for Class Based Intercept                     13 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                       Model Information 
 
                        Data Set              TDC02.STATIFICATION_V07_01 
                        Distribution                   Negative Binomial 
                        Link Function                                Log 
                        Dependent Variable                       acc_occ 
 
 
                             Number of Observations Read        6014 
                             Number of Observations Used        6014 
 
 
                                     Parameter Information 
 
                                   Parameter       Effect 
 
                                   Prm1            Intercept 
                                   Prm2            lnexposure 
                                   Prm3            awd_sign 
                                   Prm4            awd_gate 
                                   Prm5            pave 
                                   Prm6            whistle 
                                   Prm7            tnmxspdk 
                                   Prm8            gi01 
                                   Prm9            gi02 
                                   Prm10           gi03 
                                   Prm11           gi04 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                6004       3675.8845          0.6122 
                  Scaled Deviance         6004       3675.8845          0.6122 
                  Pearson Chi-Square      6004       5808.8171          0.9675 
                  Scaled Pearson X2       6004       5808.8171          0.9675 
                  Log Likelihood                    -3138.6191 
 
 
           Algorithm converged. 
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                      Collision Prediction Model for Class Based Intercept                     14 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
                                  Estimated Covariance Matrix 
 
                     Prm2          Prm3          Prm4          Prm5          Prm6          Prm7 
 
 Prm2           0.0003880     -0.000636     -0.001139     -0.000251     -0.000517     3.5426E-7 
 Prm3           -0.000636      0.007086      0.006313     -0.001092     0.0001356     -0.000011 
 Prm4           -0.001139      0.006313       0.01307     -0.000773     -0.001584     -0.000037 
 Prm5           -0.000251     -0.001092     -0.000773      0.004432     0.0000423     0.0000169 
 Prm6           -0.000517     0.0001356     -0.001584     0.0000423      0.007207     0.0000179 
 Prm7           3.5426E-7     -0.000011     -0.000037     0.0000169     0.0000179     7.5802E-7 
 Prm8           -0.002837      0.001854      0.006716     -0.000702      0.002475     -0.000052 
 Prm9           -0.002627      0.002927      0.006649     -0.000495      0.002032     -0.000056 
 Prm10          -0.002441      0.002858      0.008169     -0.000647      0.001941     -0.000054 
 Prm11          -0.001919      0.003682      0.008248     -0.000222      0.001121     -0.000062 
 Dispersion     0.0000883     -0.000561     -0.000141     -0.000042     0.0000128     3.6824E-6 
 
                                   Estimated Covariance Matrix 
 
                          Prm8           Prm9          Prm10          Prm11      Dispersion 
 
      Prm2           -0.002837      -0.002627      -0.002441      -0.001919       0.0000883 
      Prm3            0.001854       0.002927       0.002858       0.003682       -0.000561 
      Prm4            0.006716       0.006649       0.008169       0.008248       -0.000141 
      Prm5           -0.000702      -0.000495      -0.000647      -0.000222       -0.000042 
      Prm6            0.002475       0.002032       0.001941       0.001121       0.0000128 
      Prm7           -0.000052      -0.000056      -0.000054      -0.000062       3.6824E-6 
      Prm8             0.02987        0.02581        0.02344        0.01829       -0.000680 
      Prm9             0.02581        0.02968        0.02167        0.01744       -0.000883 
      Prm10            0.02344        0.02167        0.02256        0.01641       -0.000699 
      Prm11            0.01829        0.01744        0.01641        0.02867       -0.000719 
      Dispersion     -0.000680      -0.000883      -0.000699      -0.000719        0.006749 
 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      0      0.0000      0.0000      0.0000      0.0000        .           . 
    lnexposure     1      0.3546      0.0197      0.3160      0.3932     324.11        <.0001 
    awd_sign       1     -0.7563      0.0842     -0.9213     -0.5913      80.72        <.0001 
    awd_gate       1     -1.0043      0.1143     -1.2283     -0.7802      77.15        <.0001 
    pave           1     -0.1120      0.0666     -0.2425      0.0184       2.83        0.0924 
    whistle        1      0.3731      0.0849      0.2067      0.5395      19.32        <.0001 
    tnmxspdk       1      0.0036      0.0009      0.0019      0.0053      17.34        <.0001 
    ci01           1     -3.8672      0.1728     -4.2059     -3.5284     500.65        <.0001 
    ci02           1     -4.0043      0.1723     -4.3420     -3.6666     540.18        <.0001 
    ci03           1     -3.9654      0.1502     -4.2598     -3.6710     696.87        <.0001 
    ci04           1     -4.3880      0.1693     -4.7198     -4.0561     671.61        <.0001 
    Dispersion     1      0.5428      0.0822      0.3818      0.7038 
                      Collision Prediction Model for Class Based Intercept                     15 
                                                                  09:41 Wednesday, April 19, 2006 
 
