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Abstract 

For predictive maintenance of circuit breakers, a number of variables must be considered 

in order to assess the genuine working condition of a circuit breaker [CB]. This thesis selects 

vibration signatures obtained on the operating mechanisms and arcing chambers as a source of 

monitoring breaker conditions. The task of analyzing the behavior of a circuit breaker is perennial 

and difficult but the thesis has an attempt to tackle this problem. Experiments have been devised 

to monitor CBs; however, these have limitations details of which will be discussed. For example, 

each circuit breaker has its own unique vibration signature and the shape of the vibration may be 

different even though breakers confront similar problems. CBs have decades-long service life 

spans and failure rates are relatively low. Those that fail are not necessarily saved and there have 

been relatively few samples to base evidence upon. 

There are different vibration analysis algorithms available including Dynamic Time 

Warping [DTW], Resolution Ratio [RR], Discrete Envelope Statistics [DES], event time 

extraction, Chi-square based shape methods, and fractal theory. Some of these algorithms are 

based on acoustic properties of materials and rely on assessing extracted time component and the 

frequency components are extracted. This research applies multi-resolution analysis [MRA] to 

decomposed signals to in order to assess different sub-wave levels so that wave features may be 

captured and modeled. There are many ways to analyze the waves. This thesis uses optimizing 

fuzzy rules with genetic algorithm [GA] as the proposed method. 

The simuation part of the thesis uses spring performance as an example of how vibration 

signature analysis may be implemented. Spring vibrations are evaluated by two classification 

algorithms: Dynamic Time Warping [DTW] and multi-resolution analysis [MRA] with 

optimizing fuzzy rules with genetic algorithm [GA]. The first method is competent to identify the 

faulty cases from the normal ones by looking at the deviation of the vibration signature frequency 

content. In contrast, it is not capable to identify the degree of how bad it performs from looking at 

the frequency variation.  For the second method, it is capable of not only classifying the abnormal 

cases from the normal cases, but also distinguishing the vibration signatures into different 

category so that the spring condition can be retrieved immediately. Fuzzy rules is capable of 

classify a new case to a category and genetic algorithm is an effective tool to minimize the 

applicable fuzzy rules. The accuracy of the identification is very satisfactory, which is over 90%. 

Consequently, the proposed algorithm is very useful for asset management purpose of breaker 
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since the lifespan of the spring is known. Diagnostic technicians are able to make decision on the 

replacement scheme of the spring. 

There are some areas that this research uncovered that suggests further study is mandated. 

For example, there are other parameters that can be monitored and compared other than spring 

constant such as valve position in trip coil and close coil, acceleration parameter in changeover 

valves, damping in hydraulic cylinders and mechanical linkages, gas pressure in primary contacts 

and breaker resistance in line system.  
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Chapter 1 

Introduction 

Circuit breakers are mechanical switching devices that carry and disrupt electrical current 

in a circuit. Circuit breakers must function in normal and abnormal conditions, and must 

accommodate short circuits and outages. Circuit breakers are used with switching generators, 

power stations, cable feeders, transformers, and overhead lines in power distribution systems [1]. 

Circuit breakers are very important to power grid integrity. When there is a fault, the 

circuit breakers isolates the faulty area so that extremely high currents do not flow into the whole 

power grid network thereby damaging related electrical devices including generators, 

transformers, and load transferring equipment used by clients. As a result, utility companies 

spend money and manpower to utilize and maintain circuit breakers so that the reliability of the 

power supply can be more secure and the chance of damaging the devices due to extremely high 

current exposure decreases. 

Traditionally, circuit breakers are monitored manually. Technicians are sent to the 

substations and they regularly check if there are any operating problems. They rarely use 

measuring instrumentation to assist them in finding a problem or use measuring instrumentation 

for troubleshooting. Instead, they use eyes to accomplish professional inspection. This way of 

doing maintenance is insufficiently accurate and results in possible overlooking of breakers 

faults. It seems obvious that utilities companies would be better served if we are capable of 

ensuring that their breakers are functioning well all of the time. The old adage, prevention is 

better than cure, should apply and utility companies would benefit from uncovering potential 

problems before rather than after a breakdown. 

Some researchers found that vibration analysis provides a solution for predictive 

maintenance of circuit breakers. Vibration analysis is a mature technique for detecting 

mechanical defects in rotating machinery. It is believed that the same concept, the trend analysis 

of vibration signature patterns, is also applicable on circuit breakers maintenance  [8]. 

The goal of the research in this thesis is to search and compare signal-processing 

techniques that work best with the task of analyzing vibration signals. The behaviour of different 

circuit breaker parts and the mathematics of analysis have been introduced as the subject of 

interactions between the components. Normal and abnormal range analysis was deployed. 
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Combining simulated data and actual measured results, a Simulink model that mimics a real 

circuit breaker is built.  

1.1 Resources 

The data of the vibration signatures is retrieved from the circuit breaker Simulink model. 

The model is developed so that it provides analysis-based diagnostic suggestions, applies flexibly 

and is implemented at a reasonable computational cost. It consists of models of the individual 

circuit breaker components, including contact travel, voltage and current of the interrupter, and 

gas pressure of the SF6 unit, with special focus on the operating mechanism which until now has 

resisted automated monitoring. The model accommodates behavior under various situations. One 

part of the model simulates vibration when the breaker is in operation. From the output vibration 

signals, condition data is obtained and conclusion is formulated from the analysis of the signals. 

Vibration monitoring techniques are applicable to different parts of a breaker including 

the arcing chamber. In this thesis, the spring circuit breaker problem will be simulated. In a 

circuit breaker with a spring-hydraulic operating mechanism, the spring provides energy to open 

and close a breaker. If a spring malfunctions, the performance of the breaker will not be 

satisfactory. The malfunction of a breaker jeopardizes the stability of a power grid in the event of 

an outage in the power network. The performance of a spring can be affected by the age of the 

spring, the lubrication, and number of times of compressing and stretching of the spring.  

As a control experiment, several vibration signature signals were captured when the 

circuit breaker was in normal condition. This thesis compares the signals in normal and in 

abnormal cases and deploys different methodologies. 

1.2 Objectives 

Vibration is itself a complex term and involves simulation, segmentation, feature 

extraction, and classification. The focus of this thesis is on how to extract and classify event 

(normal decaying into abnormal range) vibration data. The task is to select suitable signal 

processing methods to analyze the vibration signatures and identify the parts in the operating 

mechanism susceptible to malfunction. If successful, by running a remote program to display 

waveforms, a technician would not be required to locate and open a circuit breaker to do time-

consuming and inefficient maintenance checks. By viewing the waveforms that are captured 

during operations, they would have the capability of knowing the status of the circuit breakers 

remotely. It is desirable that the proposed features can satisfy the following criteria: 
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1. The accuracy is as high as possible; 80% would be a minimum target; 

2. The program is easy to use 

3. The method is clear and easily understood 

 

In summary, the goal of this thesis is to propose an automatic methodology of predictive 

maintenance by reviewing the vibration signatures generated by the circuit breakers during 

operations by using discriminative features and extraction methods. These methods include 

algorithms from other disciplines including artificial speech recognition and data mining. 

1.3 Organization 

There are eight chapters in this thesis. Chapter 1 - Introduction gives an overview of 

circuit breakers and the research project related to the diagnosis of the breakers.  Chapter 2 – 

Background Information on Circuit Breaker Maintenance gives a brief explanation of circuit 

breakers in terms of its functionalities and its maintenance methodologies. Chapter 3 – Literature 

Review for the vibration signature of a circuit breaker describes different methodologies 

historically applied to solve the problem investigated by this thesis. Chapter 4 – Proposed 

methods for analyzing vibration signals of a circuit breaker outlines the methodologies used in 

analyzing the vibration signatures and how these techniques identify the normal cases and faulted 

cases. In this thesis, the methodologies involve multi-resolution analysis, fuzzy rules, and genetic 

algorithm. In Chapter 5 – Problem Formulation, the core problem of the thesis is articulated. The 

objectives of the research and the experimental data used in this research are described. Chapter 6 

– Circuit Breaker Simulink Model gives a brief explanation on how does a circuit breaker model 

simulate a real breaker and how the vibration signatures are generated with this model. Chapter 7 

– Experiment compares the efficiency and accuracy of the result when different methodologies 

are applied. Chapter 8 – Future Prospects and Conclusion suggests the area of the project can be 

further improved and concludes the result of the research. 
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Chapter 2 

Background Information on Circuit Breaker Maintenance 

Circuit breakers are mechanical switching devices that control power flow in a power 

grid network. They switch circuits on, carry continuous loads, and switch circuits off 

automatically or manually. In normal conditions, circuit breakers are in closed position and they 

carry high-voltage electrical loads. In abnormal conditions, circuit breakers must be in open 

position in order to provide electrical isolation. During the operational span of circuit breakers, 

switching occurs rarely. On average, one circuit breaker has one switching event annually. This 

situation makes circuit breaker design more challenging: they must be reliable under relatively 

static conditions and must become efficient when required to perform a switching operation after 

idling for long periods of time [2]. 

The essential design focus for circuit breakers is to maintain the current flow in a circuit 

under normal as well as abnormal conditions, when the magnitude of the current varies. A good 

circuit breaker must have two stable states: when it is closed its impedance is very small (ideally 

the impedance should be zero) and when it is opened its impedance is extremely high (ideally the 

impedance should be infinite). A circuit breaker must be able to change state in milliseconds. If it 

takes any longer, the circuit breaker will endanger other power system components as well as 

generate excess heat energy and reduce circuit breaker service durability. The additional heat load 

will also compromise the reliability of the grid as well [2]. 

In order to make such a resistive system featuring rapid breaker response, electric arc 

technology is applied. The application of electric arc has two advantages: first, it can change its 

resistance rapidly. Arc plasma resistance can be exponentially increased so that a breaker opens 

quickly. Arc plasma has no upper limit in current carrying capacity so that any current flow can 

be passed using an arc in the breaker. Finally, the change of the resistance can be enforced by the 

changing value of the alternating current, therefore the impedance across the arc is controlled [2]. 

There are different kinds of circuit breakers utilized in power grid systems today. Circuit 

breaker typification involves defining the medium of extinguishing the electric arc. There are four 

primary methods: oil, air-break, SF6, and vacuum circuit breakers. This thesis concentrates on 

predictive maintenance of SF6 circuit breakers. 

Today, thousand of SF6 circuit breakers are in use around the world. SF6 has been used as 

an insulation and quenching medium for more than 30 years. A survey taken in France on 5000 
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circuit breakers over a 12-year time period found only 11 failures. SF6 is an extremely reliable 

technology for extinguishing electric arc because of its high dielectric strength and thermal 

conductivity. Its dielectric strength at atmospheric pressure is about three time greater than that of 

air. SF6 is non-toxic, odorless, incombustible, and three times more chemically inert than air  [3]. 

