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Abstract

Engineered structures are designed to resist all expected loadings without failure. However, structural
failures do occasionally occur due to inadequate design and construction, especially for extreme and
abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading
events, and develops a method of advanced analysis for predicting the progressive collapse behaviour

of building structures in the plastic limit state.

A new procedure for progressive-failure analysis is developed that computes structural responses
accounting for geometric/material nonlinearities and axial/flexural/shear deformations. The nonlinear
behaviour of materials is discussed in detail. Combined-stress failure states and stiffness degradation
models are proposed to simulate plastic deformation of structural members. Elliptic force-
deformation relationships are employed to model the nonlinear material behaviour of members, and

corresponding model parameters are determined from published experimental data.

Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into
account elastic-plastic bending, shearing and axial deformations. A modified moment distribution
method is employed to obtain the stiffness coefficients. A computer-based incremental-load nonlinear
analysis procedure is developed that progressively updates member stiffness using reduction factors
that simulate degraded stiffness behaviour. Studies are conducted to demonstrate the effectiveness of

the proposed method in predicting the progressive failure of structures under abnormal loading.

A general model of a compound element is proposed to consider the influence of semirigid
connections on the progressive failure of steel frameworks. The stiffness degradation of semirigid
connections is modeled by a moment-rotation relationship with four parameters. The stiffness
degradation of a compound element resulting from the combined influence of member plasticity and
nonlinear connection behaviour is modeled by a moment-rotation relationship with three parameters.
The results from the proposed analysis method involving semirigid connection behaviour are

compared with the results of other methods.

The proposed progressive-failure analysis method is threat-independent, in the sense that it is
initially assumed that some type of short-duration abnormal loading has caused local damage
represented by the removal of one (or more) critical member(s). The degree of damage to connections
due to member-end disengagement is accounted for by a so-called health index factor. Three types of
localized damage modes are investigated to identify different damage scenarios for the structure.

Account can be taken of the connection damage that occurs when members disengage from the
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structure. Account is taken of any debris loading that occurs when disengaged structural components
fall onto lower parts of the structure. The associated dynamic effect is taken into account for the
quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring

thereafter involves a series of failure events associated with topological changes.

The progressive-failure analysis procedure is based on the alternate-load-path method suggested in
the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the
Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework
is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The
deterioration of structural strength is progressively traced to the state at which either global stability is
reached or progressive collapse to ground level occurs for part or all of the structure. The analysis
procedure is extensively illustrated for several planar steel moment frames, including rigid and
semirigid frames designed with and without consideration of seismic loading. The results obtained
demonstrate that the proposed method is potentially an effective tool for the analysis of steel building

structures under normal and abnormal loads.

Finally, with a view to improve modeling, the failure of a member cross-section under combined
bending moment, shearing force and axial force is modeled by an Euler-Lagrange energy functional
defining the three-dimensional stress distribution at failure. A corresponding combined-stress failure
surface is developed for bi-symmetrical cross-sections, and a related model is proposed to simulate
stiffness degradation. The interactive influence of bending moment, shear force and axial force is
investigated for rectangular and W-shape cross-sections, and the results are compared with test results
to demonstrate the significance of strain hardening and the contribution of the flange to shear
strength. In future extensions of the research work, it is envisioned that the 3-dimensional M-V-P
failure criterion will replace the 2-dimensional M-V and M-P failure criteria employed herein for

progressive-failure analysis.
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Chapter 1

Introduction

For some time now, building structures have been designed to resist normal loads such as those due to
self-weight, occupancy and climatic or seismic effects. However, since the 1968 chain-reaction
failure of the Ronan Point Apartment Block in London, UK, triggered by a gas explosion, abnormal
loading and progressive collapse have become increasingly recognized as important phenomena to be
accounted for in engineering design practice worldwide. Indeed, the complete structural collapse of
the twin towers of the World Trade Centre (WTC) in New York City on September 11, 2001, has
significantly increased the concern for these phenomena. Motivated by such abnormal loading events,

this research addresses the topic of progressive-failure analysis of building structures.

1.1 Project Failure

In the structural engineering community, engineers apply their knowledge to design and construct
buildings and infrastructure to meet the requirements of our society. Structures are designed to resist
normal loads such as those due to self-weight, occupancy, wind, earthquake and other loading
scenarios stipulated in building codes (e.g., ASCE, 2002; NRCC, 1995). In principle, any failure must
be precluded by the structural design. Sometimes, however, failure does occur in the process of
construction and ongoing operations due to unanticipated factors. The definition of failure is difficult
to precisely express because of the many different types and severity of damage that can occur in
structural systems. It might be appropriate to employ the following definition by Leonards (1982):
failure is an unacceptable difference between expected and observed performance, which is
suggested by the Technical Council on Forensic Engineering of the American Society of Civil
Engineers. This thesis focuses on catastrophic structural failure, including partial and complete

structural collapse.

1.1.1 Foreseen Project Failure

Foreseen structural failure may be avoidable because the causes are known. Such failure can be
eliminated in the process of design, as well as during construction or operation, by preventing
mistakes. To achieve this goal, professionals in different specialized disciplines must learn from their
mistakes, and those of others. Fortunately, practitioners in many countries are strictly governed by
laws to protect the public’s welfare and safety. In Canada, for example, the practice of professional

engineering is governed by local Professional Engineer Acts and other by-laws.
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Flawed designs have contributed substantially to the failure of many structures. Avoidable
problems include inappropriate site selection, misuse of structural systems, incompetence in selecting
materials, ignorance of a load or a combination of loads, inaccurate analyses and computations, and
unclear communication of the design and construction intent (Feld & Carper, 1996). For instance, the
parking roof deck of a Save-On-Food store in Burnaby, British Columbia, Canada, on the opening
day, April 23, 1988, partially fell into the store along with 20 cars, as illustrated in Figure 1.1. The
collapse was primarily caused by design deficiencies, where the self-weight of the joists and beams
supporting the roof were not accounted for, and excessive unbraced length of the beams over the
collapsed area led to lateral-torsional buckling failure (Jones & Nathan, 1990; Essa & Kennedy,
1994).

Construction work can be a dangerous occupation, and structures can collapse during the process of
erection. Construction errors include non-conformance to the design intent, excavation and equipment
accidents, improper sequencing, inadequate temporary support, excessive construction loads, and
premature removal of shoring or formwork (Feld & Carper, 1996). For example, a historic collapse is
that of the University of Washington’s Husky Stadium, depicted in Figure 1.2, on February 25, 1987.
During construction, six of the nine guylines used to temporarily support the structure were removed

prematurely, causing 250 tons of steel framework to sway and eventually topple.

Other causes, such as material deficiencies and operational errors, contribute to project failure.
Designers should be able to rely on modern structural materials, but manufacturing or fabrication
defects exist in the most reliable structural materials, including structural steel or mixed concrete.
Such material defects might not be discovered and eliminated during the design or construction
stages. Most problems with materials are the result of human error, inadequate understanding of the
materials, or the use of incompatible materials. Regarding operational error, project failure can occur

after a facility is occupied because of the owner/occupant’s misuse or inadequate maintenance.

Case studies concerning project failures help professionals to recognize the nature of failure and, in
turn, avoid making the same mistakes (Feld & Carper, 1996). Nevertheless, facilities can fail due to a
myriad of errors in the process of design, construction, and operation. To protect facilities against
such failures, in addition to educating engineers and other professionals about design requirements
and construction regulations, innovative methods of design and analysis are required to address

unforeseen problems so as to ensure the reliability and durability of engineered structures.



1.1.2 Unforeseen Project Failure

Unforeseen structural failure may be inevitable because the causes are unknown. Such failure
concerns projects built according to the design code, but some unexpected loads occur in the process
of construction or during operation. Since the 1968 gas explosion-triggered chain-reaction collapse of
the Ronan Point Apartment Block in London, UK, depicted in Fig. 1.3, engineers worldwide are
required to design buildings to meet specified levels of safety for protection against progressive

collapse under unexpected abnormal loading events (Grierson, 2003).

Typically, structures are exposed to interior loading such as self-weight and occupancy weight, and
to exterior loading such as wind and seismic loads. Foreseen or normal loads are directly or indirectly
considered in the design process through existing codes and standards. Despite the potential for
loading to lead to catastrophic progressive collapse, unforeseen or abnormal loads are presently not
explicitly considered in general design codes, and they are rarely considered in design practice.
Burnett (1975) identified three types of abnormal loading: pressure loading, impact loading, and other
loading. Usually, pressure loading results from explosions of a service system (e.g., natural gas and
steam), stored gas and liquid (butane, propane, oxygen, gasoline, etc.), hazardous material in transit,
or bombing due to civil or criminal action. Sometimes, sonic booms lead to pressure loading on
structures. In nature, pressure loading includes wind-induced localized effects such as a tornadoes and
hurricanes. Impact loading may result from ground vehicle collisions, aircraft crashes, missile or
military weapons, and failure of adjacent buildings or falling debris. Other loading may occur due to
the malfunction of a water system or other service system, or debris from other incidents (e.g.,
flooding and tornado). Errors in design and construction can also result in structurally significant

abnormal loadings (Fintel & Schultz, 1979).

The Ronan Point accident (Griffiths et al., 1968) involved the partial collapse of a 22-storey
building constructed of precast concrete panels, as pictured in Figure 1.3. A natural gas explosion in
the kitchen of an apartment on the 18" floor blew out an exterior wall panel. The reduced support due
to the ejected panel resulted in a chain reaction that led to a collapsed roof. The falling debris caused
the floors to successively tumble, almost to ground level. The pressure loading was designated as
being abnormal because its cause was an explosion, which is generally not considered in the
structural design process. According to Breen and Siess (1979), progressive collapse and abnormal
loading are closely related. However, although progressive collapse may be related to abnormal

loading, such loading does not necessarily induce progressive collapse.

Progressive collapse is characterized as a chain-reaction failure, due to abnormal loading

(Ellingwood, 2006). According to Allen and Schriever (1973), Taylor (1975), and Eldukair and



Ayyub (1991), progressive collapse events comprise 16% of all the collapse incidents in Canada and
the United State of America (USA). This low percentage suggests that local damage does not always
induce progressive collapse. For the aforementioned collapse events, 52%, 40%, and 8% occurred
during construction, service, and demolition, respectively. These results indicate that progressive
collapse is a critical problem not only during construction but throughout the service life of a
structure. Eldukair and Ayyub (1991) have presented similar results based on information published

in the Engineering News Record from 1976 to 1986.

In terms of abnormal loading, terrorist attacks elicit the most concern because buildings and other
infrastructure are the most vulnerable to terrorists whose intent is deliberate destruction. The robust
design of building structures and infrastructures to effectively prevent such progressive failure is
difficult to achieve. Since the 1990s, car-bomb events have become the norm for terrorists to damage
public and private structures. For example, two major vehicle bomb attacks occurred in the USA
within a two-year period: the WTC building in New York in 1993 (Figure 1.4), and the Alfred P.
Murrah Federal Building in Oklahoma in 1995 (Figure 1.5). Both events have been compared and
analyzed to identify the capacity of building structures to resist progressive collapse against such

attacks (Longinow & Mniszewski, 1996).

Certainly, the collapse of the WTC twin towers has alerted the structural engineering community to
the importance of preventing such catastrophic destruction in the future. After seven months of
extensive investigation of the specific causes of the collapse, the United States Federal Emergency
Management Agency (FEMA, 2002) has issued a report that attributes the collapse to three related
but discrete loading events: (1) the Boeing aircraft crashed into the buildings and cut through their
exterior superstructure, thereby causing substantial localized damage; (2) the subsequent fire, fed by
the jet fuel and office furniture and material, weakened the damaged structures; and (3) the
overwhelming falling debris caused by the progressive collapse itself. For event (1), the impact of the
plane did not cause on immediate building collapse, because the structural systems were sufficiently
redundant to offset the localized damage. According to the report (FEMA, 2002), most of the load
supported by the damaged columns was transferred to the adjacent perimeter columns through the
exterior wall frame, which served as an alternate loading path. The intense fire, event (2), relentlessly
heated and weakened the structural systems, increasing the stress on the damaged structure. As the
large mass of collapsing floors dropped, event (3), the floors below were directly impacted. The
FEMA report stresses the need for further research on the progressive collapse of building structures,

exposed to abnormal loading.



Natural disasters, including earthquakes, hurricanes, floods, tornadoes and fires, are usually much
stronger than those associated with human activity. Figure 1.7 shows one of the severely damaged
buildings resulting from Hurricane Katrina in New Orleans in 2005. According to Tapia (2001) and
Hartwig (2004), the man-made disasters caused by the 1992 Los Angeles riots, the 1993 WTC
bombing, the 1995 Oklahoma City bombing, and the 2001 WTC attack, resulted in $775 million,
$510 million, $125 million, and $40 billion in losses, respectively. According to the Congressional
Budget Office (CBO, 2002) and Holtz-Eakin (2005), the natural disasters due to the 1992 Hurricane
Andrew, the 1994 Northridge earthquake, the 1995 Kobe earthquake, and the 2005 Hurricane Katrina,
resulted in $34 billion, $43 billion, $110 billion, and $140 billion in losses, respectively. To mitigate
the losses caused by earthquakes, FEMA has contracted out project ATC-58 to the Applied
Technology Council (ATC) to develop the next generation of seismic performance-based design
guidelines for buildings. Such philosophy of design and analysis can also be applied to man-made or

natural hazards (Whittaker et al., 2005).

1.2 Design Considerations for Unforeseen Failures

General design strategies to counteract progressive collapse include three aspects: providing members
to resist specific abnormal loading, adding vertical and horizontal ties to increase resiliency to local
damage, and designing alternate loading paths to ensure an adequate residual load-carrying capacity
of the damaged structure (Ellingwood & Leyendecker, 1978; Gross & McGuire, 1983; Zalka &
Armer, 1992; ASCE, 2002). To implement the last two design strategies, alternate loading paths
should be provided to transfer the loads from the damaged regions to the remaining structure, and
progressive collapse analysis should be conducted for the structure. The September 11, 2001, photo of
the Pentagon building collapse shown in Figure 1.8 is a vivid indication that the alternate loading path
method is effective in practice. Even though the supporting columns were destroyed by abnormal
loading, an alternate loading path was provided when the remaining upper reinforced-concrete frame
with masonry-filled walls compensated for the column loss by acting as a transfer girder or vertical

diaphragm (Mlakar et al., 2003).

Current design codes deal with progressive collapse failure problems in various ways. For instance,
Eurocode 1 provides a general analysis and design principle that invokes designers to prevent
structural damage that is disproportionate to the localized damage due to abnormal loading events
(CEN, 1994). The American ASCE 7-05 non-mandatory commentary offers several general
approaches in design for progressive collapse (ASCE, 2005; Ellingwood, 2006). The Canadian code

requires buildings to be designed with structural integrity so that they can effectively withstand



abnormal loading that can occur during the service life of a structure (NRCC, 1995). Some research
work has been conducted to quantify abnormal loading and mitigate its effects. For example,
Ellingwood and Dusenberry (2005) have summarized the information in technical design codes and
research papers on progressive collapse under abnormal loading, and Ellingwood (2005) has proposed
a probabilistic basis for establishing appropriate load combinations to facilitate the design of
structures under extreme fire loading. Marjanishvili (2004) concluded that little detailed information
was available to enable engineers to confidently perform a systematic progressive collapse analysis.
Later, with the view to counteract this conclusion, Marjanishvili and Agnew (2006) provided clear
conceptual descriptions of various procedures for progressive-collapse analyses based on step-by-step
computer computation. The quasi-static nonlinear pushover analysis method, suggested in seismic
engineering (FEMA, 1997), has been considered applicable for dealing with other extreme events
such as blast loads and tornado winds (Hamburger et al., 2002). As well, a non-linear dynamic
analysis method has been proposed for tracking the dynamic behaviour of progressive collapse
(Kaewkulchai & Williamson, 2004), with account for impact loading (Kaewkulchai & Williamson,
2006).

Section 2.5 of the ASCE Standard-7 (ASCE, 2005) states that stability and strength should be
checked to ensure that structures have the capacity to withstand the effects of abnormal loads. Both
the USA Department of Defense (DoD, 2005) and General Services Administration (GSA, 2003)
have promulgated analysis and design guidelines for dealing with progressive collapse hazards. These
guidelines provide methods to protect existing or new facilities against potential progressive collapse
under abnormal loading events. To satisfy requirements, the design methods suggested in the
guidelines include: (1) structural integrity design, (2) local resistance specification, and (3) alternative

loading path design, as described in the following.

1.2.1 Structural Integrity Design

Structural integrity design requires designers to add vertical and horizontal ties to increase load-path
redundancy in the event of localized damage. This strategy comes from the lesson learned from the
1968 progressive collapse of the Ronan Point apartment building, composed of large bearing-wall
panels (Griffiths et al., 1968). Considerable research has been conducted concerning structural
integrity and resistance to progressive collapse, such as that by Haseltine and Thomas (1969),

Redland Bricks Ltd. (1971), Taylor (1975), and Fintel and Schultz (1979).

The ASCE-7-05 (2005) guideline for the provision of general structural integrity requires designers
to do the following:



o select proper plan layouts; for example, to reduce the spans of long wall sections;

o add short returns on walls to enhance structural stability;

o design strong joints to transfer the loads through alternate loading paths;

e arrange two-way floor systems to supply alternate loading paths;

e enhance interior partitions to redistribute the loads among other walls when a wall fails;
e use catenary action to change a slab/beam into a catenary element

e design walls as transfer beams with ability to span openings.

If the previous requirements are satisfied, a designed building structure can sustain localized
damage and still remain intact and stable. Thoughtful determination of minimum levels of strength,
continuity and ductility during the design process can lead to structures that are able to resist
progressive collapse. However, if minimum requirements (e.g., related to tie forces) are not
specifically provided in design codes, a designer might overlook having concern for considering

progressive collapse (Ellingwood & Leyendecker, 1978).

The general integrity design strategy (DoD, 2005) is suitable both for normal and abnormal
loading. Similar to current design practice concerning normal loads (e.g., where the requirements of
structural integrity are considered for horizontal seismic and wind loads), general integrity design
against progressive collapse caused by abnormal loading should focus on strengthening the

transverse, longitudinal, vertical and peripheral connections of a building.

1.2.2 Specifying Localized Resistance

A localized resistance design strategy requires checking the strength of members subjected to specific
abnormal loading (e.g., the 34 kN/m” pressure load for gas related explosions specified in the United

Kingdom).

Based on the work of Galambos et al. (1982) and Ellingwood et al. (1982), Commentary C2.5 of
ASCE Standard 7 provides load combination formulae for checking structural demands (ASCE,
2005). Although some code authorities might specify abnormal loads (Burnett, 1975), limited data are
available to determine the magnitude and distribution of such loads. To date, little information about
localized resistant strength is provided in design codes to aid designers in designing buildings to resist
abnormal loading events. A localized resistance strategy can lead to ‘hard spots’ within a structure in
the areas where abnormal loading events are prone to occur (Ellingwood & Dusenberry, 2005).
Designing a structure to only resist one specific abnormal load can be both costly and impractical

(Taylor, 1975).



1.2.3 Alternate Load Paths
The Alternate-load Path (AP) design strategy (DoD, 2005) is attractive in design practice. The

principle feature of this strategy is the removal of critical member(s) to simulate the consequences of

an abnormal loading event, without specifically identifying the nature of the loading.

The AP design strategy requires a structure to be checked for its residual load-carrying capacity
when one or more load-bearing member/s is/are notionally removed (DoD, 2005). This calls for an
alternate path to be available in the structure to transfer the loads away from the damaged area to
other parts of the structure so as to avoid a chain-reaction failure. For example, the damaged Pentagon
building in Figure 1.8 illustrates how the damaged area was bridged by an alternate path, saving lives
above the floor of destruction. This demonstrates that the AP strategy can be a practical and
appropriate way to protect a structure from progressive collapse. Based on this strategy, a computer-
based plastic-hinge method has been developed to predict the plastic collapse of framed structures

related to selectively removed member/s (Gross & McGuire, 1983).

The AP strategy is treated as a principal method in design guidelines for protecting new and
existing buildings from progressive collapse (GSA, 2003; DoD, 2005). If a vehicular collision or car-
bombing occurs at a building’s ground level, the localized damage caused by the abnormal loading
event is assumed to be the removal of one of the following critical members: an exterior column near
the middle of the long side of the building; an exterior column near the middle of the short side of the
building; or a column located at the corner of the building. If the building has underground parking
and/or uncontrolled public ground floor areas, a column in the perimeter column lines of each area is
removed to begin the AP analysis. More detailed requirements for removing a member (column or

wall) are provided in the DoD document (2005).

Design guidelines provided by GSA (2003) and DoD (2005) for the prevention of progressive
collapse of government and military facilities address the AP strategy. However, the strategy can be
applied to any kind of building and infrastructure to mitigate against progressive collapse and thereby
save lives and reduce property losses. In general, the AP strategy has been accepted as an effective
means to estimate the robustness and redundancy of structures (Wada et al., 2006; Vlassis et al.,

2006).

1.3 Structural Analysis for Abnormal Loading

The current AP method involves conventional plastic limit analysis of a structure with one or more
removed member(s). Little work has been conducted on developing rigorous analysis procedures to

trace the complete process of progressive collapse under abnormal loads, primarily because the
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modelling of corresponding structural damage patterns is very complicated. This subsection reviews
static methods of structural analysis as a basis to investigate the progressive collapse of framed

structures.

1.3.1 Structural Analysis Methods

The most common methods of analytical structural analysis have been presented and implemented for
statically loaded frames (e.g., McGuire et al., 2000; Chen et al., 1996). There are four types of
analytical methods: linear elastic analysis, elastic stability analysis, plastic collapse analysis, and

nonlinear inelastic collapse analysis.

Linear elastic analysis is a basic method that is effectively used in serviceability level design. In
spite of some errors compared to nonlinear analysis, the simplicity of linear elastic analysis aids
designers to quickly and conceptually grasp structural behaviour. Therefore, this method is still

popular in structural analysis and design.

Elastic stability analysis is adopted to calculate the critical load multiplier that corresponds to the
elastic limit state of a structure. A common way of obtaining the load multiplier at the limit state
bifurcation point is to conduct a generalized eigenvalue analysis based on an idealized structural
model. An alternate way is to conduct a nonlinear elastic analysis. Although the same load multiplier
is found for both analyses, a nonlinear analysis can be used to trace a nonlinear process and to predict

nonlinear responses.

Plastic collapse analysis is more complicated than linear elastic analysis due to material stiffness
degradation and strength deterioration. Different methods of plastic limit analysis can be developed
by using different material constitutive laws to characterize the degradation and deterioration. To this
end, ‘plastic-hinge’ and ‘spread-of-plasticity’ methods are commonly applied in the plastic collapse
analysis of framed structures. With the plastic-hinge approach, member plasticity is assumed to be
concentrated in zero-length regions (e.g., plastic hinges form at member ends). Also, to account for
stiffness degradation, it is assumed that the material property changes from pure elasticity to full
plasticity once the corresponding moment reaches a level that satisfies the predefined yield criterion.
(Orbison et al., 1982). By these assumptions, the load factor of a structure at the limit plastic state can
be found by employing the static or kinematical theorem (Grierson, 2002). Alternatively, a computer-
based incremental-plastic method can be used to find the plastic load factor and the load-deflection
responses. Because of the simplicity of the plastic-hinge method, it has been applied extensively in

the plastic collapse analysis of framed structures (Chen et al., 1996). A FORTRAN-based program,



called PHINGE (Plastic HINGE), has been developed by Chen et al. (1996) to conduct nonlinear

analysis of semi-rigid frameworks.

However, some assumptions regarding the plastic-hinge method might not be realistic. For
instance, the idealization of material behaviour that can abruptly change from perfect elasticity to
perfect plasticity ignores the gradual stiffness degradation effect taking place from initial yield to full
plasticity. Moreover, the evolution of plasticity along a member is not taken into account in the
structural analysis. Consequently, the spread-of-plasticity approach has been introduced to address
these shortcomings. The gradual stiffness degradation of materials from initial to full yield is
accounted for in the nonlinear analysis, depending on the different degradation models. For instance,
the spread of plasticity along a member can be modeled either by a tapered element attached to the
member end (Acroyd, 1979), or by viewing the entire member as a collection of segments with
variable flexural stiffness El along the member’s length (Cook, 1983). Plasticity can also be gradually
traced by including higher-order displacement fields in the member stiffness formulation (Espion,
1986). More accurately, a fibre-element method can track the gradual spread of plasticity in discrete
fibre elements along the length and through the cross-section depth of a member (Powell & Chen,
1986).

Nonlinear geometric effects were not addressed by the plastic collapse analysis methods discussed
previously. In fact, a structural collapse can involve the combined actions of geometric and material
nonlinearities. For this reason, nonlinear inelastic analysis simultaneously accounts for the interactive
effect of geometric nonlinearity and material nonlinearity. When conventional plastic-hinge
assumptions are made without accounting for gradual stiffness degradation behaviour, a second-order
inelastic analysis can lead to an overestimate of structural strength (King et al., 1992). The spread-of-
plasticity approach has been introduced to address this shortcoming. For example, in the quasi-
plastic-hinge method, an integration technique is available to find the flexibility coefficients that
permit the formation of an incremental member stiffness matrix that accounts for gradual plasticity
evolution and the P-delta effect (Attalla et al., 1994). This method gives a reasonable description of
the gradually degraded change in member stiffness. Another approach is to combine the plastic hinge
and spread-of-plasticity methods by using an inelastic hinge to efficiently model the evolution of
member plasticity through the use of gradually degraded plastic stiffness factors (Hasan et al., 2002;
Gong 2003; Grierson et al., 2005; Xu et al., 2005).

If the member stiffness matrix used in nonlinear inelastic analysis is expanded as a Taylor series
with respect to the member axial force and the higher-order terms are omitted, a second-order

inelastic analysis approach is achieved. By truncating the higher-order terms, however, the structural
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responses are significantly affected when the framework approaches the buckling state. Consequently,
so as to improve response prediction accuracy, this thesis focuses on nonlinear inelastic analysis
without truncating higher-order terms. Specifically, the analysis method involves employing a more
accurate structure stiffness matrix in the incremental-load procedure employed to identify plastic

collapse limit states.

1.3.2 Progressive Collapse Analysis

Identifying all the possible abnormal loads for a structure is difficult. Providing adequate resistance to
one abnormal loading condition does not necessarily ensure sufficient strength to resist other
abnormal loading events. Also, the additional cost required to prevent failure against abnormal loads
is often not justifiable because of the low probability of abnormal loading events. Since the principal
dangers are fire, degradation, impact and explosion, and since the research on complex structural
response to these events is sparse, specifying local resistance for a structure without dependable data
is unproductive and potentially dangerous (Zalka & Armer, 1992). In many cases, the AP method is

an appropriate basis for progressive collapse analysis (Ellingwood & Leyendecker, 1978).

In the AP-based progressive-collapse analysis method proposed by Gross and McGuire (1983), the
behaviour of a framed structure to plastic collapse is traced by the second-order plastic-hinge
approach. In the analysis procedure, the abnormal loading is not explicitly considered. Rather, its
effect is accounted for by removing selected member(s). In an analysis of the partial collapse of the
Bankers Trust Building in the WTC complex (FEMA, 2002), the nonlinear analysis was performed
using ANSYS software (ANSY'S, 2005) to account for large-deflection geometric nonlinearities. The
inelastic responses at the connections were simulated by nonlinear springs and localized inelastic
material properties. Following the concept of AP design, the gravitational loading was applied first.
The damaged or missing members were then removed sequentially to track the partial progressive
collapse. The computed results demonstrated that the connections played an important role by
enabling the beams to develop some membrane catenary action to hold the damaged structure in place

so as to limit overall structural damage.

Shear failure is another contributing factor in the progressive collapse of concrete and steel
structures. Regarding the collapse of concrete flat plate structures, Hawkins and Mitchell (1979) have
concluded that the most likely mechanism to trigger progressive collapse is punching-shear failure
occurring at interior columns. They analyzed four possible defences against progressive collapse, and
concluded that designing for high live loads is unsatisfactory, integral beam stirrup reinforcement is

impractical, and continuous bottom reinforcement and tensile membrane action for slabs is beneficial.
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Abrupt shear failure can result from short-duration dynamic load impact (Conrath et al., 1999).
Evidently, then, shear failure due to impacting debris loads must be considered by any progressive

collapse analysis.

High-tension axial forces will appear in slabs or beams acting as catenary members as a result of
the failure of columns or walls. The effect of axial force on the progressive collapse of truss structural
systems has been extensively studied since the failure of the Hartford Coliseum space truss roof in
1978 (Blandford, 1996). Axial failure can also be one of the crucial factors in the progressive collapse
of flexural frameworks. However, the combined shear plus axial failure model is not included in the

current nonlinear inelastic analysis methods for analyzing flexural framed structures.

Probabilistic-based methods should be applied to help mitigate against progressive collapse due to
abnormal loads. It is important to note that even though the occurrence of abnormal loading has low
probability, the resulting consequences can be devastating (Ellingwood, 2006). Probabilistic risk
analysis method can provide an efficient tool to quantify the uncertainty of abnormal loading for
decision making (Ellingwood, 2005; Ellingwood & Wen, 2005; Ellingwood, 2001; Ellingwood,
2000). Although this study focuses on the development of fundamental concepts for deterministic
progressive-collapse analysis, it is also important to conduct work concerning reliability-based

progressive-failure analyses (Ellingwood et al., 2004; Ellingwood & Tekie, 2001; Ellingwood, 2000).

1.4 Objectives and Scope

The primary objective of this thesis is to establish new fundamental and physical insights into the
progressive-collapse behaviour of steel building structures under abnormal loads. An analysis tool is
developed for identifying possible collapse mechanisms and for predicting progressive-collapse
behaviour of framed structures under extreme loading events. The specific objectives of this thesis

arc:

e Develop a multi-stage method of analysis to trace the process of progressive collapse of
frameworks as characterized by the change of structural topology

o Identify progressive-failure characteristics, including member plastic deformation, connection
damage, local collapse mechanisms, and residual capacity of the damaged structure

e Derive stiffness expressions for structural analysis involving geometric nonlinearities and
member shear deformations

o Introduce stiffness degradation factors to characterize the degree of damage to members and

connections of a structure loaded into the post-elastic response range
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e Develop a compound-element model that effectively simulates the interactive behavior of
members and connections

e Introduce an impact amplification factor to consider the dynamic effects of impact debris
loading

e Develop a health index to model connection damage conditions

This scope of this research is the quasi-static progressive collapse analysis of planar steel frame
structures subjected to event-independent abnormal loading and debris loading, to predict structural

instability and corresponding failure states.

1.5 Assumptions and Idealizations

The investigation described in this thesis is based on the following assumptions and idealizations:

e Structural steel materials are homogenous and isotropic;

e The spread of plasticity along a member is modelled by inelastic springs, concentrated at
member ends;

e Compared to member lengths defined by centre-to-centre dimensions, the lengths of
connection and inelastic spring elements are assumed to be negligible;

e The effects of local buckling, lateral buckling, and panel-zone shear failure are assumed to be
precluded by lateral bracings;

e The damage caused by abnormal loads is simulated by the removal of critical members of the
structure under consideration;

e The dynamic effect of falling debris loads is accounted for through an impact amplification
factor; and

e After an abnormal loading event causing damage has happened, the damaged structure is

analyzed under the prevailing gravity loads alone, and potential debris loads.

1.6 Thesis Organization

This thesis involves the development of an analytical tool for predicting the failure behaviour of steel
building structures that are exposed to abnormal loading events. The thesis is organized into seven

chapters, as follows:

e Chapter 2 provides a discussion of geometric and material nonlinearity for structural
members. Member force-deformation relationships are investigated to account for geometric
nonlinearity and shear deformation in the elastic range. Stiffness coefficients are derived to

serve as a basis for inelastic nonlinear analysis. Post-elastic moment-rotation, shear force-
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deflection, and axial force-deformation relationships are investigated to determine stiffness
degradation factors.

Chapter 3 presents the derivation of a generalized stiffness matrix for a hybrid beam-column
member accounting for geometric and material nonlinearities. A proposed nonlinear
procedure is developed for the analysis of frameworks, and illustrated by two examples.
Chapter 4 describes an effective method for the inelastic analysis of semi-rigid planar steel
frameworks. The nonlinear characteristics of a member with both inelastic material behaviour
and semi-rigid connections are discussed. Three semi-rigid steel frameworks are analyzed by
proposed nonlinear analysis method to illustrate the influence of semi-rigid connections on
post-elastic structural response. The results are also compared with those obtained from
experiments and applying other methods.

A progressive-failure analysis technique is developed in Chapter 5. Three types of localized
failure models are developed to investigate member-end disengagement scenarios and
subsequent impact debris loading. A health index is developed to account for connection
damage due to the disengagement of members during progressive collapse. Semi-rigid
connection behaviour is considered. A procedure based on the AP method for progressive-
failure analysis is investigated.

With a view to future improvement of the progressive-failure analysis method, Chapter 6
models the post-elastic behaviour of member sections under combined bending moment,
shearing force and axial force using an Euler-Lagrange energy functional to define the three-
dimensional stress distribution constituting the yield failure surface. The results predicted by
the M-V-P failure model are compared with those obtained from experiments and other
analytical methods.

Chapter 7 discusses conclusions drawn from the study, and identifies future research work

concerning progressive collapse from the viewpoints of both analysis and design.
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Figure 1.1 Save-on-Foods Grocery Store failure, Canada (Closkey, 1988)

Figure 1.2 Progressive collapse of Husky Stadium, USA (© John Stamets, 1987)
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Figure 1.3 Progressive collapse of Ronan Point Flats, UK (Griffiths et al., 1968)

Figure 1.4 Local damage of World Trade Centre building, New York (Bureau of ATF, 1993)
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Figure 1.6 Progressive collapse of World Trade Centre tower, New York (FEMA , 2002)
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Figure 1.8 Walls as transfer girders compensating for column loss, Pentagon, USA (SEI, 2003)

18



Chapter 2

Geometrical and Material Nonlinearity

This chapter provides a discussion of geometric and material nonlinearity for structural members.
Member stiffness coefficients are derived to account for geometrical nonlinearity and member shear
deformation. Axial, shearing and bending force-deformation relationships are obtained from typical
experimental results, and corresponding stiffness degradation factors are established to quantify the

extent of member plasticity (Grierson et al., 2005; Xu et al., 2005).

2.1 Geometrical Nonlinearity Associated with Shear Deformation

The local force-deformation relationship of members is fundamental to the formulation of computer-
based structural analysis procedures for framed structures (McGuire et al., 2000). In geometrical
nonlinear problems, even though the materials behave in a linear-elastic manner, the relationships
between the external loads and structural responses are nonlinear. Although the effect of shear
deformation is typically insignificant in the analysis of conventional framed structures, shear effects
do contribute to nonlinear structure response in cases of heavy transverse loading. The effect of shear
deformation on structural deflection has been previously studied (Timoshenko, 1955). For instance,
consider a simply supported beam with a uniformly distributed transverse load. When shear
deformation is taken into account, the maximum deflection increases by 9.5% when the member
span-to-section depth ratio is 10. If the ratio decreases to 6, the deflection increases by 26.5%. In
another example, investigation of a two-bay by two-storey frame supported by an elastic foundation
beam (Aydogan, 1995) found that the maximum vertical deflection and bending moment for the
foundation beam increase by 12.8% and 4.8%, respectively, when the shear deformation is accounted
for. Timoshenko beam theory has been extensively investigated and applied in structural analysis
(Wang, 1996). However, the combined action of shear deformation and P-delta effect associated with

flexural deformation has been little studied.

Two key areas of geometric nonlinearity related to the interaction between axial load and shear
deformation have been investigated in the literature. The first concerns how shear deformation affects
the elastic buckling of columns. For an example cantilever column, an expression for the elastic
buckling load accounting for shear deformation has been given by Timoshenko and Gere (1961).
Recently, more comprehensive solutions for elastic buckling loads of columns with different end
constraints have been found that account for the effect of shear deformation (Aristizabal-Ochoa,

2004). The second area concerns beams on elastic foundations, where the influence of shear
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deformation is significant (Aydogan, 1995; Areiza-Hurtado et al., 2005). This chapter focuses on the
interactive effect of shear deformation on geometrical nonlinear responses of structural systems in the

elastic range.

2.1.1 Governing Differential Equation

Consider the prismatic planar beam-column member in Figure 2.1, where L = member length, E =
material Young’s modulus, G = material shear modulus, | = cross-section moment of inertia, A =
cross-sectional area, and A; = equivalent cross-sectional shear area. The objective is to find end
moments M; and M, when the member is subjected to constant axial force P, and rotation 6, imposed
at member end 1. Once the moments are determined, the corresponding end shear reactions V; and V,
are found from the equilibrium conditions. For geometric nonlinear problems, equilibrium is
established for the deformed profile of the member. Here, it is required that the differential equation
of equilibrium that governs geometric nonlinearity includes shear deformation. It is assumed that the
member cross-section area has biaxial Xx-y symmetry, where X and y define the horizontal and vertical

neutral axes of the cross-section, respectively.

The internal moment, shear and axial forces M, V and P are found by referring to the free body
diagram in Figure 2.1(b), where the forces and associated deformations y and 6 are presented in their

positive directions. The forces at any position x along the member can be found from equilibrium to

be,

M=M,-Py-V,x (2.1.1)
V =-V,cos0—P, sind (2.1.2)
P=P cos6—-V,sin0 (2.1.3)

where 0 is a rotation due to flexural deformation. Equation (2.1.1) indicates that moment M relates
linearly to end moment M, and shear force V,, but nonlinearly to the product of axial force P, and

deflection y.

When shear deformation is taken into account, deflection y in Eq. (2.1.1) includes the combined
contribution of both the bending and the shearing deformations. It remains to determine deflection y
in Figure 2.2(a) for a differential segment of the beam. Assume total deflection Yy is equal to the
summation of deflection y, due to the bending deformation in Figure 2.2(b) and deflection Y5 due to
the shear deformation in Figure 2.2(c), i.e., the total deflection is expressed as (Aydogan, 1995;
Areiza-Hurtado et al., 2005)

Y=Y +Ys (2.1.4)
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Note that Egs. (2.1.1), (2.1.2), and (2.1.3) define only the member equilibrium conditions, whereas
the equilibrium of a deformed differential segment of the member is governed by a differential
equation involving deflections Yy, and ys. For the deformation model in Figure 2.2(b), it is well known
that the bending moment-versus-deflection relationship is defined by the following differential
equation (Hibbeler, 2004),

d?y, /dx’ M

[1+(dy,/dx)°]°  EI (2.1.5)

which is the moment-curvature relationship for pure bending. As well, the shear force-versus-
deflection relationship is defined by the following differential equation (Timoshenko, 1955),
dy, _, SV

:'\{:

2.1.6
dx GA ( )

in which vy is the average shear strain, and S is a shearing shape factor that accounts for the non-
uniform shear stress distribution over the cross-section depth. For example, if the maximum shear
strain is utilized to establish the shear deflection, then S = 1.5 for a rectangular section. However, the
use of maximum shear strain to determine shear deflection might be too conservative. Another
approach that is more reasonable requires a value for the factor S¢ to be found by using the principle
of virtual work. To this end, Appendix 2.A derives the following expression for the shearing shape

factor,

[=dA 2.1.7)

in which t is the width of the cross section at the point where the shear stress is measured, and Q is the
first moment about the neutral axis of the portion of the section area defined by where y is measured.
For a rectangular section, for example, Eq. (2.1.7) determines the factor Sis= 1.2, a value closer to that
obtained when warping is taken into account (Timoshenko, 1955). Typically, by using the S¢ value
from Eq. (2.1.7) in Eq. (2.1.6), smaller shear deflections are yielded than those found using the
maximum shear strain criterion. For a W-shaped cross-section, the expression for the shear shape

factor can be expressed as

d/2-t

2A f 2 d/2 2

sf :I_Z[ _[ Q_dy+ _[ Q_dy
0 w d/2—-tg ~f

(2.1.7a)

_ 3[8c, +15¢,(1-c,)+30c; (3c, 1)+ ¢ (15-83c, +128¢;)]
20c,[1-(1-¢,)c T /(1-c, +¢.c,) '

where parameters ¢, and C, are:
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c,=1-2t; /d (2.1.7b)
c, =t, /b; (2.1.7¢)
in which d = depth, bs = width of the flange, t; = thickness of the flange, and t,, = thickness of the web.
For W920X253 beam section with ¢; = 0.9434 and ¢, = 0.0541, the shearing shape factor S = 5.997
from Eq. (2.1.7a). For W360X382 column section with ¢; = 0.7692 and ¢, = 0.0734, the factor S
=5.645 from Eq. (2.1.7a). Thus, it can be assumed S¢ = 6 for practical W-sections. Finally, from Eq.

(2.1.7a), note when ¢; = 0 (t; = d/2) and ¢, = 1 (t, = by) that the factor S = 1.2 for rectangular cross

sections.

Once the shearing shape factor S is estimated by Eq. (2.1.7) for a specified cross-section, the shear
deflection Ys can be determined. To this end, differentiating Eq. (2.1.4) twice yields, from Egs. (2.1.5)
and (2.1.6),

2 2 2 2 S
d g’zd {b+d s MU (Do) | SV (2.1.8)
dx dx dx El dx GA dx

which is the differential equation that relates total deflection y (accounting for combined bending and
shearing deformations) to moment M and shear force V. The first derivative of the shear force in Eq.

(2.1.8) is obtained by differentiating Eq. (2.1.2) once with respect to X, to obtain,

dv . ,do6 do de M dy,

—=V,sin0—— P, cos0— =cos0—(V, tan0 - P)=—| V, =2 - P,

o sin o N cos i cos o (V, tan ) El ( ' dx lj (2.1.9)

where the following relationships are employed,
cosed—ezM (2.1.10a)
dx El

d

tan 6= o. (2.1.10b)
dx

By substituting Eq. (2.1.9) into (2.1.8), the general differential equilibrium equation involving the

total deflection becomes

1.5
d’y M dy, Y | . S [y, Oy
=— |1+ 2 Sy 2 _p
¢  El [J{dxj oAl ax LD

If the shearing deformation can be ignored (i.e., 1/GA = 0 and y = V;), Eq. (2.1.11) reduces to the

differential equation Eq. (2.1.5) that accounts for the bending deformation only.

22



Note that the differential equation Eq. (2.1.11) does not account for external transverse load
distributed along the length of the member. In circumstances where distributed transverse loads are
applied over the member span, the expression on the right-hand side of Eq. (2.1.11) needs to be
modified. For instance, in the analysis of beams on elastic foundations, the shearing effect is
considered by modifying the right-hand side of Eq. (2.1.11) to account for the reaction due to the
elastic foundation (Aydogan, 1995). The effect of shear deformation due to transverse loads on fixed-

end reactions of a fix-fix member is investigated in Section 2.2.2.

Typically, a direct analytical solution of Eq. (2.1.11) cannot be found due to the presence of
geometric nonlinearities. Adopting the conventional assumption of small strain, the squared term of
the first derivative of yy, is dropped such that Eq. (2.1.11) is rewritten as,

El dzy_lvI+ MV, dy,
1-Ps, / GA dx’ GA/s; —P dx

1°sf

(2.1.12)

Equation (2.1.12) still cannot be directly solved because the term dy,/dX remains unknown.
However, it is possible to solve Eq. (2.1.12) for the flexibility coefficients associated with bending
deformation alone. Then, the principle of virtual work can be utilized to find the corresponding
member stiffness coefficients accounting for geometrical nonlinearity and member shear deformation,

as discussed in the following.

