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ABSTRACT 

 
The natural ability of filamentous fungi to synthesize, glycosylate, and secrete high levels 

of protein products has made them potentially attractive hosts for heterologous protein 

production. Advances in fungal genetics enabled the expression of several high value 

proteins in filamentous fungi. Particularly the genus, Aspergillus has proven to be 

potentially useful for the expression of eukaryotic gene products. This thesis pertains to 

the optimization of recombinant protein production by the fungal host, Aspergillus niger. 

The target recombinant protein of interest is hen’s egg white lysozyme (HEWL). This 

protein encoded in the genome resulting in relatively stable gene construct; however, it is 

subject to extracellular protease attack. 

The objective of the proposed research is the development and application of engineering 

methodology for the analysis and optimization of a fungal bioprocess for recombinant 

protein production. The underlying hypothesis is that a significant improvement of target 

protein productivity is achievable by using appropriate optimization techniques.  

To accomplish this, during the first phase of this study a statistically based experimental 

method was used to systematically elucidate the effect of medium components (starch, 

peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen’s egg white 

lysozyme production by Aspergillus niger HEWL WT-13-16.  A 25-1 fractional factorial 

design augmented with center points revealed that peptone, starch, and ammonium 

sulfate were the most significant factors, whereas the other medium components were not 

important within the levels tested. Then, the method of steepest ascent was employed to 

approach the proximity of optimum. This task was followed by a central composite 

design to develop a response surface for medium optimization. The optimum medium 

composition for lysozyme production was found to be: starch 34 gL-1, peptone 34 gL-1, 

ammonium sulfate 11.9 gL-1, yeast extract 0.5 gL-1, and CaCl2.2H2O 0.5 g L-1. This 

medium was projected to produce theoretically 212 mgL-1 lysozyme. Using this 

optimized medium, an experimentally observed maximum lysozyme concentration of 

209± 18 mgL-1 verified the applied methodology.  
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A second optimization approach was based on metabolic flux analysis (MFA). A 

comprehensive metabolic network comprising three intracellular compartments 

(cytoplasm, mitochondrion and peroxisome) was developed for Aspergillus niger.  The 

metabolic flux network included carbohydrate and amino acid metabolism in both 

anabolic and catabolic reactions. According to experimental observations, the time course 

of fermentation was divided into five phases, each with unique physiological properties. 

The network was used to form a set of linear algebraic equations based on the 

stoichiometry of the reactions by assuming pseudo-steady state for intracellular 

metabolites. The metabolic flux model consists of 137 metabolites and 287 processes, of 

which 181 represent biochemical conversions and 106 represent transport processes 

between the different compartments and the extracellular environment. In addition, due to 

the physiological evidence some biochemical reactions considered to be active only in 

one direction. Linear programming was used for optimizing of the specific growth rate as 

the objective function in combination with 37 measured input and output fluxes of the 

key metabolites to evaluate corresponding intracellular flux distributions throughout the 

batch fermentations. The general applicability of the methodology was evaluated by 

establishing commonality to optimize recombinant HEWL production. The proposed 

model was able to predict correctly the specific growth rate, oxygen uptake rate, and 

carbon dioxide evolution rate with good precision.  

The results of the metabolic flux and sensitivity analysis were employed for medium 

design. Growth was biphasic; glucose was utilized initially as the carbon source and was 

followed by its oxidation product, gluconate, later. Logarithmic sensitivity analysis 

revealed that the addition of proline, alanine and glutamate benefited growth in defined 

media.  The experimental observations and flux analysis showed that tyrosine was a 

potential candidate for biomass production improvement. The two amino acids, namely 

proline and tyrosine benefited biomass production during the initial growth phases. 

Glutamate and alanine were particularly important during the latter stages of the batch 

process.  

A series of growth studies were conducted with the identified amino acids added in the 

medium. In these preliminary nutritional experiments the contribution to growth 

enhancement was 46% for proline, 23% for glutamate, and 22% for tyrosine. Model 



 v

predictions were further verified by conducting batch and fed-batch fermentations in a   

7- liter bioreactor. The programmed addition of four amino acids (proline, glutamate, 

alanine, and tyrosine) according to a predetermined schedule resulted in a 44% 

improvement in biomass and 41% improvement in recombinant protein production.  The 

experiments also confirmed the model prediction that extra amount of amino acids 

besides the identified ones would not significantly enhance biomass and the recombinant 

protein production.  

A computer-based control system was developed for the on-line monitoring and control 

of the major state variables (e.g., temperature, pH, and DO) during the time course of 

fermentation. The graphical programming environment, LabVIEW was used to acquire 

and integrate these variables in a supervisor computer. The temperature of the bioreactor 

during sterilization and fermentation was controlled using a cascade methodology. The 

controller parameters of the master and slave loops were determined experimentally to 

yield a smooth response with minimum overshoot of both the bioreactor and jacket 

temperatures. The program scheduled various required steps in an established order 

during the fermentation. This feature of the software guarantees that every necessary 

operation will be met. The graphical representation of the process is displayed on the 

screen and helps the user to follow the process and perform the required adjustments. 

Furthermore, different variables can be observed simultaneously and saved in text or 

spreadsheet files for further analysis. 
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CHAPTER 1 

 

 
INTRODUCTION 
 

 

 
 

1.1   Recombinant Protein Over-expression 

 
The over-expression of a recombinant cell product is the primary goal in any 

biopharmaceutical process. In this regard, several strategies such as strain development, 

medium optimization, bioprocess optimization, and mathematical modeling have been 

widely used. A wide range of parameters can effect growth and product formation in a 

fungal fermentation process, including medium composition, pH, temperature, dissolved 

oxygen, shear stress, and fungal morphology (Xu et al., 2000). Extra care must be applied 

when the fermentation process employs a recombinant host. Medium development is of 

outmost importance when developing an industrial fermentation, because cell growth and 

metabolite production are strongly influenced by medium composition (e.g., carbon, 

organic nitrogen, and inorganic salts) and environmental conditions (e.g., temperature, 

agitation, and pH) (Wang et al., 2003a). Traditional method of optimization involves 

varying one factor at a time, while keeping the others constant. This strategy is simple 

and easy to implement with no need for statistical analysis; although, it may require a 

relatively large number of experiments and frequently fails to achieve optimal conditions 

(Kalil et al., 2000). This important shortcoming is due to the inability of the approach to 

consider the effect of possible interactions between factors. This deficiency can be 

overcome by applying more efficient, statistically based experimental design (Rathi et al., 

2002).  
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In this regard, factorial experimental design and response surface analysis are important 

tools to determine optimal process conditions. Statistical optimization not only allows 

quick search of a large experimental domain with considerably fewer trials, but also 

reflects the role of a given factor in medium. Moreover, the interaction between different 

variables can be estimated. Basically, this optimization procedure involves:   

experimentation based on a statistical design, parameter estimation for the mathematical 

model, checking the adequacy of the model, and estimating the levels of the variables 

giving the optimum response. Using computing software, these statistical methods have 

been employed with more or less success for medium optimization by several researchers 

(e.g., Adinarayana and Ellaiah, 2002; Abdel-Fattah et al., 2002; Liu et al., 2003). 

It appears that besides statistics based medium optimization, more efficient methods are 

needed which allow better biochemical system modeling (Schugerl, 2001). The 

development of strains with increased production of a desired product is one of the main 

tasks in biotechnology (Torres et al., 1997). Traditionally, this task has been carried out 

by a series of random or targeted mutagenesis in a selective environment, or by the 

addition of external genetic material followed by selection. These methods have been 

very successful in the past. Some new strains produce over hundred times more product 

than the original parent strains; however, progress has slowed down considerably in some 

cases (Barton and Turelli, 1989). This scenario is changing due to the evolution of a new 

approach called metabolic engineering (Bailey, 1991). Metabolic engineering is a science 

that combines the benefits of molecular biology, biochemistry, genetics, chemical 

engineering, biotechnology, and mathematical modeling (Stephanopoulos and Vallino, 

1991). Metabolic engineering has two major components. The first is the development of 

strategies for better understanding the structure of metabolic systems and intracellular 

enzymatic reactions. The second component is to apply the results of these strategies in 

selected organisms (Torres and Voit, 2002). To accomplish the later, current techniques 

enable the microbiologists not only to change the protein content of a given organism, but 

also to alter its enzymatic profile. 

Regarding the first component of metabolic engineering some theoretical approaches 

have been developed involving the quantitative understanding of the cellular metabolism. 

Traditionally, enzyme reactions have been represented within the framework of 
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Michaelis-Menten formalism, but as the number of components in the system increases 

the complexity of the Michaelis-Menten based modeling approach becomes 

overwhelming (Savageau, 1976).  

One fruitful method is metabolic flux analysis approach, which is based on network 

stoichiometry and conservation of mass. Often, this may be formulated as a set of linear 

ordinary differential equations. The stoichiometric approach focuses on the topology of 

the system and evaluates the rate by which a given metabolite converts into other 

metabolites. A great advantage of the stoichiometric approach is that it forms a set of 

linear algebraic equations at steady state, which makes the method amenable to linear 

optimization. Examples of this type of approach were employed by Papoutsakis and 

Meyer (1985), Majewski and Dornach (1990), Savinell and Palsson (1992), and Takac et 

al. (1998). 

 

 

1.2   Research Objective 
 

Scientific methods of enhancing gene expression including genomics, proteomics, 

applied molecular biology, metabolic engineering and combinatorial biosynthesis have 

been sufficiently developed to make a major impact on recombinant protein production in 

the pharmaceutical industry. However, process improvements from an operational 

perspective have been lagging. It appears that the combination of trial-and-error 

experimentation and molecular biology are not sufficient to design an optimum strategy 

for the overproduction of recombinant proteins (e.g., Ruijter et al., 1997; Smiths et al., 

2000). Process optimization requires a strong theoretical and design framework (Alvarez 

et al., 2000). 

The main objective of this study was to develop and apply the engineering strategies for 

the analysis and optimization of a bioprocess for A. niger producing a recombinant 

protein (hen’s egg white lysozyme HEWL). Special emphasis was placed on the effect of 

the fermentation medium components. 

To accomplish this objective the following major tasks were performed:                                   
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• Monitor the concentration profiles of the key metabolites and use this data as 

input for statistical optimization and mathematical models. 

• Search for the most significant medium components for recombinant protein 

production using fractional factorial design. 

• Move along the path of steepest ascent to reach the vicinity of the optimum level 

of the significant components of the medium. 

• Apply response surface methodology to determine the optimum level of the 

important components for maximum production of the protein.  

• Construct a mathematical model to simulate the behavior of biological systems. 

• Optimize plausible objective functions for achieving recombinant protein 

production enhancement.   

• Perform batch and fed-batch fermentations to confirm optimality. 

 

Due to their filamentous nature, fungi present special challenges with regard to process 

optimization from an engineering viewpoint. It is hoped that this research provides a 

theoretically sound framework that may be used for the optimization of recombinant 

protein productions by filamentous fungus hosts.  

 

 

1.3   Research Approach  

 

The primary aim of this research was the development of mathematical models for 

improving the production of the targeted recombinant protein. Although, there was no 

unique mathematical model capable of capturing all features of a biochemical system 

(Voit, 2000), statistical methods and metabolic flux analysis were expected to be 

promising endeavors for achieving the objective. 

 

1.3.1   Experimental Design Analysis  

Statistically based experimental design was applied in a sequential manner to investigate 

the effect of medium components on HEWL production in shake flask cultures. As a first 
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stage of the analysis when still far from the optimal solution, a fractional factorial design 

was performed to assess the local terrain. Based on this design a first order model was 

evaluated and proved to be adequate to simulate the response of the microorganism to the 

changes in the key medium components. The fitted first-order model was a plane, from 

which the direction of steepest ascent was determined. The sequential experiments were 

carried out along this path until the response (i.e., the recombinant protein concentration) 

passed through maximum.  

Close to the peak, the true response generally exhibited greater curvature, and a first-

order regression model became inadequate, exhibiting a lack of fit. To explain the 

nonlinear behavior of the response at the vicinity of the optimum, central composite 

design was used to fit a second order model to the observations. Analysis of variance was 

performed in order to specify the most significant terms in the model and the simplified 

second order model was derived. Some experiments were performed at the predicted 

optimal level of the significant medium components and the adequacy of the model to 

predict the behavior of the microorganism was verified.  

 

1.3.2   Metabolic Flux Analysis (MFA) 

A comprehensive metabolic network was proposed based on stoichiometry that simulated 

the behavior of the metabolic system of A. niger producing a given recombinant protein 

(e.g., HEWL). Metabolic flux analysis based on amino acid metabolism was carried out: 

• To evaluate the flux distribution within each metabolic pathway of the 

microorganism and examine different pathway contributions throughout the 

fermentation. 

• To specify the significant metabolites, particularly amino acids, which benefit 

growth and the targeted protein production. 

• To enhance the target protein productivity by sensitivity analysis using an 

appropriate schedule. 

The following major steps were implemented to attain the above mentioned goals: 
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1.3.2.1    Metabolic Pathway Construction 

A fundamental basis and key step for metabolic flux analysis is a plausible metabolic 

pathway for a microorganism. It is most important that the reaction sequences along the 

pathway are accurate since all further analyses depend on it. In this study the basic 

metabolic pathways, EMP pathway, PP shunt, TCA cycle, and anaplerotic pathways as 

well as biosynthetic pathways leading to amino acid synthesis and amino acid catabolism 

were considered. Moreover, an in-depth survey of related literature for A. niger was 

performed to augment more specifically relevant features of the microorganism’s 

metabolism.  Since, the resultant metabolic pathway included a fairly large number of 

metabolites and their corresponding reactions; the network was simplified with some 

rational assumptions to reduce the complexity without loss of vital information.  

 

1.3.2.2   Experimental Studies 

Fermentations were carried out using defined medium in 2 and 7 liter nominal volume 

bioreactor equipped with a pH probe and a dissolved oxygen analyzer for pH and oxygen 

control. The off-line extracellular analyses of key metabolites, biomass, and the 

recombinant protein were carried out throughout the batch fermentations.  

 

1.3.2.3   Optimization and Experimental Verification 

The accumulated data from the experimental portion along with the steady state balance 

equations of fluxes were used to construct a set of linear programming constraints. This 

set was augmented with a plausible objective function to form a linear programming 

problem. The metabolic flux distribution was determined using GAMS computer code. 

The logarithmic sensitivity analysis was used to specify amino acids which had the 

highest effect on both biomass and the recombinant protein production. Some batch and 

fed-batch experiments were performed to validate the model predictions. 
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1.4   Thesis Outline 
 

This thesis comprises 7 chapters and is organized as follows: 

Chapter 1 provides introduction, research objective, research approaches. 

Chapter 2 provides a comprehensive literature review including filamentous fungal 

morphology and nutrient requirements, cellular metabolism, factorial design, response 

surface methodology, metabolic flux analysis, power law approximation, and general 

features of programming in LabVIEW environment. 

Chapter 3 presents the materials and methods applied in this research including 

microorganism, stock culture preparation, medium components, and the analytical 

methods performed for the analysis of different metabolites in the fermentation culture.   

Chapter 4 provides the application of statistical methods to maximize the production of 

the recombinant protein using medium composition. A sequential approach comprising 

fractional factorial design, path of steepest ascent, and central composite design was 

used. These studies explored the importance of optimum levels of significant constituents 

of the medium for the protein production. 

Chapter 5 describes the development of a comprehensive metabolic network for 

Aspergillus niger. In addition to basic metabolic pathways, the metabolism of amino 

acids, biosynthesis of macromolecular components of biomass and nucleotides are 

implemented in the proposed model. The importance of having enough and accurate 

experimental data are discussed. Logarithmic sensitivities of the specific growth rate with 

respect to different metabolites are studied. 

Chapter 6 presents the applied hardware and software for monitoring and control of a 20 

liter MBR fermenter. The application of two algorithms for temperature control of the 

bioreactor are studied and discussed. The written software in LabVIEW environment is 

able to control and monitor the principal variables of the fermentation such as 

temperature, pH, and dissolved oxygen.  

Chapter 7 summarizes the significant findings of this research and gives some 

recommendations for future research. 
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CHAPTER 2 

 

 
LITERATURE REVIEW 
 

 

 

 

2.1   Filamentous Fungi  
Aspergillus species have been considered previously as alternative hosts to E.coli, yeast, 

and animal cells for expressing recombinant proteins (Ward et al., 2006). Traditionally, 

recombinant protein products have been produced by the bacterium, Escherichia coli and 

Chinese hamster ovary (CHO) cells. These hosts, however, have several disadvantages as 

recombinant protein producers. Bacteria and yeasts typically lack the mechanism for 

performing satisfactory post-translational modifications, such as glycosylation; product 

authenticity is, therefore, compromised. Mammalian cells may be used to overcome these 

disadvantages, however, they are relatively fragile, produce low levels of the target 

proteins, require expensive medium, and often have bioprocessing problems in 

conventional bioreactors.  

Fungi have played an important role in several biotechnological processes and the 

synthesis of a variety of compounds. Fungi are also the target of many biotechnological 

applications, ranging from the development and production of various pharmaceuticals 

(antibiotics, for example) and industrial products to their application in homologous and 

heterologous gene expression (Arora, 2004). However, the synthesis of heterologous 

proteins is usually much lower than that of homologous proteins (Wang et al., 2003b). 

Filamentous fungi are capable of producing large amounts of specific proteins. They have 

been used in the industrial production of a wide variety of native products such as 

antibiotics (e.g., penicillin and cephalospherine), organic acids (citric, acetic, and formic 

acids), and commercial enzymes (e.g., protease, catalase, amylase) (Rawool et al., 2001). 
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They have a number of attractive features as foreign gene hosts, including the fact that 

many organisms (such as Aspergillus niger) have a long history of industrial usages, 

which means many already have GRAS (generally regarded as safe) status. Their ability 

to secrete large quantities of enzymes (e.g., more than 20 g L-1 of glucoamylase; 

Finkelstein 1987) has encouraged their use in the production of recombinant proteins. For 

most proteins having pharmaceutical potential, correct post-translational modification by 

N-glycosylation is important. Incorrectly glycosylated proteins are immediately cleared 

from the bloodstream, making them practically useless for therapeutic purposes (Punt et 

al., 2002). Non-native (heterologous) protein synthesis in Aspergillus hosts has proven to 

be effective, because the protein products usually fold correctly with efficient formation 

of disulfide bridges, so a high proportion of the product is in an active conformation 

(Martinelli and Kinghorn, 1994). Proteins have been proven to be correctly glycosylated 

by recombinant strains of Aspergillus niger.  A number of heterologous proteins have 

already been expressed in Aspergillus species such as calf chymosin  (Van Hartingsveldt 

et al., 1990), phytase (Van Gorcom et al., 1990), hen’s egg white lysozyme HEWL 

(Archer et al., 1990), and tissue plasminogen activator t-PA (Wiebe et al., 2001). There 

are some problems, however, with Aspergillus strains as heterologous protein hosts. The 

most important drawback is intracellular and extracellular protease production in 

relatively high levels, which typically modify and degrade the recombinant proteins 

(Ahmed et al., 2005).  

 

2.1.1   Morphology  

Filamentous fungi (molds) are composed of aggregated long, branching threads termed 

hyphae and referred collectively as mycelium. Certain branches of mycelium may grow 

in the air and form spores called conidia. One particular difficulty with the filamentous 

fungi centers around their morphological. Filamentous fungi are tip growing systems, 

which grow by apical elongation, with a flow of cytoplasm toward the hyphal tip 

(Wessels, 1993). As time progresses, older hyphal regions become progressively more 

vacuolated (Paul et al., 1994) and may become metabolically less active. Thus, in a 

submerged fungal culture, a range of types of hyphal compartment, with different 

metabolic capabilities will normally be present.  
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The flow and behavior of fermentation broth containing filamentous microorganisms 

differ considerably from that of bacterial cultures primarily due to the complex 

morphology of filamentous microorganisms. From a bioprocessing point of view, the 

growth morphology of filamentous fungi may be classified into two categories: dispersed 

mycelial and pellet form (Figure 2.1).  The dispersed form can be further divided into 

freely dispersed culture and clumps (Thomas and Paul, 1996). Mycelial pellets are 

naturally dense, spherical, aggregated cell populations that produce a low viscosity 

suspension. This form of growth represents an immobilized form of growth, as the 

mycelium grows in a compact form around the core. The internal mass transport 

resistances imposed on the diffusion of oxygen and other nutrients as the growing pellets 

exceed a critical size, lead to progressive cell lysis in the center of the pellets and loss of 

biosynthetic activity (Wittler et al., 1986). Small pellets are favored over large pellets, 

because in small pellets the ratio between metabolically active mycelium at the outside of 

the pellet and inactivated mycelium in the center of the pellet is much higher. The 

induction of pellet formation is controlled by complex interactions between biological 

and physical factors present in the culture, such as the genotype of the strain, inoculum 

level, medium composition, pH, and hydrodynamic shear forces (Braun and Vecht-

Lifshitz, 1991). Studies have shown that the broths containing high concentration of 

mycelial filamentous microorganisms are highly viscous (Olsvik and Kristiansen, 1994; 

Berovic et al., 1993). The high viscosity of the cultures is associated with bulk mixing 

and gas-liquid mass transfer problems (Cui et al., 1998).  

Recent evidence implies that the morphology affects transport processes in the bioreactor 

which, in turn, have a strong influence on the efficiency and productivity of the entire 

fermentation process (Papagianni and Moo-Young, 2002; Xu et al., 2000). They found 

that the formation and secretion of proteases was related to the morphological 

development of Aspergillus niger, with free filamentous forms of growth being involved 

with higher extracellular protease activities compared to pelleted forms. In contrast, 

however, the production of both native and recombinant enzymes in a fungal chemostat 

culture was observed to be the same, even at significantly different levels of hyphal 

fragmentation (Amanullah et al., 1999). Process conditions such as turbulent stress, 

medium composition, pH, ionic strength, and inoculum concentration are reported to 
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have a certain effect on the fungal morphology (Cui et al., 1998). For instance, different 

concentrations of oxygen in the gas stream affected the morphological development of 

the fungal culture in chemostat cultures of Aspergillus niger (Wongwicharn et al., 1999). 

The microorganism developed different growth strategies by undergoing both 

physiological and morphological changes. The authors found an enhancement of enzyme 

production by highly active, short mycelia when the oxygen supply was in excess.  

            

 

 

 

            

 
                   Pellet                                                          Clumps                                                Dispersed Mycelia   

 
Figure 2.1- Schematic representation of fungal morphology in suspension culture. 

 

 

2.1.2   Chemical Requirements for Growth 

Fungi have relatively simple nutritional needs and most species could function quite well 

under aerobic conditions if supplied with glucose, ammonium salts, inorganic ions, and a 

few growth factors (Thom and Church, 1926). In their natural habitat, fungi are able to 

uptake a variety of compounds as nitrogen and/or carbon source. However, not all 

nitrogen and/or carbon sources support growth and development equally. Macronutrients, 

supplied in millimolar concentrations, comprise sources of carbon, nitrogen, oxygen, 

sulfur, phosphorous, potassium and magnesium. Some trace elements are essential for 

fungal cell growth such as calcium, copper, iron, manganese, molybdenum, and zinc that 

are provided at micromolar concentrations (Turner, 1971). Carbohydrates are widely used 

as carbon source for fungal growth. The carbohydrate can be a simple hexose such as 

glucose or polysaccharides such as starch and cellulose. 

Although there are a few reports claiming that some fungi fix nitrogen, most evidence 

show that fungi can not fix atmospheric nitrogen and need to be supplied with nitrogen 

containing compounds (Wainwright, 1988) . A nitrogenous compound can be only used 
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as a nitrogen source if it is convertible to glutamate and glutamine, which in turn serve as 

nitrogen donors for the synthesis of all other nitrogen-containing compounds in the cell. 

Both glutamate and glutamine can be synthesized using ammonium ion as the amino 

group donor. Ammonium salts such as ammonium chloride, ammonium nitrate, and 

ammonium sulfate can be used as inorganic forms of nitrogen by the great majority of 

fungi. Ammonium sulfate is a common inorganic source of nitrogen in fungal growth 

media, because it also supplies utilizable sulfur. Therefore, ammonium salts, glutamate, 

and glutamine are preferred nitrogen sources (Chang and Todd, 2004). Most fungi can 

grow on nitrate as a nitrogen source by reducing it first to nitrite and subsequently to 

ammonia. Although nitrite is toxic to many fungi and bacteria, it can be also used as a 

nitrogen source by some fungi such as Aspergillus nidulans, A. niger, and Neurospora 

crassa (Pateman and Kinghorn, 1976). A number of fungi, e.g., S. cerevisiae, lack the 

ability to metabolize nitrate and require reduced nitrogen for growth. The inorganic 

nitrogen sources can be replaced by a number of organic nitrogen compounds ranging 

from urea and amino acids to proteins which are good nitrogen and carbon sources for a 

number of fungi (van Laere, 1995). 

Phosphorous is essential for biosynthesis of fungal nucleotides, phospholipids, ATP, and 

glycophosphates. The phosphate content of fungi is considerable and is mostly in the 

form of orthophosphates, which acts as a substrate and enzyme effector. 

Fungal growth factors are organic compounds occasionally needed in very low 

concentrations for specific enzymatic or structural roles, but not as energy source. These 

include vitamins (e.g., thiamine, biotin), purines, pyrimidines, nucleosides, amino acids, 

fatty acids, and sterols. Some fungi are not able to synthesize the particular growth factor, 

while Aspergillus niger and Penicillium chrysogenum are able to synthesize their own 

growth factor from glucose (Walker and White, 2005). 
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2.2   Review of Cellular Metabolism 
Mathematical formulation of a metabolic pathway is the basis for any quantitative 

approach of cellular metabolism. This requires some basic information about different 

major pathways normally present in living cells. Due to the importance of such pathways 

the basics of glycolysis, pentose-phosphate, tricarboxilic acid, anaplerotic pathways as 

well as amino acid biosynthesis are reviewed in this section.  

 

2.2.1   Glycolysis 

Glycolysis or the Embden-Meyerhof-Parnas (EMP) pathway is a set of biochemical 

reactions occurring in the cytosol and along which glucose is converted to pyruvate.    

Figure 2.2 illustrates the enzymatic reactions in the EMP pathway. This pathway can be 

divided into two major parts. The first part includes six carbon components and does not 

involve any oxidation-reduction reactions. The reaction sequence comprises two 

phosphorylation reactions that lead to the production of fructose 1,6 diphosphate.  

Then aldolase catalyzes the next cleaving reaction, and two three-carbon molecules, 

glyceraldehyde-3P and dihydroxyacetone phosphate are formed from fructose 1,6 

diphosphate. All components in the second part are three-carbon intermediates. The first 

oxidation reaction occurs in the second part of the EMP when glyceraldehydes-3P is 

converted to 1,3 diphosphoglycerate. In this reaction, the coenzyme NAD+ accepts 

electron and is reduced to NADH. The final product is pyruvate which is a key 

intermediate in metabolism. Under certain conditions pyruvate may be converted to lactic 

acid, ethanol, or other products such as, acetone, butanol, and acetic acid, whereas under 

aerobic conditions it is converted to CO2 and NADH through the TCA cycle. The overall 

stoichiometry for the conversion of glucose to pyruvate in the EMP pathway is:   

 
+++++→++++ H2NADH2OH2ATP2Pyruvate2P2NAD2ADP2eGlu 2icos    (2.1) 

 
The major metabolic control site in glycolysis is the phosphorylation of fructose 6-P by 

phosphofructokinase (3), which is an allosteric enzyme. This enzyme is activated by Pi 

and ADP, but inhibited by ATP (Shuler and Kargi, 2002). At high ATP/ADP ratios, this 

enzyme is inactivated, so that the rate of glycolysis and ATP synthesis are reduced. 
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Figure 2.2- Overview of the EMP pathway in fungi. The enzymes are: (1) glucokinase,              
(2) phosphoglucose isomerase, (3) phosphofruktokinase, (4) aldose, (5) triphospho isomerase,   
(6) 3-phosphoglyceraldehyde dehydrogenase, (7) 3-hosphoglycerate kinase, (8) phosphoglycerate 
mutase, (9) enolase, (10) pyruvate kinase. 
 

 

Glycolysis has three major roles in metabolism (Matthews et al., 1997):  

 Production of energy in the form of ATP 

  Formation of pyruvate from glucose as a intermediate for final oxidation in the 

TCA cycle or for fermentation product  

  Production of compounds that may be important in biosynthesis of some 

macromolecules and amino acids.   
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2.2.2   Pentose-Phosphate Pathway (PPP) 

The pentose-phosphate (PP) shunt or hexose monophosphate (HMP) pathway is a 

sequence of biochemical reactions which provides reducing power for biosynthesis 

reactions and a group of small organic compounds as shown in Figure 2.3.  

 

 

       

Figure 2.3- Pentose phosphate pathway. The enzymes are (1) Glucose-6P dehydrogenase,                            
(2) 6-Phosphogluconate dehydrogenase, (3) ribosephosphate isomerase, (4) ribosephosphate-3-
epimerase, (5) transketolase, (6) transaldolase. 

  
 

During the oxidative portion of this pathway glucose-6P is converted to ribulose-5P and 

CO2 while two molecules of coenzyme NADP+ are reduced to NADPH (Brock and 

Madigan, 1994). Riboluse-5P is further converted to two other pentose phosphates, 

xylose-5P and ribose-5P. The reminder of the cycle (i.e. the non-oxidative portion) 

involves the conversion of the pentose-5P’s to 3-, 4-, 5-, and 7- carbon intermediates that 

finally lead to fructose-6P and/or glyceraldehyde-3P. Since all of the reactions of the non-

oxidative portion are freely reversible, it is clear that the operation of the system 

generates a pool of sugar phosphates. The primary functions of the PP pathway are:  
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 Generation of reduced coenzyme NADPH, which is extremely important in 

biosynthetic reactions such as synthesis of lipids, and assimilation of nitrate and 

ammonia 

 production of pentose phosphates which is essential for biosynthesis of nucleic 

acids, purine, ATP, NAD+, and other coenzymes 

 Formation of erythrose-4P that is a precursor in the synthesis of the aromatic 

amino acids. 

The quantitative importance of the PP pathway appears to be controlled by the demand 

for NADPH and the increasing demand for NADPH (such as nitrate as nitrogen source) 

during active growth increases the percentage of glucose metabolized along this pathway 

(Berry, 1975). 

 

2.2.3   Tricarboxilic Acid cycle (TCA) 

Tricarboxylic acid cycle, also known as citric acid cycle or the Krebs cycle is a sequence 

of biochemical reactions by which the organic product of glycolysis  (pyruvate) is 

completely oxidized to CO2 (Figure 2.4). Due to the instability of a number of TCA-cycle 

enzymes, especially α -ketoglutarate dehydrogenase (Meixner-Monori et al., 1985), the 

operation of a complete TCA cycle has long been in doubt for a number of fungi. 

However, Kubicek (1988) concluded that the present evidence supports operation of the 

TCA cycle in fungi. 

The first step in the TCA cycle is an oxidative decarboxylation reaction by which 

pyruvate is converted to an activated form of acetate, known as acetylcoenzyme A, which 

is a key component in the metabolism of amino acids and fatty acids (Shuler and Kargi, 

2002). Acetyl-CoA is an acetyl radical coupled to coenzyme A (Brock and Madigan, 

1994). This reaction is catalyzed by a cluster of three enzymes, called collectively as the 

pyruvate dehydrogenase complex, which in eukaryotes is located in mitochondrion 

(Stephanopoulos et al., 1998). In this reaction NAD+ serves as an electron acceptor. 

The acetyl group of acetyl-CoA combines with 4-carbon compound oxaloacetate, leading 

to the eventual formation of citric acid.  Citrate is subsequently converted to its isomer, 

isocitrate. These two molecules are usually regarded as one metabolite.  
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Figure 2.4- TCA cycle and anaplerotic pathways in fungi. The enzymes are: (1) pyruvate 
dehydrogenase complex, (2) citrate synthase, (3) aconitase, (4) isocitrate dehydrogenase, (5)     
α - ketoglutarate dehydrogenase, (6) succinate thiokonase, (7) succinate dehydrogenase, (8) 
fumarase, (9) malate dehydrogenase, (10) pyruvate carboxylase, (11) isocitrate lyase, (12) malate 
synthase, (13) ATP-citrate lyase, (14) malate dehydrogenase, (15) malic enzyme. 
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The next two steps of the TCA cycle are oxidative decarboxylation, yielding succinyl-

CoA and two molecules of CO2. 

Ultimately, oxaloacetate is regenerated after four further enzymatic reactions, thus 

completing the cycle. In the mitochondria there are four physiologically irreversible steps 

in the enzyme cluster consisting of the pyruvate dehydrogenase complex and the TCA 

cycle, (Matthews et al., 1997). These are pyruvate dehydrogenase (oxydoreductase), 

citrate synthase, isocitrate dehydrogenase (oxydoreductase), and α -ketoglutarate 

dehydrogenase (oxydoreductase). These are all metabolic control points in the 

metabolism. Available evidence from a limited number of fungi suggests that the activity 

of the cycle is regulated by the NADH/NAD ratio at the level of isocitrate dehydrogenase 

and α -ketoglutarate dehydrogenase (Stephanopoulos et al., 1998).  

The overall stoichiometry for the complete oxidation of pyruvate in the TCA cycle is:  

 
+++++→++++++ H4FADHNADH4GTPCO3FADNAD4PGDPOH3Pyruvate 22i2       (2.2) 

 
The major functions of the TCA cycle can be categorized as follows (Shuler and Kargi, 

2002):   

 Provides electrons (NADH and FADH2) for the electron transport chain and 

biosynthesis. 

 Supplies carbon skeletons for amino acid and nucleotide synthesis, more 

specifically α -ketoglutarate for glutamate and oxaloacetate for aspartate 

synthesis. 

 Generates energy. 

 

2.2.4   Anaplerotic Pathways 

If any metabolite is removed from the TCA cycle for other cellular functions, the cycle 

cannot continue to operate, because there is no net synthesis of the intermediates in the 

cycle (Matthews et al., 1997). For instance, some of the compounds in TCA cycle such as 

succinate, α -ketoglutarate, and oxaloacetate serve as precursors for biosynthesis of some 

amino acids and nucleotides. The ensuing deficiency is overcome by replacement of 

oxaloacetate by alternative paths that are not part of the main TCA cycle. These reaction 

sequences are called anaplerotic reactions (Brock and Madigan, 1994). The anaplerotic 
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pathways are depicted in Figure 2.4 by dashed lines including the glyoxylate shunt, the 

carboxylation of pyruvate by pyruvate carboxylase, the carboxylation of 

phosphoenolpyruvate by PEP carboxylase, and the oxidation of malate by the malic 

enzyme (malate oxydoreductase) (Stephanopoulos et al., 1998). 

