
Lattice Compression of Polynomial Matrices

by

Chao Li

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Chao Li 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

Chao Li

I understand that my thesis may be made electronically available to the public.

Chao Li

ii

Abstract

This thesis investigates lattice compression of polynomial matrices over finite
fields. For an m×n matrix, the goal of lattice compression is to find an m×(m+k)
matrix, for some relatively small k, such that the lattice span of two matrices are
equivalent. For any m × n polynomial matrix with degree bound d, it can be
compressed by multiplying by a random n× (m + k) matrix B with degree bound
s. In this thesis, we prove that there is a positive probability that L(A) = L(AB)
with k(s+1) = Θ(log md). This is shown to hold even when s = 0 (i.e., where B is a
matrix of constants). We also design a competitive probabilistic lattice compression
algorithm of the Las Vegas type that has a positive probability of success on any
input and requires O~(nmθ−1B(d)) field operations.

iii

Acknowledgments

I gratefully appreciate my supervisors Prof. Arne Storjohann and Prof. Mark
Giesbercht who helped me and guide me in both academic and daily life during
my two years’ life in Waterloo. I would like to greatly acknowledge Prof. George
Labahn and Prof. Kevin Hare for reading this thesis. Thanks Mr. Reinhold Burger,
Mr. Wei Zhou and all other group members in symbolic computation group. I
appreciate all my friends in Waterloo.

I especially thanks my parents for their cares and support and thanks to Shizhe
with her love, which greatly encouraged me in those years.

iv

Contents

1 Introduction 1

1.1 Main results . 3

1.2 Comparison with previous work . 4

1.3 Applications . 5

1.4 Outline . 6

2 Mathematical foundations 7

3 The rank of a random matrix 11

4 The probability that AB 6≡R A 15

4.1 Upper bound for P (L2) . 16

4.2 Upper bound for P [L|¬(L1 ∨ L2)] 17

4.3 Upper bound for P (L1) . 17

4.4 An upper bound for P (S) . 20

5 The probability that AB 6≡R A in different cases 22

5.1 Special case: s = 0 . 23

5.2 Computation of P (S) in the general case 24

5.3 Special case: P (S|q = 2 ∧ k ≤ 2) . 25

5.4 Computation of P (L) . 28

5.5 Results . 29

v

6 The bounds and approximations for Nq(n) and Γ(D, s) 31

7 Verification and complexity analysis 34

7.1 The cost of the Monte Carlo compression algorithm 34

7.2 Convert rectangular matrix into square matrix 35

7.3 Correctness verification and Las Vegas compression algorithm . . . 38

8 Conclusion 43

vi

Chapter 1

Introduction

Let K be a finite field and A be an m× n matrix with rank m over the univariate
polynomial ring K[x]. The m-dimensional lattice L(A) is defined to be the set of
all K[x]-linear combination of the columns of A. Lattice Compression is a way to
construct a new generating set for L(A) with fewer columns; we randomly choose
a matrix B ∈ K[x]n×(m+k) for a some integer k and then compute AB. If B is
well-chosen, we could have L(A) = L(AB) and m + k < n. In this case, we say
that the compression is successful.

m

 A ×

B

︸ ︷︷ ︸
m+k

=

︸ ︷︷ ︸
k

For example, when m = 1 the matrix A is a row vector and the lattice com-
pression is equivalent to finding k + 1 random linear combinations of the entries
of A whose greatest common divisor is equal to the gcd of all n entries of A. For

1

example

[x2 + 2x + 3, x, x− 3, 3x2 − 1]

1 2

2 −3

x− 1 2x− 3

3 3x + 2

= [−2x2 − 2x + 2,−3x3 + 2x2 − 2],

is a successful compression on Z7[x]. For m > 1, an example input matrix over
Z7[x] is

A =

2− x −2− x −3− x −2− x 3− x −2− x −2 + 2 x 1

−x x −2 + 2 x −1 + 3 x 1− 2 x −1 + x 3 + 3 x 3

1 + 2 x −3 + x 1− 2 x −3 + 3 x 2− x −1 + 3 x −2 + 2 x 3

2− 2 x 2− 2 x 3 x −3− 2 x 2 + x 2− 3 x −2− x −2 x

∈ K[x]4×8.

Consider the compression matrix

B =

0 2 1 −1 2

−3 2 1 −1 −1

0 −1 1 3 −2

0 0 3 −2 0

−1 −3 1 0 1

2 0 2 3 1

−1 −3 −2 −1 −3

3 −2 3 1 3

∈ K8×5.

In this case the lattice compression is again successful. The compressed matrix

AB =

−3 −2 + x −3 + x −1 + 3 x 1

3− 2 x −2 + 2 x −3− 2 x 0 −3− 3 x

2 + 2 x 3− 2 x 3− 3 x −1− x −2 + 3 x

−2 + x 1 −2− 2 x 3 −2 + x

∈ K[x]4×5

satisfies L(AB) = L(A). In the example above, we chose B directly from K and the
number of extra columns k to be exactly one. This suggests a series of questions: can

2

we find a matrix B over K and with only one extra column under any circumstance,
with a positive probability of success? If not, can we always keep a small k or even
k = 1 with B generated from low degree polynomials over K[x]? Or, how large will
k need to be if we insist on choosing the entries of B randomly from K? Moreover,
we are also interested in the relationship between the size of the field K and the
probability of making a successful compression.

Lattice Compression is particularly useful in reducing the size of input matrices
when an algorithm concerns properties of matrices that are invariant under uni-
modular column transformations. Thus it can be applied in linear system solving
and computation of column standard forms, such as Hermite form, Smith form and
column reduced form. We will show its detailed applications later in this chapter.

1.1 Main results

In this thesis we present a thorough discussion of lattice compression when A is over
K[x], and the entries of B are chosen uniformly and randomly from K or polynomials
in K[x] with a degree bound s. Let d denote the degree bound of the entries in A,
and recall that k is the number of extra columns in the compressed matrix. Our
approach shows that we can always get a positive probability of successful lattice
compression as long as k(s + 1) ∈ Ω(log md), where Ω(f) means asymptotic lower
bounded by f [see Knuth, 1997, pp. 111]. More precisely, let q = #K be the size
of the finite field. Our study gives a lower bound on the probability of successful
compression in different cases with respect to q, m, k, d and s:

• For a finite field K with size q = #K > 2(md+5), we can choose the entries of
B randomly and uniformly from K (that is, s = 0) and keep k = 1, exactly as
we have shown in the example above, and still have a positive probability of
successful lattice compression larger than 1/2. More precisely, the probability
of success is larger than 1− (md + 5)/q.

• In order to draw the entries of B directly from K, which means s = 0, we
show that is sufficient to have k ∈ Ω(log md). More precisely we show that
k ≥ 2dlogq mde + 9 is sufficient to get a positive probability of successful
lattice compression. The probability of failure decreases exponentially with
increasing of k. When t = 2dlogq mde + 6, the probability of failure will be

less than (1/q)b(k−t)/3c.

3

• In general, to get a positive probability of success, q, m, k, d and s should
satisfy the following inequality:

k(s + 1) ≥ (
2 logq md + 3

(
1 + logq 300

))
.

The probability of failure can be bounded in terms of k: it is less than (1/q)k+
2(1/q)k+1 + (1/q)2k + 0.01, for q > 2 or k > 2.

• Notice the probability mentioned above in the general case will larger than 1
for q = 2 and k = 1. We analyze the probability in the special case that q =
2 ∧ k ≤ 2, and prove the probability of failure is less than 2(1

2
)k− 3

4
(1

4
)k +0.01.

1.2 Comparison with previous work

Storjohann and Labahn [1995] analyzed the k = 1 case of lattice compression.
Based on an idea of Kaltofen et al. [1990], they choose the entries of a random
matrix B from a subset of a finite field K. Storjohann and Labahn [1995] prove
that the compression is successful if the entries in the random matrix B are not
roots of a multivariate polynomial with degree bounded by m2d, where d is the
degree bound of A. According to the Schwartz-Zippel lemma [Schwartz, 1980], to
keep the probability of failure smaller than ε, the desired size of the sample set K
should be greater than or equal to 2dm2d/εe. If the finite field isn’t large enough,
Storjohann and Labahn mentioned that we can work over an extension of K. In
this thesis, our approach shows that if the size of finite field is larger than or equal
to d(md + 5)/εe, we can keep k = 1 and generate the entries of B randomly and
uniformly from K to get a probability of failure smaller than ε. More generally, for
finite fields with small size (e.g. q = 2), we can get a positive probability of success
by generating a random matrix B over K[x] rather than some field extension of K.
If we insist on choosing the entries of B directly from K, our approach shows we
only need to increase k by a small (logarithmic) amount.

Another case, where m = 1 and k = 1, is that of finding GCDs of polynomials
and is studied by Conflitti [2003]. Instead of relying on the Schwartz-Zippel lemma,
he constructed B with random polynomials with degree Θ(log d) and considered
the number of irreducible polynomials over the finite field that can divide the two
polynomials after compression. Here Θ(f) means asymptotically tight bounded by
f [see Knuth, 1997, pp. 111]. Our result generalizes this into any k and m with
the same order of required degree bound.

Lattice compression over other principal ideal domains has been studied as well.
An analysis for the integer case when k = 1 and m = 1 case is given by Cooperman

4

et al. [1999] and von zur Gathen and Shparlinski [2004]. The detailed study for
arbitrary k and m over the integer domain is given by Chen and Storjohann [2005].

