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Abstract

The stability and boundedness theories are developed for impulsive differential equations with
time delay. Definitions, notations and fundamental theory are presented for delay differential
systems with both fixed and state-dependent impulses. It is usually more difficult to investigate
the qualitative properties of systems with state-dependent impulses since different solutions have
different moments of impulses. In this thesis, the stability problems of nontrivial solutions of
systems with state-dependent impulses are “transferred” to those of the trivial solution of sys-
tems with fixed impulses by constructing the so-called “reduced system”. Therefore, it is enough
to investigate the stability problems of systems with fixed impulses. The exponential stability
problem is then discussed for the system with fixed impulses. A variety of stability criteria are
obtained and numerical examples are worked out to illustrate the results, which shows that im-
pulses do contribute to the stabilization of some delay differential equations. To unify various
stability concepts and to offer a general framework for the investigation of stability theory, the
concept of stability in terms of two measures is introduced and then several stability criteria are
developed for impulsive delay differential equations by both the single and multiple Lyapunov
functions method. Furthermore, boundedness and periodicity results are discussed for impulsive
differential systems with time delay. The Lyapunov-Razumikhin technique, the Lyapunov func-
tional method, differential inequalities, the method of variation of parameters, and the partitioned
matrix method are the main tools to obtain these results. Finally, the application of the stability
theory to neural networks is presented. In applications, the impulses are considered as either
means of impulsive control or perturbations. Sufficient conditions for stability and stabilization
of neural networks are obtained.
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Chapter 1

Introduction

Impulsive delay differential systems arise naturally from a wide variety of applications such as
orbital transfer of satellites, impact and constrained mechanics, sampled-data systems, spacecraft
control, ecosystem management, and inspection processes in operations research [11, 74, 112].
For instance, impulsive phenomena was observed in Bautin’s shock model of a clock mechanism
([13]), Kruger-Thiemer’s study of drug distribution in the human body ([53]), Liu and Rohlf’s
control of Lotka-Volterra models ([78]), just to name a few. In fact, various physical processes
undergo abrupt changes of state at certain moments of time between intervals of continuous evo-
lution. The duration of these changes is often negligible in comparison with that of the entire evo-
lution process and thus the abrupt changes can be well-approximated in terms of instantaneous
changes of state, i.e. impulses. On the other hand, time delay occurs frequently in many applica-
tions as diverse as economics, feedback control, secure communication and population dynamics
[20, 32, 35, 38, 40, 54, 55]. For example, model of population growth can be described by an
impulsive delay differential equation when maturity and management are considered, where the
time delay characterizes the retarded effect of reproduction or the interaction within or between
species and the impulses describe some abrupt factors such as emigration, immigration, disease
and the like ([34, 77]). While in the application to secure communication, impulsive delay dif-
ferential equations are used to model the error dynamics, where time delay, which occurs in the
differential system as well as in the impulses, describes the delay caused by transmission and
sampling; and impulses are utilized to stabilize the error dynamics ([45, 46, 47]). When both
time delay and impulses are involved, impulsive delay differential systems become a natural
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2 STABILITY AND BOUNDEDNESS OF IMPULSIVE SYSTEMS

framework for mathematical modelling of many such physical phenomena.
An impulsive delay differential equation usually consists of three elements: namely, a contin-

uous system of delay differential equations, which governs the motion of the dynamical system
between impulsive or resetting events; a discrete system of difference equations, which con-
trols the way the system states are instantaneously changed when a setting event occurs; and a
criterion for determining when the states of the system are to be reset [56, 84, 85, 87]. Conse-
quently, the solutions of an impulsive system with time delay are normally piecewise continuous,
which causes a number of difficulties. For instance, if x(t) is piecewise continuous, xt may be
discontinuous everywhere as a function of t; many simple functionals which are continuous on
R+×C([−τ, 0],Rn) cannot be extended continuously to R+×PC([−τ, 0],Rn); and some prop-
erties of solutions, such as existence, uniqueness, stability, and boundedness, may be changed
greatly by impulses [10, 75, 76, 77, 94].

Despite the wide applications, the study of impulsive delay differential equations is in its
relative infancy [12]. An early article on this subject was published in 1986 by Anokhin [2]. In
addition, the investigation history of impulsive ordinary differential equations is not long. Early
work on impulsive ordinary differential equations was published in 1960 by Milman and Myshkis
([96]). Since then, quite a few classical results on ordinary differential equations have been
extended to impulsive differential equations ([56]). Compared to impulsive ordinary differential
equations, delay differential equations has been studied for a much longer time, as far back
as the eighteenth century by many well-known mathematicians such as Euler, Lagrange and
Laplace [102]. After many generations of mathematician’s efforts, the theory of delay differential
equations has matured a great deal and a number of monographs are dedicated to this subject,
see [14, 20, 28, 35, 36, 50, 97, 134] for example.

The study of impulsive delay differential systems has been slow due to some technical diffi-
culties. Recent research work has tended to focus on special classes of equations such as delay
differential difference equations with impulses [8, 129], linear or scalar impulsive delay differen-
tial equations [4, 19, 34, 91, 133], first-order or second-order impulsive delay differential systems
[22, 41, 65, 131]. However, there have appeared some papers that focus on more general impul-
sive delay differential systems and aim at revealing the essential difference caused by impulses
([75, 77, 109, 126, 128, 129]).

Existence and uniqueness are the most fundamental qualitative properties of impulsive sys-
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tems with time delay. Early research results on existence and uniqueness have been obtained by
Krishna and Anokhin [51], and Shen [103, 105] for some special class of equations. Results on
these subjects for more general systems have been published by Ballinger and Liu [10, 76].

In recent years, stability and its applications to differential equations have been extensively
studied [21, 26, 27, 29, 30, 37, 42, 48, 49, 57, 58, 59, 67, 89, 95, 99, 100, 101, 127, 132].
Furthermore, many results have been extended to impulsive differential equations ([1, 6, 7, 8,
56, 61, 104, 125]). Significant progress on stability of impulsive delay differential equations has
been made during the past decade, see [18, 68, 74, 75, 81, 90, 93, 106, 113, 120, 121, 131, 133]
and the references therein.

The study of stability of differential systems with delay is usually more challenging than
that of systems without delay. Nonetheless, most of the tools such as the Lyapunov functional
method, Razumikhin techniques, and the comparison method have been successfully applied
to the study of impulsive delay differential systems ([75, 106, 108]). Quite recently, a number
of interesting results on uniform asymptotic stability were obtained, where some restriction on
the derivative of the Lyapunov function is relaxed. The non-positiveness requirement of the
derivative of the Lyapunov function along solutions of equations has been regarded as necessary
for uniformly asymptotic stability in the literature. But now it is allowed to be positive (see
[75, 126]) even though this kind of assumption normally causes instability for delay differential
systems without impulsive effects ([72, 108]). Nevertheless, to the best of our knowledge, these
kinds of conditions had not been developed to obtain exponential stability until recently [87, 118].

Exponential stability is one of the most investigated problems in the stability analysis of
impulsive systems since it has played an important role in many areas such as designs and ap-
plications of neural networks, population growth models and synchronization in secure com-
munications ([23, 25, 44, 72, 88, 119]). However, results on exponential stability for impul-
sive delay differential system are very few compared to those on uniform stability and asymp-
totic stability. Most of the early works mainly focuse on specific classes of equations such
as scalar equations and linear equations. Even less work is done on impulsive stabilization
[17, 65, 71, 83, 94, 118, 126, 128]. In this thesis, assumptions allowing the derivatives of Lya-
punov function or functional to be positive are used to impulsively stabilize delay differential
equations.

Compared to the stability of trivial solution, there is little work done on the stability of non-
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trivial solutions of delay differential equations with state-dependent impulses due to some theo-
retical and technical difficulties [1, 61, 86]. In the classical stability theory, stability of nontrivial
solutions can be converted to that of the trivial solution by change of variables. However, this
method can not be extended to delay differential equations with state-dependent impulses be-
cause different solutions may have different moments of impulses. We have solved this problem
recently by introducing the reduced system and utilizing the definition of quasi-stability. Be-
cause moments of impulsive effect of a nontrivial solution x̃(t) of a system with state-dependent
impulses need not be the same as those of a neighboring solution x(t), demanding that the differ-
ence of x(t) and x̃(t) be small for all t ≥ t0 seems unreasonable. So it is natural to require that
the difference be small for all t ≥ t0 except a small neighborhood of each impulse point. This
leads to the concept of quasi-stability, see reference [61]. We will discuss this issue thoroughly
in the later chapters.

To unify a variety of stability concepts and to offer a general framework for investigation of
stability theory, introducing the concept of stability in terms of two measures has been proven
to be very useful, see [62, 63, 85, 119] and references therein. This concept has generated
renewed interest among many researchers recently and some interesting results have appeared in
the literature [31, 73, 79, 85, 123, 130]. In this thesis, we obtain several stability criteria in terms
of two measures by single and multiple Lyapunov functions method combined with Razumikhin
technique and apply some of the results to the Lotka-Volterra system.

On the other hand, boundedness theory has played a significant role in the existence of peri-
odic solutions and it has many applications in areas such as biological population management,
secure communication and chaos control, [9, 45, 46, 47, 73, 77]. The theory has been greatly
developed during the past decades (see [15, 16, 52, 69, 70, 80, 84, 92, 107] and the references
therein). In this thesis, we have established several boundedness criteria for delay differential
equations with fixed and state-dependent impulses. Those results are applicable to population
growth dynamics and impulsive synchronization for secure communication.

One of the interesting applications of stability is to design neural networks with good stability
properties, see [5, 24, 33, 39, 66, 83, 114, 115, 117, 122, 124, 135]. We have applied some of the
exponential stability results and techniques to cellular neural networks (CNNs) and high order
Hopfield type neural networks. We have discussed possible effects of impulsive perturbations
on stability of neural networks and have obtained some stability criteria to keep the stability
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property of delayed neural networks under impulsive disturbance. We have also developed some
results to impulsively stabilize neural networks.

Various methods, such as LMI tools, the method of variation of parameters, differential in-
equalities, Laplace transform, Lyapunov functional or function method (combined with Razu-
mikhin technique) and so on, have been successfully utilized in the investigations of the stability
and boundedness, see [3, 4, 16, 18, 43, 64, 82, 87, 98, 108, 109, 110, 116] for example. Most of
our results in this thesis are established by using some of these methods.

There are many challenging and important problems still largely unexplored about impul-
sive delay differential systems. But I shall mainly focus on some qualitative properties and their
applications in this thesis. In the next chapter, some definitions, notation and basic theory for
impulsive delay differential systems will be presented. Then, in Chapter 3, the stability prob-
lems of nontrivial solutions of delay differential equations with state-dependent impulses are
“transferred” to those of trivial solution of systems with fixed impulses by the construction of
the “reduced system”. Thereafter, in Chapter 4, we establish some exponential stability criteria
for delay differential equations with fixed impulses. We also obtain conditions to impulsively
stabilize delay differential equations. Meanwhile, numerical examples are presented to illustrate
the results. Several theorems on the stability in terms of two measures are developed in Chap-
ter 5 based on the single and multiple Lyapunov functions method together with Razumikhin
technique. We also apply some results and techniques to obtain stability criteria for the Lotka-
Volterra system. Several boundedness results are presented for delay differential equations with
both fixed and state-dependent impulses in Chapter 6. Periodicity results are established for sys-
tem with fixed impulses by use of the Horn’s fixed point theorem. In Chapter 7, the applications
of stability to neural networks are presented, where impulses are considered either as means of
perturbations or control. Numerical examples illustrate that impulses do contribute to the stabi-
lization of neural networks. Finally, in Chapter 8, conclusions and research plan are given.





Chapter 2

Preliminaries

This chapter summarizes some basic general information on impulsive delay differential equa-
tions and introduces concepts and fundamental theory.

2.1 Impulsive Delay Differential Equations

Impulsive delay differential equations differ greatly from ordinary differential equations in the
sense that the state undergoes abrupt changes at certain moments and the derivative of the state
depends not only on time and the present state, but also on the past states. Thus an impulsive
delay differential equation is usually defined as a delay differential equation coupled with a
difference equation. In order to introduce a general impulsive delay differential system, we need
the following notation.

Denote R the set of real numbers, R+ the set of nonnegative real numbers, Rn the n-
dimensional real space equipped with any vector norm || · ||, and N the set of positive integers,
i.e., N = {1, 2, · · · }. Let λmax(Q) (or λmin(Q)) denote the maximum (or minimum) eigenvalue
of a symmetric matrix Q. For any matrix A, let AT represent the transpose of A, and ‖A‖ de-
note the norm of A induced by the Euclidean vector norm, i.e., ‖A‖ = [λmax(A

TA)]
1
2 . Denote

ψ(t+) = lims→t+ ψ(s) and ψ(t−) = lims→t− ψ(s). For a, b ∈ R with a < b and for S ⊂ Rn, we

7



8 STABILITY AND BOUNDEDNESS OF IMPULSIVE SYSTEMS

define the following classes of functions.

PC([a, b], S) =

{
ψ : [a, b] → S

∣∣∣∣ ψ(t) = ψ(t+),∀t ∈ [a, b);ψ(t−) exists in S,∀t

∈ (a, b], andψ(t−) = ψ(t) for all but at most a finite number of

points t ∈ (a, b]

}
,

PC([a, b), S) =

{
ψ : [a, b) → S

∣∣∣∣ ψ(t) = ψ(t+),∀t ∈ [a, b);ψ(t−) exists in S,∀t

∈ (a, b), andψ(t−) = ψ(t) for all but at most a finite number of

points t ∈ (a, b)

}
,

and

PC([a,∞), S) =

{
ψ : [a,∞) → S

∣∣∣∣ ∀c > a, ψ|[a,c] ∈ PC([a, c], S)

}
.

Given a constant τ > 0, we equip the linear space PC([−τ, 0],Rn) with the norm ‖ · ‖τ de-
fined by ‖ψ‖τ = sup−τ≤s≤0 ‖ψ(s)‖. For the case τ = ∞, ‖ψ‖τ = ‖ψ‖∞ = sup−∞<s≤0 ‖ψ(s)‖
for any ψ ∈ PC((−∞, 0],Rn).

Consider the impulsive delay differential equation with state-dependent impulses

x′(t) = f(t, xt), t 6= τk(x(t
−)), (2.1a)

∆x(t) = Ik(x(t
−)), t = τk(x(t

−)), (2.1b)

where f : R+ × PC([−τ, 0],Rn) → Rn, t ∈ R+, τk ∈ C(Rn,R+), ∆x(t) = x(t+) − x(t−),
Ik ∈ C(Rn,Rn), k ∈ N, and xt ∈ PC([−τ, 0],Rn) is defined by xt(s) = x(t + s) for −τ ≤
s ≤ 0. Here we assume x(t+) = x(t). In other words, we assume solutions of (2.1) are right-
continuous.

The initial condition for system (2.1) is given by

xt0 = φ, (2.2)

where t0 ∈ R+ and φ ∈ PC([−τ, 0],Rn).
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We use the notation A\B to denote the difference of two sets A and B (i.e. A\B = {t | t ∈
A and t 6∈ B}). Let J ⊂ R+ be an interval of the form [a, b) where 0 ≤ a < b ≤ ∞ and let
D ⊂ Rn be an open set. We first introduce the following definitions from [12].

Definition 2.1.1 A function x ∈ PC([t0 − τ, t0 + α], D) where α > 0 and [t0, t0 + α] ⊂ J is
said to be a solution of (2.1) if

(i) the set T = {t ∈ (t0, t0+α] | t = τk(x(t
−)) for some k} of impulse times is finite (possibly

empty);

(ii) x is continuous at each t ∈ (t0, t0 + α]\T ;

(iii) the derivative of x exists and is continuous at all but at most a finite number of points t in
(t0, t0 + α);

(iv) the right-hand derivative of x exists and satisfies the delay differential equation (2.1a) for
all t ∈ [t0, t0 + α)\T ; and

(V) x satisfies the delay difference equation (2.1b) for all t ∈ T .

If in addition, x satisfies the initial condition (2.2), then it is said to be a solution of (the
initial value problem) (2.1) & (2.2) and we write x(t) = x(t, t0, φ).

Definition 2.1.2 A function x ∈ PC([t0− τ, t0 +β), D) where 0 < β ≤ ∞ and [t0, t0 +β) ⊂ J

is said to be a solution of (2.1) (solution of (2.1) & (2.2)) if for each 0 < α < β the restriction
of x to [t0 − τ, t0 + α] is a solution of (2.1) (solution of (2.1) & (2.2)) and if β < ∞, then the
derivative of x exists and is continuous at all but at most a finite number of points t in (t0, t0 +β)

and the set T = {t ∈ (t0, t0 + β) | t = τk(x(t
−)) for some k} is finite.

Definition 2.1.3 If x and y are solutions of (2.1) on the intervals J1 and J2, respectively, where
J2 properly contains J1 and both intervals have the same closed left endpoint, and if x(t) = y(t)

for t ∈ J1, then y is said to be a proper continuation of x to the right, or simply a continuation
of x. A solution x of (2.1)defined on J1 is said to be continuable if there exists some continuation
y of x. Otherwise x is said to be noncontinuable and the interval J1 is called a maximal interval
of existence of x.
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Definition 2.1.4 A solution x(t) = x(t, t0, φ) of (2.1)-(2.2) is said to be unique if given any other
solution y(t) = y(t, t0, φ) of (2.1)-(2.2), x(t) = y(t) on their common interval of existence.

A special case of system (2.1)-(2.2) that we will mainly focus on in later chapters is the delay
differential equation with fixed impulses

x′(t) = f(t, xt), t 6= tk, (2.3a)

∆x(t) = Ik(x(t
−)), t = tk, k ∈ N, (2.3b)

xt0 = φ, (2.3c)

where the tk are constants and satisfy 0 ≤ t0 < t1 < t2 < · · · < tk < · · · , with tk → ∞ as
k →∞.

Definition 2.1.5 A function x ∈ PC([t0 − τ, t0 + α], D) where α > 0 and [t0, t0 + α] ⊂ J is
said to be a solution of (2.3) if

(i) x is continuous at each t 6= tk in (t0, t0 + α];

(ii) the derivative of x exists and is continuous at all but at most a finite number of points t in
(t0, t0 + α);

(iii) the right-hand derivative of x exists and satisfies the delay differential equation (2.3a) for
all t ∈ [t0, t0 + α);

(iv) x satisfies the delay difference equation (2.3b) at each tk ∈ (t0, t0 + α];

(v) x satisfies the initial condition (2.3c).

Definition 2.1.6 A function x ∈ PC([t0− τ, t0 +β), D) where 0 < β ≤ ∞ and [t0, t0 +β) ⊂ J

is said to be a solution of (2.3) if for each 0 < α < β the restriction of x to [t0 − τ, t0 + α] is a
solution of (2.3).

The definitions of continuation and uniqueness of solutions of system (2.3) are the same as
Definitions 2.1.3 and 2.1.4 for system (2.1)-(2.2), respectively (see [10]).
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2.2 Fundamental Properties

Existence, continuation and uniqueness are the most important fundamental properties of a dy-
namical system. In this section, we introduce some results for system (2.1)-(2.2) and (2.3) from
[10] and [76].

Definition 2.2.1 A functional f : J × PC([−τ, 0], D) → Rn is said to be composite-PC, if
for each t0 ∈ J and 0 < α ≤ ∞, where [t0, t0 + α) ⊂ J , if x ∈ PC([t0 − τ, t0 + α), D),
then the composite function g defined by g(t) = f(t, xt) is an element of the function class
PC([t0, t0 + α),Rn).

Definition 2.2.2 A functional f : J ×PC([−τ, 0], D) → Rn is said to be quasi-bounded, if for
each t0 ∈ J and α > 0, where [t0, t0 + α] ⊂ J , and for each compact set F ⊂ D, there exists
some M > 0 such that ‖f(t, ψ)‖ ≤M for all (t, ψ) ∈ [t0, t0 + α]× PC([−τ, 0], F ).

Definition 2.2.3 A functional f : J × PC([−τ, 0], D) → Rn is said to be continuous in ψ, if
for each fixed t ∈ J , f(t, ψ) is a continuous function of ψ on PC([−τ, 0], D).

Definition 2.2.4 A functional f : J × PC([−τ, 0], D) → Rn is said to be locally Lipschitz in
ψ, if for each t0 ∈ J and α > 0, where [t0, t0 + α] ⊂ J , and for each compact set F ⊂ D, there
exists some L > 0 such that ‖f(t, ψ1) − f(t, ψ2)‖ ≤ L‖ψ1 − ψ2‖τ for all t ∈ [t0, t0 + α] and
ψ1, ψ2 ∈ PC([−τ, 0], F ).

Theorem 2.2.1 (Local Existence [76]) Assume that f is composite-PC, quasi-bounded and con-
tinuous in ψ and that τk ∈ C1(D,R+) for k = 1, 2, . . .. Furthermore, assume that whenever
t∗ = τk(x

∗) for some (t∗, x∗) ∈ J×D and some k, then there exists a δ > 0, where [t∗, t∗+δ] ⊂ J ,
such that

∇τk(x(t)) · f(t, xt) 6= 1, (2.4)

for all t ∈ (t∗, t∗ + δ] and for all functions x ∈ PC([t∗ − τ, t∗ + δ], D) that are continuous
on (t∗, t∗ + δ] and satisfy x(t∗) = x∗ and ‖x(s) − x∗‖ < δ for s ∈ [t∗, t∗ + δ]. Then for each
(t0, φ) ∈ J×PC([−τ, 0], D), there exists a solution x = x(t0, φ) of (2.1) & (2.2) on [t0−τ, t0+β]

for some β > 0.
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Theorem 2.2.2 (Continuation [76]) Assume that f is composite-PC, quasi-bounded and con-
tinuous in ψ and that τk ∈ C1(D,R+) for k = 1, 2, . . . and the limit limk→∞ τk(x) = ∞ is
uniform in x. Furthermore, assume that

∇τk(ψ(0)) · f(t, ψ) < 1, (2.5)

for all (t, ψ) ∈ J ×PC([−τ, 0], D) and k = 1, 2, . . .. Finally, assume that ψ(0)+ Ik(ψ(0)) ∈ D
and

τk(ψ(0) + Ik(ψ(0)) ≤ τk(ψ(0)), (2.6)

for all ψ ∈ PC([−τ, 0], D) for which ψ(0−) = ψ(0) and for all k = 1, 2, . . .. Then for ev-
ery continuable solution x of (2.1), there exists a continuation y of x that is non-continuable.
Moreover, any solution x of (2.1) can intersect each impulse hyper-surface (in the sense that
t = τk(x(t

−))) at most once.

Theorem 2.2.3 (Uniqueness [76]) Assume that f is composite-PC and locally Lipschitz in ψ.
Then there exists at most one solution of (2.1) & (2.2) on [t0 − τ, t0 + β) where 0 < β ≤ ∞ and
[t0, t0 + β) ⊂ J .

The following results are presented for system (2.3).

Theorem 2.2.4 (Local Existence [10]) Assume that f is composite-PC, quasi-bounded and con-
tinuous in its second variable. Then for each (t0, φ) ∈ J×PC([−τ, 0], D) there exists a solution
x = x(t0, φ) of (2.3) on [t0 − τ, t0 + β] for some β > 0.

Theorem 2.2.5 (Continuation [10]) Assume that f is composite-PC, quasi-bounded and con-
tinuous in its second variable. Let (t0, φ) ∈ J × PC([−τ, 0], D) and let x = x(t0, φ) be any
solution of (2.3). If x is defined on a closed interval of the form [t0− τ, t0 +α], where α > 0 and
[t0, t0 + α] ⊂ J , then x is continuable. If x is defined on an interval of the form [t0 − τ, t0 + β),
where 0 < β < ∞ and [t0, t0 + β] ⊂ J , and if x is noncontinuable then for every compact set
G ⊂ D there exists a sequence of numbers {tk} with t0 < tk < tk+1 < t0 + β for k = 1, 2, . . .

and limk→∞ tk = t0 + β such that x(tk) 6∈ G.

Theorem 2.2.6 (Uniqueness [10]) Assume that f is composite-PC and locally Lipschitz in its
second variable. Then there exists at most one solution of (2.3) on [t0 − τ, t0 + β) where 0 <

β ≤ ∞ and [t0, t0 + β) ⊂ J .



CHAPTER 2. PRELIMINARIES 13

These theorems on existence, continuation and uniqueness represent the groundwork upon
which further qualitative analysis can be performed on the wide class of impulsive delay differ-
ential equations considered in this thesis.

In Chapter 4-6, we assume that f(t, ψ) is composite-PC, quasi-bounded and continuous
in ψ so that the initial value problem (2.3) has a solution x(t, t0, φ)

4
= x(t) existing in a max-

imal interval I . In Chapter 4, we also assume f(t, 0) = Ik(0) = 0 for all t ∈ R+ and
k ∈ N so that system (2.3) admits the trivial solution. In Chapter 6, we also suppose that f
is locally Lipschitz in ψ so that (2.3) has a unique solution.

2.3 Notation and Definitions

In this section, we introduce notation and definitions that will be useful in this thesis.
In order to make use of Lyapunov method in our theorems, we must first define the following

properties [12], [75].

Definition 2.3.1 A function V (t, x) : R+ × Rn → R+ belongs to class ν0 if

(A1) V is continuous on each of the sets [tk−1, tk) × Rn and for all x, y ∈ Rn and k ∈ N,
lim(t,y)→(t−k ,x)

V (t, y) = V (t−k , x) exists;

(A2) V (t, x) is locally Lipschitz in x ∈ Rn, and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.3.2 A functional V : R+ × PC([−τ, 0],Rn) → R+ is said to belong to the class
ν0(·) (a set of Lyapunov like functionals) if

(B1) V is continuous on [tk−1, tk)× PC([−τ, 0],Rn) and for all ψ, φ ∈ PC([−τ, 0],Rn), and
k ∈ N, lim(t,ψ)→(t−k ,φ) V (t, ψ) = V (t−k , φ) exists;

(B2) V (t, ψ) is locally Lipschitz in ψ in each compact set in PC([−τ, 0],Rn), and for all t ≥ t0,
V (t, 0) ≡ 0.

Definition 2.3.3 A functional V (t, ψ) : R+ × PC([−τ, 0],Rn) → R+ belongs to class ν∗0(·) if
V (t, ψ) ∈ ν0(·) and for any x ∈ PC([t0 − τ,∞),Rn), V (t, xt) is continuous for t ≥ t0.
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Definition 2.3.4 Given a functional V ∈ ν∗0(·), the upper right-hand derivative of V with respect
to system (2.3) is defined by

D+
(2.3)V (t, ψ) = lim sup

h→0+

1

h
[V (t+ h, xt+h(t, ψ))− V (t, ψ)],

for (t, ψ) ∈ R+ × PC([−τ, 0],Rn).

Definition 2.3.5 Given a function V : R+ × Rn → R+, the upper right-hand derivative of V
with respect to system (2.3) is defined by

D+
(2.3)V (t, ψ(0)) = lim sup

h→0+

1

h
[V (t+ h, ψ(0) + hf(t, ψ))− V (t, ψ(0))],

for (t, ψ) ∈ R+ × PC([−τ, 0],Rn).

Note that in Definition 2.3.5, D+
(2.3)V (t, ψ(0)) is a functional whereas V is a function. More-

over, Definition 2.3.5 is consistent with the earlier definition of the derivative of a functional in
Definition 2.3.4.

In later chapters, we may drop the subscript and simply write D+V or V ′ where it is under-
stood which system the derivative of V is with respect to.

Next, we define stability for the impulsive system (2.3).

Definition 2.3.6 The trivial solution of system (2.3) is said to be

(S1) stable if for every ε > 0 and t0 ∈ R+, there exists some δ = δ(t0, ε) > 0 such that
if φ ∈ PC([−τ, 0], D) with ‖φ‖τ ≤ δ and x = x(t0, φ) is any solution of (2.3), then
x(t, t0, φ) is defined and ‖x(t, t0, φ)‖ ≤ ε for all t ≥ t0;

(S2) uniformly stable if δ in (S1) is independent of t0;

(S3) asymptotically stable if (S1) holds and for every t0 ∈ R+, there exists some η = η(t0) > 0

such that if φ ∈ PC([−τ, 0], D) with ‖φ‖τ ≤ η, then limt→∞ x(t, t0, φ) = 0;

(S4) uniformly asymptotically stable if (S2) holds and there exists some η > 0 such that for
every γ > 0, there exists some T = T (η, γ) > 0 such that if φ ∈ PC([−τ, 0], D) with
‖φ‖τ ≤ η, then ‖x(t, t0, φ)‖ ≤ γ for t ≥ t0 + T ;
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(S5) unstable if (S1) fails to hold.

Definition 2.3.7 The trivial solution of system (2.3) is said to be exponentially stable, if for any
initial data xt0 = φ, there exists an α > 0, and for every ε > 0, there exists δ = δ(ε) > 0 such
that

‖x(t, t0, φ)‖ < εe−α(t−t0), for all t ≥ t0, (2.7)

whenever ‖φ‖τ < δ, t0 ∈ R+ and φ ∈ PC([−τ, 0],Rn).

Definition 2.3.8 The trivial solution of system (2.3) is said to be globally exponentially stable if,
for any initial data xt0 = φ, there exist constants α > 0,M ≥ 1 such that

‖x(t, t0, φ)‖ ≤M‖φ‖τe−α(t−t0), t ≥ t0,

where t0 ∈ R+, φ ∈ PC([−τ, 0],Rn).

We define the following sets for later use.

S(ρ) = {x ∈ Rn
∣∣ ‖x‖ < ρ, for ρ > 0},

PC(ρ) = {ψ ∈ PC([−τ, 0],Rn)
∣∣ ‖ψ‖τ < ρ},

G = {(t, ψ)
∣∣ t ∈ R+, ψ ∈ PC(ρ)},

K0 =
{
H ∈ C(R+,R+)

∣∣ H(0) = 0, and H(s) > 0 for s > 0 } ,
K =

{
g ∈ K0

∣∣ g is strictly increasing in s } ,
K1 = {ψ ∈ K

∣∣ ψ(s) < s for s > 0 } ,
K2 = {φ ∈ K

∣∣ φ(u) ≥ u for u > 0 } ,
K3 = {g ∈ K0

∣∣ g is nondecreasing in s},
K4 = {g ∈ K

∣∣ g(s) →∞ as s→∞},
Ω =

{
ω(t, u)

∣∣ ω ∈ C([tk−1, tk)× R+,R+) , k ∈ N; for each x ∈ R+ and
k ∈ N, lim(t,u)→(t−k ,x)

ω(t, u) = ω(t−k , x) exists } ,

Γ =
{
h ∈ C(R+ × Rn,R+)

∣∣ inf(t,x) h(t, x) = 0
}
,

Γ0 =
{
h0 : R+ × PC([−r, 0],Rn) → R+

∣∣h0(t, φ) = sup−r≤s≤0 h
0(t+ s, φ(s)),

where h0 ∈ Γ
}
,

CK =
{
a ∈ C(R+ × R+,R+)

∣∣ a is nondecreasing with respect to the
second variable, and a(·, 0) = 0

}
.





Chapter 3

Systems with State-dependent Impulses

This chapter discusses the stability problems of nontrivial solutions of delay differential equa-
tions with state-dependent impulses. It is well-known that the stability of a nontrivial solution of
a delay differential equation with fixed impulses can be transferred to the stability of the trivial
solution by a change of variable. However, this is invalid for a system with state-dependent im-
pulses. The objective of this chapter is to solve this problem. We finally “transfer” the stability
problems of systems with state-dependent impulses to those of systems with fixed impulses by
introducing the concept of quasi-stability and constructing the so-called “reduced system”.

The remainder of this chapter is organized as follows. In Section 3.1, we introduce the
concept of quasi-stability and some other notation and definitions. In Section 3.2, we construct
the reduced system, a medium to relate systems with state-dependent impulse effect and systems
with fixed impulse effect. Finally in Section 3.3, we obtain criteria on quasi-stability by using
some known results for systems with fixed impulses.

3.1 Quasi-stability

For systems with state-dependent impulses, impulse moments of a nontrivial solution x̃(t) need
not be the same as those of a neighboring solution x(t). Thus to demand that the difference of
x(t) and x̃(t) be small for all t ≥ t0 seems unreasonable. And hence it is natural to require that
the difference be small for all t ≥ t0 except in a small neighborhood of each impulse point. This
leads to the concept of quasi-stability [62, 63].

17
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Let T ⊂ R be a fixed interval. Then PC(T,Rn) denotes the set of functions U : T → Rn,
which are piecewise continuous with discontinuity of the first kind. Assume that a set of points
of discontinuity of every function u ∈ PC(T,Rn) is no more than countable and does not have
a finite limit point.

Definition 3.1.1 A function u2 ∈ PC(T,Rn) is said to belong to an ε-neighborhood of u1 ∈
PC(T,Rn) if

(i) every point tk of discontinuity of u2(t) lies in an ε-neighborhood of some discontinuous
point t̂k of u1(t), i.e., |tk − t̂k| < ε;

(ii) for all t ∈ T which are not in an ε-neighborhood of the point of discontinuity of u1(t), the
inequality ‖u1(t)− u2(t)‖ < ε holds.

The following definitions on quasi-stability are in the spirit of [62, 63].

Definition 3.1.2 The solution x̃(t) of system (2.1) is said to be

(S1) quasi-stable if for every ε > 0 and t0 ∈ R+, there exists δ = δ(t0, ε) > 0 such that for
every solution x(t) of equation (2.1), (xt0 − x̃t0) ∈ PC(δ) implies that x(t) belongs to an
ε-neighborhood of x̃(t) when t ≥ t0;

(S2) quasi-uniformly stable if δ in (S1) is independent of t0;

(S3) quasi-asymptotically stable if (S1) holds and for every ε > 0 and t0 ∈ R+ there exists
some η = η(t0) > 0 and T (t0, ε) > 0 such that for every solution x(t) of equation (2.1),
(xt0 − x̃t0) ∈ PC(η) implies that x(t) lies in an ε-neighborhood of x̃(t) when t ≥ t0 + T ;

(S4) quasi-uniformly asymptotically stable, if (S2) holds and there exists some η > 0 such that
for every ε > 0, there exists some T = T (η, ε) > 0 such that (xt0 − x̃t0) ∈ PC(η) implies
that x(t) lies in an ε-neighborhood of x̃(t) when t ≥ t0 + T ;

(S5) quasi-unstable, if (S1) fails to hold.

For convenience, we list the following assumptions to be satisfied in later sections.

(A1) f(t, ψ) is composite-PC.
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(A2) f(t, ψ) is locally Lipschitz in ψ.

(A3) There exists some 0 < ρ1 ≤ ρ such that x ∈ S(ρ1) implies that x + Ik(x) ∈ S(ρ) for all
k ∈ N.

(A4) There exist µ ∈ K and positive constants Lk ∈ R such that for any x, y ∈ S(ρ) and k ∈ N,

‖Ik(x)− Ik(y)‖ ≤ µ(‖x− y‖), ‖τk(x)− τk(y)‖ ≤ Lk‖x− y‖.

(A5) τk(x+ Ik(x)) ≤ τk(x) for all k ∈ N and x ∈ S(ρ).

(A6) τk+1(x+ Ik(x)) ≥ τk(x) for all k ∈ N and x ∈ S(ρ).

(A7) For any (t, ψ) ∈ Gk = {(t, ψ)
∣∣ t ∈ [tk, tk], ψ ∈ PC(ρ), where tk = infx∈S(ρ) τk(x) and

tk = supx∈S(ρ) τk(x)}, there exists Mk > 0 such that

sup
Gk

‖f(t, ψ)‖ = Mk <∞. (3.1)

(A8) t0 < τ1(x) < τ2(x) < · · · , limk→∞ τk(x) = ∞ is uniform in x.

(A9) τk ∈ C1(D,R+), and for any k ∈ N, there exists a > 0 such that

Lk ·Mk ≤ a < 1. (3.2)

Remark 3.1.1 If (A2) holds, then clearly f is also continuous in ψ. If in addition, (A1) holds,
then f is also quasi-bounded [10, 76].

Remark 3.1.2 It was shown in the previous chapter that if conditions (A1), (A2) and (A9) hold,
the initial value problem (2.1)-(2.2) has a unique solution x(t, t0, φ) existing on some interval I ,
which can be extended to a maximal interval if (A5) holds. Furthermore, if (A8) holds, then any
solution of (2.1) intersects each impulse hyper-surface at most once.
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3.2 Reduced System

In this section, we shall convert, by constructing a reduced system, the stability problem of a
nontrivial solution of the state-dependent impulsive system to that of the trivial solution of the
system with fixed impulses.

Let x̃(t) be a given solution of equation (2.1) with points of discontinuity at tk, i.e. tk =

τk(x̃(t
−
k )), k ∈ N. Let x(t) be any solution of equation (2.1) with points of discontinuity at sk,

i.e. sk = τk(x(s
−
k )), k ∈ N.

For any fixed k ∈ N, we construct a map Φk : G → Rn as follows. There are two cases to
consider.

Case 1: tk ≤ sk.
Given any x ∈ Rn, denote ak(t), t ∈ [tk, sk] the solution of

x′(t) = f(t, xt), (3.3)

which passes through the point (tk, x); and bk(t), t ∈ [tk, sk] the solution of equation (3.3) which
passes through the point (sk, ak(sk) + Ik(ak(sk))), see Figure 3.1. Then we have

ak(t) = x+
∫ t
tk
f(s, aks)ds, t ∈ [tk, sk],

bk(t) = ak(sk) + Ik(ak(sk)) +
∫ t
sk
f(s, bks)ds, t ∈ [tk, sk],

where akt(s) = ak(t+ s) for −τ ≤ s ≤ 0 and bkt(s) = bk(t+ s) for −τ ≤ s ≤ 0.
Define

Φk(x) = bk(tk)− ak(tk) = bk(tk)− x

=
∫ sk

tk
f(t, akt)dt+

∫ tk
sk
f(t, bkt)dt+ Ik(x+

∫ sk

tk
f(t, akt)dt).

Case 2: tk > sk.
Given any x ∈ Rn, denote ak(t), t ∈ [sk, tk] the solution of x′(t) = f(t, xt) without impulse

effect at t = sk, which satisfies ak(sk) = x; and bk(t), t ∈ [sk, tk] the solution of x′(t) = f(t, xt)

with impulse effect at t = sk, which starts at the point (sk, ak(sk) + Ik(ak(sk))), see Figure 3.2.
Then

ak(t) = x+
∫ t
sk
f(s, aks)ds, t ∈ [sk, tk],

bk(t) = ak(sk) + Ik(ak(sk)) +
∫ t
sk
f(s, bks)ds

= x+ Ik(x) +
∫ t
sk
f(s, bks)ds, t ∈ [sk, tk].
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Figure 3.1: Reduced system, case 1: tk ≤ sk.

We define

Φk(y) = bk(tk)− ak(tk) = bk(tk)− y

= Ik(x) +
∫ tk
sk
f(s, bks)ds+

∫ sk

tk
f(s, aks)ds

=
∫ sk

tk
f(s, aks)ds+

∫ tk
sk
f(s, bks)ds+ Ik(y +

∫ sk

tk
f(s, aks)ds),

where y = ak(tk) = x+
∫ tk
sk
f(s, aks)ds.

Now we consider the system with fixed impulses

y′(t) = f(t, yt), t 6= tk,

∆y|t=tk = Φk(y), k ∈ N,
(3.4)

where

Φk(y) =


∫ sk

tk
f(t, akt)dt+

∫ tk
sk
f(t, bkt)dt+ Ik(y +

∫ sk

tk
f(t, akt)dt),

tk 6= sk,

Ik(y), tk = sk.

System (3.4) is called the reduced system of system (2.1).
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Figure 3.2: Reduced system, case 2: tk > sk.

Remark 3.2.1 By the definition of Φk(y), we see that Φk(y) and its reduced system are well-
defined and limsk→tk Φk(y) = Ik(y).

Definition 3.2.1 System (2.1) is said to be quasi-equivalent to system (3.4) on G, if for every
solution x(t) : [t0, β) → Rn, β ∈ R+ with (t, x(t)) ∈ G of system (2.1), there exists a solution
y(t) of system (3.4) with yt0 = xt0 such that

x(t) = y(t), for all t ∈ [t0, β)\∪k∈N < tk, sk >, (3.5)

where < tk, sk > denotes [tk, sk] if tk ≤ sk; otherwise, it denotes [sk, tk];
and

x(tk) = y(t−k ), x(sk) = y(sk), if tk ≤ sk,

x(tk) = y(tk), x(s−k ) = y(sk), if tk > sk.
(3.6)

Conversely, for every solution y(t) : [t0, β) → Rn, β ∈ R+ of system (3.4) with (t, y(t)) ∈
G, there exists a solution x(t) of system (2.1) with xt0 = yt0 which satisfies (3.5) and (3.6). x(t)
(or y(t)) is said to correspond to y(t) (or x(t)) by quasi-equivalence.



CHAPTER 3. SYSTEMS WITH STATE-DEPENDENT IMPULSES 23

Lemma 3.2.1 For any x ∈ Rn and k ∈ N,

‖Φk(x)− Ik(x)‖ ≤
2LkMk

1− LkMk

‖x− x̃(t−k )‖+ µ(
LkMk

1− LkMk

‖x− x̃(t−k )‖).

Proof. Let us assume tk ≤ sk. From previous statement (Case 1), for any fixed x ∈ Rn,

ak(t) = x+
∫ t
tk
f(s, aks)ds, t ∈ [tk, sk],

bk(t) = ak(sk) + Ik(ak(sk)) +
∫ t
sk
f(s, bks)ds, t ∈ [tk, sk].

Then we have

‖ak(t)− x̃(t−k )‖ = ‖x+
∫ t
tk
f(s, aks)ds− x̃(t−k )‖

≤ ‖x− x̃(t−k )‖+Mk · |sk − tk|, t ∈ [tk, sk].
(3.7)

Thus by (3.7) we obtain

|sk − tk| = |τk(ak(sk))− τk(x̃(t
−
k ))|

≤ Lk · ‖ak(sk)− x̃(t−k )‖
≤ Lk · ‖x− x̃(t−k )‖+ LkMk · |sk − tk|.

Therefore,

|sk − tk| ≤
Lk · ‖x− x̃(t−k )‖

1− LkMk

. (3.8)

Similarly, we can prove that inequality (3.8) holds for the case tk > sk.
Then,

‖Φk(x)− Ik(x)‖
= ‖bk(tk)− ak(tk)− Ik(x)‖
= ‖

∫ sk

tk
f(t, akt)dt+

∫ tk
sk
f(t, bkt)dt+ Ik(x+

∫ sk

tk
f(t, akt)dt)− Ik(x)‖

≤ ‖
∫ sk

tk
f(t, akt)dt‖+ ‖

∫ tk
sk
f(t, bkt)dt‖+ ‖Ik(x+

∫ sk

tk
f(t, akt)dt)− Ik(x)‖

≤ 2Mk|sk − tk|+ µ(Mk|sk − tk|)
≤ 2LkMk

1−LkMk
‖x− x̃(t−k )‖+ µ( LkMk

1−LkMk
‖x− x̃(t−k )‖).



24 STABILITY AND BOUNDEDNESS OF IMPULSIVE SYSTEMS

3.3 Stability Criteria

In this section, we establish stability theorems by transferring the stability of nontrivial solutions
of a state-dependent impulsive system to that of the trivial solution of a system with fixed impulse
effect. As we will see, the reduced system is a bridge to connect these two impulsive functional
differential equations.

It is obvious that x̃(t) is a solution of both system (2.1) and system (3.4). Let x(t) be a
solution of system (2.1)-(2.2), y(t) be a solution of system (3.4) which corresponds to x(t) by
quasi-equivalence, and u(t) = y(t)− x̃(t). Then u(t) satisfies the following system

u′(t) = F (t, ut), t 6= tk,

∆u = Jk(u(t
−)), t = tk, k ∈ N,

(3.9)

where
F (t, ut) = f(t, x̃t + ut)− f(t, x̃t),

Jk(u) = Φk(x̃(t
−
k ) + u)− Ik(x̃(t

−
k )).

(3.10)

Obviously, we have F (t, 0) = 0, Jk(0) = 0. Thus system (3.9) possesses the trivial solution
u(t) ≡ 0.

We denote Jk(u) in equation (3.10) as Jk(u) = Pk(u) +Qk(u) for later use, where Pk(u) =

Ik(x̃(t
−
k ) + u)− Ik(x̃(t

−
k )) and Qk(u) = Φk(x̃(t

−
k ) + u)− Ik(x̃(t

−
k ) + u).

Lemma 3.3.1 ‖Qk(u)‖ ≤ hk(‖u‖), where hk(s) = 2
1−LkMk

s+ µ( 1
1−LkMk

s).

Proof. From Lemma 3.2.1, equation (3.10) and the assumption LkMk < 1, we can easily obtain
our result.

Now we introduce some stability results of the trivial solution of the delay differential equa-
tion with fixed impulses (2.3) from [75] and [108].

