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Abstract

Antenna problems are traditionally treated as open-region problems and solved by
formulating one or two integral equations, whose solutions can be found analyti-
cally or numerically. Unlike most previous techniques available in the literature,
this thesis presents an accurate and versatile technique for many canonical an-
tenna problems. The proposed method treats the models, which are very close to
the actual structures for practical engineering applications, in a very rigorous way.
After properly introducing a boundary, the open-region antenna problems are trans-
formed into “closed-region” guided-wave problems, which are then solved by the
full-wave, formally exact modal expansion method. The distinguishing advantage
of this approach to many antenna problems is that it can easily take into account

all the effects of the feed line, junction discontinuities, and conductor thickness.

A number of techniques are introduced in this thesis to ef._ciently implement the
modal expansion analysis. The “perfectly matched boundary”, which is the com-
bination of an electric wall and a magnetic wall, is used to truncate the free-space
domain. An improved formulation for cascaded waveguide junctions is developed

to save the computational effort involved in the modal expansion analysis.

Successful applications of the technique to various monopole and microstrip
patch antennas are demonstrated. The input impedance and radiation pattern
of various monopole antennas, including conventional monopole, sleeve monopole,
dielectric-buried monopole, multilayer insulated monopole, and monopole on a fi-
nite ground plane, are thoroughly investigated by the proposed modal expansion
method. Single and stacked circular and annular-ring microstrip patch antennas
are also studied in detail in the thesis. Extensive computed results are presented

for all the antenna structures considered.
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Chapter 1

Introduction

Antennas are a fundamental link in the ability to communicate with and sense
the world around us. They are the windows upon which complex electronic sys-
tems must rely. Every wireless communication system needs two antennas to fulfill
the task of transmitting and receiving electromagnetic energy which usually con-
tains the information to be exchanged. An antenna acts as the electromagnetic
transducer which is designed to convert guided waves within a transmission line
to radiated free-space waves or to convert free-space waves to guided waves. The
antenna serves a communication system the same purpose that eyes and eyeglasses

serve a human.

Since Heinrich Hertz experimentally verified in 1887 the wave phenomena pre-
dicted by Maxwell’s electromagnetic theory, an immense variety of antenna struc-
tures have been built and extensively investigated. Various types of antenna struc-
tures are used in many aspects of our daily lives. The size of antennas can vary
significantly from a couple of centimeters to hundreds of meters in diameter, while

their physical shapes can also be quite diverse. The physical shape and size of an
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antenna determine its performance in free space. The performance of an antenna
plays an important role in the overall performance of a communication system.
A good design of the antenna can relax system requirements and improve overall

system performance.

Numerous books have been published on this old and yet vivid subject—
analysis and design of antennas. Accurate analysis of various antenna structures
not only provides better physical understanding of the existing antennas, but also is
the fundamental part of designing these antennas. Furthermore, theoretical analy-
sis is the main means to suggest novel antenna structures. Generally, the theoretical
analysis of antennas is carried out into two steps: the formulation of a theoretical
model which corresponds, as closely as possible, to the actual antenna, and the
analysis of the model using a particular mathematical technique. The theoretical
model used to characterize the antenna usually involves approximations introduced
to simplify the analysis. For example, for the cylindrical dipole antenna, the first
antenna which Hertz used to perform his famous experiments, an idealized source
is often used-the so-called “delta-function” generator. This source does not corre-
spond to any realizable experimental structure. For planar microstrip antennas, the
infinitely thin patch and infinitely large ground plane are usually assumed in their
models. Moreover, the equations involved are often also approximate. For instance,
for the cylindrical dipole antenna, the thin-wire approximation is often invoked to
simplify the exact integral equation. Approximations like these mentioned above,
lead to the discrepancies between theoretical and experimental results, and it is
often difficult to quantitatively account for the effects of the different approxima-

tions.

With the advent of high-speed computers, accurate analysis of various antennas

is becoming a reality, and the discrepancies between theoretical and experimental
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results are being greatly decreased. The method of moments [1] presented about
three decades ago dominates the analysis and design of most small antennas. Re-
cently, the finite-difference time-domain (FDTD) method [2] has been attracting
increased attention due to its distinctive advantages. These methods are very gen-
eral and can handle any arbitrary antenna structures in theory, but both require
extensive computer resources. Their efficiency is still a problem as far as design is

concerned at this stage of computer development.

This thesis is primarily concerned with the accurate analysis of two different
types of antenna. One is the widely-used cylindrical monopole antenna and the
other is the microstrip patch antenna of circular shape. There are extensive works
reported on these two antennas in the past, and they will be individually reviewed
in the next section. Unlike most previous work, which directly dealt with the
open-region antenna problems, this thesis presents a new technique: transform the
open-region antenna problems to “closed-region” guided-wave problems and solve
the resulting waveguide problems by the modal expansion method. The trans-
formation is realized by simply introducing an appropriate boundary to partially
enclose the antenna structure. The purpose of employing this transformation is to
facilitate expressing the electromagnetic fields by discrete modal functions weighted
by some unknown coefficients. As will be seen later, this modal expansion method
can rigorously account for the effect of the feed line, which was often approximated
by a delta voltage or a line current in most previously reported works. Further-
more, finite thicknesses of conductors can also be taken into consideration in this
technique. Therefore, the models with which this thesis is primarily concerned are
very close to those used in practical applications. The modal-expansion method
employed in the thesis as the mathematical treatment is formally exact and can

provide very accurate results.
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1.1 Review of Literature

This section reviews the extensive work devoted to cylindrical monopole antennas
and microstrip patch antennas with circular geometries. The cylindrical monopole
antenna, which will be briefly reviewed in the first subsection, has been widely used
in communication systems, remote sensing, probing, measuring and medical sys-
tems. The microstrip planar antennas has been evolving into one of the most useful
antenna structures during the past two decades and will be separately reviewed in

the second subsection.

1.1.1 Monopole Antennas

The problem of a monopole fed through an infinite conducting ground plane by
a coaxial line has received extensive attention in the literature. The conventional
model with which most previous research works dealt is illustrated in Figure 1.1,
where the monopole is actually the extended inner conductor of the coaxial feed

line over the ground plane.

R.W.P. King carried out extensive investigations on this classical antenna prob-
lem; many useful data for practical applications are graphically and tabularly given
in his books (3], [4]. Chang [5] solved the problem of an electrically thick tubular
monopole driven by a voltage across a finite gap by formulating an integral equa-
tion for the current distribution on the monopole. Morris [6] presented a rigorous
mathematical analysis of a tubular monopole based on the model shown in Figure
1.1 by establishing a coupled pair of singular integral equations whose numerical
solution is not easily attainable. An accurate computation of the performance of
this monopole antenna by using the finite difference time domain method was per

formed by Maloney et al. [7]. Do-Nhat and MacPhie (8] introduced a full-wave
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e
.

h

Figure 1.1: Geometry of a conventional monopole antenna.

analysis of this monopole problem by the conservation of complex power technique

(CCPT).

The sleeve-monopole antenna is basically an extended structure of the conven-
tional monopole with the outer conductor of the coaxial feed line projected over
the ground plane. The projected sleeve acts as another tubular cylindrical antenna
which can be used to adjust the performance of the monopole. The sleeve-monopole
antenna has been widely used in wireless communication systems and remote sens-
ing due to its broad-band characteristics [9] and horizontally omnidirectional radi-

ation pattern.

The sleeve antenna was thoroughly investigated by Taylor [10] about 45 years
ago and some of his important results were summarized in King’s classic book [3].
King [3] and Taylor [10] employed the method of images and the superposition
theorem to determine the currents on the monopole and on the sleeve, but they did
not take into account the effect of the different radii of the monopole and the sleeve.
Recently, Rispin and Chang [11] introduced a simple thin-wire analysis for sleeve

antennas as well as other wire antennas by constructing the standing-wave current
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on the antenna surface. Wunsch [12] determined the impedance and radiation
pattern of the sleeve-monopole antenna by using a Fourier series representation of

its surface current.

The characteristics of a monopole antenna can be greatly influenced by coating
the monopole with a dielectric layer. An important experimental investigation was
carried out by Lamensdorf [13] to examine the effect due to the coating dielec-
tric. Several numerical techniques such as: the integral equation technique [14],
the moment method [15], and the Wiener-Hopf technique [16] were reported to

theoretically predict the input impedance of the dielectric-coated monopole.

A similar problem of a vertical monopole antenna partially or entirely buried
in a grounded dielectric substrate has attracted some attention [17], [18] because
the structure has found application such as a monopole submerged partially or
entirely in soil or water and as the feed structure of a microstrip antenna. Of
all the numerical techniques developed for this problem, the moment method in
conjunction with various integral equation formulations [17], [18] appears to be the
most rigorous one. Nevertheless, this technique involves numerical evaluation of
the Sommerfeld integral and most of the previous work is limited to the case of

thin monopoles.

Insulated antennas have found wide applications in subsurface communication,
geophysical exploration, and biomedical telemetry. The insulation layer between
the antenna and the ambient medium not only prevents a direct contact of the
antenna with its surrounding material and the leakage of electric charges into a
conducting medium, but also provides flexibilities in controlling the current distri-
bution on the antenna and the resulting radiation pattern and input impedance
[19]. An insulated linear antenna consists of a metal wire enclosed in a cylinder

that is usually composed of a low-loss dielectric material. When such a two-layered
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structure is immersed in an extended medium that is often characterized by a wave
number larger in magnitude than the wave number of the insulating material, the
radiation properties of the antenna differ significantly from those of the bare an-
tenna. Considerable theoretical and experimental investigations of the insulated
antenna have been performed by King [20], [21], Wu [22], and Lee [23], [24]. Unfor-
tunately, much of their work is restricted to the case where the complex permittivity
of the exterior medium is much greater than that of the insulating layer. Lee [23]
extended the applicable range of the transmission line solution based on a compli-
cated formulation. Furthermore, most attention of the previous work was focused

on the current and charge distributions along the insulated antenna.

Monpole antennas, as shown in Figure 1.1, are not physically realizable since
the ground plane, in reality, can not be of infinite extent. It is important and of
practical value to understand the effect of the finite ground plane on the monopole’s
performance. There are a number of techniques available in the literature for pre-
dicting the effect of diffraction by the finite ground plane on a monopole antenna.
As early as in 1930, Bardeen [25] determined the electromagnetic fields generated
by the current on a ground plane of small radius by using the integral equation
method. The input impedance of a monopole over a circular disk was experimen-
tally measured by Meier and Summers {26]. Leitner and Spence [27] and Hahn
and Fikioris (28] employed oblate spheroidal wave functions to study the effect of
the finite ground plane on the monopole’s radiation. A variational formula for the
impedance of a monopole on a large circular ground plane was derived by Storer
[29]. A hybrid method, which combines the moment method with the geometrical
theory of diffraction (GTD), was also successfully applied to this practical problem
[30]. Wait and Surtees [31] obtained an approximate expression for the impedance

of 2 monopole at the center of a circular disk on the flat earth. A similar problem of
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a monopole on a thick cylinder over a ground plane was studied by Yung and Butler
[32] by formulating coupled integral-differential equations for the evaluation of the
current distribution on the antenna surface and the electric field in the annular
aperture of the coaxial line feed. Richmond [33] developed the sinusoidal-Galerkin
moment method for the input impedance of a monopole antenna on a finite ground
plane. Weiner [34] carried out a thorough study for the input impedance and di-
rective gain of a monopole at the center of a circular ground plane whose radius
is small or comparable to a wavelength. Most of these works addressed above are

limited to the case of a monopole over a finite ground plane with zero thickness.

1.1.2 Microstrip Antennas

Microstrip antennas have been one of the most innovative topics in current an-
tenna theory and design, and are increasingly finding application in a wide range of
modern communication systems. A microstrip antenna consists of a metallic patch
residing on a grounded dielectric substrate. The patch is fed either by a microstrip
line or by a coaxial probe through the ground plane, as shown in Figure 1.2 for
the coaxial line feeding structure. The microstrip patch antenna has many unique
and desirable features such as compatibility with integrated-circuit technology, thin
profile, light weight, low-cost, conformability to a shaped surface, and easy fabrica-
tion into linear or planar arrays. Due to these features, microstrip patch antennas
have been extensively investigated experimentally, analytically, and numerically in

the past two decades.

The idea of the microstrip antenna dates back to the 1950’s [35], but it was not
until the 1970’s that serious attention was given to this element. Among a variety

of patch shapes, microstrip antennas with rectangular and circular patches are the
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Figure 1.2: A microstrip patch antenna fed by a coaxial line.

most-widely used in engineering applications. In the following, microstrip antennas

with circular geometries will be reviewed.

The first important theoretical work on microstrip antennas of regular shapes
was due to Lo et al. [36], who developed the cavity model to predict the impedance
and radiation pattern of rectangular and circular patch antennas. The Hankel
transform was used by Chew and Kong [37] and Araki and Itoh [38] to analyze
the circular microstrip disk antenna. A Green’s function technique was applied
by Yano and Ishimaru [39] to study the input impedance of a circular patch an-
tenna. Davidovitz and Lo [40] considered the effect of the off-centered feed probe
on the input impedance of a circular disk antenna. The moment method was also
employed by Bailey and Deshpande [41] and Kishk and Shafai [42] to study the
input impedance and radiation characteristics of a circular microstrip antenna. Ac-
curate characterization of microstrip antennas was conducted in [43] by the finite-
difference time-domain (FDTD) method. Radiation and scattering from a probe-fed

microstrip antenna was investigated by Aberle et al. [44]. The annular-ring mi-
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crostrip antenna has also been investigated; Chew [45] and Ali et al. [46] found
that annular-ring planar antennas can be excited in TM;,; mode for broad-band

operation.

It was realized quite early in the development of microstrip antenna technology
that patch antennas have a major limitation of narrow bandwidth. There are a
number of ways to circumvent this limitation. One way is use to a thick substrate,
which may excite a strong surface wave. Another way to broaden the bandwidth is
to use another passive patch that resonates at a frequency which is very close to that
of the driven patch. Nie et al. [47] carried out a study of the annular-ring-loaded
circular microstrip antenna. The loading annular-ring can widen the bandwidth
of a circular disk antenna. Circular microstrip antennas of stacked configurations
were proposed by Long and Walton [48] and studied by Tulintseff et al. [49] to
overcome the inherent narrow bandwidth limitation of the single circular patch
antenna. Stacked annular-ring structure was also experimentally investigated in

[50] for dual-frequency application.

Microstrip antennas on uniaxial substrates have been receiving attention in the
recent years since most substrates used at microwave frequencies exhibit anisotropy.
Due to its narrow-band nature, it is important to predict the effect of the substrate’s
anisotropy on the microstrip antenna’s resonant frequency. Pozar [51] and Nelson et
al. [52] studied the effect of the substrate’s anisotropy on a rectangular microstrip

antenna’s performance.

In most published works mentioned above, the coaxial feed line is often approxi-
mately modeled by an idealized probe current source; this is inadequate in correctly
predicting the input impedance when the thickness of the substrate is greater than
0.02), where Aq is the wavelength in free-space. Moreover, most previous works

neglected the finite thickness of the patch, which may have a noticeable effect on
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the antenna’s performances at millimeter-wave bands.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a unified formu-
lation for modeling a multilayer insulated sleeve monopole antenna. The geometry
of the monopole considered is quite general and will reduce to many practical an-
tennas under certain circumstances. Chapter 2 begin with an introduction of a
“perfect matched boundary” (PMB), which is simply a combination of an electric
wall and a magnetic wall. After that, a detailed formulation for determining the
input impedance and radiated field pattern of the general insulated sleeve monopole

antenna is given.

Chapter 3 is solely devoted to numerical results and discussions for various
monopole antennas. Considered in this chapter are the conventional monopole
with emphasis on characterizing the junction effect, the sleeve monopole antenna,
the dielectric-coated and -buried monopoles, the insulated monopole antenna and
a monopole over a finite ground plane. Extensive computed results are presented

and compared with results obtained by others.

Chapter 4 starts with the introduction of two useful techniques which will be
employed in the analysis of circular microstrip antennas. The first technique is an
improved formulation for two cascaded waveguide junctions. The other is a simple
technique for calculating the reflection coefficient of an open-ended waveguide. The
detailed formulation for a stacked annular-ring-loaded circular microstrip antenna

is then presented in this chapter.

Chapter 5 provides computed results for various microstrip antennas with cir-
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cular geometries. Considered in this category are a single circular disk fed by a
centered coaxial line, a circular patch antenna fed by an off-centered coaxial cable,
an annular-ring microstrip antenna, annular-ring-loaded circular patch antenna,
and a stacked circular microstrip antenna. Comparison of calculated results with
experimental data available in the literature is made and good agreement is ob-

served.

Chapter 6 is the last chapter of this thesis; it summarizes the major contributions

made in the dissertation and recommendations for further research work are given.