1.3 Applications

An important application of this work is to under-determined linear system solving.
Given a rectangular matrix A with more columns than rows over K[x], we wish to
compute a solution u in K[x] to the linear system Au = b or determine that no
such u exists. Using lattice compression we can reduce this problem to solving an
almost square system. If L(AB) = L(A), the compressed system (AB)v = b will
have a solution over K[x] if and only if Au = b has a solution. If v is a solution to
the compressed system, then u = Bv will be a solution to the original system.

Lattice compression can also be used with the algorithms which compute in-
variants of L(A), such as the Hermite form, the Smith form and a column reduced
form. Since the best known algorithms for these normal forms require a square or
almost square input matrix, we can use AB instead of A, so that the input matrix
is almost square with only k extra columns. For this application it is desirable to
have a compression with k as small as possible.

In particular, many algorithms for computing canonical forms require the input
matrix to be non-singular, such as the Smith form algorithm in Storjohann [2002]
and the column reduced form algorithm in Giorgi et al. [2003]. We present an al-
gorithm in Chapter 7, based on the determinant reduction algorithm in Storjohann
[2002] to transform AB, which has a dimension m × (m + k), to a non-singular
matrix Ã such that

Ã =

[
AB

∗

]
∈ K[x](m+k)×(m+k),

with deg Ã ≤ deg AB. Moreover, the Hermite column basis of Ã is

[
HAB 0

0 Ik

]
∈ K[x](m+k)×(m+k),

where HAB ∈ K[x]m×m is exactly the Hermite column basis of AB. Then we can
compute the Smith form, Hermite form or column reduced form of the original
matrix A from the square non-singular matrix Ã.

5

1.4 Outline

In Chapter 2 we present some mathematical foundations and characterize a suc-
cessful lattice compression. In Chapter 3 we recall some probability bounds that a
partially randomized matrix will have full row rank. Chapter 4 separates the prob-
lem into several parts and bounds the probability of failure for each part. Then
Chapter 5 gives a detailed discussion in different cases and bounds the probability
that L(A) 6= L(AB). We prove some supplementary theorems in Chapter 6. Fi-
nally, in Chapter 7, we show how to verify the correctness of a compression and
present a Las Vegas compression algorithm.

6

Chapter 2

Mathematical foundations

In this chapter we will recall some mathematical properties of matrices over fields.
We follow the discussion from Mulders and Storjohann [2004] and Chen and Stor-
johann [2005]. Consider the situation when A is an m × n matrix over a field F
with rank m. Since F is a field and A has full row rank, the lattice L(A) is the
entire m-dimensional vector space over Fm, and for any n× (m + k) matrix B over
F, L(A) = L(AB) if and only if AB has full rank m over F. Instead of checking the
rank of AB directly, we rely on the following lemma:

Lemma 2.1 (Mulders and Storjohann, 2004, Lemma 15). Let A ∈ Fm×n have rank
m and N ∈ Fn×(n−m) be a right nullspace basis of A. For any matrix B ∈ Fn×(m+k),
rank(AB) = rank([N |B])− (n−m).

Now consider extending Lemma 2.1 to the univariate polynomial ring K[x] over
a finite field K. Use K(x) to denote the field of fractions of K[x] and for any
irreducible polynomial p ∈ K[x], let K[x]/(p) be the residue class ring modulo p.
From the definition of a lattice, we know for two matrices X and Y over K(x), that
L(X) = L(Y) over K(x) if and only if X = Y U for some invertible matrix U over
K(x). Similarly, if X and Y are over K[x], L(X) = L(Y) over K[x] if and only if
X = Y U for some unimodular matrix U over K[x]. Recall that a unimodular matrix
over K[x] is one whose determinant is a non-zero element of K. Such matrices are
exactly those which are invertible over K[x]. When X = Y U for unimodular U , we
say X and Y are right equivalent and denote this by X ≡R Y . Similarly, we say X
and Y are left equivalent if X = UY for a unimodular U or equivalently XT and
Y T are right equivalent. We denote left equivalence by X ≡L Y . Here we show an

7

example in which A ≡R AB1 over Z11[x] and A ≡R AB2 over Z11(x) only:

A =

−5− 5 x −3− 3 x 3 + 3 x

−4 + x 4 + 5 x −1− 5 x

2 x −3− 5 x 3 + 5 x

 ,

B1 =

5 0 −1

3− 4 x 4 2 + 3 x

5 x− 1 −2 x −5 + x

 , det(B1) = −5,

AB1 ·

5 x + 4 + x2 4 x −3

4 + x + 5 x2 3− 2 x −4

3 x− 3 + 5 x2 −2 x −4

 = A;

B2 =

1 + 5 x −2 x + 1 −3− 3 x

4 + 5 x 5− 2 x 4− 3 x

1− x 5− 4 x 4 + 5 x

 , det(B2) = −2x− 2,

AB2 ·

− 2x
x+1

4
x+1

−4+x
x+1

−5−4 x
x+1

2+4 x
x+1

−3
x+1

−2+3 x
x+1

2+x
x+1

5−2 x
x+1

 = A.

Noticing that B1 is unimodular over Z11[x] and B2 isn’t, we know AB1 ≡R A and
AB2 6≡R A over Z11[x].

Definition 2.2 (Chen and Storjohann, 2005, Definition 2). Let A ∈ K[x]m×n have
full row rank m. A matrix N ∈ K[x]n×(n−m) such that L(N) = {x ∈ K[x]n |Ax = 0}
is called a right kernel of A.

For any matrix A ∈ K[x]m×n consider a lower triangular matrix H over K[x]
such that A ≡R H. One such such choice for H is the Hermite normal form of A.

Definition 2.3. A matrix H ∈ K[x]m×n (m < n) of full rank is said be in Hermite
normal form if it has the form [H̃ 0], where H̃ ∈ K[x]m×m is a nonsingular, lower
triangular matrix in which each row has a unique monic entry with highest degree

8

located on the main diagonal of H̃. If A ≡R H̃ then H̃ is the unique Hermite
Column basis of A.

We will use HA to denote the Hermite column basis of A. Then the matrix
Ā = H−1

A A has entries from K[x] and Ā ≡R Im. Here is an example over Z7[x]:

A =

3 + 3 x 3 + 2 x −3 x

2 + 2 x 2− x2 3− x− x2

−2 + 3 x 2− 3 x + 3 x2 3 x + 3 x2

 ,

HA =

1 0 0

1 1 + x 0

2 + 2 x 1 + 2 x− x2 x3 + 3 x + 3

 ,

Ā = H−1
A A =

3 + 3 x 3 + 2 x −3 x

−1 −1− x 3− x

0 −1 −1

 ,

Ā ·

2 −2− x 1 + x2

3 2 + 2 x −1 + 2 x− 2 x2

−3 −2− 2 x 2 x2 − 2 x

 = I.

Lemma 2.4. Let X ∈ K[x]m×n with m ≤ n. Then X ≡R Im if and only if X mod
p ∈ (K[x]/(p))m×n has full row rank over K[x]/(p) for all irreducible polynomials
p ∈ K[x].

Proof. If X ≡R Im over K[x], then X ≡R Im over K[x]/(p) for all irreducible
polynomials p ∈ K[x]. Thus X mod p has full rank over K[x]/(p) for all irreducible
polynomials p ∈ K[x].

Now let’s consider the other direction. Let U be a unimodular matrix over K[x]
such that XU = [H|0] where H ∈ K[x]m×m is the Hermite column basis of X.

Since U is nonsingular, rank(X) = rank([H|0]) = rank(H) over K[x]. Moveover,
since U is unimodular, U mod p is nonsingular over K[x]/(p) for any prime p ∈ K[x]
and rank(X mod p) = rank(H mod p) over K[x]/(p) for an irreducible p ∈ K[x].

9

Therefore, if X 6≡R Im, and we have H 6= Im, which means deg(det(H)) > 1.
Thus, there exists a prime p ∈ K[x] such that p divides det(H), which means
H mod p doesn’t have full rank over K[x]/(p), a contradiction.

Using Lemma 2.4, Chen and Storjohann [2005] proved a theorem that shows
when AB ≡R A when they are over a principal ideal domain.

Theorem 2.5 (Chen and Storjohann, 2005, Theorem 4). Let A ∈ K[x]m×n with
rank m. Let N ∈ K[x]n×(n−m) be a right kernel for A. For any matrix B ∈
K[x]n×(m+k), AB ≡R A if and only if [N |B] ≡R In.

Corollary 2.6 (Chen and Storjohann, 2005, Corollary 5). There exist a nonzero
minor M of AB with the property that for all primes p ∈ K[x] not dividing M , the
rank of [N |B] mod p over K[x]/(p) does not decrease compared to the rank of [N |B]
over K[x].

10

Chapter 3

The rank of a random matrix

Theorem 2.5 shows that AB ≡R A if and only if [N |B] ≡R In, where N ∈
K[x]n×(n−m) is the right kernel of A ∈ K[x]m×n. This means that to check whether
the compression is successful, we can consider the rank of the partially random
matrix [N |B]. For the fully random matrix, there’s a well known result: let F be a
field, and let D ∈ Fn×(n+k) be a random matrix whose entries are chosen randomly
and uniformly from F. The probability P such that the matrix D has full row rank
is

P =
n+k∏

i=k+1

(
1−

(
1

#F

)i
)

.