Diagnostic techniques for SF6 circuit breakers have been improving in recent years. In 

general, these breakers are rated as excellent after more than ten years of usage with up to 600 

operations. Key parts of circuit breakers including the arcing chamber and the contacts have been 

found to be pristine even if in use for ten years. The cost of maintaining a circuit breaker versus 

replacement has become subject of common sense calculation; there is a rule of thumb set up by 

Norwegian power utilities that the maintenance cost of one circuit breaker is between one-third 

and one-half the price of a replacement  [4]. 

There is a fundamental paradox involved in traditional circuit diagnostic techniques. 

Examining and inspecting circuit breakers involves disassembly. For example, the technician 

examines the lubrication of the mechanical parts, the dielectric strength of the contacts, and the 

pressure of the SF6 gas. This part, inspection, is done manually; it is simple and the usage of 

special equipment is minimized; however, the process may be very time-consuming. More 

significantly, the deconstructing and reassembly of breakers may introduce new faults that affect 

the reliability of the load’s power supply. 

Electric utilities perpetually strive to reduce maintenance costs but they may not sacrifice 

safety and reliability. Because of the reassembly problems, periodic or traditional maintenance 

was replaced by condition-based maintenance [CBM]. CBM was proposed in the 1970s and 

became dominant in the 1990s. According to IEC 17A/17C (sec) 422/128, CBM offers a 

maintenance regime that mandates regarding the condition of the equipment  [5] from a 

disciplined perspective. The advantages of such a regime include lower capital expenses. In 

comparison between tradition and CBM, CBM extends machinery life, is safer and more eco- 

environmentally nurturing. However, the change to CBM must be accomplished with integrity; in 

other words, CBM must be able to detect failure and degradation modes with a reasonably high 

degree of accuracy. In application, CBM techniques must be able to detect common- and rarely-

occurring circuit breaker faults and they must access different types of switching equipment  [6].  

Industry findings (the second CIGRE enquiry) categorize the origins of failures into five 

groups. Table 1 shows major and minor failures within each class. 

 



   

 6 

 

Table 1  Origin of failures in the second CIGRE survey  [7] 

Problems Major Failures Minor Failures 

Mechanical in operation mechanism 44% 39% 

Mechanical in other parts 10% 10% 

Electrical (main circuit) 14% 1% 

Electrical (control and auxiliary) 25% 10% 

Tightness of SF6 gas system 7% 40% 

  

Encapsulating Table 1, the most important major failure involves mechanical problems in 

operating mechanism (44%) and the most important minor failure is the tightness of the SF6 gas 

system (40%). In fact, local utilities in Kitchener and Waterloo area including Kitchener-Wilmot 

Hydro mention in their circuit breaker maintenance manual that circuit breaker technicians must 

check the gas pressure every time the circuit breaker is repaired and maintained. Some utilities 

have a remote system to monitor the SF6 gas pressure in their distribution system. The control 

room acquires pressure data in real time in order to monitor the status of the breakers. In case of 

gas leak, the monitoring system sounds an alarm and stops the breaker operation. SF6 problems 

are relatively tractable; it is far more difficult to monitor physical problems in operating 

mechanisms. 

With a goal of making it easier to monitor problems in operating mechanisms, this study 

demonstrates how vibration signatures may be used in the predictive maintenance context. There 

are three advantages of monitoring circuit breakers using vibration signatures. First, it provides an 

alternate way of monitoring circuit breakers that does not involve contact, travel and technician 

time. Second, those most familiar with breaker performance will have historical metrics for 

comparison purposes. And finally, vibration monitoring techniques are applicable for any type of 

circuit breakers, regardless the structure of the breakers and the rated voltage  [10]. 

The operating mechanism is the most complicated component of a breaker since it 

consists of moving parts involving mechanical interactions. As Table 1 survey disclosed, the 

main problem in breakers involves mechanical failure. Circuit breaker operating mechanisms 

have three units: energy storage, controller, and power transmitter. The energy storage unit is 

used to store energy for an auto-reclosure cycle. Depending on the material used for energy 

storage, there are different kinds of operating mechanisms: spring, pneumatic, hydraulic, and the 

hybrid and most effective, hydraulic spring. In this thesis, hydraulic spring-operated mechanism 

is used in the circuit breaker Simulink model. Energy is stored in a spring set which is 
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compressed by the hydraulic pump. In a pure hydraulic mechanism, a piston integrates into the 

actuation unit in order to generate actuating force for the circuit breaker contacts.  

But a pure hydraulic mechanism system lacks rapid repeatability. In contrast, the 

hydraulic spring operating mechanism has advantages of high repeat operating time accuracy, 

meets standards of high mechanical endurance, and is easily adaptable to different breaker types. 

There are different components such as relays, solenoids, valve, latches, linkages, and rods. They 

stop, move, and are impacted during the operation. The vibration propagates to the external 

structure through the internal mechanism and the interrupting medium  [1]. 

In this chapter, the background of failures in operations of circuit breakers is described. 

The current diagnostic techniques of breaker malfunction are discussed. The method of applying 

vibration analysis for predictive maintenance of circuit breakers is introduced. Vibration analysis 

is a mature technique for detecting mechanical defects and it is believed that the same concept, 

the trend analysis of vibration signature patterns, is also applicable on circuit breakers 

maintenance. The advantages of monitoring circuit breakers using vibration signatures are 

examined. In the following chapters, signal-processing techniques are searched, compared and 

implemented in order to find the method that work best with the task of analyzing vibration 

signals. 
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Chapter 3 

Literature Review for the vibration signature of a circuit breaker 

There are several journal papers describing the experiment applicability of testing 

vibration on a circuit breaker. All of these journal papers are based on a real circuit breaker in 

order to capture real vibration signatures. In this chapter, the set up of the actual breaker 

experiment and how vibration signatures are obtained from a breaker are discussed. In addition, 

several methods that detect vibration signatures from the failure of breaker are described. They 

include dynamic time warping [DTW], resolution ratio [RR], discrete envelope statistics [DES] 

and event time extraction, chi-square based shape methods, and fractal theory. 

3.1 Experimental set up 

By using accelerometers and a data acquisition system triggered by the command signal 

to the breaker, vibration “signatures” are obtained when opening and closing operations take 

place. 

Researchers  [8] and  [9] have provided detailed descriptions of vibration monitoring 

systems. Each system executes acquisition, management, analysis, and data evaluation after each 

breaker operation. The instrumentation consists of accelerometers which attach on the cover of an 

operating mechanism of a circuit breaker, a preamplifier which installs at the breaker, connection 

cable which link the preamplifier to a computer located in the control room, a standard four 

channel 16-bit computer-based data acquisition system with a sampling rate up to 51,200 samples 

per second per channel, a built-in anti-aliasing filter, an optical coupling unit which converts the 

signal in the breaker to a transistor-transistor-logic [TTL] triggering signal for the data acquisition 

system, and software on the computer which analyses and stores the vibration measurement data. 

An open or close command signal starts up the data acquisition system. If the recorded vibration 

signals are below a designated amplitude level, the triggering is ignored. Otherwise, the vibration 

is recorded. The procedural vulnerability lies in the fact that it is very important to situate the 

accelerometers at the right spot in order to capture accurate results. Ideally, one accelerometer is 

mounted in each phase of the operating mechanism, and the preamplifier is located in its own 

cabinet installed at the breaker. Also, the computer and the data acquisition system must be 

installed internally to avoid climate-caused interference. 
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One research study  [10], describes accelerometer installation. There are three or four 

accelerometers mounted externally on each single-phase unit. There is usually one on each arcing 

chamber (given that the circuit breaker is disconnected and grounded, or that the circuit breaker is 

a dead tank type), one in the operating mechanism, and one somewhere in between. Figure 1 [10] 

shows a 2-g accelerometer installed on a rotating shaft of a circuit breaker operating mechanism. 

 

Figure 1 An accelerometer is installed on a circuit breaker  [10]. 

 

In  [9], the instrumentation of the accelerometer used in the testing is outlined. The 

accelerometer is designed for a nominal shock of 5000 g and a maximum shock of 50000 g. It 

gives out 1 mV/g (g is the parameter for gravity, g = 9.81 ms
-2

 on Earth). The –3-dB low 

frequency point is at 0.16 Hz and the natural resonance frequency is at 130 kHz. In testing, 

several accelerometers are mounted in solid metal in the operating mechanism of a 145 kV SF6 

circuit breaker close to the main shaft. In order to compare the vibration and the operation 

between each of the phase, the location is deviated more than 1 centimeter. In order to reduce 

damaging high potentials and electrical noise, the accelerometers are insulated from ground. 

Further, the accelerometers are mounted on a good acoustic and bad electric conductor so that the 

noise on the data captured is minimized. In the experiment done in this paper, a 1.5-cm thick stiff 

thermoset polymer is used. The polymer transmits mechanical vibration but decreases the 

capacitive coupled noise. 

By putting the accelerometers at the correct position, it is possible for the vibration 

monitoring system to distinguish numerous events in an opening and closing operation by 

considering the time domain signals. Optimally, for capturing a more accurate result, the 

accelerometers should be located at the sources of the sound-generating mechanical movements. 



   

 10 

 

3.2 Vibration signature captured from circuit breaker 

Generation and propagation of vibration in a circuit breaker is a very complicated 

process. This derives from the fact that there are numerous sound sources during an operation and 

there are multiple boundaries and interfaces in the breaker that scatters, attenuates, and alters the 

propagation of acoustic waves. Due to the complexity of tracing the vibration energy flow, there 

are few published works attempting the exploration of acoustic properties of circuit breakers 

analytically  [4]. 

Although there are few analytical analyses on circuit breaker vibration, some quantitative 

explanations are available. For example, a vibration signature includes a sequence of transients 

that represent mechanical events when the circuit breaker is operated. Some vibration events 

occur during particular opening and closing operations. Each event has its specific amplitude, 

frequency, and decay exponential parameter. By analyzing these transients, an engineer may 

obtain the mechanical condition of various parts involved and thus be able to assess the overall 

performance of the breaker operation [11,12]. 

Experiment has shown that breakers of the same type generate vibration signatures in 

similar shape. If there are some changes in mechanical conditions such as mechanical 

malfunction, excessive contact wears, maladjustment, or other irregularities and faults, the 

signature will be affected and a significant effect will be shown on the signature. Therefore, a 

diagnostic test can be implemented by comparing different vibration signatures so that the 

maintenance engineer knows the part of the circuit breaker that has problems. For instance, the 

engineer can compare each of the phases in a three-phase unit. Since the vibration signature of 

each of the phase are supposed to be similar, if there is variation, a phase can be used as a control 

experiment and the signal from the faulted phase may be analyzed to find out which part of the 

breaker is out of order [11,13]. 

Figure 2 shows a typical vibration signature obtained for one phase for closing and 

opening. 
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Figure 2  Closing (upper trace) and opening (lower trace) reference signals for one 

phase. Main events: 1. Main shaft releases (contact movement starts) 2. 