                                      The GENMOD Procedure 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood. 
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Appendix E:  Collision Prediction Model with Group Indicators 

                          Collision Prediction Models with Interactions                         1 
                                                                    21:07 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                        Model Information 
 
              Data Set              TDC01.INTERACTIONS 
              Distribution           Negative Binomial 
              Link Function                        Log 
              Dependent Variable               acc_occ    accident_occurrence 
 
 
                             Number of Observations Read        6014 
                             Number of Observations Used        6014 
 
 
                                      Parameter Information 
 
                                    Parameter       Effect 
 
                                    Prm1            Intercept 
                                    Prm2            lnexp 
                                    Prm3            awd_sign 
                                    Prm4            awd_gate 
                                    Prm5            tnmedspd 
                                    Prm6            tnhghspd 
                                    Prm7            gi08 
                                    Prm8            gi11 
                                    Prm9            gi13 
 
 
                             Criteria For Assessing Goodness Of Fit 
 
                  Criterion                 DF           Value        Value/DF 
 
                  Deviance                6005       3677.8944          0.6125 
                  Scaled Deviance         6005       3677.8944          0.6125 
                  Pearson Chi-Square      6005       5891.8791          0.9812 
                  Scaled Pearson X2       6005       5891.8791          0.9812 
                  Log Likelihood                    -3145.0221 
 
 
           Algorithm converged. 
                          Collision Prediction Models with Interactions                         2 
                                                                    21:07 Tuesday, April 18, 2006 
 
                                      The GENMOD Procedure 
 
                                   Estimated Covariance Matrix 
 
                           Prm1           Prm2           Prm3           Prm4           Prm5 
 
      Prm1              0.02903      -0.002774       0.002002       0.008204      -0.006825 
      Prm2            -0.002774      0.0003460      -0.000776      -0.001445      0.0004266 
      Prm3             0.002002      -0.000776       0.009258       0.008106      -0.002190 
      Prm4             0.008204      -0.001445       0.008106        0.01391      -0.003541 
      Prm5            -0.006825      0.0004266      -0.002190      -0.003541       0.007470 
      Prm6            -0.008066      0.0004825      -0.000749      -0.003443       0.005284 
      Prm7            -0.000351      0.0001200      -0.002325      -0.001289      -0.000580 
      Prm8            -0.007227      0.0004799       0.004379       0.003137      -0.002947 
      Prm9             0.001170      -0.000145      0.0003180      0.0006121      -0.000180 
      Dispersion      -0.000654      0.0000983      -0.000569      -0.000223      0.0000855 
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Estimated Covariance Matrix 
 
                          Prm6           Prm7           Prm8           Prm9      Dispersion 
 
     Prm1            -0.008066      -0.000351      -0.007227       0.001170       -0.000654 
     Prm2            0.0004825      0.0001200      0.0004799      -0.000145       0.0000983 
     Prm3            -0.000749      -0.002325       0.004379      0.0003180       -0.000569 
     Prm4            -0.003443      -0.001289       0.003137      0.0006121       -0.000223 
     Prm5             0.005284      -0.000580      -0.002947      -0.000180       0.0000855 
     Prm6             0.008552      -0.000950      0.0001767      -0.000203       0.0001542 
     Prm7            -0.000950       0.007588      0.0002815      -0.000048       0.0001552 
     Prm8            0.0001767      0.0002815        0.01620      -0.008820       -0.000036 
     Prm9            -0.000203      -0.000048      -0.008820        0.01962       0.0001178 
     Dispersion      0.0001542      0.0001552      -0.000036      0.0001178        0.006827 
 