In general, if the matrix is a partially random matrix with the form [C|D] where
the entries of D are chosen randomly and uniformly from a finite subset U of F,
Mulders and Storjohann [2004] gives a similar lower bound of the probability P
such that matrix [C|D] has full row rank.

Lemma 3.1 (Mulders and Storjohann, 2004, Lemma 13). Let C ∈ Fn×m1 and
rank(C) = n − r. Let D ∈ Fn×(r+k) be a random matrix whose entries are chosen
randomly and uniformly from a finite set U ⊆ F. The probability P that the matrix
[C|D] has full row rank satisfies

P ≥
r+k∏

i=k+1

(
1−

(
1

#U

)i
)

.

Notice that in Lemma 3.1, r denotes the minimum number of columns that D
should have required to make the matrix [C|D] full row rank. Since D ∈ F n×(r+k),

11

we say that the partially random matrix [C|D] is k extra columns. In this thesis,
we need a lower bound on P that is independent of r. We can raise the upper
bound of the product in Lemma 3.1 up to ∞. Then we have a general lower bound

P >

∞∏

i=k+1

(
1−

(
1

#U

)i
)

, (3.1)

valid for all r. This gives the following theorem.

Theorem 3.2. Let C ∈ Fn×m1 with rank(C) = n−r. Let D ∈ Fn×(r+k) be a random
matrix whose entries are chosen randomly and uniformly from a finite set U ⊆ F.
The probability P that the matrix [C|D] has full row rank satisfies

P >
∞∏

i=k+1

(
1−

(
1

#U

)i
)

. (3.2)

For s ≥ 0, we denote by Ks[x] the subset of K[x] consisting of all the polynomials
in K[x] with the degree less than or equal to s. Applying Theorem 3.2 to the fraction
field K(x) and letting U = Ks[x] ⊂ K(x), we get the following theorem immediately
from Theorem 3.2.

Theorem 3.3. Let C ∈ K[x]n×m1 with rank(C) = n− r. Let D ∈ K[x]n×(r+k) have
entries chosen randomly and uniformly from Ks[x]. Then the probability P that
[C|D] will have a full row rank over K(x) satisfies

P >
∞∏

i=k+1

(
1−

(
1

qs+1

)i
)

. (3.3)

For any irreducible polynomial p ∈ K[x], we can apply Theorem 3.2 on the
residue field K[x]/(p). When the degree of p is at least s + 1, we can still let
U = Ks[x] ⊆ K[x]/(p) as in Theorem 3.3. If the degree of p is less than or equal to
s, consider the modular mapping φ from Ks[x] to K[x]/(p). For each polynomial f
in K[x]/(p), its set of preimages in Ks[x] is

φ−1(f) = {g · p + f | deg(g) + deg(p) ≤ s}, (3.4)

so that each polynomial in K[x]/(p) has qs−deg(p)+1 preimages in Ks[x]. Therefore,
if entries of matrix D are chosen randomly and uniformly from Ks[x], entries of
D mod p are randomly and uniformly chosen from K[x]/(p). This gives the following
theorem.

12

Theorem 3.4. Let C ∈ K[x]n×m1 with rank(C mod p) = n − r over K[x]/(p). Let
D ∈ Ks[x]n×(r+k) have entries chosen uniformly from polynomials in Ks[x]. Then
the probability P that [C|D] mod p will have a full row rank over K[x]/(p) satisfies

P ≥
∞∏

i=k+1

(
1−

(
1

qδ

)i
)

, (3.5)

where δ = min{deg(p), s + 1}.

To approximate the probabilities, for 0 < x ≤ 1/2, s, t > 0, u ≥ 0, we have

∞∏
i=s

(1− xi) = (1− xs)
∞∏

i=s+1

(1− xi)

≤ (1− xs)

(
1−

∞∑
i=s+1

xi

)

= (1− xs)

(
1− xs+1

1− x

)

≤ (1− xs)(1− 2xs+1). (3.6)

Lemma 3.5. Let 0 < x ≤ 1/2, s, t > 0, and u ≥ 0. Then

∞∏
i=s

(1− xi) ≤ (1− xs)(1− 2xs+1).

Since q ≥ 2, then 0 < 1/q ≤ 1/2 always holds. Since we also need to bound
from above the probability that [C|D] doesn’t have a full row rank, we can give a
further approximation

1− (1− 2xs+1)(1− xs) = xs + 2xs+1 − 2x2s+1 < (1 + 2x)xs. (3.7)

Applying (3.7), we derive the following corollary from Theorem 3.3 and 3.4.

Corollary 3.6. Let C ∈ K[x]n×m1, rank(C) = n− r. Let D ∈ K[x]n×(r+k) with the
entries chosen uniformly from polynomials in Ks[x]. Then the probability P̄ that
[C|D] will not have a full row rank over K(x) satisfies

P̄ <

(
1 +

2

qs+1

)(
1

q

)(s+1)(k+1)

. (3.8)

13

Corollary 3.7. Let C ∈ K[x]n×m1 with rank(C mod p) = n− r over K[x]/(p). Let
D ∈ Ks[x]n×(r+k) have entries chosen uniformly from polynomials in Ks[x]. Then
the probability P̄ that [C|D] mod p will not have full row rank over K[x]/(p) satisfies

P̄ <

(
1 +

2

qδ

)(
1

q

)δ(k+1)

, (3.9)

where δ = min{deg(p), s + 1}.

14

Chapter 4

The probability that AB 6≡R A

Recall that the Theorem 2.5 shows that AB ∈ K[x]m×(m+k) satisfies AB ≡R A if
and only if [N |B] ∈ K[x]n×(n+k) satisfies [N |B] ≡R In. Instead of considering the
probability that AB 6≡R A we consider the probability that [N |B] 6≡R I. Let P
denote the event that [N |B] 6≡R I, which means there exists at least one irreducible
polynomial p ∈ K[x] such that [N |B] mod p ∈ (K[x]/(p))n×(n+k) has rank strictly
less than n over K[x]/(p). Recall the entries of B are randomly and uniformly
chosen from Ks[x]. To bound the probability of event P we define the following
events:

• Event L: there exist at least one irreducible polynomial p with degree larger
than s such that [N |B] mod p ∈ (K[x]/(p))n×(n+k) has rank strictly less than
n over K[x]/(p).

• Event S: there exist at least one irreducible polynomial p with degree less
than or equal to s such that [N |B] mod p ∈ (K[x]/(p))n×(n+k) has rank strictly
less than n over K[x]/(p).

Then the event P is equivalent to event L ∨ S (that is, L “or” S). Thus we know
that

P (P) = P (L ∨ S) ≤ P (L) + P (S).

Following the method in Chen and Storjohann [2005],we split the matrix B as
[B1|B2|B3] with m− t1, t1 + t2, k− t2 columns, respectively. The parameters t1, t2
are non-negative integers with t1 + t2 ≤ k. We will specify the values of t1, t2 later.

15

The split of B is shown as follows:

N

︸ ︷︷ ︸
n−m

B︷ ︸︸ ︷

B1

︸ ︷︷ ︸
m−t1

B2

︸︷︷︸
t1+t2

B3

︸︷︷︸
k−t2

We define two other events:

• Event L1: there exist at least one irreducible polynomial p with degree strictly
higher than s such that [N |B1] mod p ∈ (K[x]/(p))n×(n−t1) has rank at most
n− t1 − 2 over K[x]/(p).

• Event L2: The matrix [N |B1|B2] ∈ K[x]n×(n+t2) doesn’t have full row rank n
over K(x).

According to the rules of probability, we have

P (P) ≤ P (L) + P (S)

≤ P (L1) + P (L2) + P [L|¬(L1 ∨ L2)] + P (S).

In Section 4.1, 4.2, 4.3 and 4.4, we will use Corollary 3.6 and Corollary 3.7
to evaluate the probabilities of event P (L2), P [L|¬(L1 ∨ L2)], P (L1) and P (S),
respectively.