Latch hits main shaft. 3. Various latching. 4: Dash pot. 5. End stop  [8] 

 

For live tank circuit breakers, the dominant frequency components of the obtained signals 

are usually below 20 kHz. However, at times, components of 30-40 kHz are detected  [13].  

Figure 3 shows some acoustic and mechanical events from a closing of the breaker. 

Figure 3(a) shows the movement on the shaft between the driving mechanism and the crank 

housing. The optical device gives one voltage pulse per 1.9 degrees of rotation. The waveform 

indicates when the shaft and the lower contact are moving. Figure 3(b) shows the state of the 

contact (open/close). Figure 3(c) and figure 3(d) show the vibration signatures when the breaker 

is closing  [4]. 
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Figure 3  (a) Synchronic traces showing contact movements (b) contact mating (c) 

acoustic signature from the pole and (d) acoustic signature from the 

driving mechanism  [4] 

 

In addition, studies shows that electric and acoustic noise from the arc does not affect the 

vibration recordings on the operating mechanism of the circuit breaker in service  [3]. If the noise 

is significantly dependent on the arc current, continuous vibration monitoring is not possible  [9]. 

According to the research team of H. K. Hoidalen in Sweden  [9], there are two main 

problems related to the process of obtaining comparison between the reference and the test 

results. They are, namely, electrical noise in the vibration pattern and the vibration pattern 

quality. As to electrical noise, it lasts for a short period of time at a specific location during all 

closing operations. In order to solve this problem, the analysis program should be modified in 

order to ignore the vibration pattern where the predefined noise is located. Moreover, the 

acquisition technique should be improved in order to reduce the influence of noise. For instance, 

a different amplifier and signal transmission system should be used. The length of the coaxial 
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cable between the sensor and the system should be reduced so that less noise is induced. For 

vibration pattern quality, comparison of vibration pattern depends on the signals with distinct 

events. When the circuit breaker is opened or closed, ringing effects (echo) and lack of distinct 

events can result in large wrong timing deviations. In order to resolve this problem, careful 

examination of the vibration signatures is necessary. The unrelated portion of the signature should 

be distinguished. There is a further deduction. As experiments have proven that the opening 

signature is harder to monitor than the closing signature, due to the fact that opening signature 

contains most of the low frequency response components, it would be better not to include the 

opening signals in order to maintain the stability of the result. Consequently, more work has to be 

done on analysis of opening signatures in the future in order to definitively complete this 

research. 

Some practical issues of the experiments  [9] must be described. For example, overvoltage 

may occur in the data recording system. In order to prevent the damage of the recorder, 

overvoltage protection should be installed. The accelerometer should be isolated from ground in 

the operating mechanism. The optocoupler that converts command signal (110-220V) to a TTL 

triggering signal should have high insulation values. Moreover, there is evidence showing that 

circuit breakers after a short period of idle will have slower operations. When the user does the 

test on the circuit breaker when it is re-activated, the alarm must be adjusted carefully. 

3.3 Signal processing methodologies 

With respect to developing an algorithm for analyzing and comparing the vibration 

signature, different researchers propose their own methodologies. The most popular contenders 

are Dynamic Time Warping [DTW], Resolution Ratio [RR], Discrete Envelope Statistics [DES] 

and event time extraction, Chi-square based shape methods, and Fractal Theory. 

3.3.1 Dynamic time warping (DTW) 

There is no shortage of research  [8],  [10], and  [11] applying dynamic time warping 

[DTW] when analysis is needed. DTW is a method that finds an optimal match between two 

warped non-linear sequences (with restrictions). The restrictions of DTW include continuity and 

monotonicity. With respect to continuity, no large gap exists in the sequences. For instance, there 

is only one item of a sequence which may be dropped at one time. For monotonicity, the order of 

the elements in a sequence for matching should not be inverted or altered  [25].  
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There are two types of output produced when the normal vibration signal and the 

abnormal vibration signal are compared. They are the deviation in frequency content and 

amplitude, and deviation in the time of the events of the two signatures that exist. Both deviations 

are in terms of time. 

DTW was originally used in speech recognition. According to the research team of M. 

Runde in the United States  [4], this method is also applicable to vibration signature monitoring 

for circuit breakers and the reasons are twofold. First, comparison of the transients in two signals 

are involved in both applications. In speech recognition the transients are sounds and in circuit 

breakers the transients are mechanical transients. Second, the order of the events is fixed when 

the appearance of those events may be changed. Comparison of the timing of the events is 

applicable. 

There are detailed explanations on how DTW is used for signal analysis  [4]. The original 

time domain signal is divided into several frames defined by a specific signal time interval. Fast 

Fourier Transform [FFT] with a Hanning window is used to find the frequency content of each 

signal frame. In order to detect the events that yield weak signals, the frequency components are 

plotted in logarithmic scale. At this stage, rescaling of the time axes is necessary so that the 

events in the signal are matched for comparison. By using DTW, the Euclidean distance between 

the frequency vectors are calculated by looking at the similarity of the event signals. DTW 

algorithms ensure that the accumulated Euclidean distance between the frequency vectors of two 

signals is minimized when two vibration signatures are aligned. The optimized time alignment 

may be plotted in a time/time diagram. Figure 4 shows an example of a time/time diagram. In this 

chart, if the line is going along the diagonal, it represents that the two compared signals match in 

terms of the timing of the events. If the experimental data is higher than the reference data, the 

experimental data has a slower operation. Conversely, if the experimental data is lower than the 

reference data, the experimental data has a faster operation  [8]. There are three constraints for 

frame matching: first, the matching paths cannot go backwards in time; second, every frame in 

the input must be used for matching so that the allowable steps in the warping path to adjacent 

paths are restricted; and third, the warping path must start and finish along the diagonal of the 

chart  [32]. 
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Figure 4  A typical example of a time/time diagram in DTW  [4] 

After the optimized time alignment is found, the two frequency vectors are aligned. The 

difference between two corresponding frequency vectors is called spectral distance and it is 

expressed in decibels (dB). Since an event increases the spectral distance at the time that event 

occurs, a chart of spectral distance is very useful for diagnostic purposes. 

Figure 5 shows an example of spectral distance plot. Normal deviation shows that there is 

no abnormal event in the signal and it fluctuates at a certain range. In case of irregular deviation, 

the spectral distance increases compared to the normal deviation. In this way, mechanical events 

of a circuit breaker may be detected. 

 

Figure 5  A typical example of a spectral distance diagram in DTW  [8] 

Dynamic time warping is a simple method for signal analysis and does not involve any 

complicated calculations. However, this algorithmic approach has its shortcomings. First, the 



   

 16 

 

deviations are very sensitive to the signatures in both quiet and noisy regions of the signal. Even 

though two circuit breakers seem to be the same, some deviations in their vibration signals are 

noticeable. As no vibration signal can be perfectly reproduced, deviations always exist and, 

sometimes, it is not an easy task to recognize any irregularities when two signals are compared. 

Second, some faults are not detected with this method as long as they have the same frequency 

content and timing in the signal. Finally, lack of vibration can totally alter the timing of the 

vibration signature by slowing down the circuit breaker operations when there is no problem in 

the mechanical parts of the operating mechanism. Merely by finding signal deviations does not 

guarantee that events will be detected  [10]. 

3.3.2 Resolution Ratio (RR) 

The research team of D. P. Hess in the United States devised another method of 

comparing normal and test signals  [26]; they proposed entitling it resolution ratio (RR). 

Resolution ratio looks for the ratio of the normal Euclidean distance, which is defined between 

normal base and normal reference signals, and the test Euclidean distance, which is defined 

between normal base and test signals. 

The first step of RR is to prepare two sets of data featuring: base normal (SB) and 

reference normal (SR) values. Each set of the data contains several operations and the features are 

expressed as: 

SB = {ZBi, 1 ≤ i ≤ l}………………………………………………(1) 

SR = {ZRi, 1 ≤ i ≤ l}………………………………………………(2)  

Where i represents the number of operations of the circuit breaker. 

In the second step, several test data are captured from the breaker. The data is expressed 

as: 

ST = {ZTi, 1 ≤ i ≤ l}………………………………………………(3) 

In order to reduce randomness of the signals, average of the signals are calculated. 

Therefore, the average of SB is AB, the average of SR is AR, and the average of ST is AT. 

In the next step, the Euclidean distance is calculated between the normal averages and the 

test average. The normal Euclidean distance, 
iN

d ,is calculated by: 
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The test Euclidean distance, 
iT

d , is calculated by: 
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where ND is the length of the signal. 

The average of dN and dT are Nd  and Td  respectively. 

RR is defined by: 

T

N

d
RR

d
= ……………………………………………………….(6) 

RR is a useful indicator for describing the condition of a circuit breaker. RR works well 

when there are structural changes in the circuit breaker such as fractured and defective 

components. For a circuit breaker in normal condition, the value of RR is close to 1. Any RR that 

is above three standard deviations on the normal value is said to be in critical condition. For STS, 

any RR that is above 2 standard deviations on the normal value is said to be in critical condition. 

For short-time energy, any RR that is above 2.5 standard deviations on the normal value is said to 

be in critical condition  [26]. 

According to the research group of A. A. Polycarpou in the United States  [27], RR works 

satisfactorily in most cases. However, there are two disadvantages: first, sometimes overflow of 

the data may occur. Second, RR requires the average of several input signals in order to minimize 

the randomness effect of the data. However, it is not easy to retrieve several sets for one group of 

data, especially for test data.  

3.3.3 Discrete Envelope Statistics (DES) and event time extraction 

Discrete envelope statistics (DES) is another method of finding the envelope (amplitude) 

of the vibration signal  [27], The envelope is then used as the input of event time extraction. 

In the first step, DES is calculated by using this equation: 

( ) ( ) ( ) ( )2 1 1S i s i s i s i= − − + ……………………………..(7) 
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where s(i) is the vibration signal , i is the sample point, s(i-1) is the previous sample and 

s(i + 1) is the next sample. The term s(i-1)s(i+1) is used to reduce the harmonics produced by 

s
2
(i). On the other hand, S(i) contains high frequency components that is not important to signal 

analysis. Therefore, in the second step a low pass filter is used to filter out these components so 

that the output signal is smooth enough for signal analysis.  

In the third step, the signal is sampled (commonly from 8000 samples to 512 samples) by 

eliminating the outlier. In this case, the outlier is defined as any sample that is out of ±20% of the 

median of the signal. Then, the average of the envelopes captured in each operation is calculated. 

Next, the average signal is filtered by a low pass filter again in order to minimize the noise. This 

noise is produced by the nonlinear processing during the outlier rejection stage.  

Event timing extraction is used to locate the physical event in a signal. An event is 

characterized by large time derivative of the signal or sharp transition in amplitude. Event timing 

extraction is developed so that sharp transition is captured and the time of the event is known.  