During metabolism of fat or C2-compounds, the glyoxylate cycle can also generate C4 

compounds to replenish the TCA cycle. The glyoxylate cycle includes most of the TCA 

cycle enzymes (2, 3, 11, 12, and 9) and two unique enzymes: isocitrate lyase, which splits 

isocitrate to succinate, and malate synthase converting glyoxylate and acetyl-CoA to 

malate (Brock and Madigan, 1994). This pathway occurs in all classes of fungi and does 

not take place in the mitochondria, but in ultrastructures called glyoxysomes, where there 

is a net synthesis of succinate from acetyl-CoA (Maxwell et al., 1975).  
 

2.2.5   Amino Acid Biosynthesis 

Microorganisms need a large amount of cellular building blocks for the synthesis of 

amino acids. The 20 amino acids can be categorized into five families with respect to the 

specific precursor that serves as the starting point. The only exception is histidine 

biosynthesis that is fairly complicated and cannot be easily grouped with the others 

(Brock and Madigan, 1994). However, ribose-5P from PP pathway is a key precursor for 

histidine biosynthesis. The biosynthetic pathways for all 20 amino acids have been 

elucidated in many eukaryotes and prokaryotes. There are only a few differences in 

amino acid biosynthesis amongst the various organisms. For example, in bacteria lysine 

is synthesized from pyruvate, whereas in fungi it is synthesized from α -ketoglutarate.  

Table 2.1 shows the family and precursors for different amino acid biosynthesis in fungi 

(Nielsen, 1997). 
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Table 2.1- Amino acid biosynthesis in eukaryotes. 
 

 
 

 

 

 

Glutamate  Arginine 

Glutamine

α -ketoglutarate 
(TCA cycle) 

Glutamate ornithine

Proline

Asparate  oxaloacetate 
(TCA cycle) 

Aspartate Aspargine 

Lysine

homoserine Methionine

Threonine

Isoleucine

Pyruvate  Pyruvate 
(EMP) 

Alanine 

α -ketoisovaleric acid

Valine 

Leucine 

3-phosphoglycerate
(EMP) 

Serine  Serine Cystine 

Glycine

Phenylalanine

Aromatic  PEP    + E-4P 
(EMP)       (PP) 

chorismate Prephenate

Tryptophane 

Tyrosine 

Histidine  Ribose-5P 
      (PP) 
 
 

Histidine 

α -AAd 

Family Precursor



 21

2.3   Factorial Design 
In multi-component systems, the effect of two or more variables on the experimental 

outcome needs to be ascertained. In general, a factorial experimental design is the most 

efficient statistical tool for this purpose. In each trial or replication of a full factorial 

design, all possible combinations of the factors levels are investigated. For example, if 

there are a levels of factor X1 and b levels of factor X2, each replicate contains all a ×  b 

treatment combinations. 

The effect of a factor in a factorial design is defined as the amount of change in response 

when the factor level is altered. Since this reflects the change in the primary factors of 

interest in the experiment; it is called a main effect. In some experiments, the response is 

not a linear combination of the changes in the factors. When this occurs, there is an 

interaction between factors (Montgomery and Runger, 1994) and the response surface 

plot may be twisted. 

Traditionally, one-factor-at-a-time technique has been used for process optimization. This 

involves varying one factor while keeping the others at constant levels. Although simple, 

this often requires a considerable amount of experimental work and may be costly. The 

major benefit of applying a factorial design is the reduced number of experiments that 

need be carried out using a choice of the best experimental points to get maximum 

information (Rajendhran et al., 2002). This results in more efficient experimental design. 

Furthermore, to avoid misleading conclusions, a factorial design is often necessary when 

interactions may be present. Finally, the factorial design allows the effect of a given 

factor to be determined at several levels of the other factors, so the conclusions are valid 

over a larger range of experimental conditions (Montgomery, 2001).  

 

2.3.1   The 2K Factorial Design    

Factorial designs are very popular in experiments that require the study of the joint 

effects of the factors on a response. The most important class of the factorial design is to 

investigate K factors, each at only two levels. The levels may be qualitative, such as two 

kinds of nutrients, microorganisms, or procedure or they may be quantitative, such as two 

values of temperature, pressure, concentration. 
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Since, each factor is considered at high (+) and low (-) levels, a complete replicate of 

such a design requires 2K observations and is called a 2K factorial design. This design 

enables an experimenter to investigate k factors with relatively small number of runs. 

Consequently, it is particularly very useful in the early stages of an experiment work 

when there are usually many factors to be studied. In factorial design, the assumptions 

that need to be considered (Montgomery, 2001) include fixed factor values, completely 

randomized design, and the assumption of normality. Since there are only two levels for 

each factor, the response is assumed to be approximately linear over the range of the 

chosen factor levels. In many cases, particularly in the early stages of study, this is often 

a legitimate assumption.  

 

2.3.2   Fractional Factorial Designs 

As the number of factors in a 2K design increases, the number of runs required for a 

complete replication of the design rapidly increases as well. The complete runs provide 

an examiner with enough information to evaluate the whole set of main effects as well as 

all interaction effects. The main effects and lower-order interactions are usually the most 

significant terms (Mason et al, 1989). In fact, one is capable of determining the main 

effects and the lower-order interactions by performing a fraction of the complete factorial 

design without loss of any information. This design is called fractional factorial design 

(FFD) that contains a p21  fraction of the 2K complete design and is often called a 2K-p 

fractional factorial design. It is clear that setting the p term equal to zero may refer to a 

complete two level factorial design. The general approach to the statistical analysis of the 

2K-p design is summarized in Table 2.2 (Montgomery, 2001). 

The first step is to evaluate factor effects and examine their magnitude and signs. 

Regarding these preliminary information one can decide about the most important factors 

and interactions. For example, the effects sign specifies the direction in which these 

effects can be adjusted to improve the response. 
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Table 2.2- Analysis procedure for a 2K-p design. 
 

1. Estimate factors effects 

2. Form initial model    

3. Perform statistical testing 

4. refine the model 

5. Analyze residuals 

6. Interpret results 

 

 

For a 2K-p fractional factorial design with nr replications at each treatment combination 

the effect of X can be quantitatively determined as follows: 
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Here X is the representative of either a main effect (e.g., X1 or X2) or an interaction effect 

(e.g., X1 X2). The contrast for each term (i.e., main effect or interaction effect) is defined: 
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Where r,iY is the response at rth replication for ith treatment combination (run number i). 

+X  and −X  restrict the summations only for the responses when the effect of X is at its 

high or low level, respectively.  

In step two, one uses all main effects and interactions to form the initial model for the 

experiment. In the next step, the most significant main effects and interaction effects are 

examined by applying the analysis of variance (ANOVA). The sum of squares of each 

effect can be defined as follows: 
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The total sum of squares can be defined by: 
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In general, TSS  has ( 12n pK

r −× − ) degrees of freedom. The error sum of squares with 

)( 1n2 r
pK −−  degrees of freedom is usually computed by subtraction: 

 
ModelTE SSSSSS −=                                                  (2.7)            

 
The model sum of square is defined as the summation of effects sum of squares in the 

model. 

 
∑= XModel SSSS                                                    (2.8)  

 
On the basis of analysis of variance performed in step three, any statistically insignificant 

term is removed from the initial model in the fourth step. The error or residual sum of 

squares is now composed of a pure error (in case of full or partial replication of 

experiment), and a lack of fit component including of sum of squares for all the effects 

that were dropped from the full model.  

The ordinary 2R  for the analysis of a model is defined as follows: 

 

Total

Model2

SS
SS

R =                                                       (2.9) 

 
A concern with this statistic is that it always increases as terms are added to the model; 

although the added terms are often not significant. Consequently, this statistic is usually 

smaller for the refined model in comparison to the corresponding full model. To negate 

this drawback, the adjusted coefficient of determination is re-defined as: 
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This statistic is adjusted for the size of the model, more specifically the number of 

factors. If nonsignificant terms are added to a model, this can usually decrease the 
2
adjR . value. Obviously, removing the nonsignificant terms from the full model the final 

model is formulated, by which one can predict the response to new input variables 

effectively (Montgomery, 2001). 

Step five is the usual residual analysis to test for model adequacy and to check for the 

validity of the assumptions and usually consists of graphical analysis of residuals, effects, 

response surface, and contour plots. The examination of the residuals is an important part 

of any analysis of variance. The normality of residuals can be checked by plotting a 

histogram of the residuals. If the errors are normally distributed with mean zero and 

constant variance, this plot should look like a sample from a normal distribution centered 

at zero. Moreover, if the model is adequate then the residuals should contain no patterns.   

 

2.3.3   The Addition of Center Points to the 2K (2K-p) Design 

A potential concern about 2k (2K-p) design is the assumption of linearity in the factor 

effects: 
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k
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k0 xaaY                                                  (2.11) 

 
In the above equation ε  represents the noise or error observed in the responseY and kx  is 

a coded variable. The relationship between the coded variable kx  and its natural variable 

kX  is defined as: 
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If the natural variables have only two levels, this coding will generate the values of ± 1 

for the levels of the coded variables. 

If interaction effects are added to the main effects (first order model) the following result 

is obtained: 
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The model is now capable of representing some curvature in the response function. This 

curvature is introduced into the original linear model by the interaction terms of lkkl xxa . 

These terms only twist the response plane slightly, whereas sometimes more curvature is 

needed. In these situations a higher-order model maybe more appropriate.  

Actually, there is a method of replicating certain points in a 2K (2K-p) design that will 

allow the examiner to check for the adequacy of curvature expressed in Equation 2.13. 

Also, this method provides us with an independent estimate of error (Montgomery, 

2001). The method involves the addition of center points to the 2K (2K-p) design. One 

important reason for adding the replicate runs at the design center is that the center points 

do not influence the usual effect estimates in a 2K (2K-p) design. The sum of squares for 

pure quadratic curvature is given by: 
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Where fY , cY  are the averages of factorial and center point responses, respectively. The 

design consists of fn  factorial design point and cn  center point runs. This single-degree-

of–freedom sum of square may be utilized in an F test by considering the mean square 

error and check for pure quadratic curvature. Moreover, if there is no replication in the 

factorial points, one may use the cn  center point runs to estimate the pure error with 

1−cn  degrees of freedom. 

 

2.3.4   Response Surface Methodology (RSM) 

Often a researcher is interested in a process response, which is influenced by several 

factors, and the goal is to optimize this response. Response surface methodology that is a 

combination of mathematical and statistical techniques is useful for the modeling and 

analysis of this kind of problems (Box et al., 1978). 
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For instance, suppose the response in a process is a function of several variables as shown 

below: 

 
ε+= ),x,x(fY 21 K                                                (2.15) 

 
The expected response is given by: 
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The response represented by 
∧

Y  is called a response surface. The response surface can be 

a plane or a twisted plane, such as the models presented by Equations (2.11), (2.13). If 

the response is moderately nonlinear, a quadratic model may be appropriate: 

 

ε∑ ∑ ∑∑
= > ==

++++=
K

1k

K

kl

2
k

K

1k
kklkklk

K

1k
k0 xaxxaxaaY                            (2.17) 

 
Almost all RSM problems utilize one or more of these model features. Undoubtedly, a 

polynomial model can predict the behavior of a process for a relatively small region of 

interest accurately, but it is unlikely that the model can provide one with reasonable 

accuracy over the entire space of independent variables. 

One potential method that may be used to determine the quadratic coefficients in the 

second-order model is to carry out a 3K factorial design. However, there are two points to 

be considered with regard to the 3K design. First, this design is not the most efficient way 

to model a second-order polynomial. Second, the 2K design augmented with some center 

points is a superior way to examine about curvature in the response surface. This 

augmented 2K design is relatively simple and efficient in size and simultaneously gives 

the examiner some protection against curvature (Myers and Montgomery, 2002). If the 

analysis of variance shows some lack of fit for the linear model, then the model should be 

augmented with axial runs to obtain a central composite design (CCD). 

The central composite design is one of the most common designs that are utilized for 

fitting quadratic models and were first described by Box and Wilson in 1951.This is a 

sequential design strategy and needs fewer experiments than the 3K
 factorial design.  
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At the early stages of an investigation, the response surface is unknown and the initial 

search may far away from the optimum. Often there is little curvature in the system 

response and either model 2.11 or 2.13 will be appropriate to predict the behavior of the 

process, so a factorial (fractional) design is an adequate approximation. The next step is 

to move rapidly towards the neighborhood of the optimum response. The method of 

steepest ascent for maximization or steepest descent for minimization is a proper 

procedure for moving sequentially along the path of steepest direction.  

If a first-order model is fitted to the data in a region that is far from optimum, the 

direction of steepest ascent is the direction along which the response increases rapidly. If 

one imagines a normal path from the fitted response to the response surface then the 

direction will be parallel to this normal vector. One usually considers the center of region 

as the origin for the path of steepest ascent (Montgomery and Runger, 1994). The 

experiments may be conducted along this path until no more increase in response is 

observed. The maximum point along the path is in the vicinity of the optimum. Then, a 

new first-order model can be fitted.  If the linear model is adequate and lack of fit 

analysis is not significant, the optimum will be evaluated by the new surface plane 

(twisted plane). A common problem is that a linear model usually shows a lack of fit at 

the neighborhood of the optimum. If so, some axial runs may be performed to augment 

the model and to allow quadratic terms to be incorporated into the model.  

The design of choice to establish a quadratic model is the central composite design 

(CCD). Each design consists of a standard first order design with nf factorial points and 

cn  center points, augmented by na axial points. Axial points are also commonly referred 

to as “star points”. Axial points are points located at a specified distance ccdα  from the 

design center in each direction on each axis defined by the coded factor levels (Dean and 

Voss, 1999). Hence, for a design consists of K factor, there will be 2K distinct axial 

points. The distance of the axial runs from the design center ccdα  and the number of 

center points cn  must be specified regarding the properties required of the design 

(Montgomery, 2001). Figure 2.5 shows central composite designs for K=2 and K=3 

factors.   
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Figure 2.5 - Central composite design for two and three factors.  

 

 

It is very important that the quadratic model is able to provide the examiner with good 

predictions throughout the region of interest in the vicinity of optimum. In other words, 

the model should have a reasonably consistent and stable variance of the predicted 

response at points of interest (Montgomery, 2001). Since, the purpose of the response 

surface methodology is optimization and the location of the optimum is unknown prior to 

performing the experiment, it seems rational to use a design that provides equal precision 

of estimation in all directions (Box et al., 1978). A design that has this property is called 

rotatable and can be made by selection of appropriate ccdα . This value for a rotatable 

design is given by 4/1)( fccd n=α . The number of center points for 2 and 3 factors are 5 and 

6, respectively. 
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2.4    Mathematical Modeling of Biochemical Systems 

Once sufficient information is obtained about the key components and interactions of a 

biochemical system, this data become the basis for further analysis. The next step is to 

translate the metabolic pathway into a mathematical structure that is appropriate and 

convenient (Voit, 2000). Of course, there are different approaches and approximations for 

modeling a biochemical system; each approach may have a different context or a 

different set of goals. Two such approaches are reviewed below. The first class focuses 

on the stoichiometry of metabolic networks. The second class consists of power-law 

representations of the system. 

 

2.4.1   Maps 

The graphical representation (map) of metabolic pathway is useful and strongly 

recommended (Voit, 2000). The map consists typically of three main items:  

• System components or pool of components 

• Flow of material along the pathway  

• Flow of information or signals such as feedback inhibition or activation  

These schematics serve as bridges between the real system and mathematical model, and 

should be constructed using the best available information about their components. 

 

2.4.2   Variables and Parameters 

Components of a metabolic pathway such as metabolites and enzymes behave in different 

way in the biochemical system; therefore, their different roles must be reflected in the 

mathematical representation of the system. In general, three main entities contributing to 

the dynamics of the biochemical system may be distinguished: 

• Independent variable: A variable is not affected by the dynamics of the process. 

Typically, independent variables are either under the control of examiner (e.g., 

substrates), or without any external controller (enzymes). 

• Dependent variables: A variable whose value is affected by the dynamics of the 

system and usually change in value over the course of experiment (e.g., 

concentration of products and most intermediates along a pathway). 
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• Parameter: A parameter has a constant numerical value and quantifies a property of 

the system (e.g., kinetic reaction orders and reaction rate constants). 

 

2.4.3   Dynamics of the Biochemical Systems 

In general, each metabolite concentration at a point ζ  in space at time t can be expressed 

as a unique function of the concentrations of all (bio)chemical compounds that participate 

at the point ζ  and at the time t: 

 
( )[ ]t,,tζ,CC ii PC=                                               (2-18) 

 
Here C and P are the vectors of metabolite concentrations and parameters, respectively. 

In most cases explicit time dependency of reaction rate may be ignored without loss of 

generality. Furthermore, since the volume of living cells is small, the intracellular 

components are distributed uniformly by diffusion or cytoplasmic streaming in a very 

short time throughout the space within the cells. This suggests a typical simplification in 

many biochemical models, namely, a uniform concentration profile for each metabolite 

within the volume under study (Heinrich and Schuster, 1996). Considering these 

assumptions, the rate of change of a dependent variable in terms of other variables and 

parameters may be symbolically represented in form of a differential equation as follows 

(Voit, 2000):  

 
( )PCC ,f (t)(t) =&                                                  (2-19) 

 
Here, (t)C (briefly C) is the vector of both dependent (the first m variables) and 

independent (the following mI variables), and P is the vector of parameters. The net 

change for a compound is composed of two aspects, production and depletion, which 

reflect two entirely different set of processes. In very general terms, the differential 

equation taking into account both the production and the depletion can be formulated as 

(Savageau, 1976): 
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In this representation, the index i represents the dependent variables, whereas j 

symbolizes all processes associated with the variable of interest. The number of these 

processes, q and w, can be small or large, but is unrelated to m and mI. The            

positive-valued functions +
ijV  and −

ijV  indicate process(s) that represent the production or 

consumption (or degradation) of metabolite i, respectively. Since, independent variables 

are controlled (fixed) at a certain value throughout the experiment; there is no need to be 

included in the set of differential equations. Nevertheless, they can explicitly impart their 

influences on the system when appearing on the right-hand side of the system equations. 
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2.5    Metabolic Flux Analysis (MFA) 
In some cases there is insufficient kinetic information on microorganisms under 

investigation. Therefore, metabolic modeling methods which involve less detailed kinetic 

information are required. A powerful approach that focuses only on topology of 

biochemical systems is metabolic flux analysis (Klamt et al., 2002). Using a 

stoichiometric model for the major intracellular reactions and applying mass balances on 

the intracellular metabolites under steady state conditions, the intracellular fluxes of the 

metabolites are calculated. Furthermore, a set of measured extracellular fluxes is used as 

input to calculations (Aiba and Matsouka, 1979). The measured extracellular fluxes are 

typically uptake rates of substrates and secretion rates of metabolites (e.g., amino acids, 

organic acids, carbohydrates). The results consists no information about metabolite 

concentrations, flow of regulatory signals, or transient behavior (Lee and Papoutsakis, 

1999). The final outcome of the flux calculation is a metabolic map, including the 

metabolic pathway that was considered in the calculation and an estimate of the steady 

state flux for each reaction in the map (Jeremy and Palsson, 1998).  

Since the metabolic fluxes show the contribution of different pathways on the overall 

metabolic process of substrate uptake and product formation, they have been denoted as a 

fundamental determinant of cell physiology (Stephanopoulos, 1998). For example, Takac 

and et al., (1998) showed that throughout the fermentation of L-glutamate production the 

TCA cycle was utilized in part only, whereas the glyoxylate bypass and pentose 

phosphate pathways were strongly active. 

 

2.5.1   Elemental Balance 

The network consistency with respect to the conservation of atomic mass laws can be 

checked by defining the reactions in mathematical notation. Let us consider the system of 

bioreaction network with m distinguishable chemical species and n reactions. If these 

species are denoted by M1, M2,…, Mm, the jth biochemical reaction may be symbolized  as 

a linear equation by : 
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Here, j,is  is the stoichiometric coefficient of metabolite i  in the thj reaction. 

Conventionally, negative values are given to the stoichiometric coefficients of the species 

that are to be regarded as the reactants and positive values for those of products. If M is 

considered as the symbolic vector of the species, Equation 2.21 may be written in matrix 

notation as: 

 
0MS =T                                                       (2.22) 

 
Each chemical species Mi is composed of atoms. If the set Al, l=1,…, L includes all the 

atomic species in the composition of M1,M2,…,Mm and eil is the numbers of atom Al in the 

species Mi then one may define: 

 
AEM .=                                                         (2.23) 

 
E is the matrix of atomic coefficients eil and A is the symbolic vector of atomic species. 

Substituting for M in the Equation 2.22 gives: 

 
0AES =T                                                    (20-24) 

 
The atomic species must be conserved, so that every coefficient of A in these equations is 

zero: 

0ES =T                                                       (2.25)  

 

 

2.5.2    Reaction Rates 
The rate of a (bio)chemical reaction is defined as the forward velocity v which specifies 

that a compound with a stoichiometric coefficient s  is changed at the rate of sv. The 

normal unit for reaction rate is (mol/hr), but it is common that the rate is specified 

regarding a certain reference value such as volume, surface, or mass. For cellular 

reactions the biomass (dry weight) is considered as the reference parameter to define the 

so-called specific rate, which has the unit ( hrgmol DW/ ).   
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In the usual situation when the biochemical system includes more than one reaction, the 

overall production or consumption of a compound can be calculated by adding up the 

individual reaction rates vj as follows:   

 

                                              j
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1j
iji vsr ∑

=

=                     m,...,2,1i =                           (2.26) 

 
The sign of stoichiometric coefficients depends on the chosen direction of reaction. By 

convention the chemicals on the left-hand side of a reaction are considered as reactants 

and those on the right-hand side as products. Equation 2.26 can be represented in matrix 

notation: 

 
VSr =                                                        (2.27)  

 
Where S is the stoichiometric m×n matrix, V is the vector of n metabolic fluxes, and r is 

the vector of reaction rates. 

 

2.5.3   Theory 

The reaction network, which describes how metabolites are interconnected to each other, 

is the starting point of metabolic flux analysis (MFA). The basic principle is the 

conservation of mass. Since one is only interested in flow of materials within the map 

(topology of biochemical system), usually the map contains no information about flow of 

information or signals. A cellular metabolic reaction network includes a set of enzymatic 

reactions and transport processes (Schilling et al., 2000). The transport processes are 

responsible for passing the relative amounts of certain metabolites into and/or out of the 

control volume. The enzymatic reactions and transport fluxes are denoted as internal and 

exchange fluxes, respectively.      

The right hand side of Equation 2.20 may be formulated as a flux balance for each 

metabolite iM in a metabolic pathway to yield the dynamic mass balance equations. The 

fluxes with positive stoichiometric coefficients are the processes that increase the 

concentration of Mi (i.e., +
ijV terms) and those with negative stoichiometric coefficients 

are the processes that decrease the concentration of Mi (i.e., −
ijV terms). Considering the 
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dilution term due to the cell growth (Stephanopoulos et al., 1998), assumption of spatial 

homogeneity, and the relationship between the reaction rates and terms +
ijV and −

ijV as 

explained above, the final form of the dynamic mass balance in terms of fluxes can be 

written around every metabolite in the system. This generates a system of ordinary 

differential equations as follows: 
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Here, vj represents the flux through the process (e.g., reaction or exchange), and μ  is the 

specific growth rate of the biomass. The last term in Equation 2-28 accounts for dilution 

due to the cell growth, and is generally negligible because of the low intracellular level of 

most pathway metabolites (Stephanopoulos et al., 1998). Moreover, it is generally 

accepted that there is very high turnover rate of most metabolites. Thus, even after a large 

perturbation in the cellular environment the concentrations of different intracellular 

metabolites rapidly adjust to new levels. As a result, one can assume that the intracellular 

metabolites are at a pseudo-steady state (Vallino and Stephanopoulos, 1993). Thus 

Equation 2.28 can be written in matrix notation as follows: 

 
0VS =                                                        (2.29) 

 
This equation simply states that over long time periods the formation fluxes of a 

metabolite must be balanced by the degradation fluxes (Lee and Papoutsakis, 1999). Note 

that this equation is formally analogous to Kirchhoff’s current law, used in electrical 

circuit analysis. An important consequence of the pseudo-steady state assumption is that 

one can eliminate all pathway intermediates in a linear sequence and just consider the 

metabolites placed at the branch points of the metabolic pathway (Wiechert, 2002).  This 

results in a significant reduction in the number of equations in the stoichiometry model.  

Metabolic flux analysis is based on the knowledge of some fluxes, usually the fluxes of 

the reactions going into, and out of the cell. Vector V can be partitioned into two vectors, 

Vu and Vk, containing the unknown (unmeasured) and known (measured) elements of V, 

respectively. Upon substitution and rearrangement, Equation 2.29 becomes:  
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kkuu VSV.S .−=                                                (2.30) 
 

Here, Vu is the nu-dimensional unmeasured part and Vk is the nk-dimensional measured 

part of V. Also, Su and Sk are the columns of S that corresponds to Vu and Vk, 

respectively. 

 

2.5.4   Classification of Systems and Rates 

The following classification of systems and rates is based on the work of van der Heijden 

et al. (1994). The complete bioreaction network may be classified into two different 

categories with respect to the rank of Su as follows: 

Determinacy: 

 Determined: rank (Su) = nu; all unknown rates of Vu can be uniquely evaluated. 

 Underdetermined: rank (Su) < nu; the number of linearly independent equations 

 are not enough to achieve a unique solution. 

Redundancy: 

 Not Redundant: rank (Su) = m; the rows of the stoichiometric matrix are not 

linearly dependent; therefore, for any Vk the system is automatically consistent. 

 Redundant: rank (Su) < m; the rows of the Su are not linearly independent. That 

means some of the rows can be expressed as linear combination of the other 

rows.  

Besides, the elements in known and unknown vectors can be classified by the following 

properties: 

Calculability: An element of unknown vector of Vu is called  

 Calculable: if that specific rate can uniquely be evaluated by Equation 2-30 

 Noncalculable: if it cannot uniquely be evaluated using Equation 2-30 

Balanceability: An element of measured vector of Vk is called 

 Balanceable: if the consistency of the system 2-30 depends on the value of this 

rate. 

 Nonbalanceable: if the consistency of the system 2-30 is independent of the 

value of this rate.   
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2.5.5   Determined Systems 

In case of determined systems the degrees of freedom of the system is zero. Thus, the 

solution to Equation 2.30 is unique and the remaining internal fluxes can be easily 

calculated by standard methods for solving linear algebraic equations. It is necessary for a 

unique solution that the set of algebraic equations be not redundant (rank (Su) = nu = m). 

All unmeasured fluxes can be evaluated by using the inverse of the nonsingular matrix 

Su:  

 

k
1 V.. kuu SSV −−=                                                 (2-31) 

 
For example, the metabolism of Penicillium chrysogenum has been studied using 

metabolic flux analysis (Jorgensen et al., 1995). The model included 49 intracellular 

metabolites, 82 internal fluxes, and 33 fluxes were measured, same as the number of 

degrees of freedom of their proposed system. 

 

2.5.6   Overdetermined Systems 

If there are more measurements available than the degrees of freedom, the system is 

generally called overdetermined.  In this case the excess number of measurements can be 

used to (Stephanopoulos et al., 1998): 

 Calculate the remaining internal fluxes 

 Apply a least-square type analysis with appropriate criterion to increase the  

confidence in the measured fluxes 

 Specify the main source of measurement errors 

The starting point for this analysis is also Equation 2.30 and the solution is determined 

using a least-square technique to minimize the error between the calculated fluxes and the 

measured fluxes. Since the matrix Su is not square, its inverse cannot be calculated, 

however, if this equation is multiplied by the transpose of Su the following expression is 

obtained: 

 

kkuu VSSVSS T
u
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u −=                                               (2.32) 
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Matrix uSS T
u  is certainly square, and if it has a full rank it can be inverted to give the 

solution for Vu as shown below: 

 

kku VSSV #
u−=                                                   (2.33) 

 
Here, #

uS  is the Penrose pseudo-inverse of Su that is defined as follows (Lee and 

Papoutsakis, 1999): 
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 Equation 2.33 is essentially the least square estimate of the elements on the vector Vu, 

where all balances have been used for their determinations. The above solution is very 

useful when there is a little noise in the measurements (Vallino and Stephanopoulos, 

1993). If a significant amount of noise is present in only some of the measured fluxes, the 

solution of Equation 2.33 may not satisfy flux conservation around some network nodes.    

 

2.5.7   Underdetermined Systems 

If the number of measured internal fluxes is smaller than the degrees of freedom then the 

system is so-called underdetermined. Although the number of solutions for an 

underdetermined system is infinite, they lie in a restricted region defined as the metabolic 

genotype of a given organism (Varma and Palsson, 1994), because it defines all the 

metabolic flux distributions that can be achieved with a particular set of metabolic genes. 

It is possible to obtain a unique solution for the intracellular fluxes by optimizing an 

objective function subject to the constraints of the metabolic balances. If the objective 

function is linear, linear programming could be used to determine the distribution of 

internal fluxes. Since, all variables in linear programming are required to be nonnegative; 

one should revise the definition of metabolic fluxes, which may be either positive or 

negative. Therefore, the model has to be extended in such a way that includes both 

forward and backward fluxes for each of the nu reactions in the model, or at least for 

those reactions that may be reversible. The revised form of Equation 2.30 by considering 

the individual reaction rates can be written as follows: 
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0VVSVS indu,kkindu,indu, ≥−= and                        (2.35) 
 

Where Su,ind. is the stoichiometric matrix ind,unm×  including the stoichiometry of both 

forward and backward reactions and Vu,ind. is the corresponding revised unmeasured flux 

vector with dimension nu,ind..  

The next step is to define an objective function that could be a linear function of the 

elements of vector Vu,ind.. Then, the optimal solution is found by solving the 

corresponding maximization or minimization problem: 

 

               indu,Min/Max Ω.VZ =                                            (2-36) 

                                                    toSubject   Equation 2.35                       

 

Here Ω  is a row vector, which specifies the influence of the individual fluxes on the 

objective function. A number of different objective functions have been used for 

metabolic flux analysis. These include the following: 

1. Minimize excess ATP production. This objective is used to determine how 

energetically efficient metabolism can operate (Majewski and Dornach, 1990). 

2. Minimize nutrient uptake. This objective function is stated to determine the 

conditions that cell can perform its metabolism while consuming the minimum 

amount of available nutrients (Savinell and Palsson, 1992). 

3. Minimize redox potential. This objective function finds conditions where the cells 

operate to generate the minimum amount of redox potential (Lee and Papoutsakis, 

1999). 

4. Minimize the Euclidean norm. This objective function has been applied to channel 

the metabolites as efficiently as possible through the metabolic pathways (Bonarius 

et al., 1996). 

5. Maximize metabolite production. This objective has been utilized to determine the 

biochemical production capabilities of organisms (Varma and Palsson, 1993a; Takac 

et al., 1998). In this analysis the objective function was defined to maximize the 

production of a chosen metabolite. 
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6. Maximize biomass and metabolite production. By considering an appropriate weight 

for these two conflicting objectives, one can specify the trade-off between cell 

growth and metabolite overproduction (Varma et al., 1993b). 

This type of objective function can be stated by Equation 2.36 and it allows the examiner 

to obtain answers to a number of important questions. 

 

2.5.8   Checking Calculability 

The goal of metabolic balancing is the evaluation of as many elements of Vu as possible. 

An unmeasured rate can sometimes be calculated from the set of independent equations 

even in an underdetermined system, so it is very important to detect the calculable rates. 

Singular value decomposition (Van der Heijden et al., 1994) was first introduced in order 

to address the calculable rates. This method requires the calculation of three matrices. 

Klamt et al., (2002) determined the possible set of calculable rates by using the null space 

(kernel) of Su (ker (Su)) that is much easier to justify and employ. In their proposed 

algorithm, such elements vu,j of Vu are determined and therefore calculable, whose 

corresponding jth row in ker (Su) is a null row. The values of the detected calculable rates 

could be obtained by using the general approach of least- square solution by Equation 2-

33. It is noteworthy that the non-calculable rates cannot be considered as determined by 

the least-square solution using the pseudo-inverse method. 

 

2.5.9   Checking Balanceability and Consistency 

If a system of equations is not redundant, it will be automatically consistent for any Vk, so 

the balanceable rates are associated with only a redundant system. Substitution of 

Equation 2.33 into Equation 2.30 yields: 

 
0V.R k =                                                       (2.37) 

 
Where R is the redundancy matrix and is defined as: 

 

k
#
u S.S.SSR uk −=                                                (2.38) 
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Equation 2-37 expresses the relationship between only measured rates. For a non-

redundant system, the redundancy matrix is null and therefore Equation 2-37 is consistent 

for any measured vector. In contrast, due to unavoidable measurement errors, Equation 2-

37 is not normally fulfilled in case of a redundant system; hence, the system is 

inconsistent. Balanceable rates as the main candidate for system inconsistency in the 

latter case and it can be detected by an inspection of redundancy matrix.  

For any null column of R, there is no meaningful expression for the corresponding rate in 

terms of the other measured rates and that rate is not balanceable. Therefore, if jth column 

of redundancy matrix contains at least one non-zero element, the corresponding measured 

flux of vb,j is balanceable. The balanceable rates should be adjusted to obtain a consistent 

system in which the pseudo steady state mass balance set of equations is satisfied. 

Stephanopoulos et al., (1998) had shown that the variance-covariance matrix of the 

measurements along with the redundancy matrix can be used to adjust the balanceable 

rates.  
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2.6   Power-law Approximations 
A number of nonlinear approximations have been utilized successfully to model the rate 

law of individual enzymatic reactions. The most commonly used mechanistic model is 

the Michaelis-Menten (1913) model, which is based on earlier ideas of Henri (1903). 

Although this function along with its derivatives and generalizations (e.g., Cleland, 1967; 

Koshland and Neet, 1968) reflect the nonlinear nature of the rate law, the expression 

becomes quite complicated when it involves several substrates and products. In addition, 

the complexity of the rate law becomes overwhelming if it also involves modulators. 

Furthermore, rate laws of this type may include a number of parameters when the 

pathway consists of a reasonable number of metabolites and modulators, so that an 

extraordinary number of experimental assays need to be carried out (Savageau, 1976).  

Consequently, a different approach is required which leads to a simpler mathematical 

form, but still captures the nonlinear nature of the system. This new approach emphasizes 

integrated system modeling rather than individual detailed mechanisms. Then again, it 

may be based on the differential Equation 2-20 in case the functions +
ijV and −

ijV  are 

specified. The problem is that the exact form of these functions is unknown (Heinrich and 

Schuster, 1996), but experience of the past three decades confirmed that the power-law 

approximation of the rate expression, which is equivalent to linear approximation in a 

logarithmic coordinate system, may be the best choice (Torres and Voit, 2002). There is 

no mathematical proof that these functions are the best possible descriptions of the exact 

model; nevertheless, there is considerable evidence supporting the adequacy of these 

types of functions (e.g., Savageau, 1976; Voit 1991). For instance, the general feature of 

the power-law representation is similar to the rate law for elemental chemical reactions, 

in which the original integer kinetic order based on some mechanism is replaced by a real 

number. Furthermore, a power-law approximation is equivalent to a first-order Taylor 

approximation in logarithmic space (Savageau, 1969). 