 
                                 Analysis Of Parameter Estimates 
 
                                    Standard     Wald 95% Confidence       Chi- 
    Parameter     DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
    Intercept      1     -4.6091      0.1704     -4.9431     -4.2752     731.87        <.0001 
    lnexp          1      0.4222      0.0186      0.3858      0.4587     515.32        <.0001 
    awd_sign       1     -0.7284      0.0962     -0.9170     -0.5399      57.32        <.0001 
    awd_gate       1     -0.9118      0.1179     -1.1429     -0.6806      59.78        <.0001 
    tnmedspd       1      0.2735      0.0864      0.1041      0.4429      10.01        0.0016 
    tnhghspd       1      0.3163      0.0925      0.1351      0.4976      11.70        0.0006 
    gi08           1      0.1438      0.0871     -0.0270      0.3145       2.72        0.0989 
    gi11           1      0.4092      0.1273      0.1598      0.6587      10.34        0.0013 
    gi13           1     -0.2345      0.1401     -0.5090      0.0400       2.80        0.0941 
    Dispersion     1      0.5538      0.0826      0.3919      0.7158 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.
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APPENDIX F. ESTIMATING CMF FOR DATA LIKELIHOODS 

1. Eliminating Whistle Prohibition   

1) Factor/Cluster Model based on a Study by Saccomanno and Lai (2005) 

• Estimating Collision Frequency before Eliminating Whistle Prohibition   

Step 1: Obtain Standardized Variables Zij 

Table F.1 Standardized Variables 

Variable Mean Std. Deviation Zij 
Warning Devices 1.6404 0.7144 0.5034 
Road Surface Width 10.6259 5.4323 -1.1144 
Surface Material 0.3793 0.4852 1.2793 
Road Type 0.2666 0.4422 1.6585 
Track Number 1.2390 0.5813 -0.4111 
Track Angle 69.9359 19.5532 0.0033 
Whistle Prohibition 0.0900 0.2861 3.1807 
Mainline  0.9308 0.2538 0.2727 
AADT 1582.6377 3931.6533 3.4127 
Daily Trains 9.3741 11.1340 0.2358 
Posted Speed Limit 59.3586 21.2361 -0.4407 
Max. Train Speed 40.9324 20.7620 -1.4899 
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Step 2: Calculate Factor Scores for Each Crossing 

Table F.2 Factor Score Coefficients and Factor Scores 

Factor Score Coefficients (βik) 
Factor Score Coefficients (βik) × 

Standardized Variable (Zij) Variable 
F1 F2 F3 F4 F1 × Zij F2 × Zij F3 × Zij F4 × Zij 

Warning Devices 0.2560 0.2156 -0.0754 0.0674 0.1289 0.1085 -0.0380 0.0339 

Road Surface Width 0.2443 -0.0502 0.0445 -0.1578 -0.2723 0.0559 -0.0496 0.1759 

Surface Material 0.2664 -0.1126 -0.0944 0.2331 0.3408 -0.1440 -0.1208 0.2982 

Road Type 0.3066 0.0287 -0.3382 0.1030 0.5085 0.0476 -0.5609 0.1708 

Track Number 0.0235 0.1962 0.2956 0.0914 -0.0097 -0.0807 -0.1215 -0.0376 

Track Angle 0.0130 -0.0271 -0.0456 0.9356 0.0000 -0.0001 -0.0001 0.0031 

Whistle Prohibition 0.1137 0.0400 0.3903 -0.1643 0.3616 0.1272 1.2414 -0.5226 

Mainline -0.0743 0.2439 -0.2242 -0.0167 -0.0203 0.0665 -0.0611 -0.0046 

AADT 0.2587 -0.0471 0.0996 -0.0873 0.8829 -0.1607 0.3399 -0.2979 

Daily Trains -0.0059 0.3741 0.1731 -0.0601 -0.0014 0.0882 0.0408 -0.0142 

Posted Speed Limit 0.1321 0.0565 -0.5273 -0.0281 -0.0582 -0.0249 0.2324 0.0124 

Max. Train Speed -0.0753 0.3904 -0.1105 -0.0239 0.1122 -0.5816 0.1646 0.0356 

Factor Scores 1.9731 -0.4980 1.0671 -0.1470 
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Step 3: Determine Cluster Membership 