Time derivatives of a signal envelope S(t) is calculated by: 

( )
( )( )1

dS t
F j F S t

dt
ω−  =  ……………………………………(8) 

where F
-1

 is the inverse Fourier transform. The sequence is divided into several portions 

so that each portion has the same time interval ∆T. The largest derivatives are selected from each 

of the portions of the sequence. These derivatives represent that an event exists in the signal. 

 In this method, the timing of the event is investigated. The timing of the events in the 

normal data are compared with the timing of the events in the test data by finding the correlation. 

Also, the time shift between the time location of events in the normal data and that of test data is 

calculated. If the time shift is larger than a certain threshold, the circuit breaker is classified as in 

abnormal condition. 

However, the derivative-correlation method has one shortcoming: it is not easy for this 

method to detect the location of the first event in the signal. In this case, an algorithm is built in 

order to find a point where there is an obvious and continuous increase in amplitude of the signal 

compared to the background noise. This point is considered to be the time location of the first 

event. 
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3.3.4 Chi-square based shape methods 

Chi-square Goodness-of-fit Test is a famous method in statistics for comparing observed 

data with data expected based on the particular distribution, such as the one based on theory (for 

example, if the difference between the observed distribution and normal distribution is not 

significant) or one based on some kind of known distribution. Reference  [27] proposes a 

statistical shape analysis test called variation of the Chi-square test [VCS] for goodness-of-fit. 

This test compares the local differences between two signals. 

In the first step, cumulative amplitude, A(t), is calculated by using this equation: 

( ) ( )
1

1 m

i

i

A t e t
m =

= ∑ ………………………………………………(9) 

where ei(t) [i = 1,2,…,m] represents the number of amplitudes in a circuit breaker. 

In the second step, the standard deviation of the amplitude values, δ(t), is calculated by 

using this equation: 

( ) ( ) ( )( )
2

1

m

i

i

t e t A tδ
=

= −∑ ……………………………………(10) 

In the third step, the value of the square-chi is calculated by using this equation: 

( ) ( )( )
( ) ( )
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………….(11) 

where N is the total number of points for comparison. For the purpose of comparing the 

test data and reference data , S(t) is the amplitude of the test signal, A(t) is the average amplitude 

of the reference signal, and d(t) = A(t) + δ(t) is the sum of the average amplitude and one 

standard deviation signal of the amplitudes. The value of VCS is defined as: 

( ) ( )
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A t S t
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A t d t
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……………………………………….(12) 

where VCS is the normalized value of χ2
. The normalization shown here is one standard 

deviation of amplitude. 

This method is applicable to classification of vibration signature problems since it fits the 

assumptions of the goodness-of-fit test. The primary advantage of VCS is that it is quite general. 

It can be applied to any distribution of data, either discrete or continuous, for which the 

cumulative distribution function can be computed. Also, it is an excellent tool for classification of 

circuit breaker problems as the nominal variable is grouped into classes (categorical). On the 
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other hand, there are two disadvantages. First, the test is sensitive to how the classification of the 

data is performed. Second, it requires significant data streams for the test in order to yield 

accurate results. 

3.3.5 Fractal Theory 

One research group developed a methodology to evaluate the vibration signature signals 

with fractal theory and wavelet transforms  [33]. Fractal theory is used to analyze the signals and 

wavelet transform is used to calculate the fractal characteristics of the signals. Given that two 

signatures are captured from the same mechanical conditions, the fractal characteristics are very 

similar. When there is a change in the condition, the fractal parameter changes accordingly so that 

the fault can be classified.  

The principle of fractal operation is to express complex physical phenomena in terms of 

simple analytical processes. Fractal theory has philosophic implications, discussion of which is 

beyond the boundary of this effort. By identifying simple but infinitely iterative processes as 

essential to complexity, fractal theory attempts to model complex processes by analyzing “self-

similarity.” “Self-similar” means that the original signal is broken down into an arbitrary number 

of small pieces when each of those pieces combined is a duplicate of the entire signal.  The 

primary parameter that measures the complexity of the signal is called fractal dimensions. It is 

based on the observation scale and the number of objects that are seen under the given 

observation scale. In the methodology proposed, three definitions of fractal dimensions are used. 

Reliance on only one variable set would not do justice to the complexity of signal physics. In fact, 

there are several fractal parameters that affect the characteristics of the fractal phenomena. The 

first one is the fundamental definition of fractal dimensions and it is expressed as: 

( )log

log

N r
D

r
= − ………………………………………………..(13) 

where parameter r is observation scale and N(r) is the number of the objects that are seen 

under the given observation scale.  

The second one is a modified version of the fundamental definition. It is the gradient of 

the point (r, N(r)) from the curve N(r)~r and it is expressed as: 

( )log

log

d N r
D

d r
= − ……………………………………………..(14) 

The third one is the local fractal dimension and it is defined as: 
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where N is the number of pieces of the signal, Li is the scale of the L
th
 piece of the signal, 

Pi is the fractal body’s developing interface probability and α is the local fractal dimension.  

α has no intrinsic meaning on comparing the characteristics of different signals. With the 

help of wavelet transform, signals can be compared and the detail of the signals can be captured. 

Wavelet transform is discussed in section 4.1. 

The method of using fractal theory to analyze vibration signals has an advantage that 

once the fractal characteristics are obtained for one breaker the result tends to be repetitive for 

every normal operation. Therefore, when there is a failure in that breaker the problem is detected. 

However, the disadvantage of this method is the process of obtaining firm fractal characteristics 

requires a large number of vibration samples.  

This chapter introduces the experiment set up of a breaker and how vibration signatures 

are obtained from an actual breaker. Also, this chapter has demonstrated a number of applicable 

algorithms including dynamic time warping [DTW], resolution ratio [RR], discrete envelope 

statistics and event time extraction, chi-square based shape methods, and fractal theory in terms 

of their principle, advantages, disadvantage, and the ability of solving the problem of analyzing 

vibration signatures of a breaker. Comparing these methods, DTW appeared to be the  best of the 

current methods since it is simple method in terms of the computation involved. Also, it does not 

require lots of input data in order to yield stable results. It does not have problem of data 

overflow. 

In the following chapters, a new method that analyze vibration signature will be 

proposed. The new method and DTW are applied to analyze a modelled breaker whose spring is 

faulty. Both methods will be implemented and compared and the result will be analyzed and 

discussed. 
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Chapter 4 

Proposed methods for analyzing vibration signals of a circuit 

breaker 

In the previous chapter, several methods of analyzing vibration signals of a circuit 

breaker are discussed. They are capable to detect the breaker whether the breaker is in the normal 

state or in the abnormal state. However, they are not able to tell the diagnostic personnel how bad 

the breaker performs. As a result, the lifespan of certain component in a breaker will not be 

known by solely knowing if a part is working or not. Therefore, a method that can classify and 

distinguish different states of failure is needed so that the degree of the malfunction can be 

captured. In this chapter, a method for analyzing vibration signals is proposed which is based on 

fuzzy classifications. This is implemented using fuzzy rules and genetic algorithms. 

4.1 Multi-resolution analysis 

There are many ways to analyze distorted signals in terms of feature extraction. In 

reference  [14], Fast Fourier Transform [FFT] is proven to increase the capability of analyzing 

signals. However, in order to do thorough manipulations of the signal, a large amount of data has 

to be stored and this method is not efficient enough for analyzing large amount of signal data. 

For multi-resolution analysis, wavelet transform is a tool chosen to perform multi-

resolution signal decomposition. Wavelet transform expresses the signal as a sum of wavelet 

signals at different positions and different scales. The wavelet coefficients represent the weights 

of the wavelets to shows the signal at these positions and scales  [15]. 

There are three ways to do wavelet transform. First, the Continuous Wavelet Transform 

[CWT] is defined as the sum of all of the time signals multiplied by scaled, shifted versions of the 

wavelet function ψ. The equation of CWT is: 

( ) ( ) ( ), , ,C scale position f t scale position t dtψ
∞

−∞

= ∫ ……….(16) 

The parameter C represents the wavelet coefficient in terms of scale and position. By 

multiplying each coefficient by the corresponding scaled and shifted wavelet, the original signal 

is obtained  [18]. The Wavelet Series [WS] is a representation of a square-integrable function by a 

certain orthonormal series generated by a wavelet  [19]. It maps a function of continuous variables 
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into a sequence of coefficients. Discrete Wavelet Transform [DWT] decomposes a discrete signal 

into different resolution levels providing a range of easily identifiable normal and abnormal data. 

In this thesis, DWT is used. 

DWT invokes the application of multi-resolution analysis [MRA] to analyze the signal by 

extracting information from any abnormal signals encountered. DWT is sufficient to decompose 

and reconstruct the signal in terms of the amount of information provided and the runtime. The 

transform features an increased scaling factor in order to reduce the number of coefficients so that 

the runtime is shortened. A function f(t) can be expanded in terms of its orthogonal basis ϕ(t). 

Orthogonal basis can be scaled to give multiple resolutions of the original signal. At scale j, the 

signal f(t) can be expressed as: 

( ) ( )2( ) 2 2
j

j

j

n

f t c n t nφ= −∑ …………………………….....…(17) 

where cj is the j level scaling coefficient. 

Function f(t) can be manipulated by using low- and high-pass quadrature mirror filters. A 

quadrature mirror filter is an array of filters which splits an input signal into two bands which are 

subsampled by a factor of 2. Low frequencies are encoded as high frequencies and vice versa. In 

the context of wavelet transform, quadrature mirror filter consists of low- and high-pass 

decomposition filters, and their associated reconstruction filters. Figure 6 shows a quadrature 

mirror filter system. 

 

Figure 6 Quadrature mirror filter 

In fact, many of the common wavelets such as Daubechies, Coifman, and Mallat and 

their scaling functions are in a quadrature mirror filter relationship  [17]. As a result, equation (18) 

can be represented in terms of both scaling functions and wavelet functions: 
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Where c0 is the zero level scaling coefficient and dj is the wavelet coefficient at scale j. 

ϕ(t) and ψ(t) are the scaling function and wavelet function respectively. n is the translation 

coefficient. ψ(2
j
t – n)  is the translated and scaled version of the wavelet.  

In addition, dj(k) is an expression in terms of wavelet function coefficients, h1(m-2k) and 

scaling coefficient cj+1(m): 

( ) ( ) ( )1 12
j j

m

d k h m k c m+= −∑ ……………………………….(19) 

In other words, in order to calculate the wavelet coefficient at scale j, convolution of 

wavelet function coefficients and scaling coefficients at scale j+1 and downsampling the result by 

a factor of 2 are required. The definition of h1(n) is: 

( ) ( ) ( )1 1 1
n

h n h n= − − ………………………………………….(20) 

where h(n) are the scaling function coefficient and h1(n) are the wavelet function 

coefficient. In fact, h1(n) is a high pass filter for the input signal in order to get the detailed 

coefficient. Here, impulse response g(n) is defined in order to find the low pass filter for the input 

signal in order to get the approximated coefficient. The equation of calculating the wavelet 

coefficient is: 

( ) ( ) ( )12
j j

m

c k g m k c m+= −∑ ………………………………..(21) 

Figure 7 shows the input signal (s), high pass filter, low pass filter, downsample modules, 

detail coefficient (cA), and approximation coefficients (cD). 