 

2.6.1   Generalized Mass Action (GMA) Systems 

Generalized mass action representations are based on power law-functions. In this 

representation, each process entering or leaving a variable is replaced individually with a 
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product of power-law functions, applying this approach to the general Equation 2.20 

yields (Sierra and Fariren, 2001): 
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Where ijα ′ and ijβ ′ are rate constants and iljg ′ and iljh′ are kinetic orders of production and 

consumption (degradation) of the ith metabolite, respectively. This model is intuitively 

proper for biochemical systems, because each process is explicitly represented by a 

separate term in the model (Torres and Voit, 2002). However, this approach has 

drawbacks, the most important being that the GMA form often does not have an explicit 

algebraic form for steady state calculations. This drawback becomes of crucial 

importance for optimization, since a number of equations may need to be solved by trial 

and error simultaneously.  

 

2.6.2   S-Systems 

For this representation within the power-law formalism, elementary fluxes are grouped 

into aggregated fluxes that pass into and out of metabolic pools. The general Equation 

2.20 then can be written as: 

 
( ) ( ) m,...,2,1i,V,VC iii =−= −+ PCPC&                           (2.40) 

 
Where +

iV and −
iV are all processes that increase the production and degradation of the 

metabolite i, respectively. The multivariable power-law representation of +
iV and −

iV are 

presented as (Voit, 2000): 
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Where iα and iβ  are the rate constants and determine the speed of production and 

degradation of metabolite i, respectively. The exponents ijg  and ijh  are the reaction orders 
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with respect to dependent or independent variables jC  that affect the production or 

degradation of iM , respectively. The rate constants may be positive or zero, but cannot be 

negative, whereas the reaction orders need not be integers. If jC  has a positive effect, the 

corresponding kinetic order is positive; if it has a negative or inhibitory effect, the 

corresponding kinetic order is negative. Regarding Equation 2-40 for each dependent 

variable, the change in time is stated as the difference of two functions, +
iV and −

iV . This 

equation may depend on some or all dependent and independent variables. Only those 

variables that directly affect the process under consideration enter the power-law 

representation. Substituting the functions given by Equation 2-41 and Equation 2-42 into 

Equation 2.40 and using the usual notation of product yields the biochemical system 

representation: 
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This system of equation is called S-system (Voit, 2000). S-systems have very interesting 

features for modeling and analysis of biochemical systems, because they can take into 

account all typical nonlinearities (Savageau and Voit, 1987). In addition, they allow a 

various algebraic and numerical analyses, and seem to be accurate enough in variety of 

relevant situations (Voit, 1992).   
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2.7   Fermentation Control 
The control of a fermentation process requires accurate on-line knowledge about the main 

process variables. For a successful operation more reliable measurements can be achieved 

by improvements at both the hardware and software level. By combining powerful and 

flexible software with modular instrumentation hardware, one can create a customized 

instrument that meets the needs of his/her application. The computer programs can be 

used for data acquisition, mathematical operations of the control algorithm, 

communication between different devices, and remote control of bioprocesses.            

Stoll et al. (1996) developed a system for the independent control of ammonia and 

glutamine in a hollow-fiber reactor using a fully automated flow injection analysis and a 

virtual programming language. Kellerhals et al. (1999) developed a closed-loop control 

system based on on-line gas chromatography to maintain continuously fed substrates at 

desired level using the graphical programming environment LabVIEW.  

 

2.7.1   LabVIEW Software 

National Instrument Corporation’s LabVIEW is a leading software tool for designing test, 

measurement, and control systems in industry and academia. While LabVIEW has the 

performance and flexibility of general purpose programming languages such as Visual 

Basic or Visual C++, it is also a high-level rapid development environment used to 

develop measurement and automation application (National Instrument Measurement and 

Automation Catalog, 2006).  LabVIEW has the same constructs as traditional languages, 

including variables, data types, looping and sequencing structures, and error handling. In 

general purpose programming languages, code is as much concern as the application. The 

user may pay close attention to the syntax (e.g., commas, semicolons, etc.), which is quite 

tedious. On the other hand, LabVIEW is a higher-level language that uses icons to 

represent functions, so the user wires icons together to determine the flow of data through 

the program.  

Technically LabVIEW is a dataflow programming language. In other words, program 

data flows from a data source to one or more data sinks and it propagates through the 

program in this fashion. Because of dataflow property, LabVIEW is not linear like 
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conventional development applications and can execute multiple operations in parallel. 

This property is depicted with a simple example in Figure 2.6. 

 

   

 
Figure 2.6- Dataflow property of a LabVIEW program.  

 

 

The sinus waveform is plotted, an array of the data is built, and the waveform is saved to 

a spread sheet file all in parallel. 

 

2.7.2   Programming Pattern 

User-written LabVIEW programs are called Virtual Instruments (VIs). VIs are composed 

of three main parts: Front Panel window, Block Diagram window, and Icon/Connector. 

 The Front Panel window serves as the graphical user interface for data inputs and 

outputs. The user inputs such as knobs, buttons, and switches are displayed on the Front 

Panel. Inputs on the Front Panel are called Controls. Outputs, such as graphs, LEDs, and 

meters are called Indicators. The user can use this window to design a user interface that 

is convenient to use and present the data in the most useful way. 

Graphical source code is developed in the Block Diagram window. All of the Controls 

and Indicators from the Front Panel have an associated terminal that represents them on 

the Block Diagram. Block Diagram is responsible for the actual data flow between the 

inputs and outputs. Various operations and analysis on the data may be performed by 

wiring the terminals to functions in LabVIEW. 

After a VI is developed, it may be used as a subroutine for another VIs; which in this case 

the former VI is called subVI. An Icon is a graphical representation of a VI, which 
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identifies the subVI when it is called from the Block Diagram of another VI. The user 

also needs to build a Connector pane to use the VI as subVI. The Connector pane is a set 

of terminals that corresponds to the inputs and outputs of the VI, similar to the parameter 

list of a function call in text-based programming languages. 

 

2.7.3   PID Algorithm 

Feedback control involves the comparison of the measured value of the controlled 

variable with its set point and makes adjustments to the manipulated variable in an effort 

to drive the controlled variable to its setpoint. Currently, the PID (proportional integral 

differential) algorithm is the most common algorithm used in industry. The PID 

controller determines a controller output value, such as heater power or control valve 

position in an analog system and heater or solenoid valve switches in a digital system. In 

PID control, one must specify a process variable and a set point. The process variable is 

the system parameter that should be controlled, such as temperature, fluid level, dissolved 

oxygen and the set point is the desired value for the parameter. The controller applies the 

controller output value to the system, which in turn drives the process variable toward the 

set point value. The PID controller compares the set point to the process variable to 

obtain the error: 

 
.v.p.p.s MM)t(e −=                                                (2.44) 

 
Controller output is the summation of the proportional, integral, and derivative actions: 
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The different three actions are defined as follows: 
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Where Kc is the controller gain, Iτ is the integral time (rest time) in minutes, and Dτ  is 

the derivative time (rate time) in minutes. Upon substitution of the individual actions into 

Equation 2.45 it yields: 
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2.7.4   Tuning Method 

Tuning PID loops is one of the major tasks of a control process and the resulting settings 

have a dominant effect on the performance of a PID control loop. Often, many controllers 

are poorly tuned. As a result, some controllers are too aggressive and some controllers are 

too sluggish. Tuning a PID controller needs selecting values for Kc, Iτ , and Dτ  . The 

proper evaluation of the settings will fulfill the operational objectives of the control loop 

which usually are an appropriate compromise between performance (minimizing 

deviations from setpoint) and reliability (the controller’s ability to remain in service while 

handling major disturbances) (Riggs, 1999). 

Although there are different methods for tuning PID controllers, one of the earliest tuning 

methods developed by Ziegler-Nichols is presented below. The procedure comprises the 

following steps (Riggs, 1999): 

 

 With P-only closed-loop control, introduce a set point change and increase the 

magnitude of the proportional gain until a sustained oscillation is observed.  

 The value of controller proportional gain that causes the sustained oscillation is 

ultimate gain, Ku. Ultimate period, Pu, is the period of the continuous 

oscillations. 

 Regarding the controller chosen, calculate the controller settings using Table 2.3. 
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Table 2.3- Ziegler-Nichols closed-loop gain settings 
 

Controller Kc Iτ  Dτ  

P 0.5 Ku --- --- 

PI 0.45 Ku Pu /1.2 --- 

PID 0.60 Ku Pu /2.0 Pu /8 

 

  

For slow response loops (e.g., certain temperature and composition control loops), the 

aforementioned method of evaluating the ultimate parameters can be a time consuming 

procedure that leads to less than satisfactory results. Instead, the ATV (autotune 

variation) method can be used in a manner similar to the ultimate method, but ATV tests 

can be implemented without upsetting the process. The most common method of ATV 

utilizes a relay switch to create what is essentially an on-off controller. The resulting 

oscillatory behavior is analyzed to determine the proper controller settings.   

To initiate an ATV test, the system should be at steady state or near steady state 

conditions. Then the manipulated variable is switched between a maximum and minimum 

value based on the error as follows: 
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                                        (2.48) 

 
The allowable input change is h, so humax =  and humin −= . There are two parameters 

that result from this method. One is the ultimate period of successive peaks, Pu, and the 

other is the amplitude of the process output, a. The ultimate gain, Ku, is calculated by 

(Riggs, 1999): 

 

a
h4Ku π

=                                                       (2.49) 

  
The ultimate parameter values can then be established by one of tuning approaches such 

as Ziegler-Nichols scheme. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS  
 

 

 

 

3.1   Microorganism 
A recombinant Aspergillus niger strain HEWL WT-13-16 was kindly provided by        

Dr. Mackenzie of Institute of Food Research, Norwich Research Park, UK. This 

recombinant strain contains hen egg-white lysozyme cDNA gene which is expressed 

under the control of A. niger glucoamylase promoter (glaA). Although initially 

introduced as a plasmid, the HEWL gene is incorporated into the host cell genome. 

 

3.2   Stock Culture Preparation 
The single cell selection and cloning procedure was performed as outlined by Mc Neil 

and Harvey (1990). Minimal growth medium was used during the inoculum preparation. 

First, the fungal culture was grown on agar surface in sterile Petri dishes at 30 oC for 7 

days. The conidia were harvested from the surface by adding 9 ml sterile de-ionized 

water and scraping the surface with a sterile inoculating loop to obtain a dense suspension 

of spores. The suspension was then transferred to a 50 ml sterile tube containing 5 sterile 

spherical glass beads, 4 mm diameter, and vortex mixed to break up spore clumps. 

Following filtration, several dilution series (10-2- 10-8) of filtrate were prepared in sterile 

de-ionized water. Then, 100 lμ aliquots of the dilution series was spread on the surface of 

agar in Petri dish and incubated at 30 oC. After 2 days a plate with a count of 20- 50 

colonies (dilution factor 10-6) was chosen for further examination. Three separate 

colonies with noticeable growth were transferred from the plate onto the surface of an 

agar slant in 20×150 mm tubes and incubated at 30 oC for 7 days. The spores were 
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harvested from the surface of slants, vortex mixed, and filtered. Three flasks, each 

containing 50 ml of medium ACM/N (Archer et al., 1990) were prepared and inoculated 

with 40 lμ of spore suspension. The slant corresponding to the highest level of protein 

production was considered as the master culture. To prepare a bank of this single 

suspension several plates were inoculated with 100 lμ  of the suspension. After 

incubation at 30 oC for 7 days, the conidia were harvested by suspending in 20% (v/v) 

glycerol solution, vortex mixed, and filtered. Approximately, 1 ml aliquots of the spore 

suspension were dispensed into 1.5 ml cryogenic vials and stored at -80 oC as spore 

stock. The conidium concentration of the spore stock was assessed as approximately 

5×107 spores/ml using a hemocytometer. 

 

3.3   Medium Composition 
Two types of medium have been used throughout this study, the minimal medium for 

preparing the spore bank and the complete medium for fermentation. 

 

3.3.1   Minimal Medium 

The minimal medium known as AMMN (MacKenzie et al., 1994) was used. The medium 

contained (per liter): glucose 10 g, salt solution 20 ml, agar 20 g, KNO3 6 g, and de-

ionized water to 1 liter. 

 

3.3.2   Complete Medium 

The media were based on ACMS (Archer et al., 1990a) with some modifications 

according to the applied methods throughout this study. Starch or glucose was used as 

carbon source and amino acids mixture or peptone (BactoTM) was supplied as organic 

nitrogen source in the media. The detailed concentrations of each constituents are 

presented in each phases of this work. Salt and trace element solutions were basically 

similar to those described by Cove, 1966 as follows: 

Salt solution: KCL 26 g, MgSO4.7H2O 26 g, KH2PO4 76 g, trace element solution 50 ml, 

chloroform (as preservative) 2 ml, de-ionized water to 1 liter. 

Trace element solution: Na2B4O7.10H2O 40 mg, CuSO4.5H2O 400 mg, ferric phosphate 

(Sigma F-1523) 646 mg, MnSO4.2H2O 800 mg, Na2MoO4.2H2O 800 mg, ZnSO4.7H2O 8 
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g, de-ionized water to 1 liter. In order to dissolve the salts the pH was brought to 4.10 

using 2N H2SO4.  

The amino acid content of the peptone was provided by the supplier (Becton, Dickinson 

and Company). The composition was (as wt %): Ala 9.2, Arg 5.8, Asp 5.0, Glu 8.1, Gly 

15.9, His 0.8, Ileu 2.1, Leu 3.8, Lys 3.4, Met 0.7, Phe 2.8, Pro 8.8, Ser 1.5, Thr 1.1, Tyr 

0.6, Val 2.8. 

Sodium citrate/citric acid (0.97M, PH 6.5) buffer was used in all shake flask 

experiments, because biomass increased very fast in un-buffered medium while the pH 

dropped as low as 2.0. Both growth and protein secretion were reported to be inhibited 

by acidic conditions (Archer et al., l995). Besides, in their paper on the production of 

HEWL under the control of A. niger glucoamylase promoter, MacKenzie et al. (1994) 

and Mainwaring et al. (1999) found that initial low pH in batch culture had a negative 

effect on total HEWL production.  For this reason, the initial medium pH was adjusted to 

6.00 with either NaOH or H2SO4.  

 

3.4   Analytical Procedures 
Samples were analyzed for concentrations of cells, glucose, ammonia, organic acids, 

amino acids, phosphate, and sulfate throughout the fermentation. Each analysis was 

carried out in triplicate and the average was reported and used in this study. The 

absorbance of the samples for different assays was measured with a Multiscan Ascent 

photometer micro plate reader.  

 

3.4.1   Biomass Concentration 

Biomass concentration was determined by dry weight measurements. The sampling 

device was modified to provide representative samples of the culture. 3×5 ml samples 

were taken at specific time intervals and filtered on predried, preweighed filters (4.25 cm 

GF/C filter, 1.2 mμ , Whantman No. 42) under vacuum. Filter cakes were washed with 

distilled water twice and dried at 80 oC for at least 24 hr to constant weight. The filtrate 

was stored at -35 oC for further analysis.  
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3.4.2   Lysozyme Assay 

Secreted HEWL were assayed at 30 oC in 52 mM sodium phosphate buffer (pH 6.24) 

using the method of Archer et al (1990). Lysis of Micrococcus luteus cells (0.25 mg/ml) 

(Sigma M-3770) was monitored by measuring the decrease in absorbance at 540 nm over 

a 5-minute period. The standard curve, obtained with authentic HEWL (Sigma L-6876), 

was linear within the range of 0.6-4.0 (mg lysozyme/L). A typical standard curve is 

presented in Appendix D Figure D.1. The total volume of 300 Lμ  including 250 Lμ  of 

M. luteus solution and 50 Lμ  of diluted sample solution in sodium phosphate buffer was 

used for each determination.  

 

3.4.3   Glucose Assay 

The glucose content was analyzed enzymatically by a glucose kit (Megazyme Glucose 

Test Kit). The method is based on the glucose oxidase/peroxidase reaction. The intensity 

of the formed dye is proportional to glucose concentration when the absorbance of the 

assay mixture is read at 510 nm against the reagent blank after 20 minutes incubation at 

40 oC.   

 

3.4.4   Organic Acids Assay 

Low molecular weight organic acids were measured with a Varian ProStar reverse phase 

HPLC system (Varian analytical Instruments, USA).  The ProStar system consists of an 

autosampler 410, two 210 solvent delivery system, and a 325 UV-vi detector. Separation 

was performed on an Inertsil C8-3 column (150 ×  4.6 mm, I.D.) with particle size of 

5 mμ . Star Chromatograph Workstation version 6.0 was used to acquire data from the 

detector and process data to obtain quantitative and qualitative results.  

The organic acid content of the fermentation samples was quantified using the method 

described by (Gawthray, 2003) with modification of the mobile phase. All the samples 

and standards were acidified to pH 2.7 with ortho-phosphoric acid. He proposed a mobile 

phase composed of 93% 25 mM KH2PO4 and 7% methanol at the total flow rate of 1 

ml/min. However, it was found that using a mobile phase of 99.5% 25mM NH4H2PO4 

and 0.5% methanol at a total flow rate of 0.7 ml/min gave better separation for most of 

the organic acids under study using the HPLC system outlined in this section. 
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Accordingly, the concentrations of oxaloacetate, acetate, α -ketoglutarate, citrate, 

fumarate, malate, pyruvate, oxalate, gluconate, and succinate were determined at 210 nm 

and temperature of 27 oC. A typical separation of organic acids is shown in Figure 3.1.  

 

 

 
Figure 3.1- Separation of organic acid standards by HPLC with 99.5% 25 mM NH4H2PO4 and 

0.5% methanol, pH 2.7, 0.7 ml/min, temperature 27 oC, wavelength 210 nm. 
 

 

The co-elution between gluconate and oxalate was not prevented by the proposed system, 

so the first peak in the samples was the sum of absorbance of gluconate and oxalate 

peaks. Therefore, concentration of gluconic acid in each fermentation sample was 

determined enzymatically by a specific kit for gluconic acid (Megazyme gluconic acid 

kit). Since a micro plate reader was used for the analysis, the pipetted volumes of the 

solutions (i.e., reagents and sample) were reduced ten fold relative to the original assay. 

The absorbance of each sample solution was monitored over a period of 30 minutes. The 

conversion of gluconic acid was found to be completed in 15 minutes after the addition of 

the last reagent. The concentration of gluconic acid and the area of the first peak in the 

chromatogram of each sample (as the indicator of both acids) along with the calibration 
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curve of both acids were used for calculating the oxalic acid content of the corresponding 

sample. 

Ultra-pure specimen of the organic acids from Sigma were used to prepare the standard 

solutions. Calibration curves for the organic acids were determined by at least four 

different concentrations and are presented in Appendix D Figure D.2. Curves were 

obtained by plotting the mass of organic acid injected versus peak area. The coefficients 

of determination (R2) for all organic acids except gluconate were greater than 0.9998 

which showed a perfect linear correlation among the data. Gluconate was the only 

organic acid with a lower, but still significant coefficient of determination of 0.9871.  

 

3.4.5   Ammonia Assay 

Ammonia was measured using a pH/ISE meter model 710A equipped with an ammonia 

gas-sensing Ion-selective electrode (Beckman). The measurement of ammonium ions 

with the electrode requires adjustment of the standards and samples to above pH 11 to 

convert the ammonium ions to ammonia gas. The hydrophobic membrane allows the 

ammonia gas to pass though the inner chamber of the electrode to be converted back to 

ammonium ions that is detectable as a pH change in the internal filling solution. The pH 

adjustment was performed by adding 10M NAOH to the solutions immediately before 

measurements. The pH change was calibrated against known concentrations of NH4Cl to 

cover the ammonia concentration in range of 10-100 ppm.  

 

3.4.6   Inorganic Ion Assay 

Phosphate and sulfate were measured using an Ion Chromatography system (Dionex, DX 

500 Chromatographic system, USA). 

 

3.4.7   Amino Acids Assay 

To determine the free amino acid content of the media, the pre-column derivatization 

method with phenylisothiocyanate (PITC) (Bidlingmeyer et al., 1984) was used. The 

samples including up to 50 nmol of each amino acid that resulted a maximum of 975 

nmol total amino acid concentration were dried under high vacuum. Then, 20 lμ of 

ethanol: water: triethylamine (TEA) (2:2:1) were added to the samples and dried again 
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under vacuum. The residual amino acids were ready for derivatization. The derivatization 

reagent was made fresh and consisted of ethanol: TEA: water: PITC (7:1:1:1) where 

PITC was added to this solution under nitrogen environment. The derivatized form of 

amino acids was formed by adding 20 lμ  of reagent to the dried samples under nitrogen 

atmosphere and sealing them for 20 minutes at room temperature. The reagents were then 

removed under vacuum. The derivatized amino acids can be kept dried and frozen for 

several weeks without significant degradation (Heinrikson and Meredith, 1984).  

Reverse phase HPLC was performed at 55 oC with the same system that was explained 

for organic acid analysis. The proposed solvent system consisted of two eluents. Solvent 

A as the aqueous buffer was a solution of 0.14 M sodium acetate containing 0.5 ml/L 

TEA which titrated to pH 6.35 using glacial acetic acid. Solvent B was a 60% solution of 

acetonitrile in water.  

Different gradient of the solvent system have been performed and checked for optimum 

resolution of amino acids. The optimum gradient is presented in Figure 3.2. 
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Figure 3.2- Gradient profile for amino acid analysis. Eluent A: 0.14 M sodium acetate, 0.5 ml 

TEA, pH 6.4; Eluent B: 60% acetonitrile in water. Flow rate 0.6 ml/ min. 
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Prior to HPLC, the derivatized samples were dissolved in 500 lμ   of solvent A. Then,    

10 lμ  of the sample solution were injected into the column using the autosampler device. 

In order to determine the retention time of each amino acid, individual amino acid 

samples were derivatized and analyzed with the liquid chromatograph. It was observed 

that the retention times were irregularly shifted when compared with a mixture of the 

same amino acids. Based on these observations, it was concluded that the individual 

retention time analysis would not be useful for differentiation between the amino acids in 

a mixture.  To overcome this difficulty a mixture of amino acid standard were analyzed 

as a basis. Then, an extra amount of each amino acid was added to the same amino acid 

standard solution and the results were compared to the basis in order to specify the 

retention time of the individual amino acid. A typical separation of amino acid standards 

using this protocol is presented in Figure 3.3 

 

 
Figure 3.3- Separation of amino acid standards by HPLC. Eluent A: 0.14 M sodium acetate, 0.5 

ml TEA, pH 6.4; Eluent B: 60% acetonitrile in water. Flow rate 0.6 ml/ min. 
  

 

For any chromatographic analysis, it is important to determine the range of the 

concentration within which the response is linear. Different concentrations varying from 
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31 to 1000 pmol of amino acid standard mixture were derivatized and analyzed to assess 

the linear range of the reaction. Samples were run in triplicate, and the average areas 

were calculated. The data are plotted in Appendix D Figure D.3 and show that linear 

response is indeed obtained. The coefficient of determination for all amino acids 

exceeded 0.99 with the exception of tyrosine and cysteine which had the poorest linearity 

with a coefficient of determination of approximately 0.98.  

 

3.4.8   Protease Assay 

Protease activity was determined by the method of Dunn (1989). The substrate solution 

with a concentration of 2% (w/v) was prepared by dissolving azocasein in 50-100 mM of 

sodium phosphate buffer. A sample volume of 48 lμ  of either fresh or frozen culture 

filtrate was added to 80 lμ  of substrate solution in a 1.5 ml microcentrifuge tube and 

mixed gently, but thoroughly. Mixtures were incubated at 25 oC for 30 minutes before 

stopping the reaction by adding 384 lμ  10% (w/v) trichloroacetic acid. The contents of 

each microcentrifuge tube was mixed thoroughly and allowed to stand for 15 minutes. 

One blank was prepared for each individual sample to account for the background effect 

of the sample color. First trichloroacetic acid was added to each sample and vortex mixed 

and then the substrate solution was added. This assured that there was no possibility for a 

reaction between the substrate and enzyme solutions. The samples were centrifuged at 

12000 for 5 minutes. Then 384 lμ  of the resulting supernatant was added to 448 lμ  of 1 

M NaOH and vortex mixed. Finally, 300 lμ  of the solutions were transferred to plate 

wells and the absorbance was determined at 450 nm. One unit of enzyme activity was 

defined as the amount of enzyme necessary to give an absorbance change of 1 under the 

assay conditions. 

 

3.4.9   Off-Gas Analysis 

Carbon dioxide and oxygen concentrations were monitored online at the inlet and outlet 

of the fermenter with a solid-sate infrared CO2 sensor and an electrochemical oxygen 

sensor, respectively (Model 902, Quantek Instruments, USA). 
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CHAPTER 4 

 

 

EXPERIMENTAL DESIGN 
 

 

 

 

4.1   Introduction 
Growth and metabolism of cells are strongly influenced by medium composition such as 

the carbon source, nitrogen source, and inorganic salts (Haq et al., 2003; Swift et al., 

2000). However, employing factorial design to attempt to obtain optimum levels of all 

nutritional factors is not an easy task. The traditional one-factor-at-a-time method for 

optimizing a multivariable problem is not only time and resource consuming, but also 

might provide the investigator with wrong conclusions (Oh et al., 1995). Response 

surface methodology (RSM), on the other hand is a powerful tool to deal with these kinds 

of problems. It provides a methodology to design experiments, build models, evaluate the 

effective factors, and search for optima in the response variables. Statistics based 

experimental designs for optimization have been used in many areas of biotechnology 

such as optimization of a culture medium (Ooijkaas et al., 1999), enzyme production 

(Ismail et al., 1998; Park et al., 2002), ethanol production (Mübeccel and Mutlu, 2000), 

and biomass production (Yu et al., 1997). Cortin et al. (2005) employed a multi-step 

statistical optimization strategy involving factorial design and response surface analysis 

for the maturation of human megakaryocytes (MK). They found that the combination of 

the two statistical methods is helpful for optimizing the MK culture system. They argue 

that the model for cell physiology should be constructed with care and, if necessary, 

should include the important higher order interactions between medium components 

(Michaud et al., 2005). To the best of my knowledge, this technique has not been applied 

for optimization of medium for fungi producing a recombinant protein. 
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The objective of this study was to evaluate the effects of the medium components for hen 

egg white lysozyme production by recombinant A.niger WT-13-16 and to search for the 

optimum medium composition for maximizing production. Initially, a fractional factorial 

design (25-1) was used to seek for the most important medium ingredients among starch, 

peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O. Previously published 

experimental results on A.niger nutrition are conflicting.  For example, it has been 

reported that addition of 10 mM of Ca2+ to the growth medium reduces the yield of 

lysozyme (Spencer et al., 1999). On the other hand, the addition of divalent cations to the 

medium (Ca2+, Zn2+, and Fe2+) gave loose and frayed mycelial pellets and enhanced 

growth and product formation (Gyamerah et al., 2002). Consequently, Ca2+ was 

considered as one of the factors to be investigated. In subsequent optimization steps the 

concentration of the components which have a significant influence on the enzyme 

production were further optimized using the central composite design and response 

surface method. 
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4.2   Materials and Methods 
Medium contained the following components (per liter): soluble starch (Difco), peptone 

(BectoTM), ammonium sulfate, yeast extract (Difco), CaCl2.2H2O all as required in the 

experimental designs (see Tables 4.1, 4.3 , 4.7, and 4.8) as well as salt solution 20 ml, 

sodium citrate/citric acid (0.97M, PH 6.5) 100 ml.  

Media without citrate buffer and CaCl2.2H2O were prepared and autoclaved at 121 oC 

for 20 min. Citrate buffer and CaCl2.2H2O were autoclaved separately. After 

autoclaving, the three solutions were mixed to give the final medium. This procedure 

prevented the formation of precipitate in the medium (Archer et al., 1995). 

 

4.2.1   Inoculation and Incubation 

Batch fermentations were carried out in 250 ml Erlenmeyer flasks containing 50 ml 

medium. The concentration of spore inoculum in each flask was 4×104 spores/ml. All 

fermentations were carried out at 25 oC and 150 rpm on an Innova 4330 refrigerated 

incubator shaker (New Brunswick Scientific Co., USA). 

 

4.2.2   Sampling 

Samples of approximately 500 Lμ  were taken aseptically each 24 hr of fermentation. 

The samples were filtered using Nanosep centrifugal tubes with 10 mμ  filter pore size 

to remove cells. The filtrate was then stored at -35oC for later analysis. 

 

4.2.3   Experimental Design and Data Analysis 

A three-step experimental design was used in developing a model for lysozyme 

production. The first step consisted of a fractional factorial design (FFD) to identify 

which medium ingredients had a significant effect on recombinant protein production. 

The second set of experiments was then carried out along the path of steepest ascent to 

ascertain the vicinity of the optimal region. In order to describe the behavior of the 

response in the optimum region the Box-Wilson experimental design (CCD) (Box et al., 

1978) was used. The statistical analysis of the results was performed with the aid of 

Design Expert version 6.0.4 statistical software (Stat- Ease Inc.). 
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4.3   Fractional Factorial Design (FFD) 

 

4.3.1   Preliminary FFD 

The purpose of the first optimization step was to identify the components of the medium 

that had a significant effect on lysozyme production within the ranges under study. A 

wide range of concentrations had been used previously for some medium ingredients of 

Aspergillus niger producing recombinant proteins. For instance, starch concentrations 

ranging from 10 to 50 g/l have been used for lysozyme production (Archer et al, 1990). 

Weibe and et al, (2001) supplemented some of their medium with soy peptone (4- 15 g/l) 

or peptone (100 g/l) and (NH4)2SO4 (1.75 to 15 g/l) for t-PA production. The range and 

the levels of the variables utilized at the preliminary design are given in Table 4.1. 

 

 

Table 4.1- Applied levels of independent variables in the preliminary FFD 
 

Applied Levels (g L-1) 
Variable Component 

- (Low) + (High) 

X1 Starch 10.0 20.0 

X2 Peptone   1.0   5.0 

X3 (NH4)2 SO4   1.0   3.0 

X4 Yeast Extract   0.0   1.0 

X5 CaCl2.2H2O   0.0   1.0 
 

 

A full factorial design would need 32 experiments, which is a high number. Instead, a 25-1 

fractional factorial design consisting of 16 factorial runs along with 3 other experiments 

at the center of the design for analysis of variance was carried out. The design was 

constructed by writing down the basic design having 16 runs (a 24 design in X1, X2,X3, 

and X4), selecting X1 X2 X3 X4 X5 as the generator, and then setting the levels of the fifth 

factor X5= X1 X2 X3 X4).  
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The defining relation for 25-1 was I= X1 X2 X3 X4 X5, where I was the identity matrix. 

Accordingly, every main effect was aliased with a single four-factor interaction               

(for example, the effect of X1 was really the linear combination of the main effect of X1 

and the four-factor interaction of X2 X3 X4 X5), and every two-factor interaction was 

aliased with a three-factor interaction. Then, the design was of resolution V and it was 

impossible to differentiate between the aliased terms. One would expect, however, that 

the 25-1 design would provide valuable information in reference to the main effects and 

two-factor interactions. 

The lysozyme concentration was taken as the dependent or response variable. The 

corresponding fractional experimental design and the experimental results are shown in 

Table 4.2. The normal probability plot of the effect estimates from this experiment is 

depicted in Figure 4.1. The main factor and their interaction effects were located along 

the line, which revealed none of the effects were significant in the range proposed in        

Table 4.1. Despite none of the factors and their interactions were important, peptone had 

the highest effect on lysozyme production in this design with a P-value of 0.063.  

 

 

 
Figure 4.1- Normal probability plot of the effects for the lysozyme concentration in the 

Preliminary FFD. 
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Table 4.2- Experimental design and results of preliminary FFD 
 

Natural values (g L-1) 
Lysozyme 

(mg L-1) Run  

X1 X2 X3 X4 X5 Yexperimental 

1 10 1 1 0 1 22 

2 20 1 1 0 0 23 

3 10 5 1 0 0 33 

4 20 5 1 0 1 42 

5 10 1 3 0 0 36 

6 20 1 3 0 1 45 

7 10 5 3 0 1 38 

8 20 5 3 0 0 42 

9 10 1 1 1 0 27 

10 20 1 1 1 1 41 

11 10 5 1 1 1 42 

12 20 5 1 1 0 40 

13 10 1 3 1 1 31 

14 20 1 3 1 0 38 

15 10 5 3 1 0 45 

16 20 5 3 1 1 65 

17 15 3 2 0.5 0.5 58 

18 15 3 2 0.5 0.5 52 

19 15 3 2 0.5 0.5 63 

 

 

On the basis of the experimental values, statistical testing was carried out using Fisher’s 

statistical test (not shown). The model P-value of 0.2478 implied that the model was not 

significant. The curvature F-value of 31.8 unveiled there was significant curvature in the 

design space and there was only 3% chance that the curvature could occur due to noise.  
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4.3.2   Revised FFD 

To achieve the region where we could determine the significant factors on lysozyme 

production, a new 25-1 fractional factorial design based on the elevated levels of starch, 

peptone, and ammonium sulfate was designed (Table 4.3).  

 

 

Table 4.3- Applied levels of independent variables in the revised FFD 
 

Applied Levels (g L-1) 
Variable Component 

- (Low) + (High) 

X1 Starch 20.0 30.0 

X2 Peptone 5.0 15.0 

X3 (NH4)2 SO4 3.3 9.3 

X4 Yeast Extract 0.0 1.0 

X5 CaCl2.2H2O 0.0 1.0 
  

 

Similar to the preliminary FFD the new design also consisted of 16 factorial runs, but 5 

runs at the center point were considered. The idea was that with the higher number of 

center points the noise in the analysis could be estimated more accurately. For 

convenience, the independent variables in the model were utilized in their coded form. 

The variables were coded as ix  according to Equation 2.12. In this study, more 

specifically, we have: 

 
0.5/)0.25X(x 11 −=  

0.5/)0.10X(x 22 −=  

0.3/)3.6X(x 33 −=  

5.0/)5.0X(x 44 −=  

5.0/)5.0X(x 55 −=  
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The corresponding 25-1 fractional experimental design and the experimental results are 

shown in Table 4.4. The medium with the high level of all factors was associated with the 

highest concentration of lysozyme of 127 (mg L-1). 