Table F.3 Cluster Center for Four Factor Scores and Cluster Membership 

Cluster Center for 5 Clusters  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Factor Score 1 0.5949 -0.4174 -0.6568 0.7940 1.2764 

Factor Score 2 1.8202 0.0135 -0.1827 0.1293 -1.3208 

Factor Score 3 1.0418 -0.2617 0.0698 -1.0575 1.2085 

Factor Score 4 0.2106 -1.3206 0.4721 0.4909 -0.0909 

Distance to 
Cluster Center 2.7207 3.0198 2.8972 2.5894 1.0888 

Cluster 
Membership     × 

 

• Estimating Collision Frequency After Eliminating Whistle Prohibition   

Step 1: Obtain Standardized Variables Zij 

Table F.4 Standardized Variables 

Variable Mean Std. Deviation Zij 
Warning Devices 1.6404 0.7144 0.503359 

Road Surface Width 10.6259 5.4323 -1.114427 
Surface Material 0.3793 0.4852 1.2793 

Road Type 0.2666 0.4422 1.6585 
Track Number 1.2390 0.5813 -0.4111 
Track Angle 69.9359 19.5532 0.0033 

Whistle Prohibition 0.0900 0.2861 -0.3146 
Mainline 0.9308 0.2538 0.2727 
AADT 1582.6377 3931.6533 3.4127 

Daily Trains 9.3741 11.1340 0.2358 
Posted Speed Limit 59.3586 21.2361 -0.4407 
Max. Train Speed 40.9324 20.7620 -1.4899 
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Step 2: Calculate Factor Scores for Each Crossing 

Table F.5 Factor Score Coefficients and Factor Scores 

Factor Score Coefficients (βik) 
Factor Score Coefficients (βik) × 

Standardized Variable (Zij) Variable 
F1 F2 F3 F4 F1 × Zij F2 × Zij F3 × Zij F4 × Zij 

Warning Devices 0.2560 0.2156 -0.0754 0.0674 0.1289 0.1085 -0.0380 0.0339 
Road Surface Width 0.2443 -0.0502 0.0445 -0.1578 -0.2723 0.0559 -0.0496 0.1759 

Surface Material 0.2664 -0.1126 -0.0944 0.2331 0.3408 -0.1440 -0.1208 0.2982 
Road Type 0.3066 0.0287 -0.3382 0.1030 0.5085 0.0476 -0.5609 0.1708 

Track Number 0.0235 0.1962 0.2956 0.0914 -0.0097 -0.0807 -0.1215 -0.0376 
Track Angle 0.0130 -0.0271 -0.0456 0.9356 0.0000 -0.0001 -0.0001 0.0031 

Whistle Prohibition 0.1137 0.0400 0.3903 -0.1643 -0.0358 -0.0126 -0.1228 0.0517 
Mainline -0.0743 0.2439 -0.2242 -0.0167 -0.0203 0.0665 -0.0611 -0.0046 
AADT 0.2587 -0.0471 0.0996 -0.0873 0.8829 -0.1607 0.3399 -0.2979 

Daily Trains -0.0059 0.3741 0.1731 -0.0601 -0.0014 0.0882 0.0408 -0.0142 
Posted Speed Limit 0.1321 0.0565 -0.5273 -0.0281 -0.0582 -0.0249 0.2324 0.0124 
Max. Train Speed -0.0753 0.3904 -0.1105 -0.0239 0.1122 -0.5816 0.1646 0.0356 

Factor Scores 1.5757 -0.6379 -0.2971 0.4273 
 

Step 3: Determine Cluster Membership 

Table F.6 Cluster Center for Four Factor Scores and Cluster Membership 

Cluster Center for 5 Clusters 
 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Factor Score 1 0.5949 -0.4174 -0.6568 0.7940 1.2764 