 

Figure 7 Discrete Wavelet Transform  [18] 
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The decomposition of the signal has halved the time resolution since half of the low pass 

filter and high pass filter represents the signal. On the other hand, each output has half of the 

frequency band of the input so the frequency resolution is doubled. The changes of the time 

resolution and frequency resolution obey the Heisenberg Uncertainty Principle, which states a 

tradeoff has to be made between finer time resolution and finer frequency resolution  [20]  [21]. 

MRA builds a time-frequency picture of the decomposed signal. Wavelet functions and 

scaling functions are important since they reconstruct the signal at different resolution levels. The 

wavelet functions give the detail of the decomposed signal and the scaling functions give the 

approximation of the decomposed signal.  

Multi-resolution signal decomposition provides two characteristics on the signal. First, it 

localized the signal in time for any transient phenomena. At the time of disturbance, localization 

appears by the presence of large wavelet coefficients. Second, it does partitioning of the signal 

energy at different frequency bands. Therefore, the frequency content of the signal is useful in 

order to do transient phenomena analysis. 

Figure 8 shows an illustrated example of MRA. The detail signals are composed by 

wavelet functions and the approximate signals are composed by scaling functions. Different 

levels of the composition are used so that the signals are “mathematically magnified.” In the 

figure, four levels of MRA are done. Four detail signals and an approximated signal are captured. 

One can reconstruct the original signal by adding all of these detailed and approximated signals. 

The DC offset of the original signal can be captured from the lowest level of approximated signal 

 [14]  [15]. 
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Figure 8 Multi-Resolution Analysis  [15] 

In fact, feature extraction is the pre-processing operation that converts a pattern from its 

original domain to a new form suitable for processing  [16]. MRA is one of those feature 

extraction techniques. 

After decomposing the input signal, it is important to detect and localize the features 

found in the output signals. In fact, the work of detection and localization is better in wavelet 

domain than in time domain. After the signal is processed with multi-resolution signal 

decomposition, the signal is separated into different resolution levels. For detail coefficients, any 

pattern changes in the signal can be detected and localized at the finer resolution levels due to the 

change of the magnitude of these coefficients. As these patterns are found, they are correlated to 

classification stages. However, the noise signal may hide the desired pattern as the noise level 

increases. This may cause a failure in wavelet detection and localization. One way to overcome 

this problem is to use approximated signal instead of detail signal and the duration of the signal is 

measured in order to filter out the unwanted portion of the signal pattern  [22]  [23].  

Multi-resolution analysis is a well-known method for speech recognition. By 

decomposing the speech signal into different resolution levels, vast amount of knowledge is 

obtained by extracting the features from the waves. Multi-resolution analysis is proposed for 
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analysing circuit breaker vibration signals since the signal for speech recognition is very similar 

to the signal generated by vibration in terms of the formation of signals. In fact, speech signals 

are also generated by the vibration of object and the mechanical energy of the vibrating object is 

converted to sound energy. Therefore, it is feasible to apply MRA for analyzing signals that are 

generated by breaker. At this stage, once the signal from the circuit breaker is disintegrated, the 

sub-components of the waves are analyzed and classified by the method discussed in the next 

section; fuzzy classifications using fuzzy rules and genetic algorithms. 

4.2 Fuzzy classifications using fuzzy rules and genetic algorithms 

This method is proposed by Ishibuchi which applies fuzzy IF-THEN rules and genetic 

algorithms (GA) to classify the classes of the data. IF-THEN rules are used to describe and 

classify the data when GA is used to minimize the number of fuzzy rules. Actually, this method is 

an optimization problem with three objectives: to maximize the number of correctly classified 

patterns, to minimize the number of incorrectly classified patterns, and to minimize the number of 

fuzzy IF-THEN rules.  

Fuzzy IF-THEN rules are generated in grid type fuzzy partitions in a pattern space. The 

fuzzy partitions can be small to represent a fine partition or it can be large to represent a coarse 

partition. In a pattern space, it is given that there are m patterns xp = (x1p, x2p) , p = 1, 2, …, m 

from M classes C1, C2, …, CM. A pattern xp is classified into one of those M classes by using 

fuzzy IF-THEN rules as these rules divide the pattern space into M disjoint decision area. An 

example of fuzzy IF-THEN would be: 

Rij
K
 = IF x1p is Ai

K
 AND x2p is Aj

K
, THEN xp belongs to Gij

K
.   

Where K is the number of fuzzy intervals in each axis, Rij
K  

is the name of the fuzzy IF-

THEN rule, Gij
K 

 is outcome of the classification, and Ai
K 

 and Aj
K
 are fuzzy sets with triangular 

membership function µi
K
(x1p) and µi

K
(x2p) defined by: 

 ( ) ( ) max 1 ,0K
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µ µ
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= = − 
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where 
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=

−
 and 
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K
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K
=

−
, i = 1, 2, …, K. ai

K 
is the center of the membership 

function where the function equals to one. b
K
 represents the width of the membership function. 

Figures 9, 10, 11, and 12 represents fuzzy pattern with different values of K. 
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Figure 9 The fuzzy pattern and string element for K = 2 

 

Figure 10 The fuzzy pattern and string element for K = 3 
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Figure 11  The fuzzy pattern and string element for K = 4 

 

Figure 12 The fuzzy pattern and string element for K = 5 

Sometimes, when there is no pattern in a certain fuzzy subspace Ai
K
 × Aj

K 
, a dummy rule 

is produced. In terms of classification, the area represented by a dummy rule is neutral in deciding 

which fuzzy subspace belongs to which class. In a pattern space whose interval is dividend into K 

sections, there are K × K partitions. Therefore, it has K
2
 fuzzy rules. The set of all fuzzy rules are 

expressed as SALL for K = 2, 3, .., L, where L is the maximum value defined in K : 

SALL = {Rij
K
 | i,j = 1, 2, …, K; K = 2, 3, .., L}…………………….(23) 
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The rule set SALL consists of 2
2
 + 3

2
 + … + L

2
 fuzzy rules. The objective of this 

classification method is to find a rule set S that minimizes the rules defined in SALL in order to do 

the classification of the given patterns. On the other hand, it is important to control the 

classification error to a reasonable level. The optimization is expressed as: 

Maximized f(S) = wNCP × NCP(S) – wNCP_WRONG × NCP_WRONG(S) – wS × |S| , S ⊆ 

SALL………………………………………………………………………..(24) 

where  NCP(S) is the number of patterns that is correctly classified, NCP_WRONG(S) is 

the number of patterns that is incorrectly classified, |S| is the number of rules in the rule set S, and 

wNCP, wNCP_WRONG, and wS are the weighting constants of the parameters NCP(S), 

NCP_WRONG(S) and |S| respectively.  

The optimization is done using Genetic Algorithm (GA). In order to apply GA, a string is 

composed with the fuzzy rules so that it is in the form of s1, s2, s3, …, sN, where N = 2
2
 + 3

2
 + 

…+L
2
. The value of each sr value in the string is “1”, “-1” or “0”. “1” represents that the r

th
 rule 

belongs to the rule set S. “-1” represents that the r
th
 rule does not belong to the rule set S, and “0” 

represents that it is a dummy rule. Since dummy rule has no functionality on classification 

procedures, it is valued as zero and these rules are excluded from the rule set S.  

There are four steps in operations of GA that can be done on the string. First, in 

reproduction phase a portion of the parent string is chosen in order to generate children strings. 

The selection probability depends on the value of f(S), the optimization function. The higher the 

value of f(S), the higher chance the string is picked for reproduction. Second, in crossover phase 

each of the strings is paired with other strings and parts of the elements are exchanged. The 

number of elements exchanged is randomized. Third, in mutation phase one element of a string is 

chosen randomly and that element is multiplied by –1. That is sr = sr × –1. Each element of each 

string is mutated with the mutation probability of Pm. Fourth, the worst individual (the string 

which has the lowest f(S)) is eliminated and it is substituted by the best individual (the strong 

which has the highest f(S)). 

The algorithm is very flexible and there are modifications that can be made for the 

purpose of analyzing circuit breaker signals. For example, in the above example, the signal 

consists of two elements: xp = (x1p, x2p) , p = 1, 2, …, m. In reality, the number of elements can be 

changed according to the characteristics of the input data. In other words, the fuzzy patterns are 

required to change accordingly since the grid of fuzzy rules is no longer two-dimensional but it 
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can be n-dimensional in order to accommodate the additional fuzzy rules for each for the 

additional dimension.  

The flexibility of this algorithm provides the most important advantage of applying fuzzy 

classifications using fuzzy rules and genetic algorithms: it is able to classify the failure cases into 

different categories in order to visualize the degree of the failure rather than applying dichotomy 

on the signals to distinguish between normal signals and abnormal signals. It is an important tool 

for asset management of circuit breaker so that the diagnostic personnel can make decision on 

replacing the faulty part depends on the lifespan of the part. For example, let say a failure scale is 

created between zero and three, where zero indicates that replacement is necessary and three 

indicates that the part is in mint condition. When moving part shows its failure state is two, the 

personnel can justify if it is a good decision to do the replacement today rather than waiting the 

part to deteriorate further until the failure state turns to one or zero so that a replacement can take 

place. 

In this chapter, multi-resolution analysis, fuzzy classifications using fuzzy rules and 

genetic algorithms are examined. In the following chapters, the problem and target of applying 

vibration signature analysis to find the failure of circuit breaker is defined. The circuit breaker 

model that generates the input data for multi-resolution analysis algorithm is examined in detail. 

Next, the simulation part of the thesis will show the analysing results of applying fuzzy rules and 

genetic algorithms and compare the analysing results with DWT covered in chapter 3. 
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Chapter 5 

Circuit breaker Simulink model 

Simulink is a graphical simulation tool manufactured by Mathworks Inc. which simulates 

models in engineering, mathematics, economics, and science. The data for the simulation in this 

thesis is retrieved from a circuit breaker Simulink model built for ABB. In this chapter, the 

description of the model is divided into two parts: the circuit breaker model and the vibration-

sensing model. 

5.1 Circuit breaker model 

The circuit breaker model used in thesis is a modification and an extension of the model 

presented in the PhD thesis written by Michael Stanek  [28]. The model visualizes the breaker 

components by using systems that consist of inputs, outputs, and processing unit. The processing 

unit functions are represented by blocks of equations, logic expression, and inequalities in 

Simulink. Three modifications have been made to Michael Stanek’s circuit breaker model in 

order to improve the accuracy of the output signal of a breaker. These modifications are: the 

calculation of withstand voltage, the implementation of arc model, and the addition of vibration 

sensing model. The change of withstand voltage and arc model is discussed in section 6.1.3 and 

the vibration sensing model is discussed in section 6.2. 