Lemma 3.3.2 ([108]) Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1, w2 ∈ K and
ψ1 ∈ K0 such that

(i) w1(‖ψ(0)‖) ≤ V (t, ψ) ≤ w2(‖ψ‖τ ),
where V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ) ∈ ν0(·);
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(ii) V1(tk, x + Ik(x)) − V1(t
−
k , x) ≤ −λkψ1(V1(t

−
k , x)), for any x ∈ S(ρ1) and k ∈ N, where

λk ≥ 0 with
∑∞

k=1 λk = ∞;

(iii) for any solution x(t) of equation (2.3), the upper right-hand derivative of V satisfies

D+V (t, xt) ≤ 0,

and for any t ≥ t0 and α > 0, there is some β > 0 such that V (t, xt) ≥ α implies
V1(t, x(t)) ≥ β.

Then the trivial solution of equation (2.3) is uniformly stable and asymptotically stable.

Theorem 3.3.1 Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1, w2 ∈ K and
ψ1 ∈ K0 such that

(i) w1(‖ψ(0)‖) ≤ V (t, ψ) ≤ w2(‖ψ‖τ ), where V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ) ∈ ν0(·);

(ii) there exists α1 ∈ K such that, for any x ∈ S(ρ1) and k ∈ N,

V1(tk, x+ Pk(x))− V1(t
−
k , x) ≤ −α1(‖x‖),

and
L1 · hk(‖x‖)− α1(‖x‖) ≤ −λkψ1(V1(t

−
k , x)),

where λk ≥ 0 with
∑∞

k=1 λk = ∞ and L1 > 0 is the Lipschitz constant of V1;

(iii) for any solution x(t) of equation (3.9), the upper right-hand derivative of V satisfies

D+V (t, xt) ≤ 0,

and for any t ≥ t0 and α > 0, there is some β > 0 such that V (t, xt) ≥ α implies
V1(t, x(t)) ≥ β.

Then the nontrivial solution x̃(t) of equation (2.1) is quasi-uniformly stable and quasi-asymptotically
stable.
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Proof. We shall first show uniform and asymptotic stability of the trivial solution of equation
(3.9):

By condition (ii) and Lemma 3.3.1, we have

V1(tk, x+ Jk(x))− V1(t
−
k , x) = (V1(tk, x+ Jk(x))− V1(tk, x+ Pk(x)))

+(V1(tk, x+ Pk(x))− V1(t
−
k , x))

≤ L1 · ‖Qk(x)‖ − α1(‖x‖) ≤ L1 · hk(‖x‖)− α1(‖x‖)
≤ −λkψ1(V1(t

−
k , x)),

which implies that condition (ii) of Lemma 3.3.2 holds. By Lemma 3.3.2, we know that the
trivial solution of equation (3.9) is uniformly stable and asymptotically stable.

From the construction of system (3.9) and the definition of stability, we know the nontrivial
solution x̃(t) of equation (3.4) is uniformly stable and asymptotically stable.

Now, we show quasi-uniform stability of solution x̃(t) of equation (2.1):
Because of the uniform stability of solution x̃(t) of equation (3.4), we have, for any ε > 0 and

t0 ∈ R+, let ε1 = ε · infk∈N{1, 1−LkMk

Lk
}. There exists δ = δ(ε) > 0 such that if y(t) = y(t, t0, φ1)

is a solution of equation (3.4), then ‖φ1 − φ‖τ ≤ δ implies ‖y(t)− x̃(t)‖ ≤ ε1, t ≥ t0.

Let x(t) = x(t, t0, φ1) be a solution of equation (2.1), which corresponds to y(t) by quasi-
equivalence. Then by quasi-equivalence of y(t) and x(t), we have

‖x(t)− x̃(t)‖ ≤ ε1, t /∈ [tk, sk), k ∈ N, (3.11)

where sk is the impulse point of x(t). Assume, without loss of generality, that sk ≥ tk.

Then
sk − tk = τk(x(s

−
k ))− τk(x̃(t

−
k )) ≤ Lk · ‖x(s−k )− x̃(t−k )‖

≤ Lk · (‖x(t−k )− x̃(t−k )‖+ ‖x(s−k )− x(tk)‖)
≤ Lk · (‖x(t−k )− x̃(t−k )‖+Mk(sk − tk)),

i.e.
sk − tk ≤

Lkε1
1− LkMk

≤ ε, (3.12)

which implies quasi-uniform stability of the nontrivial solution x̃(t) of equation (2.1).
Next, we shall show quasi-asymptotic stability of the nontrivial solution x̃(t) of equation

(2.1):
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From the quasi-uniform stability of x̃(t), we know x̃(t) is quasi-stable. From the asymptotic
stability of the nontrivial solution x̃(t) of equation (3.3), for any ε > 0 and t0 ∈ R+, let ε1 =

ε · infk∈N{1, 1−LkMk

Lk
}. There exists some η = η(t0) > 0 and T = T (ε, t0) > 0 such that if

y(t) = y(t, t0, φ1) is a solution of equation (3.3), then ‖φ1 − φ‖τ ≤ η implies

‖y(t)− x̃(t)‖ ≤ ε1, t ≥ t0 + T. (3.13)

Let x(t) = x(t, t0, φ1) be a solution of equation (2.1) with impulse points sk (k ∈ N), which
corresponds to y(t) by quasi-equivalence. Then by quasi-equivalence of y(t) and x(t), we have

‖x(t)− x̃(t)‖ ≤ ε1, t ≥ t0 + T and t /∈ [tk, sk), k ∈ N. (3.14)

Similarly proceeding as in the proof of quasi-uniform stability, we can obtain (3.12), which
completes our proof.

Lemma 3.3.3 ([108]) Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1, w2 ∈ K and
c(s) ∈ K0 such that

(i) w1(‖ψ(0)‖) ≤ V (t, ψ) ≤ w2(‖ψ‖τ ),
where V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ) ∈ ν0(·);

(ii) |V1(tk, x + Ik(x)) − V1(t
−
k , x)| ≤ βk · V1(t

−
k , x), for any x ∈ S(ρ1) and k ∈ N, where

βk ≥ 0 with
∑∞

k=1 βk <∞;

(iii) for any solution x(t) of equation (2.3), the upper right-hand derivative of V satisfies

D+V (t, xt) ≤ −g(t)c(V (t, xt)),

where g ∈ C(J,R+) and satisfies ∫ ∞

t0

g(t)dt = ∞.

Then the trivial solution of equation (2.3) is uniformly stable and asymptotically stable.

Theorem 3.3.2 Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1, w2 ∈ K and
c(s) ∈ K0 such that
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(i) w1(‖ψ(0)‖) ≤ V (t, ψ) ≤ w2(‖ψ‖τ ), where V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ) ∈ ν0(·);

(ii) for each x ∈ S(ρ1) and k ∈ N,

L1(hk(‖x‖) + µ(‖x‖)) ≤ βk · V1(t
−
k , x),

where βk ≥ 0 with
∑∞

k=1 βk <∞ and L1 is the Lipschitz constant of V1;

(iii) for any solution x(t) of equation (3.9), the upper right-hand derivative of V satisfies

D+V (t, xt) ≤ −g(t)c(V (t, xt)),

where g ∈ C(J,R+) and satisfies ∫ ∞

t0

g(t)dt = ∞.

Then the nontrivial solution x̃(t) of equation (2.1) is quasi-uniformly stable and quasi-asymptotically
stable.

Proof. By condition (ii), we have

|V1(tk, x+ Jk(x))− V1(t
−
k , x)|

≤ |V1(tk, x+ Jk(x))− V1(tk, x+ Pk(x))|
+|V1(tk, x+ Pk(x))− V1(t

−
k , x)|

≤ L1 · ‖Qk(x)‖+ L1‖Pk(x)‖ ≤ L1 · (hk(‖x‖) + µ(‖x‖))
≤ βk · (V1(t

−
k , x)),

which implies condition (ii) of Lemma 3.3.3 holds. By Lemma 3.3.3 we know the trivial solution
of equation (3.9) is uniformly stable and asymptotically stable. This means the nontrivial solution
x̃(t) of equation (3.4) is uniformly stable and asymptotically stable. We can use the same method
as we have done in the proof of Theorem 3.3.1 to obtain our results.

Lemma 3.3.4 ([75]) Assume that there exist functions V (t, x) ∈ ν0, a, b, c ∈ K, g ∈ K3 and
p ∈ PC(R+,R+) such that

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), for all (t, x) ∈ [−τ,∞)× S(ρ);
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(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ψ(0)) ≤ p(t)c(V (t, ψ(0)), for all t 6= tk in R+ and ψ ∈ PC([−τ, 0], S(ρ)),

whenever V (t, ψ(0) ≥ g(V (t+ s, ψ(s)) for s ∈ [−τ, 0];

(iii) V (tk, ψ(0) + Ik(ψ)) ≤ g(V (t−k , ψ(0))), for all (tk, ψ) ∈ R+ × PC([−τ, 0], S(ρ1)) for
which ψ(0−) = ψ(0); and

(iv) τ = supk∈Z{tk−tk−1} <∞, M1 = supt≥0

∫ t+τ
t

p(s)ds <∞, andM2 = infq≥0

∫ q
g(q)

(ds)
(c(s))

ds > M1.

Then the trivial solution of equation (2.3) is uniformly asymptotically stable.

Theorem 3.3.3 Assume that there exist functions V (t, x) ∈ ν0, a, b, c ∈ K, p ∈ PC(R+,R+)

and g ∈ K3 such that

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), for all (t, x) ∈ [−τ,∞)× S(ρ);

(ii) the upper right-hand derivative of V with respect to system (3.9) satisfies

D+V (t, ψ(0)) ≤ p(t)c(V (t, ψ(0)), for all t 6= tk in R+, and ψ ∈ PC([−τ, 0], S(ρ)),

whenever V (t, ψ(0) ≥ g(V (t+ s, ψ(s)) for s ∈ [−τ, 0];

(iii) V (tk, ψ(0) + Jk(ψ)) ≤ g(V (t−k , ψ(0))), for all (tk, ψ) ∈ R+ × PC([−τ, 0], S(ρ1)) for
which ψ(0−) = ψ(0); and

(iv) τ = supk∈Z{tk−tk−1} <∞, M1 = supt≥0

∫ t+τ
t

p(s)ds <∞, andM2 = infq≥0

∫ q
g(q)

(ds)
(c(s))

ds > M1.

Then the nontrivial solution x̃(t) of equation (2.1) is quasi-uniformly asymptotically stable.

Proof. By Lemma 3.3.4, we obtain the uniformly asymptotical stability of the trivial solution of
equation (3.9), which implies the uniformly asymptotical stability of the nontrivial solution of
equation (3.4). Then by a proof similar to that of Theorem 3.3.1, we can obtain our result.

Now we introduce an instability result for the trivial solution of system (2.3) from [108].
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Lemma 3.3.5 ([108]) Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1 ∈ K and
ψ1 ∈ K0 such that ψ1 is nondecreasing and the following assumptions hold:

(i) w1(‖x‖) ≤ V1(t, x);

(ii) for any solution x(t) of equation (2.3), the upper right-hand derivative of V satisfies

D+V (t, xt) ≥ 0, where V = V1 + V2,

and for all t ≥ t0 and α > 0, there is some β > 0 such that V (t, xt) ≥ α implies
‖x(t)‖ ≥ β;

(iii) for each k ∈ N and x ∈ S(ρ1),

V1(tk, x+ Ik(x))− V1(t
−
k , x) ≥ λkψ1(V1(t

−
k , x)),

where λk ≥ 0 with
∑∞

k=1 λk = ∞.

Then the trivial solution of equation (2.3) is unstable.

Theorem 3.3.4 Assume that there exist V1(t, u) ∈ ν0, V2(t, ut) ∈ ν∗0(·), w1 ∈ K and ψ1 ∈ K0

such that ψ1 is nondecreasing and the following assumptions hold:

(i) w1(‖u‖) ≤ V1(t, u);

(ii) for any solution u(t) of equation (3.9), the upper right-hand derivative of V satisfies

D+V (t, ut) ≥ 0, where V = V1 + V2,

and for all t ≥ t0 and α > 0, there is some β > 0 such that V (t, ut) ≥ α implies
‖u(t)‖ ≥ β;

(iii) for each k ∈ N and u ∈ S(ρ1),

V1(tk, u+ Jk(u))− V1(t
−
k , u) ≥ λkψ1(V1(t

−
k , u)),

where λk ≥ 0 with
∑∞

k=1 λk = ∞.
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Then the nontrivial solution x̃(t) of equation (2.1) is quasi-unstable.

Proof. From Lemma 3.3.5 we obtain the instability of the trivial solution of equation (3.9), which
implies that the nontrivial solution x̃(t) of equation (3.4) is unstable. That is, there exists ε0 > 0,
and for any δ > 0, there exists some t∗ ≥ t0 such that ‖φ1 − φ‖τ ≤ δ implies

‖y(t∗, t0, φ1)− x̃(t∗, t0, φ)‖ > ε0. (3.15)

If this t∗ ∈ T1 = {t
∣∣ |t− tk| ≥ ε0, k ∈ N}, then we obtain the quasi-instability of solution x̃(t)

of equation (2.1); otherwise, we have, for any ε > 0, all points t∗ which make (3.15) hold are not
in any ε-neighborhood of tk, k ∈ N, which implies the quasi-stability of x̃(t) of equation (2.1).
Next, we will show that this case could not happen. Suppose not. Then ‖u(t)‖ ≤ ε holds for all
t ≥ t0 and |t − tk| ≥ ε whenever ‖φ‖τ ≤ δ, where u(t) = u(t, t0, φ) is a solution of equation
(3.9). Let V1(t) = V1(t, u(t)), V2(t) = V1(t, ut) and V (t) = V1(t) + V2(t). By conditions (ii)

and (iii), we have
V (tk − ε)− V (tk−1 + ε) ≥ 0.

Let ε→ 0. By the continuity of V (t) on the interval [tk−1, tk), we have

V (t−k ) ≥ V (tk−1).

Furthermore,

V (tk−1)− V (t−k−1) = V1(tk−1)− V1(t
−
k−1) ≥ λk−1ψ1(V1(t

−
k−1)).

It is obvious that V (t) ≥ V (t0) for all t ≥ t0. Then by condition (ii), there is a β > 0 such that
‖u(t)‖ ≥ β for t ≥ t0, and thus V1(t

−
k−1) ≥ w1(‖u(t−k−1)‖) ≥ w1(β). Then we have

V (tk)− V (tk−1) ≥ λk−1ψ1(w1(β)),

which implies

V (tk) ≥ V (tm) + ψ1(w1(β))
k∑

j=m+1

λj →∞, as k →∞.

This contradiction shows that solution x̃(t) of equation (2.1) is quasi-unstable.
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Theorem 3.3.5 Assume that there exist V1(t, x) ∈ ν0, V2(t, ψ) ∈ ν∗0(·), w1 ∈ K and ψ1 ∈ K0

such that ψ1 is nondecreasing and the following assumptions hold:

(i) w1(‖x‖) ≤ V1(t, x);

(ii) for any solution x(t) of equation (3.9), the upper right-hand derivative of V satisfies

D+V (t, xt) ≥ 0, where V = V1 + V2,

and for all t ≥ t0 and α > 0, there is some β > 0 such that V (t, xt) ≥ α implies
‖x(t)‖ ≥ β;

(iii) for each k ∈ N and x ∈ S(ρ1),

V1(tk, x+ Pk(x))− V1(t
−
k , x) ≥ λkψ1(V1(t

−
k , x)) + L1 · hk(‖x‖),

where λk ≥ 0 with
∑∞

k=1 λk = ∞, and L1 is the Lipshitz constant of V1.

Then the nontrivial solution x̃(t) of equation (2.1) is quasi-unstable.

Proof. By condition (iii) we have

V1(tk, x+ Jk(x))− V1(t
−
k , x)

= (V1(tk, x+ Jk(x))− V1(tk, x+ Pk(x)))

+(V1(tk, x+ Pk(x))− V1(t
−
k , x))

≥ −L1 · ‖Qk(x)‖+ (V1(tk, x+ Pk(x))− V1(t
−
k , x))

≥ −L1 · hk(‖x‖) + λkψ1(V1(t
−
k , x)) + L1 · hk(‖x‖)

≥ λkψ1(V1(t
−
k , x)),

which implies condition (ii) of Theorem 3.3.4 holds. By Theorem 3.3.4, we know the nontrivial
solution x̃(t) of equation (2.1) is quasi-unstable.

Theorem 3.3.6 If there exists someM > 0 such that ‖f(t, ψ)‖ ≤M holds for all t ∈ [t0−τ,∞)

and ψ ∈ PC([−τ, 0],Rn), then the quasi-stability of the solution x̃(t) of system (2.1) implies the
stability of solution x̃(t) of system (3.4).
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Proof. For any ε > 0 and t0 ∈ R+, let ε1 = ε · (1 + 4M)−1 and T1 = {t ∈ R+

∣∣ |t − tk| ≥
ε1, k ∈ N}. The quasi-stability of x̃(t) implies that there exists some δ = δ(ε1, t0) > 0 such that
‖φ1 − φ‖τ ≤ δ implies

‖x(t)− x̃(t)‖ ≤ ε1, t ∈ T1,

and
|tk − sk| < ε1, k ∈ N,

where x(t) = x(t, t0, φ1) is a solution of system (2.1) with initial value xt0 = φ1, and sk, k ∈ N
are impulse points of x(t).

Let y(t) be a solution of system (3.4) with initial value yt0 = xt0 = φ1, which corresponds to
x(t) by quasi-equivalence. Then we have

‖y(t)− x̃(t)‖ ≤ ε1 ≤ ε, for all t ∈ T1.

Let t /∈ T1, which means |t − tk| < ε1 for some k ∈ N. Denote t̂ = tk + ε1, then t̂ ∈ T1 and
|t− t̂| < 2ε1, thus we have

y(t̂) = x(t̂) and ‖y(t̂)− x̃(t̂)‖ ≤ ε1.

Thus for all t /∈ T1, we have

‖y(t)− x̃(t)‖ = ‖y(t̂) +
∫ t
t̂
f(s, ys)ds− x̃(t̂)−

∫ t
t̂
f(s, x̃s))ds‖

≤ ‖y(t̂)− x̃(t̂)‖+ ‖
∫ t
t̂
f(s, ys)ds−

∫ t
t̂
f(s, x̃s))ds‖

≤ ε1 + 4Mε1 = ε,

which completes our proof.

Remark 3.3.1 Theorem 3.3.6 is established to guarantee stability by avoiding solutions having
drastic changes in each ε-neighborhood of any impulse point, which may cause instability though
solutions are quasi-stable.





Chapter 4

Systems with Fixed Impulses

In this chapter, we obtain exponential stability criteria for the trivial solution of a system with
fixed impulses (2.3), since we have solved the stability problems of systems with fixed impulses
in the preceding chapter. Based on the Lyapunov function and functional method, conditions to
impulsively stabilize delay differential equations and to maintain the exponential stability under
impulsive perturbations are obtained. Numerical examples are also worked out to illustrate our
results.

4.1 Global Exponential Stability

In this section, we develop Lyapunov-Razumikhin methods and establish several exponential
stability theorems which provide sufficient conditions for maintaining the exponential stability
property of the trivial solution of a delay differential system without impulses.

Theorem 4.1.1 Assume that there exist a function V ∈ ν0, and constants p > 0, c1 > 0, c2 >

0, λ > 0, dk ≥ 0, k ∈ N, such that the following conditions hold:

(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p;

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ −m(t)V (t, ϕ(0)), for all t 6= tk in R+,

35
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whenever V (t, ϕ(0)) ≥ V (t+s, ϕ(s))e−
R t

t−τ m(s)ds for s ∈ [−τ, 0], wherem(t) ∈ PC([t0−
τ,∞),R+) and inft≥t0−τ m(t) ≥ λ;

(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ (1 + dk)V (t−k , ϕ(0)), with
∑∞

k=1 dk <∞, and ϕ(0−) = ϕ(0).

Then the trivial solution of system (2.3) is globally exponentially stable.

Proof. Let x(t) = x(t, t0, φ) be a solution of system (2.3) and V (t) = V (t, x(t)). We shall show

V (t) ≤ c2

k−1∏
i=0

(1 + di)‖φ‖pτe
−
R t

t0
m(s)ds

, t ∈ [tk−1, tk), k ∈ N,

where d0 = 0. Let

Q(t) =

{
V (t)− c2

∏k−1
i=0 (1 + di)‖φ‖pτe

−
R t

t0
m(s)ds

, t ∈ [tk−1, tk), k ∈ N,
V (t)− c2‖φ‖pτe

−
R t

t0
m(s)ds

, t ∈ [t0 − τ, t0].

We need to show Q(t) ≤ 0 for all t ≥ t0. It is clear that Q(t) ≤ 0 for t ∈ [t0 − τ, t0], since
Q(t) ≤ V (t)− c2‖φ‖pτ ≤ 0 by condition (i).

Take k = 1. We shall show Q(t) ≤ 0 for t ∈ [t0, t1). In order to do this we let α > 0 be
arbitrary and show that Q(t) ≤ α for t ∈ [t0, t1). Suppose not, then there exists some t ∈ [t0, t1)

so that Q(t) > α. Let t∗ = inf{t ∈ [t0, t1) : Q(t) > α}. Since Q(t) ≤ 0 < α for t ∈ [t0 − τ, t0],
we know t∗ ∈ (t0, t1). Note that Q(t) is continuous on [t0, t1), then Q(t∗) = α and Q(t) ≤ α for
t ∈ [t0 − τ, t∗].

Notice V (t∗) = Q(t∗) + c2‖φ‖pτe
−
R t∗

t0
m(s)ds and for s ∈ [−τ, 0], we have

V (t∗ + s) = Q(t∗ + s) + c2‖φ‖pτe
−
R t∗+s

t0
m(s)ds

≤ α+ c2‖φ‖pτe
−
R t∗−τ

t0
m(s)ds

≤ (α+ c2‖φ‖pτe
−
R t∗

t0
m(s)ds

)e−
R t∗−τ

t∗ m(s)ds

= V (t∗)e
R t∗

t∗−τ m(s)ds.

So by condition (ii), we have D+V (t∗) ≤ −m(t∗)V (t∗). Thus we obtain

D+Q(t∗) = D+V (t∗) +m(t∗)c2‖φ‖pτe
−
R t∗

t0
m(s)ds

≤ −m(t∗)(V (t∗)− c2‖φ‖pτe
−
R t∗

t0
m(s)ds

)

= −m(t∗)α

< 0,
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which contradicts the definition of t∗, and so we obtainQ(t) ≤ α for all t ∈ [t0, t1). Let α→ 0+.
We have Q(t) ≤ 0 for t ∈ [t0, t1).

Now we assume that Q(t) ≤ 0 for t ∈ [t0, tm), m ≥ 1. We shall show that Q(t) ≤ 0 for
t ∈ [t0, tm+1).

By condition (iii), we have

Q(tm) = V (tm)− c2
∏m

i=0(1 + di)‖φ‖pτe
−
R tm

t0
m(s)ds

≤ (1 + dm)V (t−m)− c2
∏m

i=0(1 + di)‖φ‖pτe
−
R tm

t0
m(s)ds

= (1 + dm)Q(t−m)

≤ 0.

Let α > 0 be arbitrary. We need to show Q(t) ≤ α for t ∈ (tm, tm+1). Suppose not. Let
t∗ = inf{t ∈ [tm, tm+1) : Q(t) > α}. Since Q(tm) ≤ 0 < α, by the continuity of Q(t), we
obtain, t∗ > tm, Q(t∗) = α and Q(t) ≤ α for t ∈ [t0, t

∗].

Since V (t∗) = Q(t∗) + c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗

t0
m(s)ds, then for any s ∈ [−τ, 0], we have

V (t∗ + s) ≤ Q(t∗ + s) + c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗+s

t0
m(s)ds

≤ α+ c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗−τ

t0
m(s)ds

≤ (α+ c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗

t0
m(s)ds

)e−
R t∗−τ

t∗ m(s)ds

= V (t∗)e
R t∗

t∗−τ m(s)ds.

Thus by condition (ii), we have D+V (t∗) ≤ −m(t∗)V (t∗). Thus we have

D+Q(t∗) = D+V (t∗) +m(t∗)c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗

t0
m(s)ds

≤ −m(t∗)(V (t∗)− c2
∏m

i=0(1 + di)‖φ‖pτe
−
R t∗

t0
m(s)ds

)

= −m(t∗)α

< 0.

Again this contradicts the definition of t∗, which implies Q(t) ≤ α for all t ∈ [tm, tm+1). Let
α → 0+. We have Q(t) ≤ 0 for all t ∈ [tm, tm+1). So Q(t) ≤ 0 for all t ∈ [t0, tm+1). Thus by
the method of induction, we obtain

V (t) ≤ c2

k−1∏
i=0

(1 + di)‖φ‖pτe
−
R t

t0
m(s)ds

, t ∈ [tk−1, tk), k ∈ N.
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By condition (i)-(iii), we have

c1‖x‖p ≤ V (t) ≤ c2

k−1∏
i=0

(1 + di)‖φ‖pτe
−
R t

t0
m(s)ds ≤ c2M‖φ‖pτe−λ(t−t0), t ≥ t0,

which yields

‖x‖ ≤
(c2M
c1

) 1
p‖φ‖τe−

λ
p
(t−t0), t ≥ t0,

where M =
∏∞

i=1(1 + di) <∞ since
∑∞

k=1 dk <∞. Thus the proof is complete.

Example 4.1.1 Consider the impulsive nonlinear delay differential equation
x′(t) = −a(t)x(t) + b(t)

1+x2(t)
x(t− τ), t ≥ t0 = 0, t 6= tk,

x(tk) = (1 + ck)x(t
−
k ), tk = k, k ∈ N,

xt0 = φ,

(4.1)

where constants τ, ck > 0 with
∑∞

k=1 ck < ∞, functions a ∈ C(R,R+), b ∈ C(R,R), φ ∈
PC([−τ, 0],Rn). If a(t) ≥ |b(t)|e−λτ + λ, λ > 0, then the trivial solution of system (4.1) is
globally exponentially stable.

Proof. Set V (x) = V (t, x) = |x|, m(t) = λ for all t ≥ t0 − τ , where λ > 0 is a constant, then
we have

D+V (t, ϕ(0)) ≤ sgn(ϕ(0))[−a(t)ϕ(0) + b(t)
1+ϕ2(0)

ϕ(−τ)]
≤ −a(t)|ϕ(0)|+ |b(t)| · |ϕ(−τ)|
≤ −a(t)V (ϕ(0)) + |b(t)| · V (ϕ(−τ)).

(4.2)

For any solution x(t) of equation (4.1) such that

V (t, ψ(0)) ≥ V (t+ s, ϕ(s))e
R t

t−τ m(s)ds, for s ∈ [−τ, 0],

we have V (ϕ(−τ)) ≤ e−λτV (ϕ(0)). Therefore,

D+V (t, ϕ(0)) ≤ [−a(t) + b(t)e−λτ ]V (ϕ(0)).

Since a(t) ≥ |b(t)|e−λτ + λ, it follows that

D+V (t, ϕ(0)) ≤ −λV (ϕ(0)) ≤ −m(t)V (ϕ(0)),
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whenever V (t, ϕ(0)) ≥ V (t+ s, ϕ(s))e
R t

t−τ m(s)ds for s ∈ [−τ, 0], i.e., condition (ii) of Theorem
4.1.1 holds.

Moreover,
V (tk, ϕ(0) + Ik(ϕ)) = (1 + ck)V (t−k , ϕ(0)).

Thus by Theorem 4.1.1, the trivial solution of system (4.1) is globally exponentially stable.The
numerical simulation of this example with initial function

φ(t) =

{
0, t ∈ [−1, 0),

1.7, t = 0,

and λ = τ = 1, b(t) = t2, a(t) = 2 + t2, ck = 1
2k is given in Figure 4.1.

Figure 4.1: Numerical simulation of Example 4.1.1, impulsive system.

It should be noted that when 1 + x2 is omitted, system (4.1) becomes the well-known linear
case which has been studied by several authors, see for example, [34, 126].

Corollary 4.1.1 Assume that there exist function V (t, x) ∈ ν0 and constants p > 0, q > 1, c1 >

0, c2 > 0, δ > 1, λ > 0, dk ≥ 0, k ∈ N, such that
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(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p;

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ −λV (t, ϕ(0)), for all t 6= tk in R+,

whenever qV (t, ϕ(0)) ≥ V (t+ s, ϕ(s)) for s ∈ [−τ, 0];

(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ (1 + dk)V (t−k , ϕ(0)), with
∑∞

k=1 dk <∞, and ϕ(0−) = ϕ(0).

Then system (2.3) is globally exponentially stable.

Proof. The conclusion follows by setting m(t) ≡ λ and q = eλτ in Theorem 4.1.1.
Next, we shall apply Corollary 4.1.1 to some special cases of system (2.3).
Consider the impulsive delay system of the form
ẋ(t) = g(t, x(t), x(t− h1(t)), x(t− h2(t)), · · · , x(t− hm(t))), t ∈ [tk−1, tk),

∆x(t) = Ik(x(t
−)), t = tk, k ∈ N,

xt0 = φ,

(4.3)

where g ∈ C(R+×Rn×(m+1),Rn), and the function hk(t) is continuous, and t− hk(t) is strictly
increasing on R+ and satisfying 0 ≤ hk(t) ≤ τ for t ∈ R+.

Corollary 4.1.2 Assume that conditions (i), (iii) of Corollary 4.1.1 hold, while condition (ii) is
replaced by

(ii)∗ there exist positive constants λ > 0, λi > 0, i = 1, 2, · · · ,m, such that, for all (t, x, y1, · · · ,
ym) ∈ [tk−1, tk)× Rn×(m+1), k ∈ N,

Vt(t, x) + Vx(t, x)g(t, x, y1, · · · , ym) ≤ −λV (t, x) +
m∑
i=1

λiV (t− hi(t), yi).

If λ is chosen such that λ >
∑m

i=1 λi, then system (4.3) is globally exponentially stable.

Proof. If λ >
∑m

i=1 λi, we know that the equation

λ− q

m∑
i=1

λi =
ln q

τ
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has a unique root satisfying

1 < q <
λ∑m
i=1 λi

.

Thus, for ϕ ∈ C([−τ, 0],Rn), and t ∈ [tk−1, tk), k ∈ N, if

V (t+ θ, ϕ(θ)) ≤ qV (t, ϕ(0)),−τ ≤ θ ≤ 0,

then, by condition (ii)∗, we have

D+V (t, ϕ(0)) = Vt(t, ϕ(0)) + Vx(t, ϕ(0))g(t, ϕ(0), ϕ(−h1(t)), · · · , ϕ(−hm(t))

≤ −λV (t, ϕ(0)) +
m∑
i=1

λiV (t− hi(t), ϕ(−hi(t)))

≤ −

(
λ− q

m∑
i=1

λi

)
V (t, ϕ(0)).

This implies by Corollary 4.1.1 that the trivial solution of system (4.3) is globally exponentially
stable.

Example 4.1.2 Consider the following nonlinear impulsive delay system
ẋ(t) = Ax(t) + F (t, x(t), x(t− τ)), t ≥ t0 = 0, t 6= tk,

∆x(t) = Ckx(t
−), t = tk, k ∈ N,

xt0 = φ,

(4.4)

where

A =

 −10 0 3

0 −15 8

3 8 −24

 ,
and F (t, x(t), x(t − τ)) = 1

11

(
x1(t−τ)

1+sin2t+‖x(t)‖2 x2(t − τ) sin(x3(t)) x2(t − τ) cos(x3(t))
)T , τ is

a positive constant.
Because A is Hurwitz, there exist positive definite symmetric matrices Q and P such that

ATQ+QA = −P. (4.5)
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Let

Q =

 7 2 −3

2 5 0

−3 0 3

 , P =

 158 74 −148

74 150 −70

−148 −70 162

 ,
so that equation (4.5) holds.

Let V (t, x) = xTQx, then

D+V (t, x) = x′TQx+ xTQx′ = −xTPx+ 2xTQF

≤ −11‖x‖2 + ‖Q‖(‖x‖2 + ‖F‖2)

≤ −‖x‖2 + 10‖F‖2 ≤ −‖x‖2 + 1
12
‖x(t− τ)‖2

≤ − 1
λmax(Q)

V (t, x) + 1
12λmin(Q)

V (t− τ, x(t− τ))

≤ − 1
10
V (t, x) + 1

12
V (t− τ, x(t− τ)),

which implies that condition (ii)∗ of Corollary 4.1.2 holds.
Choose dk = 1

2k−4 and

Ck =


1
2k

3
2k+1 0

− 3
2k −1

2
+ 1

2k+1 0

0 0 3
2k

 , k ∈ N,

then condition (iii) of Corollary 4.1.2 holds. Thus by Corollary 4.1.2, system (4.4) is globally
exponentially stable. The numerical simulation of this example with τ = 1

3
, tk = k is given in

Figure 4.2.

Next, we shall consider two special cases of g.
Case 1.

g(t, x, y1, · · · , ym) = Ax+G(t, x, y1, · · · , ym), for all (t, x) ∈ R+ × Rn, (4.6)

where A ∈ Rn×n is a Hurwitz matrix, and G ∈ C(R+ × Rn×(m+1),Rn).
Since A is a Hurwitz matrix, there exists a unique positive definite symmetric matrix Q such

that
QA+ ATQ = −I, (4.7)

where I is the identity matrix.
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Figure 4.2: Numerical simulation of Example 4.1.2, impulsive system.

Corollary 4.1.3 Let p ≥ 2. Assume that conditions (4.6) and (4.7) hold and the matrix A
is Hurwitz. If there exist nonnegative real numbers αi, i = 0, 1, 2, · · · ,m, such that for all
(t, x, y1, · · · , ym) ∈ [tk−1, tk)× Rn×(m+1), k ∈ N, the following conditions hold:

(i)

‖G(t, x, y1, · · · , ym)‖ ≤ α0‖x‖+
m∑
i=1

αi‖yi‖; (4.8)

(ii)

p

2λmax(Q)
− α0pλmax(Q)

λmin(Q)
− (p− 1)λmax(Q)

(λmin(Q))
1
2

m∑
i=1

αi −
λmax(Q)

(λmin(Q))
p+1
2

m∑
i=1

αi > 0; (4.9)

(iii) there exists a sequence {dk} with dk ≥ 0, and
∑∞

k=0 dk < ∞, such that for all ϕ ∈
PC([−τ, 0],Rn, the following inequality holds:

‖ϕ(0) + Ik(ϕ(0))‖ ≤ (1 + dk)
1
p

√
λmin(Q)

λmax(Q)
‖ϕ(0)‖. (4.10)
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Then system (4.3) is globally exponentially stable.

Proof. Let V (x) =
(
xTQx

) p
2 , where Q is the matrix given by equation (4.7). Then, for all

(t, x) ∈ [tk−1, tk)× Rn, and yi = x(t− hi(t)), k ∈ N, i = 1, 2, · · · ,m, we have

D+V (t, x) = p
(
xTQx

) p
2
−1
xTQg(t, x, y1, · · · , ym)

= p
(
xTQx

) p
2
−1
xTQ(Ax+G(t, x, y1, · · · , ym))

≤ p

2

(
xTQx

) p
2
−1
xT (QA+ ATQ)x+ p

(
xTQx

) p
2
−1 ‖x‖‖Q‖

(
α0‖x‖+

m∑
i=1

αi‖yi‖
)

≤ − p

2λmax(Q)

(
xTQx

) p
2 +

α0pλmax(Q)

λmin(Q)

(
xTQx

) p
2

+pλmax(Q)
m∑
i=1

αi
(
xTQx

) p
2
−1‖x‖‖yi‖. (4.11)

In order to estimate the last term of (4.11), we shall make use of the following well-known
inequality

aµb1−µ ≤ µa+ (1− µ)b, for all a, b ≥ 0, 0 ≤ µ < 1. (4.12)

From (4.12), we have(
xTQx

) p
2
−1‖x‖‖yi‖ ≤

1

(λmin(Q))
1
2

(xTQx)
p−1
2 ‖yi‖

=
1

(λmin(Q))
1
2

[
(xTQx)

p
2 ]

p−1
p (‖yi‖p)

1
p

≤ 1

(λmin(Q))
1
2

(p− 1

p
(xTQx)

p
2 +

1

p
‖yi‖p

)
≤ 1

(λmin(Q))
1
2

(p− 1

p
(xTQx)

p
2 +

1

p(λmin(Q))
p
2

(
yTi Qyi

) p
2
)
. (4.13)

Substituting (4.13) into (4.11), we obtain

D+V (t, x) ≤ −
(

p

2λmax(Q)
− α0pλmax(Q)

λmin(Q)
− (p− 1)λmax(Q)

(λmin(Q))
1
2

m∑
i=1

αi

)
V (t, x)

+
λmax(Q)

(λmin(Q))
p+1
2

m∑
i=1

αiV (t− hi(t), x(t− hi(t))). (4.14)
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On the other hand, by condition (iii), we obtain

V (tk, ϕ(0) + Ik(ϕ)) =

{(
ϕ(0) + Ik(ϕ)

)T
Q
(
ϕ(0) + Ik(ϕ)

)} p
2

≤
{
λmax(Q)‖ϕ(0) + Ik(ϕ)‖2

} p
2

≤
{

(1 + dk)
2
pλmin(Q)‖ϕ(0)‖2

} p
2

≤ (1 + dk)

{(
ϕ(0)

)T
Q
(
ϕ(0)

)} p
2

= (1 + dk)V (t−k , ϕ(0)). (4.15)

Thus, the conclusion of the corollary follows readily from Corollary 4.1.2.
Case 2.

g(t, x, y1, · · · , ym) = g(t, x, x, · · · , x)+G(t, x, y1, · · · , ym), for all (t, x) ∈ R+×Rn, (4.16)

where G(t, x, y1, · · · , ym) = g(t, x, y1, · · · , ym) − g(t, x, x, · · · , x). In this case, the time delay
helps to stabilize the system.

Corollary 4.1.4 Let p ≥ 2. Assume that (4.16) holds and there exist nonnegative real num-
bers λ > 0 and αi, i = 1, 2, · · · ,m, such that for all (t, x, y1, · · · , ym), (t, x̄, ȳ1, · · · , ȳm) ∈
[tk−1, tk)× Rn×(m+1), k ∈ N, the following conditions hold:

(i)
xTg(t, x, x, · · · , x) ≤ −λ‖x‖2; (4.17)

(ii)

‖g(t, x̄, ȳ1, · · · , ȳm)− g(t, x, y1, · · · , ym)‖ ≤ α0‖x̄− x‖+
m∑
i=1

αi‖ȳi − yi‖; (4.18)

(iii)

pλ−
(
(p− 1) + 2p

) m∑
i=1

αi > 0; (4.19)
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(iv) for all ϕ ∈ PC([−τ, 0],Rn), and dk ≥ 0 with
∑∞

k=0 dk <∞,

‖ϕ(0) + Ik(ϕ(0))‖ ≤ (1 + dk)
1
p‖ϕ(0)‖. (4.20)

Then system (4.3) is globally exponentially stable.

Proof. Let V (t, x) = ‖x‖p. Then, for all (t, x) ∈ [tk−1, tk) × Rn and yi = x(t − hi(t)), k ∈
N, i = 1, 2, · · · ,m, we have

D+V (t, x) = p‖x‖p−2xTg(t, x, y1, · · · , ym)

= p‖x‖p−2xT
(
g(t, x, x, · · · , x) +G(t, x, y1, · · · , ym)

)
≤ −pλ‖x‖p + p

m∑
i=1

αi
∥∥x‖p−1‖x− yi‖. (4.21)

From (4.12), we obtain

‖x‖p−1‖x− yi‖ =
(
‖x‖p

) p−1
p
(
‖x− yi‖p

) 1
p ≤ p− 1

p
‖x‖p +

1

p
‖x− yi‖p

≤ p− 1

p
‖x‖p +

2p−1

p

(
‖x‖p + ‖yi‖p

)
=

(p− 1) + 2p−1

p
‖x‖p +

2p−1

p
‖yi‖p. (4.22)

Substituting (4.22) into (4.21), it follows that

D+V (t, x) ≤ −
(
pλ−

(
(p− 1) + 2p−1

) m∑
i=1

αi

)
V (t, x) + 2p−1

m∑
i=1

αiV (t− hi(t), x(t− hi(t))).

Thus, the conclusion of the corollary follows readily from Corollary 4.1.2.
When the functions g, Ik, k ∈ N are linear, then for m = 1, system (4.3) reduces to the

following linear impulsive delay system
ẋ(t) = Ax(t) +Bx(t− h(t)), t ∈ [tk−1, tk),

∆x(t) = Ckx(t
−), t = tk, k ∈ N,

xt0 = φ,

(4.23)

where t− h(t) is strictly increasing on R+ and 0 ≤ h(t) ≤ τ .
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Corollary 4.1.5 Assume that A+ AT is negative definite and for some constant q > 1,

− 1

2q
1
2

λmax(A+ AT ) > ‖B‖. (4.24)

Furthermore, assume that Ck, k ∈ N, and for some dk ≥ 0 with
∑∞

k=0 dk <∞,

‖I + Ck‖ ≤ (1 + dk)
1
2 . (4.25)

Then system (4.23) is globally exponentially stable.

Proof. It follows from Corollary 4.1.1 by choosing V (x) = ‖x‖2.

Example 4.1.3 Consider the following linear impulsive delay system
ẋ(t) = Ax(t) +Bx(t− 1

4
(1 + e−t)), t 6= k, k ∈ N,

∆x(t) = Ckx(t
−), t = k, k ∈ N,

xt0 = φ,

(4.26)

where

A =

 −13 20 0

7 −35 15

0 14 −20

 , B =

 −1.5 1 0

1 −0.3 0.5

0 1 −0.1

 ,
and

Ck =


1
2k

3
2k+1 0

− 3
2k −1

2
+ 1

2k+1 0

0 0 3
2k

 .
Choose q = 2, δ = 2 and τ = 1

2
. Then we have

− 1

2q
1
2

λmax(A+ AT ) = 2.39 and ‖B‖ = [λmax(B
TB)]

1
2 = 2.15,

so inequality (4.24) holds.
Furthermore, choose dk = 1

2k−4 . Then for all k ∈ N, we have

‖I + Ck‖ = [λmax(I + Ck)
T (I + Ck)]

1
2

= 1 + 3
2k ≤ (1 + dk)

1
2 .

Then we know from Corollary 4.1.5 that system (4.26) is globally exponentially stable. The
numerical simulation of this example is given in Figure 4.3.
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Figure 4.3: Numerical simulation of Example 4.1.3, impulsive system.

Theorem 4.1.2 Assume that there exist a function V ∈ ν0, constants p > 0, q > 1, c1 > 0, c2 >

0 and η ≥ ln q
τ

such that

(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p;

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ −ηV (t, ϕ(0)), for all t 6= tk in R+,

whenever qV (t, ϕ(0)) ≥ V (t+ s, ϕ(s)) for s ∈ [−τ, 0];

(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ ψk(V (t−k , ϕ(0))), where ϕ(0−) = ϕ(0), and ψk(s) is continuous,
0 ≤ ψk(as) ≤ aψk(s) and ψk(s) ≥ s hold for any a ≥ 0 and s ≥ 0, and there exists
H ≥ 1 such that

ψk(ψk−1(· · · (ψ1(s)) · · · ))/s ≤ H, s > 0, k ∈ N.
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Then the trivial solution of system (2.3) is globally exponentially stable.

Proof. Choose q = eλτ > 1 for some λ > 0. We shall show

V (t) ≤ ψk−1(ψk−2(· · · (ψ1(ψ0(V (t0)))) · · · ))e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N,

where ψ0(s) = s for any s ∈ R. Let

Q(t) =

{
V (t)− ψk−1(ψk−2(· · · (ψ0(V (t0))) · · · ))e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N,
Q(t0), t ∈ [t0 − τ, t0].

When k = 1, we shall show Q(t) ≤ 0 for all t ∈ [t0, t1). In order to do this, we shall show
that Q(t) ≤ α for any arbitrarily given α > 0. Suppose that there exists some t ∈ [t0, t1) so
that Q(t) > α. Let t∗ = inf{t ∈ [t0, t1) : Q(t) > α}, since Q(t0) ≤ V (t0) − V (t0) = 0 < α

and hence Q(t) ≤ α for t ∈ [t0 − τ, t0], we know t∗ ∈ (t0, t1). Note that Q(t) is continuous on
[t0, t1). Then Q(t∗) = α and Q(t) ≤ α for t ∈ [t0 − τ, t∗].

Since V (t∗) = Q(t∗) + V (t0)e
−λ(t∗−t0), then for s ∈ [−τ, 0], we have

V (t∗ + s) = Q(t∗ + s) + V (t0)e
−λ(t∗+s−t0)

≤ α+ V (t0)e
−λ(t∗−t0)eλτ

≤ (α+ V (t0)e
−λ(t∗−t0))eλτ

= V (t∗)eλτ

≤ qV (t∗).