 

 

Table 4.4- Experimental design and results of the revised FFD 
 

Coded values 
Lysozyme 

(mg L-1) Run  

1x  2x  3x  4x  5x  Yexperimental 

20 - - - - + 60 

21 + - - - - 72 

22 - + - - - 94 

23 + + - - + 92 

24 - - + - - 74 

25 + - + - + 83 

26 - + + - + 105 

27 + + + - - 118 

28 - - - + - 62 

29 + - - + + 76 

30 - + - + + 100 

31 + + - + - 93 

32 - - + + + 67 

33 + - + + - 89 

34 - + + + - 100 

35 + + + + + 127 

36 0 0 0 0 0 101 

37 0 0 0 0 0 90 

38 0 0 0 0 0 87 

39 0 0 0 0 0 101 

40 0 0 0 0 0 85 
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4.3.2.1   Analysis of Variance of the Revised FFD (Full Model) 

Table 4.5 illustrates the estimates of the effects and the analysis of variance for this 

experiment. The model F-value of 6.30 implied that the model was significant. The         

P-value of 0.3127 for the curvature showed that the curvature was not important in the 

design space, so a linear model was adequate to explain the response. 

 

 

Table 4.5- Analysis Of Variance (ANOVA) for revised FFD (full model) 
 

Source of 

Variation 
Effecti  iSS  .. fd iMS        F  Fp >

Model 11.00 5597.00 15 373.13 6.30 0.0440 

X1 30.75 484.00 1 484.00 8.18 0.0460 

X2 14.25 3782.25 1 3782.25 63.89 0.0013 

X3   2.00 812.25 1 812.25 13.72 0.0208 

X4   1.00 16.00 1 16.00 0.27 0.6306

X5 -3.25 4.00 1 4.00 0.07 0.8077

X1 X2   6.75 42.25 1 42.25 0.71 0.4458

X1 X3   3.00 182.25 1 182.25 3.08 0.1542

X1 X4   0.50 36.00 1 36.00 0.61 0.4791

X1 X5   3.50 1.00 1 49.00 0.02 0.9029

X2 X3   0.75 49.00 1 49.00 0.83 0.4144

X2 X4   3.75 2.25 1 2.25 0.04 0.8549

X2 X5 -1.25 56.25 1 56.25 0.95 0.3849

X3 X4 -0.75 6.25 1 6.25 0.11 0.7615

X3 X5  5.50 2.25 1 2.25 0.04 0.8549

X4 X5  2.00 121.00 1 121.00 2.04 0.2260

Curvature  4.44 78.87 1 78.87 1.33 0.3127

Pure error  236.80 4 59.20  

Total  5912.67 20   
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In order to approach the proximity of the optimum values, a model including the linear 

and interaction terms (see Equation 2.13) was fitted to the data obtained from the 

fractional factorial design experiments. For a region far from the maximum, this model 

was sufficient. Using this model, the response surface was represented locally by a 

twisted sloping plane. The values of the regression coefficients were calculated and the 

following equation was derived using the coefficients of the coded variables: 

 

54534352423251

41312154321

xx752xx370xx630xx881xx370xx751xx250

xx51xx373xx631x50x1x137x3815x552588Y

.......

........

+−−+++

+++−+++++=
)

   (4.1) 

 

Figure 4.2 is a normal probability plot of the effects. All the effects that lied along the 

line were negligible, whereas the large effects were far from the line. Hence, the yeast 

extract and calcium chloride did not significantly influence lysozyme production within 

the levels tested, but starch, peptone, and ammonium sulfate were the significant factors. 

 

 

 
 

Figure 4.2- Normal probability plot of the effects for the lysozyme concentration in the 
 revised FFD (Full model). 

DESIGN-EXPERT Plot 

X1 : Starch 
X2 : Peptone 
X3 : Ammonium Sulfate 
X4 : Yeast Extract 
X5 : Calcium Chloride 

Normal plot

N
or

m
al

 %
 p

ro
ba

bi
lit

y 

Effect

-7.46 2.09 11.65 21.20 30.75

1

5

10

20
30

50

70

80

90

95

99

X1

X2

X3

X5 X4



 70

Examining the ANOVA table (Table 4.5) would lead one to identical conclusion. The 

main effects of X1, X2, and X3 were the only terms with P-values less than 0.05 indicating 

that they were significant at the probability level of 95%. It is worth to recall that due to 

aliasing, each main effect was really the linear combination of the main effect and a 

single four-factor interaction. However, since it was reasonable to assume that high level 

interactions were negligible, it was concluded that only the main effects were important. 

The P-value of 0.0013 for peptone showed that it had very noticeable positive effect on 

lysozyme production. The high level of peptone allowed the strain to produce a higher 

level of lysozyme than the lower level. Also, increasing levels of starch and ammonium 

sulfate enhanced the concentration of lysozyme. According to the results shown in   

Table 4.5, starch, peptone, and ammonium sulfate effects together accounted for nearly 

86% of the variability in the lysozyme production. After removing all nonsignificant 

terms from the model, Equation 4.1 can be reduced as follows: 

 
321 x13.7x38.15x5.525.88Y +++=

)
                                   (4.2) 

 
The reduced model should not imply that the eliminated terms from Equation 4.1 would 

not affect the response; In fact the effects of excluded terms were shown to be not 

significant by the F-test within the ranges studied. For instance, Figure 4.3 shows the 

interaction effect of peptone and calcium chloride on the response. It indicated that, at the 

higher level of peptone, increasing the calcium chloride level would enhance the protein 

production, whereas at the lower level of peptone any increase in calcium chloride would 

decrease the response. However, in both scenarios the effect would be very small and 

negligible in comparison to the more significant effects. 
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Figure 4.3- The interaction effect of peptone and calcium chloride on the response of  

the revised FFD (Full model). 
 

 

4.3.2.2    Adequacy of the Refined Model (FFD) 

The analysis of variance for the refined model (Equation 4.2) is summarized in Table 4.6. 

The curvature F-value of 1.67 indicated that the model curvature was not significant 

throughout the design space, and there was 21.45% chance that a curvature F-value this 

large could occur due to noise. This indicates a probable lack of significant curvature. 

Furthermore, the lack of fit value of 0.73 showed this source of variation was not 

significant relative to pure error.  

The coefficient of determination, 2R , of the model was calculated to be 0.87. This 

indicated that the model explained 87% of the variability in the data. Although the 

coefficient of determination of the refined model decreased to 0.87 in comparison to the 

value of 0.96 for the full model, the adjusted model 2
.AdjR = 0.85 was larger than that of 

the full model ( 2
.AdjR = 0.81), showing that there was no chance that nonsignificant terms 

had been included in this model. 
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Table 4.6- Analysis Of Variance (ANOVA) for refined model 
 

Source of 

Variation 
iSS .. fd  iMS F Fp >  

Model 5078.50 3 1692.83 35.86 <.0001 

X1 484.00 1 484.00 10.25 0.0056 

X2 3782.25 1 3782.25 80.12 <0.0001 

X3 812.25 1 812.25 17.21 0.0008 

Curvature 78.87 1 78.87 1.67 0.2145 

Residuals 755.30 16 47.21  

   Lack of Fit 518.50 12 43.21 0.73 0.6985 

 Pure error 236.80 4 59.25  

Total 5912.67 20    

 

 

Before adopting the model on the basis of the ANOVA test, the adequacy of the model 

should be checked. One can use the analysis of the residuals as a primary diagnostic tool 

for this purpose. The normal probability plot of the studentized residuals for the refined 

model is displayed in Figure 4.4. The points on this plot lied reasonably close to a straight 

line, implying that X1, X2, and X3 were the only significant terms in the model. Besides, 

the plot confirmed that the errors were normally distributed with mean zero and constant 

but unknown variance as the underlying assumption of the analysis.  This figure confirms 

the model adequacy.  
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Figure 4.4- Normal probability plot of studentized residuals for the refined model. 

 

 

The independence of the errors was checked by plotting the residuals versus the different 

independent variables. In Figure 4.5 the studentized residuals versus the fitted values of 

the response are plotted. This plot indicated that there was no unusual structure showing a 

certain pattern for the variance as the lysozyme concentration changed.  

Figures 4.6-8 are plots of the studentized residuals versus starch, peptone, and 

ammonium sulfate levels, respectively. The plots for starch and ammonium sulfate 

indicated equality of variance between the levels. The display for peptone represented 

higher variance in the high peptone level. The increase, however, was not severe enough 

to affect the analysis and conclusions. Thus, all plots appeared satisfactory and there was 

no reason to reject the conclusions. 
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 Figure 4.5- Studentized residuals versus predicted response. 

 

 

 

 

 
Figure 4.6- Studentized residuals versus Starch levels. 
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Figure 4.7- Studentized residuals versus Peptone levels. 

 

 

 

 

 

 
Figure 4.8- Studentized residuals versus Ammonium Sulfate levels. 

 

 

22

Peptone (g/L)

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
 

-3.00 

-1.50 

0.00 

1.50 

3.00 

5 6 7 8 9 10 11 12 13 14 15

Ammonium Sulfate (g/L)

22

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
 

-3.0 

-1.5 

0.0 

1.5 

3.0 

3.30 4.30 6.30 7.80 9.30



 76

4.4   The Path of Steepest Ascent 
The path of steepest ascent was determined by using Equation 4.2. Yeast extract and 

calcium chloride were fixed at the center of the fractional factorial design, because they 

were not significant at the probability level of 95%. Since, the signs of the three 

significant factors in the refined model were positive, they would have a positive impact 

for lysozyme production if their concentration into the medium was increased. Table 4.7 

illustrates the results of the experiment as well as the directions in which the variables 

were changed. These were increments of 15.38 units in 2x  and 7.13 units in 3x  for every 

5.5 units in 1x  (or 2.8 units of 2x , and 1.3 units of 3x  for each unit of 1x ). The center point 

of the fractional factorial design has been considered as the origin of the path. The 

response for this point was determined as the average of responses for the runs 35 to 40. 

 

 

Table 4.7- Experimental design of the steepest ascent and corresponding results 
 

Coded variables Real variables (g L-1) 
Run 

1x  2x  3x  1X  2X  3X  

Lysozyme

(mg L-1)  

Origin 0.0 0.0 0.00 25.0 10.0 6.30 93 

41 0.5 1.4 0.65 27.5 17.0 8.25 146 

42 1.0 2.8 1.30 30.0 24.0 10.20 158 

43 1.5 4.2 1.95 32.5 31.0 12.15 198 

44 2.0 5.6 2.60 35.0 38.0 14.10 191 

45 2.5 7.0 3.25 37.5 45.0 16.05 185 

46 3.0 8.4 3.90 40.0 52.0 18.00 182 

47 3.5 9.8 4.55 42.5 59.0 19.95 179 

 

 

Figure 4.9 plots the lysozyme concentration at each step along the path of steepest ascent. 

Increases in response were observed through the third step; however, all steps beyond this 

point (Run 43) resulted in a decrease in the response. Therefore, another first-order model 

was fitted in the general vicinity of the point. For the new first-order model, the region of 
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exploration for X1 was [30, 35], and for X2 and X3 it was [24, 38] and [10.2, 14.1], 

respectively.  
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Figure 4.9- Response versus steps along the path of steepest ascent. 

 

 
For simplicity, the independent variables Xi were coded according to the following 

equations: 

 
50.2/)50.32X(x 11 −=  

00.7/)00.31X(x 22 −=  

95.1/)15.12X(x 33 −=  

 

The experimental design of the new first-order design was comprised of a 23 full factorial 

design (Runs 48-55) with six center points (Runs 62-67) as presented in Table 4.9. The 

analysis of variance of this model was performed (not shown).  The curvature F-value of 

30.6 indicated that there was a significant curvature in the design space and there was 

only 0.04% chance that the curvature occurred due to the noise. Because of this 

curvature, it was appropriate to conclude that a region near the optimum was reached. At 

this point, additional analysis was performed to locate the optimum more precisely.  
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4.5 Central Composite Design (CCD) 

 

4.5.1    Full Quadratic Model (CCD) 

As seen above, the neighborhood of the optimum response was approached along the 

path of steepest ascent. In order to explain the nature of the response surface in the 

optimum region, a central composite design was performed and the level of the three 

significant variables, starch ( 1x ), peptone ( 2x ), and ammonium sulfate ( 3x ) were further 

optimized. For the three factors this design was made up of the full 23 factors with its      

8 cubic points, augmented with 6 replications of the center points, and the 6 axial (star) 

points. The level of two nonsignificant factors (yeast extract and calcium chloride) was 

kept at the central point of the fractional factorial design. In order to make the design 

rotatable, the axial distance α  was assigned a value of 1.6818. Table 4.8 shows the 

different levels of the three variables in the terms of real values. 

 

 

Table 4.8- Actual levels of the factors for CCD 
 

Real levels (g L-1) Independent 

variables Star- Low Low Center High Star- High 

X1 28.30 30.0 32.50 35.0 36.70 

X2 19.23 24.0 31.00 38.0 42.77 

X3 8.87 10.2 12.15 14.10 15.43 

 

 

The 23 full factorial design along with the replications at the center point was augmented 

with the star points (Runs 56-61) to build up the central composite design. The complete 

experimental design and the measured lysozyme concentrations are presented in Table 

4.9 and the CCD for the three independent variables is displayed in Figure 4.10. It is 

worth mentioning that the experiments associated with the star points were performed at 

the same time the original 14 runs (48-55 and 62-67) for the first-order model were 

carried out. The hypothesis was that, if substantial time had elapsed between the two sets 
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of runs, blocking would have been necessary due to possible changes at the conditions of 

experiments and lysozyme analysis. 

  

 

 
Figure 4.10- Central Composite Design for the three significant factors. 

 

 

The experimental results of the CCD were fitted with a second-order model. The values 

of regression coefficients were calculated and the fitted equation (in the terms of coded 

values) for predicting lysozyme production was as follows: 
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         (4.3)         

 
This equation includes all terms regardless of their significance. Obviously, the relatively 

high value of 2R = 0.89   means that the full quadratic model is a good fit. The Model    

F-value of 9.43 was the indicator that the model was significant and there was only 

0.08% probability that this level of fit could occur due to random chance. The lack of fit 

P-value of 0.7949 showed that the lack of fit was not important relative to the pure error. 
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Table 4.9- Experimental design and results of the 23 full factorial central composite design 
 

Coded levels 
Lysozyme 

(mg L-1) Run 

1x  2x  3x  .,ExpccdY  predictedccdY ,
)

 

48 -1 -1 -1 171 174 

49 +1 -1 -1 181 180 

50 -1 +1 -1 176 181 

51 +1 +1 -1 206 205 

52 -1 -1 +1 182 183 

53 +1 -1 +1 187 189 

54 -1 +1 +1 170 171 

55 +1 +1 +1 192 196 

56 -1.68 0 0 179 175 

57 +1.68 0 0 200 200 

58 0 -1.68 0 183 182 

59 0 +1.68 0 196 193 

60 0 0 -1.68 180 184 

61 0 0 +1.68 193 184 

62 0 0 0 195 209 

63 0 0 0 214 209 

64 0 0 0 211 209 

65 0 0 0 208 209 

66 0 0 0 217 209 

67 0 0 0 207 209 

 

 

To determine the significance of each coefficient in the model, the analysis of variance, 

ANOVA, was performed. Table 4.10 is the summary of the ANOVA for the response 

surface full quadratic model.  
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Table 4.10- ANOVA for response surface full quadratic model 
 

Source of 
Variation iSS .. fd iMS F Fp >  

Model 3627.42 9 403.05 9.43 0.0008 

X1 766.57 1 766.57 17.94 0.0017 

X2 147.38 1 147.38 3.45 0.0930 

X3 26.05 1 26.05 0.61 0.4530 

2
1X  843.95 1 843.95 19.75 0.0012 

2
2X  843.95 1 843.95 19.75 0.0012 

2
3X  1094.10 1 1094.10 25.60 0.0005 

X1 X2 171.13 1 171.13 4.00 0.0733 

X1 X3 21.12 1 21.12 0.49 0.4981 

X2 X3 171.12 1 171.12 4.00 0.0733 

Residuals 427.38 10 42.74  

   Lack of Fit 134.05 5 26.81 0.46 0.7949 

 Pure error 293.33 5 58.67  

Total 4054.80 19  

 

 

4.5.2    Refined Quadratic Model (CCD) 

Recalling that P-value of less than 0.0500 was the indicator of significance, the variable 

terms 1X , 2
1X , 2

2X , and 2
3X  were significant from a model perspective. After removing 

all other terms from the full second-order model, the adjusted- 2R of the new model was 

less than that of the full model implying that there could be more significant terms in the 

revised model. Since, the Fp >  greater than 0.1000 are certainly nonsignificant terms, 

terms with the Fp >  less than 0.1000 were considered in seeking a higher value of 2
.AdjR . 

The following quadratic surface model was accordingly chosen as the final model: 
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The analysis of variance for the refined quadratic model is presented in Table 4.11. The 

goodness of fit was expressed by the coefficient of determination 2R , which was 

calculated to be 0.88, indicating nearly 90% of the variability in the response could be 

explained by the model. Furthermore, the final model had 2
.AdjR  equal to 0.82 in 

comparison to 0.80 calculated for the full quadratic model. This supported the hypothesis 

that the model equation as expressed by Equation 4.4 was sufficient to describe the 

response of the experimental observations pertaining to lysozyme production. The 

Adequate Precision statistic was determined to be 9.422. The Adequate Precision statistic 

is a signal to noise ratio. It compares the range of the predicted values at the design points 

to the average predicted error. Ratios greater than 4 indicate adequate model 

discrimination. The Adequate Precision of 9.422 indicated that the model would give 

reasonable performance in prediction. 

 

 

Table 4.11- Analysis of variance of the refined quadratic model 
 

Source of 

Variation 
iSS .. fd  iMS F Fp >  

Model 3580.24 7 511.46 12.93 <.0001 

X1 766.57 1 766.57 19.38 0.0009 

X2 147.38 1 147.38 3.73 0.0775 
2
1X  843.95 1 843.95 21.34 0.0006 

2
2X  843.95 1 843.95 21.34 0.0006 

2
3X  1094.10 1 1094.10 27.67 0.0002 

X1 X2 171.13 1 171.13 4.33 0.0596 

X2 X3 171.12 1 171.12 4.33 0.0596 

Residuals 474.56 12 39.55  

   Lack of Fit 181.23 7 25.89 0.44 0.8420 

 Pure error 293.33 5 58.67  

Total 4054.80 19  
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The model F-value of 12.93 implies the model is significant. There is only 0.01% chance 

that a Model F-value this large could occur by chance. Also, the lack of fit value of 0.44 

disclosed that the lack of fit was not significant relative to the pure error. As an additional 

tool to check the adequacy of the final model, the normal probability plot of the residuals 

is presented in Figure 4.11. There was no indication of nonnormality, nor was there any 

evidence pointing to possible outliers, although the singular negative residual of -2.404              

(see Run 62) stood out from the others.  

   
 

 
Figure 4.11- Normal probability plot of studentized residuals for refined quadratic model. 

 
 
 

Figures 4.12 and 4.13 display residuals versus predicted values and residuals versus run 

order, respectively. There was no reason to suspect any violation of the independence or 

constant variance assumption as both figures indicated a nearly constant variance 

throughout the variable ranges. Similarly to the normal probability plot, the value for Run 

62 was far from the others, however, it was not unusual. 
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Figure 4.12- Studentized residuals versus predicted response by refined quadratic model. 
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Figure 4.13- Studentized residuals versus run order. 
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The location of the optimum  was determined by solving the set of equations  derived by 

the differentiation of  the refined quadratic model. The results are  presented in both 

coded and real values for the independent variables along with the predicted maximum 

response in Table 4.12. This maximum concentration was the maximum value bounded 

by the range of experiment values.   

 

 

Table 4.12- Predicted maximum response and the location of optimum for CCD 
 

Coded values 
Actual values 

( g L-1) 

Lysozyme 

(mg L-1) 

 

1x  2x  3x  1X  2X  3X  .dPre,OptimumY
)

 

Optimum 

location 
0.6222 0.4384 -0.1163 34.06 34.07 11.92 212 

 

 

The response surface, shown in Figure 4.14, was based on the refined quadratic model. 

For easy graphical representation  one variable was kept constant at optimum level while 

varying the other two whithin their experimental ranges. Figure 4.14a shows the response 

surface for the optimum level of starch. The minimum value of the response (141 mg/L) 

was when both peptone and amonium sulfate were at their lowest level. At the high level 

of amonium sulfate (15.43 g/L) the response indicated a maximum nearly at  the middle 

of peptone level, whereas the maximum shifts to the higher levels of peptone when 

amonium sulfate was at the lowest level (8.87 g/L) .  

At the optimum level of peptone (Figure 4.14b) , minimum response (143 mg/L) was 

seen with low level of starch (28.3 g/L) and high level of amonium sulfate. Increases in 

the response were observed when starch concentration changed from the low level to the 

high level at any concentration of ammonium sulfate. Figure 4.14c indicates the response 

at the optimum level of ammonium sulfate. The location of minimum response           

(146 mg/L) was when starch was at the lowest level and peptone at its highest level.  
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Figure 4.14- Response surface of lysozyme concentration: (a), (b), and (c) fixed starch, peptone, 
and ammonium sulfate concentrations at their optimum points, respectively.  

 
 
Figure 4.15 shows the plots of the lysozyme concentration determined by the refined 

quadratic model against one of the factors for the two levels of the second factor at the 

optimum level of the third factor. Figure 4.15a illustrates the interaction between peptone 

and ammonium sulfate for lysozyme production. Response was enhanced 33% with the 

increase in peptone concentration from low to high level when ammonium sulfate was at 

the low level, while the response decreased slightly at the high level of ammonium 

sulfate. In addition, ammonium sulfate had a positive effect on the response at the low 

level of peptone, while at the high level of peptone its effect was negative. These 

represented a considerable interaction between ammonium sulfate and peptone.  
Analysis of response at the different levels of ammonium sulfate and starch while 

peptone was at the optimum level revealed that there was no remarkable interaction 

between these factors (see Figure 4.15b). At diffent levels of starch the response trend 

was identical along the entire range of ammonium sulfate. This confirms the previous 
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results from the analysis of variance that the interaction effect between ammonium 

sulfate and starch was not significant. 

The starch and peptone interaction effect are plotted in Figure 4.15c. The plot indicated 

that starch had little effect at low peptone concentration, but a large positive effect at high 

peptone level. Furthermore, at the low level of starch peptone showed little negative 

effect on the response, but at the high level of starch the peptone showed a large positive 

effect. Based on these observations, one could conclude that there was a significant 

interaction between starch and peptone levels. 

 
    

                               
 

 
 

Figure 4.15- The interaction plots at the optimum levels of a) starch, b) peptone, and  
                c) ammonium sulfate. 
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The predicted values by the refined quardatic model are presented in Table 4.9 along with 

the corresponding observed values.  Comparison of these values indicated that there was 

an excellent agreement between the model and experimental data for the range of 

experiment values considered.  

In order to confirm the predicted result of the model, experiments using the medium 

representing the maximum point were performed in triplicate. The maximum lysozyme 

concentration was experimentally determined to be 209± 18 mg L-1, which was in very 

good agreement with the predicted value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 90

4.6   Conclusion 
The classical method of medium optimization by changing one parameter at a time while 

keeping the others at fixed levels is laborious and time consuming. This method requires 

a complete series of experiments for every factor of interest. Moreover, such method 

does not provide means of observing possible factor interactions. In contrast, factorial 

experimental designs offer a number of important advantages. For instance, the examiner 

could easily determine factor effects with considerably less experimental effort, identify 

factors, find optima, offer greater precision (Leiro et al., 1995) and facilitate system 

modeling (Miron et al., 1988). 

The statistically based experimental design has proven to be a valuable tool in 

optimizing the medium for lysozyme production (Gheshlaghi et al., 2005). Fractional 

factorial design used as the first step was efficient to screen which medium components 

amongst the selected factors were significant. More specifically, the results of this 

analysis indicated that yeast extract and CaCl2.2H2O were not very important parameters 

with regard to lysozyme production within the levels tested but starch, peptone, and 

ammonium sulfate were very significant. As the second step, the path of steepest ascent 

was useful to move toward the vicinity of the optimum.  

Finally, the response surface design was found to be very helpful to elucidate the 

interactions and relationships among the significant components and led to an 

optimization scheme for lysozyme production. The final quadratic model was accurately 

able to predict the behavior of the response at the neighborhood of the optima. The linear 

effects of starch and peptone, quadratic effects of all the three ingredients, and the 

interaction effects between starch-peptone as well as peptone-ammonium sulfate were 

the significant terms in the final quadratic model.  

The optimum medium composition for the production of lysozyme by A.niger was 

established as follows: starch (34 g/L), peptone (34 g/L), (NH4)2SO4 (11.9 g/L), yeast 

extract (0.5 g/L), and CaCl2.2H2O (0.5 g/L). As shown in Table 4-12 this medium was 

predicted to produce theoretically 212 mg/L lysozyme. This compares with 209± 18 

mg/L produced experimentally. This was a remarkable improvement in comparison to the 

results of previous studies. The quadratic model predicted that experiments with the 

highest (starch: 36.7 g/L, peptone: 42.77 g/L, ammonium sulfate: 15.43 g/L) and lowest 
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(starch: 28.3 g/L, peptone: 19.23 g/L, ammonium sulfate: 8.87 g/L) levels of these three 

ingredients would decrease the lysozyme concentration to 159 and 123 mg/L, 

respectively.   
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CHAPTER 5 

 

 

METABOLIC FLUX ANALYSIS 
 

 
 

 

5.1   Introduction 

 
The overproduction of the desired recombinant product is the primary aim of any 

biotechnology-based industrial process. In this regard, several methods have been applied 

to increase the level of the desired products including bioprocess optimization (Gyamerah 

et al., 2002), strain development (Bartsch et al., 2002), medium optimization (Gheshlaghi 

et al., 2005; Li et al., 2002), and mathematical modeling (Alvarez-Vasquez et al., 2000). 

Nowadays, it is possible to effect modifications in microorganisms by using recombinant 

DNA techniques which enable the blocking of byproduct pathways by enzyme deletion 

or the increase of enzyme levels for the overproduction of the desired product. The 

problem is, however, to delineate the location and the level of enzyme modifications in 

the metabolic network, otherwise genetic engineering techniques may not be rewarded 

with an equivalent improvement in strain enhancement. This shortcoming may be 

overcome by using a quantitative approach which is able to simulate the behavior of the 

microorganism before applying any strain modification.  

Besides gene modification, metabolic flux analysis can provide important information 

such as maximal product yields on a substrate, recognize bottlenecks in the 

overproduction of the desired product, and identify the energetic parameters (Vallino and 

Stephanopoulos, 1993; Takac et al., 1998; van Gulik et al., 2000; Naeimpoor and 

Mavituna, 2000). Metabolic flux analysis is based on network stoichiometry and 

conservation of mass and does not require information regarding enzyme kinetics. Often, 

it may be formulated as a set of linear ordinary differential equations. The stoichiometric 
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approach focuses on the topology of the system and evaluates the rate by which a 

metabolite converts into other metabolites. The great advantage of the stoichiometric 

approach is that it comprises a set of linear algebraic equations at steady state, which 

enables linear optimization. 

In this work an optimization approach was utilized to obtain the intracellular metabolic 

flux distribution of an A.niger producing the recombinant protein, hen’s egg white 

lysozyme (HEWL). The production of recombinant proteins in aspergilli has been shown 

to be strictly growth associated (see Appendix D Figure D.4). Therefore, it is convenient 

to optimize the growth rate in order to optimize recombinant protein productivity.  The 

specific recombinant protein yield, of course, is dependent on cellular metabolism. Using 

published results, on-line databases, and experimental results, the main objective was to 

develop an elaborate stoichiometry-based flux model to simulate the behavior of the 

microorganism, to determine the maximum theoretical specific growth rate and to predict 

the effect of any change in key fluxes on the behavior of the cells for subsequent 

experimental perturbation studies.  

This Aspergillus strain has an absolute requirement for amino acids in the medium. One 

of the objectives in this work was to replace a complex nitrogen source (peptone) that 

was used in our previous studies (Gheshlaghi et al., 2005) with a known mixture of 

amino acids. This enabled one to monitor the concentration of individual amino acids 

throughout the course of fermentation and use this information as the input for the model. 
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5.2   Materials and Methods 
 

5.2.1   Medium Composition 

The chemically defined medium contained (per liter): glucose 20 g, ammonium sulfate 

3.1 g, amino acid mixture 3.20 g, and essential salt solution 20 ml. The amino acid 

mixture in this study was based on the amino acid content of 0.5% (w/v) peptone 

(BactoTM). The amino acid composition of peptone was provided by manufacturer as 

outlined in materials and methods chapter. Unexpectedly, the glycine content of peptone 

was 16%, much higher than any of the other amino acid concentrations. The 

corresponding glycine concentration in the medium was 0.792 g/L. Two experiments 

with 0.792 and 0.396 g/L glycine were performed while the other amino acids were 

supplied according to the peptone composition. No significant differences in lysozyme 

and biomass concentrations were observed. Therefore, for further experiments the 

concentration of glycine was maintained at 0.4 g/L. Accordingly, the composition of the 

amino acid mixture in the medium was (%w):  Ala 14.3, Arg 8.9, Asp 7.7, Glu 12.5, Gly 

12.5, His 1.2, Ileu 3.2, Leu 5.8, Lys 5.1, Met 1.3, Phe 4.3, Pro 13.5, Ser 2.3, Thr 1.7, Tyr 

1.4, Val 4.3. Glucose and the inorganic salt solution were autoclaved separately for 20 

min at 121 oC, and were added to filter-sterilized amino acids mixture to give the final 

medium.  

 

5.2.2   Fermentation 

The preparation of inoculum for the bioreactor was carried out in 250 ml Erlenmeyer 

flasks containing 45 ml of the medium along with 5 ml of sterilized sodium citrate/citric 

acid (0.97M, pH 6.5) as buffer. The citrate buffer was autoclaved separately and then 

added to the medium to prevent the formation of a precipitate (Archer et al., 1995). The 

flasks were inoculated with 40 Lμ  spore stock suspension to give a final concentration 

of approximately 4× 104 spores/ml in each flask. These cultures were grown at 27 oC and 

200 rpm for 48 hr on an Innova 4330 refrigerated incubator shaker (New Brunswick 

Scientific Co., USA). The initial fungal morphology of the preculture was small pellets. 

In order to promote mycelial growth in the fermenter, these pellets were sheared in a 

sterile Waring blender for 5 seconds prior to inoculation. 
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Batch fermentation experiments were performed in either a 2-liter Bioflo fermenter             

(New Brunswick Scientific Co., NJ) with a working volume of 1.5L, or a 7-liter 

Applikon bioreactor (Applicon Dependable Instruments, Holland) with a working 

volume of 4.5L using the medium described above. The bioreactor cultures were 

inoculated with a mycelial inoculum size of 5% and 3.3% of working volume for 2-liter 

and 7-liter bioreactors, respectively. The culture temperature was kept at 27± 0.5 oC. The 

moisture content in the exhaust gas was condensed and returned to the bioreactor by 

passing it through a vertical condenser mounted on the top of the fermenter. Air was 

supplied at a rate of 1 vvm and was sterilized through a hydrophobic 0.2 mμ (Millipore) 

membrane filter. The broth was mixed using three six-bladed Rushton turbine impellers 

rotating at 200-400 rpm. The dissolved oxygen was monitored and kept at above 20% 

saturation using variable agitation schemes. The initial pH of the broth was adjusted to 

6.0 and the fermentations were operated without any pH control until it decreased to a 

set point of 4.0. After reaching this set point, the pH was maintained at 4.0± 0.1 by 

adding either 2M sodium hydroxide or 2M sulfuric acid by an automatic pH-control 

system using a sterilizable probe mounted in the reactor. To prevent excessive foaming, 

antifoam (Sigma 204) was added, as needed.  

 

5.2.3   Analytical Procedures 

Samples were analyzed for concentrations of cells, glucose, ammonia, organic acids, 

amino acids, phosphate, and sulfate throughout the fermentation as described in Chapter 

3.  Each analysis was carried out in triplicate and the average was reported and utilized 

in this study. To investigate the accuracy and reproducibility of the HPLC analysis for 

amino acids, the concentration of each amino acid detected at the beginning of the 

fermentation was compared with the amount added as stated in the materials and method 

section.  Maximum errors were 18% and 15% for glycine and serine, respectively. The 

associated error was determined to be 12% for the initial concentration of ammonia.  
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5.2.4   Model Construction 

A stoichiometric model for growth and product formation of A.niger has been developed 

based on the available published information for this microorganism. Moreover, in case 

there was not specific information for A.niger, corresponding data of closely related 

filamentous fungi (e.g., A.nidulans) were included, and, as a last resort, data obtained for 

yeasts (e.g. Saccharomyces cerevisiae) were utilized when data were completely lacking 

or inadequate. This reaction network includes glycolysis and pentose phosphate (PP) 

pathways, tricarboxylic acid cycle (TCA), anaplerotic reactions, ammonia and sulfate 

assimilation, electron transport reactions, biosynthesis and degradation of amino acids, 

and the biosynthesis of nucleotides and macromolecular components of biomass such as 

protein, lipid, RNA, DNA, and carbohydrates. Since, several studies failed to produce 

evidence for the Entener-Doudoroff pathway (EDP) in fungi (Blumenthal 1968; 

Lakshminarayana et al., 1969) this pathway was not included in the model.  In this model 

three internal cell compartments, the cytosol, mitochondrion, and peroxisome were 

distinguished. A schematic outline of the major metabolic pathways is depicted in   

Figure 5.1. The complete set of reactions in the metabolic network with corresponding 

reaction numbers is given in Appendix C. The subscript c, m, and p denote the location of 

the species being present in the cytosol, mitochondrial matrix, and peroxisome, 

respectively. Some assumptions have been made for different parts of the biochemical 

reaction network, which are given below. 
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Figure 5.1- The general overview of the proposed metabolic pathways for A.niger (Refer to the appendix B 
for list of symbols). Three compartments cytoplasm, mitochondria, and peroxisomes are distinguished. The 
solid and dashed arrows with the reaction numbers next to them represent metabolic reactions and transport 
processes, respectively. The abbreviations and corresponding reactions are given in the Appendix. For the 
amino acids four different fluxes have been included in the model: biosynthesis, degradation, transport 
between cytoplasm and abiotic phase, and for protein biosynthesis; however, for simplicity only the first set 
is shown in the map. 
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5.2.4.1   Anabolic Reactions   

The anabolic reactions for A.niger for protein, lipid, RNA, DNA, and biomass synthesis  

were taken from the reported information for A.oryzae at the specific growth rate of      

0.1 h-1 (Pedersen et al., 1999). The sensitivity of the biomass yield to perturbations in the 

biosynthetic demands has been assessed in different studies and some authors concluded 

that the biomass yield was not sensitive to changes in biosynthetic requirements       

(Daae and Ison, 1999; Varma and Palsson, 1993a), whereas others emphasized the 

importance of incorporating changes in biomass composition with growth rate in flux 

estimation (Pramanik and Keasling, 1997). In this study, one single reaction (R11.5) 

based on a fixed biomass composition was employed for the formation of biomass 

throughout the fermentation. 