Figure 13 [28] shows a figure of a generic SF6 circuit breaker. It shows a modern live-

tank SF6 self-blast breaker with a spring-hydraulic operating mechanism. A circuit breaker 

consists of three parts: breaker control, operating mechanism, and interrupter. Breaker control 

monitors the status of the actuators, auxiliary contacts, and charging system in an operating 

mechanism by using control logic, limit switches, and sensors. The operating mechanism 

provides the force needed to establish the connection of the breaker and extinguish the arc in the 

interrupter. The force is transmitted by mechanical linkage to the interrupter. The interrupter is 

where the connection and disconnection of the circuit actually take place. Live wire in power 

distribution system is connected to the interrupter. SF6 gas is located in the interrupter in order to 

quench the arc. 

All circuit breaker types have their own unique behavior characteristics.  The model built 

in this thesis is based on ABB ELF SP 6-2 with an AHMA 8 drive mechanism.  
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The ELF SP is a SF6 high voltage AC circuit breaker with up to four interrupters per 

phase. The 6-2 model has two T-shape interrupters per pole. The interrupting chambers are 

constructed on a puffer piston principle and are equipped with double contacts. Wide space 

between the open contacts provides high dielectric strength. The interrupting chambers are driven 

by an actuating rod with a pneumatic operating mechanism. Model 6-2 was designed for 420 kV- 

rated voltage, 4 kA-rated current, and 63 A-rated breaking current. Figure 14 shows a picture of 

ABB ELF SP. The rated operating sequence is O-0.3s-CO-1 min-CO or CO-15s-CO  [29]. 

 

Figure 13 A generic description of a high voltage circuit breaker  [28] 
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Figure 14  A picture of ABB ELF SP  [29] 

 

The AHMA 8 is a hydraulic spring operating mechanism. It is a combination of a 

hydraulic operating mechanism and an energy storage disk spring assembly. Tripping of the 

operating mechanism and energy output are based on hydraulic operating techniques and include 

control valves and hydraulic cylinders. In detail, the activation of open coil and close coil actuates 

change-over valves which adjust the pressure in the main piston. The location of the main piston 

determines the opening position and closing position of the breaker. On the other hand, the 

tension of the spring is released according to the amount of oil needed for switching. Oil required 

from the high pressure storage is replaced immediately by a hydraulic pump  [28] [30]. The 

hydraulic pump is controlled by a limit switch and the limit switch is controlled by the position of 

the spring column. Figure 15 shows a picture of AHMA operating mechanism.  
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Figure 15 AHMA model 8  [30] 

Figure 16 [6] shows the complete view of the Simulink model. This model consists of 23 

subsystems. The important input of the model includes open command, close command, motor 

voltage supply, oil leak size of high pressure volume, gas pressure, travel limit of cylinder, 

damping limit of cylinder, source voltage, contact resistance, and contact mass. The important 

output of the model includes close coil current, trip coil current, motor voltage, motor current, 

load side voltage, and contact travel. Based on the extract of the circuit breaker layout and the 

previous measures have done experimentally on circuit breaker, the simulink model for spring 

and primary contact is modified. Improvement is done step by step to make the output signals to 

be more closely to measured signals. The improved part of the model is highlighted by blue line 

in Figure 16. 
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Figure 16 The model of a high voltage circuit breaker built by Michael Stanek  [28] 

 

The vibration of the model has several sources. Main spring, hydraulic cylinder, and 

primary contact contribute most of the vibration produced in a circuit breaker.  

5.1.1 Main Spring 

The spring in the spring hydraulic operating mechanism is the power source for 

operations in a circuit breaker. It provides pressure to the hydraulic pump and the hydraulic 

cylinder. The strength of the spring provided depends on nonlinear spring characteristics. Figure 

17 shows the Simulink model of main spring. The inputs include the oil flow into high pressure 

volume and data on spring specification such as limit and strength. The outputs of the model are 

spring position and spring force. Notice that the spring force is the input of the vibration sensing-

model [28].  

 

Figure 17 The Simulink model of main spring [28] 

 

5.1.2 Hydraulic cylinder 

A hydraulic cylinder consists of a piston which moves the circuit breaker contacts. Figure 

18 shows the cross section diagram of the hydraulic cylinder. The arc extinction unit includes 

fixed continuous current (1), fixed arcing contact (2), movable arc contact (3), and movable 

continuous current contact (4). For opening operations, the piston moves the contact to the open 
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position as hydraulic pressure of the enclosed gas increases and is applied to the top of the piston. 

The contact separately produces an arc that further increases the pressure of the SF6 gas. When 

the pressure of the gas reaches a certain level, gas is released from the quenching nozzle (8) and 

‘blows’ the arc. The nozzle shape of the contacts is tailor-made to allow airflow and optimized 

quench time. For close operation, the piston moves the contact to the closed position as hydraulic 

pressure is applied to both ends of the piston. Due to the area differences of both ends, the piston 

is moved to the desired position  [1]. Figure 19 shows the Simulink model of hydraulic cylinder 

[28].  

 

 

 

Figure 18 The four stages of hydraulic cylinder: (a) closed position of arc contact; 

(b) starting of the contact opening movement; (c) separation of arcing 

contacts; and (d) open position of arc contact. Parts: 1) fixed continuous 

current contact, 2) fixed arcing contact, 3) movable arcing contact, 4) 

movable continuous current contact, 5) compression cylinder, 6) 

compression piston, 7) actuating rod, and 8) quenching nozzle  [1]. 
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Figure 19 The Simulink model of hydraulic cylinder [28] 

 

5.1.3 Primary contact 

Primary contact is the location where the interruption of the current going through a 

circuit breaker takes place. In Michael Stanek’s model, load current flows through the contact 

when the contact voltage, the difference between the source voltage and the load side voltage, is 

larger than the dielectric withstand voltage of SF6 gas. Figure 20 shows the original primary 

contact Simulink model of Michael Stanek. There are two refinements on this model and they are 

highlighted with blue line in the figure. The left block represents the refinement of withstand 

voltage and the right block represents the refinement of arcing model. 
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Figure 20 The Simulink model of primary contact [28] 

 

The first refinement in Michael Stanek’s model is to recalculate the value of withstand 

voltage to reflect the fact that SF6 gas is an excellent current interrupting and insulating medium 

in an interrupter and SF6 is in effect when the breaker model demonstrate the opening and closing 

of the breaker. The withstand voltage can be calculated by using this equation: 

P
V d

RT

α

β τ
 

= × × 
 

…………………………………..(25) 

where V is the withstand voltage, P is the absolute pressure in atm, R is a constant 

(0.08205 liter-atm/mole-°K), T is the temperature in °K, d is the gap length in mm, and α,β, and τ 

are the empirical coefficients. For SF6 gas, α = 0.995, β = 1.01, and τ = 214. The equation of 

withstand voltage is applicable when the temperature is between -50°C and 800°C  [31] Figure 21 

shows the new Simulink model for withstand voltage.  
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Figure 21 The Simulink model of withstand voltage 

 

The second improvement on Stanek’s model is the implementation of Mayr arc model in 

the primary contact component. Arc model is formulated for better understanding of the current 

interruption behaviour and interrupting chamber operation in a circuit breaker. Mayr arc model is 

one of the most common tools to study the non-linear behaviour of the circuit breaker arc. The 

equation is: 

                                                                      

                                                                  ………………………(26)  

where g is the conductance of the arc, u is the voltage across of the arc, i is the current 

through the arc, τ is the arc time constant, and P is the cooling power in the interrupting chamber. 

Figure 22 [35] shows the Simulink model that demonstrates the Mayr arc model. 
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 Figure 22 Mayr arc model [35] 

5.2 Vibration-sensing model 

The third improvement on Stanek’s model is the addition of vibration-sensing model. The 

vibration-sensing model of the breaker model is derived from  [24]. In this model, a silicon 

micromachined accelerometer is simulated. Acceleration of the vibrating object prevents the mass 

of the sensor from resting and a differential change in capacitance is made which is proportional 

to the acceleration. This model reflects the dynamic performance of the sensing element and the 

control strategy (closed loop), and electrostatic force.  

A micromachined sensing element consists of three layers. The top layer is “top 

electrode,” the middle is “seismic mass,” and the bottom is “bottom electrode.” Differential 

change of the capacitance between each of the layers determine the output voltage which 

represents the vibration signal. As the seismic mass is vibrating, it is no longer at the centre 

position of the accelerometer. At that time, electrostatic force exists and it pulls the seismic mass 

back to its original position. In the model, the electrostatic force is represented by a spring. 

The sensing element is a second order system with a mass, spring, and a form of damping 

caused by the mass that the accelerometer is detecting. On the other hand, the damping is not 

linear since the gap between the electrodes and the mass is much smaller than the area of the 
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accelerometer. As the mass moves, the air in the gap cannot escape in a sufficiently short period 

of time. As a result, pressure builds up between the electrode and the mass. When the 

accelerometer is installed in different locations of the mass, damping coefficients may vary.  

Figure 23 shows a Simulink model of the vibration-sensing model used for this thesis’s  

simulation. The input of the model is the damping coefficient of the mechanical part and the 

states of the open/close of that part in the circuit breaker to make sure that vibration occurs when 

it is operated. The output is the vibration signature of the mechanical part and it is shown in 

Figure 24. The transport delay block and its corresponding +/- block ensure that the input of the 

model is a very-short-time-duration pulse. The saturation block shows that there is a physical 

restraint in the movement of the mass due to the top and bottom electrodes. The “50” gain block 

represents the spring constant of the accelerometer. The “10” gain block represents the seismic 

mass of the accelerometer. The feedback loop from the two integrators represents the nonlinear 

viscous damping.  

 

Figure 23 The Simulink vibration-sensing model 

 



   

 44 

 

 

Figure 24 The vibration signature generated by the Simulink vibration-sensing 

model 

Figures 25 and 26 compare the vibration signature when the spring gain (The “50” 

triangular block in fig. 11) is changed to 0.05, 5, 50, 50000, and 5000000. The first 200000 

samples are compared in these charts. From the figures, it is observed that the shape of the 

vibration signature is very similar for each level of spring gain, but as the spring gain increases, 

the amplitude of the fluctuation increases. This results because the spring gain in the diagram 

represents the spring constant in the accelerometer. If the spring constant is large, the spring has 

more force to place the seismic mass back to its original position. As a result, the seismic mass 

experiences more vibration as shown. On the other hand, as spring constant is low, the force 

provided by the spring is low, therefore it takes shorter time for the spring to place the seismic 

mass back to its original location. As a result, the vibration is larger in terms of the amplitude.  
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Figure 25 A comparison of the vibration signature for spring gain is 50, 5, and 0.05 

 

Figure 26 A comparison of the vibration signature for spring gain is 5000000, 

50000, and 50 

 

Figure 27 compares the vibration signature when the damping constant (The “50” 

rectangular block in figure 11) is changed to 0.5, 50, and 5000. The first 200,000 samples are 
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compared in these charts. As the value of damping increases, the amplitude of the vibration 

signature decreases. 