So by condition (ii), we have D+V (t∗) ≤ −ηV (t∗). Then we have

D+Q(t∗) = D+V (t∗) + λV (t0)e
−λ(t∗−t0)

≤ −ηV (t∗) + λV (t0)e
−λ(t∗−t0)

≤ −λ(V (t∗)− V (t0)e
−λ(t∗−t0))

= −λα
< 0,

which contradicts the definition of t∗, so we obtain Q(t) ≤ α for all t ∈ [t0, t1). Let α → 0+.
We have Q(t) ≤ 0 for t ∈ [t0, t1).

Now we assume that Q(t) ≤ 0 for t ∈ [t0, tk), k ≥ 1. Then we shall show Q(t) ≤ 0 for
t ∈ [t0, tk+1). Let α > 0 be arbitrary. We shall show Q(t) ≤ α for t ∈ (tk, tk+1). Suppose not.
Let t∗ = inf{t ∈ [tk, tk+1) : Q(t) > α}.
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By condition (iii), we have

Q(tk) = V (tk)− ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(tk−t0)

≤ ψk(V (t−k ))− ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(tk−t0)

≤ ψk(ψk−1(· · · (ψ0(V (t0))) · · · )e−λ(tk−t0))− ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(tk−t0)

≤ e−λ(tk−t0)ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))− ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(tk−t0)

≤ 0.

Since Q(tk) ≤ 0 < α, by the continuity of Q(t), we have t∗ > tk, Q(t∗) = α and Q(t) ≤ α

for t ∈ [t0 − τ, t∗].
Since V (t∗) = Q(t∗) + ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−t0); when t∗ + s ≥ tk for all

s ∈ [−τ, 0], we have, for any s ∈ [−τ, 0],

V (t∗ + s) = Q(t∗ + s) + ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗+s−t0)

≤ α+ ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−τ−t0)

≤ (α+ ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−t0))eλτ

≤ V (t∗)eλτ

≤ qV (t∗).

When t∗ + s < tk for some s ∈ [−τ, 0], note that 0 ≤ ψk(as) ≤ aψk(s) and ψk(s) ≥ s hold for
any a ≥ 0 and s ≥ 0. Then we have, for any s ∈ [−τ, 0] and m < k with m, k ∈ N,

ψm(ψm−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗+s−t0) ≤ ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗+s−t0).

So in this case, we can also obtain that V (t∗ + s) ≤ qV (t∗) holds for all s ∈ [−τ, 0]. Thus
by condition (ii), we have D+V (t∗) ≤ −ηV (t∗), and then we have

D+Q(t∗) = D+V (t∗) + λψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−t0)

≤ −ηV (t∗) + λψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−t0)

≤ −λ[V (t∗)− ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t∗−t0)]

≤ −λα
< 0.

Again this contradicts the definition of t∗, which implies Q(t) ≤ α for all t ∈ [tk, tk+1). Let
α → 0+. We have Q(t) ≤ 0 for all t ∈ [tk, tk+1). So Q(t) ≤ 0 for all t ∈ [t0, tk+1) which
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proves, by the method of induction, V (t) ≤ ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t−t0) for t ∈
[tk−1, tk), k ∈ N.

By condition (iii), we obtain

ψk(ψk−1(· · · (ψ0(V (t0))) · · · ))e−λ(t−t0) = ψk(ψk−1(· · · (ψ1(V (t0))) · · · ))e−λ(t−t0)

≤ HV (t0)e
−λ(t−t0), t ≥ t0.

Thus by condition (i), we have

c1‖x‖p ≤ V (t) ≤ c2H‖φ‖pτe−λ(t−t0), t ≥ t0,

i.e.
‖x‖ ≤

(c2H
c1

) 1
p‖φ‖τe−

λ(t−t0)
p , t ≥ t0,

which completes our proof.

Example 4.1.4 Consider the impulsive nonlinear delay differential equations

x′(t) = −y(t) sin(x(t− 1))− 4x(t) + y(t− 1), t 6= k, k ∈ N,
y′(t) = x(t) sin(x(t− 1))− 3y(t), t 6= k, k ∈ N,
x(tk) = (1 + 2

k2 )x(t
−
k ), t = k, k ∈ N,

y(tk) = (1− 3
k2 )y(t

−
k ), t = k, k ∈ N,

xt0 = φ1, yt0 = φ2, t0 = 0,

(4.27)

where φi ∈ PC([−τ, 0],Rn) for i = 1, 2. Then the trivial solution of system (2.3) is globally
exponentially stable.

Proof. Choose V (x, y) = V (t, x, y) = x2 + y2, then

D+V (t, ϕ1, ϕ2) = ϕ1(0)(−ϕ2(0) sin(ϕ1(−1))− 4ϕ1(0)

+ϕ2(−1)) + ϕ2(0)(−ϕ1(0) sin(ϕ1(−1))− 3ϕ2(0))

= −4ϕ2
1(0) + ϕ1(0)ϕ2(−1)− 3ϕ2

2(0)

≤ −4ϕ2
1(0) + 1

2
(ϕ2

1(0) + ϕ2
2(−1))− 3ϕ2

2(0)

≤ −6V (ϕ1(0), ϕ2(0)) + V (ϕ1(−1), ϕ2(−1)).
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Let q = 2, η = 4, whenever qV (ϕ1(0), ϕ2(0)) ≥ V (ϕ1(0), ϕ2(0)) for s ∈ [−1, 0]. We have

D+V (t, ϕ1, ϕ2) ≤ −6V (ϕ1(0), ϕ2(0)) + V (ϕ1(−1), ϕ2(−1))

≤ −6V (ϕ1(0), ϕ2(0)) + 2V (ϕ1(0), ϕ2(0))

≤ −4V (ϕ1(0), ϕ2(0)),

i.e., condition (ii) of Theorem 4.1.2 holds.
At last, to check condition (iii), let ψk(s) = (1 + 5

k2 )(s), k ∈ N, s ∈ R, then for any k ∈ N,

V (ϕ1(0) + 2
k2ϕ1(0), ϕ2(0)− 3

k2ϕ2(0)) = 1
2
((1 + 2

k2 )
2ϕ2

1(0) + (1− 3
k2 )

2ϕ2
2(0))

≤ ψk(V (ϕ1(0), ϕ2(0))),

i.e., condition (iii) is satisfied. Thus by Theorem 4.1.2, the trivial solution of system (4.27) is
globally exponentially stable. The numerical simulation of this example with initial function

φ1(t) =

{
0, t ∈ [−1, 0),

2.7, t = 0,
φ2(t) =

{
0, t ∈ [−1, 0),

−2.1, t = 0,

is given in Figure 4.4.

Corollary 4.1.6 Assume that conditions (i), (ii) of Theorem 4.1.2 hold and, condition (iii) is
replaced by

(iii)∗ V (tk, ϕ(0) + Ik(ϕ)) ≤ ψk(V (t−k , ϕ(0))), where ϕ(0−) = ϕ(0) and ψk(s) = (1 + k
k3+s2

)s

for all k ∈ N.

Then the trivial solution of system (2.3) is globally exponentially stable.

Proof. Notice

ψk(s) = (1 +
k

k3 + s2
)s ≤ |s|(1 +

1

k2
), k ∈ N,

then by Theorem 4.1.2, the result holds.
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Figure 4.4: Numerical simulation of Example 4.1.4, impulsive system.

4.2 Stabilization via Lyapunov-Razumikhin Method

In this section, we establish several criteria for global exponential stability of impulsive delay
differential equation (2.3), which are then used to impulsively stabilize delay differential equa-
tions.

Theorem 4.2.1 Assume that there exist function V ∈ ν0, constants p, c1, c2, λ > 0 and α > τ

such that

(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p, for any t ∈ R+ and x ∈ Rn;

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ 0, for all t ∈ [tk−1, tk), k ∈ N,

whenever qV (t, ϕ(0)) ≥ V (t+ s, ϕ(s)) for s ∈ [−τ, 0], where q ≥ e2λα is a constant;
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(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ dkV (t−k , ϕ(0)), where dk > 0, ∀k ∈ N are constants;

(iv) τ ≤ tk − tk−1 ≤ α and ln(dk) + λα < −λ(tk+1 − tk).

Then the trivial solution of the impulsive system (2.3) is globally exponentially stable with con-
vergence rate λ

p
.

Proof. Choose M ≥ 1 such that

c2‖φ‖pτ < M‖φ‖pτe−λ(t1−t0) ≤ qc2‖φ‖pτ . (4.28)

Let x(t) = x(t, t0, φ) be any solution of system (2.3) with xt0 = φ, and v(t) = V (t, x). We shall
show

v(t) ≤M‖φ‖pτe−λ(tk−t0), t ∈ [tk−1, tk), k ∈ N. (4.29)

We first show that
v(t) ≤M‖φ‖pτe−λ(t1−t0), t ∈ [t0, t1). (4.30)

From condition (i) and (4.28), we have, for t ∈ [t0 − τ, t0],

v(t) ≤ c2‖x‖p ≤ c2‖φ‖pτ < M‖φ‖pτe−λ(t1−t0).

If (4.30) is not true, then there must exist some t̄ ∈ (t0, t1) such that

v(t̄) > M‖φ‖pτe−λ(t1−t0) > c2‖φ‖pτ ≥ v(t0 + s), s ∈ [−τ, 0], (4.31)

which implies that there exists some t∗ ∈ (t0, t̄) such that

v(t∗) = M‖φ‖pτe−λ(t1−t0), and v(t) ≤M‖φ‖pτe−λ(t1−t0),

for t0 − τ ≤ t ≤ t∗,
(4.32)

and there exists t∗∗ ∈ [t0, t
∗) such that

v(t∗∗) = c2‖φ‖pτ , and v(t) ≥ c2‖φ‖pτ , for t∗∗ ≤ t ≤ t∗. (4.33)

Then we obtain, for any t ∈ [t∗∗, t∗],

v(t+ s) ≤M‖φ‖pτe−λ(t1−t0) ≤ qc2‖φ‖pτ ≤ qv(t), s ∈ [−τ, 0]. (4.34)
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Thus by condition (ii), we have D+v(t) ≤ 0 for t ∈ [t∗∗, t∗], and then we obtain v(t∗∗) ≥ v(t∗),
i.e., c2‖φ‖pτ ≥M‖φ‖pτe−λ(t1−t0), which contradicts (4.28). Hence (4.30) holds and then (4.29) is
true for k = 1.

Now we assume that (4.29) holds for k = 1, 2, · · · ,m, i.e.

v(t) ≤M‖φ‖pτe−λ(tk−t0), t ∈ [tk−1, tk), k = 1, 2, · · · ,m. (4.35)

We shall show that (4.29) holds for k = m+ 1, i.e.

v(t) ≤M‖φ‖pτe−λ(tm+1−t0), t ∈ [tm, tm+1). (4.36)

For the sake of contradiction, suppose (4.36) is not true. Then we define

t̄ = inf{t ∈ [tm, tm+1)|v(t) > M‖φ‖pτe−λ(tm+1−t0)}.

By the continuity of v(t) in the interval [tm, tm+1), we have

v(t̄) = M‖φ‖pτe−λ(tm+1−t0) and
v(t) ≤ M‖φ‖pτe−λ(tm+1−t0), for t ∈ [tm, t̄).

(4.37)

Since
v(tm) ≤ dmv(t

−
m)

< e−λαe−λ(tm+1−tm)M‖φ‖pτe−λ(tm−t0)

< M‖φ‖pτe−λ(tm+1−t0),

i.e.
v(tm) < e−λαM‖φ‖pτe−λ(tm+1−t0) < v(t̄),

which implies that there exists some t∗ ∈ (tm, t̄) such that

v(t∗) ≥ e−λαM‖φ‖pτe−λ(tm+1−t0) and D+v(t∗) > 0. (4.38)

Then we know t∗ + s ∈ [tm−1, t̄) for s ∈ [−τ, 0] since τ ≤ tk − tk−1 ≤ α. By (4.35) and (4.37),
we obtain

v(t∗ + s) ≤ M‖φ‖pτe−λ(tm−t0)

= M‖φ‖pτe−λ(tm+1−t0)eλ(tm+1−tm)

≤ eλαM‖φ‖pτe−λ(tm+1−t0)

≤ qv(t∗), s ∈ [−τ, 0].
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Then from condition (ii), we obtain D+v(t∗) ≤ 0, contradicting (4.38). This implies that the
assumption is not true, and hence (4.29) holds for k = m + 1. Thus by mathematical induction,
we obtain that (4.29) holds, so we have

v(t) ≤M‖φ‖pτe−λ(t−t0), t ∈ [tk−1, tk).

Hence by condition (i), we have

‖x‖ ≤M∗‖φ‖τe−
λ
p
(t−t0), t ∈ [tk−1, tk), k ∈ N,

where M∗ ≥ max{1, [M
c1

]
1
p}. This implies that the trivial solution of system (2.3) is globally

exponentially stable with convergence rate λ
p
.

Remark 4.2.1 It is well-known that, in the stability theory of functional differential equations,
the condition D+V (t, x) ≤ 0 can not even guarantee the asymptotic stability of a functional
differential system (see [38]). However, as we can see from Theorem 4.2.1, impulses have played
an important role in exponentially stabilizing a functional differential system.

Example 4.2.1 Consider the following impulsive delay differential system

x′1(t) = x2(t)− 0.001x1(t), t ≥ 0, t 6= k,

x′2(t) = −x1(t)− 0.001x2(t) + x2
3(t), t ≥ 0, t 6= k,

x′3(t) = −(0.005 + x2 + t2 sin2(x1(t)))x3(t)

+0.001x3(t− 0.07), t ≥ 0, t 6= k,

x(k) = d
1
2
k x(k

−), k ∈ N,

(4.39)

where x = (x1, x2, x3)
T , dk, τ ≥ 0. Assume that dk satisfies

dk ≤ e−(α+1)λ, (4.40)

where α, λ > 0 are constants. Then the trivial solution of (4.39) is exponentially stable with
convergence rate λ

2
.

Proof. Choose V (t, x) = 1
2
‖x‖2 = 1

2

∑3
i=1 |xi|2 so that condition (i) of Theorem 4.2.1 holds for

c1 = c2 = 1
2
, p = 2.
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Calculate the upper right-hand derivative of V with respect to equation (4.39)

D+V (t, x(t)) = x1(t)x
′
1(t) + x2(t)x

′
2(t) + x3(t)x

′
3(t)

= −0.001(|x1(t)|2 + |x2(t)|2)− 0.005|x3(t)|2

−t2 sin2(x1(t))x
2
3(t) + 0.001x3(t)x3(t− 0.07)

≤ −0.001‖x(t)‖2 − t2 sin2(x1(t))x
2
3(t) + 0.0005x2

3(t− 0.07).

Choose λ = 0.25, α = 1, q = 2 > e0.5 = 1.6487. Whenever qV (t, ϕ(0)) ≥ V (t + s, ϕ(s)) for
s ∈ [−0.5, 0], i.e., ‖x(t+ s)‖2 ≤ 2‖x(t)‖2 for s ∈ [−0.07, 0], we have

D+V (t, x(t)) ≤ −0.001‖x(t)‖2 − t2 sin2(x1(t))x
2
3(t) + 0.001‖x(t)‖2

≤ −t2 sin2(x1(t))x
2
3(t)

≤ 0,

which implies condition (ii) of Theorem 4.2.1 holds.
Furthermore, we have

V1(k, x(k)) = dkx(k
−),

which, together with (4.40), yields that condition (iii) and (iv) of Theorem 4.2.1 hold. Then
by Theorem 4.2.1, the trivial solution of (4.39) is globally exponentially stable, and its con-
vergence rate is λ

2
. The numerical simulation of this delay differential equation with τ = 0.5,

α = 1, λ = 0.25 and initial functions φ1(t) = φ2(t) = φ3(t) = 0 for t ∈ [−0.07, 0) and
φ1(0) = 0.8, φ2(0) = −0.5, φ3(0) = 2.502 is given in Figure 4.5; while the simulation of the
impulsive system with dk = 0.36, tk = k for k ∈ N is given in Figure 4.6.

Remark 4.2.2 The trivial solution of the corresponding delay differential equation (4.39) with-
out impulses is stable but not asymptotically stable (see Figure 4.5), as we can see in Example
4.2.1, impulses do contribute to the exponentially impulsive stabilization of the system (see Fig-
ure 4.6).

Theorem 4.2.2 Assume that there exist function V ∈ ν0 and constants p, c, c1, c2 > 0 and α > τ ,
λ > c such that

(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p, for any t ∈ R+ and x ∈ Rn;
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Figure 4.5: Numerical simulation of Example 4.2.1, system without impulses.

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ cV (t, ϕ(0)), for all t ∈ [tk−1, tk), k ∈ N,

whenever qV (t, ϕ(0)) ≥ V (t+ s, ϕ(s)) for s ∈ [−τ, 0], where q ≥ e2λα is a constant;

(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ dkV (t−k , ϕ(0)), where dk > 0, ∀k ∈ N are constants;

(iv) τ ≤ tk − tk−1 ≤ α and ln(dk) + λα < −λ(tk+1 − tk).

Then the trivial solution of the impulsive system (2.3) is globally exponentially stable and the
convergence rate is λ

p
.

Proof. Choose M ≥ 1 such that

c2‖φ‖pτ < M‖φ‖pτe−λ(t1−t0)e−αc < M‖φ‖pτe−λ(t1−t0) ≤ qc2‖φ‖pτ . (4.41)



CHAPTER 4. SYSTEMS WITH FIXED IMPULSES 59

Figure 4.6: Numerical simulation of Example 4.2.1, impulse-stabilized system.

Let x(t) = x(t, t0, φ) be any solution of system (2.3) with xt0 = φ, and v(t) = V (t, x). We shall
show

v(t) ≤M‖φ‖pτe−λ(tk−t0), t ∈ [tk−1, tk), k ∈ N. (4.42)

We first show that
v(t) ≤M‖φ‖pτe−λ(t1−t0), t ∈ [t0, t1). (4.43)

From condition (i) and (4.41), we have, for t ∈ [t0 − τ, t0],

v(t) ≤ c2‖x‖p ≤ c2‖φ‖pτ < M‖φ‖pτe−λ(t1−t0)e−αc.

If (4.43) is not true, then there must exist some t̄ ∈ (t0, t1) such that

v(t̄) > M‖φ‖pτe−λ(t1−t0) > M‖φ‖pτe−λ(t1−t0)e−αc

> c2‖φ‖pτ ≥ v(t0 + s), s ∈ [−τ, 0], (4.44)

which implies that there exists some t∗ ∈ (t0, t̄) such that

v(t∗) = M‖φ‖pτe−λ(t1−t0), and v(t) ≤M‖φ‖pτe−λ(t1−t0), t0 − τ ≤ t ≤ t∗, (4.45)
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and there exists t∗∗ ∈ [t0, t
∗) such that

v(t∗∗) = c2‖φ‖pτ , and v(t) ≥ c2‖φ‖pτ , t∗∗ ≤ t ≤ t∗. (4.46)

Then we obtain, for any t ∈ [t∗∗, t∗],

v(t+ s) ≤M‖φ‖pτe−λ(t1−t0) ≤ qc2‖φ‖pτ ≤ qv(t), s ∈ [−τ, 0], (4.47)

thus by condition (ii), we obtain D+v(t) ≤ cv(t) for t ∈ [t∗∗, t∗], and then we have v(t∗∗) ≥
v(t∗)e−αc, i.e., c2‖φ‖pτ ≥ M‖φ‖pτe−λ(t1−t0)e−αc, which contradicts (4.41). Hence (4.43) holds
and then (4.42) is true for k = 1.

Now we assume that (4.42) holds for k = 1, 2, · · · ,m(m ∈ N, m ≥ 1), i.e.

v(t) ≤M‖φ‖pτe−λ(tk−t0), t ∈ [tk−1, tk), k = 1, 2, · · · ,m. (4.48)

From condition (iii) and (4.48), we have

v(tm) ≤ dmv(t
−
m)

< e−λαe−λ(tm+1−tm)M‖φ‖pτe−λ(tm−t0)

< M‖φ‖pτe−λ(tm+1−t0).

(4.49)

Next, we shall show that (4.42) holds for k = m+ 1, i.e.

v(t) ≤M‖φ‖pτe−λ(tm+1−t0), t ∈ [tm, tm+1). (4.50)

For the sake of contradiction, suppose (4.50) is not true. Then we define

t̄ = inf{t ∈ [tm, tm+1)|v(t) > M‖φ‖pτe−λ(tm+1−t0)}.

From (4.49), we know t̄ 6= tm. By the continuity of v(t) in the interval [tm, tm+1), we have

v(t̄) = M‖φ‖pτe−λ(tm+1−t0) and v(t) ≤M‖φ‖pτe−λ(tm+1−t0), t ∈ [tm, t̄]. (4.51)

From (4.49), we have
v(tm) < e−λαM‖φ‖pτe−λ(tm+1−t0) < v(t̄),

which implies that there exists some t∗ ∈ (tm, t̄) such that

v(t∗) = e−λαM‖φ‖pτe−λ(tm+1−t0) and v(t∗) ≤ v(t) ≤ v(t̄), t ∈ [t∗, t̄]. (4.52)
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Then we know t+ s ∈ [tm−1, t̄] for t ∈ [t∗, t̄] and s ∈ [−τ, 0] since τ ≤ tk− tk−1 ≤ α. By (4.48)
and (4.51), we have, for t ∈ [t∗, t̄],

v(t+ s) ≤M‖φ‖pτe−λ(tm−t0)

= M‖φ‖pτe−λ(tm+1−t0)eλ(tm+1−tm)

≤ eλαM‖φ‖pτe−λ(tm+1−t0)

= e2λαv(t∗) ≤ qv(t), s ∈ [−τ, 0].

Then from condition (ii), we obtain D+v(t) ≤ cv(t); since λ > c, we have

v(t̄) ≤ v(t∗)eαc = e−λαM‖φ‖pτe−λ(tm+1−t0)eαc < v(t̄),

a contradiction with (4.52). This implies the assumption is not true, and hence (4.42) holds for
k = m+ 1. Thus by mathematical induction, (4.42) holds. Hence,

v(t) ≤M‖φ‖pτe−λ(t−t0), t ∈ [tk−1, tk).

Then by condition (i), we obtain

‖x‖ ≤M∗‖φ‖τe−
λ
p
(t−t0), t ∈ [tk−1, tk), k ∈ N,

where M∗ ≥ max{1, [M
c1

]
1
p}. This implies that the trivial solution of system (2.3) is globally

exponentially stable with convergence rate λ
p
.

Remark 4.2.3 If the condition λ > c is removed in Theorem 4.2.2, then we require q ≥ max{eαc,
e2λα} in condition (ii) and condition (iv) to be strengthened. The details are stated in the fol-
lowing result whose proof is similar and thus omitted.

Theorem 4.2.3 Assume that there exist function V ∈ ν0 and constants p, c, c1, c2, λ > 0 and
α > τ such that

(i) c1‖x‖p ≤ V (t, x) ≤ c2‖x‖p, for any t ∈ R+ and x ∈ Rn;

(ii) the upper right-hand derivative of V with respect to system (2.3) satisfies

D+V (t, ϕ(0)) ≤ cV (t, ϕ(0)), for all t ∈ [tk−1, tk), k ∈ N,

whenever qV (t, ϕ(0)) ≥ V (t + s, ϕ(s)) for s ∈ [−τ, 0], where q ≥ max{eαc, e2λα} is a
constant;
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(iii) V (tk, ϕ(0) + Ik(ϕ)) ≤ dkV (t−k , ϕ(0)), where dk > 0, ∀k ∈ N are constants;

(iv) τ ≤ tk − tk−1 ≤ α and ln(dk) + (λ+ c)α < −λ(tk+1 − tk).

Then the trivial solution of the impulsive system (2.3) is globally exponentially stable and the
convergence rate is λ

p
.

Remark 4.2.4 It is well-known that, in the stability theory of delay differential equations, the
condition D+V (t, x) ≤ cV (t, x) allows the derivative of the Lyapunov function to be positive
which may not even guarantee the stability of a delay differential system (see [75, 94] and Ex-
ample 4.2.2). However, as we can see from Theorem 4.2.2 and 4.2.3, impulses have played an
important role in exponentially stabilizing a delay differential system.

Next, we shall apply the previous theorems to the following linear impulsive delay system
ẋ(t) = Ax(t) +Bx(t− τ(t)), t ∈ [tk−1, tk),

∆x(t) = Ckx(t
−), t = tk, k ∈ N,

xt0 = φ,

(4.53)

where t− τ(t) is strictly increasing on R+ and 0 ≤ τ(t) ≤ τ .

Corollary 4.2.1 If there exist constants α, λ > 0 such that

(i) for some constant q ≥ e2λα, λmax(A) + q
1
2‖B‖ < λ

2
;

(ii) τ ≤ tk − tk−1 ≤ α and

ln ‖I + Ck‖+
λα

2
< −λ

2
(tk+1 − tk). (4.54)

Then system (4.53) is globally exponentially stable and its convergence rate is λ
2
.

Proof. It follows from Theorem 4.2.2 by choosing V (x) = ‖x‖2.

Corollary 4.2.2 If there exist constants α, λ > 0 such that

(i) for some constant q > 0, q ≥ max{ecα, e2λα}, where c = 2(λmax(A) + q
1
2‖B‖);
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(ii) τ ≤ tk − tk−1 ≤ α and

ln ‖I + Ck‖+
α

2
(λ+ c) < −λ

2
(tk+1 − tk). (4.55)

Then system (4.53) is globally exponentially stable and its convergence rate is λ
2
.

Proof. It follows from Theorem 4.2.3 by choosing V (x) = ‖x‖2.

Now we give an example and its simulation to illustrate our results.

Example 4.2.2 Consider the following linear impulsive delay system
ẋ(t) = Ax(t) +Bx(t− 1

40
(1 + e−t)), t ≥ t0 = 0, t 6= k,

∆x(t) = Ckx(t
−), t = k, k ∈ N,

xt0 = φ,

(4.56)

where

A =

 0.1 0.2 −0.1

0.2 0.15 0.3

0 0.24 0.1

 , B =

 −0.12 0.03 0

0.12 −0.2 0.05

0 0.14 −0.1

 ,
and

Ck =

 −0.5 0 0

0 −0.8 0

0 0 −0.4

 ,
then λmax(A) = 0.4388, ‖B‖ = [λmax(BB

T )]
1
2 = 0.2905 and ‖I + Ck‖ = 0.6. Choose

q = 2, λ = 1.7, τ = 0.05, α = 0.2. The conditions of Corollary 4.2.1 hold:

(i) q = 2 ≥ e2λα = 1.9739, λmax(A) + q
1
2‖B‖ = 0.8496 < λ

2
= 0.85;

(ii) 0.05 = τ ≤ tk−tk−1 ≤ α = 0.2, ln ‖I+Ck‖+ λα
2

= −0.6808 < −λ
2
(tk+1−tk) = −0.17.

Thus by Corollary 4.2.1, the trivial solution of (4.56) is globally exponentially stable with
convergence rate 0.85.

Furthermore, the conditions of Corollary 4.2.2 also hold:

(i) c = 2(λmax(A) + q
1
2‖B‖) = 1.6992, q = 2 ≥ max{ecα, e2λα} = 1.9739;
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(ii) 0.05 = τ ≤ tk − tk−1 ≤ α = 0.2, ln ‖I + Ck‖ + (λ+c)α
2

= −0.1709 < −λ
2
(tk+1 − tk) =

−0.17.

Thus from Corollary 4.2.2, it follows that the trivial solution of (4.56) is globally exponentially
stable with convergence rate 0.85.

The numerical simulation of this impulsive delay differential equation with the initial func-
tion (3.7H(t),−2.1H(t), 2.502H(t))T , where H(t) is the Heaviside step function, is given in
Figure 4.7, the graph of the solution of the corresponding system without impulse is given in
Figure 4.8.

Figure 4.7: Numerical simulation of Example 4.2.2, impulse-stabilized system.

Remark 4.2.5 As we see from Figures 4.7 and 4.8, the trivial solution of system (4.56) without
impulse is unstable; however, after impulsive control, the trivial solution becomes globally ex-
ponentially stable. This implies that impulse may be used to exponentially stabilize some delay
differential systems.
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Figure 4.8: Numerical simulation of Example 4.2.2, system without impulses.

4.3 Stabilization via the Lyapunov Functional Method

In this section, the Lyapunov functional method is proposed in the context of impulsive stabi-
lization problems of delay differential systems. We improve or generalize some known results in
[3, 65].

Our first two results show that an unstable system can be made exponentially stable by ap-
propriate sequence of impulses.

Theorem 4.3.1 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0(·), 0 < p1 ≤ p2, and constants
α, l, c, c1, c2, c3 > 0, dk ≥ 0, k ∈ N, such that

(i) c1‖x‖p1 ≤ V1(t, x) ≤ c2‖x‖p1 , 0 ≤ V2(t, ψ) ≤ c3‖ψ‖p2τ , t ∈ R+, x ∈ Rn, ψ ∈
PC([−τ, 0],Rn);

(ii) for each k ∈ N and x ∈ Rn,

V1(tk, x+ Ik(x)) ≤ dkV1(t
−
k , x);
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(iii) for V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ), the upper right-hand derivative of V with respect to
system (2.3) satisfies

D+V (t, ψ) ≤ cV (t, ψ), for all t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0],Rn), k ∈ N;

(iv) for any k ∈ N, τ ≤ tk − tk−1 ≤ l, and ln(dk + c3
c1
e
(

p2
p1
−1)ckl

) ≤ −(α+ c)l.

Then the trivial solution of system (2.3) is exponentially stable.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (2.3) with ‖φ‖τ < δ. Let v1(t) =

V1(t, x(t)) and v2(t) = V2(t, xt), v(t) = v1(t) + v2(t). For any given ε ∈ (0, 1], choose
δ = δ(ε) > 0 such that

c2δ
p1 + c3δ

p2 < c1ε
p1e−(α+c)l.

From condition (iii), we have

v(t) ≤ v(tk−1)e
c(t−tk−1), for t ∈ [tk−1, tk), k ∈ N. (4.57)

We shall prove

v(t) < c1ε
p1e−(α+c)klec(t−t0), and

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ∈ [tk−1, tk), k ∈ N.
(4.58)

For k = 1, we obtain, by conditions (i), (iv) and (4.57),

v(t) ≤ v(t0)e
c(t−t0)

≤ (c2δ
p1 + c3δ

p2)ec(t−t0)

< c1ε
p1e−(α+c)lec(t−t0),

and thus
‖x(t)‖p1 ≤ 1

c1
v(t)

≤ ep1e−(α+c)lec(t1−t0)

< ep1e−αl ≤ εp1e−α(t1−t0)

≤ εp1e−α(t−t0), t ∈ [t0, t1).

(4.59)

Hence
‖x(t)‖ ≤ εe

− α
p1

(t−t0)
, t ∈ [t0, t1).
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Suppose (4.58) holds for k = j, i.e.

v(t) < c1ε
p1e−(α+c)jlec(t−t0), and

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ∈ [tj−1, tj), j ≥ 2.
(4.60)

We shall prove (4.58) holds for k = j + 1.
From condition (i) and (4.60), we have, for t ∈ [tj−1, tj),

‖x(t)‖p1 ≤ 1

c1
v1(t) ≤

1

c1
v(t) < εp1e−(α+c)jlec(tj−t0), (4.61)

and thus
‖xt−j ‖τ = sup

−τ≤s<0
‖x(tj + s)‖ < εe

−α+c
p1

jl
e

c
p1

(tj−t0)
.

By condition (ii) and the continuity of v2(t) at each tj , we obtain

v1(tj) ≤ djv1(t
−
j ) ≤ djv(t

−
j ) < djc1ε

p1e−(α+c)jlec(tj−t0),

and
v2(tj) = v2(t

−
j ) ≤ c3‖xt−j ‖

p2
τ < c3ε

p2e
− p2

p1
(α+c)jl

e
p2
p1
c(tj−t0)

.

Thus, in view of p1 ≤ p2, we obtain

v(tj) = v1(tj) + v2(tj)

< djc1ε
p1e−(α+c)jlec(tj−t0) + c3ε

p2e
− p2

p1
(α+c)jl

e
p2
p1
c(tj−t0)

≤ c1ε
p1e−(α+c)jl(dje

c(tj−t0) + c3
c1
e

p2
p1
c(tj−t0)

)

≤ c1ε
p1e−(α+c)jl(dj + c3

c1
e
(

p2
p1
−1)cjl

)ec(tj−t0).

(4.62)

By condition (iv), we obtain

v(tj) ≤ c1ε
p1e−(α+c)jle−(α+c)lec(tj−t0) ≤ c1ε

p1e−(α+c)(j+1)lec(tj−t0).

By (4.57) and (4.62), we have, for t ∈ [tj, tj+1),

v(t) ≤ v(tj)e
c(t−tj) < c1ε

p1e−(α+c)(j+1)lec(t−t0).

Thus
‖x(t)‖p1 < εp1e−(j+1)(α+c)lec(t−t0) ≤ εp1e−(j+1)(α+c)lec(tj+1−t0)

≤ εp1e−(j+1)(α+c)lec(j+1)l ≤ εp1e−(j+1)αl

≤ εp1e−α(tj+1−tj+tj−tj−1+···+t1−t0)

≤ εp1e−α(tj+1−t0)

≤ εp1e−α(t−t0), t ∈ [tj, tj+1),
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which implies (4.58) holds for k = j + 1. Thus we conclude by induction that (4.58) holds for
all k ∈ N. Hence, we obtain

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ≥ t0,

i.e., the trivial solution of system (2.3) is exponentially stable.

Remark 4.3.1 It should be noted that condition (iii) allows D+V (t, ψ) > 0 for all t ∈ R+

and ψ(0) 6= 0, which means that the underlying continuous system may be unstable. On the
other hand, condition (iv) means that the impulses must be frequent and their amplitude must be
suitably related to the growth rate of V . The constant c3 in condition (i) is usually a function of
the delay τ . In such a case, the result is delay-dependent.

Corollary 4.3.1 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0(·) and constants p, α, l, c, c1, c2, c3 >
0, dk ≥ 0, k ∈ N, such that

(i) c1‖x‖p ≤ V1(t, x) ≤ c2‖x‖p, 0 ≤ V2(t, ψ) ≤ c3‖ψ‖pτ , t ∈ R+, x ∈ Rn, ψ ∈
PC([−τ, 0],Rn);

(ii) for each k ∈ N and x ∈ Rn, V1(tk, x+ Ik(x)) ≤ dkV1(t
−
k , x);

(iii) for V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ), the upper right-hand derivative of V with respect to
system (2.3) satisfies

D+V (t, ψ) ≤ cV (t, ψ), for all t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0],Rn), k ∈ N;

(iv) for any k ∈ N, τ ≤ tk − tk−1 ≤ l, and ln(dk + c3
c1

) ≤ −(α+ c)l.

Then the trivial solution of system (2.3) is exponentially stable.

Proof. Let p1 = p2 = p in Theorem 4.3.1.

Theorem 4.3.2 Assume that conditions (i)-(iii) in Theorem 4.3.1 hold, and condition (iv) in
Theorem 4.3.1 is replaced by

(iv)′ for any k ∈ N, tk − tk−1 ≤ l, ln( c2dk+c3e
p2
p1

ατ

c1
) ≤ −(α+ c)l.

Then the trivial solution of system (2.3) is exponentially stable.
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Proof. Let x(t) = x(t, t0, φ) be any solution of system (2.3) with ‖φ‖τ < δ. Let v1(t) =

V1(t, x(t)) and v2(t) = V2(t, xt), v(t) = v1(t) + v2(t). For any given ε ∈ (0, 1], choose
δ = δ(ε) > 0 such that c2δp1 + c3δ

p2 < c1ε
p1e−(α+c)l. From condition (iii), we have

v(t) ≤ v(tk−1)e
c(t−tk−1), for t ∈ [tk−1, tk), k ∈ N. (4.63)

We shall prove
‖x(t)‖ < εe

− α
p1

(t−t0)
, t ∈ [tk−1, tk), k ∈ N. (4.64)

For k = 1, we obtain, by conditions (i), (iv)′ and (4.63),

v(t) ≤ v(t0)e
c(t−t0)

≤ (c2δ
p1 + c3δ

p2)ec(t−t0)

< c1ε
p1e−(α+c)lec(t−t0),

and thus
‖x(t)‖p1 ≤ 1

c1
v(t) ≤ εp1e−(α+c)lec(t1−t0)

< εp1e−αl ≤ εp1e−α(t1−t0)

≤ εp1e−α(t−t0), t ∈ [t0, t1).

(4.65)

Hence
‖x(t)‖ ≤ εe

− α
p1

(t−t0)
, t ∈ [t0, t1).

Suppose (4.64) holds for k = j, i.e.

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ∈ [tj−1, tj), j ≥ 2. (4.66)

We shall prove (4.64) holds for k = j + 1.
From condition (i) and (4.66), we have, for t ∈ [tj−1, tj),

v1(t
−
j ) ≤ c2‖x(tj)‖p1

≤ c2ε
p1e−α(tj−t0),

(4.67)

and
‖xt−j ‖τ = sup−τ≤s<0 ‖x(tj + s)‖

< εe
− α

p1
(tj−t0−τ).

By condition (ii) and the continuity of v2(t) at each tj , we obtain

v1(tj) ≤ djv1(t
−
j ) < djc2ε

p1e−α(tj−t0),
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and
v2(tj) = v2(t

−
j ) ≤ c3‖xt−j ‖

p2
τ < c3ε

p2e
− p2

p1
α(tj−t0)

e
p2
p1
ατ
.

Thus, in view of condition (iv)′ and the fact p1 ≤ p2, we obtain

v(tj) = v1(tj) + v2(tj)

< djc2ε
p1e−α(tj−t0) + c3ε

p2e
− p2

p1
α(tj−t0)

e
p2
p1
ατ

≤ (c2dj + c3e
p2
p1
ατ

)εp1e−α(tj−t0)

≤ c1ε
p1e−(α+c)le−α(tj−t0).

(4.68)

Then by (4.63) and (4.68), we have, for t ∈ [tj, tj+1),

v(t) ≤ v(tj)e
c(t−tj) < c1ε

p1e−(α+c)le−α(tj−t0)ec(t−tj)

≤ c1ε
p1e−αle−α(tj−t0)

≤ c1ε
p1e−α(t−tj)e−α(tj−t0)

≤ c1ε
p1e−α(t−t0).

Thus
‖x(t)‖ < εe

− α
p1

(t−t0)
, t ∈ [tj, tj+1),

which shows that (4.64) holds for k = j + 1. Thus we conclude by induction that (4.64) holds
for all k ∈ N. Hence, we obtain

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ≥ t0,

i.e., the trivial solution of system (2.3) is exponentially stable.

Remark 4.3.2 It should be noted that in condition (iv)′ of Theorem 4.3.2, we removed the lower
bound of the impulsive interval length, which means we may add impulses more frequently to
relax the condition on dk in the case p2 > p1 (see Example 4.3.2); but in the case p1 = p2,
condition (iv) of Theorem 4.3.1 is sharper than condition (iv)′ of Theorem 4.3.2 (see Example
4.3.1).

Next, we shall discuss the application of our results to impulsive stabilization of second-order
linear delay differential equations. Some examples are also worked out to illustrate our results.



CHAPTER 4. SYSTEMS WITH FIXED IMPULSES 71

Consider the following second-order linear delay differential equation{
x′′(t) + b(t)x′(t) + a(t)x(t− τ) = 0, t ≥ t0,

x(t) = φ(t), x′(t) = ψ(t), t0 − τ ≤ t ≤ t0,
(4.69)

and the corresponding equation with impulses
x′′(t) + b(t)x′(t) + a(t)x(t− τ) = 0, t ≥ t0, t 6= tk,

x(tk) = Ik(x(t
−
k )), x′(tk) = Jk(x

′(t−k )),

x(t) = φ(t), x′(t) = ψ(t), t0 − τ ≤ t ≤ t0,

(4.70)

where t0 < t1 < · · · < tk < · · · , k ∈ N, limk→∞ tk = +∞ and Ik, Jk, φ, ψ ∈ C(R,R) with
Ik(0) = Jk(0) = 0, k ∈ N.

Definition 4.3.1 System (4.69) is said to be exponentially stabilized by impulses, if there exist
a sequence {tk} and function sequences {Ik} and {Jk} such that the solutions of (4.70) are
exponentially stable.

Let x1(t) = x(t), x2(t) = x′(t). We rewrite system (4.69) in vector form[
x1(t)

x2(t)

]′
=

[
0 1

0 −b(t)

][
x1(t)

x2(t)

]
+

[
0 0

−a(t) 0

][
x1(t− τ)

x2(t− τ)

]
. (4.71)

Proposition 4.3.1 If a, b ∈ C([t0,+∞),R) and |a(t)| ≤ A, |b(t)| ≤ B for all t ∈ [t0,+∞)

(A, B ≥ 0), and there exists some constant α > 0 such that

ln(dk + Aτ) < −(α+ 1 + A+ 2B)l, (4.72)

where Ik(u) = Jk(u) =
√

dk

2
u for any u ∈ R, τ ≤ tk − tk−1 ≤ l.

Then systems (4.69) and (4.71) can be exponentially stabilized by impulses.

Proof. Let z(t) = (x1(t), x2(t))
T , choose V (t, zt) = V1(t, z) + V2(t, zt), where V1(t, z) =

x2
1(t) + x2

2(t), V2(t, zt) =
∫ t
t−τ |a(s + τ)|x2

1(s)ds. Then, ‖z(t)‖2 ≤ V1(t, z) ≤ ‖z(t)‖2 and
0 ≤ V2(t, zt) ≤ Aτ‖z(t)‖2

τ , which implies condition (i) of Corollary 4.3.1 holds with c1 = c2 =

1, c3 = Aτ , and p = 2.
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We calculate D+V along the solution of (4.69) and (4.71)

D+V (t, zt) = 2x1(t)x
′
1(t) + 2x2(t)x

′
2(t) + |a(t+ τ)|x2

1(t)− |a(t)|x2
1(t− τ)

= 2x(t)x′(t)− 2b(t)x′2(t)− 2a(t)x′(t)x(t− τ) + |a(t+ τ)|x2(t)

−|a(t)|x2(t− τ)

≤ x2(t) + x′2(t) + 2|b(t)|x′2(t) + |a(t)|(x′2(t) + x2(t− τ))

+|a(t+ τ)|x2(t)− |a(t)|x2(t− τ)

≤ (1 + A+ 2B)(x2(t) + x′2(t))

≤ (1 + A+ 2B)V (t, zt),

which implies condition (iii) of Corollary 4.3.1 holds with c = 1 + A+ 2B. Condition (ii) and
(iv) of Corollary 4.3.1 come from the assumptions of our proposition. Thus by Corollary 4.3.1,
the solutions of (4.70) are exponentially stable.

Remark 4.3.3 Let b(t) ≡ 0 (in system (4.69)) for all t ∈ [t0,+∞). Then B = 0 (in Proposition
4.3.1). Choose dk = 1

10
Aτ . Then Aτ < e−(1+A)τ from (4.72). This also shows that system (4.69)

can be exponentially stabilized by impulses by Theorem 1 in [65].

Remark 4.3.4 If we apply condition (iv)′ of Theorem 4.3.2 instead of condition (iv) of Theorem
4.3.1 in Proposition 4.3.1, then dk must satisfy

ln(dk + Aτeατ ) < −(α+ 1 + A+ 2B)l,

instead of (4.72) to exponentially stabilize the same system, which is more restrictive than (4.72).
Thus in the case p1 = p2, condition (iv) in Theorem 4.3.1 is better than (iv)′ in Theorem 4.3.2.

Example 4.3.1 Consider the following linear impulsive delay differential system{
x′′(t) + 0.012x′(t)− 0.12x(t− 0.05) = 0, t ≥ 0, t 6= k,

x(k) =
√

d
2
x(k−), x′(k) =

√
d
2
x′(k−), k ∈ N,

(4.73)

where d = 0.28.
Let x1(t) = x(t), x2(t) = x′(t). We rewrite system (4.73) as[

x1(t)

x2(t)

]′
=

[
0 1

−0.012 0

][
x1(t)

x2(t)

]
+

[
0 0

0.12 0

][
x1(t− 0.05)

x2(t− 0.05)

]
,

[
x1(k)

x2(k)

]
=

[
0.3742 0

0 0.3742

][
x1(k

−)

x2(k
−)

]
.

(4.74)
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It is known that the corresponding equation without impulses is unstable. The numerical
simulation of this delay differential equation with initial function

φ1(t) =

{
0, t ∈ [−0.05, 0),

−2.1, t = 0,
φ2(t) =

{
0, t ∈ [−0.05, 0),

2.102, t = 0,

is given in Figure 4.9.

Figure 4.9: Numerical simulation of Example 4.3.1, unstable system without impulses.

However, if we choose A = 0.12, B = 0.012, l = 1, τ = 0.05, α = 0.1, then

dk + Aτ = 0.286 < e−(α+1+A+2B)l = 0.2882,

which implies (4.72) holds. Hence by Proposition 4.3.1, the unstable equation x′′(t)+0.012x′(t)−
0.12x(t− 0.05) = 0 can be exponentially stabilized by impulses, see Figure 4.10.