 

5.2.4.2   Intracellular Compartmentation 

Intracellular compartmentation plays an important role in the regulation and in the 

distribution of metabolic fluxes (van de Kamp et al., 1999). Since membranes are 

impermeable to certain components this compartmentation is necessary to obtain reliable 

balance of internal fluxes. For instance, NADH and NADPH can not pass the 

mitochondrial membrane, and separate balances are needed for these cofactors in each 

compartment. 

In eukaryotes most of the central carbon metabolism takes place either in the cytosol or in 

the mitochondria, however, some unique reactions occur in the microbodies, e.g., 

peroxisomes and glyoxysomes (Lazarow and Kunau, 1997). In the proposed metabolic 

model for A.niger, the following three compartments have been distinguished. The 

cytosolic compartment contains the reactions comprising glycolysis, gluconeogenesis, the 

PP pathway, and the majority of anabolic pathways. The mitochondrial compartment 

includes the TCA cycle, oxidative phosphorylation, the biosynthesis pathways of the 

amino acids isoleucine, valine and part of the biosynthesis of leucine, arginine, and 

lysine; and the peroxisomes fraction, which contains the glyoxylate shunt.  
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5.2.4.3   Amino Acids Metabolism 

The biosynthetic pathways for the twenty common amino acids have been elucidated in 

filamentous fungi (Jones and Fink 1982; Umbarger 1978). A comparison with similar 

data for other microorganisms shows that synthesis of amino acids by fungi closely 

resembles the same by bacteria (Ingraham 1983). However, there are some remarkable 

exceptions, for instance lysine is synthesized via diaminopimelic acid in bacteria and via 

α -aminoadiapate acid in filamentous fungi (Lejohn, 1971). Eight steps are involved in 

biosynthesis of lysine in fungi of which the first five steps take place in the mitochondria 

to form α -aminoadiapate acid. The last three steps converting α -aminoadiapate acid to 

lysine are carried out in the cytoplasm (Zabriskie and Jackson, 2000). 

 In fungi there are two pathways for the biosynthesis of cysteine. The first is the direct 

sulfhydrylation route in which serine is activated by acetyl-CoA to form O-acetylserine 

which is converted to cysteine by serine transacetylase. The second pathway is more 

complicated. Here the sulfide group is incorporated into O-acetylhomoserine (formed by 

activation of homoserine by acetyl-CoA) forming homocysteine. This is a branch point 

for the biosynthesis of methionine and cysteine. In the next step, homocysteine and serine 

are combined to from cystathionine which in the last reaction is converted to ammonia, 

cysteine, and α -ketobutyrate. In yeasts both pathways are known to be active (Morzycka 

and Paszewski, 1982). However, in the fungus, P. chrysogenum some investigators have 

claimed that only the trassulfuration pathway is operative; however, no evidence was 

presented (Dobeli and Nuesch, 1980; Treichler et al., 1979). The existence of the last 

enzyme of direct route, O-acetylserine sulfhydrylase is more recently demonstrated 

(Ostergaard et al., 1998). For reason of simplicity, and to avoid the incorporation of 

dubious path for the recycling ofα -ketoglutarate in current model, only the direct 

sulfhydrylation pathway for A.niger was assumed to be operative.  

 

5.2.4.4   Gluconate and Oxalate Metabolisms 

The high level production of gluconic acid from glucose in fungal cultures has been 

known for some time (Cochrane, 1958). Early fungal fermentation processes for gluconic 

acid production used species of Penicillium, however, improved strains of Aspergillus 

niger or Gluconobacter suboxidans are now employed in discontinuous submerged 



 100

fermentations in industry (Anastassiadis, 2005). Bioconversion of glucose to gluconate is 

a simple dehydrogenation (oxidation) reaction, which takes place without involvement of 

complex pathways. The enzyme responsible in Aspergillus niger is glucose oxidase (or 

glucose aerodehydrogenase) that has been extensively studied (Fiedurek and Ilczuk, 

1991).  

Several strains of A.niger are able to catabolize gluconate as the sole source of carbon 

(Elzainy, 1973). Two pathways for degradation of gluconate by A.niger have been 

proposed. The first mechanism involves phosphorylation of gluconate to gluconate-6-

phosphate, which is further metabolized by PP pathway (Lakshminarayana et al., 1969). 

The second, in contrast, is a completely non-phosphorylative pathway for gluconate 

metabolism (Elzainy et al., 1973). Gluconate is first dehydrated to 2-keto-3deoxy-

gluconate (KDG), which is then cleaved into pyruvate and glyceraldehyde.       

Three pathways have been proposed for oxalic acid formation. One requires the operation 

of NAD-glyoxylate dehydrogenase to oxidize glyoxylate to oxalate (Balmforth and 

Thomson, 1984). A NADP-glyoxylate dehydrogenase (EC 1.2.1.17) that produces oxalyl-

CoA as the initial product has also been found (Quayle and Taylor, 1961). The third one 

involves the cleavage of oxaloacetate by the enzyme oxaloacetate hydrolase 

(oxaloacetase, EC 3.7.1.1) to form oxalic acid and acetate. For A.niger it has been 

demonstrated that oxalate is only produced by the enzyme oxaloacetase which is located 

in the cytoplasm of A.niger (Kubicek et al., 1988). This pathway was included in the 

current model, accordingly.    

 

5.2.4.5   Anaplerotic Pathways 

Some TCA cycle intermediates are withdrawn for the biosynthesis of amino acids and 

nucleotides. In order to avoid a depletion of the cycle, these compounds must be 

replenished by alternative means as so-called anaplerotic pathways. Pyruvate carboxylase 

that converts pyruvate to oxaloacetate appears to be the main anaplerotic reaction in fungi 

(Gow and Gadd, 1995). In some Aspergillus strains, e.g. A.nidulans and A.terreus, the 

pyruvate carboxylase is reported to be present only in the cytosol (Osmani and Scrutton, 

1983; Jaklitsch et al., 1991). In A.wentii the enzyme is exclusively mitochondrial and in 

A.oryzae the enzyme is found in both the cytosol and mitochondria (Bercovitz et al., 
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1990). For A.niger some researchers claim only mitochondrial localization of pyruvate 

carboxylase (Purohit and Ratledge, 1988), whereas others find the enzyme in both the 

cytosolic and mitochondrial fractions (Bercovitz et al., 1990). Considering these findings, 

pyruvate carboxylase was assumed to be present in both the cytosol and mitochondria. 

It was well known that acetyl-CoA, which is a precursor for amino acid and lipid 

biosynthesis, can not pass the inner mitochondrial membrane, and synthesis of this 

compound may occur by two different pathways. When growing on acetate, this 

metabolite is assumed to be synthesized from acetate via cytosolic acetyl-CoA synthase. 

This enzyme is essential for growth on acetate as the sole carbon source in P. 

chrysogenum (Martinez Blanco et al., 1992) and repressed by glucose in A.nidulans 

(Kelly and Hynes, 1982). In case of growth on glucose cytosolic acetyl-CoA is assumed 

to be formed via ATP citrate lyase converting citrate into acetyl-CoA and oxaloacetate 

(Pfitzner et al., 1987). The oxaloacetate formed in cytosol can not cross the mitochondrial 

membrane, so it is converted to malate via cytosolic malate dehydrogenase. Malate may 

then either enter the mitochondria or be oxidatively decarboxylated to pyruvate by malic 

enzyme.  

There are two enzymes unique to the glyoxylate shunt: isocitrate lyase and malate 

synthase. These occur in all classes of fungi and are probably located in the glyoxysome 

(Martinelli and Kinghorn, 1994). Glyoxysomes take up isocitrate and acetyl-CoA and 

release succinate and malate.  

 

5.2.4.6   Intracellular Transport 

A steady flow of certain metabolites both in and out of the mitochondrial matrix space is 

necessary for the mitochondrion to perform its functions. Mitochondria have been shown 

to be either freely permeable or to have specific systems to transport the essential 

metabolites across the impermeable membrane separating the inner matrix space from 

cytoplasmic environment. Some uncharged molecules such as water, oxygen, and carbon 

dioxide pass through the inner membrane by free diffusion, but the transport of 

hydrophilic compounds including those involved in oxidation phosphorylation and 

electron transport is mediated by carrier proteins that span the lipid layer. In general, 

monocarboxylic acids such as acetate, acetoacetate, and pyruvate penetrate the 
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mitochondrion as the un-ionized acids by free diffusion mechanism (Lanoue and 

Schoolwerth, 1984). There is good evidence that pyruvate uptake is also mediated by 

antiport proton mechanism (Darvey, 2000). Fumarate is produced in the cytosol by the 

reactions involved in the biosynthesis of arginine and degradation of tyrosine as well as 

biosynthesis of nucleotides of AICAR and ATP. However, fumarate was not detected in 

the extracellular medium throughout the course of the fermentation in this study which 

means that it should be transported into the mitochondrion. In the current model, 

fumarate was carried into mitochondria by a carrier-dependent process assumed to be a 

fumarate/proton uniport.   

Phosphate is transported into the mitochondrion by a carrier-dependent process thought 

to be phosphate/OH- antiport (formally equivalent to co-transport with proton mechanism 

as shown by Ferreira et al., 1989). Two transport pathways have been found for the entry 

of glutamate into the mitochondrion. The first operates as a glutamate/proton symport 

mechanism which has a relatively low affinity for glutamate. The second means of 

importing glutamate is through an exchange with intramitochondrial aspartate (Tzagoloff, 

1982).  It was thought that ornithine enters the matrix space by an electrogenic uniport 

mechanism, however, more recent data suggests that this amino acid enters the 

mitochondria by an electroneutral proton exchange (Walker, 1992). The charge neutrality 

is preserved through the generation of a proton in the matrix during the excursion of 

citrulline.  The transport of zwitterionic amino acids such as valine, isoleucine, and 

citrulline is mediated by a carrier-dependent process thought to be a proton antiport 

(Tzagoloff, 1982). The ADP- ATP translocase transports ADP3- into the matrix space in 

exchange for ATP4- by a reorienting site mechanism in which a single site can be exposed 

to either the cytoplasmic side or the matrix side of the membrane (Nicholls and Ferguson, 

1992). Ac-CoA is assumed to enter the mitochondria via a carnitine shuttle (Jernejc and 

Legisam, 1996).   

 

5.2.4.7   Energetic Parameters 

In eukaryotes, many compounds (e.g., phosphate, pyruvate) are transported across the 

mitochondrial membrane by proton symport (Zubay, 1988). As a result, there is an influx 

of protons into the mitochondria, which in turn leads to the incomplete coupling between 
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the oxidation and phosphorylation processes. As a result, the so-called operational P/O 

ratio is much below the corresponding theoretical values (Nielsen et al., 2002). The 

operational P/O ratio for oxidation processes in A.niger is found to be 1.5-1.8 for FADH2, 

2.3-2.7 for NADHm, and 1.4-1.8 for NADHc (Nielsen, 1997). Unless otherwise stated, the 

operational P/O ratio for oxidation of NADHm, FADH2, and NADHc in the present 

simulations were considered to be 2.64, 1.64, and 1.64, respectively.  

 

5.2.5   Mathematical Formulation 

 

5.2.5.1   Metabolite Balancing 

If a system boundary around the cells is considered, this boundary is closed to the 

passage of certain metabolites while others are allowed to enter or exit the system based 

on external sources or sinks. Should an external source or sink of a metabolite exist, the 

introduction of an exchange flux will be necessary to allow a metabolite to enter or exit 

the system boundary. These fluxes have been referred to as pseudo-reactions (Clarke, 

1980) and can be thought of as representing the inputs and outputs to the system. 

It is possible to reduce the degrees of freedom of the set of algebraic Equation 2-29 by 

measuring some of these exchange fluxes as it was explained by Equation 2.30 by 

partitioning the flux vector V into unknown and known vectors. In this study, however, 

flux vector V was decomposed into three vectors. This enabled to implement the 

mathematical formulation more easily into GAMS environment. More specifically, the 

vector of fluxes could be partitioned into unknown internal fluxes I
uV , unknown exchange 

fluxes E
uV , and known (measured) exchange fluxes E

kV . In the same manner, the matrix S 

can be partitioned into I
uS , E

uS , and E
kS :  
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The equation (2-26) can be now written in the following form: 
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Upon rearrangement this yields: 
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The right hand side of the latter equation may be replaced by b, which is an 1×m  vector:  

 

                                               bVSVS E
u

E
u

I
u

I
u =+                                               (5.4) 

 

Here I
uS and E

uS are I
unm× and E

unm× matrices, respectively. The elements of vector b 

can be evaluated from the slope taken between two consecutive concentration data points. 

In the model, these elements are defined as outward, thus the numerical value of each 

element of b is negative when metabolite is entering the system, and positive when it is 

exiting the system. Equation 5.4 is the fundamental relationship in metabolic balancing.  

Figure 5.2a shows a simple example of a hypothetical network consisting of five 

metabolites and six internal reactions. One of these reactions is reversible, which creates 

a forward and a reverse flux. Altogether there are seven internal fluxes. Metabolites A   

andC are allowed to enter the system as substrates, and metabolites B and E to exit as 

products. Also, the uptake rate of metabolite A and excretion rate of metabolite E  have 

been experimentally measured.  

Note that the measured fluxes (members of vector b) are defined as outward, thus the 

numerical value of each element of b is negative, when metabolite is entering the system 

and positive when it is exiting the system. The steady state mass balance of the 

hypothetical network along with the flux constraints are provided in Figure 5.2b. Each 

row of the stoichiometric matrix represents the steady state mass balance of the 

corresponding metabolite. 
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Figure 5.2- Steady state mass balance of a hypothetical network. (a) Chemical reaction network 
including 5 metabolites( A and C are substrates, B and E are products), 7 internal fluxes indicated 
with solid arrows , 2 measured and 2 unknown external fluxes shown with dashed arrows. (b) 
Mathematical representation of the reaction network in the form of Equation 5.4. All internal and 
measured fluxes are constrained to be positive as described in the text. 
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5.2.5.2   Linear Programming  

As the number of unknown fluxes un is typically greater than the rank )( uS  the system is 

underdetermined and the degrees of underdeterminacy will increase as the network 

becomes more complex due to the larger number of branch points in the network. 

Consequently, the number of feasible flux distributions allowed by the Equation 5.4 is 

infinite. The metabolic flux distribution may be estimated by formulating a suitable 

objective function and using linear programming (Luenberger, 1984). The linear 

programming can be formulated as follows: 

 

                                       jj vZMax ∑= ϖ                                        (5.5) 

                                            :tosubject   bVSVS E
u

E
u

I
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I
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                                                                  iiiii b)1(bb)1( εε +≤≤−  

                                                                  j
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juv0 γ≤≤ ,        

                       E
iu

E
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E
iu vvv max,,,min,, ≤≤  

                   

Where Z  is the objective which is represented as a linear combination of the fluxes vj. In 

the present work, the unknown fluxes that are the model variables were expressed in units 

of (mmol/gDW  hr) and the normalized biomass flux represented the specific growth rate, 

μ (1/hr). In this work, the objective function (Z) was the specific growth rate. The first 

set of constraints is simply the steady state flux balances (i.e., Equation 5.4).  

The second set of constraints introduces the vector of parameters iε , which accounts for 

any possible error involved with the measured fluxes. The introduction of error limits has 

been proposed by Lee and Papoutsakis (1999), but to our knowledge has not been 

employed previously. 

The solution vector, I
juv , and E

iuv , , of the linear programming problem will be always non-

negative due to the characteristics of the Simplex algorithm. Consequently, reversible 

reactions must be formulated as two separate reactions, one in forward direction, and the 

other in the reverse direction (e.g., 4v  and 5v  in Figure5.2). This property allows the 
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incorporation of thermodynamic information by distinguishing between reversible and 

nearly irreversible reactions in the stoichiometric matrix (Schilling et al. 2000). The third 

set of constraints simply states this property for unknown internal fluxes. Further, the 

upper limit of this set could be representative of a maximum allowable flux through a 

given reaction, resulting from a limited amount of an enzyme being present (Lee and 

Papoutsakis, 1999).  

The last set of constraints implies upper and lower bounds on each exchange flux that 

represents the corresponding metabolite’s potential to enter or exit the system. There can 

only be one exchange flux per metabolite whose activity subsequently represents the net 

production or consumption of the metabolite by the system. The activity of these 

exchange fluxes is considered to be zero if the system is closed to the passage of the 

metabolite , positive if the metabolite is either exiting or being produced by the system, 

and negative if the metabolite is entering or being consumed by the system ( e.g., 

metabolite D , B , and C  in Figure 5.2, respectively). However, to comply with the 

Simplex algorithm and make the mathematical procedure more straightforward all 

exchange fluxes need to be considered non-negative. To overcome this drawback for 

entering metabolites, one can define all the exchange fluxes as positive and at the same 

time consider the corresponding member of the entering metabolites in matrix 
E
uS positive one instead of negative one (e.g. metaboliteC ). This convention for 

reversible reactions and exchange fluxes is used merely for mathematical purposes and 

does not influence the biological interpretation of metabolic function in any way. Linear 

programming calculations were performed in a GAMS (General Algebraic Modeling 

System) environment (Brooke et al., 1998). 

 

5.2.5.3   Sensitivity Analysis 

 Since any experimental data are subject to analytical errors, the assigned value is only an 

estimate. This uncertainty necessitates investigating the exchange in the solution if the 

value assigned to a given observation was adjusted to some other plausible value        

(Hillier and Lieberman, 2001). The sensitivity of the objective function Z with respect to 
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the change of the ith measured exchange flux was determined using the shadow price 

(Pannell, 1997) of the linear programming which is defined as follows: 

 

i
i b

Z
∂

∂=λ                                                       (5.6) 

 

The shadow price values were computed from the mathematical duality of the primary 

linear optimization problem. As explained previously, the elements of exchange flux b 

are defined to be negative for substrates and positive for products and by-products. Thus, 

the shadow price needs to be considered for improving the optimal solution with respect 

to the sign of the corresponding exchange flux. For instance, one can ameliorate the 

optimal solution by increasing substrate uptake rates and/or by decreasing by-product 

excretion rates of the metabolite with negative shadow prices.  

Moreover, since the absolute value of the exchange fluxes varies substantially, the 

relative or logarithmic sensitivity was used for comparison purposes. The sensitivity 

value quantifies the relative change in a calculated variable that is evoked by a relative 

change in a system parameter (Torres and Voit, 2002; Varma and Palsson, 1993a). The 

logarithmic sensitivity of the objective function in response to the change in the ith 

measured flux can be mathematically expressed as follows: 
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As shown in Equation 5.7, only shadow price values, the measured exchange fluxes, and 

the optimal value of the objective function are needed to compute logarithmic 

sensitivities. 
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5.3   Results and Discussion  

 

5.3.1   Matrix Calculations 

The matrix computations throughout this study were performed in MATLAB 6.5 

environment. 

 

5.3.1.1   Elemental Conservation 

In order to determine the molecular formula of protein, RNA, DNA, and lipid the atomic 

conservation Equation 2.25 was applied to their biosynthetic reactions (R11.1-4). The 

evaluated general molecular formulas for these macromolecules are presented in       

Table 5.1. 

 

 

Table 5.1- Elemental composition of macromolecules 
 
 C H N O P S 

Protein 4.828 9.538 1.376 2.526 0.011 0.014 

RNA 9.542 15.738 3.822 14.006 3.000 0.000 

DNA 9.742 17.484 3.758 14.000 3.000 0.000 

LIPID 38.409 75.947 0.400 23.358 0.923 0.000 

 

 

Then, the same algorithm for biomass formation reaction, R11.5, was applied and the 

general formula for biomass was evaluated as:  

 

060.0836.0145.28228.7391.78689.41 SPONHC                                    (5.8) 

 

It is worth mentioning that the numbers of elements in the above formula have the unit of 

mmol. The normalization of this formula with respect to carbon yields the elemental 
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composition of 02.068.017.088.1 PONHC , which is in good agreement with the reported 

formula for Aspergillus niger 55.017.072.1 ONHC  (Roels, 1983). 

Finally, the whole reaction network was checked for conservation of atomic species and 

we found that the equality expressed by Equation 2.25 was completely fulfilled.  

 

5.3.1.2   Stoichiometric Matrix and Flux Vectors Analysis 

The reaction network includes 137 metabolites. Since, the biomass biosynthesis reaction 

was considered as the objective function of linear programming the total mass balance 

equations for matrix analysis became 136 equations. Moreover, the model consists of 287 

intracellular reactions and transport processes between different compartments. Aside 

from the 37 measured metabolites (i.e., 20 amino acids, 10 organic acids, glucose, 

ammonia, phosphate, sulfate, biomass as well as oxygen and carbon dioxide at the outlet 

of the bioreactor) the exchange flux of all other metabolites was set to zero with some 

exceptions as described below. The exchange fluxes of DHF, isocitrate, hydrogen sulfide, 

acetoacetate, and cytosolic water were allowed to be determined by the program. For the 

first attempt to analyze the matrix the exchange fluxes of Hcys, Hser, SAH, and SAM 

were set to zero. The redundancy test revealed that the matrix was non-redundant. Then, 

calculability analysis was performed by evaluating the null space of the stoichiometric 

matrix. It was found that some fluxes were calculable, but all had negative values. Since 

all reversible reactions were already separated into two irreversible reactions the negative 

flux values were not acceptable. In order to overcome this drawback, the exchange fluxes 

of these four metabolites were also considered to be unknown. Based on this approach, 

the stoichiometric matrix of the network had 136 rows and 287 columns. The matrix was 

found to be non-redundant. Besides, the kernel of the latter matrix did not have any null 

row, so none of the unknown fluxes was calculable. The system was further analyzed 

using optimization approaches. 

 

5.3.2   Fermentation 

Figure 5.3 shows the recombinant protein concentration along with protease activity for 

two batch fermentations. The only difference between the two experiments was the 

organic nitrogen source. The first fermentation medium contained 10 g/L peptone as the 
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organic nitrogen source, while the second fermentation medium contained 3.2 g/L amino 

acid mixture with the composition outlined in material and methods section. 

The protease activity increased throughout the fermentation when the medium contained 

peptone. The biomass (not shown) and lysozyme reached their maximum concentrations 

at approximately the 93rd hour of the fermentation. The activity of protease increased 

dramatically most likely due to the cell lysis with concomitant reduction in lysozyme 

concentration. The lysozyme concentration decreased at an average rate of 0.62 mg/hr by 

the end of fermentation. The rate of lysozyme inactivation further increased to 0.72 mg/h 

afterwards (not shown). 
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Figure 5.3- The protease activity and lysozyme concentration profiles during the fermentations. 
T= 27 oC, N= 400 rpm, and aeration 1 vvm. Peptone as organic nitrogen source: lysozyme (●) 

and protease (■). Amino acid mixture as nitrogen source: lysozyme (△). 
 

 

In contrast, protease activity was not detectable in the experiment which contained amino 

acids as the organic nitrogen source. The maximum biomass concentration was observed 

at 78 hr and decreased thereafter. In spite of cell lysis, the concentration of recombinant 

protein remained relatively constant even 24 hours after the cessation of growth and then 

decreased at a very low rate of 0.13 mg/L at the very end of the fermentation. 
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Surprisingly, it was found that  peptone containing medium with approximately three fold 

higher amino acid equivalent concentration  enhanced recombinant protein production by 

a factor of  only 1.3 over  the medium containing amino acids only. The fermentation that 

contained an amino acid mixture in a defined medium was used for ensuing metabolic 

flux analysis. 

Profiles of the measured extracellular compounds for the lysozyme fermentation of 

A.niger in the 2 liter batch operation are illustrated in Figures 5.4-7 and presented in 

Appendix D Table D.1. To ensure that all metabolites and cell components are accounted 

for, detailed overall nitrogen and carbon mass balances were performed using the 

measured data (not shown). Mass balance calculations included sets of 37 measurements 

taken at approximately 12-hour intervals for 120 hours of total fermentation time. Both 

the carbon and nitrogen balances could be closed with a maximum error of 11%. The 

profiles were found to be reproducible, since fermentation repeats produced almost 

identical results (data not shown).  

Amino acids can be categorized into three groups according to their concentration 

profiles. The first group consists of alanine, arginine, aspartate, cysteine, glutamate, 

glycine, and lysine. For sake of clarity only the profiles of three members of the group are 

given in Figure 5.4. The concentration of these amino acids remained relatively constant 

or increased slowly during the first 24 hours of fermentation. Then the profiles passed 

through a maximum and dropped sharply until the concentrations became zero, with the 

exception of glycine concentration which remained nearly constant after 72 hours of 

fermentation at 0.45 mmol/L.  

The concentration profile of the second group (isoleucine, leucine, phenylalanine, 

threonine, and tyrosine) decreased throughout the fermentation with particularly high rate 

during the first 12 hours; then either decreased slowly or remained relatively constant, 

and finally fell to zero at a relatively high rate. The concentration profile of three 

members of the second group is given in Figure 5.5. Phenylalanine was the only member 

whose concentration did not drop to zero but remained constant  after 60 hours at a low 

level of approximately 0.04 g/L which was 4.4% of its initial concentration. 
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Figure 5.4- The first group amino acids concentration profiles during the fermentation.             

T= 27 oC, N= 400 rpm, and aeration 1 vvm. Alanine ( ), glutamate (▲), and aspartate (■).  
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Figure 5.5- The second group amino acids concentration profiles during the fermentation.         

T= 27 oC, N= 400 rpm, and aeration 1 vvm. Leucine ( ), isoleucine (▲), and phenylalanine (■).  
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Proline, histidine, methionine, serine, and valine comprised the third group, which did not 

possess similar trends as the first two groups (Figure 5.6). For instance, valine and serine 

were not utilized until late in the fermentation. The utilization of proline, on the other 

hand, appeared to be biphasic. 
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Figure 5.6- The third group amino acids concentration profiles during the fermentation. 

T= 27 oC, N= 400 rpm, and aeration 1 vvm. Proline ( ), valine (▲), and serine (■). 
 
 
 

Figure 5.7 shows the concentration profiles of glucose, biomass, lysozyme, gluconate, 

and oxalate throughout the course of the fermentation. Glucose concentration decreased 

to zero after 30 hours of the fermentation, meanwhile, gluconate reached a maximum 

concentration of 16.2 g/L. 

Considering the total amount of supplied glucose (i.e., inoculum and fermenter) the 

concentration of gluconate alone accounted for approximately 74% of the converted 

glucose by the 30th hour of fermentation.  
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Figure 5.7- Glucose, biomass dry weight, gluconate, oxalate, and lysozyme concentration 

profiles during the fermentation.  T= 27 oC, N= 400 rpm, and aeration 1 vvm.                       
Glucose ( ), biomass dry weight (●), gluconate (▲),oxalate (△),and lysozyme (■). 

 

 

The concentration profiles of the other organic acids are depicted in Figure 5.8. Succinate 

and acetate accumulated during initial 24 to 30 hours of the process to the maximum 

levels of 0.39 and 0.17 g/L, respectively.  The concentration of citrate at the beginning of 

the fermentation was measured to be 1.3 g/L, which was added as citrate buffer initially.  

The citrate concentration was nearly constant during the early stage of the fermentation 

and then dropped to zero by the middle of the process. Pyruvate accumulated during the 

growth phase and then its concentration declined to zero during the death phase, 

however, its maximum concentration of 0.075 g/L was very low. Oxaloacetate 

concentration increased to the maximum level of 0.056 g/L at 36th hour of the 

fermentation and then fell to zero. Malate and fumarate were not detected in the culture 

medium during the entire time course of the fermentation. 
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Figure 5.8- Organic acid concentration profiles during the fermentation.                               

Citrate (○), acetate ( ), succinate (▲), a-ketoglutarate (△), pyruvate (■), oxaloacetate (□).   
T= 27 oC, N= 400 rpm, and aeration 1 vvm. 

 

 

Considering glucose, biomass, lysozyme, amino acids, organic acids, and other 

metabolite profiles the fermentation could be conveniently divided into five distinct 

phases.  

Phase I (0< t <12 h), was the early stage of the fermentation, when the culture was in the 

lag phase and both biomass and lysozyme concentrations were very low. The glucose 

concentration, however, decreased by 22%. The concentration of gluconate at the end of 

this phase reached to 5.4 g/L. Based on these observations, gluconate production alone 

accounted for approximately 93% of glucose consumption. Amongst the amino acids, 

leucine, isoleucine, and phenylalanine had the highest specific uptake rates of 0.18, 0.14, 

and 0.13 mmol/gDW hr, respectively.  Acetate, oxalate, and succinate excretion rates were 

determined to be 0.98, 0.70, and 0.66 mmol/gDW hr, respectively. The pH of the culture 

during this phase was reduced from 6 to 4 and 0.5 ml of 2N sodium hydroxide was added 

to keep the pH at this point. Although succinate, acetate, and oxalic acid were 

accumulated in the extracellular medium, the high specific excretion rate of gluconate              

(10.1 mmol/gDW hr) was the main reason for the pH reduction.  

In phase II (12 < t < 24 h), cell concentration commenced to increase, while the lysozyme 

concentration remained still low. The glucose consumption rate was high and the 
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concentration decreased to 25% of the initial level while the biomass dry weight level 

reached nearly 1 g/L by the end of this period. The concentration of gluconate, the main 

organic acid component in the culture medium increased to 15.3 g/L. From these 

observations one could conclude that the activity of glucose oxidase enzyme was high 

during this phase of fermentation. Because of the high secretion rate of gluconate, an 

average rate of 2.4 ml/hr alkali solution was added to the culture to maintain the pH at 

4.0. This was the highest addition rate of the base during the entire time course of the 

fermentation. Acetate reached its maximum concentration of 0.15 g/L, while the 

concentrations of oxalate and succinate were still increasing during this period. The 

concentration of all amino acids decreased during this phase with proline having the 

highest specific uptake rate. The oxygen consumption rate was approximately three fold 

higher than during the first period.  

During Phase III (24 < t < 30 h) glucose was consumed fast and its concentration dropped 

to essentially zero (i.e., 0.01 g/l) by the end of this period. The gluconate concentration 

reached its maximum level of 16.2 g/L by the end of this phase. Acetate was the only 

organic acid with decreasing concentration albeit at a relatively low rate. As the time 

approached to the end of this phase, succinate concentration increased to its maximum 

value of 0.4 g/L. The oxygen uptake rate was 1.5 times higher than that of the second 

phase. The specific carbon dioxide evolution rate peaked during this phase of the 

fermentation. The first group of the amino acids along with methionine, valine, and serine 

started to accumulate in the medium, whereas the concentration of the second group 

decreased. The specific growth rate reached its maximum value of 0.177 hr-1 

consequently the cells produced the recombinant protein in higher levels than in previous 

phases. 

At the end of Phase IV (30 < t < 78), the concentrations of biomass, lysozyme, and 

pyruvate reached their maximal value. Throughout this period, the glucose concentration 

was very low. Succinate and acetate concentrations decreased essentially to zero. 

Gluconate was the main carbon source in the medium and its concentration decreased to 

0.6 g/L by the end of this phase showing 96% reduction in the concentration in 

comparison to its maximum value. Oxalate concentration increased throughout this phase 

to the final level of 4.6 g/L. Oxaloacetate accumulated since the start of the fermentation 
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and reached a maximum concentration of 0.056 g/L and then was depleted by the end of 

this period. This time period is characterized by high amino acid metabolism. Most 

amino acids were consumed during this phase. 

 Phase V (78 < t < 120 h), is the last phase of the fermentation. Basically, it represents the 

death phase, when the biomass concentration decreased. With the notable exception of 

pyruvate, the concentrations of extracellular metabolites showed no significant changes. 

The pyruvate concentration continued to decrease to zero by the end of this phase. 

Product formation ceased as the culture entered this phase and the specific growth rate 

become negative. For these reasons, this phase was not analyzed further. 

 

5.3.3   Model Reconciliation 

Some enzymes are known to function with more than one related cofactors. For instance, 

glutamate oxidoreductase (EC 1.4.1.3) and homoserine oxidoreductase (EC 1.1.1.3) 

function with both NADH and NADPH. Since the exact cofactor requirements are often 

not known, in such cases reactions involving both NADH and NADPH were considered 

in the primary model. For some reversible reactions, however, this would result in an 

artificial transhydrogenation cycle in which NADH is converted to NADPH without any 

net formation of other metabolites. However enzyme catalyzing transhydrogenation has 

not been found in fungi (Stephanopoulos et al., 1998). Therefore, in the present 

simulation one of the associated reactions was either confined to be irreversible or 

removed from the model to avoid unrealistic cycling. For example, one can refer to the 

potential cycle between the reactions catalyzed by the enzyme methylene tetrahydrofolate 

reductase (EC 1.5.1.20). In this case the transhydrogenation cycle was eliminated by 

considering NADPH as the only cofactor.  A summary of the constraints that were 

applied to prevent the transhydrogenation cycle in the proposed metabolic network is 

presented in Table 5.2.    
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Table 5.2- Additional constraints to eliminate the artificial transhydrogenation cycles 
 

Enzymes  Metabolites Additional  Constraints 

Acetaldehyde 

dehydrogenase 

(EC 1.2.1.5) 

Aald/ Ac  

)(HNAD and )(HNADP  reactions  

were considered to be 

irreversible leading to acetate 

production when glucose is 

available in the medium, and 

considered to be irreversible in 

the direction of acetate 

consumption  when glucose is 

depleted. 

 

Acetaldehyde  

reductase 

(EC 1.1.1.71) 

Aald/ EtOH 

)(HNADP reaction is considered 

to be irreversible leading to 

acetaldehyde consumption 

 

Glutamate 

 dehydrogenase 

(EC 1.4.1.3) 

α -KG/ Glu 

)(HNADP reaction is considered 

to be irreversible in the direction 

of glutamate production 

 

Methylene  

tetrahydrofolate reductase 

(EC 1.5.1.20) 

MnTHF/ MlTHF 

)(HNADP reaction is considered 

to be irreversible in the direction 

of MlTHF production 

 

 

 

Furthermore, considering both reactions involving NADH and NADPH in metabolism of 

some amino acids would cause the wrong direction of some pathway fluxes and/or a poor 

prediction of the exchange fluxes. For example, the overall degradation reaction of lysine 

to α -aminoadiapate acid could involve the formation of either one or two NADPH 
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(http://kegg.com). The latter case was excluded, because it would result in an inaccurate 

estimation of the carbon dioxide evolution rate. 

The overall degradation reaction of tryptophane gives rise to the formation of alanine as a 

byproduct. Alanine, however, is mainly metabolized in the reaction catalyzed by the 

pyruvate transaminase (EC 2.6.1.2). Being a key intermediate; pyruvate is involved in 

several reactions in the network and plays a significant role in the metabolic network. In 

the model simulations, however, alanine was considered to be only metabolized by 

pyruvate transaminase, because by including the degradation of tryptophane the pathway 

fluxes regarding pyruvate were physiologically unacceptable. Besides, the measured 

external flux of tryptophane confirmed that the degradation rate of this amino acid is very 

low in comparison to alanine. 