2.1.2 Derivation of Elastic Stiffness Coefficients

2.1.2.1 Rotational Stiffness Coefficients

Consider the simply supported member in Figure 2.3 (a), where moments M; and M,, induced by
rotation 0, are to be determined. By employing the principle of virtual work (the unit-force method),

the flexibility coefficients in Figures 2.3 (b) and (c) are expressed as,

L L
fi = fim + fiis :jwdx"'ssf IMdXZ fy (2.1.13a)
0 El 0 GA
and
L m L
for = o + T :J‘%X*’ Set I%X = f, (2.1.13b)
0 0

where moment m;(X) and shear force Vvj(X) are induced by unit moment M; =1 (j = 1, 2) and axial force
P, whereas virtual moment m;,(X) and shear force Vvj,(X) are induced only by unit moment M; =1 (j =

1, 2). From member equilibrium in Figures 2.3 (b) and 2.3 (¢), it follows that,
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m (X)=1-Ry,(x)-x/L (2.1.14a)

v,(X)=1/L+ Rdy, /dx (2.1.14b)
m,(x)=—-PRy,(X)—x/L (2.1.14¢)
V,(X)=1/L+PRdy, /dx (2.1.144d)
m,(X)=1-x/L (2.1.14e)
m,,(X)=-x/L (2.1.141)
v, (X)=v,,(X)=1/L (2.1.14g)

where y;(X) and Y,(X) are the deflection curves of the primary structure due to the applied end
moments M; = 1 and M, = 1, respectively, accounting for axial force P, and shear deformation. The
flexibility coefficients fj, and fy1, in Egs. (2.1.13) cannot be computed from the integrals because
both y;(x) and y,(x) in Egs. (2.1.14) remain unknown. Without consideration of shear deformation
caused by shear force, however, coefficients fi;, and f;, are the rotations at end 1 and end 2 due to
imposing M, = 1; i.e., these two coefficients are determined by Eq. (2.1.12) when the second term on
the right-hand side involving shear force V, is ignored. When moment M in Eq. (2.1.12) is replaced
by moment m; from Eq. (2.1.14a), coefficients f;;, and f,;, are found by solving the differential

equation, to find (see Appendix 2.B),

(I_EI/GZAS)L 1—t"’ j P<0
an
fiim = | P/\ICI-} L v (2.1.15a)
U=P/GALE v 4} psy
Ely tanh y
(I_EI/GZAS)L - J P<0
U} sin
fom = P /GA L (2.1.15b)
A=P/GALI v P>0
Ely sinh y
in which

where A (= A/fg) represents the equivalent shear cross-sectional area. Thus, the flexibility coefficients

in Egs. (2.1.13) related to moment have been determined.

To consider the contribution of shear deformation due to shear force in Eqgs. (2.1.13), the shear
forces vj(X) and virtual shear forces vj(X) (j = 1, 2) given in Egs. (2.1.14) are substituted into the

relevant terms in Egs. (2.1.13), to yield the following flexibility coefficients,
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L

flo=f = dx = (2.1.16)
11 12 E[GA% GAS LG&

where boundary conditions y;(0) = y,(L) = 0 are applied to evaluate the integrals.

vledX:jl/u Pdy, /dx 1
PL

Upon evaluating Eqgs. (2.1.15a, b) and Eq. (2.1.16), flexibility coefficients fj (i, j = 1, 2) are found
through Egs. (2.1.13) to obtain the flexibility matrix for the primary structure in Figure 2.3 (a)
accounting for the axial force and shearing deformation. The bending moment-rotation deformation

compatibility conditions for the member are expressed in the following matrix form,

fll f12:|{Ml} {el}
= (2.1.17)
{ le fzz M 2 0
from which the relationships between the end moments and rotation are obtained as,
M, =kbn,0, =kJ6, (2.1.18a)
M, =cn,kbn,6, =k&6, =cn,M, (2.1.18b)
where superscript g implies the involvement of geometric nonlinearity, and subscripts “33” and “63”

correspond to the numbering system indicated in Figure 2.3(d) for the end displacements and forces

for the member. The two stiffness coefficients in Egs. (2.1.18) are given by,

ks, = kbn, (2.1.19)
kg, = cn,kbn, (2.1.20)
where coefficient kK = EI/L. Parameters kbn; and cn, in Egs. (2.1.18a) and (2.1.18b) define the
modified rotation stiffness coefficient and carryover factor, respectively. Parameters b and ¢ are
defined by the following expressions (Chen et al., 1996),
1—y/tany
tan(y/2)/(y/2)—1

1—y/tanhy
tanh(y/2)/(v/2)—-1

(2.1.21)

Y —siny P<0

siny —\ycos B

C= v W v (2.1.22)
Wy —sinhy P>0

sinhy —y coshy

where the subscript of P; has been dropped to simplify the notation, and the parameter v is defined in
Eq. (2.1.15¢). Equations (2.1.21) and (2.1.22) are referred to in the literature as stability functions
(Chen et al., 1996), but should probably be called geometrical stiffness coefficients, since they are
applied not only in stability analysis but also in any geometrical nonlinear analysis. Parameters n; (i
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=1, 2) in Egs. (2.1.18) or (2.1.19) are referred to as geometrical shearing coefficients, and are

expressed as,

1+n;m,
n = 2.1.23
I (1—P/GK)(1+T13115) ( )
1+m;m,
n, = 2.1.24
’ I+n;m, ( )

where parameters njs, 14, M5, and 1 are given by,

El

n, = (I_P/GAGAL (2.1.25)
2/(1—y/tan P<o0

.= “’/2( v/tany) (2.1.262)
—y?/(1—y/tanh ) P>0
“tan(y /2)/[tan(y /2) —y /2 P<0

-l (y/2)/ltan(y /2) —y /2] (2.1260)
—y? tanh(y/2)/[tanh(y / 2) =y /2] P>0
2 /(1= /sin P<o0

.= W/Z( M _\V) (2.1.26¢)
-y /(l—w/smh\u) P>0

2.1.2.2 Transverse Stiffness Coefficients

Following the same procedure as that used to derive the rotational stiffness coefficients in the
previous section, the transverse stiffness coefficients are readily found accounting for axial force and
member shearing deformation. To that end, consider the deformed profile of the beam-column
member in Figure 2.4 (a) due to deflection A, imposed at end 1. When deflection A, is imposed on the
simply-supported primary beam in Figure 2.4 (b), the rotation at both ends is equivalently expressed
as -A/L. The bending moment-rotation deformation compatibility condition Eq. (2.1.17) need only be

changed on the right-hand side to establish the shear force-deflection deformation compatibility

condition as,
f11 fl2 Ml Al 1
=—— 2.1.27
[ f,, £, || M, L |1 ( )
Upon solving Eq. (2.1.27), the relationship between the end moments and the deflection is found as,

M, =M, =kbn,(1+cn,)A, /L=kJA, (2.1.28)
By setting deflection A; =1 in Eq. (2.1.28), the stiffness coefficient is given by,

kS, =Kbr, (1+¢r,)/ L=k, (2.1.29)
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which is depicted in Figure 2.4 (c), where the subscripts “32” and “62” refer to the end
force/deformation numbering scheme in Figure 2.3 (d). From Eq. (2.1.28) and the equilibrium

conditions for the member, the transverse end reactions are found as

V, =V, =kbn,[2(1+cn,) + PL/(kbn,)1A, /L2 =k$,A, (2.1.30)

By setting deflection A; = 1 in Eq. (2.1.30), the stiffness coefficient is given by,

k$, =kbr,[2(1+cn,)+ PL/(kb,)]/ L* = k&, (2.1.31)

Similar to the discussion in the previous subsection, when deflection A is set to unity, Egs. (2.1.28)
and (2.1.30), respectively, represent the rotational and translational stiffness coefficients due to a unit
end deflection. The same stiffness coefficient expressions as in Egs. (2.1.29) and (2.1.31) are obtained
if the deflection is imposed at end 2 rather than end 1 of the member in Figure 2.4 (a); i.e., K%s = k%,
and k%s = k%, The stiffness coefficients are applied for monotonic incremental-load analysis, where,
for each increment, the structure is essentially treated as being linear elastic, for which Maxwell’s
reciprocal theorem holds. Therefore, all stiffness coefficients k% accounting for geometric
nonlinearity and member shear deformation have been determined; i.e., k%;s = k%;, k%; = k%,, k%4 =

kg65 and k926 = kgf)z.

2.2 Effects of Shear Deformation on Structural Response

This section investigates the effects of shear deformation on elastic stability and fixed-end reactions
using the formulas derived in the previous section. To facilitate the discussion, the Euler buckling

load,

P, =n’El /L (2.2.1)
is introduced as a baseline reference. In addition, the ratio of axial force P to Euler buckling load Pe,

and the ratio of Euler buckling load P. to shearing stiffness GAs are represented by the following

parameters,
p,=P/P, (2.2.2a)
P, Bl _E(r)
P, = G/is = AL =75 &J (2.2.2b)

where the parameter ps is the so-called axial-shear influence factor that depends on the geometric and

material properties of the member, in which the parameter r; is defined as,

ro=JU/A = sc1 /A= [s JI/A=T, [s; (2.2.3a)
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where

¢4 >1.0 (2.2.3b)

is a shearing shape factor, discussed in Appendix 2.A, and rs is the shear-radius of gyration modified
from the conventional bending-radius of gyration r,. From Eqs. (2.2.1) and (2.2.2), the parameter

given in Eq. (2.1.15c¢) is rewritten as,

v=my|P|(1-P/GA)/P, =m|lp, [(1-peps) (224)
When ps = 0 and pe < 0, Eq. (2.2.4) reduces to a parameter in elastic buckling analysis (Xu & Liu,
2002). By using the parameters ps and p. from Egs. (2.2.2), the parameter n; in Eq. (2.1.25) is

expressed as,

r 2
—Sj (2.2.5)

__ 1 E
UE L

1- PePs G
The effect of shear deformation on buckling stability and fixed-end reactions for a beam-column

member is discussed in the following.

2.2.1 Effect of Shear Deformation on Elastic Buckling

The buckling of a beam-column member with the various boundary conditions in Figure 2.5 is
discussed here to illustrate the effect of shear deformation on elastic stability. The notations in the
figure are similar to those in Figure 2.1(a), except that rotational-constraining stiffnesses R;, R, and
translational-constraining stiffness R; are introduced to reflect the different types of end constraints.
Buckling is defined by an instability condition where the axial load reaches such an extent that the
structure stiffness matrix becomes singular (i.e., the corresponding determinant of the matrix

vanishes).

Because tensile force has the tendency to increase the geometrical stiffness of a structural member,
only a compressive axial force (assumed to be positive in this subsection) is here considered. Four
types of end constraints are investigated: free-clamped cantilever column with R, =R; =0 and R; =«
(free-fix); simply supported column with Ry = R, = 0 and R; = .o (pin-pin); pin-clamped supported
column with R, = 0 and R; = R; = oo (pin-fix); and clamped-clamped supported column with R; =R, =

R = oo (fix-fix).

Once a stability function is obtained with respect to axial-force parameter pe, given in Eq. (2.2.2a),

minimum root pecr can be solved from the stability function so that critical load Py, is given by
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Pr = Pecr e (2.2.6)

The cantilever column (free-fix) has been previously studied by a number of researchers

(Timoshenko & Gere, 1961; Chugh, 1977; Aristizabal-Ochoa, 2004). From Egs. (2.1.19), (2.1.29),

and (2.1.31), the stability function obtained by zeroing the determinant of the geometric stiffness
matrix for the cantilever column is expressed as,

k3, K3

S 5 | =K [bn, (1-c*n3) —n’p,]=0 (22.7)
k32 k33

Of all the possible solutions of Eq. (2.2.7) for parameter pe, only the minimum solution value pecr

yields the elastic buckling load of the column, i.e., from Eq. (2.2.2a), Pr = pecrPe.

To demonstrate the effect of member shear deformation on the elastic buckling load of a structural
steel cantilever beam-column with E = 2x10° MPa, G = 77x10°> MPa, and specified slenderness ratio
L/rs = 20, the parameter ps = 0.0641 from Eq. (2.2.2b), and parameters ¢ and m; are computed as,
from Egs. (2.2.4) and (2.2.5),

v =mp,(1+0.0641p,) (2.2.8a)
N, =0.0065/(1+0.0641p,) (2.2.8b)

By substituting Egs. (2.2.8) into the expressions for b, ¢, n;, and n, in Egs. (2.1.20) through
(2.1.24), and then substituting b, ¢, n;, and 7, into Eq. (2.2.7), a complicated buckling function in
terms of variable p, results, for which it is difficult to solve for the minimum root pey. Alternatively,
instead of obtaining the exact stability function, this study input all the expressions related to Eq.
(2.2.7) into a Microsoft Excel spread sheet, and then used the Goal Seek tool (Microsoft, 2000) for
solution. This approach determines the non-dimensional buckling load pe= 0.243, which corresponds

to buckling load P, = 0.243P..

The theoretical value of the buckling load for a cantilever column without considering shear
deformation is P.y = Po/4. When shear deformation is taken into account, the relative difference is
calculated as (P¢/Pero -1) = (0.243%x4-1) = -0.028. This indicates that when L/rs = 20, the critical
buckling load is decreased by 2.8% when shear deformation is accounted for. For the various
slenderness ratios and end conditions with L/rs= 10, 20, 30, 40, 50, and 60, the relative differences
between critical buckling loads found when shear deformation is and is not accounted for are

summarized in Table 2.1.

To demonstrate the effect of the shearing shape factor S, the relative differences between actual

critical loads and those found neglecting shear deformation are plotted in Figure 2.6 for slenderness
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ratios KL/r, = 50, 70 and 90. Parameter K is an effective-length factor that accounts for different end
constraints. It is evident that for a given member with a specified KL/r, value, the shearing shape

factor S¢t decreases the critical buckling load as it increases in value.

2.2.2 Effect of Shear Deformation on Fixed-End Reactions

This section discusses how shear deformation affects the end reactions of beam-column members
under transverse loads. The fixed-end reactions for a fix-fix beam with specified transverse loads are
well established when the shearing effect is not accounted for (McGuire et al., 2000). In the
following, these reactions are taken as the basis for expressing member-end reactions when shearing

deformation is accounted for.

For the fix-fix beam with arbitrary transverse load w(X) shown in Figure 2.7, the Force Method of
analysis is utilized to obtain the fixed-end reactions. To this end, the primary structure is selected as
the simply supported beam in Figure 2.3 (a). The deformation compatibility conditions taking into

account shear deformation are expressed in compact matrix form as,

L 1 -L 1
+ +
3El ' GAL 6EI  GAL {Ml}__{eu} (2.2.9)
S S N S W (V8 G Y h
6El ' GALL 3EI  GA.L

where 6 (j = 1, 2) are the member-end rotations caused by the transverse load w(Xx).

It is well known that shear force does not contribute to member-end rotations of a simply supported

beam subjected to transverse loads, i.e., for shear force V the rotation is,

Yox =

o GA o LGA

where M is the member moment distribution having boundary conditions M(0) = M(L) = 0, and V, =

A% “dM /d
0, =] [ [k =0 (2.1.10)

iv =

1/L is virtual shear force due to a unit moment applied at the member end.

Solve Eq. (2.2.9) for the fixed-end moments to find,

{Ml} -2k {291. +0, +6p, (0, —92.)/ﬂ2} (2.2.11)

M, 1+12p, /7 |6, +26,, +6p,(0, —V, )/

2

where parameter ps is defined in Eq. (2.2.2b) and k = EI/L. If shear deformation is neglected, i.e., ps =

0, the moment-rotation relationship in Eq. (2.2.11) reduces to the conventional expression,
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{Mlo}:_zk{zen +e2|} (2.2.12)
M, 0, +20, o

where the subscript “0” denotes the fixed-end moments without account for shear deformation. Note

that Eq. (2.2.12) can be inversely expressed as

O _-1 2M;, =My (2.2.13)
0, ] 6k [2M, —M, -

Substitute Eq. (2.2.13) into Eq. (2.2.11) to find,

M, M, 6p, /7’ 1 1{|M,
= - (2.2.14)
M, M, 1+12p, /7" |1 1| M,

which transforms the conventional fixed-end moments M,y and M,, into moments M; and M, that
account for shear deformation. From Eq. (2.2.14) and the equilibrium conditions for the member, the

transverse end reactions found as

V v 12p. /7* -1 -1](M
Vol 1P . 10 (2.2.15)
\D Vo) (A+12pg/m* )L 1 1 J[My

which transforms the conventional fixed-end reactions V;y, and V,, into reactions V; and V, that

account for shear deformation.

It is interesting to observe from Egs. (2.2.14) and (2.2.15) that if the external transverse load w(X) is
applied symmetrically to cover the span of the member, the shear deformation does not affect the
fixed-end reactions because, then, M,y = -M;( and the second term on the RHS of each of Egs.
(2.2.14) and (2.2.15) is zero valued. However, in such cases, the shear deformation does affect the

member deflection.

2.3 Stiffness Degradation

The performance of any engineered structure under external loads depends not only on its geometric
properties, but also, to a large extent, on the properties of the materials used to construct the structure.
Although a slender framed structure can fail due to elastic buckling, most failures in commonly
engineered structures are due to the advent of nonlinear material behaviour, referred to as post-elastic
or plastic behaviour. Thus, structural failure or collapse generally involves both geometric and
material nonlinearities. Material properties such as yield strength, ultimate strength, and ductility are
crucial design indices that guide designers in their quest to ensure the safety of engineered structures.
To facilitate the material-nonlinear analysis of a framed structure, the next Section introduces an

appropriate model for the failure behaviour of a member cross-section.
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2.3.1 Force-Deformation Model

The variation of the post-elastic (bending, shearing or axial) stiffness of a member section can be
uniquely characterized by a force-deformation (F-D) curve of the form in Figure 2.8. In this figure,
Fy is the specified initial-yield (My, Vy or Py) capacity of the section and F; is the corresponding full-
yield (M,, V, or Pp) capacity, with the consideration of both primary and residual stresses (Heyman &
Dutton 1954; Huber & Beedle 1954; Beedle, 1958). Also, D, is the known magnitude of plastic
deformation (rotation ¢, transverse deflection y or axial displacement 0) beyond initial yielding at
which the section fully yields. Finally, for force F = M, V or P, the quantity dF/dD =R, T or N is the
post-elastic (bending, shearing or axial) stiffness of the section, respectively. For most section shapes
commonly used in steel building frameworks, the continuous nonlinear portion of the F-D curve in
Figure 2.8 can be reasonably modeled as an elliptical shape defined by the following function

(Grierson et al., 2005; Xu et al., 2005),

& 1/e,
D D F F
F=F +(F,-F)|l-|1-— 0< —<1, L<—<I (2.3.1)
D, D, F, Fy
where exponent €,> 1 has different values, depending on whether force F = M, V or P. If F < F, the
post-elastic deformation D = 0, whereas if Fy < F < F, the post-elastic deformation is, from Eq.

(2.3.1),

1/e,

€0

F-F F

D=D,-D,{1- ! 0< 231, —ysiﬂ (2.3.2)
F,—F, D

By differentiating Eq. (2.3.1) with respect to post-elastic deformation D, the post-elastic (bending,

shearing or axial) stiffness is,

dD D

p

€-1 € ?
d_F:M T B U o 0< Rg]y igig] (2.3.3)
D D D F F

p
where, as shown in Figure 2.8, dF/dD = oo if post-elastic deformation D =0 and dF/dD =0 if D> D, .

To identify the extent of the plasticity, so-called the stiffness degradation factors are defined by the
ratio of the elastic deformation to the elastic-plus-plastic deformation at a member section. For a
beam-column member with post-elastic bending, shearing, or axial stiffness R, T or N, respectively,
the corresponding stiffness degradation factor sdf = r, t or n. As indicated in Figure 2.8, sdf = 1, if

post-elastic stiffness dF/dD = o (i.e., fully elastic behaviour), whereas sdf = 0, if post-elastic stiffness
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dF/dD = 0 (i.e., idealized plastic behaviour). It is observed that when 0 < sdf < 1, the physical
meaning of the value is a measure of the extent of the plasticity at a critical section. The
determination of parameters Fy, F,, D, and €, and stiffnesses R, T, N is discussed in Appendix 2.C
through consideration of test results from bending, shearing and axial experiments presented in the
literature (Kusuda & Thurlimann, 1958; Hall & Newmark, 1957; Huber & Beedle, 1954). The next
section introduces so-called stiffness degradation factors as a means to account for the degradation of

post-elastic R, T and N stiffness beyond first yield.

2.3.2 Determination of Stiffness Degradation Factors

Stiffness degradation factors are introduced to identify the influence of plasticity on member stiffness
(Grierson et al., 2005; Xu et al., 2005). A stiffness degradation factor is characterized by the ratio of
elastic deformation to elastic-plus-plastic deformation of a member section. For a beam-column
member with post-elastic bending, shearing or axial stiffness R, T or N, respectively, the
corresponding stiffness degradation factor sdf =r, t or n. As indicated in Figure 2.8, sdf = 1 if post-
elastic stiffness dF/dD = o (i.e., fully elastic behavior), whereas sdf = 0 if post-elastic stiffness
dF/dD = 0 (i.e., idealized plastic behaviour). It is observed that when 0 < sdf < 1, the physical
meaning of the value is a measure of the extent of the plasticity at a critical section. In the following,
the bending, shearing and axial stiffness degradation factors r, t and n, respectively, are derived
assuming plastic deformation to be concentrated at a member section such that the elastic deformation

of the immediately adjacent section occurs for the same magnitude of force M, V or P.

2.3.2.1 Bending Stiffness Degradation Factor r
Consider the simplified member model in Figure 2.9, which has a pin release at the right end and
accounts for rotational bending deformation alone at the left end (i.e., no shear or axial deformation).
Under the action of bending moment M applied at the left end, elastic bending deformation ¢, =
ML/3EI and post-elastic bending deformation ¢ = M/R, and the bending stiffness degradation factor
18,
O, _ 1

é.+¢ 1+3EI/RL

(2.3.4)

From Figure 2.8 and Eq. (2.3.4), for idealized elastic behavior, R = o0 and r = 1 (i.e., no bending
stiffness degradation), whereas for idealized plastic behavior, R = 0 and r = 0 (i.e., complete bending

stiffness degradation).
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2.3.2.2 Shear Stiffness Degradation Factor t

Consider the simplified member model in Figure 2.10, which has a pin release at the right end and
accounts for transverse shear deformation alone at the left end (i.e., no bending or axial deformation).
Under the action of shear force V applied at the left end, elastic shear deformation v, = VL*/3EIl and

post-elastic shear deformation y = V/T, and the shear stiffness degradation factor is,

Ye 1

t: =
Ye +7 1+43El/TL

(2.3.5)

From Figure 2.8 and Eq. (2.3.5), for perfectly elastic behavior, T = o« and t = 1 (i.e., no shear
stiffness degradation), whereas for perfectly plastic behavior, T = 0 and t = 0 (i.e., complete shear

stiffness degradation).

2.3.2.3 Axial Stiffness Degradation Factor n

Consider the simplified member model in Figure 2.11, which accounts for normal axial deformation
alone at the left end (i.e., no bending or shear deformation). Under the action of axial force P, elastic
axial deformation 8. = PL/EA and post-elastic axial deformation & = P/N, and the axial stiffness
degradation factor,

o8 1
5,+6 1+AE/NL

(2.3.6)

From Figure 2.8 and Eq. (2.3.6), for perfectly elastic behavior, N = o and n = 1 (i.e., no axial
stiffness degradation), whereas for perfectly plastic behavior, N = 0 and n = 0 (i.e., complete axial

stiffness degradation).

Appendix 2.A Derivation of Flexibility Coefficients

This section derives the flexibility coefficients fy;; and fy,; for the simply supported beam in Figure
2.12accounting for the contribution of bending moment M and axial force P (note the subscript of P,
is dropped for simplicity). When the second term involving shear force V; on the right-hand side of
Eq. (2.1.12) is ignored (i.e., no shear force contribution), and the moment M is replaced by Py+x/L-1
from Figure 2.14, the differential equation Eq. (2.1.12) becomes,

El d’y X
= B oty
1-P/GA dx L @AD

Coefficients fy; and fy,; indicated in Figure 2.12are determined from the solution of Eq. (2.A.1),

which depends on whether the value of axial force P is positive, negative or zero. Only the derivation
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for case where P < 0 is detailed here (the results for the two other cases are similarly derived, but only

the results are given here). When P <0,

-PA-P/G
9% = ( A) (2.A2)
El
and Eq. (2.A.1) is rewritten as,
d’y ., 1-P/GA,( x
—+ 3 y="— -1 2.A3
dx? y El L ( )
The particular solution of Eq. (2.A.3) is given by,
1 X
=—|1-= 2.A4
Vo= ( Lj (2.A4)
The general solution of Eq. (2.A.3) s,
y =4a, cos(9X) + a, sin(3X) + (1-x/L)/P (2.A.5)

where &, and a, are two arbitrary constants determined from the following two boundary conditions,
y(0)=0 (2.A.6a)
y(L)=0 (2.A.6b)

By applying the boundary condition Eq. (2.A.6a) in Eq. (2.A.5), the constant &, is found as below,
y(0O)=a,+1/P=0—a,=-1/P (2.A.7)

Similarly, apply the boundary condition Eq. (2.A.6a) to find a, as below,

y(L)=a,cosy +a,siny=0—>a, =1/(Ptany) (2.A.8)
in which,
-P(1-P/GA
y=39L= L\/ ( e :) (2.A.9)

To find the slope of the deflection curve, differentiate Eq. (2.A.5) with respect to X to get,

% =—a,9sin(9x) + a,9 cos(9x) —1/(LP)
X

which, upon substituting for a;, @, and y from Egs. (2.A.7), (2.A.8) and (2.A.9), becomes,

dy _ 9sin(8x)  Yeos(9x) 1 _ -1 {l—wsin(SX)— 2.A.10)

_ -1 W cos(9X)
dx P Ptany PL PL

tan y

From Eq. (2.A.10), the rotational flexibility coefficient at end 1 is expressed as,
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dy
fiim :d—xl

-1 LA-P/G
=—(1— hd J: ( ZAS)(I— k4 j 2.A.11)
«o PL tan Ely tan y

Similarly, the rotational flexibility coefficient at end 2 is given by,

-1 LA-P/GA
2_(1_ v ]z Calidd 9(1— v ] 2.A.12)
«~. PL sin y Ely sin y

dy,

fooo_
21m dX

In the same manner as for the previous case where P < 0, the rotational flexibility coefficients are
also readily found when P > 0. The complete set of flexibility coefficients f;;nand o1, for axial force

P less than, greater than or equal to zero are,

(l_EI/Gf*)L 1—t“’ j P<0
v any
fim = L P/GAL (2.A.13)
1= ZAS) Y. 1| P>o0
Ely tanh y
(1—P/GZAS)L Y P <0
Ely sin
fom = L PGAL (2.A.14)
A=P/GALI_ v, P>0
Ely? sinh y
where,
W:L\/W'(I_ET/GAs). (2.A.15)

Appendix 2.B Post-Elastic Stiffness Degradation

The general force-deformation model in the post-elastic range has been discussed in Section 2.3.1.
This section presents an approach to determine the degraded stiffness of member sections as a
consequence of post-elastic flexural, shearing and axial deformations. Corresponding bending,
shearing and axial force-deformation relationships M-¢, V-y and P-0, respectively, are based on

related experimental results.

2.B.1 Bending Stiffness Degradation

To analyze structures with substantial plastic deformations, an inelastic bending moment-rotation
relationship is required to assess the bending stiffness degradation. The force-deformation
relationship can be derived from a point-failure criterion such as the von Mises yield condition, or

from an empirical relationship calibrated by experimental results. This latter approach is adopted
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herein to determine the parameters for the elliptic moment-rotation model defined in Section 2.3.1.
Specifically, the test results for a stub beam (Kusuda & Thurlimann, 1958) are used to determine the
moment-rotation relation for typical steel W-shaped cross-sections. The simply supported stub beam
with a W10x29 cross-section with English units is portrayed in Figure 2.13, where the small open
circles indicate pairs of the moment-rotation test values in the central pure bending segment of the
beam span. The fully plastic moment capacity M, from the experiment is 140.12 kN-m (1240 kips-
in). Plasticity theory defines the shape factor f; = My/M, = 1.13 for the W10x29 cross-section.
However, it is clear from the test results in Figure 2.13 that the initial-yield moment My = 80.6 kN-m
# Mp/1.13 = 140.12 /1.13 = 124 kN-m. To correct this discrepancy, residual stress o, = 0.3cy is
assumed present such that the initial-yield moment is calculated as My ~ (1-0.3)xM,/1.13 = 0.7 X
140.12/1.13 = 86.8 kN-m. A curve-fitting procedure is applied to determine the M-¢ solid-line curve

drawn in Figure 2.13. This M-¢ relationship is discussed in detail in the following.

Upon excluding elastic deformation ¢< ¢, in Figure 2.13, the M-¢ relationship in the inelastic range
between My and M, can be modeled by the following nonlinear function that expresses post-elastic

rotation as,

e Vo0

0=0,71-|1 {M_MVJ

= p —_— —_ —_—
Mp_My

where parameters e, and ¢, are, respectively, defined as the shape parameter and the full-yield

M M
{(bys ¢ ; M—ZSM—pﬁl} (2.B.1)

rotation for the section. From the experimental data in Figure 2.13 for the W10X29 section, the
rotation at initial-yield of the outer fiber of the beam is ¢y= 0.00017 radians per unit length, whereas
the initial-yield moment taking into account residual stress is My = 86.8 kN-m (768 kips-in). From Eq.
(2.B.1), the full-yield rotation ¢, is defined as the rotation level at which the idealized full-yield
moment M= M, is initially achieved. From the experimental results in Figure 2.13, the full-yield
moment M, can correspond to many different ¢ values because it remains almost constant for
rotations ranging from 0.002 to 0.003 radians per unit length. It is assumed in this study that the full-
yield rotation is the average value ¢, = 0.0025 radians per unit length (Grierson et al., 2005; Xu &
Liu, 2006). Based on the values of My, M, and ¢, discussed in the foregoing, the exponent €, = 4 is

derived from the curve-fitting procedure.

Finally, differentiate curvature ¢ in Eq. (2.B.1) with respect to moment M to find,

37



1/g,-1

g -1 €
do ¢ | M-M, | M-M, (2.B.2)
M M -M (M -M, M,-M,

from which post-elastic rotational stiffness R is found as,

1-1/g,

1-¢, &

M -M [ M-M M-M

Rp:dM= p y( yJ 1_[_V] M, <M<M_  (2B3)
d(l) (I)p I\/Ip_lvly MP_MY

It is noted that R, = co when post-elastic deformation ¢ = 0, whereas R,= 0 when ¢ > ¢,

2.B.2 Shearing Stiffness Degradation

The transverse shear stiffness of an inelastic segment can be found from the relationship between the
shear force and the transverse deflection. Similar to the discussion for the moment-rotation
relationship of section, the transverse force-deformation relationship is modeled by the following

elliptic function,

VERVERY
A y
Yo Vp_Vy

which is interpreted as the relationship between the shear force and the transverse deflection at a

1/g,

| <

<

{os RAPIY ygiq} (2.B.4)
YP p Vp

critical section in the post-elastic range (i.e., excluding the elastic deflection). In Eq. (2.B.4), shear
deformation y = inelastic deflection = the difference between the total and initial-yield transverse
deflections, y, = the plastic limit deflection = the difference between the total plastic and initial-yield
deflections, and Vy and V, are the initial-yield shear force and plastic-limit shear force, respectively.
The initial and full-yield shear forces Vy and V, are determined by the properties of the cross-section,
whereas the full-yield transverse deflection y, and shape parameter €, are determined by the
experimental results. This subsection illustrates how the parameters in Eq. (2.B.4) are determined
from test results. Then, the transverse shear stiffness T is derived using the V-y relationship Eq.
(2.B.4). To this end, the following experimental-based shear stress-strain relationships (Hall &

Newmark, 1957) are used,

/G (0<y<0.00143 mm/mm;0 <1t <113.685 MPa)
Y= % (0.00143<y<0.02;113.685<1<152.958MPa) (2.B.5a, b, c)

(t/482.3)** (0.02<y<0.3;152.958<1<338.299MPa )
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where y and t are the shear strain and shear stress, respectively. Although Egs. (2.B.5) are obtained
from a limited number of specimens, these shear stress-strain relations have been long used for
estimating the shear deflections of mild-steel, wide-flange sections (Hall & Newmark, 1957). It can
be seen from Eqgs. (2.B.5) that initial-yield stress T, = 113.685 MPa corresponds to shear strain yy =
0.00143 mm/mm, and that the fully-plastic stress and strain are 1, = 338.299 MPa and y, = 0.3

mm/mm, respectively.

For the effective shear area As = ty(d-t;), where t, = web thickness, d = beam depth, t;= flange
thickness, the shear force on the cross-section can be expressed as V = 1As. The average transverse
shear deflection can be evaluated as 8 = yls, where I is the length of the inelastic zone of the member.
Hereinafter, the experiment-based Eqs. (2.B.5) are used to determine the exponent €, in the elliptic

model of Eq. (2.B.4). As a result, the non-dimensional V-9 expressions of Egs. (2.B.5) are written as

00142V 0< L <000477,0< - < 0.336)
VP YP VP
Oe _ ¥ _JOBN 174 0.00477<-<0.067,0.336 < <0452) (2.B.6a, b, )
85p Yp Vp YP Vp
34
A 0.067<<1,0452< <1y
VP YP VP

where shear force capacity V, = t/As. Equation (2.B.6a) represents the linear elastic V-y relation, and
Eq. (2.B.6¢c) represents the nonlinear inelastic V-y relation, whereas Eq. (2.B.6b) is the linear
transition between them. It can be seen from Eqgs. (2.B.6) that both the elastic deflection limit y/y, =
0.00477 and transition limit = 0.067 are negligibly small, compared to the value of 1.0 at the plastic
limit state. Based on the experimental results given in Egs. (2.B.6), it is found that y, = 0.3-0.00143 =
0.3 and V, = 3V,

The nonlinear regression analysis using the experiment-based datum pairs from Egs. (2.B.6) as
observations, determines for the curve defined by Eq. (2.B.4) that the exponent ¢, ~ 1.5. The non-
dimensional V-y relationship Eq. (2.B.4) is plotted in Figure 2.14 as the solid curve. For the purpose
of comparison, Egs. (2.B.6) are graphically shown in the figure as the dashed curve. It is evident from
Figure 2.14 that Eq. (2.B.4) is in good agreement with the experiment-based expression in Egs.
(2.B.6). As such, this study adopts Eq. (2.B.4) and the parameter values discussed in the foregoing to

model the shear deflection V-y relationship from the initial-yield state to the fully-plastic state.
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In the range between the initial-yield and fully plastic states, the transverse shear stiffness T is
derived by using the shear force-deflection relationship Eq. (2.B.4). To this end, upon differentiating

Eq. (2.B.4) with respect to vy, the transverse shear stiffness T of a cross-section is found to be,

& 1/¢,
7.9V VY, /Vp Yy 1_(\/” _VY] (2.B.7)
dy Yo V-V, V-V,

For exponent e, = 1.5, Eq. (2.B.7) yields transverse shear stiffness values that match with preceding

experiment-based results (Hall & Newmark, 1957). It can be seen from Egs. (2.B.7) that the cross-
section of the member remains elastic (i.e., T = oo) until the applied shear force reaches Vy, whereas

the section becomes fully plastic and the shear stiffness degrades to zero (i.e., T = 0) when V = V,,.

2.B.3 Axial Stiffness Degradation

The axial stiffness of an inelastic segment is derived from the axial force-deformation relationship in
the post-elastic range. As discussed in Section 2.B.1 and 2.B.2, the axial force-deformation

relationship is modeled by the following elliptic function,

1/gy

P-p P
L : 0< o1 2P g (2.B.8)
5 P P

6p Pp _Py

where the axial force = P, initial yield axial force Py = (oy -6;)A (wWhere o is the axial residual stress),
the full-yield axial force P, = oy A, the post-elastic axial deformation & = the difference between the
inelastic and initial-yield axial deformations, and the plastic limit deformation &, = the difference
between the limit plastic and initial-yield deformations. This section presents an approach to

determine deformation 5, and exponent €, using on the experimental results.

The experimental results for a stub column (Huber & Beedle, 1954) are employed to determine the
parameters in the axial force-deformation model Eq. (2.B.8). The stub column has length of 83.82 cm
(33") and W8x31 section with yield-stress oy = 248 MPa (36 ksi), as shown in Figure 2.15, where the
small open circles indicate the axial load-deformation test values. Initial yielding is observed at a
strain of 0.0015, and local buckling of the flange occurs at a strain of 0.0047. From nonlinear
regression analysis based on the data in the range between initial-yielding and full-yielding, the

exponent value e, = 2.5 is found for the normalized axial force-deformation relation Eq. (2.B.8).

When elastic limit strain 3, /33" = 0.0015 and plastic limit strain 8, /33" = 0.0047, axial force-
displacement P-8 relation Eq. (2.B.8) is plotted in Figure 2.15 as the solid-line curve; it is clear from

the figure that Eq. (2.B.8) is in good agreement with the experimental results. Equation (2.B.8) is
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employed in this study to model the P-3 transition curve from initial-yield state to the full-plastic

state.

The axial stiffness N of a member is found by differentiating Eq. (2.B.8) with respect to o to get,

e, V&
P Boh BRI TRZR (2.B.9)
s 5, \|P-P, P-P,

where 8, and Py are determined from the experimental results. For example, &, = (0.0047-0.0015)

(33x25.4 mm) = 0.2268 mm, and Py = 0.7 P, are determined from the experimental results of Huber
and Beedle (1954). Recall also that the exponent e, = 2.5 has been previously determined from the

experimental results.
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Figure 2-3 Flexibility coefficients and member-end numbering
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Figure 2-7 Fixed-end reactions and deflections due to transverse loading
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Figure 2-8 Force-deformation relationship in the post-elastic range
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Figure 2-9 Bending member model

Figure 2-10 Shearing member model
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Figure 2-11 Axial member model
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Figure 2-12 Flexibility coefficients due to unit end moment
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Figure 2-13 Experimental-based moment-rotation curve (Kusuda & Thurlimann, 1958)
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Table 2.1 Effect of shear deformation on critical loads (%)

L/rs Free-fix Pin-pin Pin-fix Fix-fix
10 -9.92 -17.46 -29.43 -57.38
20 -2.77 -5.71 -11.22 -28.52
30 -1.26 -2.63 -5.50 -15.96
40 -0.72 -1.55 -3.14 -9.93
50 -0.46 -1.01 -1.97 -6.70
60 -0.32 -0.70 -1.32 -4.79
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Chapter 3

Nonlinear Analysis of Steel Frameworks

This chapter presents the derivation of a generalized member stiffness matrix for nonlinear analysis.
Stiffness degradation under combined stress states is investigated using a nonlinear analysis
procedure based on the Euler incremental method with a gradually decreasing step size. The nonlinear
method of analysis is illustrated for two benchmark planar steel structures that have been studied in

the literature (Driscoll & Beedle, 1957; Clarke, 1994; Attalla et al., 1994; Iffland & Birnstiel, 1982).

3.1 Nonlinear Member Stiffness Matrix

Consider a planar steel framework that is discretized as an assembly of beam-column members with
compact sections, for which plastic deformation is not precluded by local buckling (AISC, 2001). The
effect of the out-of-plane torsion of a member is ignored in the analysis. Plastic bending, shearing or
axial deformation D (= ¢, y or d) related to moment, shear or axial force F (=M, V or P) is assumed to
be concentrated at member sections. From the conventional matrix Displacement Method of analysis
(McGuire, 2000), the end force-displacement relationship for the hybrid beam-column member in

Figure 3.1 is symbolically expressed as in compact matrix form as,

f =kd G.1.1)

where d = [d; d, ds d; ds dg]" is the nodal displacement vector corresponding to end-force vector f =

[f, f, f5 4 f5 fo]". The member stiffness matrix K is represented in general form as,

k, 0 0 k, 0 0]

k22 k23
k33

Sym

O k25 k26
0 k35 k36
Ky 0 0

k55 k56

66

(3.1.2)

In Figure 3.1, L = member length, E = material Young’s modulus, G = material shear modulus, | =
cross-section moment of inertia, A = cross-section area, and As = equivalent shear area. Furthermore,
from Chapter 2, Rj, Tj and N; (j =1, 2) are the post-elastic rotational bending, transverse shearing and
normal axial stiffnesses at the two member-end sections, respectively, while rj, tj and n; (j =1, 2) are

the corresponding bending, shearing and axial stiffness degradation factors.
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3.2 Derivation of Member Stiffness Coefficients

The non-zero stiffness coefficients k; (i, j =1, 2,..., 6) in Eq. (3.1.2) are derived in the following, with
account for geometrical nonlinearity, shear deformation, and flexural, shear and axial stiffness

degradation.

3.2.1 Stiffness Coefficients due to End Rotations

Figure 3.2 (a) indicates stiffness coefficients kj that account for the influence of axial load P along
with rotational and transverse stiffness degradation due to plasticity. Rotational bending stiffness R;
and transverse shearing stiffness Tj(j = 1, 2), and corresponding flexural and shearing degradation
factors rj and tj, are also shown in the figure. The Displacement Method is applied in the following to

find the stiffness coefficients.
Consider the primary structure in Figure 3.2 (b). Quantities (FES);, (j = 1, 2) denote fixed-end
shearing forces due to unit rotation d; = 1 is imposed at end 1, and are given by
(FES), =—(FES), =k, (3.2.1)

where k'3 is defined by Eq. (3.A.16) in Appendix 3.A. When the vertical unit deflection Y; = 1 is

imposed at joint 1 in Figure 3.2 (c), the transverse stiffness coefficients S;; and S,; are given by,
s, =k +T, (3.2.2a)
S, =S, =—kj, (3.2.2b)

where k'5, is given by Eq. (3.A.20) in Appendix 3.A. Similarly, when Y, = 1 is imposed at end 2 as

shown in Figure 3.2(d), the stiffness coefficient s,, is given by,

S, =k, +T, (3.2.3)
Having Egs. (3.2.1), (3.2.2) and (3.2.3), the equilibrium equations related to joint displacements Y

and Y, in Figure 3.2(a) can be written as,

T, +ky,, -k Y -1
IRV o £ (3.2.4)
—ky T, +ky, LYa 1
and solved to find the joint displacements,
Y k.. -T
{ 1}: 23r { 2} (3.2.5)
Yo (M +Tky, +TT, LTy

Having Y| and Y,, the stiffness coefficient k33 is given by,
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_ Kyskys (T +T,ky,
k3sky, (T, +Ty)ky, +T/T,

Kys =Ks3 +K3,Y, +KisY, = k5[ 1 (3.2.6)

which accounts for geometric and material nonlinearities associated with member shear deformation.
It is noted that when there is no post-elastic transverse shear stiffness degradation (T, = T, = ), Eq.

(3.2.6) reduces to the k's; coefficient given by Eq. (3.A.13) in Appendix 3.A.

To further simplify Eq. (3.2.6), from Egs. (3.A.13), (3.A.16) and (3.A.20) in Appendix 3.A it can
be shown that,

Kyskys by (1+ an)z[bm(l -r)d-cn,)+ 3r2]2

= (3.2.7)
kisky, 4P bnl(l—fz)[l—(0n2)2]+3fz
and
T, +T,)k, 1
( 1 Zr) 22 =1- - =1—X1 (328)
(T, +T,)k,, +T,T, A/T, +1/T,)k,, +1
where
t,t
e = (3.2.9)

Tt +4B(E +t, —2tty)
is a factor accounting for the effect of the degraded transverse shear stiffness. Parameter [ is a

modified deflection stiffness factor, introduced for the storey-based analysis of frameworks (Xu &

Liu, 2002; Liu & Xu, 2005), and is defined as,

L3
—— k'
12E1 %
Other parameters are defined in Chapter 2 and Appendix 3.A.

p (3.2.10)

By substituting Egs. (3.2.7) and (3.2.8) into Eq. (3.2.6), the stiffness coefficient ki3 is concisely

written as,

K3y =k33%2 (3.2.11)
where

by 0+ cn,)’[bn, (1-1,)(1-cn,) +3n,]°

=1
270 T b, (1)l - (o)1 + 31,

(I=%1) (3.2.12)

is a modifying factor that accounts for the effect of shear stiffness degradation. It is noteworthy that

%2 = 1 when ; = 1, thereby indicating no shear stiffness degradation.
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In a similar manner to the derivation of Eq. (3.2.11), the stiffness coefficient K¢; at end 2 is found

as,

Kes =k&5 +K5Y, +k5Y, =k5x, (3.2.13)

where k'3 and K'gs are given by Egs. (3.A.19) and (3.A.18), and the parameter i is given by,

=1- bn1(1+cn2)2(1_X1)

X 120cn.8 (3.2.14)
x [bn,(1-r)(1-cn,) +3r][bn, (1-r,)(1-cn,) +3r,]

which is a modification factor that accounts for the interaction between flexural bending and

transverse shearing stiffness degradations.