Remark 4.3.5 Theorem 5.2 in [3] can not be applied effectively to system (4.74). Actually, we
can find

A1(t) =

[
0 0

−0.12 0

]
, A2(t) =

[
0 −1

0.012 0

]
,
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Figure 4.10: Numerical simulation of Example 4.3.1, impulse-stabilized system.

which gives us ‖A1(t)‖ = 0.12, ‖A2(t)‖ = 1. Moreover, we have δ = 0.05, ρ = σ = 1, B =

0.3742, which yields

(0.12 + 1)(
−0.37422

ln(0.3742)
+ 2) = 2.3995 > 1,

i.e. one of the conditions in Theorem 5.2 ([3]) does not hold.

Example 4.3.2 Consider the following impulsive nonlinear delay differential system{
x′(t) = (4 + sin(t))x(t) + 1+cos(t)

2
x3(t−τ)
x(t)+0.2

− 1
2
x3(t), t ≥ 0, t 6= 0.05k,

x(0.05k) = 2
1
2d

1
4
k x(0.05k−), k ∈ N,

(4.75)

where τ > 0 is constant and dk ≥ 0. Assume that dk satisfies

dk ≤ e−0.05(α+5.5) − 2τe1.5ατ . (4.76)

Then the trivial solution of (4.75) is exponentially stable.
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Proof. Choose V1(t, x) = x4

4
and V2(t, xt) = 1

2

∫ 0

−τ x
6(t + s)ds. Then condition (i) of Theorem

4.3.2 holds for c1 = c2 = 1
4
, c3 = 1

2
τ , p1 = 4, and p2 = 6.

Calculate the derivative of V along equation (4.75)

D+V (t, xt) = D+V1(t, x) +D+V2(t, xt)

= x3(t)x′(t) + 1
2
x6(t)− 1

2
x6(t− τ)

≤ 5x4(t) + x2(t)x3(t− τ)− 1
2
x6(t− τ)

≤ 5x4(t) + 1
2
x4(t)

≤ 5.5V (t, xt),

which implies condition (iii) of Theorem 4.3.2 holds with c = 5.5.
Moreover, we have

V1(tk, x+ Ik(x)) =
1

4
x4(k) = dkx(t

−
k ) ≤ dkV1(t

−
k , x(t

−
k )),

which, together with (4.76), implies that conditions (ii) and (iv)′ of Theorem 4.3.2 hold. Then
by Theorem 4.3.2, the trivial solution of (4.75) is exponentially stable. The numerical simulation
of this delay differential equation with τ = 0.1, α = 0.1, dk = 0.5, and initial function

φ(t) =

{
0, t ∈ [−0.1, 0),

−1.45, t = 0,

is given in Figure 4.12.

Remark 4.3.6 From Example 4.3.2 we can see impulses are used to stabilize an unstable system
(see Figure 4.11 and Figure 4.12). And the allowance of p1 6= p2 in the conditions of our results
makes the choices of Lyapunov functionals wider. Note Theorem 4.3.1 can not apply here since
p2 > p1. By condition (iv), we need dk + 0.2e0.1375k ≤ e−0.28. It is impossible to find such a
series {dk} to satisfy this relationship as k gets larger and larger.

Our next result shows that impulses can contribute to make a stable system exponentially
stable.

Theorem 4.3.3 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0(·), constants p1, p2 > 0 with p1 ≤ p2,
and α, c1, c2, c3 > 0, dk ≥ 0, k ∈ N such that
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Figure 4.11: Numerical simulation of Example 4.3.2, unstable system without impulses.

(i) c1‖x‖p1 ≤ V1(t, x) ≤ c2‖x‖p1 , 0 ≤ V2(t, ψ) ≤ c3‖ψ‖p2τ , t ∈ R+, x ∈ Rn, ψ ∈
PC([−τ, 0],Rn);

(ii) for each k ∈ N and x ∈ Rn,

V1(tk, x+ Ik(x)) ≤ dkV1(t
−
k , x);

(iii) for V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ), the upper right-hand derivative of V with respect to
system (2.3) satisfies

D+V (t, ψ) ≤ 0, for all t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0],Rn), k ∈ N;

(iv) for any k ∈ N, ln(dk + c3
c1
e

αp2
p1

τ
) ≤ −α(tk+1 − tk).

Then the trivial solution of (2.3) is exponentially stable.
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Figure 4.12: Numerical simulation of Example 4.3.2, impulse-stabilized system.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (2.3) with ‖φ‖τ < δ. Let v1(t) =

V1(t, x(t)) and v2(t) = V2(t, xt), v(t) = v1(t) + v2(t). For any given ε ∈ (0, 1], choose δ =

δ(ε) > 0 such that
c2δ

p1 + c3δ
p2 < c1ε

p1e−α(t1−t0).

From condition (iii), we have

v(t) ≤ v(tk−1), for t ∈ [tk−1, tk), k ∈ N. (4.77)

Now we shall prove

v(t) < c1ε
p1e−α(t−t0), for t ∈ [tk−1, tk), k ∈ N. (4.78)
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When k = 1, from (4.77) and the choice of δ, we obtain

v(t) ≤ v(t0) ≤ v1(t0) + v2(t0)

≤ c2δ
p1 + c3δ

p2

< c1ε
p1e−α(t1−t0)

≤ c1ε
p1e−α(t−t0), for t ∈ [t0, t1).

Suppose (4.78) holds for k = j, i.e.

v(t) < c1ε
p1e−α(t−t0), for t ∈ [tj−1, tj), j ≥ 2. (4.79)

We shall prove (4.78) holds for k = j + 1.
By (4.79) and condition (ii), we obtain

v1(tj) ≤ djv1(t
−
j ) < djc1ε

p1e−α(tj−t0). (4.80)

From (4.79) and condition (i), we have

‖x(t)‖p1 ≤ v1(t)

c1
≤ v(t)

c1
< εp1e−α(t−t0), t ∈ [tj−1, tj), (4.81)

which yields
‖xt−j ‖

p2
τ = sup−τ≤s<0 ‖x(tj + s)‖p2

< εp2e
−αp2

p1
(tj−t0−τ)

≤ e
αp2
p1

τ
εp2e

−αp2
p1

(tj−t0)
.

Then by condition (i) and the continuity of v2(t) at each tj , we obtain

v2(tj) = v2(t
−
j ) ≤ c3‖xt−j ‖

p2
τ < c3e

αp2
p1

τ
εp2e

−αp2
p1

(tj−t0)
. (4.82)

Thus, in view of (4.80), (4.82) and the fact p1 ≤ p2, we obtain

v(tj) = v1(tj) + v2(tj)

< c1djε
p1e−α(tj−t0) + c3e

αp2
p1

τ
εp2e

−αp2
p1

(tj−t0)

≤ c1ε
p1(dj + εp2−p1 c3

c1
e

αp2
p1

τ
)e−α(tj−t0)

≤ c1ε
p1(dj + c3

c1
e

αp2
p1

τ
)e−α(tj−t0).
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Then by condition (iv) we have v(tj) < c1ε
p1e−α(tj+1−t0), which, together with (4.77), gives

v(t) ≤ v(tj) < c1ε
p1e−α(tj+1−t0) ≤ c1ε

p1e−α(t−t0), t ∈ [tj, tj+1).

This implies (4.78) holds for k = j + 1. Thus we conclude by induction that (4.78) is true. Then
by condition (i), we obtain

‖x(t)‖ < εe
− α

p1
(t−t0)

, t ≥ t0,

which implies that the trivial solution of system (2.3) is exponentially stable and the proof is
complete.

Remark 4.3.7 From condition (iv) of Theorem 4.3.3, we see that when the underlying continu-
ous system is stable (but not asymptotically stable) impulses are not required to be very frequent.
Thus the upper bound on the time interval between consecutive impulses is removed.

Example 4.3.3 Consider the following impulsive delay differential system
x′1(t) = x2(t), x′2(t) = −x1(t) + x2

3(t), t ≥ 0, t 6= k,

x′3(t) = −(5 + x2 + t2 sin2(x1(t)))x3(t) + 5x3(t− τ), t ≥ 0, t 6= k,

x(k) = d
1
2
k x(k

−), k ∈ N,
(4.83)

where x = (x1, x2, x3)
T , dk, τ ≥ 0. Assume that dk satisfies

dk ≤ e−α − 5τατ , (4.84)

where α > 0 is a constant.
Then the trivial solution of (4.83) is exponentially stable.

Proof. Choose V1(t, x) = ‖x‖2 and V2(t, xt) = 5
∫ τ
t−τ x

2
3(s)ds so that condition (i) of Theorem

4.3.3 holds for c1 = c2 = 1, c3 = 5τ and p1 = p2 = 2.
Calculate the derivative of V with respect to equation (4.83)

D+V (t, xt) = D+V1(t, x) +D+V2(t, xt)

= 2x1(t)x
′
1(t) + 2x2(t)x

′
2(t) + 2x3(t)x

′
3(t) + 5x2

3(t)− 5x2
3(t− τ)

= −10x2
3(t)− 2t2 sin2(x1(t))x

2
3(t) + 10x3(t)x3(t− τ)

+5x2
3(t)− 5x2

3(t− τ) ≤ 0,
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which implies condition (iii) of Theorem 4.3.3 holds.
Furthermore, we have

V1(k, x(k)) = dkx(k
−),

which, together with (4.84), yields that condition (ii) and (iv) of Theorem 4.3.3 hold. Then by
Theorem 4.3.3, the trivial solution of (4.83) is exponentially stable. The numerical simulation
of this delay differential equation with τ = 0.07, α = 0.2, dk = 0.36, and initial functions
φ1(t) = φ2(t) = φ3(t) = 0 for t ∈ [−0.07, 0) and φ1(0) = 0.8, φ2(0) = −0.5, φ3(0) = 2.502

is given in Figure 4.13.

Figure 4.13: Numerical simulation of Example 4.3.3, impulse-stabilized system.

Remark 4.3.8 The trivial solution of the corresponding delay differential equation (4.83) with-
out impulses is stable but not exponentially stable (see Figure 4.14). As we can see in Example
4.3.3, impulses do contribute to the exponentially impulsive stabilization of the system.



CHAPTER 4. SYSTEMS WITH FIXED IMPULSES 81

Figure 4.14: Numerical simulation of Example 4.3.3, system without impulses.

Example 4.3.4 Consider the following impulsive delay differential system{
x′(t) = a(t)x3(t) + b(t)x3(t− τ), t ≥ 0, t 6= k,

x(k) = d
1
4
k sin(x(k−)), k ∈ N,

(4.85)

where a(t) ≤ −δ, b(t) ≤ δ, δ, τ > 0 are constants and dk ≥ 0. If dk satisfies

dk ≤ 4e−α − 2δτe1.5δτ , (4.86)

then the trivial solution of (4.85) is exponentially stable.

Proof. Choose V1(t, x) = x4

4
and V2(t, xt) = δ

4

∫ 0

−τ x
6(t + s)ds. Then condition (i) of Theorem

4.3.3 holds for c1 = c2 = 1
4
, c3 = 1

2
δτ , p1 = 4, and p2 = 6.
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Calculate the derivative of V with respect to equation (4.85)

D+V (t, xt) = D+V1(t, x) +D+V2(t, xt)

= x3(t)x′(t) + δ
2
x6(t)− δ

2
x6(t− τ)

= x3(t)[a(t)x3(t) + b(t)x3(t− τ)] + δ
2
x6(t)− δ

2
x6(t− τ)

≤ a(t)x6(t) + b(t)
2
x6(t) + b(t)

2
x6(t− τ) + δ

2
x6(t)− δ

2
x6(t− τ)

= (a(t) + b(t)
2

+ δ
2
)x6(t)− 1

2
(δ − b(t))x6(t− τ)

≤ 0,

which implies condition (iii) of Theorem 4.3.3 holds.
Moreover, we have

V1(tk, x+ Ik(x)) = 1
4
x4(k) = dk

4
sin4 x(k−)

≤ dk

4
x4(k−) ≤ dk

4
V1(t

−
k , x(t

−
k )),

which, together with (4.86), implies that conditions (ii) and (iv) of Theorem 4.3.3 hold. Then
by Theorem 4.3.3, the trivial solution of (4.85) is exponentially stable. The numerical simulation
of this delay differential equation with a(t) = −2et, b(t) = 1.5 sin(t), δ = 2, τ = 0.25,
α = 0.01, dk = 1.8, and initial function

φ(t) =

{
0, t ∈ [−0.25, 0),

−1.45, t = 0,

is given in Figure 4.15.

Remark 4.3.9 From Example 4.3.4 we can see that impulses are used to keep the stability prop-
erties of the system. And the allowance of p1 6= p2 in the conditions of our results makes the
choices of Lyapunov functionals wider.

On the other hand, a well-behaved system may lose its (asymptotic) stability due to un-
controlled impulsive inputs. Thus it is necessary to have a criterion under which the stability
properties of a system can be preserved under impulsive perturbations. The following theorem
provides a set of sufficient conditions.
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Figure 4.15: Numerical simulation of Example 4.3.4, impulsive system.

Theorem 4.3.4 Assume that there exist V1 ∈ ν0, V2 ∈ ν∗0(·), and constants p1, p2, c, c1, c2, c3 >

0, dk ≥ 1, k ∈ N such that

(i) c1‖x‖p1 ≤ V1(t, x) ≤ c2‖x‖p1 , 0 ≤ V2(t, ψ) ≤ c3‖ψ‖p2τ , t ∈ R+, x ∈ Rn, ψ ∈
PC([−τ, 0],Rn);

(ii) for each k ∈ N and x ∈ Rn,

V1(tk, x+ Ik(x)) ≤ dkV1(t
−
k , x);

(iii) for V (t, ψ) = V1(t, ψ(0)) + V2(t, ψ), the upper right-hand derivative of V with respect to
system (2.3) satisfies

D+V (t, ψ) ≤ −cV (t, ψ), for all t ∈ [tk−1, tk), ψ ∈ PC([−τ, 0],Rn), k ∈ N;

(iv) for any k ∈ N, ln(dk) ≤ c
2
(tk − tk−1).
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Then the trivial solution of (2.3) is exponentially stable.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (2.3) with ‖φ‖τ < δ. Let v1(t) =

V1(t, x(t)) and v2(t) = V2(t, xt), v(t) = v1(t)+v2(t). For any given ε > 0, choose δ = δ(ε) > 0

such that
c2δ

p1 + c3δ
p2 < c1ε

p1 .

From condition (iii), we have

v(t) ≤ v(tk−1)e
−c(t−tk−1), for t ∈ [tk−1, tk), k ∈ N. (4.87)

From condition (ii) and the fact dk ≥ 1, we have

v(tk) = v1(tk) + v2(tk)

≤ dkv1(t
−
k ) + v2(t

−
k )

≤ dkv(t
−
k ), ∀ k ∈ N.

(4.88)

From (4.87) and (4.88), we obtain

v(t) ≤
k−1∏
i=0

div(t0)e
−c(t−t0), t ∈ [tk−1, tk). (4.89)

By condition (iv), we have

k−1∏
i=0

di ≤ e
c
2
[(tk−1−tk−2)+(tk−2−tk−3)+···+(t1−t0)] ≤ e

c
2
(tk−1−t0),

which, together with (4.89), gives

v(t) ≤ e
c
2
(tk−1−t0)v(t0)e

−c(t−t0) ≤ e
c
2
(t−t0)v(t0)e

−c(t−t0)

≤ v(t0)e
− c

2
(t−t0) ≤ (v1(t0) + v2(t0))e

− c
2
(t−t0)

≤ (c2δ
p1 + c3δ

p2)e−
c
2
(t−t0)

< c1ε
p1e−

c
2
(t−t0), t ∈ [tk−1, tk).

Hence by condition (i), we obtain

‖x(t)‖ < εe
− c

2p1
(t−t0)

, t ≥ t0,

which implies that the trivial solution of system (2.3) is exponentially stable and the proof is
complete.
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Remark 4.3.10 Theorem 4.3.4 tells us to what extent we can relax the restriction on impulses to
keep the exponential stability property of a system (see Example 4.3.5).

Example 4.3.5 Consider the impulsive functional differential equation{
x′(t) = −1+e2

50
x(t) + 1

50

∫ t
t−τ x(s) cos(x(s))e−(t−s)ds, t ≥ 0, t 6= 2k,

x(tk) = Ik(x(t
−
k )), tk = 2k, k ∈ N,

(4.90)

where Ik(x) ∈ C(R,R), τ ∈ (0, e2].

Let V (t, xt) = V1(t, x) + V2(t, xt), where V1(t, x) = |x| and

V2(t, xt) = 0.02

∫ t

t−τ
[e2 − (t− s)]e−(t−s)|x(s)|ds.

Since τ > 0, we have∫ t

t−τ
[e2 − (t− s)]e−(t−s)ds = e2(1− e−τ ) + e−τ (1− τ)− 1 > 0, t ≥ 0.

Thus condition (i) of Theorem 4.3.4 holds with c1 = c2 = 1, p1 = p2 = 1 and c3 = 0.02[e2(1−
e−τ ) + e−τ (1− τ)− 1].

For any solution x(t) of (4.90), we have

D+V (t, xt) ≤ 0.02[−(1 + e2)|x(t)|+
∫ t
t−τ e

−(t−s)|x(s)|ds+ e2|x(t)|]
− e2−τ

50eτ |x(t− τ)|+ 1
50

∫ t
t−τ [−1− e2 + (t− s)]e−(t−s)|x(s)|ds]

≤ − 1
50

[|x(t)|+
∫ t
t−τ [e

2 − (t− s)]e−(t−s)|x(s)|ds]− e2−τ
50eτ |x(t− τ)|]

≤ −0.02V (t, xt),

which implies condition (iii) of Theorem 4.3.4 holds with c = 0.02.
Now if we suppose |Ik(x)| ≤ dk|x|, where dk ≥ 0 and satisfies dk ≤ e0.02, then by Theorem

4.3.4 we know that the trivial solution of (4.90) is exponentially stable. The numerical simulation
of this delay differential equation with τ = 1.6, dk = 1.01 and initial function

φ(t) =

{
0, t ∈ [−1.6, 0),

0.82, t = 0,

is given in Figure 4.16.
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Figure 4.16: Numerical simulation of Example 4.3.5, impulsive system.



Chapter 5

Stability in Terms of Two Measures

In this chapter, we use the Lyapunov-Razumikhin technique to investigate the stability problem
in terms of two measures for impulsive functional differential equations utilizing the ideas de-
veloped in [75, 89, 109]. We first obtain several Razumikhin-type stability criteria for impulsive
functional differential equations via a single Lyapunov function. These criteria are applied to
obtain partial stability, uniform stability and uniform asymptotical stability for a class of impul-
sive functional differential equations. Then the stability criteria via two Lyapunov functions are
derived and the results are applied to obtain stability properties of the Lotka-Volterra system.

Definition 5.0.1 Let h ∈ Γ, h0 ∈ Γ0. Then system (2.3) is said to be

(S1). (h0, h)-equi-stable (equi-S for short), if for each ε > 0 and t0 ≥ 0, there exists some
δ = δ(ε, t0) > 0, such that h0(t0, φ) < δ implies h(t, x(t)) < ε for t ≥ t0, where
x(t) = x(t, t0, φ) is any solution of system (2.3);

(S2). (h0, h)-uniformly stable (US for short), if the δ in (S1) is independent of t0;

(S3). (h0, h)-equi-asymptotically stable (equi-AS for short), if (S1) holds and for each ε > 0

and t0 ≥ 0, there exist some δ = δ(t0) > 0 and T = T (ε, t0) > 0, such that h0(t0, φ) < δ

implies h(t, x(t)) < ε for t ≥ t0 + T ;

(S4). (h0, h)-uniformly asymptotically stable (UAS for short), if (S2) holds and for each γ > 0

and t0 ≥ 0, there exist some η = η(γ) > 0 and T = T (γ) > 0 such that h0(t0, φ) < η

implies h(t, x(t)) < γ for any t ≥ t0 + T .

87
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Based on the Definition 5.0.1 and the usual stability concepts, it is easy to formulate other
kinds of stability in terms of two measures (h0, h) [60]. We shall give a few examples of the
two measures (h0, h) to demonstrate the generality of the Definition 5.0.1. It is obvious that
Definition 5.0.1 reduces to

(1) the stability of the trivial solution of (2.3) if

h(t, x) = h0(t, x) = ‖x‖;

(2) the stability of the nontrivial solution x̃(t) of (2.3) if

h(t, x) = h0(t, x) = ‖x− x̃(t)‖;

(3) the stability of an invariant set A ⊂ Rn, if

h(t, x) = h0(t, x) = d(x,A);

where d is the distance function;

(4) partial stability of the trivial solution of (2.3) if

h(t, x) = ‖x(s)‖, 1 ≤ s < n, and h0(t, x) = ‖x‖;

where x(s) = (xm1 , xm2 , · · · , xms)
T with 1 ≤ mi < n and 1 ≤ i ≤ s;

(5) the stability of conditionally invariant set B with respect to A, where A ⊂ B ⊂ Rn, if

h(t, x) = d(x,B) and h0(t, x) = d(x,A).

Several other combinations of choices are possible for (h, h0) in addition to those given
above.

5.1 Single Lyapunov Function Method

In this section, we state and prove our main results via a single Lyapunov function. The first
result is on US.
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Theorem 5.1.1 Assume that there exist functions V ∈ ν0, w, wi ∈ K, i = 1, 2, and constant
ρ > 0 such that

(i) V (t, φ(0)) ≤ w2(h0(t, φ)) and w1(h(t, φ(0))) ≤ V (t, φ(0)), where φ ∈ PC([−τ, 0],Rn),

if h(t, φ(0)) < ρ; and h(t0, φ(0)) ≤ w(h0(t0, φ));

(ii) V (tk, x+ Ik(x)) ≤ (1 + bk)V (t−k , x), if h(t, x) < ρ; where bk ≥ 0 with
∑∞

k=1 bk <∞;

(iii) for any solution x(t) of (2.3), D+V (t, x(t)) ≤ 0, whenever V (t, x(t)) ≥ V (s, x(s)) for
t ≥ s and h(t, x(t)) < ρ;

(iv) there exists some ρ0 ∈ (0, ρ) such that h(tk, x) < ρ0 implies h(tk, x+ Ik(x)) < ρ.

Then (2.3) is (h0, h)-US.

Proof. Since
∑∞

k=1 bk <∞, it follows that
∏∞

k=1(1 + bk) = M and 1 ≤M <∞. For any given
ε ∈ (0, ρ0), choose δ > 0 such that Mw2(δ) < w1(ε) and w(δ) < ε. Let x(t) = x(t, t0, φ) be
any solution of (2.3). We shall show h0(t0, φ) < δ implies

h(t, x(t)) < ε, ∀t ≥ t0.

By the choice of δ, h(t0, x(t0)) < ε.
We claim that

h(t, x(t)) < ε, t ∈ [t0, t1). (5.1)

Suppose (5.1) is not true. Then there is a t∗ ∈ (t0, t1) such that h(t∗, x(t∗)) = ε and h(t, x(t)) < ε

for t ∈ [t0, t
∗). Since ε < ρ0 < ρ, by condition (i), we have

V (t∗, x(t∗)) ≥ w1(h(t
∗, x(t∗))) = w1(ε)

> Mw2(δ) ≥ w2(δ)

≥ V (s, x(s)), for s ∈ [t0 − τ, t0]. (5.2)

Let U(t) = sups∈[t0−τ,t] V (s, x(s)). Then by (5.2), we have

U(t∗) > w2(δ) ≥ U(t0), (5.3)
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which implies there exists some t̂ ∈ [t0, t
∗] such thatD+U(t̂) > 0, whereD+U(t̂) = lim supα→0+

1
α
[U(t̂+ α)− U(t̂)].

We now show D+U(t) = 0 for all t ∈ [t0, t
∗].

For t ∈ [t0, t
∗], we have U(t) ≥ V (t, x(t)) by the definition of U(t). If U(t) > V (t, x(t)),

then by continuity of V (t, x(t)), there exists some σ > 0 such that V (t + h, x(t + h)) ≤ U(t)

for 0 < h < σ. Thus U(t + h) = U(t) for 0 < h < σ, which implies D+U(t) = 0. If
U(t) = V (t, x(t)), then V (t, x(t)) ≥ V (s, x(s)) for t ≥ s, so D+V (t, x(t)) ≤ 0 by condition
(iii) and the fact that h(t, x(t)) ≤ ε < ρ0 < ρ for all t ∈ [t0, t

∗]. This implies V (t + h, x(t +

h)) ≤ V (t, x(t)) and hence U(t + h) ≤ U(t) for h > 0 sufficiently small. Thus D+U(t) ≤ 0,
which, together with D+U(t) ≥ 0, gives D+U(t) = 0 for all t ∈ [t0, t

∗]. This contradicts
D+U(t̂) > 0, t̂ ∈ [t0, t

∗] and thus (5.1) is true.
Since h(t, x(t)) < ε for t ∈ [t0, t1), it follows D+U(t) = 0, t ∈ [t0, t1) in view of the

argument that proves D+U(t) = 0 for t ∈ [t0, t
∗]. Hence

V (t, x(t)) ≤ U(t) = U(t0) ≤ w2(δ), t ∈ [t0, t1), (5.4)

and so

w1(h(t1, x(t1))) ≤ V (t1, x(t1)) ≤ (1 + b1)V (t−1 , x(t
−
1 )) ≤ (1 + b1)w2(δ) < w1(ε),

which implies h(t1, x(t1)) < ε.
Next, we shall show

h(t, x(t)) < ε, t ∈ [t1, t2).

If not, then there exists some t∗ ∈ (t1, t2) such that h(t∗, x(t∗)) = ε and h(t, x(t)) < ε for
t ∈ [t1, t

∗). Since ε < ρ0 < ρ, by condition (i),

V (t∗, x(t∗)) ≥ w1(h(t
∗, x(t∗))) = w1(ε)

> Mw2(δ) ≥ (1 + b1)w2(δ)

≥ V (s, x(s)), for s ∈ [t0 − τ, t1],

so U(t∗) > (1 + b1)w2(δ) ≥ U(t1), which implies there exists some t̂ ∈ [t1, t
∗] such that

D+U(t̂) > 0. By the same argument that proves (5.1), we obtain h(t, x(t)) < ε for t ∈ [t1, t2).
Further more, we have

V (t2, x(t2)) ≤ (1 + b2)V (t−2 , x(t
−
2 )) ≤ (1 + b2)(1 + b1)w2(δ).
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Thus it follows, by repeating the same argument,

h(t, x(t)) < ε, for t ≥ t0,

which completes the proof.
The second result is on equi-AS, where the function V is assumed to diverge to infinity as t

tends to infinity and h(t, x) < ρ.

Theorem 5.1.2 Assume that there exist functions V ∈ ν0, w ∈ K and constant ρ > 0 such that

(i) V (t, φ(0)) ≤ a(t, h0(t, φ)), if h(t, φ(0)) < ρ; h(t0, φ(0)) ≤ a1(t0, h0(t0, φ)), where φ ∈
PC([−τ, 0],Rn), a, a1 ∈ CK;

(ii) V (t, x) ≥ ξ(t)w(h(t, x)), for t ≥ t0 and h(t, x) < ρ;

where ξ(t) is a continuous and strictly increasing function such that ξ(0) = 1, limt→+∞ ξ(t)

= +∞;

(iii) V (tk, x+ Ik(x)) ≤ (1 + bk)V (t−k , x), if h(t, x) < ρ; where bk ≥ 0 with
∑∞

k=1 bk <∞;

(iv) for any solution x(t) of (2.3), D+V (t, x(t)) ≤ 0, whenever V (t, x(t)) ≥ V (s, x(s)) for
t ≥ s and h(t, x(t)) < ρ;

(v) there exists some ρ0 ∈ (0, ρ) such that h(tk, x) < ρ0 implies h(tk, x+ Ik(x)) < ρ.

Then (2.3) is (h0, h)-equi-AS.

Proof. From condition (ii), we know, for t ≥ t0 and h(t, x(t)) < ρ,

V (t, x) ≥ ξ(t)w(h(t, x)) ≥ w(h(t, x)).

Then, for any given ε > 0 and t0 ≥ 0, by choosing δ = δ(t0, ε) > 0 such that

a(t0, δ) < M−1w(ε) and a1(t0, δ) < ε,

where M =
∏∞

k=1(1 + bk). Similarly to the proof of (h0, h)-US in Theorem 5.1.1, the (h0, h)-
equi-S of (2.3) can be obtained, i.e., for ρ0 > 0, there exists δ0 = δ0(t0, ρ0) > 0 such that
h0(t0, φ) < δ0 implies

h(t, x(t)) < ρ0, ∀t ≥ t0, (5.5)
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where x(t) = x(t, t0, φ) is any solution of (2.3).
Moreover, we can obtain

V (t, x(t)) ≤Ma(t0, δ0), ∀t ≥ t0.

Since limt→+∞ ξ(t) = +∞, then for any ε ∈ (0, ρ0), there exists T = T (ε, t0) > 0 such that

ξ(t) >
Ma(t0, δ0)

w(ε)
, for t ≥ t0 + T. (5.6)

From condition (ii) and (5.5), (5.6), for t ≥ t0 + T ,

w(h(t, x(t))) ≤ V (t, x(t))

ξ(t)
≤ Ma(t0, δ0)

ξ(t)
< w(ε),

which implies (2.3) is (h0, h)-equi-AS.

Remark 5.1.1 It should be noted that Theorem 5.1.1 and Theorem 5.1.2 are applicable to sys-
tems with infinite delay.

Example 5.1.1 Consider the following impulsive delay differential equations

x′(t) = −y(t) cos(x(t)y(t− h))− x(t)
2(t+h+1)

, t 6= k,

y′(t) = 2(t+ h+ 3
2
)x(t) cos(x(t)y(t− h)), t 6= k,

x(k) = (1 + 2
k2 )x(k

−), k ∈ N,
y(k) = (1− 3

k2 )y(k
−), k ∈ N,

xt0 = φ1, yt0 = φ2,

(5.7)

where h > 0, and φ1, φ2 ∈ PC([−h, 0],Rn). Then the trivial solution of (5.7) is equi-asymptotically
x-stable.

Proof. Let h0(t, z(t)) = ‖z(t)‖h = sup−h≤s≤0 ‖z(t+ s)‖ and h(t, z(t)) = |x(t)|, where
z(t) = (x(t), y(t))T , then (5.7) is (h0, h)-equi-AS reduces to the trivial solution of (5.7) is
equi-asymptotically x-stable (see [42] and [63]).

Let V (t, x(t), y(t)) = 1
2
[x2(t)+y2(t)]+(t+h+1)x2(t), a(t, s) = (t+h+2)s and a1(t, s) = s

for any s, t ≥ 0 and bk = 4
k2 + 4

k4 . Then, we have

V (t, x(t), y(t)) =
1

2
(x2(t) + y2(t)) + (t+ h+ 1)x2(t)

≤ (t+ h+ 2)‖z(t)‖2
h,
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and

V (tk, x(tk), y(tk)) =
1

2
[x2(k) + y2(k)] + (k + h+ 1)x2(k)

=
1

2
[(1 +

4

k2
+

4

k4
)x2(k−) + (1− 6

k2
+

9

k4
)y2(k−)]

+(k + h+ 1)(1 +
4

k2
+

4

k4
)x2(k−)

≤ [1 +
4

k2
+

4

k4
]V (t−k , x(t

−
k ), y(t−k )).

Thus conditions (i) and (iii) of Theorem 5.1.2 are satisfied.
The derivative of V along solutions of (5.7) is given by

D+V (t, x(t), y(t)) = x(t)x′(t) + y(t)y′(t) + x2(t) + 2(t+ h+ 1)x(t)x′(t)

= − x2(t)

2(t+ h+ 1)
≤ 0.

Moreover, V (t, x(t), y(t)) = 1
2
[x2(t) + y2(t)] + (t + h + 1)x2(t) ≥ ξ(t)w(|x(t)|), where

ξ(t) = t+h+1
h+1

, w(|x(t)|) = (h + 1)|x(t)|2. And for any ρ > 0, choose ρ0 = ρ
4
. If h(tk, x) =

|x| < ρ0, then h(tk, x+ Ik(x)) = (1 + 2
k2 )|x| < 4ρ0 = ρ. So conditions (ii) and (v) of Theorem

5.1.2 hold.
Thus, by Theorem 5.1.2, the trivial solution of (5.7) is equi-asymptotically x-stable.
The next result is on UAS where the upper right-hand derivative of V is not assumed to be

negative.

Theorem 5.1.3 Suppose (2.3) is (h0, h)-US, and there exist functions V (t, x) ∈ ν0, wi ∈
K, i = 1, 2, and constant ρ > 0 such that

(i) w1(h(t, x)) ≤ V (t, x) ≤ w2(h(t, x)), if h(t, x) < ρ;

(ii) V (tk, x + Ik(x)) ≤ ψk(V (t−k , x)), if h(t, x) < ρ; where ψk ∈ C(R+,R+), ψk(s) ≥ s

and ψk(s)
s

is nondecreasing for s > 0, and for any a1 > 0, there is a constant M so that

∞∑
k=1

[
ψk(a1)

a1

− 1] = M < ∞;
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(iii) there exist constants T ∗ > 0 and g ∈ C(R,R+) such that for any solution x(t) of (2.3)

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t), t ≥ T ∗,

whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where
P ∈ C(R+,R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0 for h(t, x(t)) ≥
η > 0, where ψ(t, η) is measurable;

(iv) for any given η > 0, limp→∞ inft≥0

∫ t+p
t

ψ(s, η)ds = ∞ and
∫∞

0
g(t)dt = Ω < ∞.

Then (2.3) is (h0, h)-UAS.

Proof. Since (2.3) is (h0, h)-US, for any β ∈ (0, ρ), there exists a δ > 0 independent of t0, such
that h0(t0, φ) < δ implies h(t, x(t)) < β for all t ≥ t0; then by condition (i), if h0(t0, φ) < δ,
we have

V (t, x(t)) ≤ w2(β), ∀t ≥ t0. (5.8)

Thus, for all t ≥ t0, h(t, x(t)) < β < ρ.

For any ε ∈ (0, β), choose

0 < 2a < min
{
w1(ε), inf

w1(ε)
2

≤s≤w2(β)

{P (s)− s}
}
. (5.9)

Since
∑∞

k=1 [ψk(a1)
a1

− 1] < ∞, there exists K∗ ∈ N such that

∞∑
k=K∗

[
ψk(a1)

a1

− 1] <
a

2w2(β)
. (5.10)

From
∫∞

0
g(t)dt = Ω, there exists T̂ > 0 such that∫ ∞

t0+bT
g(s)ds <

a

2
. (5.11)

By condition (iv), for η = w−1
2 (w1(ε)

2
), there exists T̃ > 0 such that∫ t+eT

t

ψ(t, η)dt > Ω + w2(β)(1 +M), ∀t ≥ t0. (5.12)
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Let N be the first positive integer such that

w2(β) ≤ w1(ε) +Na. (5.13)

We shall show that, for any i = 0, 1, · · · , N ,

V (t, x(t)) ≤ w1(ε) + (N − i)a, t ≥ t0 + tK∗ + T̂ + i(T̃ + τ). (5.14)

It is clear that (5.14) holds for i = 0, since from (5.8) and (5.13),

V (t, x(t)) ≤ w2(β) ≤ w1(ε) +Na, ∀t ≥ t0.

Suppose (5.14) holds for i = k, k ∈ {0, 1, · · · , N − 1}, i.e.

V (t, x(t)) ≤ w1(ε) + (N − k)a, t ≥ τk, (5.15)

where τk = t0 + tK∗ + T̂ + k(T̃ + τ), k ∈ {0, 1, · · · , N − 1}.
We shall show (5.14) holds for i = k + 1, k ∈ {0, 1, · · · , N − 1}, i.e.

V (t, x(t)) ≤ w1(ε) + (N − k − 1)a, t ≥ τk+1. (5.16)

Let Īk = [τk + τ, τk+1]. We claim that there exists some t∗ ∈ Īk, such that

V (t∗, x(t∗)) < w1(ε) + (N − k − 2)a. (5.17)

Otherwise, for all t ∈ Īk, we have

V (t, x(t)) ≥ w1(ε) + (N − k − 2)a. (5.18)

From (5.9) we have a < w1(ε)
2

. By (5.8), (5.18) and k ≤ N − 1, we obtain

w1(ε)

2
≤ V (t, x(t)) ≤ w2(β), ∀t ∈ Īk. (5.19)

Then by (5.9), (5.15), (5.18) and (5.19), we have, for any t ∈ Īk,

P (V (t, x(t))) > V (t, x(t)) + 2a

≥ w1(ε) + (N − k − 2)a+ 2a

≥ w1(ε) + (N − k)a

≥ V (t+ s, x(t+ s)), ∀s ∈ [−τ, 0].
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From condition (iii), we have, for any t ∈ Īk,

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t). (5.20)

On the other hand, condition (i) and (5.19) imply that, for any t ∈ Īk,

w2(h(t, x(t))) ≥ V (t, x(t)) ≥ w1(ε)

2
,

i.e.
h(t, x(t)) ≥ w−1

2 (
w1(ε)

2
) = η > 0. (5.21)

From (5.21) and the assumption on F , we have

F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0,

which, together with (5.20), gives

D+V (t, x(t)) ≤ −ψ(t, η) + g(t), ∀t ∈ Īk. (5.22)

Integrating (5.22) from τk + τ to τk+1, and noticing τk+1 = τk + τ + T̃ , from (5.8), (5.18),
conditions (ii) and (iv), we have

V (τk+1, x(τk+1)) ≤ V (τk + τ, x(τk + τ))−
∫ τk+1

τk+τ

ψ(s, η)ds+

∫ τk+1

τk+τ

g(s)ds

+
∑

τk+τ<tk≤τk+1

(V (tk, x(tk))− V (t−k , x(t
−
k )))

≤ w2(β)−
∫ τk+τ+eT

τk+τ

ψ(s, η)ds+

∫ ∞

0

g(s)ds

+
∑

τk+τ<tk≤τk+1

V (t−k , x(t
−
k ))[

ψk(V (t−k , x(t
−
k )))

V (t−k , x(t
−
k ))

− 1]

≤ w2(β)−
∫ τk+τ+eT

τk+τ

ψ(s, η)ds+ Ω

+w2(β)
∞∑
k=1

[
ψk(w2(β))

w2(β)
− 1]

≤ w2(β)(1 +M)−
∫ τk+τ+eT

τk+τ

ψ(s, η)ds+ Ω

< 0.



CHAPTER 5. STABILITY IN TERMS OF TWO MEASURES 97

This contradicts V (t, x(t)) ≥ 0, so (5.17) holds.
Now we prove, for all t ≥ t∗,

V (t, x(t)) ≤ w1(ε) + (N − k − 1)a. (5.23)

Assume t∗ ∈ [tq, tq+1) for some q ≥ K∗. We first show that (5.23) holds for t ∈ [t∗, tq+1).
Suppose not. Then there exists some t̂ = {inft∈[t∗,tq+1) : V (t, x(t)) > w1(ε)+(N−k−1)a},

and then by the continuity of V (t, x(t)) on [t∗, tq+1) we have

V (t̂, x(t̂)) = w1(ε) + (N − k − 1)a, (5.24)

and t̂ > t∗, since V (t∗, x(t∗)) < w1(ε) + (N − k − 2)a. Thus we have

V (t∗, x(t∗)) < w1(ε) + (N − k − 2)a < V (t̂, x(t̂)),

which implies that there exists some t ∈ (t∗, t̂) such that

V (t, x(t)) = w1(ε) + (N − k − 2)a, and

V (t, x(t)) ≤ V (t, x(t)) ≤ V (t̂, x(t̂)), for all t ∈ [t, t̂].

Then as for (5.19), we can obtain

w1(ε)

2
≤ V (t, x(t)) ≤ w2(β), ∀t ∈ [t, t̂].

Thus for all t ∈ [t, t̂], we have

P (V (t, x(t))) > V (t, x(t)) + 2a ≥ V (t, x(t)) + 2a

= w1(ε) + (N − k − 2)a+ 2a

= w1(ε) + (N − k)a

≥ V (t+ s, x(t+ s)), ∀s ∈ [−τ, 0].

By the same argument to obtain (5.21), we know (5.21) holds for t ∈ [t, t̂]. Then by condition
(iii), we have

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t) ≤ g(t). (5.25)
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Integrating both sides of (5.25) from t to t̂ and using (5.11) and the fact t > t0 + T̂ , we obtain

V (t̂, x(t̂)) ≤ V (t, x(t)) +
∫ bt
t
g(s)ds

≤ w1(ε) + (N − k − 2)a+
∫∞
t0+bT g(s)ds

< w1(ε) + (N − k − 2)a+ a
2

< w1(ε) + (N − k − 1)a,

which contradicts (5.24) and shows that (5.23) holds for any t ∈ [t∗, tq+1).
Next, we prove that (5.23) holds for any t ≥ tq+1. Suppose not. Then there exists some

t∗∗ = {inft≥tq+1 : V (t, x(t)) > w1(ε) + (N − k − 1)a}, and we have

V (t∗∗, x(t∗∗)) ≥ w1(ε) + (N − k − 1)a. (5.26)

So t∗∗ ≥ tq+1 > t∗. Let t = {supt∈[t∗, t∗∗] : V (t, x(t)) ≤ w1(ε) + (N − k − 2)a}. Then
t < t∗∗, and either V (t, x(t)) = w1(ε) + (N − k − 2)a, t 6= tk for any k ∈ N; or V (t, x(t)) <

w1(ε) + (N − k − 2)a, t = t−p with some p ≥ q.
By the definition of t, in both cases, we have

V (t, x(t)) ≥ w1(ε) + (N − k − 2)a ≥ w1(ε)

2
, t ∈ [t, t∗∗]. (5.27)

By (5.8) and (5.27), we have

w1(ε)

2
≤ V (t, x(t)) ≤ w2(β), ∀t ∈ [t, t∗∗],

which, together with (5.9), (5.15) and (5.27), implies that for every t ∈ [t, t∗∗],

P (V (t, x(t))) > V (t, x(t)) + 2a ≥ w1(ε) + (N − k − 2)a+ 2a

= w1(ε) + (N − k)a ≥ V (t+ s, x(t+ s)), ∀s ∈ [−τ, 0].

Then by condition (iii), we know that

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t), t ∈ [t, t∗∗].

By condition (i) and (5.27), we know h(t, x(t)) ≥ w−1
2 (w1(ε)

2
) = η > 0 holds for t ∈ [t, t∗∗]. By

condition (iii), we have

D+V (t, x(t)) ≤ −ψ(t, η) + g(t) ≤ g(t), t ∈ [t, t∗∗]. (5.28)
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For the first case, i.e., V (t, x(t)) = w1(ε)+(N−k−2)a and t 6= tk for any k ∈ N, by integrating
both sides of (5.28) from t to t∗∗ and using (5.10), (5.11),

V (t∗∗, x(t∗∗)) ≤ V (t, x(t)) +

∫ t∗∗

t

g(s)ds

+
∑

t≤tk≤t∗∗

[
V (tk, x(tk))− V (t−k , x(t

−
k ))
]
,

< w1(ε) + (N − k − 2)a+

∫ ∞

t0+bT
g(s)ds+ w2(β)

∞∑
k=K∗

[
ψk(w2(β))

w2(β)
− 1]

< w1(ε) + (N − k − 2)a+
a

2
+ w2(β) · a

2w2(β)

≤ w1(ε) + (N − k − 1)a,

which contradicts (5.26).
For the second case, i.e., V (t, x(t)) < w1(ε) + (N − k − 2)a and t = t−q with some q ≥ p,

integrating both sides of (5.28) from t to t∗∗ gives∫ t∗∗

t

D+V (t, x(t))dt =

∫ t∗∗

t−q

D+V (t, x(t))dt =

∫ t∗∗

tq

D+V (t, x(t))dt ≤
∫ t∗∗

t

g(s)ds,

and by (5.10) and (5.11), we have

V (t∗∗, x(t∗∗)) ≤ V (t−q , x(t
−
q )) +

[
V (tq, x(tq))− V (t−q , x(t

−
q ))
]

+

∫ t∗∗

t

g(s)ds+
∞∑

k=q+1

[V (tk, x(tk))− V (t−k , x(t
−
k ))]

< w1(ε) + (N − k − 2)a+

∫ ∞

t0+bT
g(s)ds+ w2(β)

∞∑
k=q

[
ψk(w2(β))

w2(β)
− 1]

< w1(ε) + (N − k − 2)a+
a

2
+ w2(β) · a

2w2(β)

≤ w1(ε) + (N − k − 1)a,

which also contradicts (5.26).
For both cases, we obtain a contradiction, which shows that (5.23) holds for any t ≥ t∗. And

hence (5.16) is true since t∗ ≤ τq+1.
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So by induction, (5.14) holds for i ∈ {0, 1, · · · , N}. Let i = N in (5.14). We have

w1(h(t, x(t))) ≤ V (t, x(t)) ≤ w1(ε), ∀t ≥ τN = t0 + T ∗,

i.e.
h(t, x(t)) ≤ ε, ∀t ≥ τN = t0 + T ∗,

where T ∗ = tK∗ + T̂ +N(T̃ + τ) is independent of t0. The proof is complete.