Factor Score 2 1.8202 0.0135 -0.1827 0.1293 -1.3208 

Factor Score 3 1.0418 -0.2617 0.0698 -1.0575 1.2085 

Factor Score 4 0.2106 -1.3206 0.4721 0.4909 -0.0909 

Distance to 
Cluster Center 2.9738 2.7300 2.3082 1.3349 1.7582 

Cluster 
Membership    ×  
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APPENDIX G. ESTIMATED PRIORS WITH DIFFERENT 

WEIGHTING SCHEME 

Table G.1 Estimated Priors with Equal Weight 
Number Countermeasures µ τ 

1 Grade Separation/Closure 0.0000 0.0000 
2 Yield Sign 0.8100 0.0723 
3 Stop Sign 0.6467 0.0577 
4 Stop Ahead Sign 0.6533 0.0583 
5 Stop Line Sign 0.7200 0.0642 
6 Illumination(Lighting) 0.5625 0.0502 
7 Pavement Markings 0.7914 0.0706 
8 From Signs to Flashing Lights 0.4256 0.1003 
9 From Signs to 2Q-Gates 0.2567 0.0647 

10 From Flashing Lights to 2Q-Gates 0.3975 0.1060 
11 From 2Q-Gates to 2Q-Gates with Median Separation 0.3375 0.0301 
12 From 2Q-Gates to 4Q-Gates 0.2540 0.0227 
13 Installing Traffic Signal 0.3867 0.1316 
14 Elimination of Whistle Prohibition 0.4675 0.0417 
15 Improve Sight Distance 0.6630 0.0591 
16 Improve Pavement Condition 0.5200 0.0464 
17 Posted Speed Limit 0.8000 0.0714 
18 Photo/Video Enforcement 0.2350 0.0210 

Table G.2 Estimated Priors with 0.25 Interval Weight 
Number Countermeasures µ τ 

1 Grade Separation/Closure 0.0000 0.0000 
2 Yield Sign 0.8100 0.0723 
3 Stop Sign 0.6467 0.0577 
4 Stop Ahead Sign 0.6533 0.0583 
5 Stop Line Sign 0.7200 0.0642 
6 Illumination(Lighting) 0.5625 0.0502 
7 Pavement Markings 0.7914 0.0706 
8 From Signs to Flashing Lights 0.4470 0.1239 
9 From Signs to 2Q-Gates 0.2744 0.0792 

10 From Flashing Lights to 2Q-Gates 0.4483 0.1346 
11 From 2Q-Gates to 2Q-Gates with Median Separation 0.3375 0.0301 
12 From 2Q-Gates to 4Q-Gates 0.2540 0.0227 
13 Installing Traffic Signal 0.3678 0.1623 
14 Elimination of Whistle Prohibition 0.4667 0.0416 
15 Improve Sight Distance 0.6630 0.0591 
16 Improve Pavement Condition 0.5200 0.0464 
17 Posted Speed Limit 0.8000 0.0714 
18 Photo/Video Enforcement 0.2633 0.0235 
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Table G.3 Estimated Priors with 0.20 Interval Weight 
Number Countermeasures µ τ 

1 Grade Separation/Closure 0.0000 0.0000 
2 Yield Sign 0.8100 0.0723 
3 Stop Sign 0.6467 0.0577 
4 Stop Ahead Sign 0.6533 0.0583 
5 Stop Line Sign 0.7200 0.0642 
6 Illumination(Lighting) 0.5625 0.0502 
7 Pavement Markings 0.7914 0.0706 
8 From Signs to Flashing Lights 0.4417 0.1180 
9 From Signs to 2Q-Gates 0.2700 0.0756 

10 From Flashing Lights to 2Q-Gates 0.4356 0.1275 
11 From 2Q-Gates to 2Q-Gates with Median Separation 0.3375 0.0301 
12 From 2Q-Gates to 4Q-Gates 0.2540 0.0227 
13 Installing Traffic Signal 0.3725 0.1546 
14 Elimination of Whistle Prohibition 0.4670 0.0417 
15 Improve Sight Distance 0.6630 0.0591 
16 Improve Pavement Condition 0.5200 0.0464 
17 Posted Speed Limit 0.8000 0.0714 
18 Photo/Video Enforcement 0.2520 0.0225 

 

 

 

 

 