Chapter 2

Theoretical Formulation for

Monopole Antennas

This chapter presents a unified formulation for a general configuration of monopole
antennas. Considered in the category of the monopole antennas are the conventional
monopole with emphasis on the junction effect, the sleeve monopole, dielectric-
coated and -buried monopole antennas, multilayer insulated monopole antennas,
and a monopole over a finite ground plane. The unified formulation presented
below can handle all the monopole structures mentioned above except the last
one, which is solved by a slightly different treatment in the next chapter. This
chapter begins with the introduction of a “perfectly matched boundary” (PMB),
which is simply the combination of an electric wall and a magnetic wall. While
the PMB is simple in the form, the theoretical reflection factor of a plane wave
striking it is null at any frequency, any incidence angle and any polarization. After
employing this PMB, the open-region monopole antenna problem is transformed

into a “closed-region” guided-wave problem, which is then formulated in detail

13
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by the modal expansion method. An efficient recursive algorithm based on 2 by
2 matrix multiplications is introduced to implement the analysis of an arbitrary
multilayer structure. Expressions for calculating the far-field radiation pattern are

derived. Chapter 3 will be solely devoted to extensive numerical results for all these

practical examples.

2.1 Perfectly Matched Boundary

The basic idea of the PMB is very similar to the even-odd excitation theory which
has been widely used for symmetric structures such as branch-line directional cou-
plers. Asillustrated in Figure 2.1, the PMB is simply the combination of an electric
wall and a magnetic wall. The reflectionless properties of a plane-wave incident on
a PMB will be briefly proved here.

Consider a plane-wave incident on a perfectly conducting plate [Figure 2.1(a)],
which coincides with the z — y plane at z = 0. The electromagnetic fields of an
incident plane wave are

E; = Egexp(—jk: - 7) (2.1)
g = wi#ié,- x Eio exp(—jk; - ) (2.2)

where Eio = £E. + yEy + 2E;0 and I:, = &k, + gk, + zk.. The electromagnetic
fields of the reflected wave can be easily found [53] and have the form of

E: = E:gexp(—jk: - 7) (2.3)

rre 1 7e e .7e
Hr - Ekr X ErO exp(_Jkr ° ‘F') (2'4)

where ) = —£E. — §E, + £Ezo and k¢ = &k, + gk, — zk,.
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Similarly, the reflected electromagnetic fields of the same plane wave (2.1) and
(2.2) striking a magnetic wall [Figure 2.1(b)] are

E™ = Emexp(—jk™ - 7) (25)
- 1 - - -
B = k7 x BT exp(—3k7 - 7) (2.6)

where B = £E.o + By — 2E.0 = —E® and k™ = &k, + gk, — sk, = k.

Plane Wave Incident

Plane Wave Incident M.W.
E.W.
. |
0 :z l 0 z
(a) * (b)
Plane Wave Incident PMB
”I 0 o Z

4

NO REFLECTION -~

()
Figure 2.1: Ilustration of perfectly matched boundary.

It is obvious that the reflected wave in (2.5) and (2.6) for a magnetic wall ex-
actly cancels that in (2.3) and (2.4) for an electric wall. Therefore, if we sum up

these two reflected waves, we have no reflection. That is to say, the PMB, the
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combination of an electric wall and a magnetic wall, will produce a perfectly reflec-
tionless (matched) boundary for plane waves of any frequency, arbitrary incidence,
and arbitrary polarization. This PMB will be used to transform the open-region
monopole antenna problem into a “closed-region” guided-wave problem in the next

section.

2.2 General Formulation

2.2.1 Description of the Problem

The theoretical model that we employ to characterize an N-layer insulated sleeve
monopole antenna fed by a coaxial transmission line is shown in Figure 2.2, where
a perfectly matched boundary (PMB) is placed parallel to the ground plane at a
distance d from the end of the monopole. It is noted that there is a step junction
between the monopole and the coaxial feed line [21]. An infinite grounded dielectric
substrate of thickness ¢ is also included in the configuration. Therefore, the struc-
ture of the problem shown in Figure 2.2 is quite general and will reduce to many
special cases under certain conditions. All these resulting practical structures will

be thoughly studied in the next chapter.

As illustrated in Figure 2.2, the inner and outer radii of the coaxial feed line are
ar and by, respectively, while the radius of the monopole antenna is ao (ag < ay).
The inner and outer radii of the sleeve are assumed to be a; and a,, respectively,
with their difference a,—a; being the thickness of the sleeve. The dielectric constant
in region ¢ (2 = 1, 2,---, N + 1) is ;. For simplicity of presenting the formulation
below, we assume that the thickness of the dielectric substrate is equal to or less
than the length of the sleeve, i.e., t < I.
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Figure 2.2: General configuration of a multilayer insulated sleeve monopole antenna.
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As introduced in the previous section, the PMB, which is the combination of
an electric wall and a magnetic wall, can completely absorb a plane wave of any
frequency, any incident angle, and any polarization. Moreover, the major radiation
of the monopole antenna occurs in the radial direction and the radiated power in
the vertical direction is null. Therefore, it is expected that the introduced PMB
does not have significant effect on the antenna’s radiation. The analysis of the N-
layer insulated sleeve monopole antenna requires the solution of the two problems:
one with a parallel electric wall and the other with a parallel magnetic wall; they
are both solved by the modal expansion method. The reflection coefficient at the
feed point, which is related to the antenna’s input impedance, and the current
distribution, which is used to compute the far-region radiation pattern, are then
obtained by halving the sum of these two results. For example, the total reflection

coefficient I';, in the feed coaxial waveguide is calculated using
1 (-4 m
Lin = 5(511 +511) (2.7)

where S5, and ST} are the reflection coefficients of the dominant TEM mode in the
feed line with an electric wall and a magnetic wall placed at a distance d from the
top of the antenna, respectively. Since the formulation for the case of the magnetic
wall is very similar to that of the electric wall, we will only give the formulation for
the electric wall in the following.

Referring to Figure 2.2, the whole structure of interest is divided into (N + 3)
subregions: I, II, 1, 2,---, N and N + 1. Since the structure and the incident domi-
nant TEM mode in the coaxial feed waveguide are axi-symmetric (no ¢-variation),
only three field cc;mponents (E., E,, and Hy) are non-zero. The detailed expressions

for the electromagnetic fields in all these regions are given in the next subsection.
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2.2.2 Field Component Expressions

Starting with Maxwell’s curl equations

V x H = jwekE (2.8)

—

V x E=—jupH (2.9)

and using the relation % = 0, one can derive the following expressions for three

non-zero field components E,, E,, and H,.

-10

B = Goeaz (2.10)
118

: = j__ue;a_p(pH") (2.11)

9%Hy + 18H, + 0%H,
0p®2 p Op 922
It is noted that the exp(jwt) time dependence is assumed and suppressed for all

1
+ (k% - ;)H,ﬁ = 0. (2.12)

the fields throughout this thesis. Based on these relations, one has no difficulty in
finding the field expressions for all the subregions in Figure 2.2.

For the coaxial feed waveguide (Region I), the transverse electromagnetic fields

with respect to the z-axis can be represented by

Ny
E] = Z[A[in exp(Yin(z — D)) + Arrn exp(—=7ra(2z — D)))ern, (2.13)
Ny
Hj = Z_:[_Ah'n exp(Yin(z — D)) + Arrn exp(—71a(2z — D))|Y1nern, (2.14)

where Arn = (Arni1, Arniz, -+, Aniv,)T and Apn = (A1, Are2,y -+, Aren,)T, with T
representing the transpose operation, are the incident and reflected modal ampli-
tude column vectors in the coaxial feed waveguide; D = d+h+1+3, y1n = jB1n and

Yr. are, respectively, the propagation constant and modal admittance for the feed
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line. Npis the number of modes considered in the feed waveguide. The expressions
for the normalized transverse modal electric field ej,, and for the propagation con-
stant 1, and modal admittance Y7, of coaxial waveguide can be found in Appendix
A.

In Region II, we have

W AT amzyfldy(vEp)

EII — N
* = & FuedTd ™ d rHas) (2.15)
Nir I
Ir _ ent AL nwz Ji(vH)p)
Ep —'gljweoefldzsm d Jl(’)’,{IU-O) (2.16)
Nyr II
I = Z en Ay nrz Ji(vHp) )

d 74 Ji(vife)
where €, =1 for n = 0; and €, = 2 for n > 0, (vX1)? = kK2ef — (nw/d)?, Jo and

n=0

Ji are the first kind Bessel functions of order 0 and 1, respectively. AX is the
expansion coefficient to be determined and Nyr+ 1 is the number of modes retained

in Region II.

The expressions for the electromagnetic fields in Region 1 can be obtained by
employing the resonator method [54], [55], which expresses the electromagnetic

fields by superimposing three suitably chosen standing-wave solutions:

1 [Mu Mz cos(anz)
El =T n n n n = n€inz Y
' jwe (,;E:E[Ul (P)Asn + Vinlp) By ]cos D -+ ECI €1 (p)c s(anD)
(2.18)
-1 M gy nwz
E! = ! n B, —_
P jw€1 ';’ 'YlnD [Uln(p)Al + n(p) 1 ] sin D
1 Mua an sin(anz)
t roe 2—21 Cinein,(p) cos(@.D) (2.19)
M nrz W2 cos(anz)

-1 ,
H; = E T[U{n(p)Aln + I/].n(p)BIn] cos T + Z Clnelﬂp(p) COS(CL,-.D) (2'20)
n=1

n=0 /ln
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where y2, = k3e,1 —(nn/D)?, e1n:(p) and ey,,(p) are the longitudinal and transverse
electric-field components in a coaxial waveguide whose inner and outer radii are ao

and a;, respectively; @, = jBi. is the propagation constant of this waveguide.

Moreover,
Jo(Yinp)Yo(Yingi-1) — Yo(Yinp)Jo(Yinai-1)
Uin = 2.21
() Jo(Yina: ) Yo(7inti-1) — Yo(7ina:)Jo(Yinci=1) (2.21)
Kn(p) — — JO(7inp)n(7inai) — }’O(7inP)JO(7inai) (2.22)

Jo(Yin@:)Yo(Yinai-1) — Yo(7inai)Jo(in@i-1)
for 2 = 1,2,-.-,N. In (2.19) and (2.20) U},.(p) and V{,(p) indicate the derivative

of Uya(p) and Vin(p) with respect to p.
Similarly, the electromagnetic fields in Region 2 are found as follows:

1 X nrz

2 = n A 7 + n n Y 2.2
E? Goes ;[Uz (p)Azn + Van(p)Bzy] cos 7 (2.23)
o — 5“: o U, (p)Azn + V. (p)Ban] sin == (2.24)
P = jwe, = 2L 2n\P)A2n 2n\P)D2n T .
Y, —1 nrz
Hg = Z —%-[Uén(p)Azn + ‘G;(p)an] cos T (225)
n=0 n

with L = d + k, and

T2n = kg€r2 — (n7/L)%.

For Region i (¢ = 3, 4, ---, N), we can get the following field component

expressions:
i 1 & nrz
E: == Uin Ain'*'Vin Bl cos — 2.26
e n;[ (p) (p)Bin] cos — (2.26)
Ei = —lg:‘ nT [U’()A +V'( )B]‘ n_g (227)
# T Tow  E e M+ ValP)Bnlsin T -
N;
: -1 nrz
Hy = 3 —1Uin(p)Ain + Via(p) Bin] cos —— (2.28)

n=0 Yin
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where H = d + h + I, Uin(p) and Vis(p) are defined in (2.21) and (2.22) with
72, = k3e; — (nw/H) fori= 3,4, ---, N.

Finally, the electromagnetic field components in Region N + 1 can be found by

taking the radiation condition at p = oo into account.

Wn Z H(z) n

BN = ZA(N-H)n () (g) 1o (2.29)

]weN+1 n—0 (Z) Ho (‘7(N+1)naN)

. W!(z) Hfz)(‘Y(NH)nP)
EN+ = Z A 41y @ (2:30)

JWeN11 20 er(2) YN+ o (YN +1)n0N)
N, H(z) -

Y = 3 Aoy Wal2) 1 ((Z§N+” p) (2.31)

=0 YN+1)n Ho ('7(N+1)"a'N )

where Héz) and ng) are the outgoing second kind Hankel functions of order 0 and

1, respectively, and

cos(kA z) cos(k2t)/ cos(kAT), T>z>0 ]

Wa(z) = [
cos[kl (H - z)), H>z>T

e,(z)=[1’ T>z>0 }

€gy H>2z>T
and T = H —t. k&, and k2 can be found by solving the following transcendental

equation

D
¥4 taa(KAT) = ~ 552 tan (k2,1

with Yy i1)n = kaev+1)r — (k% )? = Ke(viayrers — (K2,)2. After having found all the
field expressions for subregions I, II, 1,2, ---, N, and N + 1, boundary conditions

at conducting surfaces and regional interfaces will be invoked to determine the

unknown expansion coefficients in the next subsection.
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2.2.3 Application of Boundary Conditions

Application of the boundary conditions that the tangential electromagnetic fields

must be continuous at the interface p = ay results in
Anvi1 =K AN (2.32)

D4AN + DpBy = ZT YN 1AN (2.33)

where

EN+1
K mn — mn n
A, NméNZ UN (GN)

nwz

4
Zmn = /0 W (z) cos —dz

H
_HUIan(aN)snm -HVI(fn(a'N)aﬂm
DA,m.n = 2 ) DB,mn = 2
€nTNn €nYNn

Hfz)(‘Y(NH)nGN )
Y+ B (Y +1)man)
t Lcos?(k2t) k*(1—e.,)sin(2k2¢)
2¢,s  2cos?(kA L) 4e.,(kA )2ED
and fpm =l forn =m; bpm =0forn#mand e, =1forn=1;¢, =2 forn > 1.

YP(N-'I-I)n =

N:n =

From (2.32) and (2.33), we get

By =TnyAnNn (2.34)

where
Iy = DB)—I(ZTYN.HKA — DA).

Enforcement of the continuity conditions of tangential electromagnetic fields at

the interface p = a; (2 = 3,4,---,N — 1) leads to

Ain _ Biitin (2.35)
€ €i+1
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Ui,n a; in\ Qi i+1l)n Vi n
#Aiﬂ - ( ) :n = _(—+1)—A(i+1)n - (2+1) B(,'+1)n (2.36)
Yin 7"1 (g-{»—l)n (i+1)n
Ain A 3 n
=T, | T¢ (2.37)
Bin B(i-l—l)n
where
0 €i/€it1
T; = (2.38)

mULH)n(a‘) 7.,,"(‘“),‘(&) U’ (a;)
7(:+1)n tn(a‘) 7(t+1)n tn(a") €%+1V (a")

Equation (2.37) provides a recursive relation of the electromagnetic fields between

two adjacent dielectric regions.

Repeatedly using (2.37), we can obtain the following relation

Az, Ann T: T¢ Ann
3 — T N _ 11 412 N (2.39)
B3n BNn T;]_ thz BNn
where
Tt = T3T,---Tn_:.
Combining (2.34) and (2.39) yields
A3 F3B3 (2.40)
where
I'; = R4R3E!
with

RA,mn = Tf1n6mn + szmrN,mn

RB,mn = T':]_n&mn + T;zmrN,mn-
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Application of the boundary conditions that the tangential electromagnetic field

components must be continuous at the interfaces p = ag, p = a1, p = a2 and z = D

yields
Ny Nrr Enint nxz ‘Ynlt.fo!-ynl'ao! 0 < < d
— 3 Bun COS% o | Zn=0 Fusoda €08 M R Gty 0 0 <2 (2.41)
Jwer no 0, d<z<D
Nir II Ny
€nAy nwz 11 nrz
> 7 oS —— = > —-[U1n(a0)A1n + V{,(ag)Bina] cos 5
n=0 n=0 /In
+ '§f Cinerns(a0)—2L%n7) 0<z<d (2.42)
=~ 1n€1inpl 20 OS(Q,;D)’ ¥4 .
1 Aﬁf A cos T _ qu >N, Byncos i, 0<z<L (2.43)
1n COS —— .
JWEL nzo D 0, L<z<D
& -1 nw Nu
> — (Uhn(ar)Aan + Vi(a1) Banlcos 72 = 3 [0 (a1) A,
nwz W3 cos(anz)
|2 By, 7 n€in 7 A 2.44
+ Via(a0) Bin] cos — +,§C‘ e1np(a1) coc(@. D) 0<z<L (2.44)
1 Z Be cos "2 J‘m N1y Az cos 2, 0<z<L (2.45)
3n COS —— = )
JWes s " 0, L<z<H
N _q
Y- 5 [Uzn(az)Azn + Vy,(az) Ban) cos nrz
n=0 /2n L
= Z 3n(62)Asn + V3,(a2)Bay)] cos %, 0<z<l[L (2.46)

n=0 3'1

n=1 Jweér elsewhere

Nia N—£ Ain Arn n, ’ b
5 Cta™onD) g, erna(p) = [En—l( fin+ Aim)etna(p), 01 < < ’} (2.47)

Ny ( 1)n+1
Z( A[xn + AIrn)),IneInp E

n=1

[U{n( )Aln
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Nz
+ Vin(p)B1na] + D Cineins(p), ar<p <y

n=1

From the above equations, we can derive the following matrix equations:

B, = PgAY

AT =Mi4A1 + MusB; + McC,
A, =P4B,;
Yi4A:2 + Y18B2 = Ma4A; + M;pB; + MGy
B; =PpA.
Y34A: + Y3B2 = M3sAz + MjpB;
C, =Pc(An + Ar)

Y (Ar — Ar) =M4A; + MsB; + M;cC,

where the elements of all the above matrices are elucidated in Appendix C.