4.1 Upper bound for P (L2)

In this case [B1|B2] ∈ K[x]n×(m+t2) is the random part of the partially random
matrix [N |B1|B2] ∈ K[x]n×(n+t2) with rank(N) = n − m. Therefore the matrix
[N |B1|B2] has t2 extra columns and Corollary 3.6 gives

P (L2) <

(
1 +

2

qs+1

)(
1

q

)(s+1)(t2+1)

. (4.1)

16

4.2 Upper bound for P [L|¬(L1 ∨ L2)]

Since event L1 isn’t satisfied, [N |B1] ∈ K[x]n×(n−t1) has rank at least n − t1 − 1
over K[x]/(p) for all irreducible polynomials p ∈ K[x] with degree at least s + 1.
Let P̄p be the probability that the partially random matrix [N |B1|B3] mod p ∈
(K[x]/(p))n×(n+k−t1−t2) does not have full row rank n over K[x]/(p), conditional on
L1 not being satisfied. Taking B3 ∈ K[x]n×(k−t2) as the random part, Corollary 3.7
yields

P̄p <

(
1 +

2

qs+1

)(
1

q

)(s+1)(k−t1−t2)

. (4.2)

According to the assumption that event L2 isn’t satisfied, by Corollary 2.6 there
exists a nonzero minor M of A[B1|B2] such that for all irreducible polynomials p
not dividing M , A[B1|B2] mod p has full rank n. Let Γ(D, s) denote the maxi-
mum number of distinct irreducible divisors with degree strictly larger than s of a
polynomial in KD[x]. Since the degree of M is at most m(d + s), considering (4.2)
gives

P [L|¬(L1 ∨ L2)] ≤
∑

p|M, deg(p)>s

Pp

<
∑

p|M,deg(p)>s

(
1 +

2

qs+1

)(
1

q

)(s+1)(k−t1−t2)

≤ Γ(m(d + s), s)

(
1 +

2

qs+1

)(
1

q

)(s+1)(k−t1−t2)

. (4.3)

4.3 Upper bound for P (L1)

Following Eberly et al. [2000], we define events for i = n−m,n−m+1, . . . , n−1, n.
Let Depi denote the event that the first i columns of [N |B1] don’t have full column
rank. If Depi−1 is not satisfied then there exist i− 1 rows of [N |B1] such that the
first i − 1 columns of [N |B1] on those i − 1 rows are a basis of K[x]i−1. Since any
elementary column operation on the first i − 1 columns of [N |B1] doesn’t change
the span of the first i− 1 columns, we can assume the first i− 1 columns of [N |B1]

17

is in reduced column echelon form over K(x)

[N |B1] =

i−1︷ ︸︸ ︷

1 0 0 0 . . . 0

∗ 0 0 0 . . . 0

0 1 0 0 . . . 0

∗ ∗ 0 0 . . . 0

0 0 1 0 . . . 0

∗ ∗ ∗ ∗ . . . ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

.

Let j1, . . . , ji−1 be those rows whose i-th entry is 1 and all other entries are
zero. When randomly generating the i-th column, first we pick the entries in the
row j1 . . . , ji−1 of the i-th column, and then choose the rest of the entries on the
i-th column uniformly and randomly from Ks[x]. Considering the diagram above,
we know once the entries in row j1 . . . , ji−1 are fixed of the i-th column, there’s at
most one choice for the other entries of the i-th column over K[x] such that those
first i columns does not have a full column rank. So the probability that the first
i columns do not have a full column rank is no more than (1/q)(s+1)(n−i+1). This
gives

P [Depi|¬Depi−1] ≤
(

1

q

)(s+1)(n−i+1)

. (4.4)

For an irreducible polynomial p with degree larger than s, let MDep
(p)
i denote

the event that the first i columns of [N |B1] mod p ∈ (K[x]/(p))n×i have a column
rank at most i − 2 over K[x]/(p). Let MDepi denote the event that the first i
columns of [N |B1] mod p have a column rank at most i − 2 over K[x]/(p) for at
least one irreducible polynomial p with degree larger than s. If MDepi−1 is not
satisfied, it means the first i− 1 columns of [N |B1] mod p has rank either i− 1 or
i−2 for any irreducible polynomial p with degree larger than s. If [N |B1] mod p has

full column rank i− 1 over K[x]/(p), then MDep
(p)
i can’t be satisfied. Otherwise, if

the first i− 1 columns of [N |B1] mod p has rank i− 2 over K[x]/(p), which means

MDep
(p)
i is satisfied if and only if the i-th column of [N |B1] mod p is in the span of

first i− 1 columns of [N |B1] mod p over K[x]/(p). Thus we can use similar analysis
with the event Depi|¬Depi−1 on the field K(x), and the probability that the first
i columns of [N |B1] mod p have rank i − 2 over K[x]/(p) is less than or equal to

18

(1/q)(s+1)(n−i+2). In general, we have

P [MDep
(p)
i |¬MDepi−1] ≤

(
1

q

)(s+1)(n−i+2)

. (4.5)

If Depi−1 isn’t satisfied, then according to Lemma 2.6, there exists a nonzero
minor Mi of dimension i − 1 of the first i − 1 columns of ABi such that for all
irreducible polynomials p not dividing Mi, the first i − 1 columns of [N |B1] have
full column rank over K[x]/(p). Summing (4.5) over all the divisors of Mi with
degree higher than s gives

P [MDepi|¬(Depi−1 ∨MDepi−1)] ≤
∑

p|Mi,deg p>s

P [MDep
(p)
i |¬(Depi−1 ∨MDepi−1)]

≤
∑

p|Mi,deg p>s

(
1

q

)(s+1)(n−i+2)

≤ Γ(m(d + s), s)

(
1

q

)(s+1)(n−i+2)

. (4.6)

From (4.4) and (4.6), we have

P [Depi ∨MDepi|¬(Depi−1 ∨MDepi−1)]

≤ P [Depi|¬(Depi−1 ∨MDepi−1)] + P [MDepi|¬(Depi−1 ∨MDepi−1)]

≤
(

1 + Γ(m(d + s), s)

(
1

q

)s+1
)(

1

q

)(s+1)(n−i+1)

. (4.7)

Notice the event MDepn−t1 is event L1. To estimate the P (L1) we need the
following lemma.

Lemma 4.1. Let E0, E1, . . . , El be a series of events, such that P (E0) = 0. Then:

P (El) ≤
l∑

i=1

P (Ei|Ei−1).

Proof. For any 1 ≤ i ≤ l, we have

P (Ei) = P ((Ei ∧ Ei−1) ∨ (Ei ∧ ¬Ei−1))

≤ P (Ei ∧ Ei−1) + P (Ei ∧ ¬Ei−1)

≤ P (Ei−1) + P (Ei|¬Ei−1).

19

Thus we know P (Ei)− P (Ei−1) ≤ P (Ei|¬Ei−1). Summing from i = 1 to l, we
have

P (El)− P (E0) =
l∑

i=1

(P (Ei)− P (Ei−1)) ≤
l∑

i=1

P (Ei|Ei−1).

Notice that P (E0) = 0 to finish the proof.

Since N ≡L In−m, we know that P [Depn−m] = P [MDepn−m] = 0. Therefore,
according to Lemma 4.1 and (4.7), we can bound the probability of event L1 as
follows.

P (L1) = P [MDepn−t1]

≤ P [Depn−t1 ∨MDepn−t1]

≤
n−t1∑

i=n−m+1

P [(Depi ∨MDepi|¬(Depi−1 ∨MDepi−1))]

≤
n−t1∑

i=n−m+1

(
1 + Γ(m(d + s), s)

(
1

q

)s+1
)(

1

q

)(s+1)(n−i+1)

≤
∞∑

i=t1+1

(
1 + Γ(m(d + s), s)

(
1

q

)s+1
)(

1

q

)(s+1)i

≤
(

1 + Γ(m(d + s), s)

(
1

q

)s+1
)(

1 +
2

qs+1

)(
1

q

)(s+1)(t1+1)

. (4.8)

4.4 An upper bound for P (S)

According to Corollary 3.7, for an irreducible polynomial p with degree less than
or equal to s, we know the probability Pp that [N |B] ∈ (K[x]/(p))n×(n+k) doesn’t
have a full row rank over K/(p) satisfies

Pp <

(
1 +

2

qdeg(p)

)(
1

q

)deg(p)(k+1)

. (4.9)

Use Nq(n) to denote the number of irreducible polynomials with degree n in
finite field Fq[x]. Summing (4.9) over all irreducible polynomials with degree less

20

than or equal to s gives

P (S) ≤
s∑

i=1

Nq(i)Pp

≤
s∑

i=1

Nq(i)

(
1 +

2

qi

)(
1

q

)i(k+1)

≤
∞∑
i=1

Nq(i)

(
1 +

2

qi

)(
1

q

)i(k+1)

. (4.10)

21

Chapter 5

The probability that AB 6≡R A in
different cases

Now we present concrete upper bounds for the probability that AB 6≡R A in differ-
ent cases. Recall that P denotes the event that AB 6≡R A and we separate event
P into two events. L denotes the event that AB 6≡R A over K[x]/(p) for at least
one irreducible polynomial p with deg P > s. S denotes the event that AB 6≡R A
over K[x]/(p) for at least one irreducible polynomial p with deg P ≤ s. Therefore

P (P) ≤ P (L) + P (S).

In Section 5.1 we consider the special case s = 0, which means the entries of B
are chosen randomly and uniformly from the finite field K. In this case P (S) = 0
and it will suffice to bound P (L). We present an upper bound of the minimum k
required in this case to guarantee a positive probability that AB ≡R A.

We analyze the case s > 0 in Section 5.2, 5.3 and 5.4. The bound on the
probability of event S is discussed in Section 5.2. Since this general bound on P (S)
doesn’t work well when q = 2 ∧ k ≤ 2, we further analyze this special case in
Section 5.3. The relationship between P (L), s and k are presented in Section 5.4.

We summarize all the probabilities for those different cases in Section 5.5.

22

5.1 Special case: s = 0

For s = 0 we know that P (S) = 0. Equation (4.1), (4.3) and (4.8) with s = 0
become:

P (L1|s = 0) <

(
1 +

2

q

)(
1 +

Γ(md, 0)

q

)(
1

q

)t1+1

, (5.1)

P (L2|s = 0) <

(
1 +

2

q

)(
1

q

)t2+1

, (5.2)

P [(L|¬(L1 ∨ L2))|s = 0] < Γ(md, 0)

(
1 +

2

q

)(
1

q

)k−t1−t2

. (5.3)

To make P (L1|s = 0) + P (L2|s = 0) + P [(L|¬(L1 ∨ L2))|s = 0] < 1, we assign t1,
t2, k as follows:

t1 =
⌈
logq Γ(md, 0)

⌉
+ C1, t2 = C2, k − t1 − t2 =

⌈
logq Γ(md, 0)

⌉
+ C3.