 

5.3.4   Metabolic Flux Distribution 

Using experimental data, the extracellular metabolite fluxes were calculated from the 

metabolite concentration profiles for each phase. In order to verify the result of each 

simulation, the oxygen uptake and the carbon dioxide evolution rates were allowed to be 

determined by the optimization program. It is worth noting that the off-gas analyzer 

displayed the oxygen content of the air to an accuracy of one significant figure, which, in 

turn, had a significant effect on the experimental oxygen uptake rate calculations. For 

example, the reading of 20.5% could be any number within the range of 20.46% to 

20.54%. Since the oxygen content of the inlet air was constant during the fermentation, 

using the lower possible limit of each reading (say 20.46%) for outlet flow would result 

in a very high oxygen consumption rate. The experimental observations confirmed that 

the main source of oxygen consumption, especially during the first two phases of the 

fermentation, was the oxidation of glucose to gluconate. Based on the measured 

concentration of gluconate, this high oxygen uptake rate was not realistic. On the other 

hand, when the higher possible limit of each reading (say 20.54%) was used for 

calculating the experimental oxygen consumption rate, the result was in better agreement 

with the other measurements (e.g., gluconate production rate). Accordingly, the 

experimental oxygen uptake rates were calculated based on the higher possible limit of 

the readings.  Using the specific growth rate as the objective of the optimization program, 
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the predicted specific growth rate, the specific oxygen uptake, and carbon dioxide 

evolution rates along with the corresponding experimental measurements are presented in 

Table 5.3. Logarithmic sensitivities of the objective function with respect to amino acids 

were determined for the various periods of the fermentation and presented in Figure 5.9. 

 

 

Table 5.3- Experimental and simulation results of specific growth rate, oxygen uptake rate, and 
carbon dioxide evolution rate at different phases of cultivation 

 
6 hr 18 hr 27 hr 51 hr  

 Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. 

)( 1hr −μ  0.014 0.015 0.131 0.128 0.177 0.159 0.029 0.027

)./( hrgmmolr DW2O  8.0 6.9 8.5 6.1 4.4 3.6 0.8 0.7 

)./( hrgmmolr DW2CO  0.07 0.04 0.83 0.74 1.50 1.17 0.95 0.76 

 
 

 

 

            

          
 

Figure 5.9- Logarithmic sensitivities for amino acids at different phases. 
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Phase I. Metabolic flux distribution at t = 6 hr of this period yielded a specific growth 

rate of 0.015 hr-1 that is in good agreement with the measured value (Table 5.3). The 

specific oxygen uptake rate was determined and showed a 13% error compared with the 

measured rate. The pentose phosphate pathway (PPP) was active and 12% of the glucose 

was diverted to this pathway. Approximately 61% of biosynthetic redox potential in 

cytosol was produced by PPP. The rest of cytosolic NADPH was produced through the 

conversion of MnTHF to FTHF (R7.3) which was further utilized for nucleotide 

biosynthesis. The NADPH requirement in the mitochondria for the biosynthesis of 

isoleucine and other amino acid precursors (i.e., ornithine and α-ketoisovalerate) was 

completely satisfied by mitochondrial NADP-dependent isocitrate dehydrogenase activity     

(EC 1.1.1.42). 

Based on the simulation results, only a minor percentage of the carbon flowed toward the 

precursors of biomass components (e.g., glycogen, chitin). Using ammonia as the 

nitrogen source, the NADP-dependent glutamate dehydrogenase enzyme was active 

leading to glutamate synthesis (R6.2). The oxidations of cytosolic and mitochondrial 

NADH were responsible for 61% and 39% of the oxidative phosphorylation process, 

respectively. Cytosolic pyruvate carboxylase enzyme was found to be active.  

All amino acid fluxes were calculated to have a shadow price of zero (Table 5.4), 

indicating that they can not be used to improve growth during this period. Among the 

other measured metabolites, however, phosphate was the only nutrient with nonzero and 

negative shadow price of -1.27 (mmol/gDW)-1. Moreover, all nucleotides (e.g., ATP, CTP) 

had shadow price of -3.81, indicating a necessity to eliminate surplus energy. In one of 

the runs, the phosphate uptake rate was allowed to be determined by the optimization 

algorithm; the free uptake rate was more than 4 times higher than the measured value. 

The sensitivity analysis of the result of this run revealed that the shadow price of the 

nucleotides were still negative but decreased 97% when compared with the original run. 

This result indicated that cell growth was limited by phosphate uptake, and not by other 

measured metabolites including amino acids. 
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Table 5.4- Shadow prices a for amino acids at different culture phases 
 

)/( ii mmolg DWλ  Amino 

acids 6 hr 18 hr 27 hr 51 hr 

Ala 0.0000 -0.1393 -0.1384 -0.1557 
Arg 0.0000 -0.5571 -0.5534 0.0000 

Asn 0.0000 -0.2785 -0.2767 -0.3113 

Asp 0.0000 -0.1393 -0.1384 -0.1557 

Cys 0.0000 0.0000 -0.1384 0.0000 

Gln 0.0000 -0.2785 -0.2767 -0.3113 

Glu 0.0000 -0.1393 -0.1384 -0.1557 

Gly 0.0000 -0.1393 -0.1384 -0.1557 

His 0.0000 -0.4178 -0.4151 -0.4670 

Ileu 0.0000 -0.1393 -0.1384 -0.1557 

Leu 0.0000 -0.1393 -0.1384 -0.1557 

Lys 0.0000 -0.2785 -0.2767 -0.3113 

Met 0.0000 -0.1393 -0.1384 -0.1557 

phe 0.0000 -0.1393 -0.1384 -0.1557 

Pro 0.0000 -0.1393 -0.1384 -0.1557 

Ser 0.0000 -0.1393 -0.1384 -0.1557 

Thr 0.0000 -0.1393 -0.1384 -0.1557 

Trp 0.0000 -0.2785 -0.2767 -0.3113 

Tyr 0.0000 -0.1393 -0.1384 -0.1557 

Val 0.0000 -0.1393 -0.1384 -0.1557 
 

a: Normal and underlined styles are used for substrates and by-products, respectively. 
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Phase II. The flux data corresponding to t = 18 hr were used to evaluate the metabolic 

flux distribution of this phase and it is illustrated in Figure 5.10. Since it was not possible 

to represent all the fluxes, only a summary of the most significant fluxes and those 

leading to the synthesis of amino acids and organic acids are presented. The optimum 

specific growth rate was determined to be 0.128 hr-1 which was 2.3% less than the 

measured value.  

Both the specific oxygen uptake rate and carbon dioxide evolution rate were 

underestimated by 28% and 11% in comparison with the measured values. The carbon 

flux via PPP increased to 19% of the total carbon flux to satisfy the elevated cytosolic 

NADPH requirements due to the increase in biomass growth rate. Similarly to the first 

phase, glutamate was produced by NADP-dependent glutamate dehydrogenase enzyme, 

however, the flux was 2.5 times higher than in Phase I, showing higher requirement of 

the cells for glutamate. The contribution of FADH2 to generate energy in the form of 

ATP elevated to 4% of the oxidative phosphorylation process, however it was still small 

in comparison to 59% contribution of the cytosolic NADH. Unlike the first phase, 

oxaloacetate was generated mainly by the mitochondrial pyruvate carboxylase. A higher 

production rate of ATP was possible by the higher flux through the reactions of TCA 

cycle to generate more redox potentials (i.e., NADH and FADH2). The elevated flux 

through the TCA cycle produced more carbon dioxide, which, in turn, was more likely 

favoring carbon dioxide fixation inside the mitochondrion.        

Cysteine was the only amino acid with shadow price of zero. Since the shadow price of 

other amino acids were negative, decrease in secretion rate of the by-products (i.e., 

arginine and serine) or increase in uptake rate of the other amino acids would improve the 

optimal specific growth rate. In comparison to the previous phase, the shadow price of 

nucleotides decreased by a factor of 5 to 10. The shadow price of phosphate was 

determined to be zero. 
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Figure 5.10- Flux distribution map at 18 hr (period II). Not all fluxes are shown.  
Specific flux estimates from measurements taken at 12.0 hr and 24 hr (mmol/gDW hr). 
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Furthermore, an examination of the computed logarithmic sensitivities (Figure 5.9) led to 

some important observations. Although arginine had the highest shadow price amongst 

the amino acids, its logarithmic sensitivity was very small (less than 0.01), so any change 

in its exchange flux would not significantly affect the optimal growth rate. On the other 

hand, proline had only a moderate shadow price but because of its high uptake rate, the 

optimum value of the objective function was highly sensitive to the proline uptake flux. 

The highest value of the logarithmic sensitivity among the amino acids was 0.27 for 

proline. Quantitatively, these values meant that should the uptake rate for this amino acid 

increases by 10 %, then the specific growth rate would increase by 2.7%. 

Finally, among all measured nutrients, ammonia had the highest logarithmic sensitivity of 

0.51, indicating ammonia uptake was growth limiting during this early stage of 

exponential growth.  

Phase III. Metabolic flux distribution at the 27th hour of the fermentation was employed 

as the representative dataset for this phase. The metabolic flux model predicted the 

specific growth rate reaching a maximum value of 0.159 hr-1 which showed 10% error 

relative to the measured value. The fraction of glucose diverted to the PPP accounted for 

20% of the total uptake rate. The biosynthetic redox potential in the cytosol was mainly 

supplied by the PPP. The contribution of cytosolic NADH to the oxidative 

phosphorylation process was higher than the mitochondrial one by the factor of 1.7. The 

mitochondrial pyruvate carboxylase activity was quite significant and accounted for 72% 

of the total carbon dioxide fixation process. The higher requirement of the cells for ATP 

caused higher flux through the TCA cycle.  

The shadow prices of all amino acids were non-zero and negative. The higher uptake rate 

of amino acids as energy source (e.g., proline and phenylalanine) and/or lower excretion 

rate of some (e.g., alanine, aspartate and glycine) would further increase the optimum 

growth rate. In general, with the exception of ammonia and proline, small logarithmic 

sensitivities were observed for all measured metabolites. Although, the specific uptake 

rate of ammonia showed 60% increment relative to the corresponding rate in Phase II it 

still had the highest logarithmic sensitivity of 0.65 amongst the measured metabolites, 

and therefore its uptake was the probable limiting factor for growth. Among the amino 

acids, proline had the highest logarithmic sensitivity of 0.37.  
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Phase IV. In spite of glucose depletion, the cells continued to grow during this phase but 

at a lower rate than in the previous phase. The predicted specific growth rate by the 

simulation was determined to be 0.027 hr-1, which was in excellent agreement with the 

experimental value of 0.029 hr-1. The error associated with the predicted specific oxygen 

uptake was 13%. As can be seen from the metabolic flux distribution at t = 51 hr of the 

fermentation (Figure 5.11), gluconate was the major source of carbon. Both glucose-6-

phosphatase (EC 3.1.3.9) and phosphoenolpyruvate carboxinase (EC 4.1.1.32) that would 

be active during growth on substrates such as ethanol and acetate were also active. The 

flux of carbon through the PPP decreased due to the reduced requirement for biomass 

formation, however; the PPP was responsible for production of 80% of cytosolic 

NADPH. Excepting cysteine and arginine that had zero shadow prices, all amino acids 

had non-zero negative shadow prices. The highest logarithmic sensitivities were for 

alanine, glycine, and glutamate which were computed to be 0.23, 0.20, and 0.11, 

respectively. The relatively high logarithmic sensitivity of glycine was due to its high 

degradation rate during this period; however, as it was outlined in the materials and 

methods section, both the lysozyme and the biomass concentrations were not affected 

experimentally by changing the glycine concentration even by doubling its concentration 

for a similar experiment. It could be concluded that glycine catabolism was not coupled 

directly with biomass formation. Accordingly, glycine was not considered as an 

important amino acid for further investigations. Interestingly, of all metabolites, ammonia 

still had the highest logarithmic sensitivity (0.19). 
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Figure 5.11- Flux distribution map at 51 hr (period IV). Not all fluxes are shown. 
 Specific flux estimates from measurements taken at 48.0 hr and 54.0 hr (mmol/gDW hr). 
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5.3.5   Overall Remarks  

In this study, it was found that tricarboxylic acid cycle was functional throughout the 

fermentation; however, fluxes were reversed from fumarate to succinate during the lag 

phase and from oxaloacetate to malate at 27 hr and 51hr. The mitochondrial pyruvate 

carboxylase was active throughout the growth phase, whereas the cytosolic carboxylase 

was active during the first three phases of the fermentation. The glyoxylate shunt was 

active throughout the fermentation; however, the flux through this shunt was low. Acetate 

was the main product of NADP and NAD-dependent acetaldehyde oxidoreductase (EC 

1.2.1.5) and its production was concomitant with the production of homocysteine 

(R6.13d, EC 2.5.1.49), ornithine (R6.25), and oxalic acid (R15.3, EC 3.7.1.1) in the 

network. Since, a significant amount of oxalate was accumulated in the extracellular 

medium the latter was of great importance for the acetate synthesis. The experimental 

results showed that some of the acetate was secreted into the extracellular medium. In the 

current model, the rest of the acetate was converted to acetyl-CoA by acetyl-CoA 

synthase (R 10.5b). The acetyl-CoA was either entered into the mitochondrion or the 

peroxisomes compartments. The peroxisomal glyoxylate and acetyl-CoA reacted by the 

action of malate synthase to form malate (R4.7).  

The energy requirement for maintenance was stated in the model as the hydrolysis of 

ATP (R.12.1). The results showed that the maintenance requirements accounted for 33% 

of the total ATP production during the first phase of the fermentation and dropped to 

essentially zero afterwards. At low growth rates, the microorganisms did not require large 

amount of energy for metabolic activities and therefore surplus energy was used as 

maintenance. According to the model, however, the produced ATP was produced solely 

for metabolic activities.   

The concentration profile of glucose and gluconate as the main carbon sources, total 

amino acids as the organic nitrogen source, and specific growth rate are depicted in 

Figure 5.12. The microorganism showed a diauxic growth pattern which was caused by a 

shift in metabolic pathways in the middle of the growth cycle. The specific growth rate 

increased rapidly during the first 30 hours of the fermentation when the glucose served as 

the main carbon source and the total concentration of amino acids were still high. 

 



 130

0

5

10

15

20

25

0 12 24 36 48 60 72 84 96 108 120 132
Time (hr)

G
lc

, G
lu

c,
 to

ta
l a

m
in

o 
ac

id
 

(g
/L

)

-0.05

0.00

0.05

0.10

0.15

0.20

Sp
ec

ifi
c 

gr
ow

th
 r

at
e 

(h
r-1

)

 
Figure 5.12- Specific growth rate, glucose, gluconate, and total amino acid concentrations as a 
function of time. Specific growth rate (○), glucose ( ), gluconate (▲), and total amino acid (■). 

T= 27 oC, N= 400 rpm, and aeration 1 vvm. 
 

 

After glucose was exhausted, gluconate was the main carbon source. The specific growth 

rate dropped during this time. One may conclude that glucose was more readily utilizable 

than gluconate, and glucose repressed the synthesis of the enzymes (e.g. gluconokinase 

EC 2.7.1.12) that are required for the metabolism of gluconate. During the next 10 hours 

cell mass accumulation was only 2% as the cells adapted to the new carbon source. After 

this adaptation period, the specific growth rate increased approximately 3-fold in 

comparison to its value at 33 hr. At this time (i.e., 60 hr) the concentration of total amino 

acids was less than 50% of its initial value, however, the concentration of some amino 

acids such as alanine, proline, phenylalanine, and cysteine was very low. The 

concentration of gluconate was still high.  

The specific growth rate gradually decreased and reached zero at 78 hr as the cells 

concentration approached its maximum value. One could conclude that the low 

concentration of the organic nitrogen sources was the main reason for the slow growth 

immediately after 60 hr, while the depletion of both gluconate and amino acids were the 

reason for the cessation of growth at 78 hr. After this time the specific growth rate 

approached to the small negative values due to cells lysis.   
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As it was outlined in materials and method section, the effect of biomass composition on 

the biomass production had been a contentious issue among researchers. Biomass 

production rate might be affected by its monomeric composition in different ways. The 

biomass composition of the strain under study might not be available and the information 

related to the other strains was used. The composition of the biomass also might change 

slightly during the different phases of fermentation and due to variations in growth 

conditions such as temperature, dissolved oxygen tension, and medium constituents. The 

process of evaluating biomass composition of the desired strain could be burdensome and 

costly. Therefore, before spending time and money on this process, it would be of great 

importance if the effect of associated error with the level of each constituent was 

examined. The sensitivity analysis performed in this study allowed the investigation of 

biomass composition on the predicted specific growth rate. 

Table 5.5 shows the calculated logarithmic sensitivity of the specific growth rate with 

respect to 10% change in the level of each biomass component (R11.5). As can be seen 

from the results of the analysis, the specific growth rate was not sensitive to the applied 

perturbation in the composition during the lag phase of the fermentation. During this 

phase the concentration of different nutrients in the medium was still high and the 

specific growth rate was small, so demand for higher levels of the monomers for biomass 

synthesis was possible without any limitation. The specific growth rate was mainly 

affected by the level of amino acid content of the biomass during the second and the third 

phases of the fermentation, when the biomass production rate was high and the 

concentration of the nutrients decreased. For instance, 10% increment in amino acid 

requirement for biomass biosynthesis would result in 7.8% decline in the specific growth 

rate during the second phase of the fermentation.  RNA and chitin content of the biomass 

affected the specific growth rate, but their effects were negligible.  

Protein content was the only cell component that could have a significant effect on the 

specific growth rate during the final periods of the active growth. As a result of this 

analysis, one could conclude that the protein content of the biomass is strain-specific and 

should be determined with extra precautions and using very accurate methods. 

 

 



 132

Table 5.5- Logarithmic sensitivity of the specific growth rate to the biomass composition. 
 

),( iMμΛ  Component

(Mi) 6 hr 18 hr 27 hr 51 hr

ATP 0 0 0 0

Protein 0 -0.78 -0.75 -0.74

Glycogen 0 0 0 0

Chitin 0 -0.08 -0.06 0

Glucan 0 0 0 0

RNA 0 -0.08 -0.06 0

DNA 0 0 0 0

Lipid 0 0 0 0

Mannitol 0 0 0 0

Glycerol 0 0 0 0

 

 

Evidently, the biomass composition with respect to the other components could be 

obtained from other strains or even related microorganisms without loss of accuracy in 

prediction of specific growth rate. Furthermore, since the error associated with each cell 

component was approximately identical throughout the growth phase; identical biomass 

composition could be used for the entire culture period.   

To investigate the importance of experimental flux measurements on model predictions, 

four sets of flux measurements obtained in four different simulation runs were compared.  

Table 5.6 shows the results for the 27th hour of culture. Carbon dioxide evolution rate and 

oxygen uptake were allowed to be predicted by the model. The experimentally measured 

fluxes of the specific growth rate, carbon dioxide uptake rate, and oxygen uptake were 

presented in Table 5.3. 

Run-1 is the typical result of the simulation when the exchange flux of amino acids, 

organic acids, phosphate, ammonia, and sulfate were implemented in the program as the 

second set of constraints according to Equation 5.5. In Run-2, free uptake rate of amino 

acids were considered in the simulation. It showed better prediction of the specific 

growth rate and oxygen uptake rates, whereas the carbon dioxide evolution rate was 
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predicted with less accuracy compared with the first run. The predicted fluxes of Asn, 

Gln, His, Leu, Met, and Pro were far from their actual values. Run-3 was performed 

allowing free uptake rate of amino acids and free excretion rate of organic acids. The 

same specific growth rate as in Run-2 was observed, while the prediction of carbon 

dioxide evolution rate was very poor. Besides, the fluxes for Val, His, Pro, OA, Ox, and 

Glun were not accurately estimated. The last run, Run-4, was performed without applying 

any constraint in the optimization program. The calculated fluxes were far from the 

observed values; however, they represented the maximum capability of the 

microorganism in biomass production based on the present model. Accordingly, in order 

to move toward this optimum approach, the exchange fluxes of the organic acids should 

be reduced to low levels.  

Based to the simulation results of Run-4, there was no need for providing the medium 

with sulfate since the cells were allowed to take up methionine without restriction. 

Although the last three runs (Run-2, 3, 4) predicted higher specific growth rate than the 

first one, but the exchange fluxes were not generally in agreement with the real values. 

Hence, one could conclude that the flux distributions of approaches represented in Run-2, 

3, 4 would be unreliable for sensitivity analysis and medium optimization purposes, but 

could be considered for genetic modification of the strain for higher production of 

biomass.   
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Table 5.6- The value of exchange fluxesa,b between extracellular and intracellular compartments 
when different set of constraints applied. 

 
Compound Run-1 Run-2 Run-3 Run-4 

μ  0.159 0.175 0.175 0.830 
CO2 1.172 0.878 0.000 11.660 
O2 -3.579 -4.375 -3.310 -15.114 
Ala 0.003 -0.000 -0.000 -0.935 
Arg 0.003 -0.000 -0.033 -0.000 
Asn -0.000 -1.192 -0.035 -0.000 
Asp 0.020 0.000 -0.000 -0.000 
Cyc 0.009 -0.008 -0.000 -0.039 
Gln -0.000 -0.154 -0.000 -0.000 
Glu 0.007 -0.000 -0.000 -0.338 
Gly 0.065 -0.000 -0.000 -0.000 
His -0.000 -0.132 -0.390 -0.000 
Ileu 0.001 -0.000 -0.033 -3.012 
Leu -0.009 -1.146 -0.000 -0.246 
Lys 0.003 -0.043 -0.043 -0.000 
Met 0.000 -0.537 -0.000 -0.050 
Phe -0.059 -0.044 -0.044 -0.111 
Pro -0.430 -0.035 -0.035 -0.168 
Ser 0.000 -0.000 -0.000 -0.109 
Thr 0.000 -0.000 -0.000 -0.764 
Trp -0.001 -0.000 -0.000 -0.064 
Tyr -0.030 -0.000 -0.000 -0.100 
Val 0.005 -0.000 -0.182 -0.000 
Ac -0.050 -0.050 0.000 0.000 

a-KG 0.002 0.002 0.000 0.000 
Cit 0.002 0.002 0.000 0.000 

Fum 0.000 0.000 0.000 0.000 
Mal 0.002 0.002 0.000 0.000 
OA 0.015 0.015 2.380 0.000 
Pyr 0.002 0.002 0.000 0.000 

Succ 0.150 0.150 0.073 0.000 
Glun 0.338 0.338 0.000 0.000 
Ox 0.350 0.350 0.000 0.000 

Ammonia -0.750 -0.750 -0.750 -0.000 
Phosphate -0.126 -0.126 -0.126 -0.654 

Sulfate -0.026 -0.026 -0.026 -0.000 
 

a: All the fluxes are expressed in (mmol/ gDW hr) except the specific growth rate (hr-1). 
        b: The negative and positive numbers show uptake and secretion rates, respectively. 
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Figure 5.13 shows the simulated specific production rate of NADPH and the flux through 

two reactions of the pentose phosphate pathway as a function of specific growth rate. 

Flux through the pentose phosphate pathway (i.e., flux through reaction producing 

ribulose-5-P) as well as the fluxes leading to polysaccharides and biomass precursors 

increased as the specific growth rate increased. This can be explained by an increased 

demand for NADPH and for PPP intermediates, especially ribose-5-P which is a 

precursor for nucleotide biosynthesis. The produced NADPH was mainly utilized for 

synthesis of amino acids, DNA, and lipid. During the first 30 hours of the fermentation 

when the concentration of amino acids were relatively high, approximately 64% of the 

produced NADPH was utilized for amino acids synthesis, whereas the percentage 

increased to 80% at 51 hr showing increased demand for amino acids. Using the data 

presented in Figure 5.13, the reductive power yield in the form of NADPH (YX, NADPH ) was 

estimated to be 6.6 (mmole NADPH/gDW). Furthermore, the specific production rate of 

ribose-5-P was linearly related to the specific growth rate and YX, R5P was 0.6 (mmole 

ribose-5-P/ gDW). 
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Figure 5.13- Simulation results for the metabolite demands as a function of the specific growth 
rate. NADPH (■), Riboluse-5-P ( ), ribose-5-P (▲).T= 27 oC, N= 400 rpm, and aeration 1 vvm. 
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Experimental measurements showed that isoleucine, leucine, and phenylalanine uptake 

rates were higher than the uptake rates of the other amino acids during the first phase of 

the fermentation. The simulations indicated degradative reactions as the cause of the 

higher uptake. Also, the sensitivity analysis revealed that their level of uptake rate would 

not affect the value of the objective function, so the cells might have other applications 

for the products of the reactions than biomass formation during this phase. Upon further 

look at the catabolic reactions, it was found that glutamate was the common product of 

the catabolic reactions for leucine and isoleucine, while tyrosine was the product of 

phenylalanine. Tyrosine, however, converted to glutamate through another degradation 

reaction. The high flux through this catabolic reaction was verified by simulation. 

Furthermore, during the second and third phases, proline uptake rate was high due to the 

high flux through its degradative reaction. Once again, glutamate was the final product of 

this reaction. In order to investigate which metabolite caused the high demand, one 

metabolite was eliminated at a time from the proline catabolic pathway in a series of runs 

with unconstrained uptake rate of proline. It was found that when glutamate was 

eliminated the flux through the degradation reaction was very low. Moreover, the 

sensitivity analysis revealed that ammonia had the highest logarithmic sensitivity peaking 

between 12 hr and 30 hr. The high sensitivity of the objective function to ammonia 

uptake rate could also be due to the demand of the cells for glutamate.  Based on the 

simulation results, the need for high uptake of proline and ammonia could be replaced by 

an increase of the uptake rate of glutamate alone. Considering all these observations, one 

could conclude that during the early stages of fermentation glutamate uptake from the 

extracellular medium was inhibited while the other amino acids and ammonia were more 

readily transported.  
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5.4   Validation of Model Predictions 
The definition of the specific growth rate along with the simulation results of the 

objective function were used to determine the concentration profile of biomass dry 

weight throughout the fermentation. Based on the pseudo-steady state assumption, the 

specific growth rate was assumed to be constant between each consecutive measurement. 

The biomass concentration was expressed by piecewise integration between two 

consecutive points as follows: 

 
t

t.,W.D1t.,W.D
teCC Δμ=+                                                (5.9) 

 

The predicted and measured biomass concentration profiles are shown in Figure 5.14.  

The ability of the proposed model to predict the time profile of the cell density provides 

verification for the validity of the flux balance model and shows its usefulness for 

bioprocess design.  
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Figure 5.14- The time profile of experimental (▲) and predicted (solid line) biomass 

concentration. The average relative error between prediction and experimental values was 0.54. 
T= 27 oC, N= 400 rpm, and aeration 1 vvm. 
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The simulation results showed that the higher uptake rate of two amino acids, namely 

alanine and glutamate benefited biomass production during the last phase, while the 

higher uptake rate of proline was beneficial during the second and the third phases of the 

fermentation. Furthermore, the experimental measurements showed that tyrosine was the 

only amino acid whose concentration decreased approximately to zero after 30 hr of the 

fermentation. When compared to most amino acids, the catabolic flux of tyrosine was 

determined to be a small value due to its low initial concentration. It could be the reason 

why it was not recognized as an important amino acid by logarithmic sensitivity analysis. 

Being a source of glutamate during the degradation process, it was reasonable to 

investigate the effect of tyrosine on the growth by further experimentation. Four amino 

acids, namely proline, glutamate, alanine, and tyrosine were recognized as the significant 

amino acids and could be expected to have the greatest effect on the biomass production 

rate.  

It is worth to note that higher concentrations of the significant metabolites would not 

necessarily result in higher uptake rate of these metabolites in real situation, because the 

microorganism may not be capable to take up at higher rates. Since, the sensitivity 

analysis revealed that the objective function could be increased by flux alteration through 

certain processes (i.e., bioconversion reactions or exchange reactions) the following 

experiments were performed as an initial effort to check the capability of the 

microorganism for higher uptake rate of the aforementioned amino acids. Consequently, 

a series of growth studies were conducted in shake flasks and the 7 liter bioreactor with 

these amino acids added in excess.  

In the preliminary nutritional experiments using shake flasks it was found that the 

apparent contribution to growth enhancement was 46% for proline, 23% for glutamate, 

and 22% for tyrosine when these amino acids were added in excess.    

Four more experiments were carried out in the 7 liter bioreactor with the conditions 

outlined in the materials and methods section of this chapter with the following 

modifications. The concentration of glucose and the individual amino acids in the first 

experiment (E-1) was 50% less than those mentioned in the materials and methods 

section. The results of this experiment were used as the baseline for comparing results 
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with other medium combinations. The medium composition of the experiments is 

presented in Table 5.7.  

 

 

Table 5.7- Medium Enrichment with Glucose and Amino Acids 
 

Experiment Glucose (g/L) 
Proline, alanine, 

glutamate, tyrosine 
(g/L) 

The rest of amino 
acids (g/L) 

E-1 10 3 4 

E-2 10 8 4 

E-3 20 8 4 

E-4 20 6 8 

 

 

The extra amount of proline, alanine, and glutamate for E-2, E-3, and E-4 was added to 

the medium at certain times determined by the results of the sensitivity analysis. Tyrosine 

was added at the same time as proline. For instance, based on the sensitivity analysis any 

increment in proline uptake rate would enhance the biomass production rate during the 

second (12-24 hr) and the third (24-30 hr) phases of the fermentation. On this account, 

the excess amount of proline was added in two steps and two hours earlier than the start 

of each period to make sure that the microorganism had enough time to uptake the amino 

acid during the upcoming period.  

The maximum biomass and lysozyme concentrations observed in each experiment are 

presented in Figure 5.15 and Figure 5.16, respectively. Comparison between experiments 

E-1 and E-2 showed that when the concentration of the significant amino acids increased 

by a factor of 2.7 while the concentration of the other amino acids and glucose were kept 

constant the biomass and lysozyme concentrations increased 45% and 41%, respectively. 

Hence, it seems reasonable to hypothesize that the higher concentration of these amino 

acids increased their uptake rates, which in turn enhanced the biomass and lysozyme 

concentrations. These results confirmed the simulation predictions that the specific 

growth rate was sensitive to any change in the uptake rate of these four amino acids. 
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Figure 5.15- The maximum biomass concentration observed in the fermentations with the 
medium compositions presented in Table 5.7. T= 27 oC, N= 200 rpm, and aeration 1 vvm. 
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Figure 5.16- The maximum lysozyme concentration observed in the fermentations with the 
medium compositions presented in Table 5.7. T= 27 oC, N= 200 rpm, and aeration 1 vvm. 
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The only difference between experiments E-2 and E-3 was the initial glucose 

concentration, that was10 and 20 g/L, respectively. In both experiments the concentration 

of important amino acids were 8 g/L which was the highest level in this series of 

experiments, while the level of the other amino acids were at the lower level of 4 g/L 

similar to the basis experiment E-1. It can be seen from the results that the percentage of 

increment of the biomass concentration increased from 45% to 81% and that of lysozyme 

concentration from 41% to 82% in comparison to E-2. These observations revealed that 

when the important organic nitrogen sources were supplied in excess, the higher 

concentration of glucose had a significant positive effect on both biomass and 

recombinant protein production.  

The initial concentration of the significant amino acids in experiment E-4 was 25% less 

than in E-2, however, yet it was still high enough to positively affect the production of 

biomass and recombinant protein. Aside from the concentration of the other amino acids 

in these two experiments and based on the conclusion in the previous paragraph, one 

would expect that the biomass and lysozyme concentrations should have been much 

higher in E-4 than E-2 due to its higher glucose concentration. The experimental results, 

however, showed that the biomass and lysozyme concentrations in E-4 were only 6% and 

4% higher than the corresponding values in E-2. Therefore, one might conclude that the 

other amino acids not only did not promote the production of biomass and the protein, but 

most likely had a slightly negative effect on the concentrations.    

Figure 5.17 shows biomass yield on glucose, biomass yield on amino acids, and 

lysozyme yield on biomass. The highest biomass yields on glucose was found for E-2,  

showing that the yield was affected mainly by the significant amino acids while the 

higher concentration of glucose and the other amino acids did not have a positive effect 

on this parameter. The maximum biomass yield on amino acids and the lysozyme yield 

on biomass were observed in E-3, showing that both glucose and the significant amino 

acids affected these yields due to a probable significant positive interaction between these 

two substrates. All the yields were found to be at the minimum levels for E-4, confirming 

the probable negative effect of the other amino acids in the performed fermentation. 
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Figure 5.17- Physiological parameters in the four media. Biomass yield on glucose (□),  biomass 

yield on amino acids ( ), and lysozyme yield on biomass (■). 
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5.5   Conclusion 

 
A flux-based approach was performed for the analysis of the metabolic network of 

A.niger.  A unique aspect of the metabolic network was that it included the participation 

of carbohydrates and amino acids in both degradative and biosynthetic reactions. The 

network consisted of 181 biochemical reactions (287 processes) and 137 intracellular 

metabolites which are distributed among three intracellular compartments. It included 

glycolysis and pentose phosphate (PPP) pathways, the tricarboxylic acid cycle (TCA), 

anaplerotic reactions, ammonia and sulfate assimilation, electron transport reactions, the 

metabolism of amino acids, biosynthesis of nucleotides, and the biosynthesis of the 

macromolecular components of biomass such as protein, lipid, RNA, DNA, and 

carbohydrates. 

 The proposed model along with the experimental measurements was used to construct 

the stoichiometric matrix corresponding to the processes with unknown rates.  

Implementing the model with experimental data as constraints was proven to be 

necessary for achieving realistic results.  The matrix analysis showed that it was 

underdetermined and non-redundant, so the system was consistent for any value of the 

measured vector. The calculability analysis of the null space of the stoichiometric matrix 

revealed that all of the unknown rates were not calculable. Linear programming with 

experimental constraints was used to determine the optimized specific growth rate at 

different phases of the fermentation.  Flux distribution maps for two phases of cultivation 

were also constructed. 

The bioreaction network presented in this study is a general pathway which can be valid 

for any A.niger strain or other aspergilli with some minor modifications. This model can 

be used not only to find the theoretical metabolic flux distribution, but also, with 

experimental data, it may be employed to clarify the metabolic behavior of the 

microorganism. In this study, the specific growth rate was considered as the optimization 

objective, but optimization of different objective functions such as ATP 

production/consumption, redox potential, and metabolite production can be easily 

implemented in the model. The model developed in this work was able to predict the 

specific growth rate very accurately with a maximum error of ±10%. Moreover, oxygen 
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uptake rate and carbon dioxide evolution rate were evaluated with maximum ±28% and 

±22% errors, respectively, during the time course of the fermentation. It should be noted 

that the off-gas analyzer was not able to display the level of oxygen and carbon dioxide in 

outlet gas accurately, consequently the corresponding experimentally measured fluxes of 

these two metabolites were less accurate. This could be the reason for the high error 

percentage associated with these two fluxes.  The biomass concentration profile in each 

period was determined accurately using the corresponding optimal value of the specific 

growth rate and the standard differential equation which correlates these two parameters.  