Corollary 5.1.1 Suppose (2.3) is (h0, h)-US, and there exist functions V (t, x) ∈ ν0, wi ∈
K, i = 1, 2, 3, and constant ρ > 0 such that

(i) w1(h(t, x)) ≤ V (t, x) ≤ w2(h(t, x)), if h(t, x) < ρ;

(ii) V (tk, x+ Ik(x)) ≤ (1 + bk)V (t−k , x), if h(t, x) < ρ, where bk ≥ 0 and
∑∞

k=1 bk < ∞;

(iii) for any λ ≥ 0, there exist constants T ∗ > 0 such that for any solution x(t) of (2.3),

D+V (t, x(t)) ≤ −b(t) [ w3(h(t, x(t)))− λ ], t ≥ T ∗,

whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where
P ∈ C(R+,R+), P (s) > s for s > 0, b(t) ≥ 0;

(iv) limT→∞ inft≥0

∫ t+T
t

b(s)ds = ∞.

Then (2.3) is (h0, h)-UAS.

Proof. Let ψk(s) = (1+bk)s in condition (ii) of Theorem 5.1.3 with bk ≥ 0 and
∑∞

k=1 bk < ∞.
Then condition (ii) of Theorem 5.1.3 holds. Let λ = w3(σ)

2
for any σ > 0. We have

b(t) [ w3(σ)− λ ] = b(t)
w3(σ)

2
∆
= ψ̃(t, σ), ∀t ≥ T ∗.

Then condition (iii) of Theorem 5.1.3 can be rewritten so that there exist constants T ∗ > 0 such
that for any solution x(t) of (2.3)

D+V (t, x(t)) ≤ −b(t) [ w3(h(t, x(t)))− λ ]
∆
= −F (t, h(t, x(t))), t ≥ T ∗,
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whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where P ∈
C(R+,R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ̃(t, σ) ≥ 0 for h(t, x(t)) ≥ σ > 0.
Together with condition (iv), we know condition (iv) of Theorem 5.1.3 holds. This completes
the proof.

Let b(t) = 1 in Corollary 5.1.1. Then condition (iii) becomes the one used in [93] to obtain
UAS, and we can obtain the following result.

Corollary 5.1.2 Suppose (2.3) is (h0, h)-US, and there exist functions V (t, x) ∈ ν0, wi ∈
K, i = 1, 2, 3, and constant ρ > 0 such that

(i) w1(h(t, x)) ≤ V (t, x) ≤ w2(h(t, x)), if h(t, x) < ρ;

(ii) V (tk, x+ Ik(x)) ≤ (1 + bk)V (t−k , x), if h(t, x) < ρ, where bk ≥ 0 and
∑∞

k=1 bk < ∞;

(iii) for any λ ≥ 0, there exist constants T ∗ > 0 such that for any solution x(t) of (2.3),

D+V (t, x(t)) ≤ −w3(h(t, x(t))) + λ, t ≥ T ∗,

whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where
P ∈ C(R+,R+), P (s) > s for s > 0.

Then (2.3) is (h0, h)-UAS.

Example 5.1.2 Consider the scalar impulsive delay differential equation

x′(t) = −a(t)x(t) + b(t)x(t− r0(t)) +
∫ t
−∞ c(t, s, x(s))ds, t ≥ t0, t 6= tk,

x(tk) = (1 + bk)x(t
−
k ), k ∈ N,

xt0 = φ,

(5.29)

where a, b ∈ C(R+,R), c(t, s, x) ∈ C(R+ × R × R,R), r0 ∈ C(R+,R+) and r0(t) ≤ τ0, and
bk > 0 and

∑∞
k=1 bk <∞, φ ∈ PC((−∞, t0],Rn). Suppose

(i). there exists function q ∈ L1[0,∞) such that

|c(t, s, x)| ≤ a(t)q(t− s)|x|, (5.30)
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(ii). there exists constant α ≥ 0 such that

|b(t)| ≤ αa(t), and α+

∫ ∞

0

q(s)ds < 1, (5.31)

(iii). limT→∞ inft≥0

∫ t+T
t

a(s)ds = +∞.

Then (5.29) is US and UAS.

Proof. Let h0(t, x(t)) = ‖x(t)‖τ = sup−τ≤s≤0 |x(t+ s)| (when τ = ∞, ‖x(t)‖τ = sup−τ<s≤0

|x(t+ s)|) and h(t, z(t)) = |x(t)|. Then (5.29) is (h0, h)-US (or (h0, h)-UAS) reduces to the
trivial solution of (5.29) is uniformly stable (or uniformly asymptotically stability), see [63, 62].

Let V (t, x) = |x(t)|. Then we have

V (tk, x(tk)) = (1 + bk)x(t
−
k ) ≤ (1 + bk)|x(t−k )|,

i.e.
V (tk, x(tk)) ≤ (1 + bk)V (t−k , x(t

−
k )).

By (5.30) and (5.31), we have, whenever V (s, x(s)) ≤ V (t, x(t)) for s ≤ t,

D+V (t, x(t)) ≤ −a(t)|x(t)|+ |b(t)||x(t− τ(t))|+
∫ t

−∞
c(t, s, x(s))ds

≤ −a(t)
{
1− α−

∫ t

−∞
q(t− s)ds

}
V (t, x(t))

≤ 0.

Thus from Theorem 5.1.1, we obtain (5.29) is US.
From condition (i) and (ii), we have q(s) ∈ L1[0,∞) and there exists constant p > 1 such

that
β

∆
= 1− p(α+

∫ ∞

0

q(s)ds) > 0. (5.32)

Since (5.29) is US, let |x(t)| ≤ L. Then for any σ > 0, there is some T̃ > 0 such that∫ ∞

eT
q(s)ds <

σ

L
. (5.33)
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In order to apply Corollary 5.1.1, choosing τ = max{τ0, T̃} and using (5.32) and (5.33), we
calculate D+V (t, x(t)) again

D+V (t, x(t)) ≤ −a(t)
{
1− pα− p

∫ t

t−τ
q(t− s)ds

}
|x(t)|

+La(t)

∫ t−τ

−∞
q(t− s)ds

≤ −a(t)
{
1− pα− p

∫ ∞

0

q(s)ds
}
|x(t)|+ La(t)

∫ ∞

τ

q(s)ds

≤ −a(t)
{
β|x(t)| − σ

}
,

whenever pV (t, x(t)) ≥ V (t+ s, x(t+ s)) for s ∈ [−τ, 0].
So all conditions of Corollary 5.1.1 are satisfied and then (5.29) is UAS.

5.2 Multiple Lyapunov Functions Method

We state and prove stability in terms of two measures via two Lyapunov functions in this section.

Theorem 5.2.1 Suppose (2.3) is (h0, h)-US, wi ∈ K, V, H ∈ ν0 such that

(i) 0 ≤ V (t, x) ≤ w1(h(t, x)) and
w2(h(t, x)) ≤ H(t, x) ≤ w3(h(t, x)), if h(t, x) < ρ;

(ii) V (tk, x+ Ik(x)) ≤ ψk(V (t−k , x)) and H(tk, x+ Ik(x)) ≤ ψk(H(t−k , x)), if h(t, x) < ρ,

where ψk ∈ C(R+,R+), ψk(s) ≥ s and ψk(s)
s

is nondecreasing for s > 0, and for any
a1 > 0, there is a constant M so that

∞∑
k=1

[
ψk(a1)

a1

− 1] = M < ∞;

(iii) there exist constants T ∗ > 0 and g ∈ C(R,R+) such that for any solution x(t) of (2.3)
and t ≥ T ∗,

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t),

D+H(t, x(t)) ≤ −F1(t, h(t, x(t))),
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whenever h(t, x(t)) < ρ and P (H(t, x(t))) > H(t + s, x(t + s)) for −τ ≤ s ≤ 0,
where P ∈ C(R+,R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0 for
h(t, x(t)) ≥ η > 0, where ψ(t, η) is measurable; F1(t, h(t, x(t))) ≥ 0;

(iv) for any given η > 0, limp→∞ inft≥0

∫ t+p
t

ψ(s, η)ds = ∞ and
∫∞

0
g(t)dt = Ω < ∞;

(v) there exists some 0 < ρ0 < ρ such that h(tk, x) < ρ0 implies h(tk, x+ Ik(x))< ρ.

Then (2.3) is (h0, h)-UAS.

Proof. Since (2.3) is (h0, h)-US, then for ρ0 > 0, there exists a δ > 0 independent of t0, such
that h0(t0, φ) < δ implies h(t, x(t)) < ρ0 for all t ≥ t0. Choose a β > 0 so that w3(β) = w2(ρ0).
Then if h0(t0, φ) < δ, we have

H(t, x(t)) ≤ w3(β) and V (t, x(t)) ≤ w1(ρ0), ∀t ≥ t0. (5.34)

Thus, for any t ≥ t0, we have h(t, x(t)) ≤ ρ0 < ρ.

For any ε ∈ (0,min{ρ0, β}), choose

0 < 2a < min
{
w2(ε), inf

w2(ε)
2

≤s≤w3(β)

{P (s)− s}
}
. (5.35)

Since
∑∞

k=1 [ψk(a1)
a1

− 1] < ∞, there exists K∗ ∈ N such that

∞∑
k=K∗

[
ψk(a1)

a1

− 1] <
a

w3(β)
. (5.36)

By condition (iv), for η = w−1
3 [w2(ε)

2
], there exists T̃ > 0 such that∫ t+eT

t

ψ(t, η)dt > Ω + w1(ρ0)(1 +M), ∀t ≥ t0. (5.37)

Let N0 be the first positive integer such that

w3(β) ≤ w2(ε) +N0a. (5.38)

We shall show that, for any i = 0, 1, · · · , N0,

H(t, x(t)) ≤ w2(ε) + (N0 − i)a, t ≥ t0 + tK∗ + i(T̃ + τ). (5.39)
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It is clear that (5.39) holds for i = 0 since from (5.34) and (5.38),

H(t, x(t)) ≤ w3(β) ≤ w2(ε) +N0a, ∀t ≥ t0.

Suppose (5.39) holds for i = k, i.e.

H(t, x(t)) ≤ w2(ε) + (N0 − k)a, t ≥ τk, k = 0, 1, · · · , N0 − 1, (5.40)

where τk = t0 + tK∗ + k(T̃ + τ), k = 0, 1, · · · , N0 − 1.

We shall show (5.39) holds for i = k + 1, i.e.

H(t, x(t)) ≤ w2(ε) + (N0 − k − 1)a, t ≥ τk+1, k = 0, 1, · · · , N0 − 1. (5.41)

Let Īk = [τk + τ, τk+1], we claim that there exists some t∗ ∈ Īk, such that

H(t∗, x(t∗)) < w2(ε) + (N0 − k − 2)a. (5.42)

Otherwise, for all t ∈ Īk, we have

H(t, x(t)) ≥ w2(ε) + (N0 − k − 2)a. (5.43)

From (5.35) we have a < w2(ε)
2

, noticing k ≤ N0 − 1, (5.34) and (5.43), we obtain

w2(ε)

2
≤ H(t, x(t)) ≤ w3(β), ∀t ∈ Īk. (5.44)

Then by (5.35), (5.40) and (5.44), we have, for any t ∈ Īk,

P (H(t, x(t))) > H(t, x(t)) + 2a

≥ w2(ε) + (N0 − k − 2)a+ 2a

≥ w2(ε) + (N0 − k)a

≥ H(t+ s, x(t+ s)), ∀s ∈ [−τ, 0].

From condition (iii), we have, for any t ∈ Īk,

D+V (t, x(t)) ≤ −F (t, h(t, x(t))) + g(t). (5.45)

On the other hand, condition (i) and (5.44) imply, for any t ∈ Īk,

w3(h(t, x(t))) ≥ H(t, x(t)) ≥ w2(ε)

2
,
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i.e.
h(t, x(t)) ≥ w−1

3 (
w2(ε)

2
) = η > 0. (5.46)

From (5.46) and the assumption on F , we have

F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0,

together with (5.45), we obtain

D+V (t, x(t)) ≤ −ψ(t, η) + g(t), ∀t ∈ Īk. (5.47)

Integrating (5.47) from τk + τ to τk+1, and noticing τk+1 = τk + τ + T̃ , from (5.34), (5.37) and
conditions (ii) and (iv), we have

V (τk+1, x(τk+1)) ≤ V (τk + τ, x(τk + τ))−
∫ τk+1

τk+τ
ψ(s, η)ds+

∫ τk+1

τk+τ
g(s)ds

+
∑

τk+τ<tk≤τk+1
(V (tk, x(tk))− V (t−k , x(t

−
k )))

≤ w1(ρ0)−
∫ τk+τ+eT
τk+τ

ψ(s, η)ds+
∫∞

0
g(s)ds

+
∑

τk+τ<tk≤τk+1
V (t−k , x(t

−
k ))[

ψk(V (t−k ,x(t
−
k )))

V (t−k ,x(t
−
k ))

− 1]

≤ w1(ρ0)−
∫ τk+τ+eT
τk+τ

ψ(s, η)ds+ Ω

+w1(ρ0)
∑∞

k=1[
ψk(w1(ρ0))
w1(ρ0)

− 1]

≤ w1(ρ0)(1 +M)−
∫ τk+τ+eT
τk+τ

ψ(s, η)ds+ Ω

< 0.

This contradicts V (t, x(t)) ≥ 0, so (5.42) holds.
Now we prove, for all t ≥ t∗,

H(t, x(t)) ≤ w2(ε) + (N0 − k − 1)a. (5.48)

Assume t∗ ∈ [tq, tq+1) for some q ≥ K∗. We first show that (5.48) holds for t ∈ [t∗, tq+1).
Suppose not. Then there exists some t̂ = {inft∈[t∗,tq+1) : H(t, x(t)) > w2(ε)+(N0−k−1)a},

and then by the continuity of H(t, x(t)) on [t∗, tq+1) we have

H(t̂, x(t̂)) = w2(ε) + (N0 − k − 1)a, (5.49)

and t̂ > t∗, since H(t∗, x(t∗)) < w2(ε) + (N0 − k − 2)a. Thus we have

H(t∗, x(t∗)) < w2(ε) + (N0 − k − 2)a < H(t̂, x(t̂)),
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which implies that there exists some t ∈ (t∗, t̂) such that

H(t, x(t)) = w2(ε) + (N0 − k − 2)a, and

H(t, x(t)) ≤ H(t, x(t)) ≤ H(t̂, x(t̂)), for all t ∈ [t, t̂].

Then as for (5.44), we can obtain

w2(ε)

2
≤ H(t, x(t)) ≤ w3(β), ∀t ∈ [t, t̂].

Thus for all t ∈ [t, t̂], we have

P (H(t, x(t))) > H(t, x(t)) + 2a ≥ H(t, x(t)) + 2a

= w2(ε) + (N0 − k − 2)a+ 2a

= w2(ε) + (N0 − k)a

≥ H(t+ s, x(t+ s)), ∀s ∈ [−τ, 0].

Then by condition (iii), we have

D+H(t, x(t)) ≤ −F1(t, h(t, x(t))) ≤ 0. (5.50)

Then we have H(t̂, x(t̂)) ≤ H(t, x(t)), which is a contradiction and shows that (5.48) holds for
any t ∈ [t∗, tq+1).

Next, we prove that (5.48) holds for any t ≥ tq+1. Suppose not. Then there exists some
t∗∗ = {inft≥tq+1 : H(t, x(t)) > w2(ε) + (N0 − k − 1)a}, and we have

H(t∗∗, x(t∗∗)) ≥ w2(ε) + (N0 − k − 1)a. (5.51)

So t∗∗ ≥ tq+1 > t∗. Let t = {supt∈[t∗, t∗∗] : H(t, x(t)) ≤ w2(ε) + (N0 − k − 2)a}. Then
t < t∗∗, and either H(t, x(t)) = w2(ε) + (N0 − k − 2)a, t 6= tk for any k ∈ N; or H(t, x(t)) <

w2(ε) + (N0 − k − 2)a, t = t−p with some p ≥ q.
By the definition of t, in both cases, we have

H(t, x(t)) ≥ w2(ε) + (N0 − k − 2)a ≥ w2(ε)

2
, t ∈ [t, t∗∗]. (5.52)
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By (5.34) and (5.52), we have

w2(ε)

2
≤ H(t, x(t)) ≤ w3(β), ∀t ∈ [t, t∗∗],

which implies that for every t ∈ [t, t∗∗],

P (H(t, x(t))) > H(t, x(t)) + 2a ≥ w2(ε) + (N0 − k − 2)a+ 2a

= w2(ε) + (N0 − k)a ≥ H(t+ s, x(t+ s)), ∀s ∈ [−τ, 0].

Then by condition (iii), we know that

D+H(t, x(t)) ≤ −F1(t, h(t, x(t))) ≤ 0, t ∈ [t, t∗∗]. (5.53)

For the first case, i.e., H(t, x(t)) = w2(ε) + (N0 − k − 2)a and t 6= tk for any k ∈ N, by
integrating both sides of (5.53) from t to t∗∗ and using (5.36),

H(t∗∗, x(t∗∗)) ≤ H(t, x(t)) +
∑

t≤tk≤t∗∗

[
H(tk, x(tk))−H(t−k , x(t

−
k ))
]
,

< w2(ε) + (N0 − k − 2)a+ w2(β)
∞∑

k=K∗

[
ψk(w2(β))

w2(β)
− 1]

< w2(ε) + (N0 − k − 2)a+ w2(β) · a

2w2(β)

< w2(ε) + (N0 − k − 1)a,

which contradicts (5.51).
For the second case, i.e., H(t, x(t)) < w2(ε) + (N0 − k − 2)a and t = t−q with some q ≥ p,

integrating both sides of (5.53) from t to t∗∗ gives∫ t∗∗

t

D+H(t, x(t))dt =

∫ t∗∗

t−q

D+H(t, x(t))dt =

∫ t∗∗

tq

D+H(t, x(t))dt ≤ 0,
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and by (5.36), we have

H(t∗∗, x(t∗∗)) ≤ H(t−q , x(t
−
q )) +

[
H(tq, x(tq))−H(t−q , x(t

−
q ))
]

+
∞∑

k=q+1

[H(tk, x(tk))−H(t−k , x(t
−
k ))]

< w2(ε) + (N0 − k − 2)a+ w2(β)
∞∑
k=q

[
ψk(w2(β))

w2(β)
− 1]

< w2(ε) + (N0 − k − 2)a+ w2(β) · a

2w2(β)

< w2(ε) + (N0 − k − 1)a,

which also contradicts (5.51).
Thus we know (5.48) holds in both cases, and hence (5.41) is true since t∗ ≤ τk+1.
So by induction, (5.39) holds for i = 0, 1, · · · , N0. Let i = N0 in (5.39). We have

w2(h(t, x(t))) ≤ H(t, x(t)) ≤ w2(ε), ∀t ≥ τN0 = t0 + T ∗,

i.e.
h(t, x(t)) ≤ ε, ∀t ≥ τN0 = t0 + T ∗,

where T ∗ = tK∗ +N0(T̃ + τ) is independent of t0. The proof is complete.

Corollary 5.2.1 If condition (iii) and (iv) of Theorem 5.2.1 are replaced by (iii′) and (iv′)

respectively,

(iii′) for any λi ≥ 0(i = 1, 2), there exist constants T ∗ > 0 such that for any solution x(t) of
(2.3) and t ≥ T ∗,

D+V (t, x(t)) ≤ −b(t) [ w4(h(t, x(t)))− λ1 ] + g(t),

D+H(t, x(t)) ≤ −c(t) [ w5(h(t, x(t)))− λ2 ],

whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where
P ∈ C(R+,R+), P (s) > s for s > 0, b(t), c(t) ≥ 0;

(iv′) limT→∞ inft≥0

∫ t+T
t

b(s)ds = ∞.
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Then the result is still true.

Proof. Let λ1 = w4(σ)
2

for any σ > 0, we have

b(t) [ w4(σ)− λ1 ] = b(t)
w4(σ)

2
∆
= ψ̃(t, σ), ∀t ≥ T ∗,

so condition (iii) of Theorem 5.2.1 can be rewritten so that there exist constants T ∗ > 0 such
that for any solution x(t) of (2.3),

D+V (t, x(t)) ≤ −b(t) [ w4(h(t, x(t)))− λ1 ] + g(t)
∆
= −F1(t, h(t, x(t))) + g(t), t ≥ T ∗,

whenever h(t, x(t)) < ρ and P (V (t, x(t))) > V (t + s, x(t + s)), −τ ≤ s ≤ 0, where P ∈
C(R+,R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ̃(t, σ) ≥ 0 for h(t, x(t)) ≥ σ > 0.
Moreover, let F1(t, h(t, x(t))) = c(t) [ w5(h(t, x(t)))−λ2 ], then F1(t, h(t, x(t))) ≥ 0. Together
with condition (iv′), we know condition (iv) of Theorem 5.2.1 holds. This completes the proof.

Remark 5.2.1 In Corollary 5.2.1, if we let h0(t, x(t)) = ‖x(t)‖τ , h(t, x(t)) = ‖x(t)‖, where
‖ · ‖ is any norm in Rn, and let x + Ik(x) ≡ x, then we can obtain the same UAS result in
Theorem 2.1 in reference [98].

Corollary 5.2.2 If condition (ii) of Theorem 5.2.1 is replaced by (ii′),

(ii′) V (tk, x + Ik(x)) ≤ (1 + bk)V (t−k , x) and H(tk, x + Ik(x)) ≤ (1 + bk)H(t−k , x), if
h(t, x) < ρ, where bk > 0 and

∑∞
k=1 bk <∞.

Then the result is still true.

Proof. Let ψk(s) = (1 + bk)s in condition (ii) of Theorem 5.2.1, together with bk > 0 and∑∞
k=1 bk < ∞, then condition (ii) of Theorem 5.2.1 holds.
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5.3 Application to the Lotka-Volterra System

Functional differential equations are frequently used to model population dynamics. The Lotka-
Volterra equation for predator-pray problems or competing species has often been considered
([54, 31, 98]). When population levels repeatedly undergo changes of relatively short duration
(due, for instance, to stocking or harvesting of species), these events may be more suitably mod-
elled by an impulsive functional differential equation (see [77] and references therein). In this
section, we apply the results in the previous section to the stability analysis of the time-delayed
Lotka-Volterra equations.

Consider the following Lotka-Volterra system subject to impulsive effects

x′i(t) = bi(xi(t))
{
ri(t)− ai(t)xi(t) +

n∑
j=1

∫ t

−∞
xj(s)dµij(t, s)

}
, t ≥ t0 = 0, t 6= tk, (5.54a)

xi(tk) = cikxi(t
−
k ) + (1− cik)x

∗
i , i = 1, · · · , n, (5.54b)

x(θ) = φ(θ), θ ∈ (−∞, 0], (5.54c)

where x∗ = (x∗1, x
∗
2, · · · , x∗n) is assumed to be a positive equilibrium of system (5.54a) and

(5.54c), and the initial functions satisfy

φi(θ) ≥ 0, φi(0) > 0, for i = 1, 2, · · · , n. (5.55)

Suppose for i, j = 1, 2, · · · , n, k ∈ N, the following conditions hold

(A1). Constants cik ∈ [0, 1] and functions bi ∈ K0 and for any 0 < β � 1,
∫ β

0
ds
bi(s)

= +∞;

(A2). ri(t) ≥ 0 and ai(t) ≥ 0 are continuous functions;

(A3). µij(t, s) have bounded variation for any t ∈ R and s ≤ t, and satisfy∫ u

−∞
|dµij(t, s)| ≤ ai(t)µ̂ij(t, u),

where µ̂ij(t, u)(u ≤ t) are nondecreasing with respect to u, and there exist constants
γij ≥ 0 with γii < 1 such that µ̂ij(t, t) ≤ γij , and for any ε > 0, there exists constant
h > 0 such that µ̂ij(t, t− h) ≤ ε, ∀t ≥ 0.
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Remark 5.3.1 From Lemma 3.1 ([98]), we know the solutions of (5.54a) and (5.54c) are positive
in their maximal interval of existence. So the solutions of (5.54) are positive in their maximal
interval of existence, since cik ∈ [0, 1] for any i = 1, · · · , n, k ∈ N.

Theorem 5.3.1 Assume conditions (A1)-(A3) hold, and

(i). bi(s) are nondecreasing and for any i = 1, · · · , n, and t ∈ R,

lim
p→+∞

∫ t+p

t

ai(s)ds = +∞;

(ii). Γ1 is an M-matrix, where

Γ1 =


1− γ11 −γ12 · · · −γ1n

−γ21 1− γ22 · · · −γ2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−γn1 −γn2 · · · 1− γnn

 .

Then x∗ is uniformly asymptotically stable.

Proof. Rewriting system (5.54a) and (5.54b), we obtain

y′i(t) = bi(yi(t) + x∗i )
{
− ai(t)yi(t) +

n∑
j=1

∫ t

−∞
yj(s)dµij(t, s)

}
, t ≥ 0, t 6= tk, (5.56a)

yi(tk) = cikyi(t
−
k ), i = 1, · · · , n, (5.56b)

where yi(t) = xi(t) − x∗i , i = 1, · · · , n. Since Γ1 is an M-matrix, there exist positive constants
di, i = 1, · · · , n, such that

di(1− γii) >
n∑
i6=j

djγij, i = 1, · · · , n. (5.57)

Choose
H(y(t)) = max{d−1

i |yi(t)| : 1 ≤ i ≤ n},
NH = {i ∈ {1, 2, · · · , n} : H(y(t)) = d−1

i |yi(t)|, t ≥ 0}.
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For any i ∈ NH , using (5.57), we calculate D+H(y(t))

D+H(y(t)) ≤ bi(xi(t))
{
− ai(t)|yi(t)|+

∑n
j=1

∫ t
−∞ |yj(s)||dµij(t, s)|

}
≤ −bi(xi(t))d−1

i

{
di(1− γii)−

∑n
i6=j djγij

}
ai(t)H(y(t))

≤ 0,

(5.58)

whenever H(s, y(s)) ≤ H(t, y(t)) for s ≤ t.
And

H(y(tk)) = max{d−1
i |yi(tk)| : 1 ≤ i ≤ n}

= max{d−1
i cik|yi(t−k )| : 1 ≤ i ≤ n}

≤ H(y(t−k )).

Thus we know from Theorem 5.1.1 that the trivial solution of (5.56) is uniformly stable.

Now choose h0(t, y(t)) = ‖y(t)‖∞ = sup−∞<s≤0

{
max1≤i≤n{d−1

i |yi(t+s)|}
}

, h(t, y(t)) =

‖y(t)‖n = max1≤i≤n{d−1
i |yi(t)|}, then for any given ε > 0, there exists δ = δ(ε) > 0 such that

‖φ‖∞ ≤ δ implies |yi(t)| ≤ ε for t ≥ t0, i = 1, 2, · · · , n.
Then for t ≥ t0, let

V (y(t)) = max
1≤i≤n

{
d−1
i Vi(t), where Vi(t) =

∫ |yi|

0

du

bi(x∗i + sgn(yi)u)

}
, (5.59)

and
NV = {i ∈ {1, 2, · · · , n} : V (y(t)) = d−1

i Vi(t), t ≥ 0}.

We have 1
bi(x∗i +sgn(yi)u)

> 0 since

x∗i + sgn(yi)u =

{
x∗i + u ≥ x∗i > 0, if yi ≥ 0,

x∗i − u ≥ x∗i + yi = xi > 0, if yi < 0,

so V (y(t)) ≥ 0.
And we have V (y(tk)) ≤ V (y(t−k )) since

Vi(y(tk)) =

∫ cik|yi(t
−
k )|

0

du

bi(x∗i + sgn(yi)u)
≤ Vi(y(t

−
k )),

in view of cik ∈ [0, 1].
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Moreover, choose ρ > 0 such that ρ < min1≤i≤n{d−1
i x∗i }, then there exists η > 0 such that

ρ ≤ min
1≤i≤n

{d−1
i (x∗i − η)}.

Thus, together with (5.59), we have, for h(t, y(t)) = ‖y(t)‖n < ρ,

d−1
i (x∗i − η) ≥ ρ > ‖y(t)‖n ≥ d−1

i |yi(t)|,

i.e. x∗i − |yi(t)| ≥ η. Since bi(s) are nondecreasing, we have

1

bi(x∗i + sgn(yi)u)
≤ 1

bi(x∗i − |yi(t)|)
≤ 1

bi(η)
, ∀u ∈ (0, |yi(t)|),

which implies V (y(t)) ≤ max1≤i≤n
{ d−1

i

bi(η)
|yi(t)|

}
when h(t, y(t)) < ρ, thus condition (i) of

Corollary 5.2.1 holds.
By assumption (A3), for any given σ1 > 0, there exists h > 0 such that

ε
n∑
j=1

µ̂ij(t, t− h) ≤ σ1, for i = 1, 2, · · · , n. (5.60)

By (5.57), there exists ρ1 > 1 such that

di > ρ1

n∑
j=1

djγij, i = 1, 2, · · · , n. (5.61)

By assumption (A2) and inequalities (5.60) and (5.61), for any i ∈ NV , we have

D+V (y(t)) = −d−1
i ai(t)|yi(t)|+

∑n
j=1 d

−1
i

{ ∫ t
t−h +

∫ t−h
−∞

}
|yj(s)dµij(t, s)|

≤ −d−1
i ai(t)

{
H(y(t))[di − ρ1

∑n
j=1 djγij]− σ1

}
,

whenever H(y(s)) ≤ ρ1H(y(t)) for s ∈ [t− h, t]. Similarly, we obtain

D+H(y(t)) ≤ −bi(xi(t))ai(t)d−1
i

{
H(y(t))[di − ρ1

n∑
j=1

djγij]− σ1

}
,

whenever H(y(s)) ≤ ρ1H(y(t)) for s ∈ [t − h, t]. Choose P (s) = ρ1s. Then all conditions of
Corollary 5.2.1 are satisfied, and hence the equilibrium x∗ of system (5.54) is uniformly asymp-
totically stable.



Chapter 6

Boundedness and Periodicity

This chapter discusses boundedness for system with fixed and state-dependent impulses. Some
periodicity results are also obtained for system (2.3).

We first introduce some boundedness definitions.

Definition 6.0.1 Solutions of system (2.3) (or (2.1)) are said to be

(B1) uniformly bounded (UB for short) if for every B1 > 0, there exists some B2 = B2(B1) >

0 such that if t0 ∈ R+ and φ ∈ PC([−τ, 0],Rn) with ‖φ‖τ ≤ B1, then any solution
x(t, t0, φ) is defined and ‖x(t, t0, φ)‖ ≤ B2 for all t ≥ t0;

(B2) uniformly ultimately bounded (UUB for short) with bound B if (B1) holds and for every
B3 > 0, there exists some T = T (B3) > 0 such that if φ ∈ PC([−τ, 0],Rn) with ‖φ‖τ ≤
B3, then for any t0 ∈ R+, ‖x(t, t0, φ)‖ ≤ B for t ≥ t0 + T .

6.1 Systems with Fixed Impulses

In order to investigate boundedness and periodicity for system (2.3), we make the following
assumptions.

(1) f(t+ T, ψ) = f(t, ψ) for any t ∈ R+ and ψ ∈ PC([−τ, 0],Rn);

(2) there exists a positive integer q such that tk+q = tk + T and Ik+q(x) = Ik(x) for x ∈ Rn

and k ∈ N.

115
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We now present the Horn’s fixed point theorem for later use.

Lemma 6.1.1 (Horn’s Theorem [111]) Let S0 ⊂ S1 ⊂ S2 be convex subsets of the Banach
space X , with S0 and S2 compact and S1 open relative to S2. Let P : S2 → X be a continuous
mapping such that, for some integer m > 0,

(a) P j(S1) ⊂ S2, 1 ≤ j ≤ m− 1, and

(b) P j(S1) ⊂ S0, m ≤ j ≤ 2m− 1.

Then P has a fixed point in S0.

Theorem 6.1.1 If solutions of system (2.3) are UUB with bound B at t0 = 0, then (2.3) has a
T-periodic solution.

Proof. There is a B1 > B such that ‖φ‖τ ≤ B, φ ∈ PC([−τ, 0],Rn), t ≥ 0 imply that
‖x(t, 0, φ)‖ < B1 for all t ≥ 0. There exists B2 > B1 + 1 such that ‖φ‖τ ≤ B1 + 1, φ ∈
PC([−τ, 0],Rn), t ≥ 0 imply that ‖x(t, 0, φ)‖ ≤ B2. Also, there is a positive integer m such
that ‖φ‖τ ≤ B1 + 1, φ ∈ PC([−τ, 0],Rn), t ≥ mT − τ imply that ‖x(t, 0, φ)‖ < B. Finally,
there exists L > 0 such that ‖φ‖τ ≤ B2, φ ∈ PC([−τ, 0],Rn), 0 ≤ t ≤ mT imply that
‖x′(t, 0, φ)‖ ≤ L. Let

S0 =
{
φ ∈ PC([−τ, 0],Rn) : ‖φ‖τ ≤ B, ‖φ(u)− φ(v)‖ ≤ L|u− v|, u, v ∈ [tk−1, tk)

}
,

S2 =
{
φ ∈ PC([−τ, 0],Rn) : ‖φ‖τ ≤ B2, ‖φ(u)− φ(v)‖ ≤ L|u− v|, u, v ∈ [tk−1, tk)

}
,

and
S1 =

{
φ ∈ PC([−τ, 0],Rn) : ‖φ‖τ < B1 + 1

}⋂
S2.

Then one may easily prove that Si, (i = 0, 1, 2) are convex, and S1 is open in S2. By Lemma 2.4
in [7], we find that S0 and S2 are compact.

Define P : S2 → PC([−τ, 0],Rn) by

Pφ = x(s+ T, 0, φ), for φ ∈ S2, −τ ≤ s ≤ 0.

Now x(t+ T, 0, φ) is a solution for t ≥ 0 and its initial function is Pφ. Hence

x(t+ T, 0, φ) = x(t, 0, Pφ), t ≥ −τ, (6.1)
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by the uniqueness theorem.
Similarly, since

P 2φ = x(s+ T, 0, Pφ), −τ ≤ s ≤ 0,

we obtain
x(t+ T, 0, Pφ) = x(t, 0, P 2φ), t ≥ −τ. (6.2)

Now in (6.1), let t be replaced by t+ T , so that by (6.2),

x(t+ 2T, 0, φ) = x(t+ T, 0, Pφ) = x(t, 0, P 2φ).

In general, by induction we have

P jφ = x(s+ jT, 0, φ), −τ ≤ s ≤ 0, j = 1, 2, 3, · · · .

We claim that
P j(S1) ⊂ S2, for j = 1, 2, 3, · · · .

In fact, for each φ ∈ S1, we know that

‖x(s+ jT, 0, φ)‖ ≤ B2, for all j = 1, 2, 3, · · · ,

which implies ‖P jφ‖ ≤ B2.
For u, v ∈ [tk−1, tk), we have

‖(P jφ)(u)− (P jφ)(v)‖ = ‖x(u+ jT, 0, φ)− x(v + jT, 0, φ)‖
≤ ‖x′(ξ, 0, φ)‖ |u− v| ≤ L|u− v|,

where ξ is between u+ jT and v + jT .
Hence P jφ ∈ S2, for φ ∈ S1 and j = 1, 2, 3, · · · , and we conclude that P j(S1) ⊂ S2.
Next, by choice of m, using a similar argument to the above we conclude that

P j(S1) ⊂ S0, for j ≥ m.

So all the conditions in Horn’s theorem are satisfied, and thus P has a fixed point φ ∈ S0,
i.e., Pφ = φ. This shows that x(t, 0, φ) and x(t + T, 0, φ) are both solutions of (2.3) with the
same initial function. By uniqueness we conclude that

x(t+ T, 0, φ) = x(t, 0, φ), for all t ≥ −τ.
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Example 6.1.1 Consider the impulsive delay differential equation

x′(t) = −a(t)x(t) +
∫ t
t−τ c(t− s)x(s)ds+ f(t), t ≥ 0, t 6= tk,

x(tk) = bx(t−k ), k ∈ N,
(6.3)

where −1 ≤ b ≤ 1, a, c, and f are continuous functions in R, and a(t+ T ) = a(t), c(t+ T ) =

c(t), and f(t+T ) = f(t) for some T > 0, and there is a positive integer q such that tk+q = tk+T .
Suppose

−a(t) +

∫ t

0

|c(u)|du ≤ −α, α > 0.

Then by Example 4.2 in [93], the solution of (6.3) is uniformly ultimately bounded. Therefore by
Theorem 6.1.1, system (6.3) has a T -periodic solution.

Next, we establish a new result on boundedness for system (2.3) using a Lyapunov like func-
tion with the Razumikhin method.

Theorem 6.1.2 Assume that there exist functions V ∈ ν0, w1, w2 ∈ K, ψ ∈ K1, and G ∈ K0

with G nondecreasing such that

(i) w1(‖x‖) ≤ V (t, x) ≤ w2(‖x‖);

(ii) There exists a real number H > 0 such that for any solution x(t) = x(t, t0, φ) of (2.3),

D+V (t, x(t)) ≤ g(t)G(V (t, x(t))),

if V (t, x(t)) ≥ H and V (s, x(s)) ≤ ψ−1(V (t, x(t))) for all t ≥ t0 and t − τ ≤ s ≤ t,
where g : [t0,∞) → R+ is locally integrable;

(iii) For all k ∈ N and x ∈ Rn,

V (tk, x+ Ik(x)) ≤ ψ(V (t−k , x));

(iv) There exist λ2 ≥ λ1 > 0 and A > 0 such that for all k ∈ N and µ > 0,

λ1 ≤ tk − tk−1 ≤ λ2,

∫ µ

ψ(µ)

du

G(u)
−
∫ tk

tk−1

g(s)ds ≥ A.
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Then the solutions of (2.3) are UUB.

Proof. First we show UB. Let B1 ≥ w−1
2 (H) be given, for any t0 ≥ 0 and ‖φ‖τ ≤ B1. Let

x(t) = x(t, t0, φ), V (t) = V (t, x(t)) and w1(B2) = ψ−1(w2(B1)). Then

w1(‖x(t)‖) ≤ V (t) ≤ w2(‖x(t)‖) ≤ w2(B1) < ψ−1(w2(B1)) = w1(B2), t0 − τ ≤ t ≤ t0.

We claim that
V (t) ≤ ψ−1(w2(B1)), t0 ≤ t ≤ t1. (6.4)

If (6.4) does not hold, then there exists a t̄ ∈ (t0, t1) such that

V (t̄) > ψ−1(w2(B1)) > w2(B1) ≥ V (t0),

which implies that there is a t̂ ∈ (t0, t̄) such that

V (t̂) = ψ−1(w2(B1)), V (t) ≤ ψ−1(w2(B1)), t0 − τ ≤ t ≤ t̂,

and there exists t̆ ∈ [t0, t̂) such that

V (t̆) = w2(B1), V (t) ≥ w2(B1), t̆ ≤ t ≤ t̂.

Therefore, for all t ∈ [t̆, t̂], we have V (t) ≥ H and

V (s) ≤ ψ−1(w2(B1)) ≤ ψ−1(V (t)), t− τ ≤ s ≤ t.

By condition (ii) we have

D+V (t) ≤ g(t)G(V (t)), t̆ ≤ t ≤ t̂,

and so ∫ V (t̂)

V (t̆)

du

G(u)
≤
∫ t̂

t̆

g(s)ds ≤
∫ t1

t0

g(s)ds.

On the other hand, from condition (iv) we obtain∫ V (t̂)

V (t̆)

du

g(u)
=

∫ ψ−1(w2(B1))

w2(B1)

du

G(u)
≥
∫ t1

t0

g(s)ds+ A >

∫ V (t̂)

V (t̆)

du

G(u)
,
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which is a contradiction, and so (6.4) holds. From (6.4) and condition (iii) we have

V (t1) ≤ ψ(V (t−1 )) ≤ w2(B1). (6.5)

In a similar way to the proof of (6.4) and (6.5) we obtain

V (t) ≤ ψ−1(w2(B1)), t1 ≤ t < t2, V (t2) ≤ w2(B1).

By simple induction, we can prove, in general, that

V (t) ≤ ψ−1(w2(B1)), ti+1 ≤ t < ti+2,

V (ti+2) ≤ w2(B1), i = 0, 1, 2, · · · .

Therefore we have

w1(‖x(t)‖) ≤ V (t) ≤ ψ−1(w2(B1)) = w1(B2), t ≥ t0.

This proves UB.
Next we shall prove UUB. Let B = w−1

1 (ψ−1(ψ−1(H))) and B3 ≥ w−1
2 (H). In view of

the proof of UB, we know that there exists B4 = w−1
1 (ψ−1(w2(B3))) such that ‖φ‖τ ≤ B3 and

t0 ∈ R+ imply that
V (t) ≤ ψ−1(w2(B3)) = w1(B4), t ≥ t0 − τ.

Let N0 be the smallest positive integer such that

ψ−1(w2(B3)) ≤ ψ(w1(B)) +N0AG(ψ(w1(B))). (6.6)

Set mi = min
{
k ∈ N : tk − tmi−1

≥ τ
}

, i = 1, 2, · · · , N0. Here m0 = 0. Since V (tk) ≤
ψ(V (t−k )) ≤ V (t−k ) for all k ∈ N, it is easy to see that for each interval Ji = [tmi−1

, tmi
],

supt∈Ji
V (t) = Li exists and either Li = V (tmi−1

) or Li = V (r−i ) for some ri ∈ (tmi−1
, tmi

]

(here V (r−i ) = V (ri) when ri is not an impulse point). We assume, without loss of generality,
that Li = V (r−i ), i = 1, 2, · · · , N0. When Li = V (tmi−1

) for some i ∈ {1, 2, · · · , N0}, the proof
is similar and is omitted.

Let m∗ be the smallest positive integer such that m∗λ1 ≥ τ . It is clear that
∑N0

i=1(tmi
−

tmi−1
) ≤ m∗N0λ2. Let γ = m∗N0λ2. We will prove that

‖x(t)‖ ≤ B, t ≥ t0 + γ. (6.7)
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To that end, we first show that if for some i ∈ {1, 2, · · · , N0} we have

V (r−i ) ≤ ψ(w1(B)), (6.8)

then
V (t) ≤ w1(B), t ≥ tmN0

. (6.9)

In fact, in view of (6.8), we obtain that

V (t) ≤ ψ(w1(B)) < w1(B), tmi−1
≤ t ≤ tmi

. (6.10)

Next we prove that
V (t) ≤ w1(B), tmi

≤ t ≤ tmi+1
. (6.11)

If (6.11) is not valid, then there exists t̄ ∈ (tmi
, tmi+1

) such that

V (t̄) > w1(B) > ψ(w1(B)) ≥ V (tmi
),

which implies that there is a t̂ ∈ (tmi
, t̄] such that

V (t̂) = w1(B), V (t) ≤ w1(B), tmi
≤ t ≤ t̂, (6.12)

and there exists t̆ ∈ [tmi
, t̂) such that

V (t̆) = ψ(w1(B)), V (t) ≥ ψ(w1(B)), t̆ ≤ t ≤ t̂. (6.13)

From (6.10), (6.12), and (6.13), we obtain that, for t̆ ≤ t ≤ t̂,

V (s) ≤ w1(B) ≤ ψ−1(V (t)), t− τ ≤ s ≤ t,

and
V (t) ≥ ψ(w1(B)) = ψ−1(H) > H.

Condition (ii) implies that

D+V (t) ≤ g(t)G(V (t)), t̆ ≤ t ≤ t̂,

and so ∫ V (t̂)

V (t̆)
du
G(u)

≤
∫ t̂
t̆
g(s)ds <

∫ tmi+1

tmi
g(s)ds+ A

≤
∫ w1(B)

ψ(w1(B))
du
G(u)

=
∫ V (t̂)

V (t̆)
du
G(u)

.
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This is a contradiction, and so (6.11) holds. From (6.11) and condition (iii), we have

V (tmi+1
) ≤ ψ(V (t−mi+1

)) ≤ ψ(w1(B)).

By induction, we obtain that

V (t) ≤ w1(B), tmi+k
≤ t ≤ tmi+k+1

,

and
V (tmi+k+1

) ≤ ψ(w1(B)), k = 0, 1, 2, · · · . (6.14)

This shows that if (6.8) holds for some i ∈ {1, 2, · · · , N0}, then (6.9) holds.
Now we prove that (6.8) holds for some i ∈ {1, 2, · · · , N0}. If this is not true, then V (r−i ) >

ψ(w1(B)) for all i = 1, 2, · · · , N0. We claim that

V (r−i ) ≤ V (r−0 )− iAG(ψ(w1(B))), i = 0, 1, 2, · · · , N0, (6.15)

where V (r−0 ) = ψ−1(w2(B3)). Obviously (6.15) holds for i = 0. Assume that (6.15) holds for
some 0 ≤ j < N0. To prove that (6.15) holds for j + 1, we first show that

V (r−j+1) ≤ V (r−j ). (6.16)

In fact, since
V (t) ≤ V (r−j ), tmj−1

≤ t ≤ tmj
,

and
V (tmj

) ≤ ψ(V (t−mj
)) ≤ ψ(V (r−j )),

it follows, in a similar way to the proof of (6.14), that

V (t) ≤ V (r−j ), tmj+k
≤ t ≤ tmj+k+1

,

and
V (tmj+k+1

) ≤ ψ(V (r−j )), k = 0, 1, 2, · · · .