Here, C1, C2 and C3 depend on q:

q 2 3 4 ≥ 5

C1 2 1 0 0

C2 1 0 0 0

C3 3 2 2 1

(5.4)

Thus, since in this special case

P (P|s = 0) ≤ P (L1|s = 0) + P (L2|s = 0) + P [(L|¬(L1 ∨ L2))|s = 0],

there exists a positive probability such that AB has full row rank when k ≥ t,
where

t = 2
⌈
logq Γ(md, 0)

⌉
+ 6.

Lemma 5.1. Γ(m(d + s), s) ≤ md.

We will leave the proof of this Lemma to Chapter 6. From the lemma, we
know that Γ(md, 0) ≤ md. Moreover, the analysis on the function Γ will imply
that Γ(md, 0) ∈ Ω(md/ logq md). Since the term with order O(log log md) doesn’t
improve the value of t much, we can use md instead of Γ(md). Let

t1 =

⌈
k − t− 1

3

⌉
+

⌈
logq md

⌉
+ 2, t2 =

⌈
k − t

3

⌉
+ 1, and t = 2

⌈
logq md

⌉
+ 6.

23

Then the probability of success is no less than 1− (1/q)b(k−t)/3c.

Moreover, if q ≥ md + 5, let t1 = t2 = 0, k = 1 in (5.1), (5.2) and (5.3).
Summing those equations give

P (P|s = 0) ≤ P (L1|s = 0) + P (L2|s = 0) + P [(L|¬(L1 ∨ L2))|s = 0]

≤ (q + 2)((md + 2)q + md)

q3

<
md + 5

q
− 9

q2
< 1.

Thus, if q ≥ md + 5, we can keep k = 1 and obtain a positive probability that
AB ≡R A.

5.2 Computation of P (S) in the general case

It’s well known that the number Nq(n) of irreducible polynomials with degree n
over finite field Fq satisfies the following theorem:

Lemma 5.2. (Theorem 3.25 in Lidl and Niederreiter [1983]) The number Nq(n)
of monic irreducible polynomials in Fq[x] of degree n is given by

Nq(n) =
1

n

∑

d|n
µ

(n

d

)
qd =

1

n

∑

d|n
µ(d)q

n
d , (5.5)

where µ(n) is the Moebius function on N defined as

µ(n) =

1 if n = 1;

(−1)k if n is the product of k distinct primes;

0 if n is divisible by the square of a prime.

Lemma 5.3. Nq(n) ≤ 1
n
qn.

The proof of Lemma 5.3 is very easy and is deferred until Chapter 6. From

24

Lemma 5.2 and Lemma 5.3, we know

∞∑
i=1

Nq(i)

(
1

q

)i(k+1)

= Nq(1)

(
1

q

)(k+1)

+ Nq(2)

(
1

q

)2(k+1)

+Nq(3)

(
1

q

)3(k+1)

+
∞∑
i=4

Nq(i)

(
1

q

)i(k+1)

<

(
1

q

)k

+
1

2
(q2 − q)

(
1

q

)2(k+1)

+
1

3
(q3 − q)

(
1

q

)3(k+1)

+
∞∑
i=4

1

i

(
1

q

)ik

<

(
1

q

)k

+
1

2

(
1

q

)2k

− 1

2

(
1

q

)3k

+
1

3

(
1

q

)3k

−1

3

(
1

q

)5k

+
1

4

(
1

q

)4k

+
1

5

∞∑
i=5

(
1

q

)ik

≤
(

1

q

)k

+
1

2

(
1

q

)2k

− 1

2

(
1

q

)3k

+
1

3

(
1

q

)3k

−1

3

(
1

q

)5k

+
1

4

(
1

q

)4k

+
2

5

(
1

q

)5k

<

(
1

q

)k

+
1

2

(
1

q

)2k

. (5.6)

Substituting (5.6) into (4.10) we can give an upper bound on P (S) directly.

P (S) ≤
∞∑
i=1

Nq(i)

(
1 +

2

qi

)(
1

q

)i(k+1)

<

(
1

q

)k

+ 2

(
1

q

)k+1

+
1

2

(
1

q

)2k

+

(
1

q

)2(k+1)

<

(
1

q

)k

+ 2

(
1

q

)k+1

+

(
1

q

)2k

. (5.7)

5.3 Special case: P (S|q = 2 ∧ k ≤ 2)

When q = 2, the bound on P (S) given by (5.7) is too large, even larger than 1 for
k = 1. Since the observation of (4.10) implies that the first terms of sum is fairly

25

large for small q and k and they dominate the primary part of the sum, we apply
some other techniques to compute those probabilities.

Based on Theorem 3.4 we consider the rank of [C|D] over more than one residue
field.

Theorem 5.4. Let p1, . . . , pt be irreducible polynomials over K[x]. Let C ∈ K[x]n×(n−m)

with rank(C mod pi) = n−m over K[x]/(pi) for all 1 ≤ i ≤ t. Let D ∈ K[x]n×(m+k)

have entries chosen uniformly from polynomials in K[x] whose degrees are no more
than s, where s + 1 ≥ ∑t

i=1 deg(pi). Then the probability P that [C|D] mod pi will
have a full rank over K[x]/(pi) for all 1 ≤ i ≤ t is

P >
t∏

i=1

∞∏

j=k+1

(
1−

(
1

qdeg(pi)

)j
)

. (5.8)

Proof. Let p =
∏t

i=1 pt and d =
∑t

i=1 deg(pi) = deg(p). Since s + 1 > d, consider
the mapping:

φp : Ks[x] 7→ Kd−1[x],

f 7→ f mod p.

Since each image of this mapping have the same number of preimages and for any
matrix M ∈ Ks[x], its rank over K[x]/(pi) is exactly the same with the rank of
M mod p over the same residue field. Thus we can only consider the probability P
in case that s = p− 1.

Let φi be the modular mapping from Kd−1[x] to K[x]/(pi). According to the
Chinese Remainder Theorem, for a set of polynomials f1, f2, . . . , ft such that fi ∈
K[x]/(pi), there exists an unique polynomial f ∈ Kd−1[x] such that f mod pi = fi,
i ≤ i ≤ t. Use ψ to denote this reconstruction. Then ψ and φ1×φ2×. . .×φt present
an isomorphic between K[x]/(p1) × K[x]/(p2) × . . . × K[x]/(pt) and Kd−1[x]. Since
the rank of a matrix M ∈ Kd−1[x] over K/(pi) is only related on its image under φi,
we know the probability that M has full rank over K/(p1), K/(p2), . . . , K/(pt) are
independent. Thus the probability P that [C|D] mod pi will have a full rank over
K[x]/(pi) for any 1 ≤ i ≤ t is the product of the probabilities that [C|D] mod pi

will have a full rank over K[x]/(pi) over each i. Then

P >
t∏

i=1

∞∏

j=k+1

(
1−

(
1

qdeg(pi)

)j
)

.

26

According to Theorem 5.4 we can consider three irreducible polynomials with
lowest degree together in this case. We know N2(1) = 2, N2(2) = 1. Then we
should keep s ≥ 3 for q = 2. Then we compute P (S). When q = 2, using the
approximation Lemma 3.5 and the upper bound for N2(i) in Lemma 5.3 gives

P (S|q = 2 ∧ k ≤ 2) ≤ 1−
∞∏

i=k+1

(
1− 1

2i

)2 (
1− 1

4i

)
+

s∑
i=3

N2(i)Pp

≤ 1−
∞∏

i=k+1

(
1− 1

2i

)2 (
1− 1

4i

)

+
∞∑
i=3

N2(i)

(
1 +

1

2i−1

)(
1

2

)i(k+1)

. (5.9)

According to Lemmas 5.2 and 5.3, consider k ≥ 1 and we have

∞∑
i=3

N2(i)

(
1

2

)i(k+1)

= N2(3)

(
1

2

)3(k+1)

+ N2(4)

(
1

2

)4(k+1)

+
∞∑
i=5

N2(i)

(
1

2

)i(k+1)

≤ 1

3
(23 − 2)

(
1

2

)3(k+1)

+
1

4
(24 − 2)

(
1

2

)4(k+1)

+
∞∑
i=5

1

i

(
1

2

)ik

<
1

3

(
1

2

)3k

− 1

3

(
1

2

)5k

+
1

4

(
1

2

)4k

−1

4

(
1

2

)6k

+
1

5

(
1

2

)5k

+
1

6

∞∑
i=6

(
1

2

)ik

≤ 1

3

(
1

2

)3k

− 1

3

(
1

2

)5k

+
1

4

(
1

2

)4k

−1

4

(
1

2

)6k

+
1

5

(
1

2

)5k

+
1

3

(
1

2

)6k

<
1

3

(
1

2

)3k

+
1

4

(
1

2

)4k

. (5.10)

Substituting (5.10) into (5.9) and recalling the approximation given by Lemma 3.5,

27

we have

P (S|q = 2 ∧ k ≤ 2) ≤ 1−
∞∏

i=k+1

(
1− 1

2i

)2 (
1− 1

4i

)
+

∞∑
i=3

N2(i)

(
1 +

1

2i−1

)(
1

2

)i(k+1)

< 1−
(

1−
(

1

2

)k+1
)4 (

1−
(

1

4

)k+1
)(

1− 2

(
1

4

)k+2
)

+
1

3

(
1

2

)3k

+
1

4

(
1

2

)4k

+
2

3

(
1

2

)3(k+1)

+
1

2

(
1

2

)4(k+1)

< 2

(
1

2

)k

− 3

4

(
1

4

)k

. (5.11)

Substituting k = 1, 2 into (5.11) gives

k 1 2

P (S|q = 2 ∧ k ≤ 2) 0.813 0.453
(5.12)

5.4 Computation of P (L)

According to (4.1), (4.3) and (4.8), we know P (L) can be as small as possible with
a large enough s. Let C be the desired upper bound on P (L). Consider (4.1) (4.3)
and (4.8):

P (L1) <

(
1 +

2

qs+1

)(
1 +

Γ(m(d + s), s)

qs+1

)(
1

q

)(s+1)(t1+1)

≤ C

3
,

P (L2) <

(
1 +

2

qs+1

)(
1

q

)(s+1)(t2+1)

≤ C

3
,

P [L|¬(L1 ∨ L2)] < Γ(m(d + s), s)

(
1 +

2

qs+1

)(
1

q

)(s+1)(k−t1−t2)

≤ C

3
.