The performed sensitivity analysis revealed that phosphate uptake was the growth 

limiting flux during the early stages of the fermentation. Later, the uptake rate of 

ammonia had a significant effect on the specific growth rate. Among the amino acids 

proline, alanine, and glutamate had the highest logarithmic sensitivity.  The solution of 

the flux network was very sensitive to ammonia and to a lesser degree to proline during 

the early stages of exponential phase when glucose was consumed. During this period 

10% increase in ammonia and proline uptake rates would increase the specific growth 

rate by 5-7% and 3-4%, respectively. Alanine, glutamate, and ammonia were limiting 

nutrients during the exponential phase with highest logarithmic sensitivities among the 

measured metabolites at the 51st hour of culture. The sensitivity analysis of the specific 

growth rate with respect to the biomass components revealed that the solution was only 

sensitive to its protein content. Besides, the analysis showed that the same biomass 

biosynthesis reaction could be used throughout the fermentation. The results of the 

metabolic flux analysis may be employed for medium design in continuous or fed-batch 

operations involving high density culture. 

The experimental observations and simulation results presented in this section could be 

used for some genetic manipulation processes. For instance, glucose was partially 

oxidized to form gluconate in addition to entering the glycolytic pathway during the first 

three phases of the fermentation. The percentage of glucose conversion to gluconate was 

very high at the start of the fermentation and gradually reduced as the glucose 

concentration decreased to very low levels. When glucose wad depleted, gluconate was 

utilized as carbon source by the cells. The experimental results, however, showed that the 

specific growth rate was higher during growth on glucose. Gene deletion may be applied 
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to the microorganism in order to inactivate glucose oxidase, which was responsible for 

the conversion of the more favorable carbon source (glucose) to gluconate. The same 

technique might be used to eliminate significant amounts of oxalic acid accumulation in 

the medium that was of approximately 6 g/L by the end of the fermentation.  
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CHAPTER 6  

 

 

DATA ACQUISITION 
 

 

 

 

6.1   Introduction 
 

In the development of current industrial fermentation processes, various types of 

automatic instrumentation and control have become standard. These include temperature, 

pH, dissolved oxygen, air flow, antifoam, as well as gas stream monitoring devices. 

Moreover, biochemical processes have generally more exacting control requirements than 

chemical processes because they are highly sensitive to small changes in operating 

conditions (Nagy, 1992). For instance, the biocatalyst enzymes usually have narrow 

temperature and pH range of efficient operation and they may be irreversibility 

deactivated. The application of computer-based process control makes it easier to 

maintain the important parameters at their optimal levels. 

Using software programs for control and monitoring purposes have some advantages. For 

example, they need minimum training efforts and are easily understood by users. 

Furthermore, they have a high degree of flexibility when specifying the different 

parameters and operational conditions. Conventional data acquisition software is 

normally built with defined modules and is capable of performing predefined tasks. On 

the other hand, for research and a variety of small scale applications, more flexible 

systems such as the LabVIEW development environment are required.  
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6.2   Materials and Methods 
 

6.2.1   Data Acquisition Hardware System    

A key and necessary component of data acquisition hardware is a proper data transfer 

system. The data are transferred between computer and fermenter through a SC-2345 

shielded carrier (Figure 6.1). The carrier consists of 8 sockets for 16 analog inputs, 8 

sockets for digital inputs and outputs, and 2 sockets for analog outputs. Signal 

conditioning component (SCC) modules connect to the carrier sockets to provide custom 

signal conditioning (i.e., signal amplification, filtering, switching, and isolation) options.  

 

 

 
Figure 6.1- SC-2345 carrier and its components (http://www.ni.com/). 

 

 

A schematic of the whole data acquisition components is depicted in Figure 6.2. 

Input/output (I/O) signals are transferred between the fermenter and the appropriate SCC 

modules inside the carrier. A 68-pin shielded cable connects the carrier to a plug-in data 

acquisition (DAQ) board, which is installed in the computer. LabVIEW and the DAQ 
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device then communicate with each other through DAQ libraries and then with sensors, 

transducers, and other fermenter components.   

 

 

 
 

Figure 6.2- Data acquisition system. 
 

 

In this work, an NI PCI 6040-E data acquisition device along with a Pentium personal 

computer with Microsoft Windows XP as the DAQ host platform were used. Moreover, 

the SCC-RTD01 resistance-temperature detector RTD module was used for medium and 

jacket temperature signals.  The SCC-FT01, which is a feed-through module, was used 

both for analog input and analog output signals. Three modules of SCC-FT01 were 

plugged into the carrier for dissolved oxygen, pH, and oxygen-carbon dioxide off gas 

analyzer connections all as analog inputs; two were used as analog outputs for controlling 

the feed pump and the speed of the stirrer. In addition, seven SCC-DI01 isolated digital 

input/output modules were utilized for the coolant solenoid valve, three heaters, stirrer 

motor, acid pump, and base pump.  Table 6.1 shows the SCC socket reference, SCC, 

channel and the associated input or output signal for each variable under supervision. All 

the mentioned hardware components and LabVIEW software (version 7.1) were provided 

by National Instruments Corporation. 
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Table 6.1- SCC modules, channels, and connected signals 
 

SCC Socket Reference SCC Channel Input/output 

ACH0 Bioreactor temperature 
J01 SCC-RTD01 

ACH8 Jacket temperature 

J03 SCC-FT01 ACH2 pH analyzer  

J04 SCC-FT01 ACH3 DO analyzer 

ACH5 O2    off-gas analyzer 
J06 SCC-FT01 

ACH13 CO2 off-gas analyzer 

J09 SCC-DO01  Solenoid valve 

J10 SCC-DO01  XY Heater 

J11 SCC-DO01  ZY Heater 

J12 SCC-DO01  XZ Heater 

J13 SCC-DO01  Impeller motor  

J14 SCC-DO01  Acid pump 

J15 SCC-DO01  Base pump 

J17 SCC-FT01 DAC0 Impeller RPM   

J18 SCC-FT01 DAC1 Feed pump 

 

 

6.2.2   Fermenter and Ancillary Equipment 

A 20-Liter MBR bioreactor with the working volume of up to 15 liters equipped with a 

bottom-driven agitator was used. The medium was mixed using three six-bladed Rushton 

turbine impellers. The air pressure was adjusted using a pressure reduction valve 

mounted before the rotameter and the airflow rate was regulated using a needle valve. 

The airflow then was distributed at the bottom of the bioreactor using a ring sparger. The 

moisture content of the exhaust gas condensed and returned to the bioreactor by passing it 

through a vertical stainless steel condenser mounted on the top of the fermenter, before 

the exhaust air filter. 

The pH was measured by a sterilizable Ingold Type 465 pH electrode (Mettler-Toledo 

Process Analytical, Inc., MA, USA). The pH probe signal was amplified by a pH-40 
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system (New Brunswick Scientific Co., Inc., NJ) and electrically isolated and filtered 

using a SSCA 41-03 analog signal conditioner (Dataforth Corporation).Then, the 

preconditioned signal was directed to the designated SCC-FT01 module installed into the 

carrier either for calibration or monitoring and control purposes.  

The dissolved oxygen was measured by a sterilizable galvanic electrode (Phoenix 

Electrode Company, USA). The output electrode current in air saturated medium was 

reported to be 10-15 microamperes by the manufacturer which was not suitable for data 

acquisition system. Therefore, a dissolved oxygen analyzer model D-40 (New Brunswick 

Scientific Co., Inc., NJ, USA) was used to convert the electrode output current to voltage. 

The signal was amplified to a maximum of 1 volt (corresponding to 100% dissolved 

oxygen). Then, the preconditioned signal was directed to the SC-2345 carrier. 

A portable oxygen/carbon dioxide analyzer (Quantek Model 902, MA, USA) used for the 

measurement of O2 and CO2 of the outlet gas from the bioreactor. RTD-PT100 sensors 

were used for the measurement of medium and jacket temperatures.  
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6.3   Control of Process Variables   

 

6.3.1   Temperature Control  

The objective of this part of the project was to regulate the bioreactor temperature, T,  at a 

desired set point value Ts.p. either in the presence of disturbances ( e.g., feeding, change in 

initial operating conditions), or to switch the bioreactor temperature to a new set point 

value (e.g., sterilization cycle) in a fast and smooth manner. For this task one needed to 

define a manipulated variable (control variable) and design a controller that could provide 

the appropriate control action required to achieve the control objectives. 

The process graphics for temperature control of the system is shown in Figure 6.3.  The 

20 liter, jacketed, stirred tank bioreactor was thermally controlled by means of either 

heated or cooling water circulating in the bioreactor jacket. The water was heated by an 

in-line heater assembly. A valved flowmeter was provided to change the cooling water 

flowrate quickly and accurately. The temperature sensor within the bioreactor, the 

solenoid valve, and the heater box were linked to a 3-term PID controller that was 

programmed to maintain the desired set-point temperature.  

It has been proposed that a combination of a heating and cooling system is effective for 

reactor control temperature (Liptak, 1986). The heat transmitting fluid is circulated to 

attain a large heat transfer coefficient.  To heat the bioreactor, electrical heaters may be 

used. Electrical heating may be direct or indirect, and its control can be continuous or 

discontinuous (on-off). The simplest method of controlling temperature with an on-off 

system is to install heating resistance elements in groups, while the temperature controller 

switches one or more elements on or off in a fraction of the previously specified cycle 

time. The higher the difference between the control variable and its specified set point, 

the higher is the fraction of cycle time applied by the controller. Uniform heat transfer is 

achieved by using a heat transfer fluid heated by electrical resistance heaters. Cooling 

water enters the jacket of the bioreactor through a solenoid valve controlled by the 

temperature controller.  
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Figure 6.3- Feedback temperature control system of the bioreactor unit. 
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Based on this scheme, one may consider a linear combination of the heating and cooling 

actions during each cycle time of the process as follows: 

 
∑ −−=

i
wcJwcpiHit TTCFyPyftu )()()( ...., ρ                             (6.1) 

 
Where tf is the fraction of cycle time at time t , during which the heater(s) are on, y  is a 

binary variable that shows the on-off action for each individual heater and the solenoid 

valve, HP is the input power of each heater, and F is the flow rate of cooling water. The 

controller action of )t(u is actually the net rate of heat addition to the jacket circulating 

system by the heater assembly and the inlet cooling water. 

The value of controller action in each cycle time should be specified by the particular 

controller employed.  

 

6.3.1.1   Single-Loop Controller 

Figure 6.3a shows the single-loop control of the bioreactor. The temperature of the 

medium in the bioreactor was measured by an RTD-PT100 and transmitted to the 

controller, which in turn manipulated the heaters and the solenoid valve. If the bioreactor 

temperature is too low, the controller switches the heaters on for a longer fraction of the 

cycle time and keeps the solenoid valve closed. Consequently, the temperature of the 

jacket fluid increases, which in turn causes higher heat transfer rate to the medium. On 

the other hand, if the medium temperature is higher than the set point, the controller 

opens the solenoid valve to cool down the jacket fluid. A simplified block diagram for the 

single-loop system is shown in Figure 6.4. 

 

 

 
Figure 6.4- Single-loop control block diagram for temperature control. 

 

..psT  u TController Process
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Since, a direct electrical heating method is utilized in the jacket of the bioreactor, due to 

high thermal capacity the jacket temperature dynamics are normally significantly faster 

than the bioreactor temperature dynamics. The time constant of the system is large 

because of the heat capacity of the medium, the material of the bioreactor itself, the heat 

transmitting fluid, and the heat resistance of the wall of the bioreactor. Consequently, any 

temperature change in the jacket fluid will not be realized in the medium for a relatively 

long time. Hence, the controller does not take any corrective action until the heat transfer 

between the two fluids brings the bioreactor temperature towards the vicinity of the set 

point. However, because of this the jacket temperature differs considerably from the 

medium set point temperature when a new set point is introduced to the system. 

Ultimately, when the medium temperature approaches the set point, the jacket fluid 

temperature is too far from the set point, which in turn causes a high deviation of the 

bioreactor temperature from the specified set point, especially during the first cycle of the 

controlling process. This could cause a serious problem when the media is not able to 

tolerate large temperature fluctuations (i.e., enzymes and medium components 

stabilities). Moreover, during the sterilization when the medium is exposed to high 

temperature ranges, any high temperature deviation from the set point is undesirable both 

for media and instruments (e.g., circulating pump, solenoid valve).  

Figure 6.5 shows a dynamic temperature test profile resulting from switching the medium 

set point temperature from 22 oC up to 27 oC. The Ziegler-Nichols settings ( cK =41.05, 

Iτ =2.73, and dτ =0.53) produced a less desirable response. Therefore, the controller 

parameters were chosen by trial and error. The response was obtained with cK =30.75, 

Iτ =3.86, and dτ =0.21.  

As shown in Figure 6.5, the single PID controller is able to adjust the bioreactor 

temperature near the set point of 27 oC, with the deviations ranging as high as 0.5 oC 

during the event. However, the jacket temperature reaches 37 oC which is 37% higher 

than the set point value of the bioreactor temperature. Theoretically, the use of integral 

action eliminates the steady state offset of the response, but because of the nature of the 

utilized cooling process that is based on the on-off action of the solenoid valve the jacket 
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temperature oscillates around the set point, which in turn causes a steady state off set of 

± 0.25 oC for bioreactor temperature.   
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Figure 6.5- Single-loop response to set point change. 

 

 

6.3.1.2   Cascade Control 

Figure 6-3b shows the control configuration for the bioreactor temperature control with a 

cascade control methodology. Instead of using a single-loop controller for temperature 

control of the bioreactor, improved performance of the closed loop response can be 

achieved by employing a cascade scheme. In case where high performance is mandatory 

or the process has large time constants and frequent disturbances, this method of control 

is of great value. Cascade control is widely used by chemical process industries to 

improve the response of a single feedback strategy when the response of the desired 

variable is sluggish. This control implementation is a familiar task because the 

architecture is comprised of two ordinary controllers from the PID family.  According to 

this control methodology, one may introduce two nested feedback control loops using 

two different on line measurements (e.g., T and JT ), which share a common manipulating 

variableu . The cascade scheme is comprised of a secondary (slave) control loop located 

inside a primary (master) control loop. With this nested architecture, success in a cascade 
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implementation requires that the settling time of the inner loop is significantly faster than 

that of the outer loop. The simplified block diagram of these loops is schematically 

depicted in Figure 6.6. 

 

 

 
Figure 6.6- Cascade control block diagram for temperature control. 

 

 

Process-I is the bioreactor and the controller output is the reactor temperatureT . Process-

II is the jacket whose output, JT , directly affects process-I and therefore, the bioreactor 

temperatureT . In the primary loop the medium temperature T  is measured. Then, it is 

compared to the desirable set point value .p.sT and the master controller is used to control 

it. The output from this loop, .p.s,JT , becomes the set point for the jacket temperature in 

the secondary loop. In the secondary loop the measured jacket temperature, JT , is 

compared with the output of the primary controller, .p.s,JT , that is now viewed as its set 

point, and the secondary controller is used to manipulate it.  

Figure 6.7 is a summary of the implemented cascade temperature control scheme in 

graphical form. The medium and jacket temperatures were simultaneously acquired 

(sampling size was 1000 samples with 100 Hz frequency). The average of each sampling 

data set was determined and assigned to the current temperature, which was directed to 

the corresponding controller.  The output of the secondary controller was the percentage 

of heating in each cycle time. Based on the experimental observations if the percentage 

was less than 80%, only one of the heaters was turned on for the period of f milliseconds. 

If the output was determined to be between 80-99% two heaters and for higher range all 

the three heaters were being involved with the heating process. These limits were 
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obtained by trial and errors for an accurate temperature control of the bioreactor 

including 10-15 liter water, while the cooling water flow rate was adjusted to 1000 

ml/min with a cycle time of 3000 milliseconds. Under these conditions, the primary 

controller adjusted indirectly the jacket temperature.  

Because of the introduction of the inner loop, the dynamics of the cascade control system 

have been changed and it is inevitable to tune the whole system for a good response. The 

control action for the secondary controller is recommended to be proportional control 

only (Stephanopoulos, 1984). The rational for the use of proportional control rather than 

two- or three- mode control is that the tuning is simplified and any offset associated with 

proportional control of the slave loop can be handled by the presence of the integral 

action in the master loop. However, it was found that using a PI controller for the slave 

loop is much favorable for the system under study. 

Cascade loop tuning uses the same skills as tuning a regular PID controller. First, both 

the primary and secondary controllers were put on manual mode. By the use of Ziegler-

Nichols tuning method, the proportional gain of the slave loop was determined to be 7.28 

and that of integral time was 2.48. 
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Figure 6.7- Flowchart of temperature control during fermentation process using cascade 

architecture. 
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By trial and error, the settings of cK =6.92, Iτ =3.53 were found to produce a better 

response. Then, the secondary controller was switched on automatic mode; therefore, it 

literally became part of the primary process. The controller setting were primarily 

determined by applying the Ziegler-Nichols algorithm to the system and found to be 

cK =13.42, Iτ =4.79, and dτ =1.57. The above controller settings with cascade scheme 

gave a very oscillatory response. Because of the oscillatory response, the solenoid valve 

was switched continuously on and off by the controller. The reason was found to be the 

noisy signal which was generated by the temperature probe. Although the amplitude of 

the noise was very small, due to the differential action of the controller the output range 

of the slave controller switched between the upper and lower limit continuously, causing 

the oscillatory response. Noises are associated with the probe signals, so the best way to 

improve the performance of the control system was to eliminate the differential action. 

By trial and error the PI controller gains of the primary loop were determined to 

be cK =10.00 and Iτ =5.60. The same temperature switch trial as employed using the 

single-loop controller was conducted with the proposed cascade architecture and with 

experimentally evaluated controller gains. The result is given on Figure 6.8.  

 

 

20
22
24
26
28
30
32
34
36
38

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (sec)

T
em

pe
ra

tu
re

 (C
)

Set point Medium Temp. Jacket Temp.

 
Figure 6.8- Cascade loop response to set point change. 
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As shown in Figure 6.8, the response of the cascade control system is superior to the 

response of the conventional single-loop control, both for the bioreactor and the jacket 

temperature. The maximum bioreactor temperature deviation of 0.07 oC by the cascade 

response has been observed. The steady state response of the bioreactor temperature 

oscillates around the set point with much lower amplitude of ± 0.02 oC in comparison to 

the applied single-loop controller.  

The highest value of the jacket temperature was 29.5 oC, which was much lower than the 

37 oC using the conventional single-loop controller. The lower level of the jacket 

temperature in this controller is one of the most important advantages of the cascade 

controller in the system under study during the sterilization process, when the bioreactor 

contents need to be maintained at 121 oC for 20 minutes. The rise time and overshoot of 

the single loop were 533 seconds and 0.0173, while for cascade scheme were 2675 

seconds and 0.0001, respectively. The improved performance of the cascade controller 

prevents the bioreactor from experiencing very high and undesirable temperature levels 

both in the jacket and inside the bioreactor. This enhanced action of the cascade 

controller is not free as it requires an additional sensor and controller as well as tuning 

effort. However, the LabVIEW software environment provides a user with as many 

controllers as are required without additional costs. 

Appendix D Figure D.5 is the block diagram of cascade temperature control during the 

fermentation process when heating percentage was between 80-99%. The solenoid valve 

was on automatic mode and the maximum jacket temperature was lower than the 

specified maximum allowable limit. Figure D.5a represents the first stage during which 

two heaters were on for f milliseconds and Figure D.5b shows the rest of the cycling time 

with all the heaters at off position. Several case structures and stacked sequence 

structures were involved in this algorithm, and it was beyond the intent of this discussion 

to present all cases.   

 

6.3.2   pH Control 

The pH is one of the most important biochemical environmental measurements used to 

indicate the course of the fermentation process. It detects the presence of specific 

chemical factors that influence growth, metabolism, and the final product. Most industrial 
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fermentations are batch systems in which control of pH may be difficult, because the 

amount of acid or base required maintaining a constant pH can increase exponentially 

with time.  

In this work, the bioreactor pH was continuously monitored and controlled by the user 

written software. Alkali or acid (i.e., NaOH or H2SO4) was transferred from sterile 

vessels to the bioreactor by the use of two peristaltic pumps that were manipulated by the 

pH feature of the software. During the fermentation the pH was evaluated using the fitted 

line obtained in calibration section. Working pH range limits are established by high and 

low set point numeric controls on the front panel. Values exceeding established set points 

in either direction activate the designated digital I/O modules, for addition of appropriate 

reagents upon control demand. Adjustable numeric controls enable the user to assign the 

length of the addition cycle and a delay between the additions to prevent overshooting.  

 

6.3.3   Dissolved Oxygen Control 

The dissolve oxygen was continuously monitored and displayed on the screen during the 

fermentation. The control of dissolve oxygen was implemented in the software by 

changing the agitation speed. The dissolved oxygen set point is adjusted by using the 

control variable on the front panel. Set point can be maintained by increasing/decreasing 

agitation speed under the supervision of a PID control. The maximum and minimum 

allowable agitation speeds can be established by user.    
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6.4   Supervisory Software  
The program for control and monitoring of bioreactor was build up from different parts, 

which were written and tested separately before being integrated into one structure. The 

sections were arranged based on their order in fermentation process on different pages on 

front panel of the program. The graphical representation of the process is displayed on 

the screen and helps the user to follow the fermentation. The user can move forward and 

backward among the pages by pushing the appropriate control tab. The different pages in 

the software were organized as follows: 

 

6.4.1   Start  

The user is asked to set up the pH analyzer before the probe calibration step. In addition, 

the calibration data of the acid and base pumps are asked to be entered into the provided 

tables. The pairs of transmitted volume and its corresponding duration time form the 

calibration data for each pump and the specific tubing size. The data is used by the 

program to determine the amount of base and/or acid added to the bioreactor during the 

fermentation. 

 

6.4.2   pH Calibration   

The pH probe is calibrated using at least two standard buffers. The pairs of pH and the 

corresponding voltage signals can be either acquired automatically or entered manually 

based on the previous observations. Figure 6.9 shows a simplified flowchart of the pH 

calibration algorithm. In automatic mode, the user places the probe into a standard buffer 

solution and waits for a stable reading. Ideally these should be at the temperature at 

which the fermentation will be run. Then the buffer pH is entered in the specified 

numeric control on the front page and the corresponding voltage signal is acquired by the 

software. To eliminate the errors due to the inevitable noise, the average of five readings 

(each including 100 samples) are determined and considered as the voltage signal for 

each data point. Each pH and its associated voltage are appended into their own one 

dimensional numerical array. The implemented linear regression analysis determines the 

slope and intercept of the best fitted line through the data points as well as the mean 

squared error. The regression data is stored for later applications.  
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Figure 6.9- Flowchart of pH calibration. 
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The fitted line and the data points are illustrated on a graph on the front panel of the pH 

calibration page. A reset button is considered on the screen, so that the user would be able 

to start over the calibration task in case a mistake occurred during the calibration step. 

The front panel and the simplified block diagram of the pH calibration section are 

presented in Appendix D FigureD.6. 

 

6.4.3   O2-CO2 Calibration 

Similar algorithm as for pH was applied for calibration of the O2-CO2 analyzer. At least 

two data points are required for calibration of the analyzer for each gas. Ultra pure 

nitrogen may be used for zero set point for both gases. A calibration gas with oxygen and 

carbon dioxide contents close to the operational levels is preferred for the second data 

points.  

 

6.4.4   Pre-Sterilization  

Before commencing the sterilization process the user is asked to check and install 

different items. A summary list of the points is as follows: 

- Close unused ports with blind plugs. 

- Close the condenser cooling water valve. 

- Install the temperature probes. 

- Install the calibrated pH probe and pressurize it with 1.5 bar. 

- Install the dissolved oxygen probe. 

- Load the bioreactor. 

- Open the main water supply. 

- Switch on the heater box. 

- Turn on the stirrer box and set the toggle switches to Auto and Run. 

This section assures the user that all the required actions have been taken into 

consideration and the later processes will be carried out without any foreseeable problem. 

 

6.4.5   Sterilization 

The sterilization cycle is comprised of four phases: heating, holding, cooling, and normal 

(operational temperature). The stirrer rotation speed should be high enough to decrease 
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the internal heat transfer resistance (~ 700 rpm). When in automatic mode, the solenoid 

valve is kept close during the heating and holding phases, but it is kept open during the 

cooling phase, and is under the temperature control algorithm of the program during the 

normal operation. The user is asked to perform the following operations at certain points 

during the sterilization cycle: 

- The air outlet valve on the top of the fermenter is kept open during the heating 

phase until the medium reaches the boiling point temperature and steam streams 

out for a few seconds. At this time, the user is asked to close the air outlet valve, 

so that the contents of the bioreactor can reach higher temperatures. 

- At temperature 105 oC during the cooling phase, the user is asked to connect the 

air inlet assembly under sterile conditions and open the air inlet valve to prevent a 

vacuum in the bioreactor. 

-  When the temperature of the bioreactor contents reaches to the temperature of 

fermentation operation, the user is asked to: 

⋅ Open the air outlet valve slowly under sterile condition. 

⋅  Set the air inlet flow rate to desired value. 

⋅ Connect the air outlet assembly. 

⋅ Open the condenser valve.    

A sound signal and a blinking LED on the screen of the front panel are used to inform the 

user for the appropriate action. In addition, the appropriate message appears in the 

provided message box on the front panel.  

The front panel of the sterilization process is depicted in Figure 6.10. The default values 

for maximum allowable jacket temperature, sterilization temperature, sterilization time, 

culturing temperature, and agitation speed are 140 oC, 121 oC, 20 min., 27 oC, 500 rpm, 

respectively, but the user can change the set points at any time. It is recommended to 

place the solenoid valve in automatic mode during the sterilization period. The manual 

mode should only be used to cool down the system very fast in case of emergency. One 

round LED is assigned to each phase of sterilization. The set point and current 

temperatures of both jacket and bioreactor are also displayed on a waveform chart and 

can be saved along with the corresponding time values to text or spreadsheet files. A 

graphical representation of the whole process including the bioreactor vessel, stirrer, 
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sparger, air outlet assembly, cooling water, valves, and heaters are displayed on the front 

panel that helps user to follow the process. The jacket and bioreactor temperature 

controller gains are defined as default values based on the controller tuning as explained 

above. However, they can be adjusted to any new values by user.    

 

 

 
 

Figure 6.10- Front panel of LabVIEW program for the sterilization cycle. 
 

 

6.4.6   DO Calibration 

The dissolved oxygen probe calibration algorithm is similar to the method that has been 

used for pH probe. At least two data points are required for calibration purposes. The 

zero point may be set after extensive gassing of the fermenter with ultra pure nitrogen 

gas. The second calibration point that determines the slope of the calibration line should 

be set before inoculation after extensive gassing of the fermenter with air, while stirring 

and at the temperature of operation. 
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6.4.7   Pre-Monitoring 

The following points need to be performed and checked before commencing the 

fermentation: 

- Set the air flow rate to the desired value, while adjusting the pressure to 1 bar. 

- Open the condenser cooling water valve. 

- Connect the required tubings under sterile conditions (e.g., acids, base, and feed). 

- Add the previously sterilized medium components to the fermenter. 

- Inoculate the fermenter. 

- Enter the final volume of the culture. 

- Enter the initial acid and/or base volumes.  

- Unless, all the abovementioned points are performed the user will not be able to 

proceed to the next step. 

 

6.4.8   Monitoring 

The front page of monitoring page is shown in Figure 6.11. The user can monitor and 

control the essential variables throughout the time course of fermentation using this 

section of the software. First, the set points for culture temperature, dissolved oxygen (if 

the user wishes to control it using variable agitation speed), upper and lower limits of pH, 

agitation speed, maximum allowable agitation speed, and cycle time as well as acid and 

base addition and delay times are entered. The default values for maximum agitation and 

cycle time are 750 rpm and 3000 milliseconds, respectively.  

The controller gains for culture temperature, jacket temperature are assigned according 

the values established using the abovementioned tuning methods. The oxygen uptake rate 

of the microorganism under study and culture properties affect the dissolve oxygen level 

in the medium. Therefore, the gains for dissolved oxygen should be determined for any 

microorganism under study during the first series of fermentations using the auto-tuning 

feature of the dissolve oxygen controller. Then, the gains may be adjusted by trial and 

error to achieve a smooth and fast response.  
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Figure 6.11- Front panel of LabVIEW for monitoring of fermentation processes. 
 

 

The solenoid valve can be manipulated either manually or automatically during the 

fermentation. It is recommended to select the automatic mode, unless in case of 

emergency. The stirrer can be turned on and off by the user. In addition, its direction of 

rotation can be changed from clockwise to counterclockwise and vice versa during the 

process. Some microorganisms like many growing filamentous fungi tend to adhere to 

surfaces (e.g., bioreactor internal wall, probes, stirring shaft, and baffles), which is not 

desirable in submerged fermentation. The main agitation goal to consider is to detach the 

attached microorganisms from the surfaces during fermentation by switching the 

direction of the agitation in certain intervals. To change the rotational direction, however, 

the stirrer needs to be turned off first.       

When all the required inputs are entered by user the monitoring process can be started by 

pressing the process start button on the screen. The profiles of temperature, pH, and 

dissolved oxygen as well as the O2-CO2 content of the outlet gas are displayed on the 

screen once at a time using numerical control. Besides, the current values of pH, 
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dissolved oxygen, the percentages of oxygen and carbon dioxide in the outlet gas, culture 

and jacket temperatures, agitation speed, and the volumes of acid and base added are 

shown on the screen and can be saved in text or spreadsheet files along with the time .  

The dynamic graphical representation of the process is illustrated on the front panel. It 

includes the bioreactor, stirrer, air sparger, air inlet and outlet assemblies, solenoid valve, 

and the acid and base vessels. The reminder volumes of the acid and base are presented 

under the corresponding vessels in the graphical representation of the process. When 

either limit is exceeded, the corresponding reagent pump symbol and its line are lit on the 

front panel, signaling the need for corrective action. The user may enter the volumes of 

samples taken on the screen. The current volume of culture is adjusted based on the net 

volume additions to the bioreactor. 
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CHAPTER 7 

 

 
CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

 

7.1   Conclusions 
 

This thesis presented the application of two approaches, namely statistical methods and 

metabolic flux analysis, for maximizing the specific growth rate and the recombinant 

protein production rate in a model fungal fermentation process. This section summarizes 

the novel and significant findings of these studies. 

 

 Fractional factorial design (FFD) was efficient to specify the most significant medium 

components. The analysis of the variance revealed that peptone, ammonium sulfate, 

and starch were significant factors all with positive effect, whereas yeast extract and 

CaCl2.2H2O were found to be not important with respect to the heterologous lysozyme 

production.  The highest lysozyme concentration of 127 mg/ L was obtained when all 

factors were at their higher level of the design. The experiment with lower level of the 

components with the exception of CaCl2.2H2O resulted in the lowest lysozyme 

concentration of 60 mg/L.  

 

 When far from optimal configuration, a first-order model including the main effects of 

the significant ingredients (peptone, ammonium sulfate, starch) was adequate to predict 

the behavior of the response. The adequacy of the first-order model was verified by 

plotting the normal probability plot of the studentized residuals.  
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 The experiments along the path of steepest ascent resulted in a maximum lysozyme 

production of 198 mg/L. The concentrations of starch, peptone, and ammonium sulfate 

at this point were 32.5 g/L, 31.0 g/L, and 12.15 g/L, respectively. Further increase in 

concentrations of these constituents decreased the recombinant protein concentration.  

 

 Central composite design was used to explain the nature of the response at the vicinity 

of the maximum. Analysis of variance (ANOVA) revealed that the model was 

significant and there was no statistically significant lack of fit. According to this 

analysis, the linear effect of starch and peptone, the quadratic terms of all three 

significant components, and the starch-peptone as well as peptone-ammonium sulfate 

interactions were included in the final model. The optimum medium composition 

within the experimental range was found to be starch 34 g/L, peptone 34 g/L, 

ammonium sulfate 11.19 g/L, yeast extract 0.5 g/L, and CaCl2.2H2O 0.5 g/L. The 

maximum theoretical lysozyme concentration was 212 mg/L at the optimum levels of 

the components. An experimental maximum lysozyme concentration of 209 ±  18 

mg/L using the optimum medium composition supported the applied methodology.  

 

 Based on the aforementioned results, one may conclude that the statistically based 

experimental design options when performed sequentially were powerful tools in 

optimizing a medium for the recombinant protein production by A.niger. 

 

 A detailed metabolic network comprising three intracellular compartments (cytoplasm, 

mitochondrion and peroxisome) was successfully developed for Aspergillus niger and 

could be used in a predictive sense. The model was augmented by the inclusion of 

amino acid catabolism. Since the biochemical networks were highly underdetermined, 

the solution space was far too wide. To reduce the solution space, experimental flux 

measurements of the key metabolites were considered as inputs of the model. This 

approach was found to be very effective in order to achieve a more realistic model.       

 

 The proposed model was able to predict biomass concentration accurately throughout 

the fermentation.  
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 During the early stage (lag phase) of fermentation the glucose concentration dropped 

22% without significant production of biomass and lysozyme. The experimental work 

revealed that the carbon flux was directed mainly toward gluconic acid production. 

During this period approximately 93% of glucose was utilized for gluconate 

production, indicating that glucose oxidase was highly functional. Oxidase activity 

decreased during the next 18 hours of the fermentation when glucose concentration 

dropped to nearly zero. Approximately 74% of glucose was converted to gluconate 

during the first 30 hours of the fermentations. Gluconate was then consumed as the 

carbon source. The maximum specific growth rate during glucose consumption, 

however, was approximately 3.5 times higher than the maximum value observed for 

gluconate.   

 

 For accurate analysis of the amino acid fluxes, it was important to use identical 

concentrations of all amino acids initially and adjust them later according to the 

mathematical analysis of the uptake rates. Three significant amino acids, proline, 

alanine, glutamate, were identified by logarithmic sensitivity analysis as having 

significant effect on growth. In addition, based on the experimental observations 

tyrosine was a potential candidate to be an effective amino acid. Experimental results 

confirmed that medium enrichment with proline, alanine, glutamate, and tyrosine 

benefited both growth and recombinant protein production. 

 

 Sensitivity analysis indicated that the other amino acids were not likely to be important 

for the recombinant protein and biomass production. This was confirmed by 

experimental observations. 

 

 From an operational point of view, one may conclude that the amino acid distribution 

in peptone was suboptimal with regard to both growth and recombinant protein 

synthesis. 
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 Glucose was found to benefit significantly both biomass and recombinant protein 

production, especially when the medium contained the important amino acids at their 

higher levels. 

 

 Sensitivity of biomass formation reaction with respect to its constituents revealed that 

during the lag phase when all nutrients were still at high levels, the specific growth rate 

was not affected by the fungal biomass composition. However, during the active 

growth period, the protein content of the biomass was a limiting factor for the biomass 

production rate. This is probably due to the high energy cost of translation for 

polypeptide synthesis.  