From transverse equilibrium at end 1 in Figure 3.2 (a), the transverse stiffness coefficients

associated with end-rotation d; = 1 are,

_ T, T,k
(T +Tky, +T/T,

—Klyt, =—kKss (3.2.15)

k23=_ 11

Having the stiffness coefficients associated with rotation d;= 1 at end 1 of the member, the stiffness
coefficients associated with rotation ds =1 at end 2 are obtained analogically. From Eq. (3.2.11),
Kes = KesXa (3.2.16)

where k' is defined by Eq. (3.A.17) in Appendix 3.A, and by exchanging subscripts 1 and 2 of the
flexural degradation factors r in Eq. (3.2.12) the modification factor y4 is given by,

_bnyr, (1+cny)’[on, A-r)(I—cny) +3071°
40 bn, (1-1)(1-c’n3) +3r,

xs =1 (=) (3.2.17)

Similar to that for Eq. (3.2.15), the transverse stiffness coefficients due to rotation d¢ = 1 at end 2

are given by,

Kas = Koot = —Ks (3.2.18)

3.2.2 Stiffness Coefficients due to End Translations

When unit translation d, = 1 is imposed at end 1 of the member as indicated in Figure 3.3 (a), the
corresponding stiffness coefficients can be found by the Displacement Method of analysis. To this
end, the corresponding primary structure with two unknown transverse displacements Y; and Y, is

taken to be as shown in Figure 3.3 (b). The fixed-end transverse forces are written as,

(FES), =T, (3.2.19a)
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(FES), =0 (3.2.19b)

where (FES); (j = 1, 2) is the transverse reaction of end j due to unit displacement Y,, while T, is the

corresponding post-elastic shear stiffness of the spring.

Note that the stiffness coefficients associated with unit translations Y;= 1 and Y,=1 are the same as
those in Figures 3.2 (c) and (d), respectively. Therefore, the equilibrium condition Eq. (3.2.4) can be
directly applied upon replacing the right-hand side by Egs. (3.2.19) to get,

T, +ki, —ki Y 1
S LR (3.2.19¢)
—ky T, +ky Y2 0
which can then be solved to find the transverse deflections,
Y 1 1+ki, /T
= - o2 (3.2.20)
Y, /T, +1/THky, +1 | ky, /T,

From Figures 3.2 (¢, d) and 3.3 (b), the stiffness coefficient k;; is expressed as,

r
k22

k, =T, -T.Y, +0Y, =
2o T K T, kL /T,

=K (3.2.21)

Similarly, it is shown that stiffness coefficient ks, = -Ka,. Also, from the Maxwell reciprocal theorem,
ks, = ko3 and ke, = Ky (all of which have been defined in the preceding section). Finally, the stiffness
coefficients associated with unit translation ds = 1 alone imposed at the beam right end in Figure 3.3
are analogically determined. For example, Kss = ky, from Eq. (3.2.21) since T, and T, are in a
symmetric position. The rest of the stiffness coefficients are readily determined through the Maxwell

reciprocal theorem.

3.2.3 Stiffness Coefficients due to Axial Displacement

In the preceding sections, member stiffness coefficients have been derived accounting for the effects
of flexural bending and transverse shearing stiffness degradations due to inelastic behaviour. As post-
elastic axial stiffness degradation can sometimes also be significant under heavy axial loading, the

effect is taken into account in this section.

The analytical member model is represented in Figure 3.4 (a), where N;j (j = 1, 2) are normal axial
stiffness in the inelastic range, and n; (j = 1, 2) are corresponding axial-stiffness degradation factors.
The problem under consideration is to find the axial stiffness coefficient (end reaction) k;; when end 1

is displaced a unit distance along the member axis, as shown in Figure 3.4 (a). The Force Method of
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analysis is employed to this end, for which the primary structure is selected as shown in Figure 3.4

(b). Displacement f;; under unit force F = 1 is expressed as,

f” :L_FL L

_I_
NTEAT (3.2.22a)

where L/EA is elastic deformation, and 1/N; (i = 1, 2) are plastic deformations. From Eq. (2.3.6) in
Chapter 2, Eq. (3.2.22a) can be rewritten as,

_2+nn,-n—-n, L

f
11 nn, EA (3.2.22b)
Therefore, from Eq. (3.2.22b), the axial stiffness at member end 1 is,
k —L = E 3223
11 ] Xo L (3.2.23)
where,
nn,
Xo (3.2.24)

©24+nn,—n, —n,
is referred to as an axial stiffness-reduction coefficient. If %, = 1 there is no axial stiffness reduction,

while if y, = 0 the axial stiffness is reduced to zero. Due to symmetry, the same axial stiffness

coefficient as in Eq. (3.2.23) is obtained when a unit displacement is alternatively imposed at end 2 of

the beam in Figure 3.4.

3.2.4 Summary of Stiffness Coefficients

In the foregoing, all of the non-zero stiftness coefficients kj (i, j = 1, 2,..., 6) in the member stiffness
matrix Eq. (3.1.2) have been derived accounting for geometrical nonlinearity, shear deformation, and
flexural, shear and axial stiffness degradation;i.e., as given by Egs. (3.2.11), (3.2.13), (3.2.15),
(3.2.16), (3.2.18), (3.2.21), and (3.2.23). A summary listing of the coefficients is given in the

following.
k, =kay, =k,, =—k, =, (3.2.252)
Ky, =k, =Kss =—Kps =K, (3.2.25b)
Kyy = ki, =Ky, = —Kys =K, (3.2.25¢)
Ky = k', =K, = =K, = —k (3.2.25d)
(3.2.25¢)

Kyy = k3r3X2
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where,

in which,

Ky = k3r6X3 =Kg

Ko = k6r6X4

K, = AE/L

f, El

Ko—_2__ =1
27d, Lo

K — K3; +Ke3 _ 3bmkr (1+cny)[bn, (1-1,)(1—cn,) +31, ]
ST QL
_ 3bmkry (1+cm,)[bn, (1 -r)(A-cn,)+3r] K"
56

Ky = -
26 oL

Kl — 3r1bmk[bm(1—fz)(1—02n§)+3r2]
33 = o)

kss =9kben,m;n,n /Q

k6r6 =3r,bn,k[bn, (1 -r)(1 - Cznﬁ) +3n1/Q

= nan
Xo 2+n1n2—n1—n2
_ tt,
X1 tt, +4p(t, +t, —2tt,)
y, =12 (L+cn,)*[bn, (1= ry)(1 - cny) +31, ] (1-%)
. 1
408 b, (1-n)[1—(cn,)*]+3r,
=1_bﬂ1(l+0n2)2(1—xl)
’ 12Q0n,p
x [bn,(1-r)(1-cn,)+3r]bn,(1-r,)1-cn,) +3r,]
=1- bnlrz (1+Cn2)2[bn1(1—rl)(l_Cn2)+3rl]2 (l_x )
4 408 bﬂl(l—rl)(l—c2n§)+3rl 1
1—y/tany <0
tan(y/2)/(y/2)—1
B 1—y/tanhy

tanh(y/2)/(y/2)—1
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L
{3bm(1+ cnylenr, +bn,(1—cn,)(f +1, =261,)]+ P E

(3.2.25f)

(3.2.25¢)

(3.2.26a)

(3.2.26b)

(3.2.26¢)

(3.2.26d)

(3.2.26¢)

(3.2.26f)

(3.2.269)

(3.2.26h)

(3.2.26i)

(3.2.26))

(3.2.26k)

(3.2.26h)

(3.2.27a)



Y —siny P<0
siny —y cosy a

c= . 3.2.27b
y —sinh y P>0 ( )
sinhy —y cosh y ’
v = L\/| PIA-P/GA) (3.2.27¢)
El
1+n;m,
n = 3.2.27d
T A-PIGAI ) sl
1+m;m,
=— BT 3.2.27e
’ l+n;m, ( )
El
n; = 5 (3.2.27)
(1-P/GA)GAL
_ wz/(l—\y/tan\u) P<0 (3227g)
) —\|/2/(1—\|1/tanhw) P>0 o
_ \|/2tan(w/Z)/[tan(\y/2)—\|//2] P<0 (3.2.27h)
—y” tanh(y/2)/[tanh(y /2) —y /2] P>0 o
_ \|12/(1—\|1/sin\|1) P<0 (32.270)
* |-y?/(1-y/sinhy) P>0 -
Q=9rr, +3r,bn,(1-r) +3rbn,(1-r,) +b*n A -r){1-r,)(1-c’n3) (3.2.27))
L3
— = k' 3.2.27k
p e <2 ( )

3.3 Combined Stress States

For the analysis model presented so far, a steel beam-column member that experiences post-elastic
behaviour due to individual moment, shear or axial force effects has alone been examined. For a steel
building frame, however, column members are often subjected to significant bending moment plus
axial force effects, while beam members may experience significant moment and shear force effects.
Accordingly, the proposed analysis model is extended in this section to account for post-elastic

behaviour due to combined flexural + axial and flexural + shear stress states.

3.3.1 Bending Moment plus Axial Force

Under some combination of applied bending moment M and axial force P, the initial yielding of a

member section is governed by the normalized initial-yield criterion,
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—+—=1 (3.3.1)
My Py

Residual stresses due to cooling, rolling, welding, punching, etc., can significantly affect the initial
yield of materials. Specifically, residual stresses can cause member yielding at loads lower than those
predicted by usual stress analysis. The stresses can also lower the ultimate capacity by inducing
premature local or global buckling of compressive members (Huber & Beedle, 1954). Generally,
residual stress oy is about 68.9 MPa (10 ksi) for a steel cross section. The yield stress oy for hot-rolled
shapes considered in this study is in the range of 248 MPa (36ksi) to 345 MPa (50 ksi). Thus, residual
stress o = (68.9/248~68.9/345)c, = 20%~30%gc,. In this study, residual stress o, is taken as
approximately 30%cy. For compressive residual stress in the flanges of W-shaped sections, the
LRFD-05 specification (AISC, 2005) requires o, = 68.9 MPa (10 ksi) for rolled shapes, and o, =
113.7 MPa (16.5 ksi) for welded shapes. Following current code practices, this study assumes the
residual normal stress is o, = 0.36y, such that the initial-yield normal stress becomes oy, = 6,~c; =
0.7c,. Consequently, the initial-yield moment in Eq. (3.3.1) is My = 0.7cy S,, where S, is the elastic
modulus of the cross-section, while the initial-yield axial force is Py = 0.7c, A in tension or

compression, where A is the cross-section area.

If the effect of strain hardening is neglected, residual stress does not affect the plastic limit capacity
(Huber & Beedle, 1954). Thus, the moment and axial force full-yield capacities are M, = 6, Z, and P,

= oy A, respectively, where Z, is the plastic section modulus.

Based on experimental and theoretical results, the full yielding of a cross-section is assumed to be

governed by the following normalized full-yield criterion,

n
M TP (3.3.2)
M, (P

where the exponent 1 in Eq. (3.3.2) depends on the shape of the member section; for example, 1 =
1.3 for a steel wide-flange section (Duan & Chen, 1990). The post-elastic response domain for the
member section is indicated as the shaded area in Figure 3.5, bounded by Eq. (3.3.1) plotted as the
linear initial-yield line, and by Eq. (3.3.2) plotted as the nonlinear full-yield line (for specified
exponent 7). It remains to establish the influence that combined bending moment M plus axial force P
have on the post-elastic bending and axial stiffnesses of the member. To this end, the post-elastic
response domain in Figure 3.5 is divided into the three regions defined in Figure 3.6 by the following

three angles,
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1-M_ /M )"
0, =tan ( /M) (3.3.32)
M, /M,

1-(P, /P )"
0, =tan” 124y /R (3.3.3b)
P, /P,
0,0 =90° -0, — 0, (3.3.3¢)

where, as indicated in Figure 3.6: the region defined by angle 0y is assumed to correspond to
combinations of M plus P that influence only post-elastic bending stiffness (since full yielding of the
section in this region of the response domain occurs for M > M, while P < Py); the region defined by
angle Op is assumed to correspond to combinations of M plus P that influence only post-elastic axial
stiffness (since full yielding in this region occurs for P > Py while M < M,); finally, the region defined
by angle Oyp is assumed to correspond to combinations of M plus P that influence both post-elastic
bending stiffness and post-elastic axial stiffness (since full yielding in this region occurs for M < M,

and P <Py).

As seen in Figure 3.5, the region of influence in the post-elastic response domain for a particular
combination of moment M plus axial force P is defined by the angle of inclination 6 of the straight
line that passes through origin point O,, and points O, and O, corresponding to the initial yield and
full yield of the section, respectively. The straight line between initial-yield point Oy and full-yield
point O, is used to approximately determine the parameters My, and Py, in the stiffness degradation
model. Figure 3.5 indicates that point Oy corresponds to the reduced initial-yield moment and axial
force capacities My, and Py, respectively. Whereas point O, corresponds to the reduced full-yield
moment and axial force capacities M, and Py, respectively. The angle of inclination of line O,-O,-O,

in Figure 3.5 is readily found as,

0 =tan™' Py /M, (3.3.4)
M, P,

Depending on the value of angle 0 from Eq. (3.3.4), and the values of angles Oy , 0p and Oyp from
Egs. (3.3.3), the bending or/and axial stiffness degradation factor/s (see Appendix 3.A) for the
member-end section is/are evaluated as follows: a) if 0 <0 <Oy, set F =M, Fy,= My, , F,=M,,,D =
¢, Dp= ¢p and €y = 2 in Egs. (2.3.2)-(2.3.3) to find bending stiffness degradation factor sdf =r < 1; b)
if 90— 0p< 0 <90, set F =P, F,= Py, F= Py, D =8, D, = §,, €= 2.5 in Egs. (2.3.2)-(2.3.3) to find
axial stiffness degradation factor sdf =n < 1; and 3) if 6y < 6 < Oy +06yp , proceed as in the foregoing

to find both bending stiffness degradation factor sdf = r < 1 and axial stiffness degradation factor sdf
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= n < 1. Finally, the calculated r or/and n value/s is/are substituted into the relevant stiffness
coefficient expressions derived in the previous section, thereby modifying the member stiffness
matrix K defined by Eq. (3.1.2) to account for the influence that the combination of bending moment

M plus axial force P has on the post-elastic stiffness of the member.

3.3.2 Bending Moment plus Shear Force

Under some combination of applied bending moment M and shear force V, the initial-yielding of a
member section is approximately governed by the normalized first-yield criterion,
——+——=1 (3.3.5)

My vy

where the initial-yield moment My is the same as that for the case of moment-axial force interaction
discussed in the previous section. It is assumed that the residual shear stress t, = 0.057y, such that the
initial-yield shear stress ty, = 0.95t,. The full yielding of the cross section is considered to be

governed by the normalized full-yield criterion (Heyman & Dutton 1954),

M/MP+C1[1— 1—(V/vp)2}=1 (3.3.6)

where the moment and shear force initial-yield and full-yield capacities (My, Vy) and (M,, V,),
respectively, account for residual stresses. In Eq. (3.3.6), the coefficient C;=A,/(2A — A,) for a wide-
flange section with total area A and web area A, (e.g., C; = 0.2 when A,= A/3). The post-elastic
response domain for the member section is the shaded area in Figure 3.7, bounded by Eq. (3.3.5)
plotted as the linear first-yield line, Eq. (3.3.6) plotted as the nonlinear full-yield line (for specified
coefficient C,), and the linear full-yield in shear line V/V,=1.

It remains to establish the influence that combined bending moment M plus shear force V have on
the post-elastic bending and shear stiffnesses of the member. To this end, the post-elastic response
domain in Figure 3.7 is divided into the three regions defined in Figure 3.8 by the following three

angles,

-1 Vy /VP
O, =tan (3.3.7a)
1-C {l—y1-(V, /V,)*}
®, =tan (M, /M) (3.3.7b)
®MV :900 _®M _®V (3.3.70)
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The region defined by angle ®), is assumed to correspond to combinations of M plus V that influence
only the post-elastic bending stiffness (since full yielding of the section in this region of the response
domain occurs for M > My while V < V,); the region defined by angle ®y is assumed to correspond to
combinations of M plus V that influence only the post-elastic shearing stiffness (since full yielding in
this region occurs for V =V, while M < M,); finally, the region defined by angle Oy is assumed to
correspond to combinations of M plus V that influence both the post-elastic bending stiffness and the

post-elastic shearing stiffness (since full yielding in this region occurs for M > My and V > Vy).

As shown in Figure 3.7, the region of influence in the post-elastic response domain for a particular
combination of moment M plus shear force V is defined by the angle of inclination ® of the straight
line that passes through origin point O,, and points Oy and O, corresponding to initial yield and full
yield of the section, respectively. Figure 3.7 indicates that point Oy corresponds to reduced initial-
yield moment and shear force capacities My, and Vy,, respectively, and point O, corresponds to
reduced full-yield moment and shear force capacities My, and Vp, respectively. The angle of

inclination of line O,-O,-O,, in Figure 3.7 is found to be,

V., .M
0= tan{#:l (3.3.8)

yVp
Depending on the value of angle ® from Eq. (3.3.8), and the values of angles ®y , ®y and Oy from
Egs. (3.3.7), the bending or/and shearing stiffness degradation factor/s (see Appendix 3.A) for the
member end-section is/are evaluated as follows: a) if 0 < @< Oy, set F =M, F,= M, F,=M,,,D =
¢, D, = ¢p and ey = 2 in Egs. (2.3.2)-(2.3.3) to find bending stiffness degradation factor sdf =r < 1; b)
if 90—~ @y< ® < 90", set F =V, F;= V., F,=V,, D =y, D,= v, and €= 1.5 in Eqs. (2.3.2) and
(2.3.3) to find shearing stiffness degradation factor sdf =t < 1; and ¢) if @y < © < Oy + Oy, proceed
as in the foregoing to find both bending stiffness degradation factor sdf = r < 1 and shearing stiffness
degradation factor sdf = t < 1. Finally, the calculated r or/and t value/s is/are substituted into the
corresponding stiffness coefficient expressions derived in the previous section, thereby modifying the
member stiffness matrix k defined by Eq. (3.1.2) to account for the influence that the combination of
bending moment M plus shear force V has on the post-elastic stiffness of the member. (Note that the
smaller of the two r values calculated for the M+P and M+V combinations should be adopted so as to

conservatively account for the maximum degradation of the member stiffness).
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3.4 Nonlinear Analysis Procedure

Having the local-axis stiffness matrix k for each framework member from Sections 3.1 and 3.2, the
corresponding global member stiffness matrix is readily obtained using conventional matrix
transformation techniques (McGuire et al., 2000). Then, the structural stiffness matrix K is assembled
by direct summation of the global member stiffness matrices. The incremental (tangent-stiffness)

equilibrium equation for any load increment of the nonlinear analysis procedure is expressed as,

KAD = AF (34.1)
where K, AD and AF are the tangent stiffness matrix, incremental displacement vector and
incremental equivalent-joint-load vector, respectively. The Euler incremental method is employed to

solve Egs. (3.4.1).

The single-step Euler method is computationally simple and efficient, but a drift-off error may
occur in the nonlinear analysis procedure. To reduce this error, a strategy for gradually reducing the
increment-step size is adopted. A load-factor increment AA; is introduced to facilitate the formation of
the equivalent joint load vector AF; applied to the structure at the ith incremental-step of the analysis.
A load-factor increment AA is introduced to facilitate the identification of the load levels at which the
plastic deformation of the members is initiated. While the single-step Euler method is
computationally simple and efficient, a drift-off error may occur over the incremental load history. To
reduce this error, a strategy for gradually reducing the increment-step size is adopted. The magnitude
of the load-factor increment is decreased over the loading history whereby the initial step size is

specified to be,

AL, = AN (3.4.2a)
while, thereafter,

AL =AML (1-AN) (i=2,3..) (3.4.2b)
where AL" < 1 is an initially specified small value (say 0.05), selected to ensure first-order linear-
elastic behaviour of the structure for the first load increment. If the structure stiffness matrix K; is
non-singular for the ith load increment, Eq. (3.4.1) is solved for the incremental nodal displacements
AD;. Incremental member-end forces Af; for each member are then determined. Total nodal

displacements D; at the end of the ith load increment are found as,

while the corresponding internal member forces f; are,
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The initial-yield and full-yield conditions for each member-end section are checked to detect plastic
behaviour and, if occurring, the corresponding bending, shearing and axial stiffness degradation
factors (r, t, n) are found and applied to modify member stiffness matrices k and, consequently, the

structure stiffness matrix K; at loading level i for the analysis.

The incremental load factor AA; is accumulatively recorded to identify the loading level A for the

corresponding total loads, i.e.,

A= ZAxi = A1+ (=AY + (1= AN) +.. (1= AL) +..] (3.4.5)

The incremental-load analysis procedure continues until either a specified load level A is reached
(i.e., final 24 = XA); = 1) without structural collapse, or the structure stiffness matrix Kj, at some step
becomes singular as a consequence of the failure of part or all the structure at a lower load level (i.e.,
At = ZALAi< 1). Typically, the specified load level at A; = 1 is dictated by design code requirements. If
the structure does not fail at load level A;+ = 1, and if required, the analysis can be continued to a

higher load level (i.e., A+ > 1) until failure of the structure occurs (see Examples in the next section).

The nonlinear analysis procedure is illustrated by the flowchart in Figure 3.9. The analysis results
include the values of bending, shearing and axial post-elastic stiffness degradation factors r, t and n,
respectively, indicating the extent of plastic deformation of the members. Further computational

details are provided by the analysis examples presented in the following section.

3.5 Example Studies

The incremental-load procedure of nonlinear analysis is illustrated in the following for two example
structures consisting of steel beam-column members with wide-flange cross-sections. The first
example is a two-span continuous beam, for which the analytical results found by using Timoshenko
beam theory are compared with known experimental test results (Driscoll & Beedle, 1957) and other
analytical results that are found by applying Euler-Bernoulli beam theory (McGuire et al., 2000). The
second example is a low-rise steel building framework, the nonlinear analysis of which has been

extensively studied in the literature (Clarke, 1994; Ziemian et al., 1992; Attalla et al., 1994).

For both examples, the exponent in Eq. (2.4.1) is taken as e, =2, 1.5 or 2.5 when force F =M, V or
P, respectively, values that were obtained by curve-fitting test results reported by several
experimental investigations (Lay & Galambos, 1964; Kusuda & Thurlimann, 1958; Hall & Newmark,
1957). Plastic deformation D, in Eq. (2.4.1) is taken as ¢,= 0.0025 radians (Attalla et al., 1994;
Kusuda & Thurlimann, 1958), parameter y,= 0.3 when force F = V (Hall & Newmark 1957), and
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parameter 6,= 0.0032 X member length when force F = P (Lay & Galambos, 1964). In Eq. (3.3.2) the
exponent is taken as 1 =1.3 (Duan & Chen, 1990). The material normal-yield stress 6, = 247.3 MPa
(35.9 ksi) for the beam, as determined by experiments (Lay & Galambos 1964), and o, = 248 MPa
(36 ksi) for the two-bay by two-storey frame, while the material shear-yield stress t,= 0.5cy (Tresca
criterion). The residual stresses are taken as o = 0.3cy for compressive normal stress, 6, = 0.150,
for tensile normal stress (AISC, 2001; Huber & Beedle, 1954), and t,= 0.051, for shear stress (See
Appendix 6.B).

The nonlinear analysis results include the values of the bending, shearing and axial post-elastic
stiffness degradation factors r, t and n for the member sections at which plastic deformation occurs. If

the plastic deformation is related to degraded bending, shearing or axial stiffness, the member section

is designated by a circle, triangle or square symbol (O, V, or [J), respectively. Otherwise, the section

is designated by a circle inscribed in a triangle if the plasticity is associated with both degraded
bending and shearing stiffness, or by a circle inscribed in a square if associated with degraded
bending and axial stiffness. For a member section that experiences plastic deformation over its entire
surface area, the designation symbol has a black infill to indicate that the section has reached a state
of zero post-elastic stiffness (i.e., r = 0, and/or t = 0, and/or n = 0); for example, if r = 0 where t = n
= 1, the section is designated by a black-infill circle (the classic representation of a plastic-hinge
section). Contrarily, if a section has experienced only partial plasticity over its surface area, the
designation symbol is left open with a number inscribed in it that indicates the percentage of plastic
deformation, calculated as %Plasticity = 100 (1-r, t or n). For example, if r =t = 1, while n < 1, the

section is designated by 100(1— n), inscribed in an open square (e.g., see Example 2).

3.5.1 Two-Span Continuous Beam

Consider the two-span continuous beam subjected to the pattern of concentrated point loading in
Figure 3.10 (Driscoll & Beedle 1957). For the purpose of this illustration, the total target load is taken
as W = 1000 kN. The steel beam has a wide-flange W12x36 section (NA traditional) with the
following properties: section depth d = 312.42 mm (12.30 in), flange width by = 168.275 mm (4.625
in), flange thickness t; = 13.056 mm (0.514 in), web thickness t, = 8.560 mm (0.337 in), section area
A = 6954.82 mm” (10.78 in%), moment of inertia | = 117.42 x 10® mm* (282.1 in*), plastic modulus Z
= 848.69 x 10° mm’® (51.79 in’), and shape factor f = 1.13. The moment and shear capacities are M, =
Zoy = 210 MPa and V,, = A,c,/1.732 = 351 kN, respectively, and the axial force P = 0 for the beam.

Plastic deformation can occur at each load point B, C, E and F, and at central support point D (i.e., the
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beam is modeled by six elements). The results from the nonlinear analysis method are illustrated in

Figure 3.11, and compared with the results of other studies in Figures 3.12 and 3.13.

The nonlinear incremental-load analysis terminates when the beam fails at load factor level A;=
0.996 (i.e., at total load level A x W = 0.996x1000 = 996 kN). The analysis results are illustrated in
Figure 3.11 where, in view of symmetry, the information for the right span of the symmetrical beam
is alone shown. From the loading history up to failure, the beam develops two fully-plastic sections at
points D and F (designated by the black infill symbols in Figure 3.11 (a)) at load-factor levels A =
0.992 and 0.996, respectively. The plastic deformation of plastic-hinge section D is associated with
both fully degraded bending stiffness and fully degraded shear stiffness (i.e., r =t =0 and n = 1),
because the M-V stress state for the section (see Figures 3.11 (b) and (c)) lies in the region defined by
angle ®yy in Figure 3.8. The plastic deformation of plastic-hinge section F is associated with fully
degraded bending stiffness alone (i.e., r = 0 and t = n = 1), because the M-V stress state for the
section (see Figures 3.11 (b) and (c)) exists in the region defined by angle ®y in Figure 3.8. As a
consequence of the combined M-V influence on plastic behaviour at point F (see Eq.(3.3.6)), note
from Figure 3.11 that a 100% fully-plastic flexural hinge forms to the right of point F where the larger
shear force is, while a 93% partially-plastic flexural hinge forms to the left of the point (i.e., r = 0.07
and t = n = 1). Note that section E also experiences two types of plastic behaviour as a result of the
abrupt change in shear there; i.e., the M-V stress states to the right and left of point E lie in the regions
defined by angles ®y and ®y in Figure 3.8, respectively, such that a 59% partially-plastic flexural
hinge forms to the right (i.e., r = 0.41 and t = n = 1) while a 77% partially-plastic shear hinge forms
to the left (i.e., t = 0.23, and r = n = 1). As indicated in Figure 3.11(d), the vertical deflection of point
F reaches a value of 8 = 12.42 mm at the instance of incipient failure of the beam (i.e., the incipient

formation of a classic rigid-body mechanism involving plastic hinges at sections D and F).

The variation in the vertical deflection of point F of the beam during the incremental loading
process is defined by the solid line in Figure 3.12. The beam remains stable until 99.6% of total load
W =1000 kN is applied, at which point, d¢ begins to increase indefinitely without any further increase
in load (numerically, this failure event is characterized by the beam stiffness matrix K becoming
singular as the stiffness coefficient associated with vertical deflection of point F tends to zero at load-
factor level As= 0.996). Also shown in Figure 3.12 are experimental test results found for the same
beam by Driscoll and Beedle (1957). It is observed that vertical deflections &f predicted by the
proposed analysis method over the loading history are in good agreement with those obtained from

the experimental measurements.
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The experimental tests conducted by Driscoll and Beedle (1957) determined that shear had a
significant influence on both the elastic and plastic behaviour of the beam. They observed that beam
deflections related to transverse shear deformations were of the same order of magnitude as those
associated with flexural deformations. The experimentalists also reported that a shear yielding stress
was observed near the centre support D at a load level which was less than that causing flexural
yielding. Presented in the following are analytical results found by this study that demonstrate the

influence that shear has on the behaviour of the beam.

The analytical results in Figures 3.11 and 3.12 reflect the combined influence that bending and
shearing have on plastic behaviour, and are found by using Timoshenko beam theory to account for
the effect that shear deformation has on elastic behaviour. The corresponding results in Figure 3.12
are reproduced in Figure 3.13 (i.e., the lowest curve). It is readily possible to conduct the same
analysis according to Euler-Bernoulli beam theory by setting the beam shear stiffness GAs = oo,
thereby effectively eliminating the effect of shear deformation on elastic behaviour. The
corresponding analytical results are shown in Figure 3.13, along with those found for the pure
bending case which also ignores the influence that shear has on plastic behaviour. From Figure 3.13,
it is observed that the predicted failure load level for the beam increases from 996 kN to 1036 kN
when the influence of shear on elastic behaviour is ignored, and further increases to 1104 kN when
the influence of shear on the plastic behaviour is also ignored. It is evident from Figure 3.12 that the
experimentally determined failure load level is no more than 996 kN and, therefore, it can be
concluded that ignoring shear effects leads to an over-estimation of load capacity (by as much as

approximately 10% for this particular case).

3.5.2 Low-Rise Steel Building Framework

Consider the two-bay by two-storey steel framework subjected to uniformly distributed service-level
design gravity loads shown in Figure 3.14. The structure is a building perimeter frame that supports a
load intensity of 109.5 N/mm on floor members 4-5 and 5-6, and 51.1 N/mm on roof members 7-8
and 8-9. All the members have W-shape sections (CISC, 2004) that are oriented such that their webs
are in the plane of the framework, and are assumed to be fully restrained against out-of-plane
behaviour. If plastic deformation occurs, it is assumed to be confined to the end sections of each of
the six column members, and to the end and midspan sections of each of the four beam members (i.e.,
14 elements in all). The framework has 13 nodes and 33 degrees-of-freedom (dof) for nodal
displacement (i.e., rotation dof at each of the three pin-support nodes 1-3, plus lateral and vertical

translation and rotation dof at each of the ten free nodes 4-13).
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The ultimate design (target) load level for the incremental-load analysis is 1.4 times that of the
service gravity loads in Figure 3.14 (AISC, 2001). In fact, to facilitate a comparison with other
published results for this example (Clarke, 1994; Ziemian et al., 1992; Attalla et al., 1994), the loads
are increased beyond this load level until failure of the frame occurs. The analysis results found by

this study are illustrated in Figure 3.15, and compared with the results of other studies in Figure 3.16.

The incremental-load analysis terminates when the frame fails at load factor level A; = 1.08 (i.e., at
108% of the specified ultimate design load level). Over the loading history up to failure, the frame
develops five full-plastic sections (designated by the black infill symbols in Figure 3.15) that
sequentially reach their full-yield capacities at load-factor levels A = 0.827, 0.895, 0.902, 0.931 and
1.058, respectively. Also, there are nine sections that become 2, 3, 8, 23, 28, 30, 32, 38, 40, 69 and
88% partially plastic (designated by the open symbols in Figure 3.15) after reaching their initial-yield
capacities at load-factor levels A = 0.637, 0.567, 0.845, 1.043, 0.405, 0.571, 0.827, 0.441, 0.535,
0.947 and 0.722, respectively, over the loading history.

The plastic deformation of each of the first four fully-plastic sections is associated with fully
degraded bending stiffness alone (i.e., each section behaves like a classic plastic hinge with stiffness
degradation factors r = 0 and t = n = 1, because the M-V-P stress state for the section lies in the
regions defined by angles Oy and Oy in Figures 3.6 and 3.8). The plastic deformation of the fifth
fully-plastic section is related to fully degraded bending stiffness and fully degraded axial stiffness
(i.e, r=n=0and t = 1, because the M-V-P stress state for the section exists in the regions defined
by angles Oyp and ®y in Figures 3.6 and 3.8). For the seven sections for which bending stiffness
alone is partially degraded by 2, 3, 8, 28, 30, 32, 38, 40, and 88% (i.e., the sections designated by the
open circles in Figure 3.15), the stiffness degradation factors are t =n =1, and r = 0.98, 0.97, 0.92,
0.72, 0.70, 0.68, 0.62, 0.60 and 0.12, respectively (i.e., the M-V-P stress state for each section lies in
the regions defined by angles Oy and ®y in Figures 3.6 and 3.8). Finally, for the two sections for
which axial stiffness alone is partially degraded by 23% and 69% (i.e., the sections designated by the
open squares in Figure 3.15), the stiffness degradation factors are r =t = 1, and n = 0.77 and 0.31,
respectively (i.e., the M-V-P stress state for each section lies in the regions defined by angles 6p and

Oy in Figures 3.6 and 3.8).

The lateral translation of the top right corner (joint node 9) of the frame over the incremental
loading history is defined by the solid line in Figure 3.16. It can be seen that the frame initially
translates laterally to the left until approximately 90% of the factored gravity loads are applied, at
which point the top storey begins to translate to the right, until it suddenly lurches to the left again as

it loses its lateral stability at 108% of the specified ultimate design load level, due to a combination of
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plastic deformation and nonlinear geometric effects. Numerically, this event is characterized by the
structure stiffness matrix becoming singular as the stiffness coefficient associated with the lateral
translation of node 9 tends to zero at load-factor level As= 1.08. Note that the failure of the frame is
due to system instability of the right bay in a lateral sway mode, and not the formation of a rigid-body

plastic collapse mechanism.

This example frame originally appeared in an America Institute of Steel Construction report on
frame stability (Iffland & Birnstiel, 1982) and, since then, its nonlinear behaviour has been studied by
a number of researchers from a variety of computational viewpoints. Ziemian et al. (1992) have
conducted a plastic-hinge analysis (with 28 elements) and a plastic-zone analysis (with 540 elements
having 80 fibers each). Clarke (1994) has also conducted a plastic-zone analysis of the frame (with
240 elements having 256 fibers each). Attalla et al. (1994) have analyzed the frame by using a quasi-
plastic hinge approach (with 28 beam and column elements). The lateral displacement behaviour and
failure load level A; found by these various analyses are depicted in Figure 3.16. It is evident that the
results found by the method proposed herein are in good agreement with those reported for the other
methods. The slight discrepancies between the results are likely due to the different ways in which
residual stresses and strain hardening were considered. It is worth noting that the structural model for
the proposed method has significantly fewer beam and column elements (14 in total) than the other

methods.

Appendix 3.A  Accounting for Bending Stiffness Degradation

This Appendix uses the moment-rotation relationships derived in Chapter 2 to derive member
stiffness coefficients accounting for post-elastic bending stiffness degradation, geometric nonlinearity
and shear deformation. To this end, the moment distribution method (Cross, 1932) is extended to
account for both geometric and material nonlinearities through modified distribution and carry-over

factors.

3.A.1 Modified Moment Distribution Method

To obtain the modified rotational stiffness coefficient and carry-over factor, consider the beam-
column in Figure 3.17, at the right end of which there is an inelastic zone located between nodes €
and 2. From Eq. (2.4.4) in Chapter 2, the relation between flexural-degradation factor r, and rotational

bending stiffness R, at end 2 is given by,

1

h=————
> 143EI/LR, G-AD)
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In the conventional moment distribution method, the degradation factor r, is equal to 1 or 0 for a
fixed or pinned support, respectively. A modified method of moment distribution is developed in the
following to account for r, ranging from O to 1; specifically, the modified rotational stiffness
distribution and carryover factors are derived from the moment-rotation relationships expressed in
Egs. (2.1.17) in Chapter 2; that is, end moments M; and M, caused by rotation 6, are found by
employing the moment distribution method for the beam in Figure 3.17. As a result, the member 1-2
is divided into two elements at intermediate node e, where 1-e represents an elastic element, and e-2

denotes a inelastic element associated with post-elastic rotational stiffness R,.

First, determine the distribution factors for the member’s axial force and shear deformation. The
member ends in Table 3.1 are defined in such a way that the first character represents the near end,
and the second one identifies the far end. Only the rotation at node e is unknown. Following the
principles of the moment-distribution method, the distribution factor at end el (or €2) is defined as the
ratio of the member-end rotational stiffness to the total rotational stiffness of the joint. For instance,
the stiffness distribution factor at end el of member 1-€ is given by,

W, = kbn, _ bn,(1-r,)
R, +kbn, bn,(1-r,)+3r,

(3.A.2)

where the term kbrn; is defined for Eq. (2.1.18) in Chapter 2 and represents the rotational stiffness
coefficient at end e of member 1-¢, while R, + kbn); is the total rotational stiffness at joint e. Similarly,
the distribution factor at end e of member e-2 is given by,

B R, 3 3r,
R, +kbn, bn,d-r,)+3r,

Hes (3.A.3)

The distribution factors defined by Eqs. (3.A.2) and (3.A.3) are listed in Table 3.1. Note that for the
member 1-e with axial load P in Figure 3.17, the carry-over factor is equal to Cn, defined by Eq.
(2.1.17b) in Chapter 2.

Secondly, determine the fixed-end moments due to rotation 6; imposed at end 1. When node e is
fixed by a virtual rotational constraint, the fixed-end moments for member 1-e are M;, = kbn;0, and

Me; = kebnn,0, from Egs. (2.1.17a, b) in Chapter 2, as indicated in the 4™ row of Table 3.1.

Thirdly, distribute the unbalanced moment at node e and carry over the distributed moments to the
corresponding far ends. Note that for the spring element modeling rotational inelasticity, the mutual
carry-over factor = -1 since the length of the element is negligible and the moments at the two ends

are equal in magnitude but opposite in sense. After the moment distribution operation based on the
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modified distribution and carrying-over factors is completed, the distributed and carry-over moments

are found to be those in the 5™ and 6™ rows of Table 3.1, respectively.

Finally, find the final end-moments M; and M, by summing the fixed, distributed and carry-over

moments in the corresponding column of Table 3.1, i.e., from the second column of the table,

M, =bnk(1-p,cn3)0, =R,,6, (3.A.4)

while from the last column of the table 3.1,

M, =bnKpe,cn, 6, = Ry,6, (3.A.5)

The modified rotational stiffness coefficient and carry-over factor accounting for the effects of both
geometric and material nonlinearities can be defined through Egs. (3.A.4) and (3.A.5). To that end,
substitute the distribution factor p; from Eq. (3.A.2) into Eq. (3.A.4) to obtain the following

expression for post-elastic rotational stiffness,

R, = —L = kbn, 3r, +bn, (1-r,)(1-¢’n3) (3.A.6)
1 bn, (1-1,)+3r,

If r, tends to unity, then Eq.(3.A.6) reduces to the rotational stiffness coefficient kbn; involving
both geometrical nonlinearity and shear deformation in the elastic range. If the shear deformation is
ignored (i.e., n; = 1), the term kb in Eq. (3.A.6) becomes the stiffness coefficient in elastic stability
analysis. Furthermore, if geometrical nonlinearity is ignored the term kb = 4EI/L, the conventional

stiffness coefficient in the moment distribution method (Cross, 1932).

By substituting the distribution factors e and pe, from Egs. (3.A.2) and (3.A.3) into Egs. (3.A.4)
and (3.A.5), respectively, the modified carryover factor is,

M R 3r,c
p=—t=—t= b (3.A.7)
M, R, 3n+bn(d-r)1-cm;)

If the far end is fixed with r, = 1 (i.e., end 2 remains in the elastic range), the carryover factor
becomes Ci, = Cm. If shear deformation is further ignored then the coefficient n, = 1 and the
carryover factor becomes C;,= C. If the geometrical nonlinearity is neglected as well, the parameter C
= 0.5 so that the carryover factor C,, reduces to the well-known value of 0.5. Note that if r, = 0 (i.e.,
the rotational stiffness has degraded to zero at end 2), the carryover factor becomes C;, = 0, which is

the conventional case when the far end of the member is pin supported.

By following the same procedure for deriving Egs. (3.A.6) and (3.A.7), the modified rotational
stiffness coefficient and carryover factor are readily found for the case where the unit rotation is

imposed at end 2 and plasticity occurs at end 1 rather than at end 2. These results are directly obtained
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by exchanging the subscripts 1 and 2 for the degradation factor r in Egs. (3.A.6) and (3.A.7), to

achieve the two corresponding expressions,

_ _ 2.2
R, =M o 30BN (=)0 —Cnd)

3.A.8
0, b, (1-1) +3r, GAS

_ 3rcn,
3 +bn, - - Czn%)

(3.A.9)

C21

It is observed by comparison of Eq. (3.A.6) with Eq. (3.A.8), and Eq. (3.A.7) with Eq. (3.A.9), that
the modified rotational stiffness coefficients and carryover factors differ when the post-elastic

degradation factors I, and r, have different values, which is unlike the case in the elastic range.

3.A.2 Member Stiffness Coefficients

To illustrate the modified moment distribution method developed in the previous section, the stiffness
coefficients are derived for a member with flexural stiffness degradations at both ends. The

calculation procedure is the same as that in the conventional moment distribution method.

3.A.2.1 Stiffness Coefficients due to End Rotations

As shown in Figure 3.18, assume the inelastic zones at the two member ends have flexural stiffness R;
(j = 1, 2) associated with stiffness degradation factors rj (j = 1, 2). The member is comprised of two
parts: inelastic spring element 1-s and element s-2 that includes elastic member s-e and inelastic
spring e-2. Since the modified rotational stiffness and carry-over factor element s-2 are known from

the previous section, joint € is alone considered in the following.

The distribution factors at ends 1S and 2e are unity, as indicated in Table 3.2 and explained in the
previous section. The distribution factor i, at end S2 of member S-2 is expressed by the use of the
modified rotational stiffness of Eq. (3.A.6) as,

_ Rij
R, +R
_ 3kbmﬁ[bm(1—fz)(l—bznf)+3f2]/Rl
- 360bn, (1= 1)+ 36,1+ (L= 1)bn, [bn, (1= 5)(L - ¢™n3) + 31,

It is not necessary to find distribution factor us; because it is known that the moments at ends se and

“52
(3.A.10)

Is have the same value due to the negligible length of inelastic spring element 1-S. The carryover
factor given by Eq. (3.A.7) can be directly applied because the moment-rotation relationship for

member S-2 is the same as that discussed in the previous section for member 1-2 in Figure 3.17.
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When node s is locked and rotation 6, is imposed at end 1, the fixed-end moments at end 1 and end
s of member 1-S are R0, and -R;0,, respectively (as given in Table 3.2). By employing the modified
distribution factor to distribute the unbalanced moment R,0; at node S to ends S1 and se, the carry over
of these moments to the corresponding far ends yields the results given in rows 5 and 6 of Table 3.2,
respectively. From the last two columns in Table 3.2, the bending moments at ends 1 and 2 of the

member 1-2 in Figure 3.18 are,

M, =u,R6, (3.A.11)
M, =CuR6, (3.A.12)
These two moment expressions can be used to find the relevant stiffness coefficients associated

with unit rotation 0;. To that end, substitute Eq. (3.A.10) into Eq. (3.A.11) to find the rotational

stiffness coefficient end 1,

_ 2.2
k3r3 :%: 3r,bm,k[bn, (1 ';2))(1 c'm;)+3n,] (3.A.13)
1

The parameter Q in Eq. (3.A.13) is given by,

Q=9rr, +3r,bm,A-r)+3rbn,(1-r)+b’n;d-r)dA-r)(1-c’n) (3.A.14)
When r; =r, =1 in Eq. (3.A.14), Q = 9 and the rotational stiffness coefficient k's; = kbn; as in Egs.
(2.1.17) of Chapter 2. By substituting into Eq. (3.A.12) the carryover factor C;, defined by Eq.
(3.A.7) and the distribution factor pg, defined by Eq. (3.A.10), the rotational stiffness coefficient at

end 2 is found as,

ke; =M, /6, =9kbenm,nr, /Q (3.A.15)
After k's3 and k's¢ are obtained, the transverse shear stiffness coefficient for the member is determined
from the moment equilibrium condition about end 2 as,

Kis +Kg _ 3bmikr (1+cny)(bn, (1-1)(1—cny) +3n,]

3.A.16
L QL ( )

k2r3 =
From the transverse equilibrium condition, it is found that stiffness coefficient k's3 = - k'»3.

Following the same procedure as that used to find the stiffness coefficients when 6, = 1, similar
stiffness coefficient expressions are found when 6, = 1 alone is imposed at end 2 of the beam in

Figure 3.18. Thus, the rotational stiffness coefficient at End 2 is given by,

ke =3r,bn,k[bn, (1- 1)1 -¢*n3) +3r1/Q (3.A.17)
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which can alternatively be found from Eq. (3.A.13) by simply exchanging the subscripts 1 and 2 of
the rotational degradation factors rj(j = 1, 2). In the same way, the transverse stiffness coefficient can

be found from Eq. (3.A.16) to be,

r 3bnkr,(1+c bn,(1-r)1-cn,)+3r r
K. = mkn (1+cn,)| né(L (I-cny) 1]:_k56 (3.A.18)

It can be demonstrated that the Maxwell reciprocal theorem is satisfied for the post-elastic stiffness
coefficients when the inelasticity is assumed to be concentrated at the member ends. For instance, for
0, = lor 0; = 1 it can be shown that the related rotational stiffness coefficients at end 1 or 2 are equal

(see Eq. (3.A.19)), i.e.,

K3 = 9kben,m,r,r /Q =K (3.A.19)
The Maxwell reciprocal theorem can then be directly employed to obtain the stiffness coefficients k'3,

_Lr r _Lr r _r r _r
=K', K'35 =K's3, K2 = K 26, and K 65 = K 5.