Thus we can set s to satisfy the following inequalities:

t1 ≥
⌈

1

s + 1

(
logq

(
1 +

2

qs+1

)
+ logq

(
1 +

Γ(m(d + s), s)

qs+1

)
+ logq

3

C

)⌉
− 1,

t2 ≥
⌈

1

s + 1

(
logq

(
1 +

2

qs+1

)
+ logq

3

C

)⌉
− 1,

k − t1 − t2 ≥
⌈

1

s + 1

(
logq Γ(m(d + s), s) + logq

(
1 +

2

qs+1

)
+ logq

3

C

)⌉
.

28

Summing the above equations gives

k(s + 1) ≥ 2 logq Γ(m(d + s), s) + 3

(
1 + logq

3

C

)
. (5.13)

Using a similar analysis with the case s = 0 we know that we can use md to
take the place of Γ(m(d + s), s). Then (5.13) becomes

k(s + 1) ≥ 2 logq md + 3

(
1 + logq

3

C

)
, (5.14)

for any 0 < C ≤ 1. In particular, for q = 2 and k ≤ 2, (5.14) shows that s should
be at least 3 in order to use the technique in Section 5.3 in this special case.

5.5 Results

According to the sections above, to simplify the inequality (5.14) and the expression
of P (L), let the constant C = 0.01. Recall that K is a finite field with #K = q,
A ∈ K[x]m×n with degree bound d, and B ∈ K[x]n×(m+k) with degree bound s. P
denotes the event that AB 6≡R A. The relationship between the probability of the
event P and the parameters m, d, q, k and s can be presented in the following
theorem.

Theorem 5.5. The probability of event P satisfies the following:

1. If the entries of B are chosen from K (that is, s = 0), then

P (P|s = 0) ≤
(

1

q

)b k−t
3 c

, (5.15)

where t = 2dlogq mde+ 6.

2. If k is fixed and the entries of B are chosen from Ks[x] with s ≥ s0, then

P (P|s ≥ s0) ≤
(

1

q

)k

+ 2

(
1

q

)k+1

+

(
1

q

)2k

+ 0.01, (5.16)

where s0 =
⌊

1
k

(
2 logq md + 3

(
1 + logq 300

))⌋
.

29

3. In particular, as a special case of part 2, if q = 2, k ≤ 2 and s ≥ s∗0, then

P (P|q = 2 ∧ k ≤ 2 ∧ s ≥ s∗0) ≤ 2

(
1

2

)k

− 3

4

(
1

4

)k

+ 0.01, (5.17)

where s∗0 =
⌊

1
k

(2 log2 md + 28)
⌋
.

4. if we keep only one extra column and draw entries of B from K (that is,
s = 0 ∧ k = 1),

P (P|s = 0 ∧ k = 1) <
md + 5

q
− 9

q2
. (5.18)

30

Chapter 6

The bounds and approximations
for Nq(n) and Γ(D, s)

In this section we will discuss the properties of Nq(n) and Γ(D, s). In the process,
we will also prove Lemmas 5.1 and 5.3.

Recall that Nq(n) denotes the number of irreducible polynomials with degree n
over finite field Fq and Γ(D, s) denote the maximum number of distinct irreducible
divisors with degree strictly larger than s of a polynomial with degree D. First
we present an upper bound on Γ(D, s). Consider the case that a polynomial with
degree D gets maximum number of distinct divisors, in which this polynomial
should be the multiple of all irreducible of polynomials with degree s + 1, s + 2,
. . . until the degree of their product is larger than D. According to the definition of
Γ(D, s), the number of irreducible divisors of such polynomial is an upper bound
on Γ(D, s).

Definition 6.1. For a non-negative integer D, let γ(D, s) be an integer such that

γ(D,s)∑
i=s+1

iNq(i) ≤ D <

γ(D,s)+1∑
i=s+1

iNq(i). (6.1)

Theorem 6.2. For a non-negative integer D, we have the following upper bound
on Γ(D, s):

Γ(D, s) ≤
γ(D,s)∑
i=s+1

Nq(i) +

 1

γ(D, s) + 1

D −

γ(D,s)∑
i=s+1

iNq(i)

 .

31

According to the definition of γ(D, s), and using n0 to denote γ(D, s), we have

Γ(D, s) <

n0+1∑
i=s+1

Nq(i). (6.2)

Suppose n = qα1
1 qα2

2 . . . qαt
t is the complete factorization of integer n, and q1 < q2 <

. . . < qt are primes. If n = qα1
1 then

nNq(n) = qn − q
n
q1 . (6.3)

Otherwise, since the value of Moebius function is in {−1, 0, 1},
nNq(n) =

∑

d|n
µ

(n

d

)
qd (6.4)

≤ qn − q
n
q1 − q

n
q2 +

n
q1q2∑
i=1

qi (6.5)

< qn − q
n
q1 − q

n
q2 + q

n
q1q2

+1

≤ qn − q
n
q1 , (6.6)

According to the definition of µ, the largest d < n to make µ(n/d) = 1 is n/(q1q2).
Discarding all d|n, d < n/q2 with µ(n/d) = −1, and assuming that for all d <
n/(q1q2), µ(n/d) = 1 in (6.4), we maximize the sum and derive (6.5). Now observe

nNq(n) =
∑

d|n
µ

(n

d

)
qd (6.7)

≥ qn − q
n
q1 −

n
q2∑

i=1

qi (6.8)

> qn − q
n
q1 − q

n
q2

+1

≥ qn − 2q
n
q1

≥ qn − q
n
q1

+1
.

As above, since the largest d < n/q1 to make µ(n/d) = −1 is n/q2, discard all d|n,
d < n/q1 with µ(n/d) = 1, and assume for all d < n/q2, that µ(n/d) = −1 in (6.7).
Then we can obtain (6.8).

For n ≥ 3, n/q1 + 1 ≤ n− 1. Let

Nq(n) =

{
Nq(n) n = 1, 2,
1
n

(qn − qn−1) n ≥ 3,
(6.9)

Nq(n) =
1

n
(qn − q) . (6.10)

32

Then we have

Nq(n) ≤ Nq(n) ≤ 1

n

(
qn − q

n
q1

)
≤ Nq(n). (6.11)

This equation gives the proof of Lemma 5.3. Moreover, since

n∑
i=s+1

iNq(i) =
qn+1 − qs+1

q − 1
− (n− s)q < qn+1 − qs ≤

n+1∑
i=s+1

iNq(i),

we have
n0∑

i=s+1

iNq(i) ≤
n0∑

i=s+1

iNq(i) <

n0+1∑
i=s+1

iNq(i) ≤
n0+1∑
i=s+1

iNq(i). (6.12)

It follows that

⌊
logq(D + qs)

⌋− 1 ≤ n0 = γ(D, s) ≤ ⌊
logq(D + qs)

⌋
. (6.13)

Meanwhile, we give some approximation of Γ(D, s):

Γ(D, s) ≥
n0∑

i=s+1

Nq(i) +
1

n0 + 1

(
D −

n0∑
i=s+1

iNq(i)

)
− 1

=

n0∑
i=s+1

Nq(i)

(
1− i

n0 + 1

)
+

D

n0 + 1
− 1

≥ D

n0 + 1
− 1 (6.14)

≥ D⌊
logq(D + qs)

⌋
+ 1

− 1. (6.15)

Equation (6.15) shows that Γ(D, s) is on the order of Ω(D/ log D). Moreover,
according to the definition of Γ(D, s), we know:

Γ(D, s) ≤ D

s + 1
.

When D = m(d + s), we have:

Γ(m(d + s), s) ≤ m(d + s)

s + 1
= m

(
d− d− 1

s + 1
s

)
≤ md. (6.16)

Thus Lemma 5.1 has been proved.

33

Chapter 7

Verification and complexity
analysis

In this chapter, we analyze the complexity of computing a lattice compression AB
and give an algorithm to verify the correctness of the compression (that is, verify
that AB ≡R A). We discuss the cost of the Monte Carlo lattice compression al-
gorithm in Section 7.1. Recall we mention many algorithms require square input
matrices in Chapter 1. In Section 7.2, we give an algorithm to convert a rectan-
gular matrix into a square one. In Section 7.3, we present a method to verify the
correctness of compressions and design a Las Vegas lattice compression algorithm.