By induction, (6.16) holds.
Next we consider two possible cases.
Case 1. ψ(w1(B)) < V (r−j+1) ≤ ψ(V (r−j )).



CHAPTER 6. BOUNDEDNESS AND PERIODICITY 123

It follows that, by condition (iv), we have∫ ψ−1(V (r−j+1))

V (r−j+1)

du

G(u)
≥ A,

and so
V (r−j+1) ≤ ψ−1(V (r−j+1))− AG(ψ(w1(B)))

≤ V (r−j )− AG(ψ(w1(B)))

≤ V (r−0 )− (j + 1)AG(ψ(w1(B))).

Case 2. ψ(V (r−j )) < V (r−j+1) ≤ V (r−j ).
Let rj+1 ∈ (tmj+k

, tmj+k+1
], k ∈ N

⋃
0. If k = 0, then

V (tmj+k
) = V (tmj

) ≤ ψ(V (t−mj
)) ≤ ψ(V (r−j )).

If k > 0, then we also have

V (tmj+k
) ≤ ψ(V (t−mj+k

)) ≤ ψ(V (r−j+1)) ≤ ψ(V (r−j )).

Therefore, there exists an r̄ ∈ [tmj+k
, rj+1) such that

V (r̄) = ψ(V (r−j )), (6.17)

and
ψ(V (r−j )) ≤ V (t) ≤ ψ−1(w2(B3)), r̄ ≤ t < rj+1, (6.18)

which, together with (6.16), implies that for t̄ ≤ t < rj+1,

V (s) ≤ V (r−j ) ≤ ψ−1(V (t)), t− τ ≤ s ≤ t.

By condition (ii), we have

D+V (t) ≤ g(t)G(V (t)), r̄ ≤ t < rj+1,

thus, ∫ V (r−j+1)

V (r̄)

du

G(u)
≤
∫ rj+1

r̄

g(s)ds ≤
∫ tmj+k+1

tmj+k

g(s)ds.
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From (6.16) and condition (iv), we have∫ V (r−j+1)

ψ(V (r−j ))

du

G(u)
≤
∫ V (r−j )

ψ(V (r−j ))

du

G(u)
− A,

and so ∫ V (r−j )

V (r−j+1)

du

G(u)
≥ A.

Therefore,
V (r−j+1) ≤ V (r−j )− AG(ψ(w1(B)))

≤ V (r−0 )− (j + 1)AG(ψ(w1(B))).

In view of cases 1 and 2, (6.15) holds for i = j+1. Then by induction, we have that (6.15) holds
for all i = 0, 1, 2 · · · , N0. Therefore, by (6.6) and choosing i = N0 in (6.15), we obtain that

V (r−N0
) ≤ V (r−0 )−N0AG(ψ(w1(B)))

= ψ−1(w2(B3))−N0AG(ψ(w1(B)))

≤ ψ(w1(B)).

This contradicts V (r−i ) > ψ(w1(B)) for all i = 1, 2, · · · , N0. Therefore, there exists some
i ∈ {1, 2, · · · , N0} such that (6.8) holds, and thus (6.9) holds.

Since t0 + γ = t0 +m∗N0λ2 ≥ tmN0
, we have

w1(‖x(t)‖) ≤ V (t) ≤ w1(B), t ≥ t0 + γ,

which implies that
‖x(t)‖ ≤ B, t ≥ t0 + γ.

Example 6.1.2 Consider the impulsive delay differential equation

x′(t) = a(t)x(t) + b(t)x(t− τ), t ≥ 0, t 6= tk,

x(tk) = cx(t−k ), k ∈ N,
(6.19)

where τ > 0, a(t), b(t) ∈ C(R+,R) with a(t) ≤ a and b(t) ≤ b for some a, b ∈ R, there
exists T > 0 such that a(t + T ) = a(t), b(t + T ) = b(t), and tk+q = tk + T for some q ∈ N,
0 = t0 < t1 < t2 < · · · < tk with tk →∞ as k →∞. Assume that the following conditions are
satisfied
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(i) 0 < c < 1 and a+
√

2bc−1 > 0;

(ii) tk − tk−1 < (−1
2
ln c) \ (a+

√
2bc−1) for all k ∈ N.

Let V (t, x) = V (x) = 1
2
x2, ψ(s) = 1

2
c2s, and G(s) = s. Then

V (x+ Ik(x)) = V (cx) =
1

2
c2x2 = ψ(V (x)).

For any solution x(t) of system (6.19) that satisfies V (x(t+s)) ≤ ψ−1(V (x(t))) for−τ ≤ s ≤ 0,
we have |x(t− τ)| ≤

√
2c−1|x(t)|. Therefore,

D+V (x(t)) ≤ a(t)x2(t) + b(t)x(t)x(t− τ)

≤ ax2(t) +
√

2bc−1x2(t)

= g(t)G(V (x)),

where g(t) = 2(a+
√

2bc−1) > 0. Let A = ln 2. Then for any µ > 0 and k ∈ N, we have∫ µ
ψ(µ)

du
G(u)

−
∫ tk
tk−1

g(s)ds >
∫ µ
c2µ

du
s

+ 2 ln c
a+

√
2bc−1 (a+

√
2bc−1)

= ln 2− 2 ln c+ 2 ln c = A.

Thus, by Theorem 6.1.2, we know that the solutions of system (6.19) are UUB, and thus by
Theorem 6.1.1, system (6.19) has a T -periodic solution.

Remark 6.1.1 When a(t) ≡ a > 0, b(t) ≡ b > 0, the solutions of the equation

y′(t) = ay(t) + by(t− τ), (6.20)

are unbounded for any initial function φ 6≡ 0, and so system (6.20) has no non-zero periodic
solution [36]. Thus, the impulsive perturbations in system (6.19) are responsible for the periodic
solution in the above example.

6.2 Systems with State-dependent Impulses

In this section, we establish some boundedness criteria for delay differential equations with state-
dependent impulses (2.1). Some examples are also discussed to illustrate the effectiveness of our
results.

We assume the following hypotheses hold.
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(A1) f(t, ψ) is composite-PC, continuous in ψ and quasi-bounded.

(A2) τk ∈ C1(D,R+) for k = 0, 1, · · · , and for each t∗ ∈ J , there exists some δ > 0, where
[t∗, t∗ + δ] ⊂ J such that

∇τk(ψ(0)) · f(t, ψ) 6= 1, (6.21)

for all (t, ψ) ∈ (t∗, t∗ + δ]× PC([−τ, 0], D) and k = 0, 1, · · · .

Remark 6.2.1 From Chapter 2, we know that if conditions (A1) and (A2) hold, the initial value
problem (2.1) has a solution x(t, t0, φ) existing in a maximal interval I.

Our first two results utilize the Lyapunov-Razumkhin technique and the last result employs
the Lyapunov functional method.

Theorem 6.2.1 Assume that there exist V (t, x) ∈ ν0, W1, W2 ∈ K4, W3 ∈ K0 such that

(i)
W1(‖x‖) ≤ V (t, x) ≤ W2(‖x‖);

(ii) for any x ∈ Rn and τk ∈ C1(Rn,R+),

V (τk(x), x+ Ik(x)) ≤ (1 + bk)V (τ−k (x), x), k = 0, 1, · · · ,

where bk ≥ 0 with
∑∞

k=1 bk <∞;

(iii) there exists some constant ρ > 0 such that for any solution x(t) of system (2.1),

D+V (t, x(t)) ≤ −W3(‖x(t)‖),

whenever ‖x(t)‖ ≥ ρ and P (V (t, x(t))) > V (s, x(s)) for s ∈ [t− τ, t] and t ≥ t0, where
P ∈ C(R+,R+) and P (s) > Ms for s > 0, where M =

∏∞
k=1(1 + bk).

Then the solutions of (2.1)-(2.2) are UUB.

Proof. We first show uniform boundedness. Let B1 > 0 and assume, without loss of generality,
that B1 ≥ ρ. Choose B2 = W−1

1 (MW2(B1)). For any t0 ∈ R+ and ‖ϕ‖τ ≤ B1, let x(t) =

x(t, t0, ϕ) be a solution of (2.1)-(2.2), which exists in a maximal interval I = [t0 − τ, t0 + β).
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If β < ∞, then there exists some t ∈ (t0, t0 + β) for which ‖x(t)‖ > B2. We will prove that
‖x(t)‖ ≤ B2 which in turn will imply that β = ∞ and hence the solutions of (2.1)-(2.2) are
uniformly bounded.

For simplicity, let τ0 = t0 ∈ R+ be the initial time and denote impulse moments τk(x(τ−k ))

for k = 1, 2, · · · , by tk when there is no confusion.
In order to prove uniform boundedness, we first show

V (t) < 1
M

(1 + b0) · · · (1 + bm)W1(B2), tm ≤ t < tm+1; and
V (tm+1) ≤ 1

M
(1 + b0) · · · (1 + bm)(1 + bm+1)W1(B2), m = 0, 1, · · · ,

(6.22)

where V (t) = V (t, x(t)) and b0 = 0.
Now we shall show (6.22) holds for m = 0, i.e.

V (t) <
1

M
W1(B2), t0 ≤ t < t1. (6.23)

For t0 − τ ≤ t ≤ t0, we have

W1(‖x(t)‖) ≤ V (t) ≤ W2(‖x(t)‖) < W2(B1) =
1

M
W1(B2). (6.24)

If (6.23) does not hold, then there is some t̄ ∈ (t0, t1) such that

V (t̄) =
1

M
W1(B2), and V (t) ≤ 1

M
W1(B2), t0 − τ ≤ t ≤ t̄,

and
D+V (t̄) ≥ 0. (6.25)

Thus
P (V (t̄)) > MV (t̄) ≥ V (s), t̄− τ ≤ s ≤ t̄,

and from W2(‖x(t̄)‖) ≥ V (t̄) = 1
M
W1(B2) = W2(B1) we have

‖x(t̄)‖ ≥ B1 ≥ ρ,

then by assumption (iii), we obtain

D+V (t̄) ≤ −W3(‖x(t̄)‖) < 0,
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which contradicts (6.25), and hence (6.23) holds. By (6.23) and assumption (ii), we have

V (t1) = V (t1, x(t
−
1 ) + Im(t1, x(t

−
1 )))

≤ (1 + b1)V (t−1 , x(t
−
1 )) = (1 + b1)V (t−1 )

≤ 1

M
(1 + b1)W1(B2),

which implies that (6.22) holds for m = 0.
Now suppose that (6.22) holds for m ≤ i − 1 and i = 1, 2, · · · . We prove that (6.22) holds

for m = i, i.e.

V (t) < 1
M

(1 + b0) · · · (1 + bi)W1(B2), ti ≤ t < ti+1; and
V (ti+1) ≤ 1

M
(1 + b0) · · · (1 + bi)(1 + bi+1)W1(B2), i = 1, 2, · · · .

(6.26)

First we prove that

V (t) ≤ 1

M
(1 + b0) · · · (1 + bi)W1(B2), ti ≤ t < ti+1. (6.27)

If (6.27) does not hold, then there is some t̄ ∈ (ti, ti+1) such that

V (t̄) >
1

M
(1 + b0) · · · (1 + bi)W1(B2) ≥ V (ti),

and so there exists a t∗ ∈ (ti, t̄ ] such that

V (t∗) ≥ 1

M
(1 + b0) · · · (1 + bi)W1(B2), and V (t) ≤ V (t∗), t∗ − τ ≤ t ≤ t∗,

and
D+V (t∗) ≥ 0. (6.28)

Then we have
P (V (t∗)) > MV (t∗) ≥ V (s), t∗ − τ ≤ s ≤ t∗,

and
‖x(t∗)‖ ≥ B1 ≥ ρ,

since W2(‖x(t∗)‖) ≥ V (t∗) ≥M−1(1 + b0) · · · (1 + bi)W1(B2) ≥M−1W1(B2) = W2(B1). By
assumption (iii),

D+V (t∗) ≤ −W3(‖x(t∗)‖) < 0,
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which contradicts (6.28) and so (6.27) holds.
From (6.27) and assumption (ii), we have

V (ti+1) ≤ V (t−i+1)(1 + bi+1) ≤
1

M
(1 + b0) · · · (1 + bi+1)W1(B2),

which implies that (6.26) holds for m = i, and hence (6.22) holds for all m = 0, 1, · · · .
Therefore, we have

W1(‖x(t)‖) ≤ V (t) ≤ W1(B2), t ≥ t0.

This proves uniform boundedness.
Now we will prove UUB.
Let B = W−1

1 (MW2(ρ)). Then W1(B) = MW2(ρ). Let B3 ≥ ρ be given. By the preceding
arguments, we can find a B4 > B such that ‖ϕ‖τ ≤ B3 implies

V (t) ≤ W1(B4), t ≥ t0.

Let
0 < d < inf{P (s)−Ms :

1

M
W1(B) ≤ s ≤ W1(B4)},

and N be the first positive integer such that

W1(B) +Nd ≥MW1(B4).

Set γ = infρ≤s≤B4 W3(s). Then γ > 0. We first show that

V (t) ≤ W1(B) + (N − 1)d, t ≥ t0 + h, (6.29)

where h > max{(1 + A)W1(B4)/γ, τ}, A =
∑∞

k=1 bk.
Suppose for all t ∈ I1 = [t0, t0 + h],

V (t) >
1

M
[W1(B) + (N − 1)d].

Then M−1W1(B) < V (t) ≤ W1(B4) for t ∈ I1. Thus, for t ∈ I1, we have

P (V (t)) > MV (t) + d >
M

M
[W1(B) + (N − 1)d] + d

= W1(B) +Nd ≥ W1(B4) ≥ V (s), t− τ ≤ s ≤ t,
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and
‖x(t)‖ ≥ ρ,

since W2(‖x(t)‖) ≥ V (t) > M−1W1(B) = W2(ρ). By assumption (iii), we have for t ∈ I1,

D+V (t) ≤ −W3(‖x(t)‖) ≤ −γ,

and so

V (t) ≤ V (t0)− γ(t− t0) +
∑

t0<tj≤t

[V (tj)− V (t−j )]

≤ W1(B4)− γ(t− t0) +
∑

t0<tj≤t

bjV (t−j )

≤ W1(B4)− γ(t− t0) + AW1(B4).

Let t = t0 + h. We have

V (t0 + h) < (1 + A)W1(B4)− γ · (1 + A)W1(B4)

γ
= 0.

This is a contradiction, thus there is a t∗ ∈ I1 such that

V (t∗) ≤ 1

M
[W1(B) + (N − 1)d].

Let q = inf{k ∈ N : tk > t∗}. We claim that

V (t) ≤ 1

M
[W1(B) + (N − 1)d], t∗ ≤ t < tq. (6.30)

Otherwise, there is a t̄ ∈ (t∗, tq) such that

V (t̄) >
1

M
[W1(B) + (N − 1)d] ≥ V (t∗).

This implies that there is a t̂ ∈ (t∗, t̄ ] such that

V (t̂) ≥ 1

M
[W1(B) + (N − 1)d],

and
D+V (t̂) ≥ 0.
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Thus

P (V (t̂)) > MV (t̂) + d ≥ W1(B) + (N − 1)d+ d

= W1(B) +Nd ≥ W1(B4) ≥ V (s), t̂− τ ≤ s ≤ t̂,

and
‖x(t̂)‖ ≥ ρ,

since W2(‖x(t̂)‖) ≥ V (t̂) ≥M−1W1(B) = W2(ρ). By assumption (iii),

D+V (t̂) ≤ −W3(‖x(t̂)‖) < 0.

This is a contradiction and so (6.30) holds. From (6.30) and assumption (ii), we have

V (tq) ≤ (1 + bq)V (t−q ) ≤ 1

M
(1 + bq)[W1(B) + (N − 1)d].

Similarly, we can prove that

V (t) ≤ 1

M
(1 + bq)[W1(B) + (N − 1)d], tq ≤ t < tq+1,

and
V (tq+1) ≤

1

M
(1 + bq)(1 + bq+1)[W1(B) + (N − 1)d].

By induction, we can prove in general that

V (t) ≤ 1

M
(1 + bq) · · · (1 + bq+i)[W1(B) + (N − 1)d], tq+i ≤ t < tq+i+1,

and

V (tq+i+1) ≤
1

M
(1 + bq) · · · (1 + bq+i+1)[W1(B) + (N − 1)d], i = 0, 1, 2, · · · .

Thus (6.29) holds. Similarly, we may prove that

V (t) ≤ W1(B) + (N − 2)d, t ≥ t0 + 3h,

and by induction, we have

V (t) ≤ W1(B) + (N − j)d, t ≥ t0 + (2j − 1)h, j = 1, 2, · · · , N.
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Thus we obtain
W1(‖x(t)‖) ≤ V (t) ≤ W1(B), t ≥ t0 + (2N − 1)h.

Let T = (2N − 1)h. Then
‖x(t)‖ ≤ B, t ≥ t0 + T.

This proves UUB.

Example 6.2.1 Consider the scalar equation{
x′(t) = A(t)x(t) +

∫ t
t−τ C(t− s)x(s)ds+ f(t), t 6= x(t) + k,

x(tk)− x(t−k ) = bkx(t
−
k ), t = x(t) + k, k ∈ N,

(6.31)

where A, C, and f are continuous functions, |f(t)| ≤ L for some L > 0. For the impulsive
perturbations, we assume that bk ≥ 0 and

∑∞
k=1 bk <∞. Suppose A(t) < 0 and

A(t) +M

∫ τ

0

|C(u)|du ≤ −α,

where α > 0 and M =
∏∞

k=1(1 + bk). Let V (t, x) = |x| and q > 1 such that

A(t) +Mq

∫ τ

0

|C(u)|du ≤ −α
2
,

and let P (s) = Mqs. Then for any solution x(t) = x(t, t0, ϕ) such that

P (V (t, x(t))) > V (s, x(s)) for t ≥ σ, t− τ ≤ s ≤ t,

we have

D+V (t, x(t)) ≤ A(t)|x(t)|+ q

∫ τ

0

|C(u)||x(t− u)|du+ |f(t)|

≤ L− α

2
|x(t)| ≤ −α

4
|x(t)|, if |x(t)| ≥ H =

4L

α
,

and
V (tk, x+ Ik(x)) = |x+ bkx| = (1 + bk)V (t−k , x).

By Theorem 6.2.1, we obtain UUB for (6.31).
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Next we shall establish a Razumikhin-type theorem on boundedness by using Lyapunov func-
tionals.

Theorem 6.2.2 Assume that there exist V1(t, x) ∈ ν0, V2(t, φ) ∈ ν∗0(·) and W1, W2, W3 ∈ K4

such that

(i) W1(‖φ(0)‖) ≤ V (t, φ) ≤ W2(‖φ‖τ ), where V (t, φ) = V1(t, φ(0)) + V2(t, φ) ∈ ν0(·);

(ii) for each x ∈ Rn and τk ∈ C1(Rn,R+), k ∈ N,

V1(τk(x), x+ Ik(x)) ≤ (1 + bk)V1(τ
−
k (x), x),

where bk ≥ 0 with
∑∞

k=1 bk <∞;

(iii) for any solution x(t) = x(t, t0, ϕ) with t0 ∈ R+, ϕ ∈ PC([−τ, 0],Rn),

D+V (t, xt(t0, ϕ)) ≤ A, if V (t, xt(t0, ϕ)) ≥ W2(‖ϕ‖τ ) for t0 ≤ t ≤ t0 + τ ;

and
D+V (t, xt(t0, ϕ)) ≤ A−W3(V (t, xt(t0, ϕ))), if

P (V (t, xt(t0, ϕ))) > V (s, xs(t0, ϕ)), for t ≥ t0 + τ, t− τ ≤ s ≤ t,

where A > 0 is a constant and P (s) is defined as in Theorem 6.2.1.

Then the solutions of (2.1)-(2.2) are UUB.

Proof. First, we prove the uniform boundedness.
Let B1 > 0 and assume, without loss of generality, that B1 ≥ W−1

2 (MW−1
3 (A)). Choose

B2 > 0 such that 1
M
W1(B2) = M(W2(B1) + Aτ). For any t0 ∈ R+ and ‖ϕ‖τ ≤ B1, let x(t) =

x(t, t0, ϕ) be a solution of (2.1)-(2.2), which exists in a maximal interval I = [t0 − τ, t0 + β).
We will prove that ‖x(t)‖ ≤ B2 which implies that β = ∞ and hence the solutions of (2.1)-(2.2)
are uniformly bounded.

For simplicity, let τ0 = t0 ∈ R+ be the initial time and denote impulse moments τk(x(τ−k ))

for k = 1, 2, · · · , by tk when there is no confusion.
Let x(t) = x(t, t0, ϕ), V1(t) = V1(t, x(t)), V2(t) = V2(t, xt(t0, ϕ)) and V (t) = V1(t)+V2(t).

Obviously,
V (t0) ≤ W2(‖ϕ‖τ ) < W2(B1).
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For each t ∈ [t0, t0 + τ ], if V (t) < W2(‖ϕ‖τ ), then V (t) < W2(B1); While if V (t) ≥
W2(‖ϕ‖τ ),then by assumption (iii), D+V (t) ≤ A. Since V2(t) is continuous, it then follows
from assumption (ii) that

V (tk)− V (t−k ) = V1(tk)− V1(t
−
k ) ≤ bkV1(t

−
k ) ≤ bkV (t−k ).

Suppose that t1, t2, · · · , tm are all impulse points situated in (t0, t0 + τ ] such that

t0 < t1 < t2 < · · · < tm ≤ t0 + τ.

Then we obtain for t0 ≤ t ≤ t0 + τ ,{
D+V (t) ≤ A, t 6= ti,

V (ti) ≤ (1 + bi)V (t−i ), i = 0, 1, · · · ,m.
(6.32)

We claim that for t0 ≤ t ≤ t0 + τ ,

V (t) ≤ V (t0)
∏

t0<ti≤t

(1 + bi) +

∫ t

t0

∏
s<ti≤t

(1 + bi)Ads. (6.33)

Let t ∈ [t0, t1). Then from (6.32) we obtain,

V (t) ≤ V (t0) + A(t− t0),

and
V (t1) ≤ (1 + b1)V (t−1 ) ≤ (1 + b1)[V (t0) + A(t1 − t0)].

Hence (6.33) is true for t ∈ [t0, t1]. For t ∈ [t1, t2), we have from (6.32) that

V (t) ≤ V (t1) + A(t− t1)

≤ (1 + b1)[V (t0) + A(t1 − t0)] + A(t− t1).

Now assume that (6.33) holds for t ∈ [t0, tj), (l < j < m). Then for t ∈ [tj, tj+1), it follows
from (6.32) and the induction hypothesis that

V (t) ≤ V (tj) + A(t− tj)

≤ (1 + bj)V (t−j ) + A(t− tj)

≤ (1 + bj)

V (t0)
∏

t0<ti≤tj−1

(1 + bi) +

∫ tj

t0

∏
s<ti≤tj−1

(1 + bi)Ads

+ A(t− tj)

= V (t0)
∏

t0<ti≤t

(1 + bi) +

∫ tj

t0

∏
s<ti≤t

(1 + bi)Ads+

∫ t

tj

∏
s<ti≤t

(1 + bi)Ads.
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This implies that (6.33) holds for t ∈ [t0, tj+1). By induction, we see that (6.33) holds for
t0 ≤ t ≤ t0 + τ . Thus

W1(|x(t)|) ≤ V (t) ≤M(W2(B1) + Aτ) = M−1W1(B2), t0 ≤ t ≤ t0 + τ.

Next, we will prove that

V (t) ≤ 1

M
W1(B2), t0 + τ ≤ t < tm+1. (6.34)

If (6.34) does not hold, then there exists a t̄ ∈ (t0 + τ, tm+1) such that

V (t̄) >
1

M
W1(B2) ≥ V (t0 + τ),

V (t) ≤ V (t̄), t0 ≤ t ≤ t̄,

and D+V (t̄) ≥ 0. Then P (V (t̄)) > MV (t̄) ≥ V (s) for t̄ − τ ≤ s ≤ t̄. Hence by assumption
(iii),

D+V (t̄) ≤ A−W3(V (t̄)).

Since D+V (t̄) ≥ 0, it follows that

V (t̄) ≤ W−1
3 (A) ≤ 1

M
W2(B1) <

1

M
W1(B2).

This is a contradiction and so (6.34) holds. From (6.34) and assumption (ii), we have

V (tm+1) = V1(tm+1) + V2(tm+1)

≤ (1 + bm+1)V1(t
−
m+1) + (1 + bm+1)V2(tm+1)

= (1 + bm+1)V (t−m+1) ≤ (1 + bm+1)
1

M
W1(B2).

Similarly, we may prove

V (t) ≤ 1 + bm+1

M
W1(B2), tm+1 ≤ t < tm+2,

V (tm+2) ≤
1

M
(1 + bm+1)(1 + bm+2)W1(B2).

By induction, one may prove in general that

V (t) ≤ 1

M
(1 + bm+1) · · · (1 + bm+i)W1(B2), tm+i ≤ t < tm+i+1,
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V (tm+i+1) ≤
1

M
(1 + bm+1) · · · (1 + bm+i+1)W1(B2), i = 1, 2, · · · .

Thus we have
W1(‖x(t)‖) ≤ V (t) ≤ W1(B2), for t ≥ t0,

or
‖x(t)‖ ≤ B2, for t ≥ t0.

This proves uniform boundedness as required.
Next we show UUB. LetB = W−1

1 (MW−1
3 (A+1)). Then V (t) ≥ 1

M
W1(B) = W−1

3 (A+1)

implies D+V (t) ≤ −1 by assumption (iii). Let B3 > 0 be given with B3 > W−1
2 (W−1

3 (A)),
and choose B4 > max{B3, B} such that for any t0 ∈ R+ and ϕ ∈ PC(B3),

V (t) ≤ W1(B4) and ‖x(t)‖ ≤ B4, t ≥ t0.

Let
0 < d < inf{P (s)−Ms :

1

M
W1(B) ≤ s ≤ W1(B4)},

and N be the first positive integer such that

1

M
[W1(B) +Nd] ≥ W1(B4).

We first show that
V (t) ≤ W1(B) + (N − 1)d, t ≥ t0 + h, (6.35)

where

h > max{W1(B4)(1 +M∗), τ}, M∗ =
∞∑
k=1

bk.

Suppose that for all t ∈ [t0, t0 + h] = J1,

V (t) >
1

M
[W1(B) + (N − 1)d].

Then for t ∈ J1, M
−1W1(B) < V (t) ≤ W1(B4). Thus

P (V (t)) > MV (t) + d

>
M

M
[W1(B) + (N − 1)d] + d = W1(B) +Nd

≥ W1(B4) ≥ V (s), t− τ ≤ s ≤ t.
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By assumption (iii),we have for t ∈ J1,

D+V (t) ≤ A−W3(V (t)) ≤ −1,

and so

V (t) ≤ V (t0)− (t− t0) +
∑

t0<tj≤t

[V (tj)− V (t−j )]

≤ W1(B4)− (t− t0) +
∑

t0<tj≤t

[V1(tj)− V1(t
−
j )]

≤ W1(B4)− (t− t0) +
∑

t0<tj≤t

bjV (t−j )

< W1(B4)(1 +M∗)− (t− t0).

Thus
V (t0 + h) < W1(B4)(1 +M∗)−W1(B4)(1 +M∗) = 0.

This is a contradiction and so there exists some t∗ ∈ J1 such that

V (t∗) ≤ 1

M
[W1(B) + (N − 1)d].

Let m = inf{k ∈ N : tk > t∗}. We claim that

V (t) ≤ 1

M
[W1(B) + (N − 1)d], t∗ ≤ t < tm. (6.36)

If (6.36) does not hold, then there is a t̄ ∈ (t∗, tm) such that

V (t̄) >
1

M
[W1(B) + (N − 1)d] ≥ V (t∗).

Thus, there must be a t̂ ∈ (t∗, t̄] such that D+V (t̂) ≥ 0 and V (t̂) ≥ M−1[W1(B) + (N − 1)d].
Thus

P (V (t̂)) > MV (t̂) + d ≥ W1(B) + (N − 1)d+ d

= W1(B) +Nd ≥ W1(B4) ≥ V (s), t̂− τ ≤ s ≤ t̂.

By assumption (iii) we have

D+V (t̂) ≤ A−W3(V (t̂)) ≤ −1.
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This is a contradiction and so (6.36) holds. From (6.36) and assumption (ii), we obtain

V (tm) = V1(tm) + V2(tm)

≤ (1 + bm)V1(t
−
m) + (1 + bm)V2(tm) = (1 + bm)V (t−m)

≤ (1 + bm)M−1[W1(B) + (N − 1)d].

Now we prove

V (t) ≤ 1 + bm
M

[W1(B) + (N − 1)d], tm ≤ t < tm+1. (6.37)

Suppose there is a t̄ ∈ (tm, tm+1) such that

V (t̄) >
1 + bm
M

[W1(B) + (N − 1)d] ≥ V (tm).

Then there must be a t̂ ∈ (tm, t̄] such that D+V (t̂) ≥ 0 and

V (t̂) ≥ 1 + bm
M

[W1(B) + (N − 1)d].

Thus

P (V (t̂)) > MV (t̂) + d ≥ (1 + bm)[W1(B) + (N − 1)d] + d

≥ W1(B) +Nd ≥ W1(B4) ≥ V (s), t̂− τ ≤ s ≤ t̂.

By assumption (iii) we have

D+V (t̂) ≤ A−W3(V (t̂)) ≤ −1.

This contradiction shows that (6.37) holds. Thus

V (tm+1) ≤ (1 + bm+1)V (t−m+1) ≤
1

M
(1 + bm)(1 + bm+1)[W1(B) + (N − 1)d].

By induction, one may prove in general that

V (t) ≤ 1

M
(1 + bm) · · · (1 + bm+i−1)[W1(B) + (N − 1)d], tm+i−1 ≤ t < tm+i,

V (tm+i) ≤
1

M
(1 + bm) · · · (1 + bm+i)[W1(B) + (N − 1)d], i = 1, 2, · · · .
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Thus (6.35) holds.
Next we prove that

V (t) ≤ W1(B) + (N − 2)d, t ≥ t0 + 3h. (6.38)

Suppose that for all t ∈ [t0 + 2h, t0 + 3h] = J2,

V (t) >
1

M
[W1(B) + (N − 2)d].

Then for t ∈ J2, we have, by (6.35),

P (V (t)) > MV (t) + d > W1(B) + (N − 2)d+ d

= W1(B) + (N − 1)d ≥ V (s), t− τ ≤ s ≤ t.

By assumption (iii), we have, for t ∈ J2,

D+V (t) ≤ A−W3(V (t)) ≤ −1,

and so

V (t) ≤ V (t0 + 2h)− (t− t0 − 2h) +
∑

t0+2h<tj≤t

[V (tj)− V (t−j )]

≤ W1(B4)− (t− t0 − 2h) +
∑

t0+2h<tj≤t

[V1(tj)− V1(t
−
j )]

≤ W1(B4)− (t− t0 − 2h) +
∑

t0+2h<tj≤t

bjV (t−j )

< W1(B4)(1 +M∗)− (t− t0 − 2h).

Thus
V (t0 + 3h) < W1(B4)(1 +M∗)−W1(B4)(1 +M∗) = 0,

which is a contradiction and so there exists some t∗ ∈ J2 such that

V (t∗) ≤ 1

M
[W1(B) + (N − 2)d].

Let m = inf{k ∈ N : tk > t∗}. We claim that

V (t) ≤ 1

M
[W1(B) + (N − 2)d], t∗ ≤ t < tm. (6.39)
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If (6.39) does not hold, then there is a t̄ ∈ (t∗, tm) such that

V (t̄) >
1

M
[W1(B) + (N − 2)d] ≥ V (t∗).

Thus, there must be a t̂ ∈ (t∗, t̄] such that D+V (t̂) ≥ 0 and V (t̂) ≥ M−1[W1(B) + (N − 2)d].
Thus

P (V (t̂)) > MV (t̂) + d ≥ W1(B) + (N − 1)d ≥ V (s), t̂− τ ≤ s ≤ t̂.

By assumption (iii) we have

D+V (t̂) ≤ A−W3(V (t̂)) ≤ −1.

This is a contradiction and so (6.39) holds. From (6.39) and assumption (ii), we have

V (tm) = V1(tm) + V2(tm)

≤ (1 + bm)V1(t
−
m) + (1 + bm)V2(tm) = (1 + bm)V (t−m)

≤ (1 + bm)M−1[W1(B) + (N − 2)d].

By induction, one may prove in general that

V (t) ≤ 1

M
(1 + bm) · · · (1 + bm+i)[W1(B) + (N − 2)d], tm+i ≤ t < tm+i+1,

V (tm+i+1) ≤
1

M
(1 + bm) · · · (1 + bm+i+1)[W1(B) + (N − 2)d], i = 0, 1, 2, · · · .

Thus (6.38) holds. Similarly, one may prove that

V (t) ≤ W1(B) + (N − 3)d, t ≥ t0 + 5h.

By induction, one may prove in general that

V (t) ≤ W1(B) + (N − i)d, t ≥ t0 + (2i− 1)h, i = 1, 2, · · · , N.

Thus we obtain that

W1(‖x(t)‖) ≤ V (t) ≤ W1(B), t ≥ t0 + (2N − 1)h.

Let T = (2N − 1)h. Then ‖x(t)‖ ≤ B for t ≥ t0 + T . This proves UUB and so the proof is
complete.

Next we shall establish a theorem on boundedness by using Lyapunov functionals.
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Theorem 6.2.3 Assume that there exist V (t, φ) ∈ ν∗0(·), W1,W2 ∈ K4, W3 ∈ C(R+,R+) and
constants dk, ek ≥ 0 with

∑∞
k=1 dk <∞ and e =

∑∞
k=1 ek <∞ such that

(i)
W1(‖φ(0)‖) ≤ V (t, φ) ≤ W2(‖φ‖τ );

(ii) for each x ∈ Rn and τk ∈ C1(Rn,R+), k ∈ N,

V (τk(x), x+ Ik(x)) ≤ (1 + dk)V (τ−k (x), x) + ek;

(iii) for any solution x(t) = x(t, t0, ϕ) with t0 ∈ R+, ϕ ∈ PC([−τ, 0],Rn),

D+V (t, xt) ≤ −W3(‖φ(0)‖).

Then solutions of (2.1)-(2.2) are UB.
If, in addition, we have W3 ∈ K, lim infs→∞W3(s) > 0, and τk− τk−1 > L for some L > 0 and
k ∈ N, then solutions of (2.1)-(2.2) are UUB.

Proof. First, the uniform boundedness follows by the fact that V (t, φ) is non-increasing in each
interval between impulse moments and mathematical induction, if we let B1 > 0 and choose
B2 > 0 such that W1(B2) = d(W2(B1) + e), where d =

∏∞
k=1(1 + dk).

For any t0 ∈ R+ and ‖ϕ‖τ ≤ B1, let x(t) = x(t, t0, ϕ) be a solution of (2.1)-(2.2), which
exists in a maximal interval I = [t0 − τ, t0 + β). Again, we let τ0 = t0 ∈ R+ be the initial time
and denote impulse moments τk(x(τ−k )) for k = 1, 2, · · · , by tk when there is no confusion.

Next we shall show UUB.
Let B∗

1 = B2(1) where B2 is defined as in the first part by B2(B1) = W−1
1 (d(W2(B1) + e)).

Next let B = B2(B
∗
1) and note that B ≥ B∗

1 ≥ 1.
Let V (t) = V (t, xt), B1 > 0. By our assumption on f there exists a constantM = M(B1) ≥

‖f(t, φ)‖ for all (t, φ) ∈ R+×PC([−τ, 0],Rn) with ‖ϕ‖τ ≤ B2(B1). Without loss of generality
let us assume that M > max{1/τ, 1/L}. Let N = N(B1) be some positive integer satisfying
N > 2M [2W2(B1) + d∗d(W2(B1) + e) + e]/W3(1/2), where d∗ =

∑∞
k=1 dk, and define T =

T (B1) = 2(N + 1)τ . We know ‖x(t)‖ ≤ B2(B1) for t ∈ [t0− τ,∞) from the first part. We will
show that ‖x(t)‖ ≤ B for t ≥ t0 + T . We consider two cases:
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Case 1: If ‖xt∗‖τ ≤ 1 for some t∗ ∈ [t0, t0 + T ] then either t∗ 6= tk for any k in which
case ‖x(t∗)‖ ≤ ‖xt∗‖τ ≤ 1 ≤ B∗

1 or else t∗ = tk for some k in which case W1(‖x(t∗)‖) ≤
V (t∗) ≤ (1 + dk)V (t∗−) + ek ≤ d(V (t∗−) + e) ≤ d(W2(‖x(t∗−)‖) + e) ≤ d(W2(1) + e)

implying ‖x(t∗)‖ ≤ W−1
1 (d(W2(1) + e)) = B∗

1 . So either way ‖x(t∗)‖ ≤ B∗
1 . The restriction

of x to [t∗,∞) is a solution of (2.1) with ‖xt∗‖τ ≤ B∗
1 and initial time t∗ and so by the uniform

boundedness results we know ‖x(t)‖ ≤ B = B2(B
∗
1) for t ≥ t∗ − τ and in particular for

t ≥ t0 + T .
Case 2: Suppose ‖xt‖τ > 1 for all t ∈ [t0, t0 + T ]. Then on every interval [t, t + τ ] ⊂

[t0, t0 + T ] there exists some t̄ ∈ [t, t + τ ] such that ‖x(t̄)‖ > 1 and moreover we may assume,
without loss of generality, that t̄ 6= tk for any k. Thus for j = 1, 2, . . . , N , there exists some
t̂j ∈ [t0 + (2j − 1)τ, t0 + 2jτ ] with t̂j 6= tk for any k and ‖x(t̂j)‖ > 1. Note that tj+1 − t̂j ≥ τ

for all j. For each j consider the interval [t̂j − 1/(2M), t̂j + 1/(2M)]. Since M > 1/τ , these
intervals are non-overlapping and each is contained in [t0, t0 + T ]. Each interval has length
1/M < L and so can contain at most one impulse time tk. Suppose that there are no impulse
times in [t̂j, t̂j + 1/(2M)]. Since ‖x(t)‖ ≤ B2(B1) for all t ≥ t0 − τ then ‖xt‖τ ≤ B2(B1)

for t ∈ [t̂j, t̂j + 1/(2M)] which implies ‖x′(t)‖ = ‖f(t, xt)‖ ≤ M at almost all points in this
interval. Thus ‖x(t)‖ > 1/2 on this interval. This in turn implies D+m(t) ≤ −W3(1/2) on this
interval and so V (t) decreases by at least W3(1/2)/(2M). A similar argument shows that V (t)

decreases by at least W3(1/2)/(2M) on [t̂j − 1/(2M), t̂j] if this interval is free from impulses.
On [t0, t0 + T ], V (t) is of bounded variation since it is non-increasing except possibly at the

discrete impulse times tk where it may undergo a jump discontinuity. Since V (t) decreases by
at least W3(1/2)/(2M) on either [t̂j, t̂j + 1/(2M)] or [t̂j − 1/(2M), t̂j] for each j, the negative
variation of V (t) on [t0, t0 + T ] must be no less than NW3(1/2)/(2M). Since V (t0) ≤ W2(B1)

and V (t) ≤ d(W2(B1)+e) on [t0, t0+T ], the positive variation of V (t) on [t0, t0+T ] is bounded
above by V (t0) +

∑
k: tk∈(t0,t0+T )(dkV (tk) + ek) ≤ W2(B1) +

∑
k: tk∈(t0,t0+T )(dk(d(W2(B1) +

e)) + ek) ≤ W2(B1) + d∗d(W2(B1) + e) + e. Since the difference between the positive and
negative variations is V (t0 +T )−V (t0), V (t0 +T ) ≤ V (t0)+W2(B1)+d∗d(W2(B1)+e)+e−
NW3(1/2)/(2M) ≤ 2W2(B1) + d∗d(W2(B1) + e) + e−NW3(1/2)/(2M) < 0 by our choice
of N , which is impossible.

Since case 2 cannot occur, then case 1 must be satisfied in which case we have already
established that for our choice of T (B1) we have ‖x(t)‖ ≤ B for t ≥ t0 + T . This proves UUB.
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Example 6.2.2 Consider the scalar impulsive delay differential equation

x′ = −p(t)x(t) + q(t)x(t− τ) + w(t), t 6= x3(t) + 2k, (6.40a)

∆x(t) = hkx(t), t = x3(t) + 2k, (6.40b)

where τ > 0, p, q ∈ PC(R+,R), w is a square integrable function on R+ (i.e.
∫∞

0
w2(t)dt <

∞), hk > 0 for k ∈ N and
∑∞

k=1 hk < ∞. Assume that for some M1 > 1/2 and 0 < M2 <

M1 − 1/2, p(t) ≥ M1 and |q(t)| ≤ M2 for all t ∈ R+. We will show that the conditions of The-
orem 6.2.3 are satisfied and thereby conclude that solutions of this impulsive delay differential
equation are uniformly ultimately bounded.

To begin with we note that f satisfies assumption (A1).
Define the Lyapunov functional V by

V (t, ψ) = ψ2(0) +M2

∫ 0

−τ
ψ2(s)ds+

∫ ∞

t

w2(s)ds. (6.41)

Clearly V satisfies condition (i) of Theorem 6.2.3 with W1(s) = s2 and W2(s) = (1+M2τ)s
2 +∫∞

0
w2(t)dt. Differentiating V along solutions of (6.40) gives us

D+
(6.40)V (t, ψ) = 2ψ(0) [−p(t)ψ(0) + q(t)ψ(−τ) + w(t)]

+M2 [ψ2(0)− ψ2(−τ)]− w2(t)

≤ (−2M1 +M2)ψ
2(0) + 2M2|ψ(0)ψ(−τ)|

+2ψ(0)w(t)−M2ψ
2(−τ)− w2(t)

≤ (−2M1 +M2 + 1)ψ2(0) + 2M2|ψ(0)ψ(−τ)|
−M2ψ

2(−τ)
≤ −Kψ2(0),

(6.42)

where K = 2M1 − 2M2 − 1 > 0. Thus condition (iii) of Theorem 6.2.3 is satisfied with
W3(s) = Ls2.

Finally, let us check condition (ii). If t0 ∈ R+ and x ∈ PC([t0 − τ,∞),R) with discontinu-
ities occurring only at impulse times, then

V (t, xt) = x2(t) +M2

∫ t

t−τ
x2(s)ds+

∫ ∞

t

w2(s)ds (6.43)
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is also continuous at all points except possibly impulse times. Moreover,

V (tk, xtk) = (1 + hk)
2x2(tk) +M2

∫ tk
tk−τ

x2(s)ds+
∫∞
tk
w2(s)ds

≤ (1 + hk)
2V (tk, xtk) = (1 + dk)V (tk, xtk),

(6.44)

where dk = 2hk + h2
k > 0. Since

∑∞
k=1 hk <∞,

∑∞
k=1 dk <∞.

We can therefore conclude in light of Theorem 6.2.3 that solutions of system (6.40) are uni-
formly ultimately bounded. Note that in this example, the boundedness conclusion is independent
of the delay term τ . Also, what is interesting is that solutions are uniformly ultimately bounded
despite the fact that the state x increases in magnitude at each impulse time.



Chapter 7

Applications to Neural Networks

Neural networks have been successfully employed in various areas such as pattern recognition,
associative memory, and combinatorial optimization. The stability analysis of neural networks
has allowed them to become an important technical tool in recent years.

One of the most investigated problems in the study of neural networks is global exponential
stability of the equilibrium point. If an equilibrium of a neural network is globally exponentially
stable, it means that the domain of attraction of the equilibrium point is the whole space and the
convergence is in real time. This is significant both theoretically and practically. Such neural
networks are known to be well-suited for solving some class of optimization problems. In fact, a
globally exponentially stable neural network is guaranteed to compute the global optimal solution
independently of the initial condition, which in turn implies that the network is devoid of spurious
suboptimal responses.

In this chapter, we investigate the exponential stability of neural networks by applying the
stability criteria and techniques in the previous chapters to neural networks.

7.1 Impulsive Stabilization

We discuss the global exponential stability of cellular neural networks via Lyapunov functionals
and functions in this section.

Denote the norm ||x|| = (
∑n

i=1 |xi|p)
1
p with x = (x1, x2, · · · , xn)T and p = 1 or 2.