After some manipulations one has no difficulty in arriving at
Ap=SmAr=[2(I-Y7'YL)™ - I A
where
Yir=[(Mra+MisWMr14)S + MisWMyc + Myc|Pc
S = P4QV(Mac + M2 WMrc).
V =[Y14+Y15Q — (M24 + M2gWM;,)P4Q] !
W =Pp(I—- MpP5)!

Q= Y:-;_B}[-Yu + (M34; + M3p)Pp|
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(2.48)

(2.49)

(2.50)
(2.51)
(2.52)
(2.53)
(2.54)
(2.55)

(2.56)

(2.57)
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Equation (2.57) can be used to calculate the reflected modal amplitude vector
A/ for both the dominar TEM mode and higher order modes in the coaxial-
feed waveguide assuming that the incident modal column vector Ay; is known [for
example, (1,0,---,0)7]. Other expansion coefficients AX, A;,, Bi,, Cin, Ain and
B;,, for i = 2,3,---, N, can be calculated from (2.49)-(2.56).

It should be pointed out that these Bessel and Hankel functions used above
should be replaced by their corresponding modified Bessel functions when their
arguments become imaginary; specifically, Jo(v!p) is replaced by I;(7*!p) when
(YH)? < 0; Yo(71np) will be replaced by Ko(7vinp) when 42, < 0; and HS? (Yw+1)np)
will be replaced by Ko(¥(n+1)np) When 7(2N+1)n < 0, and the like. Here, Iy and K,
are the zeroth-order modified Bessel functions [56] of the first kind and the second

kind, respectively.

From (2.57) one can extract the reflection coefficient S§,, for the dominant TEM
mode in the coaxial-feed waveguide when an electric wall is at a height of d over
the end of the monopole. Following the procedure described above, one can obtain
the reflection coefficient S7}, with a magnetic wall over the top of the monopole.
The final reflection coefficient I';, for the incident TEM mode in the feed line of
the monopole antenna is then calculated from (2.7). The input impedance of the

monopole antenna is defined as

1+rin

T (2.58)

Zin =210

where Zj is the impedance of the TEM mode in the coaxial waveguide (Region I).

Once all the expansion coefficients in (2.13)-(2.31) are known, the surface cur-

rents on both the monopole and the sleeve can be found by summing the tangential
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magnetic field series. For the current on the monopole, from (2.20) we have

Ny

In(z) = 2700 3, - {U1n(a0)Ain + Vi (a0) Bin] cos 22
n=0 ln
N cos(anz)
—_— 2.
+ 27l'ao n2=:1 Clnelnp(GO) COS(C!",D) ( 59)

where d < z < L. For the current on the sleeve, from (2.28) we obtain

I(z) = 2wa, Z [Usn(az)A3n + Vi, (az2)Bay] cos 2’? (2.60)

n=0 3n

where L < z < L + 1.

Radial p-directed currents also flow in the end surfaces of the sleeve at z = L

and of the monopole at z = d; they have the following forms:

N 27(— 1)"+1

Jo(p) = 2 [U3n(p)A2n + V3, (p) B2n) (2.61)
n=0 n
fora; >p>a,at z=d + h and
Ny J ( )
=9 Ire "L_p_ 2.62
Tp) =2 3 4K (-1 S (262

forag>p>0at z=4d.

2.2.4 Far-Field Radiation Pattern

After the field components and current distributions on the antenna are found, it is
possible to compute the far-region radiation pattern of the monopole antenna. In
order to make the derivation simple, this subsection only considers the calculation
of the far-field radiation pattern of the sleeve monopole antenna, which is shown in
Figure 2.3. The radiation pattern for the conventional monopole antenna can be

simply computed by letting the sleeve length be zero in the following formulas. For
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this sleeve monopole, we have ap = ar, by = a; and there are only 4 subregions: I,
II, 1, and 2. The field components for Regions I, I1, and 1 are defined by (2.13)
to (2.20) with D = h + d = L. The field expressions for Region 2 are given by

1 Y e Asn  nwz B (20p)

E,, = - cos 2.63
2 Jwes ,Z% H H H((,z)(‘yznaz) ( )

1 X nre Ay, . nnz g n
Ep=—"> ;"2 2% sin i 1(2()72 r) (2.64)

Jwez Yan Hy (‘anaz)
N. (2)
2 H n

H2¢ = Z 5nA2n COS nrz 1(2()72 p) (2.65)

n=0 H H ‘7an0 (‘anaz)

where 72, = k* — (nw/H)? with H =L + 1.
EW.or M.W.

0

Figure 2.3: Geometry of a sleeve monopole antenna.

To calculate the far-region radiated field pattern, the method of images is ini-
tially employed to transform the sleeve monopole into a sleeve dipole. Then the
far-zone radiated fields can be evaluated by Green’s function integrations [57] over
the outer surfaces of the sleeve dipole. There are three distinct current contribu-

tions to the radiated fields: 1) physical electric currents on the cylindrical surfaces of
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both the monopole (p = ag = ay, d < z < L) and the sleeve (p = a2, L < z < L+1),
2) physical electric currents on the end surfaces of both the monopole (0 < p < ay,
z = d) and the sleeve (by = @; < p < a2, z = L), and 3) equivalent electric and
magnetic currents on the aperture surface of the feed line (¢y < p < b7,z = L). For
most practical applications, the monopole is thin and the thickness of the sleeve is
relatively small compared to the wavelength of operation. Therefore, the far-zone

radiated pattern is mainly determined by the first part.

The far-zone radiated electric field due to physical electric current can be cal-
culated as follows [57]

s —jw » —jkoR
B, = 2% / /S J(p', ) SR IkeR) R”°° g (2.66)

where R = r — p’sin 6 cos(¢ — ¢'), and f(p’,(ﬁ') =7 x H(p',4') on the conductor
surface. Similarly the radiated electric field in the far-region due to the equivalent

magnetic current is computed by
L) [ [ (o, ) SR(=TRR) (2.67)
4w s R
where M (0,d) = E(p' ,9') x 7 on the aperture surface. These expressions are
employed to derive the following components for the far-zone electric field.

The §—directed electric field component Eg; in the far-zone due to the physical-

electric current on the cylindrical surface of the monopole is

jupe T AL .
Ep1(0) = ————aysin 0Jo(koarsin0) Y [Ujn(ar)Ain + Vin(ar)Bia] I1n(6)
n=0
iwpe—ikor M
+ 128 T ) sin 0J6(koarsin6) Y Cinlzn(6) (2.68)
n=1
where

—1 phl Lil—gz
Ii.(8) = 771 | cos nr( _; Z) cos(koz' cos 8)dz’
In
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elnp(af) ht ’ ' '
5L.(0) = cos(@.D) ) cos{an(L + | — 2")] cos(koz' cos 6)dz

and z’ = L + 1 — z. It should be mentioned that the relation
2x
/ explikoar sin 8 cos(¢ — ¢')]de’ = 2 Jo(koar sin §)
o

is employed to derive (2.68).

The radiated electric field Ey, due to the physical electric current on the cylin-
drical surface of the sleeve has the form of

; —jkor M oe A, H® -
Bex(6) = T a3 5in 0o (koas sin6) 3 22— (g"’ %) 1.(8) (2.69)
n=0 72nH0 (7211‘12)
where
l —
I3.(0) = / cos Mcos(koz' cos 8)dz'.
0 H

The far-zone electric field Fg3 due to the physical electric current in the end

surface of the monopole can be calculated as follows:

— —jkar Nir —1)re. AT
Ees(8) = —Z2E5 — cos@sinfko(h + 1) cos 6] ; %2’;“—0’314,,(0) (2.70)
where

ar
Ln(8) = [ B(rE6) s (kop sin 8)p'dp".

Similarly, the f-directed electric field Ey4 generated by both the physical electric
current on the end surface of the sleeve and the equivalent electric current on the

aperture of the coaxial feed line is

—_, —jkor Nuy (__1\n+1 Nz
Eoa(8) = —12E2 " o5 §sin(kol cos §) [Z ( 12) In(8)+ S Cl,,Isn(a)]
n=0 in n=1

(2.71)

where

Isn(6) = / [U1n(P")A1n + Via(p") Bin]J1(kop' sin 6)p'dp
ar
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Lon(8) = [ e1ns(') i(kop sin )0'dp".

I
The far-region electric field component Eg4s generated by the equivalent magnetic

current on the aperture is

-j br
E4s(0) = Jko cos(kol cos 6) Z(Azm + Alm)/; ernp(p')J1(kop' sin 8)p'dp’.
(2.72)

Finally, the total far-zone radiated field pattern |rEg(8)| can be computed by

summing all the above components
I‘I‘Eg(e)l = ITEOI (0) + TEaz(e) + T‘E93(0) + TE94(0) + rE35(0)|. (2.73)

Radiated power pattern can be easily calculated by squaring the above expression.

2.3 Conclusions

A unified mathematical formulation has been presented in this chapter. The rig-
orous treatment of a general monopole problem has been realized by introducing
a PMB (a combination of an electric wall and a magnetic wall) over the monopole
antenna. The electromagnetic field components in all the regions of the resulting
structure are expressed as the summation of its modal functions weighted by un-
known coefficients. Expansion coefficients are then determined by enforcing the
boundary conditions at the conducting surfaces and regional interfaces. This anal-
ysis is valid for both thin and thick monopoles, while most previously reported
methods are only valid for the case of thin monopoles. The formulation presented
can also take the feed line and the finite thickness of the sleeve and the insulating
layer into account. Numerical results for various monopole structures will be given

in the next chapter.



Chapter 3

Numerical Results for Monopole

Antennas

This chapter is devoted to numerical results and discussions for various monopole
antennas. It is comprised of five sections; each of them deals with one monopole
antenna structure. Considered in this chapter are the conventional monopole an-
tenna, the sleeve monopole, dielectric-coated and -buried monopoles, a multilayer
insulated monopole, and a monopole over a finite ground plane. The general for-
mulation for all these structures except the last one is described in the previous
chapter. In the last section, a waveguide junction cascading formulation is briefly
presented to calculate the input impedance of a monopole over a finite ground
plane of arbitrary thickness. For all these examples we will consider, our computed
results shall be compared with available theoretical or experimental data in the lit-
erature. Very good agreement can be observed. Numerical convergence and effect
of the assumed PMB on the performance parameters of each antenna structure are

initially examined, but only a few will be given below. Extensive computed results

33
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are given to show the junction effect, end effect, and finite thickness influence on

all these antennas’ input impedances and radiation patterns.

3.1 Conventional Monopole Antennas

In this section, we will study the conventional monopole antenna with emphasis
on the junction effect at the feed point of the monopole [58]. The structure of the
conventional monopole is shown in Figure 3.1, where the monopole is actually the
extended inner conductor of the coaxial feed line over the ground plane.

0 EW.or M.W.

II

r
g

Figure 3.1: Geometry of a conventional monopole antenna.

First, the convergence behavior of the impedance with respect to the truncation
numbers Ny and Ny is checked. Following the well-known convergence criterion
for the mode-matching method [59], we choose N; = Nr;(1 + d/h) for properly
convergent results. Table 3.1 shows the convergence of the input impedance of a

monopole with respect to the number of modes Ny considered in the coaxial-feed
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waveguide. It is seen that the result obtained by taking only the dominant TEM
mode into account is quite good. This phenomenon is due to the relatively small
electrical dimensions of the coaxial-feed waveguide. Table 3.2 gives the convergence
characteristic of the input impedance of the same antenna with respect to Ny;. We
see that Nyr = 80 is enough to get a convergent result for the antenna’s impedance.
It should be mentioned here that the value of Ny varies with the distance d, as
expected. The bigger the distance d, the larger the number N;r would be. The
results given in Table 3.2 are obtained for d = \/§Ao, which will be shown later to
be large enough to get very good results. The choice of Ny = 2 and Ny; = 80 is

adopted in the later computations.

Table 3.1: Convergence of the admittance (Millimhos) of a quarter-wavelength
monopole with respect to Ny (a; = 0.05985A¢, by = 1.187a;).

N; | Conductance | Susceptance
1 19.4 6.4
2 19.4 6.3
5 19.4 6.3

The effect of the important parameter d on the monopole’s admittance is exam-
ined in Figure 3.2, where the height of the monopole is a quarter of a wavelength.
The assertion that the assumed PMB does not have much influence on the admit-
tance of the monopole antenna is affirmed. From Figure 3.2, we note that the effect
of the introduced PMB is negligible when the distance d is more than 1.3)¢. The
choice of d = /2)¢ is used in what follows.
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Table 3.2: Convergence of the admittance (Millimhos) of a quarter-wavelength
monopole with respect to Nir (ar = 0.05985¢, by = 1.187ay).

Nir | Conductance | Susceptance
5 14.8 26.0
10 18.9 12.5
20 19.2 8.4
40 19.4 6.8
80 19.4 6.3
160 19.5 6.2
20 : . , : r .
15+ G )
§ 10k .
E
g st -
3
g
§ O b i
£ al -
........................... B e
-10 - L L 1 1 L
0 0.5 1 15 2 2.5 3 35
d/hg

Figure 3.2: Variation of the input admittance of a monopole with respect to the
distance d from the assumed PMB to the end of the monopole (koar = 0.05985).
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3.1.1 Comparison with Others’ Data

Numerical results for the surface current distribution over a monopole antenna and
the input admittance of the monopole antenna, obtained by our modal-expansion
method, are shown in Figures 3.3 and 3.4, respectively. Also given in these figures
are the results obtained by King [4]. It can be seen that the agreement between
our modal expansion results and King’s accurate data is excellent. It should be
noted that our modal expansion method applies to both thin and thick monopole
antennas. Moreover, the modal expansion formulation presented in the previous
chapter can characterize the effect of the junction between the monopole antenna

and its feed line, which will be studied in the next subsection.

4 T T T T

Our results —
King’s [1971) results © A

Surface current I(z)

Imaginary part

3 0.6
(d+h-z)/h

Figure 3.3: Surface current on a monopole antenna (kga;r = 0.04412, koh = 0.757).

Radiated field pattern of a quarter-wavelength monopole antenna is shown in
Figure 3.5. Also plotted in the figure are the measured results in [4]. Very good
agreement between our computed results and experimental data is observed. It is
seen that the main radiation occurs in the horizontal direction, while the radiation

is null in the vertical direction where the electric and magnetic walls are placed.
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35 T T T T T T T T

Qur results —
King's [1971] results o

Input admittance (millimhos)

0 0.1 0.2 0.3 04 0.6 0.7 0.8 0.9 1

0.5
h/ko

Figure 3.4: Input admittance of a monopole fed through an infinite ground plane
by a coaxial line (ar = 0.0509)).

Our results O 0 O King's results [4]

Figure 3.5: Radiated field pattern of a quarter-wavelength monopole antenna (ar =
0.0509),).
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3.1.2 Junction Effects

This subsection studies the effect of the junction between the monopole antenna
and the feed coaxial line. There are three different types for the connection of a
monopole and its feed line, as illustrated in Figure 3.6; they will be individually
studied in the following.

For the first type of junction (Figure 3.6(a)), there is a simple radial step junc-
tion between the monopole and the feed line. Numerical results for the input
impedance (R + jX) of this type of monopole antenna are given in Figure 3.7,
where the measured results by Hartig [60] for the same monopole antenna with a
hemispherical cap are also shown for comparison. A small difference in their reso-
nant lengths is observed. Our resonant length for the monopole with a flat end is

a little shorter than that with a hemispherical cap, which is expected.

We also wish to examine the effect of the junction between the feed line and the
monopole on the input admittance of the monopole antenna. Figure 3.8 gives the
input admittance of a monopole antenna for different radii of the inner conductor
of the feed line, while the radius of the monopole is fixed. It is seen that the
junction between the feed line and the monopole has a significant influence on the
imaginary part (susceptance B) of the admittance, while it has little effect on the
real part (conductance G). The step junction provides a parallel capacitance or
positive susceptance at the base of the monopole, which shifts the curve of input

susceptance upward when the junction step increases.

The parallel capacitance generated by a step discontinuity in the inner conductor
of a coaxial line is given by the following simple formula [61]:

2
« +11n1+a_2601n14a

l—-a — a?

+ 3.487 x 10—13(1 - a)(b;/az — 1)]

oo [eo (3.1)
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E.W.or M.W.
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Figure 3.6: Three types of junction between the monopole and the feed line.
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Figure 3.7: Input impedance of a monopole antenna shown in Figure 3.6(a) (ap =

0.00397X, ao = 1.33a7, by = 1.67aq).

where o = (by — ao)/(br — as). After subtracting this parallel capacitance from
the susceptance of the monopole with a step at its base, the results will agree very
well with that of the monopole without any step discontinuity. Therefore (3.1)
provides a good approximation of the parallel capacitance characterizing the step

discontinuity at the base of a monopole.

The second type shown in Figure 3.6(b) is usually adopted when the radius of
the monopole is greater than the inner radius of the outer conductor of the feed
line. Calculated results for the input admittance of the structure shown in Figure
3.6(b) are presented in Figure 3.9, where results for the admittance of a monopole

in Figure 3.1 are also given for comparison.