 

 The simulation results showed that the activity of pentose phosphate pathway increased 

with the specific growth rate increment during the fermentation. Also, a linear behavior 

was observed between the requirements for NADPH and the specific growth rate of the 

microorganism. 

 

 The applied statistical analysis revealed that a higher level of nitrogen source enhanced 

both biomass and the protein production. Central composite design revealed that the 

interaction between carbon source and nitrogen source was significant with regard to 

protein production. Metabolic flux analysis also confirmed this finding as biomass and 

the protein production rates were dramatically higher when both sources were as their 

higher levels. Moreover, ammonia was found to be a very important inorganic nitrogen 

source with both methods.  
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7.2   Recommendations 

 
The studies carried out in this research represent two approaches to identify the key 

metabolites that enhance the biomass and the recombinant protein productions. Based on 

this work, the following recommendations for future studies are proposed: 

 

 The proposed metabolic network model for A.niger along with the associated 

experimental flux measurements should be examined with other recombinant fungal 

systems. This study was limited to recombinant fungal hen egg white lysozyme 

production only.   

 

 The metabolic flux analysis reveals the topology of the biological system but contains 

no information about regulatory mechanisms (inhibition or activation). The steady state 

analysis of network stoichiometry alone ignores valuable information about the kinetic 

properties and modulations within the system. As an alternative approach which is 

capable of capturing the modulations and nonlinearity in the system, the S-system 

representations could be utilized for modeling of biochemical systems. The proposed 

aspects of this mathematical modeling are: 

• Estimation of the optimum profile of enzyme concentrations contributing to the 

map to achieve a given goal. 

• Search for a minimum subset of the enzymes which may need to be modified to 

produce almost the same protein level as the optimal. 

 
 The model could be modified by introducing some integer variables in the optimization 

program in order to evaluate different set of solutions that have identical objective 

value and will satisfy the constraints. This methodology can be used to generate 

potential flux distributions that may be observed from implementing a metabolic 

engineering strategy.  

 

 Metabolic flux analysis revealed the important components of the medium which 

significantly affect the biomass production rate are glucose, proline, alanine, glutamate, 
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tyrosine, and ammonia. With the reduced number of significant metabolites, it is 

possible to design experiments using statistical methods (for example, factorial design) 

to determine the optimum level of these ingredients to maximize the biomass and 

recombinant protein productions. 

 

 Unwanted glucose oxidase activity could be reduced by application of genetic 

modification techniques. Since, the specific growth rate on glucose was much higher 

than on gluconate, any reduction in glucose oxidase activity could result in a higher 

specific growth rate with concomitant higher production of the recombinant protein.  

 

 The concentration of oxalate at the end of fermentations was nearly 25% of the initial 

concentration of glucose. Oxalate was a terminal acid byproduct. The deletion or 

reduction of the activity of enzyme oxaloacetate hydrolase (EC 3.7.1.1) which is 

involved in oxalate formation might result in better usage of the supplied carbon source 

and increase in the biomass and product levels.  

 

 The MBR reactor should be equipped with an air flow rate control valve which is under 

the control of LabVIEW software. This enables the user to control the dissolved 

oxygen both with manipulating the air flow rate and the agitation speed. 

 
 It is recommended that the solenoid valve in the bioreactor be replaced with a water 

control valve that would be under the supervision of the LabVIEW software. This new 

arrangement would give smoother temperature profile inside the jacket and prevent the 

unwanted temperature oscillations in the jacket due to the on-off action of the solenoid 

valve.  
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Appendix A- Nomenclature 
 
 
a amplitude of the oscillation peak   
a0 response intercept  
ak linear coefficients  
akk quadratic coefficients 
akl interaction coefficients 
Al symbol of atomic element of l 
A symbolic vector of atomic species 
bi measured flux of ith metabolite 
b vector of measured fluxes 
Ci intracellular concentration of ith metabolite  
C vector of metabolite concentrations  
C&  vector of concentration changes per unit time 

iC&  concentration change of ith metabolite per unit time 
CP cooling water heat capacity 
d.f. degrees of freedom 
e(t) error between set point and process variable at time t 
eil number of atoms of Al in the species of Mi 
E matrix of atomic coefficients of eil 
F cooling water flow rate 
ft fraction of cycle time at time t 
gij reaction rate order of the production of metabolite i  

'
,, ljig  reaction rate order of the production of metabolite i  

h allowable input change  
hi,j reaction rate order of the consumption of metabolite i   

'
,, ljih  reaction rate order of the consumption of metabolite i   

I identity matrix 
K number of factors 
Kc proportional gain 
Ku ultimate gain 
L number of elements in the metabolites  
m number of metabolites 
mI number of independent variables 
Mi symbol of ith metabolite  
M symbolic vector of species 
Mp.v. process variable value 
Ms.p. set point value  
MSi mean sum of square of effect i 
n number of fluxes 
na number of axial runs 
nc number of center point runs 
nk number of known fluxes (number of columns of Sk) 
nr number of replications for ith treatment combination 
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nu number of unknown fluxes (number of columns of Su) 
nu

E number of unknown exchange fluxes 
nu

I number of unknown intracellular fluxes 
nu,ind number of unknown fluxes of Vu,ind 
P vector of parameters 
p an integer that specifies the fraction of a full factorial design 
PH,i input power of heater i 
Pu ultimate period 
P/O stoichiometry of the oxidative phosphorylation of NADHm 
(P/O)* stoichiometry of the oxidative phosphorylation of NADHc and FADH2,m 
Q jacket temperature controller output (a number between 0 and 100) 
q percentage of required heating 
qi number of processes that increase the production of ith metabolite  
R redundancy matrix 
R2 coefficient of determination 

2
adjR  adjusted coefficient of determination 

ri overall reaction rate of metabolite i 
r vector of reaction rates 
Sij Stoichiometric coefficient of ith metabolite in jth process 
S stoichiometric matrix 
S-1 stoichiometric matrix inverse 
S# stoichiometric matrix pseudo inverse  
ST transpose of stoichiometric matrix 
Sk stoichiometric matrix associated to the known fluxes of Vk 
Sk

E stoichiometric matrix associated with the known fluxes of E
kV  

Su stoichiometric matrix associated to the unknown fluxes of Vu 

Su
E stoichiometric matrix associated with the unknown fluxes of E

uV  

Su
I stoichiometric matrix associated with the unknown fluxes of I

uV  
Su,ind stoichiometric matrix associated with the unknown fluxes of Vu,ind 
SSE error sum of square 
SSModel model sum of square 
SSX sum of square of the effect X 
SST total sum of square 
t time 
TJ jacket temperature 
u control action  

Du  differential control action 

Iu  integral control action 
umin minimum value of set point  
umax maximum value of set point 

Pu  proportional control action 
vj flux through jth individual reaction 
V vector of fluxes 
Vk vector of known (measured) fluxes 
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E
kV  vector of known exchange fluxes 

Vu vector of unknown fluxes 
E

uV  vector of unknown exchange fluxes 
I

uV  vector of unknown intracellular fluxes 
Vu,ind vector of unknown fluxes in a system that each reversible reaction is divided 

into two individual reactions (revised system) 
+

ijV  jth process that increase the production of metabolite i  
−

ijV  jth process that increase the consumption of metabolite i 
wi number of processes that decrease the production of ith metabolite 
Xi variable associated with the ith component  
xi coded variable associated with the ith component 
X+ factor or factor interaction at high level 
X- factor or factor interaction at low level 
y binary variable 
Y response  

)Y(EY =
)

 expected value of response 

CY  average of center point responses  

FY  average of the factorial design responses 
Yi,r response at rth replication for ith combination 
Z linear objective function 
 
 
Greek letters 
 
 CCDα   distance from the design center of central composite design 

ii βα ,  reaction rate constants of production and consumption of metabolite i in         
'
,

'
, , jiji βα  reaction rate constants of production and consumption of ith metabolite in jth 

reaction  
E
ui min,,ν  lower bound of ith unknown exchange flux 

E
uiv max,,  upper bound of ith unknown exchange flux 

jγ  upper limit of jth unknown intracellular flux 

iε  error associated with the ith  measured flux 
ε  noise in the response 

Dτ  differential time (min) 

Iτ  integral time (min) 

iλ  shadow price of ith metabolite 
),( ibZΛ  logarithmic sensitivity of objective function with respect to ith measured flux 

μ  specific growth rate (hr-1) 
ζ  a point in space 
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Ω  row vector of constants 
jϖ  coefficient of jth flux in objective function of linear programming  

ρ  cooling water density 
 
 
Subscripts 
c cytosolic compartment 
ccd central composite design 
c.w. cooling water 
m mitochondrial compartment 
p peroxisomal compartment 
D.W. dry weight 
s.p. set point 
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Appendix B- Abbreviations Used In Metabolic Reactions 
 
 
α AAd α -Aminoadipate 
Aald Acetaldehyde   
Ac Acetate 
AclHser O-Acetyl Homoserine  
Acact Acetoacetate 
AcCoA Acetyl Coenzyme A 
ADP Adenosine 5 diphosphate  
AICAR 5-Aminoimidazole-4-carboxamide ribotide 
α KB α -Ketobutyrate 
α KG α -Ketoglutarate 
α KIV α -Ketoisovalerate 
Ala L-Alanine 
Arg L-Arginine 
Asn L-Asparagine 
Asp L-Aspartate 
ATP Adenosine-5-triphosphate 
β IPM β -Isopropylmalate 
Carp Carbamoylphosphate 
Chit Chitine 
Chor Chorismate 
Cit Citrate 
CO2 Carbon dioxide 
Ctl Citruline 
CTP Cytidine triphosphate 
Cys L-Cysteine  
DHAP Dihydroxyacetone phosphate 
DHF Dihydrofolate 
DNA Deoxyribonucleic acid 
E4P Erythrose-4-phosphate 
EtOH Ethanol 
F1,6DP Fructose-1, 6-diphosphate 
F6P Fructose-6-phosphate 
FAD Flavine adenine dinucleotide (oxidized) 
FADH2 Flavine adenine dinucleotide (reduced) 
FTHF Formyltetrahydrofolate 
Fum Fumarate 
G1,3DP Glycerate-1, 3-diphosphate  
G6P Glucose-6-phosphate 
GA3P Glyceraldehyde-3-phosphate 
Glc Glucose 
Glgn Glycogen 
Gln L-Glutamine 
Glu L-Glutamate 
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Glcn Glucan 
Gluc Gluconic acid 
Glx Glyoxylate 
Gly L-Glycine 
Grol Glycerol 
Gt2P Glycerate-2-phosphate 
Gt3p Glycerate-3-phosphate 
GTP Guanosine triphosphate 
Gu6P Gluconate-6-phosphate 
GuL6P      Gluconolactone-6-P 
H Proton 
H2O Water 
HCys Homocysteine 
HEWL Hen egg white lysozyme 
His L-Histidine 
HSer Homoserine 
H2S Hydrogen sulfide 
ICit Isocitrate 
Ileu L-Isoleucine 
IMP Inosine monophosphate 
Leu L-Leucine  
Lys L-Lysine 
Mal Malate 
Man Mannitol 
Met L-Methionine 
MlTHF Methyltetrahydrofolate 
MnTHF Methylenetetrahydrofolate 
NAD Nicotinamide adenine dinucleotide (oxidized) 
NADH Nicotinamide adenine dinucleotide (reduced) 
NADP Nicotinamide adenine dinucleotide phosphate (oxidized) 
NADPH  Nicotinamide adenine dinucleotide phosphate (reduced) 
NH3 Ammonia  
O2 oxygen 
Ox Oxalic acid 
OA Oxaloacetate 
Orn  ornithine 
P  Inorganic Orthophosphate 
PEP  Phosphoenolpyruvate 
Phe  L-Phenylalanine 
Pro  L-Proline 
PRPP       5-Phosphoribosylpyrophosphate  
Pyr Pyruvate 
R5P Ribose- 5- phosphate 
RNA Ribonucleic acid 
Ru5P Ribulose-5-phosphate 
SAH S-Adenosylhomocysteine 
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SAM S-Adenosylmethionine 
Ser L-Serine 
SH7P Sedoheptulose-7-phosphate 
SO4 Sulfate 
Succ Succinate 
SuccCoA Succinyl Coenzyme A 
THF Tetrahydrofolate 
Thr L-Threonine 
Trp L-Tryptophane 
Tyr L-Tyrosine 
UDP Uridine-5-diphosphate 
UTP Uridine triphosphate 
Val L-Valine 
X5P Xylulose-5-phosphate 
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Appendix C- Metabolic Reactions 
 
 
The letters b, d, and g following the reaction numbers indicate biosynthesis, degradation, 
and gluconeogenesis reactions. 
 
Glycolysis 

cccc ADPP6GATPGlc11R +⇒+).  
cccc PGlcOHPGgR +⇒+

2
611 ).  

cc P6FP6G21R ⇔).   
cccc ADPDP61FATPP6F31R +⇒+ ,).  

cccc PPFOHDPFgR +⇒+ 66131
2

,).  
ccc P3GADHAPDP61F41R +⇔,).  

cc P3GADHAP51R ⇔).  
cccccc HNADHDP31GPNADP3GA61R ++⇔++ ,).  

cccc ATPP3GtADPP31G71R +⇔+,).  
cc P2GtP3Gt81R ⇔).  

ccc OHPEPP2Gt91R
2

+⇔).  
cccc ATPPyrADPPEP101R +⇒+).  

 
Pentose Phosphate Pathway 

cccccc HNADPHP6GuO2HNADPP6G12R ++⇒++).  

cccccc 2
COHNADPHP5RuNADPP6Gu22R ,). +++⇒+  

cc P5RP5Ru32R ⇔).  
cc P5XP5Ru42R ⇔).  

cccc P7ShP3GAP5XP5R52R +⇔+).  
cccc P6FP4EP7ShP3GA62R +⇔+).  

cccc PFPGAPXPER 635472 +⇔+).  
 
Tricarboxylic Cycle Pathway 

mmmmmmm
PADPOAOHCOATPPyrR ++⇔+++

22
13 ,).  

mmmmmmm
COHNADHAcCoANADCoAPyrR ,).

2
23 +++⇒++  

mmmmm
CoACitOHOAAcCoAR +⇒++

2
33 ).  

mm ICitCit43R ⇔).  
mmmmmm COHNADHKGNADICitR ,). 253 +++⇒+ α  

cccccc COHNADHKGNADICitR ,). 263 +++⇒+ α  
mmmmmm COHNADPHKGNADPICitR ,). 273 +++⇒+ α  

cccccc COHNADPHKGNADPICitR ,). 283 +++⇒+ α  
mmmmmmm 2COHNADHSuccCoANADCoAKG93R ,). +++⇔++α  

mmmmmm CoAATPSuccPADPSuccCoA103R ++⇔++).  
mFADHFumFADSucc113R 2mmm ,). +⇔+  

mmm MalOHFum123R 2 ⇔+).  
mmmmm HNADHOANADMal133R ++⇔+).  

 



 199

 
Anaplerotic Pathways 

ccccccc PADPOAOHCOATPPyr14R 22 ++⇔+++ ,).  
ccccccc AcCoAPADPOACoAATPCit24R +++⇒++).  

ccc2ccc HNADPHCOPyrNADPMal34R +++⇒+ ,).  
ccccc HNADHOANADMal44R ++⇔+).           

ccccc ATPOACOADPPEP54R 2 +⇒++ ,).  
ccccc 2COADPPEPATPOAg54R ,). ++⇒+  

ppP SuccGlxICit64R +⇒).          
ppcpp CoAMalOHAcCoAGlx74R 2 +⇒++).  

 
Oxidative Phosphorylation 

mcmcccmm OH1OPATPOPNADPOPADPOPO50HNADH15R 22 ])/[()/()/()/(,.). +++⇒++++  
mcmccmm2 OH1OPATPOPFADPOPADPOPO50FADH25R 22 ])/[()/()/()/(,.). ****

, +++⇒+++  
cccccCcc OH1OPATPOPNADPOPADPOPO50HNADH15R 22 ])/[()/()/()/(.). ****

, +++⇒++++  
 
Amino Acid metabolism 

ccccccc OHNADGluHNADHNHKG16R 23 ++⇔+++ ,). α  
ccccccc OHNADPGluHNADPHNHKG26R 23 ++⇔+++ ,). α  

cccc,3c PADPATPNHGlu)3.6R ++⇔++ cGln  
cccc KGAlaGluPyr46R α+⇔+).  
cccc KGAspGluOA56R α+⇔+).  

mmmm KGAspGluOA66R α+⇔+).  
cccccccc PADP2GluAsnOH2ATP2GAsp76R 2 +++⇔+++ ln).  

ccccccccc PHNADHKGSerOHNADP3GtGlub86R 2 ++++⇒+++ α).  
ccccccccc ADPNADP3GtGluATPHNADHKGSerd86R +++⇒++++α).  

cccccccc NADP2PADPHSerH2NADPH2ATPAsp1b96R +++⇒+++).  
cccccccccc NADNADPPADPHSerH2NADHNADPHATPAsp2b96R ++++⇒++++).  

cccc2cc PADPThrOHATPHSerb106R ++⇔++).  
ccc 3NHKBThrd106R ,). +⇒α  

ccccc OHMnTHFGlyTHFSer116R 2++⇔+).  
c2cccc2cccc4 OH2NADP4P2ADP2SHH4NADPH4ATP2SO126R ++++⇒+++,).  

cccc CoAAclHSerAcCoAHSerb136R +⇒+).  
cccc AcHCysSHAclHSerd136R 2 +⇒+).  

cccc THFMetMlTHFHCys146R +⇒+).  
ccccc KBNHCysSerHCys156R 3 α++⇒+ ,).  

cccccc AcCoACysSHAcCoASerb166R 2 ++⇒++).  
cccccc PyrNHHCysOHAclHSerCysd166R 32 ++⇒++ ,).  

mmmmmmm OHNADPCOKIVHNADPHPyr2b176R 22 +++⇒++ ,). α  
mmmmmmmmmm 222 FADHCOSuccCoAH3NADH3FADOH2CoANAD3KIVd176R ,,). ++++⇒++++α  

mmmm KGValGluKIV186R αα +⇔+).  
mmmmm CoAIPMOHAcCoAKIV196R 2 +⇒++ βα).  

cccccccc HNADHCOKGLeuNADGluIPMb206R 2 ++++⇒++ ,). αβ  
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mmmmmmmcmmmmmcc AcactFADHHNADHAcCoAPADPGluOH2FADNADCoAATPKGLeud206R 22 +++++++⇒++++++ ,). α

mmmmmmmmmm OHCONADPKGILeuHNADPHGluKBPyrb216R 22 ++++⇒++++ ,). αα  

m

mmmmmmmmmmmmmm

2

2

FADH
H2NADH2PADPAcCoASuccCoAGluOH2FADNAD2CoA2ATPKGILeud216R

,

).
+

++++++⇒++++++α

mmmmmmmmm 22 COHNADHCoAAAdOHNADAcCoAGlub226R ,). ++++⇒+++ α  
mmmmmmmmmmmm 222 CO2FADHH2NADH2AcCoA2GluOHFADNAD2CoA2KGAAdd226R ,,). +++++⇒+++++αα  

ccccccccccccc NADHNADP2P2ADP2KGLysOHHNADNADPH2ATP2GluAAdb236R 2 +++++⇒++++++ αα).  
cccccccc HNADPHGluAAdOHNADPKGLys1d236R 2 +++⇒+++ αα).  

cccccccccc HNADPH2NADGluAAdOHNADP2NADHKGLys2d236R 2 ++++⇒++++ αα).  
mmmmm2m,2c PADP2GluCarPOH2COATP2)24.6R +++⇒+++cGln  

mmmmmmmm2mmmmm AcNADPPADPCoAKGOrnOHHNADPHATPAcCoAGlu2)25.6R ++++++⇒+++++ α  
mmmm PCtlOrnCarp266R +⇔+).  

cccccccc P2ADP2FumArgOHATP2CtlAspb276R 2 +++⇒+++).  
ccccc 322 NH2COOrnOHArgd276R ,,). ++⇒+  

cc2ccccccc NADP2OHPADPProH2NADPH2ATPGlu)b28.6R ++++⇒+++  
mmmm2mm,m HNADHGluOHNAD2O5.0)d28.6R ++⇒+++Pro  

cccc ADP2PRPPATP2P5R296R +⇔+).  
cccccccccCc P5H2NADH2AICARKGHisO2H5NAD2ATPPRPP)b30.6R +++++⇒++++ αGln  

cccccc FormiTHFNHGluOH2THFHisd306R 32 ++⇒++ ,).  
ccccccccc NADPP4ADPChorHNADPHATPP4EPEP2316R +++⇒++++).  

ccccccccccc OHCOP2PyrP3GAGluTrpChorPRPPSerGb326R 22 ++++++⇒+++ ,ln).  
ccccccccccccc NADPNHCOAAdKGAlaForOHHNADPHOGluTrpdR ++++++⇒+++++ ,,,). 3222 33326 αα  

cccccccc 2COHNADHKGTyrNADChorGlub336R ,). ++++⇒++ α  
cccccccc AcactCOFumGluOHO2KGTyrd336R 222 +++⇒+++ ,,). α  

cccccc OHCOKGPheChorGlub346R 22 +++⇒+ ,). α  
ccccccc OHNADPTyrHNADPHOPhe1d346R 22 ++⇒+++ ,).  

ccccccc OHNADTyrHNADHOPhe2d346R 22 ++⇒+++ ,).  
mmmmmmmmmm HNADHPADPSuccCoANADCoAOHATPKB356R 2 ++++⇔++++α).  

ccc AaldGlyThr366R +⇔).  
 
Biosynthesis and Interconversion of One-Carbon Units 

ccccc NADPTHFHNADPHDHF17R +⇔++).  
cccccccc HNADHCONHMnTHFNADTHFGly27R 23 ++++⇒++ ,,).  

cccccc HNADPHFTHFOHNADPMnTHF37R 2 ++⇔++).  
ccccc NADMlTHFHNADHMnTHF47R +⇔++).  

ccccc NADPMlTHFHNADPHMnTHF57R +⇔++).  
cccccc P3SAMHOH2ATPMet67R 2 +⇒+++).  

ccccc ADP3HCysOHATP2SAH77R 2 +⇒++).  
 
Nucleotides Biosynthesis 

ccccc OHTHFIMPFTHFAICAR18R 2++⇒+).  
ccccccc PADP3FumATPIMPATP3Asp28R +++⇒++ *).  

ccccccc2cccc P2HNADHADP4GluGTPOH3NADATP4nIMP)3.8R +++++⇒++++ Gl  
ccccccc2ccccc P4HNADHADP4GluUTPOH2NADATP4PRPPnAsp)4.8R +++++⇒+++++ Gl  

ccccc2ccc PADPGluCTPOHATPUTP)5.8R +++⇒+++ Gln  
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ccccccc2c,2cccccc P6ADP4Glu2FumTHFAICAROH3COATP42AspGlyFTHFPRPP)6.8R +++++⇒+++++++ Gln  
cccc ADPUTPATPUDP78R +⇔+).  

 
Biomass Components 

cccccc2cccc P2UDPCoAGluChitOHUTPAcCoAP6F)1.9R ++++⇒++++ Gln  
cccc2ccc PNADGrolOHHNADHDHAPb29R ++⇒+++).  

ccccccc HNADHADPDHAPNADATPGrold29R +++⇒++).  
ccccccc PNADPGrolOHHNADPHDHAPb39R 2 ++⇒+++).  

mccmcc 2FADHADPDHAPFADATPGrold39R ,). ++⇒++  
cccc2ccc PNADManOHHNADHP6Fb49R ++⇒+++).  

ccccccc HNADPHADPP6FNADPATPMand49R +++⇒++).  
cccc2cc P2UDPGlcnOHUTPP6G)5.9R ++⇒++  

cccc2cc P2UDPOHUTPP6G)b6.9R ++⇒++ Glgn  
ccc P6GPn)d6.9R ⇒+Glg  

 
C2 Compounds Metabolism 

ccccc NADPEtoHHNADPHAald110R +⇔++).  
ccccc NADEtoHHNADHAald210R +⇔++).  

cccccc HNADPHAcOHNADPAald310R 2 ++⇔++).  
cccccc HNADHAcOHNADAald410R 2 ++⇔++).  

ccccccc P2ADP2AcCoAOHATP2CoAAcb510R 2 ++⇒+++).  
cccc AcCoAOHAcCoAd510R 2 +⇒+).  

 
Polymerization Reactions 

cccc2ccc

ccccccccc

ccccccccc

P4ADP4OH4ATP4Val064.0Tyr028.0
Trp018.0Thr048.0Ser066.0047.0Phe031.0Met014.0Lys057.0Leu069.0ILeu045.0
His020.0Gly094.0Glu080.0080.0Cyc011.0Asp046.0Asn046.0Arg044.0Ala095.0)1.11R

++⇒+++

+++++++++

+++++++++

Protein
Pro
Gln

 

cccc2ccccc PADPRNAOHATPUTP2620GTP2860CTP1960ATP2560211R ++⇒+++++ ....). *  

ccc

cc2cccccc
*
c

PADPDHF242.0
NADP242.1DNAOHATPMnTHF242.0NADPH242.1UTP242.0GTP258.0CTP258.0ATP242.0)3.11R

++

++⇒+++++++

 

ccmccc2ccc2c

m2ccc2ccccc

P18ADP18FAD6230NADP422NAD71CO83SAH11CoA1218LipidOH18ATP18

FADH6230NADPH422NADH71O62Ser40SAM11P6G30DHAP6230AcCoA1218411R

++++++++⇒+

+++++++++

......

.........).

,

,,

ccDWc2cc

cccccccc

P3.46ADP3.46)g1(BiomassOH3.46ATP3.46Grol090.0
Man213.0002.0Glcn515.1Chit408.0Lipid126.0DNA030.0RNA194.0Protein299.4)5.11R

++⇒++

++++++++ Glgn  

 
Maintenance Requirements 

cccc PADPOHATP112R 2 +⇒+).  
 
Mitochondrial Membrane Transport Systems  

cmcm ATPADPADPATP113R +⇔+).  
mmcc HPHP213R +⇔+).  

cmmc MalSuccMalSucc313R +⇔+).  
mccm CitICitCitICit413R +⇔+).  

mccm HCtlHCtl513R +⇔+).  
mccm PMalPMal613R +⇔+).  
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mccm HILeuHILeu713R +⇔+).  
mmcc HPyrHPyr813R +⇔+).  

cm 22 COCO913R ,,). ⇔  
mmcc HFumHFum1013R +⇔+).  
mccm MalCitMalCit1113R +⇔+).  

mmcc HGluHGlu1213R +⇔+).  
mmcc HGlnHGln +⇔+)13.13R  

mccm HValHVal1413R +⇔+).  
mccm HIPMHIPM1513R +⇔+ ββ).  

mcmc AcCoACoACoAAcCoA1613R +⇔+).  
mc 22 OO1713R ,,). ⇔  
cm AcAc1813R ⇔).  

cm AAdAAd1913R αα ⇔).  
mmcc HKBHKB2013R +⇔+ αα).  

mccm GluAspGluAsp2113R +⇔+).  
c)22.13R HProHPro mmc +⇔+  

mc AcactAcact2313R ⇔).  
cmmc HOrnHOrn2413R +⇔+).  

cm OHOH2513R 22 ⇔).  
 
Peroxisomal Membrane Transport Systems  

pccp ICitSuccICitSucc114R +⇔+).  
cppc MalICitMalICit214R +⇔+).  

ccpp HMalHMal314R +⇔+).  
pcccc2c HPADPHOHATP414R ++⇒++).  

pppc AcCoACoACoAAcCoA514R +⇔+).  
cp OHOH614R 22 ⇔).  

 
Other Reactions 

ccc 2COAaldPyr115R ,). +⇒  
c2c Glucc,O5.0Clc)2.15R ⇒+  

ccc2c AcOxOHOA315R +⇒+).  
cccc ADPP6GuATPGluc)4.15R +⇒+  
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Appendix D- Calibration Curves and LabVIEW Diagrams  
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Figure D.1- A typical standard curve for determining lysozyme concentration from the decrease 

in absorbance over a 5 minutes period. 
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Figure D.2- The typical standard curves of organic acids.  
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Figure D.3- The typical standard curves of amino acids. 
 
 
 
 
 



 207

            

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

Cumulative Cell-hour (g. hr/L)

Ly
so

zy
m

e 
 (m

g/
L)

 

 
Figure D. 4- Dependence of lysozyme production on cell growth. 
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a) On time 

 
 
 
 
 
 
b) Off time 

 
 
 

Figure D.5- The block diagram of LabVIEW for cascade temperature control.                          
The fraction of cycle time that the assigned heaters are: a) on and b) off. 
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a) Front panel 

 
 

 

b) Block diagram 

 
 

Figure D.6- Front panel and block diagram of LabVIEW program for pH calibration. 
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Table D. 1.1- Extracellular concentration of measured metabolites during 0-54 hr of the 
fermentation 

 
Metabolite Unit 0 hr 12 hr 24 hr 30 hr 36 hr 78 hr 54 hr 
Glc g/L 20.165 15.804 5.00 0.014 0.004 0.007 0.008 
Lysozyme mg/L 0.08 0.17 1.97 5.06 9.4 26.71 34.55 
Biomass g/L 0.17 0.20 0.96 2.79 3.10 3.85 4.59 
Glun g/L 0.97 5.40 15.31 16.20 14.75 12.00 11.00 
Ox g/L 0.07 0.21 0.35 0.44 0.55 1.50 1.93 
Pyr g/L 0.0001 0.0027 0.0108 0.0158 0.0199 0.0344 0.0401 
Ac g/L 0.010 0.140 0.145 0.095 0.080 0.070 0.030 
Succ g/L 0.005 0.178 0.280 0.039 0.248 0.069 0.063 
a-KG g/L 0.0010 0.0100 0.0105 0.0129 0.0132 0.0128 0.0118 
Cit g/L 1.283 1.325 1.276 1.287 1.106 0.657 0.349 
OA g/L 0.0010 0.0125 0.0408 0.0564 0.0580 0.0462 0.0359 
Mal g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Fum g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Ala g/L 0.418 0.422 0.417 0.464 0.423 0.299 0.136 
Arg g/L 0.256 0.275 0.279 0.289 0.298 0.277 0.254 
Asn g/L 0.218 0.245 0.244 0.290 0.295 0.256 0.211 
Asp g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Cys g/L 0.000 0.045 0.039 0.058 0.046 0.032 0.028 
Gln g/L 0.405 0.436 0.413 0.434 0.402 0.350 0.299 
Glu g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Gly g/L 0.330 0.328 0.307 0.392 0.443 0.397 0.350 
His g/L 0.041 0.037 0.035 0.035 0.035 0.035 0.034 
Ileu g/L 0.116 0.074 0.069 0.074 0.074 0.069 0.068 
Leu g/L 0.181 0.127 0.109 0.106 0.102 0.087 0.075 
Lys g/L 0.150 0.154 0.152 0.162 0.172 0.162 0.155 
Met g/L 0.036 0.019 0.027 0.028 0.033 0.024 0.023 
Phe g/L 0.149 0.098 0.081 0.063 0.053 0.022 0.010 
Pro g/L 0.391 0.383 0.277 0.163 0.111 0.086 0.082 
Ser g/L 0.065 0.063 0.065 0.065 0.067 0.051 0.043 
Thr g/L 0.049 0.040 0.035 0.035 0.034 0.025 0.019 
Trp g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tyr g/L 0.043 0.025 0.020 0.002 0.003 0.002 0.002 
Val g/L 0.140 0.117 0.111 0.121 0.117 0.107 0.099 
Ammonia g/L 0.723 0.715 0.662 0.517 0.508 0.487 0.472 
Phosphate g/L 1.155 1.152 1.078 0.931 0.872 0.784 0.725 
Sulfate g/L 2.850 2.846 2.803 2.774 2.765 2.755 2.752 
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Table D.1.2- Extracellular concentration of measured metabolites during 60-120 hr of the 
fermentation 

 
Metabolite Unit 60 hr 72 hr 78 hr 84 hr 96 hr 102 hr 120 hr 
Glc g/L 0.009 0.010 0.011 0.010 0.012 0.013 0.013 
Lysozyme mg/L 39.97 60.97 65.64 66.00 65.64 66.00 60.62 
Biomass g/L 6.27 7.83 8.31 7.63 6.10 5.50 3.03 
Glun g/L 8.40 3.08 0.60 0.23 0.05 0.03 0.02 
Ox g/L 2.95 4.11 4.63 4.95 5.10 5.33 5.57 
Pyr g/L 0.0675 0.0730 0.0735 0.0342 0.0177 0.0094 0.0000 
Ac g/L 0.02 0.016 0.009 0.005 0.000 0.000 0.000 
Succ g/L 0.0622 0.0357 0.0312 0.0108 0.0141 0.0065 0.0094 
a-KG g/L 0.0108 0.0088 0.0083 0.0086 0.0083 0.0068 0.0045 
Cit g/L 0.0299 0.0102 0.0048 0.0034 0.0037 0.0035 0.0039 
OA g/L 0.0250 0.0080 0.0010 0.0008 0.0002 0.000 0.000 
Mal g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Fum g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Ala g/L 0.071 0.009 0.000 0.000 0.000 0.000 0.000 
Arg g/L 0.223 0.070 0.000 0.000 0.000 0.000 0.000 
Asn g/L 0.173 0.073 0.013 0.000 0.000 0.000 0.000 
Asp g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Cys g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Gln g/L 0.238 0.029 0.003 0.000 0.000 0.000 0.000 
Glu g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Gly g/L 0.354 0.047 0.049 0.062 0.040 0.033 0.040 
His g/L 0.033 0.052 0.048 0.059 0.051 0.043 0.059 
Ileu g/L 0.052 0.007 0.001 0.001 0.001 0.001 0.001 
Leu g/L 0.052 0.005 0.000 0.000 0.000 0.000 0.000 
Lys g/L 0.157 0.131 0.117 0.110 0.060 0.013 0.000 
Met g/L 0.021 0.000 0.000 0.000 0.000 0.000 0.000 
Phe g/L 0.006 0.006 0.007 0.007 0.007 0.007 0.005 
Pro g/L 0.062 0.000 0.000 0.000 0.000 0.000 0.000 
Ser g/L 0.040 0.041 0.029 0.016 0.009 0.005 0.000 
Thr g/L 0.008 0.002 0.000 0.000 0.000 0.000 0.000 
Trp g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Tyr g/L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Val g/L 0.084 0.038 0.028 0.030 0.028 0.028 0.028 
Ammonia g/L 0.468 0.464 0.459 0.558 0.681 0.758 0.790 
Phosphate g/L 0.706 0.686 0.657 0.735 0.823 0.902 1.029 
Sulfate g/L 2.754 2.756 2.736 2.688 3.072 3.264 3.552 
 
 
 
 

 