3.A.2.2 Stiffness Coefficients due to End Translations

In principle, the modified moment distribution method in the preceding subsection can be utilized to
find the stiffness coefficients associated with translation at any member end, e.g., d, = 1 shown in
Figure 3.19. However, it might be quite tedious to do so because two rounds of distributing and
carrying over moments need to be conducted. Alternatively, the stiffness coefficients can be
determined on the basis of the results found in the previous section by using the Maxwell reciprocal

theorem.

From the Maxwell reciprocal theorem, k'3, = k'3 and K'ss = k', where k'»; and k' are defined by
Egs. (3.A.16) and (3.A.18), respectively. Thus, the rotational stiffness coefficients are known at both
ends of the member. The remaining work is to find transverse stiffness coefficients k'y, and kr52. To

that end, from moment equilibrium about end 2 the transverse stiffness coefficient k'5, is found as,

2

] Lo (3.A.20)
El o

2
2 =
d

El
= 20 {3bn1(1+cnz)[6r1r2 +bn, (1-cm,)(r +1, =261,)]+P

where f, is the transverse force induced by unit deflection d,. It is then readily found that kr52 =—K'y.

It is observed from Eqgs. (3.A.14) and (3.A.20) that degradation factors r; and r, are in symmetrical
positions in the expression for k'5,. This implies that if a unit deflection is imposed at end 2 instead of
end 1, the transverse stiffness coefficient found is K'ss = K . By the reciprocal theorem, k'ys = —K'ss

and k'35 =K's; are readily found.
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Figure 3.6 M+P stiffness degradation
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Figure 3.9 Flow chart for nonlinear analysis
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Figure 3.11 Example 1: Post-elastic behaviour at incipient beam failure
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Table 3.1 Rotation stiffness and carry-over factor for extended Cross method

Node 1 e 2
Member end le el e2 2e
Distribution Factor 1 el Leo 1
Fixed-end moment kbn,0, kcbnn,0, 0
Distribution -UetkCbn M0, -pes Kcbnm,0,
Carry-over pelkbcznmzle, He2 kCbnm20,
Final end moment

M M= Ry;6, M, -M, M= R0,
Stiffness coefficient Rii= - - Ror=Ciz Rir=

bmk(l—uelcznzz) b, Kpez Cna

Table 3.2. End moments due to end rotation 0,

Node 1 S 2
Member end 1s sl se 2e
Distribution Factor 1 L1 s 1
Fixed-end moment R0, -R16, 0 0
Distribution U1 R16; Hs2 R16;
Carry-over -HUs1 Rlel Hs2 C12 R191
Final end moment M,= M,=
-M, M,
M us2 R104 us2 Ci2 Ri0;
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Chapter 4

Frameworks with Semi-rigid Connections

This chapter describes an efficient method for the inelastic analysis of semi-rigid planar steel
frameworks. A compound element, comprised of a plastic-hinge element and a semi-rigid connection
element, is located at member ends that may undergo inelastic deformation. Nonlinear inelastic
flexural behaviour of the member is modeled by an empirical relationship between moment and
rotation, for which the parameters are available from experimental results. A four-parameter model is
employed to simulate the nonlinear moment-rotation behaviour of the semi-rigid connections. The
member stiffness matrix for the compound element is expressed in terms of stiffness degradation
factors that vary according to the loading level. This permits direct account for the combined
influence of member plasticity and semi-rigid connection behaviour on the structure stiffness. Three
steel frameworks are analyzed to illustrate the proposed analysis method. The results are compared

with those obtained from experiments and applying other methods.

4.1 Introduction

Many studies have been devoted to developing practical methods of nonlinear analysis of frameworks
accounting for semi-rigid behaviour of the connections and/or plastic behaviour of the members
(Chen et al., 1994; Chen et al., 1996; Faella et al., 2000; Chan & Zhou, 2004). However, little has
been done to investigate the interaction between the behaviour of semi-rigid connections and that of
member plasticity, as well as transverse-shear and axial stiffness degradations. This thesis focuses on
such interaction by applying a planar-compound-element concept. A member plastic zone forms at
the beam end due to internal forces (e.g., moment, shear force, and axial force). The characteristics of
the interaction between a flexural semi-rigid connection and the flexural plastic zone of its connected

member are discussed and illustrated in detail.

Figure 4.1(a) exhibits a typical beam-to-column connection joint, where there is member plasticity
due to bending. Typically, the connection is semi-rigid, and can include bolts, welds and angles. To
facilitate a nonlinear analysis, the model in Figure 4.1(a) is replaced by the analytical model in Figure
4.1(b). Here, one of the two springs represents the plasticity formed at the member end, while the

other spring represents the semi-rigid connection.

An incremental-load method of analysis has been recently developed to deal with material and
geometric nonlinearities (Grierson et al., 2005; Xu et al., 2005). The goal of this chapter is to extend

this method to account as well for semi-rigid connections. Each stage of the analysis accounts for
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stiffness degradation due to semi-rigid connection behaviour combined with member plasticity,
geometric nonlinearity and shear deformation when updating the corresponding tangent stiffness
matrix for the structure. The incremental-load process ends when the specified external loads have

been completely applied to the structure, or a limit failure loading state is reached.

4.2 Rotational Compound Element

This section employs an assembly of springs, connected in series, to develop a compound element
representing the combined rotational stiffness behaviour of a semi-rigid connection and a member-
end plastic hinge. The determination of the stiffness of semi-rigid connections is discussed in detail,
while that for member-end plasticity is adopted directly from previous research (Grierson et al., 2005;

Xu et al., 2005).

4.2.1 Series Element Model

The series element model consists of a semi-rigid connection spring, an inelastic spring and an elastic
member, all connected in series. Herein, an inelastic spring is defined as a spring that characterizes
the inelastic behaviour of a cross section from initial yield to full yield. The nature of the compound
element is indicated in Figure 4.2, where parameters R, Ry, and R, denote the rotational stiffnesses of
the semi-rigid connection spring, the member plasticity spring and the elastic member end,
respectively. Only end 1 of the member is considered (end 2 may or may not have the exact same

nature as end 1).

The case in Figure 4.2(a) is conventionally used in structural analysis, where a beam-to-column
connection at node 1 is assumed as either a pinned connection (R; = 0) or fixed connection (R; = o).
This assumption simplifies the analysis for both hand and computer-based analyses. However, if the
effect of the actual connections on structural response is significant, the model including a semi-rigid
connection represented by a spring symbol @ in Figure 4.2(b) should be accounted for in the analysis
and design of the structure. Another model popular in rigid-plastic analysis assumes that a member
plastic hinge abruptly forms, i.e., rather than gradually forming from initial yield to full yield. To
improve the accuracy in this case, the inelastic-spring model in Figure 4.2(c) is suitable for simulating
gradual stiffness degradation due to increasing extent of plastic behaviour. Finally, if both semi-rigid
connection and plastic member behaviour occur at the same time, the series-element model shown in
Figure 4.2(d) should be introduced in the analysis. Although Yau and Chan (1994) previously
considered the latter model, the influences of member plasticity and semi-rigid connections were

considered separately.
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The rotational deformations of the semi-rigid connection and inelastic member end, indicated in
Figure 4.2(d), are graphically represented in Figure 4.3(a). It is readily shown that the two series-
connected springs can be substituted for by the compound element in Figure 4.3(b) having only one
spring. It remains to derive the expression for compound stiffness R representing the combined effect
of stiffnesses R and R,. To that end, for applied moment M in Figure 4.3(a), the rotations 0. and 6,

caused by semi-rigid connection behaviour member plastic behaviour, respectively, are found as,

0. =M /R, (4.2.1a)

0,=M/R, (4.2.1b)
Then, the total rotation 8 between the joint and the elastic member end is, from Egs. (4.2.1),

0=6,+6,=M/R, +M/R;,=M/R 4.2.2)

from which it is observed that the compound rotational stiffness accounting for semi-rigid connection
and member plastic behaviour is,
1 R.R,
TR, +1/R, R +R,

(4.2.3)

4.2.2 Determining Connection Stiffness R,

It remains to determine the stiffness of the compound element defined by Eq. (4.2.3). To that end,
member plasticity stiffness Ry is directly given by Eq. (2.3.3) or (2.C.3) in Chapter 2, and semi-rigid

connection stiffness R alone needs to be established in the following.

Several semi-rigid connection models have been investigated by Xu (1994). A four-parameter
power model, originally proposed for modeling post-elastic stress-strain behaviour (Richard &
Abbott, 1975), has been commonly adopted in analysis. Recently, experimental data for extended-
end-plate and flush-end-plate connections has further confirmed this model to be effective and
accurate for predicting the behaviour of end-plate connections (Kishi et al., 2004). The following

four-parameter model is employed in this study to simulate the behaviour of semi-rigid connections,

_ (Rce - ch)ec IR
{1+[(Ry =R, /M T} %

0, (4.2.4)

In Eq. (4.2.4), 6. denotes the rotation of the semi-rigid connection, and the four parameters Ree, Rep,
My and vy are the elastic rotation stiffness, strain-hardening/softening stiffness, reference moment and
shape parameter for the connection, respectively. The elastic stiffness Ree= Mc,/0y, where M¢yand 6,

are the initial yield moment and corresponding rotation. The shape of the moment-rotation curve is
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defined by the parameter y, whose magnitude is related to the strain hardening and softening
behaviour of the connection (the value y used in the model is found by curve fitting experimental
data). The four parameters in Eq. (4.2.4) can be found for different types of connections from an
existing database of experimental results (Xu, 1994). The reference moment M, strain-hardening or
softening stiffness Rcp, and nominal rotation 0, determine the nominal maximum moment or moment

capacity of the connection to be,
M, =M, +6,R, (4.2.5)

where 0, depends on the connection type and is determined from published research results; e.g.,
Bjorhovde et al., (1990). It is noteworthy that when the moment-rotation response does not have a
humped point, the nominal moment capacity is determined by the moment at which 6, = 0.02, as

suggested in the AISC(2005) design specifications.

By differentiating Eq. (4.2.4) with respect to rotation 6., the tangent stiffness of the connection is
given by (Richard & Abbott, 1975),

_aM_
do,

Rce - ch
+
{1 +[(Rce - ch )ec / '\/IO]Y }1+1/y

where R is the elastic rotational stiffness at the initial condition 6. = 0, and R, is the strain-

R. R (4.2.6)

hardening and softening stiffness when rotation 0. tends to infinity. For practical analysis of steel
structures, the rotation 6 is at most equal to the limiting nominal rotation value when connection

fracture occurs (Bjorhovde et al., 1990).

It is seen from Egs. (4.2.4) and (4.2.6) that the four-parameter model reduces to a linear model with
Rc = Ree when Rgp tends to Ree. A bi-linear model is realized when the shape parameter y approaches
infinity; i.e., when 6; < M¢/( Ree-Rep), the term [( Ree-Rep)0c/ Mo]” tends to zero and Eq. (4.2.6) reduces
to Rc = Ree, while when 6 > M/( Ree-Rep), the term [( Ree-Rep)0/ Mo]” tends to infinity and Eq. (4.2.6)
reduces to Rc = Rep. If Rep is set to zero (i.e., strain-hardening and softening is ignored), Eq. (4.2.4)

reduces to the following three-parameter model, suggested by Kishi and Chen (1987),

R..0

— ce ™~ C
[1+ (R0, /M) 1" (4.27)

where reference moment My is equal to nominal moment capacity M,. Note that rotation 0. can be

explicitly obtained from Eq. (4.2.7) as,

M
60 = _ yql/y
Rell=(M/M)"]

(4.2.82)
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As given by Eq. (2.3.2) or (2.C.1) in Chapter 2 (Grierson et al. (2005) and Xu et al. (2005)), the

post-elastic rotation of the connecting member is taken by this study to be,

e, V0
M-M M M
b=0,91- 1—(—yJ < _— <1 (4.2.8b)
My —M, My My
Therefore, from Eqgs. (4.2.8a, b), the total rotation 8 = 6. + ¢ of the compound element can be

explicitly expressed as,

1/gy

€

M, M

—JL<— <1 (4.2.9)
MP MD

M M—My
0= Tt Ol 1| ————
Rell-(M/M)'T7 M,-M,

which represents the moment-rotation relationship of the compound element. The benefit of using the
three-parameter model Eq. (4.2.7) is that rotation 0. of the connection is directly obtained from Eq.
(4.2.8a) given moment M found by the non-linear analysis; the disadvantage is that the strain-
hardening or softening nature of the connection is omitted. In contrast, although strain hardening and
softening is accounted for in the four-parameter model, an iterative procedure is needed to find the
rotation O, of the connection. Both connection models are considered for the verification analysis

presented in Section 4.5.

4.2.3 Stiffness Degradation Factors

The flexural stiffness degradation factor associated with semi-rigid stiffness R; is given by

(Monforton et al., 1963),

1

r=——————
© 1+3El/LR, (4.2.10)

where EI/L is the flexural stiffness of the elastic member. The factor r. is interpreted as the ratio of
the end rotation of the elastic member to the combined rotation of the elastic member and the semi-
rigid connection due to unit end-moment (Xu 1994). Similarly, the stiffness degradation factor

associated with the inelastic member stiffness R, is given by (Grierson et al., 2005),

1

r=———
P 143EI/LR, (42.11)

where the factor r, is interpreted as the ratio of the inelastic rotation M/R, to the total elastic and
inelastic rotation ML/3El + M/R, due to bending moment M applied at the end connected to the

compound element, where the far end of the elastic member is simply supported (Xu et al., 2005).
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To evaluate the combined stiffness effect, a stiffness degradation factor for the compound stiffness

R defined by Eq. (4.2.3) is introduced and similarly expressed as,

r= m (4.2.12)
which is Eq. (2.3.4) in Chapter 2. The factor r is the ratio of the rotation of the compound element to
the sum total rotation of the compound element and the rotation of the elastic member, when it is
simply supported at the far end. From Egs. (4.2.3), (4.2.10), (4.2.11) and (4.2.12), the compound

stiffness degradation factor is expressed as,

1 B rr,

r= =
1+3EI/LR, +3EI /LR,  r +r, — 1,

(4.2.13)

which maps R € [0, ] to r € [0, 1]. From Eq. (4.2.13), the stiffness degradation factor for the
compound element is a function of the degradation factors of the semi-rigid connection and member
inelasticity such that, if any of these factors degrades to zero, the stiffness of the compound element

degrades to zero as well.

4.3 Characteristics of Compound Rotational Element

The behaviour of the compound rotational element is dependent upon the strength capacities of the
connection and the connected beam members. For the current study, the effect of shear deformation
of the panel zone on the behaviour of the beam-column connection is ignored. Connection strength is
important in the inelastic analysis of frameworks. The strength behaviour of the compound element is

analyzed in the following.

If only the effect of the member plasticity is considered, the moment-rotation relation in the post-
elastic range is that shown in Figure 4.5 (a). Alternatively, if the effect of the semi-rigid connection is
accounted for, the moment-rotation relationship is as shown in Figure 4.5 (b). In Figure 4.5, the
nominal maximum moment M, defined by Eq. (4.2.5) is the moment capacity of the connection,
while My and M, are the initial-yield and fully-plastic moment capacities of the connected member,
respectively. Depending on the interaction between member inelasticity and semi-rigid connection
behaviour, three types of connections are characterized by the compound element, as described in the

following

Under-Strength Connections: M, < M,
In this situation, the performance of the compound element is governed only by the semi-rigid

connection, and no plasticity occurs in the vicinity of the member end. This can occur for Single
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Web-Angle (SWA) connections with M, = M,*"*. Since the member end does not undergo any
plasticity, the nonlinear moment-rotation behaviour of the compound element is determined by the
behaviour of the semi-rigid connection alone; i.e., the moment-rotation relationship defined by the
lowest solid curve in Figure 4.6 is the same as that given in Figure 4.5(b) for a SWA connection. This
kind of connection is referred to as under-strength connection, since the strength capacity of the
compound element is less than the yield strength capacity of the connected member. If M, is small
enough, this type of connection is categorized as a conventional simple or pinned connection (AISC,
2001; CISC, 2004). (Note that the definition of under-strength connections in this study is based on
there being no plasticity at the member end, whereas the flexible connections defined in AISC-LRFD
(AISC, 2001) are based on M, < 0.2M,).

Partial-Strength Connections: My < M, < M,

In this second case, both semi-rigid connection behaviour and member inelasticity govern the
behaviour of the compound element, but the limit strength is determined by the nature of the
connection. In other words, the connected member does not reach its moment capacity M, while the
compound element achieves nominal moment capacity M,. Such behaviour for a Flush End-Plate
(FEP) connection is illustrated by the middle solid curve in Figure 4.6 (the corresponding dotted
curve refers to the middle solid curve in Figure 4.5(b)). Although this type of semi-rigid connection is
here referred to as a partial-strength connection, it is somewhat different from the definition in the

design codes (AISC, 2001), where the inelasticity of the member is not accounted for.

Full-Strength Connections; M, > M,

Finally, when the nominal moment capacity of the connection M, is equal or greater than the plastic
moment capacity M, of the connected member, the member inelasticity dominates the behaviour of
the compound element (even though the connection influences the stiffness degradation of the
compound element due to its non-linear behaviour). Such behaviour for an Extended End-Plate (EEP)
connection is illustrated in Figures 4.5 and 4.6 (where the dotted moment-rotation curve refers to the
EEP connection alone). It is evident in Figure 4.6 that the moment-rotation behaviour of the
compound element (solid curve) is dominated by the plastic behaviour of the member. This kind of
connection is referred to as a full-strength connection, which is defined the same way in the design

codes (e.g., AISC, 2001).

It can be concluded from the preceding discussions that when the nominal capacity of a connection
is much lower than that of the connected member, the connection dominates the behaviour of the
compound element; however, if the nominal capacity of a connection is much greater than the

capacity of the connected member, the member plasticity dominates the compound element
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behaviour. In practice, a flexible connection with low connection capacity (M, << M) can be
employed in the design of braced frames. In the design of moment-resisting frames, however,
excessive deformation can occur if the connection capacity M, is far less than the capacity M, of the
connected member (see Example 3 in this chapter). A satisfactory design is achieved if both the
connection and the corresponding connected member have approximately the same strength capacity
(i.e., Mp = M,). It is prudent to avoid over-strength connections (i.e., My>> M,), since this results in

over-costly construction because excess connection capacity is not utilized.

Besides the strength of connections, connection stiffness is another important factor characterizing
the behaviour of connections, especially in serviceability design concerning initial elastic stiffness
Ree. According to Eurocode 3 (CEN, 2002; Jaspart, 2002), for example, a beam-to-column connection

is assumed to be rigid if its elastic stiffness satisfies the following condition,

LR

Elce >25 (or re > 0.893 for an unbraced frame) 4.3.1)
or

R..L

I;el >8 (orre>0.727 for a braced frame) (4.3.2)

where the notations are the same as those defined in Eq. (4.2.10), except that R. is replaced by elastic

stiffness Rg.. Conversely, a connection is assumed to be flexible if the following condition is satisfied,

R..L
ﬁ <0.5 (orrc<0.143 for either a braced or an unbraced frame) (4.3.3)

When elastic stiffness R¢. or corresponding stiffness factor . is located between the values defined
by Eq. (4.3.1) or (4.3.2) and (4.3.3), a semi-rigid connection is attained. Note that the stiffness criteria
defined in Egs. (4.3.1) through (4.3.3) are related to member length L. If only the member length
changes, the connection category changes according to the stiffness criteria. For instance, if Re.L/El =
9 for a braced frame, then the connection is rigid; however, when member length L changes to 0.5L,
the corresponding stiffness ratio becomes 0.5R.L/El = 4.5, and the same connection becomes semi-
rigid. Such a paradox challenges the current classification systems for beam-to-column connections
and further research is needed. For the time being, Eqs. (4.3.2) and (4.3.3) are used as the criteria in

this study to characterize connection behaviour.

Contrary to that for connection stiffness, connection strength criteria are based on member moment
capacities My and M, as well as nominal connection capacity M,, and are independent of any length
variation of the connected member. It is noteworthy that conventional rigid connections are

recognized as having full strength (M, > M;) and rigid stiffness (Ree = ). So, if the behaviour of a

91



connection is considered according to the strength and stiffness classification criteria, a rigid
connection with full strength is not equivalent to the conventional rigid connection because R
satisfies Eq. (4.3.1) or (4.3.2) but is less than infinity. To distinguish from a conventional rigid
connection, a full-strength connection with R¢ < oo is referred to as a fullly-rigid connection in this

study.

The characteristics of stiffness degradation of a compound element are further examined in the
following. The relationships between the compound degradation factor r and the connection and
plasticity factors rc, I'p, given in Eq. (4.2.13) are graphed in Figure 4.7. It is observed that for the
common pinned-connection case when I, = 0, the compound element has zero rotational stiffness for
any value of I, and the connected member exhibits no plasticity. For the other extreme case when r; =
1, the compound element behaviour is governed by the plastic behaviour of the member (r = ;). For
the two cases, it is evident from Figure 4.7 that when the plasticity factor is less than unity (e.g., I, =
0.7), the r value of the compound element is approximately the value of r.. This means that even
when the member end has undergone some degree of plasticity (e.g., 30% = 1.0 — 0.7), the stiffness of
the compound element is dominated by that of the connection. In other words, the level of member

plasticity has little effect on the stiffness degradation of the compound element.

To numerically demonstrate the interaction between semi-rigid connections and member plasticity,
an illustration is presented the following for a beam member with three different connections. As
shown in Figure 4.8, the member has span length L = 4m and a W310x33 cross-section (with the
following properties: elastic and plastic moduli S= 0.415x10° mm® and Z= 0.48x10° mm’, moment of
inertia | = 65x10° mm®, Young’s modulus E = 200000 MPa, yield stress oy = 248 MPa). The residual
stress is assumed to be o, = 0.3cy, such that the initial and full-yield moments My = 0.7Sc, =
0.7x0.415x107°x248x10° = 72 kN-m and Mpy= Zoy,= 119 kN-m, respectively. The parameters for the
three typical connections listed in Table 4.1 are taken from a published databank (Xu, 1994).
Illustrated in Figure 4.8(b) are the moment-rotation curves found for the connections using the four-
parameter connection model defined by Eq. (4.2.4). It is seen from Figure 4.8(b) that the Double
Web-Angle (DWA) is an under-strength connection, the Flush End-Plate (FEP) is a partial-strength
connection, and the Extended End-Plate (EEP) is a full-strength connection.

Since no plasticity occurs at the member end when the DWA connection is employed, only the
stiffness degradation behaviour of the beams with FEP and EEP connections are investigated in the
following. The variations of stiffnesses predicted by Egs. (4.2.6) for EEP and FEP connections are
plotted in Figure 4.9 versus applied moment M. The corresponding values of the stiffness of these two

connections are listed in Tables 4.2 and 4.3. It is seen from Figure 4.9 for both the EEP and FEP
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connections that connection stiffness R, and compound stiffness R are equal before member yielding
takes place, and that compound stiffness R degrades to zero after member yielding occurs. The
corresponding degradation factors Iy, I, and rin Tables 4.2 and 4.3 demonstrate that the member-

section plastic behaviour dominates the stiffness degradation of the compound element.

4.4 Nonlinear Analysis of Frameworks with Semi-rigid Connections

Once the stiffness degradation factor of a compound element is determined, as discussed in the
previous sections, the structural analysis is conducted. This study focuses on planar semi-rigid steel
frameworks comprised of beam-column members with compact sections, for which plastic
deformation is not precluded by local buckling (AISC, 2001). Plastic bending, shearing or axial
deformation (¢, y or 8) of a member under the action of moment, shear or axial force M, V or P,
respectively, is assumed concentrated at the member-end sections (Xu et al., 2005). Figure 4.10(a)
represents a general member with Young’s modulus E, shear modulus G, member length L, cross-
section moment of inertia |, sectional area A, and equivalent shear area As. Parameters Ry, Ty and Ny;
are, respectively, the post-elastic rotational bending, transverse shearing and normal axial stiffness of
the member at the two end sections j =1, 2, while Rgj, T¢j and N are, respectively, the rotational
bending, transverse shearing and normal axial stiffness of the connections at the two end sections. By
adopting the compound element developed previously in this chapter, the simplified member model

in Figure 4.10(b) is obtained, the corresponding parameters for which are discussed in the following.

The evaluation of connection and member rotational stiffnesses R and Ry in Figure 4.10(a), and
corresponding stiffness degradation factors rg and ry;, have been discussed in detail in Section 4.2.
The member transverse shear and normal axial stiffnesses T, and Ny; have also been determined in
previous research (Grierson et al., 2005; Xu et al., 2005), where corresponding stiffness degradation

factors tp; and np; for member end j are given by,

1

to=—— -
o3RI/ LT, (44.1a)

1

n.—————
P 1+ EA/LN, (4.4.10)

which map Ty or Ny € [0, oo] into ty; or Ny € [0, 1]. Similarly, the transverse and normal stiffness
degradation factors for the connection are expressed as,

1

t=— -
T 14+3E1/ LT, (44.22)
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1

n,=—————
i “TTEAILN, (4.4.2b)

where Tj and N are the transverse shear and normal axial stiffnesses of the connection.

When the connection is in the elastic range, it is assumed that stiffness T or Ny is infinite and
corresponding degradation factor t; or N in Egs. (4.4.2) is unity. Conversely, when the connection is
in the plastic range, it is assumed that stiffness T¢j or Nj is zero and corresponding degradation factor

tg or Nngj is zero. Such idealized elastic-plastic models are depicted in Figure 4.11.

For the general planar compound member in Figure 4.10 (b), the bending stiffness degradation
factor r; is found through Eq. (4.2.13), while the shearing and axial stiffness degradation factors t; and

n; are similarly found as,

j S L (4.4.30)
L+ — gty
n.n._.
n, = o (4.4.3b)
N + Ny = NNy,

Also in Figure 4.10(b), fi and d; (i =1, 2,..., 6) are respectively the local-axis joint forces and
deformations corresponding to the local stiffness matrix K for the compound frame element, with
account for the effects of shear deformation and geometrical nonlinearity. The local-axis stiffness
matrices for all elements are transformed into the global coordinate system and then assembled as the
structure stiffness matrix K; , where subscript i refers to the i stage of the incremental-load analysis
procedure. If K; is non-singular at the end of the i load step, corresponding incremental nodal
displacements Au; are solved for and incremental member-end forces Af; and deformations Ad; are
found. As well, total nodal displacements U; = XAu;, member-end forces f; = ZAf; and deformations d;
= ¥Ad; accumulated over the loading history are found. The initial-yield and full-yield conditions for
each member-end section are checked to detect plastic behaviour, and the corresponding bending,
shearing and axial stiffness degradation factors are found. Degraded stiffnesses R., T and/or N, are
determined based on the moment, shear and axial forces found by the analysis at the current loading
level. Degradation factors (rp, t,, Ny, Ie, tc, and n¢) are applied to modify each element stiffness
matrices k and, hence, the structure stiffness matrix K before commencing the next load step. The
incremental-load analysis procedure continues until either a specified load level F is reached or the
structure stiffness matrix K becomes singular at a lower load level, as a consequence of failure of part
or all of the structure. (If the structure has not failed at load level F, the analysis can be continued

beyond that level until failure of the structure does occur.)
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The final analysis results include the values of the bending, shearing and axial stiffness degradation
factors r, t and n indicating the extent of the combined member plasticity and semi-rigid connection
deformation in the beam-to-column connection regions of the compound element. Further

computational details are provided through the analysis example presented in the following section.

4.5 Example Studies

Three examples of semi-rigid structural steel frameworks are selected to illustrate the analysis method
proposed in the foregoing. The objective of the first example concerning a semi-rigid portal frame is
to compare results obtained by this study with those obtained from experimental testing (Liew et al.,
1997). The second example illustrates a comparison study of a one-bay by two-storey semi-rigid
frame designed by Chen et al. (1996). Finally, the two-bay by two-storey frame described in Chapter
3 is revisited to investigate the influence of semi-rigid connections on the analysis results. In all
analyses, Young’s modulus E = 200000 MPa and shear rigidity G = 77000 MPa. The residual stress
for bending and axial behaviour is o, = 0.3cy, while for shearing behaviour it is t, = 0.05ty, where oy
and Ty are respectively the normal yield stress and shearing yield stress of the steel material for each

example.

4.5.1 Example 1: Semi-rigid Portal Frame

For the semi-rigid portal frame in Figure 4.12, for which experimental test results are available in the
literature (Liew et al., 1997), the properties of the beam are: area A = 4740 mm?, moment of inertia |
= 5547x10* mm?*, plastic modulus Z = 485x10° mm’, normal yield stress oy = 345 MPa, and shear
yield stress 1y = 199 MPa (based on the von Mises criterion). The properties of the two columns are:
area A = 7600 mm?’, moment of inertia | = 6103x10* mm®*, plastic modulus Z = 654x10° mm’, and

yield stresses oy = 336 MPa and 1, = 194 MPa.

The semi-rigid connections are modeled by the four-parameter model in Figure 4.4 (Richard et al.,
1975), for which the parameter values are obtained from the following pilot-test results. The moment-
rotation test results for the beam-to-column connection C1 are traced in Figure 4.13(a) as the dotted
curve. By applying a curve-fitting technique to the model parameters in Eq. (4.2.4), the four
parameters are determined to be My = 79 kN-m, Ree = 7202 kN-m/rad, R¢, = 144 kN-m/rad and y =
0.57. Similarly, for the column-to-base connection C2, whose pilot-test results shown in Figure 4.13
(b), the model parameters are determined to be My = 148 kN-m, R¢e = 24721 kN-m/rad, R¢p = 151 kN-
m/rad and y = 0.78.
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To match the experimental test setup, the loads for the analysis procedure in this study are
monotonically increased up to the collapse load level by incrementally changing the horizontal load
H, while the vertical loads remain fixed at those shown in Figure 4.12. The beam is divided into three
elements, and each column is taken as one element. The analysis results concerning the load-
deflection behaviour of joint 6 are given by the solid line in Figure 4.14(a). Also shown are the test
results (Liew et al., 1997) and the computed results from a refined plastic hinge analysis method
called PHINGE (Chen et al., 1996). It is obvious at lower loading levels (H < 35 kN) that the load-
deflection results found by this study (heavy-solid curve) and the PHINGE method (dashed curve) are
in good agreement with each other and the test results (dotted curve). At higher loading levels (H > 40
kN), the results of the current study are slightly less than those of the PHINGE method, most likely

because the latter method does not account for the influence of elastic shear deformation.

As is shown in the following, the behaviour of the portal frame is such that semi-rigid connection
behaviour rather than member inelasticity dominates. The proposed method predicts that the structure
collapses at load level H¢ = 74 kN, which is close to the value of 77 kN as predicted by the PHINGE
method, but both values are considerably less than the 99 kN value found as the limit state by the
experimental test. It likely that this discrepancy between experimental and analytical results is as a
consequence of the analysis methods using connection behaviour data which were determined by
separate pilot experiments (Liew et al., 1997), but which differ from that for the behaviour of the

connections in the actual frame itself.

It is evident in Figure 4.14(b) that the development of plasticity at the member ends is not very
significant. This occurs because connections C1 and C2 have nominal moment capacities M, = 82 kN-
m and M, = 151 kN-m, respectively, which are not much greater than yield moment capacities My =
100 kN-m and My= 134 kN-m of the beam and columns, respectively. Upon referring to the regions
defined in Figure 4.5 and discussed in Section 4.3, it is observed that connection C1 is an under-
strength connection (M, < M,) while C2 is a partial-strength connection (My < My< M,). This is
consistent with the plasticity distribution indicated in Figure 4.14 (b), where 6% and 3% plasticity
occurs at joints 4 and 5 of the beam, respectively, and only 1% plasticity occurs at the bottom end of

the right column.

As summarized in Table 4.4, the Cy column base experiences rp, = 100(1-0.994) = 0.6% (= 1%) of
plasticity. However, the values of connection stiffness degradation factor r. at the bases of columns
Ci3 and Cy6 reduce from their initial value of 0.671 to approximately 0.085; i.e., the degradation
factors r. decrease by about 8§7% (0.085/0.671-1 = —0.87) compared with their initial values. For the

beam-to-column connections, the factor r; varies from 0.168 to 0.012; i.e., a decrease of about 93%
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(0.012/0.168—1 = —0.93). In essence, then, the stiffness degradation factors of the compound beam
and column elements are the same as those of the connections, as shown in Table 4.4. These results
indicate for a framework with low-strength semi-rigid connections that connection behaviour rather

than member plasticity dominates the nonlinear response of the structure.

Also shown in Figure 4.14(a) are two special cases where it is assumed for the portal frame that
some or all of the connections are rigid. When both the beam-to-column and beam-to-base
connections are rigid, it is observed from the corresponding load-deflection behaviour that the
deflection at limit load level Hi= 143.3 kN is only about one-fifth of that for semi-rigid connections.
When the beam-to-column connections are assumed to be rigid while the column-to-base connections
are pinned, a conventional situation in design, the corresponding load-deflection behaviour is close to
that when the connections are semi-rigid, with frame limit load capacity Hi= 82.4 kN. The plasticity
behaviour of the frame members at the limit state for the two cases is exhibited in Figure 4.15. From
Figure 4.15(a), the case of all rigid connections, four plastic hinges (i.e., 100% plasticity) form in the
beam and right column, while the left column base undergoes 52% plasticity under combined axial
force and bending moment. The formation of the fourth plastic hinge at node 4 occurs when the
horizontal load Hf = 143.3 kN, at which point the frame fails due to inelastic instability signalled by
the horizontal displacement of node 6 becoming infinitely large (i.e., the corresponding stiffness
coefficient tends to zero and causes the structure stiffness matrix to become singular). From Figure
4.15(b), the case of beam-to-column rigid connections and column-to-base pinned connections, the
beam experiences more plastic deformation than the columns. The formation of the plastic hinge at
the right end of the beam occurs when the horizontal load reaches H =77.7 kN. At the limit load level
Hi = 82.4 kN, the frame fails due to inelastic instability signalled by the horizontal displacement of
node 6 becoming infinitely large (i.e., the same failure mode as for the rigid frame). Table 4.4
indicates the different degrees of member-end stiffness degradation for the case where all connections

are semi-rigid, and the two cases where all or some of the connections are rigid.

4.5.2 Example 2: One-Bay Two-Storey Frame

Consider the one-bay two-storey frame with semi-rigid connections in Figure 4.16. This frame has
been analyzed and designed previously by Chen et al. (1996) for the loads, member sizes and
connections shown in the figure. The least weight frame design was achieved for the following two
combinations of dead loads (D), live loads (L.) and wind loads (W): 1.2Dp + 1.6L; and 1.3W +
1.2Dy + 0.5L (AISC 2001). The latter load combination was found to govern the design (Chen et al.

1996) and, as such, is alone considered here.
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In order to account for the imperfect geometry of the frame, it is assumed that all columns are
initially out-of-plumb by h/400, where h is the storey height. Connections C1 and C2 have top and
seat angles with double web angles, and are represented by a three-parameter model (i.e., Ry = 0)
using the M;, R¢p, and y parameters given in Table 4.5, which also reports the values of the plastic
moment M, and initial yield moment My of the corresponding connected beams. The normalized
moment-rotation curves of the two connections are presented in Figure 4.17, where a connection
classification system proposed by Bjorhovde et al. (1990) is sketched to demonstrate that both
connections are in the semi-rigid category. The rotational demands imposed on the connections by the
factored gravity loads are smaller than the corresponding rotational capacity indicated in Figure 4.17
(Chen et al., 1996). That is, the connections have adequate ductility to allow for the full evolution of
plasticity in the connection.. According to the discussion in Section 4.3 when the residual stress of a
member section is ignored, and as shown in Figure 4.17, the non-dimensional yield stress my = 0.61
and C2 is an -strength connection while C1 is a partial-strength connection. When the residual stress
distribution in the member is taken into account as o, = 0.3cy , the initial-yield stress my, = 0.43 and
C1 and C2 are both partial-strength connections. As a result, in the pure bending case, the roof beam-
ends at connections C2 and the floor member ends at connections C1 exhibit plasticity that depends

on the residual stress levels.

Upon applying the compound-element analysis method proposed by this study, the lateral load-
deflection relationship at node 8 of the frame up to load-factor level A¢ = 1.10 is found to be the solid-
line curve shown in Figure 4.18. Two fully-plastic hinges form at the midspan of the beams. The
member-end plasticity ranges between 9% and 22% at the column ends, and between 1% and 11% at
the beam ends. To further see the behaviour of the compound connection-beam elements,
corresponding stiffness degradation factors rc, Iy, and r are listed in Table 4.6, as well as initial
connection stiffness factors rg. From this table it is observed that that connection stiffness degrades
significantly; e.g., the connection stiffness factor for end E5 of beam Bys drops 94% (0.045/0.766—

=-0.94) from its initial value r,, = 0.766 to its final value r, = 0.045 It is also observed from the
fourth and sixth columns in Table 4.6 that although a beam end such as E5 undergoes 10.9% (r, =
0.891) plasticity, the member stiffness degradation behaviour does not affect the stiffness degradation
of the compound elements (i.e., r; = r). This confirms that semi-rigid connections dominate
compound-element behaviour when the connection moment capacity M, is significantly less than the

moment capacity M, of the connected member, as is the case for this framework (see Table 4.5).

The formation of the second plastic hinge at node 7 in Figure 4.18 occurs when the load factor A =

1.04. When 2+ = 1.101, the frame fails due to inelastic instability instigated by the horizontal
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displacement of node 8 becoming extremely large. For the purpose of comparison, the dashed-curve
in Figure 4.18 is obtained by the PHINGE analysis method (Chen et al., 1996), which finds the load
factor s = 1.096. Obviously, the results from this study and PHINGE are in good agreement.

To consider the difference between a semi-rigid connection design and a conventional rigid
connection design, Figure 4.19 also includes the analysis results found by the method proposed in this
study for the rigidly-connected frame. Note that the load factor A; at collapse increases 6.8% from
1.10 for the frame with semi-rigid connections to 1.18 for the frame with rigid connections. As well,
the plasticity formation in the rigid frame is much different than that in the semi-rigid frame.
Specifically, five plastic hinges form at the column ends in the rigid connected frame. This
demonstrates that the rigid connections transmit substantial bending moments to the columns.
Moreover, plasticity increases from about 10% to 100% at the upper column ends, while the plastic
hinge section at node 7 in the semi-rigid frame experiences only 73% plasticity in the rigid frame.
Similar to that for the semi-rigid frame, the rigid frame fails due to inelastic instability signalled by

the horizontal displacement of node 8 becoming extremely large.

4.5.3 Example 3: Two-Bay Two-Storey Frame

The third example illustrated in Figure 4.20 is a two-bay by two-storey frame with semi-rigid
connections, which was previously analyzed in Section 3.5.2 with rigid connections. The loads shown
in Figure 4.20 are at the design load level for the frame. The frame is investigated here to demonstrate
the effect of semi-rigid connections on structural response up to failure. Two connection cases are

analyzed: (1) under-strength semi-rigid connections, and (2) fully-rigid connections.

In the first case, the two connection curves from Example 2 in Section 4.5.2 are applied to the
frame in Figure 4.20. The connection model parameters for all floor beam-to-column connections C1
and C2 assume the values in the second row of Table 4.5, while the parameters for all roof beam-to-
column connections C3 and C4 are those in the third row of Table 4.5. According to the member M,
moment values given in the second column of Table 4.7, and the connection M, moment values given
in the fourth column of Table 4.5, the frame has under-strength connections because M, < My (= 0.7
My/1.15, assuming residual stress 0.3cy and shape factor 1.15 for the W-section). From the stiffness
criteria defined in Eqgs. (4.3.1) and (4.3.3), and the ry values given in the third column of Table 4.8,

all the connections are categorized as being semi-rigid because 0.143 < r¢, < 0.893.

Upon applying the compound-element analysis method, the semi-rigid frame was found to collapse
when the load factor reached A+ = 0.688 (i.e., at 68.8% of the specified nominal design load level), as

indicated by the heavy solid-line curve in Figure 4.21. To consider the difference between the semi-
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rigid connection design and conventional rigid connection design, the analysis results obtained by
other methods for rigid connections are also indicated in Figure 4.21. It is seen from the figure that
the collapse-load factor A; decreases by 36.3% from 1.08 for the rigid frame to 0.688 for the semi-
rigid frame, and that large lateral translation occurs for the semi-rigid frame. In addition to the
significant changes in the loading capacity, the plasticity formation in Figure 4.22 for the semi-rigid
frame varies substantially from that for the rigid frame (see Figure 3.15). Because of the under-
strength semi-rigid connections, all of the member ends at the connections do not undergo any
plasticity, as indicated in the fifth column of Table 4.8. However, the connection stiffness factors
associated with the beams in the right large-span bay drop almost to zero, as shown in column four of
Table 4.8. The factors relevant to the left short-span bay drop by about 24~63% when the r. values in
column four are compared with the r values in column six of Table 4.8, it is noted that the compound
element behaviour is dominated by that of the under-strength connections. Similar to the failure mode
of the frames in the previous two examples, the 2-bay by 2-storey frame fails at load factor level A; =
0.688 due to inelastic instability signalled by the horizontal displacement of node 9 becoming

extremely large.

From the load-deflection response designated by the heavy solid-line curve in Figure 4.21, the
flexibility of the frame increases considerably when the connections are semi-rigid. As such,
serviceability design requirements might not be satisfied due to excessive deflections. To enhance the
stiffness and strength of the frame, stiffer connections are now selected while maintaining all the
same member properties. Specifically, the parameters of the moment-rotation connections in the last
three columns of Table 4.7 are chosen for the structural analysis. (The four parameters for each
connection in Table 4.7 are obtained from the research of Kishi et al. (2004) concerning extended
end-plate connections). According to the member M, and connection M, values in the second and
third columns of Table 4.7, the connections C1, C2, C3 and C4 are categorized as being full-strength.
Also, from the r values in column seven of Table 4.8, and the criteria in Eqs. (4.2.13), all of the

connections are categorized as being fully-rigid.

After conducting the non-linear analysis for the fully-rigid frame, the plasticity distribution for the
members, the lateral load-deflection curve at joint 9, and the degradation factors corresponding to the
connections, are found to be as given in Figure 4.23, Figure 4.21 and Table 4.8, respectively. These
results reveal the following structural behaviour. First, the loading capacity of the fully-rigid frame is
the same A; = 1.08 value as for the conventional rigid frame, as indicated in Figure 4.21. Secondly,
the structural stiffness of the fully-rigid frame is considerably greater than that of the semi-rigid

frame, and approaches the stiffness of the conventional rigid frame. From Figure 4.21, the heavy
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dotted-line load-deflection curve at joint 9 of the fully-rigid frame almost coincides with the curve of
the rigid frame when the load factor A is below 0.6. Unlike the load-deflection behaviour of the
conventional rigid frame, however, there is no sudden kink transition as the external loading
approaches the limit state. Thirdly, the plasticity distribution of the fully-rigid frame is much different
from that of the semi-rigid frame in Figure 4.22, but close to that of the conventional rigid frame. For
the fully-rigid frame, plastic hinges appear at the top end of column C,s, the top and bottom ends of
column Cg, and the midspan of beam Bsg, as indicated in Figure 4.23, while the three plastic hinges
shown in Figure 4.22 for the semi-rigid frame no longer appear. More importantly, as indicated in
Figure 4.23, plasticity now appears at the beam member ends linked to the stiffer fully-rigid
connections. Upon comparing Figure 4.23 with Figure 3.15, it is observed that all the columns have
similar plasticity behaviour except for the different order of the plastic hinge formation. However, a
significant difference between the plasticity formation in these two figures is observed for the
compound elements where plasticity occurs; more detailed information in this regard is shown by the
Iy and r values in the ninth and last columns of Table 4.8. For instance, end E5 of beam Bys has a
considerable difference in stiffness factors, ranging fromr, = 0.392 for the fully-rigid connection to r
= 0.00 for the conventional rigid connection. Finally, after the formation of the fourth plastic hinge at
the midspan of beam Bss occurs at load factor A; = 1.08, the frame fails due to inelastic instability

without a sudden change of the force-deflection relation like that for the rigid frame in Figure 4.21.