It is well known [3] that the thicker the monopole, the shorter is the resonant
length of the antenna, as seen from Figure 3.9. It can also be seen that the ter-
minal condition at the base of the monopole is very important in determining the

antenna’s admittance. The vertical gap between the monopole’s bottom surface
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Figure 3.8: Effect of the junction between the feed line and the monopole on the
antenna’s admittance (ag = 0.0509)\¢, by = 1.187a;).
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Figure 3.9: Admittance of the monopole shown in Figure 3.6(b) (b = 2.301a;).
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and the ground plane not only provides a positive susceptance but also increases

the conductance.
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Figure 3.10: Effect of the gap length ¢ between the bottom of the monopole and the
ground plane on the antenna’s admittance (ay = 0.0509)q, by = 2.301a;, ag = 3by).

The effect of the gap length ¢ between the bottom of the monopole and the
ground plane is examined in Figure 3.10. It is seen that the gap length has a
significant effect on the antenna’s admittance: both the conductance G and the
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susceptance B, especially for B when the gap length is small. It is also found
that its effect becomes stronger when the monopole is much thicker than the inner
conductor of the feed line, as is expected. The fact that increasing the gap length
t decreases the antenna’s bandwidth is understandable, since increasing the length

of the antenna’s thin part increases the system’s Q value.

The last type of junction between a monopole antenna and its feed line is shown
in Figure 3.2(c). Since the step discontinuity in the inner conductor of a coaxial
waveguide is characterized by a parallel capacitance expressed in (3.1), the input
admittance Y;, of the monopole looking from the feed coaxial line can be calculated
from the equivalent circuit shown in Figure 3.11, where Y, is the admittance of

the monopole at 2 = d + h + ¢, i.e., without the junction effect.
Yin = jwC, + [25Ys, + j tan(kat)l/[Zg + §(Z;)*Yy tan(kut)] (3-2)

where Z; is the characteristic impedance of the coaxial line whose inner and outer

radii are a; and a,, respectively.

|
Z, ,
T c Yoo
. ]

Figure 3.11: Equivalent circuit for characterizing the junction effect of the third
type shown in Figure 2.6 (c).

In order to appreciate the effect of the step junction at the monopole base on

the antenna’s input admittance, we give a comparison between Y, and Yi,, as
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illustrated in Figure 3.12. It is found that the step junction has a noticeable effect
on the antenna’s admittance. It is obvious that the influence strength depends on
the size of the step junction and the length ¢. It is found that the admittance
calculated by this expression agrees very well with the full-wave solution obtained
by our modal expansion method presented in the preceding chapter. Since the
electrical dimensions of the feed line and the step discontinuity are relatively small,
the low-frequency circuit model (equations (3.1) and (3.2)) provides a good estimate

of the junction effect.
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Figure 3.12: Effect of the step junction between the monopole and the feed line on
the antenna’s admittance (a; = 0.0509)¢, by = 2.301a;).
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3.2 The Sleeve Monopole

The structure of a sleeve monopole antenna [62] is shown in Figure 2.3, where
the electrical dimensions of the feed line are often relatively small. The values of
koar = 0.02 and kob; = 0.09 are assumed in this section. The sleeve is also assumed
to be electrically thin (ko(a; — br) = 0.005). As in the case of the conventional
monopole, the convergence behavior of the impedance with respect to the truncation
numbers Ny and Ny is examined. Tables 3.3 and 3.4 show the convergence of the
input impedance of a sleeve monopole with respect to Ny and Ny, respectively. It
is seen that the choice of Ny = 2 and Ny = 80 is enough to get convergent results

for the antenna’s impedance.

Table 3.3: Convergence of the impedance (Ohms) of a quarter-wavelength sleeve
monopole with respect to Ny (k = 0.25), { = 0.5)).

Ny | Resistance | Reactance

1 61.64 24.98
2 61.60 25.06
4 61.59 25.08

The effect of the distance d on the input impedance of the sleeve monopole is
shown in Figure 3.13, where the two dotted lines are for electric wall (EW) and
magnetic wall (MW), while the solid line is for the combination of both, i.e., the
PMB. It is seen that the assumed EW and MW do not have much effect on the input
impedance when d > 3)y. This property is expected since the main radiation of
the sleeve monopole occurs in the radial direction. We can also see that the results

obtained with the PMB converge much faster than with either the EW alone or the
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Table 3.4: Convergence of the impedance (Ohms) of a quarter-wavelength sleeve

monopole with respect to Ny (b = 0.25Xq, I = 0.5)¢).

Nir | Resistance | Reactance
5 143.92 84.43
10 71.80 48.77
20 65.84 34.12
40 62.85 27.42
80 61.86 25.52
120 61.60 25.06
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Figure 3.13: Variation of a sleeve monopole’s impedance with respect to the distance

d (l = 0.45Ao, h = 0.25Ao).
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MW alone. The result obtained with d = 1/2), is seen to be fairly good, which is

adapted in the later computations.

To verify the validity of our method, we compute the current distribution and
the input impedance of a sleeve-monopole antenna for which results are available
in the literature. Figure 3.14 shows our modal-expansion results for the surface-
current distribution along both the monopole and the sleeve. The results given
in Figure 3.14 have been fitted to the experimental ones [10] at the driving point,
z=d + h. It is seen that the agreement between our modal-expansion results and
Taylor’s experimental data is quite good. Figure 3.15 gives the comparison of our
computed results with Taylor’s experimental values [10] and the theoretical results
in [11] for the input impedance of a sleeve-monopole antenna. We can see that our
results agree very well with Taylor’s measured data, better than those obtained
by Rispin and Chang [11]. This is expected since our modal-expansion analysis is
formally exact and takes into account all the effects (junction-end effect, effect of
the finite thickness of the sleeve, and effect of the feed line) which were ignored in

the previous theoretical work.

Figure 3.16 shows the input resistance and reactance of a sleeve-monopole an-
tenna for different sleeve lengths. Since the sleeve itself acts as a cylindrical an-
tenna, a significant influence of the sleeve’s length on the input impedance of a
sleeve-monopole antenna is expected. Moreover, the change in the length of the
sleeve is equivalent to the change of the feed position of an asymmetric linear an-
tenna, which would have a great effect on the antenna’s impedance. The far-zone
radiated field pattern of a sleeve monopole is illustrated in Figure 3.17 for different
values of the sleeve length I. It can be seen that the sleeve length has a remarkable
influence on the radiation field pattern. When ! = 0, the sleeve monopole reduces

to the conventional-monopole antenna whose radiation pattern is well understood.
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Figure 3.14: Surface current on a sleeve monopole antenna (I = 0.45)q, & = 0.25)¢).
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Figure 3.15: Comparison of our results for the impedance of a sleeve monopole with

those obtained by others (h = 0.25),).
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It is expected that the number of side-lobes is strongly dependent upon the lengths
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Figure 3.16: Input impedance of a sleeve monopole for different sleeve lengths.

It is found that the relative permittivity of the dielectric in the coaxial feed line
has little effect on the input impedance of the sleeve antenna while, of course, it can
change the characteristic impedance of the feed line significantly. The characteristic
impedance of the coaxial feed line has the form of Z; = 60/,/€,1In(bs/as). As seen
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Figure 3.17:
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Table 3.5: Impedance of a sleeve monopole for different values of relative permit-

tivity of the dielectric in the feed line (h =1 = 0.25)).

Relative permittivity | Characteristic impedance | Resistance | Reactance
€l of the feed line (Ohms) (Ohms) (Ohms)
1.0 90.2 136.9 -335.1
2.2 60.8 135.8 -334.1
3.8 46.3 135.1 -333.5
5.6 38.1 134.9 -333.2
9.6 29.1 134.6 -332.9
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from Table 3.3, when the relative permittivity of the dielectric in the feed line
changes from 1 to 9.6, the characteristic impedance of the feed line decreases from
90.2 to 29.1 while the input impedance of the sleeve monopole does not change
much. The reason for this can be explained by the fact that the input impedance

of a wire antenna is mainly determined by its current distribution.
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Figure 3.18: Input impedance of a sleeve monopole for different thicknesses of the

sleeve.
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The effect of the sleeve’s finite thickness is illustrated in Figure 3.18. It is
seen that increasing the thickness of the sleeve smooths the variations by lowering
the magnitude of the resistance and reactance at resonant peaks. This lowers the
Q factor and increases the bandwidth of the sleeve antenna. It is also seen that

increasing the thickness of the sleeve decreases the antenna’s resonant length.

3.3 Dielectric-Coated and Buried Monopoles

It is well known that the performance of a monopole antenna is greatly affected
by the environment in which it resides. This section considers two cases involving
dielectric: one is the dielectric-coated monopole and the other is the dielectric-

buried monopole.

3.3.1 Dielectric-Coated Monopole

E.W.or MW,

Figure 3.19: Geometry of a dielectric-coated monopole antenna.
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The geometry of a monopole antenna coated by a dielectric sheath is shown in
Figure 3.19. The monopole of radius a;y = 3.175mm is coated with an isotropic
material of dielectric constant 3.2. A simple check on the effect of the assumed
PMB on the antenna’s input admittance is given in Figure 3.20. It is seen that the
postulated boundary has negligible influence on the antenna’s admittance.
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Figure 3.20: Variation of the admittance of a dielectric-coated monopole with re-

spect to d (by = 3ay, a; = 11.43mm, h = 0.25),, f = 600M Hz).

As before, a comparison between our results and experimental ones available in
[13] is given in Figure 3.21 for the input admittance of a dielectric-coated monopole
antenna. We can see that the agreement is quite good for both the conductance G
and the susceptance B. It is obvious that the monopole’s resonant conductance in-
creases and its resonant length decreases as the diameter of the cylindrical dielectric
coating increases. Similarly, increasing the dielectric constant of the coating cylin-
der decreases the antenna’s resonant length and bandwidth. It should be pointed
out here that for a large permittivity of the dielectric coating, our results for the

input conductance G of a dielectric-coated monopole agree very well with the ex-
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perimental data measured by Lamensdorf [13], while the agreement between our
modal expansion results and experimental ones deteriorates for the antenna’s sus-
ceptance B. A similar disagreement between the moment method solution {15] and
the measured data in [13] occurred for coating dielectrics with high permittivity or

large diameter.
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Figure 3.21: Admittance of a dielectric-coated monopole (b; = 3a;y, f = 0.6GHz).
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3.3.2 Dielectric-Buried Monopole

EW.or MW.

Figure 3.22: Geometry of a monopole antenna partially buried in a grounded sub-

strate.

A vertical monopole antenna partially buried in an infinite substrate [63] is ge-
ometrically shown in Figure 3.22. Figure 3.23 shows a Smith chart comparison
of our modal expansion results with the experimental values given in [17] for the
impedance loci of a half-buried monopole. The substrate is ¢t = 6.35mm long and
its dielectric constant is €., = 2.2. The characteristic impedance of the coaxial feed

line is 50 Ohms. It is seen that the agreement is quite good.

The power radiated by the monopole antenna can be decomposed into two parts:
one is associated with the power carried by surface waves (Psw) and the other is
related to radiation waves (Pgw). It is known that the field of the surface wave
has exponential decay outside and perpendicular to the dielectric substrate, while
the field of the radiation wave in the presence of the E.-W. or M.W. is a standing

wave outside the substrate. The variations of these two parts of the radiated power
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Figure 3.23: Input impedance loci of a monopole partially buried in a grounded
dielectric substrate (a; = 6.35mm, by = 3.24ay).

with respect to the dielectric’s relative permittivity and the substrate thickness
are, respectively, illustrated in Figures 3.24 and 3.25, where P, is the total radiated
power. It should be mentioned here that Figures 3.24 and 3.25 are obtained by
letting d be several free-space wavelengths to accurately simulate the actual half
space. When ¢,, = 1, which corresponds to the unloaded free-space case, it is
obvious that no surface wave can be excited. However, when e¢,, increases the
power carried by the surface waves (only one surface wave mode is excited when
€, < 17) increases dramatically and the power associated with the radiation waves
decreases accordingly. For the half-buried case (¢t = 0.5h) when ¢,, is about 5.4,
almost all the power will be radiated in the form of surface waves. From these
figures we can also see that increasing the substrate thickness may increase the

excitation efficiency of surface waves.

The effect of the substrate’s permittivity on the resonant length and input
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Figure 3.24: Normalized radiated power vs. relative dielectric constant ¢, for a
buried quarter-wavelength monopole (koar = 0.05985, by = 2.301a;).
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Figure 3.25: Normalized radiated power vs. substrate thickness t/h for a buried
quarter-wavelength monopole (koay = 0.05985, by = 2.301a;).
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impedance of a buried monopole antenna is examined in Figures 3.26 and 3.27. As
we expect, the existence of the dielectric substrate has a significant effect on the
monopole’s radiation. Since more energy is coupled into guided waves inside the
substrate, the antenna’s resonant length decreases greatly when the dielectric per-
mittivity increases as illustrated in Figure 3.26 where the curve I, /Ao = 0.23/,/€,,
is also given for the resonant length of the monopole antenna immersed in a di-
electric half-space (¢ = o0). It is seen that the thickness of the dielectric substrate
has a noticeable effect on the antenna’s resonant length when ¢ is small; the effect
becomes very weak when ¢ > h. When €., = 1, the problem considered here reduces
to the conventional monopole problem. In Figure 3.27, King’s results [4] for this
simplified case are also shown for comparison; very good agreement is observed.
Another interesting property of the buried monopole is that the impedance’s vari-
ation, with respect to the monopole’s length, is significantly smoothed when the

substrate’s permittivity increases.
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Figure 3.26: Resonant length vs. relative dielectric constant €., for the buried
monopole (a; = 0.00635Aq, by = 2.301ay).
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Figure 3.27: Input impedance of a monopole half-buried in a grounded dielectric
substrate for different dielectric permittivities (koa; = 0.05985, by = 2.301ay).
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3.4 Insulated Momnopoles

Figure 3.28: Geometry of an air-insulated monopole antenna.

Figure 3.28 illustrates the geometry of an air-insulated monopole antenna [64]. The
effect of the assumed PMB on the input admittance of an air-insulated quarter-
wavelength monopole in sand (e,3 = 3.8) is examined in Figure 3.29. It can be seen
that the effect is negligible even when the distance d from the PMB to the end of
the monopole is fairly small. Since more energy is stored in the external medium,

the effect caused by the assumed PMB becomes weaker.

Figure 3.30 presents our modal expansion results for the input admittance of an
air-insulated monopole antenna in lake water (¢,3 = 80) at fo = 380 M Hz. Figures
3.31 and 3.32 illustrate the current distribution and input admittance of the same
monopole antenna in sand (¢.3 = 3.8); also given in these figures are the theoretical
and experimental data obtained by Lee et al. [23], [24]. It is noted that ezp(jwt) is
used as the time-harmonic factor in this thesis, rather than ezp(—iwt) which was

employed in the previous work; this explains the reason why —Arg[I(z)] is used in
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Figure 3.29: Variation of the admittance of an air-insulated quarter-wavelength
monopole in sand with respect to d (ay = 3.175mm, by = 3ar, @, = 4ar, f =

380M Hz).

Figure 3.31. Our results agree very well with those computed by Lee et al. [23],
while there is a difference between both our calculated results and the theoretical
results and experimental ones in [24]. This small disagreement can be attributed
to the differences between our theoretical model and the actual antenna structure.
There is a junction between the feed line and the insulated monopole [21], whose
effect studied in the first section is not taken into account in the theoretical analysis.
Another difference between the theoretical model and the actual antenna structure
is that the thickness of the insulating layer can never be zero; its effect will be
examined later. After taking these differences into account, we may say that the
agreement between our modal expansion results and experimental ones is fairly

good.

Figure 3.33 shows the variation of the input admittance of an air-insulated
monopole with respect to the radius of the insulating layer whose thickness is still



CHAPTER 3. NUMERICAL RESULTS FOR MONOPOLE ANTENNAS

Figure 3.30: Input admittance of an air-insulated monopole in lake water (a;
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Figure 3.31: Current distribution on an air-insulated monopole antenna in sand

(ar = 3.175mm, by = 3ay, az = a; = 4ay).
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Figure 3.32: Input admittance of an air-insulated monopole antenna in sand (ay =

3.175mm, br = 3ay, a; = a; = 4ay).
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assumed to be zero. Since for the insulated monopole antenna most of the power is
radiated in the radial direction, the effect of the permittivity discontinuity between
the insulating air and its ambient medium is very similar to a step discontinuity
in characteristic impedance of a lossy transmission line. Meanwhile, the radial line
is non-uniform; its characteristic impedance decreases very rapidly as the radius
increases. Therefore, the curve of the input admittance versus a,/ar, is somewhat
like a fast-decaying standing wave, as illustrated in Figure 3.33. Furthermore, since
the admittance of an antenna in an infinite homogeneous medium is proportional
to /e (3], its magnitude variation is expected to be bigger for higher permittivity

of the ambient medium, as seen in Figure 3.33.
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Figure 3.33: Variation of the admittance of an air-insulated quarter-wavelength
monopole with respect to a,/ar (ar = 3.175mm, by = 2.301a;, fo = 380M H z).

Figure 3.34 gives the input admittance with respect to the relative dielectric con-
stant of the external medium. It is expected that when ¢,3 increases, the reflection
coefficient at the interface between the insulating layer and the external medium

and the antenna’s admittance (absolute value) will also increase. Figure 3.34 ver-
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Figure 3.34: Variation of the admittance of an air-insulated quarter-wavelength
monopole with respect to the dielectric constant ¢,3 of the external medium (ay =

3.175mm, by = 2.301ay, fo = 380M Hz).

ifies this prediction except the very small ¢.3 for which the reflection coefficient is

not large enough to dominate the variation.