To give cost estimates, we use the following notations. Let M(d) denote the
required number of field operations for the multiplications of polynomials over K[x]
with degree bound d. Let B(d) denote the required number of field operations for
polynomial gcd-related computations between polynomials over K[x] with degree
bound d. Let θ, 2 < θ ≤ 3, be such that the multiplication of two n × n matrices
takes O(nθ) field operations. Here we always assume that B(d) = M(d) log d and
B(n) = O(nθ−1).

7.1 The cost of the Monte Carlo compression al-

gorithm

Theorem 5.5 gives a straightforward Monte Carlo Compression algorithm as follows.

34

Algorithm 7.1 Monte-Carlo Compression Algorithm: MCComp(A, k)

Input: A ∈ K[x]m×n with full row rank, deg A ≤ d, k ≥ 1.
Output: AB ∈ K[x]m×(m+k).
1: if k ≥ 2dlogq mde+ 9 then
2: s := 0
3: else
4: s := b 1

k
(2 logq md + 3(1 + logq 300))c

5: end if
6: Generate a random matrix B ∈ K[x]n×(m+k), whose entries are chosen uniformly

from Ks[x].
7: return AB.

The following table gives upper bounds on the probability that Algorithm 7.1
returns a incorrect lattice compression with respect to k.

k ≥ 2dlogq mde+ 9 q = 2 ∧ k ≤ 2 q > 2 ∨ k > 2

probability
of failure

(
1
q

)b k−t
3 c1 2

(
1
2

)k − 3
4

(
1
4

)k
+ 0.01

(
1
q

)k

+ 2
(

1
q

)k+1

+
(

1
q

)2k

+ 0.01

(7.1)
The cost of computing the matrix multiplication in line 7 determines the cost of
Algorithm 7.1. When s ∈ O(1), the cost of the multiplication is O(nmθ−2(m +
log d)M(d)) field operations. When s ∈ Θ(log md), the cost of the multiplication is
O(nmθ−1M(d + log m)) field operations. Thus we have the following theorem.

Theorem 7.1. The Cost of the Monte Carlo Compression Algorithm 7.1 is:

• O(nmθ−2(m + log d)M(d)) field operations, if s ∈ O(1).

• O(nmθ−1M(d + log m)) field operations, if s ∈ Θ(log md).

7.2 Convert rectangular matrix into square ma-

trix

Recall from Chapter 1 that many algorithms require square input matrices. Since
the output of lattice compression is still a rectangular matrix, we present a method
to generate a square matrix from a rectangular one in this section.

1Here t = 2dlogq mde+ 6.

35

For a matrix C ∈ K[x]m×(m+k) with full row rank m, we are going to construct
a nonsingular matrix C̃ ∈ K[x](m+k)×(m+k) with the form of

C̃ =

[
C

∗

]
∈ K[x](m+k)×(m+k),

such that deg(C̃) ≤ deg(C) and it has the Hermite column basis

HC̃ =

[
HC 0

0 Ik

]
∈ K[x](m+k)×(m+k),

where HC is the Hermite column basis of C.

In order to compute C̃, we rely on the determinant reduction algorithm in
Storjohann [2002]. This algorithm can transform a nonsingular square matrix D
into D̃ with D̃ equal to D except the last row, deg(D̃) ≤ deg(D), and the last
diagonal entry of D̃ in the Hermite column basis of D̃ equal to 1. Here is an
example of determinant reduction over Z7[x]. The rectangular matrix

C =

[
3x2 − x + 2 3x 3x

x2 + 3x + 3 3x2 − 2x 3x2 − 3x

]
,

with its Hermite column basis

HC =

[
1 0

−2 x

]
.

Attach matrix C with a row vector and covert it into a square matrix D. Before
the reduction, the matrix D and its Hermite column basis HD are:

D =

3x2 − x + 2 3x 3x

x2 + 3x + 3 3x2 − 2x 3x2 − 3x

−2x2 + x− 1 3x2 + x 3x2 − 2

 ,

HD =

1 0 0

−2 x 0

−x + 3 x + 2 x2 + x + 2

 .

36

After the reduction, we have a new matrix D̃ and its Hermite column basis HD̃ are:

D̃ =

3x2 − x + 2 3x 3x

x2 + 3x + 3 3x2 − 2x 3x2 − 3x

3x 3x 3x− 1

 ,

HD̃ =

1 0 0

−2 x 0

0 0 1

 .

Storjohann [2002] also mentions that the determinant reduction for more than one
row can be accomplished with single row determinant reductions and permutations.
Thus if we have a nonsingular (m + k)× (m + k) matrix with the form of

[
C

∗

]
∈ K[x](m+k)×(m+k),

we can apply the determinant reduction algorithm to this matrix and obtain the
desired matrix C̃. Let X̃ ∈ K[x] be an irreducible polynomial such that rank(C mod
X̃) = m over K[x]/(X̃). Without loss of generality, suppose the first m columns
have full rank m over K[x]/(X̃), then the matrix

[
C

0 Ik

]
∈ K[x](m+k)×(m+k)

has full rank over K[x].

The cost of line 1 in Algorithm 7.2 is same with the cost of Gaussian elimination
of an m × (m + k) matrix over K[x]/(X̃), which costs O((m + k)mθ−1B(deg X̃))
field operations. The determinant reduction in line 4 of Algorithm 7.2 consists of
k single row determinant reduction. According to Storjohann, 2002, Propsition 38,
we know the cost of one single row determinant reduction is O((m + k)θ log(m +
k)B(deg X̃ + deg C)) field operations. This gives the following.

Theorem 7.2. The cost of Algorithm 7.2 is O((m + k)mθ−1B(deg X̃) + k(m +
k)θ log(m + k)B(deg X̃ + deg C)).

37

Algorithm 7.2 Convert a rectangular matrix into a square one: SQconv(C, X̃)

Input: C ∈ K[x]m×(m+k), rank(C) = m over K[x]. X̃ ∈ K[x] is an irreducible
polynomial such rank(C mod X̃) = m over K[x]/(X̃).

Output: C̃ ∈ K[x](m+k)×(m+k) such that HC̃ =

[
HC 0

0 Ik

]
.

1: Use LSP decomposition [Ibarra et al., 1982] to compute the permutation
P ∈ K[x](m+k)×(m+k) such that the first m columns of CP have full rank over
K[x]/(X̃).

2: Let

C∗ =

[
CP

0 Ik

]
P−1

3: Apply k-rows determinant reduction algorithm to C∗. Let C̃ be its result.
4: return C̃.

7.3 Correctness verification and Las Vegas com-

pression algorithm

We now consider how to verify the correctness of a compression. We know that
AB ≡R A if and only if HA = HAB, where HA and HAB are Hermite column basis of
A and AB, respectively. Therefore, we can verify the correctness by computing and
comparing HA and HAB. However, computing the Hermite column basis of A using
the fastest known algorithm of Storjohann [2000] will cost O(nmθ−1B(md)) field
operations. Comparing it with the cost in Theorem 7.1, we know that computing
HA is almost m times as costly as computing AB. In this section, we present an
alternative method to verify the correctness.

Apply Algorithm 7.2 to the compressed matrix AB and we can get an (m +
k)× (m + k) nonsingular matrix Ã with the form of

Ã =

[
AB

∗

]
,

such that it has the Hermite column basis

HÃ =

[
HAB 0

0 Ik

]
,

The following lemma provides a method to verify the correctness of a compression.

38

Lemma 7.3. AB ≡R A if and only if Ã−1

[
A

0

]
∈ K[x](m+k)×n.

Proof. Let UÃ be the unimodular transform matrix such that ÃUÃ = HÃ. Then

Ã−1

[
A

0

]
= UÃH−1

Ã

[
A

0

]
= UÃ

[
H−1

AB 0

0 Ik

][
A

0

]
= UÃ

[
H−1

ABA

0

]
.

Here HAB is the Hermite column basis of AB. Notice that Ã−1

[
A

0

]
is over K[x]

if and only if H−1
ABA is over K[x]. Since L(AB) ⊆ L(A), H−1

ABA is over K[x] if and
only if HA = HAB.

Using the integrality certification algorithm in Storjohann [2002], which will tell
us whether Ã−1A is over K[x], we can verify the correctness of the compression.
The cost of integrality certification is O(log(m+k)nmθ−1B(d+ s)) field operations,
which is only logarithmic times as much as the lattice compression.

Our Las Vegas lattice compression algorithm has three stages.

1. Choose an random irreducible X̃ ∈ K[x] such that rank(A mod X̃) = m.
Return fail if rank(A mod X̃) < m.

2. Compute the lattice compression AB.

3. Verify that AB ≡R A. Return AB if AB ≡R A, otherwise return fail.

The Algorithm 7.2 requires an irreducible polynomial X̃ such that X̃⊥ det HAB

for its input matrix AB. The integrality certification algorithm also needs such
an X̃ with respect to matrix Ã. Since the Hermite column basis of Ã is the same
as the Hermite column basis of AB except for the last k columns, and the last
k diagonal entries in the Hermite column basis of Ã are equal to one. We know
det Ã is an associate of det HAB and the compression is successful if and only if
HA = HAB. Thus we only need to find an irreducible X̃ such that X̃⊥ det HA. Since
det HA ≤ md, if the finite field K is large enough with q > 8md, we can randomly
draw a polynomial X̃ in K with degree 1 and the probability that rank(A) < m
over K[x]/(X̃) is md/q < 1/8.