Consider the impulsive delayed cellular neural networks described by the following impulsive
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delay differential equations
dui(t)
dt

= −ciui(t) +
∑n

j=1 aijfj(uj(t)) +
∑n

j=1 bijfj(uj(t− tj))

+Ji, t ∈ [tk−1, tk),

∆ui(tk) = Iik(ui(t
−
k )), k ∈ N,

uit0 = φi, i = 1, 2, · · · , n,

(7.1)

where ui(·) is the state representing the membrane potential of the ith unit; Ji is a constant denot-
ing the external bias or input from outside the network to the ith unit; aij, bij are constants; where
τi, bounded by τ , are constants denoting the transmission delay; n corresponds to the number of
units in a neural network; fi : PC([−τ, 0],R) → R is the activation function satisfying

|fi(ui)| ≤ Ni, ∀ ui ∈ R, (7.2)

0 ≤ fi(ui)−fi(vi)
ui−vi

≤ Li, ∀ui 6= vi, ui, vi ∈ R, i = 1, 2, · · · , n. (7.3)

And φi ∈ PC([−τ, 0],R) is the initial function; Iik ∈ PC([−τ, 0],R) represents the effects of
impulsive control or perturbation; tk is impulse moment and 0 ≤ t0 < t1 < t2 < · · · < tk < · · · ,
with tk →∞ as k →∞; ∆ui(t) = ui(t

+)− ui(t
−); and uit, uit− ∈ PC([−τ, 0],R) are defined

by uit(s) = ui(t+ s), uit−(s) = ui(t
− + s) for −τ ≤ s ≤ 0, respectively.

From [10], we know that system (7.1) without impulses (or Iik(s) = s for any s ∈ R) has
at least one equilibrium point if conditions (7.2) and (7.3) hold. Denote one of the equilibrium
points by u∗ = [u∗1, u

∗
2, · · · , u∗n]T . We shall investigate the global exponential stability of this

equilibrium point u∗.
Define xi(·) = ui(·)− u∗i and then system (7.1) can be simplified as

dxi(t)
dt

= −cixi(t) +
∑n

j=1 aij
(
fj(xj(t) + u∗j)− fj(u

∗
j)
)

+
∑n

j=1 bij
(
fj(xj(t− τj) + u∗j)− fj(u

∗
j)
)
, t ≥ t0, t 6= tk,

∆xi(tk) = Iik(xi(t
−
k ) + u∗i ), k ∈ N,

xit0 = φi − u∗i , i = 1, 2, · · · , n.

(7.4)

Assume Iik(u∗i ) = 0 so that system (7.4) admits the trivial solution. Then the stability problem
of the equilibrium point u∗ of system (7.1) is equivalent to the stability problem of the trivial
solution of system (7.4).

The following results focus on impulsive stabilization of neural networks via Lyapunov func-
tionals.
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Theorem 7.1.1 Assume that there exist constants l, α, d > 0 such that τ ≤ tk − tk−1 ≤ l,
|Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R and i = 1, 2, · · · , n with

ln(d+ λτ) ≤ −(α+ c)l,

where c = max1≤i≤n{−ci +
∑n

j=1(|aji| + |bji|)Li} > 0, and λ = max1≤j≤n{
∑n

i=1 |bij|Lj}.
Then the equilibrium point u = u∗ of system (7.1) is globally exponentially stable.

Proof. Choose the Lyapunov functional

V (t, xt) =
n∑
i=1

(|xi(t)|+
n∑
j=1

|bij|Lj
∫ t

t−τj
|xj(s)|ds).

Then the upper right-hand derivative of V with respect to system (7.4) is

D+V (t, xt) ≤
n∑
i=1

[−ci|xi(t)|+
n∑
j=1

|aij|Lj|xj(t)|

+
n∑
j=1

|bij|Lj|xj(t− τj)|+
n∑
j=1

|bij|Lj(|xj(t)| − |xj(t− τj)|)]

=
n∑
i=1

[−ci +
n∑
j=1

(|aji|+ |bji|)Li]|xi(t)|

≤ cV (t, xt), t ∈ [tk−1, tk), k ∈ N,

where c = max1≤i≤n{−ci +
∑n

j=1(|aji|+ |bji|)Li} > 0. Thus we have

V (t, xt) ≤ V (tk−1, xtk−1
)ec(t−tk−1), t ∈ [tk−1, tk), k ∈ N. (7.5)

Then, for t ∈ [t0, t1),

V (t, xt) ≤ V (t0, xt0)e
c(t−t0)

≤ [‖x(t0)‖+ max1≤j≤n{
∑n

i=1 |bij|Lj}τ‖φ− u∗‖τ ]ec(t−t0)

≤ (1 + λτ)‖φ− u∗‖τec(t1−t0),

(7.6)

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj} and ‖x(t)‖ =
∑n

i=1 |xi| and so

‖x(t)‖ ≤ V (t, xt) ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t0, t1), (7.7)
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where M = (1 + λτ)e(c+α)l. So from (7.6), we have

‖x(t−1 )‖ ≤ (1 + λτ)‖φ− u∗‖τec(t1−t0),

‖xt−1 ‖τ ≤ (1 + λτ)‖φ− u∗‖τec(t1−t0).
(7.8)

Therefore we obtain

V (t1, xt1) =
∑n

i=1(|xi(t1)|+
∑n

j=1 |bij|Lj
∫ t1
t1−τj |xj(s)|ds)

≤ d‖x(t−1 )‖+
∑n

i=1

∑n
j=1 |bij|Lj|xjt−1 |ττj

≤ d‖x(t−1 )‖+ τλ‖xt−1 ‖τ ≤ (d+ λτ)‖xt−1 ‖τ
≤ (d+ λτ)(1 + λτ)‖φ− u∗‖τec(t1−t0)

≤ e−(c+α)lM‖φ− u∗‖τe−αl.

(7.9)

Thus, for t ∈ [t1, t2),

V (t, xt) ≤ V (t1, xt1)e
c(t−t1) ≤ V (t1, xt1)e

cl

≤ e−2αlM‖φ− u∗‖τ
≤M‖φ− u∗‖τe−α(t−t0),

and hence
‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t1, t2).

Next we shall show that

V (ti, xti) ≤ e−(i+1)αle−clM‖φ− u∗‖τ , i ∈ N. (7.10)

We know (7.10) holds for i = 1 in view of (7.9). If we assume that it holds for i = k, i.e.

V (tk, xtk) ≤ e−(k+1)αle−clM‖φ− u∗‖τ , k ∈ N,

then we have, for t ∈ [tk, tk+1),

V (t, xt) ≤ V (tk, xtk)e
c(t−tk) ≤ V (tk, xtk)e

cl

≤ e−(k+1)αlM‖φ− u∗‖τ ,

and
‖x(t)‖ ≤ V (t, xt) ≤ e−(k+1)αlM‖φ− u∗‖τ ,
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‖xt−k+1
‖τ ≤ V (t, xt) ≤ e−(k+1)αlM‖φ− u∗‖τ .

Therefore

V (tk+1, x(tk+1)) =
∑n

i=1[|xi(tk+1)|+
∑n

j=1 |bij|Lj|
∫ tk+1

tk+1−τj
|xj(s)|ds]

≤ d‖x(t−k+1)‖+ λτ‖xt−k+1
‖τ

≤ (d+ λτ)e−(k+1)αlM‖φ− u∗‖τ
≤ e−(α+c)le−(k+1)αlM‖φ− u∗‖τ
≤ e−(k+2)αle−clM‖φ− u∗‖τ ,

which implies that (7.10) holds for i = k + 1, and hence (7.10) holds for any i ∈ N. So we have

‖x(t)‖ ≤ V (t, x(t)) ≤ V (ti, x(ti))e
c(t−ti)

≤ e−(i+1)αlM‖φ− u∗‖τ
≤M‖φ− u∗‖τe−α(t−t0), t ∈ [ti, ti+1), i ∈ N,

which, together with (7.7), yields the global exponential stability of u∗.

If we change the proof in Theorem 7.1.1 a little bit, we have the following result in which
the lower bound of the length of the successive impulses is relaxed, but the restriction on the
amplitude of impulses is stronger than in Theorem 7.1.1.

Theorem 7.1.2 Assume that there exist constants l, α, d > 0 such that tk − tk−1 ≤ l, |Ii(y +

u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d+ λτeατ ) ≤ −(α+ c)l,

where c = max1≤i≤n{−ci +
∑n

j=1(|aji| + |bji|)Li} > 0, and λ = max1≤j≤n{
∑n

i=1 |bij|Lj}.
Then the equilibrium point u = u∗ of system (7.1) is globally exponentially stable.

Proof. By choosing the same Lyapunov functional and using the same argument as in Theorem
7.1.1, we obtain that D+V (t, xt) ≤ cV (t, xt) for t ∈ [tk−1, tk) and k ∈ N, and ‖x(t)‖ ≤
M‖φ− u∗‖τe−α(t−t0) for t ∈ [t0, t1). Next we shall show by mathematical induction that

‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [ti−1, ti), i ∈ N. (7.11)
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We have that (7.11) holds for i = 1 by the same argument in Theorem 7.1.1. Then assume it
holds for i = k, i.e.

‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [tk−1, tk). (7.12)

We show that (7.11) holds for i = k + 1:

‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [tk, tk+1).

From (7.12), we obtain
‖x(t−k )‖ ≤M‖φ− u∗‖τe−α(tk−t0),

and
‖xt−k ‖τ ≤M‖φ− u∗‖τeατe−α(tk−t0),

and hence
V (tk, xtk) =

∑n
i=1[|xi(tk)|+

∑n
j=1 |bij|Lj

∫ tk
tk−τj

|xj(s)ds|]

≤
∑n

i=1[d|xi(t
−
k )|+

∑n
j=1 |bij|Lj

∫ t−k
t−k −τj

|xj(s)ds|]
≤ d‖x(t−k )‖+ λτ‖xt−k ‖τ
≤M(d+ λτeατ )‖φ− u∗‖τe−α(tk−t0)

≤ e−(α+c)lM‖φ− u∗‖τe−α(tk−t0).

Then for t ∈ [tk, tk+1), we have

V (t, xt) ≤ V (tk, xtk)e
c(t−tk) ≤ V (tk, xtk)e

cl

≤ e−αlM‖φ− u∗‖τe−α(tk−t0)

≤M‖φ− u∗‖τe−α(t−t0).

This gives
‖x(t)‖ ≤ V (t, xt) ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [tk, tk+1),

which implies (7.11) holds for all t ≥ t0 and completes the proof.
When c is non-positive, the method in Theorem 7.1.1 can not be applied. Instead, using a

method similar to the one used to prove Theorem 7.1.2, we can obtain the following result.
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Theorem 7.1.3 Assume that there exist constants α, d > 0 such that max1≤i≤n {−ci+
∑n

j=1(|aji|
+|bji|)Li} , c ≤ 0 and |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d+ λτeατ ) ≤ −α(tk − tk−1), k ∈ N,

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}. Then the equilibrium point u = u∗ of system (7.1) is
globally exponentially stable.

Proof. Choosing the same Lyapunov functional and using the same argument as in Theo-
rem 7.1.1, we obtain that D+V (t, xt) ≤ cV (t, xt) for t ∈ [tk−1, tk). Since c ≥ 0, we have
D+V (t, xt) ≤ 0 for t ≥ t0. Then similarly to Theorem 7.1.1, we have

‖x(t)‖ ≤ V (t, xt) ≤ V (t0, xt0)

≤ (1 + λτ)‖φ− u∗‖τ
≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t0, t1),

where M = (1 + λτ)ecl. And hence we have

‖x(t−1 )‖ ≤M‖φ− u∗‖τe−α(t1−t0),

and
‖xt−1 ‖τ ≤M‖φ− u∗‖τeατe−α(t1−t0).

Then for t ∈ [t1, t2), we obtain

V (t, xt) ≤ V (t1, xt1) ≤ d‖x(t−1 )‖+ λτ‖xt−1 ‖τ
≤ (d+ λτeατ )M‖φ− u∗‖τe−α(t1−t0)

≤ e−α(t2−t1)M‖φ− u∗‖τe−α(t1−t0)

≤M‖φ− u∗‖τe−α(t−t0),

which gives
‖x(t)‖ ≤ V (t, xt) ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t1, t2).

Similarly, we can prove that

‖x(t)‖ ≤ V (t, xt) ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [tk−1, tk), k ∈ N,

and so the result follows.

By using the same method in Theorem 7.1.1 and a different Lyapunov functional, we have
the following result.
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Theorem 7.1.4 Assume that there exist constants l, α, d > 0 such that τ ≤ tk − tk−1 ≤ l,
|Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d2 + λτ) ≤ −(c+ 2α)l,

where c = max1≤i≤n{−2ci +
∑n

j=1(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)} > 0, and λ =

max1≤j≤n{
∑n

i=1 |bij|Lj}. Then the equilibrium point u = u∗ of system (7.1) is globally ex-
ponentially stable.

Proof. Choose the Lyapunov functional

V (t, xt) =
n∑
i=1

[x2
i (t) +

n∑
j=1

|bij|Lj
∫ t

t−τj
x2
j(s)ds].

Then the upper right-hand derivative of V with respect to system (7.4) is

D+V (t, xt) =
n∑
i=1

[2xi(t){−cixi(t) +
n∑
j=1

aij(fj(xj(t) + u∗j)− fj(u
∗
j)) +

n∑
j=1

bij

× (fj(xj(t− τj) + u∗j)− fj(u
∗
j))}+

n∑
j=1

|bij|Lj(x2
j(t)− x2

j(t− τj))]

≤
n∑
i=1

[−2cix
2
i (t) +

n∑
j=1

2|xi(t)||aij|Lj|xj(t)|+
n∑
j=1

2|xi(t)||bij|Lj

× |xj(t− τj)|+
n∑
j=1

|bij|Lj(|xj(t)|2 − |xj(t− τj)|2)]

≤ −2
n∑
i=1

cix
2
i (t) +

n∑
i=1

n∑
j=1

|aij|Lj(|xi(t)|2 + |xj(t)|2) +
n∑
i=1

n∑
j=1

|bij|Lj

× (|xi(t)|2 + |xj(t− τj)|2) +
n∑
i=1

n∑
j=1

|bij|Lj(|xj(t)|2 − |xj(t− τj)|2)

≤
n∑
i=1

[−2ci +
n∑
j=1

(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)]|xi(t)|2

≤ cV (t, xt), t ∈ [tk−1, tk), k ∈ N,



CHAPTER 7. APPLICATIONS TO NEURAL NETWORKS 153

where c = max1≤i≤n{−2ci +
∑n

j=1(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)} > 0. Thus we have

V (t, xt) ≤ V (tk−1, xtk−1
)ec(t−tk−1), t ∈ [tk−1, tk), k ∈ N. (7.13)

Then, for t ∈ [t0, t1),

V (t, xt) ≤ V (t0, xt0)e
c(t−t0)

≤ [‖x(t0)‖2 + max1≤j≤n{
∑n

i=1 |bij|Lj}τ‖φ− u∗‖τ )2]ec(t−t0)

≤ (1 + λτ)‖φ− u∗‖2
τe
c(t1−t0),

(7.14)

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, ‖x(t)‖ = (
∑n

i=1 |xi|2)
1
2 . Then

‖x(t)‖ ≤
√
V (t, xt) ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t0, t1), (7.15)

where M =
√

1 + λτe(
c
2
+α)l. So from (7.14) and (7.15), we have

‖x(t−1 )‖2 ≤ (1 + λτ)‖φ− u∗‖2
τe
c(t1−t0),

‖xt−1 ‖
2
τ ≤ (1 + λτ)‖φ− u∗‖2

τe
c(t1−t0).

(7.16)

Therefore we obtain

V (t1, xt1) =
∑n

i=1(|xi(t1)|2 +
∑n

j=1 |bij|Lj
∫ t1
t1−τj |xj(s)|

2ds)

≤ d2‖x1(t
−
1 )‖2 +

∑n
i=1

∑n
j=1 |bij|Lj|xjt−1 |

2
ττj

≤ d2‖x1(t
−
1 )‖2 + τλ‖xt−1 ‖

2
τ ≤ (d2 + λτ)‖xt−1 ‖

2
τ

≤ (d2 + λτ)(1 + λτ)‖φ− u∗‖2
τe
c(t1−t0)

≤ e−(c+2α)lM2‖φ− u∗‖2
τe
−2αl.

Thus we have, for t ∈ [t1, t2),

V (t, xt) ≤ V (t1, xt1)e
c(t−t1) ≤ V (t1, xt1)e

cl

≤ e−4αlM2‖φ− u∗‖2
τ

= M2‖φ− u∗‖2
τe
−2α(t−t0),

and hence we obtain

‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ∈ [t1, t2).

Similarly to the proof that used in Theorem 7.1.1, we can derive

‖x(t)‖ ≤M‖φ− u∗‖τe−α(t−t0), t ≥ t0,

which completes the proof.
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Remark 7.1.1 Compared to Theorem 7.1.1, the result in Theorem 7.1.4, if both theorems are
applicable (i.e. c > 0), seems less restrictive for small values of α and l. Hence we expect a
larger bound on the impulse amplitude d from Theorem 7.1.4 in the stability analysis of the same
problem; however, for big values of c, either the difference is small or we can obtain a larger
bound on the impulse amplitude d from Theorem 7.1.1, see Example 7.1.1.

Example 7.1.1 Consider the following cellular neural networks with time delay

du1(t)
dt

= −u1(t) + 1
2
f(u1(t)) + 1

2
f(u2(t))− 3

2
f(u1(t− 0.01))

−3
2
f(u2(t− 0.075)) + 2, t ≥ 0;

du2(t)
dt

= −0.5u2(t) + 1
2
f(u1(t)) + f(u2(t))− f(u1(t− 0.01))

−1
2
f(u2(t− 0.075)) + 2, t ≥ 0;

x0 = φ,

(7.17)

where f(s) = 1
2
(|s+ 1| − |s− 1|) for any s ∈ R, φ ∈ PC([−0.01, 0],R2).

By direct computation, we know that u∗ = (0.5, 4.5) is the unique equilibrium point of the
cellular neural networks (7.17).

It is easy to check that the condition in Corollary 3 ([24]) does not hold since

c1 < |a11|+ |a12|+ |b11|+ |b12|;
c2 < |a21|+ |a22|+ |b21|+ |b22|,

and the condition in [5] is not satisfied since the matrix −(A + AT ) is not positive definite, so
the equilibrium point u∗ might not be exponentially stable. Actually, the numerical simulation
shows that u∗ is not even asymptotically stable. See Figure 7.1 for graphs of the solutions with
different initial functions φ = (−0.1H(t), 4H(t))T , (2H(t), 6H(t))T , (6H(t),−5H(t))T , where
H(t) is the Heaviside step function.

Let c = 3 > 0, λ = 5
2
, τ = 0.01. Choose α = 0.1 and l = 0.5. Then by Theorem 7.1.1, the

estimate for the impulse amplitude which can stabilize this cellular neural network is

d ≤ e−(α+c)l − λτ ≤ 0.1872.

Thus we can choose the impulse control functions Ii(s) = −0.85s + 0.85u∗i for any s ∈ R to
stabilize cellular neural network (7.17). See Figure 7.2 for the numerical simulations with the
same initial functions as in Figure 7.1.
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Figure 7.1: Numerical simulation of Example 7.1.1, system without impulses.

However, if we use Theorem 7.1.4 instead, we obtain c = 5.5 > 0 and an estimate for the
impulse amplitude which can stabilize this cellular neural network is

d ≤
√
e−(2α+c)l − λτ ≤ 0.1669,

which allows a smaller bound for the impulse amplitude. If we choose smaller l, for example,
l = 0.25 in both theorems, then from Theorem 7.1.4 we obtain d ≤ 0.4588, which is a larger
bound for the amplitude of impulsive control than the result d ≤ 0.4357 from Theorem 7.1.1.
This verifies the prediction in Remark 7.1.1.

Using the same Lyapunov functional as in Theorem 7.1.4 and a similar method as in Theorem
7.1.2 and Theorem 7.1.4, we have the following result.

Theorem 7.1.5 Assume that there exist constants l, α, d > 0 such that tk − tk−1 ≤ l, |Ii(y +

u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d2 + λτe2ατ ) ≤ −(c+ 2α)l,
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Figure 7.2: Numerical simulation of Example 7.1.1, system with impulsive control.

where c = max1≤i≤n{−2ci+
∑n

j=1(|aji|Li+|aij|Lj+|bji|Li+|bij|Lj)} > 0, λ = max1≤j≤n{
∑n

i=1

|bij|Lj}. Then the equilibrium point u = u∗ of system (7.1) is globally exponentially stable.

Using the same Lyapunov functional as in Theorem 7.1.4 and a similar method as was used
to prove Theorem 7.1.3 and Theorem 7.1.4, we have the following result.

Theorem 7.1.6 Assume that there exist constants α, d > 0 such that max1≤i≤n {−2ci+
∑n

j=1(Li

|aji|+ |aij|Lj + |bji|Li + |bij|Lj)} , c ≤ 0 and |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d2 + λτe2ατ ) ≤ −α(tk − tk−1), k ∈ N∗,

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}. Then the equilibrium point u = u∗ of system (7.1) is
globally exponentially stable.

Remark 7.1.2 Notice that the cellular neural networks without impulses might be stable when
c ≤ 0 in Theorem 7.1.6 and Theorem 7.1.3, see Example 7.1.2.
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In Example 7.1.1, we show how Theorem 7.1.1 and Theorem 7.1.4 can be applied to stabilize
the unstable neural network (7.17). Next we shall try to use Theorem 7.1.3 to determine the
stability of neural networks. In fact, when c ≤ 0, the neural network without impulses might be
stable, as the following example indicates.

Example 7.1.2 Consider the following cellular neural networks with time delay

du1(t)
dt

= −2u1(t) + 2
3
f(u1(t)) + 1

5
f(u2(t)) + 4

5
f(u1(t− 0.01))

+1
3
f(u2(t− 0.075)) + 3, t ≥ 0;

du2(t)
dt

= −2u2(t) + 1
3
f(u1(t)) + 4

5
f(u2(t)) + 1

5
f(u1(t− 0.01))

+2
3
f(u2(t− 0.075)) + 2.5, t ≥ 0;

x0 = φ,

(7.18)

where f(s) = 1
2
(|s+ 1| − |s− 1|) for any s ∈ R, φ ∈ PC([−0.01, 0],R2).

By direct computation, we know that u∗ = (2.5, 2.25) is the unique equilibrium point of the
cellular neural networks (7.18). Moreover, ci = 2 =

∑n
j=1(|aji| + |bji|)Li = 1

2

∑n
j=1(|aji|Li +

|aij|Lj + |bji|Li + |bij|Lj), which yields c = 0 in Theorem 7.1.3 and Theorem 7.1.6. The simu-
lations, with initial functions φ = (−5H(t), 5H(t))T , (2H(t), 3H(t))T , (3H(t), 2H(t))T (see
Figure 7.3), show that the equilibrium point u∗ of this system might be globally exponentially
stable.

7.2 Exponential Stability

This section investigates the problem of exponential stability for a class of impulsive cellular
neural networks with time delay. By dividing the network state variables into subgroups accord-
ing to the characters of the neural networks, some sufficient conditions for exponential stability
are derived by Lyapunov functionals and the method of variation of parameters. These conditions
are given in terms of some blocks of the interconnection matrix, which extend and improve some
of the known results in the literature. Our results show that impulses may be used to stabilize
the cellular neural networks with time delay if they are not stable (or exponentially stable). On
the other hand, if impulses are input disturbances, criteria on the magnitude and frequency of
the impulses are also established to maintain the stability property of the original system. Our
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Figure 7.3: Numerical simulation of Example 7.1.2, stable system when c = 0.

results generalize and improve some of the known results. Two numerical examples are given to
illustrate our results.

Given a constant τ ∗ > 0, we equip the linear space PC([−τ ∗, 0],Rn) with the norm ‖ · ‖τ∗
defined by ‖ψ‖τ∗ = sup−τ∗≤s≤0 ‖ψ(s)‖.

Consider the impulsive delayed cellular neural networks described by the following impulsive
delay differential equations

dx(t)
dt

= −x(t) + Af(x(t)) +Bf(x(t− τ)) + u, t ∈ [tk−1, tk),

x(t) = Ik(x(t
−)), t = tk, k ∈ N,

xt0 = φ,

(7.19)

where x(·) = [x1(·), x2(·), · · · , xn(·)]T is the state vector representing the membrane potential
of the units i = 1, 2, · · · , n; u = [u1, u2, · · · , un]T is a constant vector denoting the external bias
or input from outside the network to the units; A,B ∈ Rn×n are feedback matrices; x(t − τ) =

[x1(t − τ1), x2(t − τ2), · · · , xn(t − τn)]
T , where τi, bounded by τ ∗, are constants denoting the
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transmission delay; f : PC([−τ ∗, 0],Rn) → Rn is the activation function given by fi(xi(·)) =
1
2
(|xi(·) + 1| − |xi(·) − 1|), i = 1, 2, · · · , n; φ ∈ PC([−τ ∗, 0],Rn) is the initial function;
Ik ∈ PC([−τ ∗, 0],Rn) represents the effects of impulsive control or perturbation; tk is impulse
moment and 0 ≤ t0 < t1 < t2 < · · · < tk < · · · , with tk → ∞ as k → ∞; ∆x(t) = x(t+) −
x(t−); and xt, xt− ∈ PC([−τ ∗, 0],Rn) are defined by xt(s) = x(t + s), xt−(s) = x(t− + s) for
−τ ∗ ≤ s ≤ 0, respectively.

From [10, 135], we know that system (7.19) without impulses (or Ik(x) = x for any x ∈ Rn)
has at least one equilibrium point. Denote one of the equilibrium points by x∗ = [x∗1, x

∗
2, · · · , x∗n]T .

We shall investigate the exponential stability of this equilibrium point x∗. The concept of expo-
nential stability is defined as follows.

Definition 7.2.1 An equilibrium x∗ of system (7.19) is said to be exponentially stable, if for any
initial function xt0 = φ ∈ PC([−τ ∗, 0],Rn), there exists some M, α > 0 such that

‖x(t, t0, φ)− x∗‖ ≤M‖φ− x∗‖τ∗e−α(t−t0), for all t ≥ t0, (7.20)

where t0 ∈ R+.

Define y(·) = x(·)− x∗ and then system (7.19) can be simplified as
dy(t)
dt

= −y(t) + A(f(y(t) + x∗)− f(x∗)) +B(f(y(t− τ) + x∗)− f(x∗)),

t ≥ t0, t 6= tk, k ∈ N,
y(t) = Ik(y(t

−) + x∗)− x∗, t = tk, k ∈ N,
yt0 = φ− x∗.

(7.21)

Let us divide the set Ĩ = 1, 2, · · · , n into subsets Ĩ1, Ĩ2, Ĩ3 such that Ĩ = Ĩ1
⋃
Ĩ2
⋃
Ĩ3, where

Ĩ1 = {i ∈ Ĩ |x∗i > 1}, Ĩ2 = {i ∈ Ĩ | |x∗i | ≤ 1} and Ĩ3 = {i ∈ Ĩ |x∗i < −1}. Then we rearrange
the order of yi, x∗i and let z = {z1, z2, · · · , zn} equate the rearranged y = {yi1 , yi2 , · · · , yin},
φ∗ = {φ∗1, φ∗2, · · · , φ∗n} equate the rearranged φ = {φi1 , φi2 , · · · , φin} and z∗ = {z∗1 , z∗2 , · · · , z∗n}
equate the rearranged x∗ = {x∗i1 , x

∗
i2
, · · · , x∗in} such that Ĩ1 = {1, 2, · · · , r}, Ĩ2 = {r + 1, r +

2, · · · , r + m}, Ĩ3 = {r + m + 1, r + m + 2, · · · , n}, where r, m are nonnegative integers. In
order to introduce the method, we assume that Ĩ2 6= ∅. Let

z(t) =

 z(1)(t)

z(2)(t)

z(3)(t)

 ,



160 STABILITY AND BOUNDEDNESS OF IMPULSIVE SYSTEMS

where
z(1)(t) = (z1(t), z2(t), · · · , zr(t))T ,
z(2)(t) = (zr+1(t), zr+2(t), · · · , zr+m(t))T ,

z(3)(t) = (zr+m+1(t), zr+m+2(t), · · · , zn(t))T .

Assume that Ik(y(t−) + x∗) − x∗ = [IT1k(z
(1)(t−)), IT2k(z

(2)(t−)), IT3k(z
(3)(t−))]T , where I1k ∈

C(Rr,Rr), I2k ∈ C(Rm,Rm), I3k ∈ C(Rn−r−m,Rn−r−m) with Iik(0) ≡ 0 for i = 1, 2, 3. Then
system (7.21) is rewritten by

dz(1)(t)
dt

= −z(1)(t) + A11g(z
(1)(t)) + A12g(z

(2)(t)) + A13g(z
(3)(t))

+B11g(z
(1)(t− τ)) +B12g(z

(2)(t− τ)) +B13g(z
(3)(t− τ)), t ≥ t0, t 6= tk,

dz(2)(t)
dt

= −z(2)(t) + A21g(z
(1)(t)) + A22g(z

(2)(t)) + A23g(z
(3)(t))

+B21g(z
(1)(t− τ)) +B22g(z

(2)(t− τ)) +B23g(z
(3)(t− τ)), t ≥ t0, t 6= tk,

dz(3)(t)
dt

= −z(3)(t) + A31g(z
(1)(t)) + A32g(z

(2)(t)) + A33g(z
(3)(t))

+B31g(z
(1)(t− τ)) +B32g(z

(2)(t− τ)) +B33g(z
(3)(t− τ)), t ≥ t0, t 6= tk,

z(1)(tk) = I1k(z
(1)(t−k )), z(2)(tk) = I2k(z

(2)(t−k )),

z(3)(tk) = I3k(z
(3)(t−k )), zt0 = φ∗ − z∗, k ∈ N,

(7.22)

where [gT (z(1)(·)), gT (z(2)(·)), gT (z(3)(·))]T = f(z(·) + z∗)− f(z∗).
Let q = min{mini∈eI1(x

∗
i − 1),mini∈eI3(−1 − x∗i )}, then q > 0. Assume that the initial

function φ satisfies supt0−τi≤t≤t0 |φi(t) − x∗i | < q for i = 1, 2, · · · , n. Then by continuity, there
exists a T > 0, such that |zi(t)| < q for t ∈ [−τi, T ). By the choice of q it is easy to verify that
if z∗i ∈ Ĩj , then zi(t) + z∗i ∈ Ĩj for j = 1, 3 and t ∈ [t0 − τi, T ); thus for any t ∈ [t0, T ), we have

fi(zi(t) + z∗i )− fi(z
∗
i ) = 0, fi(zi(t− τi) + z∗i )− fi(z

∗
i ) = 0, ∀i ∈ Ĩ1

⋃
Ĩ3,

and then g(z(1)(·)) ≡ g(z(3)(·)) ≡ 0. Hence for any t ∈ [0, T ), system (7.22) is equivalent to

dz(1)(t)
dt

= −z(1)(t) + A12g(z
(2)(t)) +B12g(z

(2)(t− τ)), t ≥ t0, t 6= tk,
dz(2)(t)
dt

= −z(2)(t) + A22g(z
(2)(t)) +B22g(z

(2)(t− τ)), t ≥ t0, t 6= tk,
dz(3)(t)
dt

= −z(3)(t) + A32g(z
(2)(t)) +B32g(z

(2)(t− τ)), t ≥ t0, t 6= tk,

z(1)(tk) = I1k(z
(1)(t−k )), z(2)(tk) = I2k(z

(2)(t−k )),

z(3)(tk) = I3k(z
(3)(t−k )), zt0 = φ∗ − z∗, k ∈ N.

(7.23)

Next, we shall discuss the exponential stability of the equilibrium point x∗ of system (7.19).
In the theorems, we first obtain an exponential estimate of the second group of the neurons
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by employing Lyapunov functionals. Then we obtain exponential estimates of the other two
groups of neurons by using the method of variation of parameters. For convenience, we shall use
‖φ − x∗‖τ∗ instead of ‖φ∗ − z∗‖τ∗ in the following presentations, since they are equal to each
other.

Theorem 7.2.1 Assume that I1k = I3k = E withE representing the identity map, and there exist
constants l, α, d2k > 0 such that τ ∗ ≤ tk − tk−1 ≤ l and ‖I2k(x)‖ ≤ d2k‖x‖ for any x ∈ Rm

and k ∈ N with
ln(d2

2k + τ ∗‖B22‖) ≤ −(α+ c)l,

where c = 2(‖A22‖ + ‖B22‖ − 1) > 0. Then the equilibrium point x = x∗ of system (7.19) is
exponentially stable.

Proof. Choose Lyapunov functional

V (t, z
(2)
t ) = ‖z(2)(t)‖2 + ‖B22‖

r+m∑
j=r+1

∫ t

t−τj
z2
j (s)ds.

Then the upper right-hand derivative of V with respect to the second equation of system (7.23)
is

D+V (t, z
(2)
t ) = 2z(2)T (t)

[
− z(2)(t) + A22g(z

(2)(t))

+B22g(z
(2)(t− τ))

]
+ ‖B22‖(‖z(2)(t)‖2 − ‖z(2)(t− τ)‖2)

≤ 2
(
− 1 + ‖A22‖+ ‖B22‖

)
‖z(2)(t)‖2

≤ cV (t, z
(2)
t ), t ∈ [tk−1, tk)

⋂
[t0, T ), k ∈ N,

where c = 2(‖A22‖+ ‖B22‖ − 1) > 0. Thus we have

V (t, z
(2)
t ) ≤ V (tk−1, z

(2)
tk−1

)ec(t−tk−1), t ∈ [tk−1, tk)
⋂

[t0, T ), k ∈ N. (7.24)

Then, we obtain that, for t ∈ [t0, t1)
⋂

[t0, T ),

V (t, z
(2)
t ) ≤ V (t0, z

(2)
t0 )ec(t−t0)

≤ (‖φ− x∗‖2
τ∗ + ‖B22‖τ ∗‖φ− x∗‖2

τ∗)e
cl

≤ (1 + τ ∗‖B22‖)ecl‖φ− x∗‖2
τ∗

≤M2‖φ− x∗‖2
τ∗e

−α(t−t0),

(7.25)



162 STABILITY AND BOUNDEDNESS OF IMPULSIVE SYSTEMS

where M =
√

(1 + τ ∗‖B22‖)e(c+α)l, so we have

‖z(2)(t)‖2 ≤ V (t, z
(2)
t ) ≤M2‖φ− x∗‖2

τ∗e
−α(t−t0), t ∈ [t0, t1)

⋂
[t0, T ),

i.e.
‖z(2)(t)‖ ≤M‖φ− x∗‖τ∗e−

α
2
(t−t0), t ∈ [t0, t1)

⋂
[t0, T ). (7.26)

And we have

V (t1, z
(2)
t1 ) = ‖z(2)(t1)‖2 + ‖B22‖

∑r+m
j=r+1

∫ t1
t1−τj z

2
j (s)ds

= d2
21‖z(2)(t−1 )‖2 + ‖B22‖

∑r+m
j=r+1

∫ t−1
t−1 −τj

z2
j (s)ds

≤ d2
21‖z(2)(t−1 )‖2 + ‖B22‖τ ∗‖z(2)(t−1 )‖2

τ∗ .

(7.27)

By (7.25) we have

‖z(2)
t ‖2

τ∗ ≤ V (t, z
(2)
t ) ≤ (1 + τ ∗‖B22‖)ecl‖φ− x∗‖2

τ∗

≤M2‖φ− x∗‖2
τ∗e

−α(t1−t0).

Then by inequality (7.26) and the assumptions, we have

V (t1, z
(2)
t1 ) ≤ (d2

21 + ‖B22‖τ ∗)‖z(2)

t−1
‖2
τ∗

≤ (d2
21 + ‖B22‖τ ∗)M2‖φ− x∗‖2

τ∗e
−α(t1−t0)

≤ e−(α+c)lM2‖φ− x∗‖2
τ∗e

−α(t1−t0).

(7.28)

Thus by (7.24) and (7.28), we have

V (t, z
(2)
t ) ≤ V (t1, z

(2)
t1 )ec(t−t1)

≤M2‖φ− x∗‖2
τ∗e

−α(t1−t0)e−αl

≤M2‖φ− x∗‖2
τ∗e

−α(t2−t0), t ∈ [t1, t2)
⋂

[t0, T ).

(7.29)

So we have

‖z(2)(t)‖2 ≤ V (t, z
(2)
t ) ≤M2‖φ− x∗‖2

τ∗e
−α(t−t0), t ∈ [t1, t2)

⋂
[t0, T ),

i.e.
‖z(2)(t)‖ ≤M‖φ− x∗‖τ∗e−

α
2
(t−t0), t ∈ [t1, t2)

⋂
[t0, T ). (7.30)
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Similarly, we can obtain

‖z(2)(t)‖ ≤M‖φ− x∗‖τ∗e−
α
2
(t−t0), t ∈ [tk−1, tk)

⋂
[t0, T ), ∀k ∈ N, (7.31)

which implies
‖z(2)(t)‖ ≤M‖φ− x∗‖τ∗e−

α
2
(t−t0), t ∈ [t0, T ). (7.32)

By the assumption, z(1)(t) and z(3)(t) are continuous for t ∈ [t0, T ). Then by equation (7.23)
and the method of variation of parameters, we have

z(i)(t) = z(i)(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)(Ai2g(z(2)(s)) +Bi2g(z
(2)(s− τ))

)
ds,

for t ∈ [t0, T ), i = 1, 3. (7.33)

Using the estimate of z(2)(t) (i.e. (7.32)), we have

‖z(i)(t)‖ ≤ ‖z(i)(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

≤ ‖φ− x∗‖τ∗
(
e−(t−t0) +

∫ t

t0

e−(t−s)M
(
‖Ai2‖

+‖Bi2‖e
α
2
τ∗
)
e−

α
2
(s−t0)ds

)
≤ ‖φ− x∗‖τ∗

(
e−(t−t0) + e−tM

(
‖Ai2‖+ ‖Bi2‖e

α
2
τ∗
)

×
∫ t

t0

es−
α
2
(s−t0)ds

)
, t ∈ [t0, T ), i = 1, 3. (7.34)

By direct calculation, we obtain from (7.34) that

(1) when α = 2, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤ ‖φ− x∗‖τ∗
[
1 +MT (‖Ai2‖+ ‖Bi2‖eτ

∗
)
]
e−(t−t0);

(2) when 0 < α < 2, i.e. 1− α
2
> 0, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤ ‖φ− x∗‖τ∗
[
1 +M

‖Ai2‖+ ‖Bi2‖e
α
2
τ∗

1− α
2

]
e−

α
2
(t−t0);
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(3) when α > 2, i.e. 1− α
2
< 0, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤ ‖φ− x∗‖τ∗
[
1 +M

‖Ai2‖+ ‖Bi2‖e
α
2
τ∗

α
2
− 1

]
e−(t−t0).

In summary, we have

‖z(i)(t)‖ ≤ M̃‖φ− x∗‖τ∗e−eα(t−t0), t ∈ [t0, T ), i = 1, 3,

where α̃ = min{1, α
2
} and

M̃ = max{i=1,3}{1 +MT (‖Ai2‖+ ‖Bi2‖eτ
∗
), 1 +M ‖Ai2‖+‖Bi2‖e

α
2 τ∗

1−α
2

,

1 +M ‖Ai2‖+‖Bi2‖e
α
2 τ∗

α
2
−1

}.

This, together with (7.32), implies that

‖z(i)(t)‖ ≤ max{M, M̃}‖φ− x∗‖τ∗e−eα(t−t0), t ∈ [t0, T ), i = 1, 2, 3.

If we choose ‖φ − x∗‖τ∗ < q

max{M,fM}
, then ‖z(i)(t)‖ < q for any t ∈ [t0, T ) and i =

1, 2, 3. Thus by repeating these procedures, we can show that the same result holds for any
t ∈ [T, T1), [T1, T2), · · · , [Tn−1, Tn) with Tn → ∞ as t → ∞. So under the assumptions of
the theorem, the interval of existence of the solution of system (7.23) is [t0,∞) and the trivial
solution of system (7.23) is exponentially stable, and hence the equilibrium point x∗ of system
(7.19) is exponentially stable.

Remark 7.2.1 Notice that in Theorem 7.2.1, the neural networks (7.19) without impulses might
be unstable under the condition ‖A22‖ + ‖B22‖ > 1, see Example 7.2.1 and [135]. Thus the
impulses here play an important role to stabilize the neural networks. According to the method
we used in this theorem, it is good enough to control the second group of neurons z(2)(t). Hence
in Corollary 7.2.1, we obtain sufficient conditions on impulses of the other two groups of neurons
such that the stability property is maintained for certain impulsive perturbations.
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Example 7.2.1 Consider the following cellular neural networks with time delay

dx1(t)
dt

= −x1(t)− 2f1(x1(t)) + f2(x2(t)) + 1
3
f3(x3(t)) + 2f1(x1(t− 0.25))

+1
2
f2(x2(t− 0.5)) + 2

3
f3(x3(t− 0.3)) + 3, t ≥ 0,

dx2(t)
dt

= −x2(t) + 3f1(x1(t)) + 3
2
f2(x2(t)) + f3(x3(t)) + 1

2
f1(x1(t− 0.25))

−1
4
f2(x2(t− 0.5)) + 5f3(x3(t− 0.3)) + 5

2
, t ≥ 0,

dx3(t)
dt

= −x3(t)− f1(x1(t)) + 1
4
f2(x2(t)) + f3(x3(t))− 2f1(x1(t− 0.25))

+1
2
f2(x2(t− 0.5)) + f3(x3(t− 0.3)) + 3, t ≥ 0,

x0 = φ.

(7.35)

By direct computation, we know that x∗ = (2, 0,−2) is an isolated equilibrium point of the
cellular neural networks (7.35). Since x∗i ∈ Ĩi for i = 1, 2, 3, z(i)(·) = yi(·). Let y = x− x∗, for
‖φi − x∗i ‖0.5 < δ = 1, ‖yi‖τi < 1, and then system (7.35) is simplified as

dy1(t)
dt

= −y1(t) + g(y2(t)) + 1
2
g(y2(t− 0.5)), t ≥ 0,

dy2(t)
dt

= −y2(t) + 3
2
g(y2(t))− 1

4
g(y2(t− 0.5)), t ≥ 0,

dy3(t)
dt

= −y3(t) + 1
4
g(y2(t)) + 1

2
f(x2(t− 0.5)), t ≥ 0,

y0 = φ− x∗,

(7.36)

where g(y2(·)) = f2(y2(·) + x∗2)− f2(x
∗
2).

We notice that ci = 1 <
∑3

j=1(|aij| + |bij|) for i = 1, 2, 3, so Corollary 3 in [24] cannot be
used. And ‖A22‖+‖B22‖ = 1.75 > 1, Theorem 1 in [135] cannot be applied. In fact, the equilib-
rium x∗ is not stable, see Figure 7.4 for the simulation of the non-impulsive system with the initial
functions φ = (2.05H(t), 0.15H(t),−1.85H(t))T , φ = (1.9H(t),−0.2H(t),−2.2H(t))T and
φ = (2.2H(t),−0.4H(t),−2.4H(t))T , where H(t) is the Heaviside step function. From the
graph, we can see that the solutions starting from the neighborhood of x∗ all go away from x∗

and converge to another equilibrium point (3.5, 1.25,−1.25)T .
By Theorem 7.2.1, applying the impulsive control y2(k) = 0.02y2(k

−) will stabilize the
delayed cellular neural networks with d2k = 0.02, τ ∗ = 0.5, α = 0.5, c = 1.5. The simulations
of the impulsive cellular neural networks with time delay and the same initial functions are given
in Figure 7.5.
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Figure 7.4: Numerical simulation of Example 7.2.1, system without impulses.

Theorem 7.2.2 Assume that there exist constants bik ≥ 0 with
∑∞

k=1 bik <∞ for i = 1, 2, 3 and
k ∈ N such that ‖A22‖+ ‖B22‖ < 1 and

‖Iik(z(i))‖2 ≤ (1 + bik)‖z(i)‖2, i = 1, 2, 3, k ∈ N;

where z(1) ∈ Rr, z(2) ∈ Rm and z(3) ∈ Rn−r−m. Then the equilibrium point x = x∗ of system
(7.19) is exponentially stable.

Proof. Since ‖A22‖+ ‖B22‖ < 1, there exists some α ∈ (0, 1) such that

2− 2‖A22‖ − (1 + eατ
∗
)‖B22‖ − α ≥ 0. (7.37)

Choose the Lyapunov functional

V (t, z
(2)
t ) = ‖z(2)(t)‖2eαt + ‖B22‖

r+m∑
j=r+1

∫ t

t−τj
z2
j (s)e

α(s+τj)ds.



CHAPTER 7. APPLICATIONS TO NEURAL NETWORKS 167

Figure 7.5: Numerical simulation of Example 7.2.1, system with impulsive control.