Finally, we take an air-insulated monopole antenna with an insulating glass layer
(€3 = 4.82) of finite thickness as an example of a multilayer insulated monopole
in lake water. Figure 3.35 shows the input admittance of the insulated monopole
for different thicknesses of the insulting layer. The thickness has a significant ef-
fect on both the conductance and the susceptance. This is expected since a big
different exists in the relative permittivities of the insulating glass and lake water
and this difference changes the equivalent radius of the insulating layer which has a
noticeable effect on the antenna’s admittance (see Figure 3.33). The effect becomes
negligible for the case of an air-insulated monopole immersed in sand since the dif-
ference in the permittivities of glass (e,3 = 4.82) and sand (e,3 = 3.8) is relatively
small.
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Figure 3.35: Effect of the finite thickness of the insulating layer on a monopole’s

admittance (ar = 3.175mm, by = 2.301ay, a, = 4ay).
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3.5 Monopole on a Finite Ground-Plane

Junction A

Figure 3.36: Theoretical model for a monopole over a finite ground plane.

Figure 3.36 shows the theoretical model employed to analyze the problem of a
monopole antenna fed through a circular ground plane by a coaxial line. After
properly introducing an outer coaxial cylindrical wall of radius a,, the structure
reduces to a cascaded coaxial-to-coaxial waveguide junction problem. The radius
and length of the monopole antenna are ay and h, respectively. The ground plane is
of radius a; and of thickness ¢. From Figure 3.36, we identify three coaxial waveg-
uides (guide I, guide 1, and guide 2); their inner and outer radii are, respectively,
(a1, br), (a1, az), and (as, a;). There are also three waveguide junctions (A, B,
C) in Fig.3.36. Junction A is actually an infinitely long monopole fed by coaxial
waveguide 1. The radius of this infinitely long monopole is b,, as shown in Fig.
3.36. Junction C is basically an open-ended coaxial line with infinite flange. The

reflection matrices of junctions A and C are computed by using the complexifica-
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tion and extrapolation technique [65], [66], which will be introduced in the next
chapter.

Since the structure considered and the incident TEM mode in the feed line
are axi-symmetric (:—¢ = 0), only the dominant TEM mode and T My, in these
waveguides can be excited. The numbers of modes considered in three coaxial
waveguides are assumed to be Ny, N;, and N,, respectively. As also illustrated
in Fig.3.36, Af, A7 are incident and reflected modal amplitude column vectors in
feed waveguide at z = 0. Af, A7 and A}, A; are similarly defined for the modal
amplitude column vectors in guides 1 and 2 at z = 0, respectively. The following
two relations are obvious

A} = LSl A7 (3.3)
A; =L,Sci1L.Af (3.4)

where S4;; and Sc1; are the reflection matrices of Junctions A and C, which are
obtained by the complexification and extrapolation technique [65], [66]. L, and L,

are the diagonal transmission matrices of guides 1 and 2 with
Ll,n.n = CXP(-jﬁl.nt) (3'5)

Lz,n,n = CXP(—Jﬁz.nh) (3'6)

as their diagonal elements, respectively.

Application of the conservation of complex power technique (CCPT) [67], [68]

to Junction B at z = 0 results in

AT + A7 = Myr(Af + A7) + Ma(A] + A7) (3.7)
Yr(Af - A7) = M3 Y3(Af — 47) (3.8)

Yi(Af — A7) = M7, Y (47 — 47) (3.9)
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where Y;, for 2 = I,1, and 2, is the modal admittance matrix for the ith waveguide,
M:r and M, are the E-field mode-matching matrices between guides 2 and I and
between guides 2 and 1, respectively; their detailed expressions can be found in

Appendix B.

Substituting (3.3) and (3.4) into the above three equations, one can obtain after

some manipulations

A7 =T A =20+ Y[ 'Yo) ' - I)A} (3.10)
where

Yo=Y, - Y,W[Y,(2I - W)+ Y, W|'YT (3.11)

with
Y, = M, VM,; (3.12)
Y, = ML,VM,, (3.13)
Y, =ML VM, (3.14)
W =1+ LS, (3.15)

and
V = Y(I — LySc1i L)(I + LySen L) L. (3.16)

From (3.10) one can extract the reflection coefficient I'yq for the dominant TEM
mode in the coaxial feed waveguide. Then the input impedance of the monopole

antenna is calculated from (2.58).

For most practical applications, the length of a monopole is taken as b = 0.25)0
or slightly less; this choice of & makes most of the diagonal elements of the trans-
mission matrix L, decay very rapidly; only the upper-left corner of matrix V con-

tributes significantly to the final results. Thus, Y,, Y,, and Y, in (3.12) and
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(3.15) can be decomposed into two parts: one is the matrix-product part involving
matrices of small size; the other can be put into a single summation form to save

computer time and memory.
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Figure 3.37: Variation of the impedance of a monopole with respect to a;/Xo (ar =

1.588mm, by = 5.2mm, a; = T5mm).
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In order to verify the validity of the proposed waveguide modal analysis, a com-
parison between our calculated results and experimental ones measured by Thiele
and Newhouse [30] is shown in Figure 3.37. It can be seen that the agreement is
very good for both the input resistance R and the input reactance X. Shown in
Table 3.6 is another independent comparison of our calculated results with those
carefully measured by Weiner et al. [34], wherein MM denotes the moment method
solution available in [33]. It is noted that the agreement is also quite good.

The input impedance of a thin quarter-wave monopole is plotted in Figure 3.38
as a function of the radius of the circular ground plane for a larger range of the
ground plane’s radius. Also shown in Figure 3.38 is the impedance of the same
monopole over an infinitely large ground plane [4]. It is obvious that the effect of
the radius of the finite ground plane becomes weaker and weaker when it increases

though the convergence rate is slow.

The effect of the finite thickness of the circular ground plane on the input
impedance of a quarter-wave monopole antenna is illustrated in Figure 3.39. It is
expected that a monopole over a thick ground plane will exhibit a lower effective Q
and is somewhat equivalent to a ground plane of bigger radius. Therefore, increasing
the thickness of the circular ground plane decreases the magnitude of the variation,

but maintains the curve shape, as seen from Figure 3.39.

It should be pointed out that the thickness b, — b; of the coaxial feed line has
a negligible effect on the antenna’s input impedance. This is understandable since
only a very small amount of power can reach the down-side of the ground-plane.

The value of b, — b; = a; is used in the above computations.
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Table 3.6: Input impedance of 0.5in diameter monopole elements on an 8ft diameter

ground plane.

f h | Resistance (Ohms) Reactance (Ohms)
(MHz) | (in) | Ours | MM | Measured | Qurs | MM | Measured
30.0 |94.26 | 17.37 | 17.76 17.62 |-38.59 | -35.97 | -30.92
36.0 | 78.55 | 16.77 | 18.35 18.57 -26.48 | -25.48 | -13.59
43.0 |65.46 | 16.97 | 18.77 | 19.05 |-18.43 | -19.33 | -16.38
54.0 |52.07 | 18.64 | 19.93 | 20.15 -7.95 | -12.11 | -5.92
62.4 |45.00 | 20.32 | 20.80 | 22.82 -2.49 | -4.73 -0.48
75.0 | 37.36 | 23.44 | 22.95 | 23.23 3.71 | -0.43 1.60
86.0 | 32.48 | 26.71 | 25.35 | 27.63 715 | 3.34 7.39
89.7 [31.13|28.05|26.59 | 28.16 8.35 | 4.99 -1.05
97.5 |28.60 | 31.13 | 29.41 | 31.22 10.09 | 7.29 11.05
117.0 | 23.76 | 40.36 | 39.27 40.50 10.34 | 8.27 15.21
136.5 | 20.34 | 46.54 | 45.76 46.23 2.83 0.84 7.18
156.0 | 17.75 | 41.79 | 40.39 38.59 -5.14 | -8.16 -1.09
175.5 | 15.77 | 34.97 | 34.00 | 30.94 -3.94 | -7.45 -1.91
195.0 | 14.14 | 31.88 | 30.54 | 25.58 0.21 | -4.36 0.51
214.5 | 12.82 | 32.78 | 30.33 | 28.28 4.66 | -0.18 4.87
234.0 | 11.74 | 36.82 | 33.69 | 31.44 7.56 | 3.64 5.56
253.5 | 42.38 | 42.28 | 40.25 | 41.13 729 | 3.91 6.57
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INPUT REACTANCE (OHMS)

a,/lo

Figure 3.38: Variation of the impedance of a monopole with respect to the normal-

ized radius @,/Ao of the ground plane (same parameters as Figure 3.37).
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Chapter 4

Theoretical Formulation for

Circular Microstrip Antennas

This chapter presents a general formulation for analyzing single and stacked mi-
crostrip patch antennas with circular geometries. Similar to the basic idea used for
modeling the monopole antennas in Chapter 2, an outer cylindrical wall is intro-
duced to enclose the patch antenna. It is expected that the assumed cylindrical
wall will not have significant effect on the antenna’s impedance computation. After
assuming this enclosure cylinder, the open-region antenna problem is again trans-
formed into a “closed-region” waveguide junction cascading problem, which is then
solved by the modal-expansion method. In order to facilitate the formulation and
save computation time involved in the waveguide modal expansion analysis, two
useful techniques are introduced in the first two sections of this chapter. The first
technique is an improved formulation for waveguide cascaded junctions; while the
other is for calculating the reflection coefficient of open-ended waveguides. After

introducing these two techniques, a detailed formulation for the analysis of a gen-

7
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eral circular microstrip antenna is presented in Section 4.3. Considered in this
category of circular microstrip antennas are: single circular patch fed by a cen-
tered or an off-centered coaxial cable, single annular-ring microstrip antenna, an
annular-ring-loaded circular patch antenna, and a stacked circular disk antenna.
Numerical results for all these practical microstrip antenna structures will be given
in the next chapter to demonstrate the versatility and accuracy of this waveguide

modal expansion technique.

4.1 New Formulation for Cascaded Junctions

This section introduces an improved modal expansion method for cascaded waveg-
uide junctions. The basic idea is to consider the two junctions at once by the modal
expansion method, which directly yields the overall scattering matrix for the whole
cascaded network. This improved scattering matrix formulation is formly exact
and completely eliminates the numerical overflow problem [69], [70], from which

the transmission matrix formulation suffers and can also avoid the inversion of two

matrices.

There are basically three types of two cascaded waveguide junctions, as eluci-
dated in Figure 4.1. The following subsection will give the detailed formulation for
the first type of connection between two waveguide junctions (one is enlargement
and the other is reduction). Derived formulas for this type of connection will be
employed in the analysis of circular microstrip patch antennas. Sample numerical
tests will also be provided for this type to show the great reduction in computer
time and memory gained by this improved formulation. Application of this for-
mulation to the analysis of waveguide cavity filters is demonstrated in [66]. The

derived expressions for the other two types of cascaded junctions will be given in
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the second subsection.

4.1.1 Enlargement-Reduction Cascaded Junctions

As illustrated in Figure 4.1(a), the length of the sandwiched large waveguide is
assumed to be [. a* and a~ are the incident and reflected modal amplitude column
vectors in Guide 1 at Junction A, and similarly ¢t and ¢~ are the incident and
reflected modal amplitude vectors in Guide 3 at Junction B. &%, b~, d*, and d~ are
defined in the same way for Guide 2. Application of the boundary conditions for
tangential electric and magnetic fields at the interfaces of Junction A yields:

bt +b" = My(a* +a”) (4.1)

Y1(a+ - a‘) = Msz(b-‘- — b_) (4.2)

where Y, for i = 1,2, and 3, is the modal admittance matrix for the ith waveguide.
M, is the E-field mode-matching matrix of Junction A [66], whose size is of N, by
N, where N; and N, are the numbers of modes considered in Guides 1 and Guide

2, respectively. Similar operation for Junction B leads to
dt +d= = Ma(ct +¢7) (4.3)

Ya(ct —¢7) = MTY,(d* - d) (4.4)

where M, is the E-field mode-matching matrix of Junction B, whose size is of N,
by N3, where Nj is the number of modes considered in Guide 3. From Fig.4.1(a),
we know that d* = Lb* and b~ = Ld~, where L is the diagonal transmission
matrix of the sandwiched large waveguide with L., = exp(—jB:nl) as its n-th

diagonal element. Here S, is the propagation constant of the n-th mode in Guide
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2. Substituting these relations into (4.1)-(4.4), and eliminating b*, ™, d*, and d~,

one can obtain
Yi(at —a7) ==Y, (at +a7) + Y (ct +¢7) (4.5)

Yi(ct —c7) =Y (a* +a7) + Y,(ct +¢7) (4.6)

where

Yp == MfDlMl, Yq == MszMz, Y, = Mg'DzMz,
D; =Y, (L+I)(L?-1I)"', D;=2Y,L(L*-I)"'. (4.7)

where D, and D, are diagonal matrices with imaginary elements for lossless waveg-
uides. Therefore, the right-hand sides of (4.7) may be put into single summation
form. Matrices Y, and Y, are symmetric. The expressions (4.5) and (4.6) for this
enlargement-reduction type (Figure 4.1(a)) of cascaded waveguide junctions will be
used in the formulation for circular micorstrip antennas. From (4.5) and (4.6) and
after some manipulation, we can derive the overall scattering matrices of the two

cascaded junctions as follows

-1
Su=2[Y1 - Y, + Y (Y, - Y35)'Y?] Y, -1 (4.8)
Sz = (Y, — Y3) 'Y (I+Su) (4.9)
S;2 = Y1ST Y, (4.10)
S22 = (Y, — Y3) ™} (Y; S12 — 2Y3) — L. (4.11)

It is noted that only two small matrices of sizes N; by N; and N; by N3 need to be
inverted. Compared with the traditional generalized scattering matrix technique
[59] for the problem considered here, we can see that it not only reduces the number
of matrix inversions (from inverting four matrices to inverting two matrices), but

also avoids the inversion of two large matrices of size N, by N,. In some cases when
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the ratios of areas of Guide 2 to that of Guide 1 and Guide 2 to Guide 3 are very
large [59], [66], we should take N; to be very large to get a convergent solution.

Table 4.1: Comparison of computation time of our improved formulation and the

generalized scattering matrix technique (f = 11GHz, | = 15mm).

Number of modes Computation time (seconds)
N, for iris guide | N, for Guide 2 | Our method GSMT
20 20 0.036 0.060
20 42 0.042 0.138
20 72 0.057 0.379
20 110 0.064 1.006
20 156 0.079 3.062
20 210 0.097 9.210
20 272 0.111 20.34
20 342 0.141
20 420 0.164
20 930 0.382
20 1640 0.622

To compare our improved modal-expansion method with the traditional gener-
alized scattering matrix technique, we consider a waveguide filter consisting of only
one rectangular cavity. It is well known that for a junction between two waveg-
uides, one should take many more modes in the larger waveguide into account when
the area ratio of the larger waveguide to the smaller one is very large. As for the
problem of a waveguide cavity filter, the smaller the size of the iris waveguide, the
larger will be the number of modes in the larger waveguide. We may fix the size



CHAPTER 4. FORMULATION FOR MICROSTRIP ANTENNAS 83

of the iris waveguide and compare the computation time for different number of

modes considered in the larger waveguide.

Table 4.1 shows the comparison of computation time for a single-cavity rect-
angular waveguide filter by our new formulation and the generalized scattering
matrices technique [59]. The waveguide is standard WR90 (X-band, ¢ = 22.86mm,
b = 10.16mm) and the central rectangular iris waveguide (a; = 3.86mm, b, =
1.66mm, ¢ = 0.1mm) has 2.76 percent of its cross-section area. When the number
N; of modes considered in the larger waveguide increases, the computation time
of the traditional GSMT increases dramatically since the number of multiplication
operations involved in LU factorization of a matrix is proportional to the cube of
its size. For our improved formulation, however, the computation time increase is
less than linear with respect to N;. Moreover, there is a great reduction in com-
puter memory requirements in our new method. For the traditional GSMT it was
impossible to carry out the calculations when N, was more than 300 due to huge
consumption of computer memory while our improved method easily treated more

than 1000 modes.

4.1.2 Derived Expressions for the Other Two Types

Following the same procedures as introduced in the previous subsection for the
enlargement-reduction type (Figure 4.1(2)) of cascaded junctions, one can derive

the following expressions for the other two types of cascaded waveguide junctions.

For the second type (Figure 4.1(b)), we get:

Su =2M,Y YL, Y;'L'I-L))MTY, -1 (4.12)

S12 =4M; YIMJY; (4.13)
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Sa = Y3;1STY, (4.14)
Sy = 2M,L Y, Y., Y; ' L' (I - LO)MT Y, -1 (4.15)
where
Y, = [Yu Y7 L (I - L)Y, - 4Y,L(I - L7)7] 7 (4.16)
Y = MTY: M, + Y,(I+L?)(I-L?™! (4.17)
Y2 = MTYM,; + Yo (I + L3)(I- L3, (4.18)

It should be noted that only one matrix Y; Y; 'L~ (I - L)Y, —4Y,L(I—- L?)™!
needs to be inverted to obtain the overall scattering matrices of two cascaded junc-
tions of this type. A waveguide with a thin or thick diaphragm belongs to this type

of connection, which has been widely used in waveguide cavity filters.