4.6 Final commentary

The member-connection compound element developed in this chapter is used in Chapter 5 to
investigate the influence that both damaged connections and semi-rigid connections have on the

capacity of framework structures to resist progressive collapse failure under abnormal loading.
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Figure 4.23 Example 3: Plasticity at failure load-factor level A = 1.08

Table 4.1 Parameters for specified connections

Connection M, (kN-m) R (kN-m/rad)  Rg, (kN-m/rad) Y
DWA 55.935 20114 69.608 0.964
FEP 95.146 21470 468.95 1.45
EEP 137.86 18984 1041.86 5.11
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Table 4.2 Results for EEP connection

M (kN) Ry(kN-m/rad) R;(kN-m/rad) R (kN-m/rad) ro re r
0 18984 18984 0.661  0.661
9 18984 18984 0.661  0.661
19 18983 18983 0.661  0.661
28 18979 18979 0.661  0.661
38 18962 18962 0.660  0.660
47 18915 18915 0.660  0.660
57 18810 18810 0.659  0.659
73 4732880719 18376 18375 1.000  0.653  0.653
75 39559835 18249 18241 1.000  0.652  0.652
84 838297 17683 17318 0.989  0.645  0.640
93 167474 16857 15315 0945 0.634 0611
101 57301 15745 12351 0.855 0.618  0.559
109 22861 14366 8822 0.701  0.596  0.475
116 7139 12786 4581 0.423 0567  0.320
119 0 11861 0 0.000 0549  0.000
Table 4.3 Results for FEP connection
M(kN) R, (kN-m/rad) R;(kN-m/rad) R (kN-m/rad) A re r
0 21470 0.688 0.688
10 20094 0.673 0.673
20 18026 0.649 0.649
28 15873 0.619 0.619
36 13853 0.587 0.587
42 12050 0.553 0.553
48 10483 0.518 0.518
56 8323 0.461 0.461
57 8000 0.451 0.451
61 7033 0.419 0.419
64 6214 0.389 0.389
67 5518 0.361 0.361
70 4926 0.336 0.336
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72 Infinity 4420 4420 1.000 0.312 0.312
90 274191 1524 1516 0.966 0.135 0.135
95 125900 1082 1073 0.928 0.100 0.099
100 68670 822 813 0.876 0.078 0.077
105 38651 668 657 0.799 0.064 0.063
110 20013 579 562 0.672 0.056 0.055
115 9206 537 507 0.486 0.052 0.049
116 7157 530 494 0.423 0.052 0.048
117 5187 525 476 0.347 0.051 0.047
118 3213 520 447 0.248 0.051 0.044
119 0 514 0 0.000 0.050 0.000
Table 4.4 Example 1: Stiffness degradation factors
Member  End Semi-rigid Rigid
Initial: rg re ry r Casel:r Case2:r

Cis El 0.671 0.085 0998  0.085 0.482 -

Cas E2 0.671 0.084 0994  0.084 0.000 -

By, E3 0.168 0.019  1.000  0.019 1.000 0.572

Bss E6 0.168 0.012  1.000  0.012 0.000 0.000

Table 4.5 Example 2: Semi-rigid connection parameters (Chen et al., 1996)

Connection

Mo (kN-m) M, (kN-m) M, (kN-m) Re(kN-mrad) Ry
Cl 270 164 200 107804 0 081
C2 219 134 92 23269 0 127
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Table 4.6 Example 2: Stiffness degradation factors

Semi-rigid Rigid

Beam  End —
Initial re re rp r r

Biy E3 0.766 0.055 0.901 0.054 0.798
Bys E5 0.766 0.045 0.891 0.044 0.737
Be7 E6 0.490 0.005 0.991 0.005 0.982
By E8 0.490 0.004 0.991 0.004 0.983

Table 4.7 Example 3: Semi-rigid connection parameters (Kishi et al. 2004)

Connection Mp (kN-m) M, (kN-m) R (kN-m/rad) Ry (kN-m/rad) Y
C1 (CF6-U12x96) 995 1736 1240000 56900 1.39
C2 (EP8 with shim) 2773 3252 15300000 81600 1.20
C3 (CF5-U10x49) 387 867 893000 30300 1.18
C4 (CF5-U10x68) 1240 1494 1020000 46100 1.69

Table 4.8 Example 3: Stiffness degradation factors

Beam  End Semi-rigid Fully-rigid Rigid
l'eo e I r I'eo e M r r
Bys E4 0.315 0.131 1.000 0.131 0.914 0.837 1.000 0.837 1.000
Bys ES 0.315 0.117 1.000 0.117 0914 0.206 0.392 0.156 0.000
Bse ES 0.231 0.002 1.000 0.002 0.988 0.200 0.752 0.188 0.847
Bse E6 0.231 0.013 1.000 0.013 0.988 0.514 0.988 0.511 1.000
B E7 0.252 0.134 1.000 0.134 0.963 0.834 1.000 0.834 1.000
B E8 0.252 0.192 1.000 0.192 0.963 0.051 0.966 0.051 0.000
Bgg E8 0.158 0.001 1.000 0.001 0.943 0.197 0.792 0.187 0.891
Bgg E9 0.158 0.009 1.000 0.009 0.943 0.197 0.952 0.195 0.952
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Chapter 5

Progressive-Failure Analysis

A method for progressive-failure analysis is presented in this chapter. The objective is to evaluate the
performance of a building framework after it has been damaged by an abnormal loading event. These
include an impact or blast load caused by a natural, accidental or deliberate event, or as a result of
human errors in design and construction. To begin, it is assumed that some type of short-duration
abnormal loading has already caused some form of local damage to the structure. The local damage is
simulated by removing one or more critical member(s) as recommended by the Alternate-load Path
(AP) analysis method suggested in published guidelines (GSA, 2003; DoD, 2005). The residual load-
carrying capacity of the remaining framework is then analyzed by incrementally applying the
prevailing long-term loads and any impact debris loads. Specifically, the strength deterioration of the
structure is progressively traced until either a globally stable state is reached or progressive collapse
occurs for part or all of the structure. A constitutive model for structural steel is adopted to account
for elastic-plastic behaviour due to single or combined stress states. The progressive-failure analysis

procedure is illustrated for four planar steel moment frameworks subjected to abnormal loading.

5.1 Local Failure Modes and Debris Loading

For analysis under normal loading, the focus is on determining the loading capacity of the structure
corresponding to plastic collapse or instability, and not on the structural failure modes themselves.
However, under abnormal loading, knowledge of any localized failure modes is critical to the
progressive collapse analysis of the structure. For example, if the failure mode is a local mechanism,
the damaged structure may be able to further carry loads, including debris loading resulting from the
damage. This section investigates local failure modes associated with member removal and the

creation of debris loading.

5.1.1 Failure Modes of Components

As discussed in Chapter 1, project failures can be categorized as foreseen and unforeseen. Typically,
the causes are classified in three categories: faulty considerations during design, incorrect procedures
or misinterpretation of design intention during construction, and misuse or sabotage during operation
conditions. Whatever the causes are, structural failure can be a ductile collapse involving excessive
deformation, brittle fracture with insignificant deformation, fatigue under cyclical loading, or creep

due to high-temperature fire. From the structural perspective, two categories of failure have been
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defined: instability and plastic collapse. Usually, instability failure is related to the geometrical
deterioration of a structural system for which the material behaviour is either elastic or plastic,
whereas plastic collapse is related to the post-elastic strength deterioration of members of the
structure such as to create a movable mechanism. This subsection addresses the failure modes of

structural components, including connections and members.

As described in Chapters 2 and 3, for this investigation the failure of a member at a critical section
involves bending, shearing and axial stiffness degradation tracked along an elliptic curve from initial
yield to full plasticity. Similar to section failure, and as described in Chapter 4, the rotational failure
of a semi-rigid connection is modeled by a four-parameter model that accounts for strain hardening or

softening.

Figure 5.1 illustrates the failure of connections recovered from the WTC 5 building that partially
collapsed on September 11, 2001 (FEMA, 2002). Figure 5.1(a) shows a failed connection from the 7"
floor of the building. It is observed that the main failure feature is tear-out at the bolt locations in the
web of the connected beam, and that substantial rotational, shearing and axial deformation occurs
during the failure process. Figure 5.1(b) shows a second failed connection recovered from the 8" floor
of the WTC 5 building. The failure mode is different from that in Figure 5.1(a), and is due to shearing
fracture caused by tear-out of the bolts for the single-angle web connection plate. It is observed that
the failure also involves significant axial deformation. These samples of failed connections indicate

that the failure model for semi-rigid connections proposed in Chapter 4 is conceptually appropriate.

Generally, connection or member section failure results in the formation of a local mechanism for a
structural beam-column member. Three types of member failure modes are described in the
following. The first local failure mode is the cantilever failure in Figure 5.2(a), where member-end
section A undergoes ultimate rotation 6, corresponding to the formation of a fully plastic hinge.
Rigid-body displacement of the member occurs as the plastic hinge deforms. If member section A is
perfectly ductile, the plastic hinge behaves like a common hinge and member AB does not separate
from connection joint A. In this case, a point debris load may be generated when end B of the
member impacts on the floor below. Even for a ductile structure, however, it is possible for fracture
failure to occur when the rotational deformation becomes large to the point that the tension-side top
fibers of the beam section are torn while the compression-side bottom fibres are crushed. When this
occurs, member AB disengages from the structure at end A to create a distributed debris load that
falls on the floor member immediately beneath it. (The dynamic effect of such debris loading is

discussed later in this chapter).
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When a member is separated from its connected joint, the disengagement condition depends on the
ultimate rotation 0,, which can be determined from the failure criteria for structural members adopted
in design standards and guidelines (e.g., DoD, 2005; ASCE, 1997; TM5-1300, 1990). For instance,
the document UFC-023-03 (DoD 2005) provides the deformation limits for structural steel given in
Table 5.1. It is seen from the table, for example, that beams with seismic sections have ductility of 20
(ratio of full-yield to initial-yield deformations) and rotation capacity of 12° for low level of
protection (LLOP), and 10 and 6° for both medium level of protection (MLOP) and high level of
protection (HLOP). In this study, it is assumed that a member section disengages from the structure

when it reaches its deformation limit listed in Table 5.1.

The second local failure mode considered by this study is the catenary failure shown in Figure
5.2(b). After the formation of the three plastic hinges at the end-sections and midspan of the beam, a
mechanism involving significant transverse deformation is developed. Such catenary deformation
causes increased axial force in the member. The catenary load-transfer function of the member is
achieved if its axial strength offers sufficient resistance to this increased load. However, if the axial
strength is insufficient the member will disengage from one or both of its connections at ends A and
B, either by tearing-out fracture of the connections or by rupture of the member. In this study, it is
assumed that after a local plastic-collapse mechanism forms and the plastic rotations at both member
ends reach their deformation limits given in Table 5.1, the whole member disengages from the
structure and falls as debris loading on the member just below it. In the progressive-failure analysis,

catenary action is accounted for through the interaction between axial force and displacement.

The third local failure mode considered by this study is the shear failure shown in Figure 5.2(c).
Punching shear failure is an important consideration in the design of concrete structures, while
concern for shear failure in most steel structures is relatively unimportant. However, shear failure due
to severe short-duration dynamic loads is recognized as a principle factor contributing to member
collapse, regardless of the material type (Jones, 1995). Dynamic shear failure depends on the loading
speed and intensity. It is important to consider dynamic shear failure as possible whenever there is
blast or debris impact loading, because the corresponding shear force can be many times that for a
member under static loading. It is assumed by this study that once the shear capacity at both ends of a
member has been exceeded, the entire member disengages from its supports (as shown by the dashed

line in Figure 5.2 (¢)) and impacts as debris loading on the member beneath it.
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5.1.2 Impact Debris Loading

When local collapse occurs as discussed in the previous subsection, the disengaged portions fall as
debris loads on the remaining structure. Experiments confirm that with the increase of strain rate or
loading speed, the material yield stress increases and approaches the ultimate stress state (Manjoine,
1944; ASCE, 1997). This implies that even a ductile material such as mild steel can experience brittle
failure under high-velocity impact loading. Nonlinear dynamic analysis offers a reasonably accurate
prediction of structural response under impact loading. However, a quasi-static analysis proves to be
simpler and in good agreement with test results when the impact velocities do not exceed 12 m/s
(Jones, 1995). In the current study, the impact velocities of the debris loads generally do not exceed
this limit, and it is presumed reasonable to employ a quasi-static method of analysis to determine

structural response under impact debris loading.

To account for the impact effect of debris loads, a dynamic amplification factor is introduced into
the structural analysis. Existing design guidelines for dealing with impact debris loads suggest several
methods to estimate impact forces. For instance: FEMA-259 (1995) suggests designers employ an
impulse-momentum method; the Australian highway bridge design specification (NAASRA, 1990)
suggests a work-energy method; and the American LRFD-specifications for bridge design
(AASHTO, 1998) suggests a contact-stiffness method. In the design of shelter structures, the FEMA-
361 (2000) guidelines include the effect of falling debris caused by extreme wind loads. Determining
equivalent static design loads corresponding to free-falling debris is a complicated problem that is
dependent on material properties, stiffness of impacted structure and impact angle between the debris

and structure.

The effect of falling debris loading on the progressive collapse of structures is yet to be discussed
in either analysis or design guidelines. Determining the impact effect of debris loading is a
complicated process involving an inelastic dynamic analysis of the structure, which is beyond the
scope of this study. Instead, the approach taken herein is to determine the magnitude of the impact

amplification factor for which progressive collapse occurs.

5.2 Damage Degree due to Local Collapse

Once any one of the three types of local collapse discussed in the previous section occurs, severe
local damage of the structure ensues due to the disengagement of failed member(s). Although recent
design/analysis guidelines (DoD, 2005; GSA, 2003) suggest such local damage to the structure can be
ignored for simplicity, the disengagement of failed member(s) can significantly affect further

structural behaviour. To investigate the influence of the localized damage, an analytical approach is
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proposed in this study for modeling damaged portions of a structure that experience member removal

and associated connection damage.

To assess the residual strength of a structure damaged by excessive loading, test methods can be
used to objectively identify the extent of damage. For instance, destructive and non-destructive test
techniques are suggested in the FEMA-267 (1995) interim guidelines to evaluate moment-frame steel
structures after extreme earthquakes. If there is no existing data regarding the material properties,
sample elements taken from critical locations of the damaged structure should undergo laboratory
testing to determine tensile/compressive strength, etc. Because such specimen extraction can
conceivably further affect or even destroy the damaged structure, non-destructive test methods should
be used if possible. For steel structures, the ultrasonic pulse velocity method is often adopted to
determine the size, thickness, and material uniformity quickly and accurately (FEMA-267, 1995). The
in-place Rockwell and Brinnell hardness testers can be utilized to identify tensile strength and grade
of steel (Carden & Fanning, 2004). The radioactive method and the magnetic particle method can be
used to inspect properties of the welds and connections (FEMA-267, 1995).

To augment the data obtained from local test methods, structure-based test methods can also be
applied to obtain information about the damaged structure. Such methods quantify the stiffness of the
structural components by applying input and output dynamic signals defined by a dynamic structural
analysis. Diagnostic analysis focuses on identifying what is wrong in the system under consideration,
whereas prognostic analysis focuses on predicting what is going to happen in the future due to some
damage factors. Some state-of-the-art aspects of such analyses have been presented in the technical
literature. For instance, a method illustrated for a cantilever beam can predict real-time remaining life by
using non-linear dynamic analysis to track the damage evolution (Nataraju et al., 2005). A method which
uses correlating numerical models to measure the modal properties of undamaged and damaged
components can effectively predict the behaviour of aerospace and offshore structures (Carden &
Fanning, 2004). To classify the damage behaviour of a system, experiments for a three-storey building
frame model have been carried out to identify the extent of damage to steel connections (Adams & Farrar
2002). Much research in this area has focused on developing techniques for damage assessment
through non-destructive evaluation of structural systems. A method of prognostics has been developed

to predict the remaining useful life of a structure, with account for damage accumulation (Engel et al.,

2000).

It should be pointed out that structural identification is an inverse problem that is quite complex in
that both geometric and material nonlinearities must be taken into account. In this study, it is assumed

that the initial stiffness degradation data for a locally damaged structure are known by using the
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aforementioned diagnostics techniques, and that subsequent prognostics is investigated by
progressive-failure analysis; that is, known information about the local damage state is utilized to

estimate the remaining life or residual capacity of the damaged system.

5.2.1 Connection damage

Often, connection failures have been observed to trigger the progressive collapse of building
structures (Griffiths et al., 1968; FEMA, 2002). That said, however, current analysis guidelines for
conducting alternate-load path analysis (GSA 2003 and DoD 2005) assume that structural members
fail without any damage to their end-joint connections. A more likely scenario is that a connection is
also damaged when a member disengages from it, and that the connection damage influences the
ensuing behaviour of the remaining structure. That being the case, a progressive-failure analysis
should take connection damage into account if it is to reasonably predict the behaviour of structures
subjected to abnormal loading. To that end, this study proposes in the following to employ connection
stiffness as measure of connection damage. This is in keeping with conventional structural health
monitoring, where the stiffness of a component is considered representative of its health condition
(Wang & Haldar, 1997; Koh et al., 2003). Typically, a health condition index h equal to the ratio of
damaged-to-undamaged stiffness is adopted as a measure of the severity of component damage (Kol
et al., 2003); i.e., h = 1 signifies no damage, while at the other extreme h = 0 signifies complete

damage.

As a member is removed, the two joints connected to the failed member are likely to undergo some
damage caused by the removal. In fact, all member-ends connected to the two joints of the remaining
structure are likely to undergo local damage. To take such local damage into account, two cases of
stiffness deduction are considered in this study. For a fully-rigid joint, the level of connection damage
is assumed to modify the plastic degradation factor for each member-end at the joint as,

3 h

r,=hr,=——
MR 14+ 3EI/R L (>-2.1)

where I, is the member-plasticity degradation factor defined in Eq. (2.3.4). The parameter h in Eq.
(5.2.1) is a health index that characterizes the degree of local damage. When health index h = 1 the
member-end is perfectly healthy, while h = 0 indicates it is completely damaged (i.e., has no

stiffness).

In a similar manner, if a semi-rigid connection is at the joint relevant to the member removal, the

health index h is assumed to modify the connection-stiffness degradation factor as,
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where r; is the member-connection degradation factor defined in Eq. (4.2.10). As above, when h =1

the semi-rigid connection is perfectly healthy, while h = 0 indicates it is completely damaged.

A parametric study of the health index h is presented in Example 1 of this chapter, where
progressive-failure analysis of a frame structure is conducted for a range of h values to illustrate the
influence that connection damage has on structural behaviour in the aftermath of an abnormal loading
event. The study only considers damage that diminishes the rotational capacity of connections.
However, by following similar reasoning as in the foregoing, it is readily possible to also account for

diminished shear and axial connection capacity in the progressive-failure analysis.

5.3 Progressive-Failure Analysis Procedure

This section presents a computer-based procedure for progressive-failure analysis. The determination
of the loading conditions is first considered. The nonlinear analysis procedure proposed in Chapter 3
is then extended to the analysis of a structure that has been locally damaged by abnormal loading to
the extent that part of the structure has disengaged from the main structure and impacted as debris

loading on the remaining structure below.

5.3.1 Load Combinations due to Abnormal Loading Events

A structure exposed to a natural environment is subjected to dead gravity loads due to the structure
self weight, live gravity loads, wind loads, earthquakes, and so on. All the loads within a structure’s
lifetime may never achieve their maximum values at the same instant and, as such, the normal design
loads applied to the structure are established by probabilistic analysis (Galambos et al., 1982). The
specification of normal design loads is included in the design codes of many countries, but the
stipulation of abnormal loads appears in only some specialized guidelines. For instance, after the
progressive collapse of the Ronan Point Tower due to a gas explosion (Griffiths et al., 1968), a
number of codes and standards in countries such as Canada, Western Europe, and the United States
have implemented provisions to minimize the probability of progressive collapse. The Canadian Code
(NRCC, 1995) requires structural designs to have sufficient structural redundancy and integrity
against all abnormal effects within a building’s service life; specifically, the structure is to have the

capability to absorb local failure without widespread collapse.

In addition to the structural redundancy and integrity stipulations in the Canadian code, Eurocode-1

(CEN, 1994) implements an alternative design strategy that explicitly accounts for abnormal loads.
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For example, account for a loading intensity of 34 kPa by a natural gas explosion is required for
structures where explosions have high probability of occurring. If abnormal or accidental loads Ay are

specified, the following design load combinations are routinely incorporated in design (CEN, 1994),

D, +A +0.5L, (5.3.1)
D, +A, +0.25, +03L, (53.2)
D, + A, +0.5W, +03L, (5.3.3)

where D, L, S| and W__ are specified dead load, live load, snow load and wind load, respectively.

In the United States, design requirements for progressive collapse were introduced in 1972 just
after the 1968 Ronan Point event. In addition to the consideration of general structural integrity, a
recent design code (ASCE-7, 2005) unofficially recommends that designers consider the following

loading combination,

(0.90r1.2)D, + A +(0.5L, 0or0.2S,) (5.3.4)

It is observed that the European and the American design codes adopt almost the same load
combination style. Under the action of the combined loads of Egs. (5.3.1) to (5.3.4), the loading

capacities of certain key elements in a structural system are checked to meet the safety demands.

For a design having concern for an abnormal action Ay, it is difficult for designers to specify the
magnitude of Ay due to considerable uncertainties. Even if possible, a structure designed to account
for one hazard might not provide reasonable resistance to other hazards. At the other extreme,
designing many “hard” portions within the structure is uneconomical (Ellingwood & Dusenberry,
2005). A more attractive approach may be to eliminate the hazard, or to control the consequence of
local damage by providing alternate paths that safely transfer loads away from the damaged area

(Breen & Siess, 1979).

The alternate load-path strategy is to design a structure that can bridge local damage due to any
abnormal loading event. To achieve this objective, the ASCE-7 design code (2005) requires applying

the following load combination,

(0.90r1.2)D, +(0.5L_ 0r0.2S, )+ 0.2W, (5.3.6)

to check the residual capacity of a locally damaged structure to maintain its overall stability for a
sufficient period of time to evacuate the building or take any necessary measures to remedy the
damage. Based on the discretion of designers, local damage is simulated by removing critical load-
bearing component(s), and then the strength capacity of the damaged structure is checked under the

load combination Eq. (5.3.6).
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The foregoing procedure, however, creates a dilemma for designers since the local damage is not
explicitly stipulated. In this regard, guidelines released by the General Services Administration of the
United States (GSA 2003) address this issue for the design of new buildings or the assessment of
existing office buildings subject to abnormal loading events. Specifically, to model the localized
damage caused by abnormal loads, designers or assessors are required to remove the following
critical members of the structure on the first floor: an exterior column near the centre of the short side
of the structure, an exterior column close to the center of the long side of the structure, an exterior
column at a corner, an interior column, an exterior bearing wall near the centre of the short side of the
structure, an exterior bearing wall near the center of the long side of the structure, an exterior bearing
wall that wraps around a corner, and an interior bearing wall. At the same time, to analyze each

resulting damaged structure, the load combination,

2(D, +0.25L,) (5.3.7)

is employed in a linear static elastic analysis, while the load combination,

D, +0.25L, (5.3.8)
is employed in a linear elastic dynamic analysis. By comparing Eq. (5.3.7) with Eq. (5.3.8), it is
observed that a dynamic amplification factor of 2 is accounted for in the static analysis. Typical and
atypical structures are distinguished in the GSA guidelines. Atypical structures have the following
features: plan irregularities, vertical discontinuities, combinations of structural systems, variations in

bay size, extreme bay sizes, and closely spaced columns.

More recently, the Department of Defense of the United States has released the Unified Facilities
Criteria (UFC) design guidelines to reduce the potential of progressive collapse for new and existing
facilities (DoD, 2005). The guidance provides for an effective and uniform level of resistance to
progressive collapse without expensive or radical changes to conventional design practice. As
suggested in the GSA guidelines, the Alternate-load Path (AP) method is recommended for the static
and dynamic analysis and design of structures, as follows: “The primary objective in a progressive
collapse analysis is to check the structure for alternative load paths after some elements are
potentially lost through some abnormal loading such as an explosive event. These alternative load
paths will need to provide sufficient damage tolerance to minimize the loss of life that might

otherwise occur and will allow the safe egress of occupants from the damaged structure.”

The following load combination provided in the DoD guidelines for a static analysis is based on the
ASCE-7 (2005) load formulation given in Eq. (5.3.6), and the GSA formulation given in Egs. (5.3.7)
and (5.3.8):

125



2[(0.9 0r1.2)D, + (0.5L, or0.2S, )]+ 0.2W, (5.3.9)

where the coefficient of 2 is a dynamic amplification factor that is applied only to the loads at the

bays just above the removed column (see DoD, 2005).

This study assumes that the abnormal loading occurs jointly with the normal gravity loading for the
building. Lateral loading is not considered because the probability of a simultaneous occurrence of an
abnormal loading and a strong wind or seismic loading is considered negligible (Ellingwood &
Leyendecker, 1978). If the structure and abnormal loading are symmetrical, the 0.2W, term in Eq.

(5.3.9) is used to ensure that the lateral deflection of the frame is involved in the analysis.

Following the published guidelines (GSA, 2003; DoD, 2005), this study models localized damage
due to abnormal loading by removing one or more members to signify they abruptly break away from
the structure. The analysis is quasi-dynamic in the sense that the gravity load on a failed member that
has broken away is scaled by an impact factor, and applied as a debris load on the remaining structure
immediately below. In view of the lack of research on the values of dynamic impact factors
applicable for building structures, the objective of this study is to determine the magnitude of impact

factors that initiate further debris loading and, if it happens, cause progressive collapse.

5.3.2 Incremental-Load Analysis

After the occurrence of local damage from an abnormal loading event, progressive-failure analysis
traces the residual load carrying capacity of the remaining framework over a loading history
involving proportionally applied increments of the prevailing gravity loads and any impact loads due
to falling debris. The progressive collapse of a structure is divided into a series of failure stages. The
first stage after the occurrence of abnormal loading is up to a local failure state signalled by the
singularity of the structure stiffness matrix. To begin the second stage, the local failure mechanism is
identified by the zero-valued stiffness coefficient(s) on the main diagonal of the stiffness matrix. The
corresponding failed member(s) are removed from the structure, one-step elastic unloading analysis is
conducted, and the internal forces and nodal displacements are upgraded accordingly. Debris loading
from the failed member(s) is applied on the remaining structure, and the incremental-load procedure
continues on to the next stage. The analysis procedure terminates either when progressive collapse
occurs or the target design load level is reached, which happens first (see Example 1 in Section 5.4.1

for illustrative details).

Reaching each failure stage involves a number of load increments. After each such load increment,
the stiffness matrix of each member is updated to account for bending, shear or axial stiffness

degradation due to plastic behaviour under increasing applied loads. The computational model allows
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the incremental analysis to proceed beyond loading levels at which structural instabilities occur,
including members breaking away from the structure or the formation of local plastic collapse
mechanisms. The analysis traces the behaviour of the building framework over the incremental load
history, until either the full intensity of all gravity and debris loading is reached and the structure is
still stable, or a structural instability occurs at a lower loading level that causes part or all of the

structure to undergo progressive collapse to ground level.

For a structure that has been initially damaged due to an abnormal loading event, the progressive-
failure analysis commences from the zero-load level identified by load factor A, = 0. Thereafter, it
proceeds by incrementally increasing the loading level over a succession of failure stages. Each such
stage corresponds to a local or global failure state; i.e., formation of a rigid-body collapse mechanism,
member disengagement and associated debris loading, or, if it happens, progressive collapse of part or
all of the structure. To accurately identify the loading levels corresponding to the various failure

stages, the magnitude of the load-factor increment is decreased over the loading history as follows,

Ahy =ANy; Ahg =AMy, (1-ANY) (i=2,3,..) (5.3.10)
where AL"; < 1 is the specified increment for the first stage of the analysis (e.g., AL"; = 0.05). Assume
the structure is subjected to applied load W, as determined by either the GSA criterion Eq. (5.3.7) or
the DoD criterion Eq. (5.3.9). The portion of the load applied at the end of stage J-1 is (1-A;.1)W,,
where Ay is the total recorded load factor over J-1 stages. Thus, for the i loading increment within

stage J, the corresponding load increment is,

AW = Ahy(1=X; )W, (i=1,2,3,..) (5.3.11)
If the structure stiffness matrix is non-singular at the end of the incremental load step defined by Eq.
(5.3.11), the corresponding incremental nodal displacements and member forces are solved for and
added to the total displacements and forces accumulated to date. The initial-yield and full-yield
conditions for each member-end section are then evaluated and, if plastic behaviour is detected, the
appropriate bending, shearing and axial stiffness degradation factors r, t and n are calculated, and the
member stiffness matrix is updated accordingly. The computation proceeds until the end of the J®
stage, when either the target load level Wy is reached or a further local/global failure state is detected.

The total load applied on the damaged structure within the stage is,
AW, = ZAWJi =(1=2A,_)W, ZA}“Ji =(1=2; WAL, (5.3.12)
i i

where parameter AL, is the sum load factor for the J" stage. Thus, the total load factor for all J stages

is
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A=Ay +AN; (5.3.13)
From Egs. (5.3.12) and (5.3.13), the load remaining at the end of the J™ stage that is yet to be applied

commencing in the next stage J+1 of the analysis is,

Wy =1=2; )Wy =AWy = (1-2,)W, (5.3.14)
where Wy — Wj = A;W, is the load magnitude already applied on the structure. The locally damaged

structure does not experience further collapse.

It is evident from Eq. (5.3.14) that W;., = 0 when the load factor A; = 1, which indicates the target
load level Wy has been reached at the end of stage J. This means that the structure does not experience
progressive collapse failure. On the other hand, if load factor A; < 1 then a local/global failure state
has been detected at the end of the J" loading stage. This failure is characterized by the structural
stiffness matrix becoming singular, which indicates that the structure has become unstable in either a
local or global sense. The first is a global instability, corresponding to part or all of the structure

undergoing progressive collapse to ground level; here, the analysis is terminated at A= A;< 1.

In the case of local instability, the structure still has residual capacity to resist further loads. Before
commencing the next stage of the analysis, it is assumed that the affected member or subassembly of
members abruptly break(s) away from the supporting connections, based on the criteria in Table 5.1.
The corresponding gravity loading then falls as debris loading with magnitude I,/\Wsy on the remaining
structure below, where l4 is a specified impact amplification factor and Wiy denotes the weight of the
falling debris. At the instant that the debris loading is created, the remaining structure experiences an
abrupt unloading phenomenon as the moment, shear and axial restraining forces decrease to zero at
the node(s) where the member or subassembly of members breaks away. The corresponding
“unloaded” member forces and nodal displacements for the remaining structure are found by applying
the incremental-load analysis procedure for the affected node(s) loaded by the reverse of the member-
end moment, shear and axial forces that existed immediately before the abrupt unloading occurs. The
“unloaded” forces and displacements are then added to the member forces and nodal displacements
that existed for the remaining structure just prior to the unloading event, to establish the starting basis

for the next (J+1) stage of the analysis.

To commence the (J+1) analysis stage, any falling debris loading is applied with the remainder
loads defined by Eq. (5.3.14), such that the remainder loads for any member(s) impacted by falling

debris become,

Wy = (I=R )W, +15Wyg (5.3.15)
The corresponding load increment within stage (J+1) is then given by,
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AWy = Ay yWy = Al =AW + 1:We 1 (i=1,2,3,..) (5.3.16)

When the debris loading is included in the analysis process according to the loading scheme based on
Eq. (5.3.16), the computer-based procedure becomes much more complicated. In current design-load-
based analysis, the external loading vector, relevant to the design W, is taken as a reference in the
entire progressive collapse process, whereas load factor A characterizes the extent of which the
structure carries the loading. The approach in the following is to deal with the debris loading without
changing the loading basis that is used to identify the progressive collapse level of the structure. To

this end, the increment load of Eq. (5.3.16) is rearranged as

|
AW, = Ak (1= )[W0 +ﬁwa (i=1,2,3,...) (5.3.17)

J

Note from Eq. (5.3.17) that the weight Wy, of the falling debris is multiplied by the factor,

_ Iaf
o=
1-4,

(5.3.18)

which is referred to herein an ‘equivalent impact amplification factor’. This scale factor ensures that
the entire debris (displaced gravity) loading is accounted for in succeeding stage(s) of the incremental
analysis after load level J. Therefore, from Egs. (5.3.17) and (5.3.18), the load-increment within stage
(J+1) of the analysis is,

AW<J+1)i = A7"(J+1)i (I-A)Wy+aWe) (i=1,2,3,...) (5.3.19)

One benefit of this loading approach is that the original external load records (W;) maintain
unchanged in the entire nonlinear analysis process except that only limited new record(s), related to

debris load(s) is added. From Eq. (5.3.19), load factor A\, in stage (J+1) is expressed as
AXJ 4= ZAX(J +1)i

which is similar to the expression in Eq. (5.3.12). As a result, load factor A;.; at the end of stage (J+1)

is determined by Eq. (5.3.13) and the analysis continues until the progressive collapse halts.

In the previous analysis procedure, the unloading is conducted before applying the debris load,
caused by the member-end disengagement. The axial force, shear force, and bending moment
released from each disengaged member end are reversely applied on the remaining structure. One-
step elastic analysis is carried out for the reversed loads alone and the internal forces and nodal
displacements are added to the corresponding internal forces and nodal displacements existing just
before the member disengaged. More detailed illustration of unloading is provided in the Example of

Section 5.4.1. Then, after determining the scaled debris loads, the next stage of the progressive-failure
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analysis is performed for the remaining structure under the specified incremental-loading scheme,
defined in Eq. (5.3.19). The analysis continues from load level A;.;, and accounts for the remainder
loads, including the remaining yet prevailing service-level gravity loading and the previously created
new debris loading. The process of the multi-stage incremental-load analysis continues until either the
remaining structure is found to be still stable at loading level A¢= 1, albeit in a deteriorated state, or a
progressive collapse to ground level occurs for part or all of the remaining structure at a lower loading
level A¢< 1. The computational steps of the progressive-failure analysis procedure are illustrated in

the flowchart in Figure 5.3.

5.4 Example Case Studies

The procedure of progressive-failure analysis is illustrated in the following for three building
frameworks, consisting of steel beam-column members with W-shape sections. Example 1 illustrates
the details and results of the analysis procedure for a low-rise steel building framework, including
how the results are affected by connection damage and semi-rigid connection behaviour. Example 2 is
a mid-rise steel framework taken from the Los Angeles Model Building (FEMA 355C, 2000),
referred to as the Los Angeles frame hereinafter, and serves to illustrate both the creation of different
types of debris loading and the vulnerability of such frameworks to progressive collapse due to
interior explosion. With the same Los Angeles frame and loading condition as employed in Example
2, Examples 3 and 4 investigate structural behaviour caused by car-bombing and aircraft crash events,
respectively. Example 5 is a framework taken from the Boston Model Building (FEMA 355C, 2000),
referred to as the Boston frame hereinafter, and serves to evaluate the progressive-collapse behaviour

of a building in a non-seismic region.

For Example 1, the normal yield stress of material c,= 36 ksi (248 MPa) for all members, and the
section properties are defined in the CISC handbook (CISC, 2004); for Examples 2, 3 and 4, the yield
stress oy = 49.2 ksi (339 MPa) and 57.6 ksi (397 MPa) for the beam and column members,
respectively, and section properties are defined in the AISC-LRFD manual (2001). For all four
examples 1, the exponent in Eq. (3.3.2) is taken as ) = 1.37 for all the members; the shear yield stress
of the material is taken as 1, = 0.50y (Tresca criterion); residual stresses are taken as o, = 0.3cy for
the compressive normal stress, 6 = 0.15cy for tensile normal stress, and t, = 0.05t, for the shear

stress. The initial load factor increment in Eq. (5.3.10) is taken as AL"; = 0.05.

The progressive-failure analysis results include the values of the bending, shearing and axial post-
elastic stiffness degradation factors r, t and n, respectively, for member sections at which plastic

deformation occurs. If the plastic deformation is related to degraded bending, shearing or axial
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stiffness, the member section is designated by a circle, triangle or square symbol (O, V or [J),
respectively. Otherwise, the section is designated by a circle inscribed in a triangle if the plasticity is
associated with both degraded bending and shearing stiffness, or by a circle inscribed in a square if
related to degraded bending and axial stiffness. For a member exhibiting plastic deformation over its
entire cross-section area, the designation symbol has a black infill to indicate that the section has
reached a state of zero post-elastic stiffness (i.e., r=0 and/or t=0 and/or n=0); for example, if r=0
while t=n=1, the section is designated by a black-infill circle (the classic representation of a plastic-
hinge section). On the other hand, if a member has experienced only partial plasticity over its cross-
section area, the designation symbol is left open with a number inscribed in it that indicates the
percentage of plastic deformation calculated as %Plasticity = 100 (1 — r, t or n); for example, if r =t
= 1 while n < 1, the section is designated by the number 100(1 — n) inscribed in an open square (see
Example 1). Primarily, the following is a presentation of the fundamental details of the proposed
progressive-failure analysis procedure. A number of practical issues stemming from the four

examples are subsequently commented upon and discussed at the end of the chapter.

5.4.1 Example 1: Low-Rise Steel Frame

Consider the two-bay by two-story steel framework subject to the uniformly distributed service-level
design gravity loads in Figure 3.14 (Ziemian et al., 1992; Liu et al., 2003; Xu et al., 2005), or in
Figure 4.20 with semirigid connections. The structure is a building perimeter frame that supports
open-web-steel-joist floor and roof systems. The load intensity Wys= Wss = 109.5 N/mm on floor
members 4-5 and 5-6 is due to the member self-weight and tributary floor loading; the load intensity
W= Wgg = 51.1 N/mm on roof members 7-8 and 8-9 is due to member self-weight and tributary roof
loading. Here, all the applied loads are assumed to be determined according to the DoD (2005)
guidelines. All the members are oriented with their webs in the plane of the framework, and are
assumed to be fully restrained against out-of-plane behaviour. By virtue of the nature of the applied
loading, plastic deformation can occur at the end sections of each of the six column members, and at
the end and midspan sections of each of the four beam members. The framework has 13 nodes and 33
degrees-of-freedom for nodal displacement (i.e., rotation at each of the three pin-support nodes 1-3,

plus lateral and vertical translation, and rotation at each of the ten free nodes 4-13).

As indicated in Figure 5.4, it is assumed that column Cgy of the framework is initially subjected to
an abnormal loading event that destroys the member, and causes it to be thrown outward from the
structure so that the member does not impact as debris loading on the members below. The objective

of the progressive-failure analysis conducted thereafter is to determine whether or not the remaining
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part of the framework is capable of carrying the prevailing loads without progressive collapse
occurring. Starting from the zero-load level defined by load factor A= 0, the target loading level for
the incremental-load analysis is defined by the service-level gravity loads shown in Figure 5.4, since
they are the loads prevailing on the frame at the time of the abnormal loading event. The analysis

results found for the frame are discussed in the following and illustrated in Figures 5.4, 5.5 and 5.6.

As shown in Figure 5.4, the first stage of the progressive-failure analysis after column Cgo is
eliminated from the structure determines that four fully-plastic hinges (r = 0, t = n = 1) and three
partially-plastic hinges (r < 1, t = n = 1) are developed over the incremental loading history up to
load level A = 0.227 times the service-level gravity loads. At this point, the structure stiffness matrix
becomes singular because the stiffness coefficient associated with the vertical displacement of node 9
tends to zero as a plastic hinge fully develops at the left end-section of cantilever beam Bgy; i.e., the
loads can be incrementally increased to only 22.7% of the service-load gravity loads shown in Figure

5.4 before beam Bgo fails as a rigid-body cantilever collapse mechanism.

As the local collapse mechanism deforms, the beam Bgoy rotates through an angle great enough to
cause it to disconnect from the frame at node 8 (see Table 5.1). It is assumed that its entire gravity
load weight impacts as debris loading on the lower floor beam Bss. In addition, the structure also
undergoes an unloading phenomenon as the moment and shear force restraining effects at node 8,
related to beam Bgg, abruptly decrease to zero. Member forces (M, V, P) and nodal displacements (U,
Uy, U;) for the remaining structure after the unloading takes place are found by applying the
incremental-load analysis procedure for the loading shown in Figure 5.5, where the moment couple
and vertical load applied at node 8 are equal to the bending moment and shear force that existed at the
left end of member Bgy immediately before breaking away from the frame at load level A= 0.227.
The incremental-load ‘unloading’ analysis is conducted with account for geometric nonlinearity, but
not material nonlinearity (i.e., a second-order elastic analysis). The starting basis for the ‘unloading’
analysis is the set of before-unloading member forces and nodal displacements previously found for
the structure at load level Ay = 0.227, that are given in columns 2 to 4 of Tables 5.2 and 5.3,
respectively. The after-unloading member forces and nodal displacements found by the unloading

analysis are given in columns 5 to 7 of Tables 5.2 and 5.3.

As a progressive collapse to ground level has not yet occurred for any part of the structure, a
second-stage progressive-failure analysis is conducted beginning from loading level Ay; = 0.227, with
account for the service-level gravity loading on members Bys, Bs¢ and Bsg, and the added debris
loading that has fallen on member Bss as a result of the failure of beam Bgy. The triangular

distribution of debris loads on member 5-6 of the frame in Figure 5.6 (a) is due to tributary roof loads
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that are presumed to be transferred to the beam by an open-web-steel-joist roof system. As the right
end of beam By, falls, and before the member disengages from the frame at its left end, it is assumed
that the connections at the ends of the roof joists fail at their points of support on the beam. As a
result, the tributary roof loads slide from left to right on beam Bygo, and are mainly deposited as debris

on the right half of beam Bsg.

As shown in Figure 5.6(a), and discussed above, the debris loading on beam Bss is a triangular
pattern (the mirror-image of the rigid-body displacement of collapsed beam Bgy) with maximum
intensity Wy =2aWse =2a(51.1) =102.2c0 N/mm at the right end of the beam. The load amplification
factor o accounts for the dynamic load impact amplification factor I, of the debris load and the load
level A; at which the debris is created; i.e., from Eq. (5.3.18), for specified Iy = 2 and A; = Aq =
0.227, the factor o =2/(1-0.227) = 2.59. That is, from Figures 5.4 and 5.6 (a), the load intensity at the
right end of beam 5-6 for the second-stage analysis is Wsg + Wy = 109.5 + (102.2)(2.59) = 374.2
N/mm. The incremental member forces and nodal displacements found for each load increment of the
second-stage analysis are added to the corresponding forces and nodal displacements accumulated

over all previous load steps.

As shown in Figure 5.6, the second stage of the progressive-failure analysis determines that three
more fully-plastic hinges (r = 0, t = n = 1) and three more partially-plastic hinges (r< 1, t=n = 1)
are developed over the incremental loading history from load level As = 0.227 up to load level Ap, =
0.904 (i.e., 90.4% of the gravity and debris loads). At this point, the framework becomes unstable as
the horizontal and vertical displacements of both nodes 6 and 11 become excessively large (i.e., the
corresponding stiffness coefficients tend to zero such that the structure stiffness matrix becomes
singular). This is a global instability that indicates the lower-story right bay of the framework is
undergoing progressive collapse to ground level at failure load level A+ = Ap = 0.904. The member-
end axial forces, shear forces and bending moments just before collapse are given in the last three

columns of Table 5.2.

5.4.1.1 Example 1: Accounting for connection damage

It is important to note that the analysis results discussed in the foregoing are based on the assumption
that connections remain perfectly healthy after members disengage from them. This coincides with
current analysis guidelines when applying the AP strategy (GSA, 2003; DoD, 2005). However, such
an assumption might not be realistic because a joint connection may experience severe damage due to
member disengagement. Based on the discussion in Section 5.2.1 concerning the connection health

condition index h, the rest of this Example 1 focuses on investigating structural behaviour when
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connections are damaged such that their rotational capacity is diminished. Specifically, after the
failure of column Cgo due to the initial interior explosion, the ensuing structural behaviour is assessed
when the connection at joint 6 is assigned a range of health index values hs < 1. Similarly, after the
disengagement of beam Bgy at load level Ay = 0.227, as shown in Figure 5.5, the influence of various

health index values hg for the connection at joint 8 is investigated.