Then the upper right-hand derivative of V with respect to the second equation of system (7.23)
is

D+V (t, z
(2)
t ) = 2eαtz(2)T (t)

(
− z(2)(t) + A22g(z

(2)(t)) +B22g(z
(2)(t− τ)

)
+α‖z(2)(t)‖2eαt + ‖B22‖

r+m∑
j=r+1

(
z

(2)
j (t)eα(t+τj) − z

(2)
j (t− τj)e

αt
)

≤ −
(
2− α− 2‖A22‖ − eατ

∗‖B22‖
)
‖z(2)(t)‖2eαt

+2eαt‖B22‖‖z(2)(t)‖‖z(2)(t− τ)‖ − ‖B22‖‖z(2)(t− τ)‖2eαt

≤ −(2− α− 2‖A22‖ − ‖B22‖ − eατ
∗‖B22‖)‖z(2)(t)‖2eαt

≤ 0, t ∈ [tk−1, tk)
⋂

[t0, T ), k ∈ N.

Hence we have

V (t, z
(2)
t ) ≤ V (tk, z

(2)
tk

), t ∈ [tk, tk+1)
⋂

[t0, T ), k ∈ {0}
⋃

N.
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From the hypothesis, we have

V (tk, z
(2)
tk

) = ‖z(2)(tk)‖2eαtk + ‖B22‖
∑r+m

j=r+1

∫ tk
tk−τj

z2
j (s)e

α(s+τj)ds

≤ (1 + b2k)‖z(2)(t−k )‖2eαt
−
k + ‖B22‖

∑r+m
j=r+1

∫ t−k
t−k −τj

z2
j (s)e

α(s+τj)ds

≤ (1 + b2k)V (t−k , z
(2)

t−k
), k ∈ N,

so
V (t, z

(2)
t ) ≤ V (tk, z

(2)
tk

) ≤ (1 + b2k)V (t−k , z
(2)

t−k
)

≤ · · ·
≤
∏k

j=1(1 + b2j)V (t0, z
(2)
t0 )

≤M2V (t0, z
(2)
t0 ), t ∈ [tk, tk+1)

⋂
[t0, T ), k ∈ {0}

⋃
N,

where M2 =
∏∞

j=1(1 + b2j) <∞. Then we obtain

‖z(2)(t)‖2eαt ≤ V (t, z
(2)
t ) ≤M2V (t0, z

(2)
t0 )

≤M2e
αt0(1 + 1

α
eατ

∗‖B22‖)‖φ− x∗‖2
τ∗ , t ∈ [tk, tk+1)

⋂
[t0, T ),

i.e.
‖z(2)(t)‖ ≤M∗

2‖φ− x∗‖τ∗e−
α
2
(t−t0), t ∈ [tk, tk+1)

⋂
[t0, T ), (7.38)

where M∗
2 =

√
M2(1 + 1

α
eατ∗‖B22‖).

By equation (7.23) and the method of variation of parameters, we have

z(i)(t) = z(i)(tk)e
−(t−tk) +

∫ t

tk

e−(t−s)(Ai2g(z(2)(s)) +Bi2g(z
(2)(s− τ))

)
ds,

for t ∈ [tk, tk+1)
⋂

[t0, T ), i = 1, 3. (7.39)

In view of (7.39) and the hypothesis, we have

‖z(i)(t)‖ ≤ ‖z(i)(tk)‖e−(t−tk) +
∫ t
tk
e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

≤
√

1 + bik‖z(i)(t−k )‖e−(t−tk) +
∫ t
tk
e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

≤ (1 + bik)‖z(i)(t−k )‖e−(t−tk) +
∫ t
tk
e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds, for t ∈ [tk, tk+1)

⋂
[t0, T ), i = 1, 3,
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which, together with

‖z(i)(t−k )‖ ≤ ‖z(i)(tk−1)‖e−(t−k −tk−1) +
∫ t−k
tk−1

e−(t−k −s)
(
‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds, i = 1, 3,

yields

‖z(i)(t)‖ ≤ (1 + bik)

[
‖z(i)(tk−1)‖e−(t−k −tk−1) +

∫ t−k

tk−1

e−(t−k −s)
(
‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

]
e−(t−tk) +

∫ t

tk

e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

≤ (1 + bik)‖z(i)(tk−1)‖e−(t−tk−1) + (1 + bik)

∫ t

tk−1

e−(t−s)(‖Ai2‖
×‖z(2)(s)‖+ ‖Bi2‖‖z(2)(s− τ)‖

)
ds

≤ (1 + bik)(1 + bi k−1)‖z(i)(t−k−1)‖e
−(t−tk−1) + (1 + bik)

∫ t

tk−1

e−(t−s)

×
(
‖Ai2‖‖z(2)(s)‖+ ‖Bi2‖‖z(2)(s− τ)‖

)
ds. (7.40)

Then by (7.39) again, we have

‖z(i)(t)‖ ≤ (1 + bik)(1 + bi k−1)
[
‖z(i)(tk−2)‖e−(t−k−1−tk−2) +

∫ t−k−1

tk−2

e−(t−k−1−s)

×
(
‖Ai2‖‖z(2)(s)‖+ ‖Bi2‖‖z(2)(s− τ)‖

)
ds
]
e−(t−tk−1) + (1 + bik)

×
∫ t

tk−1

e−(t−s)(‖Ai2‖‖z(2)(s)‖+ ‖Bi2‖‖z(2)(s− τ)‖
)
ds

≤ (1 + bik)(1 + bi k−1)
[
‖z(i)(tk−2)‖e−(t−tk−2) +

∫ t

tk−2

e−(t−s)

×
(
‖Ai2‖‖z(2)(s)‖+ ‖Bi2‖‖z(2)(s− τ)‖

)
ds
]
.
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It follows by induction

‖z(i)(t)‖ ≤
k∏
j=1

(1 + bij)

[
‖z(i)(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

]
≤ Mi

[
‖z(i)(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

]
, for t ∈ [tk, tk+1)

⋂
[t0, T ),

where Mi =
∏∞

j=1(1 + bij), i = 1, 3. By (7.40) and the estimate of z(2)(t) (i.e. (7.38)), we have

‖z(i)(t)‖ ≤ Mi

[
‖z(i)(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)(‖Ai2‖‖z(2)(s)‖

+‖Bi2‖‖z(2)(s− τ)‖
)
ds

]
≤ Mi‖φ− x∗‖τ∗

(
e−(t−t0) +

∫ t

t0

e−(t−s)M∗
2

(
‖Ai2‖

+‖B22‖e
α
2
τ∗
)
e−

α
2
(s−t0)ds

)
≤ Mi‖φ− x∗‖τ∗

(
e−(t−t0) + e−tM∗

2

(
‖Ai2‖+ ‖B22‖e

α
2
τ∗
)

×
∫ t

t0

es−
α
2
(s−t0)ds

)
, t ∈ [t0, T ), i = 1, 3. (7.41)

By direct calculation, we obtain from (7.41) that

(1) when α = 2, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤Mi‖φ− x∗‖τ∗
[
1 +M∗

2T (‖Ai2‖+ ‖Bi2‖eτ
∗
)
]
e−(t−t0);

(2) when 0 < α < 2, i.e. 1− α
2
> 0, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤Mi‖φ− x∗‖τ∗
[
1 +M∗

2

‖Ai2‖+ ‖Bi2‖e
α
2
τ∗

1− α
2

]
e−

α
2
(t−t0);
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(3) when α > 2, i.e. 1− α
2
< 0, for t ∈ [t0, T ), i = 1, 3, we have

‖z(i)(t)‖ ≤Mi‖φ− x∗‖τ∗
[
1 +M∗

2

‖Ai2‖+ ‖Bi2‖e
α
2
τ∗

α
2
− 1

]
e−(t−t0).

In summary, we have

‖z(i)(t)‖ ≤ M̃‖φ− x∗‖τ∗e−eα(t−t0), t ∈ [t0, T ), i = 1, 3,

where α̃ = min{1, α
2
} and

M̃ = max{i=1,3}{Mi[1 +M∗
2T (‖Ai2‖+ ‖Bi2‖eτ

∗
)],

Mi[1 +M∗
2
‖Ai2‖+‖Bi2‖e

α
2 τ∗

1−α
2

],

Mi[1 +M∗
2
‖Ai2‖+‖Bi2‖e

α
2 τ∗

α
2
−1

]}.

This, together with (7.38), implies that

‖z(i)(t)‖ ≤ max{M∗
2 , M̃}‖φ− x∗‖τ∗e−eα(t−t0), t ∈ [t0, T ).

If we choose ‖φ − x∗‖τ∗ < q

max{M∗
2 ,
fM}

, then ‖z(i)(t)‖ < q for any t ∈ [t0, T ) and i =

1, 2, 3. Thus by repeating these procedures, we can obtain that the same result holds for any
t ∈ [T, T1), [T1, T2), · · · , [Tn−1, Tn) with Tn → ∞ as t → ∞. So under the assumptions of the
theorem, the existing interval of the solution of system (7.23) is [t0,∞) and the trivial solution
of system (7.23) is exponentially stable, and hence the equilibrium point x∗ of system (7.19) is
exponentially stable.

Remark 7.2.2 Theorem 7.2.2 is a generalization of Theorem 1 in [135], when Iik(x) ≡ x,
Theorem 7.2.2 is reduced to Theorem 1 in [135]. This result gives some sufficient conditions
under which the stability property will not be destroyed by impulsive perturbations, see Example
7.2.2.

Similarly to Theorem 7.2.1 and 7.2.2, we can prove the following result.

Corollary 7.2.1 Assume that all the conditions of Theorem 7.2.1 hold except the assumption:
I1k = I3k = E with E representing the identity map, is changed to
(i′) there exists bik > 0 with

∑∞
k=1 bik <∞ such that

‖Iik(z(i))‖2 ≤ (1 + bik)‖z(i)‖2, i = 1, 3, k ∈ N;

where z(1) ∈ Rr and z(3) ∈ Rn−r−m, then the same result holds.
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Next, we discuss an example to illustrate our previous result.

Example 7.2.2 Consider the following cellular neural networks with time delay described by

dx1(t)
dt

= −x1(t) + 0.6f1(x1(t))− f2(x2(t)) + 0.8f3(x3(t))

+0.6f1(x1(t− 0.1))− 0.5f2(x2(t− 0.2)) + 0.4f3(x3(t− 0.1)) + 2, t ≥ 0,
dx2(t)
dt

= −x2(t) + 2.4f1(x1(t))− f2(x2(t)) + 0.5f3(x3(t))

−0.1f2(x2(t− 0.2)) + 0.5f3(x3(t− 0.1)) + 3, t ≥ 0,
dx3(t)
dt

= −x3(t)− 1.2f1(x1(t)) + 0.7f2(x2(t)) + 0.3f3(x3(t))

−0.6f1(x1(t− 0.1)) + 0.2f3(x3(t− 0.1)) + 1, t ≥ 0,

x0 = φ.
(7.42)

By simple computation, we know that x∗ = (1.46, 4.1,−0.2) is a unique equilibrium point
of the cellular neural networks (7.42). Since x∗1, x

∗
2 ∈ Ĩ1 and x∗3 ∈ Ĩ2, we have z(1)(·) =

(y1(·), y2(·))T = (x1(·) − x∗1, x2(·) − x∗2)
T and z(2)(·) = y3(·) = x3(·) − x∗3. So we can rewrite

system (7.42) as

dz(1)(t)
dt

= −z(1)(t) + A11g(z
(1)(t)) + A12g(z

(2)(t)) +B11g(z
(1)(t− τ))

+B12g(z
(2)(t− 0.1)), t ≥ 0,

dz(2)(t)
dt

= −z(2)(t) + A21g(z
(1)(t)) + A22g(z

(2)(t)) +B21g(z
(1)(t− τ))

+B22g(z
(2)(t− 0.1)), t ≥ 0,

z0 = φ− z∗,

(7.43)

where

A11 =

[
0.6 −1

2.4 −1

]
, A12 =

[
0.8

0.5

]
,

B11 =

[
0.6 −0.5

0 −0.1

]
, B12 =

[
0.4

0.5

]
,

A21 = [ −1.2 0.7 ] , A22 = [ 0.3 ] ,

B21 = [ −0.6 0 ] , B22 = [ 0.2 ] ,

and g(z(·)) = f(z(·) + z∗)− f(z∗).
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Then for ‖φi − z∗i ‖0.2 < q = 0.46, ‖zi‖τi < 0.46, system (7.43) is simplified as
dz(1)(t)
dt

= −z(1)(t) + A12g(z
(2)(t)) +B12g(z

(2)(t− 0.1)), t ≥ 0,
dz(2)(t)
dt

= −z(2)(t) + A22g(z
(2)(t)) +B22g(z

(2)(t− 0.1)), t ≥ 0,

z0 = φ− z∗.

(7.44)

Notice that ci <
∑3

j=1(|aij| + |bij|) for i = 1, 2, 3, so Corollary 3 in [24] can not de-
termine the stability of system (7.42). However, the condition of Theorem 1 in [135] holds
since ‖A22‖ + ‖B22‖ = 0.5 < 1, which implies that the equilibrium x∗ of system (7.42)
is exponentially stable, see Figure 7.6 for the simulation of the non-impulsive system with
the initial functions φ = (1.6H(t), 3.7H(t), 0.2H(t))T , φ = (1.2H(t), 4.2H(t), 0)T and φ =

(2H(t), 4.5H(t),−0.5H(t))T , where H(t) is the Heaviside step function. From the graph, we
can see that the solutions starting from the neighborhood of x∗ converge to x∗.

Figure 7.6: Numerical simulation of Example 7.2.2, system without impulses.

By Theorem 7.2.2, the impulsive perturbation zi(k) = (1+(−1)i i
k2 )zi(k

−) will not affect the
stability property of delayed cellular neural networks. The simulations of the impulsive cellular
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neural networks with time delay and the same initial functions are given in Figure 7.7.

Figure 7.7: Numerical simulation of Example 7.2.2, impulse-disturbed system.

Remark 7.2.3 Theorem 1 in [5] can not determine the stability of the equilibrium point x∗ of
system (7.42) because condition (i) : −(A + AT ) is positive definite does not hold. In fact,
the eigenvalues of −(A + AT ) are -1.729, -1.0442, and 2.9732, which implies that −(A + AT )

is neither positive definite nor negative definite. Moreover, Corollary 3 in [24] can not apply
to Example 7.2.2 since ci <

∑3
j=1(|aij| + |bij|)uj for i = 1, 2, 3. While by Theorem 7.2.2, the

equilibrium point x∗ of system (7.42) is exponential stable with Iik(s) ≡ s for i = 1, 2, 3 and
k ∈ N.

7.3 High Order Hopfield Type Neural Networks

It is known that high-order neural networks have stronger approximation property, faster conver-
gence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks.
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In this section, we discuss the exponential stability of high-order neural networks with time-
varying delays.

We consider the impulsive high order Hopfield type neural networks with time-varying delays
described by

Ciu
′
i(t) = −ui(t)

Ri
+
∑n

j=1 Pijgj(uj(t− τj(t)))+∑n
j=1

∑n
l=1 Pijlgj(uj(t− τj(t)))gl(ul(t− τl(t))) + Ii, t ∈ [tk−1, tk),

∆ui(tk) = dikui(t
−
k ) +

∑n
j=1W

(k)
ij hj(uj(t

−
k ))

+
∑n

j=1

∑n
l=1W

(k)
ijl hj(uj(t

−
k ))hl(ul(t

−
k )), k ∈ N,

(7.45)

where i = 1, 2, · · · , n,

∆ui(tk) = ui(tk)− ui(t
−
k ), ui(t−k ) = lim

t→t−k

ui(t), k ∈ N,

the time sequence {tk} satisfies 0 < t0 < t1 < t2 < · · · < tk < tk+1 < · · · , and lim
k→∞

tk = ∞;
Ci > 0, Ri > 0, and Ii are, respectively, the capacitance, the resistance, and the external input
of the ith neuron; Pij , Wij and Pijl, Wijl are, respectively, the first and second order synaptic
weights of the neural networks; and τi(t), (i = 1, 2, · · · , n), is the transmission delay of the ith
neuron such that 0 ≤ τi(t) ≤ τ , where τ is a constant.

The initial condition for system (7.45) is given by

ui(s) = ψi(s), s ∈ [t0 − τ, t0], (7.46)

where ψi : [t0 − τ, t0] → R, (i = 1, 2, · · · , n), is a piecewise continuous function.
We assume throughout that the neuron activation functions gi(u), hi(u), i = 1, 2, · · · , n, are

continuously differentiable and satisfy the following conditions:

|gi(ui)| ≤Mi and |hi(ui)| ≤ Ni, ∀ ui ∈ R, (7.47)

0 ≤ gi(ui)−gi(vi)
ui−vi

≤ Ki and 0 ≤ h(ui)−h(vi)
ui−vi

≤ Li,

∀ ui 6= vi, ui, vi ∈ R, i = 1, 2, · · · , n.
(7.48)

Remark 7.3.1 It follows from Theorem 1 in [122] that system (7.45) has an equilibrium point if
conditions (7.47) and (7.48) hold.
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Define
M = [M1,M2, · · · ,Mn]

T , N = [N1, N2, · · · , Nn]
T , (7.49)

and
L = diag(L1, L2, · · · , Ln), K = diag(K1, K2, · · · , Kn). (7.50)

Let u∗ = [u∗1, u
∗
2, · · · , u∗n, ]T be an equilibrium point of system (7.45), and set

xi(t) = ui(t)− u∗i , i = 1, 2, · · · , n,

diku
∗
i +

n∑
j=1

W
(k)
ij hj(u

∗
j) +

n∑
j=1

n∑
l=1

W
(k)
ijl hj(u

∗
j)hl(u

∗
l ) = 0, ∀k ∈ N,

fi(xi(t− τi(t))) = gi(ui(t− τi(t)))− gi(u
∗
i ),

and
ϕi(xi(t)) = hi(ui(t))− hi(u

∗
i ), i = 1, 2, · · · , n.

Then, for each i = 1, 2, · · · , n,

|fi(z)| ≤ Ki |z|, and zfi(z) ≥ 0, ∀ z ∈ R, (7.51)

|ϕi(z)| ≤ Li |z|, and zϕi(z) ≥ 0, ∀ z ∈ R. (7.52)

System (7.45) may be rewritten as follows.

Cix
′
i(t) = −xi(t)

Ri
+

n∑
j=1

(
Pij +

n∑
l=1

(Pijl + Pilj)ζl

)
fj(xj(t− τj(t))), t ∈ [tk−1, tk),

∆xi(tk) = dikxi(t
−
k ) +

n∑
j=1

(
W

(k)
ij +

n∑
l=1

(W
(k)
ijl +W

(k)
ilj )ξl

)
ϕj(xj(t

−
k )), k ∈ N,

(7.53)
where i = 1, 2, · · · , n; ζl is between gl(ul(t − τl(t))) and gl(u∗l ), and ξl is between hl(ul(t−k ))

and hl(u∗l ).
Define

C = diag(C1, C2, · · · , Cn), R = diag(R1, R2, · · · , Rn),

Dk = diag(d1k, d2k, · · · , dnk), W (k) = (W
(k)
ij )n×n, P = (Pij)n×n,
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W
(k)
i = (W

(k)
ijl )n×n, Pi = (Pijl)n×n, i = 1, 2, · · · , n,

PH = (P1 + P T
1 , P2 + P T

2 , · · · , Pn + P T
n )T ,

Ξ(k) = (W
(k)
1 + [W

(k)
1 ]T , · · · ,W (k)

n + [W (k)
n ]T )T ,

ϕ(x(t−)) = [ϕ1(x1(t
−)), · · · , ϕn(xn(t−))]T ,

f(x(t− τ(t))) = [f1(x1(t− τ1(t))), · · · , fn(xn(t− τn(t)))]
T ,

ζ = [ζ1, ζ2, · · · , ζn]T , Γ = diag(ζ, ζ, · · · , ζ), ξ = [ξ1, ξ2, · · · , ξn]T ,

Λ = diag(ξ, ξ, · · · , ξ), ∆x = [∆x1,∆x2, · · · ,∆xn]T ,

x(t− τ(t)) = [x1(t− τ1(t)), x2(t− τ2(t)), · · · , xn(t− τn(t))]
T .

Then, system (7.53) may be written in the following equivalent form.{
x′(t) = −C−1R−1x(t) + C−1(P + ΓTPH)f(x(t− τ(t))), t ∈ [tk−1, tk),

∆x(tk) = Dkx(t
−
k ) + (W (k) + ΛTΞk)ϕ(x(t−k )), k ∈ N.

(7.54)

The initial condition for system (7.54) is given by

x(t) = φ(t), t ∈ [t0 − τ, t0], (7.55)

where
φ(t) = [φ1(t), φ2(t), · · · , φn(t)]T , t ∈ [t0 − τ, t0],

and
φi(t) = ψi(t)− u∗i , t ∈ [t0 − τ, t0], i = 1, 2, · · · , n.
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In this section, we denote with ‖ · ‖ either any vector norm or the induced matrix norm. In
addition, let ‖x(t)‖(p) =

(∑n
i=1 |xi(t)|p

) 1
p for any x(t) ∈ Rn and p = 1, 2.

Next, we shall apply the results in the previous chapters to obtain some sufficient conditions
for the globally exponential stability of Hopfield type neural networks with time-varying de-
lays. The theorems and Example 7.3.1 show that some Hopfield type neural networks may be
exponentially stabilized by impulses.

Let u∗ = [u∗1, u
∗
2, · · · , u∗n]T be an equilibrium point of system (7.45). Then x = [0, 0, · · · , 0]T

is an equilibrium point of system (7.53) or (7.54). To obtain the global exponential stability of the
equilibrium point u∗ of system (7.45), it is sufficient to establish the global exponential stability
of the trivial solution of system (7.53) or (7.54).

Theorem 7.3.1 Let a = λmin(R
−1C−1), A = (aij)n×n, aij = |Pij| +

n∑
k=1

|Pijk + Pikj|Mk

for any i, j = 1, 2, · · · , n and k ∈ N, and bk ≥ [‖I + Dk‖(2) + max1≤i≤n{Li}(‖W (k)‖(2) +

‖Ξk‖(2)‖N‖(2))]
2, k ∈ N, if

(i) a ≥ 1+q
2
µ, for any q ≥ eλα, where λ, α > 0 are constants, µ = λmax(B)and

B =

[
0 C−1AK

KATC−1 0

]
;

(ii) τ ≤ tk − tk−1 ≤ α and ln(bk) + λα < −λ(tk+1 − tk) for any k ∈ N.

Then the equilibrium point u∗ of system (7.45) is globally exponentially stable with convergence
rate λ

2
.

Proof. Choose the Lyapunov function V (t, x(t)) to be

V (t, x(t)) =
1

2
‖x(t)‖2

(2) =
1

2

n∑
i=1

x2
i (t).

Then condition (i) of Theorem 4.2.1 holds with c1 = c2 = 1
2

and p = 2. For t 6= tk, by computing
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the upper right-hand derivative of V (t) along the trajectories of system (7.53), we obtain

D+V (t, x(t)) = −
n∑
i=1

x2
i (t)

RiCi
+

n∑
i=1

n∑
j=1

(
Pij +

n∑
k=1

(Pijk + Pikj)ζk
)

×xi(t)
Ci
fj(xj(t− τj(t)))

≤ − min
1≤i≤n

( 1

RiCi

) n∑
i=1

x2
i (t) +

n∑
i=1

n∑
j=1

(
|Pij|

+
n∑
k=1

|Pijk + Pikj|Mk

)Kj

Ci
|xi(t)||xj(t− τj(t))|.

Denote a = λmin(R
−1C−1), |x(t)| =

[
|x1(t)|, |x2(t)|, · · · , |xn(t)|

]T
and

|x(t− τ(t))| =
[
|x1(t− τ1(t))|, · · · , |xn(t− τn(t))|

]T
.

We rewrite the above expression in the following matrix form

D+V (t, x(t)) ≤ −a
n∑
i=1

x2
i (t) +

1

2

[
|x(t)|

|x(t− τ(t))|

]T
B

[
|x(t)|

|x(t− τ(t))|

]
,

where B =

[
0 C−1AK

KATC−1 0

]
. Since B is symmetric, let µ = λmax(B). We have

D+V (t, x(t)) ≤ −2aV (t, x(t)) + µV (t, x(t)) + µV (t− τ(t), x(t− τ(t))).

Whenever V (t+ s, x(t+ s)) ≤ qV (t, x(t)) for s ∈ [−τ, 0], we obtain from condition (i) that

D+V (t, x(t)) ≤ −[2a− µ(1 + q)]V (t, x(t)) ≤ 0,

which implies that condition (ii) of Theorem 4.2.1 holds.
From (7.54), we have

V (tk, x) = 1
2
‖x(tk)‖2

(2) = 1
2
‖x(t−k ) + ∆x(t−k )‖2

(2)

= 1
2
‖(I +Dk)x(t

−
k ) + (W (k) + ΛTΞk)ϕ(x(t−k ))‖2

(2)

≤ 1
2
(‖I +Dk‖(2)‖x(t−k )‖(2) + (‖W (k)‖(2) + ‖ΛT‖(2)‖Ξk‖(2))

×‖ϕ(x(t−k )‖(2))
2

≤ 1
2
[‖I +Dk‖(2) + max1≤i≤n{Li}(‖W (k)‖(2) + ‖Ξk‖(2)‖N‖(2))]

2

×‖x(t−k )‖2
(2).
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By condition (ii) and the assumptions ‖ϕ(x(t))‖(2) ≤ max1≤i≤n{Li}‖x(t)‖(2), ΛTΛ = ‖ξ‖2
(2)I

and ‖ξ‖(2) ≤ ‖N‖(2), we obtain

V (tk, x) ≤ [‖I +Dk‖(2) + max1≤i≤n{Li}(‖W (k)‖(2) + ‖Ξk‖(2)‖N‖(2))]
2

×V (t−k , x)

≤ bkV (t−k , x),

which, together with the condition (ii), implies that the conditions (iii) and (iv) of Theorem
4.2.1 hold, so we obtain that the trivial solution of system (7.53) or (7.54) is globally exponen-
tially stable with convergence rate λ

2
, i.e., the equilibrium point u∗ of system (7.45) is globally

exponentially stable with convergence rate λ
2
.

Theorem 7.3.2 Let a = min
1≤i≤n

{ 1

RiCi

}
, b = max1≤i≤n

{ n∑
j=1

(|Pij| +
n∑
k=1

|Pijk + Pikj|Mk
Kj

Ci
)
}

,

and for any k ∈ N, bk ≥ max1≤i≤n{|1 + dik|} + max1≤i≤n{
∑n

j=1 (|W (k)
ji | +

∑n
l=1 |W

(k)
jil +

W
(k)
jli |Nl)Li}. If

(i) a ≥ qb with q ≥ e2λα, where λ, α > 0 are constants;

(ii) τ ≤ tk − tk−1 ≤ α and ln(bk) + λα < −λ(tk+1 − tk) for any k ∈ N.

Then the equilibrium point u∗ of system (7.45) is globally exponentially stable with convergence
rate λ.

Proof. Choose the Lyapunov function V (t, x(t)) to be

V (t, x(t)) = ‖x(t)‖(1) =
n∑
i=1

|xi(t)|.

Then condition (i) of Theorem 4.2.1 holds with c1 = c2 = p = 1. For t 6= tk, the upper
right-hand derivative of V (t) along the trajectories of system (7.53) is

D+
(7.53)V (t, x(t)) = −

n∑
i=1

dxi(t)
dt

sgn(xi(t))

= −
n∑
i=1

1
RiCi

|xi(t)|+
n∑
i=1

n∑
j=1

(
Pij +

n∑
k=1

(Pijk + Pikj)ζk
)

×fj(xj(t−τj(t)))
Ci

sgn(xi(t)).
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By (7.51) we have

D+
(7.53)V (t, x(t)) ≤ −

n∑
i=1

1
RiCi

|xi(t)|+
n∑
i=1

n∑
j=1

(
|Pij|+

n∑
k=1

(|Pijk + Pikj|)

×Mk

)Kj

Ci
|xj(t− τj(t)|

≤ − min
1≤i≤n

{
1

RiCi

}
n∑
i=1

|xi(t)|+ max1≤i≤n
n∑
j=1

(
|Pij|

+
n∑
k=1

|Pijk + Pikj|Mk

)Kj

Ci

∑n
j=1 |xj(t− τj(t))|.

By condition (i), we have

D+
(7.53)V (t, x(t)) ≤ −aV (t) + bV (t+ s) ≤ −(a− bq)V (t) ≤ 0,

whenever V (t + s, x(t + s)) ≤ qV (t, x(t)) for s ∈ [−τ, 0]. This implies that the condition (ii)

of Theorem 4.2.1 holds.
By condition (ii), we have, from (7.53)

V (tk, x) =
∑n

i=1 |xi(tk)| =
∑n

i=1 |(1 + dik)xi(t
−
k ) +

∑n
j=1

(
W

(k)
ij

+
∑n

l=1(W
(k)
ijl +W

(k)
ilj )ξl

)
ϕj(xj(t

−
k ))|

≤ max1≤i≤n{|1 + dik|}
∑n

i=1 |xi(t
−
k )|+ max1≤i≤n

[∑n
j=1

(
|W (k)

ji |
+
∑n

l=1 |W
(k)
jil +W

(k)
jli |Nl

)
Li
]∑n

i=1 |xi(t
−
k )|

≤ bkV (t−k , x),

which, together with condition (ii), implies that conditions (iii) and (iv) of Theorem 4.2.1 hold,
so we obtain that the trivial solution of system (7.53) or (7.54) is globally exponentially stable
with convergence rate λ, i.e., the equilibrium point u∗ of system (7.45) is globally exponentially
stable with convergence rate λ.

Remark 7.3.2 Theorems 7.3.1 and 7.3.2 also give the relation between the measure of strength
of the impulse bk and the upper bound of the impulsive interval α:

bk < e−2λα, λ > 0. (7.56)

Note that 7.56 is sufficient but not necessary for the impulsive stabilization of the neural network
(7.45).
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Now, we discuss an example to illustrate our results.

Example 7.3.1 Consider the following impulsive high order Hopfield type neural networks

u′1(t) = −0.2u1(t)− tanh(0.1u1(t− 0.5e−t))

+0.6 tanh(0.1u2(t− 0.5)) + 0.6, t ∈ [tk−1, tk),

u′2(t) = −0.1852u2(t) + 0.9 tanh(0.1u1(t− 0.5))

−0.9 tanh(0.1u2(t− 0.5)) + 0.067, t ∈ [tk−1, tk),

∆ui(k) = dik(ui(k
−)− u∗i ), k ∈ N.

(7.57)

By computation, system (7.57) has a unique equilibrium point (u∗1, u
∗
2)
T = (2.2017, 0.9530)T .

In the notation of Theorem 7.3.1, we have C = I, R−1 = diag(0.2, 0.1852), g1(u) = g2(u) =

tanh(0.1u), I1 = 0.6, I2 = 0.067, τ = 0.5, M1 = M2 = 1, K1 = K2 = 0.1, P1 = (P1ij)2×2 =

P2 = (P2ij)2×2 = 0, and

P = (Pij)2×2 =

[
−1 0.6

0.9 −0.9

]
.

By simple calculation, we have a = λmin(R
−1C−1) = 0.1852 and

B =


0 0 0.1 0.06

0 0 0.09 0.09

0.1 0.06 0 0

0.09 0.09 0 0

 ,
so µ = λmax{B} = 0.0213. Then

a = 0.1852 >
1 + q

2
µ = 0.0215,

where q = e0.02 = 1.0202.
Choose h1(u) = −u∗1+u∗2

2
and h2(u) =

u∗1−u∗2
2

,W (k)
ijl = 0,Dk = diag(d1k, d2k) = diag(−0.5,−0.5)

and

W (k) = (W
(k)
ij )2×2 =

[
d1k −d1k

d2k d2k

]
=

[
−0.5 0.5

−0.5 −0.5

]
,

then N1 = 1.6, N2 = 0.6 and L1 = L2 = 0. Let α = 1 λ = 0.01, tk = k for any k ∈ N. Choose
bk = 0.65, then bk ≤ e−λτ−λ(tk+1−tk) = 0.9802 and

[‖I +Dk‖(2) + max1≤i≤n{Li}(‖W (k)‖(2) + ‖Ξk‖(2)‖N‖(2))]
2

= 0.25 ≤ bk = 0.65.
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Then the conditions of Theorem 7.3.1 hold, and the equilibrium point u∗ of system (7.57) is
globally exponentially stable with convergence rate 0.005.

Moreover, the conditions of Theorem 7.3.2 also hold:

(1) a = min1≤i≤2
1

RiCi
= 5 ≥ qb = 1.0202× 1.8,

(2) max1≤i≤n{|1 + dik|} + max1≤i≤n{
∑n

j=1(|W
(k)
ji | +

∑n
l=1 |W

(k)
jil + W

(k)
jli |Nl)Li} = 0.5 ≤

bk = 0.65, τ = 0.5 ≤ tk − tk−1 = 1 ≤ α = 1, and bk ≤ e−λτ−λ(tk+1−tk) = 0.9802.

Thus by Theorem 7.3.2, the equilibrium point u∗ of system (7.57) is globally exponentially
stable with convergence rate 0.01. As is apparent from the conditions laid out above, on the
basis of both theorems in this section, global exponential stability is obtained for system (7.57).
As predicted by the forerunning analysis, the faster convergent speed is achieved in the case of
Theorem 7.3.2.

The numerical simulation of this impulsive delay differential equation with initial functions

φ1(t) =

{
0, t ∈ [−0.5, 0),

−2.1, t = 0,

φ2(t) =

{
0, t ∈ [−0.5, 0),

1.1, t = 0,

is given in Figure 7.8, the graph of solution of the corresponding system without impulse is given
in Figure 7.9.

Remark 7.3.3 As is shown from the above pictures, the equilibrium point u∗ = (2.2017, 0.9530)

of system (7.57) without impulse is stable but not asymptotically stable, however, after impulsive
control, the equilibrium point of this system becomes globally exponentially stable, which implies
that impulse can be used to exponentially stabilize some high order Hopfield type neural networks
with time-varying delays.

The next theorem shows that to what extent impulsive perturbation Hopfield type neural net-
works (7.45) or (7.54) can endure without destroying the globally exponential stability property.

Theorem 7.3.3 Assume that there exist constant q > 1 and matrices P̄ , Dk, W (k), Ξk ∈
Rn×n, ∀k ∈ N with P̄ > 0 such that
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Figure 7.8: Numerical simulation of Example 7.3.1, system without impulses.

(i) 1
λmax(P̄ )

− (1 + q)
max1≤i≤n{Ki}

λmin(P̄ )
(‖P̄C−1P‖(2) + ‖P̄C−1‖(2)‖M‖(2)‖PH‖(2)) ≥ ln q

τ
;

(ii) λmax(P̄ )

λmin(P̄ )
[‖I+Dk‖(2)+max1≤i≤n{Li}(‖W (k)‖(2)+‖Ξk‖(2)‖N‖(2))]

2 ≤ 1+bk, where bk > 0

for all k ∈ N and
∑∞

k=1 bk <∞.

Then the equilibrium point u∗ of system (7.54) is globally exponentially stable.

Proof. Let A = −C−1R−1, A is Hurwitz, then there exists a unique positive definite symmetric
matrix P̄ such that

P̄A+ AT P̄ = −I. (7.58)

Choose the Lyapunov function V (t, x(t)) = xT (t)P̄ x(t), P̄ is given by equation (7.58). For any
(t, x) ∈ [tk−1, tk)× Rn, we obtain that

D+V (t, x) = 2xT (t)P̄ x′(t)

≤ −xT (t)P̄ x(t)

λmax(P̄ )
+

max1≤i≤n{Ki}
λmin(P̄ )

(‖P̄C−1P‖(2)

+‖P̄C−1‖(2)‖M‖(2)‖PH‖(2))[x
T (t)P̄ x(t) + xT (t− τ)P̄ x(t− τ)],

(7.59)
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Figure 7.9: Numerical simulation of Example 7.3.1, impulsive system.

whenever qV (t, x(t)) ≥ V (t + s, x(t + s)) for any s ∈ [−τ, 0], i.e., xT (t + s)P̄ x(t + s) ≤
qxT (t)P̄ x(t), we get

D+V (t, x) ≤ −[ 1
λmax(P̄ )

− max1≤i≤n{Ki}
λmin(P̄ )

(‖P̄C−1P‖(2)

+‖P̄C−1‖(2)‖M‖(2)‖PH‖(2))(1 + q)]xT (t)P̄ x(t) ≤ −ηV (t, x(t)),
(7.60)

where η = 1
λmax(P̄ )

− max1≤i≤n{Ki}
λmin(P̄ )

(‖P̄C−1P‖(2) + ‖P̄C−1‖(2)‖M‖(2)‖PH‖(2))(1 + q). And by
condition (i), η ≥ ln q

τ
, so the condition (ii) of Theorem 4.1.2 holds.

By condition (ii) and ‖ϕ(x(t))‖(2) ≤ max1≤i≤n{Li}‖x(t)‖(2), ΛTΛ = ‖ξ‖2
(2)I , and ‖ξ‖(2) ≤

‖N‖(2), we have
V (tk, x) = xT (tk)P̄ x(tk)

= (x(t−k ) + ∆x(t−k ))T P̄ (x(t−k ) + ∆x(t−k ))

≤ λmax(P̄ )

λmin(P̄ )
[‖I +Dk‖(2) + max1≤i≤n{Li}

×(‖W (k)‖(2) + ‖Ξk‖(2)‖N‖(2))]
2V (t−k , x)

≤ (1 + bk)V (t−k , x),
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i.e., condition (iii) of Theorem 4.1.2 holds with ψk(s) = (1+bk)s andH =
∏∞

i=1(1+bk). Hence
from Theorem 4.1.2, we obtain that the trivial solution of system (7.54) is globally exponentially
stable, i.e., the equilibrium point u∗ of system (7.45) is globally exponentially stable.

Example 7.3.2 Consider the following impulsive high order Hopfield type neural networks
Ciu

′
i(t) = −ui(t)

Ri
+
∑n

j=1 Pijgj(uj(t− τj(t))) +
∑n

j=1

∑n
l=1 Pijl

×gj(uj(t− τj(t)))gl(ul(t− τl(t))) + Ii, t ∈ [tk−1, tk), i = 1, 2,

∆ui(k) = dikui(k
−) +

∑n
j=1W

(k)
ij hj(uj(k

− − τj(k)))

+
∑n

j=1

∑n
l=1W

(k)
ijl hj(uj(k

− − τj(k)))hl(ul(t
−
k − τl(tk))), i = 1, 2, k ∈ N,

(7.61)
where C = diag(2, 3), R = diag(2.5, 1.8), g1(u) = tanh(0.12u), g2(u) = tanh(0.4u), I1 =

1.2, I2 = 0.2 and

P = (Pij)2×2 =

[
−0.1 0.03

0.12 −0.05

]
,

P1 = (P1ij)2×2 =

[
0.08 −0.1

0.1 0.06

]
,

P2 = (P2ij)2×2 =

[
−0.06 0.4

−0.4 −0.05

]
,

then M1 = M2 = 1, K1 = 0.12, K2 = 0.4, and system (7.61) has an equilibrium point
(u∗1, u

∗
2)
T = (2.954, 0.404)T .

By simple calculation, we have P̄ = diag{2.5, 2.6998},A = −C−1R−1 = diag{−0.2,−0.1852},
and

PH = (P1 + P T
1 , P2 + P T

2 )T =


0.16 0

0 0.12

−0.12 0

0 −0.1

 ,
and P̄C−1 = diag{1.25, 0.8999},

P̄C−1P =

[
−0.125 0.0375

0.108 −0.045

]
,
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so λmax{P̄} = 2.6998 and λmin{P̄} = 2.5, ‖PH‖(2) = (λmax(P
T
HPH))

1
2 , ‖P̄C−1‖(2) = 1.25,

‖P̄C−1P‖(2) = 0.175, and then

1
λmax(P̄ )

− max1≤i≤n{Ki}
λmin(P̄ )

[‖P̄C−1P‖(2) + ‖P̄C−1‖(2)‖M‖(2)

×‖PH‖(2)](1 + q) = 0.231 > 0.1 > ln(1.05)
0.5

,

where q = 1.05 > 1.
Choose h1(u) = −u∗1+u∗2

2
and h2(u) =

u∗1−u∗2
2

, W (k)
ijl = 0, Dk = diag(d1k, d2k) and

W (k) = (W
(k)
ij )2×2 =

[
d1k −d1k

d2k d2k

]

=

[
−0.2 + 1

2k2 0.2− 1
2k2

−0.2 + 1
2k(k+1)

−0.2 + 1
2k(k+1)

]
,

then N1 = 1.8, N2 = 1.3 and L1 = L2 = 0, and we have

λmax(P̄ )

λmin(P̄ )
[‖I +Dk‖(2) + max1≤i≤n{Li}(‖W (k)‖(2)+

‖Ξk‖(2)‖N‖(2))]
2 = [2.6998

2.5
(0.8 + 1

2k2 )]
2 ≤ 1 + 2

k2 .

Then the conditions of Theorem 7.3.3 hold, and the equilibrium point u∗ of system (7.61) is
globally exponentially stable.

The numerical simulation of this impulsive delay differential equation with initial functions
φ1(t) = φ2(t) = 0 for t ∈ [−0.5, 0), and φ1(0) = −2.1, φ2(0) = 1.1 is given in Figure 7.10, the
graph of solution of the corresponding system without impulse is given in Figure 7.11.
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Figure 7.10: Numerical simulation of Example 7.3.2, system with impulsive disturbances.

Figure 7.11: Numerical simulation of Example 7.3.2, system without impulses.



Chapter 8

Conclusions and Future Research

The stability and boundedness theories of impulsive systems with time delay have been devel-
oped in this thesis. Impulses have been treated as either perturbations or a means of controls.
Conditions to maintain or to obtain the desirable stability or boundedness properties of delay dif-
ferential systems have been given. Various methods, such as Lyapunov-Razumikhin technique,
Lyapunov functional method, variation of parameters, and differential inequalities, have been
utilized.

After introducing some important definitions, notation and fundamental results for impul-
sive delay differential equations in Chapter 2, the stability problem of nontrivial solutions of
delay differential systems with state-dependent impulses has been solved in Chapter 3. By con-
structing the “reduced system”, the stability of systems with state-dependent impulses has been
“transferred” to that of systems with fixed impulses.

In Chapter 4, many (global) exponential stability criteria have been established. Our results
have revealed the essential role that impulses may play in stabilizing delay differential equations.
Several numerical examples have been also worked out to illustrate the theorems. Stability cri-
teria in terms of two measures have been established for impulsive delay differential equations
in Chapter 5. Some results have been applied to Lotka-Volterra systems with time delay and
impulsive effects.

Boundedness results have been obtained for impulsive delay differential equations with both
fixed and state-dependent impulses in Chapter 6. Those results are applicable to population
growth dynamics and impulsive synchronization for secure communication.

189
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The application of stability theory to neural networks has been discussed in Chapter 7. We
have applied the results and techniques in Chapter 4 to obtain (global) exponential stability of
cellular neural networks and high order Hopfield type neural networks with time delays and
impulsive effects. We have discussed possible effects of impulsive perturbation on stability of
neural networks and have obtained some stability criteria to keep the stability property of de-
layed neural networks under impulsive disturbance. We have also developed some results to
impulsively stabilize neural networks with time delay.

In addition to the work dedicated to the stability and boundedness theory in this thesis, there
are still many interesting problems unexplored in the theory of impulsive delay differential equa-
tions and its applications.

Based on the Lyapunov method and some known results on stability and robust stability,
I plan to study necessary and sufficient conditions of optimality for optimal impulsive control
problems as well as the design of robust controls that will guarantee the stability and robust sta-
bility of the closed-loop system. There are basically two ways of using the Lyapunov method for
impulsive control design. The first technique involves hypothesizing one form of control law and
then finding a Lypapunov function to justify the choice. The second technique requires hypoth-
esizing a Lyapunov function candidate and then finding a control law to make this candidate a
real Lyapunov function. In design, one often has the freedom to deliberately modify the dynam-
ics through designing an appropriate controller in such a way that a chosen function becomes a
Lyapunov function for the “closed-loop system”, so the application of the Lyapunov theory to
the design of stabilizing controllers for impulsive control systems can be very rewarding.

While the Lyapunov method has been used to investigate stability in terms of two measures
for impulsive delay differential equations, boundedness criteria in terms of two measures for
impulsive (abstract) delay differential equations could be similarly established. The techniques
from the stability investigations of impulsive systems can also be applied to switching systems,
since both systems have some common properties.

Boundedness is an important property of a dynamical system. It has played a crucial role in
the existence of periodic solutions. It would be interesting to work on boundedness for impulsive
systems with finite and infinite time delay, and then explore further applications to population
growth models. Moreover, boundedness, together with attractivity, gives rise to the concept of
Lagrange stability. This concept has been used in chaos synchronization for secure communi-
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cation. It would be very useful to obtain some results on Lagrange stability for impulsive delay
systems and explore the applications of impulsive synchronization for secure communication
based on the work that we have done on boundedness and stability of impulsive delay differen-
tial equations.
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