For the third type (Figure 4.1(c)), we derive the following scattering submatri-

ces for these cascaded junctions:

Sn=2[T+Y{'Yn - 2Y7'MIY,LY,| -1 (4.19)
Sa = M, [LM; + (I - L?)Y,] (I +Su) (4.20)
Si12 = (I+Su)Y{'MTY,LY, (4.21)
Sy = [Sa YT'MTY,L + M,(I- L)Y, -1 (4.22)
where
Y, = [(YaT+L%) + Y52 )(I - L% (Y — Yi2)L M, (4.23)
Y, = 2[(Y2(I+L%) + Yr)I -1 MY, (4.24)
Y = MTY,M;, Y, =MIY;M,. (4.25)

It is seen that only two matrices need to be inverted to obtain the overall scattering

matrices of two cascaded junctions of this type.
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4.2 Simple Analysis of Open-Ended Waveguides

This section introduces a simple technique for calculation of the reflection coeffi-
cient of open-ended waveguides. The method is called the “complexification and
extrapolation” [65] technique. Open-ended waveguides themselves have found wide
applications in aeronautics, large phased array systems, thermography, diathermy
and hyperthermia, and the measurement of material properties, etc. Theoretical
and experimental studies of open-ended waveguides have occupied the attention of
numerous researchers for several decades [71]. Variational method [72] and mode-
matching techniques such as the correlation matrix method [73], Green’s function
method [74], the transverse operator method [75], and the method of moments [76]
were employed to compute the aperture admittance of open-ended coaxial line and

rectangular waveguide with infinite flange.

This section presents a conceptually simple, numerically efficient and accurate
method for calculating the reflection coefficient of open-ended waveguides. The idea
of this method is as follows. Firstly, a large waveguide is introduced to approximate
the half-space. As pointed out in [77] the size of this assumed waveguide should be
very large when the medium in the half space is low-loss or lossless, which results in
expensive computational effort since we must take a very large number of modes in
the large waveguide into account to ensure convergent results. In order to overcome
this drawback and to reduce the size of the introduced waveguide to save computer
time, it is assumed to be filled with a homogeneous moderately lossy medium. The
numerical results for lossy dielectric are then employed to calculate the solution
to the actual lossless or low-loss half-space problem by an extrapolation technique

[65].

Figure 4.2(a) shows the side view of an open-ended waveguide with an infinite
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(b) Simplified waveguide junction
(a) Open-ended waveguide
Figure 4.2: Side-view of an open-ended waveguide and its simplified waveguide

Jjunction model.

conducting flange, where the cross-section of the waveguide can be arbitrary. At
first, we introduce a large waveguide to approximate the half space. Then the
problem considered reduces to that of a waveguide junction as illustrated in Figure
4.2(b). The cross-section of the postulated large waveguide should be the same
as or similar to that of the input waveguide (guide 1 in Figure 4.2) to simplify
the analysis of the related waveguide junction. Meanwhile, symmetry may also be

taken into account to reduce the computational complexity.

After obtaining the reflection coefficient or aperture admittance data for the
waveguide junction for several different values of dielectric loss tangent, say three
different values of loss tangent, an extrapolation technique (parabolic extrapolation)
is employed to calculate the solution to the lossless or low-loss half-space problem in
the following way. Suppose the imaginary parts of three complexified €., values are
€r21s Engzy aRd €95 and the corresponding reflection coefficients are I'1, I';, and I3,

respectively. We compute the quadratic Lagrange interpolation polynomial through
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the points (€.4,,I'1), (€-g2 I'2), and (€3, ['3) as follows:

T(e,) = Pl + p2y2 + pal's (4.26)

g [

(5;'21 - 6:22)(6:-22 - 1'23)(6:21 - 5;-'23)

where

14

n= (5:-'22 - 5:23)(5:2 - e:-'zz)(f:-'z — €23)
P2 = (5:23 - 5:21)(5:2 - 6:21)(6:-‘2 - e:-'23)
p3 = (5:21 - 5:22)(5:2 - 5:21)(5:-'2 - 5:22)
and then set €., equal to zero, or to the actual small loss tangent, to yield the

desired reflection coefficient of a waveguide terminated by an infinite flange.

Figure 4.3 shows the variation of the reflection coefficient of an open-ended
coaxial line with infinite flange with respect to the radius b, of the large waveguide
for different values of loss tangent. The inner and outer radii of the coaxial line are
a; = 1.4364mm and b, = 4.725mm. It is seen that the lower the loss tangent of the
medium retained in the large waveguide the larger is its size to obtain convergent
results. For the very lossy medium, for example, ¢, = 2.05 — 7, the result obtained
with by/b; = T is quite satisfactory, The number of modes assumed in the large
waveguide depends on the size of the waveguide according to the relation N, =
Nyby/(by — ay), where N; and N, are the numbers of modes considered in the input
coaxial and large circular waveguides. Results presented in Figure 4.3 are obtained
by fixing N; = 10 (the dominant TEM mode plus 9 TM,, modes).

Figure 4.4 shows the comparison of results obtained by our proposed method and
data given in [74] for the reflection coefficients of an open-ended coaxial line. It is
seen that the agreement is excellent. The results shown in Figure 4.4 are obtained
by extrapolating three values of the reflection coefficient for ¢, = 2.05 — 70.2,
€2 = 2.05 — j0.4, and ¢, = 2.05 — j0.6 back to the real axis of the relative

permittivity e,,.



CHAPTER 4.

Re(IM)

Im(I")

FORMULATION FOR MICROSTRIP ANTENNAS

084
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68
0.66

0.64

-0.36

-0.38

0.4

-0.42

-0.44

-0.46

-0.48

-0.5

-0.52

-0.54

| j\,_ £, #10 i
" 1 1 1 j - L
0 10 20 30 50 60 70
ba/b,
T 1 1 T T T
i ’ \~————— ;=10 7
1 ] ) 1 i 1
0 10 20 30 50 60 70
ba/b,

88

Figure 4.3: Variation of the reflection coefficient of an open-ended coaxial line with

respect to the radius of the large circular waveguide for different values of loss
tangent (f = 6GHz).
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Figure 4.4: Magnitude and phase of the reflection coefficient of a coaxial line ter-
minated by an infinite flange (a; = 1.436dmm, b, = 4.725mm, €1 = €2 = 2.05).

The effect of different reference data used for extrapolation on the resultant
reflection coefficient is examined in Table 4.2, where the results, obtained by ex-
trapolating three groups of data, are compared. We can see that the maximum
error between the results for Case 1 and Case 2 is less than 0.1%, and the max-
imum difference of the absolute values of the reflection coefficients between Case
1 and Case 3 is less than 1%. The loss tangents assumed in Case 3 are quite big,
which makes the size of the large circular waveguide only about ten times that of
the coaxial line, while the accuracy of the resultant reflection coeflicient is still quite
satisfactory. This shows that the method described in this section is computation-
ally efficient, very easy to implement and also very accurate for the open-ended

waveguide problems.

Before concluding this section, we present some results for the aperture ad-

mittance of an open-ended rectangular waveguide with infinite flange. For this
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Table 4.2: Magnitude and phase of the reflection coefficient of an open-ended coaxial
line with infinite flange. Case 1: using €/, = —0.1,~0.2, —0.3 three points for
extrapolation; Case 2: using €/, = —0.2,—0.4,—0.6 three points; Case 3: using
el, = —0.5,—-1.0, —1.5 three points

Frequency | Magnitude Phase (degrees)

GHz Casel | Case2 | Case 3 | Casel | Case 2 | Case 3
1.0 0.99997 | 0.99998 | 1.00003 | -4.8692 | -4.8689 | -4.8663
2.0 0.99976 | 0.99972 | 0.99972 | -9.8005 | -9.7978 | -9.7921
3.0 0.99874 | 0.99860 | 0.99840 | -14.812 | -14.834 | -14.827
4.0 0.99570 | 0.99568 | 0.99508 | -20.000 | -20.012 | -20.004
5.0 0.98984 | 0.98997 | 0.98868 | -25.344 | -25.344 | -25.331
5.5 0.98604 | 0.98576 | 0.98402 | -28.057 | -28.064 | -28.048
6.0 0.98062 | 0.98049 | 0.97824 | -30.829 | -30.817 | -30.796
6.5 0.97420 | 0.97408 | 0.97128 | -33.590 | -33.597 | -33.570
7.0 0.96685 | 0.96646 | 0.96308 | -36.405 | -36.400 | -36.365
7.5 0.95779 | 0.95760 | 0.95362 | -39.226 | -39.219 | -39.175
8.0 0.94786 | 0.94747 | 0.94292 | -42.048 | -42.048 | -41.994
8.5 0.93651 | 0.93609 | 0.93098 | -44.892 | -44.881 | -44.815
9.0 0.92387 | 0.92350 | 0.91787 | -47.716 | -47.710 | -47.633
9.5 0.91025 | 0.90973 | 0.90365 | -50.538 | -50.530 | -50.440
10.0 0.89534 | 0.89487 | 0.88841 | -53.346 | -53.333 | -53.233
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problem the introduced large waveguide is assumed to be of rectangular shape
and collinear with the input waveguide. The aperture admittance is defined as
Y = G+ jB = Y5,10(1 — T10)/(1 + T'10), here Y510 and I’y are the characteristic
admittance and the reflection coefficient of the dominant TE;o mode. In Figure
4.5 our results are compared with available data obtained by the correlation ma-
trix method [73]. Our results shown in Figure 4.5 are obtained by extrapolating
three values of the aperture admittance for ¢, = 1 — j0.1, .2 = 1 — 70.2, and
€2 = 1 — 70.3 to that for real ¢.;. It is noted that the agreement between them is
very good, which also verifies the validity of the method presented here.

26 B 4095
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Figure 4.5: Aperture admittance of an open-ended rectangular waveguide with
infinite flange (a = 2.25b).

The simple and yet efficient technique presented in this section for open-ended
waveguides will be used in the analysis of circular microstrip antennas in the next
section. In Section 3.5, we already employed this technique to predict the input

impedance of a monopole over a finite ground plane.
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4.3 General Formulation for Circular Microstrip

Antennas

Figure 4.6 shows the side-view of an annular-ring-loaded stacked circular microstrip
antenna fed by an off-centered coaxial line [78]. The radius of the driven circular
patch is ¢;; the inner and outer radii of the loading annular-ring are, respectively,
d; and a;. As illustrated in Figure 4.6, the loading annular-ring is located in the
same plane as the driven circular patch; their thickness is assumed to be ¢;. The
parasitic circular patch is of radius @, and of thickness £,. The distance between
the position of the feeding probe and the circular patch’s center is d. The inner
and outer radii of the coaxial feed line are ag and by, respectively. The uniaxial
substrate and superstrate are of thickness A and s,, respectively, and are described

by the following permittivity and permeability

€1 0 0 Hi1 0 0
&=€ |0 € 0 [, Bi=po|0 py O (4.27)
0 0 €i2 0 0 Hi2

where 7 = b, p represents substrate and superstrate, respectively. The sandwiched

dielectric is of thickness s; and of permittivity e,,€g.

The problem shown in Figure 4.6 is quite general and will reduce to many
special cases under certain circumstances. With the loading annular-ring removed
(di = c1), the structure reduces to a stacked circular microstrip antenna. When
83y = ta = 0 and a; = c;, the parasitic patch will disappear, and the problem
will reduce to an annular-ring-loaded circular microstrip antenna. Similarly, when
81 =t = ay = ¢; = 0, the structure will be simplified to an annular-ring microstrip

antenna. With both the loading annular-ring and parasitic circular patch removed,
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Figure 4.6: Analysis model of an annular-ring-loaded stacked circular microstrip

patch antenna.
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the structuze is simply a circular microstrip antenna on a uniaxial substrate and
covered by a uniaxial superstrate. Therefore, all these problems: single and stacked
circular patchs, annular-ring microstrip, annular-ring-loaded circular microstrip, are

included in the present model.

As illustrated in Figure 4.6, the whole antenna structure is enclosed by an
assumed outer cylindrical wall, which facilitates the use of the waveguide modal-
expansion method. The radius of the assumed outer wall is b, = b, + d for the
substrate waveguide section and b; elsewhere. Referring to Figure 4.6, we identify
four coaxial waveguides (guides 1,2,3, and 5) and two circular waveguides (guides 4
and 6). The third waveguide is, in fact, a compound waveguide which is comprised
of two coaxial waveguides; their inner and outer radii are, respectively, a; and
b1, and ¢; and d;. There are six waveguide junctions involved in the problem, as
indicated in Figure 4.6. The first junction is the one between two coaxial waveguides
which have the same inner conductor. The second one is the junction between two
coaxial waveguides with their axes having a shift d. Junctions 3, 4, and 5 are
simply the coaxial-to-circular abrupt discontinuity. The last junction is actually
an open-ended circular waveguide with infinite flange and radiating into the half
space. The following subsection details the application of CCPT to the resultant

waveguide junction cascading problem.

Unlike the symmetrical case of a circular patch antenna fed by a centered coaxial
line [79], all the possibly existing modes, including the dominant TEM mode, TE
modes and TM modes, can be excited for the problem of a circular or annular-ring
patch antenna fed by an off-centered coaxial line. It is well known that the modal
functions for a cylindrical waveguide homogeneously filled with uniaxial dielectric
are exactly the same as those for the corresponding empty waveguide, while their

modal admittances and propagation constants may change. The modal functions
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for the transverse electric and magnetic fields in coaxial and circular waveguides are
elucidated in Appendix A. For a coaxial waveguide filled with the uniaxial medium
characterized by (4.27), the modal admittance is as follows:

1
Yr = n—\/e,-l/p,-l for TEM mode (4.28a)
0
i1k7,/ iz — kdea p
Yan = \/;L 1k _/# s for TE modes (4.28b)
JWholia
Yen JLcc for TM modes (4.28¢)

\/Gilkfn/eiz ~ keapa
where 79 = \/po/ €0, k2 = w?poco, kin and k., are the cutoff wavenumbers of the n-th
TE and TM modes in the corresponding empty waveguide, respectively. Similarly,

the propagation constants of the modes considered in the coaxial waveguide are

Br = ko\/un€n  for TEM mode (4.29a)
Ban = \/ kieipia — pak?,/pia  for TE modes (4.290)
BEn = \/kéeu/zu —€enk2, /e2  for TM modes. (4.29¢)

Let Al and A be the incident and reflected modal amplitude vectors in the
first feed waveguide at z = 0. The forward- and backward-wave modal amplitude
vectors in the sixth circular waveguide at z = h + ¢; + ¢, + s; are assumed to be
A and Ag, respectively. The reflection coefficient matrix I's at the last open-
ended circular waveguide junction is obtained by using the complexification and
extrapolation technique [65], [66], which has been introduced in the previous section.

Then we have:

A7 = LgTeLeA7 (4.30)

where Lg is the diagonal transmission matrix of guide 6 with

Lgnn = exp(—jPe,ns2) (4.31)
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as its n-th diagonal element and s, is the propagation constant of the n-th mode
in guide 6.

Let A7 and A3 be the forward- and backward-wave modal amplitude vectors
in the third compound waveguide at z = h, and A} and A be the forward-
and backward-wave modal amplitude vectors in the fifth coaxial waveguide at z =
h + t; + s;. Application of the CCPT [67] and the improved modal expansion

formulation for cascaded junctions [66] to junctions 1, 2, 3, and 4 yields
Yi(AT - A7) =Y, (AT +A]) + Y. (AT + A7) (4.32)

Yi(AY - A) = —Yf(A;‘ + A7)+ Y (AT + A7) (4.33)

Ya(LsAF —L3'A;7) = ~ Y, (L:Af + L3'AD) + Y. (A + A7) (4.34)

Ys(Af — A7) = —YT(L:Ad + L3'AS) + Y.(AF + AD) (4.35)
where
Y. =MJRM,, Y,=MIR,M,;, Y,=MLR M, (4.36)
Y. = MGRsMy;, Y, = MLRM,;, Y, = MLR;M,s (4.37)
R =Y, (L +I)(L; -I)™', R, =2Y,L,(L:-1I) (4.38)
Rs = Y (LI + I)(LZ - I)7', Ry =2Y,L,(L:-1)™ (4.39)

and Y; for ¢+ = 1,2,3,4,5, and 6, is the modal admittance matrix for the i-th
waveguide. L; for i = 2,3,4,5, is the diagonal transmission matrix of the i-th
waveguide and is defined in a similar way as (4.31). The superscript T denotes the
transpose operation. M;; for ¢ = 2,4 and j = 1,3, 5, is the E-field mode-matching
matrix [67], [80] for the junction between guide i and guide j. Ma;, Mys, and Mg
can be easily derived, while M,3 for the second junction is obtained with an aid

of a coordinate transformation. The addition theorem for cylindrical functions [56]
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is employed to realize the transformation and to get the closed-form expression of
M,;. Appendix B elucidates all the needed E-field mode-matching matrices.