 

Figure 27 A comparison of the vibration signature for damping constant is 0.5, 50, 

and 5000 

 

Figures 28 and 29 compare the vibration signature when the gain (The “10” rectangular 

block in figure 11) is changed to 0.5, 1, 2, 5, 10, 20, and 50. The first 150,000 samples are 

compared in these charts. It is observed that as the value of gain deceases, the amplitude of the 

vibration increases. Since the value of gain represents the mass of the seismic mass, as the mass 

decreases, the vibration is likely to increase. 
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Figure 28 A comparison of the vibration signature for gain constants are 0.5, 1, 2 

and 5 
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Figure 29 A comparison of the vibration signature for gain constants are 5, 10, 20 

and 50 

This chapter discussed the circuit breaker model used to mimic an actual circuit breaker. 

In chapter 3 and chapter 4, different methods of analyzing vibration signals are introduced and 

compared in terms of their advantages, disadvantages, and their ability to analyze breaker 

vibrations in order to find the failure of a breaker. In chapter 5, the problem and the target of how 

to find a failure of a circuit breaker using vibration signatures are formulated. In this chapter, the 

method of how vibration signals are generated is examined. In the breaker model, the interactions 

between the components are demonstrated in terms of equations, logic, and inequalities. Some 

modifications are made so that it is more customized to the opening and closing operations of a 

breaker. In addition, a sensor model is created so that any failure in a breaker is converted to a 

form that makes the signal visible for diagnostic purpose. In the next chapter, there are 

demonstrations of the detection of failure of a simulated breaker by using proposed vibration 

analysis method. There is a discussion of why this proposed method is better than the 

conventional method. 
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Chapter 6 

The simulated results and the analysis 

In the previous chapters, different methods of analyzing vibration signals are introduced 

and compared in terms of their advantages, disadvantages, and their ability to analyze breaker 

vibrations in order to find the failure of a breaker. Moreover, the breaker model and the sensing 

model that are used for generating vibration signals are described. In this chapter, there are 

demonstrations of the detection of failure of a simulated breaker by using proposed vibration 

analysis method. There is a comparison of the results between the proposed method and the 

conventional method. 

In the diagnostic process of a breaker, a tool that describes the degree of wear of a 

mechanical part is helpful for asset management of circuit breaker since the diagnostic personnel 

can make a better decision on replacing the faulty part depends on the lifespan of the part. For 

example, the state of a part is described by a failure scale between zero and three, where zero 

represents replacement is crucial and three represents the part is in mint condition. When moving 

part shows its failure state is one or two, the personnel can apply cost-benefit analysis to justify if 

it is a good decision to do the replacement today rather than waiting the part to deteriorate further 

until the failure state turns to one or zero so that a replacement can take place. In order to perform 

this task, an algorithm that solely divide the cases into two categories “pass” and “fail” may not 

be capable to do this job, Instead, an algorithm that can demonstrate the degree of corrosion of a 

certain part is applicable in this case. 

In the simulation, spring is chosen for the study since spring is one of the most active 

parts in a breaker when a breaker is opened or closes. The spring in the spring hydraulic operating 

mechanism is the power source for operations in a circuit breaker. It provides pressure to the 

hydraulic pump and the hydraulic cylinder. When there is a failure in a breaker, it is likely that 

spring is the part that causes the problem. In order to measure the performance of a spring in 

terms of its elasticity, spring constant is applied. Therefore, spring constant is chosen as the 

variable of the simulation.  

The simulation data comes from the model of circuit breaker described in chapter 6. The 

data is collected when the model breaker is changing from the state of closing to the state of 

opening. For the purpose of classifying the normal cases and abnormal cases, the spring force is 

manipulated. According to the specification of ABB AHMA 8, the nominal value of spring force 
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is 90000 N. In order to classify the fault cases, four categories are created. In the first category, 

spring constant is below 20000N. In the second category, spring constant is between 20000 N and 

40000 N. In the third category, spring constant is between 40000 N and 80000 N. In the last 

category, the spring constant is between 80000 N and 100000 N. The first three cases are 

considered as faulty state and the last case is considered as healthy state. In terms of the 

severeness of the spring, category 1 requires immediate replacement of the spring while category 

2 and category 3 do need attention from the diagnostic personnel but no immediate replacement 

of spring is necessary. 

In the first part of the simulation, the vibration waveforms are analyzed using dynamic 

time warping. The original time domain signal is divided into several portions defined by a 

constant time interval. Fast Fourier Transform is used to find the frequency content of each signal 

frame. The frequency components are plotted in logarithmic scale so that the events that yield 

weak signals are detected. The Euclidean distance between the frequency vectors are calculated 

by looking at the similarity of the event signals. DTW ensure that the accumulated Euclidean 

distance between the frequency vectors of two signals is minimized when two vibration 

signatures are aligned. Normal deviation shows that there is no abnormal event in the signal and it 

fluctuates at a certain range. When there is an irregular deviation, the spectral distance increases 

compared to the normal deviation. Consequently, mechanical events of a circuit breaker may be 

detected. 

In the second part of the simulation, the vibration waveforms are analyzed and 

decomposed using multi-resolution analysis (MRA), as mentioned in Chapter 4.1. Nine levels of 

resolution levels are captured. After the waveforms are produced, the standard deviations of each 

level of approximate signals are calculated and it is shown in Figure 30. From the figure, it is 

observed that level 2, 3, and 4 have the highest standard deviations among all of the levels. In 

other words, level 2, 3, and 4 contain the highest level of signal energy and are suitable for 

classification. Each of the case is plotted three-dimensionally according to the standard deviations 

of level 2, 3, and 4 and fuzzy rules and genetic algorithm which described in Chapter 6.4 are 

applied to categorize the cases. 

After analyzing the vibration signals with these two methodologies, the accuracy results 

are compared and the conclusion of which method is the best can be made. 
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Figure 30 The standard deviations of the vibration signals of nine levels 

6.1 Result of Dynamic Time Warping [DTW] 

This Chapter will discuss the result of applying dynamic time warping to analysis the 

vibration. In the simulation, waves from each of the four categories are obtained from the model. 

In Figure 31, the scenario of category 1 (spring constant 3600 N against 85500 N) is compared 

with the scenario of category 4 (spring constant 90000 N against 85500 N). Blue line represents 

the deviation from category 1 and green line represents the deviation from category 4. From the 

figure, normal deviation is shown except the time between 0.225 second and 0.275 second, when 

there is irregular deviation.  
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Figure 31 The comparison of frequency content between category 1 and category 4 

 

In Figure 32, the scenario of category 2 (spring constant 28800 N against 85500 N) is 

compared with the scenario of category 4 (spring constant 90000 N against 85500 N). Blue line 

represents the deviation from category 2 and green line represents the deviation from category 4. 

From the figure, normal deviation is shown except the time between 0.37 second and 0.47 

second, when there is irregular deviation. 
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Figure 32 The comparison of frequency content between category 2 and category 4 

 

In Figure 33, the scenario of category 3 (spring constant 55800 N against 85500 N) is 

compared with the scenario of category 4 (spring constant 90000 N against 85500 N). Blue line 

represents the deviation from category 3 and green line represents the deviation from category 4. 

From the figure, normal deviation is shown except the time between 0.1 second and 0.17 second, 

between 0.31 second and 0.34 second, and between 0.42 second and 0.44 second, when there is 

irregular deviation. 
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Figure 33 The comparison of frequency content between category 3 and category 4 

 

In Figure 34, the scenario of category 4 (spring constant 84600 N against 85500 N) is 

compared with the scenario of category 4 (spring constant 90000 N against 85500 N) as a control 

experiment. Blue line represents the deviation from category 4 (spring constant 84600 N against 

85500 N) and green line represents the deviation from category 4 (spring constant 90000 N 

against 85500 N). From the figure, normal deviation is maintained in the entire period of time. 
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Figure 34 The comparison of frequency content between category 4 and category 4 

 

From the above figures, it is observed that DTW is an effective method to classify the 

abnormal cases from the normal cases in case of malfunction of spring. However, it is very 

difficult to distinguish each of the failure case. It is almost not possible to know how the spring 

performs and it does not give enough information on the decision making process of whether the 

replacement of the spring is necessary or not. DTW is not an ideal solution for asset management 

of circuit breaker since it does not provide the full picture of the situation. 

6.2 Result of optimizing fuzzy rules with genetic algorithm 

In Chapter 6, when the algorithm of fuzzy rules and genetic algorithm is introduced, the 

pattern is descried in two-dimensions. However, it is not enough to allocate all of the wave 

features (Standard deviations of level 2, 3, and 4 of approximate signals). Therefore, the fuzzy 

rules are modified so that it is now in three-dimensions in order to accommodate adequate 

information for classifications. Figure 35, 36, 37, and 38 shows the new fuzzy rules for different 

value of K in three-dimensions, according to equation (22).  
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Figure 35 The fuzzy pattern and string element for K = 2 in three dimensions 

(compare this figure with Figure 9) 

 

 

Figure 36 The fuzzy pattern and string element for K = 3 in three dimensions 

(compare this figure with Figure 10) 
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Figure 37 The fuzzy pattern and string element for K = 4 in three dimensions 

(compare this figure with Figure 11) 

 

 

Figure 38 The fuzzy pattern and string element for K = 5 in three dimensions 

(compare this figure with Figure 12, the name of the rules are omitted) 
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According to equation (23), there are 2
3
 + 3

3
 + 4

3
 + 5

3
 = 224 fuzzy rules in total. After the 

standard deviations of the decomposed signals are calculated as shown in Figure 30, these three-

dimensional points from level 2, 3, and 4 signals are classified into different rules. Table 2 shows 

the rules in each of the category before running the genetic algorithm. 

Table 2 Fuzzy rules defined in each of the category before running the genetic algorithm 

Category Applicable fuzzy rules that defined in the category Number of fuzzy 

rules 

Category 1 (Spring 

constant: less than 20000 

N) 

1,7,8,9,18,22,35,36,52,56,57,77,78,98,99,130,131,

156,162,193,219 

21 

Category 2 (Spring 

constant: between 20000 

N and 40000 N) 

1,2,7,9,22,23,36,57,59,77,100,105,125,162,164 15 

Category 3 (Spring 

constant: between 40000 

N and 80000 N) 

1,8,9,13,35,36,56,57,79,99,101,131,194,224 14 

Category 4 (Spring 

constant: between 80000 

N and 100000 N) 

1,9,10,21,36,42,52,100,107,131 10 

 

From the above table, many of the rules are shown in more than one category, therefore, 

based on the above information the ability of classifying a case to one category is weak. That is 

the reason why genetic algorithm is important in order to reduce the replications of the rules and 

make rules more exclusive to one class. Equation (24) is the key of the algorithm so that the 

number of rules decreases while each of the remaining rules is able to cover all of the cases in a 

category. In the algorithm, the accuracy of the result and the efficiency of eliminating fuzzy rules 

depend on the value of the parameters. In the experiment, the value of wNCP is 10, the value of 

wNCP_WRONG is 50 and the value of wS is 60.  