To begin, the effect of damage to connection 6 on structural behaviour is alone investigated by
assuming there is no damage to connection 8 throughout the progressive-failure analysis process (i.e.,
hg= 1). For complete rotational damage at joint 6 (i.e., hs = 0), the analysis results are as follows: the
load factor at the first stage is A; = Ay = 0.226, which is close to the value 0.227 found when the
connection is perfectly healthy (Figure 5.4). This result demonstrates that the health condition of joint
connection 6 does not significantly affect the frame capacity for the first loading stage. This is due to
the fact that the load on beam Bgy is mostly transmitted to the left-hand bay of the frame after the
failure of column Cg. However, for the second loading stage when hs = 0, the analysis determines
that the framework undergoes progressive collapse to ground level at load-capacity level A = Ap =
0.726, which is almost 20% less than the load-capacity level A+ = 0.904 when hs = 1. The second row
of Table 5.4 illustrates the variation in the load factor As for values of he from zero to one. It is seen
that when the health index hg = 0.5 and 0.75, the failure load factor A+ = 0.884 and 0.897,
respectively. These values represent reductions of only 2.21% and 0.77%, respectively, compared to
A+ = 0.904 when hg = 1, which indicates that the influence of the health of joint connection 6 is
significant only when it experiences severe flexural damage represented by hs < 0.5. This example
serves to illustrate the importance of accurately assessing the health of connections from which
members have disengaged, so as to more accurately predict the structural behaviour that ensues

thereafter.

Results are similarly found when damage to joint connection 8 (i.e., hg < 1) is accounted for after
beam Bgy disengages from the structure. Table 5.4 lists the A; levels found by the progressive-failure
analysis when hg = 0.05, 0.5 and 1, and hg = 0.05, 0.1, 0.2, 0.5, 0.75 and 1.0. The important fact to be
observed from these results is that the health of joint connection 8 has no effect on the load level A at

which progressive collapse occurs, regardless of the health of joint 6.

To the effect of rigid connection damage on load capacity, Table 5.5 gives the plasticity
degradation factors r values , and the internal forces at the first and second stages, respectively, when

health index hg = hg = h = 0.5. Tt is seen from Table 5.5 that at the end of stage 1, plasticity factor r =
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0.5 for the end E6 of both beam Bss and column Cse. In the second stage, the health index hg = 0.5 is
applied to the damaged end E8 for both column Csg and beam Bys.

5.4.1.2 Example 1: Accounting for semi-rigid connection behaviour

The semirigid frame in Figure 4.20 is investigated in the following to illustrate the effect that
semirigid connections have on progressive collapse. Two cases are investigated in this subsection: (1)
connection damage is ignored in that the health indexes discussed in the previous section are all set at
unity (i.e., hg = hg = 1); (2) connection damage is taken into account as hg = hg = 0.5. Parameters M,
Rce, Ree, and y for the four connections are selected from experimental results (Kishi et al., 2004) and

shown in Table 5.6.

In principle, the progressive-failure analysis procedure for semirigid frames is similar to that for
rigid frames, except that the stiffness degradation factor r for a rigid frame is replaced by the
compound degradation factor r presented in Chapter 4, and the health index h is imposed on damaged
semirigid connections from Eq. (5.2.2). The compound factor r is calculated as described in the
following. First, semirigid connection stiffness R. is calculated by Eq. (4.2.6) for the four-parameter
model described in Figure 4.4 and Eq. (4.2.4). Secondly, upon substituting the value of R and the
properties of the connected member into Eq. (4.2.10), the stiffness degradation factor r. is found for
the connection. Thirdly, the member plasticity factor ry is found by Eq. (2.3.4) in Section 2.3.2 or Eq.
(4.2.11) in Section 4.2.3. Finally, the two factors I and r, are substituted into Eq. (4.2.13) to find the

compound stiffness degradation factor r.

After column Cgo is eliminated from the structure, the first stage of the progressive-failure analysis
accounting for semi-rigid connection behaviour determines that member plasticity is developed in the
semi-rigid frame, including three column-end plastic hinges and two beam-end plastic hinges as
indicated in Table 5.7. Meanwhile, the connection stiffness degradation factors are changed from
their initial r¢ values in column three of Table 5.7 to the r. values shown in column four of the table.
It is observed that the beam Bgy of the semi-rigid frame fails in a cantilever mode. at load level As =
0.226, which is close to the first-stage load capacity As = 0.227 of the rigid frame shown in Figure
5.4. Note that r, = 0.197 for the left-end of roof beam Bgy is greater than r, = 0.046 for the right-end
of roof beam Bg; because of the different connection properties. After conducting unloading analysis
to account for the abrupt disengagement of beam Bgy from the structure, the second stage of the
progressive-failure analysis determines that only end E6 of column C;5 becomes a plastic hinge while
68% plasticity is developed at end E5 of column C,s. On the other hand, the values of connection

stiffness degradation factors of beam Bsq degrade over 77%. Similar to the failure mode of the rigid
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frame in Figure 5.6, the semi-rigid frame fails due to inelastic instability at loading level Ay = 0.863,

which is 4.54% less than the collapse load factor 0.904 for the corresponding rigid frame.

When the effect of connection damage is taken into account for the semi-rigid frame, the
corresponding plastic degradation factor r, and connection stiffness degradation factor r; are modified
using Egs. (5.2.1) and (5.2.2), respectively. The results of progressive-failure analysis for the semi-
rigid frame with health index hg = hg = 0.5 are presented in Table 5.8. For the first stage of analysis,
the significant changes of the results shown in Table 5.8 are the plastic degradation factor of E6 of
column Cs¢ and semi-rigid connection stiffness of E6 of beam Bs¢. Although the loading capacity of
the frame is the same value of 0.226 as obtained for the frame without accounting for connection
damage, some member-end moments change significantly. For instance, the moment at E6 of column
Cs6 1s 150.9 kN-m, which reduced 27.6% from the value 208.4 kN-m in Table 5.7 when the effect of
connection damage is ignored. For the second stage of analysis, all the degradation factors just before
collapse of the frame are shown in Table 5.8. It is seen that only the semi-rigid stiffness degradation
factor value of 0.083 at end E6 of beam Bsg differs significantly from the corresponding value 0.157
in Table 5.7, due to connection damage. When connection damage is taken into account, the loading
capacity given in Table 5.8 is A = 0.859, which is only 0.46% less than that obtained for the frame

when not accounting for the effect of connection damage.

5.4.2 Example 2: Internal Explosion in Medium-Rise (Los Angeles) Frame

The steel moment-frame shown in Figure 5.7 has been previously explored for seismic loads (Gupta
& Krawinkler, 1999; Hasan et al., 2002). The framework is a perimeter frame of a building located in
Los Angeles that was designed in accordance with the earthquake provisions of the Uniform Building
Code (UBC, 1994). The gravity load intensities indicated for the roof and floor beams include a
tributary-area width of 15 feet. These design load intensities are taken as the target loading level for
the incremental-load analysis. The dynamic load impact factor is taken as |5 = 4 for both concentrated

and distributed debris loads.

The initial abnormal loading event is assumed to be an explosion that occurs in an interior bay on
the eighth storey of the framework, as shown in Figure 5.7, such that beam B7, and columns Cs, and
Cgs are destroyed. After the remaining structure is analyzed, the middle bay of the frame is found to
undergo progressive collapse to ground level at failure load level A+ = 0.997. The results of the
progressive-failure analysis are summarized in Table 5.9 and illustrated in Figures 5.7 through 5.15.
Although the overall analysis involves ten stages, the progressive collapse of the framework is

essentially in progress after the second analysis stage at load level A, = 0.934. In the progressive-
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failure analysis, a similar assumption of triangular debris loading as in Example 1 in Section 5.4.1 is
applied to the situations in Figures 5.9 to 5.15. On the other hand, the uniform distribution of the
debris loads shown in Figure 5.15 indicates that both ends of the failed floor girders disconnect

simultaneously such that their tributary floor loads fall directly downward as debris.

5.4.3 Example 3: Car/Truck Collision with Medium-Rise (Los Angeles) Frame

For the same Los Angeles frame as that in Figure 5.7, the abnormal loading is here taken to be a car-
bombing event at ground level, as shown in Figure 5.16. When columns C;; and C,, fail due to the car
collision and bomb explosion, the progressive-failure analysis results indicate that the locally
damaged structure still has the carrying capacity to resist the applied dead and live loads without any
member of the damaged structure experiencing plasticity. That there is no further failure
(strength/stiffness deterioration) is due to the fact the damaged framework has alternative paths for
bridging the loads over the missing two columns, as shown in Figure 5.16. It is observed that in
addition to shear forces (V) induced by the resulting cantilever behaviour, the upper beams experience
tensile forces (TF) while the lower beams experience compressive forces (CF). Such cantilever action
over the local damaged region allows the applied loads to be transferred to ground without further
inelastic distress. To achieve this cantilever action, rigid connections between the members play an

important role in accommodating the load redistribution.

5.4.4 Example 4: Airplane Crash into Medium-Rise (Los Angeles) Frame

Consider again the Los Angeles frame in Figure 5.7. The abnormal loading event is here taken to be
an aircraft crashing into the 8" floor, as shown in Figure 5.17. The weight of the aircraft is not
considered directly, but it may be included by the selected impact amplification factor. If only column
Cg; fails due to the impact, the results obtained using progressive-failure analysis of the damaged
frame indicate that no further collapse occurs and the frame behaves elastically. If both columns Cg
and Cg, fail, the upper portion of the frame above the two column locations acts as a cantilever and
forms four fully-plastic hinges, as shown in Figure 5.17. A cantilever plastic collapse mechanism
occurs when the fourth plastic hinge forms at loading level A; = 0.608 (i.e. after 60.8% of the gravity
loads have been applied).

A large downward deformation leads to the disengagement of the cantilever portion from the main
structure at the locations of plastic hinges 1 and 2, which falls as debris loading on the lower floor
beams B7; and By, as depicted in Figure 5.18. The intensity of uniformly distributed debris load is

evaluated as Lq = los Wy, where |l is the impact amplification factor and w, is the total weight density
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of the falling portion. For I, = 3, the progressive-failure analysis indicates that the damaged structure
can carry all loads (gravity plus debris) without developing further plasticity. For I = 4, the results
from the analysis indicate that the left end of beam B;,, and right ends of beams B, and B;, develop
three bending plastic hinges, respectively. For I = 10, local beam B, fails and the beam disengages
from its end joints at load factor level Ay, = 0.796, and falls as debris loading on beam Bg; below. For
the next stage, beam By, also experiences bending failure and disengages at load level As; = 0.798, and
falls as debris loading on beam Bg, below. Thereafter, progressive collapse takes place like the
cascading failure described in Example 2, beams progressively undergo bending plus shear failure
until the collapse halts at ground level, as indicated in Figure 5.16, where the dashed column and

members indicate that the entire left bay of the framework topples to the ground.

5.4.5 Example 5: Internal Explosion in Medium-Rise (Boston) Frame

Consider the frame in Figure 5.19, which was selected from the medium-rise Boston Model Building
(FEMA 355C, 2000). Compared with the Los Angeles Model Building in Example 2 of Section 5.4.2,
there are changes in the cross section sizes of beams and columns because the design of the Boston
building is not controlled by seismic loading. The results of nonlinear analysis, based on the factored
load 1.4 Dy (dead load) adopted in Example 2 of Section 3.5.2, are shown in Figure 5.20. It is
observed from Figure 5.20(a) that the frame remains elastic when the factored loading is completely
applied. As the loading is monotonically increased, the frame reaches plastic collapse at loading level
A+ = 2.34 of the factored loads; the formation of plasticity is shown in Figure 5.20(b) for the half-
frame due to symmetry. It is seen that a local collapse mechanism occurs at the roof level because of

the lower strength of the roof beam compared to that of the floor beams.

To estimate the progressive-collapse behaviour of the non-seismic resistant Boston building, the
initial abnormal loading event is assumed to be the same explosion as for the Los Angeles frame
Example 2 of Section 5.4.2. In this Boston building example, the effect of connection damage is taken
into account using a health index h. When h = 1.0 there is no connection damage and the frame
undergoes collapse in the first loading stage at level Ay = 0.598 after eight plastic hinges form, as
shown in Figure 5.21(a). When h = 0.5 the connections are damaged to a certain extent, but the frame
collapses in the first loading stage at almost the same level Ay, = 0.593, as shown in Figure 5.22(a).
However, the maximum vertical deflection at joint Js is 19.15” when h = 0.5, which is 41% greater
than that when h = 1.0. Furthermore, the corresponding moments shown in Figures 5.21(b) and

5.22(b) for the two cases are significantly different. These results show, therefore, that the effect of
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connection damage significantly affects the internal force and joint displacement response of the

Boston building.

Results of the subsequent stages of the progressive-failure analysis for the Boston frame with
account for connection damage are summarized in Table 5.10 and illustrated in Figures 5.23 through
5.28. Compared to the progressive collapse results for the Los Angeles frame Example 2 in Section
5.4.2, the local collapse in stages 3 through 6 are different for the two buildings. In Stage 3, beam Bg;
fails due to the impact of beam B;; in the Boston frame; while beam B;, fails in the Los Angeles
frame. In Stage 4, beam B, fails due to local instability in the Boston frame; while beam Bg;
similarly fails in the Los Angeles frame. Note that at the end of the second stage, the load factor for
Boston frame is Ay = 0.707, which is less than 24.3% of the value 0.934 for Los Angeles frame. This
indicates that a seismic-resistant frame has more strength capacity to resist impact loading than a non-
seismic-resistant frame. Similar inverse responses for the two building frames are observed in Stages
5 and 6 of the analysis. Note from Tables 5.9 and 5.10 that the final loading capacities for the Los
Angeles and Boston frames differ by only 3.42%.

5.5 Commentary and Discussion

The proposed progressive-failure analysis procedure is developed to an almost fully-automated state.
However, some user intervention is yet required when a local failure mechanism is identified by the
singularity of the structure stiffness matrix. Specifically, the computer program provides information
for the analyst to determine the failure mechanism or collapse mode, which member(s) should be
removed, the corresponding loads, and which member(s) in the remaining structure should receive the

debris loads.

The incremental-load analysis is a tangent-stiftness procedure for which nodal unbalanced-force
errors can occur after each load iteration. For all four examples presented, however, it was not found
necessary to employ an unbalanced-force correction routine. This is because at load levels when
plasticity began to develop in each structure, the loading increments defined by Eqgs. (5.3.11) became
smaller and smaller to the point that any unbalanced forces were insignificant. However, this
occurrence was achieved at the expense of many load increments, requiring excessive computational
effort. The use of an unbalanced-force correction routine would allow for larger load increments,

hence smaller computational effort.

As presented herein, the progressive-failure analysis is based on small deformation theory, for
which equilibrium is referenced to the undeformed structure, and, at most, first- and second-order

deformations are accounted for. A separate large-deformation analysis of the frame in Figure 5.4
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reveals results that differ little from those reported for Example 1. However, this is not likely to be the
case for larger structures such as that considered in Example 2. Here, to compensate for the influence
of large displacements, the nodal coordinates of the structure should be updated after each

incremental analysis.

The progressive-failure analysis procedure can be readily applied to planar steel frames having
members with sections other than W-shape. For a given section type, it only remains to adopt the
appropriate interaction relations governing cross-sectional post-elastic behaviour under various
combinations of member forces. Such interaction relations are available in the literature for a number
of conventional steel sections and, in many cases, do not differ much in their general forms from
those introduced in this study for W-sections. For example, the post-clastic interaction relations for
steel hollow-box, angle, tee and channel sections are available from the work of Chen and Atsuta
(1977). For other material types and sections, it is necessary to establish the required relations

experimentally, analytically, or numerically (Grierson & Abdel-Baset, 1977).

Although the proposed nonlinear analysis method assumes plasticity is confined to the critical
sections of a member, the spread of plasticity along the member is somewhat accounted for by the

fact that the stiffness degradation factors vary between unity (fully elastic) and zero (fully plastic).

The impact load factor values ly, specified for the five examples were known from previous
analyses to result in progressive collapse. For instance, the progressive collapse of the frame in Figure
5.6 at load level A;= 0.904 was known a priori to occur for specified dynamic load impact factor I =
2. This is a relatively small impact factor, indicative of significant damping of the dynamic effect of
the debris loading. When the impact factor is specified by larger values of I = 5, 10 or 20, indicative
of less dynamic damping, the incremental-load analysis determines that the progressive collapse of
the frame occurs at the smaller load levels of A;= 0.669, 0.502 or 0.384, respectively. The overall
conclusion from the analysis results for Example 1 is that any abnormal loading event that initially
destroys column Cgy is likely to trigger progressive collapse to ground level in the right bay of the
frame, even if the dynamic impact factor for debris loads is small (e.g., l5+ = 2). This is primarily
because low-rise steel frameworks such as this one have a low load-path redundancy (Khajehpour &

Grierson, 2003).

The dynamic load impact factor |5 = 4 specified for Example 2 is the smallest impact factor for
which progressive collapse occurs precisely at load level A= 1.0. This is a relatively small impact
factor, indicative of significant dynamic damping. Further analysis for larger values of |5 determine

that the progressive collapse of the frame occurs for smaller load levels As< 1.0. When l5 > 4.0, it can
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be concluded from the analysis of Example 2 that any abnormal loading event that initially destroys
beam B;, and columns Cg, and Cg; will likely cause progressive collapse of the middle bay of the

frame, characterized by cascading shear failure of the floor girders under falling debris loads.

The results for Example 3 shown in Figure 5.16 indicate that even if severe local damage takes
place due to a car/truck collision, no progressive collapse occurs for the damaged structure. This
indicates that local column damage at ground level can be accommodated if a frame has rigid beam-
to-column connections. The results for Example 1 in Section 4.5.1 concerning semi-rigid connections
suggest, however, that this might not be the case if the frame has flexible beam-to-column

connections.

Example 4 in Section 5.4.4 shows the results when an external crash occurs at the upper level of the
Los Angeles frame. When exterior column Cg,; fails due to the impact of the aircraft, there is no
progressive collapse. This indicates that the loss of one exterior column in a storey will not lead to
progressive collapse. However, when both columns Cg; and Cg, fail, the portion above the two failed
columns will fall down due to the lack of redundancy. The progressive collapse behaviour of the
remaining frame under debris loading depends on the magnitude of impact amplification factor ly. If
I is less than 4, there is no progressive collapse. Otherwise, when Iy = 6, partially progressive
collapse occurs; while Iy = 10, the progressive collapse takes place to the ground level. The results for
both Examples 3 and 4 of Section 5.4 indicate that progressive collapse is sensitive to the redundancy

of the damaged structure and the magnitude of impact debris loading.

Comparison of the results for Example 2 with those for Example 5 in Section 5.4 indicates that the
progressive collapse behaviour of a building frame significantly depends on whether or not its design
accounts for seismic loading. The seismic-resistant Los Angeles frame and the non-seismic-resistant
Boston frame have common configuration and loading parameters, but their beam and column cross-
sections are different. Under the same abnormal loading, from Figure 5.8, the load factor A= 0.906
for the Los Angeles frame, which is 51% greater than the load factor As= 0.598 obtained for the
Boston frame in Figure 5.21(a). The differences in load factors for the rest of the progressive collapse
stages are also significant, as indicated in Tables 5.9 and 5.10. As well, unlike the Los Angeles frame,
the Boston frame experiences local instability in Stage 4, as indicated in Figure 5.25 and Table 5.10.
These results reveal that a building designed in a seismic region has a higher capacity against

abnormal loading than a building with the same configuration but designed for a non-seismic region.
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Figure 5.5 Example 1: Unloading after fracture of beam Bgg at node 8
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Figure 5.6 Example 1: Progressive damage propagation after failure of beam 89
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Figure 5.7 Example 2 (Los Angeles): Initial local damage due to interior explosion at 8" storey
level (Stage 0)
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Figure 5.8 Example 2 (Los Angeles): Immediate damage propagation after initial abnormal
loading (Stage 1)
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Figure 5.9 Example 2 (Los Angeles): Upper stories fall as debris loads and beam B; fails (Stage
2)
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Figure 5.10 Example 2 (Los Angeles): Beam B3 falls as debris loading and fails beam B, (Stage
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Figure 5.11 Example 2 ((Los Angeles): Beam B- falls as debris loads and fails beam Bg; (Stage 4)
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Figure 5.12 Example 2 (Los Angeles): Beam Bggs falls as debris loads and fails beam Bs; (Stage 5)
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Figure 5.13 Example 2 (Los Angeles): Beam Bs; falls as debris loads and fails beam Bg, (Stage 6)
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Figure 5.14 Example 2 (Los Angeles): Beam Bg, falls as debris loads and fails beam B3 (Stage 7)
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Figure 5.15 Example 2 (Los Angeles): Beams Bss, B,3 and B3 progressively fail and fall to
ground level (Stages 8, 9, and 10)
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Figure 5.17 Example 4 (Los Angeles): Local damage after airplane impact
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Figure 5.18 Example 4 (Los Angeles): Progressive collapse to ground level
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Figure 5.19 Example 5 (Boston): Cross sections of beams and columns for building (FEMA
355¢, 2000)
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Figure 5.20 Example 5 (Boston): Results of nonlinear analysis of Boston building
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Figure 5.21 Example 5 (Boston): Immediate damage propagation after initial abnormal loading
without accounting for connection damage (Stage 1)
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Figure 5.22 Example 5 (Boston): Immediate damage propagation after initial abnormal loading
with accounting for connection damage (Stage 1)
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Figure 5.23 Example 5 (Boston): Upper stories fall as debris loads and beam B3 fails (Stage 2)
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Figure 5.24 Example 5 (Boston): Beam B falls as debris loading and fails beam Bg; (Stage 3)
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Figure 5.25 Example 5 (Boston): Beam Bg; falls as debris loading and local instability occurs
(Stage 4)
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Figure 5.26 Example 5 ((Boston): Beam B+, falls as debris loading and beam Bg, fails (Stage 5)
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Figure 5.27 Example 5 (Boston): Beam By, falls as debris loading and beam Bs; fails (Stage 6)
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Figure 5.28 Example 5 (Boston): Beams Bss, B,3 and B,z progressively fail and fall to ground
level (Stages 7, 8, 9, and 10)
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Table 5.1 Deformation limits for structural steel (DoD 2005)

LLOP M LOP and HLOP
Component
Ductility =~ Rotation(°) | Ductility = Rotation(®)

Beams with seismic section 20 12 10 6
Beams with compact section 5 - 3 -
Beams with non-compact section 1.2 - 1 -
Columns and beam-columns 3 - 2 -
Rigid connections with a welded beam flange or

- 2.0 - 1.5
cover plated
Rigid connections with reduced beam section - 2.6 - 2.0
Semirigid connections with limit state governed
by rivet shear or flexural yielding of plate, angle, - 2.0 - 1.5
or T-section
Semirigid connections with limit state governed
by high strength bolt shear, tension failure of ) 13 ) 0.9

rivet or bolt, or tension failure of plate, angle, or
T-section
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Table 5.2 Example 1: Member forces at load level A; = 0.227 and A¢ = 0.904

Before unloading Afte.r unloading Just be;fore collapse
Mem  End " (F1g1\1;e 54) N " (Flglil;e 5.5) N " (Flgtge 5.6) N

(kN) (kN) (kKN-m)  (kN) (kN) (KN-m)  (kN) (kN) (kKN-m)
Cy E4 41.30 -0.38 220 9526  -0.05 030 -311.2 3.40 58.66
Csy E5  -594.9 36.67 -222.50 -31490 22.68 -138.80 -1462.  72.87 -73.37
Ces E6  -201.1 -32.18 196.50 -175.00 -22.61 137.60  -1216. -80.19  778.20
Cy7 E4  -35.54 20.55 44.82 80.58  20.04 44.82 186.2 14.04 44.82
Cu E7 3554  -20.55 45.14  -80.58 -20.04 45.14  -186.2 -14.04 45.14
Csg ES 2756  -24.65 760.30 -9.96  -20.05  231.00 955 -1398  271.80
Css E8  -275.6 24.65 -853.40 996 20.05 -321.20 -95.5 13.98 -321.2
Bys E4 20.17 -5.76  -47.01 19.99  14.85 -45.03 17.43  125.20 -103.4
Bs4 E5 -20.15 157.10 -44930 -1997 136.80 -326.80 -17.48 478.80 -974.5
Bss ES 32.17 162.10  -88.42 22.60 188.60  235.00 76.37 888.40 776.5
Bes E6  -32.18 201.10 -196.50 -22.61 17540 -138.10 -80.19 1216'8 -778.6
B E7  -20.55 -3554 4514  -20.04  80.66 -45.10  -14.04 186.30 -45.1
Bs7 ES8 20.56 10620 -386.80 20.05  -9.90  321.20 1398 9556 321.2
By ES8 4.09 169.50 1240.00 - - - - - -

Sign convention of moment M, shear force V, and axial force P is consistent with the local numbering
system in Figure 3.1.

Table 5.3 Example 1: Nodal displacements at load level A; = 0.227

Before unloading (Figure 5.4)

After unloading (Figure 5.5)

Joint

Ug(mm) Uy (mm) U, (10°) u(mm) uy(mm) u,(107)
I 2.36 0.44 0.71 -0.27 -1.02 0.19
Js 2.33 -0.73 -4.28 -0.31 -0.38 -2.37
Jo 2.25 -0.27 3.42 -0.36 -0.23 2.71
1 107.40 0.77 3.32 39.32 -1.76 -9.49
Js 107.50 -1.00  -44.76 39.39 037  -18.00
Jo 107.50  -927.50  -68.94 - - -

Positive horizontal translation Uy is to the right; positive vertical

translation Uy is upward; positive rotation U, is counterclockwise
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Table 5.4 Example 1: Effect of connection damage on load capacity (Ar)

hg hs 0.00 0.05 0.10 0.20 0.50 0.75 1.00
1.00 0.726 0.747 0.773 0.835 0.884 0.897 0.904
0.50 0.726 0.747 0.773 0.835 0.884 0.897 0.904
0.05 0.726 0.747 0.773 0.835 0.884 0.897 0.904

Table 5.5 Example 1: Degradation factors, internal forces, and load capacity (h = 0.5)

First stage (A = 0.226) Second stage (As= 0.884)

r PkN) V(kN) M®&N-m) r PkN)  V(kN)  M(kN-m)
Cu E4 1.000 46.82 -0.92 5.16 1.000 -309.8  -0.32 17.43
Cys E5 1.000 -602.3 27.85 -16580 0.898 -1461 11130 -601.40
Cse E6 0500 -199.0 -22.84 14040 0.000 -1147 -115.10 759.30
Cy E4 0.000 3598 20.66 4497 0.000 -182.8 17.20 44.97
Cy E7 0.000 3598 -20.66 4540 0.000 -182.8 -17.20 45.40
Css E5 0773 -276.1 -2473 7582 0.773 -92.65 -17.14  249.10
Csg E8 0.000 -276.1 2473 -850.8 0.000 -92.65 17.14 -320.40
Bys E4 1.000 -19.75 -10.85 -50.13 1.000 -16.88 127.10 -62.32
Bys E5 1.000 -19.74 1622 -4772 0.000 -1693 463.60 -963.30
Bss E5 1.000 -22.83 164.1 -1153 0990 -111.1 90570 1316.00
Bse E6 0500 -22.84 199.0 -1404 0500 -115.1 1148.00 -759.50
Bys E7 1.000 20.66 -3598 -4540 1.000 17.20 18290 -45.36
Bys E8 0.000 20.67 106.6 -389.2 0.000 17.14 9270  320.40
Bso E8 0.000 -4.062 169.5 1240 - - - -

Member End

Note: h = 0.5; sign convention of internal forces follows the definition in Figure 3.1.
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Table 5.6 Parameters of the connections (Kishi et al., 2004)

Connection (kllil/l—pm) (kIEI/I—Om) (kN-Fr{rcle/rad) (kN—Rnclr}rad) v
C1 (CF5-U10x49) (Mazroi, 1984) 387 261 893000 30300 1.18
C2 (CF6-U12x96) (Mazroi, 1984) 2773 598 1240000 56900 1.39
C3 (Test 2) (Ioannides, 1978) 387 181 632000 3320 0.83
C4 (CF5-U10x68) (Mazroi, 1984) 1240 261 893000 30300 1.18

Table 5.7 Example 1: Stiffness degradation factors for semirigid frame

Beam End fo First stage (A = 0.226) Second stage (As= 0.863)

re I r M re Iy r M
Cu E4 | 1.000 | 1.000 1.000 1.000 -0.781 | 1.000 1.000 1.000 -8.943
Cys E5 | 1.000 | 1.000 1.000 1.000 -246.2 | 1.000 0.680 0.680 -780.0
Cse E6 | 1.000 | 1.000 1.000 1.000 208.4 | 1.000 0.000 0.000 785.6
Cy7 E4 | 1.000 | 1.000 0.000 0.000 45.62 | 1.000 0.000 0.000 45.62
Cyy E7 | 1.000 | 1.000 0.000 0.000 45.58 | 1.000 0.000 0.000 45.58
Csg E5 | 1.000 | 1.000 0.802 0.802 7469 | 1.000 0.802 0.802 223.4
Csg E8 | 1.000 | 1.000 0.000 0.000 -854.4 | 1.000 0.000 0.000 -308.8
Bys E4 | 0792 | 0.155 1.000 0.155 -44.83 | 0.155 1.000 0.155 -36.66
Bys E5 | 0792 | 0.136 1.000 0.136 -325.7 | 0.116 0974 0.116 -521.1
Bss E5 | 0.776 | 0.711 1.000 0.711 -175.0 | 0.140 0.993 0.140 1078
Bse E6 | 0.776 | 0.701 1.000 0.701 -208.4 | 0.157 1.000 0.157 -785.9
Bs E7 | 0901 | 0.799 1.000 0.799 -45.58 | 0.799 1.000 0.799 -45.56
Bs E8 | 0901 | 0.046 0.000 0.000 -384.6 | 0.046 0.000 0.000 308.8
Bsgo E8 | 0.878 | 0.197 0.000 0.000 1239 - - - -

Note: hg = hg = 1.0, and M stands for end moment (kN-m)
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Table 5.8 Example 1: Accounting for connection damage and semi-rigid behaviour

First stage (A = 0.226) Second stage (A= 0.859)
re I r M re Iy r M

Beam End Feo

Cus E4 1.000 1.000 1.000 1.000 2.166 1.000 1.000 1.000 8.185

Cys E5 1.000 1.000 1.000 1.000 -188.1 1.000 0.680 0.680 -628.5

Cs E6 1.000 1.000 0.500 0.500 1509 1.000 0.000 0.000 744.8

Cq7 E4 1.000 1.000 0.000 0.000 45.53 1.000 0.000 0.000 45.53
Cyy E7 1.000 1.000 0.000 0.000 45.78 1.000 0.000 0.000 45.78
Csg E5 1.000 1.000 0.802 0.802 746.1 1.000 0.802 0.802 2313

Cssg E8 1.000 1.000 0.000 0.000 -853.4 1.000 0.000 0.000 -309.0

Bus E4 0792 0.152 1.000 0.152 -47.69 0.152 1.000 0.152 -53.70

Bus E5 0792 0.131 1.000 0.131 -3399 0.115 0846 0.113 -677.8

Bss E5 0776 0.686 1.000 0.686 -218.0 0.140 0979 0.139 1075

Bse E6 0776 0366 1.000 0.366 -150.9 0.083 1.000 0.083 -744.9
B E7 0901 0.799 1.000 0.799 -4578 0.799 1.000 0.799 -45.75
B E8 0901 0.046 0.000 0.000 -385.6 0.023 0.000 0.000 309.0
Bgo E8 0.878 0.197 0.000 0.000 1239 - - - -

Note: hg = hg = 0.5, and M stands for member end moment (kN-m)
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Table 5.9 Example 2 (Los Angeles): Progressive-failure analysis of 5-bay 9-storey building

frame
Stage J Load Agy Failure Event Debris Loading
0 00 Initial abnormal loading destroys members Beam B, falls on lower beam By, as dynamic
’ B,, Cgy, & Cgs [Figure 5.7]. debris loading [Figure 5.8].
Eight bending plastic hinges form and The first and third bays of the upper stories
catenary action causes the upper stories of the  impact on beams B;; & B3 as triangular
1 0.906 three left bays to break away from the frame distributed debris loading, while the second
' at column lines 1 and 4 [Figure 5.8]. bay impacts on the 7"-story column lines 2
and 3 as concentrated debris loads [Figure
5.9].
Beam B3 forms a bending plastic hinge at its ~ Half of the second bay of the upper stories
right end and breaks away from the frame at falls further as triangular distributed debris
its left end as a shear plastic hinge forms loading on lower beam Bg,. Beam B4; and its
2 0.934 there. It then deforms as a rigid-body previous debris loads fall on lower beam Bg;
cantilever mechanism before also breaking as triangular distributed debris loading
away from the frame at its right end [Figure [Figure 5.10].
5.9].
Beam B fails and breaks away from the Beam B;; and its previous debris loads fall on
frame in the same way that beam B5; does as lower beam By as triangular distributed
3 0.969 in analysis stage 2 [Figure 5.10]. debris loading, and the other half of the
' second bay of the upper stories further falls as
triangular distributed debris loading on lower
beam Bg, [Figure 5.11].
Beam Bg; forms a bending plastic hinge atits ~ Beam Bg; and its previous debris loads fall on
right end and breaks away from the frame at lower beam Bs; as triangular distributed
its left end as a shear plastic hinge and a debris loading, [Figure 5.12].
4 0.970 bending plastic hinge form there. It then
deforms as a rigid-body cantilever
mechanism before breaking away completely
from the frame [Figure 5.11].
Beam Bs; fails and breaks away from the Beam Bgs; and its previous debris loads fall on
5 0.984 frame in the same way that beam Bg; does as lower beam By as triangular distributed
in analysis stage 4 [Figure 5.12]. debris loading [Figure 5.13].
Beam By, fails and breaks away from the Beam By, and its previous debris loads fall on
6 0.989 frame in the same way that beam B, does as lower beam By as triangular distributed
in analysis stage 3 [Figure 5.13]. debris loading [Figure 5.14].
Beam By; fails and breaks away from the Beam By and its previous debris loads fall on
7 0.9892 frame in the same way that beam Bs; does as lower beam Bg; as triangular distributed
in analysis stage 5 [Figure 5.14]. debris loading [Figure 5.15].
Beam Bg; fails and breaks away from the Beam Bj; and its previous debris loads fall on
8 0.992 frame in the same way that beam By; does as lower beam By; as triangular distributed
in analysis stage 7 [Figure 5.15]. debris loading [Figure 5.15].
Beam B,; breaks away from the frame at Beam By; and its previous debris loads fall on
9 0.995 once as bending + shear plastic hinges form lower beam B3 as uniformly distributed
' at its two ends almost simultaneously [Figure  debris loading [Figure 5.15].
5.15].
Beam By; fails and breaks away from the Beam B3 and all the debris loading
10 0.997 frame in the same way as beam Bj; does asin  accumulated from above fall to ground level.

analysis stage 8. The progressive collapse
ends [Figure 5.15].

The progressive-failure analysis of the frame
is terminated [Figure 5.15].
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Table 5.10 Example 5 (Boston): Progressive-failure analysis of 5-bay 9-storey building frame

Stage J Load Ay Failure Event Debris Loading
Same as in Example 2, initial abnormal Same as in Example 2, beam B, falls on
0 0.0 loading destroys members B7,, Cgy, & Cgs lower beam By, as dynamic debris loading
[Figure 5.7]. [Figure 5.8].
Eight bending plastic hinges form and The first and third bays of the upper stories
catenary action causes the upper stories of the  impact on beams B;; & B3 as triangular
1 0.598 three left bays to break away from the frame distributed debris loading, while the second
' at column lines 1 and 4 [Figure 5.22(a)]. bay impacts on the 7" story column lines 2
and 3 as concentrated debris loads [Figure
5.23].
Beam B; forms a bending plastic hinge at its ~ Half of the second bay of the upper stories
right end and breaks away from the frame at falls further as triangular distributed debris
its left end as a shear plastic hinge forms loading on lower beam Bg,. Beam B3 and its
2 0.707 there. It then deforms as a rigid-body previous debris loads fall on lower beam Bg;
cantilever mechanism before also breaking as triangular distributed debris loading
away from the frame at its right end [Figure [Figure 5.24].
5.23].
Beam Bg; fails and breaks away from the Beam Bg; and its previous debris loads fall on
3 0.827 frame once the three bending hinges form lower beam Bs; as uniformly distributed
[Figure 5.24]. debris loading, [Figure 5.25].
Portal frame, including beam B, and Portal frame (B, C71, C7,) and its previous
4 0.834 columns C;; and Cs,, fails and breaks away debris loads fall on lower beams Bg; and Bg,
’ due to local inelastic instability [Figure 5.25].  as triangular distributed debris loading,
[Figure 5.26].
Beam By, fails and breaks away from the Beam By, and its previous debris loads fall on
5 0.888 frame in the same way that beam B; does as lower beam By, as triangular distributed
in analysis stage 2 [Figure 5.26]. debris loading [Figure 5.27].
Beam Bs; fails and breaks away from the Beam Bs; and its previous debris loads fall on
6 0.900 frame in the same way that beam By, does as lower beam Bs, as triangular distributed
in analysis stage 5 [Figure 5.27]. debris loading [Figure 5.28].
Beam By; fails and breaks away from the Beam By; and its previous debris loads fall on
7 0.927 frame in the same way that beam Bs; does as lower beam Bs; as triangular distributed
in analysis stage 6 [Figure 5.28]. debris loading [Figure 5.28].
Beam Bg; fails and breaks away from the Beam Bj; and its previous debris loads fall on
8 0.942 frame in the same way that beam B3 does as lower beam B,; as triangular distributed
in analysis stage 7 [Figure 5.28]. debris loading [Figure 5.28].
Beam B,; fails and breaks away from the Beam By; and its previous debris loads fall on
9 0.954 frame in the same way that beam B3 does as lower beam B3 as uniformly distributed
in analysis stage 8 [Figure 5.28]. debris loading [Figure 5.28].
Beam Byj; fails and breaks away from the Beam B3 and all the debris loading
10 0.964 frame in the same way as beam B,; does asin  accumulated from above fall to ground level.

analysis in the previous stage. The
progressive collapse ends [Figure 5.28].

The progressive-failure analysis of the frame
is terminated [Figure 5.28].
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Chapter 6

Combined M-V- P Failure Criterion (Future Research)

With a view to future extension of the research work concerning progressive collapse, this chapter
derives a failure criterion for a member section that is simultaneously under combined bending,
shearing and axial forces at its plastic limit state. An energy functional is employed to develop the
post-elastic force-deformation relationship for the cross-section. The relationship is then utilized to
determine the plastic capacity of the cross-section by using the principle of maximum potential
energy. From first variation and concavity principles, the energy functional is maximized to establish
the three-dimensional yield surface defining the failure criterion. The results of a numerical study of
the derived yield surface are compared with other results in the literature to check the validity of the
proposed failure criterion. Lastly, the 3D yield surface is utilized in a numerical example to estimate

the plastic failure behaviour of a structural component under impact debris loading.

As a future extension of the research work at the University of Waterloo, it is intended that the
theoretical M-V-P interaction criterion developed in this chapter will be implemented in the computer
program developed by this thesis study, to investigate the effect of the 3D member failure criterion on

the outcome of progressive-failure analysis of steel frameworks subjected to abnormal loading.

6.1 Introduction

The post-elastic interaction between bending moment and axial force (M+P) at the plastic limit has
been long studied for beam-column components (e.g., Chen & Otsuta 1977; AISC, 2001; CISC,
2004). The similar interaction between bending moment and shear force (M+V) has also been
investigated (e.g., Drucker 1956; Hodge, 1957); however, only in some special cases is this latter
interaction considered (AISC, 2001; CISC, 2004) because the effect of shear force on plastic failure
for slender members is negligible (Hodge, 1957). The M+P and M+V interactions have been both
investigated earlier by this study in Sections 3.3.1 and 3.3.2. This chapter investigates the influence of
simultaneously combined bending, shearing and axial forces (M+V+P) on the plastic failure of a

member section.

For the influence of shear force, Drucker (1956) has conducted a thorough study of cantilever
beams with rectangular cross-sections, and developed an empirical moment-shear plastic failure
criterion. Various failure criteria and stress distributions across the member section are derived by
assuming that only the web of a W-shaped cross section carries the shear force (Horne, 1951;

Heyman & Dutton, 1954). Heyman and Dutton’s expression has proved to be in good agreement with
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experimental results (Green & Hundy, 1957). By using plane stress slip-line field methods, the upper-
bound solutions of plastic collapse loads have been obtained for cantilever beams with rectangular
cross- sections (Green, 1954; Ranshi et al., 1976; Chakrabarty, 2000). More general investigations of
the post-elastic interaction of bending moment, shear force and axial force have also been conducted

(Hodge, 1957; Ellyin & Deloin, 1972).

In certain instances, the effect of shear force should be considered in analysis and design. Darwin
(2000) has suggested a cubic interaction curve to evaluate the plastic moment and shear capacities for
beams with web openings. Kasai and Popov (1986) have conducted research on the eccentrically
braced frames used in seismic design, where the effect of the shear forces on the behaviour of steel
shear links is known to be so significant that it cannot be ignored. An experimental study of a
transversely loaded two-span continuous steel beam revealed that the effect of shear force was
significant even when the depth-to-span ratio was as low as 0.1025 (Driscoll & Beedle, 1957). The
nonlinear analysis presented in Chapter 3 has further confirmed this conclusion. Abnormal or blast
inertia loading can cause significant shear force effects in structures (Krauthammer, 1984; ASCE,
1997). The combined action of moment, axial force and shear force becomes significant when a
critical column is removed, as dictated by the alternate-load-path method in design guidelines (DoD,
2005). In general, the effect of shear forces on structural behaviour may become important in the

analysis and design of structures subjected to abnormal loading.

6.2 Energy Functional

A post-elastic combined stress failure criterion can be established through global-member or local-
section equilibrium (Drucker, 1956). A global criterion for limit loading is based on a whole member
(e.g., a cantilever), where the relationship between the external and the internal loadings are known.
A local criterion for plastic limit loading, however, is for a very short length of beam between two
neighbouring cross sections, where the internal forces (moments and shear forces) are assumed to be
in the plastic limit state. Since internal member forces are unknown prior to the nonlinear analysis of
indeterminate structures, the approach based on local-section equilibrium may be more appropriate.
Using this approach, Hodge (1957) adopted a variational principle, along with the idea of convexity,
to determine the interaction relationship between the moment and shear force for a beam member
section. Ellyin and Deloin (1972) have extended Hodge’s approach to account for the effect of axial
force as well. Their variational approach to determining the plastic yield surface of a cross-section
involves finding the normal stress distribution ¢ that minimizes shear force V, when the values of

axial force P and bending moment M are given. For the previously noted variational methods,
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however, the equilibrium conditions at the top and bottom boundaries of the beam section are
violated, as first noted by Drucker (1956). This chapter proposes a method that combines local criteria
and variational principles to obtain an M-P-V plastic yield surface for a member section, for which all

boundary equilibrium conditions are satisfied.

Consider the member segment in Figure 6.1(a), that was originally adopted in Drucker’s (1956)
local criterion approach. The segment has a cross-section with depth d and a plastic zone bounded by
sections 1 and 2. The forces at both sections are shown on the segment, and the segment deformations
are shown in Figures 6.1(b) and (c). The assumptions of constant section rotation 6 and constant
average axial deformation € in Figure 6.1(b) are adopted from Drucker’s (1956) local criterion in the
plastic range. But transverse shear deformation y, however, is not assumed to be constant across the
section; instead, y varies linearly across the section in such a way that the shear strain is zero at both
the top and bottom free boundaries, as depicted by the relationship y=yo(1-2]y|/d) in Figure 6.1(c). The
distributions of normal and shear stresses o and t are a function of distance Yy, and the stress
distributions in the plastic zone are found by solving a variational problem involving the
minimization of an energy function established for the model in Figure 6.1. In the following, the
energy function is derived first, and then the Euler-Lagrange differential equation is obtained by the
Gateaux variation method (Troutman, 1996). The normal stress is found by solving the differential
equation, and the corresponding bending moment, axial force and shear force are found by integrating

the relevant stresses.

If the distributions of normal stress ¢ and shear stress Tt within the plastic zone are known, the
resultant bending moment M, axial force P and shear force V applied to a section in the plastic zone

can be expressed in terms of the corresponding stresses as,

P=[[odA (6.2.12)
A

M = [[oydA (6.2.1b)
A

V = [[dA (6.2.1¢)
A

where the relationship between normal stress o and shear stress t at a point in the plastic zone is

defined by the following yield condition,

o’ +x’t’ = Gf, (6.2.2)
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in which oy is the normal material yield stress, and k> =3 or 4 for the von Mises or Tresca criterion,
respectively. The Tresca yield shear stress is T, = 6y/x, and therefore, 1y = 0.577cy ~ 0.6, for the von
Mises criterion (CISC, 2004). As shown in Figures 6.1(b) and (c), axial deformation € and bending
rotation 0 are assumed to be constant, whereas the transverse shear deformation y is assumed to be
linearly distributed from maximal shear strain y, at the neutral axis to zero value on the upper and

lower free boundaries of the section.