Application of the CCPT [67] to Junction 5 leads to
Al + A7 = Mgs(LsAf + L A7) (4.40)

Ys(LsAf —L;'A7) = Mg, Ye(Ad — A7) (41)

where Mgs is the E-field mode-matching matrix [67], [80] for a coaxial-to-circular
waveguide junction (refer to Appendix B for derived expressions). Use of (4.30),
(4.32)-(4.35), (4.40), and (4.41) results in the following results after some manipu-

lations.
Al =SpAf (4.42)
Al =TaAf (4.43)

where

S11=2Yp—-I=20+ YY) -1 (4.44)
Te1 = 8Y 4 YpLsYsYEL:YcYr (4.45)
Y =-Y,-Y,(I+I:)Yc (4.46)
Ye = [Ya(I-Ts) — Y (I+T5)7 Y2 (4.47)
Y=+ Y;'Yrs)t, I3=L32Ye —I]L; (4.48)
Yis=-Y,-Y,I+Ts)Ys (4.49)
Ys = [Ys(I-T5) — Y (I+)] YT (4.50)
Yp=(I+Y;1Ys)™? (4.51)
I's = Ls[2Yp — I|L; (4.52)

Y4 = (I + LsrsLe)-lMes (4.53)
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Yis = ML Ye(I — LeTeLe) Y4 (4.54).

From (4.42), (4.43) and (4.30) one can calculate the reflected modal amplitude
vector Ay in the feed waveguide and the forward and backward modal amplitude
vectors A and Ag in the last circular waveguide when the incident modal am-
plitude A} is given (for example, (1,0,-,-,-,0)T). From (4.39) one can extract the
reflection coefficient Si10 for the dominant TEM mode in the coaxial feed waveguide.
Then the input impedance of the microstrip antenna is

1+ Si110

Zin =2
01 — S

(4.55)

where Z,q is the incident TEM mode’s impedance.

To calculate the far-region radiated field pattern of the circular patch antenna,
the electric field components on the aperture at z = h + ¢; + £; + s, + s, which
are related to the equivalent magnetic surface currents, need to be found. From
(4.43) and (4.30), we can calculate the amplitude of each mode excited in the last
waveguide. Based on this, one is able to determiune the surface electric field or
magnetic current on the aperture, and then find the far-zone radiated field. The
equivalent magnetic current on the circular aperture of radius 4, is:

L = Ne
M=E,x2=)Y CnéomX2 (4.56)
m=1
where Crn = LemAgm + LgymAgm, and Ng is the number of modes considered in
guide 6.
The far-zone radiated field due to the surface magnetic current M [57] is

-

£ = ko exp(=skor) [, B x B(7)lezplikop' sinOcos(d — #)lds'  (457)

27r

where kg = w,/lo€o, and r >> p’. Substituting (4.56) into (4.57) and using the

modal functions for the last circular waveguide [81], one can derive (see Appendix
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D for detailed derivation)

- —n j"cos(ng)Ng,; exp(—jkor) . Y
EH,nx = rsinf Jn(kobl sin B)Jn(zs,ni)o

j™ cos 8 sin(ng)kob, Ng.,.; exp(—jkor)
r{1 — (Kob1 sin /g ;)?]
due to the ni-th TE modes in the sixth waveguide;

T2 i) T (Koby sin 8)¢ (4.58a)

—j™ sin @ cos(nd)Ng .. exp(—jkor)
7[(z6,ni/ kob1)? — sin? 6]

due to the ni-th TM modes in the last circular waveguide. In (4.582) and (4.58b),

Egni= Zonid"(Z6mi)Jn(kobysin)§  (4.580)

(%6 ni/b1) and (Z6,ni/b1) are the cutoff wavenumbers of the ni-th TE and TM modes
in guide 6, respectively. Né"m- and Ng,; are their normalization coefficients of TE
and TM modes in the circular waveguide and are given in Appendix A. The total
radiated electric field can be calculated by summing the contributions due to all
the modes in guide 6 according to (4.56).

4.4 Conclusions

Two numerically efficient techniques have been presented in the first two sections
of this chapter. Mathematical expressions for the overall scattering matrices of two
cascaded waveguide junctions have been derived and their great saving in com-
putational effort has been demonstrated. A simple technique based on the idea
of complexification and extrapolation has been introduced in the second section.
Numerical tests have revealed that this technique is conceptually simple, compu-
tationally efﬁcieﬁt, and numerically accurate. A detailed formulation for a stacked
annular-ring-loaded circular microstrip antenna fed by an off-centered coaxial line

has been presented in Section 3. Many practical antenna structures can result from
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this general model. The proposed waveguide modal analysis rigorously takes the
effect of the feed line and the finite thickness of patches into account. Moreover, the
analysis is valid for uniaxial substrate and superstrate. The next chapter will show

the calculated results for various microstrip antennas with circular geometries.



Chapter 5

Numerical Results for Circular

Microstrip Antennas

To validate the proposed waveguide modal-expansion analysis presented in the pre-
vious chapter and to show the versatility of this technique, five typical complex mi-
crostrip antennas with circular geometries are analyzed in this chapter. These are:
the single circular patch antenna with a centered or off-centered coaxial feed line,
the annular-ring microstrip antenna, the annular-ring-loaded circular microstrip an-
tenna, and the stacked circular disk antenna. For most cases the calculated results
are presented with measured data taken from the literature. Convergence behavior
with respect to the numbers of modes considered in the resulting waveguides and
effect of the assumed outer cylindrical wall are examined for all these structures,
but only some typical results for a single circular microstrip antenna fed by a coax-
ial line will be provided in the following. Computed results for the input impedance
of all these microstrip antennas are given to show the effect of various structural

and material parameters on the antennas’ performances.

101
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5.1 Circular Patch Fed by a Centered Coaxial
Line

The first example we considered is a single circular microstrip patch antenna fed
by a coaxial cable, as shown in Figure 5.1. This is the simplest example because
its structure is azimuthally symmetrical [79]. As in the case of monopole antennas,
the convergence behavior with respect to the numbers of modes considered in the
resulting waveguides is examined initially. Superstrate is removed for simplicity at
the stage of checking convergence behavior; its effect will be studied later. Table 5.1
and Table 5.2 provides the convergence characteristics of the truncation numbers
N; and N3. N, is chosen as N, = N3(b, —ag)/(b2 —a) to ensure proper convergence,
where b, is the radius of the outer cylinder. It is found that the choice of Ny =1

and N; = 60 is good enough to get convergent results.

Figure 5.1: Geometry of a circular patch antenna fed by a centered coaxial line and

covered by a superstrate.

The effect of the radius of the assumed outer circular waveguide on the antenna’s

input impedance is examined in Figure 5.2. It is seen that the size of the introduced
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Table 5.1: Convergence of the impedance (Ohms) of a circular disk antenna with

respect to Ny (a0 = 0.6mm, a = 30mm, kea = 3.5, ¢, = 1, A = L.5mm, t = 0.1mm).

N; | Resistance | Reactance
1 70.1 132.7
4 69.9 132.5

Table 5.2: Convergence of the impedance (Ohms) of a disk antenna with respect

to N3 (ag = 0.6mm, a = 30mm, koa = 3.5, ¢, =1, b = 1.5mm, ¢t = 0.1mm).

N3 | Resistance | Reactance

5 167.8 -85.9
10 145.3 141.7
30 78.1 136.0
60 69.9 132.5

120 68.7 131.6
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cylindrical wall has a negligible influence on the input impedance when b, is larger
than two wavelengths. This is expected since the main radiation occurs in the
vertical direction and the introduced thin wall would not have significant effect on

the antenna’s radiation.
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Figure 5.2: Variation of the input impedance of a circular patch with respect to
the radius of the assumed boundary (aq = 0.6mm, a = 30mm, f = 6GHz, ¢, = 1,

h = 1.5mm, t = 0.1mm).

Figure 5.3 shows the comparison of our waveguide modal-expansion results with
those obtained by the moment method [82] for the input impedance of a circular
disk antenna. Both substrate and superstrate are assumed to be air in this case.
It is seen that the agreement is excellent. In Table 5.3, a comparison between
our computed results and the measured data in [82] is presented for the frequency
where the reflection coefficient 10l0g;9|S110|? attains its minimum value in the first

resonance. We see that they agree very well.

Figure 5.4 illustrates the effect of a superstrate residing above a circular patch
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Figure 5.3: Input impedance of a circular patch antenna fed by a centered coaxial

line (ap = 0.6mm, a = 30mm, ¢, = 1, h = 1.5mm, t = 0.1mm).

Table 5.3: Comparison between our results and theoretical and experimental ones

in [82] for the frequency (GHz) at minimum 10log10|S110/? (a0 = 0.6mm, a = 30mm,

& =1,t = 0.lmm).

h(mm) | Our results | Theoretical results in [82] | Experimental data in [82]
1.6 6.02 6.01 6.17
2.0 6.04 6.04 6.14
4.0 6.04 6.05 6.02
5.0 5.98 5.97 5.93
7.5 5.77 5.77 5.63
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on the antenna’s input impedance, where [ and €P are, respectively, the thickness
and dielectric constant of the superstrate. It is expected that both the thickness and
the dielectric constant have a significant effect on the antenna’s performance. The
fact that the superstrate reduces the resonant frequency is not surprising. It might
be possible to widen the antenna’s impedance bandwidth by properly choosing the

parameters of the superstrate.
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Figure 5.4: Effect of the superstrate on the circular patch antenna’s impedance

(a0 = 0.5mm, a = 30mm, ¢ = 15mm, b = 1.6mm, t = 0.1mm, € = ).
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The effect of the finite thickness of the circular patch on the antenna’s input
impedance is illustrated in Figure 5.5. It is seen that a thicker patch exhibits a lower
effective @Q and that increasing the thickness of the microstrip patch smooths the
impedance versus frequency variation by lowering the magnitude of the resistance
and reactance peaks near resonance. It is also observed that increasing the patch’s
thickness decreases the resonant frequency of the antenna since a thicker microstrip
disk is equivalent to a patch of larger radius, which results in a smaller resonant

frequency.

The effect of the anisotropy of the substrate and superstrate on the impedance
of a center-fed microstrip disk antenna is examined in Figure 5.6, where results
are given for a disk of radius ¢ = 15mm on a substrate of thickness b = 1.6mm
and covered by a superstrate of the same parameters as the substrate. It is noted
that the material’s anisotropy decreases the antenna’s resonant frequency because
a negative uniaxial substrate/superstrate equivalently produces a large effective

dielectric constant.
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Figure 5.5: Effect of the finite thickness of the circular patch on the antenna’s

impedance (g = 0.5mm, a = 15mm, h = 1.6mm, t = 0.lmm, ¢, = 1).
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Figure 5.6: Effect of the anisotropy of the substrate and superstrate on a circular

patch antenna’s impedance (a¢o = 0.5mm, | =k, t = 0.lmm, &, = &, = 3.4).
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5.2 Circular Patch Fed by an Off-Centered Cable

Figure 5.7: Geometry of a circular patch antenna fed by an off-centered coaxial

line.

The second example is a more practical antenna—a single circular patch antenna
fed by an off-centered coaxial line, which is illustrated in Figure 5.7. For this
example, we set s; =t = a; = 8, = 0 and ¢; = d; in Figure 4.6 and are left with
only three coaxial waveguides. Let the numbers of modes considered in these three
waveguides be N;, N,, N3, respectively. The convergence behavior of the input
impedance of a circular microstrip antenna with respect to the truncation numbers
Ny, N, and N; is also checked initially. The circular patch considered in this section
is of radius 30mm and of thickness 0.1mm. The substrate is of thickness 2.1844mm
and its relative permittivity is 2.33. The patch is fed at d = Tmm by a coaxial
line with inner and outer conductors’ radii being 0.45mm and 1.5mm. Table 5.4
shows the convergence of the input impedance with respect to the number N; of
modes considered in the coaxial-feed waveguide. It is seen that the results obtained
by taking only the dominant TEM mode into account is quite good. Table 5.5
gives the convergence characteristic of a circular patch antenna’s impedance with

respect to N;. It is seen that N3 = 211 (1 TEM mode, 70 TMy, modes, 70 TE,,
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and 70 TM;,,) is sufficient to get convergent results. Table 5.6 presents the relevant
information on convergence behavior of impedance versus N;; 2501 modes (1 TEM
mode, 1200 TE modes and 1300 TM modes are needed to give an accurate result
for the input impedance. The requirement that large number of modes should be
retained in the second coaxial waveguide does not pose any serious computational
problem since the size of the matrices to be inverted has nothing to do with the

number N, [66].

Table 5.4: Convergence of a circular microstrip antenna’s impedance (Ohms) with

respect to N, (f = 2.65GHz).

N, | Resistance | Reactance
1 51.4 68.6
2 51.3 68.5
5 51.2 68.4

Table 5.5: Convergence of a circular microstrip antenna’s impedance (Ohms) with

respect to N3 (f = 2.65GHz).

N; | Resistance | Reactance
61 75.5 -14.8
121 72.8 61.0
211 51.3 68.4
301 49.2 68.5

An important parameter in this waveguide modal analysis is the size b, of the
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Table 5.6: Convergence of a circular microstrip antenna’s impedance (Ohms) with

respect to N; (f = 2.65GHz).

N, | Resistance | Reactance
211 5.2 43.1
351 15.4 55.7
631 26.6 63.4
1361 35.8 66.8
2501 49.2 68.5
3721 51.3 68.4

assumed cylindrical wall. It is apparent that the larger b, is, the weaker is the
effect of the wall on the performance of a microstrip antenna. For the dominant
TM,; mode operation of circular microstrip antennas, the major radiation occurs in
the normal z direction. Then the assumed outer cylindrical wall has no significant
effect on the estimation of the antenna’s impedance, as shown in Figure 5.8. When
b, changes from 1.3)q to 2.5)¢, the impedance loci of a circular microstrip antenna

has no noticeable change. For the results that follow, we choose b; = 1.5)¢.

Figure 5.9 compares our waveguide modal results with the experimental ones of
(44] for the impedance loci of a circular microstrip antenna fed by an off-centered
coaxial probe. It can be seen that the agreement is excellent. Radiation patterns
for a circular disk antenna at resonance (2.7GHz) and off-resonance (2.6GHz) are
shown in Figure 5.10.

Figure 5.11 examines the variation of a circular microstrip antenna’s impedance

loci with respect to the radius of the feeding probe. It is seen that varying the radius

of the probe mainly changes the input reactance, but antenna’s input resistance is
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...................

Figure 5.8: Impedance loci of a circular microstrip antenna for different values of

b1, the size of the outer cylindrical wall (ap = 0.45mm).

—— Our results o o Measured by Aberleetal {191]

Figure 5.9: Impedance loci of a circular microstrip antenna fed by an off-centered

coaxial line.
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Figure 5.10: Radiated E-field patterns of a circular microstrip antenna at resonance

and at off- resonance.

insensitive to the probe size since it is mainly determined by the magnetic surface

current along the patch edge [36].

The position of the feeding probe has a significant effect on the impedance of a
circular microstrip antenna, as shown in Figure 5.12. The eccentricity d determines
the radius of the impedance loci in the Smith chart. It is seen that by properly
selecting the eccentricity d one can adjust the impedance loci and a good matching

point may then be achieved in the coaxial feed line for a circular microstrip antenna.

Figure 5.13 illustrates the effect of the substrate’s thickness on the microstrip
antenna’s input impedance. We see that using a thicker substrate results in a
significant increase in the antenna’s bandwidth, as expected. Therefore, one way
to widen the bandwidth of a microstrip antenna is to use a thick substrate. It is
also observed that increasing the thickness of the substrate decreases the antenna’s

resonant frequency.
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ag.

Figure 5.12: Impedance loci of a circular microstrip antenna for different values of

d.
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Figure 5.13: Input impedance of a circular microstrip antenna for different substrate

thicknesses.
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Figure 5.14: Effect of the finite thickness of the patch on the input impedance of a
circular microstrip antenna (ao = 0.32mm, by = 2.301a, a; = 5mm, k = 1.2mm,

d = 2mm, €, = 2.6).
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The effect of the finite thickness of the circular patch on the antenna’s input
impedance is illustrated in Figure 5.14. As we know from the previous section, in-
creasing the thickness of the microstrip patch smooths the impedance vs. frequency
variation and using a thick patch can broaden the antenna’s bandwidth. As before,
increasing the patch’s thickness slightly decreases the microstrip antenna’s resonant

frequency.

The effect of the substrate’s anisotropy on a circular microstrip antenna’s input
impedance is examined in Figure 5.15. It is noted that dielectric anisotropy of
the substrate has a noticeable influence on the antenna’s resonant frequency. A
bigger €, results in a larger effective permittivity, which decreases the resonant
frequency. A small decrease in pup; exhibits a significant increase in the antenna’s
resonant frequency. It is important to account for the effect of the substrate’s
anisotropy for the evaluation of a microstrip antenna’s resonant frequency due to

its narrow-bandwidth nature.

5.3 Annular-Ring Microstrip Antenna

The third example is an annular-ring microstrip antenna fed by a coaxial line, as
shown in Figure 5.16. Computed results for the input impedance of an annular-
ring microstrip antenna fed by an off-centered coaxial line and excited in the TM;;
are shown in Figure 5.17, where the inner and outer radii of the ring patch are
dy = 7.5mm and a, = 15mm, respectively. The isotropic substrate is of relative
permittivity 2.58. and of thickness A = 1.6mm. The coaxial feed line is connected

to the annular-ring at d = 9mm. There is no superstrate assumed in this example.