Table 3 shows the result of the algorithm in terms of the rules for each category and the 

accuracy of identifying the cases. The result is acquired at the 500
th
 generation of the genetic 

algorithm. 
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Table 3 Fuzzy rules defined in each of the category after running the genetic algorithm 

Category Applicable fuzzy rules 

that defined in the 

category 

Number of 

fuzzy rules 

Number of 

correct 

cases 

identified 

Number of 

incorrect 

cases 

identified  

Accuracy 

Category 1 

(Spring 

constant: 

less than 

20000 N) 

18,78,98,131,219,162,130 7 8 0 100% 

Category 2 

(Spring 

constant: 

between 

20000 N and 

40000 N) 

100,105,162,125,164 5 7 2 77.8% 

Category 3 

(Spring 

constant: 

between 

40000 N and 

80000 N) 

99,101,131,194 4 10 0 100% 

Category 4 

(Spring 

constant: 

between 

80000 N and 

100000 N) 

10,21,100 3 4 1 80% 

Overall 

Accuracy 

    90.6% 

 

Table 3 shows that the number of rules decreases once genetic algorithm is applied to 

optimized the number of fuzzy rules. The overall accuracy is based on the number of cases that  

are correctly located in one category and the number of cases that are incorrectly located in this 

category. It is found that the overall accuracy of the classification system is 90.6%. When a 

vibration signal is given with unknown condition of the spring, there is a high probability for the 

algorithm to classify the case into a correct category by using the fuzzy rules in Table 3 so that 
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the diagnostic personnel will know if the spring needs immediate replacement (category 1) or 

cautious attention (category 2 and category 3).  

Figure 39 shows the relationship between number of generations of the genetic algorithm 

and the number of fuzzy IF-THEN rules for classifying the four categories. It shows that as the 

number of generations increases, GA eliminates the fuzzy rules as more optimization training of 

the data is involved, and the number of output fuzzy rules decreases. 

The relationship between GA generations and number of fuzzy 

rules
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Figure 39 The relationship between number of GA generations and number of fuzzy 

rules  

 

6.3 Discussion of different solving methodologies 

In this chapter, two methods of analysing vibration signatures from circuit breakers are 

implemented. The cases are drawn based on the change of spring constant, representing the 

performance of the spring in the operating mechanism. In the first part of the chapter, Dynamic 

Time Warping [DWT] is used to identify the faulty cases from the normal cases by looking at the 

deviation of the vibration signature frequency content. When the deviation is significantly larger 

than a specified range as shown in the examples of category 1, 2, and 3 in figure 27, 28, and 29, 

the case is irregular. This algorithm is easy and simple and it requires not much computation 

power. However, it is not capable of identifying the severity of the breaker failure from looking at 

the frequency variation.  On the other hand, in the second part of the chapter when multi-

resolution analysis [MRA], fuzzy rules, and genetic algorithm are used, the algorithm was 

capable of not only distinguishing the abnormal cases from the normal cases, but also classifying 
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the vibration signatures into different category so that the spring condition is known immediately. 

Fuzzy rules is capable of classify a new case to a category and genetic algorithm is an effective 

tool to minimize the applicable fuzzy rules. The accuracy of the identification was over 90%. 

As the theory and implementation of the conventional algorithm and proposed algorithm 

are discussed, in the next chapter some suggestions are provided for future improvements of the 

project. Also, the conclusion of the thesis is provided too. 
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Chapter 7  

Contribution, Future Prospects and Conclusion 

The main contribution of this research in solving the problem of predictive maintenance 

of circuit breaker is to propose new method of analyzing circuit breaker vibration signals as these 

signals contain useful information for diagnostic purpose such as the source of the fault in a 

breaker and the degree of the fault so that diagnostic technician can use this information for 

decision making in breaker maintenance. In this thesis, spring problem is demonstrated as an 

example of how signal processing technique is applied with the task of analyzing vibration 

signals. Selection of the best signal processing technique is accomplished so that the technique is 

accurate, user-friendly, and clear and easily understood. However, there are a number of research 

areas requiring further investigation in order to provide more information to power engineers on 

how to statistically anticipate circuit breaker problems. 

Yet, a number of insights were provided. Instead of capturing vibration data from a 

circuit breaker model, researchers may capture data from a genuinely operating circuit breaker. 

Section 3.1 describes several examples how this may be set up. For example, the circuit breaker 

needs to be locked on the ground to make sure it will not slide when it opens or closes. 

Accelerometers are attached on the surface on the operating mechanism and arcing chamber. 

Accelerometers are connected to DC source and oscilloscope to capture and save or print out the 

vibration waveforms. Researchers must be aware of qualifying conditions: each circuit breaker 

has its unique vibration signature, so when comparing vibration signature between different 

circuit breakers, signal calculation adjustments are required. 

This analysis used a change of spring constant protocol to monitor the performance of 

how the spring provides kinetic energy to the breaker. In the future, different parameters may be 

monitored and the researchers may examine the condition of circuit breakers based on new data. 

For example, valve position in trip and close coils, acceleration parameters in the changeover 

valve, damping in hydraulic cylinders and mechanical linkages, gas pressure in primary contacts, 

and breaker resistance in line systems. When performance is measured with these parameters, 

power engineers may have a clearer picture of how each component of a breaker is working 

together. 
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A by-product of this thesis is the realization that test procedures must be standardized so 

that when a breaker is operated, the signatures from different parts of a breaker are stored in a 

database. As this database builds up, more data would be available and power engineers would be 

able to apply different data mining techniques for analysis. This takes time and it may even take 

years to obtain data on most possible outcomes from breaker events, but once this database is 

maturely established, breakers could be remotely monitored ultra-efficiently.  

Finally, the data can be useful to other types of circuit breakers since different kinds of 

circuit breaker may have similar problems in operation and their vibration signatures may look 

very similar. This database model may serve as a prototype for finding problems even though 

other models use different components. 

In this thesis, the importance of circuit breakers as mechanical switching devices that 

carry and disrupt electrical current in a circuit is discussed. Circuit breakers must function in 

normal and abnormal conditions, and must accommodate short circuits and outages. When there 

is a fault, the circuit breakers isolates the problem area so that extremely high currents do not 

flow into the whole power grid network thereby damaging related electrical devices including 

generators, transformers, and the loads. The importance of the circuit breaker function provides 

incentive for utility companies to spend money and manpower to utilize and maintain circuit 

breakers so that the reliability of the power supply can be more secure and the chance of 

damaging devices due to extremely high current exposure decreases. Traditionally, circuit 

breakers are monitored manually. Technicians rarely use measuring instrumentation to assist 

them in finding a problem nor do they use measuring instrumentation for troubleshooting. 

Instead, they use eyes to accomplish professional inspection. This way of doing maintenance is 

insufficiently accurate and results in possible overlooking of breakers faults. Moreover, there is a 

fundamental paradox involved in traditional circuit diagnostic techniques. Examining and 

inspecting circuit breakers involves disassembly. For example, the technician examines the 

lubrication of the mechanical parts, the dielectric strength of the contacts, and the pressure of the 

SF6 gas. This part, inspection, is done manually; it is simple and the usage of special equipment is 

minimized; however, the process may be very time-consuming. More significantly, the 

deconstructing and reassembly of breakers may introduce new faults that affect the reliability of 

the load’s power supply. 

As CIGRE discovered that majority of the failure of a breaker comes from operating 

mechanism, the goal of this study is to make the task of monitoring problems in operating 

mechanism more accessible. This study demonstrates how vibration signatures may be used in the 
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predictive maintenance context. There are three advantages of monitoring circuit breakers using 

vibration signatures. First, this method does not involve contact, travel and technician time. 

Second, those most familiar with breaker performance will have historical benchmark for 

comparison purposes. Third, vibration monitoring techniques are applicable for any kind of 

circuit breakers, regardless the structure of the breakers and the rated voltage. 

There are many parameters that are available for monitoring the condition of a circuit 

breaker. The confirmed hypotheses was that vibration signatures obtained on operating 

mechanisms and arcing chambers and that vibration signatures are reliable sources for evaluating 

circuit breaker operational integrity. Although further research is suggested, this thesis applied 

digital signal processing techniques on the vibration signature to retrieve useful information about 

breakers.  

There are different algorithms available for vibration analysis. From the literature review, 

dynamic time warping [DTW], Resolution Ratio [RR], Discrete Envelope Statistics [DES] and 

extract time extraction, Chi-square based shape methods, and fractal theory are applied by 

different researchers. This research applied multi-resolution analysis to decomposed and 

differential signal levels. Data mining techniques were used to draw useful information from 

these waves. From the variation of the data point allocations in different cases, classification 

became available. In this research, optimizing fuzzy rules using GA is analyzed. 

The vibration data is obtained from a circuit breaker Simulink model. The circuit breaker 

model used in thesis is a modification and an extension of the model proposed by Michael 

Stanek. The model demonstrates the operation of a modern live-tank SF6 self-blast breaker with a 

spring-hydraulic operating mechanism. The model visualizes the breaker components by using 

systems that consist of inputs, outputs, and processing unit. The processing unit functions are 

represented by blocks of equations, logic expression, and inequalities in Simulink. Modifications 

have been made to Michael Stanek’s circuit breaker model in order to improve the accuracy of 

the output signal of a breaker, including the calculation of withstand voltage, implementation of 

the arc model, and the addition of vibration sensing model. The vibration sensing model is the 

module where vibration signals are generated.  In this model, a silicon micromachined 

accelerometer is simulated. This model reflects the dynamic performance of the sensing element 

and the control strategy (closed loop), and electrostatic force. As the state of the breaker changes, 

the sensing element oscillates due to change of electrostatic force and vibration signal is captured.  

In the simulation part of the thesis, spring performance was chosen as an example of how 

vibration signature analysis may be implemented since spring is one of the major sources of 
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energy in a breaker. Two methods of analysing vibration signatures from circuit breakers are 

studied. Dynamic Time Warping [DWT] is competent to identify the faulty cases from the normal 

cases from looking at the deviation of the vibration signature frequency content. When the 

deviation is significantly larger than a specified range, the case is faulty. In contrast, the method 

was not capable to identify the degree of how bad it performs from looking at the frequency 

variation.  In the second method, when multi-resolution analysis [MRA], fuzzy rules, and genetic 

algorithm are used, the method was capable of not only distinguishing the abnormal cases from 

the normal cases, but also the classifying of the vibration signatures into different categories so 

that the spring condition can be retrieved immediately. Fuzzy rules is capable of classify a new 

case to category and the genetic algorithm is an effective tool to minimize the applicable fuzzy 

rules. The accuracy of the identification is very satisfactory, which is over 90%. 
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