In the plastic zone, the total energy I of the segment in Figure 6.1 is expressed by the following

energy functional,

=TI, +11, (6.2.3)
where I, and I7; are the external work and internal potential energy, respectively. External work I, is
done by the forces applied to sections 1 and 2 in Figure 6.1(a) as they move through the

corresponding average bending, axial, and shearing deformations 6, &y and &, as given by (McGuire

et al., 2000),

2
T, =Y [MO+ N3, +V3,]; (6.2.4a)
j=1

in which forces M;, N; and V; and corresponding deformations 6j, d,; and & (j=1,2) are known from
the results of structural analysis of the member at a given loading level. Note that all the terms on the
right-hand side of Eq. (6.2.4a) are known quantities, and therefore external work Il is a known
constant. Internal potential energy I1; in Eq. (6.2.3) is expressed in terms of the stresses and their

corresponding strains as (McGuire et al., 2000)
1, = [[[ (c6y + oz + Ty)dV = Ax[[T(y,0)dA (6.2.4b)
\ A

where the integration is over all of the plastic zone. It is assumed, as in Drucker’s (1956) local
criterion, that length AX of the plastic zone is small so that function I" does not involve distance X (i.e.,
each cross- section within the plastic zone has the same stress distribution). Since AX is a constant
term in the energy functional, setting AX to unity does not affect finding the maximum condition of

Eq. (6.2.4b), where the integrand is an energy density function given by,

Yo 2 2
I'(y,0)=00 - — 1-2 /d 6.2.5
(y,0) GY+08+K\/Gy o (1-2]y[/d) (6.2.5)

The stress-strain relationships are nonlinear relationships in the plastic limit state, and the
determination of normal stress o in terms of moment M, shear force V, and axial force P is a
variational problem that can be mathematically stated as follows (Hodge, 1957; Ellyin & Deloin,
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1972): “for a plastic zone having predefined deformations, find normal stress ¢ such that the energy
functional reaches its maximum value.” In the following development, the principle of maximum

energy is used first to determine normal stress o, and then shear stress t is determined through Eq.

(6.2.2).

6.3 Stress-Strain Relationship at Failure State

This section mathematically proves that the energy functional defined by Eq. (6.2.3) is a strictly
concave function, and therefore, that normal stress ¢ at a stationary point corresponds to a unique
maximum value of the functional. To this end, zeroing the first variation of the energy functional Eq.
(6.2.3) yields the extreme condition, i.e., the Euler-Lagrange equation. Then, it is then shown that the
energy functional Eq. (6.2.3) is a concave function that ensures the normal stress ¢ distribution can be

solved from the Euler-Lagrange equation to maximize the energy.

6.3.1 Euler-Lagrange Function

The Gateaux variation method (Troutman, 1996) is employed here to find the extreme condition of
the energy functional Eq. (6.2.3). In this method, variables ¢ and N are selected to determine the first
variation, where the variable normal stress distribution & is an arbitrary function of y that is very

close to o. For small parametric variable v, if the following partial derivative exists (Troutman,

1996),

II(c + vX) —TIl(o) =§H(G+VN)|V=0 (6.3.1)
Y

oll(o; ) = 1ir13

then a Gateaux variation of function IT is defined at o in the direction of . Similar to that for a

normal function, an extreme value condition is reached if the first Gateaux variation vanishes, i.e.,
Oll(o;N) =0 (6.3.2)
where function N is within the vicinity of the extreme point of . To determine the stationary
condition Eq. (6.3.2) for the energy function IT given in Eq. (6.2.3), it is necessary to estimate the
partial derivative of function I'(y, o+vi) as expressed by Eq. (6.2.5). To this end, partially

differentiate the expression with respect to v to find,

M -I_, N (6.3.3)
A%
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where subscript o+vX represents the first partial derivative of function I' with respect to that
subscript (i.e., I's+,x = OI10(c+vN)). Substitute Eq. (6.2.4) into Eq. (6.2.3) and then into the first
partial derivative of Eq. (6.3.3) to find,

oIl d/2
E = J:[A (FG+VNN)dA = .[—d/2 b( y)rm-vNNdy (634)

in which the cross-section width b(y) varies over the section depth. By substituting Eq. (6.3.4) into
Eq. (6.3.1) and then Eq. (6.3.2), the Gateaux variation of function I becomes,

d
STT(0:N) =2 TT(6+ vN) |,_ = [ beyr,xdy (6.3.5)
av -d/2
which holds for the arbitrary function N, and therefore,

b(y)l', =0 (6.3.6)
which is the so-called Euler-Lagrange differential equation. Assuming there are no web openings, the
section width function b(y) cannot be zero, and Eq. (6.3.6) can be simplified to,

I o="=
0o

0 (6.3.7)

Substitute the energy density function expressed in Eq. (6.2.5) into Eq. (6.3.7), to find,

a'(y,o) v,(1=2]y|/d)o
TRB0) _gy+e- =0

which is a function that defines the distribution of normal stress ¢ over the cross-section depth at the
plastic limit state. It is noteworthy that Eq. (6.3.2) is a necessary condition, but not a sufficient
condition for function IT to attain an extreme value, and, as such, the corresponding extreme point of
o from Eq. (6.3.8) may be relevant to a maximal, minimal or saddle point of the function. Thus, if Eq.

(6.3.8) is a necessary and sufficient condition to maximize function I1, then I'T must be concave.

6.3.2 Concave Function

If it can be shown that the energy functional given by Eq. (6.2.3) is concave, the stress distribution
defined by Eq. (6.3.8) is the true failure stress at the plastic limit state. The function IT is concave
over the interval [o,, Ge], where subscripts b and e refer to the beginning and end points of the
interval, if any line segment joining any two points on the graph of Il is never above the graph
(Gradshteyn & Ryzhik, 2000). A concave function can be alternatively defined by a Géateaux

variation condition as follows: a function I1 defined on interval [oy, o] is said to be strictly concave
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when, for any ¢ and N belonging to the given domain, the following condition holds (Troutman,
1996),

[T(c +X) - TI(c) < 8I1(o;N) (6.3.9)
which is an equality if and only if ¥ = O, where O denotes the null function. The following
presentation demonstrates how Eq. (6.3.9) is satisfied in the current analysis of a plastic limit state.

By substituting I'; defined by Eq. (6.3.8) into Eq. (6.3.1), the first Gateaux variation for the right-
hand side of Eq. (6.3.9) is,

d/2
8TI(o;X) = [ b(y)[,Ndy = [[T,NdA= Inl—In2 (6.3.10)
A

-d/2

where integral terms In1 and In2 have the following expressions,

Ini = [[(6y + &)NdA (6.3.11)
A

Yo 2 2
In2=2o [[(1-2|y|/d)oN/ o> —c>dA
” IAI( lyl/d)oR/ oy —o (6.3.12)

Based on Egs. (6.2.3), (6.2.4) and (6.2.5), the difference in the left-hand side of Eq. (6.3.9) is
expressed by the following,

M(c +X)-TI(c) = |n1—y?°j&[(1—¥ [\/55—52 s —(G+N)2}dA (6.3.13)

in which the term in the square brackets can be rewritten as,

26X(1+N/0)
6. -0 —\c. —(c+N)’ =

Note that interval [oyp, Ge] can be selected in such a way that both X and o have the same sign, so that

No 2 0. If such a condition is satisfied, the following inequality holds,

\/0'?//(1+N/G)2—02 S,/Gi—ﬁz (6.3.16)

Thus, the term on the right-hand side of Eq. (6.3.14) is,

26N8(1+N/0) S o
\/Gi —(6+8)° +\/G§ o’ \/Gi -c’

It is also observed that for the bi-axially symmetrical cross-section in Figure 6.1(a), the expression

(6.3.16)

2|y//d < 1 is satisfied over the entire section depth. Thus, the term (1-2|y|/d) in Eq. (6.3.13) is greater
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than or equal to 0. Therefore, by substituting Egs. (6.3.16) into Eq. (6.3.14), and then into the second
term on the right-hand side of Eq. (6.3.13), we get,

e s

(6.3.17)
Yo 2 2
> ||(1-2]y|/d)oN/, o, —o"dA=In2.
Ja=21y1d)on o)
By substituting Eq.(6.3.17) back into Eq. (6.3.13), we find,
M(c+N)-II(c) < Inl-In2 (6.3.18)

If Eq. (6.3.18) is compared with Eq. (6.3.10), it is observed that Eq. (6.3.9) is indeed satisfied; that is,
the energy functional IT is a concave function with respect to stress o. This indicates that a normal
stress o that satisfies the Euler-Lagrangian Eq. (6.3.8) corresponds to function IT achieving its
maximum value. In other words, the distribution of normal stress o defined in Eq. (6.3.8) holds true

for the plastic zone in Figure 6.1 at the plastic limit state.

6.4 Failure Criterion Accounting for M-V-P Interaction

Once the distribution of normal stress ¢ in the plastic limit state is determined by Eq. (6.3.8), axial
force N and bending moment M can then be, respectively, found from Egs. (6.2.1). As the distribution
of shear stress t is expressed in terms of o by using the von Mises or Tresca yielding criterion,
defined in Eq. (6.2.2), the shear force V can be subsequently determined from Eq. (6.2.1c¢). Since all
three internal forces are found in the plastic limit state, a yield surface for the plastic zone is defined.
A detailed expression of the yield surface, accounting for the interaction of bending moment, shear
force and axial force in the fully plastic state, is derived in the following. The yield surfaces for three
typical cross sections (rectangle, narrow-flange I-section, and wide-flange W-section) are derived and
compared with corresponding results obtained from other methods (Ellyin & Deloin, 1972; Kusuda &
Thurlimann, 1958; Kasai & Popov, 1986).

6.4.1 Internal Forces

To facilitate the following derivation, this study introduces the following two parameters relevant to

plastic flexural, translational and axial deformations,

¢=0.5x6d /v, (6.4.1a)
C=¢ly, (6.4.1b)
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where k is defined in Eq. (6.2.2), and ¢ and C represent the flexural-to-shear and axial-to-shear
deformation/strain ratios at the plastic limit state, respectively. Normal stress o at the failure state,
accounting for flexural, shearing and axial deformations, are the solved for from Eq. (6.3.8) and

expressed as,

_ (pp+0Q)o,
Jop+0)* +(1=[p])?

where p = 2|y|//d. By incorporating the normal stress given by Eq. (6.4.2) into the failure criteria

(6.4.2)

defined by Eq. (6.2.2), the following expression for the transverse shear stress at failure is obtained,

(1-|pr,
T=
J@p+0)?* +(1=[p))?

This study adopts the conventional assumption that any stress along the z axis normal to the y axis is

(6.4.3)

as indicated in Figure 6.2. By multiplying Eq. (6.4.2) by y, and then integrating over the depth of the

section, the expression for the bending moment at failure of the section is found as,

M =”GydA:£Gyj b (p)p(pp +C)dp (644)

47 Jlop+0) + (= 1pl)’
in which the integral is dependant on the piecewise constant width function b¢(p) for the cross-section:
although conventional W-shape cross-sections are mainly illustrated in this study, the formulation
derived can apply to other steel cross-section types as well; for example, the width function by(p) can
be for the wide-flange hollow-box section shown in Figure 6.2, Even when the cross-section is bi-
axially symmetrical, the integrand of Eq. (6.4.4) is not symmetrical with respect to variable y or p due
to the fact that the axial-to-shear strain ratio { # 0. Therefore, the definite integral of Eq. (6.4.4) must
be divided into four constant domains: (-1, -C;), (-Cy, -0), (+0, C;), and (c;, 1), where the parameter C,
=1-2t/d. Note that finding the integral expression in Eq. (6.4.4) is a tedious process, and the
expression is quite complicated. To simplify the following derivation, the anti-derivative
corresponding to the integrand in Eq. (6.4.4) is presented in Appendix 6.A, where the software
Mathematica-Version 3.0 (Wolfram, 1996) is employed in the derivation. Therefore, by directly using
anti-derivative Eq. (6.A.8) in Appendix 6.A, the following expression can be found for the bending
moment,

b, d>
2 oylly(M)—-A-cy)ly(c)—c,1,(0)] (6.4.5)

M =
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where the parameter ¢, = t,/b; . The detailed expression for Iy(c;) is given in Egs. (6.A.2) through
(6.A.8) in Appendix 6.A. The expressions for I,(1) and 1,(0) are determined by setting ¢; =1 and ¢, =

0 in expression In(Cy), to obtain,

C+9)(2L+40-C0" + 9" )+[L—0|[L(9° —2) + (4 +9°)]

|(1)= -
2(1+¢7)
+(2C+2<p—3€ 0—409p" -0 )1211[225(§+<p)(1+<p/dl+<p )] (6.4.6)
21+ ¢%)

+(2C—2(P+3C2(P—4C(P2+(P3)1n{2[|C—(P|+(P(C—(P)/\/1+(P2)]}

2(1+(p2)2‘5
and

| (0y= 36720380 —4Ce" ~¢) Inf2y1+ 7 +2(Co-1)/J1+¢7]

m 2(1+(P2)25 (64 7)

+(2C—2(p+3gz(p—4gcp2+(p3)ln[2w/1+Q2 +2(C(p+1)/«/1+(p2]+3(p«/1+Q2 a
2(1 +(p2)25 (1+(P2)2

By integrating Eq. (6.4.3) across the section, the expression for the resultant shear force is,

d ¢ bi(p){d-|p)hdp
V=||wdA=—r1, 6.4.8
JAI 2 7 Jop+ ¢ +(=p )’ (6:45)

Similar to the derivation of the moment, by applying the anti-derivative Eq. (6.A.12) derived in

Appendix 6.A to Eq. (6.4.8), the shear force at failure is expressed as,

V:bfd‘cy[lv(l)_(l_cz)lv(cl)_czlv(o)] (649)
where the subscript v indicates that the integral I, refers to the shear force. The detailed expression of
Iy(cy) is given in Appendix 6.A, from which the expressions I (1) and I,(0) for ¢;= 1 and 0 are found
to be,

_|C—@|+C+<p+<p(€+<p)ln[2(€+<p)(1+<p/\/1+<|>2)]

I, (1) = 2 PN
2+ e7) 20+e7) (6.4.10)

+cp(C—cp)lr1<{2[lC—cpl+<p(C—<p)/\/1+<p2)]}

2(1+(P2)l.5
| (0):_\/1+C2 +(p(§—(p)ln[2«/1+C2 +2(1+(p§)/«[1+(p2]
Y 1+(p2 2(1+(p2)1'5 64.11)
+<P(C+(P)1n[2\/1+C2 —2(1-90)/\1+¢’ 1}

2(1+(p2)1.5
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Similarly, the integration of Eq. (6.4.2) for the normal stress over the section yields the following

expression for the axial force,

d ¢ bi(p)Xep+C)dp
P=||cdA=—0c
g " J(@p+0) + (-] p)’

2
By using the anti-derivative Eq. (6.A.16) derived in Appendix 6.A, the axial force in Eq. (6.4.12) is

(6.4.12)

expressed as,

P=bdo,[I,(1)-(1-c)l,(c)—c,1,(0)] (6.4.13)
where the subscript p indicates that the integral |, refers to the axial force. The detailed expression for

Io(cy) is given in Appendix 6.A, from which expressions 15(1) and I,(0) for ¢;= 1 and 0 are found as,

| (1)_C+<P—|C—(P\+(C+(P)1n[2(C+(P)(1+(P/\/1+(P2)]
p - 2 2,15
2(1+¢?) 2(1+9?)
(6.4.14)
+(P((P—C)1n{2[|C—(P|+(P(C—<P)/\/1+<P2)]}
2(1+(p2)1.5
and
L(0)— (0= O)I[23/1+C2 +2(1+0C) / 1+ ¢* ]
v 20497 (6.4.15)
LCro214C ~20-90) /1 +¢']} B
2(1+(P2)l,5

Thus far, the bending moment, shear force and axial force at failure have been derived by applying
variational principles, and expressed in Egs. (6.4.4) through (6.4.15) in terms of the two parameters
and ¢. The three expressions Eqgs. (6.4.5), (6.4.9) and (6.4.13) define the yield/failure surface for a

member section under the combined action of bending moment, shear force and axial force.

6.4.2 Force-Deformation Relationships

To observe the characteristics of the three-dimensional yield surface derived in the previous section, a
typical wide-flange cross section, shown in Figure 6.2 with b; = 0, is here considered to illustrate the
corresponding force-deformation relationships. It is evident from Eqgs. (6.4.1) that the parameter ¢ is
the ratio of section rotation 0 to transverse deformation vy, while the parameter { is the ratio of axial
deformation ¢ to transverse deformation yo. As a result, the relationship between each of the three
forces M, V, P and the two parameters ¢, { represents the combined force-deformation relationship in

the plastic limit state. Consider a W360X382 cross-section, and normalized axial force p= P/Py,
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bending moment m=M/M, and shear force V=V/V,, where the normalizing factors are the axial,

bending and shear capacities,

P,=c,A (6.4.16a)
M, =0,Z (6.4.16b)
V,=1,A (6.4.16c)

Bending moment M, shear force V and axial force P are defined by Egs. (6.4.5), (6.4.9) and (6.4.13),
respectively. If @ is set to the values of 0, 0.5, 1, 2, and 3, while { assumes a value ranging from zero
to four, the variations of the normalized bending moment, shear force and axial force and their

corresponding deformation ratios are as shown in Figure 6.3.

It is observed from Figure 6.3 (a) that when ¢ tends to zero, the bending moment vanishes (m = 0),
which corresponds to either one of two extreme cases: the flexural curvature is zero, or the shear
strain becomes infinitely large in accordance with Eqgs. (6.4.1). This indicates that shear failure
dominates the plastic zone. When a curvature-shear deformation/strain ratio is specified, say ¢ = 0.5,
the moment is very sensitive to the variation of the axial deformation, and its value drops
considerably from its maximum value at around £ = 0.5, as shown in Figure 6.3(a). This indicates that
the combined stress interaction is significant in the region close to ¢ = £ = 0.5. When the ratio ¢ is
increased to 3, the effect of the axial loading becomes insignificant up to approximately £ = 2.5, as
indicated in Figure 6.3(a), and flexural deformation dominates the failure state. Subsequently, beyond
€ = 2.5, the moment quickly drops to zero as the axial loading dominates the failure. These results
demonstrate that while the bending moment level at the failure state is high in deformation/strain
regions exhibiting small shear or axial deformation, in some other combined deformation/strain

regions involving larger axial or shear deformation, the moment capacity decreases significantly.

The relationship between the shear capacity and parameters ¢ and  is shown in Figure 6.3(b). It is
evident from the figure that when parameters ¢ and { tend to zero, shear failure controls the limit
state due to the extremely high level of shear force. When £ = 0 (no axial strain), the shear capacity,
in particular, drops quickly with an increase of the ¢ value. This demonstrates that for moment-shear
interaction, the bending moment plays a more significant role. If there is no flexural effect (¢ = 0), the
shear capacity decreases monotonically with increase of the C value. It is interesting that with the
presence of flexural bending (say ¢ = 0.5), with the increase of the axial loading/deformation, the
shear capacity increases to the maximum value (about 0.6) and further increase of axial

loading/deformation results in the decrease of shear capacity. Furthermore, if the value of ¢ is
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increased (such as setting ¢ to 1, 2, or 3), the similar humped feature shown in Figure 6.3(b) is also
observed, but the peak value of v decreases and the flatter region, prior to the maximal shear force,
continues to elongate. These results reveal that for specified ratio ¢, a given shear loading level can

correspond to two different £ deformation ratios.

The relationship between the axial force capacity and combined deformations is plotted in Figure
6.3(c). It is observed that when ¢ = 0 (i.e., no bending moment effect), the axial capacity is quickly
reached with the increase of { to about £ = 1, and then the axial loading controls the failure limit state.
With the increase of the ¢ value, say to ¢ = 1, the axial loading p increases with the increase of the
value. This is true when the parameter C reaches a certain level at which axial loading p jumps from a
lower level to almost unity. For a given shear loading level, the lower the bending moment level, the

faster the loading p approaches unity.

It is also important to observe the cross-section failure at the plastic state resulting from the
interaction between bending moment, shear force and axial force. Although flexural failure is
generally considered a key factor that contributes to local section failure, the preceding discussions
clearly indicate that three-dimensional combined stress interaction should be taken into account for
some extreme loading cases. Particularly for a given shear and moment loading (deformation) level
(say, @ = 1), the bending moment loading in the plastic limit state dramatically changes from its
maximum value to its minimum value with the increase of parameter  , beginning from around £ =1,
as shown in Figure 6.3(a); normalized axial force p quickly increases to unity from its minimum value
shown in Figure 6.3(c), indicating that the bending moment no longer dominates the local section

failure.

6.4.3 M-V-P Yield-Failure Surface for Rectangular Sections
Here, a rectangular section with depth d and width bis considered. By substituting ¢, = 0 and ¢, = 1

into Eq. (6.4.5), and then normalizing by Eq. (6.4.16b), the following expression for normalized

moment is found,

_1E-0l(Ce" —20+49+ ") +(9+ (2L +490—L¢” +¢”) —69y1+C
2(1+¢%)
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which is a parametric function with respect to variables ¢ and £ . Similarly, by substituting ¢; = 0 and
C; = 1 into Eq. (6.4.9), and then normalizing by Eq. (6.4.16c), the following expression for

normalized shear force is found,

yo W -C-0[ L0

2(1+¢%)
+W@+Cﬂﬂﬂ@ﬂ+¢2+@+@kﬂ+@ﬂvmﬂ—l+vl+¢v1+¢5} (64.18)
2(1+(p2)l.5 i
+@@—mnmmﬁ—@ﬂwq—mv1+¢)«ma4+v1+¢vl+¢)}
2(1+(p2)15

Finally, by substituting ¢, = 0 and ¢, = 1 into Eq. (6.4.13), and then normalizing by Eq. (6.4.16a),

the following expression for normalized axial force is found,

p=@@+@%c—@D
2(1+¢%)
4}@+CHHHMK+¢2+@+@hﬂ+@ﬂvmﬁ—l+vr+ﬁv1+¢5} (64.19)
2(1+9¢°)" o
+}@—Cﬂﬂ@ﬂ—¢kﬂC—ﬂﬂV1+¢5K¢C+1+V1+¢\ﬂ+¢5]
2(1 + (pZ)l,S

Equations (6.4.17) to (6.4.19) are the parametric functions (with respect to parameters ¢ and () that
define the yield-failure surface for a rectangular cross-section. The surface can be graphically
determined by the following approach. For given values of v and p, solve the system of nonlinear
equations Egs. (6.4.18) and (6.4.19) to find the corresponding values of parameters ¢ and . Then,
substitute these two parameter values into Eq. (6.4.17) to find the corresponding value of m. This is
repeated for various given values of v and p to obtain sets of data points that graphically define the
yield surface accounting for moment, shear and axial force interaction. For instance, if the values of v
are set to 0, 0.2, 0.4, 0.6, 0.8, 0.9 and 0.95, the corresponding normalized p-m curves are the yield
surface contours plotted as solid lines in Figure 6.4.When v = 0, the heavy solid line represents the
theoretical interaction curve derived from a two-dimensional m+p analysis of a rectangular cross-
section (Chen et al., 1977). When the shear loading level is low (say v = 0.2), neglecting the effect of
the shear force is reasonable because the corresponding interaction curve almost coincides with that
when v = 0. With an increase of the shear force (to v = 0.4 and beyond), the corresponding influence
on the yield surface becomes much more significant. Such a shear stress effect should not be ignored,
as this may lead to unsafe design in practice. This is especially true when the value of the ratio v is

beyond 0.6, at which point the shear stresses affect the local plastic failure dramatically.
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Note that the interaction surfaces shown as dashed lines in Figure 6.4 are derived by using the
conventional assumption of constant shear strain across the section (Ellyin & Deloin, 1972). It is
observed from the yield surfaces that for the values predicted by Ellyin and Deloin’s method, the
cross-section strengths are generally overestimated when compared with the solid-line results derived
in this study. Only when shear force v is less than 0.4, is the overestimation insignificant. When the

value of v is greater than 0.4, the error becomes quite substantial.

6.4.4 M-V-P Yield-Failure Surface for Wide-Flange Sections

Structural beam and column members with wide-flange cross-sections are commonly used in steel
frameworks. Two typical cross-sections are now considered. The first section type, often used for
beams, is an I-section with flange width-to-depth ratio bs/d < 0.5. The second section type, often

adopted for columns, is a W-section with be/d > 0.5.

The yield-surface contour is first investigated for a W920X253 section, for which the relevant
properties are: depth d = 915 mm, flange width b; = 305 mm, flange thickness tr = 25.9 mm, web
thickness t, = 16.5 mm, area A = 32300 mm®, and plastic modulus Z = 11x10° mm® (CISC, 2004). It
is observed that the ratio of width to depth is bs/d = 1/3< 0.5; therefore, this is a typical I-section used
for beams. Unlike Egs. (6.4.17), (6.4.18) and (6.4.19) for rectangular cross-sections, the m, v and p
expressions for wide-flange cross-sections are considerably more complicated, because ¢; # 0 and C,
# 1 in Egs. (6.4.5), (6.4.9) and (6.4.13). By substituting parameters ¢, = 1-2t/d = 0.9434 and c, = t,,/b
= 0.0541 into these equations for the W920X253 section, and then normalizing them through Egs.
(6.4.1), the non-dimensional expressions for the m, v and p as functions of parameters ¢ and { are
derived. Then, following the same procedure employed in Section 6.4.3 for rectangular sections, the
corresponding m + p yield-surface contours for varying values of v from 0 to 0.95 are obtained, as

shown in Figure 6.5.

By comparing Figures 6.4 and 6.5, it is evident that the corresponding normalized yield surfaces for
rectangular and W-flange sections differ negligibly. Similarly, when the W-section results of this
study are compared to those obtained by Ellyin and Deloin (1972), as in Figure 6.5, if the shear level
is lower than v = 0.2 then, as for rectangular sections, the effect of the shear force can be reasonably
ignored in the case of wide-flange sections, . However, the influence of shear force on plastic failure
becomes significant when ratio v= 0.4 and beyond, which implies that yield-failure for wide-flange

sections is more sensitive to shear forces than it is for rectangular sections.

The second example is a W360X382 section with the following properties: depth d = 416 mm,
flange width bs = 406 mm, flange thickness t; = 48 mm, web thickness t,, = 29.8 mm, area A = 48700
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mm’, and plastic modulus Z = 7970x10°> mm® (CISC, 2004). The main feature of this section is that
the flange width-to-depth ratio by /d ~ 1, which identifies a W-section typically used for columns
because it has approximately equal strong-axis and weak-axial buckling capacity. For this cross-
section, the two parameters ¢, = 1-2tyd =0.7692 and ¢, = t,/bf = 0.0734. By substituting these two
parameter values into Egs. (6.4.5), (6.4.9) and (6.4.13), and then normalizing them through Egs.
(6.4.1) , the non-dimensional expressions for m, v, and p as functions of parameters ¢ and ( are
obtained. By using the same procedure as that for rectangular sections, the corresponding p + m
yield-failure surfaces found for v values of 0, 0.4, 0.6, 0.8, 0.9, and 0.95 are as shown in Figure 6.6. It
is observed from the figure that for values as high as v = 0.2, the results predicted for the W-section
by both Ellyin and Deloin (1972) and the current study are in good agreement, but that Ellyin and

Deloin’s results overestimate the yield-failure capacity of the section when v > 0.2.

It should be pointed out that it can be quite complicated to derive yield-failure surfaces as described
in the previous sections, because, for a given loading level, two of the three equations defining the
normalized forces m, v, and p must first be solved to find the parameters ¢ and . In the iterative
process of solving these highly nonlinear equations to obtain the yield surface contours, the

computation can be extremely unstable in some cases (this topic is currently under study).

6.5 Comparisons with Experimental Results

Failure phenomena at extreme loading levels are difficult to model theoretically, because the
distributions of the stresses and corresponding deformations are highly nonlinear. The correctness of
a solution is directly related to the assumptions used to derive it. To verify the accuracy of the yield-
failure surfaces derived in this study, the theoretical results are compared with those obtained from

some experiments reported in the literature (Kusuda & Thurlimann, 1958; Kasai & Popov, 1986).

In the experiments by Kusuda and Thurlimann (1958), three specimens of length 416.25 mm (18.5
in) are designed as cantilever beams with a 10WF29 section having the following properties: depth d
=259.59 mm (10.22 in), flange width by = 147.32 mm (6.8 in), flange thickness t; = 12.7 mm (0.5 in),
web thickness t, = 7.341 mm (0.289 in), area A = 5503.22 mm” (6.53 in®), and plastic modulus Z =
568631 mm® (34.7 in’).

The short beams have a depth-to-length ratio = 0.624 to enhance the effect of the shear force in the
experiments (typically, the ratio is about 0.1 for designed beams). Based on coupon tests taken from
the flange and web of the cross-section, the static yield stress oy = 254.93 MPa (37 ksi). Accordingly,
the plastic moment capacity M, = o, Z = 144.96 kN-m, the axial plastic capacity P,= oy A = 1402.94
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kN, and the shear plastic capacity Vy,= 1,A = 809.98 kN. For the monotonic loading history adopted
for the experiments, the normalized axial force were assigned values of p =P/P, = 0.13, 0.19, and 0.37
for the three specimens. As the corresponding recorded load-deflection curves displayed no distinct
yield-load level, Kusuda and Thurlimann (1958) determined it to be at the intersection of the tangent
lines to the elastic and strain-hardening portions of the experimental curves. With this approach, the
yield loads for the three specimens are those listed in the second column of Table 6.1. The values of
internal axial force P in the third column are computed by multiplying P, with given values of
normalized axial force p. Also in Table 6.1, the values of internal shear force V in the fourth column
and internal bending moment M in the fifth column are determined from the static equilibrium
conditions. The previously noted values for Py, V, and M, are used to normalize the internal yield

forces to obtain the values of p, v and m shown in the last three columns of Table 6.1.

To compare the experimental results with those predicted by the method proposed in this study, the
three pairs of points (M, p) in Table 6.1 from the test results are shown in Figure 6.7 as the three open
circles. If normalized shear force V is selected to have values 0.26 and 0.31 listed in Table 6.1, then
the two corresponding M-P interaction curves are plotted in Figure 6.7 by using the failure-surface
defined by Egs. (6.4.5), (6.4.9) and (6.4.13). Obviously, the three points from the experimental results
are not located on the corresponding two predicted curves. The reason is that when V is normalized,
the entire cross-section area A is used to determine V (= 1A = 809.98 kN) so that the shear capacities
are overestimated. If the entire web area and only 52% (achieved after several trials) of the flange
area are assumed to take shear force, the adjusted yield strength V, becomes 542 kN. By using Vj
instead of V, to normalize the values of shear force V in Eq. (6.4.9), the non-dimensional values of vy
become as listed in Table 6.2 for the three specimens. If v, = 0.46, the interaction curve is obtained as
the dashed line in Figure 6.7. It can be seen from Table 6.2 and Figure 6.7 that the experimental
results are quite close to those in the dashed line. For example, from column 5 of Table 6.2, the
differences of the m values are 1.22%, 0%, and -2.82%, respectively, for the three specimens. This

implies that approximately 50% of the flange area contributes to the shear loading.

Note that the effect of the shear force on the plastic yield failure cannot be ignored. When the effect
is neglected by setting v = 0, the predicted m values are those in column 6 of Table 6.2. The
differences of the values of m in Figure 6.7 are 0.18, 0.14 and 0.08, for the first, second, and third
specimens, respectively, as indicated in column 7 of Table 6.2; the corresponding relative differences
of 18.6%, 15.1% and 10.5% are listed in column 8 of Table 6.2. It can be concluded that when the
ratio of the section depth-to-member length for a beam is large enough for the axial force and shear

force to be of the same order of magnitude as that at the yield-failure level, the three-dimensional
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yield-failure criterion accounting for the interaction of bending, shearing and axial forces should be

employed for progressive-failure analysis.

As another example, the cyclical test results from an experimental investigation of the behaviour of
shear links applied in seismic engineering (Kasai & Popov, 1986) are used to check the accuracy of
the combined-stress failure surface derived by this study. Two link beam specimens with a W8X10
cross section are tested under combined axial force, shear force and bending moment. The ratio of the
shear force to the axial force is fixed at unity during the cyclically loading process (i.e., P = V). The
properties of the cross-section are: depth d = 202.44 mm (7.97 in), flange width bs= 100.58 mm (3.96
in), flange thickness t; = 5.28 mm (0.208 in), web thickness t, = 4.32 mm (0.17 in), and area A =
1922.58 mm*(2.98 in’). The two link beam lengths are 368.3 mm (14.5 in) and 444.5 mm (17.5 in),
and the corresponding depth-to-length ratios are 0.55 and 0.46, respectively.

The axial, shear and moment plastic strengths P, = 743.6 kN (167.1 kips), V, = 205.6 kN (46.2
kips) and M, = 56.3 kN-m (498 kips-in) for the W8X10 section were determined by cyclical dynamic
tests (Kasai & Popov, 1986). To be consistent with the experimental results for the purpose of
comparison, these three strength values are adopted for the model of interactive failure behaviour
proposed by this study. To investigate such interaction behaviour using the failure surface defined by
Egs. (6.4.5), (6.4.9) and (6.4.13), one test data pair for the shear link from the Kasai and Popov (1986)
experiments is illustrated here; specifically, for m = M/M, = 0.842 and v, = V/V, = 0.96, where the
normalized shear force vy is found using effective shear area Ag = t,(d-t;). If the entire cross-sectional

area A is assumed to take the shear force, the non-dimensional shear force becomes,

vt _ v, Ae _ 963220244 =5288) ) 1rs (6.5.1)
T, A A 1922.58

For P =V, from the experiments the normalized axial force is given by,

P \ 0.425
p oA A B (6.5.2)

where the von Mises yield criterion is applied. The data pair (p, m) = (0.245, 0.842) is shown in

Figure 6.7 as the symbol @. For the W8X10 (English unit) cross-section with normalized shear force
v = 0.425 at failure, the interaction curve predicted by using Egs. (6.4.5), (6.4.9) and (6.4.13) is
plotted in Figure 6.7 as the heavy solid line. It is evident that the tested point is significantly outside
the predicted curve. In fact, the shear force v predicted by the method in this study should be adjusted
from 0.425 to approximately 0.31, so as to match with the experimental value. If shear force V from

the experiment is considered constant, according to Eq. (6.5.1), increasing the value ty can alone
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achieve such an adjustment because the full section area A has already been accounted for. This
reveals that perhaps strain hardening behaviour should be taken into account in the method proposed
in this study. For instance, if the hardening shear stress is assumed to be t, = 1.05ty and 95% of the
cross-sectional area (0.95A) takes the shear force, the normalized shear force from Eq. (6.5.1) at
failure remains at about v = 0.425 because t,x(0.95A) ~ t,A. After the strain-hardening is considered,
the axial force in Eq. (6.5.2) becomes p = 0.245/1.05 = 0.233. By substituting vV = 0.425 and p = 0.233
into the corresponding normalized expressions of Eqgs. (6.4.9) and (6.4.13), and then solving the two
equations yields values of parameters ¢ and C, from which the value of m is found to be 0.801 from
the normalized expression of Egs. (6.4.5). The experimental point in the coordinate system then
becomes (m, p) = (0.801, 0.233), shown by the black in-fill circle in Figure 6.7, which is closer to the
predicted curve. This result implies that the effect of strain hardening on plastic-yield failure of

member sections can be significant in cyclical loading situations.

6.6 Combined Failure Model

In Chapter 3, two two-dimensional models are proposed for yield-failure surfaces, involving either
the interaction of bending moment and axial force, or of bending moment and shear force. To
facilitate progressive-failure analysis while accounting for the simultaneous interaction of bending,

shearing and axial forces, a corresponding three-dimensional model is developed in the following.

6.6.1 Initial Yield

The initial yield of a structural steel cross-section is dependent on the distribution of the residual
stresses that remain in an unloaded component, after it has been formed into a finished product.
Residual stresses generally develop during the cooling stage after the rolling, welding, punching or
cambering operations. Within a loading process for a structure, residual stresses tend to initiate plastic
yielding at load levels lower than those predicted by stress analysis that ignores such stresses. The
effect of residual normal stress has been extensively investigated (Huber & Beedle, 1954). In practice,
design codes suggest that residual normal stress o, should be equal to approximately 30% of the full-
yield stress oy (AISC, 2001). The effect of residual shear stress has not been extensively investigated.

It is assumed that residual shear stress 1, is about 5% of the full-yield stress ty (see Appendix 6.B).

Once the initial-yield normal and shear stresses are determined, the normalized initial-yield
strengths are given by my = M/M,, v,= V/V, and p,= P/P,, where My, V, and Py have been defined in

Section 3.3. The initial-yield surface for a section accounting the interaction of bending moment,
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shear force and axial force is taken to be the shaded triangular plane defined by points my, vy and py in

Figure 6.8 (i.e., in one quadrant of the stress space). The initial-yield plane is expressed as,

m, +v, +p, =1 (6.6.1)

6.6.2 Full Yield

To determine the extent of stiffness degradation due to plastic behaviour, a seven-domain failure
model is proposed to account for the interactive influence of the bending moment, shear force and
axial force This failure model is an extension of the planar M-P or M-V failure model discussed in

Chapter 3.

After the initial-yield plane defined in Eq. (6.6.1) is determined, the three failure domains in each
coordinate plane are defined by the corresponding six full-yield points P"| through P’y as shown in
Figure 6.8. Points P*; and P", are determined when m = my and by using m-p (v =0) and m-v (p = 0)
yield loci, respectively. The remaining four points P*; to P’y can be similarly obtained by using the
corresponding yield loci by setting v = vy and p = py, respectively. These six points serve as a base to

define the full-yield failure behaviour within the domain bounded by the three coordinate planes.

Based on the six points P*; through P’ , the three boundary curves on the yield surface in Figure
6.9 can be determined so that the M-V-P yield surface is divided into seven-failure domains. The
following approach is adopted to define the seven domains. Curve P;-Pg-Po-Pg in Figure 6.9 is the

intersection between the yield surface and the following plane,

m, =max{mg,,m,} (6.6.2)
where my, and my, are the moment values at points P"; and P'4 in Figure 6.8, respectively. Similarly, if

Vym, Vyp » Pym and pyy are respectively determined from points P, , P’ , P, and P*4, the intersections

between the yield surface and the two following planes,
Vv, =max{V,,,V,,} (6.6.3)

P, =maxipym, Py} (6.6.4)

determine the curve P,-P;-Ps-P, parallel to the pm-plane, and the curve P,-P;-Py-Ps, parallel to the vm-
plane in Figure 6.9, respectively. Consequently, the seven failure domains are determined by the
boundary curves in the figure.

For the loading path OP in Figure 6.9, point P(Myy, Vpr, Ppr) on the yield surface is obtained by
solving the intersection between the yield surface and the straight line OP, where subscript pr denotes

the reduced strength due to the interaction of m, v and p. When shear force v, < vy, one of the
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following three failures occurs: flexural failure in domain Dy, if pyr < py; axial failure in domain D,, if

Mpr < My; or bending plus axial failure in Dy, domain.

When Vv, > vy , one of the following four failures occur: a shear failure in D, if pyr < py and mp, <
my; a bending plus shear failure in D,,, domain if p, < py; a shear plus axial failure in D,, domain if

Mpr < My; otherwise, bending plus shearing plus axial failure in Dy, domain.

In Figure 6.9, three types of failure domains are in the proposed seven-domain failure model. First,
if any one of the three principal internal M, V or P forces is far more substantial than the other two,
single-stress failure occurs, respectively, in the corresponding flexural, shearing or axial domain Dy,
D, or D, defined by the hatched-grey surface in Figure 6.9. Secondly, if any two of the three internal
forces are far more significant than the third force, a two-stress failure occurs in the corresponding
Dy, Dyp or Dy, domain defined by the solid-grey surface in Figure 6.9. Thirdly, if the three internal
forces all possess the same significance, a three-stress failure occurs in the Dy, domain defined by

the blank surface in Figure 6.9.

6.7 Example Application of M-V-P Failure Surface

Debris loading due to local damage is a serious problem under abnormal loading events. Consider the
structural portion with W-shape columns C,; and C, that support W-shape beams B; and B, in Figure
6.10(a). The beam-to-column connections at joint B, C and D are semirigid, while joint A is free to
rotate and horizontally translate. As the abnormal loading occurs, beam B, disengages from the main
portion at joint E. The beam rotates about point D, and its right end falls down onto beam B,. This
forms debris loading applied at a distance X from end B that has vertical and horizontal components W

and AW, where A is the ratio of the horizontal load to vertical load.

Assume the two columns are adequate to support beam B2 with the debris loads. Only the
behaviour of B2 is investigated using the yield surface derived in this study. For the model in Figure

6.10 (b), reaction Vp at support B can be readily found as,

Ly—x,, M
V=V, = EXW+LC
b b

(6.7.1)

where moment Mg at support B is a function of load W, and V stands for the shear force at the right-
hand side of point C. If portion CB of the beam is taken as a free-body diagram, then the bending

moment at point C is given by,
M =xV-M, (6.7.2)
If end A can move freely in the horizontal direction at the failure state, the axial force becomes,
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P=AW (6.7.3)

Equations (6.7.1), (6.7.2) and (6.7.3) define the loading path during the increase of load W. Beam
B2 fails when load W reaches such a level that Mg attains the connection capacity M and the internal
forces V, M, P at section C are on the yield surface governed by Egs. (6.4.5), (6.4.9) and (6.4.13). If
the moment of Eq. (6.7.2) is normalized as m = M/M,, normalized shear force v from Eq. (6.7.1) is

expressed in terms of m as,

d[1—(1-c,)cr ]
4x(c,c, +1-c))

V=x(Mm+m,) (6.7.4)

where « is a yield criteria parameter (e.g., k> = 3 for the von Mises criterion), dimension d is the
section depth, parameters ¢, and C, for W-shape section have been discussed in section 6.4.4, and m,
= MM, is the normalized moment of the connection. By solving for load W from Eq. (6.7.1) and

then substituting it into Eq. (6.7.3), the following normalized axial force is obtained,

T

To find the data pair of (m, v, p) at failure, the following procedure is adopted: (1) normalize the
yield surface defined in Eq. (6.4.5), Eq. (6.4.9) and Eq. (6.4.13) to obtain m(¢o, &), V(o, §), and p(eo, §);
(2) replace m, v and p in Egs. (6.7.4) and (6.7.5) with m(op, §), v(p, §) and p(e, €) to form two
nonlinear equations with respect to ¢ and C; (3) solve for ¢ and & from the two equations for given

values of the parameters in the expressions; (4) compute the values for m; = m(o, £), vt = v(o, £) and

pr = p(o, ) from Egs. (6.4.5), (6.7.4) and (6.7.5), respectively.

For the beam with cross section W920x253, length L, is found to be 14630 mm by the use of L, =
(Le —X)*+ L% with L = 4572 mm and X = 733 mm. The dimension parameters in Eqgs. (6.5.4) and
(6.5.5) are ¢; = 1-2t;/d = 0.9393, ¢, = t,,/b = 0.0565, x/L,= 0.0501, and d/x= 1.2537. Substitute all of
the previous values with designated load ratio A and connection moment m. into Egs. (6.7.4) and
(6.7.5), and solve them to obtain parameters ¢ and £ , and in turn, intersection point (My, Vi, Pr) at
failure by following the preceding procedure. The computation results are shown in Figure 6.11 with

m set to 0, 0.25, 0.5 and 1, and the load factor A ranging from zero to one.

It is seen from Figure 6.11 that if load ratio A increases from zero to unity, axial force pr increases
significantly, but moment m; and shear force v¢ decrease slightly for a simply supported beam (m; =
0). With the increase of connection strength m. from zero to unity, moment m; decreases and Vs
increases considerably for a given load ratio A. For example, if the horizontal debris loading is

ignored (A = 0) and m, = 1, shear force v increases by about 60%, whereas the bending moment my
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decreases by approximately 74% compared to that when m¢ = 0. Especially, when A = 1 and m¢ = 1
the bending moment no longer dominates the plastic failure of beam B2 in Figure 6.11. These results
reveal that changes of both the load ratio and end connection strength of the beam can substantially

affect the interactive behaviour of moment, shear and axial forces at failure.

The loading capacities corresponding to the designated A and m; values are given in Table 6.3,
where non-dimensional loading capacity W is the ratio of Ws to P,. Here, Ws is the load P/A at failure
from Eq. (6.7.3), and P, is the axial capacity defined in Eq. (6.4.16a). It is seen for load ratio A that
when the connection capacity m. is increased, loading capacity W; increases considerably. For
instance, when m, is set to 0.25, 0.5 and 1, and A to 0, the load capacities of W increase 17.49%
(0.4266/0.3631-1 = 0.1749), 32.25% and 53.35%, respectively, compared with those if m; = 0. On the
other hand, for given connection capacity m., the load capacity w; decreases with the increase of
vertical-to-horizontal loading ratio A. For example, when m; = 0 the load capacity w; decreases by
9.59% (0.3283/0.3631-1 = -0.0959) from 0.3631 (when A = 0) to 0.3283 (when A = 1). Similarly,
when m; = 0.25, 0.5, and 1, the decreased percentages of w; are 10.99%, 12.12% and 19.77%,

respectively.