It is noted that the resonant frequency of a ring patch is much lower that a
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Figure 5.15: Effect of the substrate’s anisotropy on the input impedance of a circular

microstrip antenna (aq = 0.8mm, by = 2.301ag, a; = 20mm).
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Figure 5.16: Geometry of an annular-ring patch antenna fed by a coaxial line.
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Figure 5.17: Input impedance of an annular-ring microstrip antenna fed by an

off-centered coaxial line.



CHAPTER 5. NUMERICAL RESULTS FOR MICROSTRIP ANTENNAS 120

circular patch of approximately the same size. This property of the annular-ring
patch antenna is attractive for applications in mobile communications, where small
antennas operating at 0.9GHz and 1.8GHz are desired. It is also seen that the
bandwidth of an annular-ring microstrip antenna for TM;; mode excitation is very
narrow and the resonant resistance is very high compared to those of a circular
patch antenna; this very high @) nature suggests that a ring patch is best used as a
resonator, not as an antenna. However, studies ([45] and [46]) have revealed that an
annular-ring microstrip patch excited in the TM;, can give superior performance

as an antenna compared to the circular patch antenna.

5.4 Annular-Ring-Loaded Circular Disk Antenna

Figure 5.18: Geometry of an annular-ring-loaded circular microstrip antenna fed

by a coaxial line.

To show the applicability of the waveguide modal-expansion method to more com-

plicated microstrip antennas of circular shape, the annular-ring-loaded circular mi-
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crostrip antenna shown in Figure 5.18 is investigated. The structural and electrical
parameters of the considered example are as follows: ag = 0.32mm, bs = 2.301a,,
a = 12mm, b = 15mm, ¢ = 30mm, t;, = 0.1mm, h = 2.8mm, and d = 8.2mm. It
is assumed that the substrate is an isotropic material of relative permittivity 2.65
and no superstrate is involved. Figure 5.19 gives the comparison of our computed
results and the experimental results measured in [47] for the input impedance of the
annular-ring-loaded circular microstrip antenna. Very good agreement is observed.
By properly choosing the size of the loading annular-ring, it is possible to have two
resonances within the operating frequency range [47]. The additional resonance
provided by the annular-ring widens the bandwidth of the microstrip antenna.

400 1 1] { I T 1 1] ] L
Our results —

Measured by Nieetal. [1990] o

300 -

Input Impedance (Ohms)

_200 I 1 S i i ! 1 1 I

36 37 38 39 4 41 42 43 44 45 46
Frequency (GHz)

Figure 5.19: Input impedance of an annular-ring-loaded circular microstrip antenna

fed by an off-centered coaxial line.
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5.5 Stacked Circular Patch Antennas

Figure 5.20: Geometry of a stacked circular microstrip antenna fed by an off-

centered coaxial line.

The last example we considered in the category of microstrip antennas is a stacked
circular microstrip antenna, as illustrated in Figure 5.20. The structure results from
by setting ¢; = d, in Figure 4.6. It is well known that the parasitic circular patch
provides additional resonance and increases the bandwidth. Figure 5.21 shows a
comparison of our calculated results and measured data in [49] for the impedance
loci of a stacked circular microstrip antenna fed by an off-centered coaxial line.
The feed coaxial line of inner radius ao = 0.635mm has a standard characteristic
impedance of 50 Ohms. The driven circular patch is of radius a; = 13.233mm
and of thickness {; = 0.lmm. The parasitic patch is of radius a; = 1.0le; and
of thickness ¢, = 0.lmmm, and the distance between two patches is s, = 0.36a;.

The sandwiched dielectric is made of foam of relative permittivity e,, = 1.22. The
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substrate of thickness A = 1.52mm and the superstrate s, = 0.76mm are both
made of an isotropic material of dielectric constant 2.45. The feed point is shifted
from the center of the driven patch by d = 0.6a;. It is seen that the agreement is
fairly good. There are two resonances within the frequency range 3.2 — 5GHz and
the bandwidth of a stacked antenna is much larger than that of a single circular
antenna. Therefore, using the stacked configuration provides another way to widen

microstrip antenna’s bandwidth.

...................................

~——¢ Ourresults + + + Measured by Tulintsefferal. [1991]

Figure 5.21: Impedance loci of a stacked circular microstrip antenna fed by an

off-centered coaxial line.
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5.6 Concluding Remarks

The waveguide modal-expansion method described in Chapter 4 has been applied to
the analysis of five circular microstrip antenna structures in this chapter. Numerical
results have been presented for probe-fed single and stacked, circular and annular-
ring microstrip antennas. For these examples considered, it has been observed
that the agreement between computed results by the waveguide modal-expansion
method and measured data available in the literature is fairly good. Therefore, it
can be concluded that the accuracy of the presented waveguide modal-expansion

method is quite good.

Since all the E-field mode-matching matrices for all the waveguide junctions
involved in the waveguide modal-expansion method are in closed form, no series
summation or numerical integrations are needed in obtaining all the matrix el-
ements. Thus, this waveguide modal-expansion method is also computationally
efficient, though the size of the matrices involved is quite large. Comparatively, the
method of moments [44], [37] deals with a relatively small matrix equation, while
the computation of each element is time-consuming since numerical evaluation of

Sommerfeld integral is often invoked.



Chapter 6

Conclusions

6.1 Summary of Contributions

Although antenna engineering has a history of over 80 years, it remains a vibrant
field which is bursting with activities. Nowadays, many communication systems
are becoming more and more complicated and the frequency range of interest is
progressing upward. Designing novel antennas to catch up with this trend and
to meet the tight system specifications is a challenge. Development of accurate
and efficient modeling and simulation tools, prediction of radiation and impedance
performance, and suggestion of novel structures become increasing important and

highly desirable.

In this thesis, a rigorous full-wave modal-expansion method has been developed
to model cylindrical monopole and microstrip patch antennas. This method initially
introduces an appropriate boundary to transform the open-region antenna problems
into “closed-region” guided-wave problems. The resulting waveguide structures are

then solved by the formally exact modal-expansion method. Application of this
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introduced technique to many practical antenna configurations has been demon-

strated.

In the following, a summary of the major contributions made in this thesis is

given.

1. A unified formulation for cylindrical monopole antennas has been developed.
The presented formulation is very general and applies to many practical
monopole structures such as: the conventional monopole, the sleeve monopole,
dielectric-coated and -buried monopoles, and a multilayer insulated monopole
antenna. Based on the idea of a “perfectly matched boundary”, the radia-
tion antenna problem is initially transformed into a guided-wave transmission
problem. Modal-expansion method is then employed to formulate the gen-
eral problem. The developed formulation is valid for both thin and thick
monopoles. The coaxial feed line and conductors’ finite thicknesses are rigor-
ously taken into account. Analysis of a multilayered structure is implemented

by an efficient recursive algorithm.

2. Extensive computed results for various monopole antennas have been pre-
sented. The effect of the junction between the monopole and the coaxial feed
line, which was usually ignored in most previously published methods, has
been examined in detail. Three types of junction are clarified and studied
individually. It is found that the junction effect is sometimes significant and
has to be taken into consideration in antenna matching. The effect of the
sleeve’s finite thickness on the sleeve monopole’s input impedance has been
examined. It is observed that using a thick sleeve can widen the monopole’s
bandwidth. Impedance characteristics of a monopole coated by dielectric or

buried in a dielectric substrate have been investigated. Variation of the in-
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put impedance of an insulted monopole with various parameters has been

numerically studied.

3. A monopole over a finite ground plane of finite thickness was analyzed by the
waveguide modal-expansion method. Numerical results were presented and

compared with experimental data available in the literature.

4. An improved formulation has been introduced for two cascaded waveguide
junctions. Overall scattering matrices for three different types of cascading
connection have been derived. The remarkable saving in computation effort
gained from this improved formulation has been demonstrated and its appli-

cation to the analysis of circular microstrip antennas is emphasized.

5. A simple technique for calculating the reflection coefficients of open-ended
waveguides is proposed in this thesis. Based on the idea of complexification
and extrapolation, the problem of an open-ended waveguide was transformed
into a waveguide junction problem, which can be easily solved by the modal-
expansion method. Numerical tests show that this technique is conceptually

simple, computationally efficient, and numerically accurate.

6. A full-wave waveguide modal-expansion analysis has been presented for ana-
lyzing single and stacked probe-fed microstrip antennas with circular geome-
tries. The coaxial feed line, which was often treated as a line current excitation
in most previous works, is rigorously considered in this analysis. The effect
of patch’s finite thickness on the microstrip antenna’s input impedance is ex-
amined. It is found that this effect is negligible in microwave bands, while it
becomes noticeable in millimeter-wave bands. A superstrate residing on the
patch has been shown to have a pronounced influence on the antenna’s perfor-

mance. The effect of the substrate’s anisotropy on the microstrip antenna’s
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resonant frequency is also studied.

6.2 Recommendations for Future Research

In this thesis, there are a number of research topics which are worthy of further

investigation.

1. Structurally similar to the dielectric-coated monopole antenna considered in
Section 3.3.1, dielectric resonator antenna [83] fed by a centered or off-centered
coaxial line is now receiving increasing attention due to its advantages such
as small size and broad bandwidth. The modal-expansion method presented
in this thesis can be employed to accurately study the input impedance and
far-zone radiation pattern of the cylindrical dielectric resonator antenna. The
coaxial feed line can also be rigorously taken into consideration in the modal-

expansion analysis.

2. It is well-known that using a thick substrate can widen the bandwidth of
a microstrip antenna. However, a thick substrate can excite strong surface
waves which could degrade the antenna’s radiation performance. In order
to use a thick substrate and also to suppress the surface-wave excitation,
cavity-backed microstrip antennas are then preferred [84]. The waveguide
modal-expansion method presented in Chapter 4 can be extended with minor
changes to analyze cavity-backed single and stacked probe-fed circular and

annular-ring microstrip antennas.

3. Another type of antenna—the slot antenna has found wide application in
communication systems. With a slight modification, the presented modal-

expansion method can be generalized to analyze the impedance characteristics
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of various slot antennas backed by a cavity of circular or rectangular shape

[85].

4. Based on the same basic idea of the waveguide modal-expansion method in-
troduced in Chapter 4, one can explore other feeding structures for circular
microstrip antennas. Circular or rectangular waveguide end-feed through a
circular or rectangular aperture can be easily characterized using this modal-
expansion method. Feeding structures using apertures on the broad-wall of
a rectangular waveguide can also be modeled; this type of feeding structure

could be used for array applications.



Appendix A

Waveguide Modal Functions

A.1 Parallel-Plate Waveguide

A parallel-plate waveguide consists of two infinitely large parallel-plates separated
by a distance d, as illustrated in Figure A.1.

Figure A.1l: Parallel-plate waveguide.

TM Modes
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A.2 Rectangular Waveguide
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(A1)

(A-2)

(A.3)

(A4)

(A.5)

(A-6)

(A.7)

(A.8)

The length and width of a rectangular waveguide are assumed to be a and b, re-

spectively, as shown in Figure A.2 along with the coordinate system.
TM Modes

mwrz . nwy

; sin ——, m,n=1,2,...

mn

= Npnsin
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Figure A.2: Rectangular waveguide.
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A.3 Circular Waveguide

x|
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(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

The radius of a circular waveguide is assumed to be a. The cylindrical coordinates

(p, ¢) with its origin at the center of the waveguide are adopted here.

TM modes

fan = NisnJn(Z22E) cos(mg)

(A.16)
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A.4 Coaxial Waveguide
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The radii of inner and outer conductors of a coaxial waveguide are, respectively, a

and b.
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E-Field Mode-Matching Matrices

B.1 Parallel-Plate Waveguide Junction

A junction between two parallel-plate waveguides is illustrated in Figure B.1, where

a displacement b exists.

A
y Guide 2
)
Guide 1
a 1 : az
y oy
(0] b z
y
'Y

Figure B.1: Parallel-plate to parallel-plate waveguide junction.

[MT]1 (0] [0]
M= [0] [M*] (o] (B.1)
(M [0 (M
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B.2 Rectangular Waveguide Junction

A rectangular-to-rectangular waveguide junction is shown in Figure B.2.
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(B.2)
(B.3)
(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)
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e vz
bl o, P t X2
a4 L

le— a2, —

Figure B.2: Rectangular-to-rectangular waveguide junction.
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B.3 Circular-to-Circular Waveguide Junction

A junction between two collinear circular waveguides is shown in Figure B.3.

! a,
a, E l
+ 10 z
Guide 1
Guide 2

Figure B.3: Circular-to-circular waveguide junction.
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Q1 Tnm
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s = e Nl Gl anP = e B

B.4 Coaxial-to-Circular Waveguide Junction

A junction between a coaxial waveguide and a circular waveguide is illustrated in

Figure B.4.
2a , E 12
0 z
b, :
S
Guide 1
Guide 2
Figure B.4: Coaxial-to-circular waveguide junction.
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B.5 Coaxial-to-Coaxial Waveguide Junction

A junction between two coaxial waveguides with a shift d between their axes is

shown in Figure B.5.

Guide 1

Guide 2

Figure B.5: Junction between two noncollinear coaxial waveguides.

(M7 (MRl (0]

M=l O B (B.21)
[Men] [Man ] (M
where
rr _ | m(bi/a1)
M = _ln(bz/az) (B.22)
Th _ 2 Nl?i [ _‘i e a1di(zh;) _ i k]
M= len(bz/a.z) Th; (bl) by Ji(biz};/a1) (al) (B-23)
hh 2 z;n'z:t NhNh [ Jli(z;n) '(2) blznm ’(2) alznm ] ‘
nm ki alaz(?&i)z ( )2 Jl(blzln/a-l) n ( ) ( ) Q
(B.24)
MER s = (1) s e |28 — 202222 g, By (5)
nm ln(bl/ ) n a2 n as n as



APPENDIX B. E-FIELD MODE-MATCHING MATRICES 140

— , ,.
M= ZENEN, [rohCh) g Zim) _ g BEem)| g (5.
! :I:,“- b]_ as a2

i RO AT AT
e N¢ J (-’Bki) blznm 21 Tnm
ce ki “nm k (1) _ z(1)&15nm
nm, fei 2(a2zk,-/a.1:c,,m)2—1 [Jk(blzk;/al)z" ( Qs )=z as )]Q
(B.27)
with
dz,,,,. n dz'nm
Q = Jai( ) + (=1)"Jnti( ) (B.28)
as az
dz! dz!
Q' = Jaok(Z22m) — (=1) T 22y, (B.29)

(13 az



Appendix C

Expressions of Matrix Elements in

(2.49)-(2.56)

The elements of the matrices occurring in equations (2.49)-(2.56) are as follows:
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and 6., = 1 for n = m; 6,,, = 0 for n # m. All of the integrals given above can be

evaluated in closed form (Abramowitz and Stegun [56], Ch.11).



Appendix D

Derivation of (4.58)

The procedures for calculating the radiation pattern of a stacked circular microstrip

antenna (shown in Figure 4.6) were outlined in Section 4.3. This appendix details
the derivation of equation (4.58).
From equations(A.20) and (A.21) in Appendix A, one has

& (' 4) = NE (- ;‘, (“'“ p') cos(ng')p’

+ ot g1 P804 1) i )1 (D.1)

for ni-th TE mode in the last circular waveguide. Combining the following relations

p=#cos¢’ +Gsing’
¢ = —ising’ + Jcosd’
z =fsin0cos¢+écos€cos¢—$sin¢

#sin fsin ¢ + 6 cos Osin ¢ + Pcos ¢

(]
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yields
p' = #sin 0 cos(¢ — ¢') + O cos 8 cos(p — ¢') — Psin(p — ') (D.2)

# = #sinOsin(¢ — ¢') + G sin 0 cos(¢ — ¢') + ¢ cos(d — ¢') (D.3)

Substituting (D.1) into (4.56) and using the above relations, one gets

!
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Substituting the expression (D.4) for the equivalent magnetic current into (4.57)

+ 2
p

and expanding sin(n¢') and cos(n¢’) into
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one can derive

5 J"ko exp(—jkor) A 5 2 T6ni 11 Temi 1 In(Kop’ sin 6)
E ni = - - 6 2 L
7 ()N cos(n)f [ [T (<5 p)
7 n o .
+Jn(z§"“p')J,:(kop' sin 0)]dp’ + k““‘; (=1 Fo7) Nt . cos Bsin(ng)
1

n2

/61 z's'm-J,(za'm- \J? (kop' sin 0 J z’s,m' 'J(ko ’ s 0) do' (D.5
o bl n bl p)n( pSm )+k°p[sin0 "(blp)n psm p (.)




APPENDIX D. DERIVATION OF (4.58) 145

The integral in (D.5) can be worked out and the final expression is given in (4.58a).

Similarly, from equation (A.16) and (A.17), one gets

GarilPs #) = N 3T ") cos(nd 1§

- —J (‘”“ o) sin(ng')p/ (D-6)

for ni-th TM mode in the sixth c1rcula.r waveguide.

Following the same procedures one can obtain

o ]nko exp(—jkor) 2 67u l; J, (kop sin 0)
Epni = - Ng ni cos(nd) 0/ [ J"( F) kop’ sin 6
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b 8ni s\ 7/ gru zs,ru’ ’ ﬂ(kf)p sm0)
[ [J( ) hop! s 0) + 2ot gy Tty ool 51

The integral in (D.7) can be easily worked out and the derived expression is given
in (4.58b).

dp' (D.7)
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