When q ≤ 8md, we generate X̃ randomly and uniformly in all the irreducible
polynomials with degree t for some integer t. According to (6.9), we know that the

39

total number of such polynomials is Nq(t) ≥ (qt − qt−1)/t ≥ qt/2t, and that the
number of irreducible divisors of detL(A) is no more than md/t. Thus we know
the probability P such that rank(A) < m over K[x]/(X̃) satisfies

P ≤ md

t
· 2t

qt
=

2md

qt
.

If t = dlogq mde + 4, the probability that rank(A) < m over K[x]/(X̃) is smaller
than or equal to 1/8. The detail version of the Las Vegas compression algorithm is
presented in Algorithm 7.3.

First we compute the probability of failure of Algorithm 7.3. According to
the construction of X̃, we know the probability that X̃ is a divisor of detL(A)
is less than or equal to 1/8. Thus the probability of returning failed in line 7 of
Algorithm 7.3 is bounded by 1/8.

Lines 16 and 20 of Algorithm 7.3 are the verification of correctness of the com-
pression. Thus they fail if and only if the compression isn’t successful, and the
probability that Algorithm 7.3 fails in Line 16 or 20 is the same as the probability
of failure in (7.1), which shows that the probability that the compression fails is
less than 0.823. Thus we have the following theorem.

Theorem 7.4. The probability that Algorithm 7.3 returns “fail” is less than 0.951.

In the end, we analysis the complexity of Algorithm 7.3. The algorithm in Shoup
[1994] showed that the cost of generating a random irreducible polynomial with de-
gree bound d over a finite field with size q is O((d2 log d+d log q) log d log log d) field
operations. In this paper, we always consider q as constant, so that this cost should
be O(d2(log d)2 log log d). The cost of rank checking in line 16 of Algorithm 7.3
is same with cost of line 1 of Algorithm 7.2. According to Storjohann [2002], the
integrality certification in line 19 takes O(log(m + k)n(m + k)θ−1B(d + s)) field
operations. Observing of the costs above, recalling the cost of compression in The-
orem 7.1 and the cost of Algorithm 7.2 in Theorem 7.2, we discuss the complexity
of our Algorithm 7.3 in two cases.

• When k ∈ O(1), according to (5.14), we have s ∈ Θ(log md). Theorem 7.1
shows the cost of lattice compression is O(nmθ−1M(d+log m)) field operations.
Theorem 7.2 gives the cost of Algorithm 7.2 in line 18 as O(nmθ−1B(d+log m))
field operations, and the integral certificate in line 19 takes O((log m)nmθ−1B(d+
log m)) field operations. Thus the total cost of Algorithm 7.3 is O((log m)nmθ−1B(d+
log m)) field operations.

1This is the probability in the worst case that q = 2 ∧ k = 1. The probability of failure will
decrease exponentially with the increase of k.

40

Algorithm 7.3 Las Vegas Compression Algorithm: LVComp(A, k)

Input: A ∈ K[x]m×n with full row rank, deg A ≤ d. k ≥ 1
Output: AB ∈ K[x]m×(m+k) such that L(A) = L(AB), or fail.
[Stage 1. Randomly Generate X̃]
1: if q > 8md then
2: Randomly and uniformly choose an irreducible polynomial in K1[x] as X̃.
3: else {q ≤ 8md}
4: Randomly and uniformly choose an irreducible polynomial with degree

dlogq mde+ 4 as X̃.
5: end if

[Stage 2. Compute Lattice Compression AB]
6: if rank(A mod X̃) < m over K[x]/(X̃) then
7: return fail
8: end if
9: if k ≥ 2dlogq mde+ 9 then

10: s := 0
11: else
12: s := b 1

k
(2 logq md + 3(1 + logq 300))c

13: end if
14: Generate a random matrix B ∈ K[x]n×(m+k), whose entries are chosen uniformly

from Ks[x]. Compute AB.
[Stage 3. Verify that AB ≡R A]
15: if rank(AB mod X̃) < m over K[x]/(X̃) then
16: return fail
17: end if
18: SQconv(AB, X̃)

19: Use integrality certification to know whether Ã−1

[
A

0

]
is over K[x]. if the

integrality certification returns fail then
20: return fail
21: end if
22: return AB.

41

• When k ∈ Θ(log md), s ∈ O(1). According to Theorem 7.1 the cost of
lattice compression is O(nmθ−2(m + log d)M(d)) field operations. The cost of
Algorithm 7.2 in line 23 given by Theorem 7.2 is O((log md)2(m+log d)θB(d))
field operations. The integral certificate in line 24 takes O((log md)n(m +
log d)θ−1B(d)) field operations. Therefore, the total cost of Algorithm 7.3 is
O((log md)n(m + log d)θ−1B(d) + (log md)2(m + log d)θB(d)) field operations.

Theorem 7.5. The cost of Algorithm 7.3 is:

• O((log m)nmθ−1B(d + log m)) field operations if k ∈ O(1).

• O((log md)n(m + log d)θ−1B(d) + (log md)2(m + log d)θB(d)) field operations
if k ∈ Θ(log md).

Ignoring logarithmic factors, the cost estimate in Theorem 7.5 becomes O~(nmθ−1B(d))
field operations.

42

Chapter 8

Conclusion

We have studied lattice compression over the polynomial ring of finite fields. For a
finite field K with size q and an m×n matrix A over K[x] with degree bound d, we
compress A with a n× (m+k) matrix B whose entries are randomly and uniformly
chosen from K[x] with degree bound s. Our main contribution is the analysis of
the probability that AB ≡R A with respect to m, d, q, k, and present the proper
degree bound s in different cases. We show that there is a positive probability to
get a successful compression even if s = 0 as long as k ∈ Ω(logq md). In general, we
can always guarantee a positive probability of successful compression by keeping
k(s + 1) ∈ Ω(logq md). Particularly, if the field k has enough entries, we can keep
s = 0 and k = 1 to get a positive probability of success.

The lattice compression can be implemented with either Monte Carlo or Las
Vegas randomized algorithm. The Monte Carlo algorithm can be used in some
applications where the correctness verification isn’t required such as linear system
solving. For those applications in which the correctness of the compression must
be guaranteed, we design a competitive Las Vegas compression algorithm with a
positive probability of success and cost of O~(nmθ−1B(d)) field operations.

Though in our discussion, we assume A to be a matrix with full row rank, it can
be generalized to singular matrices as well. If rank(A) = r, the results in Section 5.5
still work even with each occurrence of m replaced with r. Moreover, the algorithm
could as well be modified to compress a singular matrix A with its rank r given
by the input. We can pick r × n minor Ā of A with full row rank during the LSP
decomposition in line 1 of Algorithm 7.3, find a compression matrix for Ā and then
generate the correspond compression matrix for A.

The further study in lattice compression lays on the case in which A is a sparse
matrix. Since probability in (3.1) and the analysis in Section 4.3 do not hold in

43

this case, we need to find some other methods to compute the probability or use
different way to generate the random matrix B.

44

Bibliography

Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra
on integer matrices. In M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC ’05, pages 92–99. ACM Press, New York, 2005.

A. Conflitti. On computation of the greatest common divisor of several polynomials
over a finite field. Finite Field Appl., 9:423–431, 2003.

G. Cooperman, S. Feisel, J. von zur Gathen, and G. Havas. GCD of many integers
(Extended Abstract). In Proceedings of the Fifth International Computing and
Combinatorics Conference, Tokyo, 1999, Lecture Notes in Computer Science,
volume 1627, pages 310–317, Berlin, 1999. Springer-Verlag.

W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith
form of an integer matrix. In Proc. 31st Ann. IEEE Symp. Foundations of Com-
puter Science, pages 675–685, 2000.

J. von zur Gathen and I. E. Shparlinski. GCD of random linear forms. In Algorithms
and Computation: 15th International Symposium, ISAAC 2004, LNCS 3341,
pages 464–469. Springer Verlag, 2004.

P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix
computations. In R. Sendra, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’03, pages 135–142. ACM Press, New York, 2003.

O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decom-
position algorithm and applications. Journal of Algorithms, 3:45–56, 1982.

E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel algorithms for
matrix normal forms. Linear Algebra and its Applications, 136:189–208, 1990.

Donald E. Knuth. Art of Computer Programming, Volume 1: Fundamental Algo-
rithms (3rd Edition). Addison-Wesley Professional, November 1997.

45

R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, 1983.

T. Mulders and A. Storjohann. Certified dense linear system solving. Journal of
Symbolic Computation, 37(4):485–510, 2004.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM, 27:701–717, 1980.

V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal
of Symbolic Computation, 17:371–391, 1994.

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology, ETH–Zurich, 2000.

A. Storjohann. High–order lifting. Extended Abstract. In T. Mora, editor, Proc.
Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’02, pages 246–254.
ACM Press, New York, 2002.

A. Storjohann and G. Labahn. Preconditioning of rectangular polynomial matrices
for efficient Hermite normal form computation. In A. H. M. Levelt, editor, Proc.
Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’95, pages 119–125.
ACM Press, New York, 1995.

46