Appendix 6.A Anti-Derivatives for Evaluating Resultant Stresses

Anti-derivatives presented in this appendix are used to evaluate the axial force, bending moment, and
shear force of the member cross-sections in the plastic limit state. Parameters ¢ and { represent the
parametric functions, and p is a non-dimensional variable. The derivations in this appendix are based
on Mathematica software Version 3.0 (Wolfram, 1996), and the related intermediate expressions are
not included in the subsequent text. The following integral is used to evaluate the bending moment at

the plastic failure of a section,

1, =[plop+)/(gp+C) +(1-[p)*dp (6.A.1)

When p = ¢; > 0, the following solution of Eq. (6.A.1) is derived,

l,.(C)= [E2-¢)+0(B3+C +97C )];(1;:(55224' 9) -39l —4le" —¢’If,, (6.A.2)

where subscript of Iy denotes that the anti-derivative in Eq. (6.A.1) is employed to evaluate moment
M, and subscript + denotes that variable p of the integrand in Eq. (6.A.1) is positive and is replaced

by c,. Functions f;; and f,. in Eq. (6.A.2) are given by,

f(c)=A1+ 0> J(1-¢ )’ +(C+egc,) (6.A.3)
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and

f,, (€)=In{2[eC +(¢* +1)c, —1+ f, 1/\/¢* +1} (6.A.4)
When p is in the negative domain, term 1-|p| becomes 1+p. The following solution of Eq. (6.A.1) in

the negative domain is derived,

[C2-9")—pB+c +¢’c)If_ +[2(p—0) -3 9 +4L0° — )] f,
2(1 + (pZ )2A5

ly_(c)= (6.A.5)

where negative variable p is replaced by -c; (C; > 0), and functions f;_ and f,. in Eq. (6.A.5) are given

by,

f@)=y1+e7J-¢) +(C—9c)’ (6.A.6)
f,_(c)=In{2[el— (> + )¢, +1+ f_1/J@*> +1} (6.A.7)
where subscript — denotes that variable p of the integrand in Eq. (6.A.1) is in the negative domain.

To evaluate the bending moment at the plastic failure of a rectangular or wide-flange section, the

following integral expression is employed to evaluate the definite integral,
I, (C)=1,,(c)—1,(c) (6.A.8)
where subscript m refers to moment.

The integral used to evaluate shear force V at the plastic failure of a section is,

1, = [0.50-|p/(op+5)* +(1-|p|)dp (6.A.9)

Similar to the discussion of the moment for positive and negative domains of variable p in Eq.

(6.A.9), the expressions of the anti-derivatives are derived as,

Iy, (¢)=0.5-f, +o(e+L) f,, 1/(1+¢)" (6.A.10)

l,_(c)=0.5[f_+o(o-0)f, 1/(1+¢)" (6.A.11)
In evaluating the shear force at the plastic failure of a rectangular or wide-flange section, the

expression is,
l,(c)=1,,(c)—1,(c) (6.A.12)
where subscript V refers to the shear force.

Finally, the following integral is used to evaluate axial force P at the plastic failure of a section,

lp = [050=1p)/(op+C)" +(1=[p)’dp (6.A.13)
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where subscript P indicates the anti-derivative in Eq. (6.A.13) and is applied for evaluating axial

force P. For the positive and negative values of p, the corresponding solutions of Eq. (6.A.13) are,

lp, (¢) =0.5[0f, +(C+)f, . 1/(1+¢")" (6.A.14)

lp_(¢)) = 0.5[0f,_+(C~o)f, 1/(1+¢")" (6.A.15)
In evaluating the axial force at the plastic failure of a rectangular or wide-flange section, the

following expression is used,

la(c)=15,(c;) —15,(cy) (6.A.16)

where subscript p means the expression is applied to determine axial force P.

Appendix 6.B Residual Shear Stress

This appendix presents a method to derive the residual shear stress of structural steel W-sections for
determining the initial yield shear stress in structural analysis. It is known that the residual normal
stresses distribution across the web of a W-section can be simply represented by a bilinear
distribution, as displayed in Figure 6.12 (a) (ECCS, 1984), where h is equal to half of the web depth.
It can be inferred from the bilinear normal stress distribution that the residual shear stress distribution
varies as shown in Figure 6.12 (b) based on the equilibrium conditions of resultant normal and shear
stresses, where tg is the maximal residual shear stress (Hibbeler, 2004) The total shear stress,
including the residual shear stress in Figure 6.12 (b) and the shear stress, induced by the external

loads in Figure 6.12 (¢), is expressed as,

t=1.[1-(y/h)’]+1.y(h-y)/h’ (6.B.1)
where 7 is the maximum shear stress produced by external loading. To find the maximum stress for

both the residual and external loading shear stresses, Eq. (6.B.1) is differentiated with respect to the

depth variable y as,
d T 2 2
d—=—2’tcy/h +t,(h-2y)/h" =0 (6.B.2)
y
Thus, the location of the maximum shearing stress is determined by solving Eq. (6.B.2) for y, and
given by,
Yo = h_% 6.B.3
"2 4T, (6.8.3)

which is relevant to maximum stresses ts and 1. and depth h. By substituting Eq. (6.B.3) for y, into

Eq. (6.B.1), the maximum shear stress is,
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-0.25t, 1. +0.512 (1, +0.51,) 0.251;
+ =1+

¢ 6.B4
(t, +1.) T, +7T, ( )

max Cc

Obviously, during the loading process, maximum shear stress T, in Eq. (6.B.4) achieves initial yield
stress Ty (i.€., Tmax = Ty). Therefore, from Eq. (6.B.4) the initial-yield shearing condition is determined

as,

o _0.2515_0 6B.S
L (6.B.5)

Solve Eq. (6.B.5) for initial-yield shearing stress,

T
T, =2 1-4 1425 (6.B.6)
2 T, T,

which is the initial-yield shear stress under the external loading after the residual shear stress has been
accounted for. The numerical values in Table 6.4 demonstrate how the residual shearing stress affects
the initial-yield shear stress 1. It is observed in the table that when the residual shear stress is ignored
(tr = 0), then 1., becomes conventional yield-stress ty. It is noted that if the maximal residual shear
stress Ts is as high as 50% of yield shear stress 1y, the effect of the residual shear stress on the initial-
yield shear stress 1, is only about 4.29% of yield shear stress ty; also the location of the initial yield
occurs at 0.17h. Therefore, for the design and analysis of structures, it can be reasonably and
conservatively assumed that effective residual shear stress t,= 0.051y; that is, 5% of yield shear stress

Ty.
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Figure 6.2 Dimensions of idealized cross-section
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(a) Moments versus deformations
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Figure 6.3 Force-deformation relationships in plastic zone
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— With linear shear strain
Ellyin & Deloin, 1972

p=P/P,

m=M/M,

Figure 6.4 Comparison of yield-surface contours for rectangular cross section

o —— With linear-shear strain
NN\ - Ellyin & Deloin, 1972

p=P/P,

m=M/M,

Figure 6.5 Comparison of yield-surface contours for W920X253 section
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Figure 6.6 Comparison of yield-surface contours for W360X382 section

v=10.26

031 oTested for cantilever with I0WF29

(Kusuda & Thurlimann, 1958)
0.8

VAR N\ @ Tested for shear link with
v=0.425 /\ NWBX10 (Kasai & Popov, 1986)

Predicted in this study \ e Involved strain hardening

after shear-strength
adjustment (v,= 0.46)

P/P,

p:

) (0.245, 0.842)
Specimen #3: p= 0.37 %

Specimen #2: p= 0.19 )

Specimen #2: p=0.13 N v=10
0.2 1 x»q
Predicted in this study before \

shear-strength adjustment (v= \di
0.26, and 0.31)

0 0.2 0.4 0.6 0.8 1
m=M/M,
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Figure 6.9 Seven-domain plastic failure model

196



(a) Structure portion

(b) Member model T

A

O

|
Va

Figure 6.10 Effect of debris loading on lower-floor beam
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Figure 6.11 Effects of load ratio and end-connection capacity on internal forces
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(a) (b) (©) ()

Figure 6.12 Normal and shear residual stress distributions across W-shape web section

Table 6.1 Test results accounting for M-V-P interaction (Kusuda & Thurlimann, 1958)

Specimen Load (kN)  P(kN) V(kN) M(kN-m) p v m

No.1 312 182 253 119 0.13 0.31 0.82
No.2 365 267 249 117 0.19 0.31 0.81
No.3 561 519 212 100 0.37 0.26 0.69

Table 6.2 Comparison of predicted results with test measurements (Kusuda et al., 1958)

Specimen  Tested m Vi Predicted m  Error(%) m(v=0) di Error(%)
No.1 0.82 0.47 0.83 1.22 0.97 0.18 18.6
No.2 0.81 0.46 0.81 0.00 0.93 0.14 15.1
No.3 0.69 0.39 0.71 -2.82 0.76 0.08 10.5
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Table 6.3 Collapse load w;= W;/P, for floor beam under debris loading

A m.=0 me=0.25 me.=0.5 me=1
0.0 0.3631 0.4266 0.4802 0.5568
0.1 0.3630 0.4260 0.4790 0.5560
0.2 0.3615 0.4235 0.4765 0.5530
0.3 0.3593 0.4197 0.4723 0.5463
0.4 0.3565 0.4150 0.4668 0.5345
0.5 0.3532 0.4100 0.4600 0.5216
0.6 0.3493 0.4047 0.4528 0.5077
0.7 0.3447 0.3990 0.4453 0.4931
0.8 0.3396 0.3929 0.4376 0.4781
0.9 0.3341 0.3864 0.4299 0.4626
1.0 0.3283 0.3797 0.4220 0.4467

Table 6.4 Effect of residual shear stress on initial-yield shear stress

Tg/Ty 0 0.1 0.2 0.3 0.4 0.5
Tey/Ty 1 0.9977 09916 09825 0.9708 0.9571
(1-Tgyty)x 100 0 0.23 0.84 1.75 2.92 4.29
Ym/h 0 0.05 0.08 0.12 0.15 0.17
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Chapter 7

Conclusions

Typically, structural failure involves progressive stiffness degradation and strength deterioration.
During the failure process, structural materials can display elastic and plastic behaviour, external
loads can change from being static to dynamic, and structural topology can possibly progressively
change. To account for these failure phenomena, this thesis develops a progressive-failure analysis
procedure to deal with the stiffness degradation and collapse performance of steel structures, due to
both normal and abnormal loads. The nonlinear limit state analysis is in keeping with the
requirements of current design codes (e.g., CISC, 2004; AISC, 2001). The progressive collapse
analysis procedure itself is based on corresponding guidelines of GSA (2003) and DoD (2005). This
chapter presents a summary and concluding remarks concerning the work completed, and suggests

some research directions for future work.

7.1 Summary

Chapter 1 briefly reviewed the existing literature concerning progressive collapse under abnormal
loading. A nonlinear analysis method was proposed and developed in Chapters 2 and 3 with account
for geometric and material nonlinearities, and member shear deformation. The combined effects of
semirigid connections and member plasticity on structural behaviour were explored in Chapter 4. A
progressive-failure analysis method was developed in Chapter 5, and several example frameworks
were analyzed with account for both member and connection damage. Finally, with a view to future
extension of the research, Chapter 6 presented a three-dimensional failure model for member sections

under simultaneous bending, shearing and axial forces.

To account for the stiffness degradation behaviour of members, the force-deformation relationship
at member ends was obtained with account for the effects of both second-order geometric
nonlinearities and shear deformation. The failure behaviour of a member cross-section was studied

under combined moment-axial force interaction, and combined moment-shear force interaction.

A nonlinear structural analysis method based on the Euler incremental method was developed. The
nonlinear analysis results for several steel frameworks were compared with those obtained from other

methods to verify the accuracy of the proposed method.

A hybrid member model was introduced to include the effects of both member plasticity and

semirigid connections. A four-parameter model was employed to simulate the nonlinear moment-
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rotation relationship of semirigid connections. A compound stiffness degradation factor was
developed as a function of semirigid connection and inelastic member stiffness degradation factors.
The interactive effect of connection semi-rigidity and member inelasticity was illustrated for several

semirigid frames.

A health index was introduced to quantify the degree of damage to member-end connections due to

the disengagement of members during the process of progressive collapse.

The dynamic effect induced by impact debris loading during collapse was quantified by an impact

amplification factor.

A progressive-failure analysis procedure was developed to predict the behaviour of building
frameworks that experience initial local damage due to an abnormal loading event. The removal of
critical member(s) is taken to model the initial local damage. Dead, live and other loads are as
specified by design codes (e.g., ASCE 7-02), and load combinations comply with design/analysis
guidelines of GSA (2003) and DoD (2005). The computer-based method predicts the progressive
failure phenomenon stage by stage, over a nonlinear loading history. Inelastic degradation factors
identify the failure degree of members and connections, as well as member disengagement from the
main structure. An unloading analysis procedure accounts for abrupt stress reversals that have

occurred when members disengage from the structure.

Several planar steel frameworks examples illustrated the progressive-failure analysis procedure.
The incremental-load procedure was shown to proceed beyond loading levels at which members have
broken away and/or other structural instabilities have occurred, and terminates when either a fully

stable state has been reached or progressive collapse of all or part of the structure has occurred.

7.2 Conclusions

A number of specific conclusions can be drawn from the investigation described in this thesis:

e This study has developed an effective tool for conducting progressive-failure analysis of steel
building frameworks. The proposed multi-stage analysis method fully traces the progressive

change of structural topology during the collapse process.

e The proposed inelastic analysis procedure involving bending, shearing and axial stiffness
degradation factors effectively simulates the inelastic behaviour of steel structures, including the
nonlinear force-deformation behavior of framework members.

e A compound-element model has been developed that effectively simulates the combined

nonlinear behaviour of both members and their connections.
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e The shear failure of beams caused by impact debris loads is a significant triggering mechanism
for progressive collapse.

o The damaged state of connections caused by disengaging members influences the progressive
collapse of a structure. In Table 5.4, for example, a 20% difference in loading capacities is
observed between that when the connection at joint 6 is not damaged (hs =1) and when it is fully
damaged (hg = 0). As another example, upon comparing Table 5.5 (h=0.5) and Table 5.2 (h=1) it
is observed that some internal forces have very significant differences even though the difference
in loading capacities is not significant. Also, when comparing Figure 5.21 (h=1) and Figure 5.2
(h=0.5) in the first loading stage for the Boston building, both the internal forces and deflections

have significant differences.

7.3 Future Work

There are a number of areas where research and developments are required in future work concerning

progressive-failure analysis

e Progressive-Failure Analysis based on the M-V-P Failure Criterion

The M-P failure criterion and the M-V failure criterion are separately applied in the progressive-
failure analysis in Chapter 5 to determine the failure of a cross-section. In future extensions of the
analysis, the two failure criteria can be replaced by the M-V-P failure criterion derived in Chapter 6 in
terms of implicit parametric functions. Before they can be implemented in the progressive-failure
computer code, it is first necessary to establish expressions for the M-V-P failure criterion that are

explicitly in terms of normalized moment m, shear force v and axial force p.

e Spatial Structural Analysis

The analysis and design of planar structures are important, but an actual progressive collapse is a
three-dimensional failure phenomenon. The proposed analysis procedure should augmented to
include lateral-torsional buckling and out-of-plane loading, so that a three-dimensional analysis may
be conducted to achieve a realistic evaluation of progressive collapse under abnormal loading. Two
challenging problems exist for such 3D analysis: 1) the development of an appropriate member
stiffness degradation model; and 2) the establishment of a reasonable failure surface to account for

each of the six internal loadings (three forces and three moments) at each member end.
e Dynamic Analysis

Nonlinear dynamic analysis is an important means to capture the dynamic characteristics of
progressive collapse. The quasi-static method of analysis employed in this study can, with some

effort, be extended to dynamic time-history analysis accounting for transient impact loading. How to
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establish dynamic failure criteria and how to account for unloading due to load reversals are but two

of the several challenging problems that must first be resolved to achieve this objective.

o Experimental Verification Studies

Verification studies for the proposed progressive-failure analysis procedure should be carried out
through comparisons of predicted results with experimental results, obtained from specimens that
range from components to structures, subjected to abnormal loads. These experimental results can be
used to calibrate the plasticity and semirigid connection models to account for bending, shearing and
axial stiffness degradations in the structural analysis. For example, the results of experimental tests of
beam or slab specimens subjected to impact debris loading can be used to establish the loading model
associated with impact amplification factors. As another example, a prototype two-bay by two-storey

planar frame can be tested to investigate collapse behaviour when a column is suddenly removed.

e Improvement of Analysis Techniques

The nonlinear analysis of structures with stiffness degradation and topologic change is considerably
more complicated than linear, geometrical nonlinear, or rigid-plastic analysis methods. The
incremental-iterative technique should be expanded to include an unbalanced-force correction routine
so that the analysis can proceed by using fewer load increments with larger step sizes to achieve the
final collapse state. In addition, for both planar and spatial structures, a mechanism-based analytical
technique should be developed to achieve full automation of the analysis process whenever a local

collapse state is encountered during the multi-stage loading history.

e Structures with Other Cross-Sections

The member cross-sections considered in this study have bi-symmetric axes, such as W-shape
sections. It is important to extend the failure criteria to account for the appropriate interaction
relations governing post-elastic behaviour under various combinations of forces for a range of section

types (e.g., T, hollow-box, etc.).

e Effect of Shear Panel Zone

This study demonstrates that shear failure plays an important role in progressive collapse. In addition,
it is known that joint connection failure due to panel-zone shear is a significant concern in seismic
design engineering. The panel-zone shear effect should also be accounted for in progressive-collapse
analysis. A panel-zone model accounting for the effects of shear at a joint should be established and

incorporated into the proposed analysis procedure.

e Structures with Other Materials
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This study focuses primarily on steel building structures, but the proposed analysis procedure is
readily applied to the analysis of structures comprised of concrete, wood and masonry materials. For
example, for reinforced concrete building structures, it remains to introduce suitable constitutive laws
governing the moment-curvature and shear-deflection relationships, crack and yield criteria, and other

sectional properties.

¢ Risk and Reliability Analysis

There are many unknown factors that might lead to progressive collapse of structures. These
uncertain factors can appear anytime during a structure’s lifetime, from initial construction to final
demolition. Abnormal loading events are random, albeit with generally low probability. Probabilistic
methods of analysis should be employed to estimate structural failure probabilities, and establish

acceptable risk levels in aid of the design decision-making process.
e Other Potential Methods against Progressive Collapse

Many methods developed in structural engineering can be employed to help prevent progressive
collapse during a structure’s lifetime. Passive or active structural control measures are effective in
reducing and even eliminating fatal structural failure. Innovative materials and robust structural
construction can improve structural performance against abnormal loading events. All the available
techniques can be combined with the proposed method in this study to develop a more robust tool to

deal with progressive collapse under abnormal loads.
e Design against Progressive Collapse

The method of nonlinear analysis developed in this study is appropriate for the analysis of planar
structures. However, to be effective as a tool in aid of design some particular requirements related to
stipulations in design codes should be accounted for. For instance, checking local buckling and lateral
torsional buckling should be added to the current analysis procedure so that the predicted results
identify compliance or violation of corresponding design requirements. In design of structures against
progressive collapse, the adequacy of tie forces can be checked at the end of the first stage analysis
according to the published design criteria (e.g., DoD). Further research for design should take into

account interaction between abnormal loading and other loadings, such as seismic loading.

204



References

AASHTO. (1998). LRFD Bridge Design Specifications, 2™ Edition, American Association of State
Highways and Transportation Officials, Washington D.C.

Acroyd, M. H. (1979), Nonlinear Inelastic Stability of Flexible-Connected Plane Steel Frame, Ph. D
Thesis, Department of Civil Engineering, University of Colorado, Boulder, CO.

Adams, D. E. & Farrar, C. R. (2002). Identifying linear and nonlinear damage using frequency
domain ARX models. Structural Health Monitoring, 1(2), 185-201.

AISC. (2005). Specification for Structural Steel buildings. ANSI/AISC 360-05, American Institute of
Steel Construction, Chicago, IL.

AISC. (2001). Manual of Steel Construction-Load and Resistance Factor Design (LRFD), Vol. 2, 2™

Ed, American Institute of Steel Construction, Chicago, IL.

Allen, D. E. & Schriever, W. R. (1973). Progressive collapse, abnormal loads and building codes.

Structural failures: modes, causes, responsibilities, ASCE, New York.
ANSYS. (2005). ANSYS Software, Release V10. ANSYS Inc., Southpointe, Canonsburg, PA , USA.

Areiza-Hurtado, M., Vega-Posada, C., & Aristizabal-Ochoa, J. D. (2005). Second-order stiffness
matrix and loading vector of a beam-column with semirigid connections on an elastic foundation,

J. Engrg. Mech., ASCE, 131(7), 725-762.

Aristizabal-Ochoa, J. D. (2004). Column stability and minimum lateral bracing: Effect of shear
deformations. J. Eng. Mech., 130(10), 1223-1232.

ASCE. (2005). Minimum Design Loads for Buildings and Other Structures. American Society of
Civil Engineers, ASCE 7-05, Reston, VA.

ASCE. (2002). Minimum Design Loads for Buildings and Other Structures. American Society of
Civil Engineers, ASCE 7-02, Reston, VA.

ASCE. (1997). Design of Blast Resistant Buildings in Petrochemical Facilities. American Society of
Civil Engineers, NY, NY.

Attalla, M. R., Deierlein, G. G., & McGuire, W. (1994). Spread of plasticity: quasi-plastic-hinge
approach, J. Struct. Engrg., 120(8), 2451-2473.

205



Aydogan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation, J.

Struct. Eng., ASCE, 121(9): 1265-1270.
Beedle L. S. (1958). Plastic Design of Steel Frames. New York: John Wiley & Sons Inc.

Bjorhovde, R., Brozzeti, J., & Colson, A. (1990). A classification system for beam to column

connections. J. Struc. Engrg., ASCE, 116(11), 3059-3076.

Blandford, G. E. (1996). Progressive failure analysis of inelastic space truss structures. Computers
and Structures, 58(5), 981-990.

Breen, J. E., & Siess, C. P. (1979). Progressive collapse — symposium summary. ACI Journal of
American Concrete Institute, 76(9), 997-1004.

Burnett, E. F. P. (1975). Abnormal loading and building safety. American Society of Mechanical
Engineers (Paper), 141-175. Am Concrete Inst (SP-48), Detroit, Mich.

Carden, E. P., & Fanning P. (2004). Vibration based condition monitoring: A review, Structural
Health Monitoring, 3(4), 355-377.

CEN. (2002). Eurocode 3: Design of steel structures, part 1.8 — Design of joints, European Standard.

Brussels, Belgium.

CEN. (1994). Eurocode 1 — Actions on structures, part 1 — basis of design, European Pre-standard
ENV 1991-1, Comite Europeen de Normalization 250, Brussels, Belgium.

Chakrabarty, J. (2000). Applied plasticity. Springer-Verlag Inc., New York.

Chan, S. L., & Zhou, Z. H. (2004). Elastoplastic and large deflection analysis of steel frames by one
element per member. II: Three hinges along member. J. Struct. Engrg., ASCE, 130(4), 545-553.

Chen W. F., Goto Y., & Liew J. Y. R. (1996). Stability Design of Semi-rigid Frames. John Wiley &

Sons, Inc., New York.
Chen W. F., & Toma S. (1994). Advanced analysis of steel frames. CRC Press: Boca Raton.
Chen, W. F., Lui, E.M. (1991), Stability design of steel frames, CRC Press, Inc. Boca Raton, Florida.

Chen, W. F., & Atsuta, T. (1977). Theory of Beam-Columns, Vol. 2: Space Behaviour and Design.
McGraw-Hill, New York.

Chugh, A.K. (1977). Stiffness matrix for a beam element including transverse shear and axial force

effects, International Journal for Numerical Methods in Engineering, 11, 1681-1697.

206



CISC (Canadian Institution of Steel Construction). (2004). Handbook of Steel Construction. 8" Ed.,
Universal Offset Limited Alliston, Ontario, Canada.

Clarke M. J. (1994). Plastic-zone analysis of frames, in Advanced Analysis of Steel Frames, Edited by
W. F. Chen & S. Toma, CRC Press, Boca Raton.

Closkey, D. J. (1988). Report of the Commissioner Inquiry Station Square Development, Burnaby,
British Columbia, Canada.

CBO. (2002). Federal Reinsurance for Disasters, Congressional Budget Office of the United States

of America, http://www.cbo.gov/showdoc.cfm?index=3787&sequence=0.

Conrath, E. J., Krauthammer, T., Marchand K. A., & Mlakar, P. F. (1999). Structural Design for
Physical Security: State of the Practice, ASCE, Virginia.

Cook, N. E., Jr. (1983). Strength and Stiffness of Type 2 Steel Frames, Ph.D. Thesis, Department of
Civil Engineering, University of Colorado, Boulder, CO.

Cross, H. (1932). Analysis of Continuous Frames by Distributing Fixed-End Moments, Transactions
ASCE, (Paper no. 1793), 96, 1-10.

Darwin, D. (2000). Design of composite beams with web openings. Prog. Struct. Engng Mater., 2,
157-163.

DoD. (2005). Design of buildings to resist progressive collapse. Unified Facilities Criteria UFC 4-
023-03, Department of Defense, USA.

Driscoll G. C., & Beedle L. S. (1957). The plastic behavior of structural members and frames. The
Welding Journal, 36(6), 275-s.

Drucker, D. C. (1956). The effect of shear on the plastic bending of beams, Journal of Applied
Mechanics, 23, 509-514.

Duan, L., & Chen, W. F. (1990). A yield surface equation for doubly symmetrical sections. Eng.
Struct., 12(2), 114-119.

ECCS. (1984). Ultimate limit state calculation of sway frames with rigid joints. Technical committee
8 — Structural Stability Technical Working Group 8.2., Publication No. 33. European Convention

for Constructional Steelwork.

Eldukair, Z. A., & Ayyub, B. M. (1991). Analysis of recent U.S. structural and construction failures. J.
Perf. of Constr. Fac., ASCE, 5(1), 57-73

207



Ellingwood, B. (2006). Mitigating risk from abnormal loads and progressive collapse. J. Perform.
Constr. Facil., 20 (4), 315-323.

Ellingwood, B., & Dusenberry, D. O. (2005). Building design for abnormal loads and progressive
collapse, Journal of Computer-Aided Civil and Infrastructure Engineering, 20(3), 194-205.

Ellingwood, B. (2005). Load combination requirements for fire-resistant structural design. J. Soc.

Fire Protection Engrg. 15(1), 43-61.

Ellingwood, B. (2005). Risk-informed condition assessment of civil infrastructure: state of practice

and research issues. J. Struct. & Infrastruct. Engrg., 1(1), 7-18.

Ellingwood, B., Rosowsky, D.V., Li, Y. & Kim J. H. (2004). Fragility assessment of light-frame
wood construction subjected to wind and earthquake hazards. J. Struct. Engrg., ASCE, 130(12),
1921-1930.

Ellingwood, B. (2001). Acceptable risk bases for design of structures. Progress in Struct. Engrg. and
Mat., 3(2), 170-179.

Ellingwood, B. & Tekie P. B. (2001). Fragility analysis of concrete gravity dams. J. Infrastructure
Systems, ASCE, 7(2), 41-48.

Ellingwood, B. (2001). Earthquake risk for building structures. Reliability Engrg. & System Safety,
74(3), 251-262.

Ellingwood, B. (2000). LRFD: implementing structural reliability in professional practice. Engrg.
Struct., 22(2), 106-115.

Ellingwood, B., MacGregor, J. G., Galambos, T. V., & Cornell, C. A. (1982). Probability-based load
criteria: Load factors and load combinations. J. Struct. Div., ASCE, 108(5), 978-997.

Ellingwood, B., & Leyendecker, E.V. (1978). Approaches for design against progressive collapse. J.
Struct. Div., 104(3), 413-423.

Ellyin, F., & Deloin, R. (1972). The effect of shear on yielding of structural members. Int. J. Solids
Structures, 8, 297-314.

Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess A. (2000). Prognostics, the real issues involved
with predicting life remaining. The IEEE Aerospace Conference Proceedings, 6, 457-469.

Espion, B. (1986). Nonlinear analysis of framed structures with a plasticity mined element. Computer
and Structures, 22(5), 831-839.

208



Essa, H., & Kennedy, D. J. (1994). Station Square Revisited: Distortional Buckling Collapse.
Canadian Journal of Civil Engineering, 21(3), 377-381.

Faella, C., Piluso, V., & Rizzano, G. (2000). Structural steel semirigid connections-theory, design
and software, CRC Press, Boca Raton.

Feld, J. & Carper, K. L. (1996). Construction failure. 2" Edit, New York : John Wiley and Son.

FEMA-273. (1997). Guidelines for the seismic rehabilitation of buildings. Federal Emergency
Management Agency (FEMA), USA.

FEMA-259. (1995). Engineering principles and practices for retrofitting flood prone residential
buildings. Federal Emergency Management Agency (FEMA), USA.

FEMA-267. (1995). Interim Guidelines: Evaluation, repair, modification and design of steel moment
frames, Report No. SAC-95-02, USA.

FEMA-316. (2000). Design and construction guidance for community shelters. Federal Emergency
Management Agency (FEMA), USA.

FEMA-355C. (2000). Systems Performance of Steel Moment Frames Subject to Earthquake Ground
Shaking. Federal Emergency Management Agency (FEMA),USA.

FEMA-403. (2002). World Trade Center building performance study: Data collection, preliminary
observations and recommendation. Federal Emergency Management Agency (FEMA) Regin II,
New York, N.Y. USA.

Fintel, M., & Schultz, D. M. (1979). Structural integrity of large panel building. ACI Journal of
American Concrete Institute, 76(5), 583-620.

Galambos, T.V. (1998), Guide to Stability Design Criteria for Metal Structures, 4™ Edition, John
Wiley & Son, Inc.

Galambos, T. V., Ellingwood, B., McGregor, J. G., & Cornell, C. A. (1982), Probability-based load
criteria: Assessment of current design practice. J. Struct. Div., ASCE, 108(5), 957-977.

Gong, Y. (2003). Performance-based design of building frameworks under seismic loading, PhD

Thesis, University of Waterloo, Canada.

Gradshteyn, 1. S., & Ryzhik, 1. M. (2000). Tables of Integrals, Series, and Products, 6th ed., San
Diego, CA: Academic Press, 1132.

Green, A. P., & Hundy, B. B. (1957). Plastic yielding of I-beams—Shear loading effects analyses.
Engineering, 184, 74-76 and 112.

209



Grierson, D.E., Safi, M., Xu, L., & Liu, Y. (2005). Simplified Methods for Progressive-Collapse
Analysis of Buildings, Proceedings of the 2005 Structures Congress and the 2005 Forensic
Engineering Symposium, April, New York, N. Y.

Grierson, D. E., Xu, L., & Liu, Y. (2005). Progressive-failure analysis of buildings subjected to
abnormal loading, Journal of Computer-Aided Civil and Infrastructure Engineering, 20(3), 155-
171.

Grierson, D. E. (2003), Designing Buildings Against Abnormal Loading, in Progress in Civil and
Structural Engineering Computing, Edited by B.H.V. Topping, Saxe-Coburg Publications,
Scotland, 37-62.

Grierson, E. D. (2002). Structural Plasticity, Civ.E. 705 Course Notes, University of Waterloo,
Waterloo, On., Canada.

Grierson, D. E., & Abdel-Baset, S. B. (1977). Plastic analysis under combined stresses, Journal of
Engineering Mechanics Division, ASCE, 103(EM5), 837-854.

Griffiths, H., Pugsley, A., & Saunders, O. (1968). Report of the inquiry into the collapse of flats at
Tonan Point, Canning Town. Her Majesty’s Stationary office, London, United Kingdom.

Gross, J. L. & McGuire, W. (1983). Progressive collapse resistant design. J. Struct. Engrg., 109(1), 1-
15.

GSA. (2003), Progressive collapse analysis and design guidelines for new federal office buildings and
major modernization projects. Office of Chief Architect, General Services Administration,

Washington, D. C.

Gupta, A., & Krawinkler, H. (1999), Seismic demands for performance evaluation of steel moment
resisting frame structures. John A. Blume Earthquake Engrg. Ctr. Rep. No. 132, Dept. of Civil

Engineering, Stanford University, Stanford, California.

Hall, W. J., & Newmark, N. M. (1957). Shear deflection of wide-flange steel beams in the plastic
range. ASCE Transactions, 122, 666-687.

Hamburger, R. O., Hanson, R. D., Mahoney, M., & Rojahn, C. (2002). Performance-based design: A

practical approach to protecting infrastructure. Modern Steel Construction, June Issue.

Hartwig, R. P. (2005). September 11, 2001, One Hundred Minutes of Terror that Changed the Global
Insurance Industry Forever, http://server.iii.org/yy obj data/binary/692822 1 0/septl1paper.doc.

210



Hasan, R., Xu, L., & Grierson, D. E. (2002). Push-over analysis for performance-based seismic

design. Journal of Computers & Structures, Pergamon, 80, 2483-2493.

Hawkins, N. M., & Mitchell, D. (1979). Progressive collapse of flat plate structures. ACI Journal of
American Concrete Institute, 76(7), 775-808.

Heyman J, & Dutton VL. (1954). Plastic design of plate girders with unstiffened webs. Welding and
Metal Fabrication, 22, 256.

Hibbeler, R. C. (2004). Statics and mechanics of materials, the 2™ Edition, Prentice Hall, Inc., New

Jersey.
Hibbeler, R. C. (2002). Structural analysis, the 5" Edition, Prentice Hall, Inc., New Jersey.

Hinman, H. (1997). Lessons from the Oklahoma City Bombing: Defensive Design Techniques,
ASCE, New York.

Hodge, P. G. (1959). Plastic analysis of structures. McGraw-Hill Book Company, Inc., New York.

Hodge, P. G. (1957). Interaction curves for shear and bending of plastic beams. Journal of Applied
Mechanics, 24, 453-456.

Holtz-Eakin, D. J. (2005). Macroeconomic and Budgetary Effects of Hurricanes Katrina and Rita,
Congressional Budget Office: http://www.cbo.gov/showdoc.cfm?index=6684&sequence=0.

Huber A. W., & Beedle L. S. (1954). Residual stress and the compressive strength of steel. Welding
Journal, 33(12), 589-614.

Iffland, J. S. B., & Birnstiel, C. (1982). Stability Design Procedures for Building Frameworks,
Research Report, AISC Project No. 21.62, America Institute of Steel Construction, Chicago, IL.

Jaspart, J. P. (2002). Design of structural joints in building frames. Prog, Struct. Engng Mater., 4, 18-
34.

Jones, N. (1995). Quasi-static analysis of structural impact damage. J. Construct. Steel Research, 33,
151-177.

Jones, C. P., & Nathan, N. D. (1990). Supermarket roof collapse in Burnaby, British Columbia,

Canada. Journal of Performance of Construction Facilities, 4(3), 142-160.

Kaewkulchai, G. & Williamson, E. B. (2006). Modeling the impact of failed members for progressive

collapse analysis of frame structures. J. Perform. Constr. Facil., 20 (4), 375-383.

211



Kaewkulchai, G., & Williamson, E. B. (2004). Beam element formulation and solution procedure for

dynamic progressive collapse analysis. Computers and Structures, Elsevier, 82, 639-651.

Kasai, K., & E. P. Popov (1986). General behaviour of WF steel shear link beams. J. Struct. Engrg.,
ASCE, 112(2), 362-382.

Khajehpour, S. & Grierson D. E. (2003). Profitability versus safety of high-rise office buildings.
Journal of Structural & Multidisciplinary Optimization, Springer-Verlag, 25(4), 279-293.

King, W.S., White. D. W., & Chen, W. F. (1992). Second-order inelastic analysis methods for steel-
frame design. J. Struc. Engrg, ASCE, 118(2), 408-428.

Kishi, N., & Chen, W. F. (1987). Moment-Rotation of Semi-Rigid Connections. Structural
Engineering Report, No. CE-STR-87-29, School of Civil Engineering, Purdue University, West
Lafayette, Indiana.

Kishi, N., Komuro, M., & Chen, W. F. (2004). Four-parameter power model for M-0 curves of end-
plate connections, ECCS/AISC Workshop Connections in Steel Structures V: Innovative Steel

Connections, June, Amsterdam, The Netherlands.

Koh, C. G., Qiao, G. Q., & Quek, S. T. (2003). Damage identification of structural members:

Numerical and experimental studies. Structural Health Monitoring, 2(1), 41-55.

Kusuda, T., & Thurlimann, B. (1958). Strength of Wide Flange Beams under Combined Influence of
Moment, Shear and Axial Force. Frits Engineering Laboratory Report No. 248.1. Lehigh

University.

Lay, M. G., & Galambos, T. V. (1964). Tests on beam and column sub-assemblages. Frits
Engineering Laboratory Report No. 278.10, Lehigh University.

Leonards, G. (1982). Investigation of failures. J. Geotech. Engrg. Div., ASCE, 108(2), 185-246.

Liew, J. Y. W., Yu, C. H,, Ng, Y. H., & Shanmugam, N. E. (1997). Testing of semi-rigid unbraced

frame for calibration of second-order inelastic analysis. J. Construct. Steel Res. 41(2/3), 159-195.

Liu, Y., & Xu, L. (2005), Storey-based stability analysis of multi-storey unbraced frames. Structural

Engineering and Mechanics — An International Journal, 19(6), 679-705.

Liu, Y., Xu, L., & Grierson, D. (2003). Performance of buildings under abnormal loading, Response

of Structures to Extreme Loading, Toronto, Canada.

Longinow, A., & Mniszewski, K. R. (1996). Protecting buildings against vehicle bomb attacks.

Practice Periodical on Structural Design and Construction, 1(1), 51-54.

212



Lui, E. M., & Chen, W. F. (1986). Analysis and behaviour of flexibly joined frames. Engineering
Structures, 8(2), 107-118.

Manjoine, M. J. (1944). Influence of rate of strain and temperature on yield stress of mild steel. J.

Appl. Mech., 11, 211-218.

Marjanishvili, S. & Agnew, E. (2006). Comparison of various procedures for progressive collapse

analysis. J. Perform. Constr. Facil., 20 (4), 356-374.

Marjanishvili, S. M. (2004). Progressive analysis procedure for progressive collapse. Journal of
Performance of Constructed Facilities, ASCE, 18(2), 79-85.

McGuire, W., Gallagher R. H., & Ziemian, R. D. (2000). Matrix structural analysis, 2™ Edition. John
Wiley & Sons, Inc. New York.

Mlakar, P. F., Dusenberry, D. O., Harris, J. R., Haynes, G., Phan, L. T., & Sozen, M. A. (2003). The
Pentagon Building Performance Report, Structural Engineering Institute, ASCE, Reston, Virginia,
United States.

Monforton, G. R. & Wu, T. S. (1963). Matrix analysis of semi-rigid connected frames. J. Struct. Div.,
89(6), 13-42.
NAASRA. (1990). Highway bridge design specification, National Association of Australian State

Road Authorities.

Nataraju, M., Adams, D. E., & Rigas, E. J. (2005). Nonlinear dynamical effects and observations in
modeling and simulating damage evolution in a cantilevered beam. Structural Health Monitoring,
4(3), 259-282.

NBS. (1970). Guide criteria for the evaluation of operation breakthrough housing systems. Accession

Numbers PB-212055, 212056, 212058, National Bureau of Standards, Springfield, Va.

NRCC. (1995). National Building Code of Canada, National Research Council of Canada, Ottawa,
Ont., Canada.

NRCC. (1970). Canadian structural design manual, Supplement No. 4, Publ. No. NRC 11530,
National Building Code of Canada, National Research Council of Canada, Ottawa, Ont.

Orbison, J.G., McGuire, W., & Abel. J. F. (1982). Yield surface application in nonlinear steel frame
analysis. Computer Methods in Applied Mechanics and Engineering, 33, 1-3.

Powell, G. H. & Chen, P. F. S. (1984). 3D beam-column element with generalized plastic hinges. J.
Eng. Mech., ASCE, 112(7), 627-641.

213



Ranshi, A. S., Chitkara, N. R., & Jonhson, W. (1973). Limit loads for the plastic bending in plane

strain of cantilevers containing rectangular holes under end shear. Int. J. Mech. Sci., 15(1), 15-35.

Richard, R. M. & Abbott, B. J. (1975). Versatile elastic-plastic stress-strain formula. J. Engrg. Mech.
Div., ASCE, 101(4), 511-515.

SA. (1998). AS4100, Steel structures. Standards Australia, Sydney, Australia.
SEI (Structural Engineering Institute), (2003). The Pentagon Building Performance Report, ASCE,
Reston, Virginia, USA.

Smilowitz, R., Hapij, A., & Smilow, J. (2002). Bankers Trust Building, in World Trade Center
building performance study: Data collection, preliminary observations, and recommendations,

FEMA 403, FEMA and ASCE.

Tapia, C. (2001). True Loss from Sept. 11 Terrorist Attacks on U.S. is Immeasurable, As Estimates of

Potential Insured, www.insurancejournal.com/magazines/west/2001/09/24/coverstory/18250.htm.
Taylor, D. A. (1975). Progressive collapse. Can. J. Civ. Eng., 2(2), 571-529.

Timoshenko, S. (1955). Strength of materials—Part I: Elementary theory and problems, 3™ Ed. D.

Van Nostrand Company, Inc., New Jersey.
Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability, New York: McGraw-Hill.

TMS5-1300. (1990). Structures to Resist the Effects of Accidental Explosions. Department of Army,
Navy and Air Force, Washington, D. C.

Troutman, J. L. (1996). Variational calculus and optimal control: optimization with elementary

convexity. Springer-Verlag, Inc., New York.

UBC. (1994), Structural Engineering Design Provisions, Uniform Building Code, Vol. 2, International
Building Officials.

Vlassis, A. G., Izzuddin B. A., Elghazouli, A. Y., & Nethercot, D. A. (2006). Design oriented
approach for progressive collapse assessment of steel framed buildings. Journal of the

International Association for Bridge and Structural Engineering, 16(2), 129-135.

Wada, A., Ohi, K., Suzuki, H., Kohno, M., & Sakumoto, Y. (2006). A study on the collapse control
design method for high-rise steel buildings. Journal of the International Association for Bridge
and Structural Engineering, 16(2), 137-141.

Wang, C. M. (1995). Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions,
ASCE, J. Engrg. Mech., 121(6), 763-765.

214



Wang, D. & Haldar, A. (1997). System identification with limited observation and without input. J.
Engrg. Mech., ASCE, 123(7), 504-511.

Whittaker, A., Hamburger, R., Comartin, C., Mahoney, M., Bachman, R., & Rojahn, C. (2005).
Performance-Based Engineering of Buildings and Infrastructure for Extreme Loadings,

http://www.atcouncil.org/ATC58Technical Papers.shtml.

Wolfram, S. (1996). The Mathematica, Version 3, Cambridge University Press.

Xu, L. (1994). Optimal Design of Steel Frameworks with Semirigid Connections, PhD Thesis,
University of Waterloo, Waterloo, ON., Canada.

Xu, L. (1992). Geometrical stiffness and sensitivity matrices for optimization of semi-rigid steel

frameworks. Structural Optimization, 5(1-2), 95-99.

Xu, L., & Liu, Y. (2002). Story-based effective length factors for unbraced PR frames. Engineering
Journal, AISC, 39(1), 13-29

Xu, L., Liu, Y., & Grierson, D. E. (2005). Nonlinear analysis of steel frameworks through direct
modification of member stiffness properties., Advances in Engineering Software, 36(5), 312-324.

Xu, L., & Liu, Y. (2006). Inelastic analysis of steel frames accounting for flexural and shearing

stiffness degradations, Advanced Steel Construction — An International Journal. (Accepted)

Yau, C. Y., & Chan, S. L. (1994). Inelastic and stability analysis of flexible connected steel frames by
spring-in-series model. J. Struct. Eng., ASCE, 120(10), 2803-2819.

Zalka, K. A., & Armer, G. S. T. (1992). Stability of large structures. Butterworth-Heinemann Ltd,

Linacre House, Jordan Hill, Oxford.

Ziemian, R. D., McGuire, W., & Deierlein, G. G. (1992), Inelastic limit states design. Part I: Planar
frame structures. J. Struct. Engrg., ASCE, 118(9), 2532-2549.

215





